
Technical Report
Number 920

Computer Laboratory

UCAM-CL-TR-920
ISSN 1476-2986

Interactive analytical modelling

Advait Sarkar

May 2018

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2018 Advait Sarkar

This technical report is based on a dissertation submitted
December 2016 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Emmanuel
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

ABSTRACT

This dissertation addresses the problem of designing tools for non-expert end-users per-

forming analytical modelling, the activity of data analytics through machine learning.

The research questions are, firstly, can tools be built for analytical modelling? Secondly,

can these tools be made useful for non-experts?

Two case studies are taken: that of building and applying machine learning models to

analyse time series data, and that of building and applying machine learning models to

analyse data in spreadsheets. Respectively, two prototypes are presented, Gatherminer

and BrainCel. It is shown how it is possible to visualise general tasks (e.g., prediction,

validation, explanation) in these contexts, illustrated how these prototypes embody the

research hypotheses, and confirmed through experimental evaluation that the prototypes

do indeed have the desirable properties of facilitating analytical modelling and being ac-

cessible to non-experts.

These prototypes and their evaluations exemplify three theoretical contributions: (a) vi-

sual analytics can be viewed as an instance of end-user programming, (b) interactive ma-

chine learning can be viewed as dialogue, and (c) analytical modelling can be viewed as

constructivist learning. Four principles for the design of analytical modelling systems

are derived: begin the abstraction gradient at zero, abstract complex processes through

heuristic automation, build expertise through iteration on multiple representations, and

support dialogue through metamodels.

ACKNOWLEDGEMENTS

I’d like to thank:

• My sponsors: EPSRC, British Telecommunications plc, and Robert Sansom, for gen-

erously supporting my research for the last three or so years.

• Lise Gough, for her help and support in innumerable and immeasurable ways.

• Members of the Rainbow group who made working in the SS corridor so engaging

and enjoyable: Alistair, Zhen, Isak, Maria, Mariana, Marwa, Flora, Tadas, Andra,

Sam, and many others.

• Co-conspirators from the Happy Hour crew past and present: Erroll, Oli, Guo, and

others, for making Fridays awesome.

• Steve, Tom, and Becky, for some awesome Apprentice/Masterchef evenings.

• Collaborators and mentors at Microsoft Research Cambridge and Novartis, including

Cecily Morrison, Jonas Dorn, Abi Sellen, Simon Peyton Jones, and Andy Gordon, for

two incredibly stimulating and enjoyable summer research internships.

• All of my hardworking experimental participants, from BT Research, the Computer

Lab, and the Land Economy department.

• Dyuti kaku and Suresh uncle, for generously hosting and taking good care of me in

Melbourne and Palo Alto respectively, when I attended VL/HCC ’14 and CHI ’16.

• Guy Cuthbert and Atheon, for uncovering the data scientist in me.

• The Vista crowd (families Ramkumar, Shekhawat, Ravikumar, and others) for being

a wonderful, joy-filled part of my Bangalore life.

• The Edingale crowd (Wells’, Keeys, and others), but especially the wonderful Mason

family, for taking care of me on countless occasions.

• Dr. Matthew Sullivan, for teaching me to never settle for any less than the very best.

• My supervisors: Alan Blackwell, Mateja Jamnik, and Martin Spott, thanks to whom

I have grown beyond my wildest imagination. Martin: thank you for your guidance,

support, and many enjoyable car journeys to Ipswich. Mateja: thank you for your

compassion, clarity of vision, and immense generosity with your time. Alan: thank

you for your generosity with your amazing repertoire of knowledge, and for freely

and exponentially multiplying and elevating my meagre ideas.

• My beloved John, for his steadfast and unconditional love and support.

• My grandparents: dadu, dida, dada, and thakuma.

• My mother and father, Nivedita and Subhanjan, for their endless, selfless love.

CONTENTS

1 Introduction 15

1.1 Research objectives . 17

1.2 Dissertation overview . 18

1.3 Relevant publications . 19

2 Humans in the analytics loop 21

2.1 Introduction . 22

2.2 Current approaches to mixed-initiative analytics 22

2.2.1 Intelligent discovery assistants . 22

2.2.2 Visual analytics . 24

2.2.3 Interactive machine learning . 25

2.3 Differences in approaches to interactive analytics 26

2.3.1 Technology . 26

2.3.2 End-user task formalisation . 27

2.3.3 Approach to knowledge generation . 27

2.3.4 Problem domain . 28

2.4 Interactive analytical modelling . 29

2.4.1 The two cultures of statistical modelling 29

2.4.2 Novel research focus . 30

3 Theoretical perspectives 33

3.1 Research methodology . 34

3.2 Visual analytics is end-user programming . 36

3.3 Interactive machine learning is dialogue . 43

3.3.1 Other approaches to the indirect channel 44

3.3.2 Supporting dialogue through metamodels 46

3.3.2.1 Example metamodel applications 51

3.4 Analytical modelling is constructivist learning 54

3.4.1 Implicit and explicit learning outcomes in analytical modelling 55

3.4.2 Critical constructivist issues for analytical modelling 55

3.5 Design principles for analytical modelling systems 58

3.6 Conclusion . 60

4 Gatherminer 61

4.1 Introduction . 62

4.2 Related work . 63

4.2.1 Visualisations for bottom-up time series analysis 64

4.2.2 Explaining behaviour in time series datasets 64

4.3 Design . 65

4.3.1 Core colour-mapped matrix visualisation 65

4.3.2 Gathering: automated layout . 72

4.3.3 Selection to annotate interesting clusters 78

4.3.4 Alternative interactive representations for decision trees 82

4.4 Comparative study . 87

4.4.1 Experimental results . 88

4.5 Discussion . 89

4.6 Conclusions . 94

5 BrainCel 97

5.1 Introduction . 98

5.2 Selection as annotation . 99

5.2.1 Experimental evaluation of selection-as-annotation 102

5.2.2 Selection-as-annotation experiment results 102

5.3 Supporting dialogue and critical model evaluation 105

5.3.1 Design of the BrainCel interface . 106

5.3.2 Design discussion . 114

5.4 Exploratory user study . 114

5.4.1 Analysis method . 116

5.4.2 Exploratory study results . 116

5.4.3 Activity flows . 119

5.5 Limitations and future work . 120

5.6 Conclusions . 121

6 Conclusion 123

6.1 Theory exemplified in Gatherminer and BrainCel 123

6.2 Contributions . 125

6.3 Future work . 126

6.4 Conclusion . 128

Bibliography 129

In loving memory of dadu.

Dr. Jayant Mukerji

(1933 – 2011)

14

CHAPTER 1

INTRODUCTION

Data analytics is useful, that much is certain. However, the tools used to conduct so-

phisticated analytics, involving statistics and machine learning, are still primitive. The

interfaces of standard professional tools are programming languages. We do not burden

professional photographers, musicians, doctors, lawyers, teachers, etc., with needing to

learn how to program in order to do their job, yet programming remains the dominant

activity of modern statisticians and data scientists. Consequently, data analytics is the

preserve of a small group of highly-skilled professionals, despite the fact that a much

larger population could benefit from access to sophisticated analytics.

“Limited access to Big Data creates new digital divides”, assert Boyd and Crawford (2012).

Access to data consists not only of the ability to physically read the data, but also the

availability of tools for processing that data, and the ability to acquire sufficient knowledge

and expertise to profitably operate those tools.

As the amount of data we produce and consume grows, so does its potential utility. It

is not only the professional data analyst working within a corporate setting who might

benefit from this process, but anyone who manages information systematically. This is

a diverse group with heterogeneous needs and abilities, ranging from education admin-

istrators, to journalists, from small business owners, to homemakers, from students, to

doctors. Our collective ability to use data is not growing proportionally to its potential.

Instead, the domain knowledge and tool expertise required to put data to use is increas-

ingly concentrated in a small number of professional data analysts, sometimes referred to

as data scientists. Data scientists typically have a skill set that includes but is not limited

to statistics, machine learning, programming, database management, data visualisation,

and communication.

While small businesses and individuals may benefit demonstrably from analysis of their

data, it is infeasible for many to engage the services of data scientists. Better-designed

tools may ameliorate this unfulfilled need. Software tools cannot replace the data sci-

entist entirely, but the usability-driven design of such tools might drastically lower the

barrier to entry, making some aspects of data science accessible to users not in possession

of extensive domain knowledge or tool expertise.

15

The space between analytics and model-building

Statistics and machine learning have two uses:

1. Analytics: interpreting data. The aim of analytics is to understand something about

the nature of the real world by studying observed data in relation to its context. De-

scriptive summary statistics such as the mean, variance, and correlation coefficient,

are simple instances of analytical instruments.

2. Model-building: capturing the structure in observed data in a model which enables

inference on incomplete or as-yet-unobserved data. For instance, modelling the re-

lationship between two variables using the equation of a line with linear regression

is a simple instance of model-building, as the fitted coefficients can be used to esti-

mate the response variable from the explanatory variable if for a particular case the

former is unknown but the latter is known.

Advances in machine learning and computational power have stimulated both uses. Com-

plex models with many parameters, such as neural networks and ensembles of decision

trees, are popular for their superior performance in prediction tasks. The overlap between

analytics and model-building is growing, as analysts seek to interpret the learnt param-

eters and coefficients of these models in the way they would simple descriptive summary

statistics. However, tools available for analytics and model-building remain separate, as

there is a perceived tradeoff between accuracy and intelligibility, detailed in the next chap-

ter. This dissertation addresses analytical modelling: the hybrid activity of analytics

through model-building.

Expertise requirements for analytical modelling

Analytical modelling requires much expertise. Many algorithms and tools are usable only

by experts in both programming and machine learning. This dissertation identifies three

types of expertise required for analytics and model-building:

1. Representational expertise: an understanding of how interface elements map

to underlying abstract information structures and information manipulation proce-

dures. Representational expertise generalises notational expertise (Stead and Black-

well, 2014), which refers to expertise in programming language syntax. To use a

programming language, one must understand its syntactic features: identifiers, de-

limiters, and so on. Similarly, to use a graphical interface, one must understand how

buttons, menus, and other interface elements each modify the information structure

being created.

In the common scenario where a programming language is the sole interface to an

analytical procedure, representational expertise requirements are immense; not only

must the user be an expert in the abstract symbolic manipulation of the program-

ming notation, but also in the idiosyncrasies of particular software libraries. For

instance, to perform a linear regression in R, one must know the syntax for creat-

ing a data matrix in R, the command for fitting a linear regression including the

structure of its arguments, and how to display its results.

16

2. Process expertise: an understanding of a statistical process to be invoked in terms

of its assumptions, limitations, algorithmic properties, and the interpretation of its

outcomes. For instance, in order to understand the process of linear regression, one

must understand the concept of explanatory and response variables, the concept of

the equation of a line, the concept of maximum likelihood estimation through a train-

ing error minimisation process such as the method of least-squares, and so on.

3. Domain expertise: an understanding of the data being processed, how it was gener-

ated, its sources of noise, and how to interpret it in the context of broader real-world

processes. For instance, analysing time series data of faults on a telecommunica-

tions network, a problem addressed in Chapter 5, requires an understanding of the

real-world processes and devices that this data describes.

Each type of required expertise poses a barrier to analytical modelling. The term non-

expert end-users is used throughout this dissertation to refer to the target users of the

tools presented. In general, this means that the users lack sufficient representational ex-

pertise to use a textual programming language such as R, and also lack sufficient process

expertise to be able to thoroughly understand the mathematical theory underlying statis-

tical modelling. It is in these first two types of expertise that there is clearest opportunity

for interaction design solutions; a principal concern of interaction design is the study of

representation and metaphor to enable humans to do things and have experiences that

they otherwise could not, by identifying and reducing the incidental complexities of tasks.

In some parts of this dissertation the term non-expert additionally implies a lack of do-

main expertise; in these cases the departure from the standard interpretation is explicitly

demarcated. Domain expertise can improve as well as impair analysis. The relation-

ship between interaction design and domain expertise is the least clear, and well-designed

interfaces may not ever be able to compensate for a lack of domain expertise, since the

analyst requires it to interpret the data in context. However, sometimes domain exper-

tise is used not to contextualise, but as a (potentially problematic) search heuristic. This

causes issues for controlled usability studies. It will be shown how interaction design can

intervene here, principally by reframing the task as one other than search. The issues

surrounding domain expertise are addressed in detail in Chapter 4.

1.1 Research objectives

This dissertation investigates the following research questions:

1. Can tools be built for analytical modelling, that is, analytics through model-building?

2. Can they be made useful for non-experts?

To answer these questions, an iterative, design-led approach has been taken, motivated by

real-world scenarios where an analytical modelling tool would be useful for non-experts.

In building prototypes to explicitly facilitate analytics through model building, this dis-

sertation exposes the visual and interaction design challenges inherent in attempting to

effectively combine them. In particular, the two major challenges are reducing expertise

requirements, and facilitating critical engagement with a model. Novel visual represen-

tations, theoretical constructs, and design principles are proposed to address these chal-

lenges. These prototypes are demonstrated to be useful for non-experts through studies

conducted with non-expert participants.

17

1.2 Dissertation overview

The remainder of this dissertation is organised as follows.

Chapter 2: Humans in the analytics loop

This chapter summarises the research addressing the question: what is the best way to

involve humans in data analytics and machine learning? A spectrum of answers emerges

from the literature. For instance: ‘intelligent discovery assistants’ (IDAs) chart out the

‘space’ of valid and possible analyses (composed of a sequence of atomic operations) that

can be explored automatically, manually, or by a mixture of both. Visual analytics (VA)

systems integrate analytical processes and visualisation, on the premise that human vi-

sual perception can act as a heuristic to guide the search through this space of analyses.

Finally, interactive machine learning (IML) is concerned with solving real-world problems

where models are trained by non-experts to fit their particular requirements. In each of

IDAs, VA, and IML, we observe to different degrees a ‘mixed-initiative’ interaction, where

the user and system work together in a non-trivial way to achieve some goal. This chapter

summarises each of these fields, their respective research foci, and makes explicit some of

the differences between their approaches. Finally, this chapter addresses in greater depth

the concept of analytical modelling as a novel research focus.

Chapter 3: Theoretical perspectives

This chapter describes the approach of this dissertation to theory and research in interac-

tion design. It begins by outlining research through design, the primary research method-

ology of this dissertation. It discusses the difficulties of producing general prescriptive

theory with implications for design, and clarifies the position of the theory presented as

intermediate-level knowledge which annotates the design portfolio of this dissertation.

The first theoretical perspective, that visual analytics is end-user programming, is intro-

duced. The next theoretical perspective, that analytical modelling is dialogue, refines the

view of interactive machine learning as end-user programming, and highlights a difficulty

with that interpretation which is problematic for analytical modelling. As a conceptual

solution, interaction is proposed to be more like dialogue, the key aspect of which is that

neither party, human nor computer, is designated arbiter of truth. As a technical solution,

metamodels of machine-learned models are proposed. The third theoretical perspective is

that interactive analytical modelling facilitates constructivist learning, as the outcomes of

interactive analytical modelling can be characterised as learning outcomes, and the itera-

tive interaction loop at the centre of interactive analytical modelling creates an excellent

opportunity for interaction between the user’s ideas and their experiences. Four design

principles derived from these perspectives are then introduced.

Chapter 4: Gatherminer

This chapter describes the design and implementation of Gatherminer, a visual analytics

tool for analysing time series data by building decision trees to explain observed patterns.

The problem is first introduced, grounded in a real-world scenario of network fault ana-

lysts at BT Research & Technology. The related work on time series analysis is described.

The design and implementation of Gatherminer is described. Next, a comparative study

demonstrating the improvement in analytic insight using Gatherminer when compared

to an industry standard tool is reported. Finally, the chapter closes with a discussion of

the results and reflections on the difficulties of conducting controlled experiments when

domain knowledge can be a confounding factor.

18

Chapter 5: BrainCel

This chapter describes the design and implementation of BrainCel, a tool for building

and applying machine learning models in spreadsheets. The chapter first introduces the

problem, before detailing how selection-as-annotation is used in BrainCel. An experi-

ment is reported evaluating the usability of one particular implementation of selection-as-

annotation, and demonstrating its learnability by non-experts. The interface is extended

with multiple visualisations to facilitate critical engagement with the model, and evalu-

ated in a study analysing the learning barriers and information needs encountered in its

use. The chapter concludes by outlining the limitations in the current work and opportu-

nities for future work.

Chapter 6: Conclusion

This chapter concludes the dissertation. Presented first is a brief discussion of the design

principles described in Chapter 3: their application in Gatherminer and BrainCel, and

their implications for future research. The research questions and motivation are reca-

pitulated, the contributions of the dissertation are summarised, and the most promising

avenues for future work are outlined.

1.3 Relevant publications

This dissertation presents research described in the following papers:

• Visual discovery and model-driven explanation of time series patterns. Ad-

vait Sarkar, Martin Spott, Alan F. Blackwell, Mateja Jamnik. 2016 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 78–86). Highly

commended paper award (honourable mention).

• Constructivist Design for Interactive Machine Learning. Advait Sarkar. Pro-

ceedings of the 34th Annual ACM Conference Extended Abstracts on Human Factors

in Computing Systems (CHI EA 2016) (pp. 1467–1475).

• Interactive visual machine learning in spreadsheets. Advait Sarkar, Mateja

Jamnik, Alan F. Blackwell, Martin Spott. 2015 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (VL/HCC) (pp. 159–163).

• Spreadsheet interfaces for usable machine learning. Advait Sarkar. 2015

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

(pp. 283–284).

• Confidence, command, complexity: metamodels for structured interaction

with machine intelligence. Advait Sarkar. Proceedings of the 26th Annual Confer-

ence of the Psychology of Programming Interest Group (PPIG 2015) (pp. 23–36).

• Visual Analytics as End-User Programming. Advait Sarkar, Alan F. Blackwell,

Mateja Jamnik, Martin Spott. Psychology of Programming Interest Group Work-In-

Progress Workshop 2015 (PPIG-WIP).

• Teach and Try: A simple interaction technique for exploratory data mod-

elling by end users. Advait Sarkar, Alan F. Blackwell, Mateja Jamnik, Martin

Spott. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC) (pp. 53–56).

19

• Hunches and Sketches: rapid interactive exploration of large datasets through

approximate visualisations. Advait Sarkar, Alan F. Blackwell, Mateja Jamnik,

Martin Spott. Proceedings of the 8th International Conference on the Theory and Ap-

plication of Diagrams, Graduate Symposium, 2014 (DIAGRAMS 2014).

Further papers that address issues surrounding those in the dissertation:

• Setwise Comparison: Consistent, Scalable, Continuum Labels for Machine

Learning. Advait Sarkar, Cecily Morrison, Jonas F. Dorn, Rishi Bedi, Saskia Stein-

heimer, Jacques Boisvert, Jessica Burggraaff, Marcus D’Souza, Peter Kontschieder,

Samuel Rota Bulò, Lorcan Walsh, Christian P. Kamm, Yordan Zaykov, Abigail Sellen,

Siân E. Lindley. Proceedings of the 34th Annual ACM Conference on Human Factors

in Computing Systems (CHI 2016) (pp. 261–271).

• A Live, Multiple-Representation Probabilistic Programming Environment

for Novices. Maria Gorinova, Advait Sarkar, Alan F. Blackwell, Don Syme. Proceed-

ings of the 34th Annual ACM Conference on Human Factors in Computing Systems

(CHI 2016) (pp. 2533–2537).

• Clarifying hypotheses by sketching data. Mariana Mărăşoiu, Alan F. Black-

well, Advait Sarkar, Martin Spott. 18th Eurographics/IEEE VGTC Conference on

Visualization (EuroVis), 2016. Honourable mention.

• Interaction with uncertainty in visualisations. Advait Sarkar, Alan F. Black-

well, Mateja Jamnik, Martin Spott. 17th Eurographics/IEEE VGTC Conference on

Visualization (EuroVis), 2015.

Some of the work in this dissertation was presented at the following workshops:

• Exploratory modelling tools for visual analytics. Advait Sarkar. Workshop

on Visual and Cognitive Analytics. The 35th Annual International Conference of the

British Computer Society’s Specialist Group on Artificial Intelligence (SGAI), Decem-

ber 2015 (AI-2015).

• Usability Issues in Mixed-Initative Visual Analytics. Alan F. Blackwell, Advait

Sarkar. Workshop on Visual Analytics – Present and Future of Human-Computer In-

teraction in Data Analytics. The 33rd Annual International Conference of the British

Computer Society’s Specialist Group on Artificial Intelligence (SGAI), 2013 (AI-2013).

20

CHAPTER 2

HUMANS IN THE ANALYTICS LOOP

This chapter presents the relevant background. Identified within it are three research com-

munities pursuing a nontrivial combination of human and machine capabilities in data

analytics. These are: intelligent discovery assistants, visual analytics, and interactive ma-

chine learning. Each approach is analysed and distinguished in terms of its foundations

and methods. Finally, the dichotomy between analytics and model-building, which moti-

vates this dissertation, is explained.

21

2.1 Introduction

Data analytics, at its simplest, is the interpretation of data. The technique applied need

not be sophisticated. For instance, looking at prices on a menu to assess whether a restau-

rant is ‘expensive’ is an act of analysis, as it involves interpretation and contextualisation;

the assignment of meaning over and above the quantities literally denoted. The phrase

‘data analytics’, however, conventionally connotes the use of statistical methods to model

and interpret quantitative data; this is the sense in which it is used in this dissertation.

This dissertation is concerned specifically with interactive data analytics, that is, the prac-

tice of data analytics conducted with the aid of interactive computer software. This is in

contrast to purely-manual or purely-automated analytics. Analytics can of course be con-

ducted manually, without computers. The complete automation of analytics is also the

subject of study (Livingston et al., 2001; Lloyd et al., 2014), a line of research which may

be traced back to Lenat’s automated mathematician (Lenat, 1976).

It is further possible for analytics to be conducted using software in much the same way as

it would be manually. For instance, replication of data tables for simple row and column

additions in a spreadsheet. In such cases digitisation and automation may have greatly

improved the speed and accuracy of the process, but have not directly added significant

value to the result of the analysis.

This dissertation is concerned neither with purely-manual nor with purely-automated ap-

proaches, because a variety of applications require a non-trivial mix of automation and

human judgment. The focus is mixed-initiative (Horvitz, 1999) interfaces: those that add

significant value through automation and intelligent inference. Horvitz’ original formula-

tion of ‘mixed-initative’ is broadened here to mean any system that adds significant value

through inferential, heuristic automation. In the context of data analytics, analytic in-

sights that could not have been derived without the system are significantly valuable.

2.2 Current approaches to mixed-initiative analytics

2.2.1 Intelligent discovery assistants

Intelligent discovery assistants (IDAs) approach mixed-initiative data analytics from the

perspective of Knowledge Discovery in Databases (KDD). An excellent survey is given by

Serban et al. (2013). The problem being solved is the multiplicity of potential operations

which can be performed on raw data in order to arrive at a particular insight. Each step

of the analytics pipeline entails several decisions. The pipeline includes: identifying rele-

vant subsets of raw data, cleaning the data by handling erroneous, noisy, missing values,

etc., transforming the data into suitable input for a data mining process (for example, by

representing images as a set of RGB histograms), feature selection, sampling, building

statistical models with appropriate parameters and hyperparameters, and finally, model

evaluation and interpretation.

22

Early IDAs, such as Consultant-2 (Craw et al., 1992) were expert systems that included

sets of hard-coded data mining workflows, suggested based on heuristic characterisation

of the data. The increasing diversity of statistical approaches necessitated a more modu-

lar approach, which gave rise to the modern form of IDA. At the core of modern IDAs is

an explicit ontology of operations with pre- and post-conditions. The raw data and meta-

data represent initial conditions, and the user expresses goal conditions (i.e., the output

of the desired analysis, such as a fitted linear model, or hierarchical clustering), known

as desiderata. A core research concern in IDAs is the automated construction of so-called

workflows: sequences of operations that, starting from the initial conditions, achieve the

desired postconditions. The reader may have noticed the isomorphism of this problem to

those of AI planning or program synthesis, and these are indeed approaches investigated

by the community to tackle the issue of generating valid workflows. However, more inter-

esting challenges are those of ranking these workflows according to some measure of qual-

ity, such as training error (in the case of classification/regression problems), or execution

time. In many such cases it is impossible to heuristically evaluate a candidate workflow

without actually executing it. Some illustrative examples of IDAs are now presented.

AIDE, an early intelligent discovery assistant, is a ‘knowledge-based planning system’

(St Amant and Cohen, 1997). It works similarly to a partial hierarchical planner. AIDE

maintains a library of around 100 general and specific hierarchical (mixed-detail) plans.

Exploration is constructive and in the form of a dialogue, with the system recommending

a set of operations to perform next, giving the user the option to review and override these

suggestions. The result of the analysis is not simply a graph or summary but also the

history of applied operations, hierarchically structured as goals and subgoals, which give

the context for interpretation. When the plan hits on multiple alternatives, the decision

is deferred to the user – this is called a ‘focus point’. The network of focus points is re-

membered. The authors evaluated the within-subject improvement AIDE gives on a data

analysis task and found a significant improvement in correct answers.

IDEA is a system that, given a specification consisting of data and goals, is capable of

synthesising/enumerating valid data mining workflows (Bernstein et al., 2005). These

are composed of constituent techniques which are stored in an ontology with their in-

put/output constraints as in AI planning. It can rank valid processes by speed, accu-

racy/error (through auto-experimentation), and comprehensibility. The authors conclude

that the straightforward application of tools is insufficient for high performance, and

application-specific knowledge related to data mining processes is also required. This

knowledge can be added to the ontology by specialists.

Serban et al. (2013) organise IDAs along two dimensions: types of support (e.g. auto-

matic single-step/multi-step KDD workflow generation/checking/repair, explanations for

users, workflow execution) and types of background knowledge (e.g., available operators

and operator metadata, input data metadata, predictive models for workflow generation,

cached workflows). The authors identify 5 distinct categories of IDAs: expert systems,

meta-learning systems, case-based reasoning systems, planning systems and workflow

composition environments (WCEs). The authors conclude that future IDAs are best built

upon WCEs to deal with an explosion of operators and deteriorating usability. Finally,

the authors provide an idealised IDA specification and architecture. They lay emphasis

on a collaborative approach to workflow design, where data mining workflows are easily

shareable and reproducible.

23

This brief discussion of IDAs has been included for completeness, since they are a mature

research approach to mixed-initiative data analytics. However, although the motivation

for IDA research is human-centric, the research focus is ultimately algorithmic, the main

issues being the automated generation and evaluation of data mining workflows. Usability

by non-expert statisticians is not a core priority, and although the development of IDA-like

tools with a focus on use by non-experts is an alluring avenue, it has not been explored in

this dissertation for reasons which will shortly become apparent.

2.2.2 Visual analytics

Visual analytics (Keim et al., 2008) is the mixed-initiative approach to data analytics

emerging from the Information Visualisation (InfoVis) research community. The prob-

lem being solved is the difficulty in interpreting the parameters, processes, and output of

data workflows. The solution proposed by visual analytics is to exploit the powerful per-

ceptual processing power of the human visual system. There are three interesting chal-

lenges here. The first is that of perceptual mapping; the design challenge of how marks

and visual variables are most effectively (with considerations to aesthetics, speed, error-

proneness) mapped to data variables, which proceeds by way of perceptual studies in the

manner of Cleveland and McGill (1984). The second interesting challenge is that of se-

mantic mapping; the design challenge of how these variables can create a representation

which most effectively facilitates reasoning about the data workflow process being used

and its outputs, in the tradition of Bertin (1983). The final challenge is that of interac-

tional mapping; the challenge of designing appropriate interactions to apply and manip-

ulate data workflow programs through these visualisations. For instance, a large amount

of attention is devoted to how important classes of data manipulation such as overview,

filter, and detail-on-demand (Shneiderman, 1996) are borne out in a particular graphical

representation. Visual analytics systems are typically designed for users with deep do-

main expertise. Commonly, these users also have some statistical expertise. However, the

visual nature of these systems commonly reduces the expertise barriers to applying data

workflow procedures, which is the core property of interest in this dissertation.

Visual analytics is an extremely broad and longstanding field of research. Consequently it

is difficult to highlight specific examples as part of this general overview. However, certain

examples can illustrate the complexity of this field. For instance, the systems presented

by Adrienko and Adrienko (2011) and MacEachren et al. (2011) clearly illustrate the vi-

sual analytics research process. A highly specific problem is identified. Algorithms are

proposed, which are tightly coupled with an intended visual representation. The system

is evaluated through a series of case studies, validated by domain experts.

Tableau1 is a commercially successful modern visual analytics system. It is different from

the typical visual analytics systems considered by the VA research community in the fact

that it is completely generic; it is not built to facilitate analytics in any specific data do-

main. It is more like a highly advanced version of the charting tools provided by Microsoft

Excel2. Unlike the other examples, the research innovation in Tableau is in reducing the

expertise required to create complex graphical mappings through what can be considered

a visual programming language.

Despite the differences, the common theme running through these examples is that the

aim of these systems is to facilitate some type of analytical insight in the user’s mind, and

the core design problems are those of perceptual, semantic, and interactional mapping.

1https://www.tableau.com/ (last accessed: April 29, 2018)
2https://products.office.com/en-us/excel (last accessed: April 29, 2018)

24

https://www.tableau.com/
https://products.office.com/en-us/excel

2.2.3 Interactive machine learning

Interactive machine learning (IML) (Amershi et al., 2011a) is the mixed-initiative ap-

proach to data analytics emerging from the HCI and end-user programming (EUP) re-

search communities. It is a slight mischaracterisation to refer to IML as an approach to

data analytics. More specifically, IML is of interest because it solves the same problem as

visual analytics, namely, difficulty in interpreting the parameters, processes, and output

of statistical procedures. However, the aims of IML are very different. The core aim of an

IML system is to enable an end-user to build (i.e., program) a statistical model such as a

classifier, for reuse in a specific scenario. Similar to the target end-users in this disserta-

tion, the users of IML systems typically have no expertise in statistics or programming.

Two examples are now presented to illustrate the scope and nature of IML systems. The

first example is Crayons (Fails and Olsen Jr, 2003). Crayons enables end-users to build im-

age segmentation classifiers, that is, pixel-level binary classifiers which segment portions

of an image as falling into one of two classes. For example, a ‘human detector’ classifier

would take a 2D image of size w×h as input, and as output, produce w ·h binary labels, one

for each pixel, corresponding to whether or not the pixel is part of a human in the image.

To build such a classifier in Crayons, users paint labels on an image as they would using

a brush tool in a graphics application such as Microsoft Paint or Adobe Photoshop, being

able to toggle between two ‘brushes’ for the two classes. As the user paints, a model is

trained, and the output of the model is rendered onto the same image, through a translu-

cent overlay. This allows the user to focus further annotation on misclassified areas. A

similar interaction has recently also been applied in a 3D context (Valentin et al., 2015).

Another example of an IML system is EluciDebug (Kulesza et al., 2015). EluciDebug

allows end-users to build multi-class classifiers for organising short to medium-length

pieces of text, such as email. The user performs manual annotation by moving emails to

folders, where each folder represents a class. As the user organises their email, a model is

trained, and the output of the model is presented as suggestions for classification within

the email client itself, which the user may accept or overrule. The key commonality is that

both systems involve a training loop, where the user provides annotations either in the

form of training examples or potentially by manually adjusting model parameters (as can

be done in EluciDebug), a model is trained, and the model output is somehow presented

back to the user for further action in such a way as to directly suggest which further action

would be useful.

The core design problems in IML are those of facilitating critical end-user evaluation of

the model so that model training is effective. There is considerable overlap with the design

problems of visual analytics, namely, perceptual, semantic, and interactional mappings.

However, a layer of complexity is added because an IML interface is heavily dependent

on the output of the model instance being trained, and as with any inferential interface,

great care needs to be taken to account for user expectations, and conflicts between user

expectations and model output, as exemplified by the design challenges of the Dasher

text entry system (Ward et al., 2000). This is a problem which does not occur in visual

analytics systems because the output of any model being built is only one of many factors

for the analyst to consider in choosing a next interaction step. In IML systems, the model’s

state and output is not only a first-class decision support feedback mechanism to help the

end-user choose what to do next, it is the only decision support mechanism.

25

IML as end-user programming

IML has a close relationship with the end-user programming research community (Ko

et al., 2011). End-user programming, strictly speaking, refers to any programming ac-

tivity where the program is written for the programmer’s own use. Scientists and data

analysts writing statistical and data processing scripts fall into this category. However,

something as simple as configuring an alarm clock can also be considered an instance

of end-user programming. Users of spreadsheet formulae are end-user programmers; it is

common for some users to become so proficient at programming spreadsheets that they are

able to build large business applications in them. Such users are sometimes humorously

referred to as ‘spreadsheet wizards’. It is because end-user programming so commonly

occurs when users are not formally trained in computing, that a core research focus in the

EUP community has been to design interfaces which can support programming without

advanced or formal knowledge of computing.

As will be discussed in greater detail in Chapter 3, there are clear benefits to viewing IML

as an instance of EUP. In particular, just as the activity of end-user programming revolves

around correcting errors in an existing implementation (i.e., debugging), so too does the

activity of interactive machine learning revolve around correcting errors in a model’s pre-

dictions. Consequently, powerful end-user debugging techniques such as What You See

Is What You Test (Rothermel et al., 1998) and the Whyline (Ko and Myers, 2004) can be

appropriated for use in the IML context. The Whyline is an “interrogative debugging”

interface for CMU’s Alice (Dann et al., 2011). It takes the form of a “why/why didn’t” hier-

archical dropdown menu, which then lists all objects, and then all their behaviours. This

allows the user to ask questions such as Why didn’t Pac-Man resize 0.5? (i.e., why didn’t

Pac-Man shrink?) The Whyline then looks at the execution trace and provides an answer

in the form of a visualisation of the runtime actions that prevent Pac-Man from resizing.

This execution “history” can be scrubbed to provide rapid feedback. In a study of experi-

enced programmers debugging Alice code, those with the Whyline available to them were

significantly faster at fixing bugs than those without. Kulesza et al. explicitly reinterpret

Whyline-style interaction in the context of EluciDebug. Recall that email classification is

the motivating example. Whyline-style answers are presented as visualisations, including

interactive bar charts of the weights assigned to certain keywords by the algorithm (naïve

Bayes), which the user can easily edit by dragging the bars.

2.3 Differences in approaches to interactive analytics

2.3.1 Technology

IDAs, VA, and IML are all shaped by slightly different technological concerns and limi-

tations. IDAs are concerned with the automatic generation and evaluation of KDD work-

flows. Consequently, technical issues of construction and representation of appropriate

workflow ontologies (e.g., Diamantini et al. (2009); Kietz et al. (2009); Panov et al. (2008))

are central. A variety of approaches can be used to generate workflows, such as program

synthesis (Buntine et al., 1999) and hierarchical planning (St Amant and Cohen, 1997).

A common strategy for evaluating workflows is to execute the workflow while gathering

diagnostic information, such as execution times and prediction accuracy. In order to scale

this approach, another technical focus of IDAs is in designing appropriate distributed sys-

tem architectures (Wirth et al., 1997).

26

Visual Analytics systems are concerned with algorithms and system resources required to

achieve specific perceptual properties. For instance, a lot of attention is paid to layout al-

gorithms such as in Sugiyama et al. (1981), as well as specific aspects of visual perception,

such as in Szafir (2015) and Mittelstädt (2015), which both tackle issues of colour and

colour compensation. These must be computed with low latency in order not to inhibit

data exploration (Liu and Heer, 2014).

Interactive machine learning systems are shaped by the concerns of the machine learning

algorithms being employed. In order to provide understandable machine learning models

at interactive speeds, IML systems often use speed-optimised versions of standard ma-

chine learning algorithms, or simplified versions with fewer parameters so that they are

easier to illustrate with completeness.

2.3.2 End-user task formalisation

IDAs, VA, and IML all differ in the extent to which they formalise the data analytics being

performed. IDAs are explicit in formulating formal ontologies. The space of data trans-

formation operations is neatly circumscribed, and each data transformation operation has

a concrete mathematical formulation. VA systems do not treat ontologies as explicit soft-

ware constructs. However, the design and evaluation process for VA systems typically

requires a careful formulation of the task in terms of an analytical framework, such as

given by Amar et al. (2005) and Brehmer and Munzner (2013). For example, the taxon-

omy presented by Amar et al. (2005) identifies 10 categories of low-level analytic activities,

such as ‘retrieve value’, ‘sort’, ‘cluster’, and ‘correlate’. Designers of VA systems can use

such categories to reason about specific aspects of their current design. IML systems are

least explicit; however, this is to be expected. The design practice of IML is not sufficiently

mature for the IML workflow to be formally characterised in terms of its constituent parts.

Instead, IML has intermediate-level taxonomies, such as intelligibility types (Lim et al.,

2009) and principles of explanatory debugging (Kulesza et al., 2015), explained in greater

detail in the next chapter.

2.3.3 Approach to knowledge generation

IDAs, VA and IML all differ in their approach to knowledge generation. A core assump-

tion of IDAs is that it is appropriate to characterise exploratory analytics using a formal

ontology. This avoids several potential issues by making the assumptions of an analyti-

cal process specific. For example, the assumptions of a Pearson correlation: continuous

measurements, related pairs, absence of outliers, normality of variables, linearity, and ho-

moscedasticity, can be encoded explicitly as preconditions for application of the operation.

However, analytics is a form of expert behaviour which involves information foraging and

sensemaking. This was demonstrated by Pirolli and Card (2005) through their influential

cognitive task analysis of intelligence analysts. Analysts’ expert behaviour is driven by

exploratory processes, which generate theory from data, as well as hypothesis testing pro-

cesses, which drive analyses from theory. Pirolli and Card identify the concept of schemas:

patterns around the important elements of tasks / workflows, as built up from experience

by experts. ‘Experts don’t just automatically extract patterns and retrieve their response

directly from memory. Instead, they select the relevant information and encode it in spe-

cial representations [...] that allow planning, evaluation and reasoning about alternative

courses of actions.’ (Ericsson and Lehmann, 1996).

27

Importantly, Pirolli and Card note that ‘Information processing [...] can be driven by

bottom-up processes (from data to theory) [i.e., exploratory] or top-down (from theory to

data) [i.e., hypothesis testing]. Our analysis suggested that top-down and bottom-up pro-

cesses are invoked in an opportunistic mix.’ The scope for this to occur in IDAs is limited,

as the requirement of formal ontologies precludes intermediate steps which involve ap-

proximate human reasoning, discussed in greater detail in Chapter 3. This limitation is

the principal reason for not pursuing the IDA approach to interactive analytics in this

dissertation.

The core epistemological assumption of visual analytics is that knowledge of data can be

constructed through the interpretation of a graphical system representing that data. Con-

sequently, accurate representation of the data is important. Perceptual pattern matching

is an approximate process, and judgements of the data which do not have a formal statis-

tical definition (e.g., ‘it looks like sales are going up’, ‘this street has high footfall’, etc.) are

also valued as types of knowledge.

When using IML systems, users form mental representations (Norman, 1983) of the sta-

tistical model they’re building. Consequently, the research focus is on how to help the user

soundly and completely construct these representations (Kulesza et al., 2013). Here again

the nascency of IML means that a clear epistemological foundation has yet to emerge.

Chapter 3 contributes two novel perspectives towards this: namely, that the usage of IML

systems can be viewed as dialogue, and this dialogue facilitates constructivist learning as

the user’s mental model is iteratively perturbed and refined through interaction with the

IML system.

2.3.4 Problem domain

IDAs, VA and IML are each shaped by the typical problems they are designed to tackle.

IDAs are built for professional data analysts and statisticians who perform a wide variety

of analyses on different data domains. These analysts face issues such as slow recomputa-

tion of results, tedious data wrangling, and suboptimal solutions due to lack of expertise in

particular techniques. With the exception of a few visual analytics tools such as Tableau,

the vast majority of VA research is aimed towards supporting analysts in highly specific

domains. These are either professional analysts deeply embedded in a particular scientific

or industrial context, or ‘end-user’ analysts who are not formally statistically trained but

are highly expert in a specific data domain. These users have specific analyses which need

to be supported by the visual analytics tool, and the analysis is typically an important part

of a decision support system which drives business actions. IML research is also aimed

towards highly specific domains, but more typically is aimed towards end-users who are

not performing an analytics task, but rather tasks which would benefit significantly from

partial or complete automation made possible through the strategic deployment of super-

vised learning. The CueT system for network alarm triage (Amershi et al., 2011b), as well

as Crayons and EluciDebug are all excellent examples of this.

28

2.4 Interactive analytical modelling

2.4.1 The two cultures of statistical modelling

In a highly influential article at the turn of the millennium, Leo Breiman (Breiman et al.,

2001) characterises two distinct approaches to statistical modelling. The first is the ‘data

modelling’ culture. In this culture, a generative model such as linear or logistic regression

model is assumed as a candidate to be the ‘true’ underlying natural model. The parame-

ters of this model are estimated from the data. The model is validated using goodness-of-fit

tests and examination of the residuals, and the resultant model is used both to make ana-

lytical inferences about the data as well as for prediction. Breiman estimated that at the

time, 98% of all statisticians fell into this camp. The second is the ‘algorithmic modelling’

culture. In this culture, no intrinsic model is assumed. However, a model such as neu-

ral networks or decision trees is chosen and fitted to the data. The focus is on prediction

accuracy. The model is evaluated using prediction error.

Breiman’s argument is that there is a disproportionate and deleterious emphasis on data

modelling, and not enough on algorithmic modelling. The techniques of algorithmic mod-

elling, such as neural networks, decision trees, and support vector machines, provide

higher predictive accuracy in practice. Breiman insists that posing the difference between

the two cultures as a tradeoff between accuracy and interpretability is an incorrect view,

as a model with higher prediction accuracy is more informative by definition, and infor-

mation is a more important goal for statistical modelling than interpretation. This makes

sense, as interpreting a model with low accuracy because it is easy to interpret is akin to

dropping your keys at night on the street and looking for them under the next street lamp

because there is light there.

I do not disagree with the idea that viewing the relationship between accuracy and in-

terpretability as a zero-sum tradeoff is incorrect. However, the core practical difference

between these two cultures, as outlined by Breiman, is in their choice of model. This is not

a true dichotomy, as ‘algorithmic modelling’ techniques can be shown to have ‘data mod-

elling’ interpretations. For instance, some neural networks can be shown to have equiv-

alent interpretations as Gaussian processes (MacKay, 1997; Neal, 1996) and Bayesian

learning (MacKay, 1992).

Breiman begins by acknowledging two separate goals in statistical modelling: Prediction,

to predict responses for previously unseen response variables, and Information, to under-

stand something about the natural process which generated the observed data. The two

cultures are presented as two separate approaches to these goals. While the two cultures

continue colliding, with methods and motives intermingling, the tools and techniques tai-

lored to each goal still remain very different, and the tradeoff between these two goals

often reflects and draws upon the accuracy/interpretability tradeoff of different models.

This dissertation uses the term model building to talk about the prediction goal, and ana-

lytics to talk about the information goal. Consider IML and visual analytics. As discussed

in previous sections, IML is heavily focused on the model building goal; the primary infor-

mation artefact being created in an IML system is a reusable model with high predictive

accuracy. In contrast, visual analytics is heavily focused on the analytics goal; no primary

information artefact is created in a visual analytics system. Rather, the aim is to create

some insight or understanding of the data.

29

2.4.2 Novel research focus

Bridging analytics and modelling is an important aim because these are rarely separate

activities in the practice of data science. High-accuracy models used in practice (e.g, for

credit card fraud detection, recommender systems, algorithmic trading, etc.) need to have

analytic value, not only to help ensure the absence of bugs, but also to clarify the beliefs

and assumptions implicit in the model, to improve the accountability of the system. For

instance, a credit card company needs to be able to explain in a court of law what ac-

tivity their system considers to be fraudulent and why. In practice, these models have

large numbers of parameters and are extremely difficult to interpret or debug. Analytics

is benefited by statistical modelling, as models can efficiently isolate relevant variables

and confirm/refute hypotheses. However, analytics is often required, and consequently

conducted, by end-users with little formal training in statistics or machine learning.

This dissertation pursues a stronger relationship between analytics and modelling. It

is not an unprecedented idea to bridge these goals – this has been the subject of much

research and meta-discourse. For instance, Caruana et al. (2015) have been investigating

a line of statistical research that seeks to develop models which balance intelligibility and

high prediction accuracy. Another example is the recent surge of interest in deep neural

networks, which has also spurred a lot of discourse regarding their large quantities of

parameters, and how to visualise and interpret them (Zeiler and Fergus, 2014). These

solutions focus heavily on the structure of the underlying model, betraying the assumption

that the interpretability of a model is dependent solely on its structure.

Interactive analytical modelling

This dissertation takes a different approach to bridging the activities of analytics and

modelling by posing it as an interaction design problem. Well-designed interaction in

an interface creates a dynamic story between user and system that unfolds over time. To

describe the hypothetical middle ground between analytics and modelling, the straightfor-

ward term analytical modelling shall be used. This dissertation investigates approaches

to analytical modelling using interactive computer programs, that is, interactive analyti-

cal modelling. For brevity, the word ‘interactive’ is henceforth assumed to be implicit, and

‘analytical modelling’ is used instead.

At this point it is worth reiterating our two research questions:

1. Can tools be built for analytical modelling, that is, analytics through model-building?

2. Can they be made useful for non-experts?

These are addressed as follows. To begin with, three novel theoretical perspectives which

have emerged over the course of this research are presented. Next, two concrete systems

facilitating analysis and model-building are presented and evaluated. The first is a visual

analytics tool that incorporates model-building as a core part of the analytical process.

The second is a model-building tool that facilitates analytical outcomes. Both tools are

designed to be operated without types of expertise which are usually crucial to analysis

and model building.

How the questions are answered in the following chapters is now summarised.

30

Theoretical perspectives on interactive analytical modelling

Three perspectives have helped build effective interactions that bridge the space between

visual analytics and interactive machine learning. The first idea is that visual analytics

can be viewed as end-user programming. The second idea is that interactive machine

learning can be viewed as dialogue. The third idea is that interactive analytical modelling

can be viewed as constructivist learning. These, and consequent design principles, are

detailed in Chapter 3.

An analytics tool that facilitates model-building

Gatherminer is a visual analytics tool designed for detecting and explaining patterns in

time series databases. Users interactively annotate a time series visualisation to indicate

aspects of the visualisation which are interesting to them. A model is trained on these

annotations (similar to how Crayons (Fails and Olsen Jr, 2003) builds a classifier from

annotations on an image) and this model in turn is visualised to present a statistically-

grounded explanation for the interesting observations. This is detailed in Chapter 4.

A model-building tool that facilitates analytics

BrainCel is a model-building tool that allows non-expert end users to build and apply

machine learning models within spreadsheets. Users interactively annotate data in the

spreadsheet to indicate training examples. A model is trained on these examples and vi-

sualised, illustrating several types of analytic insight, such as the structure of the dataset

in high-dimensional space, value distributions, and outliers. The model can then be used

to validate existing data or to guess values for missing data. This is detailed in Chapter 5.

31

32

CHAPTER 3

THEORETICAL PERSPECTIVES

This chapter discusses how this dissertation relates to the theory of interaction in the con-

text of analytical modelling. Applying the method of research-through-design, three views

have crystallised. Firstly, this dissertation presents the view of visual analytics as end-user

programming. Secondly, this dissertation presents the view of interactive machine learning

as dialogue, outlining the opportunities and shortcomings of this interpretation. Thirdly,

this dissertation links the exploratory knowledge-generation process of visual analytics to

learning in a constructivist setting, which provides a novel, first-principles explanation for

the supposed benefits of interaction in analytics and machine learning. In closing, four

design principles derived from these views are presented.

This chapter presents research described in the following papers:

• Constructivist Design for Interactive Machine Learning. Advait Sarkar. Pro-

ceedings of the 34th Annual ACM Conference Extended Abstracts on Human Factors

in Computing Systems (CHI EA 2016) (pp. 1467–1475).

• Confidence, command, complexity: metamodels for structured interaction

with machine intelligence. Advait Sarkar. Proceedings of the 26th Annual Confer-

ence of the Psychology of Programming Interest Group (PPIG 2015) (pp. 23–36).

• Visual Analytics as End-User Programming. Advait Sarkar, Alan F. Blackwell,

Mateja Jamnik, Martin Spott. Psychology of Programming Interest Group Work-In-

Progress Workshop 2015 (PPIG-WIP).

• Hunches and Sketches: rapid interactive exploration of large datasets through

approximate visualisations. Advait Sarkar, Alan F. Blackwell, Mateja Jamnik,

Martin Spott. Proceedings of the 8th International Conference on the Theory and Ap-

plication of Diagrams, Graduate Symposium, 2014 (DIAGRAMS 2014).

33

3.1 Research methodology

This dissertation has outlined the need for simple end-user tools that facilitate “analyt-

ical modelling”, the hybrid activity of analytics through model-building. In subsequent

chapters it will be shown through two examples, Gatherminer and BrainCel, how model-

building can be incorporated into visual analytics systems, and vice versa. Moreover,

Gatherminer and BrainCel will be shown to reduce the representational, process, and

domain expertise typically required for analytical modelling.

Design shifts the world from its current state into a “preferred” state through the pro-

duction of a designed artefact. This dissertation describes the design of Gatherminer and

BrainCel with a focus on documenting and theorising those aspects of the design that (a)

facilitate analytical modelling and (b) reduce expertise requirements for end-users. Thus,

the approach to knowledge production here is research through design (Frayling, 1993).

The distinction between research through design, and merely design, is one of intent. In

the former, design is practiced with the primary intent of producing knowledge for the com-

munity of academics and practitioners. Consequently, the design artefact cannot stand in

isolation – it must be accompanied by some form of discourse intended to communicate

the embodied knowledge result to the community. Moreover, this discourse must make ex-

plicit how the artefact is sufficiently novel to contribute to knowledge. In a non-research

design activity, neither annotative discourse nor novelty is necessary for success.

Zimmerman et al. (2007) propose four general criteria for evaluating research through

design contributions: process, invention, relevance, and extensibility. Process refers to the

rigour and rationale of the methods applied to produce the design artefact, and Invention

refers to the degree of academic novelty. These two criteria are addressed in situ in the

following two chapters, which detail the implementation and design decisions in the two

analytical modelling systems. Relevance refers to the ability of the contribution to have

a wider impact, which has been addressed by the motivation in previous chapters. This

chapter is concerned with extensibility, the ability of the knowledge as documented to be

built upon by future research.

An attractive proposition is to seek a theory of design for analytical modelling systems that

not only characterises specifically the nature of these systems and how their important

properties may be measured, but also prescribes a straightforward, deterministic strategy

for the design of such systems. I initially anticipated that such a prescriptive theory would

be elusive for multiple reasons, including the nascency of interactive machine learning,

the incomplete characterisation of potential applications, and a wariness of the challenges

surrounding “implications for design” (Stolterman, 2008).

My current position is that a complete design theory is not only elusive, but impossible

– not just for analytical modelling, but any design domain. This is because theory un-

derspecifies design, and design underspecifies theory (Gaver, 2012). Theory underspeci-

fies design because a successful design activity must culminate as an ultimate particular

(Stolterman, 2008): an instantiated, designed artefact, subject to innumerable decisions,

situated in a particular context, and limited by time and resource constraints. Design

problems are inherently wicked problems (Buchanan, 1992); they can never be formulated

to a level of precision which affords ‘solving’ through formal methods, and no theory for

design can profess to provide a recommendation for every design decision. Conversely,

design underspecifies theory, in the sense that an ultimate particular will fail to exemplify

some, or even many, of the nuances captured in an articulated theory.

34

This is not to say that we should do away with theory altogether and focus solely on

artefacts themselves. Gaver’s view, to which I am sympathetic, is that design theory is

“provisional, contingent, and aspirational”. The aim of design theory is to capture and

communicate knowledge generated during the design process, in the belief that it may

sometimes, but not always, lead to successful designs in the future.

During the course of this work, three such novel theoretical perspectives have been devel-

oped. They do not make many prescriptions for the design practice of analytical modelling

systems, and the few explicit prescriptions in this chapter are better viewed as example

interpretations of the viewpoint posed, to better illustrate their design knowledge content.

These perspectives provide a foundational discussion which situates the roots of the new

design practice of interactive analytical modelling at the frontiers of information visuali-

sation, end-user programming, and constructivist learning.

In particular, the perspectives presented in this chapter are:

• Visual analytics is end-user programming.

• Interactive machine learning is dialogue.

• Analytical modelling is constructivist learning.

None of these views is without limitations. Each view presents opportunities to draw upon

the existing literature to inform design. In particular, viewing visual analytics as end-

user programming informs how representational expertise requirements can be reduced,

for instance by facilitating explanatory debugging (Kulesza et al., 2015), and develop-

ing representational formality (Stead and Blackwell, 2014). Viewing interactive machine

learning as dialogue addresses a core shortcoming of the end-user programming interpre-

tation, namely that the analytical sensemaking process is an ill-defined optimisation prob-

lem. Additionally, this view formalises the relationship between analytical modelling and

mixed-initiative interaction. Finally, viewing analytical modelling as facilitating learning

in a constructivist setting provides a novel theoretical basis for why interaction in visual

analytics and machine learning works: because it provides opportunities for the user’s

ideas and experiences to interact.

From these views, four concrete design principles are derived:

• Begin the abstraction gradient at zero.

• Abstract complex processes through heuristic automation.

• Build expertise through iteration on multiple representations.

• Support dialogue through metamodels.

The aim is to show that the systems presented in Chapters 4 and 5 are not merely ad-hoc

constructions, but instead constitute an annotated portfolio (Gaver and Bowers, 2012)

of design-led research, which has led to the production of what Löwgren (2013) term

“intermediate-level knowledge” – although I am not in agreement with their position that

intermediate-level knowledge is not theory. This chapter positions the systems presented

not as isolated design artefacts, but the first instances of a new and unique form of inter-

action design with empirically grounded and theoretically defensible principles.

35

3.2 Visual analytics is end-user programming

Multiple stages of the analytics pipeline can involve programming. For instance,

1. Capture: Raw data is captured by programmatic instrumentation of some real-

world process. In web traffic analytics, code for logging usage must be injected into

the website. In retail analytics, point-of-sales terminals or warehouse management

systems are likewise instrumented.

2. Management: Data is managed through programmatic manipulation of databases,

or through “extract, transform and load” tools, typically thin graphical layers over

proprietary domain-specific languages for data transformation.

3. Analysis: Data is analysed programmatically. A simple approach is to directly query

the database. A more complex approach is to extract projections (‘views’) of the

database, which can then be used with statistical packages such as SPSS; for com-

plex data processing operations in a general-purpose programming language that

are difficult, slow, or impossible to define in terms of database queries; or for ad-hoc

statistics and machine learning with languages such as R and Python.

4. Presentation: Analytical results are presented using charting libraries such as

D3.js, or through desktop productivity applications which offer charting capabilities.

Stage #3 (analysis) is the focus of this dissertation. Data analytics tools such as Excel and

Tableau are designed, amongst other things, to aid this step of the process by standing

in as replacements for database queries and statistical languages, doing so in a way that

reduces the representational expertise requirements of those languages. The utility of

visualisation for data analysis cannot be overstated. Human perception paired with mod-

ern visualisation software enables rapid detection of trends, outliers, and comparisons of

quantities – even, and perhaps especially so, by those without statistical expertise.

The space of analytical questions one can ask of a particular dataset is infinite, but only

some questions yield interesting answers. Consequently, exploratory data analysis is di-

vided between two activities. The “bottom-up”, hypothesis-generation activity identifies

interesting questions, for example: should I investigate the relationship between variables

X and Y? The “top-down”, hypothesis-testing activity applies a formal method to answer

a well-defined statistical question, for example: is there a significant difference between

these groups?

Cognitive task analysis shows that experienced analysts often invoke top-down and bottom-

up processes in an opportunistic mix (Pirolli and Card, 2005). Visualisations can help

rapidly prune the space of interesting hypotheses, and they can help verify many of these

hypotheses (Keim, 2001). This spares the analyst the effort of conducting a more elaborate

statistical investigation of a question that in hindsight turns out to be uninteresting, or

the wrong question to ask. Thus, visualisations often do not support exact inference, but

instead facilitate rapid informal reasoning and the formation of “hunches” – approximate

hypotheses and heuristics for exploring the hypothesis space. Hunch-driven reasoning

yields informal answers to open-ended questions an analyst might have (e.g., Does this

look like signal or noise? Does there appear to be cluster structure in the data? What is the

general shape of the distribution? Is there a point of inflexion in the time series?) before

formulating specific statistical questions.

36

Visual analytics is a form of end-user programming precisely because visualisations can be

used powerfully and generally to informally express and test the same kinds of hypotheses

which can be expressed and tested formally through statistical programming languages.

Informal visual reasoning appears to be a form of pattern recognition; the analyst pos-

sesses a repertoire of “interesting” visual patterns and the hunches they correspond to.

This repertoire is built through experience and domain expertise. One might conjecture

that these are mentally represented as archetypes against which the visualisation is com-

pared. One might further conjecture that these archetypes can be hierarchically organ-

ised, such that more complex hypotheses are compositions of simpler hypotheses.

As an example, consider the scatterplot. The scatterplot places marks representing data

points described by two interval variables, positioning each data point’s mark on a Carte-

sian manifold defined by two orthogonal axes, with the first coordinate proportional to

the value of the first variable, and the second coordinate proportional to the value of the

second variable.1

The very act of viewing a scatterplot can generate, test, and eliminate several families of

hypotheses. This process is much faster and more exhaustive, albeit less rigorous, than

writing, running and interpreting the output of each corresponding program. It can lead

to superior analysis even in the absence of any formal statistical follow-up, as seen in

Anscombe’s quartet (Figure 3.1). The four sets of points depicted in this figure have some

identical statistical properties: in each case, the x coordinates have identical mean and

variance; so do the y coordinates. In each set the correlation between x and y values is

the same (0.816), and the slope and intercept of the linear regression line in each case

are identical. However, from the scatterplots it is obvious that these four sets are very

different. An informal visual reasoner could be more informed about this dataset than a

formal reasoner who ‘views’ the data through only a handful of statistical measures.

Some archetypes for scatterplots, along with the hypotheses they correspond to, and their

interpretations as programs, are given in Table 3.1. In each case, the formal statistical

interpretation provided is merely one of a number of valid interpretations, and the code

provided is merely one instantiation of that interpretation.

Figure 3.1: Anscombe’s quartet (Anscombe, 1973).

1This is a basic definition corresponding to the commonest case. Scatterplots can also be made with categorical
and ordinal values, but mapping these onto spatial axes is a matter of interpretation. Scatterplots can also
be made with multiple axes, non-orthogonal axes, etc. The basic scatterplot considered here is in one sense
the most perfect graphical representation, in that it takes our strongest perceptual channel for quantitative
comparison: position, and encodes two values by using orthogonal axes, which is the only way of encoding two
values independently using position on a Cartesian manifold. In fact, using orthogonal axes lying on the plane
of human vision is the only way of perceptually encoding two values independently using position.

37

Scatterplot archetype Informal

hypothesis

Formal statistical interpretation

There is cluster

structure

Clustering using k-means, hierarchical

clustering, or other method, results in

high-quality clusters as measured by

indices such as those given by Davies

and Bouldin (1979) or Dunn (1974).

Example program in R:

K-Means clustering with 5 clusters

fit <- kmeans(myData, 5)

evaluating through multiple indices

library(fpc)

cluster.stats(d, fit$cluster)

A linear rela-

tionship exists

between the two

variables

The two variables have a high Pearson

correlation. Or, the linear regression of

one variable against the other produces

a model with low error as measured by

residual sum of squares or other metric.

Example program in R:

Correlations with significance

library(Hmisc)

rcorr(myData, type="pearson")

There are outliers Some data points have an usually low

local density (are unusually unlikely)

when compared to their neighbours

(Breunig et al., 2000).

Example program in R:

library(DMwR)

Use density of 5 neighbours

outlierScores <- lofactor(myData,

k=5)

pick and show top 5 outliers

outliers <- order(outlierScores,

decreasing=T)[1:5]

print(outliers)

38

A nonlinear re-

lationship exists

between the two

variables

The regression of one variable against a

nonlinear function of the other (belong-

ing to a family such as the polynomial,

logarithmic, exponential, logistic, etc.)

produces a model with low error as

measured by residual sum of squares or

other error metric.

Example program in R:

3rd degree polynomial

model <- lm(myData.y ∼ poly(x,3))

summary(model)

The two variables

are unrelated

The mutual information (Cover and

Thomas, 2012) of the two variables is

low. Or, a highly nonlinear function is

required to produce a model with low

training error.

Example program in R:

require(entropy)

mutualInfo=mi.empirical(myData)

Table 3.1: Some scatterplot archetypes, corresponding informal hypotheses, and formal statistical

interpretations.

More examples of how graphical representations can be viewed as archetypical patterns

with corresponding statistical interpretations are in Table 3.2, in this case using his-

tograms and line charts. Code snippets are excluded for brevity.

39

Tables 3.1 and 3.2 are not presented as rigorous taxonomies, although the creation thereof

would be very interesting future work. Some groundwork has already been laid through

perceptual similarity studies conducted by Pandey et al. (2016). The taxonomy could be

immediately applied as a perceptually-grounded set of pictograms to assist visual analysis

(Lehmann et al., 2015).

Similarly, the ‘archetype’ images are not precise or empirically grounded. They are sim-

ply meant to illustrate the many ways in which the informal visual analytics reasoning

process can serve the same purpose as writing statistical programs. It is not possible, for

example, to have a canonical scatterplot of cluster structure, precisely because that is an

approximate, fuzzy, visual concept.

Visualisation archetype Informal

hypothesis

Formal statistical interpretation

The data has

a normal, log-

normal, power

law, bimodal, etc.

distribution.

Fitting a normal, log-normal, power

law, bimodal, etc. distribution to the

data (e.g., by the maximum likelihood

method) results in a good fit as evalu-

ated by, for example, the Kolmogorov-

Smirnov test (Massey Jr, 1951).

40

There is a trend, a

periodic function,

a spike, etc.

These features are detected using a ro-

bust framework such as compositional

kernel search (Duvenaud et al., 2013).

Table 3.2: More example archetypes, corresponding informal hypotheses, and formal statistical

interpretations.

This section has presented the argument that visual analytics is like end-user program-

ming because reasoning supported by visualisations can achieve the same outcomes as

reasoning supported by statistical programming. One may object, fairly, that this consti-

tutes a fallacy: simply because informal visualisation-driven reasoning is a means to an

end (analytic insight), and statistical programming is another means to that same end, it

does not follow that visual analytics is indeed statistical programming.

A more conventional argument would be to show how typical programming constructs,

such as conditionals, loops, and abstraction, manifest in visual analytics systems. It is dif-

ficult to make this type of argument for all visual analytics systems as they vary greatly

in such explicit programming affordances, and at least in this sense, the usage of many

visual analytics systems cannot be considered ‘programming.’ However, at least two pro-

gramming constructs appear in nearly every general-purpose visual analytics system. The

first is filtering, or the conditional inclusion or exclusion of data in the visualisation. This

expresses the same sort of computation as, for example, HAVING or WHERE clauses in SQL

queries. The second is the abstraction of the reusable visualisation. This means that

the system represents any given visualisation, for example, a set of charts, their value

mappings, data filters, and aesthetic settings, as an abstract object separate from the un-

derlying data. Consequently, in making a chart, the end-user in fact creates a reusable

algorithm for graphical presentation. In Excel, this manifests as the ability to simply

paste in new data into the cells containing the data for the chart. In Tableau, the same

visualisation can be ‘connected’ to different underlying data sources. An Excel chart or

Tableau visualisation, then, is a ‘program’ for producing a certain type of analytic insight.

41

The abstraction of the reusable visualisation disappears from specialised visual analytics

systems. For instance, the end-user customisability of Gatherminer and BrainCel (pre-

sented in subsequent chapters) is sufficiently low that the charting aspects of those in-

terfaces cannot be considered programming. However, as explained in the next section,

the explicit end-user programming component of those interfaces comes from their imple-

mentations of interactive machine learning. That the visualisations of Gatherminer and

BrainCel serve the same informal hypothesis generation and testing purpose as discussed

in this section is, additionally, an implicit end-user programming outcome.

Implications of visual analytics as end-user programming

What is gained by viewing visual analytics as end-user programming? The aspiration is a

theory that can inform design practice. Many results from end-user programming are just

as applicable to visual analytics as they are in interactive machine learning. For example:

• Multiple representations: redundant mappings of data variables to visual variables

are generally not considered good design practice in visual analytics. However, re-

dundant mappings by way of multiple representation has been found to be useful

in end-user programming, as they help the end-user scaffold their understanding of

representational abstractions, as exemplified in systems such as DrawBridge (Stead

and Blackwell, 2014) and Infer.IDE (Gorinova et al., 2016).

• Liveness: instantaneous feedback during program editing, or the ability to modify

a program mid-execution, is known as liveness (Tanimoto, 1990). Visual analytics

systems typically exhibit some liveness without acknowledging the fact. Studies of

progressive visualisation (Fisher et al., 2012; Sarkar et al., 2015; Stolper et al., 2014)

and interactive latency (Liu and Heer, 2014) are predicated on liveness being desir-

able for visual analytics. The value of liveness can be expressed in terms of cognitive

dimensions Green and Petre (1996) or patterns of user experience Blackwell (2015a).

• Explicit programming constructs: visual analytics systems vary greatly in explicit

programming affordances. However, the view of them providing an abstraction paves

the way for incorporating more advanced programming constructs. One potential

application would be an analytics system with the same visual programming prin-

ciples as Palimpsest (Blackwell, 2014), with multiple programming constructs avail-

able, such as shared state and referencing (e.g., variables), repeated behaviour (e.g.,

loops), conditional behaviour, and abstraction (e.g., encapsulation, subroutines).

• Debugging: end-user programming has a number of mature debugging strategies,

such as WYSIWYT (Rothermel et al., 1998) and the Whyline (Ko and Myers, 2004).

Visual analytics does consider usability issues, but does not acknowledge two fun-

damental usability barriers are classes of bugs: syntactic bugs, where the user is

unable to construct the visualisation they desire, and semantic bugs, where the user

has constructed a visualisation that results in an incorrect analysis.

• Evaluation: the idea that function dictates form is implicit in visual analytics de-

sign practice. Specifically, if the intended function (analytics problem) is sufficiently

well-characterised so as to be optimisable, studies can investigate which forms are

appropriate for those functions, and one naturally arrives at a well-designed solution

to the problem. When approached from this perspective, it would appear that a well-

designed solution to a visual analytics problem implicitly entails a ‘well-designed’

user experience. End-user programming considers a wider variety of outcomes, in-

cluding the learnability of the interface, the soundness and completeness of mental

models, etc.

42

• New foci: visual analytics typically draws motivating scenarios from scientific re-

search and industry. End-user programming concerns a broad class of users, and

could supply new foci for visual analytics, such as education and creative practices.

3.3 Interactive machine learning is dialogue

The previous section presents a novel view of visual analytics as end-user programming

that has clear benefits for the design of such systems. These benefits are well-known to

the interactive machine learning (IML) research community, which at the time of writing

is closely connected to and aware of end-user programming research. Consequently, it

would certainly not be a novel observation that IML is like end-user programming. That

interpretation has served the design of IML systems well.

In pushing the boundaries of IML systems towards visual analytics, this research has

uncovered a limitation of interpreting IML as an end-user programming activity, namely,

that IML represents a type of programming which is a form of dialogue with machines. It

is unclear how this dialogue should be structured, as the notion of ‘correctness’ for these

programs is unknown or ill-defined. The nature of this dialogue will now be described,

and a potential design approach presented: metamodels of machine-learnt models.

Why is IML different from traditional programming? In a simplified caricature of the

traditional programming paradigm, the programmer has a mental model of the ‘goal’ in-

formation structure (program) to be built. Through a direct channel, such as inspection

of the source code, its output, and execution traces, the programmer can build a mental

model of the information structure as it currently is. Thus, the programmer can compare

these two models against each other and decide whether the program matches the goal, or

whether it is incomplete, or contains errors. This is a simplification; programmers seldom

consider entire programs at once, but rather focus on smaller units at a time.

The utility of the direct channel characterises the traditional programming paradigm.

The expected output is sufficiently well-defined, that should it depart from the program-

mer’s expectations (i.e., an error), inspecting the program and its output suffices to resolve

the situation (i.e., debugging). There has been much study, detailed shortly, on enriching

the debugging experience with information through an ‘indirect’ channel, for example,

through descriptions of the program, its time and memory requirements, and through vi-

sualisations of its operation. Nonetheless, it is still possible, and mostly sufficient, to con-

duct debugging through direct inspection of the program source code, output, and traces.

End-user machine learning is an emergent form of programming

The needs of end-user machine learning are broader than the applications of current IML

systems. Users increasingly interact with an inferred world (Blackwell, 2015b), and pro-

gram behaviour is becoming predominantly probabilistic and data-dependent, rather than

deterministic. Training statistical models is an act of programming. Users of systems such

as recommendation systems (e.g., Amazon’s product recommendations, Pandora’s music

recommendations), intelligent personal assistants (e.g., Apple’s Siri, Microsoft’s Cortana,

Google Now), and intelligent consumer tools (e.g., Excel’s Flash Fill) etc., increasingly find

themselves programming their environment, implicitly or explicitly.

The decision making processes of these systems, which often involve considerable uncer-

tainty, are largely opaque to end-users. When the output departs from their expectations,

neither are their expectations well-defined (can, for instance, product or music recommen-

dations be ‘right’ or ‘wrong’?), nor would inspecting the source code resolve the situation.

43

The problem of ill-defined expectations is especially pertinent to analytical modelling. An-

alytical models seldom reveal conclusive answers; the primary questions of interest, such

as “Is the appropriate model being used?” and “Is this prediction good?”, etc., are more

nuanced and much less well-defined than the primary question of interest in traditional

programming: “Is this a bug?” This is where a dialogue is necessary.

This new programming paradigm is characterised by the following three properties:

1. “Programs” are stored as model parameters (often massively many), unintelligible to

humans through direct inspection.

2. The programmer is likely an end-user programmer who is not necessarily skilled at

computing.

3. The goal state of the program is unknown or ill-defined.

These make the direct channel less useful. Consequently, greater emphasis must be placed

upon the use of the indirect channel. This shifts the emphasis from facilitating the user’s

understanding of the program, to their understanding about the program. Previous end-

user debugging research has by no means ignored this channel, and neither has interac-

tive machine learning. A few examples of this are now described.

3.3.1 Other approaches to the indirect channel

The indirect channel in IML

Fails and Olsen Jr (2003) motivate their work by emphasising the ease of generating a

classifier in an interactive visual manner. Similarly, the systems in Fogarty et al. (2008),

Brown et al. (2012b) and Hao et al. (2007c) are presented primarily for ease-of-use. These

systems achieve ease of use by selectively abstracting implementation details, a useful

strategy as long as the behaviour of the program corresponds to user expectations. But

what happens when the system gets it wrong, and not in a way that is easily apparent

(Nguyen et al., 2015; Szegedy et al., 2013)? To better involve the user in the process, the

repeated use of the word “explain” throughout the interactive machine learning literature

(Herlocker et al., 2000; McSherry, 2005; Pu and Chen, 2006; Tintarev and Masthoff, 2007)

does not appear to be coincidental; the underlying aim is clearly to give our interaction

with programs a more dialogue-like quality.

Amershi et al. (2011a) identify a few questions for end-user interaction with machine

learning: What examples should a person provide to effectively train the system?, How

should the system illustrate its current understanding?, and How can a person evaluate

the quality of the system’s current understanding in order to better guide it towards the

desired behavior?

Lim and Dey (2009) have directly addressed the problem of what types of information

about intelligent applications should be given to end-users. They call these “intelligibility

types,” and some examples are as follows: Input & output: what information does the

system use to make its decision, and what types of decision can the system produce? Why,

why not, & how: why did the system produce the output that it did, why did it not produce

a different output, and how did it do so? What if: what would the system produce under

given inputs? Model: how does the system work in general? Certainty: how certain is

the system of this report? Control: how can I modify various aspects of this decision

making process? Kulesza et al. (2013) show that these information types are critical for

the formation of users’ mental models.

44

Kulesza et al. (2011) also proposed a set of information types which would benefit end-

users who were debugging a machine-learned program, including: Debugging strategy:

which of many potential ways of improving the model should be picked? Model capa-

bilities: what types of reasoning can the model do? User interface features: what is the

specific function of a certain interface element? Model’s current logic: why did the model

make certain decisions? User action history: how did the user’s actions cause the model to

improve/worsen?

The indirect channel in end-user programming

The producers of these machine learning models are also their users. As such, they are

end-user software engineers (Ko et al., 2011), and in particular they engage in end-user

debugging. End-user debugging research has been explicit in framing the interaction as

dialogue. For instance, Wilson et al. (2003) present a strategy to incentivise users to write

more assertions in spreadsheets, a difficult and tedious activity. The strategy – surprise,

explain, reward – is much like dialogue. The software generates a potentially surprising

assertion that nonetheless fits a cell’s formula. It changes the value of the cell to be valid

under this assertion, and explains this decision and how to change the assertion through

a tooltip. The user is rewarded by virtue of having a more correct spreadsheet.

The WhyLine (Ko and Myers, 2004) is a debugging tool which operates literally as dia-

logue. By scanning the function call structure of a program, the tool can create hierarchi-

cal menus which allow the user to formulate pseudo-grammatical “why” questions about

the execution of a program. Kulesza et al. (2009, 2011) modify this approach to facilitate

end-user debugging of the underlying naïve Bayes model of an email spam classifier.

As with IML, allusions to “explanations” also appear throughout the end-user debugging

literature, such as in the “surprise-explain-reward” approach. However, an important dis-

tinction exists between the type of dialogue one engages in when debugging, and the type

of dialogue one has with a machine learning model. The activity of “debugging” principally

occupies the direct channel, as in the traditional programming paradigm. In debugging it

is assumed that the user’s mental information structure is the correct version, which the

computer’s internal information structure must aim to reproduce. That is, it is assumed

that the human knows the right answer. This is not to say that it is always straight-

forward for the programmer to concretely express the required information structure in

code. Perhaps assistance is received from the system, as in WYSIWYT. Nonetheless, in the

traditional paradigm, the final arbiter of what is, and is not a “bug,” is the programmer.

In the new paradigm of end-user machine learning, the goal is unknown or ill-defined. It

follows that under these circumstances, “debugging”, or even a “bug”, cannot definitively

exist. This is particularly the case for analytical modelling. In Chapter 5, an analytical

modelling system called “Teach and Try” is described. In this system, users press a button

labelled “Teach” to train a supervised learning model, and a button labelled “Try” to use

the model to predict missing data. The system was found to successfully generate some

understanding of the limitations of statistical procedures in non-experts. This can be

partially attributed to the deliberate selection of the word “Try”, which implies fallibility

and evokes empathy, unlike more conventional labels such as “Fill” or “Apply model”.

45

3.3.2 Supporting dialogue through metamodels

All previous approaches to the indirect channel share one property: each addresses the

lack of a decision support system to help the user choose their next action. This must

necessarily be framed as a dialogue since the system cannot tell the programmer exactly

what to do (if so, it should be automated), but merely equip them with the tools to make

better decisions.

There are a limited number of important user actions in interactive analytical modelling.

Consequently, at each step, there is a limited number of decisions to make:

• What action should be taken next?

• Should the training data be altered? What training data should be added/removed/edited?

• Should the model be deployed? On which data should it be deployed?

• Should any charts/graphs/UI elements be inspected?

A system participates in this dialogue by providing support for these questions.

Since IML models are large quantities of parameters which are unintelligible through

direct inspection, a metamodel layer is required to present information about the model.

Three metamodels are proposed here:

1. Confidence: how sure is the model that a given output is correct?

2. Prediction path: how did the model arrive at a given output?

3. Command: how well does the model know the domain?

These have emerged from consideration of the engineering requirements of analytical

modelling systems over the course of the development of the systems in Chapters 4 and

5. They are not exhaustive. Aspects of these metamodels have previously been introduced

in the intelligibility types proposed by (Lim and Dey, 2009) and information needs pro-

posed by (Kulesza et al., 2011). This relationship is summarised in Table 3.3. This table

excludes some intelligibility types and information needs that are not directly related to

the metamodels.

The intelligibility types and information needs frameworks prescribe types of information

which would be beneficial to an end-user programmer of machine learning models, but do

not prescribe how such information might be generated. While metamodels are a concep-

tual solution at the same level as intelligibility types, that is, they prescribe things which

should be shown to the user, they are also an engineering solution at a technical level, that

is, they prescribe how this information can be generated. Approaching the problem as one

of metamodelling may alleviate the need to recreate methods for providing intelligibility

for each new interface and machine learning system on an ad-hoc basis.

46

Metamodels Lim and Dey (2009) Kulesza et al. (2011)

Confidence: how sure is

the model that a given

output is correct?

Certainty: how certain is

the system of this report?

-

Prediction path: how did

the model arrive at a

given output?

Input: what data does the

system use?

Why/Why Not: why

did/didn’t the system

make a specific predic-

tion?

How: how does the system

produce its output?

ML Program’s Current

Logic: why did/didn’t the

system make a specific

prediction? Why did its

prediction not change in

response to my action?

Command: how well does

the model know the do-

main?

- -

Table 3.3: Aspects of the metamodels which have been previously described in terms of intelligibil-

ity types (Lim and Dey, 2009) and information needs (Kulesza et al., 2011).

Confidence

Confidence is well-studied in statistics and machine learning. Methods for estimating the

error or confidence for a given prediction have been developed for many models. For in-

stance, linear regression is accompanied by a procedure for computing the 95% confidence

intervals for its learnt parameters. A similar procedure computes 95% ‘prediction’ inter-

vals per prediction, which can be interpreted as confidence in the prediction. The ability

to estimate this confidence is not always incentivised in benchmarks of machine learning

performance, which are primarily concerned with the correctness of the output.

Table 3.4 presents suggestions for computing confidence for popular machine learning

techniques. A general technique is to generate Bayes confidence intervals from bootstrap

samples (Laird and Louis, 1987). Measures of confidence can be used to prioritise human

supervision of machine output. When there are large quantities of output to evaluate,

the user’s attention can be focused on low-confidence outputs that may be problematic.

González-Rubio et al. (2010) use this approach to improve interactive machine translation,

and Kulesza et al. (2015) use this approach to improve interactive email classification.

Behrisch et al. (2014) apply a confidence metamodel in their software, where the user

interactively builds a decision tree by annotating examples as “relevant” or “irrelevant”.

The user is able to decide when the exploration has converged using a live visualisation

that shows how much of the data passes a certain threshold for classification confidence.

Confidence can also be deceiving. Recent work (Nguyen et al., 2015; Szegedy et al., 2013)

has demonstrated how carefully injected noise can trick a state-of-the-art image classifier

into labelling apparently straightforward images, and images completely unrecognisable

to humans, as arbitrary objects with high confidence. Confidence is necessary but not

sufficient for evaluating a model.

47

Model Example calculations of confidence

k-NN For a given prediction, confidence can be measured as the mean dis-

tance of the output label from its k nearest neighbours as a fraction of

the mean pairwise distance between all pairs of training examples. A

similar metric is proposed in Smith et al. (1994).

Neural

Network

For a multi-class classification, where each output node emits the prob-

ability of the input belonging to a certain class, confidence can be mea-

sured simply as the probability reported. More sophisticated confidence

interval calculations can be obtained by considering the domain being

modelled, as in Chryssolouris et al. (1996); Weintraub et al. (1997);

Zhang and Luh (2005).

Decision

Tree

The confidence of a decision tree in a given output can be measured

as the cumulative information gain from the root to the outputted leaf

node. Alternatively, Kalkanis (1993) provides a more traditional ap-

proach.

Naïve

Bayes

The confidence of a Naïve Bayes classifier in a given prediction can be

measured as the probability of the maximally probable class. More so-

phisticated treatment of the problem is given by Carlin and Gelfand

(1990); Laird and Louis (1987).

Hidden

Markov

Model

The primary tasks associated with HMMs (filtering, prediction, smooth-

ing, and sequence fitting) all involve maximising a probability; the con-

fidence can simply be measured as the probability of the maximally

probable output. More fine-grained confidences can be measured by

marginalising over the relevant variables (Eddy, 2004).

Table 3.4: Concrete confidence metamodel suggestions

Prediction path

How has the model arrived at a given output label for particular input data? This is

a difficult question even for engineers of practical machine learning systems, especially

when attempting to generalise from small datasets.

For example, in building a rule-based learning system to predict the likelihood of a pa-

tient’s death from pneumonia, Cooper et al. (1997) discovered that the system was exploit-

ing an artefact in the training data to make its predictions. Namely, if the patient had

a history of asthma, the model actually predicted a higher likelihood of survival! This

directly contradicted established medical knowledge that asthmatics are at a higher risk

of death from pneumonia. The oddity was traced to the fact that the model had been

trained on treatment records where asthmatics were given much more aggressive treat-

ment in order to compensate for their increased risk. As a consequence, they had a better

survival rate than non-asthmatics, a fact that the model had imbibed. It was impossi-

ble to guarantee that there were no such other inconsistencies in the rule-based learning

system being used, so the model was dropped, and a much simpler class of “intelligible”

models were adopted (Caruana et al., 2015; Lou et al., 2012, 2013) despite having lower

predictive power. A wise decision, as the model was subsequently found to be exploiting

other similar false correlations. Similarly, researchers building a computer vision system

for quantifying multiple sclerosis progression based on depth videos (Kontschieder et al.,

2014) found that the system was exploiting patients’ facial features in order to “remember”

their training labels, so as to cheat the leave-one-out cross validation being used.

48

The prediction path metamodel attempts to address the question: how much can be ex-

plained about a specific prediction without having to expose the internals of the ML model?

One aspect of the prediction path may be captured in the notion of the “complexity” of

a prediction. Consider a neural network. It can be argued that when an input highly

activates many nodes in the network, the decision making process is more complex than

one which involves fewer nodes. This is the case despite the fact that the model structure is

identical, with identical edge weights. It can be likened to the difference between mentally

computing 199+101 and 364+487. One can follow the same arithmetic “algorithm”2 and be

equally confident in both answers, but one of these instances appears to be more complex

than the other.

Command

The “command” metamodel expresses how well the model understands the input domain,

that is, whether it has a good command of the input space.

The idea of command has been previously expressed in various forms. The notion of a

self-regulated, autonomous agent is long-lived in GOFAI3 research and modern machine

learning, motivated by such issues as the “exploration-versus-exploitation” tradeoff; that

is, should the agent do something which has been known to provide a certain reward, or

should the agent explore the wider world in search of potentially better rewards, at the

risk of wasting resources on less-rewarding world states?

A famous problem that benefits from this form of metacognition is the multi-armed bandit

(Gittins et al., 2011). A gambler at a row of slot machines has to decide which machines to

play, how many times to play each machine, and in which order to play them, in order to

maximise the cumulative reward earned. Each machine provides a random reward from

a distribution specific to that machine. Thus, the tradeoff is between exploration, that

is, playing machines in order to learn about their reward distributions, and exploitation,

that is, playing machines in order to gain the reward. A solution to this problem must

necessarily involve a model of command, that is, how much is known about the reward

distribution of each machine, in order to effectively navigate this tradeoff.

Similarly, the concept of reinforcement learning (Watkins, 1989) involves a “reward func-

tion”, which records the reward an intelligent agent might hope to receive upon transi-

tioning to any given world state; the agent can then probabilistically transition to world

states that will either fulfil its information need by updating the reward function, or al-

ternatively will pay off by way of actually receiving the reward. A related concept is

active learning (Cohn et al., 1996; Settles, 2010), where the algorithm selects examples

it believes to be most useful for its learning, and presents these to a human oracle (or

other information source) for labelling. The motivation behind active learning is simi-

lar to exploration-vs-exploitation: that the algorithm may achieve greater accuracy with

fewer training examples should it choose the data from which it learns. Savitha et al.

(2012) show a “metacognitive” neural network which can decide for itself whether and

when to learn from each training datum it is given. These techniques all rely on a model

of the input domain to distinguish between what is known and what remains to be known.

In reinforcement learning, this takes the form of the state space. Any practical definition

of “command” has to be constructed in relation to the domain being modelled.

2This example is purely illustrative. Naturally the mental computation which actually takes place in each
case is as yet indeterminable.

3Good Old Fashioned AI, referring to a philosophy of symbolic reasoning and associated techniques.
See: Haugeland, John. Artificial intelligence: The very idea. MIT press, 1989.

49

Figure 3.2: Two alternative views of command. The task is to classify examples in this space as ‘red’

or ‘blue’. Left: labelled training examples in the input space. Right: the learned decision boundaries

(e.g., through logistic regression), showing an area of reduced certainty. These are radically different

interpretations. Consider the bottom right-hand corner. The classifier predicts ‘blue’ with high

confidence, but since it has not seen any examples from that area, should it really be confident?

Confidence and prediction path measures are both computed only with respect to a partic-

ular prediction. That is, whenever the model is used to make a prediction or classification,

there is an associated confidence and prediction path unique to that output. In contrast,

the “command” metamodel refers to the current state of the algorithm’s knowledge, inde-

pendent of any single output.

Two simple methods of illustrating the command of a model over a domain are: to position

all training examples so far received in the input domain, and to consider the classifier’s

confidence at all points in the domain. These are illustrated in Figure 3.2. The two images

present very different pictures of “command” over a domain. If command is viewed as some

integral of confidence, then an model with high levels of confidence in the majority of the

domain can be considered to have a good command of the domain. If we view command as

some integral of the occurrences of training examples encountered, then a model trained

on a representative set of training examples may be considered to have a good command.

The command metamodel is related to the problem, in interactive machine learning, of

seeking relevant examples for efficient training. When Amershi et al. (2009) discuss how

one might seek examples providing greatest information gain for the classifier, they are de-

scribing building a partial command metamodel; a full metamodel would allow generative

dialogue – software would not only be able to identify examples from the existing corpus

but also generate examples which satisfy perfectly the classifier’s information need, pro-

vided that the human or other oracle can actually provide ‘good’ labels (Baum and Lang,

1992). Examples that satisfy information requirements perfectly can also be the most

challenging for human labellers, and a mixture of ‘easy’ and ‘hard’ examples may elicit

higher quality labels (Sarkar et al., 2016). Groce et al. (2014) approach this from the per-

spective of end-user classifier testing, and show various strategies for selecting evaluation

examples. Any such method of eliciting examples includes a command metamodel in order

to define and identify deficiencies in the machine’s training.

50

Metamodels as explanatory metaphors

It may be possible to relax the constraint that the visual representation of these meta-

models is strictly driven by the underlying model. That is, it may be possible to provide

plausible representations of a model’s confidence, command, and prediction path, by sub-

stituting representations developed for another model. For instance, the decisions of a

deep neural network are difficult to explain to a non-expert, but if explanations are pre-

sented as though the system is performing case-based reasoning (shown to be an intuitive

approach in the study in Chapter 4), then that may suffice to produce the necessary mental

model soundness. One model could be used as a metaphor for another.

Concretely, the representation developed for one type of model can be substituted for an-

other, if that representation depends solely on the quantities produced by the metamodels.

For instance, in Chapter 4, a visualisation for the k-nearest neighbours model is shown,

which depends only on a notion of model confidence and proximity between data points.

This visualisation could be used to support interaction with a model such as a deep neural

network, for which a direct visual representation is difficult to design, by simply using the

computed proximity and confidence values from the neural network, and ‘pretending’ that

the system was using k-nearest neighbours. This of course is dependent on the availability

of a suitable substitution, which does not diverge too far from the true behaviour of the

underlying model, and appropriate interface considerations for cases where a divergence

has occurred. This idea is not pursued further within the scope of this dissertation, but is

an interesting new frontier for metaphor in HCI.

3.3.2.1 Example metamodel applications

Some interactive machine learning systems are already benefiting from metamodel im-

plementations, and can be usefully augmented by considering additional metacognitive

models, or by newly considering their existing implementations.

Image segmentation: The Crayons application (Fails and Olsen Jr, 2003) is a classic

example of interactive machine learning. By “painting” positive and negative examples

onto an image, the user builds a classifier which can segment areas of an image into two

classes, for example, a classifier which can classify human skin from non-skin objects in

an image. Crayons provides direct visual feedback on the image itself, by respectively

darkening and lightening the negatively and positively classified areas. With a confidence

metamodel, instead of a fixed hue, the image could be overlaid with a colour corresponding

to the confidence with which pixels were classified, as in Figure 3.3. This would further

help the user refine their classifier. For example, it would be possible to identify regions

that, while correctly classified, only just cross the decision boundary and thus have low

confidence.

Email classification: Kulesza et al. have investigated assisting users in debugging

rules learnt by a naïve Bayes model for classifying emails into user-generated categories

(Kulesza et al., 2009, 2011, 2015). They present EluciDebug, a visual tool for providing

explanations of the naïve Bayes classifier’s classification decision with respect to a given

email. They present an explicit confidence metamodel, which can be used to sort emails

and focus user attention on emails which may have been misclassified. They present an

explicit prediction path metamodel, wherein the entire set of weights used to make the

decision can be inspected through a series of bars, and thus it is apparent whether the

classification was straightforward, dominated by a few extreme weights, or complex with

a wide distribution of potentially conflicting weights.

51

Figure 3.3: Left: a simplification of the original Crayons interface, which shows pixel classification

based on a binary threshold. Right: confidence-based colouring exposes how the classifier may still

be uncertain about the fingers, and additional annotation may be beneficial.

EluciDebug also approaches a command metamodel. Sizes of different folders, which rep-

resent different classes, explain the models’s priors for an unknown message belonging

to any given class. This approaches a command metamodel since it alludes to the distri-

bution of training examples the machine has thus encountered. It does not situate these

examples in the input domain. One might envision a plot of all training examples, along

with their text, projected from the high-dimensional space in which they reside onto a 2D

manifold, such that deficiencies in the algorithm’s experience can be identified (a notable

caveat being that such a projection may not be available). This is precisely the approach

taken by Amershi et al. (2009) for interactive image classification. A full command meta-

model, defined with respect to the input space (e.g., word vectors, or a latent semantic

document embedding), would also enable appropriate training examples to be elicited.

This could take the form of either identifying emails which would greatly improve the

overall confidence of the classifier if a label was obtained for them, or could extend to the

artificial synthesis of emails whose labels would satisfy the classifier’s information needs.

Concept evolution in images: The CueFlik application (Fogarty et al., 2008) presented

a visual, programming-by-example method for designing rules to sort images into cate-

gories. Kulesza et al. (2014) refine this by acknowledging that users may not initially, or

ever, have well-defined mental concept models – a key characteristic of the new program-

ming paradigm discussed earlier. In their system the user is walked through a sequence

of images which can be selected as belonging to a suggested class, or not. Automatic sum-

maries of categories are generated to help the user remember what was distinctive about

a particular category. Similar images from the corpus are displayed to assist the user

in deciding whether creating a new category is warranted. Thus, the user refines their

understanding, as well as the machine’s understanding, of the categories they are cre-

ating. Categories are suggested through an algorithm similar to content-based filtering.

Currently, the only visual indication is a yellow star icon next to the suggested category.

A confidence metamodel would enable an interface where different category labels are

ranked, sized, or coloured according to the machine’s confidence. This would help users

identify categories which are potentially only weakly described by the training data.

52

Representations of prediction paths, linked to the input space, could alert users to trivial

simplifications being exploited by the algorithm, as in the pneumonia example. An exam-

ple of how this might occur in image classification is as follows. Consider a classifier being

trained to categorise images of dogs and cats. Most pictures of dogs are taken outdoors

on green lawns, and most pictures of cats are taken indoors. With a carelessly selected

dataset, one may produce a classifier which merely detects the colour green. A prediction

path metamodel could highlight how many, or which of the input image features are being

used to make a decision, enabling the user to decide when to enrich the dataset or when

to prune the feature space to prevent oversimplifications of the domain.

Recommender systems: a common problem with music recommender systems, such

as the engines underlying Pandora or iTunes radio, is that for an accurate model of your

preferences to be built, the system needs to observe many examples of your listening his-

tory. As a consequence, users of such systems typically abandon the service before an

accurate model is built. Researchers have investigated fast-converging estimates for rec-

ommendation systems. For example, Herbrich et al. (2007) tackle the issue of effectively

recommending opponents in multiplayer games. It is important that opponents are well-

matched, otherwise the game is not fun to play for either party. It is also important that

these recommendations converge quickly, and that it is not necessary for a player to play

several mismatched games before the system is able to correctly estimate their skill.

These recommendation systems do not expose the underlying uncertainty associated with

each prediction. Through visible indicators of progress and improvement, showing how

the confidence of the system improves over time, and how its command of the domain of

music preferences improves with exposure to new examples, the user may be made more

sympathetic to the amount of time and data required to properly train such systems.

Intelligent home devices: devices in our homes are getting increasingly intelligent.

For instance, the Nest thermostat4 learns daily usage patterns and begins to adjust itself.

Similarly, ‘smart’ refrigerators5 can detect when a particular item is running low and place

an online order. These devices may ostensibly be programmed through general-purpose

Internet-of-Things languages, such as IFTTT.6 However, the primary programming inter-

faces of many devices is direct interaction, so that these devices can learn over time. In

these cases, it can be quite helpful for the system to express parts of its model to the user.

4https://nest.com/thermostat/meet-nest-thermostat/ (last accessed April 29, 2018)
5For example, http://bit.ly/evning-standard-smart-fridge (last accessed April 29, 2018)
6https://ifttt.com/wtf (last accessed April 29, 2018)

53

https://nest.com/thermostat/meet-nest-thermostat/
http://bit.ly/evning-standard-smart-fridge
https://ifttt.com/wtf

3.4 Analytical modelling is constructivist learning

Analytical modelling systems allow end-users, often non-experts, to build and apply sta-

tistical models for their own uses. Constructivism is the view that human learning occurs

when ideas and experiences interact (Fosnot, 2013). In this section, it is argued that the

objectives of analytical modelling can be interpreted as constructivist. By so character-

ising them, constructivist learning environments are shown to have relationships with

analytical modelling systems, with potential implications for design.

This dissertation has previously identified two tasks: model-building and analytics. The

model-building activity is not principally concerned with the structure of the model, but

rather its ability to robustly predict real-world outcomes, and so it is usually acceptable for

the model to have large numbers of undecipherable parameters, and convoluted structure.

The desired outcome is a reusable model. In contrast, the analytics activity is concerned

with the interpretation of data through the model, and typically involves models with

few, readily-interpretable parameters. The analytical modelling systems proposed in this

dissertation incorporate elements of both tasks.

Constructivism is a theory describing the human learning process; the manner in which

human knowledge is generated. It posits the view that human knowledge is constructed as

a result of the interaction between a person’s mental models and their perceptual experi-

ence. This stands in opposition to the naïve psychology made explicit by Heider (Baldwin,

1967) that knowledge is information, and consequently, learning is analogous to infor-

mation delivery; in this instructionist view, one can optimise learning purely by training

teachers to transfer information more effectively. Constructivism has had many influences

but is largely attributed to Piaget (Wadsworth, 1996). Although evidence of the benefits

of constructivism as a pedagogical tool has been mixed (Kirschner et al., 2006), the theory

has been highly influential on learning theory and educational reform.

Computer science education has been the source of some notable applications of construc-

tivist theory, such as Papert’s Logo programming system (Abelson and DiSessa, 1986).

Logo’s emphasis on direct visual representation and feedback through turtle graphics

gave novice programmers a direct perceptual experience of the effects of their code, in-

creasing the surface area for interaction between their ideas and experiences, facilitating

the construction of new or better mental models. The idea has been refined and combined

with powerful notions such as blocks programming and multiple representations, to cre-

ate sophisticated constructivist environments such as Alice (Cooper et al., 2000), Scratch

(Resnick et al., 2009), and DrawBridge (Stead and Blackwell, 2014).

54

3.4.1 Implicit and explicit learning outcomes in analytical modelling

As noted, end-user machine learning systems have multiple objectives. Some, such as

Crayons, build a reusable model, whereas others, such as Behrisch et al.’s, analyse a

dataset with the aid of a statistical model. Analytical modelling tools, such as those

described in the following chapters, aim to bridge the two, and additionally expose the

end-user to statistical concepts.

Each of these objectives can be restated as learning outcomes for the user:

1. Model-building: learning about the model instance, its strengths, weaknesses, cov-

erage of training data, fitted parameters, etc.

2. Analysis: learning about the structure, statistics, features, etc. of the data.

3. Exposure to statistical concepts: learning about a particular algorithm, or learning

about generic statistical modelling concepts such as training and testing, class rep-

resentation, noisy data, outliers, etc.

Systems such as Logo aim to maximise constructivist knowledge generation by maximis-

ing the opportunities for interaction between experience and ideas. Conveniently, the

feedback loop between system and user which drives interactive machine learning is also

a rich source of experience generation. As the user adds training examples or manipulates

other parameters of the model, the system illustrates its current understanding through

externalisations such as the translucent overlays in Crayons, an experience which causes

the user to update their mental model of the system’s intelligence.

Thus, analytical modelling systems are constructivist learning environments just like

Logo and Scratch, but here the ‘programs’ being written are not graphics or animations,

but models, and the programming language is not a blocks language, but the stream of

interactions, including annotation, labelling, and parameter adjustment. However, un-

like Logo and Scratch, ‘learning’ in the sense of acquiring concepts and gaining real-world

skills is not an explicit outcome in analytical modelling systems. Rather, in analytical

modelling systems, production of the desired result, whether reusable model or analytic

insight, is incumbent on a series of implicit intermediate learning outcomes.

3.4.2 Critical constructivist issues for analytical modelling

Many interesting challenges and opportunities arise from the view that analytical mod-

elling systems are really constructivist programming systems that generate certain types

of knowledge through an experiential interaction loop. Virtual learning environments

grounded in constructivism, called constructivist learning environments (CLEs), have

been developed for domains outside programming. For instance, the Lab Design Project

was a hypermedia system designed for researchers to practice sociological research skills

and to learn about how lab design shapes scientific practice (Honebein et al., 1993). The

Jasper series (Pellegrino et al., 1992) developed at Vanderbilt immersed students in vivid

stories to encourage situated response to mathematics problems. Consequently, much re-

search has focused on the design of such CLEs.

55

The following paragraphs highlight some established principles of CLEs that ask mean-

ingful critical questions for the design of analytical modelling systems, based on a review

of a few core texts on the design of CLEs (Cunningham and Duffy, 1996; Hannafin et al.,

1997; Honebein, 1996; Jonassen, 1999; Jonassen and Rohrer-Murphy, 1999; Lebow, 1993;

Taylor et al., 1997).

Task ownership

Users learn by working towards a problem which they see to be relevant and reflective

of real-world situations. Such a stimulus for authentic activity causes users to be goal-

oriented and intrinsically motivated to complete the task. It is typical for analytical mod-

elling systems to satisfy this criterion, as both model-building and analytics applications

facilitate an end-user task; users only engage with these systems precisely because they

need to solve a real-world problem of which they have already taken ownership.

Ill-defined problem

Users better engage with problems that are ill-defined. Firstly, because users can invest

in the problem by creating defensible interpretations and judgements. Secondly, because

users are less likely to be deterred by the prospect of providing an “incorrect” solution as

none exists. Analytical modelling is inherently ill-defined. As discussed earlier, with tra-

ditional software engineering problems the definition of ‘bug’ is typically uncontroversial,

and the programmer can decide whether any given behaviour of their program is desirable

or undesirable. However, in model-building and analytics, the user cannot know the ‘right’

answer. Instead, these activities are dominated by ill-defined questions, such as: does the

model accurately capture the domain? Is it overfitting? Are these variables interrelated?

Is this analysis leading to sound conclusions?

The design of early IML systems exhibit what may be termed ‘techno-pragmatism’, where

the interaction is designed around satisfying the technical needs of statistical models. In-

deed, this has led to an odd juxtaposition between the objectivist requirements of machine

learning algorithms, and the open-ended nature of the tasks being facilitated. To build a

robust machine learning model requires high-quality training data with clearly discrim-

inable classes, representing well-defined concepts. The user’s task is to recognise and label

objects, organise them coherently, and integrate them with existing knowledge – a decid-

edly instructionist approach. By contrast, in the constructivist view, objects do not have

absolute meaning; meaning is constructed by the individual as a result of experiences

and situated beliefs. This type of activity requires a rich context where meaning can be

negotiated and understanding can emerge and evolve.

When IML systems hit the limits of the objectivist approach, new interaction design tech-

niques coupled with powerful inference algorithms have been shown to provide a unique

middle ground. Some examples of this include structured labelling (Kulesza et al., 2014)

and setwise comparison (Sarkar et al., 2016), where training labels are assumed to be ill-

defined, and the user and system are together responsible for gradually co-forming stable

notions of labelled concepts, fit for use in machine learning systems.

56

Perturbation

Perturbation (or disequilibriation, in Piagetian terms) drives the learning process. It

refers to a stimulus which does not conform to, or gently subverts, the mental model of the

user, forcing them to construct new knowledge in order to ‘accomodate’ this experience.

The introduction of perturbations, and encouraging the strategic exploration of errors, is

already a central issue in IML systems, since building effective and interpretable models

revolves around the activity of addressing errors made by the machine-learned model.

CLEs acknowledge that errors have deeply embedded negative connotations in our socio-

cultural environment. As the intended learning outcomes of analytical modelling systems

become more explicit, designers need to be sensitive to the impact of errors on learners’

motivations, and the potential for the misattribution of poor instructional outcomes.

This section began by introducing three matters (task ownership, ill-defined problem, and

perturbation) with which analytical modelling systems already engage to some extent, but

for which a new theoretical grounding based in constructivist design has been elaborated.

Next, four further issues core to CLEs that shed new light on analytical modelling systems

will be discussed.

Reflexivity

A critical self-awareness of one’s learning, beliefs and knowledge is central to construc-

tivist environments. Reflective users take control over and responsibility for their thoughts,

and create a defensible catalogue of provenance for their knowledge. Analytical modelling

systems currently do not promote critical reflection, but a promising solution is to capture

the user’s interaction history in detail, and facilitate simple querying and browsing. Cre-

ating such ‘graphical histories’ (Kurlander and Feiner, 1988) is not technically straightfor-

ward, but design solutions exist in visual analytics (Heer et al., 2008), as well as sketching

(Zhao et al., 2015) and source code change history (Yoon et al., 2013), which demonstrate

how such affordances support reasoning about knowledge provenance through direct ma-

nipulation of the knowledge construction history.

Collaboration

Learning takes place in a social context. The construction of meaning, like so many other

activities, seldom occurs individually. The ability to perform in the professional world is

predicated on group contexts, unlike the artificially individualistic school and classroom

settings. To this end, CLEs often incorporate collaborative activities intended to promote

dialogue and encourage the social exposure of ideas. IML systems are typically not de-

signed with collaboration in mind, but may import lessons from collaborative analytics

(Heer and Agrawala, 2008) in order to do so.

Task in context

Knowledge construction is context-dependent. Within a particular setting, it is historically

developed, evolved over time in conjunction with culture. Moreover, beliefs and opinions

are constantly adjusted by socially-mediated expectations. This process tends towards

increasing common ground (Clark et al., 1991), resulting in an increased robustness of

mental models. Professional customs, skills, workflows, and institutional expectations all

filter and sculpt learning. The design process for analytical modelling systems is sensitive

towards these issues, but what this might mean for their design is a critical question.

57

Tool mediation

The process of creating knowledge is mediated by tools and symbols. Just as carpentry

is not merely teleology for the hammer but is also actively shaped by its invention, so do

many aspects of modern technology influence the practice from which they emerge. For

example, email hasn’t merely made us more efficient communicators – the nature of that

technology has radically changed our paradigms for communication. The invention of tools

may be a cultural necessity, but the tools, in turn, transform culture.

Analytical modelling systems, especially those with an emphasis on analytical outcomes,

need to be aware of their role as cultural mediators. Boyd and Crawford (2012) and Black-

well (2015b) have highlighted as a concern the fact that knowledge is shaped by the con-

straints, assumptions, and contexts of statistical algorithms and the data on which they

operate. For instance, are Twitter posts representative of global sentiment, simply be-

cause they constitute a large sample? Analytical modelling systems embody epistemologi-

cal and ontological assertions, which are currently implicit. This is made further problem-

atic because statistical inference is the subject of much dispute. We are perhaps not ready

to settle into ideologies when there is ambiguity in several areas. For instance, consider

the debate between frequentist and Bayesian approaches, which differ on such fundamen-

tal axioms as the interpretation of ‘truth’ (Bayarri and Berger, 2004; Efron, 2005). Since

these analytical systems constitute the indispensable umwelt of our collective experience

of data, it is well worth these assumptions being made explicit.

3.5 Design principles for analytical modelling systems

This chapter has presented three new theoretical perspectives, summarised below.

• Visual analytics is end-user programming

Visual analytics can be considered a form of end-user programming, because infor-

mal reasoning driven by visualisations helps generate, test, and eliminate hypothe-

ses, in much the same way as does writing statistical programs to formally encode

statistical hypotheses in a language such as R. Moreover, many visual analytics sys-

tems present the visualisation as an abstract object, so constructing a reusable visu-

alisation to facilitate a certain type of insight, separate from the underlying dataset,

is a form of programming.

• Interactive machine learning is dialogue

End-user machine learning represents a paradigm shift in programming, where the

dominant mode of programming has moved from one with well-definable mental

models to one without. This is accompanied by a movement from a direct, explicit

information channel (the program itself) to an indirect, meta-information channel

(about the program). Previous work in explanatory debugging and interactive ma-

chine learning has shown several different items which may be present in this meta-

information channel, elevating our interaction with programs to a status resembling

dialogue. An addition to this channel has been proposed: metamodels of machine

learning. This framework is grounded in the engineering requirements for providing

such types of information for intelligent systems.

58

• Analytical modelling is constructivist learning

The interaction loop of analytical modelling systems facilitates constructivist learn-

ing, as it maximises the interaction between the end-user’s experience of the model,

and their ideas regarding the model status. Parallels have been drawn between in-

teractive machine learning systems and constructivist learning environments. While

interactive machine learning systems have so far had a certain set of pragmatic de-

sign influences, this constructivist interpretation opens up new avenues and impli-

cations for design.

From these observations, four principles for the design of analytical modelling systems are

derived, with a focus on non-expert end users. They are: begin the abstraction gradient

at zero, abstract complex processes through heuristic automation, build expertise through

iteration on multiple representations, and support dialogue through metamodels.

Principle 1: Begin the abstraction gradient at zero.

Reduce representational expertise requirements by always including at least one repre-

sentation with zero abstraction. This begins the abstraction gradient (Green and Petre,

1996), which refers to the range of levels of abstraction exposed by a notation, at zero.

Concretely, in the case of analytical modelling tools, this corresponds to having at least

one direct visual representation of the data being operated upon. In contrast, statistical

programming languages require at least one level of abstraction higher than data, such

as arrays or matrices, in order to apply useful operations. Spreadsheets are a notable

exception; direct data manipulation is the central element of their success at reducing

representational expertise.

Principle 2: Abstract complex processes through heuristic automation.

Reduce process expertise requirements in order to deploy statistical and machine learn-

ing techniques by exposing as few (hyper)parameters as possible and relying on heuristic

inference. For every parameter θ of a particular computation, consider whether it is ab-

solutely necessary to have the user provide θ, or whether an appropriate value can be

heuristically determined.

For instance, when designing a system that allows users to build k-nearest neighbour

models, should the user be allowed to set k, the number of neighbours used? In this case,

the user requires sufficient process expertise in the k-NN algorithm to understand the

impact of editing that parameter. A simple heuristic might be to use the value of k which

minimises training error. The design decision to apply heuristic inference is a tradeoff

between the reduction in process expertise required to provide the parameter, and the

quality of the heuristic.

Principle 3: Build expertise through iteration on multiple representations.

Analytical modelling comprises of an interaction loop involving training and deploying

a model. Accompany this with multiple representations of the model and its output at

varying levels of complexity. A rapid, incremental interaction loop with multiple rep-

resentations provides constructivist scaffolding through which users can be exposed to

increasingly complex concepts, building both representational as well as process expertise.

59

For example, when designing a system for building decision tree models, non-experts may

not be familiar with navigating the features of their data in a hierarchical structure. If

a flattened representation of the tree were to be presented at the same time as a more

advanced hierarchical representation, the user would gradually become familiar with the

correspondence between representations.

Principle 4: Support dialogue through metamodels.

Support the user by providing information about the model, such as the model’s confi-

dence, command, and prediction path. When building a complex model, it is difficult to

gain insight into what action should be taken next by inspecting the workings (parame-

ters) of the model directly. This must necessarily be framed as a dialogue since the goal

is ill-defined and both user as well as system have some degree of agency. Concretely, in-

dicating model confidence and prediction path helps the user evaluate the quality of each

prediction. Illustrating model command helps evaluate the quality of the training dataset.

3.6 Conclusion

This chapter has presented three new theoretical perspectives: that visual analytics is

end-user programming, interactive machine learning is dialogue, and analytical mod-

elling is constructivist learning. Four design principles informed by these perspectives

have been briefly outlined: begin the abstraction gradient at zero, abstract complex pro-

cesses through heuristics, build expertise through iteration on multiple representations,

and support dialogue through metamodels. The subsequent two chapters present con-

crete examples of design artefacts which influenced, and were in turn influenced by, these

principles.

60

CHAPTER 4

GATHERMINER

This chapter presents the design and evaluation of Gatherminer, an analytical modelling

tool for detecting and explaining patterns in time series datasets. Gatherminer applies

all four design principles. Furthermore, it exemplifies selection-as-annotation, the idea

that labels for a supervised learning algorithm can be obtained from user selections on an

interface. A reorderable, colour-mapped matrix is the substrate upon which such selections

are made. A decision tree is trained on the user selection and is presented as an interactive

treemap through which an analyst can critically evaluate multiple explanations. A user

study showed that with Gatherminer, analysts without domain expertise discovered more

interesting patterns, explained them more correctly in terms of the time series’ attributes,

and were more confident with their analysis, as compared to Tableau, their standard tool.

This chapter presents research described in the following papers:

• Visual discovery and model-driven explanation of time series patterns. Ad-

vait Sarkar, Martin Spott, Alan F. Blackwell, Mateja Jamnik. 2016 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 78–86). Highly

commended paper award (honourable mention).

• Visual Analytics as End-User Programming. Advait Sarkar, Alan F. Blackwell,

Mateja Jamnik, Martin Spott. Psychology of Programming Interest Group Work-In-

Progress Workshop 2015 (PPIG-WIP).

61

4.1 Introduction

Previous chapters have motivated the questions of whether tools can be built for analytical

modelling, and whether they can be made useful for non-experts. In this chapter, Gath-

erminer, an analytics tool which incorporates model building, is described. Gatherminer

reduces requirements for many types of representational, process, and domain expertise.

The system enables non-expert users to identify interesting patterns in a database of time

series without knowing the shape of the patterns beforehand, and to find a concise expla-

nation of these patterns in terms of the relevant subset of time series attributes.

Visual analytics tools, as used for exploratory statistical analysis, can be regarded as a

class of visual programming language. Like spreadsheets, these tools focus on presenting

data, rather than the control structure of algorithms operating on the data. They also

share some properties of direct manipulation interfaces, in that the user focuses on visual

output from the system rather than the input (the numeric data being analysed). The

“programs” being written are statistical models and tests of statistical hypotheses, which

could alternatively be implemented in R or Python. The human-centric research goal is to

improve on the usability of those classical languages, enabling a wider range of end-users

to engage in statistical analysis, and also making professional analysts more effective.

The analysis of time series data is a ubiquitous exercise. For instance, analysts in a retail

setting might study series of sales and inventory, hoping to understand patterns which

help them optimise various aspects of their retail system. The operators of a large com-

munications infrastructure may study series of network faults and device operation, to

diagnose issues and improve customer service. Financial analysts study series of stock

exchange rates to spot emerging trends and exploit opportunities. The work presented in

this chapter is grounded in a specific application domain – analysing patterns of network

faults in the BT communications network.

The BT problem

At BT Research and Technology, analysts study time series of faults in the various devices

on BT’s telecommunications network. An international network infrastructure is com-

prised of the order of 106 devices, including hubs, routers, cables, etc. in the core network,

in exchanges, and in customers’ homes. Each device is characterised by hundreds of meta-

data attributes, such as their geographic location, the customer type served, etc. Every

day, faults on the network are reported by customers, through devices raising alarms, and

through field engineers performing maintenance. These fault reports are registered in a

central database. Thus, a time series of daily fault counts is created for each type of device

(i.e., all devices which share metadata properties).

62

The role of an analyst is to identify patterns of faults in subsets of this large database of

time series, and perform analyses of the potential causes of these patterns. Analysts might

look for interesting behaviour, such as “devices with unusually low fault rates”, or “devices

with an inflexion in the time series.” Once this behaviour is found, a corresponding expla-

nation is sought, such as “do any device types consistently seem to have inflexions?”, or

“what attribute values are predictive of devices with unusually low fault rates?” These

explanations are then used to drive business decisions, such as investment allocation and

special investigations.

However, the analysts face two important challenges. The first is that the shape of in-

teresting patterns is not known beforehand, so the system cannot be querying-oriented;

“interesting” time series cannot simply be retrieved. Even if an interesting pattern is

known, it may not always be straightforward to express using the standard tools avail-

able to them, such as their relational database system. The second important challenge

is that of finding a concise explanation for these patterns in terms of the metadata at-

tributes. Having hundreds of attributes, each with several values, leads to an explosion

of attribute-value combinations which cannot simply be each inspected in turn. A further

complication is that these analysts are experts in the domain of the network data but have

limited statistical expertise.

In observing this process at BT, we noticed that the task of detecting and explaining inter-

esting patterns is typically performed using opportunistic approaches with notable draw-

backs: (1) they rely heavily on the domain expertise of the analyst to guide the exploration

of the large space of attribute-value combinations; (2) they may result in interesting fea-

tures being overlooked; (3) they may result in spuriously correlated attribute explanations

being ‘discovered’; (4) they rely on extensive manual attribute inspection. Consequently,

current methods result in analyses which are incomplete, inaccurate, slow, and leave ana-

lysts feeling unconfident.

Each of the aforementioned drawbacks is directly addressed by Gatherminer’s design.

The evaluation section of this chapter presents a study comparing Gatherminer against

Tableau,1 the tool of choice for the expert analysts at BT, in which it was found that anal-

yses using Gatherminer were more complete, more often correct, faster, and improve ana-

lyst confidence.

4.2 Related work

The analysts’ objectives can be expressed through the analytical framework due to Amar

et al. (2005) as follows:

• Identifying interesting features: detecting groups of similar time series (Cluster) by

identifying trends, peaks, inflexions and their overall shapes (Extrema, Range, Dis-

tribution, Anomalies).

• Explaining features in terms of attributes: detecting potential links between time

series attributes and their behaviour (Correlation).

1http://www.tableau.com/ (last accessed: April 29, 2018)

63

http://www.tableau.com/

4.2.1 Visualisations for bottom-up time series analysis

Since the nature of interesting time series is unknown a priori (e.g., it is not possible to

say whether we wish to retrieve series with peaks, troughs, inflexion points, or some other

behaviour), we must enable the analyst to conduct bottom-up analyses, where hypotheses

about interesting behaviour are first generated by inspecting the data (Pirolli and Card,

2005). For this process to be robust, a simultaneous overview is required of all the time

series in this large collection. This problem has been tackled in many ways before (Mullër

and Schumann, 2003); a synthesis of multi-resolution techniques is given by Hao et al

(Hao et al., 2007a). Pixel-matrix displays are used for representing time series in several

scientific disciplines, such as gene expression data (Lex et al., 2010) and machine hearing

(Haitsma and Kalker, 2002).

To facilitate better discovery of collective trends from such overviews, the technique of

reshuffling data series was proposed by Bertin (1981) with his ‘reorderable matrix’. Bertin

proposed a visual procedure where pieces of paper representing rows of a matrix were cut

and manually reordered on a flat surface. We now have the computing power and ad-

vanced clustering techniques to adapt this method for large datasets. A survey of time

series clustering techniques is given by Liao (2005). Elmqvist et al. (2008) incorporated

a significant reordering step in their “Zoomable Adjacency Matrix Explorer”. Mansmann

et al. (2012) explored the use of correlation-based arrangements of time series for move-

ment analysis in behavioural ecology. The “Bertifier” is a general-purpose tool for apply-

ing reordering operations to tabular data (Perin et al., 2014). Previous work has also been

done on exposing motifs in time series (Chiu et al., 2003; Hao et al., 2012). These systems

do not, however, subsequently capitalise on the rearranged visualisation as an interface

for conducting automated analyses of the metadata attributes.

4.2.2 Explaining behaviour in time series datasets

Bernard et al.’s system (Bernard et al., 2012) visually guides the discovery of interesting

metadata properties of time series clusters, which is closely related to our goals. However,

while their work was primarily focused on automated notions of “interestingness,” due

to the open-ended nature of BT analyses, we must necessarily take a mixed-initiative

approach, with interestingness defined by user selections. A number of interfaces have

been proposed for performing information retrieval tasks on time series databases, such

as sketch editors and visual catalogues (Bernard et al., 2014a; Buono et al., 2005; Lin

et al., 2005), but these systems are query-driven (i.e., assume the nature of the interesting

pattern is known beforehand).

The Line Graph Explorer (Kincaid and Lam, 2006) compactly represents line graphs as

rows of colour-mapped values, that is, a colour-mapped matrix. This allows the user to get

a full overview of the time series data in a compact space. Line Graph Explorer provides

a focus+context view using a lens-like tool, and has an elaborate metadata panel which

draws on the table lens (Rao and Card, 1994). The metadata panel enables analysts to

explain any observed patterns in terms of the time series attributes, but relies on manual

inspection and so does not scale to large attribute spaces.

64

Keim et al. identify “advanced visual analytics interfaces” (Keim et al., 2010), which

showcase an advanced synergy between visualisation and analytics. Hao et al. describe

“intelligent visual analytics queries” (Hao et al., 2007b), the process of selecting a focus

area, analysing the selection, and presenting results of the analysis as appropriate. This

is precisely the technique we employ.

A number of investigations have been made into improving visual interaction with var-

ious statistical procedures. These procedures include exploratory approximate computa-

tion (Fisher et al., 2012; Sarkar et al., 2015), distance function learning (Bernard et al.,

2014b; Brown et al., 2012a), and advanced feature space manipulations (Endert et al.,

2011; Mamani et al., 2013; Sedlmair et al., 2014). Fails and Olsen Jr (2003), Wu and

Madden (2013), and Behrisch et al. (2014) present systems for interactive machine learn-

ing. These address a range of classification problems for different types of data; however,

visual mining for explanations amongst a large set of attributes has not been addressed.

4.3 Design

Data is represented as a colour-mapped matrix (Figure 4.1(a)), which is rearranged to ex-

pose patterns and clusters (we refer to this as “gathering” (Pirolli et al., 1996)). To navigate

this visualisation, which can become very large for massive databases of time series, we

provide an overview+detail mechanism, where the overview is facilitated by a thumbnail

scrollbar (Figure 4.1(b)), and detail is given through a scanning display (Figure 4.1(c)).

For analysis, we use selection on the core visualisation as annotation to deploy explana-

tion procedures such as summary bar graphs and decision tree learning (Figure 4.1(d)).

An overview of the architecture is shown in Figure 4.2. The individual components are

elaborated in the following sections.

4.3.1 Core colour-mapped matrix visualisation

Our primary visualisation is a colour-mapped matrix where each row is an individual

time series and each column is an individual time point. Thus, a cell is a single data point

within a single time series, coloured according to its value. This representation has useful

properties (Hao et al., 2007a), most importantly compactness: each datum can be shrunk

to a single pixel in size2 before the visualisation ceases to be lossless. As each datum is

directly represented at all times, this visualisation satisfies design principle 1: begin the

abstraction gradient at zero.

Prior to colour-mapping, values must be normalised; by default Gatherminer uses cumula-

tive distribution (CD) normalisation, with the option to switch to range normalisation and

truncated Z-score normalisation, but a user-supplied JavaScript normalisation function

may also be used.

Importantly, even though pixel matrices are perceptually inferior to line charts for com-

parative quantitative analysis, since they rely on colour rather than height to convey

magnitude, it is the identification of patterns which we consider to be more important

than characterisation. That is, it is more important for analysts to be able to spot that

interesting behaviour exists rather than to immediately understand the nature of that

behaviour (spike, trough, etc.). The colour-mapped matrix greatly facilitates identifica-

tion. The exact behaviour can easily be further characterised by inspecting aggregate line

graphs generated by selecting the time series.

2or to the resolution limit of the human eye, whichever comes first

65

Figure 4.1: The Gatherminer software showing (a) its primary colour-mapped matrix visualisation, (b) the thumbnail overview scrollbar, (c) scanning

for detail, (d) attribute charts generated during analysis.

6
6

Figure 4.2: Gatherminer’s architecture. System objectives are presented in grey; their respective

implementations are in green. Relationships between components are in blue.

Cumulative distribution normalisation as default

Given that we wish to prioritise pattern identification, CD normalisation presents itself

as the natural way to produce a default colour map, for reasons explained in this section.

A colour map is a function mapping values in the data domain to values in the colour

domain (e.g., RGB triples). To allow for modularity, and to decouple colour maps from the

parameters of specific datasets, we assume that colour maps take values which have been

normalised to the continuous range [0, 1]. An appropriate normalisation function must

first be applied to bring an arbitrary dataset into this range. CD normalisation works as

follows. For a given multiset of real values D, a value d is normalised to yield d′ by setting:

d′ =
|{x ∈ D|x ≤ d}|

|D|

Essentially, this sets d′ = P (x ≤ d) where the probability distribution is measured directly

from the dataset (the ‘empirical’ distribution function). This is almost equivalent to setting

d′ to the percentile of d, the difference being that percentile refers to the probability of the

strict inequality. The choice of cumulative distribution over percentile is not important as

long as the colourmap function is approximately perceptually uniform (Robertson, 1988).

That is, for a given difference ∆, such that 0 ≤ ∆ ≤ 1, the colours corresponding to the

values x and x+∆ are equally perceptually different for all x ∈ [0, 1−∆]).

The advantage of CD normalisation is that it facilitates pattern identification regardless of

the distribution of the underlying data. This satisfies design principle 2: abstract complex

processes through heuristic automation. Higher-density areas of the underlying distribu-

tion are allocated larger proportions of the normalised range. By contrast, consider range

normalisation, a popular normalisation method:

d′ =
d−minx{x ∈ D}

maxx{x ∈ D} −minx{x ∈ D}

67

If a dataset following, for example, a power law distribution (as does the BT dataset)

were to be range normalised, a lot of the normalised range would be allocated to values

which occur disproportionately few times. More perniciously, patterns which involve the

most frequently occurring elements are obscured due to the fact that these elements are

‘compressed’ into a small portion of the normalised range.

This is made clearer in Figure 4.3, which shows four different distributions as normalised

by range normalisation in the left column, and CD normalisation in the right column.

Range normalisation works well for the uniform distribution, mapping equally dense re-

gions of data with equal areas of the normalised range (corresponding to an equal space

of colour). However, range normalisation breaks down for the Gaussian, power law and

non-standard distributions, where highly dense areas are still given equal areas of the

normalised range. Note how, in contrast, the CD normalisation maps according to den-

sity; the grey lines represent equally-spaced samples in the normalised range, and the

green lines project them back onto the original data range. Denser areas are accordingly

allocated more of the normalised spectrum. The impact this can have on the visualisation

is illustrated in Figure 4.4.

Like the normalisation method, the colour map chosen should depend on the domain.

Analysts in various settings may have adopted semantic colour conventions which could

inform the hues chosen in the colour map. Sometimes the analytical value from such

semantic conventions will supersede limitations such as poor support for colour blindness

and perceptual non-uniformity. The red-green colour map is an excellent example of this;

the immediate positive and negative connotations of ‘green’ and ‘red’ in Western cultures

is a strong argument for its use to represent data in several domains, such as finance

and performance monitoring. However, the red-green colour map has poor perceptual

uniformity and is not safe for colour blindness. Ultimately, this is a decision for the analyst

to make. Gatherminer supports several common colour maps, and new colour maps can

be installed in a modular fashion.

To illustrate an example workflow in Gatherminer, a real BT dataset has been extracted,

with commercially sensitive material disguised so as to resemble data about faults in cars.

The colour-mapped matrix representation of this dataset when initially loaded can be seen

to the left of Figure 4.5. The remainder of this figure will be explained in Section 4.3.2.

Overview+detail

The warping lens in Line Graph Explorer provides focus+context (Card et al., 1999), al-

lowing individual time series to be inspected in detail whilst still being aware of the series’

location with respect to the overall dataset. This interaction mechanism dynamically dis-

torts the underlying visualisation, which we require to be static for purposes of selection

(explained shortly), so it is not applicable to our use. Instead, we allow the user to scrub

over the visualisation, and display a detailed line graph and attributes table for the se-

ries being hovered over (item (c) in Figure 4.1). This is complemented with an overview

which never exceeds the height of the screen. The overview acts as a scrollbar. It con-

tains a translucent window indicating which section of the time series is currently being

magnified, which can be dragged like a scroll handle (Figure 4.6). Thus, the scrollbar and

main visualisation together create an overview+detail view (Cockburn et al., 2009). More-

over, the main visualisation itself can be seen as an ‘overview’, which can be inspected

in ‘detail’ through the scrubbing mechanism. This multiple-layered overview+detail has

an additional advantage over the lens approach: the time series dataset can be large,

containing thousands of time series, but a shrunken representation is always visible and

available for use as a navigational aid.

68

Figure 4.3: Illustration of how range and cumulative distribution (CD) normalisation map different

distributions onto a colour scale. Left column: range normalisation, plotting probability density

function (PDF). Right column: CD normalisation, plotting cumulative distribution function (CDF).

69

Figure 4.4: Effect of different normalisation methods on a power-law distributed dataset of 1000

series. Left: range normalised, right: cumulative distribution normalised.

70

Figure 4.5: Two patterns exposed by gathering a BT dataset of 1,335 rows. (a) Time series with a

trough in the middle. (b) Clusters of high-valued time series.

71

Figure 4.6: The thumbnail scrollbar appears as a shrunk overview on the left, with a translucent

overlay demarcating the section of the overall visualisation currently being viewed in the main area

of the window. The translucent overlay functions as a draggable scroll handle.

4.3.2 Gathering: automated layout

The visualisation format alone facilitates some analysis, but for more efficient pattern

detection a layout algorithm must now be applied. A number of clustering, sorting, or op-

timisation methods may be appropriate here; by default, Gatherminer reorders the time

series such that those which are most similar are placed close together, hence “gather.”

Specifically, the final layout minimises the sum of pairwise distances between neighbour-

ing time series. The visual perceptual principle behind this ordering is that by minimising

the sum of pairwise distances between neighbouring series, we bring together series which

have similar visual colour profiles. When ‘stacked up’, rows of similar colours create larger

areas which are easily spotted. This rearranged visualisation may be called a ‘gatherplot’.3

The default choice to reorder based on perceptual principles also satisfies design principle

2: abstract complex processes through heuristic automation.

In the following, we use T to denote a univariate time series. The subscript Ti denotes the

ith element of T . In a collection of many time series, the superscript notation T (k) denotes

the kth series. Thus, T
(k)
i denotes the ith element of the kth series.

3A light-hearted analogy to the scatterplot, referencing Cutting et al. (1992).

72

Pairwise distance between time series

By default, the distance between any two time series is a pairwise weighted metric:

distance(T (a), T (b)) =
∑

i

∑

j

c(T
(a)
i , T

(b)
j) · w(i, j) (4.1)

where

• c is a cost function which specifies how the distance between two individual elements

of time series should be calculated, for example, c(T
(a)
i , T

(b)
j) =

∣

∣

∣T
(a)
i − T

(b)
j

∣

∣

∣, or alter-

natively, c(T
(a)
i , T

(b)
j) = (T

(a)
i − T

(b)
j)2.

• w is a decay function which specifies how the neighbourhood of each element is

weighted, for example, w(i, j) = e−(|i−j|), or alternatively, w(i, j) = |i− j|
−1

, or al-

ternatively, w(i, j) = 2−|i−j|.

These weighting functions express the idea that distances between elements in the same

position in the two series are most heavily penalised, and distances between elements in

different positions are not completely ignored, but are given successively lower weightings

as the respective positions grow further apart.

Faster distance computation by bounded approximation

For time series of length l, computing a distance of this form between any two time se-

ries costs O(l2). However, a bounded approximation to the weighting function can reduce

this to O(l). Observe, for example, that for the weighting function w(i, j) = 2−|i−j|, when

|i− j| = 7, w(i, j) < 0.01. For several datasets, including BT’s time series dataset, dis-

tances are no longer meaningfully affected by adding element-wise costs which have been

multiplied by weights this small. That is, if all pairwise distances were computed, and

ordered from least to greatest, ignoring costs added by small weights would not change

this ordering. Thus, through empirical, manual tuning, a bound b can be selected to create

a function wb, a b-bounded version of any weighting function w, as follows:

wb(i, j) =

{

w(i, j) if w(i, j) ≥ b,

0 otherwise.
(4.2)

Conveniently, in the case of w being defined in terms of the absolute difference between

i and j, this bound can be translated into a bound on the summation of the j terms.

Concretely, consider our example of w(i, j) = 2−|i−j|, which becomes negligible (< 0.01) for

|i− j| ≥ 6. To calculate the distance function in equation 4.1 with a bound of b = 0.01,

since wb(i, j) = 0 for |i− j| > 6, we can simply calculate the distance as:

distance(T (a), T (b)) =

l
∑

i=1

max(l,i+6)
∑

j=min(1,i−6)

c(T
(a)
i , T

(b)
j) · w(i, j)

73

In general, each bound b corresponds to a window λ where wb(i, j) = 0 for |i− j| > λ. Then,

distance(T (a), T (b)) =

l
∑

i=1

max(l,i+λ)
∑

j=min(1,i−λ)

c(T
(a)
i , T

(b)
j) · w(i, j)

This computation is now O(λl), which reduces to O(l) since λ is constant.

When time series are loaded into the system, they are assigned labels from 1 to n in the

order in which they appear in the data file. That is, T (1) is the first time series in the

file, T (2) is the second, and so on. An ordering of the time series can be specified through

a function p : {1, 2, ..., n} → {1, 2, ..., n}, where p(k) specifies the position of T (k) in this

ordering. The (identity) ordering pI(k) = k is the default ordering just described.

Reordering

For n series a minimal pairwise distance ordering pmin is desired such that

pmin = argmin
p

n−1
∑

k=1

distance(T (p(k)), T (p(k+1)))

Finding such an ordering is not straightforward, as the problem is equivalent to that of

finding a minimal Hamiltonian path (similar to the problem of finding a minimal Hamil-

tonian cycle, more commonly known as the Travelling Salesman Problem), known to be

NP-complete. To see why our problem is equivalent, imagine that each time series is a ver-

tex in a fully-connected graph, and each edge has weight equal to the distance between its

two vertices. A complete minimal ordering is equivalent to a minimal-weight path which

touches each vertex exactly once, that is, a minimal Hamiltonian path.

Computing the distance matrix is an unavoidable O(l2n2), or O(ln2) if a bounded approx-

imation is applicable. Thereafter, to compute the ordering, Gatherminer implements two

alternative solvers. The first is a greedy nearest-neighbour search (O(n2)), described in

Algorithm 1. This algorithm is a slight variant of the standard nearest-neighbour search

as it proceeds greedily from both ends of the current path, rather than from any one end.

Note also that for the sake of convenience, the distance function is assumed to be symmet-

ric, that is for any i and j, distance(T (i), T (j)) = distance(T (j), T (i)). For the asymmetric

case, a little more care is required, but it is nonetheless a straightforward extension of the

algorithm presented here.

The greedy search can sometimes produce poor, or even maximal (worst-case) orderings

(Gutin et al., 2002). Although naturally occurring datasets rarely exhibit this pathological

property, it is useful to have an alternative in such an event. Consequently, the second

solver is a genetic optimisation algorithm, which is robust to such datasets. It is also

O(n2), but is slower in practice due to large constant factors. The detailed pseudocode of

the genetic algorithm used shall not be presented, but a high-level overview follows. A

detailed example of how a genetic approach can be used to solve the travelling salesman

problem is given by Mühlenbein et al. (1988). Kernel PCA is another potential technique

for initialising the ordering (Schölkopf et al., 1997).

74

Data: L: list of labels {1, 2, ..., l}
Result: pnn: the approximately-minimal nearest-neighbour ordering

Initialisation:

pnn is a new empty double-ended queue;

i, j = argmini,j∈L distance(T (i), T (j));

push i to head of pnn, append j to tail of pnn;

top = i, bottom=j;
delete i and j from L;

while L is not empty do

i = argmini∈L distance(T (top), T (i));

j = argminj∈L distance(T (bottom), T (j));

if distance(T (top), T (i)) ≤ distance(T (bottom), T (j)) then

push i to head of pnn;

top = i;
delete i from L;

else

append j to tail of pnn;

bottom = j;
delete j from L;

end

end

return pnn;

Algorithm 1: Greedy nearest-neighbour search for pmin.

The genetic solver produces an initial random population of orderings by selecting random

permutations of the list [1, 2, ..., n], each such permutation being interpreted as an ordering

of labels according to the list indices. For a fixed number of iterations, new ‘generations’

of individuals are produced. To produce the next generation, three steps are followed:

selection, crossover, and mutation. In the selection phase, the population is sampled (with

replacement) with probability proportional to individual fitness, to yield a new population

of the same size as the original. The fitness of an ordering is the inverse of the total

distance of the Hamiltonian path it represents. In the crossover phase, randomly selected

‘parent’ pairs of orderings are ‘interbred’ to produce a pair of children, which replace the

parents in the population. The interbreeding process randomly inspects individual steps

in both parents’ paths, selecting the least costly step for inclusion in the child. Finally, with

some probability, each individual is ‘mutated’ through one of two types of mutations: either

a randomly chosen subpath within the larger path is reversed, or two randomly chosen

disjoint subpaths are interchanged. On BT datasets (∼103 series of length ∼102), the

genetic algorithm typically converges to a near-optimal path after around 100 generations.

While neither greedy search nor genetic algorithm is guaranteed to produce an optimal

ordering, any ordering which is sufficiently close to optimal has the desired visual property

when rendered as a colour-mapped matrix, namely, that similar rows are brought close

together, increasing the area of repeated patterns, making them more visible.

75

The “Gather” button triggers reordering. The resulting visualisation exposes groups of

series bearing interesting analytical features such as peaks and trends (e.g., Figure 4.7).

With careful selection of distance metrics, one might also be able to expose motifs (Chiu

et al., 2003; Hao et al., 2012). The colour-mapped matrix representation of our faults

dataset after gathering can be seen in Figure 4.5. One limitation of this process is that

each time series can only have two neighbours in the colour-mapped matrix, and so clus-

ters are sometimes “flattened” counterintuitively, with similar rows being placed further

apart than expected. This does not usually impair “pattern spotting” as it is an approxi-

mate visual process, but it does require the user to make multiple selections.

The distance metric can and should be changed for the task at hand, as data in various

domains typically have very different notions of what constitutes similarity. For instance,

Dynamic Time Warping (Berndt and Clifford, 1994) is a common metric for comparing

time series which vary in speed or time. Currently, any user-supplied JavaScript distance

function can be used. However, since our target end-users are not experts in programming

or statistics, this is not a satisfactory solution. In future work, it would be useful to in-

vestigate interactive visual methods of specifying distance metrics (Bernard et al., 2014b;

Brown et al., 2012a; Mamani et al., 2013). For instance, the user could specify a distance

metric by dragging together rows which they feel should be placed close together, which

would create a system of soft constraints that could be solved as an optimisation problem

to yield a distance function.

Each time series in the collection is associated with attributes describing various prop-

erties of the series (i.e., “metadata” as used by Kincaid and Lam (2006) and Bernard

et al. (2012)). For instance, the BT fault data has “Device Type”, “Location”, etc. as at-

tributes. We denote these attributes Aj , meaning the set of values they are allowed to

have. Attributes may also be continuous (e.g., Product_Weight). Thus, each time series is

characterised by an n-tuple of attribute values (a1, a2, ..., an) where ∀j. aj ∈ Aj .

The two primary activities of BT analysts which are facilitated by our system can now be

framed as follows:

• “Identifying interesting features” corresponds to discovering the sets of time series

Interesting such that for k ∈ Interesting, T (k) contains interesting behaviour, for

example, “devices with unusually low fault rate.”

• “Explaining features in terms of attributes” corresponds to discovering attribute-

value tuples (a1, a2, ...) which discriminate well between T (k) ∈ Interesting and T (k′) /∈
Interesting. An example question is “what attribute values are predictive of devices

with unusually low fault rates?”

It is worth reiterating that analysts do not necessarily know what types of patterns they

are looking for. Gatherminer is not, and cannot be, a query-driven interface. Rather, it

supports the generation of relevant queries.

76

Figure 4.7: Examples of the gathering process, with the dataset as loaded on the left, and after gath-

ering on the right, demonstrating the detection and separation of different types of patterns from

noise; from top to bottom: peaks and troughs, linear trends, features of different widths, functions

of different periodicities, complex cross-series cascades. Multiple colour mappings are supported.

77

4.3.3 Selection to annotate interesting clusters

The Gathering process exposes interesting patterns as visual artefacts such as coloured

blobs and streaks. The next step is to query for explanations of these patterns directly

using the reordered visualisation.

Gatherminer allows users to select regions of interest in order to mark them as ‘interest-

ing.’ This constitutes manual annotation of a subset of data points, similar to the inter-

active applications presented by Fails and Olsen Jr (2003), and Wu and Madden (2013).

In Fails and Olsen’s Crayons application, the user drew on an image to interactively build

a classifier to segregate the image (e.g., a classifier that detects a human hand against a

background). Similarly, in Gatherminer, the user directly annotates the visualisation to

build a classifier. While Crayons facilitated image classification on image data, Gather-

miner extends that style of interaction to time series data visualised as a colour-mapped

matrix; it provides an “intelligent visual analytics query” (Hao et al., 2007b).

The gathering step is essential for this annotation to be effective. In the underlying

dataset the time series may appear in any ordering, for instance the order of generation of

the data entries, or sorted by attribute-values. Once gathered, however, the resultant or-

dering {T (1), T (2), ..., T (n)} is such that neighbouring time series have similar behaviours,

regardless of their attributes or date of entry into the original file. Thus, “interesting”

time series appear in contiguous regions, allowing the user to use their selection to specify

an interval [a, b], or k intervals [ai, bi] for i = 1 to k, such that
⋃k

i=1{T
(ai), T (ai+1), ..., T (bi)}

constitute the interesting set, and the remaining time series constitute a not-interesting

set. See Figure 4.8 for an example of selection.

Once the selection is made, clicking the “Explain” button deploys multiple strategies (e.g.,

decision tree learning) to discover which attributes of the time series best discriminate

the interesting (selected) regions from the non-interesting ones. Thus, the user asks the

software to “explain” regions of interest by querying for explanatory attributes.

Mining for explanatory attributes

Gatherminer currently supports three explanatory visualisations, illustrating the vari-

ety of interesting possibilities for selection as annotation. Moreover, each visualisation

provides a different representation, thus exemplifying design principle 3: build expertise

through multiple representations. The first explanation method is a set of bar charts

which compare the distribution of the attribute values in the selection against the distri-

bution of the attribute values in the overall dataset. This builds upon the system pre-

sented by Bernard et al. (2012) for analysing relationships between time series clusters

and attributes. These charts do not require statistical expertise for interpretation. “Ex-

planations” are read off by comparing the heights of the bars. A large discrepancy between

an attribute’s values in the selection and its values in the overall dataset indicates that

the presence or absence of that value is highly correlated with the time series marked “in-

teresting.” An example can be seen in Figure 4.9 (recall that the attributes are disguised

to resemble a dataset about faults in cars).

The second explanatory visualisation demonstrates how the selection-based interface can

be used to implement more sophisticated machine learning algorithms. Supervised learn-

ing can be formalised as the process of discovering a hypothesis h : Xn → Y , given a se-

quence of training examples (~xi, yi). The intention is that the learnt hypothesis achieves

a level of generality that renders it useful for modelling and prediction purposes. Here,

each ~xi is known as the feature vector and each yi is known as the label or class.

78

Figure 4.8: Left: a gathered dataset has exposed some series with an interesting feature. Right:

these series have been selected by specifying intervals using a brushing tool.

The ID3 decision tree algorithm (Quinlan, 1986) is a natural choice for demonstrating

selection-as-annotation, as it produces human-interpretable models in the form of rules.

For each time series, our feature vector is the attribute vector of the series: (a1, a2, ..., an),
and our label is a binary value indicating whether the time series was part of the selection,

that is, was marked as “interesting”:

label(T (k)) =

{

Interesting, T (k) ∈ Selection

Not Interesting, T (k) /∈ Selection

The training dataset D consists of (n + 1)-tuples of the form (a1, ..., an, label(T (k))). The

ID3 algorithm can now be called on D, specifying (∀j.Aj) as the attributes and label as the

target attribute (class). More sophisticated tree algorithms such as C4.5 (Quinlan, 2014),

which has better support for continuous attributes could be used, and the same interaction

design principles apply. The ID3 algorithm has been chosen for simplicity and clarity.

79

Figure 4.9: Some explanatory charts for the high-valued clusters in Figure 4.5. Around 60% of

the marked series have CUSTOMER_TYPE=Corporate, but that value only occurs in 20% of series

overall. Thus, the rule CUSTOMER_TYPE=Corporate could partly explain the behaviour of the

selected time series. Similarly, MODEL6=Polo and MODEL 6=Passat and GEO_TYPE=Super Rural

are also potential explanations. Hovering on bars reports exact percentages in tooltips.

We map the data structure resulting from the call to ID3 directly onto a tree visualisation.

Explanations are read as a conjunction of nodes from root to leaf. The tree is interactive,

featuring collapsible nodes, panning and zooming. Figure 4.10 shows an example.

A key advantage of deploying the ID3 algorithm in this manner is that it scales to large

attribute-value spaces. The tree visualisation displays combinations of explanatory at-

tributes using exactly the tree-depth (i.e., number of relevant attribute values) required.

For instance, if a single attribute value contains complete discriminatory information

about the user selection, tree expansion stops at that attribute. An example tree can

be seen in Figure 4.10. The figure shows only one path, but when completely uncollapsed

(i.e., showing all paths), the full tree has only 100 nodes. For just the 8 attributes in our

example dataset, there are over 105 attribute-value combinations. The tree, constructed

on an information-theoretic basis, represents only the most relevant ones.

Why not just show clusters separately?

One alternative to our neighbour-distance-minimising layout and manual user annotation

process would have been to employ a traditional clustering algorithm, such as k-means or

agglomerative hierarchical clustering. Heuristically selecting a suitable number of clus-

ters, each cluster could then be visualised as its own separate Gatherplot. Instead of

allowing the user to make ad-hoc selections, the system could simply offer explanations

for each cluster in turn. This is similar to the approach taken by Bernard et al. (2012).

However, this would introduce an additional layer of parameterised complexity. Namely,

choosing a clustering algorithm, its hyperparameters, and a sensible number of clusters,

must either be done heuristically, which may produce a poor clustering with no way for

the user to select series across clusters, or explicitly by the user, which raises the expertise

required to operate the system. This is another instance of how Gatherminer exemplifies

design principle 2: abstract complex processes through heuristic automation.

80

Figure 4.10: Above, the full ID3 tree generated from the same high-valued clusters as Figure 4.9, where “interesting” leaf nodes have been left

uncollapsed. Explanations are read as a conjunction of nodes from root to leaf. As an example, one such path (thick yellow line) is magnified below:

when (FAULT_TYPE=Turbo Charger) ∧ (COUNTRY=Belgium) ∧ (GEO_TYPE=Rural) ∧ (DEALERSHIP=VW Franchise), the time series is likely to be

interesting (i.e., in the selection).

8
1

4.3.4 Alternative interactive representations for decision trees

The tree visualisation presented in previous sections is a straightforward mapping of the

underlying ID3 output structure onto a node-link diagram in which hierarchy/depth is

mapped onto the horizontal axis. Its advantage is that the topology of the tree is immedi-

ately apparent. However, it has limitations: notably, that it is cumbersome to read the rule

which a node describes; that the analyst is not aided in their evaluation of nodes as pro-

viding analytic value; and that the visualisation does not scale, becoming cluttered with

as few as 100 nodes onscreen. To provide an alternative design which better facilitates

analytical modelling, it is necessary to first clarify its design objectives:

• Rules: allow rules to be easily read off. Paths through the tree from root to leaf

are the primary analytic output of the tree, and it should be straightforward and

frictionless to read the path from root to any node.

• Explanation: answer why, why not, how questions (recall the discussion of intelli-

gibility (Lim et al., 2009) from previous chapters). In particular, ‘why/why not was

this datum classified as interesting/not-interesting’, ‘how are predictions made?’, and

‘how is the tree built?’

• Scenting (Pirolli and Card, 1999): allow efficient, intentional tree navigation. The

representation must assist analysts in deciding the order in which to consider nodes.

• Assessment: allow critical assessment of the learned model. In particular, this calls

for design principle 4: support dialogue through metamodels. In the case of the ID3

algorithm, this reduces to assessing whether any given learnt ‘rule’ has a good bal-

ance between support/coverage (i.e., it provides explanations of a significant amount

of the data) and discrimination (i.e., the rule discriminates well between classes; it

has high information gain). This can be expressed in terms of the metamodels in-

troduced in the previous chapter: a rule with poor discrimination/support has low

confidence, and a rule with low coverage has poor command.

• Scaling: scale to trees of arbitrary sizes. An important strength of decision trees

as an explanation mechanism is their ability to reduce the combinatorial explo-

sion of attribute-value combinations to only those which are most valuable from an

information-theoretic perspective, down to ∼AV nodes from ∼V A, where A is the

number of attributes and V the number of values each attribute can have. Nonethe-

less, firstly: this is merely the expected behaviour of the tree, and a pathological

dataset may cause the tree to increase to its worst-case size, and secondly: as the

attribute-value space grows, the size of even well-learned trees grows accordingly.

The solution presented here is an interactive treemap (Shneiderman and Wattenberg,

2001), shown in Figures 4.11 and 4.12. The layout is squarified (Bruls et al., 2000) for its

superior aesthetic properties, as well as the ability to provide easier hover/click targets

than, for example, “slice and dice”. At any given time, the treemap represents a single

node in the tree as being composed of its children, which are in turn composed of their

grandchildren. That is, the treemap displays a node and up to the next two deeper levels

of hierarchy. Children are represented as coloured rectangles, and grandchildren in turn

are smaller rectangles nested within those. The area of each rectangle is proportional to

the number of data points falling under that node. ‘Falling under a node’ means possessing

the combination of attribute values represented by that node; data points which if passed

through the tree for prediction would be routed through the node.

82

The colour of each rectangle is computed as follows. A unique colour is assigned to each

class in the data. In Gatherminer, the ‘interesting’ class is assigned a particular shade

of blue, and the ‘not-interesting’ class is assigned pure white. Finally, the colour of a

rectangle is computed as the average colour of data points falling under that node. This

visually represents the expected class of data falling under the node. The size and satu-

ration colour of a rectangle corresponds roughly to the strength of the rule; this mapping

exemplifies design principle 4: support dialogue with metamodels.

The rule corresponding to the focused node is shown in the grey bar above the treemap.

Navigation in the treemap is as follows: clicking on a region in the treemap descends one

level, moving the focus to the clicked child of the currently focused node. Clicking on the

grey bar moves “up” one level; focus moves to the parent of the currently focused node.

Reinforcing data coverage through ‘isotype’ circles

The space of each rectangle is filled with circles which each represent a single data point

falling under that node. The circles are coloured slightly darker than their backgrounds

so as to always remain visible. Associating circle count to data coverage is a redundant

mapping (rectangle area is already mapped to this quantity), but serves to ground that

mapping in a countable number, which is important when moving through the tree, since

the absolute size of a node changes as it goes from being a grandchild, to child, to (in-

termediate) root. This also follows design principle 1: begin the abstraction gradient at

zero. Moreover, the circles helps judge the support aspect of the assessment criterion,

especially when the numbers are very small (<10). The circles may be regarded as a sim-

plistic, generic isotype (Brinton, 1914; Neurath et al., 2010), despite the fact that classical

isotypes are pictographic depictions of the real-world objects represented by the data, for

two reasons. First, they are a generic representation of the data ‘point’, the abstract entity

with which analysts operate, and second, they serve the same purpose, namely grounding

in countable numbers, arranged to provide an intuitive representation of the total amount.

The radius of all circles in a node is set according to the position of the node in the tree. In

particular the radii are set to be inversely proportional to the height of the node, defined

as the length of the longest path between the node and any of the leaf nodes you can

reach from that node. This is a distinct concept from the depth of the node, which is

the distance between the root and that node. Nodes at the same depth may have very

different heights. The idea behind this mapping is that the height of a node corresponds

to the furthest that the drill-down exploration could proceed from that node. Thus, the

leaves of a very high node are ‘further away’ than those of a low node. The mapping of

circle size capitalises on the visual perception phenomenon of distant objects appearing

smaller. Thus, the size of the circles indicate how far you could go down that node before

hitting the leaves (representing complete rules).

These decisions combine to satisfy the design requirements as follows:

• Rules can be easily read from the grey bar at the top.

• Rules themselves provide why and why-not explanations, and ‘how’ explanations are

supported by the user composing rules through iterative drill-down.

• The size and colour of rectangles, as well as the count and size of circles provide

scenting for an order of consideration, as well as assist users’ spatial reasoning about

navigating the tree.

83

Figure 4.11: Treemap: top level.

8
4

Figure 4.12: Descending through successive levels.

85

• Support/coverage and inter-class discrimination are mapped to primary perceptual

variables (size and colour), and reinforced by dot count, explemplifying design prin-

ciples 1 (begin the abstraction gradient at zero) and 4 (support dialogue through

metamodels). This allows users to evaluate the analytical merit of each rule. Note

that this is the key step requiring human judgement. Rules can be heuristically eval-

uated, but no general set of heuristics can assess the analytic value of a particular

rule as well as an analyst with extensive expertise in the domain of the data.

• As the same rectangular space is multiplexed to represent a subtree at any given

time, this scales spatially to arbitrarily large trees. This does however sacrifice a

general overview of the tree structure, which the node link diagram facilitates.

Many alternative tree representations exist. An excellent survey is given by Schulz et al.

(2011). The treemap design is now further validated by comparison to some alternatives.

One alternative is simply to provide a textual list of rules. This perfectly satisfies our rule

criterion. The rules provide why and why-not explanations. The order in which rules ap-

pear could guide navigation (e.g., sort rules in decreasing order of coverage), and a coloured

background could indicate class distribution. If placed within a scrollable window, the list

could be arbitrarily large, satisfying the scaling criterion. However, there are two issues

with this representation. The first is that eliminating the hierarchy of the tree structure

reduces the ability to provide ‘how’ explanations of the ID3 algorithm. The second is that

as the list of rules grows, analytical exploration of the tree is mechanically biased by the

ordering of rules. The interactive treemap has one clear mechanical bias which is explicit

to the user: depth. That is, since it requires one click to descend into the next level of

the tree, it takes less effort to inspect nodes of lesser depth. Nodes of lesser depth involve

fewer attributes in their explanation and are consequently ‘simpler’, so prioritising the

consideration of these nodes is justified by Occam’s razor (the parsimony principle). By

contrast, the mechanical bias introduced by a list is the scroll order; it requires less effort

to inspect nodes whose rules appear earlier in the list. Consequently, producing an order-

ing of rules based on some computation of support, discrimination, and tree depth has an

unsurprisingly significant effect on which rules are considered by the analyst. However,

any particular way of ordering rules cannot correspond to their analytic merit for every

possible domain and dataset. Moreover, regardless of how nodes are mapped to this linear

ordering, our parsimony principle is always violated, because nodes at the same tree-depth

will necessarily require different amounts of effort to scroll to. This limitation extends to

any such variation on a list of rules, including indented or collapsible tree lists.

This is not to say that we propose tree depth or the parsimony principle as the only or

best heuristic for evaluating each rule. As already discussed, no general heuristic can

capture the analytic merit of a particular rule as well as an analyst with domain expertise.

The bias induced by the mechanical effort of exploration is unavoidable. However, it can

be mitigated if the design facilitates the analyst’s awareness of this bias, which can be

done if the mechanical effort required corresponds to a very obvious principle. Our design

decision to favour tree depth, and depth only, illustrates that point.

Other alternatives are sunburst plots (Schulz, 2011) and icicle plots (Kruskal and Landwehr,

1983). These are closely related to the treemap, and have the favourable property that the

mechanical exploration bias is directly mapped to tree depth. However, neither of these

are space-filling layouts, which is important because the utility of basic perceptual cues

such as relative size and colour is greater when the areas occupied by each datum are

larger. Sunburst plots suffer from the further issues that the use of angle is not a good

perceptual encoding of magnitude (Cleveland and McGill, 1984), and that the area of seg-

ments becomes incorrectly visually conflated with magnitude.

86

4.4 Comparative study

The first question of this dissertation is whether tools can be built for analytical mod-

elling. Does Gatherminer address this? Trivially, the answer is ‘yes’, as Gatherminer has

certainly been designed to occupy that space – it is clearly a tool which incorporates ana-

lytics and interactive machine learning. A more demanding question is whether it does so

fruitfully. This can be expressed as the following sub-questions:

With respect to a current industry-standard analysis tool, does Gatherminer:

• result in more interesting patterns found?

• result in more correct explanations being found?

• result in features and explanations being found faster?

• improve users’ confidence in their analyses?

The second question of this dissertation is whether such tools can be made usable by non-

expert end users. In order to understand this we must unpick once again the notion of

‘expertise’ as has been done in previous chapters, and address its components in turn.

Gatherminer reduces representational expertise requirements by leveraging basic percep-

tual principles to provide an interface which improves upon classical statistical languages,

that it reduces process expertise requirements in allowing users without advanced knowl-

edge of clustering and data mining techniques to apply them correctly, and that it reduces

domain expertise requirements by using well-chosen generic statistical techniques. In

terms of our design principles, aspects of Gatherminer’s design begin the abstraction gra-

dient at zero, abstract complex processes through heuristic automation, build expertise

through iteration on multiple representations, and support dialogue through metamodels.

To verify the suitability of Gatherminer as a non-expert tool, it suffices to directly evaluate

on users without such expertise. An affirmative answer to any of the four sub-questions

presented above is consequently both a validation of Gatherminer’s role as a hybrid sys-

tem as well as its reduction of expertise requirements. A user study was conducted to

investigate the research questions above.

Participants

Six participants were recruited from analytics groups within BT Research and Technol-

ogy, situated at Adastral Park in Ipswich, UK. Participants were experienced professional

analysts who regularly study the BT network data using Tableau. Importantly, they were

not statisticians or programmers. We chose Tableau4 as the visual analytics tool against

which to make comparisons, as this was most representative of our participants’ typical

workflows. A generic tool like Tableau is the only viable option in industry, since no tool

tailored to this problem is available. Each participant had extensive prior experience of

using Tableau, but no participant had any prior exposure to Gatherminer. The experiment

was carried out in the participants’ place of work, in their standard office environments.

4http://www.tableau.com/ (last accessed: April 29, 2018)

87

http://www.tableau.com/

Experimental tasks

Each participant completed 5 matched pairs of tasks (10 tasks in total). Five of the tasks

were conducted using Tableau, and the other five using Gatherminer; this allowed us

to make within-subjects comparisons. The order of tasks was randomised between par-

ticipants to account for order effects. For each task, participants were given a time se-

ries dataset of 500 time series, each of length 200. Each time series had 6 attributes:

A,B,C,D,E, F . Each attribute had 6 values, A = {A1, A2, A3, A4, A5, A6}, B = {B1, ..., B6},

and so on. For our experimental tasks, an “uninteresting” time series consisted of random

samples from the uniform integer distribution between 1 and 100. An “interesting” time

series contained a segment where the distribution is heavily weighted towards 1 or 100,

that is, an upward or a downward spike. Each interesting feature had a unique corre-

sponding causally-related attribute value (e.g., in one task, all series with A = A2 contain

an upward spike). The dataset for task pair #1 was synthesised to have 2 interesting fea-

tures. Task pairs #2 and #3 had 3 interesting features each, and task pairs #4 and #5 had

4 interesting features each.

While the design of our tool was informed by and aimed towards real-world data (as in

our examples), for the purposes of the experimental task we deliberately chose to synthe-

sise domain-independent data. This is because the reliance of analysts on their domain

expertise is so strong that it acts as a confound and prevents meaningful comparisons of

the intrinsic benefits of various visualisation systems. This will shortly be discussed in

greater detail.

Using datasets generated in this manner, participants were requested to “find and explain

as many interesting features” of the time series as they could. Additionally, participants

were requested to rate their confidence about their performance after each task, using a

10-point scale in the format of the validated Computer Self-Efficacy inventory (Compeau

and Higgins, 1995). Specifically, they rated themselves on a scale of 1-10 with respect to

the following two questions: (1) “How confident are you that you found all the interesting

features?”, and (2) “How confident are you that you found plausible explanations for the

interesting features you found?” Participants were not made aware beforehand of the

nature or number of interesting features in any task. Participants’ remarks were also

recorded during the experiment; a discussion of these is reported shortly.

4.4.1 Experimental results

In general, data was paired, not normally distributed, and had equal sample sizes for all

conditions, so comparisons were drawn using the Wilcoxon signed rank test (WSRT).

Task completeness

Participants found significantly more interesting features with Gatherminer than with

Tableau (WSRT: V = 171, p = 1.7 · 10−4); the effect size is a median discovery of an ad-

ditional 50% of features with Gatherminer. Similarly, with Gatherminer they found sig-

nificantly more correct explanations for those features (WSRT: V = 276, p = 2.2 · 10−5);

a median of an additional 66.7% correct explanations were discovered with Gatherminer.

This is illustrated in Figure 4.13.

88

Figure 4.13: Comparative histograms of discovered feature and explanation counts when using

Gatherminer and Tableau. Observe the wide spread of completeness with Tableau.

Discovery times

With Gatherminer, participants took significantly less time to discover features (WSRT:

V = 1176, p = 1.7 · 10−9); the effect size is a median improvement of 110.5s using Gath-

erminer. They also took significantly less time to discover correct explanations (WSRT:

V = 654, p = 4.8 · 10−7); a median improvement of 181.5s. This improvement is not alto-

gether surprising, since Tableau is a general-purpose tool, meaning that there is always a

certain amount of time invested to create a visualisation in Tableau in the first instance.

Confidence

Post-task, participants were significantly more confident that they had indeed discovered

all major interesting features using Gatherminer than using Tableau (WSRT: V = 465, p =
1.7 · 10−6); the effect size is a median increase of 6.5. Similarly, they were more confident

that they had discovered plausible explanations for all of the discovered features while

using Gatherminer (WSRT: V = 465, p = 1.6 · 10−6); a strong median increase of 8. This is

illustrated in Figure 4.14.

4.5 Discussion

Analysis strategies in Tableau

Gatherminer is a specialised tool that emphasises certain types of analysis over others.

Tableau, on the other hand, is a much more general-purpose analysis tool, facilitating

many strategies for solving these tasks. Consequently, this may appear to be an unfair or

straw man comparison. It is not, because the participants were expert users of Tableau,

experienced in performing precisely this type of statistical analysis using Tableau. Some

observations regarding the analysis strategies our expert participants in Tableau are now

reported, and how Gatherminer’s design improves upon these is discussed.

89

Figure 4.14: Boxplots of self-reported confidence scores for feature discovery (F) and explanation

discovery (E), comparing Gatherminer (GM) vs Tableau.

Successful strategies in Tableau

Successful strategies relied on finding levels of aggregation that generate visualisations

with a manageable level of complexity, whilst simultaneously revealing interesting fea-

tures. These can be viewed in Figure 4.15. However, these strategies still fell back onto

manually iterating over each attribute in turn, and this resulted in participants feeling

less confident about their analysis. One such strategy was to observe aggregate line charts

of each individual attribute-value pairing (e.g., one line chart summing all series where

A = A2). Here, any attribute-value that caused spikes or dips was clearly reflected. Since

our tasks consisted only of 6 attributes, each with 6 values, and each feature only involved

one attribute at a time, it was possible to apply these strategies effectively. However,

in practice, with many more attributes and values, these strategies quickly become in-

tractable. In contrast, since Gatherminer shows the completely disaggregated time series,

it is possible for the user to view interesting features across all values of all attributes

simultaneously. The analysis of interesting features drives the discovery of correlated

attributes, not vice versa.

Unsuccessful strategies in Tableau

Unsuccessful strategies generally stemmed either from viewing data in completely disag-

gregated form (e.g., one line chart for each of the 500 series), which lead to unmanageable

complexity in the visualisation, or aggregating the data too much (e.g., one line chart that

summed over all 500 series), which resulted in features going completely undetected. A

few of these strategies are shown in Figure 4.16. In Gatherminer, the data is also com-

pletely disaggregated, but the compactness of the colour-mapped matrix display, combined

with automated reordering, makes the complexity of the visualisation manageable.

Another frequent issue was the discovery of false correlations. A common strategy was to

take a few examples of time series with interesting features and inspect their attributes.

If these series had more than one attribute value in common, the analysts were likely

to conclude that the conjunction of those values together produced the effect, whereas in

reality it may have just been one of the attributes, and the spurious correlation of the other

attribute was simply a consequence of the small sample size. In Gatherminer, since series

with interesting features are grouped together, it is trivial for the analyst to select large

sets of series with shared behaviour to inspect the overall properties of their attributes.

90

(a) This strategy involved comparing bar charts of each attribute-value pairing, aggregated over

the entire span of time. Since the interesting features in our time series consisted of unusual

spikes/troughs, this usually reflected in a higher/lower overall sum or average for those series –

easily spotted in an unusually tall or short bar.

(b) This strategy involved comparing aggregate line charts of each attribute-value pairing. Here,

any attribute-value that caused spikes or dips was clearly reflected.

(c) This interesting strategy also compared aggregate line charts of each attribute-value pairing.

Here, by creating a 2D matrix of small multiples, the analyst was able to investigate the interaction

of any two attributes.

Figure 4.15: Three successful strategies in Tableau.

91

(a) This strategy involved inspecting a completely aggregated line graph. In this dataset, we pre-

pared a number of time series that had spikes at about 1/3 and 2/3 the duration of the series, which

are clearly visible in the aggregate chart. However, there are also a number of series which have

an upward spike in the halfway mark, and an equal number which have an equal and opposite

downward spike at the same position. The two cancel each other out and become invisible in the

aggregate line graph, and so the analyst never discovers them.

(b) This strategy, similar to the first successful strategy, uses summary bar graphs to represent the

time series. However, since the series are completely disaggregated (one bar is generated per series),

it is impossible to seek out global patterns.

(c) This strategy involved scanning through the entire list of time series, represented as line graphs,

and manually noting down the attributes of any which appeared interesting. Needless to say, this is

extremely ineffective and led to several false correlations being “discovered”.

Figure 4.16: Three unsuccessful strategies using Tableau.

92

Confidence

It is important for analytical tools to enable analysts to have confidence in their analyses.

In this regard, one major strength of colour-mapped matrices that benefits tools such as

Gatherminer and Line Graph Explorer is that they provide an exhaustive overview of

the data; this satisfies analysts’ desire to “leave no stone unturned.” In particular, even

the analysts who developed successful strategies in Tableau recognised that the manual

nature of their strategy was not scalable, remarking: “You’ve got too many dimensions

to visualise simultaneously”; “Maybe I should just focus on one attribute for a start”; “I’m

going to scroll through this list, and when I see one...”; “I feel like I’m missing a lot if I do

it manually”. Remarks regarding the confidence of their analysis in Gatherminer include:

“I can explore all of it. I don’t have to drill down.”; “Am I confident I have discovered all

the features? Yes, of course, I have seen it.”

Value of the gathering process

Gatherminer strongly encourages partially-automated analysis. On almost every occa-

sion, while using Gatherminer, participants first deployed the “Gather” function before

doing anything else. While using Tableau, participants often mentioned dissatisfaction

with the limitations of the (nonetheless rather sophisticated) built-in sorting functional-

ity: “If I can some way get a cluster”; “What I want is interesting features grouped together”;

“I want to see groups of lines that are behaving [similarly] because then I can see which of

these variables is impacting the series.” Remarks from our participants regarding Gath-

erminer’s reordering function include: “It’s nice to have this hybrid approach where you

get [the reordering] automatically and then the analyst can also scan it manually to see

what is going on”; “At first the [colour-mapped matrix] view itself is helpful because you

understand that there is something going on. The clustering then makes it very evident.”

Role of domain expertise

Our tasks deliberately used meaningless codes for attributes and values in order to sep-

arate the utility of our tool from the domain expertise of the participant. Had we used

network fault data, then the relative experience of the participant in that domain could

potentially have impacted their ability to effectively analyse the data, independently of the

analytical tool. Domain expertise provides a variety of prior expectations regarding what

types of features might be present (e.g., linear trends, peaks, troughs, periodic functions),

and what attributes might be of explanatory value – providing an efficient order of consid-

eration for brute force attribute value checking. Note that these prior expectations may

not necessarily be beneficial, as they may lead to the discovery of spurious correlations, or

overlooking attributes not expected to be related.

Our hypothesis about the latent confounding power of domain expertise was further sub-

stantiated by comments made by our expert participants whilst analysing the data in

Tableau. One participant said: “If this was data I knew about, then I’d have some idea of

where to start. Here, I’m lost.” Other remarks include: “Part of that [difficulty experienced

with experimental tasks] is that I have no sense of the features”; “Doing data analysis when

you have no idea of the data is quite unusual”; “Given that I have no idea of the attributes,

I have to ignore them.”

93

Validity

A rationale has been provided for the use of synthesised data for the preliminary ex-

perimental validation of the Gatherminer analysis interface. Domain expertise plays a

significant role in the analyst’s heuristic approach to discovering explanations of inter-

esting features. Thus, controlled usability experiments designed with real-world data in

order to preserve external validity may have an adverse effect on internal validity; the

participants’ use of domain expertise may confound any meaningful comparison between

visualisation systems.

The requirements of a controlled experiment have precluded the use of real-world data.

Our experiment has shown that Gatherminer significantly improves the quality of anal-

yses conducted in the absence of domain expertise. This could be interpreted as Gather-

miner effectively reducing the domain expertise barrier for this particular type of task.

That is, it improves the ability of analysts without deep expertise in the data to perform

these tasks. This provides an affirmative answer to the second primary research ques-

tion of this dissertation, namely, whether such tools can be built for non-expert end users.

Here, ‘non-expert’ refers to a lack of domain expertise as well as statistical expertise.

This experiment has not answered two complementary questions: does Gatherminer re-

duce expertise barriers to such an extent, that analysts without domain expertise using

Gatherminer become as effective as those with domain expertise using Tableau? What

about when both use Gatherminer? Separate controlled studies would be required to in-

vestigate these questions. These questions are, however, secondary to the question which

our experiment was designed to answer, namely, whether Gatherminer intrinsically im-

proves the analytics process, independent of domain expertise confounding.

A more important complementary question is whether Gatherminer significantly improves

the quality of analyses compared to Tableau where domain expertise is present. This ques-

tion can be placed on equal footing with the question investigated in our study, as it is most

representative of the real requirements of analysts, that is, has the highest external va-

lidity. For the reasons previously explained, it would be challenging to design a properly

controlled study because the effect of domain expertise is unpredictable. However, a longi-

tudinal industrial deployment of the tool would supply the necessary external validation

through qualitative interviews and contextual inquiry. Anecdotal comments from ana-

lysts at BT as well as other industrial analysts suggest that even when domain expertise

is present, Gatherminer still provides significant benefit.

4.6 Conclusions

An important class of analytical tasks related to the study of time series has been outlined.

In these tasks the shape of interesting patterns is not known beforehand, and the space of

explanatory attributes is large. Fault data from a national telecommunications network

is used as a motivating example. In many industries, these tasks pose huge challenges

which cannot easily be solved with commercial analytics software. Previous work has

provided compact representations of large time series data in the form of colour-mapped

matrix displays; how rearrangement of the visualisation can expose interesting features;

and how visualisations and machine learning can be combined for intelligent querying.

94

Gatherminer is a tool for the analysis of time series data that takes these established

ideas and uses them in a novel combination to tackle the class of analytical tasks we have

outlined. A user study demonstrated that for these tasks, Gatherminer results in signifi-

cantly faster and more complete analyses of time series datasets. Moreover, Gatherminer

significantly improves analysts’ confidence in the quality of their analyses. Field observa-

tions of expert strategies for analysing time series data show how our approach overcomes

common difficulties. Finally, the benefits of mixed-initiative interaction have been dis-

cussed, and the importance of carefully considering the effects of domain expertise when

designing evaluations of new analysis tools have been illustrated.

Besides domain expertise, Gatherminer also greatly reduces the process expertise re-

quired to apply clustering to time series. Concretely, it is often the case that time series

analysts are experts in the domain of their data, but are not highly trained in statistics or

machine learning. Consequently, sophisticated unsupervised ‘bottom-up’ hypothesis gen-

eration techniques are out of reach for such analysts. Even excellently designed software

libraries for clustering suffer from this high statistical expertise requirement. Gather-

miner’s default reordering methodology is founded on basic perceptual principles, and the

only user-tunable parameter is in optionally overriding the default distance metric.

Concretely, this chapter contributes the design rationale for a reduced-expertise hybrid

analytics/model-building tool in a particular time series analysis setting, including

• a colour-mapped matrix which is reordered to reveal interesting patterns, with a

rationale for default colour mappings and algorithms for reordering,

• a description of how to use selection-as-annotation to allow the application of arbi-

trary supervised learning algorithms for analytical modelling,

• a case study of the interactive visualisation of one such algorithm, ID3 decision tree

learning, following established principles of interactive machine learning, and

• an evaluation demonstrating the fitness of the design for its intended purpose.

Gatherminer applies four design principles for analytical modelling:

• It begins the abstraction gradient at zero in at least two instances: first, the core

data representation is a lossless visual encoding of each datum, and second, the tree

representation represents data points with isotypes.

• It abstracts complex process by applying heuristics. These heuristics are derived

from perceptual principles. Concretely, it applies a reorderable matrix using a dis-

tance metric having visual semantics, and applies a default normalisation scheme

for improving visual clarity. This enables Gatherminer to be a useful clustering tool

without exposing any parameters of the underlying clustering mechanism.

• It builds expertise through multiple representations. It builds expertise of the colour-

mapped matrix by allowing users to re-cast rows of the matrix as line charts on

demand, and it builds expertise of the explanation trees through at least two repre-

sentations of the tree, and a simplified bar chart representation.

• It supports dialogue through metamodels. It reinforces data coverage and class dis-

crimination of explanatory rules through the primary perceptual cues of size and

colour in the treemap.

95

96

CHAPTER 5

BRAINCEL

This chapter presents the design and evaluation of BrainCel, a tool for building and apply-

ing machine learning models such as k-nearest neighbours, neural networks, decision trees,

etc. to relational data in spreadsheets. BrainCel applies the design principles for analytical

modelling, and also demonstrates selection-as-annotation, here showing that desiderata

for a supervised learning algorithm can be obtained from user selections. BrainCel fea-

tures multiple coordinated views of the model being built, explaining the model’s current

confidence with respect to its predictions, as well as its coverage of the input domain, thus

helping the user to correct the model and select new training examples.

An experiment demonstrates that selection-as-annotation can be understood and success-

fully applied by users having no professional training in statistics or computing, and that

the experience of interacting with the system leads them to acquire some understanding

of the concepts underlying exploratory statistical modelling. Further, an exploratory study

is reported that investigates users’ learning barriers and information needs while build-

ing models using BrainCel. The study shows that the novel approach of BrainCel exhibits

properties observed in similar previous work on interactive machine learning, but within

the general purpose spreadsheet paradigm.

This chapter presents research described in the following papers:

• Interactive visual machine learning in spreadsheets. Advait Sarkar, Mateja

Jamnik, Alan F. Blackwell, Martin Spott. 2015 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (VL/HCC) (pp. 159–163).

• Spreadsheet interfaces for usable machine learning. Advait Sarkar. 2015

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

(pp. 283–284).

• Teach and Try: A simple interaction technique for exploratory data mod-

elling by end users. Advait Sarkar, Alan F. Blackwell, Mateja Jamnik, Martin

Spott. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC) (pp. 53–56).

97

5.1 Introduction

In previous chapters, we have motivated the questions of whether tools can be built for an-

alytical modelling, and whether they can be made useful for non-experts. The example of

Gatherminer has shown how interactive machine learning design principles can enhance

analytical activity. In this chapter, BrainCel, a model-building tool where the design fa-

cilitates visual analytics, is described. Like Gatherminer, BrainCel reduces requirements

for many types of representational, process, and domain expertise. BrainCel enables non-

expert end-users to build and apply machine learning models on their own datasets in

spreadsheets. In doing so, users become more informed about both their dataset as well

as about statistical inference more generally.

As stated in the introduction to this dissertation, the ability to build and apply power-

ful statistical models, such as neural networks, linear regression, and decision trees, is

currently only available to users with expertise in both programming as well as statistics

and machine learning. Clearly this is an issue; the scarcity of data analytics tools aimed

towards non-experts in computing and statistics excludes large groups of end-users. The

claim that “everyone should have access to data analytics,” might appear excessively ide-

alistic, as of course, analytics is a complex and skilled activity. The production of a data

scientist requires years of education to acquire foundational knowledge in mathematics,

computation, and statistical inference, and then further years of experience in the do-

main of the data they analyse — no amount of clever interface design can overcome these

requirements. However, it is not the ambition of this work to replace the entire statis-

tical profession. Rather, it aims, through well-designed tools, to enable a wider range of

end-users to address data-related issues which they previously could not.

The suitability of the spreadsheet

The solution proposed in this chapter is to take advantage of the expressive power of

spreadsheets to bring these techniques to non-experts. Since end-users are likely to be

readily familiar with the manipulation of data in spreadsheets, integrating statistical

modelling into the spreadsheet environment appears to be a promising avenue. The prob-

lem can be framed as one of end-user programming (EUP) (Ko et al., 2011). Much work

has been done on improving the quality of EUP in spreadsheets, with mature debugging

approaches such as What-You-See-Is-What-You-Test (Rothermel et al., 1998).

End-users are being exposed to machine learning and statistical inference in a rapidly in-

creasing range of applications, such as email filtering and recommender systems. In these

applications, the user implicitly manipulates probability distributions and statistical mod-

els by providing examples rather than explicitly programming instructions. While easily

adopted by end-users, these applications typically only allow the user to build models spe-

cific to limited data domains. The spreadsheet is a domain-independent tool which has

allowed us to design a general-purpose interface for interactive machine learning. More-

over, the spreadsheet satisfies our first design principle, which is to begin the abstraction

gradient at zero, because the data being manipulated is always directly represented.

98

Prior to this work, close research attention had not been paid to bringing interactive ma-

chine learning to the spreadsheet, despite it being arguably the most ubiquitous and im-

portant EUP environment. Recently, however, the computing industry has taken a keen

interest in augmenting spreadsheets with statistical inference. The incorporation of a

‘flash fill’ feature into Microsoft Excel (Gulwani, 2011) has shown that programming-by-

example, albeit for simple string manipulation functions only, is recognised as sufficiently

useful for it to be promoted as a headline, consumer-facing feature of the market-leading

spreadsheet product. Flash fill operates as a ‘black box’; interaction is limited exclusively

to typing into the spreadsheet, and the end-user is not exposed to the model or its param-

eters. The view of IML as dialogue suggests that this interaction could be extended to

make the learnt model more interpretable. The restricted synthesis vocabulary of string

manipulation functions also means that flash fill’s modelling capabilities are limited in

comparison to those offered by general machine learning algorithms. The interface is

therefore inapplicable for complex modelling tasks, nor was it intended for such tasks.

Applications with more explicit support for statistical modelling are available, such as Or-

acle BI (Campos et al., 2005). Subsequent to our work with Teach and Try (Sarkar et al.,

2014b), solutions from several vendors have emerged, including Microsoft’s Azure ML1

and Google’s ‘smart autofill’ plugin for spreadsheets2. However, these are aimed towards

professionals with some formal understanding of the concepts underlying statistical mod-

elling, and are not sensitive to the needs of non-expert users. Thus, while they are more

accessible than the traditional, programmatic tools for data scientists, such as WEKA and

R, they still fall short of the intelligibility and usability requirements of our target popu-

lation, namely, end-users who do not have formal training in statistics or computing.

5.2 Selection as annotation

In BrainCel, users select a range of cells to mark that those values are correct and can

be used as training data. The marked cells are used to train a statistical model. This is

similar to the selection mechanism used in Gatherminer, where selected rows are marked

as ‘interesting’, which provides training label information for the classifier.

Once the training set has been specified in this manner, the user can select any other range

of cells, potentially overlapping with the training set, in order to apply the model to those

cells. If cells in the new selection are empty, they are filled using the model prediction.

Otherwise, they are coloured according to their deviation from the model prediction.

Teach and Try prototype

To evaluate this particular implementation of selection-as-annotation, a simple prototype

was built, named ‘Teach and Try’ after the only two buttons on the interface. The sequence

of operations with which a user may train a model and use it to estimate missing data

is illustrated in Figure 5.1. The user first makes a selection of a number of rows, and

then clicks on the ‘Teach’ button. At this point, the selected rows are added to a training

dataset. The cells are visually marked as ‘taught’ by colouring the text and background

green, and placing a green check mark icon in the cell.

1https://azure.microsoft.com/en-us/services/machine-learning/ (last accessed: April 29, 2018)
2http://bit.ly/google-smart-autofill (last accessed: April 29, 2018)

99

https://azure.microsoft.com/en-us/services/machine-learning/
http://bit.ly/google-smart-autofill

Figure 5.1: The “filling” capability of our initial prototype, depicted as a sequence of actions from

left to right. This resembles an actual scenario presented to the participants of our study, in which

they were asked to imagine themselves as a maths teacher grading students based on their score on

a recent exam. Each row is a student. The first column is their score, and the second column is their

grade. A score of 75 or above gets an A, 50 to 74 gets B, and 49 or below gets C. Some of the Grade

column is pre-populated, and the participants were asked to use the software to “quickly grade the

remaining students”. The model being implicitly built in these figures is a decision tree classifier.

Figure 5.2: The “evaluation” capability of our initial prototype, depicted as a sequence of actions

from left to right. This resembles an actual scenario presented to the participants of our study.

They were asked to imagine themselves as a maths teacher assessing the competency of a colleague,

who had graded the latter section of the students. The first section of the Grade column is pre-

populated with “correct” data as per the marking scheme from Fig. 5.1, and the participants were

asked to use the software to “check whether the new teacher understands how to grade papers”.

Here, the machine learning task is that of classification, so there are only two colours assigned to

the cells; green for “correct” and red for “incorrect”. In other scenarios, where the target variable

was continuous, cells were coloured according to their percentage error on a linear red-green scale.

100

Next, the user selects cells from a single column and clicks on the ‘Try’ button, as in the

two rightmost panels of Figure 5.1. When ‘Try’ is clicked, the software trains a model

on the rows of data previously taught, and applies the model to the rows containing the

current selection. The variable in the selected column is interpreted as the target or de-

pendent variable for the statistical model, and the variables in the unselected columns are

interpreted as the feature vector or independent variables. This interpretation of cell selec-

tion bounds allows the user to build and apply a suitable model with a single interaction.

This is contingent on the data in the spreadsheet being laid out in a well-defined relational

schema. If the selected cells are empty, then the model’s predictions are used to populate

the cell contents. If the selected cells contain values, as in Figure 5.2, these values are not

altered. Instead, they are coloured on a red-green scale to reflect the deviation of those

values from the expectations of the model, and a question mark icon is added.

The intial prototype in Figures 5.1 and 5.2 is implemented in Java using the Swing UI

library. The Java API provided by the WEKA Data Mining Software (Hall et al., 2009)

is used to implement the algorithms for statistical inference. In the first instance, the

prototype supported the use of the standard WEKA implementations of the multilayer

perceptron, C4.5 decision tree, support vector machine, and simple linear regression, with

the model chosen through a command line flag when launching the application.

The cell annotation aspect is related to WYSIWYT (Rothermel et al., 1998), in which users

of a spreadsheet test it by marking ‘correct’ values in individual cells, allowing the sys-

tem to synthesise boundary conditions. WYSIWYT allowed users without spreadsheet pro-

gramming knowledge to debug their data. Similarly, Teach and Try allows users without

statistical knowledge to build and apply statistical models.

The filling behaviour may appear similar to the string processing algorithm for spread-

sheets due to Gulwani (2011); however, the capabilities of the underlying systems are

different. While Gulwani’s system synthesises a specific class of string manipulation func-

tions, our interaction technique allows for the application of many kinds of statistical

models and inference algorithms. An appropriate model can often be inferred from heuris-

tic characterisation of the selected regions. For instance, if the ‘Try’ selection contains

categorical data, a classifier is likely to be appropriate. A more general solution would be

to explore the space of models with the intent of minimising training error.

The Oracle Spreadsheet add-in for Predictive Analytics (SPA) (Campos et al., 2005) pro-

vides a spreadsheet-based interface for estimating the explanatory power of one variable

with respect to another, and for performing SVM-based classification/regression. However,

the output of the system operations is displayed in a separate spreadsheet to the original

data, which reduces the directness of its manipulation. Furthermore, operations are trig-

gered through a graphical wizard where the dependent variable and feature vector are

manually specified, whereas Teach and Try exploits the information present in the user’s

selection bounds to achieve the same effect. Finally, being targeted towards Business In-

telligence (BI) professionals, it exposes statistical concepts that require domain knowledge

to be interpreted, and thus it is unusable by those without such knowledge.

101

5.2.1 Experimental evaluation of selection-as-annotation

An experiment was conducted to evaluate the usability of this particular implementation

of selection-as-annotation for demarcating training and testing data in spreadsheet. The

prototype was demonstrated to non-expert end-users, who were then asked to then carry

out tasks of a similar nature by themselves, in order to see whether they are able to

generalise their conceptual understanding and develop the competence to apply it without

further assistance. They were also interviewed to determine whether they understood the

conceptual basis of what they had seen without explicit explanation.

Participants

Twenty-one participants were recruited, largely administrative staff, from the University

of Cambridge Computer Laboratory and BT Research. Of these, 8 participants had prior

exposure to statistical concepts. The remaining 13 had no prior experience with either ma-

chine learning or statistical modelling, but had basic familiarity with spreadsheets. This

categorisation was enforced through a post-experiment interview about users’ prior knowl-

edge. When a participant indicated any awareness/prior exposure to statistical/machine

learning concepts, for instance mentioning a model such as ‘decision tree’, ‘neural net-

work’, or domain terminology such as ‘regression’, ‘classification’, ‘least squares’, ‘hypoth-

esis testing’, ‘training set’ etc., they were excluded from the ‘inexperienced’ category.

Tasks

Seven brief tasks with corresponding datasets were created. Each task presented the

user with a hypothetical scenario in which they used the software to perform a simple

statistical procedure, without any explicit acknowledgement that they were doing so. Of

the seven tasks, three were so-called ‘filling’ tasks. These required the user to use existing

data to fill in missing information. A further three were ‘evaluation’ tasks, which required

the user to use known high-quality data to assess or evaluate the quality or correctness of

certain other data. A final task combined both filling and evaluation into one spreadsheet.

Procedure

The experimenter demonstrated the software for one of the evaluation and filling tasks

each. The user was then asked to complete the remaining tasks, and was asked after each

to explain what they had done. Task order was counterbalanced across participants. User

responses were recorded, transcribed and analysed. For each user we recorded the time

taken to complete the task, and observed unprompted references to statistical concepts.

5.2.2 Selection-as-annotation experiment results

Task durations

No significant difference was observed in task durations between the inexperienced and

the experienced participants, suggesting that the software is usable by users with knowl-

edge of machine learning or statistics as well as users without any prior exposure to such

concepts.3 It was observed anecdotally that users found the ‘evaluation’ tasks more dif-

ficult than the ‘filling’ tasks, but this did not have a significant effect on task duration.

Furthermore, the order of the task groups (whether the participant did the ‘filling’ or

‘evaluation’ task first) did not have a significant effect on task duration.

3Noting nonetheless that the absence of statistical significance is not evidence for the null hypothesis.

102

Figure 5.3: Frequency distribution of task duration, broken down by task order. Observe the de-

creased spread in the second task.

A significant effect of repetition on task duration was observed within task type. Specifi-

cally, the second task of any type (‘filling’ or ‘evaluation’) took less time than the first task

of the same type. The task durations were not normally distributed, so the Wilcoxon rank

sum test was applied to yield a highly significant location shift (p < 0.004). The size of

the effect is a median improvement of 2.9s from the first task to the second (the mean

improvement is 33.6s, but as the data is highly skewed this measure is biased by outliers).

A plot of the task durations is shown in Figure 5.3. This can be interpreted as evidence

of the learnability of the interaction mechanism; the experience of interacting with the

software leads the user to quickly acquire the competence to apply it in a new context.

Conveyance of statistical concepts

From the post-experiment interview, it was clear that the participants had developed a

nontrivial understanding of how the software works. Upon completion of the tasks, the

participants were asked two questions in order to establish what kind of understanding of

the system the user had acquired; specifically, these were (1) “How might the computer be

doing this?”, and (2) “Why might the computer make mistakes?”

Because of the potential bias from previous experience, this section deals exclusively with

the utterances of the participants who were classified as inexperienced with respect to ma-

chine learning and statistical concepts. Note that the following observations are presented

not to make strong claims about the taxonomy of users’ beliefs, but rather to demonstrate

that users gained some appreciation of the machine learning paradigm, namely, that of

building a model using trusted data and applying it for inference. Participant answers to

“how might the computer be doing this?” are now presented.

103

1. Mathematical: On 3 occasions, participants used mathematical terminology to de-

scribe their understanding of the software, guessing that it was “solving a system of

linear equations”, “finding some sort of correlation”, or “plotting a graph”.

2. Technical / software constructs: On 3 occasions participants explained the software’s

behaviour in terms of technology they were familiar with; in particular, these par-

ticipants thought that the computer might be constructing complicated spreadsheet

formulae, SQL queries or conditional formatting rules.

3. Case-based reasoning: On 3 occasions participants informally described the case-

based reasoning, or nearest-neighbour prediction algorithms (“If a statement has

been shown to be true in the past, then in the future, this statement must also be

true” / “It checks to see if there is a precedent”). This suggests that nearest-neighbour

matching or case-based reasoning are relatively intelligible algorithms.

4. Non-technical: On 6 occasions, participants described the software’s behaviour in

abstract, non-technical terms, saying that it “spotted patterns”, “makes different

connections between the numbers”, “deduces rules”, “makes assumptions about how

things should look and extrapolates”, or “accumulates experience”.

When asked why the computer might make mistakes, participants provided multiple ex-

planations with familiar implications in statistics and machine learning:

1. Insufficient examples (7 cases): “There’s not enough information available [...] to

exactly predict the pattern” / “What you taught it didn’t cover it” / “The more data

you have, the better will be the outcome”.

2. Noisy training data (7 cases): “What you taught was wrong” / “It could be getting

mixed messages from the data” / “There is a contradiction in the data”.

3. Insufficient discriminatory power (between statistical classes) (4 cases): “Maybe the

[data] overlap and they’re quite ambiguous”.

4. Outliers (3 cases): “It might be exceptional data”.

5. Incorrect model (3 cases): “The method isn’t yielding the correct answer”.

6. Insufficient dimensions (3 cases): “There might be other factors besides those listed

in the data that influence the outcome”.

Usability issues

Some participants initially misunderstood how the selection bounds for the “Try” action

were being interpreted. The most common error (3 cases) was to select all the cells in

the target rows, as they had done for the “Teach” action. The next most common error

(2 cases) was to select all cells in the target row except the cells in the target column,

to instruct the computer to “Try to use this data...”. This suggests that while the “Teach”

selection is immediately intuitive, a better mode for the “Try” selection might be desirable.

One possible alternative is to invert the order in which the actions are taken, so that the

“Teach” and “Try” buttons are pressed before making the selection. Here, the cursor would

allow the user to “paint” regions of the spreadsheet as training or test data, in much the

same way as regions were marked “interesting” or “uninteresting” in Gatherminer.

104

Some participants found the “Teach” and “Try” labels confusing for another reason: “Teach”

is an action taken by the user, whereas “Try” is an action taken by the computer. This se-

mantic irregularity caused some initial difficulty which was overcome once the participant

had completed the first task; however, this suggested alternatives labels such as “Train”

and “Test”, or “Learn” and “Apply”. As discussed in Chapter 3, a potential reason for the

success of this prototype at generating an understanding of statistical procedures in non-

experts is the deliberate selection of the word “Try” as opposed to “Fill” or “Apply model”;

it implies fallibility and evokes empathy, in line with the view of IML as dialogue.

Consequently, the labels were changed to “Learn” and “Guess”. Both clearly denote actions

taken by the computer, whilst retaining the provisionality of “Teach” and “Try”. Addition-

ally, the word “Guess” alleviates uncertainty around selection modality; it is clear to users

that only the target cells are to be selected, as those are the values to be “guessed.”

5.3 Supporting dialogue and critical model evaluation

To recapitulate, this dissertation views interactive machine learning as dialogue, where

the system must provide decision support to assist the user in tackling an ill-defined prob-

lem. This perspective is an evolution of previous work in interactive machine learning and

end-user programming. The Whyline (Ko and Myers, 2004) introduced the idea of asking

why and why not questions about program execution. Lim and Dey (2009) expanded upon

this, categorising various intelligibility types; types of information which an intelligent

system or program might give its user or programmer, including how a model makes a

certain prediction. Recently, these frameworks have applied to end-user debugging of

naïve Bayes classifiers in the domain of email categorisation (Kulesza et al., 2011).

The previous sections describe a simple interaction mechanism that allows end-users with

no statistical training to build and apply machine learning models within spreadsheets.

However, it has not been addressed how the user might conduct a sustained interaction

with the system, building a model in the face of noisy data, outliers, and large datasets,

where it is not possible to manually annotate many rows of data as being “correct” before

needing to use the model to predict/evaluate new data. These complexities raise questions

for the interface: how would the user know what rows to pick (example selection)? How

would the user know their model has acquired good domain coverage? How would the user

know if they needed additional data? How does the user establish whether some of the

training data they have chosen might be noisy? These can be summarised as: how can we

implement the fourth design principle, namely, support dialogue through metamodels?

Concretely, for the task of construction and application of machine learning models in

spreadsheets, we wish to enable the end-user to:

1. Judge the quality of the model: to address this problem, multiple parallel visualisa-

tions are presented of the model’s training set representativeness and confidence –

the ‘command’ and ‘confidence’ metamodels.

2. Understand how their actions modify the model: to address this problem, summary

visualisations of the model’s understanding and progress are presented.

3. Identify good training examples: to address this, confidence-based colouring in the

interface ‘nudges’ the user into focussing their attention on rows of data where the

model has low confidence.

105

4. Understand why and how the model makes certain predictions: to address this,

a force-directed layout visualisation of the k-nearest neighbours algorithm is pre-

sented, which provides a simple, consistent way of displaying decisions in an arbi-

trarily high-dimensional space, and also visualises a ‘prediction path’ metamodel.

The focus is on prediction, where the model is used to fill in missing information or used

for classification/regression. The initial prototype also separately considered evaluation,

where the model is used to assess the consistency of some data with respect to patterns

in the training data. However, in BrainCel’s design, the prediction case subsumes the

evaluation case, in the sense that it is clear that the interface can be used for both.

5.3.1 Design of the BrainCel interface

BrainCel is a browser-based prototype implemented using current web technologies. Data

can be loaded from comma-separated (CSV) files on the user’s local filesystem, and must

conform to a well-defined relational schema. The core of the interface is a standard spread-

sheet component (item (a) in Figure 5.4), in which the loaded CSV file appears. Upon load-

ing, columns are heuristically characterised as containing either categorical or continuous

data, based on whether the cells in the column can be parsed as numeric.

Overview+detail+peeking

To the left of the spreadsheet (item (b) in Figure 5.4) is a narrow vertical column, which

presents an overview of the entire spreadsheet. Hovering on the overview displays a pre-

view of the rows in the proximity of the hover location (item (c) in Figure 5.4). This enables

the user to “peek” at various parts of the spreadsheet without losing their current position

in the main spreadsheet. Once the user has identified a region of the spreadsheet they

would like to examine in greater detail, they can click on the overview to move the main

spreadsheet to that position. This creates an augmented overview+detail (Cockburn et al.,

2009); that is, overview+detail+peeking.

Model training and application

BrainCel uses the two-step interface for training and applying models introduced previ-

ously. The user first selects rows of data in which they have high confidence to select them

as training data. By pressing the “Learn” button, rows in the selection are added to the

training set. These rows are demarcated within the spreadsheet and overview with a blue

highlight in the row label. After the model has been trained from rows with complete

data, the user can apply the model to predict values for empty cells. They do so by select-

ing empty cells and using the “Guess” button to apply the model and predict a value for

the cell. As discussed, the new button labels “Learn” and “Guess” were selected to address

the usability issues of the previous labels “Teach” and “Try”.

“Guessing” uses the k-nearest neighbours algorithm (henceforth k-NN). Using the simple

Euclidean distance metric, the algorithm selects k rows in the training set most similar

to the row containing the cell for which a value is to be predicted. The distance between

categorical values is set to 0 if equal, or 1 if unequal. If the cell is in a numerical column,

the values of the neighbours in the same column are averaged to provide a guess. If

the cell is in a categorical column, the majority vote (mode) is taken. Column values

are not normalised or weighted. Many other algorithms, and even more sophisticated

implementations of k-NN are possible, however, we have not considered this within the

scope of the current prototype (this limitation is further discussed in Section 5.3.2).

106

Figure 5.4: Part of the BrainCel interface showing (a) the core spreadsheet, (b) the overview, (c) peeking at the spreadsheet contents, and (d) the

explanatory network visualisation. Rows with a blue highlight in their row label have been added by the user to the training set, and all rows have

been coloured according to the model’s confidence. Other parts of the interface, such as the distributions in Figure 5.7 and the progress graphs in

Figure 5.8 appear further down in the interface.

1
0

7

Expressing confidence through colour

Measures of confidence can be used to prioritise human supervision of machine output;

when there are large quantities of output to evaluate, the user’s attention can be focused

on low-confidence outputs which are likely to be problematic. González-Rubio et al. (2010)

use this approach to improve interactive machine translation, Kulesza et al. (2015) use

this approach to improve interactive email classification, and Behrisch et al. (2014) use a

live visualisation of model confidence to assist users in deciding when decision tree con-

struction has converged. Groce et al. (2014) adopt the perspective of end-user classifier

testing, and show various computational strategies for selecting a testbed of evaluation

examples, among which they find selecting examples with low confidence to be effective.

This work supported our design decisions regarding how to present the confidence of the

system to the user, and how to help users select good training examples.

For each row in the spreadsheet, a confidence value is computed based on the mean dis-

tance to each of its k neighbours (Smith et al., 1994). This is linearly scaled into the range

[0, 1]. Specifically, for a row r̂, confidence is computed using the following expression:

1−

1
k

∑

n∈kNN(r̂)

distance(r̂, n)

maxr∈Rows

1
k

∑

n∈kNN(r)

distance(r, n)

Where Rows denotes the set of all rows, and kNN(r) yields the set of k nearest neighbours

for row r from the training set. In practice, averaging though multiplication with 1/k
can be omitted since it appears in both numerator and denominator, but it appears here

for clarity. Moreover, the denominator is constant for a given training set so it is only

computed once each time the training set is edited. When the training set has cardinality

lower than k, k is reduced to the cardinality of the training set. While more sophisticated

notions of confidence exist, this confidence metric is chosen for its simplicity and efficiency.

A high mean distance is interpreted as low confidence; conversely, a low mean distance

is interpreted as high confidence. A confidence value of 0 indicates that a row’s nearest

neighbours are very far from it, and thus the model is less confident when it draws upon

those neighbours to predict a value in that row. A confidence value of 1 indicates that

a row’s nearest neighbours are close to it, and thus the model is more confident when it

predicts values in that row.

Using the normalised confidence measure, the rows in the spreadsheet as well as the rows

in the overview are coloured on a modified red-green scale, where rows coloured red are the

ones where the machine has the least confidence. Lightness is also scaled to de-emphasise

the visual salience of the green colour. A higher confidence is given a higher lightness,

and capped at a maximal threshold to prevent complete whiteness. The effect of lightness

scaling can be seen in Figure 5.5. A beneficial side-effect of lightness scaling is that it

makes the scale safe for red-green colour-blindness.

Due to this colouring, the overview shows at a glance the state of the machine’s confidence

over the entire spreadsheet. Green areas in the spreadsheet indicate that they are well-

modelled by the training data, whereas red areas in the spreadsheet indicate that they

are dissimilar to their nearest neighbours in the training set, marking them out either as

cases which have not yet been covered in the training set or as outliers.

108

Lightness scaling enabled

Lightness scaling disabled

Figure 5.5: The effect of lightness scaling. Without lightness scaling, high-confidence (green) rows command disproportionately greater visual attention

(the effect is most apparent onscreen).

1
0

9

Explaining k-NN to end-users

Below the spreadsheet, BrainCel displays a force-directed network visualisation of all the

rows in the dataset (item (d) in Figure 5.4). The layout is computed using Barnes-Hut

simulation (Barnes and Hut, 1986). Each node represents a row. Each node has k edges

going to its k nearest neighbours in the training set. The lengths of these edges are pro-

portional to the distances to the k neighbours. This projects the n-dimensional rows onto a

2D space. In order to explain the k-NN algorithm’s behaviour in the aggregate, it suffices

to represent proximity, rather than variation along any particular dimension.

In this way, concrete interpretations of the spatial axes are sacrificed in favour of sim-

ply expressing the concepts of “nearness” and “farness”, exemplifying design principle 2

(abstract complex processes through heuristic automation). This layout method bears a

similarity to t-distributed Stochastic Neighbour Embedding (t-SNE) (Van der Maaten and

Hinton, 2008), which has not been investigated, but would be interesting future work.

This representation of k-NN has several desirable properties. First, it directly provides

why and why not-style explanations for any given prediction: the answer to “why was

this cell value guessed?” is that it drew upon the rows to which it was directly connected

in the graph visualisation. Second, this very literal representation also provides a how

explanation for the k-NN algorithm; the general answer to “how is a cell value guessed?” is

that the model arranges all the rows by their mutual similarity and each guess draws upon

the rows which are most relevant. Third, the emergent clusters visually reify the structure

of the underlying abstract model. For example in a 3-class classification problem, as in

the Iris dataset (popularised by Fisher (1936)), as the user adds more rows to the training

data, the network shows how the underlying model’s characterisation of the input space

first branches from one cluster into two, and then converges at three (Figure 5.6).

Fourth, a colour consistent with the spreadsheet reinforces the user’s understanding of

how confidence works in the model. Nodes in the network visualisation are coloured

according to the machine’s confidence in those rows in exactly the same fashion as the

corresponding rows in the spreadsheet and overview are coloured (applying design prin-

ciple 3: build expertise through iteration on multiple representations). Training set rows

are coloured blue, but are given accents in the colour of the model’s confidence. While

the use of the colour in the overview allows the user to understand the confidence of the

model with respect to the structure of data as laid out in the spreadsheet, the colour in the

network visualisation expresses confidence with respect to the structure of data as laid

out in the high-dimensional similarity space. Since high-confidence rows are positioned

very close to rows in the training set, it becomes clear that to help the model become more

confident in a certain row, the user must either add training data which is similar to the

row, or modify the row so that it is more similar to the training data.

110

Figure 5.6: Evolution of the model as shown by BrainCel’s network visualisation when data from the three classes in the Iris dataset (Fisher, 1936) is

incrementally added. Rows in the training set are depicted in dark blue, and all other nodes are coloured according to their mean distance from their k
nearest neighbours.

1
1

1

Figure 5.7: Visualisations of the the distributions of taught vs overall data. These express the “com-

mand” or “grasp” of the model over the domain; currently it is clear from the “species” distribution

graph (bottom left) that the class Iris-versicolor is underrepresented in the training data.

Expressing training set representativeness

BrainCel displays the value distributions within the columns in the dataset (Figure 5.7).

These distributions are compared against the distributions of the same column in the

training set. These charts expose whether certain classes or types of data are under- or

overrepresented, either in the underlying dataset, or in the training data. Thus, they pro-

vide a “command” metamodel. A distribution of taught data which matches more closely,

or covers more extensively, the distribution of the data in the spreadsheet, is more repre-

sentative of the domain than a distribution of taught data which poorly matches or covers

the overall distribution.

112

Figure 5.8: Left: total discrepancy between the overall dataset and the training data, that is, “com-

mand”. Right: visualisation of the machine’s overall confusion (interpreted as the inverse of confi-

dence). The x-axis is an interaction history axis, with each new data point being created whenever

the user edits the spreadsheet. Tooltips describe the action taken.

Visualising the progression of the model

The user needs to understand how the model evolved with their actions, in order to develop

a consistent mental model for detecting and addressing prediction errors. BrainCel shows

two line graphs which update over time (Figure 5.8).

The first graph represents the “Discrepancy” between taught and overall data. It sum-

marises ‘command’ – how well the training data represents the overall dataset. New

points are added whenever the training set is modified. It is measured as the sum of

the Hellinger distances (Hellinger, 1909) from the distributions of attribute values in the

training set to those of the overall dataset; a standard metric for comparing the diver-

gence of distributions, which handles discrete as well as continuous distributions and can

handle improper distributions and non-continous functions (which Kullback-Liebler diver-

gence does not). The command of the system improves, as the discrepancy between the

distribution of its knowledge and the distribution of the overall data reduces.

The second is a graph of “confusion”, the inverse of confidence. The overall confidence is

computed as the mean row confidence for all the rows in the spreadsheet. BrainCel records

the mean confidence over all rows as a function of interaction history: a new data point is

added whenever the spreadsheet is modified. This graph is vertically inverted to match

the other graph, and presented to the user as representing the machine’s “confusion.” By

inverting the graph in this manner, we unify the interpretation of the two graphs so that

lower values are more desirable in both.

In both “confusion” and “discrepancy” graphs, a short description of the action which led

to the data point being added is available in a tooltip. Thus, if the user sees a sudden

spike or dip in “confusion” or “discrepancy,” they can hover over the relevant point to see

descriptions such as “Learnt 6 rows of data”, “Forgot 12 rows”, “Edited cells,” etc. This

provides a direct chronological account of how the understanding of the machine evolved

in response to their actions, whether the model improved or degraded. These descriptions

are also critical since the vertical scale on these graphs has no direct relationship to the

user’s problem domain. It is more important that the user forms connections between

specific actions they performed and a corresponding increase or decrease in the confidence

and information requirements of the model. Accordingly, the y-axis is unlabelled to en-

courage the user to think of the quantities as merely increasing or decreasing, rather than

focus on exact values. In future work, it would also be possible to capture images of the

network visualisation and overview, and present these as graphical interaction histories

(Kurlander and Feiner, 1988).

113

5.3.2 Design discussion

BrainCel has been designed to express information types identified as being important by

previous research, but adapted to address the context of machine learning in spreadsheets.

Primary design influences include Amershi et al. (2011a) and Lim and Dey (2009), who

identify what types of information about intelligent applications should be given to end-

users, and on the demonstration by Kulesza et al. (2013) that these information types are

critical for the formation of users’ mental models.

BrainCel’s multiple visualisations of progress in the confidence as well as command di-

mensions enables users to judge when exploration has reached convergence. This directly

builds upon Behrisch et al. (2014), where the user is able to decide when the exploration

has reached convergence due to a live visualisation of how much of the data passes a cer-

tain threshold for classification confidence. Moreover, it exemplifies design principle 3:

build expertise through iteration on multiple representations.

The confidence metric is used to highlight areas of the spreadsheet on which the user

might wish to focus their attention, based on experimental evidence found by Groce et al.

(2014) that model confidence was an effective way of selecting testing examples. However,

this is only a suggestion to the user and the user is free to inspect other areas of the

spreadsheet for testing if they so desire.

BrainCel incorporates at least 3 types of explanations, also exemplifying design principle

3: build expertise through iteration on multiple representations.. First, the network vi-

sualisation is a compact representation that not only shows how the system works, but

secondly, it also answers specific “why” and “why not” questions about individual pre-

dictions, by exposing which rows were involved in the prediction. Thirdly, the column

distributions show how much the computer knows. This is based on Kulesza et al.’s ex-

plorations of intelligibility types for music recommender systems (Kulesza et al., 2013),

wherein the authors found that users’ mental models were best if they were presented

with explanations for how the system works. Users discussed more valid features than in-

valid ones when presented with explanations of what the computer knows. Finally, users

most preferred discussing the concrete “why this song” explanations.

The emphasis in BrainCel is on showing how concepts evolve in the “mind” of the com-

puter, as training data is added and edited (consider the sequence of networks in Fig-

ure 5.6), exemplifying design principle 4: support dialogue through metamodels. This is

related to Kulesza et al.’s work in concept evolution (Kulesza et al., 2014), which acknowl-

edges that users may not have well-defined mental concept models, and present an inter-

face to help refine models in the mind of the user. The intersection of our two approaches

suggests interfaces for facilitating joint concept evolution, whereby both machine as well

as human understanding are visualised.

5.4 Exploratory user study

An exploratory study was conducted, modelled after Kulesza et al.’s work in end-user

debugging of naïve Bayes email classification (Kulesza et al., 2011). Our motivation, like

theirs, was not to conduct a summative evaluation of our prototype. Instead, the aim was

to understand how our approach could support end-user machine learning by observing (1)

when and where users encounter barriers to the task, and (2) what the users’ information

needs are. For compactness, the Kulesza et al. (2011) paper shall henceforth be referred

to as ‘the EC study’, with ‘EC’ standing for ‘email classification’.

114

Figure 5.9: The version of Braincel used in the without-visualisation condition.

Procedure

The study used a think-aloud protocol. Participants completed two equally-difficult tasks.

They completed one task with a version of BrainCel that presents only the core spread-

sheet component without any confidence-based colouring, which we shall refer to as the

without condition (Figure 5.9), and one with the complete BrainCel interface, which we

shall refer to as the with condition. In doing so, we drew upon the design of evaluation

for the Whyline (Ko and Myers, 2004), which also compared a full-featured version to a

version with reduced functionality. This helped us understand how our interface affected

users’ exploration of their statistical models. In the tasks users were given a spreadsheet

containing empty cells, and were asked to fill in the missing information using the soft-

ware. The ground truth for this missing information is known to us, as the tasks were

created by selectively deleting information from complete spreadsheets, in particular the

Iris and Zoo datasets4, which were assigned to each condition in a randomised fashion.

Each participant first completed the without task before moving on to the with task. The

interface was briefly demonstrated before each task. Task order was not randomised,

despite the potential for learning effects, because learning effects were expected to be

much greater if the with task was completed first, since it is designed to be an environment

promoting learning and understanding of the modelling process. Moreover, this study was

exploratory in nature; statistical analysis was not an intended outcome.

Participants

Participants with no prior exposure to statistics or machine learning were recruited from

humanities departments at the University of Cambridge. A pre-experiment screening

about the participants’ previous knowledge allowed us to enforce the non-expert categori-

sation, as in the initial study. When a participant indicated any awareness/prior expo-

sure to statistical/machine learning concepts (e.g. mentioning a model such as “decision

tree”, “neural network”, or domain terminology such as “regression”, “classification”, “least

squares”, “hypothesis testing”, “training set” etc.), they were excluded from the subsequent

analysis. We began with 8 participants and excluded 1 because of prior statistical knowl-

edge, leaving 7 in the final analysis. All participants successfully completed both tasks by

populating the spreadsheets with correct values in under 45 minutes.

4http://archive.ics.uci.edu/ml (last accessed April 29, 2018)

115

http://archive.ics.uci.edu/ml

5.4.1 Analysis method

Since our task involves end-user programming of a machine learning system, we use the

same coding scheme as the EC study, in particular, their modified version of Ko’s learning

barriers (Ko et al., 2004), which removes the sixth barrier (searching for external valida-

tion). In brief, the barrier codes are as follows:

1. Design barrier: the user’s goals are unclear.

2. Selection barrier: the goal is clear but the programming tools required to achieve

this goal are unclear.

3. Use barrier: the tools required are clear, but the user does not know how to use them

properly.

4. Coordination barrier: the tools required are clear, but the user does not know how to

make them work together.

5. Understanding barrier: the user thinks they know what to do, but their actions have

surprising results.

We also adopt their code scheme for debugging, which incorporates the previous scheme

due to Ko (2008), as follows:

1. Fault detection: the participant has detected an incorrect prediction by the system.

2. Diagnosing: the participant believes they have found the cause of a detected fault.

3. Hypothesising: the participant hypothesises a general (rather than specific) solution

to a detected fault.

The codes were applied to sentences. A sentence containing a significant pause was seg-

mented into two. If the same barrier spanned multiple contiguous sentences, it was coded

as a single occurrence. Two researchers independently coded a random five-minute tran-

script excerpt. To maintain consistency with the EC study, we determined similarity by

calculating the Jaccard index, dividing the size of the intersection of codes by the size of

the union for each sentence, and then averaging over all sentences. Coding rules were

iteratively refined and tested. Agreement reached 86% for a five-minute transcript sec-

tion, and 83% for a complete 45-minute transcript. This level of reliability was considered

acceptable, and the remaining transcripts were coded.

5.4.2 Exploratory study results

Learning barriers encountered with and without visualisations

Figure 5.10 shows the distributions of learning barriers encountered by our participants

when using BrainCel with and without the additional visualisations. Our observations

that Selection and Coordination barriers are most common overall mirror those of the EC

study. We mostly observed Selection barriers occur because aspects of the interface were

not intuitive (e.g., P1: Can I select these to learn?, P3: They’ve highlighted, so that must

mean they’re okay, or does it?). Our Coordination barriers, similar to ones observed in the

EC study, occurred because the model’s predictions are dependent on a complex sequence

of program logic, which is sensitive to small changes to the training data or spreadsheet in

non-obvious ways (e.g., P3: So let’s delete the [classifications] it got wrong and try again...

no, they’re still wrong., P4: So, what are [the model’s] problem areas?).

116

Figure 5.10: Number of learning barriers encountered in all transcripts.

Participants also encountered several Design and Understanding barriers. Design barri-

ers mostly occurred when the model’s predictions were wrong, and the participant had to

choose a strategy for proceeding, for example, adding training data from elsewhere in the

spreadsheet; editing the row to manually correct the prediction; editing the row and then

adding the newly edited row itself to the training data.

Small sample notwithstanding, it appears as though the barriers noted in the EC study to

be most prevalent (Selection and Coordination) are both less frequent when visualisations

are introduced. Design, Use and Understanding barriers were observed more frequently

when visualisations were available. This increase can be attributed to the fact that once

users had their attention drawn to the structure of the model rather than surface fea-

tures, the barriers they started to encounter became more interesting. For example, P5

expressed the following relatively mundane understanding barrier when working without

the visualisations: Why is that row [misclassified]? However, with the visualisations, this

participant moved on to describing understanding barriers that were more sophisticated,

for example: It’s gotten that correct, but why is it still not confident about it? The visualisa-

tions helped end-users to address more sophisticated conceptual issues, in a manner that

can be considered as extending the zone of proximal development (Vygotsky, 1987) past

the simpler concepts of the spreadsheet training paradigm to critical assessment of model

in line with our view of IML as facilitating constructivist learning.

Figure 5.11 shows the major transitions that our participants made between barriers and

debugging activities. Similar to the EC study, we find that this chart is dominated by an

iterative loop from Selection barriers. Use barriers did not play as significant a role, and

instead, we observed a frequent tendency to detect faults immediately upon encountering

a Coordination barrier. This pattern emerges from the fact that making changes to the

training set results in a recalculation of the model’s confidence in each row, leading to the

participant first speculating about how their modification resulted in certain improved or

reduced confidences (Coordination), and subsequently spotting an error (Fault detection).

117

Figure 5.11: All participants’ paths through the barriers and debugging activities. The width of the

arrows indicate the percentage of transitions: thinnest = 3%, thickest = 7%. Transitions accounting

for 2% or less of the total are not shown.

Figure 5.12: Number of times a participant implied a particular type of information would help

them overcome their current barrier.

Participants’ information needs

Figure 5.12 and Figure 5.13 present information needs according to the classification by

Kulesza et al. (2011). These are summarised as follows:

1. Debugging strategy: should it learn all rows? Should I make the guesses all at once?

2. UI features: which button should I use? Can these rows be selected?

3. User data overview: how many classes are there? How many unconfident guesses

were just made?

4. Machine capabilities: what does the model use to guess? What types of information

can it process?

5. Current ML logic: why did the model behave in a particular manner?

118

Figure 5.13: Participants’ information needs when encountering barriers. Values indicate the num-

ber of instances in which participants implied that they needed the information in the column header

to overcome each barrier.

6. How to fix ML program: concrete steps to take to fix the model’s understanding. In

BrainCel, this means which row(s) to add or delete to the training set, and what edits

to make to the current row.

7. User action history: what did I do? Is what I did helpful? Is what I did wrong?

Similar to their findings, our participants frequently requested information pertaining to

the program’s current logic and how to fix it. However, our participants most frequently

requested information regarding how the various interface features worked. As shown

in Figure 5.13, this correlates with the occurrences of Selection, Understanding, and Use

barriers. Participants were sometimes confused about the relationship between the train-

ing set and the machine’s guesses (e.g., does the training set need to be re-specified for

each guess, should a guessed row itself be in the training set, etc.) and whether they were

able to treat the core spreadsheet component as a normal spreadsheet (e.g., P2: Can I just

edit this cell?, P6: So I can select these, right? Just click and drag?). This shows that

there is much room for improvement in the usability of our prototype. Nonetheless, all

participants were able to overcome these information needs and successfully complete the

task. A task was considered to have been successfully completed when the participant

was satisfied that they had correctly filled in all the missing values, and these did indeed

correspond to the correct ground truth values.

5.4.3 Activity flows

Participants’ transitions between interface activities in the with-visualisation tasks were

recorded. The most common transitions are presented in Figure 5.14 (transitions account-

ing for <5% of the total are not shown). “Learn” corresponds to adding training data,

“Guess” to invoking the model, and “Edit” to editing cell values. Network refers to the ac-

tivity of inspecting the network visualisation. Edges are weighted according to how many

times the participant switched from one activity to another.

Figure 5.14 is presented as an attempt to capture the patterns of debugging activities.

There are several local loops showing repeated occurrences of learning, guessing and edit-

ing. This corresponds to an incremental approach commonly adopted by participants

where in order to understand the machine’s logic and capabilities, they add data to the

training set one row at a time, and apply the model to guess values one cell at a time, to

try and inspect the direct consequence of adding or removing rows. Similarly, the pattern

Edit→Learn→Guess also appears frequently: incrementally editing incorrect guesses,

119

Figure 5.14: Participants’ paths through the interface. Numbers indicate occurrence counts of each

transition. Transitions accounting for 2% or less of the total are not shown.

adding the corrected rows to the training set, and seeing if other incorrect guesses were

now correct was a common pattern. This suggests that a lot of manual effort may be saved

if guessed cells were not static, but live (Tanimoto, 1990), like spreadsheet formulae, so

that the guess is re-evaluated every time the training set is modified. Interestingly, par-

ticipants overwhelmingly preferred to incrementally add rows to the training data, rather

than remove rows, in order to test the model. A plausible explanation, worthy of further

study, is that removing knowledge to improve learning is fundamentally counterintuitive.

This perhaps shows the limits of a naïve appropriation of ‘learning’ as a metaphor.

Another frequent pattern in Figure 5.14 is alternation between the spreadsheet and the

network visualisation. The participants made heavy use of the network visualisation to

identify outliers, areas of low confidence, diagnose mispredictions, study the model struc-

ture, and to check for why and why-not explanations of certain guesses. They then moved

to the spreadsheet to inspect the row(s) implicated by the network, and potentially en-

gaged in the Edit→Learn→Guess pattern.

5.5 Limitations and future work

Our initial work in this space has been an encouraging indicator that interactive visual

machine learning in spreadsheets is viable. However, at least four important issues re-

main to be addressed, which are described now:

1. Visualising models other than k-NN: it is not clear how BrainCel’s network visualisa-

tion can be adapted for models other than k-NN. Our investigation also showed that the

network visualisation was repeatedly used for addressing various information needs (Fig-

ure 5.14). The question is: how can we “explain” other machine learning algorithms? This

would make an interesting subject of future study. One option is to try and explain other

algorithms as though they were k-NN. In general, it might be possible to use a visualisa-

tion developed for one model to explain the behaviour of another while still maintaining

consistency in the user’s mental model of the system’s behaviour, as suggested in the third

chapter. Another option would be to create new, model-specific visualisations, or adopt vi-

sualisations which have been created on an ad-hoc basis for other models such as the bar

graph visualisations for naïve Bayes classifiers used in the EC study. The general-purpose

and modular nature of BrainCel makes it a flexible testbed for the comparison of different

visual “explanations” of the same model.

120

2. Varying model parameters and hyperparameters: Our prototype currently does not

support adjusting feature weights in the classifier, which is important as not all features

are equally informative. Future work might investigate additional parameter controls,

such as the bar-chart based controls for feature weighting in the naïve Bayes classifier

used in EluciDebug (Kulesza et al., 2015). It would also be interesting to introduce a way

for users to explore the effects of varying the parameter k, and the distance metric, which

is currently not user-configurable in the prototype, potentially through methods suggested

by Brown et al. (2012b) to maintain low process expertise requirements.

3. Additional interaction modalities: the action of selection to indicate training and test

data works well; however, it is not yet clear whether it is optimal. There are alternative

approaches available. For instance: selecting only certain columns to learn could be used

to indicate that a subset of features should be used for prediction. Another possibility is to

invert the order in which the actions are taken, so that a mode is selected before making

the selection, allowing the user to ‘paint’ regions of the spreadsheet as training or test

data. These alternative modalities may be investigated through experimentation.

4. New evaluation frameworks: it is difficult to devise powerful, general evaluation criteria

for IML systems due to the complexity of the tasks they facilitate. The learning barriers

framework, which categorises barriers users encounter when learning new programming

systems, is a mature approach from EUP which can potentially be used to evaluate IML

systems. However, in our study, it emerged that the same type of learning barrier can

manifest in qualitatively different ways; some barriers are ‘higher’ than others. Thus it

may be possible to argue between two interfaces where users encounter a similar num-

ber of barriers, that one is more desirable because the barriers encountered were ‘harder’

or more ‘sophisticated.’ Our investigation suggested that analysis of the difference in

learning barrier distributions in the with-visualisation and without-visualisation use of

BrainCel was not sufficiently nuanced to show the way in which the visualisations helped.

While participants still encountered several barriers with the visualisations, they were

barriers at a more sophisticated level than the ones they encountered without the visu-

alisations. This suggests future exploration for an additional dimension to the learning

barriers which captures this notion of “hardness” or “sophistication.”

5.6 Conclusions

This chapter proposed that the spreadsheet is an ideal interface for machine learning,

satisfying design principle 1 (begin the abstraction gradient at zero). A simple interaction

technique for training and applying statistical models was described, satisfying design

principle 2 (abstract complex processes through heuristic automation). An experiment

demonstrated that the system could be successfully applied by users with no formal knowl-

edge of statistics or computing, and that the experience of interacting with the system led

them to acquire some understanding of the concepts underlying statistical modelling.

BrainCel, an interactive system for general-purpose machine learning in spreadsheets,

was presented. Multiple coordinated views of the model explain its confidence in its pre-

dictions as well as its coverage of the input domain, helping the user evaluate and improve

the model, satisfying design principles 3 and 4 (build expertise through multiple repre-

sentations, and support dialogue through metamodels). An exploratory study confirmed

that the novel approach of BrainCel retains the properties observed in previous work, but

within a general purpose spreadsheet paradigm as originally proposed in the Teach and

Try system. Through interaction design, it is possible to implement tools for users with

no expertise in statistics, machine learning, or computing, enabling them to confidently

apply sophisticated machine learning techniques for their own use.

121

122

CHAPTER 6

CONCLUSION

This work is motivated by advances in machine learning, the proliferation of data, and the

increasing socio-digital divides being created by limited access to tools and techniques for

non-expert end-user data analytics.

The following research questions have been investigated in this dissertation:

1. Can tools be built for analytical modelling?

2. Can they be made useful for non-experts?

These questions have been pursued through exploratory design studies, where two new

applications have been developed to enable non-expert end users to perform analytics

and model building. These applications have been evaluated on non-expert end users,

demonstrating their fitness-for-purpose.

6.1 Theory exemplified in Gatherminer and BrainCel

Three theoretical perspectives were presented in Chapter 3: visual analytics is end-user

programming, interactive machine learning is dialogue, and analytical modelling is con-

structivist learning. Four emergent design principles were subsequently presented: begin

the abstraction gradient at zero, abstract complex processes through heuristic automation,

build expertise through multiple representations, support dialogue through metamodels.

These are deeply embedded in both Gatherminer and BrainCel and the clearest instances

are listed in this section. In accordance with research through design methodology, these

theoretical perspectives are neither the foundations nor the consequences of the two sys-

tems – artefacts and theory were developed in parallel.

In both Gatherminer and BrainCel, data is always represented directly; the abstrac-

tion gradient begins at zero. In Gatherminer, the colour-mapped matrix is a lossless vi-

sual encoding of each data point. Gatherminer’s treemap employs isotypes to represent

data points. In BrainCel, data is represented directly using the standard spreadsheet

paradigm. Consequently, users need not possess or learn the concept of a data abstraction

(e.g., arrays, matrices, objects) and operations thereupon (e.g., slice, concatenate, map,

filter) in order to manipulate data within these tools.

123

In Gatherminer, explanations are presented with multiple representations. This helps

users of various expertise levels engage with the model. In the treemap visualisation, the

isotype circles are redundantly mapped to the data count, but this serves to ground the

analysis in concrete numbers. In BrainCel, the use of confidence-based colouring through-

out the spreadsheet, overview, and network visualisations helps users create sound mental

models of how confidence is computed and how to interpret it for their own analysis.

In BrainCel, ‘debugging’ is facilitated by colouring, which draws the user’s attention to

low confidence nodes, and by the network visualisation, which provide why, why-not, and

how style explanations for any given prediction. In Gatherminer, why/why-not style ex-

planations are provided by the rules represented by paths on the tree, and the interactive

process of iterative drill-down provides a how explanation.

The Teach and Try study showed that the experience of interacting with the software led

users to gain some appreciation of statistical procedures. In a post-experiment interview,

participants were asked questions such as how might the computer be doing this?, and why

might the computer make a mistake? Despite having no formal training in statistics or

computing, participants informally articulated several potential algorithms (e.g., nearest-

neighbours, case-based reasoning, and linear regression), and well-known issues in statis-

tical modelling (e.g., insufficient data, insufficient dimensions, outliers, noise, etc.).

Building on Teach and Try, BrainCel was motivated by the idea that with multiple meta-

models, the system would support dialogue for users to critically evaluate the model and

its predictions. A confidence metamodel provides a heuristic with which the user can as-

sess its performance and choose to prioritise examining and correcting low-confidence pre-

dictions. A command metamodel shows users how the ‘taught’ rows are spread across the

input domain, and highlights areas where receiving a user label would be beneficial. Con-

fidence and command metamodels are present in BrainCel in the form of confidence-based

colouring, and the training set representation bar charts. Gatherminer conveys the same

information through colour averaging and dot count, presenting the information needed

to critically evaluate each node as a rule with analytical merit. An ‘impure’ average colour

can be interpreted as lower confidence, since the node has low class purity. Similarly, a

low dot count can be interpreted both as low command as well as low confidence, since the

node is not supported by many data points. Node depth corresponds to complexity.

Constructivist design features

Ill-defined problem: Both Gatherminer and BrainCel address ill-defined problems. Brain-

Cel does so because what constitutes a ‘good’ model is not well-defined and is subject to

interpretation. Gatherminer begins with the premise that the shape of interesting pat-

terns is not known a priori, and its design is built for that situation. Moreover, the design

of elements such as the treemap representation has explicitly considered the role of hu-

man expertise in judging the analytical merit of rules.

Reflexivity: BrainCel’s interactive history visualisation provides a basic level of prove-

nance for the current model. However, in both Gatherminer and BrainCel, there is poten-

tial for more sophisticated treatment, such as with interactive graphical histories.

Iterative interaction: the core interaction pattern in BrainCel was the Edit→Learn→Guess

loop. Users iteratively added or removed rows, which they believed helped them under-

stand how the model evolved. This rapid iteration provides the ideal setting for the user’s

mental model to interact with their experiences. Moreover, the confidence-based colouring,

as well as instances of incorrect guesses, provide the necessary mental model perturbation

which encourages further learning behaviours.

124

6.2 Contributions

1. Analytics through model building

This dissertation has recognised and characterised the activity combining analytics and

model building as analytical modelling, placing an emphasis on how it might be carried

out with interactive computer tools. Two systems have been built to illustrate the po-

tential for interactive analytical modelling tools. Gatherminer is a visual analytics tool

which enables non-expert analysts to interactively train decision tree classifiers to ex-

plain patterns in time series data. BrainCel is a general-purpose interactive analytical

modelling tool which allows non-expert end-users to build and apply statistical models in

spreadsheets. Through user studies, both systems have been evaluated and found to facil-

itate analytical modelling by non-expert end-users. Evaluation of Gatherminer has also

exposed a discussion around the confounding effects of domain expertise on controlled

usability experiments, which is not typically addressed by visual analytics research.

2. Theoretical perspectives

Three theoretical perspectives have been developed with implications for design in inter-

active analytical modelling.

The first is that visual analytics is end-user programming. This view is justified by observ-

ing that visual analytics systems facilitate the generation and testing of informal visual

hypotheses which have equivalent interpretations as formal statistical programs. This en-

ables us to draw upon the EUP literature to inform the design of visual analytics systems.

The second is that interactive analytical modelling is dialogue. This view stems from the

observation that the optimisation goal in interactive machine learning becomes increas-

ingly ill-defined as the lines between analytics and model-building are blurred; conse-

quently the programmer is no longer in the position of being able to define what consti-

tutes a ‘bug’. This necessitates a shift in emphasis from the direct inspection channel to the

indirect, which contains information describing the program, as opposed to the program

itself. Ad-hoc exploitation of the indirect channel is common in EUP design research, but

for the purposes of interactive analytical modelling, systematic metamodelling is proposed

as a fundamental addition to this channel.

The final perspective is that interactive analytical modelling is constructivist learning.

This follows from the observation that the main outcomes of interactive analytical mod-

elling can be viewed as learning objectives: learning about the model, learning about the

data, and learning about the process. The rapid, iterative, incremental interaction in these

systems is the ideal setting for constructivist learning. Consequently, if the objective is to

maximise learning, this perspective suggests that designers exploit those aspects of con-

structivist environments to which interactive analytical modelling is already amenable,

namely: task ownership, ill-defined problems, and perturbation. Moreover, it suggests

new explicit design considerations: reflexivity, collaboration, and task-in-context.

3. Design principles

Four principles for the design of analytical modelling systems have been derived, with a

focus on non-expert end users.

The first is to begin the abstraction gradient at zero. Analytical modelling systems can

reduce representational expertise requirements by always including at least one represen-

tation with zero abstraction. Concretely, this corresponds to having at least one direct

visual representation of the data being operated upon.

125

The second is to abstract complex processes through heuristic automation. Analytical

modelling systems can reduce process expertise requirements in order to deploy statistical

and machine learning techniques by exposing as few (hyper)parameters as possible and

relying on heuristic inference.

The third is to build expertise through iteration on multiple representations. Analytical

modelling systems can build both representational as well as process expertise by provid-

ing multiple representations of the model and its output at varying levels of complexity.

Rapid, incremental interaction with multiple representations provides constructivist scaf-

folding for grappling with complex concepts.

The fourth is to support dialogue through metamodels. Analytical modelling can support

the user by providing meta-information such as the model’s confidence, command, and

prediction path. When building a complex model, it is difficult to gain insight into what

action should be taken next by inspecting the workings (parameters) of the model directly.

This can only be framed as a dialogue since the goal is ill-defined and both user as well as

system have some degree of agency.

4. Design artefacts

Various aspects of the design of Gatherminer and BrainCel are novel contributions which

may be isolated and repurposed for other future systems:

• The augmentation of overview+detail by the introduction of peeking is a modification

which improves the fluidity of overview+detail interfaces.

• Both BrainCel and Gatherminer make careful use of colour. BrainCel uses a red-

green scale but scaled for lightness in order to compensate for the visual saliency

of green, and Gatherminer defaults to cumulative distribution normalisation as a

robust, distribution-invariant method of mapping colour spectra to data domains.

• A new visual representation for k-NN models is presented.

• A new representation for decision trees is presented, with a first-principles argument

for how mechanical bias can affect the exploration of a particular representation.

6.3 Future work

Model substitution

Illustrating the structure and parameters of a statistical model is an ad-hoc design prob-

lem. A visualisation for a naïve Bayes model, for instance, requires explicit representation

of class priors, empirically observed feature distributions, and resulting class distribution

for an example datum. To visualise a decision tree model, the design research presented

in this dissertation has had to consider explicit representation of the tree structure in

terms of its node hierarchy. To represent a k-NN model, a mapping capable of robustly

representing the concept of “neighbours” has had to be designed.

However, there are several classes of models for which designing faithful visual repre-

sentations for non-experts are not straightforward. Ensembles of decision trees, support

vector machines, and neural networks fall into this category. It is entirely possible that a

visual representation of these models exists which could facilitate dialogue, but is simply

yet to be designed. However, until that point, the absence of a well-designed representa-

tion should not preclude our use of these powerful models.

126

In Chapter 3, substituting visual representations and metamodel computations of one

model as a metaphor for another was suggested as a possible solution to this problem.

This has not been investigated, but it would make for very interesting future work. For

instance, one might retain the network visualisation in BrainCel, whilst replacing the

underlying model with a decision tree ensemble. Some mathematical finesse would be re-

quired to identify when the visualisation has diverged from the model, and the interface

should modify itself to gracefully accommodate these situations. Emulating one model

with another is not completely far-fetched; recent work has shown how decision tree en-

sembles can be used to approximate nearest-neighbour matching (Konukoglu et al., 2013).

Education

With growing public interest in machine learning and artificial intelligence, a major ap-

plication for tools such as BrainCel and Gatherminer is to provide a scaffolded learning

environment within which students can experiment with machine learning. BrainCel,

in particular, provides a graphical layer within a familiar spreadsheet environment for

students to build and apply models on arbitrary datasets. In contrast, typical first ma-

chine learning courses are introduced using programming languages such as Python, R,

or MATLAB. The requirements for representational and notational expertise, in particular

with manipulation of data structures in language or package-specific idioms, are very high

with these languages. A recent study compared a scaffolded interaction tool for statisti-

cal analyses with a traditional lecture for creating understanding of statistical concepts

as measured by test scores (Wacharamanotham et al., 2015). BrainCel could be similarly

compared with an introductory machine learning lecture for teaching efficacy.

Large datasets

Scalability to large datasets has been investigated to some extent already in this disser-

tation. For instance, the use of the scrollable thumbnail in Gatherminer, and the spread-

sheet overview in BrainCel, has necessitated innovations in the design of overview+detail

mechanisms. This has enabled the interfaces to scale to datasets of moderate sizes, where

the scaling factor starts becoming unwieldy at the order of 105 data rows. However, new

technical as well as representational approaches will be required for truly large datasets,

of the order of 109+ training examples, typical of modern machine learning applications.

Recent work (Sarkar et al., 2014a, 2015) has investigated and demonstrated how ap-

proaches to approximate computation can be smoothly integrated into existing diagram-

matic conventions to create simple interfaces for interaction with such large datasets at

interactive speeds. Fusing these approaches to enable interaction and training with large

datasets in analytical modelling tools is an interesting future avenue.

Informal visual statistics

In Chapter 3, visual analytics was argued to be a form of end-user programming on the

basis that visual reasoning is an approximate process which can generate and test statis-

tical hypotheses in the same way as statistical programs. Several examples were given of

how certain visualisations answer questions which could equivalently be asked through

code. These examples were meant purely to be illustrative of the idea of visualisations as

expressing statistical programs, and not a rigorous taxonomy. However, a thorough explo-

ration of this would be very interesting. For instance, a corpus of scientific charts could

be gathered, and through crowdsourced annotations, one could begin to categorise the

most common statistical insights and hypotheses expressed by each basic chart type. This

could lead to interesting hybrid statistical visualisation systems, where the act of creating

a particular chart suggests that the corresponding statistical analyses be automatically

computed, or the act of invoking a statistical method suggests that the corresponding vi-

sualisation be automatically drawn.

127

6.4 Conclusion

In this dissertation, the activity of interactive analytical modelling, which seeks to create

analytic insight from data through building predictive models, has been examined. While

this activity is by no means new, this dissertation is the first to recognise it as encountering

research problems at the intersection of visual analytics, interactive machine learning,

and end-user programming. The problem of interactive analytical modelling is framed

explicitly as an interaction design problem, as opposed to a problem of designing new

statistical models to navigate the tradeoff between accuracy and intelligibility.

An important new mode of human-computer interaction is emerging: end-user program-

ming of machine-learned models. Moreover, the increasing sophistication of analytical

methods in our knowledge economy will expand the divide between those who can use

them, and those who cannot.

This dissertation has presented work that empowers non-expert end-users to build and

apply machine learning models for analytical purposes. New theoretical contributions

have been made, highlighting the complexity of developing general-purpose theory for

interaction design, and expanding the cache of intermediate-level knowledge regarding

visual analytics, interactive machine learning, end-user programming, and constructivist

learning. Together, these contributions illustrate how the design of analytical modelling

interfaces for non-expert end users is a challenging new research field, with implications

not only for human-computer interaction and machine learning, but also for ensuring a

more equitable and accessible knowledge economy of the future.

128

BIBLIOGRAPHY

Abelson, Harold and DiSessa, Andrea. Turtle geometry: The computer as a medium for

exploring mathematics. MIT press, 1986.

Adrienko, Natalia and Adrienko, Gennady. Spatial generalization and aggregation of mas-

sive movement data. Visualization and Computer Graphics, IEEE Transactions on, 17

(2):205–219, 2011.

Amar, Robert; Eagan, James, and Stasko, John. Low-level components of analytic activity

in information visualization. IEEE Symposium on Information Visualization, pages

111–117, 2005. doi: 10.1109/INFVIS.2005.1532136.

Amershi, Saleema; Fogarty, James; Kapoor, Ashish, and Tan, Desney. Overview based ex-

ample selection in end user interactive concept learning. In Proceedings of the 22nd an-

nual ACM symposium on User interface software and technology, pages 247–256. ACM,

2009.

Amershi, Saleema; Fogarty, James; Kapoor, Ashish, and Tan, Desney. Effective end-user

interaction with machine learning. In Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, AAAI’11, pages 1529–1532. AAAI Press, 2011a.

Amershi, Saleema; Lee, Bongshin; Kapoor, Ashish; Mahajan, Ratul, and Christian,

Blaine. CueT: Human-Guided Fast and Accurate Network Alarm Triage. In Proceed-

ings of the 2011 annual conference on Human factors in computing systems - CHI ’11,

page 157, New York, New York, USA, 2011b. ACM Press. ISBN 9781450302289. doi:

10.1145/1978942.1978966.

Anscombe, Francis J. Graphs in statistical analysis. The American Statistician, 27(1):

17–21, 1973.

Baldwin, Alfred Lee. Theories of child development. Wiley, Oxford, England, 1967.

Barnes, Josh and Hut, Piet. A hierarchical O(N log N) force-calculation algorithm. Nature,

324(6096):446–449, 1986.

Baum, Eric B and Lang, Kenneth. Query learning can work poorly when a human oracle is

used. In International Joint Conference on Neural Networks, volume 8, pages 335–340.

IEEE, 1992.

Bayarri, M Jésus and Berger, James O. The interplay of bayesian and frequentist analysis.

Statistical Science, pages 58–80, 2004.

129

Behrisch, Michael; Korkmaz, Fatih; Shao, Lin, and Schreck, Tobias. Feedback-driven

interactive exploration of large multidimensional data supported by visual classifier.

In Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pages

43–52. IEEE, 2014. doi: 10.1109/VAST.2014.7042480.

Bernard, Jürgen; Ruppert, Tobias; Scherer, Maximilian; Schreck, Tobias, and Kohlham-

mer, Jörn. Guided discovery of interesting relationships between time series clusters

and metadata properties. In Proceedings of the 12th International Conference on Knowl-

edge Management and Knowledge Technologies, page 22. ACM, 2012.

Bernard, Jurgen; Daberkow, Debora; Fellner, Dieter; Fischer, Katrin; Koepler, Oliver;

Kohlhammer, Jorn; Runnwerth, Mila; Ruppert, Tobias; Schreck, Tobias, and Sens, Irina.

Visinfo: a digital library system for time series research data based on exploratory

search–a user-centered design approach. International Journal on Digital Libraries,

pages 1–23, 2014a. ISSN 1432-5012. doi: 10.1007/s00799-014-0134-y.

Bernard, Jurgen; Sessler, David; Behrisch, Michael; Hutter, Marco; Schreck, Tobias, and

Kohlhammer, Jorn. Towards a user-defined visual-interactive definition of similarity

functions for mixed data. In 2014 IEEE Conference on Visual Analytics Science and

Technology (VAST), pages 227–228, 2014b. doi: 10.1109/VAST.2014.7042503.

Berndt, Donald J and Clifford, James. Using dynamic time warping to find patterns in

time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

Bernstein, Abraham; Provost, Foster, and Hill, Shawndra. Toward intelligent assistance

for a data mining process: An ontology-based approach for cost-sensitive classification.

Knowledge and Data Engineering, IEEE Transactions on, 17(4):503–518, 2005.

Bertin, Jacques. Graphics and graphic information processing. Walter de Gruyter, 1981.

Bertin, Jacques. Semiology of Graphics: Diagrams, Networks, Maps. University of Wis-

consin Press, 1983.

Blackwell, Alan. Patterns of User Experience in Performance Programming. In Proceed-

ings of the First International Conference on Live Coding, pages 12–22. ICSRiM, Uni-

versity of Leeds, July 2015a. doi: 10.5281/zenodo.19315.

Blackwell, Alan F. Palimpsest: A layered language for exploratory image processing. Jour-

nal of Visual Languages & Computing, 25(5):545–571, 2014.

Blackwell, Alan F. Interacting with an inferred world: The challenge of machine learning

for humane computer interaction. In Proceedings of The Fifth Decennial Aarhus Confer-

ence on Critical Alternatives, AA ’15, pages 169–180. Aarhus University Press, 2015b.

doi: 10.7146/aahcc.v1i1.21197.

Boyd, Danah and Crawford, Kate. Critical questions for big data: Provocations for a cul-

tural, technological, and scholarly phenomenon. Information, communication & society,

15(5):662–679, 2012.

Brehmer, Matthew and Munzner, Tamara. A multi-level typology of abstract visualization

tasks. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2376–2385,

2013.

Breiman, Leo and others, . Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical Science, 16(3):199–231, 2001.

130

Breunig, Markus M; Kriegel, Hans-Peter; Ng, Raymond T, and Sander, Jörg. Lof: identi-

fying density-based local outliers. In ACM SIGMOD Record, volume 29, pages 93–104.

ACM, 2000.

Brinton, Willard Cope. Graphic methods for presenting facts. Engineering magazine com-

pany, 1914.

Brown, Eli T.; Liu, Jingjing; Brodley, Carla E., and Chang, Remco. Dis-function: Learn-

ing distance functions interactively. IEEE Conference on Visual Analytics Science and

Technology (VAST), pages 83–92, 2012a. doi: 10.1109/VAST.2012.6400486.

Brown, Eli T; Liu, Jingjing; Brodley, Carla E, and Chang, Remco. Dis-function: Learning

distance functions interactively. In Visual Analytics Science and Technology (VAST),

2012 IEEE Conference on, pages 83–92. IEEE, 2012b.

Bruls, Mark; Huizing, Kees, and Van Wijk, Jarke J. Squarified treemaps. Springer, 2000.

Buchanan, Richard. Wicked problems in design thinking. Design issues, 8(2):5–21, 1992.

Buntine, Wray; Fischer, Bernd, and Pressburger, Thomas. Towards automated synthe-

sis of data mining programs. In Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 372–376. ACM, 1999.

Buono, Paolo; Aris, Aleks; Plaisant, Catherine; Khella, Amir, and Shneiderman, Ben.

Interactive pattern search in time series. In Electronic Imaging 2005, pages 175–186.

International Society for Optics and Photonics, 2005.

Campos, Marcos M; Stengard, Peter J, and Milenova, Boriana L. Data-centric automated

data mining. In Machine Learning and Applications, 2005. Proceedings. Fourth Inter-

national Conference on, pages 8–15. IEEE Computer Society, 2005.

Card, Stuart K; Mackinlay, Jock D, and Shneiderman, Ben. Readings in information

visualization: using vision to think. Morgan Kaufmann, 1999.

Carlin, Bradley P and Gelfand, Alan E. Approaches for empirical bayes confidence inter-

vals. Journal of the American Statistical Association, 85(409):105–114, 1990.

Caruana, Rich; Lou, Yin; Gehrke, Johannes; Koch, Paul; Sturm, Marc, and Elhadad,

Noemie. Intelligible Models for HealthCare. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining - KDD ’15, pages

1721–1730, New York, New York, USA, 2015. ACM Press. doi: 10.1145/2783258.

2788613.

Chiu, Bill; Keogh, Eamonn, and Lonardi, Stefano. Probabilistic discovery of time series

motifs. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’03, pages 493–498, New York, NY, USA, 2003.

ACM. ISBN 1-58113-737-0. doi: 10.1145/956750.956808.

Chryssolouris, George; Lee, Moshin, and Ramsey, Alvin. Confidence interval prediction for

neural network models. Neural Networks, IEEE Transactions on, 7(1):229–232, 1996.

Clark, Herbert H; Brennan, Susan E, and others, . Grounding in communication. Perspec-

tives on socially shared cognition, 13(1991):127–149, 1991.

Cleveland, William S and McGill, Robert. Graphical perception: Theory, experimenta-

tion, and application to the development of graphical methods. Journal of the American

statistical association, 79(387):531–554, 1984.

131

Cockburn, Andy; Karlson, Amy, and Bederson, Benjamin B. A review of overview+detail,

zooming, and focus+context interfaces. ACM Comput. Surv., 41(1):2:1–2:31, January

2009. ISSN 0360-0300. doi: 10.1145/1456650.1456652.

Cohn, David A; Ghahramani, Zoubin, and Jordan, Michael I. Active learning with statis-

tical models. Journal of artificial intelligence research, 1996.

Compeau, Deborah R and Higgins, Christopher A. Computer self-efficacy: Development

of a measure and initial test. MIS quarterly, pages 189–211, 1995.

Cooper, Gregory F; Aliferis, Constantin F; Ambrosino, Richard; Aronis, John; Buchanan,

Bruce G; Caruana, Richard; Fine, Michael J; Glymour, Clark; Gordon, Geoffrey;

Hanusa, Barbara H, and others, . An evaluation of machine-learning methods for pre-

dicting pneumonia mortality. Artificial intelligence in medicine, 9(2):107–138, 1997.

Cooper, Stephen; Dann, Wanda, and Pausch, Randy. Alice: a 3-d tool for introductory

programming concepts. In Journal of Computing Sciences in Colleges, volume 15, pages

107–116. Consortium for Computing Sciences in Colleges, 2000.

Cover, Thomas M and Thomas, Joy A. Elements of information theory. John Wiley & Sons,

2012.

Craw, Susan; Sleeman, D; Graner, N; Rissakis, M, and Sharma, S. Consultant: Providing

advice for the machine learning toolbox. In Proceedings of the Research and Development

in Expert Systems IX, pages 5–23. Cambridge University Press, 1992.

Cunningham, Donald J. and Duffy, Thomas M. Constructivism: Implications for the de-

sign and delivery of instruction. Handbook of research for educational communications

and technology, pages 170–198, 1996.

Cutting, Douglass R; Karger, David R; Pedersen, Jan O, and Tukey, John W. Scat-

ter/gather: A cluster-based approach to browsing large document collections. In Pro-

ceedings of the 15th annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 318–329. ACM, 1992.

Dann, Wanda P; Cooper, Stephen, and Pausch, Randy. Learning to Program with Alice

(w/CD ROM). Prentice Hall Press, 2011.

Davies, David L and Bouldin, Donald W. A cluster separation measure. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (2):224–227, 1979.

Diamantini, Claudia; Potena, Domenico, and Storti, Emanuele. KDDONTO: An Ontology

for Discovery and Composition of KDD Algorithms. Proc. 2nd Intl. Wshp. on Third

Generation Data Mining: Towards Service-Oriented Knowledge Discovery, pages 13–25,

2009.

Dunn, Joseph C. Well-separated clusters and optimal fuzzy partitions. Journal of cyber-

netics, 4(1):95–104, 1974.

Duvenaud, David; Lloyd, James Robert; Grosse, Roger; Tenenbaum, Joshua B., and

Ghahramani, Zoubin. Structure discovery in nonparametric regression through compo-

sitional kernel search. In Proceedings of the 30th International Conference on Machine

Learning, pages 1166–1174, 2013.

Eddy, Sean R. What is a hidden markov model? Nature biotechnology, 22(10):1315–1316,

2004.

132

Efron, Bradley. Bayesians, frequentists, and scientists. Journal of the American Statistical

Association, 100(469):1–5, 2005.

Elmqvist, Niklas; Do, Thanh-Nghi; Goodell, Howard; Henry, Nathalie, and Fekete, J.

Zame: Interactive large-scale graph visualization. In Visualization Symposium, 2008.

PacificVIS’08. IEEE Pacific, pages 215–222. IEEE, 2008.

Endert, A.; Han, Chao; Maiti, D.; House, L.; Leman, S., and North, C. Observation-level

interaction with statistical models for visual analytics. In Visual Analytics Science and

Technology (VAST), 2011 IEEE Conference on, pages 121–130, Oct 2011. doi: 10.1109/

VAST.2011.6102449.

Ericsson, K Anders and Lehmann, Andreas C. Expert and exceptional performance: Ev-

idence of maximal adaptation to task constraints. Annual review of psychology, 47(1):

273–305, 1996.

Fails, Jerry Alan and Olsen Jr, Dan R. Interactive machine learning. In Proceedings of

the 8th international conference on Intelligent user interfaces (IUI), pages 39–45. ACM,

2003. doi: 10.1145/604050.604056.

Fisher, Danyel; Popov, Igor; Drucker, Steven, and others, . Trust me, i’m partially right:

incremental visualization lets analysts explore large datasets faster. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, pages 1673–1682.

ACM, 2012.

Fisher, Ronald A. The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7(2):179–188, 1936.

Fogarty, James; Tan, Desney; Kapoor, Ashish, and Winder, Simon. Cueflik: interactive

concept learning in image search. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 29–38. ACM, 2008.

Fosnot, Catherine Twomey. Constructivism: Theory, perspectives, and practice. Teachers

College Press, 2013.

Frayling, Christopher. Research in art and design. Royal College of Art, London, 1993.

Gaver, Bill and Bowers, John. Annotated portfolios. In Interactions, volume 19, pages

40–49. ACM, 2012.

Gaver, William. What should we expect from research through design? In Proceedings of

the SIGCHI conference on human factors in computing systems, pages 937–946. ACM,

2012.

Gittins, John; Glazebrook, Kevin, and Weber, Richard. Multi-armed bandit allocation

indices. John Wiley & Sons, 2011.

González-Rubio, Jesús; Ortiz-Martínez, Daniel, and Casacuberta, Francisco. Balancing

User Effort and Translation Error in Interactive Machine translation via confidence

measures. In Proceedings of the ACL 2010 Conference Short Papers, Uppsala, Sweden,

volume 173, pages 173–177. ACL, 2010.

Gorinova, Maria I; Sarkar, Advait; Blackwell, Alan F, and Syme, Don. A live, multiple-

representation probabilistic programming environment for novices. Proceedings of the

34th Annual ACM Conference on Human Factors in Computing Systems (CHI 2016),

2016.

133

Green, Thomas R. G. and Petre, Marian. Usability analysis of visual programming envi-

ronments: a ‘cognitive dimensions’ framework. Journal of Visual Languages & Comput-

ing, 7(2):131–174, 1996.

Groce, Alex; Kulesza, Todd; Zhang, Chaoqiang; Shamasunder, Shalini; Burnett, Margaret;

Wong, Weng-Keen; Stumpf, Simone; Das, Shubhomoy; Shinsel, Amber; Bice, Forrest,

and McIntosh, Kevin. You Are the Only Possible Oracle: Effective Test Selection for

End Users of Interactive Machine Learning Systems. IEEE Transactions on Software

Engineering, 40(3):307–323, 2014. ISSN 0098-5589. doi: 10.1109/TSE.2013.59.

Gulwani, Sumit. Automating string processing in spreadsheets using input-output exam-

ples. In ACM SIGPLAN Notices, volume 46, pages 317–330. ACM, 2011.

Gutin, Gregory; Yeo, Anders, and Zverovich, Alexey. Traveling salesman should not be

greedy: domination analysis of greedy-type heuristics for the tsp. Discrete Applied

Mathematics, 117(1):81–86, 2002.

Haitsma, Jaap and Kalker, Ton. A highly robust audio fingerprinting system. In ISMIR,

volume 2002, pages 107–115, 2002.

Hall, Mark; Frank, Eibe; Holmes, Geoffrey; Pfahringer, Bernhard; Reutemann, Peter, and

Witten, Ian H. The weka data mining software: an update. ACM SIGKDD Explorations

Newsletter, 11(1):10–18, 2009.

Hannafin, Michael J; Hannafin, Kathleen M; Land, Susan M, and Oliver, Kevin. Grounded

practice and the design of constructivist learning environments. Educational Technology

Research and Development, 45(3):101–117, 1997.

Hao, MC; Dayal, Umeshwar; Keim, Daniel A, and Schreck, Tobias. Multi-resolution tech-

niques for visual exploration of large time-series data. Eurographics/IEEE VGTC Sym-

posium on Visualization (EuroVis), pages 27–34, 2007a.

Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Morent, Dominik, and Schneidewind,

Joern. Intelligent visual analytics queries. In IEEE Symposium on Visual Analytics Sci-

ence and Technology 2007, pages 91–98. IEEE, 2007b. doi: 10.1109/VAST.2007.4389001.

Hao, Ming C; Dayal, Umeshwar; Keim, Daniel A; Morent, Dominik, and Schneidewind,

Joern. Intelligent visual analytics queries. In Visual Analytics Science and Technology

(VAST), 2007 IEEE Symposium on, pages 91–98. IEEE, 2007c.

Hao, Ming C; Marwah, Manish; Janetzko, Halldór; Dayal, Umeshwar; Keim, Daniel A;

Patnaik, Debprakash; Ramakrishnan, Naren, and Sharma, Ratnesh K. Visual explo-

ration of frequent patterns in multivariate time series. Information Visualization, 11

(1):71–83, 2012.

Heer, Jeffrey and Agrawala, Maneesh. Design considerations for collaborative visual ana-

lytics. Information visualization, 7(1):49–62, 2008.

Heer, Jeffrey; Mackinlay, Jock D; Stolte, Chris, and Agrawala, Maneesh. Graphical histo-

ries for visualization: Supporting analysis, communication, and evaluation. Visualiza-

tion and Computer Graphics, IEEE Transactions on, 14(6):1189–1196, 2008.

Hellinger, Ernst. Neue begründung der theorie quadratischer formen von unendlichvielen

veränderlichen. Journal für die reine und angewandte Mathematik, 136:210–271, 1909.

Herbrich, Ralf; Minka, Tom, and Graepel, Thore. TrueSkillTM: A Bayesian Skill Rating

System. In Schölkopf, B.; Platt, J.C., and Hoffman, T., editors, Advances in Neural

Information Processing Systems 19, pages 569–576. MIT Press, 2007.

134

Herlocker, Jonathan L; Konstan, Joseph A, and Riedl, John. Explaining collaborative

filtering recommendations. In Proceedings of the 2000 ACM conference on Computer

supported cooperative work, pages 241–250. ACM, 2000.

Honebein, Peter C. Seven goals for the design of constructivist learning environments. In

Constructivist learning environments: Case studies in instructional design, pages 11–24.

Educational Technology Publications, Inc., 1996.

Honebein, Peter C; Duffy, Thomas M, and Fishman, Barry J. Constructivism and the

design of learning environments: Context and authentic activities for learning. In De-

signing environments for constructive learning, pages 87–108. Springer, 1993.

Horvitz, Eric. Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI

conference on Human factors in computing systems the CHI is the limit - CHI ’99, number

May, pages 159–166, New York, New York, USA, 1999. ACM Press. ISBN 0201485591.

doi: 10.1145/302979.303030.

Jonassen, David H. Designing constructivist learning environments. Instructional design

theories and models: A new paradigm of instructional theory, 2:215–239, 1999.

Jonassen, David H and Rohrer-Murphy, Lucia. Activity theory as a framework for de-

signing constructivist learning environments. Educational Technology Research and

Development, 47(1):61–79, 1999.

Kalkanis, G. The application of confidence interval error analysis to the design of decision

tree classifiers. Pattern Recognition Letters, 14(5):355–361, 1993.

Keim, Daniel; Andrienko, Gennady; Fekete, Jean-Daniel; Görg, Carsten; Kohlhammer,

Jörn, and Melançon, Guy. Visual analytics: Definition, process, and challenges. Springer,

2008.

Keim, Daniel A. Visual exploration of large data sets. Communications of the ACM, 44(8):

38–44, 2001.

Keim, Daniel A; Bak, Peter; Bertini, Enrico; Oelke, Daniela; Spretke, David, and Ziegler,

Hartmut. Advanced visual analytics interfaces. Proceedings of the International Con-

ference on Advanced Visual Interfaces - AVI ’10, page 3, 2010. doi: 10.1145/1842993.

1842995.

Kietz, Jörg-Uwe; Serban, Floarea; Bernstein, Abraham, and Fischer, Simon. Towards

cooperative planning of data mining workflows. In Proceedings of the Third Generation

Data Mining Workshop at the 2009 European Conference on Machine Learning (ECML

2009), pages 1–12, 2009.

Kincaid, Robert and Lam, Heidi. Line graph explorer: scalable display of line graphs using

Focus+Context. In Proceedings of the working conference on Advanced visual interfaces

- AVI ’06, page 404, New York, New York, USA, 2006. ACM Press. ISBN 1595933530.

doi: 10.1145/1133265.1133348.

Kirschner, Paul A; Sweller, John, and Clark, Richard E. Why minimal guidance dur-

ing instruction does not work: An analysis of the failure of constructivist, discovery,

problem-based, experiential, and inquiry-based teaching. Educational psychologist, 41

(2):75–86, 2006.

Ko, Andrew J. Asking and answering questions about the causes of software behavior. PhD

thesis, Carnegie Mellon University, 2008.

135

Ko, Andrew J and Myers, Brad A. Designing the whyline: a debugging interface for asking

questions about program behavior. In Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 151–158. ACM, 2004.

Ko, Andrew J.; Myers, Brad A., and Aung, HH. Six Learning Barriers in End-User Pro-

gramming Systems. In 2004 IEEE Symposium on Visual Languages - Human Centric

Computing, pages 199–206. IEEE, 2004. ISBN 0-7803-8696-5. doi: 10.1109/VLHCC.

2004.47.

Ko, Andrew J; Abraham, Robin; Beckwith, Laura; Blackwell, Alan; Burnett, Margaret;

Erwig, Martin; Scaffidi, Chris; Lawrance, Joseph; Lieberman, Henry; Myers, Brad, and

others, . The state of the art in end-user software engineering. ACM Computing Surveys

(CSUR), 43(3):21, 2011.

Kontschieder, Peter; Dorn, Jonas F; Morrison, Cecily; Corish, Robert; Zikic, Darko; Sellen,

Abigail; D?Souza, Marcus; Kamm, Christian P; Burggraaff, Jessica; Tewarie, Prejaas,

and others, . Quantifying progression of multiple sclerosis via classification of depth

videos. In Medical Image Computing and Computer-Assisted Intervention–MICCAI

2014, pages 429–437. Springer, 2014.

Konukoglu, Ender; Glocker, Ben; Zikic, Darko, and Criminisi, Antonio. Neighbourhood

approximation using randomized forests. Medical image analysis, 17(7):790–804, 2013.

Kruskal, Joseph B and Landwehr, James M. Icicle plots: Better displays for hierarchical

clustering. The American Statistician, 37(2):162–168, 1983.

Kulesza, Todd; Wong, Weng-Keen; Stumpf, Simone; Perona, Stephen; White, Rachel; Bur-

nett, Margaret M; Oberst, Ian, and Ko, Andrew J. Fixing the program my computer

learned: Barriers for end users, challenges for the machine. In Proceedings of the 14th

international conference on Intelligent user interfaces, pages 187–196. ACM, 2009.

Kulesza, Todd; Stumpf, Simone; Wong, Weng-Keen; Burnett, Margaret M; Perona,

Stephen; Ko, Andrew, and Oberst, Ian. Why-oriented end-user debugging of naive bayes

text classification. ACM Transactions on Interactive Intelligent Systems (TiiS), 1(1):2,

2011.

Kulesza, Todd; Stumpf, Simone; Burnett, Margaret; Yang, Sherry; Kwan, Irwin, and

Wong, Weng-Keen. Too much, too little, or just right? Ways explanations impact end

users’ mental models. In Proceedings of IEEE Symposium on Visual Languages and

Human-Centric Computing, VL/HCC, pages 3–10. IEEE, 2013. doi: 10.1109/VLHCC.

2013.6645235.

Kulesza, Todd; Amershi, Saleema; Caruana, Rich; Fisher, Danyel, and Charles, Denis.

Structured labeling for facilitating concept evolution in machine learning. In Proceed-

ings of the 32nd annual ACM conference on Human factors in computing systems, pages

3075–3084. ACM, 2014. doi: 10.1145/2556288.2557238.

Kulesza, Todd; Burnett, Margaret; Wong, Weng-Keen, and Stumpf, Simone. Principles of

Explanatory Debugging to Personalize Interactive Machine Learning. In Proceedings

of the 20th International Conference on Intelligent User Interfaces (IUI), pages 126–137.

ACM, 2015. doi: 10.1145/2678025.2701399.

Kurlander, David and Feiner, Steven. Editable graphical histories. In IEEE Workshop on

Visual Languages, pages 127–134. Citeseer, 1988.

Laird, Nan M and Louis, Thomas A. Empirical bayes confidence intervals based on boot-

strap samples. Journal of the American Statistical Association, 82(399):739–750, 1987.

136

Lebow, David. Constructivist values for instructional systems design: Five principles

toward a new mindset. Educational technology research and development, 41(3):4–16,

1993.

Lehmann, Dirk J; Kemmler, Fritz; Zhyhalava, Tatsiana; Kirschke, Marco, and Theisel,

Holger. Visualnostics: Visual guidance pictograms for analyzing projections of high-

dimensional data. In Computer Graphics Forum, volume 34, pages 291–300. Wiley On-

line Library, 2015.

Lenat, Douglas B. AM: An artificial intelligence approach to discovery in mathematics as

heuristic search. Technical report, DTIC Document, 1976.

Lex, Alexander; Streit, Mac; Kruijff, Ernst, and Schmalstieg, Dieter. Caleydo: Design

and evaluation of a visual analysis framework for gene expression data in its biological

context. Pacific Visualization Symposium (PacificVis), 2010 IEEE, pages 57–64, 2010.

doi: 10.1109/PACIFICVIS.2010.5429609.

Liao, T Warren. Clustering of time series data – a survey. Pattern recognition, 38(11):

1857–1874, 2005.

Lim, Brian Y. and Dey, Anind K. Assessing Demand for Intelligibility in Context-

aware Applications. In Proceedings of the 11th International Conference on Ubiqui-

tous Computing, UbiComp ’09, pages 195–204, New York, NY, USA, 2009. ACM. doi:

10.1145/1620545.1620576.

Lim, Brian Y.; Dey, Anind K., and Avrahami, Daniel. Why and why not explanations im-

prove the intelligibility of context-aware intelligent systems. In Proceedings of the 27th

international conference on human factors in computing systems (CHI), pages 2119–

2129. ACM, 2009. doi: 10.1145/1518701.1519023.

Lin, Jessica; Keogh, Eamonn, and Lonardi, Stefano. Visualizing and discovering non-

trivial patterns in large time series databases. In Information Visualization, volume 4,

pages 61–82. SAGE Publications, 2005.

Liu, Zhicheng and Heer, Jeffrey. The effects of interactive latency on exploratory visual

analysis. Visualization and Computer Graphics, IEEE Transactions on, 20(12):2122–

2131, 2014.

Livingston, G.R.; Rosenberg, J.M., and Buchanan, B.G. Closing the loop: heuristics for

autonomous discovery. In Proceedings 2001 IEEE International Conference on Data

Mining, pages 393–400. IEEE, 2001. doi: 10.1109/ICDM.2001.989544.

Lloyd, James Robert; Duvenaud, David; Grosse, Roger; Tenenbaum, Joshua B., and

Ghahramani, Zoubin. Automatic construction and natural-language description of non-

parametric regression models. In Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, AAAI’14, pages 1242–1250. AAAI Press, 2014.

Lou, Yin; Caruana, Rich, and Gehrke, Johannes. Intelligible models for classification

and regression. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 150–158. ACM, 2012.

Lou, Yin; Caruana, Rich; Gehrke, Johannes, and Hooker, Giles. Accurate intelligible mod-

els with pairwise interactions. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 623–631. ACM, 2013.

Löwgren, Jonas. Annotated portfolios and other forms of intermediate-level knowledge.

interactions, 20(1):30–34, 2013.

137

MacEachren, Alan M; Jaiswal, Anuj; Robinson, Anthony C; Pezanowski, Scott; Savelyev,

Alexander; Mitra, Prasenjit; Zhang, Xiao, and Blanford, Justine. Senseplace2: Geotwit-

ter analytics support for situational awareness. In Visual Analytics Science and Tech-

nology (VAST), 2011 IEEE Conference on, pages 181–190. IEEE, 2011.

MacKay, David JC. A practical bayesian framework for backpropagation networks. In

Neural computation, volume 4 (3), pages 448–472. MIT Press, 1992.

MacKay, David JC. Gaussian processes – a replacement for supervised neural networks?

(Unpublished lecture notes) University of Cambridge, 1997.

Mamani, Gladys MH; Fatore, Francisco M; Nonato, Luis Gustavo, and Paulovich, Fer-

nando Vieira. User-driven feature space transformation. In Computer Graphics Forum,

volume 32, pages 291–299. Wiley Online Library, 2013.

Mansmann, Florian; Spretke, David; Janetzko, Halldor; Kranstauber, Bart, and Safi,

Kamran. Correlation-based Arrangement of Time Series for Movement Analysis in Be-

havioural Ecology. Bibliothek der Universität Konstanz, 2012.

Massey Jr, Frank J. The Kolmogorov-Smirnov test for goodness of fit. Journal of the

American statistical Association, 46(253):68–78, 1951.

McSherry, David. Explanation in recommender systems. Artificial Intelligence Review, 24

(2):179–197, 2005.

Mittelstädt, Sebastian. Methods for Effective Color Encoding and the Compensation of

Contrast Effects. PhD thesis, Universität Konstanz, Konstanz, Germany, 2015.

Mühlenbein, Heinz; Gorges-Schleuter, Martina, and Krämer, Ottmar. Evolution algo-

rithms in combinatorial optimization. Parallel Computing, 7(1):65–85, 1988.

Mullër, Wolgang and Schumann, Heidrun. Visualization methods for time-dependent

data-an overview. In Proceedings of the 2003 Winter Simulation Conference., volume 1,

pages 737–745. IEEE, 2003.

Neal, Radford M. Bayesian learning for neural networks, volume 118. Springer Science &

Business Media, 1996.

Neurath, Otto; Eve, Matthew, and Burke, Christopher. From hieroglyphics to Isotype: a

visual autobiography. Hyphen Press, 2010.

Nguyen, Anh; Yosinski, Jason, and Clune, Jeff. Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images. In Computer Vision and Pattern

Recognition (CVPR ’15), IEEE, pages 427–436. IEEE, 2015.

Norman, Donald A. Some observations on mental models. In Mental models, volume 7,

pages 7–14. Lawrence Erlbaum Associates, Inc., 1983.

Pandey, Anshul Vikram; Krause, Josua; Felix, Cristian; Boy, Jeremy, and Bertini, Enrico.

Towards understanding human similarity perception in the analysis of large sets of scat-

ter plots. In Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems, pages 3659–3669. ACM, 2016.

Panov, Panče; Dzeroski, Sasso, and Soldatova, Larisa N. Ontodm: An ontology of data

mining. In Data Mining Workshops, 2008. ICDMW’08. IEEE International Conference

on, pages 752–760. IEEE, 2008.

138

Pellegrino, JW; Hickey, D; Heath, A; Rewey, K; Vye, NJ, and Vanderbilt, CGTV. Assessing

the outcomes of an innovative instructional program: The 1990-1991 implementation

of the "adventures of jasper woodbury.". Nashville, TN: Leaming Technology Center,

Vanderbilt University, 1992.

Perin, Charles; Dragicevic, Pierre, and Fekete, Jean-Daniel. Revisiting bertin matrices:

New interactions for crafting tabular visualizations. In Visualization and Computer

Graphics, IEEE Transactions on, volume 20 (12), pages 2082–2091. IEEE, 2014. doi:

10.1109/TVCG.2014.2346279.

Pirolli, Peter and Card, Stuart. Information foraging. Psychological review, 106(4):643,

1999.

Pirolli, Peter and Card, Stuart K. The Sensemaking Process and Leverage Points for

Analyst Technology as Identified Through Cognitive Task Analysis. Proceedings of In-

ternational Conference on Intelligence Analysis, 5:2–4, 2005.

Pirolli, Peter; Schank, Patricia; Hearst, Marti, and Diehl, Christine. Scatter/gather brows-

ing communicates the topic structure of a very large text collection. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 213–220. ACM,

1996.

Pu, Pearl and Chen, Li. Trust building with explanation interfaces. In Proceedings of the

11th international conference on Intelligent user interfaces, pages 93–100. ACM, 2006.

Quinlan, J. Ross. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

Quinlan, J Ross. C4.5: programs for machine learning. Elsevier, 2014.

Rao, Ramana and Card, Stuart K. The table lens. In Proceedings of the SIGCHI conference

on Human factors in computing systems celebrating interdependence - CHI ’94, pages

318–322, New York, New York, USA, 1994. ACM Press. ISBN 0897916506. doi: 10.

1145/191666.191776.

Resnick, Mitchel; Maloney, John; Monroy-Hernández, Andrés; Rusk, Natalie; Eastmond,

Evelyn; Brennan, Karen; Millner, Amon; Rosenbaum, Eric; Silver, Jay; Silverman,

Brian, and others, . Scratch: programming for all. Communications of the ACM, 52

(11):60–67, 2009.

Robertson, Philip K. Visualizing color gamuts: A user interface for the effective use of

perceptual color spaces in data displays. Computer Graphics and Applications, IEEE, 8

(5):50–64, 1988.

Rothermel, Gregg; Li, Lixin; DuPuis, Christopher, and Burnett, Margaret. What You

See is What You Test: A Methodology for Testing Form-based Visual Programs. In

Proceedings of the 20th International Conference on Software Engineering, ICSE ’98,

pages 198–207, Washington, DC, USA, 1998. IEEE Computer Society.

Sarkar, Advait; Blackwell, Alan F; Jamnik, Mateja, and Spott, Martin. Hunches and

sketches: rapid interactive exploration of large datasets through approximate visualisa-

tions. In Proceedings of the 8th International Conference on the Theory and Application

of Diagrams, Graduate Symposium (DIAGRAMS 2014), pages 18–22, July 2014a.

Sarkar, Advait; Blackwell, Alan F; Jamnik, Mateja, and Spott, Martin. Teach and try: A

simple interaction technique for exploratory data modelling by end users. In Visual Lan-

guages and Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on, pages

53–56. IEEE, 2014b. doi: 10.1109/VLHCC.2014.6883022.

139

Sarkar, Advait; Blackwell, Alan F.; Jamnik, Mateja, and Spott, Martin. Interaction with

uncertainty in visualisations. In Bertini, E.; Kennedy, J., and Puppo, E., editors, Eu-

rographics/IEEE VGTC Conference on Visualization (EuroVis 2015). The Eurographics

Association, 2015. doi: 10.2312/eurovisshort.20151138.

Sarkar, Advait; Morrison, Cecily; Dorn, Jonas F.; Bedi, Rishi; Steinheimer, Saskia;

Boisvert, Jacques; Burggraaff, Jessica; D’Souza, Marcus; Kontschieder, Peter; Bulò,

Samuel Rota; Walsh, Lorcan; Kamm, Christian P.; Zaykov, Yordan; Sellen, Abigail,

and Lindley, Siân E. Setwise Comparison: Consistent, Scalable, Continuum Labels

for Computer Vision. In Proceedings of the 34th annual ACM conference on Hu-

man factors in computing systems - CHI ’16, pages 261–271. ACM Press, 2016. doi:

10.1145/2858036.2858199.

Savitha, Ramaswamy; Suresh, Sundaram, and Sundararajan, Narasimhan. Metacogni-

tive learning in a fully complex-valued radial basis function neural network. Neural

Computation, 24(5):1297–1328, 2012.

Schölkopf, Bernhard; Smola, Alexander, and Müller, Klaus-Robert. Kernel principal com-

ponent analysis. In International Conference on Artificial Neural Networks, pages 583–

588. Springer, 1997.

Schulz, Hans-Jorg. Treevis.net: A tree visualization reference. IEEE Computer Graphics

and Applications, 31(6):11–15, Nov 2011. doi: 10.1109/MCG.2011.103.

Schulz, Hans-Jorg; Hadlak, Steffen, and Schumann, Heidrun. The Design Space of Im-

plicit Hierarchy Visualization: A Survey. IEEE Transactions on Visualization and Com-

puter Graphics, 17(4):393–411, 2011. doi: 10.1109/TVCG.2010.79.

Sedlmair, Michael; Heinzl, Christoph; Bruckner, Stefan; Piringer, Harald, and Möller,

Torsten. Visual parameter space analysis: A conceptual framework. In Visualiza-

tion and Computer Graphics, IEEE Transactions on, volume 20 (12), pages 2161–2170.

IEEE, 2014. doi: 10.1109/TVCG.2014.2346321.

Serban, Floarea; Vanschoren, Joaquin; Kietz, Jörg-Uwe, and Bernstein, Abraham. A sur-

vey of intelligent assistants for data analysis. ACM Computing Surveys, 45(3):1–35,

June 2013. doi: 10.1145/2480741.2480748.

Settles, Burr. Active learning literature survey. University of Wisconsin, Madison, 52

(55-66):11, 2010.

Shneiderman, Ben. The eyes have it: A task by data type taxonomy for information visual-

izations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343.

IEEE, 1996.

Shneiderman, Ben and Wattenberg, Martin. Ordered treemap layouts. In IEEE Sym-

posium on Information Visualization, pages 73–78. IEEE, 2001. doi: 10.1109/INFVIS.

2001.963283.

Smith, Stephen J.; Bourgoin, Mario O.; Sims, Karl, and Voorhees, Harry L. Handwritten

character classification using nearest neighbor in large databases. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 16(9):915–919, 1994.

St Amant, Robert and Cohen, Paul R. Interaction with a mixed-initiative system for ex-

ploratory data analysis. In Proceedings of the 2nd international conference on Intelligent

user interfaces, pages 15–22. ACM, 1997.

140

Stead, Alistair and Blackwell, Alan F. Learning Syntax as Notational Expertise when

using DrawBridge. In Psychology of Programming Interest Group Annual Conference

2014, pages 41–52, 2014.

Stolper, Charles D; Perer, Adam, and Gotz, David. Progressive visual analytics: User-

driven visual exploration of in-progress analytics. Visualization and Computer Graph-

ics, IEEE Transactions on, 20(12):1653–1662, 2014.

Stolterman, Erik. The nature of design practice and implications for interaction design

research. International Journal of Design, 2(1), 2008.

Sugiyama, Kozo; Tagawa, Shojiro, and Toda, Mitsuhiko. Methods for visual understanding

of hierarchical system structures. Systems, Man and Cybernetics, IEEE Transactions on,

11(2):109–125, 1981.

Szafir, Danielle Nicole Albers. Improving Color for Data Visualization. PhD thesis, Uni-

versity of Wisconsin-Madison, 2015.

Szegedy, Christian; Zaremba, Wojciech; Sutskever, Ilya; Bruna, Joan; Erhan, Dumitru;

Goodfellow, Ian, and Fergus, Rob. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

Tanimoto, Steven L. Viva: A visual language for image processing. Journal of Visual

Languages & Computing, 1(2):127–139, 1990.

Taylor, Peter C; Fraser, Barry J, and Fisher, Darrell L. Monitoring constructivist classroom

learning environments. International journal of educational research, 27(4):293–302,

1997.

Tintarev, Nava and Masthoff, Judith. A survey of explanations in recommender systems.

In Data Engineering Workshop, 2007 IEEE 23rd International Conference on, pages

801–810. IEEE, 2007.

Valentin, Julien; Vineet, Vibhav; Cheng, Ming-Ming; Kim, David; Shotton, Jamie; Kohli,

Pushmeet; Nießner, Matthias; Criminisi, Antonio; Izadi, Shahram, and Torr, Philip. Se-

manticpaint: Interactive 3d labeling and learning at your fingertips. ACM Transactions

on Graphics (TOG), 34(5):154, 2015.

Van der Maaten, Laurens and Hinton, Geoffrey. Visualizing data using t-sne. Journal of

Machine Learning Research, 9(2579-2605):85, 2008.

Vygotsky, Lev S. Mind in society: The development of higher psychological processes. Har-

vard University Press, 1987.

Wacharamanotham, Chat; Subramanian, Krishna; Völkel, Sarah Theres, and Borchers,

Jan. Statsplorer: Guiding novices in statistical analysis. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems, pages 2693–2702.

ACM, 2015.

Wadsworth, Barry J. Piaget’s theory of cognitive and affective development: Foundations

of constructivism . Longman Publishing, 1996.

Ward, David J; Blackwell, Alan F, and MacKay, David JC. Dasher?a data entry interface

using continuous gestures and language models. In Proceedings of the 13th annual ACM

symposium on User interface software and technology, pages 129–137. ACM, 2000.

Watkins, Christopher John Cornish Hellaby. Learning from delayed rewards. PhD thesis,

University of Cambridge England, 1989.

141

Weintraub, Mitch; Beaufays, Francoise; Rivlin, Ze’ev; Konig, Yochai, and Stolcke, Andreas.

Neural-network based measures of confidence for word recognition. In Acoustics, Speech,

and Signal Processing, IEEE International Conference on, volume 2, pages 887–887.

IEEE Computer Society, 1997.

Wilson, Aaron; Burnett, Margaret; Beckwith, Laura; Granatir, Orion; Casburn, Ledah;

Cook, Curtis; Durham, Mike, and Rothermel, Gregg. Harnessing curiosity to increase

correctness in end-user programming. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, pages 305–312. ACM, 2003.

Wirth, Rüdiger; Shearer, Colin; Grimmer, Udo; Reinartz, Thomas; Schlosser, Jorg; Bre-

itner, Christoph; Engels, Robert, and Lindner, Guido. Towards process-oriented tool

support for knowledge discovery in databases. First European Symposium, PKDD

’97 Trondheim, Norway, June 24âĂŞ27, 1997 Proceedings, pages 243–253, 1997. doi:

10.1007/3-540-63223-9_123.

Wu, Eugene and Madden, Samuel. Scorpion: Explaining Away Outliers in Aggregate

Queries. volume 6 (8), pages 553–564. VLDB Endowment, 2013. doi: 10.14778/2536354.

2536356.

Yoon, YoungSeok; Myers, Brad A, and Koo, Sebon. Visualization of fine-grained code

change history. In Visual Languages and Human-Centric Computing (VL/HCC), 2013

IEEE Symposium on, pages 119–126. IEEE, 2013.

Zeiler, Matthew D and Fergus, Rob. Visualizing and understanding convolutional net-

works. In Computer vision–ECCV 2014, pages 818–833. Springer, 2014.

Zhang, Li and Luh, Peter B. Neural network-based market clearing price prediction and

confidence interval estimation with an improved extended kalman filter method. Power

Systems, IEEE Transactions on, 20(1):59–66, 2005.

Zhao, Zhenpeng; Benjamin, William; Elmqvist, Niklas, and Ramani, K. Sketcholution: In-

teraction Histories for Sketching. In International Journal of Human-Computer Studies,

pages 11–20. Elsevier, 2015.

Zimmerman, John; Forlizzi, Jodi, and Evenson, Shelley. Research through design as a

method for interaction design research in hci. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 493–502. ACM, 2007.

142

	Introduction
	Research objectives
	Dissertation overview
	Relevant publications

	Humans in the analytics loop
	Introduction
	Current approaches to mixed-initiative analytics
	Intelligent discovery assistants
	Visual analytics
	Interactive machine learning

	Differences in approaches to interactive analytics
	Technology
	End-user task formalisation
	Approach to knowledge generation
	Problem domain

	Interactive analytical modelling
	The two cultures of statistical modelling
	Novel research focus

	Theoretical perspectives
	Research methodology
	Visual analytics is end-user programming
	Interactive machine learning is dialogue
	Other approaches to the indirect channel
	Supporting dialogue through metamodels
	Example metamodel applications

	Analytical modelling is constructivist learning
	Implicit and explicit learning outcomes in analytical modelling
	Critical constructivist issues for analytical modelling

	Design principles for analytical modelling systems
	Conclusion

	Gatherminer
	Introduction
	Related work
	Visualisations for bottom-up time series analysis
	Explaining behaviour in time series datasets

	Design
	Core colour-mapped matrix visualisation
	Gathering: automated layout
	Selection to annotate interesting clusters
	Alternative interactive representations for decision trees

	Comparative study
	Experimental results

	Discussion
	Conclusions

	BrainCel
	Introduction
	Selection as annotation
	Experimental evaluation of selection-as-annotation
	Selection-as-annotation experiment results

	Supporting dialogue and critical model evaluation
	Design of the BrainCel interface
	Design discussion

	Exploratory user study
	Analysis method
	Exploratory study results
	Activity flows

	Limitations and future work
	Conclusions

	Conclusion
	Theory exemplified in Gatherminer and BrainCel
	Contributions
	Future work
	Conclusion

	Bibliography

