
Technical Report
Number 919

Computer Laboratory

UCAM-CL-TR-919
ISSN 1476-2986

Proceedings of the 2017 Scheme and
Functional Programming Workshop

Edited by Nada Amin, François-René Rideau

March 2018

Oxford, UK – 3 September 2017

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Preface

This report aggregates the papers presented at the eigtheenth annual Scheme and Functional Programming Workshop,
hosted on September 3rd, 2017 in Oxford, UK and co-located with the twenty-second International Conference on
Functional Programming.

The Scheme and Functional Programming Workshop is held every year to provide an opportunity for researchers and
practitioners using Scheme and related functional programming languages like Racket, Clojure, and Lisp, to share
research findings and discuss the future of the Scheme programming language.

Two full papers and three lightning talks were submitted to the workshop, and each submission was reviewed by three
members of the program committee. After deliberation, all submissions were accepted to the workshop.

In addition to the two full papers and three lightning talks presented

• Sam Tobin-Hochstadt gave an invited keynote speech entitled From Scheme to Typed Racket,

• a panel including Michael Ballantyne, Arthur Gleckler, Kathy Gray, Alaric Snell-Pym, Andy Wingo as well as a
lively audience debated on the future of Scheme,

• Alaric Snell-Pym presented an update on the R7RS standardization process, and

• Matt Might gave a closing invited talk on Precision Medecine.

Thanks to all presenters, panelists, participants, and members of the program committee.

Program Committee

Barış Aktemur, Ozyegin University
Nada Amin, University of Cambridge (General Chair)
Kenichi Asai, Ochanomizu University
Eli Barzilay, Microsoft
Felix S Klock II, Mozilla Research

Jay McCarthy, University of Massachusetts Lowell
Christian Queinnec, Sorbonne University
François-René Rideau, Metaphor (Program Chair)

Steering Committee

Will Clinger, Northeastern University
Marc Feeley, Université de Montréal
Dan Friedman, Indiana University

Olin Shivers, Northeastern University
Will Byrd, University of Alabama at Birmingham

iii

iv

Contents

1 Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... 1

2 Talk: Extending the LISP model from cons cells to triples, from trees to hypergraphs 19

3 Paper: Toward Parallelizing Control-flow Analysis with Datalog 21

4 Talk: Gerbil on Gambit, as they say Racket on Chez 34

5 Talk: {lambda talk} 36

v

vi

Paper • 1

Scalar and Tensor Parameters for Importing Tensor Index Notation
including Einstein Summation Notation

SATOSHI EGI, Rakuten Institute of Technology

In this paper, we propose a method for importing tensor index notation, including Einstein summation notation, into functional
programming. This method involves introducing two types of parameters, i.e, scalar and tensor parameters, and simplified
tensor index rules that do not handle expressions that are valid only for the Cartesian coordinate system, in which the index
can move up and down freely. An example of such an expression is “c = AiBi ”. As an ordinary function, when a tensor
parameter obtains a tensor as an argument, the function treats the tensor argument as a whole. In contrast, when a scalar
parameter obtains a tensor as an argument, the function is applied to each component of the tensor. In this paper, we show
that introducing these two types of parameters and our simplified index rules enables us to apply arbitrary user-defined
functions to tensor arguments using index notation including Einstein summation notation without requiring an additional
description to enable each function to handle tensors.

Additional Key Words and Phrases: tensor, index notation, Einstein summation notation, scalar parameters, tensor parameters,
scalar functions, tensor functions

1 INTRODUCTION
Tensor analysis is one of the fields of mathematics in which we can easily find notations that have not been
imported into popular programming languages [6, 13]. Index notation is one such notation widely used by
mathematicians to describe expressions in tensor analysis concisely. This paper proposes a method for importing
it into programming.

Tensor analysis is also a field with a wide range of application. For example, the general theory of relativity is
formulated in terms of tensor analysis. In addition, tensor analysis plays an important role in other theories in
physics, such as fluid dynamics. In fields more familiar to computer scientists, tensor analysis is necessary for
computer vision [7]. Tensor analysis also appears in the theory of machine learning to handle multidimensional
data. The importance of tensor calculation is increasing day by day even in computer science.
Concise notation for tensor calculation in programming will simplify technical programming in many areas.

Therefore, it is important to develop a method for describing tensor calculation concisely in programs.
The novelty of this paper is that it introduces two types of parameters, tensor parameters and scalar parameters,

to import tensor index notation and enables us to apply arbitrary user-defined functions to tensor arguments
using index notation without requiring an additional description to enable each function to handle tensors.
Tensor and scalar parameters are used to define two types of functions, tensor functions and scalar functions,
respectively. Tensor functions are functions that involve contraction of the tensors provided as an argument,
and scalar functions are not. For example, the inner product of vectors and the multiplication of matrices are
tensor functions, because they involve contraction of the tensors. Most other functions such as “+”, “-”, “*”, and
“/” are scalar functions. We also simplified tensor index rules by removing a rule to handle the expressions such
as “c = AiBi ” that are valid only for the Cartesian coordinate system, in which the index can move up and down
freely. It enables us to use the same index rules for all user-defined functions. We will discuss that in Sections 2
and 3.
The method proposed in this paper has already been implemented in the Egison programming language [5].

Egison is a functional language that has a lazy evaluation strategy and supports symbolic computation. In reading
this paper, one can think of that language as an extended Scheme to support symbolic computation.

Scheme and Functional Programming Workshop 2017 1

1 • Satoshi Egi

(define $min (lambda [$x $y] (if (less-than? x y) x y)))

Fig. 1. Definition of the min function

min(
©«
1
2
3

ª®¬i , ©«
10
20
30

ª®¬j) = ©«
min(1, 10) min(1, 20) min(1, 30)
min(2, 10) min(2, 20) min(2, 30)
min(3, 10) min(3, 20) min(3, 30)

ª®¬i j = ©«
1 1 1
2 2 2
3 3 3

ª®¬i j
Fig. 2. Application of the min function to the vectors with different indices

min(
©«
1
2
3

ª®¬i , ©«
10
20
30

ª®¬i) = ©«
min(1, 10) min(1, 20) min(1, 30)
min(2, 10) min(2, 20) min(2, 30)
min(3, 10) min(3, 20) min(3, 30)

ª®¬ii = ©«
min(1, 10)
min(2, 20)
min(3, 30)

ª®¬i = ©«
1
2
3

ª®¬i
Fig. 3. Application of the min function to the vectors with identical indices

Figure 1 shows the definition of the min function as an example of a scalar function. The min function takes
two numbers as arguments and returns the smaller one. “$” is prepended to the beginning of the parameters of
the min function. It means the parameters of the min function are scalar parameters. When a scalar parameter
obtains a tensor as an argument, the function is applied to each component of the tensor as Figures 2 and 3. As
Figure 2, if the indices of the tensors of the arguments are different, it returns the tensor product using the scalar
function as the operator. As Figure 3, if the indices of the tensors given as arguments are identical, the scalar
function is applied to each corresponding component. Thus the min function can handle tensors even though it
is defined without considering tensors. The function name “$min” is also prefixed by “$”, but just as a convention
of Egison. Thus it can be ignored.
Figure 4 shows the definition of the “.” function as an example of a tensor function. “.” is a function for

multiplying tensors. “%” is prepended to the beginning of the parameters of the “.” function. It means the
parameters of the “.” function are tensor parameters. As with ordinary functions, when a tensor is provided to a
tensor parameter, the function treats the tensor argument as a whole. When a tensor with indices is provided, it
is passed to the tensor function maintaining its indices.

In Figure 4, “+” and “*” are scalar functions for addition and multiplication, respectively. contract is a primitive
function to contract a tensor that has pairs of a superscript and subscript with identical symbols. We will explain
the semantics of contract expression in Section 3.2. Figure 5 shows the example for calculating the inner product
of two vectors using the “.” function. We can use the “.” function for any kind of tensor multiplication such as
tensor product and matrix multiplication as well as inner product.
Here we introduce a more mathematical example. The expression in Figure 6 from tensor analysis can be

expressed in Egison as shown in Figure 7. When the same mathematical expression is expressed in a general way
in the Wolfram language, it becomes a program such as the one shown in Figure 8. In the Wolfram language, it is
assumed that all dimensions corresponding to each index of the tensor are a constant “M”.
Note that a double loop consisting of the Table and Sum expressions appears in the program in the Wolfram

language, whereas the program in Egison is flat, similarly to the mathematical expression. This is achieved by
using tensor index notation in the program. In particular, the reason that the loop structure by the Sum expression
in the Wolfram language does not appear in the Egison expression to express ΓmjkΓ

i
ml − Γmjl Γ

i
mk is that the “.”

function in Egison can handle Einstein summation notation.
The part that we would like the reader to pay particular attention to in this example is the Egison program

“(∂/∂ Γ~i_j_k x~l)” expressing
∂Γijk
∂x l in the first term on the right-hand side. In the Wolfram language, the

2 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

(define $. (lambda [%t1 %t2] (contract + (* t1 t2))))

Fig. 4. Definition of the “.” function

©«
1
2
3

ª®¬
i

·
©«
10
20
30

ª®¬i = contract(+, ©«
10 20 30
20 40 60
30 60 90

ª®¬
i

i

) = 10 + 40 + 90 = 140

©«
1
2
3

ª®¬i · ©«
10
20
30

ª®¬i = contract(+, ©«
10
40
90

ª®¬i) = ©«
10
40
90

ª®¬i©«
1
2
3

ª®¬i · ©«
10
20
30

ª®¬j = contract(+, ©«
10 20 30
20 40 60
30 60 90

ª®¬i j) = ©«
10 20 30
20 40 60
30 60 90

ª®¬i j
Fig. 5. Application of the “.” function

Rijkl =
∂Γijl

∂xk
−
∂Γijk

∂x l
+ Γmjl Γ

i
mk − ΓmjkΓ

i
ml

Fig. 6. Formula of Riemann curvature tensor

(define $R~i_j_k_l
(with-symbols {m}

(+ (- (∂/∂ Γ~i_j_l x~k) (∂/∂ Γ~i_j_k x~l))
(- (. Γ~m_j_l Γ~i_m_k) (. Γ~m_j_k Γ~i_m_l)))))

Fig. 7. Egison program that represents the formula in Figure 6

R=Table[D[Γ[[i,j,l]],x[[k]]] - D[Γ[[i,j,k]],x[[l]]]
+Sum[Γ[[m,j,l]] Γ[[i,m,k]]

- Γ[[m,j,k]] Γ[[i,m,l]],
{m,M}],

{i,M},{j,M},{k,M},{l,M}]

Fig. 8. Wolfram program that represents the formula in Figure 6

differential function “D” is applied to each tensor component, but the differential function “∂/∂” is applied directly
to the tensors in Egison.

The differential function “∂/∂” is defined in an Egison program as a scalar function. When a tensor is provided
as an argument to a scalar function, the function is applied automatically to each component of the tensor.
Therefore, when defining a scalar function, it is sufficient to consider only a scalar as its argument. That is, in
the definition of the “∂/∂” function, the programmer need only write the program for the case in which the
argument is a scalar value. Despite that, the program “(∂/∂ Γ~i_j_k x~l)” returns a fourth-order tensor.

The program “(∂/∂ Γ~i_j_k x~l)” returns a fourth-order tensor with superscript “i”, subscript “j”, subscript
“k”, and subscript “l” from left to right. Here the superscript “~l” of “x~l” is inverted and becomes the subscript
“_l”, because the differential operator is a special function in tensor analysis and the indices of the tensor applied
as the denominator of ∂

∂ are inverted upside down. We will discuss that in detail in Section 3.

Scheme and Functional Programming Workshop 2017 3

1 • Satoshi Egi

Thus, we can naturally import tensor index notation including Einstein notation into programming if we
clearly distinguish between tensor functions such as “.” and scalar functions such as “+” and “∂/∂”. This paper
explains this.
The remainder of this paper is structured as follows. In Section 2, we explain existing work to import index

notation into programming and its problems. In Section 3, we describe our new method for importing index
notation and explain how it solves the existing problems. In Section 4, we present a program for calculating the
Riemannian curvature tensor in the Wolfram language and Egison, and we show how the expression is simplified
by the method described in Section 3. In the final section, we summarize the contribution of this paper and future
issues.

2 EXISTING WORK ON INDEX NOTATION
There are two existing methods for using index notation in programming, a method that introduces special
operators supporting index notation and a method that introduces special syntax for index notation.
Using the first method enables index notation to be represented directly in a program. However, this has the

disadvantage that index notation can be used only by functions that are specially prepared to use it.
In the second method, we describe the computation of the tensor using syntax such as the Table expression of

the Wolfram language (Figure 8). This method has the advantage that we can use an arbitrary function defined
for scalar values also for tensor operations, similarly to the differential function “D” in Figure 8. However, this
method has the disadvantage that we cannot directly apply user-defined functions to tensor arguments using
index notation. As the result, the description of a program becomes more complicated than the description
directly using index notation, as we explained in the previous section using Figure 7 and Figure 8.

2.1 Introduction of Index Notation by Special Operators
For existing work using this method, there is Maxima [1, 15], a computer algebra system that introduces index
notation through the extension library itensor, as well as Ahalander’s work [3], which implements index notation
on C++. These studies introduce index notation by implementing two special functions “+” and “·” that support
tensor index notation.

“+” is a function that sums the components of two tensors given as arguments. “·” is a function that takes the
tensor product of the two tensors given as arguments and takes the sum of the trace if there are pairs of the
superscript and subscript with the same index variable.
“+” and “·” take different actions on tensors with the same index combination. For example, in the following

expression, programs corresponding to (1), (4), and (5) are invalid. It is natural to implement index notation in
this way because these expressions are meaningless in mathematics.

(1) ci j = ai + bj
(2) ci j = ai · bj
(3) ci j = ai j + bi j
(4) ci j = ai j · bi j
(5) c = ai j + bi j
(6) c = ai j · bi j
Especially, Ahalander’s work [3] can interpret the following expressions, which are meaningless when dealing

with a general coordinate system other than the Cartesian coordinate system. In Ahalander’s work [3], (7) is
interpreted as equivalent to (3), and (8) is interpreted as equivalent to (6). In the range dealing with the Cartesian
coordinate system, the index can move up and down freely, with the result that (7) and (3), and (8) and (6) are
equivalent in mathematics, making such an interpretation useful.

(7) ci j = ai j + bi j
(8) c = ai j · bi j

4 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

operator for tensor product operator for contraction
· * +

+ + undefined
∗ ∗ undefined
∂/∂ ∂/∂ undefined

Fig. 9. All scalar functions are regarded as variations of the “·” function whose operator for tensor product is itself and one
for contraction is undefined.

©«
1
2
3

ª®¬i + ©«
10
20
30

ª®¬i = ©«
11 21 31
12 22 32
13 23 33

ª®¬ii = ©«
11
22
33

ª®¬i
Fig. 10. Interpretation of “+” as an operator for tensor product

Thus, in these work, the index rules of “+” and “·” for tensors are defined separately. As a result, “+” and
“·” for tensors in the existing work are special operators prepared in the library for index notation, with the
consequence that we need to edit the library directly to add new functions that support index notation. That is, it
takes substantial effort to define the original operators for tensors.
There are important operations in tensor analysis other than simply adding and multiplying two tensors.

For example, in tensor analysis, as we see in connection with “(∂/∂ Γ~i_j_k x~l)” in Figure 7, we often
differentiate the components of a tensor with respect to the components of another tensor. It is a serious problem
that programmers cannot add such operations easily.

2.2 Introduction of Tensor Index Notation by Special Syntax
The crucial difference of this method from the method in Section 2.1 is that we no longer consider the index
rules for “+” and “·” separately. In this method, we regard “+” for tensors as a function that computes the tensor
product using “+” for scalars, and the function for computing the sum of the trace for contraction is undefined,
as shown in Figures 9. Then we can regard “+” as a variation of “·” that never contract the result of the tensor
product. As shown Figure 10, we can interpret “+” correctly even if we regard “+” in the above manner. This idea
simplifies the index rules. In this method, we control the way we combine tensors only through their indices.

Even if this idea is introduced, the expressions (2), (3), and (6) are still interpreted correctly as before. However,
the expressions (1) and (4), which are invalid in mathematics, do not cause errors in this interpretation. Expression
(5) still causes an error since the function for calculating the sum of the trace to contract the tensor is undefined for
“+”. Thus, the introduction of this idea renders the interpretation of some expressions meaningless in mathematics,
but we had assigned a higher priority to making the index rules more concise.

This method is adopted primarily in the Wolfram Language, which has a tensor generation syntax, the Table
expression [17]. In the Wolfram language, the Table expression plays a major role in describing operations that
deal with tensors. Using this syntax, we can use arbitrary functions to deal with tensors using a notation with
similar to that of index notation. Since this method has such advantages, a program using this method has been
introduced by mathematicians in actual research. [9, 10]
For example, the expression Ai j + Bi j is expressed as follows using the Table expression. In the following

examples, it is assumed that all dimensions corresponding to each index of the tensors are a constant “M”.
Table[A[[i, j]] + B[[i,j]],

{i, M},{j, M}]

The expression Ai jBkl is expressed as follows.

Scheme and Functional Programming Workshop 2017 5

1 • Satoshi Egi

Table[A[[i, j]] * B[[k,l]],
{i, M},{j, M},{k, M},{l, M}]

In the Wolfram language, it is possible to express both addition of tensors and the tensor product in a unified
manner using the Table expression. In addition, we can use arbitrary functions as an operator for tensor product,
similarly to the manner in which the differential function “D” is used in Figure 8. Thus, parameterization of an
operator for tensor product, as described in Section 2.1 is realized in the Wolfram language.

A program that contracts tensors is described by combining the Table and Sum expressions. For example, the
expression Ai jTjkl is as follows. In the Wolfram language, we do not explicitly specify whether tensor indices are
superscripts or subscripts. We need to determine from the context whether the index of the tensor in a program
is a superscript or subscript.
Table[Sum[A[[i, j]] * T[[j, k, l]], {j, M}],

{i, M},{k, M},{l, M}]

We can use a different aggregate function instead of the Sum expression. This means that the parameterization
of an operator for contraction described in Section 2.1 is also realized in the Wolfram language.

In the Wolfram language, parameterizations of an operator for tensor product and contraction are both realized.
However, it has a disadvantage that it always requires to use the Table expression for tensor operation using
index notation. The Wolfram language does not allow to directly apply a function using index notation as
Figures 2, 3, and 5 in Section 1. Furthermore, it is impossible to modularize an operation, such as “·” described in
Section 2.1, whose behavior varies depending on the combination of indices of the tensors of the argument. That
is, expressing such operations requires us to write the Sum expression nested in the Table expression every time,
because the tensor of the Wolfram language does not contain index information. Consequently, the program
becomes more complicated than the mathematical expression.
Domain Specific Languages (DSLs) for computational chemistry [14] also support index notation including

Einstein summarize notation in this method. For example, the expression Ai jTjkl is expressed as follows. In this
work, superscripts and subscripts are not distinguished as the Wolfram language.
B["ikl"] = A["ij"] * T["jkl"]

The above program directly represents index notation. However, this method has two drawbacks.
First, it has a constraint that we always need to specify the type of the tensor returned by expressions using

index notation. That is, we need to write a left-side expression as “B["ikl"]” in the above example. This constraint
is caused by the ambiguity of the interpretation of the right-side expression of (4) in Section 2.1. This work
allows to interpret the right-side expression of (4) in both manners, (4) and (8). Therefore, we need to specify the
manner in which we interpret the expressions using index notation by specifying the type of the tensor returned
by them.

Our proposal eliminates this ambiguity by distinguishing superscripts and subscripts, and ceasing the interpre-
tation of the expressions such as (8) that are valid only for the Cartesian coordinate system in which index can
move up and down freely. It enables us to directly apply a function to tensor arguments using index notation as
Figures 2, 3, and 5 in Section 1.
The second disadvantage is that it requires additional description to temporarily change a function for

calculating the tensor product and trace. In this work, the additive and multiplicative operators defined as the
class methods of the class to which the elements of the tensor belong are used to caluculate the trace and
tensor product, respectively. This is the reason why the above program do not specify the operator to use when
calculating the trace corresponding to the Sum expression in the above Wolfram program. However, it requires
additional description when we specify a function to use when calculating the tensor product as follows. In the
following example, we specify the min function as the operator for calculating the tensor product.
((Transform<>)([] (double a, double b, double & c){ c = min(a,b); }))(A["i"],B["j"],C["ij"]);

6 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

The above program is equivalent to the following program.
for (int i=0; i<n; i++){
for (int j=0; j<n; j++){

C[i,j] = min(A[i],B[j]);
}

}

We avoid this problem by introducing the concept of two types of functions, scalar and tensor functions. As
the result, we can directly apply arbitrary user-defined functions using index notation, as we directly apply the
“+”, “-”, “∂/∂”, and “.” functions to tensors in Figure 7 in Section 1.

3 A NEW METHOD FOR IMPORTING INDEX NOTATION INTO PROGRAMMING
As mentioned in Section 2, the existing methods for importing tensor index notation have a disadvantage that
we cannot directly apply arbitrary user-defined functions to tensor arguments using index notation. We can
overcome this disadvantage if we satisfy all of the following three conditions at the same time.

No ambiguity in tensor index rules We do not need to specify the tensor type of the return value of an
expression using index notation.

Parameterization of an operator for tensor product We can specify a function to use when calculating
the tensor product with a parameter.

Parameterization of an operator for contraction We can specify a function to use when calculating the
sum of the trace to contract tensors with a parameter.

In the work explained in section 2.1, the first condition is satisfied, but the second and third are not. In contrast,
in the work explained in Section 2.2, the second and third conditions are satisfied, but the first is not. Therefore,
both of the sections have relevant disadvantages.

This section discusses a means of satisfying all of these conditions simultaneously in programming languages.

3.1 Grammar
Figure 11 shows the syntax added to implement the proposed method in Egison. By implementing the same
syntax, we can import index notation into programming languages other than Egison. In Section 3, we explain
how to implement our proposal by explaining the semantics of this grammar.
In Figure 11, ⟨scalar⟩ represents scalar values such as numbers (“1”, “2”, “(/ 3 2)”) and expressions (“(+ x

y)”, “x^2”, “(cos θ)”). tensor-map, contract, flip-indices, and generate-tensor are primitive syntax to
handle tensors.
We use Section 3.2 and 3.3 to explain our index reduction rules for tensors with symbolic indices. We show

various examples to show their validity in the subsequent sections.

3.2 Reduction Rules for Tensors with Indices
In this section, we show the index reduction rules for a single tensor with indices.
First, we explain the notation for expressing tensors in Egison. Egison expresses a tensor by enclosing its

components with “[|” and “|]”. We express a higher-order tensor by nesting this description, as we do for an
n-dimensional array.

To access the components of a tensor, we add indices to the tensor. Subscripts are represented by “_” followed
by a natural number after the tensor. An arbitrary number of indices can be added to one tensor, though adding a
number of indices larger than the rank of the target tensor results in an error.
[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]_2
;[|21 22 23|]

Scheme and Functional Programming Workshop 2017 7

1 • Satoshi Egi

⟨expr⟩ ::= ⟨tensor⟩ | ‘(’ ⟨expr⟩ [⟨expr⟩ ...] ‘)’ | ‘(with-symbols {’ [⟨symbol⟩ ...] ‘}’ ⟨expr⟩ ‘)’ | ‘(tensor-map’
⟨function⟩ ⟨tensor⟩ ‘)’ | ‘(contract’ ⟨function⟩ ⟨tensor⟩ ‘)’ | ‘(flip-indices’ ⟨tensor⟩ ‘)’

⟨tensor⟩ ::= ⟨tensor-data⟩ [⟨index⟩ ...]

⟨tensor-data⟩ ::= ⟨variable-name⟩ | ⟨scalar⟩ | ⟨function⟩ | ‘[|’ ⟨tensor-data⟩ ... ‘|]’ | ‘(generate-tensor ’
⟨function⟩ ‘{’ [⟨natural-number⟩ ...] ‘})’

⟨index⟩ ::= ⟨index-type⟩ ⟨natural-number⟩ | ⟨index-type⟩ ⟨symbol⟩ | ⟨index-type⟩ ‘#’

⟨index-type⟩ ::= ‘~’ | ‘_’ | ‘~_’

⟨function⟩ ::= ‘(lambda’ ‘[’ [⟨parameter⟩ ...] ‘]’ ⟨expr⟩ ‘)’ | ⟨builtin-scalar-function⟩

⟨parameter⟩ ::= ‘%’ ⟨variable-name⟩ | ‘$’ ⟨variable-name⟩ | ‘*$’ ⟨variable-name⟩

⟨builtin-scalar-function⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ...

Fig. 11. Grammar for index notation

[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]_2_1
;21

We can use symbols as well as natural numbers as indices. Egison is a computer algebra system and supports
symbolic computation. Unbound variables are treated as symbols. We declare the indices of a tensor by using the
symbols for the indices. If multiple indices of the same symbol appear, Egison converts it to the tensor composed
of diagonal components for these indices. After this conversion, the leftmost index symbol remains. For example,
the indices “_i_j_i” convert to “_i_j”.
[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]_i_j
;[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]_i_j

[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]_i_i
;[|11 22 33|]_i

[|[|[|1 2|] [|3 4|]|] [|[|5 6|] [|7 8|]|]|]_i_j_i
;[|[|1 3|] [|6 8|]|]_i_j

When three or more subscripts of the same symbol appear, Egison converts it to the tensor composed of
diagonal components for all these indices.
[|[|[|1 2|] [|3 4|]|] [|[|5 6|] [|7 8|]|]|]_i_i_i
;[|1 8|]_i

Egison supports two types of indices, both superscripts and subscripts. A subscript is represented by “_”. A
superscript is represented by “˜”.
Superscripts and subscripts behave symmetrically. When only superscripts are used, they behave in exactly

the same manner as when only subscripts are used.
[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]~1~1
;11

[|[|[|1 2|] [|3 4|]|] [|[|5 6|] [|7 8|]|]|]~i~j~i
;[|[|1 3|] [|6 8|]|]~i~j

The index reduction rules thus far are the same as those of the existing work [3].

8 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

E({A, xs}) =
if e(xs) = [] then

{A, xs})
elsif e(xs) = [{k,j}, . . .] & p(k,xs) = p(j,xs) then

E({diag(k, j, A), remove(j, xs))
elsif e(xs) = [{k,j}, . . .] & p(k,xs) != p(j,xs) then

E({diag(k, j, A), update(k, 0, remove(j, xs)))

Fig. 12. Pseudo code of index reduction

Let us consider a case in which the same symbols are used for a superscript and a subscript. In this case, the
tensor is automatically contracted using “+” in the existing research. In contrast, Egison converts it to the tensor
composed of diagonal components, as in the above examples. However, in that case, the summarized indices
become a supersubscript, which is represented by “~_”.
[|[|11 12 13|] [|21 22 23|] [|31 32 33|]|]~i_i
;[|11 22 33|]~_i

Even when three or more indices of the same symbol appear that contain both supersubscripts and subscripts,
Egison converts it to the tensor composed of diagonal components for all these indices.
[|[|[|1 2|] [|3 4|]|] [|[|5 6|] [|7 8|]|]|]~i~i_i
;[|1 8|]~_i

The reason not to contract it immediately is to enable it to parameterize an operator for contraction. The
components of supersubscripts can be contracted by using the contract expression. The contract expression
receives a function to be used for contraction as the first argument, and a target tensor as the second argument.
(contract + [|11 22 33|]~_i)
;66

Figure 12 shows pseudo code of index reduction as explained in this section. E(A,xs) is a function for reducing
a tensor with indices. A is an array that consists of tensor components. xs is a list of indices appended to A. For
example, E(A,xs) works as follows with the tensor whose indices are “~i_j_i”. We use “1”, “-1”, and “0” to
represent a superscript, subscript, and supersubscript, respectively.
E({[|[|[|1 2|] [|3 4|]|] [|[|5 6|] [|7 8|]|]|],
[{i,1}, {j,1}, {i,-1}]}) =

{[|[|1 3|] [|6 8|]|], [{i,0}, {j,1}]}

Next, we explain the helper functions used in Figure 12. e(xs) is a function for finding pairs of identical indices
from xs. diag(k, j, A) is a function for creating the tensor that consists of diagonal components of A for the
k-th and j-th order. remove(k, xs) is a function for removing the k-th element from xs. p(k, xs) is a function
for obtaining the value of the k-th element of the assoc list xs. update(xs, k, p) is a function for updating the
value of the k-th element of the assoc list xs to p. These functions work as follows.
e([{i, 1}, {j, -1}, {i, 1}]) = [{1,3}]
diag(1, 2, [|[|11 12|] [|21 22|]|]) = [|11 22|]
p(2, 0, [{i, 1}, {j, -1}]) = -1
remove(2, [{i, 1}, {j, -1}]) = [{i, 1}]
update(2, 0, [{i, 1}, {j, -1}]) = [{i, 1}, {j, 0}]

3.3 Scalar and Tensor Functions
In this section we introduce the concept of two types of functions: scalar and tensor functions. This enables us to
introduce naturally the parameterization of an operator for tensor product and contraction when we combine it
with the index reduction rules explained in Section 3.2.

Scheme and Functional Programming Workshop 2017 9

1 • Satoshi Egi

Tensor functions are functions that involve contraction of the tensors provided as an argument, and scalar
functions are not. For example, the inner product of vectors and matrix multiplication are tensor functions. In
contrast, “+”, “ -”, “*”, and “/” are scalar functions.
We use the concept of two types of parameters, scalar parameters and tensor parameters, to specify whether

the function we defined is a scalar or tensor function. Similar to Scheme, Egison generates a function using a
lambda expression. In the lambda expression, we add “$” or “%” to the beginning of the parameters. A parameter
to which “$” is prefixed is a scalar parameter. A parameter to which “%” is prefixed is a tensor parameter.
As with ordinary parameters, when a tensor parameter obtains a tensor as an argument, the function treats

the tensor as it is. In contrast, when a scalar parameter obtains a tensor as an argument, the function is applied to
each component of the tensor. A function with scalar parameters is converted to a function only with tensor
parameters by using the tensor-map function as follows. In this way, we can implement scalar parameters.
(lambda [$x $y] ...)
;=>(lambda [%x %y]

(tensor-map (lambda [%x]
(tensor-map (lambda [%y] ...)

y))
x))

As the name implies, the tensor-map function applies the function of the first argument to each component
of the tensor provided as the second argument. If the result of applying the function of the first argument to each
component of the tensor provided as the second argument is a tensor with indices, it moves those indices to the
end of the tensor that is the result of evaluating the tensor-map function. We will see an example in a later part
of this section.
Let’s review the min function defined in Figure 1 in Section 1 as an example of a scalar function. This min

function can handle tensors as arguments as follows.
(min [|1 2 3|]_i [|10 20 30|]_j)
;[|[|1 1 1|] [|2 2 2|] [|3 3 3|]|]_i_j

(min [|1 2 3|]_i [|10 20 30|]_i)
;[| 1 2 3 |]_i;

Note that the tensor indices of the evaluated result are “_i_j”. If the tensor-map function simply applies the
function to each component of the tensor, the result of this program will be similar to
“[|[|1 1 1|]_j [|2 2 2|]_j [|3 3 3|]_j|]_i”. However, as explained above if the results of applying the
function to each component of the tensor are tensors with indices, it moves those indices to the end of the tensor
that is the result of evaluating the tensor-map function. This is the reason that the indices of the evaluated
result are “_i_j”. This mechanism enables us to directly apply scalar functions to tensor arguments using index
notation as the above example.
The above evaluation result is equal to the result of specifying the min function as the operator of the tensor

product. By defining a scalar function as described above, the parameterization of an operator for the tensor
product is achieved without bringing it to programmers’ attention. Proposing the concept of scalar functions is
one of the major contributions of this paper.
Next, let’s review the “.” function defined in Figure 4 in Section 1 as an example of a tensor function. All of

the parameters of the “.” function are tensor parameters and “%” is prepended to the beginning of the parameters.
This “.” function can handle tensors as arguments as follows.
(. [|1 2 3|]~i [|10 20 30|]_i)
;140

(. [|1 2 3|]_i [|10 20 30|]_j)

10 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

;[| [| 10 20 30 |] [| 20 40 60 |] [| 30 60 90 |] |]_i_j

(. [|1 2 3|]_i [|10 20 30|]_i)
;[| 10 40 90 |]_i

When a tensor with indices is given as an argument of a tensor function, it is passed to the tensor function
maintaining its indices. Note that we can directly apply tensor functions to tensor arguments using index notation
as in the above example.

By changing “*” and “+” appearing in Figure 4 to different functions, we can define a new tensor multiplication
operator that uses the functions we specified to calculate the tensor product and the sum of the traces for
contraction.

Since a tensor parameter is used only when defining a function that contracts tensors, in most cases only scalar
parameters are used.

3.4 Application of Scalar Functions to Tensors
In Section 3.3, we introduced scalar and tensor parameters, and explained the behavior of scalar and tensor
functions. The definition of scalar functions in Section 3.3 is highly compatible with the index reduction rules for
a single tensor with indices explained in Section 3.2. In this section, we confirm this fact seeing various samples
of a scalar function receiving indexed tensors as arguments.
In the following sample, the tensor that has the subscript “i” and the subscript “j” is applied to the scalar

function “+”. If the indices of the tensors of the arguments are different in this manner, it returns the tensor
product using the scalar function as the operator, as we saw in Section 3.3.
(+ [|1 2 3|]_i [|10 20 30|]_j)
;[|[|11 21 31|] [|12 22 32|] [|13 23 33|]|]_i_j

In the following example, we add the same index “i” to both [|1 2 3|] and [|10 20 30|]. When the indices
of the tensors given as arguments are identical, the scalar function is applied to each corresponding component.
An error occurs if the dimensions are different even though the indices are identical. Note that this result is equal
to the result of simplifying “[|[|11 21 31|] [|12 22 32|] [|13 23 33|]|]_i_i” by the reduction rules in
Section 3.2. Review Figure 10 to clarify the idea underlying this transformation.
(+ [|1 2 3|]_i [|10 20 30|]_i)
;[|11 22 33|]_i

Both arguments are vectors in the above two examples. Next, let us see examples in which the arguments are
higher-order tensors, as follows. We can see that the reduction rules work well even for high-order tensors.
(+ [|[|11 12|] [|21 22|] [|31 32|]|]_i_j [|100 200 300|]_i)
;[|[|111 112|] [|221 222|] [|331 332|]|]_i_j

(+ [|[|1 2 3|] [|10 20 30|]|]_i_j [|100 200 300|]_j)
;[|[|101 202 303|] [|110 220 330|]|]_i_j

As mentioned in Section 3.3, arbitrary scalar functions behave in the same manner as the above examples.
The “∂/∂‘’ function appearing in Figure 7 is also a scalar function. However, “∂/∂” is not a normal scalar

function. “∂/∂” is a scalar function that inverts indices of the tensor given as its second argument. For example,
the program “(∂/∂ Γ~i_j_k x~l)” returns the fourth-order tensor with superscript “i”, subscript “j”, subscript
“k”, and subscript “l” from left to right.

To define scalar functions such as “∂/∂”, we use inverted scalar parameters. Inverted scalar parameters are
represented by “*$”. A program that uses inverted scalar parameters is transformed as follows. Here, the
flip-indices function is a primitive function for inverting the indices of a tensor provided as an argument
upside down. Supersubscripts remain as supersubscripts even if they are inverted.

Scheme and Functional Programming Workshop 2017 11

1 • Satoshi Egi

(define $∂/∂ (lambda [$f *$x] ...))
;=>(define $∂/∂ (lambda [%f %x]

(tensor-map (lambda [%x] (tensor-map (lambda [%y] ...)
(flip-indices x)))

f))

The definition of “∂/∂” can be seen in the GitHub repository1.
In the following example, we apply “∂/∂” to tensors.

(∂/∂ [|(* r (sin θ)) (* r (cos θ))|]_i [|r θ|]_j)
;[|[|(sin θ) (* r (cos θ))|]
; [|(cos θ) (* -1 r (sin θ))|]|]_i~j

(∂/∂ [|(* r (sin θ)) (* r (cos θ))|]_i [|r θ|]_i)
;[|(sin θ) (* -1 r (sin θ))|]~_i

In the writing of a program that deals with high-order tensors, the number of symbols used for indices increases.
A dummy symbol is introduced to suppress that. “#” represents a dummy symbol. All instances of “#” are treated
as different symbols. Using this mechanism makes it easier to distinguish indices that are important in the
program, thereby also improving the readability of the program.

The idea of dummy symbols is not new. For example, there is syntax to generate local symbols in the Wolfram
languages [16] and Maxima[2]. We can use such syntax to generate dummy symbols, though its primary purpose
is to generate temporary symbols for substituting variables.

The novelty of this paper on dummy symbols is that we prepared one-character syntax “#” to generate dummy
symbols to be used as indices of tensors. This is a very simple idea, but since this notation is not used even in
mathematics, we think this idea is new.
(+ [|1 2 3|]_# [|10 20 30|]_#)
;[|[|11 21 31|] [|12 22 32|] [|13 23 33|]|]_#_#

Egison allows programmers to omit indices while recommending that programmers explicitly specify indices.
If the indices are omitted, Egison handles the expression in the same manner as dummy symbols are omitted.
(+ [|1 2 3|] [|10 20 30|])
;[|[|11 21 31|] [|12 22 32|] [|13 23 33|]|]

Other computer algebra systems, including the Wolfram language, handle expressions in the same manner, as
the same indices are added to all arguments where indices are omitted.
[10,20,30] + [1,2,3] = [11,22,33]

Egison selects the above specification to avoid creating difficulty for the interpreter in complementing the part
of an expression in which programmers omit the description. Regardless of which specification is adopted, when
a scalar function takes a scalar and a tensor as arguments, it performs as follows.
(+ [|1 2 3|] 10)
;[|11 12 13|]

3.5 The with-symbols Expression
The with-symbols expression is syntax for generating new local symbols, such as the Module expression in the
Wolfram language [16].

One-character symbols that are often used as indices of tensors such as “i”, “j”, and “k” are often used in
another part of a program. Generating local symbols using with-symbols expressions enables us to avoid variable
conflicts for such symbols.

1https://github.com/egison/egison/blob/master/lib/math/analysis/derivative.egi

12 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

The with-symbols expression takes a list of symbols as its first argument. These symbols are valid only in the
expression given in the second argument of the with-symbols expression.
(with-symbols {i} (contract + (* [|1 2 3|]~i [|10 20 30|]_i)))
;60

If the evaluation result of the body of the with-symbols expression contains the symbols generated by the
with-symbols expressions, those symbols are converted into the dummy symbols described in Section 3.4. As
a result of this mechanism, local symbols never appear in the result of the with-symbols expression. This
mechanism enables us to use local symbols as indices of tensors that often remain in the evaluation result.
(with-symbols {i} (+ [|1 2 3|]_i [|10 20 30|]_i))
;[|11 22 33|]_#

3.6 Definitions of Tensor Functions
In this section, we define the function that calculates the inner product of vectors and matrix multiplication.
We can define the function for calculating the inner product as follows. This function is a tensor function,

because it contracts the tensor.
(define $inner-product (lambda [%v1 %v2]

(with-symbols {i} (contract + (* v1~i v2_i)))))

Unlike the “.” function defined in Section 3.3, this inner-product function assumes that no index is appended
to the vectors given as arguments, such as “(inner-product [|1 2 3|] [|10 20 30|])”. Therefore, the index
is appended in the function definition as “v1~i” and “v2_i”. If the vector provided as an argument has an index,
it will be overwritten.

We can define the function for multiplying matrices as follows. This function is a tensor function as well.
(define $mat-mul (lambda [%m1 %m2]

(with-symbols {j} (contract + (* m1~#~j m2_j_#)))))

The mat-mul function also assumes that no indices are appended to the matrices provided as arguments.
Therefore, the indices are appended in the function definition as “m1~#_j” and “m2_j_#”. Note that dummy
symbols are again used effectively in this program. Without dummy symbols, the program “(* m1~#~j m2_j_#)”
is represented “(* m1~i~j m2_j_k)”. We avoid declaring the additional symbols “i” and “k” by using dummy
symbols.
Thus, if we define a tensor function using with-symbols expressions, we can define functions that can be

used without knowledge of index notation.

3.7 Tensor Generation Syntax and Pattern-Matching
Egison has a generate-tensor expression that is tensor generation syntax having essentially the same meaning
as the Table expression in the Wolfram language. This syntax is even more powerful and provides for programs
that initiate a complicated matrix more simply when combined with nonlinear pattern-matching implemented in
Egison [4]. This section discusses this feature.
The generate-tensor expression takes a function as the first argument and the size of the tensor to be

generated as the second argument. The number of arguments of the function of the first argument is equal to the
rank of the tensor to be generated. Each component of the generated tensor is the result of applying the indices
to the function of the first argument.

For example, a unit matrix can be initialized as follows.
(generate-tensor
(match-lambda [integer integer]

{[[$i ,i] 1] [[_ _] 0]})
{4 4})

Scheme and Functional Programming Workshop 2017 13

1 • Satoshi Egi

;[|[|1 0 0 0|] [|0 1 0 0|] [|0 0 1 0|] [|0 0 0 1|]|]

As a more complicated example, the matrix for generating the N-bonacci sequence can be initialized as follows.
A program for calculating N-bonacci sequence using this matrix is available in the Egison website2.
(generate-tensor
(match-lambda [integer integer]

{[[,1 _] 1]
[[$x ,(- x 1)] 1]
[[_ _] 0]})

{4 4})
;[|[|1 1 1 1|] [|1 0 0 0|] [|0 1 0 0|] [|0 0 1 0|]|]

We consider the fact that pattern-matching is useful for initializing complicated tensors in a simple manner to
be evidence for the necessity of pattern-matching with strong expressive power, as discussed in [4]. We will not
discuss this in more detail here, because it is not the principal topic of this paper.

4 CALCULATION OF RIEMANN CURVATURE TENSOR
In this section, we present programs for calculating the Riemannian curvature tensor [6, 12, 13], the fourth-order
tensor that expresses the curvature of a manifold, in the Wolfram language and Egison, to shows the advantages
of our proposal.
Figures 13 and 14 show programs for calculating the Riemann curvature tensor of a torus in the Wolfram

language and in Egison, respectively.
In Egison, when binding a tensor to a variable, we can specify the type of indices in the variable name. For

example, we can bind different tensors to “$g__”, “$g~~”, “$Γ___”, and “Γ~__”. This feature is also implemented
in the existing work described in Section 2.1. This feature simplifies variable names.
In Egison, some of the tensors are bound to a variable with symbolic indices such as “$Γ_i_j_k”. It is auto-

matically desugared as follows. This syntactic sugar renders a program closer to the mathematical expression.
transpose is a function for transposing the tensor in the second argument as specified in the first argument.
(define $Γ_i_j_k ...)
;=>(define $Γ___

(with-symbols {i j k} (transpose {i j k} ...)))

Except for that point, the programs for calculating the torus coordinates and the metric tensor differ only in
the appearance of the syntax. On the other hand, our proposal introduces essential differences in the programs
for calculating the local basis, Christoffel symbols of the first and second kind, and Riemann curvature tensor.
This section explains these differences.

First of all, the Wolfram language uses the Table expression in the program for calculating the local basis, but
Egison has a flat description using scalar functions. The flip function used in the Egison program is a function
for swapping the arguments of a two-argument function. It is used to transpose the result matrix.
Next, let us examine the programs for calculating Christoffel symbols of the first and second kind, and the

Riemann curvature tensor. They are defined in mathematics as follows.

Γi jk =
1
2 (
∂дi j

∂xk
+
∂дik
∂x j

−
∂дk j

∂x i
)

Γikl = д
i jΓjkl

2https://www.egison.org/math/tribonacci.html

14 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

(* Coordinates for Torus *)
M=2;
x={θ,φ};
X={(a*Cos[θ]+b)Cos[φ], (a*Cos[θ]+b)Sin[φ], a*Sin[θ]};

(* Local basis *)
e=Table[D[X[[j]],x[[i]]],{i,2},{j,3}] //ExpandAll//Simplify;

(* Metric tensor *)
g=Table[e[[i]].e[[j]],{i,M},{j,M}] //ExpandAll//Simplify;
Ig=Inverse[g] //ExpandAll//Simplify;

(* Christoffel symbols of the first kind *)
Γ1=Table[D[g[[i,j]],x[[k]]] + D[g[[i,k]],x[[j]]]

- D[g[[j,k]],x[[i]]],
{i,M},{j,M},{k,M}]/2 //ExpandAll//Simplify;

(* Christoffel symbols of the second kind *)
Γ2=Table[Sum[Ig[[i,j]]Γ1[[j,k,l]],{j,M}],

{i,M},{k,M},{l,M}] //ExpandAll//Simplify;

(* Riemann curvature tensor *)
R=Table[D[Γ2[[i,j,l]],x[[k]]] - D[Γ2[[i,j,k]],x[[l]]]

+Sum[Γ2[[m,j,l]]Γ2[[i,m,k]]
- Γ2[[m,j,k]]Γ2[[i,m,l]],
{m,M}],

{i,M},{j,M},{k,M},{l,M}] //ExpandAll//Simplify;

Fig. 13. A program to calculate Riemann curvature tensor in Wolfram language

Rijkl =
∂Γijl

∂xk
−
∂Γijk

∂x l
+ Γmjl Γ

i
mk − ΓmjkΓ

i
ml

The essential difference between Figures 13 and 14 is that the Wolfram language uses Table expressions to
represent the above three equations, whereas Egison uses index notation directly. In particular, in the program
for calculating the Riemann curvature tensor, a double loop consisting of the Table and Sum expressions appears
in the Wolfram language, whereas the Egison program is as flat as the mathematical expression.
From the above discussion, we can conclude that Egison expresses mathematical expressions more directly

than the Wolfram language, though there is little difference in the number of lines in the programs.

5 CONCLUSION

5.1 Contributions
In this paper, we introduced index notation with simpler index rules than in the existing work, as explained
in Sections 3.2 and 3.3. Additionally, we introduced the concept of two types of functions, scalar and tensor
functions, as explained in Sections 3.3 and 3.4. We showed that the combination of these two ideas enables us
to directly apply arbitrary user-defined functions to tensor arguments using index notation. We also proposed
that these two types of functions can be defined using two types of parameters, scalar and tensor parameters.
This proposal eliminates the need to consider the case in which the argument is a tensor when defining scalar
functions, which appear in an overwhelming proportion of programs.

Scheme and Functional Programming Workshop 2017 15

1 • Satoshi Egi

;; Coordinates for Torus
(define $x [|θ φ|])
(define $X [|(* '(+ (* a (cos θ)) b) (cos φ)) ; = x

(* '(+ (* a (cos θ)) b) (sin φ)) ; = y
(* a (sin θ))|]) ; = z

;; Local basis
(define $e ((flip ∂/∂) x~# X_#))

;; Metric tensor
(define $g__ (generate-tensor 2#(V.* e_%1 e_%2) {2 2}))
(define $g~~ (M.inverse g_#_#))

;; Christoffel symbols of the first kind
(define $Γ_i_j_k

(* (/ 1 2)
(+ (∂/∂ g_i_j x_k)

(∂/∂ g_i_k x_j)
(* -1 (∂/∂ g_j_k x_i)))))

;; Christoffel symbols of the second kind
(define $Γ~__ (with-symbols {i} (. g~#~i Γ_i_#_#)))

;; Riemann curvature tensor
(define $R~i_j_k_l

(with-symbols {m}
(+ (- (∂/∂ Γ~i_j_l x_k) (∂/∂ Γ~i_j_k x_l))

(- (. Γ~m_j_l Γ~i_m_k) (. Γ~m_j_k Γ~i_m_l)))))

Fig. 14. A program to calculate Riemann curvature tensor in Egison

In addition, our proposal achieved lexical scoping of symbols used as tensor indices by the with-symbols
expression and a dummy symbol “#”, as explained in Sections 3.5 and 3.6. This is also our important contribution
since there is no literature that discuss this topic.

This paper also showed the usefulness of a dummy symbol “#” and of using it as an index of tensors. This idea
allows us to reduce the number of symbols used as indices by replacing symbols that appear only once with
dummy symbols “#”. Although this is a very simple idea, it improves the readability of programs by highlighting
important indices.

5.2 Future Work
In this paper, we introduced several forms of syntax into a language to introduce the new concepts of scalar and
tensor functions. However, we think it is possible to introduce the concepts of scalar and tensor functions even
using a static type system or the overloading feature of object-oriented programming. For example, in a static
type system, whether the parameter of a function is a scalar or tensor parameter can be specified when specifying
the type of the function. Although we could not discuss this in this paper, it is an interesting research topic to
think about how to incorporate the ideas proposed in this paper into existing programming languages naturally.

In particular, it is of substantial significance to incorporate this method into programming languages such as
Formura [11] and Diderot [8] that have a compiler that generates code for executing tensor calculation in parallel.
For example, incorporating this method into Formura would enable us to describe physical simulation using not

16 Scheme and Functional Programming Workshop 2017

Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ... • 1

only the Cartesian coordinate system but also more general coordinate systems such as the polar and spherical
coordinate system in simple programs.
By the way, index notation as discussed in this paper is a notation invented over a century ago. Especially, it

is well known that Einstein summation notation was invented by Einstein when he was working on general
relativity theory. In addition to index notation, there might still be many notations in mathematics that are useful,
but not yet introduced into programming. There might also be notations that describe the formulas of existing
theories more concisely, but that mathematicians have not discovered yet.

We contend that it is very useful for those researching programming languages who are familiar with many pro-
gramming paradigms and can flexibly create new programming languages to learn a wider range of mathematics
for the future of programming languages.

ACKNOWLEDGMENTS
I thank Hiromi Hirano, Hidehiko Masuhara, and Michal J. Gajda for very helpful feedback on the earlier versions
of the paper.

REFERENCES
[1] 2016. Maxima - a Computer Algebra System. (2016). http://maxima.sourceforge.net/.
[2] 2016. SymPy User’s Guide - SymPy 1.0.1.dev documentation. (2016). http://docs.sympy.org/dev/guide.html.
[3] Krister Åhlander. 2002. Einstein summation for multidimensional arrays. Computers & Mathematics with Applications 44, 8-9 (2002),

1007–1017.
[4] Satoshi Egi. 2014. Non-Linear Pattern-Matching against Non-free Data Types with Lexical Scoping. arXiv preprint arXiv:1407.0729

(2014).
[5] Satoshi Egi. 2016. The Egison Programming Language. (2016). https://www.egison.org.
[6] Daniel A Fleisch. 2011. A student’s guide to vectors and tensors. Cambridge University Press.
[7] Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer vision. Cambridge university press.
[8] Gordon Kindlmann et al. 2016. Diderot: a domain-specific language for portable parallel scientific visualization and image analysis. IEEE

transactions on visualization and computer graphics 22, 1 (2016), 867–876.
[9] Yoshiaki Maeda et al. 2010. Computation of the Wodzicki-Chern-Simons form in local coordinates. Computations for S1 actions on

S2 × S3. (2010). http://math.bu.edu/people/sr/articles/ComputationsChernSimonsS2xS3_July_1_2010.pdf.
[10] Yoshiaki Maeda et al. 2016. The geometry of loop spaces II: Characteristic classes. Advances in Mathematics 287 (2016), 485–518.
[11] Takayuki Muranushi et al. 2016. Automatic generation of efficient codes from mathematical descriptions of stencil computation. In

Proceedings of the 5th International Workshop on Functional High-Performance Computing. ACM, 17–22.
[12] Yann Ollivier. 2011. A visual introduction to Riemannian curvatures and some discrete generalizations. Analysis and Geometry of Metric

Measure Spaces: Lecture Notes of the 50th Séminaire de Mathématiques Supérieures (SMS), Montréal (2011), 197–219.
[13] Bernard F Schutz. 1980. Geometrical methods of mathematical physics. Cambridge university press.
[14] Edgar Solomonik and Torsten Hoefler. 2015. Sparse Tensor Algebra as a Parallel Programming Model. arXiv preprint arXiv:1512.00066

(2015).
[15] Viktor Toth. 2005. Tensor manipulation in GPL Maxima. arXiv preprint cs/0503073 (2005).
[16] Wolfram. 2016. Module - Wolfram Language Documentation. (2016). http://reference.wolfram.com/language/ref/Module.html.
[17] Wolfram. 2016. Table - Wolfram Language Documentation. (2016). http://reference.wolfram.com/language/ref/Table.html.

Scheme and Functional Programming Workshop 2017 17

18

Talk • 2

Extending the LISP model: from cons cells to triples, from trees to
hypergraphs

JOSEPH CORNELI AND RAYMOND PUZIO

Arxana is a higher-dimensional variant of LISP, based on nested semantic networks instead of cons cells. In
contradistinction to LISP where the fundamental building block is a cell ‘(a . b)’, Arxana’s fundamental building
block is a triple, ‘(a c b)’. Furthermore, in the language of the Semantic Web, every triple is ‘reified’. Links and
their constituent positions can contain further structure or be augmented with offset annotations: for example,
we distinguish between ‘((a d e) c b)’ and ‘(a c b) ⊕1 (a d e)’. The first form models an assertion about
the link ‘(a d e)’, and the second models an assertion about the atom ‘a’ within ‘(a c b)’. These facilities
allow us to build, reason about, query, and program with hypergraphs rather than trees or networks. This
representation strategy is useful for building runnable conceptual models of complex and recursive structures.
Modelling informal mathematical discourse is a motivating application: this requires a different approach from the
strictly deductive style of formal mathematics. Other programming languages which support a similar annotative
style include Kurzweil’s Flare and Nelson’s ZigZag. Our Arxana prototypes are implemented in Emacs Lisp.

Scheme and Functional Programming Workshop 2017 19

20

Paper • 3

Toward Parallel CFA with Datalog, MPI, and CUDA

THOMAS GILRAY, University of Maryland
SIDHARTH KUMAR, University of Utah

We present our recent experience working to design parallel functional control-flow analysis (CFA) using an encoding in
Datalog and underlying relational algebra implemented for SIMD coprocessors and supercomputers. Control-flow analysis
statically models the possible propagations of data and control through a target program, finitely obtaining a bound on
reachable expressions and environments and on possible return and argument values. We used Soufflé, a parallel CPU-based
Datalog implementation from Oracle labs, and worked toward a new MPI-based distributed hash join implementation and an
extension of the GPU-based relational algebra library RedFox.

In this paper, we provide introductions to functional flow analysis, Datalog, MPI, and CUDA, explaining the total process
we are working on to bring these components together in an analysis pipeline toward the end of scaling functional program
analyses by extracting their intrinsic parallelism in a principled manner.

Additional Key Words and Phrases: Control-flow analysis; CFA; Datalog; CUDA; MPI; Parallelism; Static analysis

1 INTRODUCTION
A control-flow analysis (CFA) of a functional programming language models the propagation of data flows
and control flows through a target program, across all possible executions. In static analyses of functional
languages generally, a model of where functional values (i.e., lambdas, closures) can flow is required to model
where control can flow from a call site, and vice versa. At a call site in Scheme, (f x), the possible values for
f determine which lambda bodies can be reached. Likewise, the possible callers for the lambda that binds f,
(lambda (. . . f . . .) . . .), influence the lambdas that can flow into f. This mutual dependence of data flow
and control flow can be handled using an abstract interpretation, simultaneously modeling all interdependent
language features. There are systematic approaches to designing analyses such as these, however the traditional
worklist algorithms used to implement them in practice are inefficient and have difficulty scaling. Even with
optimizations such as global-store widening and flat environments, the analysis is inO(n3) in the flow-insensitive
case or inO(n4) in the flow-sensitive case. Using more advanced forms of polyvariance or context-sensitivity, the
analysis becomes significantly more expensive.
In this paper, we describe our ongoing work to encode these analyses as declarative datalog programs and

implement them as highly parallel relational algebra (RA), on the GPU and across many CPUs. Relational algebra
operations, derived from Datalog analysis specifications, are computationally intensive and memory-bound in
nature. GPUs provide massive fine-grained parallelism and great memory bandwidth, potentially making them
the ideal target for solving these operations. We use Redfox [Wu et al. 2014], an open source tool which executes
queries expressed in a specialized query language on GPUs. We also modify Redfox, adding capabilities to perform
fixed-point iterations essential for solving RA operations derived from Datalog. We are also pursuing a Message
Passing Interface (MPI)-based backend for solving RA operations across many compute nodes on a network. This
approach is also particularly promising, given that HPC is increasingly mainstream and supercomputers are
getting faster cores and lower latency interconnects.

2 CONTROL-FLOW ANALYSIS
This section introduces control-flow analysis by instantiating it for the continuation-passing-style (CPS) λ-
calculus. We follow the abstracting abstract machines (AAM) methodology, a systematic process for developing a
static analysis (an approximating semantics) from a precise operational semantics of an abstract machine.

Scheme and Functional Programming Workshop 2017 21

3 • Thomas Gilray and Sidharth Kumar

Static analysis by abstract interpretation proves properties of a program by running code through an inter-
preter powered by an abstract semantics that approximates the behavior of an exact concrete semantics. This
process is a general method for analyzing programs and serves applications such as program verification, mal-
ware/vulnerability detection, and compiler optimization, among others [Cousot and Cousot 1976, 1977, 1979;
Midtgaard 2012]. Van Horn and Might’s approach of abstracting abstract machines (AAM) uses abstract interpre-
tation of abstract machines for control-flow analysis (CFA) of functional (higher-order) programming languages
[Johnson et al. 2013; Might 2010; Van Horn and Might 2010]. The AAM methodology is flexible and allows a high
degree of control over how program states are represented. AAM provides a general method for automatically
abstracting an arbitrary small-step abstract-machine semantics to obtain an approximation in a variety of styles.
Importantly, one such style aims to focus all unboundedness in a semantics on the machine’s address-space.
This makes the strategy used for the allocation of addresses crucial to the tradeoff struck between precision
and complexity [Gilray et al. 2016a], and results in a highly flexible and tunable analysis infrastructure. More
broadly, the approach has been used to instantiate both traditional finite flow analyses and heavy-weight program
verification [Nguyen et al. 2014].

2.1 A Concrete Operational Semantics
This section reviews the process of producing a formal operational semantics for a simple language [Plotkin
1981], specifically, the untyped λ-calculus in continuation-passing style (CPS). CPS constrains call sites to tail
position so that functions may never return; instead, callers explicitly pass a continuation forward to be invoked
on the return value [Plotkin 1975]. This makes our semantics tail recursive (small-step) and easier to abstract
while entirely eliding the challenges of manually managing a stack and its abstraction, a process previously
discussed in the context of AAM [Johnson and Van Horn 2014; Van Horn and Might 2010]. Using an AAM that
explicitly models the stack in a precise manner, while allowing for adjustable allocation, has also been recently
addressed [Gilray et al. 2016b].

The grammar structurally distinguishes between call-sites call and atomic-expressions ae:

call ∈ Call ::= (ae ae . . .) | (halt)

lam ∈ Lam ::= (λ (x . . .) call)

ae ∈ AE ::= lam | x

x ∈ Var is a set of program variables

Instead of specifically affixing each expression with a unique label, we assume two identical expressions occurring
separately in a program are not equal. While a direct-style language with a variety of continuations (e.g., argument
continuations, let-continuations, etc.), or extensions such as recursive-binding forms, conditionals, mutation, or
primitive operations, would add complexity to any semantics, they do not affect the concepts we are exploring
and so are left out.

We define the evaluation of programs in this language using a relation (→Σ), over states of an abstract-machine,
which determines how the machine transitions from one state to another. States (ς) range over control expression

22 Scheme and Functional Programming Workshop 2017

Paper: Toward Parallel CFA with Datalog, MPI, and CUDA • 3

(a call site), binding environment, and value store components:

ς ∈ Σ ≜ Call × Env × Store

ρ ∈ Env ≜ Var⇀ Addr

σ ∈ Store ≜ Addr ⇀ Value

a ∈ Addr ≜ Var × N

v ∈ Value ≜ Clo

clo ∈ Clo ≜ Lam × Env

Environments (ρ) map variables in scope to an address for the visible binding. Value stores (σ) map these
addresses to values (in this case, closures); these may be thought of as a model of the heap. Both these functions
are partial and accumulate points as execution progresses.

Evaluation of atomic expressions is handled by an auxiliary function (A) which produces a value (clo) for an
atomic expression in the context of a state (ς). This is done by a lookup in the environment and store for variable
references (x), and by closure creation for λ-abstractions (lam). In a language containing syntactic literals, these
would be translated into equivalent semantic values here.

A : AE × Σ⇀ Value

A(x , (call, ρ, σ)) ≜ σ (ρ(x))

A(lam, (call, ρ, σ)) ≜ (lam, ρ)

The transition relation (→Σ) : Σ⇀ Σ yields at most one successor for a given predecessor in the state-space Σ.
This is defined:

ς︷ ︸︸ ︷
((aef ae1 . . . aej), ρ,σ) →Σ (call′, ρ ′,σ ′)

where ((λ (x0 . . . x j) call′), ρλ) = A(aef , ς)

vi = A(aei , ς)

ρ ′ = ρλ[xi 7→ ai]

σ ′ = σ [ai 7→ vi]

ai = (xi , |dom(σ)|)

Execution steps to the call-site body of the lambda invoked (as given by the atomic-evaluation of aef). This
closure’s environment (ρλ) is extended with a binding for each variable xi to a fresh address ai . A particular
strategy for allocating a fresh address is to pair the variable being allocated for with the current number of points
in the store (a value that increases after each set of new allocations). The store is extended with the atomic
evaluation of aei for each of these addresses ai . A state becomes stuck if (halt) is reached or if the program is
malformed (e.g., a free variable is encountered).
To fully evaluate a program call0 using these transition rules, we inject it into our state space using a helper

I : Call → Σ:

I(call) ≜ (call,�,�)

We may now perform the standard lifting of (→Σ) to a collecting semantics defined over sets of states:

s ∈ S ≜ P(Σ)

Scheme and Functional Programming Workshop 2017 23

3 • Thomas Gilray and Sidharth Kumar

Our collecting relation (→S) is a monotonic, total function that gives a set including the trivially reachable state
I(call0) plus the set of all states immediately succeeding those in its input.

s →S {ς
′ | ς ∈ s ∧ ς →Σ ς

′} ∪ {I(call0)}

If the program call0 terminates, iteration of (→S) from ⊥ (i.e., the empty set �) does as well. That is, (→S)
n(⊥)

is a fixed point containing call0’s full program trace for some n ∈ N whenever call0 is a terminating program. No
such n is guaranteed to exist in the general case (when call0 is a non-terminating program) as our language (the
untyped CPS λ-calculus) is Turing-equivalent, our semantics is fully precise, and the state-space we defined is
infinite.

2.2 An Abstract Operational Semantics
Now that we have formalized program evaluation using our concrete semantics as iteration to a (possibly infinite)
fixed point, we are ready to design a computable approximation of this fixed point (the exact program trace) using
abstract interpretation. Previous work has explored a wide variety of approaches to systematically abstracting a
semantics like these [Johnson et al. 2013; Might 2010; Van Horn and Might 2010]. Broadly construed, the nature
of these changes is to simultaneously finitize the domains of our machine while introducing non-determinism
both into the transition relation (multiple successor states may immediately follow a predecessor state) and
the store (multiple values may become conflated at a single address). We use a finite address space to cut the
otherwise mutually recursive structure of values (closures) and environments. (Without addresses and a value
store, environments map variables directly to closures and closures contain environments). A finite address space
yields a finite state space overall and ensures the computability of our analysis. Typographically, components
unique to this abstract abstract machine wear hats so we can tell them apart without confusing essential underlying
roles:

ς̂ ∈ Σ̂ ≜ Call × Ênv × �Store
ρ̂ ∈ Ênv ≜ Var ⇀�Addr

σ̂ ∈ �Store ≜�Addr → �Value
â ∈ �Addr ≜ Var

v̂ ∈ �Value ≜ P(Ĉlo)

ĉlo ∈ Ĉlo ≜ Lam × Ênv

Value stores are now total functions mapping abstract addresses to a flow set (v̂) of zero or more abstract closures.
This allows a range of values to merge and inhabit a single abstract address, introducing imprecision into our
abstract semantics, but also allowing for a finite state space and a guarantee of computability. To begin, we use a
monovariant address set �Addr with a single address for each syntactic variable. This choice (and its alternatives)
is at the heart of our present topic and will be returned to shortly.

Evaluation of atomic expressions is handled by an auxiliary function (Â) which produces a flow set (v̂) for an
atomic expression in the context of an abstract state (ς̂). In the case of closure creation, a singleton flow set is
produced.

Â : AE × Σ̂⇀ �Value
Â(x , (call, ρ̂, σ̂)) ≜ σ̂ (ρ̂(x))

Â(lam, (call, ρ̂, σ̂)) ≜ {(lam, ρ̂)}

24 Scheme and Functional Programming Workshop 2017

Paper: Toward Parallel CFA with Datalog, MPI, and CUDA • 3

The abstract transition relation ({∧

Σ
) ⊆ Σ̂ × Σ̂ yields any number of successors for a given predecessor in the

state-space Σ̂. As mentioned when introducing AAM, there are two fundamental changes required using this
approach. Because abstract addresses can become bound to multiple closures in the store and atomic evaluation
produces a flow set containing zero or more closures, one successor state results for each closure bound to
the address for aef . Also, due to the relationality of abstract stores, we can no longer use strong update when
extending the store σ̂ ′.

ς̂︷ ︸︸ ︷
((aef ae1 . . . aej), ρ̂, σ̂) {∧

Σ
(call′, ρ̂ ′, σ̂ ′)

where ((λ (x0 . . . x j) call′), ρ̂λ) ∈ Â(aef , ς̂)

v̂i = Â(aei , ς̂)

ρ̂ ′ = ρ̂λ[xi 7→ âi]

σ̂ ′ = σ̂ ⊔ [âi 7→ v̂i]

âi = xi

A weak update is performed on the store instead which results in the least upper bound of the existing store and
each new binding. Join on abstract stores distributes point-wise:

σ̂ ⊔ σ̂ ′ ≜ λâ. σ̂ (â) ∪ σ̂ ′(â)

Unless it is desirable, and provably safe to do so [Might and Shivers 2006], we never remove closures already seen.
Instead, we strictly accumulate every closure bound to each â (i.e., abstract closures which simulate closures
bound to addresses which â simulates) over the lifetime of the program. A flow set for an address â indicates
a range of values which over-approximates all possible concrete values that can flow to any concrete address
approximated by â. For example, if a concrete machine binds (y, 345) 7→ clo1 and (y, 903) 7→ clo2, its monovariant
approximation might bind y 7→ {ĉlo1, ĉlo2}. Precision is lost for (y, 345) both because its value has been merged
with ĉlo2, and because the environments for ĉlo1 and ĉlo2 in-turn generalize over many possible addresses for
their free variables (the environment in ĉlo1 is less precise than that in clo1).

To approximately evaluate a program according to these abstract semantics, we first define an abstract injection
function, Î, where the store begins as a function, ⊥, that maps every abstract address to the empty set.

Î : Call → Σ̂

Î(call) ≜ (call,�,⊥)

We again lift ({∧

Σ
) to obtain a collecting semantics ({∧

S
) defined over sets of states:

ŝ ∈ Ŝ ≜ P(Σ̂)

Our collecting relation ({∧

S
) is a monotonic, total function that gives a set including the trivially reachable

finite-state Î(call0) plus the set of all states immediately succeeding those in its input.

ŝ {∧

S
ŝ ′,where

ŝ ′ = {ς̂ ′ | ς̂ ∈ ŝ ∧ ς̂ {∧

Σ
ς̂ ′} ∪ {Î(call0)}

Because �Addr (and thus Σ̂) is now finite, we know the approximate evaluation of even a non-terminating call0
will terminate. That is, for some n ∈ N, the value ({∧

S
)n(⊥) is guaranteed to be a fixed point containing an

approximation of call0’s full concrete program trace [Tarski 1955].

Scheme and Functional Programming Workshop 2017 25

3 • Thomas Gilray and Sidharth Kumar

2.2.1 Widening and Extension to Larger Languages. Various forms of widening and further approximations
may be layered on top of the naïve analysis ({∧

S
). One such approximation is store widening, which is necessary

for our analysis to be polynomial-time in the size of the program. This structurally approximates the analysis
above, where each state contains a whole store, by pairing a set of states without stores, with a single, global
store that overapproximates all possible bindings. This global store is maintained as the least-upper-bound of all
bindings that are encountered in the course of analysis.
Setting up a semantics for real language features such as conditionals, primitive operations, direct-style

recursion, or exceptions, is no more difficult, if more verbose. Supporting direct-style recursion, for example,
requires an explicit stack as continuations are no longer baked into the source text by CPS conversion. Handling
other forms is often as straightforward as including an additional transition rule for each.

3 DATALOG-BASED FLOW ANALYSIS
In this section, we will give an overview of Datalog as a declarative logic-programming language, show how it
may be executed using a bottom-up fixed-point algorithm, and discuss our encoding of abstract semantics from
the previous section.

3.1 Datalog
A datalog program consists of a set of relations, along with the rules pertaining to them. A relation encodes a set
of tuples known as facts. For example, if we have a relation Parent, the fact Parent(p, c) may assert that p is a
parent of c . A rule then takes the form a0 :− a1, . . . ,aj where a comma denotes conjunction and each atom ai
is of the form r (x , . . .), where r is a relation and each x is a variable. In Datalog the turnstile means “is implied
by”; this is because the rules are formally an implication form of a Horn clause. Horn clauses are disjunctions
where all but one of the atoms are negated: a0 ∨ ¬a1 ∨ . . . ∨ ¬aj . This is the same as a0 ∨ ¬(a1 ∧ . . . ∧ aj) by De
Morgan’s laws, which is the same as an implication: a0 ⇐= a1 ∧ . . . ∧ aj . For example, a rule for computing
grandparents can be specified:

GrandParent(дp, c) :− Parent(дp,p), Parent(p, c).

3.2 Datalog solvers
A number of strategies exist for executing a datalog program—that is, finding a sound least-fixed-point that
contains all the input facts and obeys every rule. Unlike solvers for Prolog and other logic programming systems,
bottom-up approaches have tended to prevail [Ullman 1989] although this can depend on extensions to the
language and its use. Bottom-up solving begins with the set of facts provided as input, and iterates a monotonic
function encoding the set of rules until a least-fixed-point is reached. The data structure for relations and the
operation of these increasing iterations varies by approach.
The datalog solver bddbddb uses binary decision diagrams (BDDs) to encode relations and supports efficient

relational algebra (RA) over these structures [Whaley et al. 2005]. BDDs are decision trees that encode arbitrary
relations by viewing each bit in the input as a binary decision. They have the potential to be a compact and
efficient representation of a relation, but have a worst-case exponential space complexity and are highly sensitive
to variable ordering (in what order are bits of input branched on).

The datalog solver Soufflé uses the semi-naïve bottom up algorithm with partial-evaluation-based optimization
[Scholz et al. 2016]. A relational algebra machine (RAM) executes the program in bottom-up fashion by using
efficient underlying data structures for relations (such as prefix trees) and directly selects and propagates tuples
in a series of nested loops. This RAM then has a partial-evaluation applied to it that optimizes the interpretation
for the specific set of datalog rules. The tool accepts a datalog program as input, performs this partial evaluation
and writes a C++ program that parallelizes the outside loops of each RA operation using pthreads.

26 Scheme and Functional Programming Workshop 2017

Paper: Toward Parallel CFA with Datalog, MPI, and CUDA • 3

3.3 Encoding CFA
Various program analysis have been implemented using Datalog. Both bddbddb and Soufflé presented program
analyses in their experiments. Another prominent example is the DOOP framework for Java [Smaragdakis et al.
2011], used to demonstrate a generalization of object-sensitive flow analysis.

To encode a control-flow analysis as a Datalog problem, we first represent the abstract syntax tree (AST) as a
set of relations where each expression and variable in the program has been enumerated. In the soufflé syntax,
the encoding for Lambda expressions, conditional expressions, and Variable references is as follows:

.decl SyntaxLambdaExp(e:Exp, x:Var, ebody:Exp) input

.decl SyntaxIfExp(e:Exp, x:Var, e0:Exp, e1:Exp) input

.decl SyntaxVarExp(e:Exp, x:Var) input

A tuple (e0,x , e1) in the SyntaxLambdaExp relation indicates that the expression e0 is a lambda with the formal
parameter x and the expression body e1. A tuple (e0,x , e1, e2) in the SyntaxIfExp relation indicates that the
expression e0 is a conditional branching on the variable x with the true branch e1 and false branch e2. A tuple
(e,x) in the SyntaxVarExp relation indicates that the expression e is a variable reference returning the value of
variable x .

We then encode the constraints of our analysis directly as rules in datalog, such as:
StoreEdge(x,y) :-

SyntaxVarExp(e,x),
ReachableExp(e,kaddr),
KStore(kaddr,y,ebody,kaddr0).

This rule adds a flow from x to y when a reachable expression e is returning the value at x and its continuation
binds the variable y.

4 MANY-NODE INNER-JOINS AND FUTURE WORK
Modern supercomputers’ use of very low latency interconnect networks and highly optimized compute cores
opens up the possibility of implementing highly parallel relational algebra using Message-Passing Interface (MPI).
MPI is a portable standard library interface for writing parallel programs in a HPC setting and has been highly
optimized on a variety of computing infrastructures, from small clusters to high-end supercomputers.

4.1 Parallel Join
Radix-hash join and merge-sort join are two of the most popularly used parallel implementations of the inner join
operation. Both these algorithms involve partitioning the input data so that they can be efficiently distributed to
the participating processes. For example, in the radix-hash approach a tuple is assigned to a process based on
the hash output of the column-value on which the join operation is keyed. With this approach, tuples on both
relations that share the same hash value are always assigned to the same process. For every tuple in the left-hand
side of the join relation is matched against all the tuples of the right-hand side of the join relation. Fast lookup
data-structures like hash tables, or radix-trees (TRIE) can be used to organize the tuples within every process.
The initial distribution of data using hashing reduces the overall computation overhead by a factor of the number
of processes (n).

More recently [Barthels et al. 2015, 2017], there has been a concerted effort to implement JOIN operations on
clusters using an MPI backend. The commonly used radix-hash join and merge-sort join have been re-designed
for this purpose. Both these algorithms involve a hash-based partitioning of data so that they are be efficiently
distributed to the participating processes and are designed such that inter-process communication is minimized. In
both of these implementations one-sided communication is used for transferring data between process. With one-
sided communication the initiator of a data transfer request can directly access parts of the remote memory and

Scheme and Functional Programming Workshop 2017 27

3 • Thomas Gilray and Sidharth Kumar

462

356

302
272

249
235

0

100

200

300

400

500

64 128 256 512 1024 2048

TI
m

e
 (

Se
co

n
d

s)

Number of Processes

Fig. 1. Strong-scaling results.

64 128 256 512 1024 2048

Fixed Point Check 10 10 10 11 12 29

Insert 167 129 107 94 85 60

Network exchange 25 20 24 27 30 60

Join 258 195 160 138 120 85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of processes

Fig. 2. Strong-scaling timing breakdown.

28 Scheme and Functional Programming Workshop 2017

Paper: Toward Parallel CFA with Datalog, MPI, and CUDA • 3

has full control where the data will be placed. Read and write operations are executed without any involvement
of the target machine. This approach of data transfer involves minimal synchronization between particiapting
processes and have been shown to scale better that traditional two-sided communication. The implementation of
parallel join has shown promising performance numbers; for example, the parallel join algorithm of [Barthels
et al. 2017] ran successfully at 4,096 processor cores with up to 4.8 terabytes of input data.

4.2 Benchmarking: transitive closure
Computing the transitive closure of a graph involves repeated join operations until a fixed point is reached. We
use the previously discussed radix-hash join algorithm to distribute the tuples across all processes. The algorithm
can then be roughly divided into four phases: 1) Join 2) network communication 3) insertion 4) checking for a
fixed point. In our join phase every process concurrently computes the join output of the local tuples. In the next
phase every process sends the join output results to the relevant processes. This is a all-to-all communication
phase, which we implemet using MPI’s all_to_all routines. The next step involves inserting the join output result
received from the network to the output graph’s local partition. In the final step we check if the size of the output
graph changed on any process, if it does then we have not yet reached a fixed point and we continue to another
iteration of these 4 steps.

We performed a set of strong-scaling experiments to compute the transitive closure of graph with 412148 edges—
the largest graph in the U. Florida Sparse Matrix set [Davis and Hu 2011]. We used the Quartz supercomputer at
the Lawrence Livermore National Laboratory (LLNL). For our runs, we varied the number of processes from 64 to
2048. A fixed point was attained after 2933 iterations, with the resulting graph containing 1676697415 edges. As
can be seen in Figure 1, our approach takes 462 seconds at 64 cores and 235 seconds at 2048 cores, corresponds to
an overall efficiency of 6.25%. We investigated these timings further by plotting the timing breakdown of by the
four major components (join, network communication, join, fixed-point check) of the algorithm. We observe (see
Figure 2) that for all our runs the total time is dominated by computation rather than communication; insert and
join together tended to take up close to 90% of the total time. This is quite an encouraging result as it shows that
we are not bound primarily by the network bandwidth (at these scales and likely moderately higher ones) and it
gives us the opportunity to optimize the computation phase.

5 PARALLELIZING DATALOG ON THE GPU
Programmable GPUs provide massive fine-grained parallelism, higher raw computational throughput, and higher
memory bandwidth compared with multi-core CPUs. As a result they are a favorable alternative over traditional
CPUs when it comes to high throughput implementations of applications. GPU implementations can potentially
provide several orders of magnitude in performance improvement over traditional CPUs. As a result, GPU
technology is increasingly widespread and has been successfully adopted by significant number of data-intensive
scientific applications such as molecular dynamics [Anderson et al. 2008], physical simulations [Mosegaard and
SÃÿrensen 2005], and ray tracing in graphics [Parker et al. 2010].

5.1 GPU architecture
Threads provide the finest level of parallelism in a GPU. A GPU application is composed of a series of multi-
threaded data-parallel kernels. Data-parallel kernels are composed of a grid of parallel work-units called Coopera-
tive Thread Arrays (CTAs) which in turn consist of an array of threads. In such processors, threads within a CTA
are grouped into logical units known as warps that are mapped to SIMD units called Stream Multiprocessors
(SMs) (see Figure 3). The programmer divides work into threads, threads map to thread blocks (CTAs), and
thread blocks map to a grid. The compute work distributor allocates thread blocks to SMs. Once a thread block is

Scheme and Functional Programming Workshop 2017 29

3 • Thomas Gilray and Sidharth Kumar

distributed to an SM the resources for the thread block are allocated (warps and shared memory) and threads are
divided into groups of (typically) 32 threads called warps.

5.2 Redfox

Streaming Multiprocessor (SM)

Cooperative Thread Arrays (blocks)
Threads

Fig. 3. High-level overview of GPU.

We use Redfox [Wu et al. 2014] a GPU-based open-source
tool to run the relational algebra (RA) kernels translated
from Datalog. Redfox is used for compiling and executing
queries expressed in a specialized query language on GPUs.
Typically, the parallelism involved in solving relational-
algebra operations on GPUs is challenging due to unstruc-
tured and irregular data access as opposed to other domain-
specific operations, such as those common to dense linear al-
gebra. Redfox tackles these issues and provides an ecosystem
to accelerate relational computation including algorithm de-
sign, system implementation, and compiler optimizations.
It bridges the semantic gap between relational queries and
GPU execution models, allowing its clients to operate exclusively in terms of RA semantics, and maintains
significant performance speedup relative to the baseline CPU implementation.
Redfox takes advantage of the fine-grained massive parallelism offered by GPUs. It is comprised of (a) a

specialized language front-end that allows the specification of sequences of RA operations that combine to
form a query, (b) an RA to GPU compiler, (c) an optimized GPU implementation of select RA operators, and
(d) a supporting runtime. The relational data is stored as a key-value store to support a range of workloads
corresponding to queries over data sets. We use our own system to transform datalog queries into RA kernels.
Redfox provides a GPU implementation of the following set operations: union, intersection, difference, cross
product, inner-join, project and select. Among all the RA primitive operators, inner-join is the most complex and
is more compute intensive than the rest of the RA primitives. Another problem with joins is that their output size
can vary, i.e. between zero to the product of the sizes of the two inputs. One of the salient contributions of redfox
is an optimal implementation of the join operation [Haicheng Wu and Yalamanchili 2014].

5.3 Fixed-point iterations with Redfox

Start

End

BLOCK 0
● Kernel 0
● Kernel 2

BLOCK 1
● Kernel 0
● Kernel 1
● Kernel 2

BLOCK 2
● Kernel 0

Start

End

BLOCK 0
● Kernel 0
● Kernel 2

BLOCK 1
● Kernel 0
● Kernel 1
● Kernel 2

BLOCK 2
● Kernel 0

COND

Fig. 4. Redfox execution with (right) and without (left)
conditional branches.

One of the major challenges in adapting redfox to solve RA
kernels derived from datalog queries was to perform fixed-
point iterations. For fixed-point iterations redfox needed to
process loops and, until now, Redfox was only used in a se-
quential mode, where a block unconditionally transitioned
to the next block. In the original Redfox paper’s experi-
ments, the authors did use a fixed-point computation, but
hadmanually unrolled the benchmark to the needed number
of iterations. In our application, we need the ability to run
basic blocks (each a straight-line sequence of RA kernels), in
a loop, until the relation in contention does not change and
the system reaches a fixed point—regardless of how many
loops this requires. In order to facilitate execution of loops
in redfox, we have added conditional branches, that allows execution to choose a target basic block based on the
equality of two input relations. We used the COND kernel of GPU and use the outcome of the kernel to schedule
the target block. Typically, in fixed-point iterations we check if the values stored in relation after execution of a

30 Scheme and Functional Programming Workshop 2017

Paper: Toward Parallel CFA with Datalog, MPI, and CUDA • 3

certain kernel changed or not, if it remains unchanged then we have attained a fixed point and the execution can
move forward, otherwise the set of kernel is executed again (see Figure 4).

5.4 Preliminary results
We evaluated the performance of Redfox in computing the transitive closure of large-sized graphs. For bench-
marking we used the open source graphs available at [Davis and Hu 2011]. Out of all relation operations used in
computing the transitive closure, join is computationally the most complex. We found that the join operation
manage to scale decently well with larger graphs. Time consumed performing join operation across 188 iterations
for input graph of 25,674 edges (output size is 6,489,757 edges) took 3.6 seconds. Total time for other kernel
operation (project, union, copy) along with I/O time was 3.3 seconds. This total time (3.6 + 3.3 seconds) is almost
comparable to the time taken by the highly optimized code Souffle (5.6 seconds) to compute the transitive closure
of the same graph. We surmise, that Souffle is able to extract parallelism sufficient enough to solve the problem
for this graph. Our hypothesis is that the GPU performance may become significantly faster than Souffle for very
large scale graphs.

6 FUTURE WORK AND CONCLUSION
We have outlined a possible pipeline for extracting parallelism from a control-flow analysis in a principled way
and have implemented GPU-based and MPI-based transitive closure algorithms to experiment with parallizing
this kind of problem. We are also interested in writing PGAS based backends for our RA kernels. Partitioned
global address space (PGAS) is a commonly used parallel programming model, that follows the ideals of shared
memory access but operates in a distributed setting—it assumes a global memory address space that is logically
partitioned, portions of which are local to each process. The two main implementations of this programming
model are chapel [Chamberlain et al. 2007] and UPC++.

REFERENCES
Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. 2008. General purpose molecular dynamics simulations fully implemented on graphics

processing units. J. Comput. Phys. 227, 10 (2008), 5342 – 5359. DOI:http://dx.doi.org/10.1016/j.jcp.2008.01.047
Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015. Rack-Scale In-Memory Join Processing Using RDMA. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1463–1475.
DOI:http://dx.doi.org/10.1145/2723372.2750547

Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoefler. 2017. Distributed Join Algorithms on Thousands of
Cores. Proc. VLDB Endow. 10, 5 (Jan. 2017), 517–528. DOI:http://dx.doi.org/10.14778/3055540.3055545

B.L. Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Programmability and the Chapel Language. The International
Journal of High Performance Computing Applications 21, 3 (2007), 291–312. DOI:http://dx.doi.org/10.1177/1094342007078442
arXiv:http://dx.doi.org/10.1177/1094342007078442

Patrick Cousot and Radhia Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of the Second International
Symposium on Programming. Paris, France, 106–130.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the Symposium on Principles of Programming Languages. ACM Press, New York, Los Angeles,
CA, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of the Symposium on Principles of
Programming Languages. ACM Press, New York, San Antonio, TX, 269–282.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec.
2011), 25 pages. DOI:http://dx.doi.org/10.1145/2049662.2049663

Thomas Gilray, Michael D. Adams, and Matthew Might. 2016a. Allocation Characterizes Polyvariance: A Unified Methodology for Polyvariant
Control-flow Analysis. Proceedings of the International Conference on Functional Programming (ICFP) (September 2016).

Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. 2016b. Pushdown Control-Flow Analysis For Free.
Proceedings of the Symposium on the Principles of Programming Languages (POPL) (January 2016).

Molham Aref Haicheng Wu, Daniel Zinn and Sudhakar Yalamanchili. 2014. Multipredicate Join Algorithms for Accelerating Relational Graph
Processing on GPUs. In The 5th International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage

Scheme and Functional Programming Workshop 2017 31

3 • Thomas Gilray and Sidharth Kumar

Architectures (ADMS).
J. Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn. 2013. Optimizing Abstract Abstract Machines. In Proceedings of the

International Conference on Functional Programming.
J. Ian Johnson and David Van Horn. 2014. Abstracting Abstract Control. In Proceedings of the ACM Symposium on Dynamic Languages.
Jan Midtgaard. 2012. Control-flow analysis of functional programs. Comput. Surveys 44, 3 (Jun 2012), 10:1–10:33.
Matthew Might. 2010. Abstract Interpreters for free. In Static Analysis Symposium. 407–421.
Matthew Might and Olin Shivers. 2006. Improving flow analyses via ΓCFA: abstract garbage collection and counting. In ACM SIGPLAN

Notices, Vol. 41. ACM, 13–25.
J. Mosegaard and T. S. SÃÿrensen. 2005. Real-time Deformation of Detailed Geometry Based on Mappings to a Less Detailed Physical

Simulation on the GPU. In Eurographics Symposium on Virtual Environments, Erik Kjems and Roland Blach (Eds.). The Eurographics
Association. DOI:http://dx.doi.org/10.2312/EGVE/IPT_EGVE2005/105-111

Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft Contract Verification. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA, 139–152. DOI:http://dx.doi.org/10.1145/2628136.
2628156

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith
Morley, Austin Robison, and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. In ACM SIGGRAPH 2010 Papers (SIGGRAPH
’10). ACM, New York, NY, USA, Article 66, 13 pages. DOI:http://dx.doi.org/10.1145/1833349.1778803

G. D. Plotkin. 1975. Call-by-name, call-by-value and the lambda-calculus. In Theoretical Computer Science 1. 125–159.
Gordon D Plotkin. 1981. A structural approach to operational semantics. (1981).
Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast large-scale program analysis in datalog. In Proceedings of

the 25th International Conference on Compiler Construction. ACM, 196–206.
Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. 2011. Pick Your Contexts Well: Understanding Object-Sensitivity. In Symposium

on Principles of Programming Languages. 17–30.
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955), 285–309.
Jeffrey D Ullman. 1989. Bottom-up beats top-down for datalog. In Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems. ACM, 140–149.
David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In International Conference on Functional Programming. 51.
John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using datalog with binary decision diagrams for program analysis. In

Asian Symposium on Programming Languages and Systems. Springer, 97–118.
Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Baxter, Michael Garland, and Sudhakar Yalamanchili. 2014. Red Fox: An

Execution Environment for Relational Query Processing on GPUs. In Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO ’14). ACM, New York, NY, USA, Article 44, 11 pages. DOI:http://dx.doi.org/10.1145/2544137.2544166

32 Scheme and Functional Programming Workshop 2017

33

Talk • 4

Gerbil on Gambit, as they say Racket on Chez

DIMITRIS VYZOVITIS

Gerbil is a new opinionated dialect of Scheme designed for Systems Programming with a state of the art macro
and module system on top of the Gambit runtime. Gerbil wants to fill the the needs of seasoned Schemers and
Common LISP refugees who want to do their systems programming with modern macro facilities and without
loss of performance.
The system implements modularity and language extensibility facilities equivalent to Racket’s, including

the #lang reader. Gerbil implements this with a macro expander, compiler, and standard library sitting on top
of Gambit. As such, it brings these facilities for the first time to a highly performant Ahead of Time natively
compiled environment.

The relationship between Gerbil and Gambit is symbiotic: Gerbil provides the top-half and Gambit the bottom-
half ot the system, similar to how Racket will run on Chez in the not so distant future.

Source code: https://github.com/vyzo/gerbil

34 Scheme and Functional Programming Workshop 2017

35

+

{lambda talk}
Alain Marty Engineer Architect

Villeneuve de la Raho, France
marty.alain@free.fr

ABSTRACT
The {lambda way} project is a web application built on two
engines, {lambda talk} and {lambda tank}. {lambda talk} is a
purely functional language unifying authoring, styling and
scripting in a single and coherent Lisp-like syntax, working in
{lambda tank}, a tiny wiki built as a thin overlay on top of any
web browser. In this paper we forget {lambda tank}, mainly a
PHP engine managing text files on the server side, and
progressively introduce {lambda talk}, a Javascript engine
evaluating code in realtime on the client side. The making of
{lambda talk} is done in three stages:

• 1) we define the minimal set of rules making {lambda talk} a
programming language, complete even if unusable,

• 2) we progressively add numbers, operators, data and control
structures making {lambda talk} more usable,

• 3) we finally build on the browsers' full functionalities a set of
libraries making {lambda talk} usable and much more
efficient.

As a guilding line, at each stage, we compute with a total precision
the factorial of 5 and 50:

5! = 120
50! = 30414093201713378043612608166064
 768844377641568960512000000000000

In a last section, APPENDICE, some explanations are given on
the {lambda talk}'s Javascript implementation.

KEYWORDS
• Information systems~Wikis
• Theory of computation~Regular languages
• Theory of computation~Lambda calculus
• Software and its engineering~Functional languages
• Software and its engineering~Extensible Markup Language

INTRODUCTION
{lambda talk} expressions are written in an editor frame,
evaluated in real time, displayed in the wiki's viewer frame, then
saved and published on the WEB. « A wiki is a web application
which allows collaborative modification, extension, or deletion of
its content and structure.[1] » The father of this concept, Ward
Cunningham[2], gives a simple and clear introduction to {lambda
talk}:

• 1) Away from curly braces {} words are just words:
Hello World!
> Hello World!

• 2) Expressions are written in a prefix notation:
2+3 is equal to {b {+ 2 3}}
> 2+3 is equal to 5

• 3) Functions are created with lambda and named with def:
{def SMART_ADD
 {lambda {:a :b}
 :a+:b is equal to {b {+ :a :b}}}}
> SMART_ADD

{SMART_ADD 2 3}
> 2+3 is equal to 5

These examples use the "+" Math operator, the "b" HTML/CSS
markup operator and Javascript numbers. In the following we
want to introduce {lambda talk} built upon the deepest foundation
possible, simple words, and we will ignore everything but words
until the third section.

1. WORDS
We present the structure and evaluation of a {lambda talk}
expression.

1.1. expressions
{lambda talk} is mainly built on three rules freely inspired by the
λ-calculus[3]. An expression is defined recursively as follows:

expression is [word|abstraction|application]*

where

1) word is [^\s{}]*
2) abstraction is {lambda {word*} expression}
3) application is {abstraction expression}

An expression is made of words, abstractions and
applications where 1) a word is any character except spaces
"\s" and curly braces "{}", 2) an abstraction is the
"process" (called a function) selecting a sequence of words
(called arguments) in an expression (called body), 3) an
application is the process calling an abstraction to
replace selected words by some other words (called values).

The evaluation follows these rules:

1. words are not evaluated,
2. abstractions are evaluated before applications,
3. an abstraction is evaluated to a single word, a reference to

an anonymous a function stored in a global dictionary,
initially empty,

36 Scheme and Functional Programming Workshop 2017

4. an application is progressively evaluated from inside out,
to a sequence of words,

5. the evaluation stops when all expressions have been
reduced to a sequence of words.

What can we do with that?

1.1.1. words

Hello World
> Hello World

Words are not evaluated and are displayed as they are.

1.1.2. abstraction

{lambda {o a} oh happy day!}
> _LAMB_6

The abstraction selects o and a as characters whose occurences in
the expression oh happy day! are to be replaced by some
future values, and returns the reference to an anonymous function.

1.1.3. application (1)

{{lambda {o a} oh happy day!} oOOOo aaAAaa}
> oOOOoh haaAAaappy daaAAaay!

The abstraction is defined and immediately called. The abstraction
is first evaluated to a word, say _LAMB_6, the application
{_LAMB_6 oOOOo aaAAaa} gets the given values, calls the
abstraction which makes the substitution and returns the result,
oOOOoh haaAAaappy daaAAaay!.

1.1.4. application (2)

{{lambda {z}
 {z {lambda {x y} x}}}
 {{lambda {x y z}
 {z x y}} Hello World}}
> Hello

{{lambda {z}
 {z {lambda {x y} y}}}
 {{lambda {x y z}
 {z x y}} Hello World}}
> World

These expressions return respectively the first and the second
words of Hello World, recalling a pair and its accessors. Let's
trace the evaluation leading to Hello:

• 1) Nested lambdas are first evaluated:
1: {{lambda {z} {z {lambda {x y} x}}}
 {{lambda {x y z} {z x y}} Hello World}}
2: {{lambda {z} {z _LAMB_1}}
 {_LAMB_2 Hello World}}
3: {_LAMB_3 {_LAMB_2 Hello World}}
where
 _LAMB_1 replaces {lambda {x y} x}
 _LAMB_2 replaces {lambda {x y z} {z x y}}
 _LAMB_3 replaces {lambda {z} {z f1}}

• 2) Then simple forms are evaluated:
1: {_LAMB_3 {_LAMB_2 Hello World}}
2: {_LAMB_3 {{lambda {x y z} {z x y}} Hello
World}}

{{lambda {x y z} {z x y}} Hello World} is a
partial application replacing "x" and "y" by "Hello" and "World",
creating a new lambda waiting for the third value, {lambda
{z} {z Hello World}}, and returning a reference,
_LAMB_4.

3: {_LAMB_3 _LAMB_4}
4: {{lambda {z} {z _LAMB_1}} _LAMB_4}
5: {_LAMB_4 _LAMB_1}
6: {{lambda {z} {z Hello World}} _LAMB_1}
7: {_LAMB_1 Hello World}
8: {{lambda {x y} x} Hello World}
9: Hello

To sum up on lambdas:

• 1) lambdas are first class functions,
• 2) lambdas accept partial function application: a lambda

called with a number of values lesser than its arity memorizes
the given values and returns a new lambda waiting for the rest.

• 3) lambdas don't create closures, inner lambdas have no
access to outer lambdas' arguments, there is no lexical
scoping, no nested environments, no free variables.

Lambdas are pure black boxes, independant of any context, as are
mathematical functions.

1.1.5. application (3)

{{lambda {n} {{lambda {g n} {g g n}} {lambda {g
n} {{lambda {p t f g n} {{{p n} {{lambda {x y z}
{z x y}} t f}} g n}} {lambda {n} {{lambda {n} {n
{lambda {x} {lambda {z} {z {lambda {x y} y}}}}
{lambda {z} {z {lambda {x y} x}}}}} n}} {lambda
{g n} {{lambda {n f x} {f {{n f} x}}} {lambda {f
x} x}}} {lambda {g n} {{lambda {n m f} {m {n
f}}} n {g g {{lambda {n} {{lambda {z} {z {lambda
{x y} x}}} {{n {lambda {p} {{lambda {x y z} {z x
y}} {{lambda {z} {z {lambda {x y} y}}} p}
{{lambda {n f x} {f {{n f} x}}} {{lambda {z} {z
{lambda {x y} y}}} p}}}}} {{lambda {x y z} {z x
y}} {lambda {f x} x} {lambda {f x} x}}}}} n}}}}
g n}} n}} {lambda {f x} {f {f {f {f {f x}}}}}}}
> _LAMB_167

At this point, you should believe that this unreadble expression
evaluated to an anonymous function is the factorial of 5, 5! = 120,
computed using its recursive definition:

fac(n) = 1 if n == 0 else fac(n) = n*fac(n1)

1.2. names
In order to make code more readable we introduce a second
special form {def word expression}, with which we will
populate the global dictionary with constants and give names to
anonymous functions. Let's rewrite with names the previous
examples.

1.2.1. words

Any sequence of words can be given a name:

{def HI Hello World}
> HI

Scheme and Functional Programming Workshop 2017 37

HI {HI}
> HI Hello World

Note that the word HI out of curly braces {} is not evaluated.
Remember that, in a spreadsheet, one must write =PI() to get the
value associated to PI.

1.2.2. abstractions

An anonymous functions can be given a name:

{def GOOD_DAY
 {lambda {:o :a} :oh h:appy day!}}
> GOOD_DAY

1.2.3. application (1)

That makes several applications easier:

{GOOD_DAY oOOOo aaAaa}
> oOOOoh haaAaappy day!

{GOOD_DAY ♠ ♥}
> ♠h h♥ppy day!

Note: arguments and their occurences in the function's body have
been prefixed with a colon ":". Doing so prevents unintentional
substitutions in the function's body, for instance the word day
hasn't been replaced by daaAaay or d ♥ y. Escaping/marking
arguments, for instance prefixing them with a colon ":", is highly
recommended if not always mandatory. We will do it
systematically and we add this constraint to the previous rules: «
In lambda expressions arguments arg must at least be tagged by
some escaping character, for instance :arg, or for a better
security, bracketted between two, for instance :arg:.

1.2.4. application (2)

{def CONS {lambda {:x :y :z} {:z :x :y}}}
> CONS
{def CAR {lambda {:z} {:z {lambda {:x :y}
:x}}}}
> CAR
{def CDR {lambda {:z} {:z {lambda {:x :y}
:y}}}}
> CDR

{CAR {CONS Hello World}}
> Hello
{CDR {CONS Hello World}}
> World

In fact we just have built and used a pair and its accessors. Where
LISP[4] and SCHEME[5] use a closure to define cons:

(def cons (lambda (x y) (lambda (z) (z x y))))
(def car (lambda (z) (z (lambda (x y) x))))
(def cdr (lambda (z) (z (lambda (x y) y))))

{lambda talk} uses partial application. There is no outer
environment storing accessible values, values are stored inside
lambdas.

1.2.5. application (3)

We rewrite the example 1.1.5. using two names:

{def FOO {lambda {:n} {{lambda {:g :n} {:g :g
:n}} {lambda {:g :n} {{lambda {:b :t :f :g :n}
{{{:b :n} {{lambda {:x :y :z} {:z :x :y}} :t
:f}} :g :n}} {lambda {:n} {{lambda {:n} {:n
{lambda {:x} {lambda {:z} {:z {lambda {:x :y}
:y}}}} {lambda {:z} {:z {lambda {:x :y} :x}}}}}
:n}} {lambda {:g :n} {{lambda {:n :f :x} {:f
{{:n :f} :x}}} {lambda {:f :x} :x}}} {lambda {:g
:n} {{lambda {:n :m :f} {:m {:n :f}}} :n {:g :g
{{lambda {:n} {{lambda {:z} {:z {lambda {:x :y}
:x}}} {{:n {lambda {:p} {{lambda {:x :y :z} {:z
:x :y}} {{lambda {:z} {:z {lambda {:x :y} :y}}}
:p} {{lambda {:n :f :x} {:f {{:n :f} :x}}}
{{lambda {:z} {:z {lambda {:x :y} :y}}} :p}}}}}
{{lambda {:x :y :z} {:z :x :y}} {lambda {:f :x}
:x} {lambda {:f :x} :x}}}}} :n}}}} :g :n}} :n}}
}
> FOO

{def BAR
 {lambda {:f :x} {:f {:f {:f {:f {:f :x}}}}}}}
> BAR

{FOO BAR }
> _LAMB_8

We notice that FOO is applied to BAR, an anonymous function
applying 5 times :f to :x. We can now better understand that the
result is a reference to an anonymous function which might be
associated to the factorial of 5. And we guess that applying 50
times :f to :x would lead to an anonymous function associated
to the factorial of 50 ... provided we had a huge memory and
thousands years before us!

Concluding this first section we note that, until now, {lambda talk}
knows nothing but text substitution and that the dictionary
contains no built-in primitive. In the following section, still
without using any Javascript Math object, we progressively build
numbers, operators, data and control structures to compute 5!
and 50!.

2. NUMBERS
Following "Collected Lambda Calculus Functions"[6] we
progressively add numbers, operators, data and control structures.

2.1. numbers
We define the so-called Church numbers:

{def ZERO {lambda {:f :x} :x}}
> ZERO
{def ONE {lambda {:f :x} {:f :x}}}
> ONE
{def TWO {lambda {:f :x} {:f {:f :x}}}}
> TWO
{def THREE {lambda {:f :x} {:f {:f {:f :x}}}}}
> THREE
{def FOUR {lambda {:f :x} {:f {:f {:f {:f
:x}}}}}}
> FOUR
{def FIVE {lambda {:f :x} {:f {:f {:f {:f {:f
:x}}}}}}}
> FIVE

Applied to a couple of any words, we get strange things:

{ZERO . .} > .
{ONE . .} > (. .)

38 Scheme and Functional Programming Workshop 2017

{TWO . .} > (. (. .))
{FIVE . .} > (. (. (. (. (. .)))))

We define the function CHURCH which translates Church numbers
in a more familiar shape:

{def CHURCH
 {lambda {:n}
 {{:n {lambda {:x} {+ :x 1}}} 0}}}
> CHURCH
{CHURCH ZERO} > 0
{CHURCH ONE} > 1
{CHURCH FIVE} > 5

Note: the CHURCH function is built on numbers, [0,1], and a
function, '+', coming with Javascript, which are not supposed to
exist at this point. Consider that it's only for readability.

2.2. operators
Based on Church numbers, which are iterators by themselves, we
can easily define and test a first set of operators:

{def SUCC {lambda {:n :f :x} {:f {{:n :f} :x}}}}
> SUCC
{def ADD {lambda {:n :m :f :x} {{:n :f} {{:m :f}
:x}}}}
> ADD
{def MUL {lambda {:n :m :f} {:m {:n :f}}}}
> MUL
{def POWER {lambda {:n :m} {:m :n}}}
> POWER

{CHURCH {SUCC ZERO}} > 1
{CHURCH {SUCC ONE}} > 2
{CHURCH {SUCC THREE}} > 3
{CHURCH {ADD TWO THREE}} > 5 // 2+3
{CHURCH {MUL TWO THREE}} > 6 // 2*3
{CHURCH {POWER THREE TWO}} > 9 // 3^2

Building "opposite" functions like PRED, SUBTRACT,
DIVIDE is not so easy - and Church himself avoided them in the
primitive version of λ-calculus. The answer was given by Stephen
Cole Kleene[7], the father of Regular Expressions: Church
numbers can be used to iterate and pairs to aggregate. This is
how:

• we define a function PRED.PAIR getting a pair [a,a] and
returning a pair [a,a+1],

• the function PRED computes n iterations of PRED.PAIR
starting on the pair [0,0] and leading to the pair [n-1,n]
and returns the first, n-1:

{def PRED.PAIR {lambda {:p}
 {CONS {CDR :p} {SUCC {CDR :p}}}}}
> PRED.PAIR
{def PRED {lambda {:n}
 {CAR {{:n PRED.PAIR} {CONS ZERO ZERO}}}}}
> PRED

{CHURCH {PRED FIVE}}
> 4

2.3. « To Iterate is Human, ...
We already have all what is needed to evaluate complex
expressions like 1*2*3*...*n. Inspired by the PRED operator:

• we define a function ITER.PAIR getting a pair [a,b] and
returning a pair [a+1,a*b],

• the function ITER computes n iterations of ITER.PAIR,
starting on the pair [1,1] and leading to the pair [n,n!]
and returns the second, n!

{def ITER
 {def ITER.PAIR
 {lambda {:p}
 {CONS {SUCC {CAR :p}}
 {MUL {CAR :p} {CDR :p}}}}}
 {lambda {:n}
 {CDR {{:n ITER.PAIR} {CONS ONE ONE}}}}}
> ITER

{CHURCH {ITER TWO}} > 2
{CHURCH {ITER THREE}} > 6
{CHURCH {ITER FOUR}} > 24
{CHURCH {ITER FIVE}} > 120

2.4. ... to Recurse, Divine »[8]

If we want to define the factorial using its recursive mathematical
definition:

fac(n) = 1 if n == 0 else fac(n) = n*fac(n1)

we need to build a few boolean operators:

{def TRUE {lambda {:z} {:z {lambda {:x :y}
:x}}}}
> TRUE
{def FALSE {lambda {:z} {:z {lambda {:x :y}
:y}}}}
> FALSE
{def IF {lambda {:x :y :z} {:z :x :y}}}
> IF
{def ISZERO {lambda {:n}
 {:n {lambda {:x} FALSE} TRUE}}}
> ISZERO

Note that TRUE, FALSE, IF are aliases to CAR, CDR,
CONS.

Here is the tricky part! We remember that all expressions except
abstractions are evaluated eagerly: functions' arguments are called
by value and not called by name. Inside the IF function every
arguments are evaluated before the call and this would lead to an
infinite loop in a recursive process. A workaround is to use
abstraction to introduce manually some kind of lazyness. This is
an answer:

{def FAC
 {lambda {:n}
 {{lambda {:b :t :f :n}
 {{{:b :n} {IF :t :f}} :n}}
 {lambda {:n} {ISZERO :n}} > :b
 {lambda {:n} ONE} > :t
 {lambda {:n}
 {MUL :n {FAC {PRED :n}}}} > :f
 :n > :n
}}}
> FAC

{CHURCH {FAC FIVE}}
> 120

We can see that expressions {ISZERO :n} and {MUL :n
{FAC {PRED :n}}} are hidden via lambdas behind names :b

Scheme and Functional Programming Workshop 2017 39

and :f. As long as {:b :n} is evaluated to false, {IF :t
:f} returns the word :f which is then evaluated to {MUL :n
{FAC {PRED :n}}} and the process recurses until zero,
leading to {* 5 {* 4 {* 3 {* 2 1}}}} = 120.

Let's introduce some Y-combinator making recursive an almost
recursive function:

{def Y {lambda {:g :n} {:g :g :n}}} > Y

{def IFTHENELSE {lambda {:b :t :f :g :n}
 {{{:b :n} {IF :t :f}} :g :n} }}
> IFTHENELSE

{def ALMOST_FAC {lambda {:g :n}
 {IFTHENELSE
 {lambda {:n} {ISZERO :n}}
 {lambda {:g :n} ONE}
 {lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
 :g :n }}}
> ALMOST_FAC

{CHURCH {Y ALMOST_FAC FIVE}}
> 120

Let's mix the both:

{def YFAC {lambda {:n}
 {{lambda {:g :n} {:g :g :n}}
 {lambda {:g :n}
 {IFTHENELSE
 {lambda {:n} {ISZERO :n}}
 {lambda {:g :n} ONE}
 {lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
 :g :n}}
 :n}}}
> YFAC

{CHURCH {YFAC FIVE}}
> 120

Throwing away the name, let's define and immediately call the
lambda on the value 5:

{CHURCH
 {{lambda {:n} {{lambda {:g :n} {:g :g :n}}
 {lambda {:g :n}
 {IFTHENELSE
 {lambda {:n} {ISZERO :n}}
 {lambda {:g :n} ONE}
 {lambda {:g :n} {MUL :n {:g :g {PRED :n}}}}
 :g :n}} :n}} FIVE}}
> 120

Finally, let's replace all constants by their lambda based values to
get a pure λ-calculus expression made of words,
abstractions and applications:

{CHURCH {{lambda {:n} {{lambda {:g :n} {:g :g
:n}} {lambda {:g :n} {{lambda {:b :t :f :g :n}
{{{:b :n} {{lambda {:x :y :z} {:z :x :y}} :t
:f}} :g :n}} {lambda {:n} {{lambda {:n} {:n
{lambda {:x} {lambda {:z} {:z {lambda {:x :y}
:y}}}} {lambda {:z} {:z {lambda {:x :y} :x}}}}}
:n}} {lambda {:g :n} {{lambda {:n :f :x} {:f
{{:n :f} :x}}} {lambda {:f :x} :x}}} {lambda {:g
:n} {{lambda {:n :m :f} {:m {:n :f}}} :n {:g :g
{{lambda {:n} {{lambda {:z} {:z {lambda {:x :y}
:x}}} {{:n {lambda {:p} {{lambda {:x :y :z} {:z
:x :y}} {{lambda {:z} {:z {lambda {:x :y} :y}}}

:p} {{lambda {:n :f :x} {:f {{:n :f} :x}}}
{{lambda {:z} {:z {lambda {:x :y} :y}}} :p}}}}}
{{lambda {:x :y :z} {:z :x :y}} {lambda {:f :x}
:x} {lambda {:f :x} :x}}}}} :n}}}} :g :n}} :n}}
{lambda {:f :x} {:f {:f {:f {:f {:f :x}}}}}}}}
> 120

Concluding this section, using nothing but words and text
replacement processes, forgetting limitations of Javascript
numbers and so theoretically regardless of its size and with a total
precision, we can compute the factorial of any natural number. But
if computing 5! is relatively fast, computing 50! would still be too
long! It's time to remember that we can use the power of modern
browsers to make things easier and much more faster!

3. {LAMBDA TALK}
In this section Church numbers and their related operators built as
user defined functions are forgotten and replaced by primitive
functions built on the browser's foundations. We use Javascript's
numbers, Math operators and functions, HTML tags, CSS rules,
SVG and more. We add aggregate datas like pairs, lists,
arrays and some others specific to the wiki context. We add new
special forms, [if, let, quote, macro]. Note that there
is no set! special form, {lambda talk} is purely functional. This
is the current dictionary:

DICTionary: (250) [debug, browser_cache, lib, eval, apply, <,
>, <=, >=, =, not, or, and, +, , *, /, %, abs, acos, asin, atan, ceil,
cos, exp, floor, pow, log, random, round, sin, sqrt, tan, min,
max, PI, E, date, serie, map, reduce, equal?, empty?, chars,
charAt, substring, length, first, rest, last, nth, replace, cons,
cons?, car, cdr, cons.disp, list.new, list, list.disp, list.null?,
list.length, list.reverse, list.first, list.butfirst, list.last, list.butlast,
array.new, array, array.disp, array.array?, array.null?,
array.length, array.item, array.first, array.last, array.rest,
array.slice, array.concat, array.set!, array.push!, array.pop!,
array.unshift!, array.shift!, array.reverse!, array.sort!, @, div,
span, a, ul, ol, li, dl, dt, dd, table, tr, td, h1, h2, h3, h4, h5, h6, p,
b, i, u, center, hr, blockquote, sup, sub, del, code, img, pre,
textarea, canvas, audio, video, source, select, option, object,
svg, line, rect, circle, ellipse, polygon, polyline, path, text, g,
mpath, use, textPath, pattern, image, clipPath, defs, animate,
set, animateMotion, animateTransform, br, input, iframe, mailto,
back, hide, long_mult, turtle, drag, note, note_start, note_end,
show, lightbox, minibox, editable, forum, lisp, BN.DEC,
BN.new, BN.+, BN., BN.*, BN./, BN.%, BN.pow, BN.compare,
BN.negate, BN.abs, BN.intPart, BN.valueOf, BN.round, BN.fac,
sheet, sheet.new, sheet.input, sheet.output, SMART_ADD, HI,
GOOD_DAY, CONS, CAR, CDR, BAR, ZERO, ONE, TWO,
THREE, FOUR, FIVE, CHURCH, SUCC, ADD, MUL, POWER,
PRED.PAIR, PRED, ITER.PAIR, ITER, TRUE, FALSE, IF,
ISZERO, FAC, Y, IFTHENELSE, ALMOST_FAC, YFAC, FACT,
TFAC.rec, TFAC, BI.bigint2pol.rec, BI.bigint2pol,
BI.pol2bigint.rec, BI.pol2bigint, BI.simplify.rec, BI.simplify,
BI.pk, BI.p+, BI.p*, BI.tfac.r, BI.tfac, castel.interpol, castel.sub,
castel.point, castel.build, svg.dot, p0, p1, p2, p3, red_curve,
green_curve, QUOTIENT, SIGMA, PAREN, mul, TITLE, WRAP,
ref, back_ref, space, COLUMNS]

where can be seen the user defined functions starting at
SMART_ADD, the first constant created for the current document.

In order to illustrate some of these new capabilities we will write
effective recursive factorials, compute big numbers, play with
tabular data in a spreadsheet, explore intensive computing with
javascripts, build regular expressions based macros.

3.1. recursion

40 Scheme and Functional Programming Workshop 2017

In the previous section we have seen how tricky it was to write a
recursive algorithm. We had to build manually a lazy behaviour.
Using the third {if bool then one else two} special
form and its built-in lazy evaluation the way is opened to efficient
recursive algorithms. It's now possible to write the factorial
function following its mathematical definition:

{def FACT
 {lambda {:n}
 {if {< :n 0}
 then {b n must be positive!}
 else {if {= :n 0} then 1
 else {* :n {FACT { :n 1}}}}}}}
> FACT

{FACT 1} > n must be positive!
{FACT 0} > 1
{FACT 5} > 120
{FACT 50} > 3.0414093201713376e+64

Let's write the tail-recursive version:

{def TFAC
 {def TFAC.rec
 {lambda {:a :n}
 {if {< :n 0}
 then {b n must be positive!}
 else {if {= :n 0} then :a
 else {TFAC.rec {* :a :n} { :n 1}}}}}}
 {lambda {:n} {TFAC.rec 1 :n}}}
> TFAC

{TFAC 5} > 120
{TFAC 50} > 3.0414093201713376e+64

The recursive part is called by a helper function introducing the
accumulator ":a". {lambda talk} doesn't know lexical scoping -
the TFAC.rec inner function is global - and this leads to some
pollution of the dictionary. The Y-combinator mentionned above,
making recursive an almost-recursive function, will help us to
discard this helper function. The Y-combinator and the almost-
recursive function can be defined and used like this:

{def Y {lambda {:f :a :n} {:f :f :a :n}}}
> Y

{def ALMOST_FAC
 {lambda {:f :a :n}
 {if {< :n 0}
 then {b n must be positive!}
 else {if {= :n 0} then :a
 else {:f :f {* :a :n} { :n 1}}}}}}
> ALMOST_FAC

{Y ALMOST_FAC 1 5}
> 120

We can do better. Instead of applying the Y combinator to the
almost recursive function we can define a function composing
both:

{def YFAC {lambda {:n}
 {{lambda {:f :a :n}
 {:f :f :a :n}}
 {lambda {:f :a :n}
 {if {< :n 0}
 then {b n must be positive!}
 else {if {= :n 0} then :a
 else {:f :f {* :a :n} { :n 1}}}}} 1 :n}}}

> YFAC

{YFAC 5}
> 120
{YFAC 50}
> 3.0414093201713376e+64

We can map this first-class function to a sequence of numbers:

{map YFAC {serie 0 20}}
> 1 1 2 6 24 120 720 5040 40320 362880 3628800
39916800 479001600 6227020800 87178291200
1307674368000 20922789888000 355687428096000
6402373705728000 121645100408832000
2432902008176640000

It's much fast but there is a last point to fix: {FAC 50}, {TFAC
50} and {YFAC 50} return a rounded value
3.0414093201713376e+64 which is obvioulsly not the exact
value. We must go a little further and build some tools capable of
processing big numbers.

3.2. big numbers
The way the Javascript Math object is implemented puts the limit
of natural numbers to 254. Beyond this limit last digits are rounded
to zeros, for instance, as we will demonstrate later, the four last
digits of 264 = {pow 2 64} = 18446744073709552000 should be
1616 and are rounded to 2000. And beyond 269 natural numbers
are replaced by float numbers with a maximum of 15 valid digits.
In order to overcome this limitation we come back to the
definition of a natural number: A natural number a0a1...an is the
value of a polynomial Σi=0naixi for some value of x, called the
base. For instance 12345 = 1*104+2*103+3*102+4*101+5*100.
We build a set of user defined functions defining addition,
multiplication of polynomials and some helper functions:

{def BI.bigint2pol
 {def BI.bigint2pol.rec
 {lambda {:n :p :i}
 {if {< :i 0}
 then :p
 else {BI.bigint2pol.rec
 :n
 {cons {charAt :i :n} :p} { :i 1}}}}}
 {lambda {:n}
 {BI.bigint2pol.rec :n nil { {chars :n} 1}}}}
> BI.bigint2pol

{def BI.pol2bigint
 {def BI.pol2bigint.rec
 {lambda {:p :n}
 {if {equal? :p nil}
 then :n
 else {BI.pol2bigint.rec
 {cdr :p} {car :p}:n}}}}
 {lambda {:p}
 {let { {:q {list.reverse :p}} }
 {BI.pol2bigint.rec {cdr :q} {car :q}}}}}
> BI.pol2bigint

{def BI.simplify
 {def BI.simplify.rec
 {lambda {:p :q :r}
 {if {and {equal? :p nil} {= :r 0}}
 then :q
 else {if {equal? :p nil} then {cons :r :q}
 else {BI.simplify.rec
 {cdr :p}

Scheme and Functional Programming Workshop 2017 41

 {cons {+ {% {car :p} 10} :r} :q}
 {floor {/ {car :p} 10}} }} }}}
 {lambda {:p}
 {BI.simplify.rec {list.reverse :p} nil 0}}}
> BI.simplify

{def BI.pk
 {lambda {:k :p}
 {if {equal? :p nil}
 then nil
 else {cons {* :k {car :p}}
 {BI.pk :k {cdr :p}}} }}}
> BI.pk

{def BI.p+
 {lambda {:p1 :p2}
 {if {and {equal? :p1 nil} {equal? :p2 nil}}
 then nil
 else {if {equal? :p1 nil} then :p2
 else {if {equal? :p2 nil} then :p1
 else {cons {+ {car :p1} {car :p2}}
 {BI.p+ {cdr :p1} {cdr :p2} }}}}}}}
> BI.p+

{def BI.p*
 {lambda {:p1 :p2}
 {if {or {equal? :p1 nil} {equal? :p2 nil}}
 then nil
 else {if {not {cons? :p1}}
 then {BI.pk :p1 :p2}
 else {BI.p+ {BI.pk {car :p1} :p2}
 {cons 0 {BI.p* {cdr :p1}
:p2}}}}}}}
> BI.p*

Using this set of functions we can now compute the factorial of
natural numbers of any size with an exact precision:

{def BI.tfac
 {def BI.tfac.r {lambda {:n :p}
 {if {< :n 1}
 then :p
 else {BI.tfac.r { :n 1}
 {BI.simplify
 {BI.p* {BI.bigint2pol :n} :p}}}}}}
 {lambda {:n}
 {BI.pol2bigint
 {BI.simplify
 {BI.tfac.r :n {BI.bigint2pol 1}}}}}}
> BI.tfac

{BI.tfac 50}
> 304140932017133780436126081660647
 68844377641568960512000000000000

We finally reached the goal: with the subset of special forms
[lambda, def, if], the cons and lists structures, and
without any external library we have effectively computed the
exact value of 50! But we need to go a little further.

3.3. when {lambda talk} calls Javascript
Until now user defined functions were exclusively created in the
{lambda talk} syntax, with a large speed penalty when comes
intensive computation. We can add any Javascript code using the
{script ... Javascript code ...} special form. And when the set of
user defined functions written in {lambda talk} or Javascript
syntaxes increazes in size, it's time to externalize code in some
other wiki page used as a library and called via a (require
library_name). This helps {lambda talk} to stay minimal,

coherent, orthogonal, and any user to create, add and maintain his
own specific library. In the following we illustrate some of these
capabilities.

3.3.1. the lib_BN library

Jonas Raoni Soares Silva[9] has written a small (150 lines) and
smart Javascript library, BigNumber, ready to be called via
{lambda talk} wrapping functions, everything being stored in
another wiki page, lib_BN. We just write the factorial function
using the multiplicate operator BN.* redefined for big numbers:

{def BN.fac
 {lambda {:n}
 {if {= :n 0}
 then 1
 else {BN.* :n {BN.fac { :n 1}}}}}}
> BN.fac

and call it on the number 50:

{BN.fac 50}
> 304140932017133780436126081660647
 68844377641568960512000000000000

Obviously it's the fastest and best choice!

Note: Using this library, we can control that the value of 264 given
by the Javascript Math object, {pow 2 64} =
18446744073709552000 is not its exact value {BN.pow 2 64} =
18446744073709551616!

3.3.2. the lib_sheet library
A spreadsheet is a good illustration of functional languages,
(Simon Peyton-Jones [10]). A spreadsheet is an interactive
computer application for organization, analysis and storage of data
in tabular form. The basic idea is that each cell contains the input -
words and expressions - and displays the output. Calling a set of
Javascript and {lambda talk} functions stored in a wiki page,
lib_sheet, and writing {sheet 4 5} displays the following table
of 5 rows and 4 columns of editable cells:

Two specific functions are added for linking cells:

• {LC i j} returns the value of the cell LiCj as an absolute
reference,

• {IJ i j} returns the value of the cell L[i]C[j] as a relative
reference. For instance writing {IJ -1 -1} in L2C2 will
return the value of L1C1.

Datas are stored in the browser's localStorage. The [local storage]
button opens a window where the spreadsheet can be alternatively
edited in a JSON format:

 Editing cell L5C4:
{+ {IJ ‑3 0} {IJ ‑2 0} {IJ ‑1 0}}

NAME QUANT UNIT PRICE PRICE
Item 1 10 2.1 21
Item 2 20 3.2 64
Item 3 30 4.3 129

. . TOTAL
PRICE

 214

[local storage]

42 Scheme and Functional Programming Workshop 2017

["{b NAME}","{b QUANT}","{b UNIT PRICE}","{b
PRICE}","Item 1","10","2.1","{* {IJ 0 2} {IJ 0
1}}","Item 2","20","3.2","{* {IJ 0 2} {IJ 0
1}}","Item 3","30","4.3","{* {IJ 0 2} {IJ 0
1}}","","","{b TOTAL PRICE}","{+ {IJ 3 0} {IJ
2 0} {IJ 1 0}}","4"]

3.3.3. graphics
The de Casteljau recursive algorithm[11] allows drawing Bezier
curves of any degree, i.e controlled by any number of points.
Defining points as pairs and control polylines as lists, we build a
small set of {lambda talk} user defined functions feeding the
points attributes of SVG polylines:

{def castel.interpol {lambda {:p0 :p1 :t}
 {cons {+ {* {car :p0} { 1 :t}}
 {* {car :p1} :t}}
 {+ {* {cdr :p0} { 1 :t}}
 {* {cdr :p1} :t}}
}}}
> castel.interpol

{def castel.sub {lambda {:l :t}
 {if {equal? {cdr :l} nil}
 then nil
 else {cons
 {castel.interpol {car :l} {car {cdr :l}} :t}
 {castel.sub {cdr :l} :t}}}}}
> castel.sub

{def castel.point {lambda {:l :t}
 {if {equal? {cdr :l} nil}
 then {car {car :l}} {cdr {car :l}}
 else {castel.point {castel.sub :l :t} :t}}}}
> castel.point

{def castel.build {lambda {:l :a :b :d}
 {map {castel.point :l} {serie :a :b :d}}}}
> castel.build

{def svg.dot {lambda {:p}
 {circle {@ cx="{car :p}" cy="{cdr :p}" r="5"
 stroke="black" strokewidth="3"
 fill="rgba(255,0,0,0.5)"}}}}
> svg.dot

For instance the following code:

{def p0 {cons 150 80}} > p0
{def p1 {cons 200 150}} > p1
{def p2 {cons 50 250}} > p2
{def p3 {cons 200 250}} > p3
{def red_curve {castel.build
 {list {p0} {p1} {p2} {p3}}
 0.3 1.1 {pow 2 5}}}
> red_curve
{def green_curve {castel.build
 {list {p2} {p1} {p3}}
 0.1 0.6 {pow 2 5}}}
> green_curve

{svg.dot {p0}}
{svg.dot {p1}}
{svg.dot {p2}}
{svg.dot {p3}}

{polyline {@ points="{red_curve}"
 stroke="red" fill="transparent"
 strokewidth="3"}}
{polyline {@ points="{green_curve}"

 stroke="green" fill="transparent"
 strokewidth="3"}}

draws a cute λ in an SVG frame:

3.3.4. intensive computing
For intensive computing, it's obvioulsly more efficient to call the
underlying language, Javascript. These are screenshots of {lambda
tank}'s pages dedicated to ray-tracing,[12] curved shapes
modeling[13], fractals[14], turtle graphics drawing[15].

3.3.5. mathML

ih∂ψ
∂t
 (x,t) = (mc2α0 ihc 3Σ

j=1
 αj

∂
∂xj
) ψ(x,t)

The Dirac equation in the form originally proposed by Dirac

Scheme and Functional Programming Workshop 2017 43

{lambda talk} forgets the MathML markup set which is not
implemented in Google Chrome[16]. A set of functions,
exclusively built on standard HTML and CSS rules, can be defined
to render Math Symbols. For instance the above Dirac equation is
not a picture but the result of the code below:

i{del h}{QUOTIENT 30 ∂ψ ∂t}(x,t) = {PAREN 3 (}
mc{sup 2}α{sub 0} i{del h}c {SIGMA 30 j=1 3}
α{sub j}
{QUOTIENT 30 ∂ ∂x{sub j}} {PAREN 3)} ψ(x,t)

calling three user defined {lambda talk} functions:

{def QUOTIENT
 {lambda {:s :num :denom}
 {table
 {@ style="width::spx;
 display:inlineblock;
 verticalalign:middle;
 textalign:center;"}
 {tr {td {@ style="border:0 solid;
 borderbottom:1px
solid;"}:num}}
 {tr {td {@ style="border:0 solid;"}:denom}} }}}
> QUOTIENT

{def SIGMA
 {lambda {:s :one :two}
 {table
 {@ style="width::spx;
 display:inlineblock;
 verticalalign:middle;
 textalign:center;"}
 {tr {td {@ style="border:0 solid;"}:two}}
 {tr {td {@ style="border:0 solid;
 fontsize:2em;
 lineheight:0.7em;"}Σ}}
 {tr {td {@ style="border:0 solid;"}:one}} }}}
> SIGMA

{def PAREN
 {lambda {:s :p}
 {span {@ style="font:normal :sem arial;
 verticalalign:0.15em;"}:p}}}
> PAREN

3.4. what about macros?
A language without macros is not a true language, isnt'it? {lambda
talk} macros bring (a little bit of) the power of regular
expressions directly in the language.

3.4.1. make it variadic

{lambda talk} comes with some variadic primitives, for instance
[+, -, *, /, list, ...]. But at first sight, user functions
can't be defined variadic, for instance:

{def mul {lambda {:x :y} {* :x :y}}} > mul
{* 1 2 3 4 5} > 120 // * is variadic
{mul 1 2 3 4 5} > 2 // 3, 4, 5 are ignored

In order to make mul variadic we glue values in a list and define
an helper function, variadic:

{def variadic
 {lambda {:f :args}
 {if {equal? {cdr :args} nil}
 then {car :args}

 else {:f {car :args}
 {variadic :f {cdr :args}}}}}}
> variadic

{variadic mul {list 1 2 3 4 5}}
> 120

But it's ugly and doesn't follow a standard call. We can do better
using a macro:

1) defining:
{macro {mul* (.*?)}
 to {variadic mul {list €1}}}

2) using:
{mul* 1 2 3 4 5}
> 120

Now mul* is a variadic function which can be used as any other
primitive or user function, except that it is not, as in most Lisps, a
first class function.

3.4.2. titles, paragraphs & links

As a last example, {lambda talk} comes with a predefined small
set of macros allowing writing without curly braces titles,
paragraphs, list items, links:

_h1 TITLE ¬
 stands for: {h1 TITLE}

_p Some paragraph ... ¬
 stands for: {p Some paragraph ...}

[[PIXAR|http://www.pixar.com/]]
 stands for: {a {@
href="http://www.pixar.com/"}PIXAR}

[[sandbox]]
 stands for: {a {@ href="?
view=sandbox"}sandbox}

These simplified alternatives, avoiding curly braces as much as
possible, are fully used in the current document.

CONCLUSION
{lambda talk} takes benefit from the extraordinary power of
modern web browsers, simply adding a coherent and unique
syntax, without re-inventing the wheel, just using existing tools,
HTML/CSS, the DOM and Javascript. Standing on the shoulders
of such giants, {lambda talk} can be built as a minimal regexp
based implementation of the λ-calculus, where the repeated
substitutions inside the code string overcomes limitations of
regular language, where the lack of closure is balanced by the
built-in partial application functionality, where a dictionary
initially empty can be extended "inline" via user defined libraries.
More can be seen in the following APPENDICE.

The {lambda way} project is a thin overlay - about 100kb - built
upon any modern browser, proposing a small interactive
development environment, {lambda tank}, and a coherent
language, {lambda talk}, without any external dependencies and
thereby easy to download and install on a web account provider
running PHP. From any web browser on any system, complex web
pages can be created, enriched, structured and (algorithms) tested
in real time on the web. The current document has been created in

44 Scheme and Functional Programming Workshop 2017

this wiki page,
http://lambdaway.free.fr/workshop/?
view=oxford then directly printed from the browser as a PDF
document.

.

Alain Marty, 2017/07/28

APPENDICE
In this section we present the minimal set of JavaScript functions
necessary and sufficient to implement abstractions,
applications, definitions and the ifthenelse
control structure.

1. evaluation
Working on the client side the {lambda talk} evaluator is a
Javascript IIFE (Immediately Invoked Function Expression),
LAMBDATALK, returning the public function eval(). This
function is called at every keyboard entry and replaces the string
code by its evaluation, without building any Abstract Syntaxic
Tree.

var LAMBDATALK = (function() {
var eval = function(str) {
 str = pre_processing(str);
 str = abstract_lambdas(str); // abstraction
 str = abstract_defs(str); // abstraction
 // some other special forms
 str = eval_forms(str); // application
 str = post_processing(str);
 return str;
};
return {eval:eval}
})();

2. application
In a single loop, using a single regular expression[17], simple
forms {first rest} are recursively evaluated from the leaves
to the root and replaced by words. The evaluator stops when
simple forms are reduced to a sequence of words, actually a valid
HTML code sent to the browser's engine for the final evaluation
and display. Using a regular expression based window, the
evaluator literally loops over the code string, skips the words and
progressively replaces in situ forms by words. The repeated
substitutions inside the code string overcomes limitations of
regular language. A kind of Turing machine[18] ...

var eval_forms = function(str) {
 while (str !=
(str=str.replace(leaf,eval_leaf)))
 ; // does nothing!
 return str
};
var leaf = /\{([^\s{}]*)(?:[\s]*)([^{}]*)\}/g;
var eval_leaf = function(_,f,r) {
 return (DICT.hasOwnProperty(f)) ?
 DICT[f].apply(null,[r]) : '('+f+'
'+r+')'
};
var DICT = {}; // initially empty

3. abstraction

Special forms {lambda {arg*} body} are matched and
evaluated before simple forms and replaced by a reference to an
anonymous function added to the dictionary. The following code
demonstrates that:

• 1) lambdas are first class functions,
• 2) lambdas accept partial function application, when called

with a number of values lesser than their arity, they memorize
the given values and return a lambda waiting for the rest,

• 3) lambdas don't create closures, inner lambdas have no
access to outer lambdas' arguments, there is no lexical
scoping, no environment, no free variables. Like mathematical
functions lambdas are pure black boxes.

var abstract_lambdas = function(str) {
 while (str !== (str =
 form_replace(str,'{lambda',
abstract_lambda)));
 return str
};

var abstract_lambda = function(s){
 s = abstract_lambdas(s); // nested lambdas
 var index = s.indexOf('}'),
 args = supertrim(s.substring(1,
index)).split(' '),
 body = s.substring(index+2).trim(),
 name = '_LAMB_' + LAMB_num++,
 reg_args = [];
 for (var i=0; i < args.length; i++)
 reg_args[i] = RegExp(args[i], 'g');
 body = abstract_ifs(body); // {ifthenelse}
 DICT[name] = function() {
 var vals =
 supertrim(arguments[0]).split(' ');
 return function(bod) {
 bod = ifthenelse(bod, reg_args, vals);
 if (vals.length < args.length) {
 for (var i=0; i < vals.length; i++)
 bod = bod.replace(reg_args[i],vals[i]);
 var _args=args.slice(vals.length).join(' ');
 bod = '{' + _args + '} ' + bod;
 bod = abstract_lambda(bod);// return a
lambda
 } else { // return a form
 for (var i=0; i < args.length; i++)
 bod = bod.replace(reg_args[i],vals[i]);
 }
 return bod;
 }(body);
 };
 return name;
};

var form_replace = function(str,sym,func,flag){
 sym += ' ';
 var s = catch_form(sym, str);
 return (s==='none')?
 str:str.replace(sym+s+'}',func(s,flag))
};

var catch_form = function(symbol, str) {
 var start = str.indexOf(symbol);
 if (start == 1) return 'none';
 var d0, d1, d2;
 if (symbol === "'{") { d0=1; d1=1; d2=1;}
 else if (symbol === "{") { d0=0; d1=0; d2=1;}
 else { d0=0; d1=symbol.length; d2=0;}
 var nb = 1, index = start+d0;
 while(nb > 0) { index++;
 if (str.charAt(index) == '{') nb++;
 else if (str.charAt(index) == '}') nb;

Scheme and Functional Programming Workshop 2017 45

 }
 return str.substring(start+d1, index+d2)
};

4. definition
Special forms {def name expression} are matched and
evaluated before simple forms and replaced by name as a
reference to expression added to the dictionary.

var abstract_defs = function(str, flag) {
 while (str !== (str =
 form_replace(str, '{def', abstract_def,
flag))) ;
 return str
};
var abstract_def = function (s, flag) {
 flag = (flag === undefined)? true : false;
 s = abstract_defs(s, false);
 var index = s.search(/\s/), // match spaces
 name = s.substring(0, index).trim(),
 body = s.substring(index).trim();
 if (body.substring(0,6) === '_LAMB_') {
 DICT[name] = DICT[body];
 delete DICT[body];
 } else {
 body = eval_forms(body);
 DICT[name] = function() { return body };
 }
 return (flag)? name : '';
};

5. ifthenelse
Special forms {if bool then one else two} are
matched in lambda's bodies and replaced by the reference to an
array [bool, one, two]. When the lambda is called with
some values, one or two is returned according to the bool value.

var abstract_ifs = function(str) {
 while (str !== (str =
 form_replace(str, '{if', abstract_if))) ;
 return str
};
var abstract_if = function(s){
 s = eval_ifs(s);
 var name = '_COND_' + COND_num++;
 var index1 = s.indexOf('then'),
 index2 = s.indexOf('else'),
 bool = s.substring(0,index1).trim(),
 one = s.substring(index1+5,index2).trim(),
 two = s.substring(index2+5).trim();
 COND[name] = [bool,one,two];
 return name;
};
var eval_ifs = function(bod, reg_args, vals) {
 var m = bod.match(/_COND_\d+/);
 if (m === null) {
 return bod
 } else {
 var name = m[0];
 var cond = COND[name];
 if (cond === undefined) return bod;

 var bool=cond[0], one=cond[1], two=cond[2];
 if (reg_args !== undefined) {
 for (var i=0; i < vals.length; i++) {
 bool = bool.replace(reg_args[i],
vals[i]);
 one = one.replace(reg_args[i], vals[i]);
 two = two.replace(reg_args[i], vals[i]);
 }
 }
 var boolval = (eval_forms(bool)==='true')?
 one : two;
 bod = bod.replace(name, boolval);
 return eval_ifs(bod, reg_args, vals)
 }
};

REFERENCES

[1] The Wiki way:
http://dl.acm.org/citation.cfm?id=375211
[2] Ward_Cunningham:
http://ward.asia.wiki.org/view/testingmicrotalk
[3] A Tutorial Introduction to the Lambda
Calculus (Raul Rojas): http://www.inf.fu
berlin.de/lehre/WS03/alpi/lambda.pdf
[4] Lisp:
http://www.cs.utexas.edu/~cannata/cs345/Class%20
Notes/06%20Lisp.pdf
[5] Scheme: https://mitpress.mit.edu/sicp/full
text/book/book.html
[6] Collected Lambda Calculus Functions:
http://jwodder.freeshell.org/lambda.html
[7] Stephen_Cole_Kleene:
https://en.wikipedia.org/wiki/Stephen_Cole_Kleen
e
[8] L. Peter Deutsch
https://fr.wikipedia.org/wiki/L._Peter_Deutsch
https://sites.google.com/a/gertrudandcope.com/in
fo/Publications/Patterns/CReport/SpaceIII
[9] Jonas Raoni Soares Silva
http://jsfromhell.com/classes/bignumber
[10] Simon_Peyton_Jones:
https://www.microsoft.com/en
us/research/people/simonpj/#
[11] De_Casteljau's_algorithm:
http://www.malinc.se/m/DeCasteljauAndBezier.php
[12] raytracing:
http://lambdaway.free.fr/workshop/?
view=raytracing
[13] pForms: http://lambdaway.free.fr/workshop/?
view=pforms
[14] fractal:
http://lambdaway.free.fr/workshop/?view=mandel
[15] turtle: http://lambdaway.free.fr/workshop/?
view=turtle_tree
[16] googlesubtractsmathmlfromchrome:
https://www.cnet.com/news/googlesubtracts
mathmlfromchromeandangermultiplies/
[17] Regular Expressions:
http://blog.stevenlevithan.com/archives/reverse
recursivepattern
[18] Turing machines implemented in JavaScript
http://www.turing.org.uk/book/update/tmjavar.htm
l

{λ way2} v.20170717

46 Scheme and Functional Programming Workshop 2017

	Paper: Scalar and Tensor Parameters for Importing Tensor Index Notation ...
	Talk: Extending the LISP model from cons cells to triples, from trees to hypergraphs
	Paper: Toward Parallelizing Control-flow Analysis with Datalog
	Talk: Gerbil on Gambit, as they say Racket on Chez
	Talk: {lambda talk}

