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ABSTRACT

Concurrency is often an optimisation, rather than intrinsic to the functional behaviour
of a program, i.e., a concurrent program is often intended to achieve the same effect of a
simpler sequential counterpart, just faster. Error-free concurrent programming remains
a tricky problem, beyond the capabilities of most programmers. Consequently, an
attractive alternative to manually developing a concurrent program is to automatically
synthesise one.

This dissertation presents two novel formal verification-based methods for safely
transforming a sequential program into a concurrent one. The first method—an instance
of proof-directed synthesis—takes as the input a sequential program and its safety proof, as
well as annotations on where to parallelise, and produces a correctly-synchronised par-
allelised program, along with a proof of that program. The method uses the sequential
proof to guide the insertion of synchronisation barriers to ensure that the parallelised
program has the same behaviour as the original sequential version. The sequential
proof, written in separation logic, need only represent shape properties, meaning we
can parallelise complex heap-manipulating programs without verifying every aspect of
their behaviour.

The second method proposes specification-directed synthesis: given a sequential pro-
gram, we extract a rich, stateful specification compactly summarising program be-
haviour, and use that specification for parallelisation. At the heart of the method is a
learning algorithm which combines dynamic and static analysis. In particular, dynamic
symbolic execution and the computational learning technique grammar induction are
used to conjecture input-output specifications, and counterexample-guided abstraction
refinement to confirm or refute the equivalence between the conjectured specification
and the original program. Once equivalence checking succeeds, from the inferred
specifications we synthesise code that executes speculatively in parallel—enabling auto-
mated parallelisation of irregular loops that are not necessary polyhedral, disjoint or
with a static pipeline structure.
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CHAPTER 1

INTRODUCTION

The immense impact of computer technology on all spheres of life requires software to
be developed more rapidly and reliably than ever before. Despite great advancements in
programming methods and tools, computer programs often do not behave as intended.
There are many sources of program errors. For this dissertation we are particularly
interested in those introduced by program optimisation. Programs are optimised
for various goals—e.g., so that they execute faster, operate with smaller amount of
memory or drain less power—which are not intrinsic to their functional behaviour.1

And so, while optimised programs do not add new features, it can be much harder to
check them for errors as the lower-level optimisation details obfuscate the higher-level
programmer’s intentions.

Over the last decade, significant progress has been made in formal analysis and
verification of software systems, yielding methods for precise, mathematical reasoning
about properties of program behaviour. The practicality of these methods owes much
to the maturing automated theorem proving technology (enabling automation) and
abstraction mechanisms (enabling scaling to sizeable and realistic classes of programs).
Yet, even with the state-of-the art techniques, the complexity of verifying optimised
programs is often at odds with the high-level intentions of the programmer, expressed in
the original, unoptimised program. Consequently, an attractive alternative to verifying
an optimised program is to automatically synthesise one.

This dissertation is concerned with a particular kind of program optimisation—
parallelisation. Indeed, in most cases a concurrent version of the program is intended
to achieve the same effect of a simpler sequential counterpart, but faster (e.g., by ex-
ploiting the many cores now supplied by chip manufacturers). Error-free concurrent
programming remains a tricky problem, beyond the capabilities of most program-
mers; consequently, automatically synthesising a concurrent program is an appealing
proposition over manually parallelising it. In such approach, the programmer writes
a sequential program, which is then automatically transformed into a concurrent one,
exhibiting the same behaviour. Programmers can work in the simpler, more reliable
sequential setting, yet reap the performance benefit of concurrency.

In this dissertation, we propose ways for automated synthesis of parallelised pro-

1The commonly acknowledged wisdom “The First Rule of Program Optimisation: Don’t do it. The
Second Rule of Program Optimisation (for experts only!): Don’t do it yet.” (Michael A. Jackson) does not
render program optimisation void; “Optimisation is a standard part of the software development process,
along with testing, debugging, and quality assurance, and it should be treated as such.” [Hyd09].
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grams from sequential ones. The central thesis of the dissertation is that

formal verification methods, originally developed for the analysis and verification
of sequential programs, can be profitably exploited to create useful methods for
automated synthesis of program parallelisation.

To support this thesis, the dissertation contributes methods of two kinds:

Proof-directed parallelisation synthesis, in which a programmer supplies a sequential
program and a lightweight sequential proof, written in separation logic, and as a
result obtains a correctly-synchronised parallelised program, along with a proof
of that program; and

Specification-directed parallelisation synthesis, in which a rich, stateful specification
of the sequential program is extracted by means of formal verification, and that
specification, compactly summarising the program behaviour, is then used to
execute the program in parallel.

As we will see, the two approaches to parallelisation synthesis are built using radically
different formal verification methods, but they share a common trait: they leverage
the sequential program as an evidence of programmer’s intentions and delegate the
burden of parallelisation to an automated algorithm, ensuring safety of the parallelised
program. In a sense, the parallelised program is verified by construction, with respect
to the original sequential program.

1.1 Relation to the state-of-the-art

Many traditional compiler analyses have similar goals as our parallelisation methods.
While our methods are not tied to a specific structure of the input sequential program,
to give the reader some intuition about how they relate to prior methods, we briefly
illustrate the effect of our methods in the context of loop parallelisation. This context
was commonly the focus of prior methods since loops are in many cases the most
abundant source of potential parallelism in programs.

Proof-directed parallelisation synthesis. Assume we give our proof-directed paral-
lelisation method a sequential for-loop iteratively running some function fun

for (...) {
fun(...);

}

and a sequential proof of fun (unspecified here). The particular details of fun are
unimportant, but we note that calls to fun from different loop iterations may perform
operations on shared variables or data structures. Our method would transform this
sequential loop into a parallelised loop of the form

for (...) {
fork(fun’(...));

}

12



in which each loop iteration runs a synchronised version (fun’) of fun in a separate
thread. The synchronisation mechanisms injected in fun’ by our algorithm guarantee
that the behaviour of sequential loop iterations will be maintained when they are run
concurrently in the parallelised loop.

Traditional compiler analyses typically allow such parallelisation when loop iter-
ations can statically be shown to operate on disjoint portions of memory or when
dependencies between iterations are constrained in some way (e.g., by requiring that
indices into array elements are affine). Our method differs in that it does not restrict the
kind of objects shared across iterations (e.g., these could be heap locations, dynamic
data structures, system resources, etc.), while permitting arbitrary dependencies. The
degree of parallelisation inserted is governed by the accompanying sequential proof—a
finer-grained proof may discover finer-grained dependencies that allow making the
program more parallel.

Specification-directed parallelisation synthesis. This method for parallelisation syn-
thesis aims to unlock data-parallelism in programs that interact with the environment by
means of streams. For instance, let us consider the following for-loop which repeatedly
runs a computation io_fun reading some number of data items from an input stream
and writing result(s) to an output stream:

for (...) {
io_fun(...);

}

Again, the particular details of io_fun are unimportant, although our focus is on fairly
simple computations that generate output(s) using only a bounded window of data
items from the past. Our method would extract a symbolic specification spec which
compactly represents the input-output behaviour of the computation and then use
spec to parallelise the computation on successive portions of the input.

The key aspect of specifications synthesised by our method is that they symbolically
represent behaviour of the program using a finite set of states. Thus instead of protecting
relevant dependencies in the original program we simply speculatively compute all
possible outputs associated with the states of the specification. That is, at the expense
of redundant computations we exploit the available concurrency without introducing
additional synchronisation. The resulting parallelised loop is then roughly of the
following form:

pfor (...) {
spec(1, ...) || ... || spec(n, ...);

}

where pfor denotes that iterations operating on different portions of input may be run
in parallel, || denotes that the specification spec may be run in parallel from each
state, and n is the number of states in spec.

1.2 Contributions

Contributions of Part I.

1. We present a proof-directed parallelisation synthesis method which given a se-
quential program augmented with annotations indicating where parallelisation

13



might be profitable, and a sequential proof of the program, synthesises a paral-
lel version of the program. In cases we consider, the proof would be generated
automatically by a tool, which may require lightweight specifications to define
relevant loop invariants.

2. We leverage tools of separation logic (in particular, abduction and frame inference)
to define a path- and context-sensitive program analysis capable of identifying
resources that are needed—resources that must be held to avoid faulting between
two program locations (and thus must be held by any thread that would execute
this block of code); and, redundant—resources that are not needed between two
program locations (and thus would no longer be used by the executing thread).

3. We use information from the above analysis to inject synchronisation barriers into
the original program—their semantics enable resource transfer from redundant to
needed resources in the parallelised program. The analysis also constructs a safety
proof in separation logic which validates the correctness of the barrier injections.

4. We prove that our transformation is specification-preserving: the parallelised
program is guaranteed to satisfy the same specification as the sequential program.
Moreover, for terminating programs that do not deallocate memory, we also show
that the parallelised program preserves the behaviour of the original.

Contributions of Part II.

1. We present a method for synthesising symbolic specifications of a program’s input-
output behaviour. The key insight of our method is that such specifications can
be synthesised by simultaneously exploiting techniques for under-approximating
and over-approximating program traces.

2. We introduce a carefully limited variant of symbolic specifications, with which it is
possible to faithfully represent input-output behaviour of still-interesting classes
of programs. We show that such specifications are useful in practice through three
case studies.

3. We develop algorithms for synthesising over-approximations and generalising
under-approximations with grammar induction, both of which represent pro-
gram’s input-output behaviour using our limited variant of symbolic specifica-
tions.

4. We prove that for a certain class of programs, by repeatedly refining specifications
we converge to a sound and complete specification of the program. Since our
approach to synthesising over-approximations depends on predicate abstraction of
the program, completeness holds as long as the abstraction refinement eventually
yields a sufficiently strong set of predicates.

Collaboration. Part I is based on the POPL 2012 paper [BDJ12] and its TOPLAS 2013
extension [BDJ13], both co-authored by Mike Dodds and Suresh Jagannathan; and, to a
smaller extent on the manuscript [BDM15] co-authored by Mike Dodds and Stephen
Magill. Part II is based on the POPL 2013 paper [BB13] co-authored by Domagoj Babić.

14
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Part I is concerned with a method for proof-directed parallelisation synthesis. We
propose an analysis that, guided by a lightweight proof of the sequential program, safely
transforms a sequential program into a concurrent one. We assume that the programmer
annotates points in the sequential program where concurrency might be profitably
exploited, without supplying any additional concurrency control or synchronisation.
The result after applying the transformation is a correctly-synchronised concurrent
program, along with a safety proof.

The proposed transformation ensures that the input-output behaviour of the sequen-
tial program is preserved by requiring that the concurrent program respects sequential
data dependencies. That is, the transformation guarantees that the way threads access
and modify shared resources in the concurrent program never results in a behaviour
that would not be possible in the sequential program. To enforce these dependencies,
we inject synchronisation barriers, signalling operations that regulate when threads are
allowed to read or write shared state. These barriers can be viewed as resource-transfer
operations that acquire and release access to shared resources such as shared-memory
data structures when necessary.

The method is built on separation logic [Rey02]. The input safety proof, written in
separation logic, is used to discover how resources are demanded and consumed within
the program, and to synthesise barriers to precisely control access to these resources.
The analysis relies on frame inference [BCO05b] and abduction [CDOY11], two tech-
niques that generate fine-grained information capable of describing when resources
are necessary and when they are redundant. This information enables optimisations
that depend on deep structural properties of the resource—for example, we can split
a linked list into dynamically-sized segments and transmit portions between threads
piece-by-piece.

The input proof supplied to the analysis must state all resources that are used by the
program such as the shape of all data-structures (for example, that a data-structure is a
linked list). However, it need not establish the functional correctness of the algorithm.
The analysis protects all dependencies that are relevant to the program’s input-output
behaviour, not just those specified in the proof. Thus we can apply the analysis to
parallelise complex heap-manipulating programs without verifying every aspect of
their behaviour.

Structure of Part I. An overview of the analysis and the necessary background, along
with motivating examples are given in Chapter 2. Formal technical background concern-
ing the program representation and the sequential proof is given in Chapter 3. Chapter 4
presents formalisation of the analysis and a proof that the parallelising transformation
is specification-preserving, along with a discussion of its complexity, soundness and
limitations. Observations about the way the choice of parameters affects the analysis
are given in Chapter 5. A formal semantics of the programming language we use to
develop the analysis is given in §6.1 and the soundness results—behaviour preservation
and termination—are formalised in §6.2 and §6.3. Chapter 7 discusses related work.
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CHAPTER 2

OVERVIEW

This chapter gives an informal overview of our method for proof-directed parallelisation
synthesis. We start by describing the goal of the parallelisation process on a simple
example (§2.1). As our method is built on separation logic, we explain basic separation
logic concepts such as resource, separation, frame inference and abduction, along with
the notions of dependency inherent to our method (§2.2). With these main elements
we then give an overview (§2.3) of how our method parallelises the simple example
from §2.1. At the end of the chapter, we discuss how the basic approach developed
for the simple example is extended to handle unbounded iterations and dynamic data
structures (§2.4).

2.1 Overview of the parallelisation process

The objective of our proof-directed parallelisation synthesis is to take a sequential
program, annotated to indicate segments that might be feasible candidates to execute in
parallel, and a sequential proof of the program, and to produce a parallelised program.
This new program should be observationally equivalent to the sequential original; i.e. it
should have identical input-output behaviour.

In the simplest scenario, the input sequential program is just a sequential composi-
tion C1; C2 of two sub-programs C1 and C2. We assume the programmer has identified
C1 and C2 as candidates for parallelisation. The intended semantics is that C1 and C2
may run in parallel, but that the visible behaviour will be identical to running them in
sequence; this semantics provides a simple but useful form of data parallelism in which
concurrently executing computations may nonetheless access shared state.

To ensure behaviour preservation, we often need to insert synchronisation opera-
tions.

Example 2.1. Let us consider the following example program:

f(1); f(2)

where f() is a procedure manipulating two distinct memory cells pointed to by x and
y:1

1Throughout Part I we use C-style syntax which merely resembles the C language but is not actually
C. Where the intended semantics differs from the usual C semantics, an additional clarification will be
provided.
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f(int i) {
int v = *x;
if (v>=i) *y = v;
else *x = 0;

}

How can we parallelise this program without introducing any unwanted new be-
haviours, i.e., behaviours not possible under sequential execution? Naïvely, we might
simply run both calls in parallel, without synchronisation, i.e.:

f(1) || f(2)

In some situations this parallelisation is good, and introduces no new observable
behaviours (e.g., if the initial value pointed to by x is 0). But, under others, the second
call to f() may write to a memory location that is subsequently read by the first call to
f(), violating the intended sequential ordering. For example, consider the case when
the value pointed to by x is initially 1; sequential execution would produce a final result
in which the locations pointed to by x and y resp. are 0 and 1, while executing the
second call to completion before the first would yield a result in which the location
pointed to by y is not updated.

Definition 2.1. We say one portion of a parallelised program occurs logically earlier than
another if the two portions were sequentially ordered in the original sequential program.
For instance, the call f(1) in Example 2.1 occurs logically earlier than f(2).

To be sure that no new observable behaviour is introduced in the parallelisation, we
must ensure that:

• a computation cannot read from a location that was already written to by a
computation that occurs logically later; and

• a computation cannot write to a location that was already read from or written to
by a computation that occurs logically later.

Note that a computation that occurs logically later from another need not always wait for
the earlier one—synchronisation is only needed when reads and writes to a particular
memory location could result in out-of-order behaviour. In other words, we want to
enforce only sequential dependencies, while allowing beneficial race-free concurrency.2

Dependency-enforcing barriers. In order to enforce the logical ordering in the paral-
lelised program, our method inserts barriers enforcing the logical order over the shared
memory locations.

For the program in Example 2.1, our method would generate modified procedures
f1() and f2(), which would lead to the safely parallelised program

f1(1) || f2(2)

2In a sequential program execution, a dependency between two events exists if the effect of one event can
affect the behaviour of a subsequently executed one; these effects can be based on control-flow (e.g., the
outcome of a conditional expression) or data-flow (e.g., assigning a value to a location that is subsequently
read). If new dependencies are introduced or removed during parallelisation, the input-output behaviour
of the program may change.
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f1(i){
int v = *x;
if (v>=i) {
grant(wx);

*y = v;
grant(wy);

}
else {
grant(wy);

*x = 0;
grant(wx);

}
}

f2(i){
wait(wx);
int v = *x;
if (v>=i) {
wait(wy);

*y = v;
}
else {

*x = 0;
wait(wy);

}
}

Figure 2.1: Parallelisation of the two calls to f().

To enforce the ordering between calls to f(), we use barriers associated with mem-
ory locations (or, generally, resources) that are shared between concurrently executing
computations ([NZJ08, DJP11]):

• grant(), a barrier that signals that the resource it protects can safely be accessed
by a computation that occurs logically afterwards; and

• wait(), a barrier that blocks until the associated resource becomes available from
a computation that occurs logically before it.

How do we use these barriers to enforce sequential dependencies? The exact pattern of
parallelisation depends on the granularity of our parallelisation analysis. In the best
case, there are no dependencies between successive calls (e.g., each invocation operates
on a different portion of a data structure). In this case, we need no barriers, and all
invocations run independently. In our example program, however, the locations x and
y are shared between calls to f(), meaning barriers are required.

In the simplest parallelisation of our example, the call to f1() would end with a
call to grant(), while the call to f2() would begin with a call to wait()—this would
enforce a total sequential ordering on the invocations. A better (although still relatively
simple) parallelisation is shown in Fig. 2.1. Two channels, wx and wy, are used to
mediate signalling between f1 and f2—wx (resp. wy) is used to signal that the later
thread can read and write to the heap location referred to by x (resp. y).

Our method inserts a grant() barrier when the associated resource will no longer
be accessed. Similarly, it injects a wait() barrier to wait for the resource to become
available before it is accessed. Intuitively, grant() barriers are inserted as early as
possible in f1() and wait() barriers as late as possible in f2() so that every control
flow path in f1 (resp. f2) calls grant() (resp. wait()) exactly once for each channel.
Note that the call to wait(wy) in the else-branch of f2() is not strictly necessary
since there is no further access of the location y, however, to simplify the semantics,
we require that along all control flow paths, each channel that has been granted on is
eventually finalised with wait().

How does our method generate these synchronisation barriers? Example 2.1 is simple, but
in general the method must cope with complex dynamically-allocated resources such
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as linked lists. It should deal with the partial ownership (for example, read-access), and
with manipulating portions of a dynamic data structure (for example, just the head of a
linked list, rather than the entire list). We therefore need a means to express complex,
dynamic patterns of resource management and transfer.

To achieve this, our method demands a sequential proof, written in separation logic,
rather than just an undecorated program. This proof need not capture full functional
correctness—it is sufficient that it just proves that the program does not fault. We exploit
the dependencies expressed within this proof to determine the resources that are needed
at a program point, and when they can be released. Our method inserts barriers to
enforce the sequential dependencies represented in this proof. As the proof system we
use is sound, these dependencies faithfully represent those in the original sequential
program.

2.2 Resources, separation and dependency

Our method works by calculating the ways that resources are used in the source
sequential program. By resource, we mean a set of elements of a mutable state that
can generate dependencies between program statements. For example: heap cells in
memory; objects built from heap cells such as linked lists; portions of objects, such
as linked-list segments; and other kinds of mutable objects such as channels. If two
program statements access the same resource, there may be a dependency between
them. If they do not, then a dependency cannot exist.

At the heart of our method is automated reasoning using separation logic [Rey02,
O’H07]. The power of separation logic lies in its ability to cleanly represent and compose
resources. Indeed, resources in our analysis are simply separation logic assertions. Two
assertions can be composed using the ∗ connective (the separating conjunction) to give
a larger assertion. An assertion P ∗ F is satisfied if P and F hold, and the resources
denoted do not overlap.3 Loosely speaking, if one program statement only accesses the
resource P and another F, there can be no dependency between them. In the case of
heap resources, separation by ∗ corresponds to disjointness of heap address spaces.

As well as establishing the absence of faults, specifications in separation logic also
establish the resource bounds of a program. A specification {P} C {Q} can be read as
saying: “if C is run with a resource satisfying P, then (1) it will not fault, (2) if it terminates
then it will give a resource satisfying Q, and (3) it will only access resources held in P, acquired
through resource transfer or allocated during execution”.

This property—that all resources be described in preconditions or acquired explicitly—
is an essential feature of separation logic (it is sometimes called the tight interpretation of
specifications).

Example 2.2. The following specification is invalid in separation logic:

{x 7→ v′1} ∗y = 5 {x 7→ v′2}
3More formally, we define satisfaction for ∗ as follows (here ⊕ is a union of resources, and ⊥ denotes

that two resources are disjoint):

σ |= P ∗ F def⇐⇒ ∃σ1, σ2. (σ1 |= P) ∧ (σ2 |= F ∧ σ1⊥σ2 ∧ σ1 ⊕ σ2 = σ)

Loosely, this says that a resource σ satisfies a conjunction P ∗Q if the resource can be broken down into
two disjoint sub-resources σ1 and σ2, satisfying P and Q respectively.
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(We write a 7→ b to indicate that the address a maps to the value b in the heap. By
convention, primed variables are implicitly existentially quantified.) This specification
is invalid because x and y might point to different locations, meaning the program
might write to a location not mentioned in its precondition. On the other hand, the
following specification is valid:

{x 7→ v′1 ∧ x = y} ∗y = 5 {x 7→ v′2 ∧ x = y}

The tight interpretation is essential for the soundness of our analysis. Suppose
we prove a specification for a program (or portion thereof); resources outside of the
precondition cannot be accessed by the program, and cannot affect its behaviour. If
two program statements access disjoint resources, then there can be no dependencies
between the two statements.4 Consequently, such resources can be safely transferred to
other program segments that are intended to be executed in parallel.

The key proof rule of separation logic is the frame rule, which allows small specifica-
tions to be embedded into a larger context.

{P} C {Q}
{P ∗ F} C {Q ∗ F} FRAME

The concurrent counterpart of the frame rule is the parallel rule. This allows two
threads that access non-overlapping resources to run in parallel, without affecting each
other’s behaviour.

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1‖C2 {Q1 ∗Q2}

PARALLEL

The parallel rule enforces the absence of data races between C1 and C2. The two threads
can consequently only affect each other’s behaviour by communicating through built-in
synchronisation mechanisms, such as locks or barriers, that act as shared resources.

Assertion language. As well as the separating conjunction ∗ and the standard first-
order logical operators, ∨, ∧, ∃, we assume a number of basic assertions for representing
heap cells. The simplest is emp, which asserts that the heap is empty. We have already
encountered the points-to assertion a 7→ v, which says that the heap cell with address a
holds value v. Assertions in separation logic represent ownership of heap cells, so this
assertion also says that the thread is allowed to read and write to address a freely. Where
the object at an address can have more than one field, we write a. f 7→ v to represent an
individual field f [Par05]. By convention, primed variables are implicitly existentially
quantified (as in Example 2.2).

We also assume a fractional points-to assertion in the style of [BCOP05] to allow a

location to be shared between threads. An assertion a
f7−→ v for some f ∈ (0, 1] means

that the current thread holds permission to read f on address a. If f = 1, the current
thread also holds permission to write to the address. Fractional permissions can be split
and recombined according to the following rules:

a
f1+ f27−−−→ v ⇐⇒ a

f17−→ v ∗ a
f27−→ v a 7→ v ⇐⇒ a 17−→ v

4However, there is an important caveat regarding memory allocation and disposal—see §4.4 for a
discussion.
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Using fractional permissions, read-only access can be shared between several threads in
the system. Read-write permission can be recovered if some thread collects together all
of the fractional permissions for the address.

To represent lists, we assume a predicate lseg(x, t), which asserts that a segment of a
linked list exists with head x and tail-pointer t. We write node(x, y) to represent a single
node in the list:

node(x, y) , x.val 7→ v′ ∗ x.nxt 7→ y

We then define lseg as the least separation logic predicate satisfying the following
recursive equation:

lseg(x, t) , (x = t ∧ emp) ∨ (node(x, y′) ∗ lseg(y′, t))

The behaviour of our analysis depends strongly on the choice of these resource predi-
cates. We discuss alternatives to lseg, node, etc. in §5.

Automated inference. Automated reasoning and symbolic execution in separation
logic revolves around two kinds of inference questions: frame inference and abduction.
These questions form the basis of symbolic execution with separation logic [BCO05a,
CDOY11]. Intuitively, frame inference lets us reason forwards, while abduction lets us
reason backwards.

The first question, frame inference, calculates the portion of an input assertion which
is ‘left over’, once a desired assertion has been satisfied. Given an input assertion S
and desired assertion P, an assertion F? is a valid frame if S ` P ∗ F?. We write such
inference question as follows:

S ` P ∗ [F?]

(Throughout the text, we use square brackets to indicate the portions of an entailment
that should be computed.)

Frame inference is used during forwards symbolic execution to calculate the effects
of commands. Suppose we have a symbolic state represented by an assertion S, and a
command C with specification {P}C {Q}. If we calculate the frame in S ` P ∗ [F?], the
symbolic state after executing C must be Q ∗ F?.

Example 2.3. Consider the following specification:

{x 7→ v′} *x = 42 {x 7→ 42}

With initial assertion S = x 7→ 5 ∗ y 7→ 7 and desired precondition P = x 7→ v′ we
obtain the frame y 7→ 7. By combining this with the command’s postcondition, we get
the assertion after executing the command, x 7→ 42 ∗ y 7→ 7.

The second kind of inference question, abduction, calculates an antiframe—the ‘miss-
ing’ assertion that must be combined with an input assertion in order to satisfy some
desired assertion. Given an input assertion S and a desired assertion P, an assertion A?
is a valid antiframe if S ∗ A? ` P. We write such inference question as follows:

S ∗ [A?] ` P

Abduction is used during a backwards analysis to calculate what extra resources are
necessary to execute the command safely. Suppose we have a symbolic state represented
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by an assertion S, and a command C with specification {P}C {Q}. It might be that
S does not include sufficient resources to execute C. In this case, if we calculate the
antiframe S ∗ [A?] ` P, the assertion S ∗ A? will be sufficient to execute C safely.

Example 2.4. Suppose we have the following specification:

{x 7→ v′1 ∗ y 7→ v′2} if (*y==0) *x = 42 {x 7→ v′3 ∗ y 7→ v′4}

With assertion S = x 7→ 5 ∗ z 7→ 7 and desired precondition P = x 7→ v′1 ∗ y 7→ v′2,
abduction will obtain the antiframe A? = y 7→ v′. The combined assertion x 7→ 5 ∗ z 7→
7 ∗ y 7→ v′ suffices to execute the command safely.

The tight interpretation of specifications is necessary for this kind of reasoning.
Because a specification must describe all the resources affected by a thread, any resources
in the frame must be unaccessed. Conversely, if we calculate the antiframe S ∗ [A?] ` P,
it must be the case that before executing C, we must first acquire the additional resource
A? (as well as S).

Redundant and needed resources. In a separation logic proof, an assertion at a par-
ticular program point may describe resources that are not needed until much later in the
program (or that are not needed by any subsequent command). Different commands ac-
cess different resources, but the tight interpretation means that each assertion expresses
all the resources used by the program at any point during its execution (aside from
those gained and lost by resource transfer). Thus at a given point in the program, many
resources that are represented in the proof will be redundant.

Resources that become redundant will not be accessed by the current thread, and
thus can be accessed by a parallel thread without generating data races.5 Redundant
resources can be seen as over-approximating lack of dependence: a resource that is
redundant at a particular point in a thread cannot subsequently generate dependencies
between it and other threads. Our parallelisation analysis uses the input separation
logic proof to identify resources that are definitely redundant, and uses grant() and
wait() signalling to transfer them to the logically next point at which they are needed.

Thus our analysis is likely to be most effective for programs with complex specifica-
tions encompassing many resources, and with programs which modify resources in very
few places, and where the resources accessed change over the course of the program.
The move() example we discuss below in §2.4.2 has precisely these characteristics.

We use frame inference to determine redundant resources—resources that will not be
accessed in a particular portion of the program, and which can thus be safely transferred
to other threads. Conversely, we use abduction to determine needed resources—resources
that must be held for a particular portion of the program to complete (in that some
control flow path uses them), and which must thus be acquired before the program can
proceed safely.

In our analysis, we calculate the redundant resource from the current program point
to the end of the current parallelised program segment. This resource can be transferred
to the logically next program segment with a grant() barrier. We calculate the needed
resource from the start of current segment to the current program point. This resource

5Similarly, for garbage collection, only live data needs to be preserved and dead data can be collected
early [ASKM14].
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must be acquired from the logically preceding segment using a wait() barrier before
execution can proceed further.

Note that these two resources need not be disjoint. A resource may be used early in
a segment, in which case it will be both needed up to the current point, and redundant
from the current point, or e.g., it may become redundant due to being used in only one
of the branches of an if-then-else block. Note also that redundant and needed resources
need not cover the entire state—some resource described in the proof may never be
accessed or modified by the program.

2.3 Algorithm overview

We assume the user supplies a sequential program with parallelisable code segments
identified, as well as a sequential proof written in separation logic establishing relevant
memory safety properties of the program. The high-level structure of our algorithm is
as follows:

1. A resource usage analysis uses abduction and frame inference to discover redundant
and needed resources for different portions of the program.

2. A parallelising transformation consisting of the following three parts leverages this
information to construct a parallelised program and associated separation logic
proof of correctness:

(i) The parallelisation phase converts the sequential program into a concurrent
program by replacing all the identified parallelisable segments with parallel
threads.

(ii) The resource matching phase matches redundant resources in each parallel
thread with needed resources in the logically following parallel thread.

(iii) The barrier insertion phase modifies each parallel thread to insert grant()
and wait() barriers consistent with the discovered resource transfer.

Algorithm properties. Our algorithm does not guarantee optimal parallelisation;
there may be programs that it does not find which are more parallel. However, the
resulting parallelised program is guaranteed to be race free and memory safe, and the
analysis constructs a separation logic proof that the parallelised program satisfies the
same safety specification as the original sequential program. This new proof differs
from the proof of the original sequential proof, reflecting parallelisation and injected
synchronisation. If the original sequential program is terminating and does not dispose
memory, then parallelisation is behaviour-preserving: every input-output behaviour of
the parallelised program is also a behaviour of the original sequential program.

2.3.1 Resource usage analysis

Consider again the program that we introduced in Example 2.1 and the following
specification for f(), covering any input value i:

{x 7→ a ∗ y 7→ b} f(i) {(a ≥ i ∧ x 7→ a ∗ y 7→ a) ∨ (a < i ∧ x 7→ 0 ∗ y 7→ b)}
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1

{
x 7→ a ∗ y 7→ b

}
2 void f(i) {
3 int v = *x;
4

{
v = a ∧ x 7→ a ∗ y 7→ b

}
5 if (v >= i) {
6

{
v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b

}
7 *y = v;
8 }
9 else {

10

{
v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

}
11 *x = 0;
12 }
13 }
14

{
(a ≥ i ∧ x 7→ a ∗ y 7→ a) ∨ (a < i ∧ x 7→ 0 ∗ y 7→ b)

}
Figure 2.2: Separation logic proof of the function f().

The precondition of this specification says that f(i) accesses two distinct memory
locations, x and y. As is standard in Hoare logic, we use auxiliary variables a and b to
record the values stored in x and y. The postcondition gives two possibilities: if a is
greater than i, then both x is unmodified and y are set to a; otherwise, x is set to 0 and
y unmodified. Fig. 2.2 shows a proof of this specification.

Needed resources. At the core of the analysis is computing needed resources for pro-
gram segments induced by pairs of program points.

Definition 2.2. The needed resource for a particular program interval is the resource
that must be held to execute from the start of the interval to the end without faulting.

Needed resources are used to work out when wait-barriers must be injected. Re-
sources must be acquired before they are used in a program segment. Thus, needed
resources are calculated from the start of the segment, to every other program point
(such calculation constitutes a forward program analysis).

Example 2.5. In our example, wait() barriers are injected into the second call to f().
These needed resources are shown in Fig. 2.3. For example, the resource calculated for
the start of the else-branch (Fig. 2.3, line 11) is:

a < i∧ x 7→ a

That is, to reach this program point from the start of f(), the thread only requires access
to the heap cell x, provided a < i. Access to x is needed because it is dereferenced in
line 3.

Redundant resources. To calculate where grant() barriers can be inserted, the anal-
ysis computes redundant resources for particular program intervals.
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1 n:
{
emp

}
2 void f(i) {
3 int v = *x;
4 n:

{
x 7→ a

}
5 if (v >= i) {
6 n:

{
a ≥ i ∧ x 7→ a

}
7 *y = v;
8 n:

{
a ≥ i ∧ x 7→ a ∗ y 7→ b

}
9 }

10 else {
11 n:

{
a < i ∧ x 7→ a

}
12 *x = 0;
13 n:

{
a < i ∧ x 7→ a

}
14 }
15 }
16 n:

{
(a ≥ i ∧ x 7→ a ∗ y 7→ b) ∨ (a < i ∧ x 7→ a)

}
Figure 2.3: Needed resources, indicated by the prefix n, from the start of f() to all other
program points.

Definition 2.3. The redundant resource in a program interval is the portion of the
currently-held resource that is not needed to execute from the start to the end of the
interval.

Resources that are redundant to the end of the segment can be transferred to logically-
later program segments using grant(). Consequently, the redundant resource is
calculated from each program point, to the end of the segment (such calculation, in a
way, constitutes a backward program analysis).

To calculate a redundant resource, the analysis first calculates the needed resource
for the interval. It then subtracts using frame inference the needed resource from the
resource described in the sequential proof.

Example 2.6. The redundant resources, along with the needed resources used to cal-
culate them, for the first call to f() are shown in Fig. 2.4. For example, the needed
resource at the start of the else-branch (Fig. 2.4, line 11) is:

x 7→ a

According to the sequential proof in Fig. 2.2, such a thread actually holds the following
resource at this point:

v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

To calculate the redundant resource, we pose the following frame inference question,
computing the frame F?.

v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b ` x 7→ a ∗ [F?]

The resulting redundant resource is as follows:

F? : v < i ∧ y 7→ b

28



1 n:
{
x 7→ a ∗ (a ≥ i∧ y 7→ b)

}
r :
{
emp

}
2 void f(i) {
3 int v = *x;
4 n:

{
(v ≥ i∧ y 7→ b) ∨ (v < i∧ x 7→ a)

}
r :
{
(v = a ∧ v ≥ i∧ x 7→ a) ∨ (v < i ∧ y 7→ b)

}
5 if (v >= i) {
6 n:

{
y 7→ b

}
r :
{
v = a ∧ v ≥ i∧ x 7→ a

}
7 *y = v;
8 n:

{
emp

}
r :
{
v = a ∧ v ≥ i∧ x 7→ a ∗ y 7→ b

}
9 }

10 else {
11 n:

{
x 7→ a

}
r :
{
v < i ∧ y 7→ b

}
12 *x = 0;
13 n:

{
emp

}
r :
{
v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

}
14 }
15 }
16 n:

{
emp

}
r :
{
x 7→ a ∗ y 7→ b

}
Figure 2.4: Redundant resources from all program points to the end of f(), along with
the needed resources used to calculate them. Needed resources are prefixed with n and
redundant resources are prefixed with r.
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In other words, the thread no longer requires access to the heap cell y beyond line 11
in f(), and we also know that v < i. Note however, that we do not know that v is
the same as the value pointed to by x, because this does not necessarily hold at every
following point in the segment.

2.3.2 Parallelising transformation

As described above, the parallelising transformation has three steps. We now describe
how these steps are applied in parallelisation of our example 2.1.

Step (i). First, the program is divided into two parallel threads.

f1(1) || f2(2)

The transformation specialises f() into distinct functions f1() and f2() because each
thread has different synchronisation.

Step (ii). Next, the transformation looks for needed resources in the second thread
f2(), and matches them against redundant resources in the first thread f1(). In this
case, the transformation identifies two distinct needed resources, nx and ny:

nx : x 7→ v′1 ny : y 7→ v′2

Resource nx becomes needed in f2() at line 3. It becomes redundant in f1() at lines 6
and 13 of Fig 2.4. Resource ny becomes needed at lines 6 and 13. It becomes redundant
at lines 8 and 11.

Step (iii). The final stage of the transformation is to inject synchronisation corre-
sponding to these discovered resources. Specifically, grant-barriers are injected at the
points that the resources become redundant, while wait-barriers are injected at the
points the resources become needed. Synthesising barriers follows a four-step process:

1. Identify a needed resource r at some point in the later segment. This point may
be chosen with assistance from the programmer, or heuristically, for example by
favouring bigger needed resources – see §5.2 for a discussion.

2. Down all other control-flow paths in the later segment, find a program point such
that the needed resources is covered by r. This step ensures that the identified
resources r is received down all possible paths in the program.

3. Down all control-flow paths in the earlier segment, find a program point such that
the redundant resource covers r. This step ensures that the resource r is satisfied
down all possible paths in the program.

4. Synthesise a channel name and insert wait() into the later segment, and grant()
into the earlier segment, at the identified program points.

After each iteration of this process, the needed and redundant resources are updated
to reflect the new synchronisation. The process terminates when no needed resources
remain.

The parallelised version of f() is shown in Fig. 2.1. The needed resources associated
with barriers are selected heuristically. The transformation could also safely choose a
single needed resource:

x 7→ v′1 ∗ y 7→ v′2
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This resource “overapproximates” (i.e., entails with a non-empty frame) both nx and
ny. However, this resource would need to be acquired at a dominating program point
for nx and ny, which would unfortunately sequentialise the program by forcing the
wait-barrier to the start of the second thread.

As there are only two heap locations, it is clear that nx and ny are a sensible choice of
needed resource. Selecting needed resources becomes more tricky when resources are
dynamic structures, such as linked lists (see §2.4.2).

2.4 Generalising the method

In the previous section we informally presented the core of our method. In this section,
we discuss how it can be generalised to handle an unbounded number of threads
(§2.4.1), and dynamic (heap-allocated) data structures (§2.4.2).

2.4.1 Unbounded iterations: parallel-for

Until this point we have assumed that the programmer identifies a fixed number of
static program segments for parallelisation—in Example 2.1, these were the two calls
to f(). However, our method can support unbounded segments running in parallel.
To do this, we introduce the construct pfor (parallel-for) for annotating the sequential
code. The intended semantics of pfor is identical to a standard for-loop, but in which
all iterations may run in parallel, with our method injecting the synchronisation across
iterations as required.

Example 2.7. Let us consider the following program:

pfor (i=1; i++; i<=n) {
f(i);

}

where f() is as in Example 2.1. The externally-visible input-output behaviour of this
program should be the same as if we did the sequential composition:

f(1); f(2); f(3); ... f(n);

Internally, however, each call to f() may run concurrently.

Parallelisation. Fig. 2.5 shows the parallelisation of the pfor-annotated program
from example 2.7, as realised by our method. A pfor is translated to a sequential for
loop, in which each iteration forks a new copy of the parallelised loop body. Resources
are transferred between the threads in order of thread-creation. That is, the nth iteration
of the pfor acquires resources from the logically-preceding (n− 1)th iteration, and
releases resources to the logically-succeeding (n + 1)th iteration.

This ordering is implemented through shared channels; a thread shares with its
predecessor and successor a set of channels for receiving (i.e., waiting) and sending
(i.e., granting) resources, resp. The number of threads—and so, the required number of
channels—is potentially decided at run-time. Consequently, channels are dynamically
allocated in the main for-loop using the newchan() operation [DJP11]. Each iteration
creates a set of new channels, and passes the prior and new set to the forked thread.
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chan wx = newchan();
chan wy = newchan();
chan wx’, wy’;
grant(wx);
grant(wy);
for (i=1; i++; i<=n) {
wx’ = newchan();
wy’ = newchan();
fork(f(i,wx,wy,wx’,wy’));
wx = wx’;
wy = wy’;

}
wait(wx);
wait(wy);

f(i, wxp, wyp, wx, wy){
wait(wxp);
int v = *x;
if (v >= i) {
grant(wx);
wait(wyp);

*y = v;
grant(wy);

}
else {
wait(wyp);
grant(wy);

*x = 0;
grant(wx);

}
}

Figure 2.5: Parallelisation of f(), generalised to deal with unbounded iteration. Global
variables x and y point to distinct memory locations.

The parallelised version of f() (Fig. 2.5) takes four channel arguments, a pair of
each for x and y. The prior channels are used for resource transfer with the logically-
preceding thread (here wx, wy), and the new channels are used to communicate resource
transfer with the logically-following thread (here, wx’, wy’). As each iteration calls
both wait() and grant(), to receive and send resources, the injected synchronisation
in Fig. 2.5 merges the synchronisation from both the first and second threads in Fig. 2.1.

2.4.2 Loops and dynamic data structures

Up to this point, we have dealt with injecting channels transferring single heap locations
into straight-line code. Our method can in fact handle more complicated heap-allocated
data structures such as linked lists, and control-flow constructs such as loops.

Example 2.8. To illustrate, consider the function move(), shown in Fig. 2.6. This
function searches a non-empty linked list s for the node at position l in the list and
destructively moves that node to the end of the list.

We assume that the following specification of move() holds:

{node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)}
move(s, l)

{node(s, n′3) ∗ node(n′3, n′4) ∗ lseg(n′4, null)}

This specification is simple: all it says is that executing move() on a list of length two
or more results in a list of length two or more. A proof of this specification is given in
Fig. 2.7.

An important feature of our approach is that the input safety proof need not specify
all the relevant sequential properties (e.g. it does not specify that the node moved to
the end of the list was previously at position l); all sequential dependencies are still
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move(s, l) {
int i = 0;
node x = s.nxt;
node p = s;
while (i<l && x.nxt!=null) {
i++;
p = x;
x = x.nxt;

}
while (x.nxt!=null)
x = x.nxt;

if (p.nxt!=x) {
node tmp = p.nxt.nxt;
p.nxt.nxt = null;
x.nxt = p.nxt;
p.nxt = tmp;

}
}

Figure 2.6: Example function move(), a list-manipulating program whose automated
parallelisation requires reasoning over complex assertions and predicates.

enforced in the parallelised program. Thus we can view this example program a s
representative of a class of algorithms and implementations that traverse a list from its
head, then mutate the tail. With minor modifications, the same proof pattern would
cover assigning to the values in the list, or sorting the tail of the list.

We consider the parallelisation of a sequential program consisting of pair of calls to
move():

move(s,a); move(s,b);

The parallelised version of this program consists of two parallel calls to modified
versions of move:

move1(s,a) || move2(s,b)

(We could also parallelise move() to deal with unbounded iterations (as in §2.4.1), but
we choose to simplify the exposition at this stage. The formal description of our method
in Chapter 4 describes the general case.)

The wait() and grant() barriers in move1() and move2() must enforce the
following properties:

• move2() must not write to a list node until move1() has finished both reading
from and writing to it. Consequently, move2() must wait for move1() to finish
traversing a segment of the list before moving a node inside the segment.

• move2() must not read from a list node until move1() has finished writing to it.
Consequently, move2() must wait for move1() to finish moving a node before it
traverses over that point in the list.

This example is substantially more subtle to analyse and parallelise than our earlier
one, because the list is not divided into segments that can be discovered from the
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{
node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)

}
move(s, l) {
int i = 0;
node x = s.nxt;
node p = s;{
node(s, x) ∗ node(x, n′) ∗ lseg(n′, null) ∧ s = p

}
while (i<l && x.nxt!=null) {{

lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null)
}

i++;
p = x;
x = x.nxt;

}{
lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null)

}
while (x.nxt!=null) {{

lseg(s, p) ∗ node(p, n′1) ∗ lseg(n′1, x) ∗ node(x, n′2) ∗ lseg(n′2, null)
}

x = x.nxt;
}{
lseg(s, p) ∗ node(p, n′) ∗ lseg(n′, x) ∗ node(x, null)

}
if (p.nxt!=x) {{

lseg(s, p) ∗ node(p, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, x) ∗ node(x, null)
}

node tmp = p.nxt.nxt;
p.nxt.nxt = null;
x.nxt = p.nxt;
p.nxt = tmp;{
lseg(s, p) ∗ node(p, tmp) ∗ lseg(tmp, x) ∗ node(x, n′) ∗ node(n′, null)

}
}

}{
node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)

}
Figure 2.7: Sequential separation logic proof of move().
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move1(s, l) {
int i = 0;
node x = s.nxt;
node p = s;
while (i<l && x.nxt!=null) {
i++;
p = x;
x = x.nxt;

}

*pr = p;
grant(i1);
while (x.nxt!=null)
x = x.nxt;

if (p.nxt!=x) {
... // omitted

}
grant(i2);

}

move2(s, l) {
int i = 0;
wait(i1);
if (s==*pr || s.nxt==*pr) wait(i2);
node x = s.nxt;
node p = s;
while (i<l && x.nxt!=null) {
if (x.nxt==*pr) wait(i2);
i++;
p = x;
x = x.nxt;

}
while (x.nxt!=null) {
if (x.nxt==*pr) wait(i2);
x = x.nxt;

}
if (p.nxt!=x) {
... // omitted

}
}

Figure 2.8: Parallelisation of move() for two threads.

static structure of the program. (A simple points-to analysis would be insufficient to
discover the salient partitioning, for example.) In the worst case, a wait() at the start
of move2() and a grant() at the end of move1() enforces sequential order. However,
by reasoning about the structure of the manipulated list using the safety proof given in
Fig. 2.7, our approach can do considerably better.

The parallelised program synthesised by our algorithm is shown in Fig. 2.8. This
parallelisation divides the list into two segments, consisting of the portions read and
modified by move1(). A shared location pr, introduced by our algorithm, stores the
address of the starting node of the portion modified by move1(). The thread move2()
uses pr to synchronise access to the second segment of the list. We discuss how the
analysis generates pr below, under “Value materialisation”.

Handling dynamic structures means dealing with allocation and disposal. Fortu-
nately, separation logic handles both straightforwardly. As already argued, updates
to the data structure and object allocation are reflected in the invariants of the original
sequential proof. Thus updates and allocations are also reflected in the invariants which
our analysis constructs to represent the contents of channels. However, introducing
allocation and disposal affects the behaviour-preservation result discussed in §4.4; this
result ensures the program behaviour is unaffected by the translation (i.e., the translation
enforces deterministic parallelism).

Handling list segments. We run our resource-usage analysis over the program to
determine redundant and needed resources. The results of the analysis are shown in
Fig. 2.9.

Consider the program point in Fig. 2.9 just before the start of the second while
loop. Our analysis discovers that only the resource lseg(p, null) is needed to execute
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move1(s, l) {

r :
{

emp
}

int i = 0;
node x = s.nxt;
node p = s;
while (i<l && x.nxt!=null) {

r :
{

lseg(s, p)
}

i++;
p = x;
x = x.nxt;

}

r :
{

lseg(s, p)
}

while (x.nxt!=null) {

r :
{

lseg(s, p)
}

x = x.nxt;
}

r :
{

lseg(s, p)
}

if (p.nxt!=x) {
... // omitted

}
}

r :
{

node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)
}

move2(s, l) {
int i = 0;
node x = s.nxt;

n:
{

node(s, n′)
}

node p = s;
while (i<l && x.nxt!=null) {

n:
{

lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)
}

i++;
p=x;
x=x.nxt;

}

n:
{

lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)
}

while (x.nxt!=null) {

n:
{

lseg(s, n′1) ∗ node(n′1, x) ∗ node(x, n′2)
}

x=x.nxt;
}

n:
{

lseg(s, n′) ∗ node(n′, x) ∗ node(x, null)
}

if (p.nxt!=x) {
... // omitted

}
}

n:
{

lseg(s, n′) ∗ node(n′, x) ∗ node(x, null)
}

Figure 2.9: Left: redundant resources (from the indicated program points to the end) for
move(). Right: needed resources (from start to the indicated other program points) for
move().
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from the start of this loop to the end of the function. Comparing this resource to the
corresponding invariant in the sequential proof (Fig. 2.7) reveals that the resource
lseg(s, p) is redundant at this point. This assertion represents the segment of the list that
has already been traversed by move1(), from the head of the list to p.

Injecting barriers. Barriers grant() and wait() are injected into move() as dis-
cussed above, in §2.3.2. Barriers wait() and grant() should only be called once for
any given channel in the program. For simplicity of exposition, in Fig. 2.8, we have re-
written move2() using a wait() controlled by conditionals. However, in general this
approach requires us to modify loop invariants, which is often difficult. In the formal
definition of the parallelising transformation, we only inject barriers into loop-free code,
and perform syntactic loop-splitting to expose points in loops where barriers can be
called conditionally. Details are given in §4.2.4.

Value materialisation. In order to safely transfer a redundant resource to logically
later program segments we need the assertion to be expressed in global variables, and to
be invariant from the point in time that the resource is released, to the point it is received
in the subsequent thread. The assertion lseg(s, p) initially generated by the analysis
satisfies neither condition, because it is partly expressed in terms of the local variable p,
which changes during execution of move1(). The current thread may invalidate the
assertion by changing the value stored in p.

To satisfy this requirement, we could simply existentially quantify the offending
variable, p, giving the redundant resource

∃y. lseg(s, y)

However, such a weakening loses important information, in particular the relationship
between the resource, and the list tail beginning at p. To retain such dependency
relationships, our parallelisation algorithm stores the current value of p into a global
location pr shared between move1() and move2(). (We call storing a snapshot of a
local value in this way materialisation). An assignment is injected into move1() at the
start of the second loop:

...

*pr = p;
while (x.nxt!=null)
...

After the assignment, the proof needs to be modified to accommodate the new global
location pr. In this case, this amounts to simply modifying the invariant to add an extra
points-to assertion representing the new location:

lseg(s, p) ∗ node(p, x) ∗ node(x, n′) ∗ lseg(n′, null) ∗ pr 7→ p

The redundant state just after the assignment *pr = p can now be described as follows:

lseg(s, y′) ∗ pr 1/27−→ y′
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The assertion pr
1/27−→ y′ represents fractional, read-only permission on the shared

location pr. This binds together the head of the list and the remainder of the list when
they are recombined, and thus helps preserve the list invariant.

When traversing the list, move2() compares its current position with pr, which
represents the boundary of the list already processed by move1(). If it reaches the
pointer stored in pr, it must wait to receive the second, remainder segment of the list
from move1().
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CHAPTER 3

TECHNICAL BACKGROUND

In the previous chapter we gave an overview of our proof-directed parallelisation
method. In this and the next chapter we turn to a formal description of the method. We
start with a technical background about the programming language (§3.1) we use in
the formalisation, followed by our assertion language and automated reasoning therein
(§3.2), and finish with the representation of the sequential proof (§3.3). This chapter is
not a new research, but presents the relevant concepts coherently from the literature.

3.1 Programming language and program representation

We present the formalisation of our parallelisation method for programs written in a
simple heap-manipulating language without procedures1, defined by:

e ::= x | nil | t(ē) | . . . (expressions)
b ::= true | false | e = e | e 6= e | . . . (booleans)
a ::= x := e | x := ∗e | ∗x := e | x := alloc() | . . . (primitive commands)
C ::= C; C | ` : skip | ` : a | ` : if(b) {C } else {C } | ` : while(b) {C }

, where t ranges over constructors of pure expressions such as e + e, e− e, etc. To avoid
an extra construct, we define for(C1; C2; b){C3} as C1; while(b){C2; C3}. The choice of
primitive commands is given for illustrative purposes; our method is independent of
this choice. We postpone the formal operational semantics of the language to §6.1 as it
is not crucial for the development of the method.

We formalise our method on an example program structure using the multi-iteration
construct pfor, which we introduced in §2.4.1. For clarity of the exposition, throughout
§3 and §4 we assume a fixed input program P of the following form:

global r̄;
work(x̄) {
local ȳ;
C;

}

mainP(void) {
pfor(C1; C2; b) {
work(ē);

}
}

1An extension involving procedures is considered in §5.4.
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void f(i) {
`1 : int v = *x;
`2 : if (v >= i) {
`3 : *y = v;

}
else {

`4 : *x = 0;
}

}

fs : x 7→ a ∗ y 7→ b
`1 : x 7→ a ∗ y 7→ b
`2 : v = a ∧ x 7→ a ∗ y 7→ b

`2`3 : v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b
`2(`2)

t
e : v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ a

`2`4 : v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b
`2(`4)

f
e : v = a ∧ v < i ∧ x 7→ 0 ∗ y 7→ b

fe : (a ≥ i ∧ x 7→ a ∗ y 7→ a)∨
(a < i ∧ x 7→ 0 ∗ y 7→ b)

Figure 3.1: Left: labels for commands in function f() from §2. Right: associated
assertions in the sequential proof of f() from Fig. 2.2.

where global and local indicate the scope of variables used in C, C1, C2, b and ē, and
work embodies the work performed iteratively by the program, exposed for potential
parallelisation. Our parallelisation method generates a new program Ppar that allows
safe execution of a transformed version of work in separate threads.

Labelling of commands. We assume that every command in C is indexed by a unique
label ` ∈ Label; the entry and the exit point of work are also treated as labels. We identify
a particular command by its label, and when needed denote by cmd(`) the command at
the label `. Functions pred and succ : Label ⇀ Label return the label of the previous (the
next, resp.) command in a block of sequential compositions. For a label ` corresponding
to a while loop, the predecessor of the first command and successor of the last command
in the block are denoted by `s and `e, respectively. For ` corresponding to if-else,
`ts (`te) and `fs (`fe) are labels of the predecessor of the first (the successor of the last)
commands in the if and else branches, respectively.

Example 3.1. The left-hand side of Fig. 3.1 shows a labelling of the function f() from
Example 2.1 in §2.

Program representation. We assume that the program’s work function is represented
by a variant of abstract syntax tree (formally, an ordered forest) T with Label∪{works, worke}
as the set of nodes and as the set of edges all pairs (`, `′) where ` is a label of an if-else
block and `′ a label of a command within the encompassed if or else branches. Labels
` and `′ that belong to the same block are siblings in the tree. They are ordered ` < `′

if there exists n ≥ 1 such that `′ = succn(`). We denote by `↑ and `↓ the smallest (resp.
largest) label in the block containing `. We write [`, `′〉 to denote the sequence of labels
between ` inclusively and `′ exclusively, and P[`,`′〉 for the corresponding program
fragment from ` (inclusively) to `′ (exclusively).

Program paths. A program path is any finite non-empty sequence of nodes in the
abstract syntax tree T . Each program path determines a sequence of conditionals that
need to be traversed in order to reach a particular point in the program. We denote the
set of all program paths by Paths.

We often want to manipulate and compare program paths. For a program path
γ = `1 . . . `n ∈ Paths, we write γ[i] to denote `i, γ[i..j] to denote `i . . . `j and |γ| to
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denote the length n. For program paths γ and γ′, γf γ′ denotes their longest common
prefix, i.e., for k = |γf γ′| we have ∀j ≤ k, γf γ′ = γ[j] = γ′[j] and if |γ|, |γ′| > k
then γ[k + 1] 6= γ′[k + 1]. We define a partial order ≺ on Paths as follows. We say that
γ ≺ γ′ iff γf γ′ = γ and |γ| < |γ′|, or for k = |γf γ′| we have |γ|, |γ′| > k and
γ[k + 1] < γ′[k + 1]. (Intuitively, two paths are related in this way if they share a prefix,
and one takes predecessor branch to the other in the same block). We say that γ � γ′ iff
γ ≺ γ′ or γ = γ′.

Lemma 3.1. (Paths,�) is a lattice with least element works and greatest element worke.

For Γ ⊆ Paths we define max(Γ) as max(Γ) , {γ ∈ Γ | ¬∃γ′ ∈ Γ . γ ≺ γ′}. We define
min(Γ) analogously. For Γ, Γ′ ⊆ Paths we write Γ � Γ′ if for all γ ∈ Γ, there exists
γ′ ∈ Γ′ such that γ � γ′.

3.2 Assertion language

We assume that the assertions in the program proof are expressed using a class of
separation logic formulae called symbolic heaps.

Definition 3.2. A symbolic heap ∆ is a formula of the form ∃x̄ . Π ∧ Σ where Π (the
pure part) and Σ (the spatial part) are defined by:

Π ::= true | e = e | e 6= e | p(e) | Π ∧ Π
Σ ::= emp | s(e) | Σ ∗ Σ

Here x̄ are auxiliary (logical) variables, e ranges over expressions, p(e) is a family
of pure (first-order) predicates (such as e.g., arithmetic inequalities, etc), and s(e) a
family of spatial predicates (such as e.g., points-to x 7→ e, singly-linked list lseg(e, e),
doubly-linked lists, trees, etc). For readability, the existential quantification of auxiliary
variables in ∆ is usually omitted.

We refer to the pure and the spatial part of an assertion ∆ as ∆Π and ∆Σ respectively.
We denote by Π∨ the set of all quantifier-free first-order formulae built in the same way
as Π but also allowing the ∨ connective.

We often need to substitute auxiliary variables in symbolic heaps, for example when
recasting an assertion into a different calling context. If $ = x̄ 7→ ē is a mapping
from variables in x̄ to ē then ∆[$] denotes the formula obtained by substituting every
occurrence of xi in ∆ with the corresponding ei. We denote by δ−1 the inverse variable
mapping, if δ is injective2.

We treat a disjunction of symbolic heaps as a set and interchangeably use the ∪ and
∨ operators. Such disjunctions will often arise in assertions at join points in the program.
The set of all symbolic heaps is denoted by SH and the set of all disjunctive symbolic

2In our framework, substitutions are always guaranteed to be injective because the variables being
substituted correspond to heap locations and channel resources whose denotations are guaranteed to be
distinct; if the substitution involves values, then they must be implicitly existentially quantified, and can
therefore be assumed to be distinct.
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heaps by P(SH). We overload the ∧ and ∗ operators in a natural way: for ∆i = Πi ∧ Σi,
i = 1, 2, and ∆′ = Π′ ∧ Σ′, we define

∆1 ∗ ∆2 , (Π1 ∧ Π2) ∧ (Σ1 ∗ Σ2)

Π ∧ ∆′ , (Π ∧ Π′) ∧ Σ′

Σ ∗ ∆′ , Π ∧ (Σ ∗ Σ′)

Operators∧ and ∗ distribute over∨, thus we allow use of these operations on disjunctive
symbolic heaps and furthermore use the same notation ∆ to refer to both symbolic and
disjunctive symbolic heaps.

Automation. Our resource-usage analysis relies on an (automated) theorem prover for
separation logic assertions that can deal with three types of inference queries involving
disjunctive symbolic heaps:

frame inference: ∆1 ` ∆2 ∗ [∆F],
i.e., given ∆1 and ∆2 find the frame ∆F such that ∆1 ` ∆2 ∗ ∆F holds;

abduction: ∆1 ∗ [∆A] ` ∆2,
i.e., given ∆1 and ∆2 find the “missing” assumption (antiframe) ∆A such that
∆1 ∗ ∆A ` ∆2 holds;

bi-abduction: 3 ∆1 ∗ [∆A] ` ∆2 ∗ [∆F],
i.e., given ∆1 and ∆2 find ∆A and ∆F such that ∆1 ∗ ∆A ` ∆2 ∗ ∆F holds.

As before, square brackets denote the portion of the entailment to be computed.
We sometimes write [ _ ] for a portion that should be computed but that is existentially
quantified and will not be used further.

None of these queries has a unique answer in general. However, for the soundness
of our resource-usage analysis any answer is acceptable (though some will give rise to a
better parallelisation than the others). Existing separation logic tools generally supply
only a single answer. In our implementation, we handle disjunctions using backtracking
as in [DP08], while gracefully loosing disjunctions in (bi-)abductive inference similarly
to [CDOY11].

We note that the theorem prover support for these inference queries is required
independently of how the supplied sequential input program proof has been obtained.
That is, our resource-usage analysis crucially depends on the theorem prover provid-
ing answers to these queries but not on the program analysis (or manual effort) that
constructed the original sequential proof.

3.3 Sequential proof

We assume that the separation logic proof of the function work is represented as a map
P : Label → P(SH).4 Assertions in the proof have the property that for any label `

3The bi-abduction query can be solved by using independent proof systems for frame inference and
abduction, invoked separately in an external procedure (see [CDOY11]). In our implementation, we solve
the bi-abduction query using a single proof system, within the theorem prover (see [BDD+11]).

4We use the disjunctive completion of symbolic heaps (the powerset) as the domain of proof assertions
to allow use of the logical ∨ as the join operation. We made this design choice to the sake of simplicity,
however, more elaborate join operations (e.g. [YLB+08]) could be accommodated.
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executing the program from a state satisfying P(`) up to some subsequent label `′ will
result in a state satisfying P(`′), and will not fault. Our approach is agnostic to the
method by which the proof is created: it can be discovered automatically (e.g., by a tool
such as Abductor [CDOY11]), prepared by a proof assistant, or written manually.

We assume that the structure of the proof is modular, i.e., that primitive commands
and loops at each label use specifications which are given a priori “in isolation”, inherent
only to the underlying programming language and agnostic to the particular context in
which the specification is used. (This property is a standard feature of separation logic
proofs). We assume functions Pre,Post : Label ⇀ P(SH) associating labels of primitive
commands with such modular pre- and post-conditions, respectively. That is, the
command at label ` has a specification

{Pre(`)} cmd(`) {Post(`)},

which is applied in the actual proof by using the frame rule and appropriate variable
substitutions. We also assume a function Inv : Label ⇀ P(SH) associating while labels
with loop invariants, which are used similarly as specifications.

Specifications and loop invariants are formally instantiated in the proof by using a
mapping Ω from labels to variable substitutions such that Ω(`) = x̄ 7→ x̄′ maps formal
variables x̄ in the specification assertion to actual variables x̄′ in the proof assertion at a
label `. We write ∆[Ω(`)] to represent the heap constructed by applying the substitutions
defined by Ω(`) to the assertion ∆.

We also assume a function F : Label ⇀ P(SH) returning the portion of the assertion
framed away at a particular program label. The function F satisfies, for each label ` of a
primitive command,

P(`) ` Pre(`)[Ω(`)] ∗ F(`)

and
Post(`)[Ω(`)] ∗ F(`) ` P(succ(`)).

If ` is a while label then Pre(`) and Post(`) are replaced by a single Inv(`).
We extend functions P and F from labels to program paths by taking the assertion

associated with the last label. That is, if γ = `1 . . . `n then we define P(γ) , P(`n) and
F(γ) , F(`n).

Example 3.2. The right-hand side of Fig. 3.1 shows a proof for the function f() from §2
laid out with respect to the associated program paths.
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CHAPTER 4

PARALLELISATION ALGORITHM

We now formally define our proof-directed parallelisation algorithm. Given an input
program P, the goal of our algorithm is to construct a program Ppar, which is a correctly-
synchronised parallelised version of P. We assumed in §3 that P is of a fixed form
in which the program’s mainP function repeatedly calls a function work in a loop.
Consequently, our parallelisation algorithm generates Ppar containing new functions
work′ and mainPpar such that

mainPpar(void) {

// channel initialisation.
for(C1; C2; b) {
// channel creation.
fork(work′, ...);

}
// channel finalisation.

}

has the same input-output behaviour as the original mainP.
As described in the intuitive development in §2.3, our parallelisation algorithm

is comprised of the resource usage analysis and parallelising transformation. The
parallelising transformation is heuristic in nature and should be viewed as just one
application of the resource usage analysis; more optimised parallelising transformations
are certainly possible. With this in mind, the overall aim of this chapter is to present a
framework for resource-sensitive dependency-preserving analyses—with a particular
instantiation of the parallelisation backend.

The rest of this chapter is structured as follows. In §4.1 we formalise the resource
usage analysis and in §4.2 the parallelising transformation. Then in §4.3 we give remarks
about our implementation and the computational complexity of algorithms. We discuss
soundness informally in §4.4. We conclude with a discussion of limitations (§4.5).

4.1 Resource usage analysis

The resource usage analysis computes two maps:

needed : Paths× Paths ⇀ P(SH)
redundant : Paths× Paths ⇀ P(SH)
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For γs, γe ∈ Paths, such that γs ≺ γe, needed(γs, γe) gives the resources that might be
accessed during execution from γs to γe. In parallelisation, these are the resources
that must be acquired before execution of the current thread can proceed. Similarly,
redundant(γs, γe) gives the resources that are guaranteed not to be accessed by the
program between γs and γe. In parallelisation, these are the resources that can safely be
transferred to other parallel threads.

Algorithm 1: Computing needed resources between labels within the same pro-
gram block using backward symbolic execution.

1 Needed-Block((`′, `′′) : Label× Label, ∆ : P(SH))
2 begin
3 ` := `′′;
4 while ` 6= `′ do
5 ` := pred(`);
6 if cmd(`) matches if(b) {C } else {C′ } then
7 ∆ := P(`)Π ∧(

Needed-Block((`ts , `te), ∆)∪ Needed-Block((`fs , `fe), ∆)
)
;

8 end
9 else if cmd(`) matches while(b) {C } then

10 Inv(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [ _ ];
11 ∆ := P(`)Π ∧ (Inv(`)[Ω(`)] ∗ ∆A);
12 end
13 else
14 Post(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [ _ ];
15 ∆ := P(`)Π ∧ (Pre(`)[Ω(`)] ∗ ∆A);
16 end
17 end
18 return ∆;
19 end

4.1.1 Needed resources computation

We calculate needed resources in a program by using two functions, defined below:
Needed-Block, which computes needed resources between labels within the same
program block, and Needed, which computes needed resources between arbitrary
program paths, spanning possibly different blocks. Intuitively, the needed resources
computation can be seen as a liveness analysis for resources—a resource R which is
needed between program paths γs and γe is live in the sense that on the way from γs to
γe some command might access R by virtue of command’s specification mentioning R.

Needed-Block. The function Needed-Block (Alg. 1) uses backward symbolic ex-
ecution to compute needed resources between a pair of labels (`′, `′′) located within
the same program block. The execution process starts by an arbitrary symbolic heap ∆,
representing the resources we have at the end of the block. By pushing ∆ backwards
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along the preceding commands, Needed-Block successively discovers missing re-
sources that are needed to execute the commands in the block. The algorithm poses
bi-abduction queries to determine the sufficient precondition of primitive commands
and loops (using the loop invariants as specifications) and dives recursively into the
blocks of if and else branches. The existing pure components of the sequential proof
are used to strengthen the abduced solutions returned by the prover. Upon completion,
Needed-Block returns a symbolic heap sufficient to execute the program block P[`′,`′′〉.

The key step of the algorithm is performed on lines 14 and 15. These two steps “sim-
ulate” backward execution of the command at label `, cmd(`), by using its specification.
The goal of such process is to discover the eventually missing resources that cmd(`)
needs for safe execution. Let us explain how these two steps work in more detail.

The command at label ` has a specification {Pre(`)} cmd(`) {Post(`)}. Let ∆ be the
symbolic heap representing the needed resources for safe execution of commands below
label ` that we have computed in previous iterations. For cmd(`) to have been executed
safely, it must have been able to establish Post(`) upon completion. Since in general we
do not know in which capacity ∆ contains the resources described by Post(`), we pose
a bi-abduction query

Post(`)[Ω(`)] ∗ [∆A] ` ∆ ∗ [ _ ],

forcing the post-state after execution of cmd(`) to become Post(`)[Ω(`)] ∗ ∆A. By
framing ∆A away and using the specification of cmd(`), we obtain Pre(`)[Ω(`)] ∗ ∆A as
the pre-state before the execution of cmd(`). Finally, we enrich the computed pre-state
with the pure assertion P(`)Π from the sequential proof and store the resulting symbolic
heap as the new ∆.

The use of existing pure assertions from the sequential proof (rather than synthesiz-
ing new ones) is essential in practice—abducing missing pure assertions is much harder
than abducing spatial resources and the prover would likely often fail to compute a
solution. Pure parts of the sequential proof also control the precision of conditions for
if-then-else blocks and loops. For instance, we could have updated ∆ in line 7 by always
requiring b and ¬b in the respective disjuncts:(

P(`)Π ∧ b ∧ Needed-Block((`ts , `te), ∆)
)
∪(

P(`)Π ∧ ¬b ∧ Needed-Block((`fs , `fe), ∆)
)

.

However, if b (¬b) is necessary in the proof of the if (resp. else) branch then b (resp. ¬b)
is already implied by P(`ts) (resp. P(`ts)), and thus will be included by construction.

Lemma 4.1. For every ∆, the symbolic heap returned by Needed-Block((`′, `′′), ∆) is
a sufficient precondition for P[`′,`′′〉.

Proof. Follows by iteratively applying the disjunctive version of the frame rule:

{P}C {∨i∈I Qi} ∆ ∗ ∨j∈J ∆A
j ` P ∗ ∨k∈K ∆F

k

{∨j∈J (∆ ∗ ∆A
j )}C {∨i∈I ,k∈K(Qi ∗ ∆F

k )}

and Hoare’s rule of composition.
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Needed. The function Needed (Alg. 2) lifts Needed-Block from within blocks to
between blocks and calculates sufficient precondition between arbitrary program paths.
Given two assertion points represented as program paths γs and γe, Needed(γs, γe)
works by successively pushing backwards the assertion P(γe)Π ∧ emp from γe to γs. In
the first while loop (line 5), the algorithm steps backwards from γe towards the nearest
ancestor block containing both γs and γe, designated by their longest common prefix.
After stepping through that block, in the second while loop (line 10) the algorithm keeps
stepping backwards, proceeding inwards towards γs. Both phases of the algorithm use
Alg. 1 to compute the needed resources in-between program blocks.

The following diagram illustrates the behaviour of Alg. 2:

b1{
  b2{
    b3{
     ...
    }
  }
}
...
b4{
  b5{
    b6{
     ... �e

�s f �e

�s

2

1

Arrow 1 corresponds to the first while loop in the algorithm (line 5), while arrow 2
corresponds to the second while loop (line 10).

Algorithm 2: Computing needed resources between blocks.
1 Needed(γs : Paths, γe : Paths)
2 begin
3 k := |γe|;
4 ∆ := P(γe)Π ∧ emp;
5 while k > |γs f γe|+ 1 do
6 ∆ := Needed-Block((γe[k]↑, γe[k]), ∆);
7 k := k− 1;
8 end
9 ∆ := Needed-Block((γe[k], γs[k]), ∆);

10 while k < |γs| do
11 k := k + 1;
12 ∆ := Needed-Block((γs[k], γs[k]↓), ∆);
13 end
14 return ∆;
15 end

We tabulate the results computed by Needed() into a map needed as follows:

• if P(γs) ` Needed(γs, γe)∗ [ _ ], then needed(γs, γe) := P(γs)Π ∧ Needed(γs, γe);

• otherwise, needed(γs, γe) := P(γs).
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`2 `2`3 `2(`2)te `2`4 `2(`2)fe fe

`1 x 7→ a
a ≥ i∧ (a ≥ i∧

a ≥ i∧ x 7→ a ∗ a < i∧ a < i∧ x 7→ a ∗ y 7→ b)∨
x 7→ a y 7→ b x 7→ a x 7→ a (a < i ∧ x 7→ a)

`2

(v = a ∧ v ≥ i∧
v = a∧ v = a∧ v = a∧ v = a∧ y 7→ b)∨
v ≥ i v ≥ i∧ v < i v < i∧ (v = a ∧ v < i∧

y 7→ b x 7→ a x 7→ a)

`2`3

v = a∧ v = a∧
v ≥ i∧ v ≥ i∧
y 7→ b y 7→ b

`2(`2)te v = a ∧ v ≥ i

`2`4

v = a∧ v = a∧
v < i∧ v < i∧
x 7→ a x 7→ a

`2(`2)fe v = a ∧ v < i

Figure 4.1: The needed map for the function f() from §2. (an empty cell means not
defined)

Lemma 4.2. needed(γs, γe) is a sufficient precondition to execute P from γs to γe.

For further steps of the parallelisation algorithm, we must ensure that the needed map
is monotonic with respect to program paths, i.e., that ∀γ, γ′, γ′′ ∈ Paths such that γ ≺
γ′ ≺ γ′′ we have needed(γ, γ′′) ` needed(γ, γ′) ∗ [ _ ]. This ensures that the resources
needed to reach a particular point include all the resources needed to reach preceding
points. If the underlying theorem prover behaves consistently with respect to failing
and precision then this property will hold. If that is not the case, we post-process the
map and insert additional assertions from the sequential proof as needed.

Example 4.1. Consider the function f() from example 2.1 in §2. The map obtained by
running the algorithm Needed is shown in Fig. 4.1.

4.1.2 Redundant resources computation

We now turn to computing redundant resources. The redundant resource between
two program paths is a portion of the proof assertion in P that is not required by
the needed map. We calculate this portion by frame inference, as shown in function
Redundant (Alg. 3). We tabulate redundant resources in the map redundant by setting
redundant(γs, γe) := Redundant(γs, γe).

Lemma 4.3. If P(γs) ` redundant(γs, γe) ∗ [∆] then ∆ is a sufficient precondition to
execute P from γs to γe.

Example 4.2. Fig. 4.2 shows the redundant map computed by running the algorithm
Redundant with respect to the program path fe for the function f() from §2.
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Algorithm 3: Computing redundant resources
1 Redundant(γs : Paths, γe : Paths)
2 begin
3 P(γs) ` Needed(γs, γe) ∗ [∆R];
4 return ∆R;
5 end

fe

`1 a < i ∧ y 7→ b
`2 (v = a ∧ v ≥ i ∧ x 7→ a) ∨ (v = a ∧ v < i ∧ y 7→ b)
`2`3 v = a ∧ v ≥ i ∧ x 7→ a

`2(`2)
t
e v = a ∧ v ≥ i ∧ x 7→ a ∗ y 7→ b

`2`4 v = a ∧ v < i ∧ y 7→ b
`2(`2)

f
e v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b

Figure 4.2: The redundant map with respect to the program path fe for the function f()
from §2.

4.2 Parallelising transformation

We now formalise our parallelising transformation—an instance of a parallelisation
backend based on the resource-usage analysis. As described in §2.3, the construction
proceeds in three steps. First, we generate the skeleton of the parallelised program
by running each sequential iteration in a separate thread. Then we compute program
points for resource transfer and the associated resources that will be transferred between
threads. Finally, we inject grant and wait barriers to realise this resource transfer. The
resource transfer mechanism transfers a resource from one invocation of the work

function to another. Along with the parallelised program, we generate its proof of
correctness in separation logic with disjoint concurrency.

4.2.1 Parallelised program skeleton

In the first phase we take the sequential program P, consisting of a pfor-loop repeatedly
invoking work as a function (i.e. waiting for completion in each iteration), and generate
a parallelised program Ppar with a corresponding for-loop in which each iteration
forks a new thread invoking a function work′ (without waiting for completion):

mainPpar(void) {

// channel initialisation.
for(C1; C2; b) {
// channel creation.
fork(work′, ...);

}
// channel finalisation.

}
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The function work′ is a modified version of the function work, “patched” with appropri-
ate barrier synchronisation, and is synthesised (along with the channel initialisation,
creation and finalisation) as a result of the next two phases.

4.2.2 Resource matching

In the second phase we determine resources that should be released and acquired at
particular points in the parallelised program. We first show general conditions that
have to hold for such resource transfer to be valid. We then give a heuristic algorithm
to add grant/wait pairs which satisfy conditions.

Conditions on released and acquired resources. Released resources cannot be re-
voked, i.e., each released resource should be included in the redundant map from the
point of the release to the end of the work function—this way we know the resource
will not be needed further. Acquired resources are held by the executing thread until
released. Resources that are acquired along a sequence of program paths should contain
what is prescribed by the needed map between each of the program paths.

We represent the resource transfer realised by the released and acquired resources
via the following maps:

• resource : ResId→ P(SH), denoting resource identifiers that identify released and
acquired resources selected by the algorithm;

• released : Paths ⇀ ResId× Subst, representing resources that are going to be re-
leased at a program path together with the variable substitution applied at that
point;

• acquired : Paths ⇀ ResId, representing resources that are going to be acquired at a
program path.

In order for these maps to represent a feasible resource transfer, we require that they
satisfy the following well-formedness properties:

1. ∀γ ∈ dom(released) .

∀γ′ � γ . released(γ) = (r, ρ)⇒ (redundant(γ, γ′) ` resource(r)[ρ] ∗ [ _ ]);

2. ∀γ ∈ Paths .

~r∈dom(resource){resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} `
needed(γ, worke) ∗ [ _ ];

3. ∀γ ∈ dom(released) .

~r∈dom(resource){resource(r) | ∃γ′ ≺ γ ∧ acquired(γ′) = r} `
released(γ) ∗ [ _ ].
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The first property states we can release only resources that are redundant between
the given program path and any subsequent one. The second property states that
the resources needed at a program path must have already been acquired. The third
property states that only the resources that have been previously acquired can be
released.1

In general, there could be many feasible resource transfers satisfying properties 1–3.
For instance, there is always a trivial transfer that acquires the resource needed(works, worke)
before the first command and releases it after the last, causing each invocation of work
to be blocked until the preceding invocation finishes the last command. Of course, some
transfers are better than others. Determining a resource transfer’s practical quality a
priori would need to take into account the runtime behaviour of synchronisation, and
that kind of analysis is beyond the scope of this work. However, to demonstrate how
one might compute resource transfers in practice, we present a heuristic algorithm that
works well on our examples.

Computing released and acquired resources. Algorithm 4 constructs released, acquired
and resource maps satisfying properties 1–3. Each iteration of the algorithm heuristi-
cally picks a needed resource from some subset of program paths, and then iteratively
searches for matching redundant resources along all preceding paths. The algorithm
maintains a set C of all program paths up to which no more resources are needed. It
terminates once no unsatisfied needed resources remain (line 3).

At the start of the main loop (line 4) the algorithm picks a still-needed resource
between a program path in C and some further program path. The picking of the needed
resource is governed by a heuristic function choose, which picks a pair of program paths
(γ, γ′) such that γ ∈ C, γ′ ∈ Paths and γ ≺ γ′. We do not make any specific assumption
about how these program paths are being picked. For our examples, we defined a
simple partial order reflecting the size of heap resources and picked program paths that
lead to largest resources with respect to that order being picked first. We discuss the
resource selection heuristic further in §5.2.

The key step of the algorithm is performed on line 8:

CR := min
{

γ ∈ Paths R(γ, worke)Σ ` Σ′r ∗ [ _ ] ∧ ∃γ′ ∈ CN. γ′�γ
}

Here R(γ, worke) is the redundant resource from γ to the end of the work function, Σ′r is
the candidate resource that we want to acquire, and CN the set of paths along which the
resource Σr needs to be acquired. The constructed set CR is a set of program paths along
which we can satisfy the candidate needed resource. In line 9, the algorithm checks
whether CR covers all paths from CN.

Resources stored in needed contain various first-order conditions embedded in the
pure part of the symbolic heap. Since we can transfer resources between potentially
different program paths, we only take the spatial part of the resource into consideration
when asking entailment questions; this is denoted by a superscript Σ. Moreover, since
the acquired resource is being sent to a different function invocation, we substitute a
fresh set of variables (line 6).

1We could relax the third requirement if we extended our barriers to support renunciation [DJP11], the
ability to release a resource without first acquiring it. Renunciation allows a resource to ‘skip’ iterations,
giving limited out-of-order signalling.
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Algorithm 4: A heuristic algorithm for computing released and acquired resources.
1 N := needed; R := redundant;
2 C := max{γ ∈ Paths | N(works, γ) = emp};
3 while C 6= {worke} do
4 Σr := N(choose({(γ, γ′) | γ ∈ C ∧ γ′ ∈ Paths ∧ γ ≺ γ′}))Σ;
5 CN := {γ ∈ C | ∃γ′ ∈ Paths.N(γ, γ′) ` Σr ∗ [ _ ]};
6 $ := x̄ 7→ x̄′, where x̄′ fresh;
7 Σ′r := Σr[$];
8 CR := min{γ′ ∈ Paths | R(γ′, worke)Σ ` Σ′r ∗ [ _ ] ∧ ∃γ ∈ CN. γ � γ′};
9 if CN � CR then

10 r := fresh resource id;
11 resource(r) := Σ′r;
12 forall γ ∈ CR do
13 released(γ) := (r, $);
14 forall γ′ s.t. γ � γ′ do
15 R(γ′, worke)Σ ` Σr ∗ [∆];
16 R(γ′, worke) := ∆;
17 end
18 end
19 forall γ ∈ CN do
20 acquired(γ) := r;
21 forall γ′, γ′′ s.t. γ � γ′ � γ′′ do
22 N(γ′, γ′′) ∗ [ _ ] ` Σ′r ∗ [∆];
23 N(γ′, γ′′) := ∆;
24 end
25 end
26 C := max{γ′ ∈ Paths | ∃γ ∈ C .N(γ, γ′) = emp};
27 end
28 end
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If the check CN � CR succeeds, the remainder of the algorithm is devoted to con-
structing the new resource (line 11), and updating released (lines 12–18), acquired (lines
19–25), and C (line 26).

Lemma 4.4. Maps resource, released and acquired computed by Algorithm 4 satisfy prop-
erties 1–3.

Example 4.3. Consider the run of the Algorithm 4 on our running example (Fig. 4.1
and Fig. 4.2). If choose picks (`1, `2) in the first iteration and (`2`3, `2(`2)

t
e) in the second

iteration, then the end result of Alg. 4 is resource = {r1 7→ (x 7→ a), r2 7→ (y 7→ b)},
released = {`2`3 7→ (r1, ∅), `2(`2)

f
e 7→ (r1, ∅), `2(`2)

t
e 7→ (r2, ∅), `2`4 7→ (r2, ∅)} and

acquired = {`1 7→ r1, `2`3 7→ r2, `2`4 7→ r2}.

4.2.3 Inserting grant and wait barriers

In the final phase we synthesise the function work′ in the parallelised program Ppar by
inserting grant and wait barriers into work′. The inserted barriers realise the resource
transfer established by the computed released and acquired resources, while respecting
loop-carried dependencies.

We generate the function work′(ī
(p)
r , īr, env(p), env) from work as follows:

1. To each r ∈ ResId we assign a unique channel name ir. Denote by i
(p)
r the

corresponding channel of the previous thread in the sequence.

2. Let env be an associative array that for each channel maps local variable names to
values. Let env(p) be such map from the previous thread in the sequence. env and
env(p) are used for materialisation (see below).

3. For each γ ∈ dom(acquired) such that acquired(γ) = r we insert a wait barrier
wait(i

(p)
r ) between program paths pred(γ) and γ.

4. For each γ ∈ dom(released) such that released(γ) = (r, _), between program paths
pred(γ) and γ we insert a sequence of assignments of the form env(ir)[”y”] := y

for every local variable y, followed by a grant barrier grant(ir).

Each invocation of work′ creates a fresh set of local variables that are bound to the scope
of the function. If the structure of some shared resource depends on local variables from
a previous invocation, we use the env map to transfer the values from the previous
thread in a sequence to the next thread in a sequence. The preceding thread materialises
the variables by storing them in the env map (see rule (4) above), which is passed
as env(p) to the subsequent thread. Whenever the subsequent thread needs to access
a variable from a previous invocation, it refers to the variable using the env(p) map.
For instance, the variable *pr in the move() example from §2.4.2 (Fig. 2.8) would be
referred to as env(p)(i1)[”p”].

The main function mainPpar in Ppar first creates the set of “dummy” channels; then in
the for-loop repeatedly creates a set of new channels for the current iteration, forks a
new thread with work′ taking the channels from the previous (ī(p)

r ) and the current (īr)
iteration, as well as the maps env(p) and env, and at the end of the loop body assigns
the new channels to the previous channels; and, after the for-loop completes, waits on
the channels in the last set.
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Parallel proof. We generate the parallel proof Ppar from the sequential proof P using
the following specifications for newchan, grant and wait from [DJP11]:

{emp} i := newchan() {req(i, R) ∗ fut(i, R)}
{req(i, R) ∗ R} grant(i) {emp}

{fut(i, R)} wait(i) {R}

The predicates req and fut, corresponding to the required (resp. future) resource, track
the ownership of the input and output ends of each channel: req(i, R) states that
by calling grant on i when holding a resource satisfying R, the thread will lose this
resource, and fut(i, R) states that by calling wait on i, the thread will acquire a resource
satisfying R. In the proof Ppar, we instantiate each variable R associated with a channel
ir with the corresponding resource resource(r).

Example 4.4. Fig. 4.3 illustrates the use of req and fut predicates in the parallel proof of
the parallelised function f() in Fig. 2.5 from §2.

To reason about threads, we use the standard separation logic rules for fork-join
disjoint concurrency [GBC+07]:

{P} f(x̄) {Q}
{P[ē/x̄]} t = fork(f, ē) {thread(t, f, ē)} FORK

{P} f(x̄) {Q}
{thread(t, f, ē)} join(t) {Q[ē/x̄]} JOIN

Upon forking a new thread, the parent thread obtains the assertion thread that stores
information about passed arguments for program variables and gives up ownership of
the precondition of the function. Joining requires that the executing thread owns the
thread handle which it then exchanges for the function’s postcondition.

Theorem 4.5. Ppar is a proof of the parallelised program Ppar, and defines the same
specification for mainPpar as P does for mainP.

4.2.4 Loop splitting

The approach presented so far treats a loop as a single command with a specification
derived from its invariant. Acquiring or releasing resources within a loop is subtle, as it
changes the sequential loop invariant. In our algorithm we take a pragmatic approach
that performs heuristic loop-splitting of the sequential loop before the parallel code
generation so that the conditions guarding acquiring and releasing of the resources
become explicit.

The move() example in §2.4.2 uses two channels to transfer the segment of the list
traversed after the first and the second while loop, respectively. The resource released
via channel i1 in Fig. 2.8 is lseg(s, y) ∗ pr 7→ y. In the following iteration, the needed
resource for the whole loop is lseg(s, p) ∗ node(p, x) ∗ node(x, n′). If we try to match
the released against the needed resource, the entailment R(γ, worke)Σ ` Σ′r ∗ [ _ ] in
Algorithm 4 will fail. This is because the value of p upon exiting the loop cannot be
a priori determined, meaning we cannot establish whether the released resource will
cover the needed resource.
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1

{
fut(wxp, x 7→ a) ∗ fut(wyp, y 7→ b) ∗ req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
2 f(i, wxp, wyp, wx, wy) {
3 wait(wxp);
4

{
x 7→ a ∗ fut(wyp, y 7→ b) ∗ req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
5 int v = *x;

6

{
v = a ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
7 if (v >= i) {

8

{
v = a ∧ v ≥ i ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
9 grant(wx);

10

{
v = a ∧ v ≥ i ∗ fut(wyp, y 7→ b) ∗ req(wy, y 7→ b′)

}
11 wait(wyp);
12

{
v = a ∧ v ≥ i ∗ y 7→ b) ∗ req(wy, y 7→ b′)

}
13 *y = v;
14

{
v = a ∧ v ≥ i ∗ y 7→ a) ∗ req(wy, y 7→ b′)

}
15 grant(wy);
16

{
v = a ∧ v ≥ i

}
17 }
18 else {

19

{
v = a ∧ v < i ∧ x 7→ a ∗ fut(wyp, y 7→ b) ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
20 wait(wyp);

21

{
v = a ∧ v < i ∧ x 7→ a ∗ y 7→ b ∗
req(wx, x 7→ a′) ∗ req(wy, y 7→ b′)

}
22 grant(wy);
23

{
v = a ∧ v < i ∧ x 7→ a ∗ req(wx, x 7→ a′)

}
24 *x = 0;
25

{
v = a ∧ v < i ∧ x 7→ 0 ∗ req(wx, x 7→ a′)

}
26 grant(wx);
27

{
v = a ∧ v < i

}
28 }
29 }
30

{
emp

}
Figure 4.3: The parallel separation logic proof of the parallelised function f() from
Fig. 2.5.
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...
pr:=envp(i1)["p"];
while (i<l && x.nxt!=null && x.nxt!=*pr) {
i++;
p=x;
x=x.nxt;

}
if (i<l && x.nxt!=null && x.nxt==*pr) {
i++;
p=x;
x=x.nxt;
while (i<l && x.nxt!=null) {
i++;
p=x;
x=x.nxt;

}
// remainder skipped.
...

else {
...

Figure 4.4: Loop-splitting for the move() example.

One way to resolve this would be to acquire the entire list before the first loop, but
this would result in a poor parallelisation. Instead, we modify the structure of the loop
to expose the point at which the second list segment becomes necessary:

1. We split the spatial portion of the resource needed by the whole loop into a
“dead” (already traversed) and a “live” (still to be traversed) part. In our example,
lseg(s, p) would be the “dead” and node(p, x) ∗ node(x, n′) ∗ lseg(n′, null) the live
part. This kind of splitting is specific to some classes of programs, e.g., linked list
programs that do not traverse a node twice.

2. We match the resource against the “dead” part of the loop invariant and infer
the condition under which the two resources are the same. In our example, after
unfolding the special cases of list length one and two, the entailment between
the two resources holds if x.nxt = ∗pr. This condition can be inferred by asking
a bi-abduction question R(γ, worke)Σ ∧ [c] ` Σ′r ∗ [ _ ] with the pure fact c to be
abduced.

Now we can syntactically split the loop against the inferred condition c = (x.nxt = ∗pr)
and obtain a transformed version that ensures that after entering the true branch of
the if statement the condition c holds. The transformation of our example is shown in
Fig. 4.4.

Formally, we define splitting of a loop against a condition c inferred by R(γ, worke)Σ ∧
[c] ` Σ′r ∗ [ _ ] as given in Alg. 5. The condition c′ is obtained from c by replacing a
reference to every primed variable y′ with a reference to env(p)(i

(p)
r )[”y”], where ir is

the channel name associated to the resource. It is not difficult to see that the accompa-
nying proof of C can be split in a proof-preserving way against c. This transformation
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Algorithm 5: Loop-splitting against c.
1 Split(while(b) {C′ }; C′′)
2 begin
3 return
4 while(b ∧ ¬c′) {C′ };
5 if(b ∧ c′) {C′; while(b) {C′ }; C′′ }
6 else {C′′ }
7 end

can either be applied to P between the resource-usage analysis and parallelisation,
or embedded within Alg. 4. In the case of multiple loops, the transformation can be
iteratively applied for each abduced condition c associated with the “dead” part of the
respective loop invariant.

4.3 Implementation

We have validated our parallelisation algorithm by crafting a prototype implementation
on top of the existing separation logic tool, coreStar [BDD+11]. While our implemen-
tation is not intended to provide full end-to-end automated translation, it is capable
of validating the algorithms on the examples given in this part, and automatically
answering the underlying theorem proving queries.

Our parallelisation algorithm does not require a shape-invariant generator, except
possibly to help construct the sequential proof. Soundness is independent of the “clean-
liness” of the invariants (the analysis will always give a correct result, in the worst
case defaulting to sequential behaviour). The invariants generated automatically by
coreStar were sufficient to validate our examples. Other efforts [CDOY11] indicate that
bi-abduction works well with automatically-generated invariants produced by shape
analysis, even over very large code bases.

4.3.1 Computational complexity

Deciding entailment of symbolic heaps is solvable in polynomial time for the standard
fragment of separation logic built from the points-to and the inductive linked-list predi-
cate [CHO+11]. Although a complete syntactic proof search may require an exponential
number of proofs to be explored in the worst case [BCO05a], our implementation uses
heuristic proof rules that yield an algorithm having polynomial complexity (the poten-
tial incompleteness never occurred as a problem in practice). The same procedure is
used for the frame inference, the prover just searches for a different kind of leaves in the
proof search tree.

Abduction, on the other hand, is a fundamentally harder problem than deduction.
While general abduction for arbitrary pure theories reaches the second level of polyno-
mial hierarchy (in fact, it is ΣP

2 -complete) [EG95, CZ06], abduction of resources for the
standard fragment of symbolic heaps is NP-complete. In our implementation we use a
polynomial heuristic algorithm (similar to [CDOY11]) which may miss some solutions,
but in practice has roughly the same cost as frame inference.
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Overall, our resource-usage analysis (Alg. 2 and Alg. 3) asks O(|Paths|2 · d · s) frame
inference and abduction queries, where d is the depth of the abstract syntax tree T
representing the program, and s the arity (the maximum number of siblings) of nodes
in T . The heuristic algorithm for computing released and acquired resources (Alg. 4)
asks roughly a cubic number (in the cardinality of Paths) of prover queries.

4.4 Soundness (informally)

A distinctive property of our parallelisation algorithm is that it enforces sequential data-
dependencies in the parallelised program even if the safety proof does not explicitly
reason about such dependencies. The result is that our analysis preserves the sequential
behaviour of the program: any behaviour exhibited by the parallelised program is also
a behaviour that could have occurred in the original sequential program. However,
there are important caveats relating to termination and allocation.

Termination. If the original sequential program does not terminate, our analysis may
introduce new behaviours simply by virtue of running segments of the program that
would be unreachable under a sequential schedule. To see this, suppose we have a pfor
such that the first iteration of the loop will never terminate. Sequentially, the second
iteration of the loop will never execute. However, our parallelisation analysis will
execute all iterations of the loop in parallel. This permits witnessing behaviours from
the second (and subsequent) iterations. These behaviours were latent in the original
program, and became visible only as a result of parallelisation.

Allocation and disposal. If the program both allocates and disposes memory, the
parallelised program may exhibit aliasing that could not occur in the original program.
To see this, consider the following sequential program:

x=alloc(); y=alloc(); dispose(x).

Parallelisation might give us the following program:

(x=alloc(); grant(wx); y=alloc()) || (wait(wx); dispose(x))

This parallelised version of the program is race-free and obeys the required sequential
ordering on data. Depending upon the implementation of the underlying memory
allocator, however, x and y may be aliased if the dispose operation was interleaved
between the two allocations. Such aliasing could not happen in the original non-
parallelised version.

Either kind of new behaviour might result in further new behaviours—for example,
we might have an if-statement conditional on x==y in the second example above. These
caveats are common to our analysis and others based on separation logic—for example,
see the similar discussion in [CMR+10].

Behaviour preservation. In §6.2 we prove our behaviour preservation result for termi-
nating programs (Theorem 6.18). The proof establishes that each trace of the parallelised
program corresponds to a trace of the sequential program so that a simulation invariant

59



between the states of the parallel program and the states of the sequential program is
preserved, provided that the sequential program terminates.

As will be seen in the proof, one attractive property is that it in fact does not place
explicit requirements on the positioning of barriers—it is sufficient that we can provide
a separation logic proof of the parallelised version of the program. The caveat on
memory disposition manifests in the way we establish our simulation invariant, which
necessarily assumes newly allocated data is always “fresh” and thus does not alias with
any accessible heap-allocated structure. The caveat on termination is necessary to ensure
we can suitably reorder threads in the parallelised program to yield a “sequentialised”
trace.

In addition to inserting barriers, our analysis mutates the program by materialising
thread-local variables and splitting loops. Both of these can be performed as mutations
on the initial sequential program, and neither affect visible behaviour. Loop-splitting is
straightforwardly semantics-preserving, while materialised variables are only used to
control barrier calls.

Theorem 6.18 guarantees that parallelisation does not introduce deadlocks; other-
wise the simulation relation would not exist. The ordering on barriers ensures that
termination in the sequential program is preserved in the resulting parallelised program.

4.5 Limitations

Loop handling. Our parallelising transformation treats loops within work as opaque,
with a loop-splitting transformation used to allow mid-loop signalling. Since not all
loops have a structure amenable to such a transformation, it will not always be possible
to discover parallelisation opportunities within loop-based computations. However,
one can envision analogous transformations that would split according to different
phase-switching patterns in the loop body.

In the main parallel-for loop, we currently assume each iteration communicates
with only its immediate predecessor and successor. A technique called renunciation,
discussed in [DJP11], allows a thread to release a resource without having to first acquire
it, allowing resource transfers to skip iterations. It would be relatively straightforward
to fold such a technique into our analysis.

Procedures. The analysis we have given in §4.1 treats procedures in two ways: either
as inlined code, or opaquely, in terms of their sequential specifications. The latter lets
us deal with recursively-defined procedures, although it means that such procedures
cannot have barriers injected into them. This is a similar simplification to treating loops
as opaque. As with loops, we can develop a more sophisticated procedure-unrolling
transformation which would exploit parallelisation opportunities across function calls.
We present such an inter-procedural version of the analysis in §5.4.

Scalability. A naïve implementation of our proposed algorithm would not scale due
to rapid combinatorial explosion of program paths. However, the algorithm can be
tuned to avoid exploring paths that are unlikely to expose parallelism or, conversely, to
explore paths that involve intense computations worth running concurrently. We note
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that reducing the depth of the abstract syntax tree exploration only limits the potential
for parallelisation but does not lead to unsoundness.

Tool support. An automated separation logic prover for solving frame inference,
abduction and bi-abduction queries is essential for our approach, and the quality of
parallelisation depends strongly on the success of the prover. However, our analysis
degrades gracefully with imprecise abduction giving less-precise parallelisation. In the
worst case, we obtain sequentialisation of the parallel threads, reflecting our analysis
being unable to prove that any other parallelisation was safe with respect to our ordering
assumptions.

Non-list domains. As discussed in §5, our analysis is generic in the choice of the
abstract domain; any separation logic predicate could be used in place of lseg, for
example. However, the success of automated parallelisation is highly dependent on
the power of the entailment prover in the chosen domain. The lseg domain is one of
the best-developed in separation logic, and consequently automated parallelization
is feasible using tools such as coreStar. Other domains (such as trees) are far less
developed so additional automated reasoning support and special-purpose heuristics
for abduction would be needed.

Alternative shape analyses. While our parallelisation method crucially relies on the
separation logic proof in order to guarantee preservation of sequential data-dependencies
in the parallelised program, it does not assume particular shape invariants. Shape anal-
yses not based on separation logic gave birth to alternative shape domains for approxi-
mating deep heap updates to unbounded structures. Most notably, shape graphs have
formed the basis of a flow-sensitive analysis for heap manipulation based on abstract
interpretation [SRW96, SRW98], which after being subsequently refined in 3-valued
logic [SRW99, SRW02] became de facto the shape analysis in a broader literature. One
could envision a potential incorporation of such graph structures in the construction of
shape invariants for our separation-logic-based analysis, however, a formal basis for
such crossover of approaches is yet to be developed.

Alternative parallelisation primitives. Our use of pfor as the primitive paralleli-
sation construct in §2.4.1 is a design choice, rather than an essential feature of our
algorithm. We could use a more irregular concurrency annotation, for example safe
futures [NZJ08]. In this case, our resource-usage analysis would be mostly unchanged,
but our parallelised program would construct a set of syntactically distinct threads,
rather than a pipeline of identical threads.

We emphasise that our parallelisation algorithm is targetting programs where or-
dering is important. As the analysis is syntactically driven by the structure of the loop
and the signalling order, it may impose order between iterations that are not strictly
enforced by the underlying data structure. For instance, if we would use unordered
parallel-for (e.g., as in the Galois system [PNK+11]) our current analysis would gen-
erate a deterministic parallel program that respects some specific sequential order of
the loop iterator (contrary to Galois that would, with its speculative parallel execution,
allow nondeterminism). Removing ordering between iterations could be achieved by
replacing ordered grant-wait pairs with conventional locks, but this would introduce
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an extra obligation to show that locks were always acquired as a set by a single thread
at once.
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CHAPTER 5

EXTENSIONS

Our proof-directed parallelisation algorithm of Chapter 4, assuming a fully automated
theorem prover, can be seen as being parametric in (1) the abstract domain for resources,
(2) the resource selection procedure, and (3) the level of path-sensitivity. In this chapter,
we discuss the way the properties of the algorithm change under various choices of
these parameters (§5.1, §5.2 and §5.3). We conclude the chapter with the inter-procedural
version of the algorithm (§5.4).

5.1 Resource domain

Our analysis is generic in the choice of abstract domain for resources; any separation
logic predicate can potentially be used in place of lseg, for example. The choice of
resource predicates affects the success of the analysis particularly strongly, as resources
can only be accessed in parallel if they can be expressed disjointly. Stronger domains
allow the analysis to split resources more finely, and so (in some cases) making the
parallelisation better. However, altering the choice of resources may also force barriers
earlier, making the parallelisation worse.

In §2.4.2 we parallelised the move() example using the resource predicates lseg,
representing list segments, x 7→ a, representing individual heap cells, and x c7−→ a,
representing fractional ownership of a cell. To see how the choice of abstract domain
influences the analysis, in this section, we consider two other resource predicates: list
segments with length; and list segments with membership.

List segment with length. We introduce the predicate lsegni(h, t, n, i) which extends
lseg with a parameter n ∈ Z recording the length of the list segment, and a parameter
i ∈ (0, 1] recording the permission on the list segment. If i = 1 the thread has read-write
access; otherwise it has read access only (this follows the behaviour of permission on
individual heap cells). We define nodei and lsegni as follows:

nodei(x, y, i) , x.val i7−→ v′ ∗ x.nxt i7−→ y

lsegni(x, t, n, i) , (x = t ∧ n = 0∧ emp) ∨ (nodei(x, y′, i) ∗ lsegni(y′, t, n−1, i))

We use as input proof the original sequential proof shown in Fig. 2.7. The equivalence
lseg(h, t) ⇐⇒ lsegni(h, t, n′, 1) allows the analysis to exploit the lsegni predicate even
though the sequential proof is written using the coarser lseg predicate.
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move1(s, l) {{
lsegni(s, n′, l, j′)

}
i=0;
x=s.nxt;
p=s;
while (i<l && x.nxt!=null) {{

lsegni(s, n′, l, j′)
}

i++;
p=x;
x=x.nxt;

}{
lsegni(s, p, l, 1)

}
while (x.nxt!=null) {{

lsegni(s, p, l, 1)
}

x=x.nxt;
}{
lsegni(s, p, l, 1)

}
if (p.nxt!=x) {
... // omitted
}

}{
node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)

}

move2(s, l) {
i=0;
x=s.nxt;{
nodei(s, n′, j′)

}
p=s;
while (i<l && x.nxt!=null) {{

lsegni(s, n′, i+ 2, j′)
}

i++;
p=x;
x=x.nxt;

}{
lsegni(s, n′, l+ 2, j′) ∨
(lsegni(s, null, k′, j) ∧ 2 ≤ k′ ≤ l+ 1)

}
while (x.nxt!=null) {{

lsegni(s, n′1, k′, j′) ∗
nodei(n′1, x, j′) ∗ nodei(x, n′2, j′)

}
x=x.nxt;

}{
lsegni(s, n′1, k′, j′) ∗
nodei(n′1, x, j′) ∗ nodei(x, null, j′)

}
if (p.nxt!=x) {
... // omitted

}
}{

node(s, n′1) ∗ node(n′1, n′2) ∗ lseg(n′2, null)
}

Figure 5.1: Redundant and needed resources for move() calculated using the lsegni
resource predicate.
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move1(s, l) {
i=0;
x=s.nxt;
p=s;

*lr=l;
grant(i1);
while (i<l && x.nxt!=null) {
i++;
p=x;
x=x.nxt;

}
while (x.nxt!=null)
x=x.nxt;

if (p.nxt!=x) {
... // omitted

}
grant(i2);

}

move2(s, l) {
i=0;
wait(i1);
if (2 >= *lr) wait(i2);
x=s.nxt;
p=s;
while (i<l && x.nxt!=null) {
if (i+2 >= *lr) wait(i2);
i++;
p=x;
x=x.nxt;

}
if (l+2 < *lr) wait(i2);
while (x.nxt!=null) {
x=x.nxt;

}
if (p.nxt!=x) {
... // omitted

}
}

Figure 5.2: Parallelisation of move() using lsegni.

We will now use the lsegni and node predicates when parallelising our running
example move() function. Once again, we parallelise a pair of calls to move():

move(s,a); move(s,b);

The needed and redundant resources for the first and second calls to move calculated
using lsegni are shown in Fig. 5.1.

In first call to move(), the resource lsegni(s, n′, l, j′) is redundant immediately. This
is because move() only needs read-write access to the list at the l-th node. It can
pass read-access to the second call to move(). Nodes earlier than l in the list can
immediately be accessed by the subsequent call.

Conversely, the while-loops in move() only need read-only access to the list. This
is reflected in the fact that the needed resources all use lsegni. It is only in the final
if-statement that move() requires write-access to the list.

Fig. 5.2 shows a parallelisation of the example using lsegni. There are several changes
over the parallelisation with lseg that we show in Fig. 2.8:

• The value lr shared between move1() and move2() has been changed from the
address of a node, to the position of the node to be moved.

• In move2(), the calls to wait(i2) are conditional on the position value stored in
lr, rather than on the address of the .nxt node.

• In move1 the call to grant(i1) has been pushed up past the first while-loop.

• The third call to wait(i2) has been moved up out of the while loop.

The first two changes make no difference to the degree of parallelisation. The third,
moving the call to grant() upwards, makes the program more parallel: the subsequent
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case S = ∅: lsegv(e, f , ∅) , nodev(e, f , _)∨
(nodev(e, x′, _) ∗ lsegv(x′, f , ∅))

case S = {d}: lsegv(e, f , {d}) , nodev(e, f , {d})∨
(nodev(e, x′, {d}) ∗ lsegv(x′, f , ∅))∨
(nodev(e, x′, _) ∗ lsegv(x′, f , {d}))

case |S| > 1, d ∈ S: lsegv(e, f , {S}) , nodev(e, x′, {d}) ∗ lsegv(x′, f , S \ {d})∨
nodev(e, x′, _) ∗ lsegv(x′, f , S)

Figure 5.3: Definition of the lsegv, a list segment predicate augmented with a multiset
representing the lower bound on the number of particular elements in the segment.

call to move2() needs to wait less time before it can proceed. The change in domain
enables this optimisation because it allows the analysis to represent a list segment of a
particular fixed length, and to work out that it can be safely transferred to the second
call to move().

The fourth change, moving the wait() upwards, makes the program less parallel.
This is a consequence of sharing the position of the node, rather than its address. In the
original parallelisation, the loop could conditionally wait on the address of the node.
However, the second loop does not store its position in the list, meaning that it cannot
check when it needs to call wait(). To be conservative, it must wait for the resource
before entering the loop.

Thus, there is a subtle interplay between the choice of domain, the particular re-
sources chosen by the analysis, and the parallelisation that can be achieved. (Of course,
as the lsegni domain includes the original lseg domain, the analysis could also construct
the original parallelisation). The takeaway point is that, simply making the domain
richer does not automatically make the parallelisation more successful.

List segment with membership. The list predicates we have considered so far have
remembered the structure of the list, but not the values held in it. However, in some
cases we can get a better parallelisation if the predicate records the values stored in
the list. To do this, we introduce the predicates nodev and lsegv. Respectively, these
represent a list node holding a particular value, and a list segment with an associated
multiset of values (see Fig. 5.3). Note that in lsegv(x, y, S) the multiset of values S is a
sub-multiset of all the values in the list: if a value is in S, then it must be in the list, but
not vice versa.

We apply nodev and lsegv to the functions build() and check(), defined in Fig. 5.4.
The build() function constructs a linked list containing a sequence of values matching
the regular expression 0+1+2+3. The check() function reads through the list and
returns true if a 1-value node is present, and zero otherwise. This example is inspired
by similar build-and-check examples defined in the SV-Comp benchmark suite [SV-13].

We can parallelise the following program:

r = build(); check(r);

The possible parallelisations depend on the needed and redundant resources cal-
culated by the analysis. These in turn depend on the choice of resource predicates.
The needed and redundant resources calculated without and with lsegv are shown
interleaved in the code in Fig. 5.5.
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build(){
s=alloc();
x=s;
do {
x.val=0;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
do {
x.val=1;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
do {
x.val=2;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
x.val=3;
return s;

}

check(s){
x=s;
while(x != null){
if (x.val=1)
return true;

}
return false;

}

Figure 5.4: Functions build(), which constructs a linked list containing values
0+1+2+3, and check(), which checks whether a 1-valued node is present.

Suppose we only use the lseg and node predicates: then the analysis can only establish
that the resources redundant in build() are list segments, without expressing any
knowledge of the values stored. With lseg, the analysis calculates that check() requires
access to the whole list. If we use lsegv, then the analysis computes that redundant
resources in build() are list segments containing particular values. It also calculates
that check() either needs access to a list segment containing 1, or a complete list
segment—either will suffice.

The difference between parallelisations can be seen in Fig. 5.6. To make the exposition
clearer, we only inject barriers into loop-free code, rather than injecting barriers inside
loops. On the left, we have the parallelisation possible using lseg. The grant-barrier
in build() waits until after the final loop has terminated. On the right, we have the
parallelisation with lsegv. The analysis is able to work out that check() only needs
access to a list segment containing a 1-valued node. This needed resource will be
satisfied after the second loop. The grant-barrier can thus be hoisted to above the third
loop, resulting in a better parallelisation.

5.2 Resource selection procedure

Algorithm 4 is parameterised by a function choose governing resource selection. In a
way, choose can be seen as a proxy for external knowledge (e.g., hints provided by a
programmer) about likely points for parallelisation. The way how choose picks program
paths determining the resource selection is not important for the correctness of the
algorithm, but different strategies can lead to better or worse parallelisations.
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build(){
s=alloc();
x=s;
do {
x.val=0;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
1.
{

node(s, n′) ∗ lseg(n′, x)
}

2.
{

lsegv(s, x, {0})
}

do {
x.val=1;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
1.
{

node(s, n′) ∗ lseg(n′, x)
}

2.
{

lsegv(s, x, {0, 1})
}

do {
x.val=2;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
x.val=3;

1.
{

node(s, n′) ∗ lseg(n′, null)
}

2.
{

lsegv(s, null, {0, 1, 2, 3})
}

return s;
}

check(s){
x=s;

1.
{

node(s, n′)
}

2.
{

node(s, n′)
}

while(x != null) {
if (x.val==1)
return true;

}

1.
{

node(s, n′) ∗ lseg(n′, null)
}

2.
{
(node(s, n′) ∗ lseg(n′, null)) ∨ lsegv(s, n′, {1})

}
return false;

}

Figure 5.5: Redundant and needed resources for build() and check(). Resources
labelled (1) are calculated w.r.t. a logic including the default lseg predicate, while
resources labelled (2) are calculated w.r.t. a logic including the lsegv predicate.
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build(){
s=alloc();
x=s;
do {
x.val=0;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
do {
x.val=1;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
do {
x.val=2;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
x.val=3;
grant(i);
return s;

}

check(s){
x=s;
wait(i);
while(x != null) {
if (x.val==1)
return true;

}
return false;

}

build(){
s=alloc();
x=s;
do {
x.val=0;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
do {
x.val=1;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
grant(i);
do {
x.val=2;
x.nxt=alloc();
x=x.nxt;

} while(nondet());
x.val=3;
return s;

}

check(s){
x=s;
wait(i);
while(x != null) {
if (x.val==1)
return true;

}
return false;

}

Figure 5.6: Left: parallelisation of build() and check() using the lseg predicate. Right:
parallelisation using lsegv.

69



In our examples, we used a very simple, automatic greedy heuristic for the choose
function. We introduced a simple syntactic partial order C reflecting the coarse-grained
size of heap resources, under which:

emp C e 7→ f
emp C lseg(e, f )

e 7→ f C lseg(e′, f ′) ∧ e′ 6= f ′,

and ΣC Σ′ if for every conjunct S in Σ there exists a conjunct S′ in Σ′ such that SC S′.
We write Σ ./ Σ′ if Σ C Σ′ and Σ′ C Σ. Then, given a set of program path pairs
{(γ, γ′) | γ ∈ C ∧ γ′ ∈ Paths ∧ γ ≺ γ′}, we defined a partial order @ by letting
(γ, γ′) @ (δ, δ′) if N(δ, δ′)C N(γ, γ′) or N(γ, γ′) ./ N(δ, δ′), γ = δ and γ′ ≺ δ′. The
choose function traversed topologically sorted program-path pairs and picked each pair
in turn.

This choose function favoured picking “large” resource that are encountered along
program paths first, which worked well for our examples. However, in some cases
we might produce better parallelisations by picking “smaller” resources first. Such
preference of resources can be tuned by an alternative definition of the partial order C.

5.3 Path-sensitivity

While the resource-usage analysis (§4.1) is fully path-sensitive modulo loops (i.e. it is
path sensitive for if-then-else, but conflates iterations of a loop), the parallelising trans-
formation (§4.2) accounts for path-sensitivity only syntactically. During the execution
of the parallelised program precisely one call to wait() and grant() should occur
for each channel. However, barriers may be injected into conditional branches, creating
the possibility of missed barriers or unwanted multiple calls to barriers. To ensure that
barriers are called exactly once, the parallelising transformation follows the syntactic
structure of the program, forcing the calls to grant() to occur at program paths that
are covering the corresponding calls to wait() for the same channel (the condition
CN � CR in line 9 of Algorithm 4). This approach is sufficient for all of the examples that
we consider.

We could strengthen this approach by making the prover record explicit path condi-
tions in the assertions of the sequential proof and using these conditions semantically.
To check that all paths are covered by the points chosen for barrier injection, Algorithm 4
could then disjoin the path conditions and check for tautology. More precisely, if we let
pc : Paths→ Π∨ represent the path condition associated with each program path, then
we would replace the condition in line 9 of Algorithm 4 with

∨
γ∈CR pc(γ) ⇔ true. To

check that two paths cannot be satisfied at the same time, the algorithm could check
that the associated path conditions contradict.

Enriching the parallelising transformation in this way would possibly allow better
placement of barriers down conditional branches. For example, the following barrier
placement would be forbidden by the syntactic approach, but allowed by the semantic
path-sensitive version:
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void f(int i){
`1 : int v = *x;
`2 : if (v >= i){
`3 : g(y, v);

}
else{

`4 : g(x, 0);
}

}

void g(int* p,
int v){

`5 : *p = v;
}

fs : x 7→ x ∗ y 7→ y
`1 : x 7→ x ∗ y 7→ y
`2 : v = x ∧ x 7→ x ∗ y 7→ y
`3 : v = x ∧ v ≥ i ∧ x 7→ x ∗ y 7→ y
`4 : v = x ∧ v < i ∧ x 7→ x ∗ y 7→ y
fe : (x ≥ i ∧ x 7→ x ∗ y 7→ x) ∨ (x < i ∧ x 7→ 0 ∗ y 7→ y)

gs : p 7→ _ ∧ v = v
`5 : p 7→ _ ∧ v = v
ge : p 7→ v

Figure 5.7: Left: inter-procedural version of the example from §2. Right: associated
assertions in the sequential proof.

if (P)
grant(i);

if (¬P)
grant(i);

if (Q)
wait(i);

if (¬Q)
wait(i);

5.4 Inter-procedural analysis

We conclude this chapter by providing an inter-procedural version of our parallelisation
algorithm from §4, which allows exploiting parallelisation opportunities across function
calls.

Programming language. We assume the following heap-manipulating programming
language with functions:

e ::= x | nil | t(ē) | . . . (expressions)
b ::= true | false | e = e | e 6= e | . . . (booleans)
a ::= . . . (primitive commands)
C ::= C; C | ` : skip | ` : a | ` : x := f(ē) | ` : return e
| ` : if(b) {C } else {C } | ` : while(b) {C }

Program representation. As in §3, we represent the program by an ordered forest T ,
with the addition of edges (`, `′) such that ` corresponds to a label of a function call
x := f(ē) and `′ ∈ 〈fs, fe〉, where fs and fe are labels of the predecessor of the first
(resp. the successor of the last) command in the body of f.

Example 5.1. The left-hand side of Fig. 5.7 shows example labelling containing a func-
tion call.
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Sequential proof. The inter-procedural sequential proof P assumes use of modular
specification for each function. That is, each function is associated with a pre- and
post-condition which are applied in the proof by using the frame rule and variable
substitutions. The right-hand side of Fig. 5.7 shows a proof which is in such form.

Example 5.2. Fig. 5.7 shows example of an inter-procedural sequential proof.

To gain context-sensitivity, our analysis will dive through function calls and refer to
the assertions in the local function with respect to the variables of the caller, all the way
up to the top-most work function. We therefore define a way for lifting local assertions
from a function to their global contexts.

For γ ∈ Paths such that |γ| = n and `1, . . . , `n are the labels corresponding to the
function calls (in the order of occurrence as in γ) we define the lifted (“inlined”) proof
assertion P(γ) as

F(`1) ∗ (F(`2) ∗ ... (F(`n) ∗P(γ[m])[Ω(`n)])[Ω(`n−1)]...)[Ω(`1)]

Intuitively, the assertion P(γ) represents the “global” proof state at γ (including the
framed portions) in terms of work’s variables.

Resource-usage analysis. The inter-procedural version of the resource-usage analysis
resembles the intra-procedural version, with the addition being the computation of
needed and redundant resources across function calls.

The function Needed-Func (Alg. 6) is similar to Needed-Block (Alg. 1) from §4.1
but lifts the within-blocks computation to the context-sensitive inter-procedural level.
Given program paths γs and γe, Needed-Func(γs, γe) works by successively pushing
backwards P(γe)Π ∧ emp similarly as Alg. 2. In phase A, Alg. 6 steps backwards from γe
towards the outermost calling context in the function-invocation hierarchy. This context,
represented as the longest common prefix of γs and γe, is the dominator of the two
functions in which γs and γe are found in the function call graph (which is well-defined
since there are no higher-order functions). Phase B of the algorithm keeps stepping
backwards, but proceeds inwards into the function-invocation hierarchy towards γs.
Both phases of Alg. 6 use Alg. 1 to compute the needed resources in-between function
call boundaries: in phase A we establish the needed assertions from the dominating
point to γe, and in phase B from γs to the dominating point.

Since the invariants of the input proof are written in terms of the outermost calling
context, comparing locally computed specifications with these invariants requires the
local specifications to be recast in terms of the outer context. In the first line of phase A
we construct a variable substitution $ that recasts the assertion in terms of the calling
context at the start of γe. The second line constructs ∆[$−1]—the running state recast
in terms of γe’s starting context; this is typically the context defined by the work()
function used in a pfor command. Needed-Block constructs a new needed state up
to the start of the current block. Finally, $ recasts the resulting state back into the current
context. When a function call is reached, we unwind the variable substitution by one
call since we now have moved from the callee’s context to a caller’s. Operations in
phase B are similar.

We calculate the redundant resources between arbitrary program paths analogously
as in function Redundant (Alg. 3).
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Algorithm 6: Computing needed resources across function calls.
1 Needed-Func(γs : Paths, γe : Paths)
2 begin
3 k := |γe|;
4 ∆ := P(γe)Π ∧ emp;
5 while k > |γs f γe|+ 1 do // Phase A
6 $ := Ω(γe[1..k]);
7 ∆ := Needed-Block((γe[k]↑, γe[k]), ∆[$−1])[$];
8 k := k− 1;
9 if cmd(γe[k]) is function call then ∆ := ∆[Ω(γe[k])−1];

10 ;
11 end
12 $ := Ω(γs[1..k]);
13 ∆ := Needed-Block((γe[k], γs[k]), ∆[$−1])[$];
14 while k < |γs| do // Phase B
15 if cmd(γs[k]) is function call then ∆ := ∆[Ω(γs[k])];
16 ;
17 k := k + 1;
18 $ := Ω(γs[1..k]);
19 ∆ := Needed-Block((γs[k], γs[k]↓), ∆[$−1])[$];
20 end
21 return ∆;
22 end

Example 5.3. Fig. 5.8 and Fig 5.9 show the needed and redundant maps computed by the
intra-procedural resource-usage analysis on the example in Fig. 5.7.

Parallelising transformation. The inter-procedural version of the parallelising trans-
formation is mainly the same as the intra-procedural version, with the difference be-
ing in how grant and wait barriers are inserted. To generate the parallel function
work′(ī

(p)
r , īr, env(p), env) in Ppar we replace the intra-procedural steps (3) and (4) with

the following steps (3), (4) and (5):

3. For each γ = `1 . . . `n ∈ dom(released) ∪ dom(acquired) let `k1 , . . . `km be the labels
in γ corresponding to function calls. Then for each γj := `1 . . . `kj we create in Ppar

an identical copy f′ of the function f called at `kj and replace the call to f with the
call to f′. Let us denote by tr(γ′) the program path in Ppar corresponding to γ′ after
this transformation has been applied for all γ ∈ dom(released) ∪ dom(acquired).

4. For each γ ∈ dom(acquired) such that acquired(γ) = r we insert a wait barrier
wait(i

(p)
r ) between program paths tr(pred(γ)) and tr(γ).

5. For each γ ∈ dom(released) such that released(γ) = (r, _), between program
paths tr(pred(γ)) and tr(γ) we insert a sequence of assignments of the form
env(ir)[”y”] := y for every local variable y, followed by a grant barrier grant(ir).
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`2 `2`3 `2`3`5 `2`3ge `2`4 `2`4`5 `2`4ge fe

`1 x 7→ x x ≥ i ∧
x 7→ x

x ≥ i ∧
x 7→ x

x ≥ i ∧
x 7→ x ∗
y 7→ y

x < i ∧
x 7→ x

x < i ∧
x 7→ x

x < i ∧
x 7→ x

(x ≥ i ∧
x 7→ x ∗
y 7→ y) ∨
(x < i ∧
x 7→ x)

`2 v = x ∧
v ≥ i

v = x ∧
v ≥ i

v = x ∧
v ≥ i ∗
y 7→ y

v = x ∧
v < i

v = x ∧
v < i

v = x ∧
v < i ∧
x 7→ x

(v = x ∧
v ≥ i ∗
y 7→ y) ∨
(v = x ∧
v < i ∧
x 7→ x)

`2`3 v = x ∧
v ≥ i

v = x ∧
v ≥ i ∗
y 7→ y

v = x ∧
v ≥ i ∗
y 7→ y

`2`3`5 v = x ∧
v ≥ i ∗
y 7→ y

v = x ∧
v ≥ i ∗
y 7→ y

`2`3ge v = x ∧
v ≥ i

`2`4 v = x ∧
v < i

v = x ∧
v < i ∗
x 7→ x

v = x ∧
v < i ∗
x 7→ x

`2`4`5 v = x ∧
v < i ∗
x 7→ x

v = x ∧
v < i ∗
x 7→ x

`2`4ge v = x ∧
v < i

Figure 5.8: The needed map computed by the algorithm Needed for the example in
Fig. 5.7. (not shown trivial entries; an empty cell means not defined)

Example 5.4. We show the resulting two-iteration parallelisation and unbounded it-
eration parallelisation for function f() from Fig. 5.7, obtained by applying our inter-
procedural parallelising transformation, in Fig. 5.10 and Fig. 5.11.

In Fig. 5.11 the transformation generates two versions of function g, specialised to
the two contexts in which it is invoked. Function ga executes when v >= i. Here,
the executing thread needs write access to y, which it acquires by calling wait(wyp).
Function gb needs write access to x, but it runs in a context where the resource x has
already been acquired. Consequently, it need not call wait(). Both versions release a
resource to the following thread using grant() before returning.
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`2 `2`3 `2`3`5 `2`3ge `2`4 `2`4`5 `2`4ge fe

`1 y 7→
y

(x ≥ i ∧
y 7→ y) ∨
(x < i ∧
x 7→ x ∗
y 7→ y)

(x ≥ i ∧
y 7→ y) ∨
(x < i ∧
x 7→ x ∗
y 7→ y)

x < i ∧
x 7→ x ∗
y 7→ y

(x ≥ i ∧
x 7→ x ∗
y 7→ y) ∨
(x < i ∧
y 7→ y)

(x ≥ i ∧
x 7→ x ∗
y 7→ y) ∨
(x < i ∧
y 7→ y)

(x ≥ i ∧
x 7→ x ∗
y 7→ y) ∨
(x < i ∧
y 7→ y)

x < i ∧
y 7→ y

`2 v = x ∧
x 7→ x ∗
y 7→ y

v = x ∧
x 7→ x ∗
y 7→ y

(v = x ∧
v ≥ i ∧
x 7→ x) ∨
(v = x ∧
v < i ∧
x 7→ x ∗
y 7→ y)

v = x ∧
x 7→ x ∗
y 7→ y

v = x ∧
x 7→ x ∗
y 7→ y

(v = x ∧
v ≥ i ∧
x 7→ x ∗
y 7→ y) ∨
(v = x ∧
v < i ∧
y 7→ y)

(v = x ∧
v ≥ i ∧
x 7→ x) ∨
(v = x ∧
v < i ∧
y 7→ y)

`2`3 v = x ∧
v ≥ i ∧
x 7→ x ∗
y 7→ y

v = x ∧
v ≥ i ∧
x 7→ x

v = x ∧
v ≥ i ∧
x 7→ x

`2`3`5 v = x ∧
v ≥ i ∧
x 7→ x

v = x ∧
v ≥ i ∧
x 7→ x

`2`3ge v = x ∧
v ≥ i ∧
x 7→ x ∗
y 7→ y

`2`4 v = x ∧
v < i ∧
x 7→ x ∗
y 7→ y

v = x ∧
v < i ∧
y 7→ y

v = x ∧
v < i ∧
y 7→ y

`2`4`5 v = x ∧
v < i ∧
y 7→ y

v = x ∧
v < i ∧
y 7→ y

`2`4ge v = x ∧
v < i ∧
x 7→ x ∗
y 7→ y

Figure 5.9: The redundant map computed by the algorithm Redundant for the example
in Fig. 5.7. (not shown trivial entries; empty entry means not defined)
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f1(i, wx, wy) {
local v=*x;
if (v>=i) {
grant(wx);
ga1(y, v);

}
else {
grant(wy);
gb1(x, 0)

}
}

ga1(*p, v, wy) {

*p=v;
grant(wy);

}

gb1(*p, v, wx) {

*p=v;
grant(wx);

}

f2(i, wx, wy) {
wait(wx);
local v=*x;
if (v>=i) {
ga2(y, v);

}
else {
gb2(x, 0);
wait(wy);

}
}

ga2(*p, v, wy) {
wait(wy);

*p=v;
}

gb2(*p, v) {

*p=v;
}

Figure 5.10: Parallelisation of two sequential calls to f() from Fig. 5.7.
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void main() {
local i, n = nondet();
x = alloc();
y = alloc();
chan wx’, wy’;
chan wx = newchan();
chan wy = newchan();
grant(wx);
grant(wy);
for (i = 0; i++; i < n) {
wx’ = newchan();
wy’ = newchan();
fork(f(i,wx,wy,wx’,wy’));
wx = wx’;
wy = wy’;

}
wait(wx);
wait(wy);

}

f(i, wxp, wyp, wx, wy){
wait(wxp);
local v = *x;
if (v >= i) {
grant(wx);
ga(y, v, wy);

}
else {
wait(wyp);
grant(wy);
gb(x, 0, wx);

}
}

ga(*p, v, wyp, wy){
wait(wyp);

*p = v;
grant(wy);

}

gb(*p, v, wx){

*p = v;
grant(wx);

}

Figure 5.11: Parallelisation of f() from Fig. 5.7 for unbounded iteration.
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CHAPTER 6

SOUNDNESS

This chapter proves the soundness of our proof-directed parallelisation algorithm, i.e.,
that it does not introduce any new behaviours to the original program, provided the
original program terminates. Essentially, we establish a simulation property which
states that for any non-faulting trace of the parallelised program, all the combined
resources held by channels and parallel forked threads correspond to the resource held
in some sequential trace. We begin, in §6.1 by defining the operational semantics of the
language which we used in the formalisation of the algorithm. In §6.2 we prove that
our parallelisation is behaviour preserving, and then in §6.3 that it does not introduce
non-termination to the parallelised program.

6.1 Operational semantics

We proceed to define an operational semantics of the multi-threaded core language to
which the programs generated by our parallelising transformation are translated. As
we have seen in §4, the syntax of this language is similar to the sequential core language
described in §3.1, but is additionally equipped with threads and operations on channels
(newchan, grant and wait).

Our semantics makes several simplifying assumptions: (1) We forbid memory
disposal, and so can assume that allocation always gives fresh locations. This restriction
is introduced because full memory allocation (with memory disposition and reuse)
may allow parallelisation to introduce new behaviours (see §4.4); (2) to simplify the
presentation, our semantics does not include function definitions or calls. Data races
are interpreted as faults in this semantics.

The operational semantics has two levels, a labelled thread-local semantics (‘ ’),
and a global semantics (‘Z=⇒’) defined in terms of the local semantics. Every transition in
the global semantics corresponds to a transition for some thread in the local semantics.
Our semantics is annotated in the sense that it keeps track of the resources that are
associated with threads and channels. These distinctions would not be present in the
operational semantics of the real machine.

Thread-local semantics. The semantics assumes the following basic sets: Prog, pro-
grams; Tid, thread identifiers, ordered by <; Cid, channel identifiers; Var, variable names;
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Loc, heap locations; Val, primitive values (which include locations). We assume that the
sets Tid, Cid and Loc are infinite, and that Tid] Cid] Loc ⊆ Val.

A local state in LState consists of a stack mapping variables to values and a heap
mapping locations to values:

σs ∈ Stack : Var ⇀ Val

σh ∈ Heap : Loc ⇀ Val

σ ∈ LState : Stack× Heap

(Note that we do not support address arithmetic.)
A channel state in CState consists of a pair of sets, respectively recording the channels

the thread can wait for and grant on:

(ωw, ωg) ∈ CState : P(Cid)×P(Cid)

A thread state in TState consists of a program (i.e. command), a local state, a channel
state, and a set of thread identifiers of child threads:

TState : Prog× LState× CState×P(Tid)

The thread-local semantics associates each thread with a resource which can be safely
manipulated by that thread. Globally visible events, meaning forking, creating channels,
granting and waiting, and heap allocation are modelled by labels on the thread-local
transition relation. These labels are used to ensure that global events are propagated to
all threads. The set of labels, Label, is defined as follows:

Label , ({fork } → Tid× Prog× LState× CState)

] ({newchan} → Cid)

] ({wait, grant} → Cid× Heap)

] ({alloc} → Loc)

The annotated thread-local semantics is defined by a labelled transition relation
 ∈ P(TState× TState× Label), whose rules are given in Fig. 6.1.

The rules use a join operator on heaps⊕ : Heap×Heap ⇀ Heap by union of functions,
defined only if the two heaps’ domains are disjoint. The join operator ⊕ : LState×
LState ⇀ LState is defined as identity on stacks and join on heaps:

σ⊕ σ′ , (σs, σh ⊕ σ′h) if σs = σ′s

The semantics assumes a set of primitive commands Prim : P(LState× LState). We
assume for any command c ∈ Prim that:

• For any states σ1 and σ2 such that (σ1 ⊕ σ2, σ′) ∈ c, if there exists a transition
(σ1, σ′1) ∈ c then σ′1 ⊕ σ2 = σ′.

• For any transition (σ, σ′) ∈ c and state σ2, if σ ⊕ σ2 is well-defined, then there
exists a transition (σ⊕ σ2, σ′′) ∈ c and σ′′ = σ′ ⊕ σ2.

• For any states σ1 and σ2, if there exists no σ′ such that such that (σ1 ⊕ σ2, σ′) /∈ c,
then (σ1, σ′) /∈ c.
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(σ, σ′) ∈ c
(c, σ, ω, γ) (skip, σ′, ω, γ)

¬∃σ′. (σ, σ′) ∈ c
(c, σ, ω, γ) abort

σ, ω 6|= P ∗ true

(fork[P]C, σ, ω, γ) abort

σ′, ω′ |= P σ = σ′ ⊕ σ′′ ω = ω′ ]ω′′ t fresh

(fork[P]C, σ, ω, γ)
fork (t,C,σ′,ω′) (skip, σ′′, ω′′, γ ] {t})

s fresh

(x := newchan ,σ, ω, γ)
newchan (s) (skip, (σs[x 7→ s], σh), (ωw ] {s}, ωg ] {s}), γ)

σ, (∅, ∅) 6|= P ∗ true

(grant[P]E, σ, ω, γ) abort

[[E]]σs = s s ∈ ωg σ = σ′ ⊕ σ′′ σ′, (∅, ∅) |= P

(grant[P]E, σ, ω, γ)
grant (s,σ′) (skip, σ′′, (ωw, ωg \ {s}), γ)

[[E]]σs = s s ∈ ωw

(wait E, σ, ω, γ)
wait (s,σ′) (skip, σ⊕ σ′, (ωw \ {s}, ωg), γ)

(C, σ, ω, γ) (C′, σ′, ω′, γ′)

(C; C′′, σ, ω, γ) (C′; C′′, σ′, ω′, γ′) (skip; C, σ, ω, γ) (C, σ, ω, γ)

(C, σ, ω, γ) abort
(C; C′, σ, ω, γ) abort

[[B]]σs = tt

(if (B)C1 else C2, σ, ω, γ) (C1, σ, ω, γ)

[[B]]σs = ff

(if (B)C1 else C2, σ, ω, γ) (C2, σ, ω, γ)

[[B]]σs = tt

(while (B)C, σ, ω, γ) (C; while (B)C, σ, ω, γ)

[[B]]σs = ff

(while (B)C, σ, ω, γ) (skip, σ, ω, γ)

l /∈ dom(σh)

(x := alloc, σ, ω, γ)
alloc(l) (skip, (σs[x 7→ l], σh ] [l 7→ 0]), ω, γ)

Figure 6.1: Annotated thread-local operational semantics.
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Besides capturing a semantic relation between local states, primitive commands also
have a syntactic representation (e.g., the name of the command itself). We overload
these notions in the rules to allow us flexibility in characterising effects without having
to choose a fixed command set a priori. It is straightforward to define an interpreta-
tion function that maps the syntactic representation of a command with its relational
definition.

The effect of evaluating primitive command c in state 〈c, σ, ω, γ〉 is a new state
〈skip, σ′, ω, γ〉 if (σ, σ′) ∈ c. If command c can effect no transition from local state σ,
the thread aborts.

A thread may fork a child. We associate a syntactic assertion P with a fork com-
mand that captures the resources required by the child thread. (The existence of a
syntactic separation logic proof means we can always annotate a fork command with
such assertions.) If the assertion is not satisfiable within the current local state (i.e.,
σ, ω 6|= P ∗ true), the thread aborts. Otherwise, we can partition the state, associating the
resources (memory and channels) needed by the forked thread (denoted as σ′ and ω′

in the rule) from those required by the parent. The effect annotation fork (t, C, σ′, ω′)
records this action. We assume that the fresh thread identifier t created on each fork
invocation is strictly greater (with respect to <) than previous ones used by any thread.

Creating a new channel with newchan augments the set of channel identifiers for
both wait and grant actions.

In order for a thread to grant resources to another thread, the assertion that defines
the structure of these resources must hold in the current local state; note that the only
resources that can be propagated along channels are locations and values in the thread’s
local state—channel identifiers can only be distributed at fork-time. If the assertion
indeed holds, then the resources it describes can be transferred on the channel. This
semantics ensures all concurrently executing threads operate over disjoint portions of
shared memory. The semantics of wait transfers a set of resources to the executing
thread whose composition is determined by the assertion on the corresponding grant
that communicates on channel s. The rules for sequencing and loops are standard.

Memory allocation annotates the transition with an allocation label alloc(l) for fresh
location l.

Global semantics. The global semantics is defined as a transition relation Z=⇒ ∈
P(GState× GState), with GState defined as follows:

δ ∈ TMap : Tid ⇀ TState

η ∈ CMap : Cid ⇀ Heap] {M,O}
κ ∈ GState : TMap× CMap×P(Loc)

The rules of the global semantics are given in Fig. 6.2. Every transition in the global
semantics corresponds to a transition for some thread t in the local semantics. The global
semantics models the pool of active threads with a thread-map in TMap, and models
the resources held by channels with a channel-map in CMap. The set of locations in
P(Loc) represents unallocated locations in the heap. Because we never return locations
to this set, all allocated locations are fresh.

Given a channel map η ∈ CMap, a given channel s ∈ dom(η) can be either allocated
but unused, denoted by η(s) = M, in use, denoted by η(s) ∈ Heap, or finalised, denoted
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(C, σ, ω, γ) (C′, σ′, ω′, γ′)

([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′] ] δ, η,L)

(C, σ, ω, γ)
fork (t2,C2,σ2,ω2) (C′, σ′, ω′, γ′)

([t1 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t1 7→ C′, σ′, ω′, γ′] ] [t2 7→ C2, σ2, ω2, ∅] ] δ, η,L)

(C, σ, ω, γ)
newchan (s) (C′, σ′, ω′, γ′) s /∈ dom(η)

([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′] ] δ, η ] [s 7→ M],L)

(C, σ, ω, γ)
grant (s,σ) (C′, σ′, ω′, γ′) η(s) = M

([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′] ] δ, η[s 7→ σ],L)

(C, σ, ω, γ)
wait (s,σ) (C′, σ′, ω′, γ′) η(s) = σ

([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′] ] δ, η[s 7→ O],L)

(C, σ, ω, γ)
alloc(l) (C′, σ′, ω′, γ′) l ∈ L

([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ ([t 7→ C′, σ′, ω′, γ′] ] δ, η,L \ {l})

(C, σ, ω, γ) abort
([t 7→ C, σ, ω, γ] ] δ, η,L) Z=⇒ abort

Figure 6.2: Annotated global operational semantics.

by η(s) = O. Once finalised, a channel identifier cannot be reused (fortunately we
have an infinite supply of fresh channel identifiers). The semantics enforces consistency
between calls to wait, grant and newchan. A thread can only take a local transition
acquiring or releasing a resource if it is consistent with the global channel map.

Thread-local steps are mirrored in the global semantics by updating the state of the
thread in the thread map. A fork operation augments the thread map by associating
the thread identifier with a new thread-local configuration whose components are
specified on the local transition. Creating a new channel is permissible only if the
channel identifier does not already exist. A grant action is allowed if the channel is
unused; after the action the channel is associated with the heap resources provided by
the grant. A wait action is allowed if the resources demanded by the wait are provided
by the channel (via a grant); if so, the channel becomes finalised. Allocation removes
the location from the set of available locations.

Definition 6.1. For a global state κ = 〈δ, η,L〉 and thread t ∈ dom(δ) such that δ(t) =
〈C, σ, (ωw, ωg), γ〉, we define waits(κ, t) , ωw and grants(κ, t) , ωg.

Definition 6.2 (well-formedness). A global state κ = 〈δ, η,L〉 is well-formed if:

1. The set of all heap locations either allocated and referred to in δ and η is disjoint
from L, the set of unallocated heap locations.

2. The thread-local states in δ and states stored in the channel map η can be joined
using ⊕ to give a well-defined state. Note that, as ⊕ is associative and commuta-
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tive, this state is unique, and also that any pair of states from δ and η can be joined
to give a well-defined result.

3. For any channel c ∈ Cid, there exists at most one thread t1 such that c ∈ grants(κ, t1)
and at most one thread t2 such that c ∈ waits(κ, t2). If c ∈ grants(κ, t1), then
η(c) = M. If c ∈ waits(κ, t2), then η(c) ∈ Heap] {M}.

Well-formedness expresses fundamental linearity assumptions on states and chan-
nels; essentially, it ensures elements of the state can be owned by only one thread at
once.

Lemma 6.3. The global transition relation Z=⇒ preserves well-formedness.

Assumption 1. We assume all global states are well-formed, unless explicitly stated
otherwise.

Definition 6.4 (trace). A trace is a (finite or infinite) sequence of global states K =
κ0κ1 . . . such that for every i, κi Z=⇒ κi+1. A finite (infinite) trace is called terminating
(nonterminating).

Definition 6.5 (child thread, thread order). Each local state 〈C, σ, ω, γ〉 includes the set
γ of forked child thread identifiers. For convenience, we define child(κ, t) as the set
of children for thread t in global state κ. The children of a thread are ordered with a
relation < that follows the order in which they were created. That is, suppose we have
a trace K with initial state 〈δ, η,L〉 such that c1, c2 /∈ dom(δ). Given an arbitrary state
κi ∈ K, if {c1, c2} ⊆ child(κ, t) and c1 < c2, then c1 was created earlier in the trace than
c2.

We denote by Z=⇒∗ the reflexive transitive closure of the global transition relation.
We sometimes write tZ=⇒ to denote a global transition resulting from the thread t taking
a step, and call it a transition over thread t.

Definition 6.6 (sequentialised trace). We define the sequentialised transition relation
Z=⇒s ⊆ Z=⇒ as the transition relation in which a step κ

tZ=⇒ κ′ can only be taken if all
threads in child(κ, t) have reduced to skip. We say that a trace K is sequentialised with
respect to t if every transition over thread t is in Z=⇒s. We denote this transition relation
by Z=⇒s(t).

6.2 Proof of behaviour preservation

We now prove the soundness of our analysis, i.e., that our parallelising transformation
does not introduce any new behaviours to the original program. We prove our result
using the semantics from §6.1 for both the sequential and the parallelised program. In
this setting, the sequential program is represented with a sequential thread1 possibly
executing concurrently with other sequential threads—this degenerates into the purely
sequential case when there are no other runnable threads.

1A thread is sequential if it does not call fork.
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6.2.1 Informal description of the proof

The proof of the behaviour preservation (Theorem 6.18) is based on a simulation argu-
ment: each trace of the parallelised program must correspond to a trace of the sequential
program and preserve as an invariant a given binary relation between states of the
parallelised and the sequential program. The proof is structured as follows:

1. We establish a simulation invariant between the parallelised program and the
sequential program in two steps: first for a program decorated with calls to grant,
wait and newchan and a program with these calls erased (Lemma 6.7), and then
for a program additionally decorated with fork calls and a fork-erased program
(Lemma 6.8). The combined invariant relates every non-faulting sequentialised
trace of the fully decorated program with a trace of the sequential program. By
sequentialised, we mean that forked children must execute to completion before
their parent threads can be scheduled (Def. 6.6).

2. We show that, under the assumption that forked child threads never wait for
channels granted by their parent or later-forked child threads, any terminating non-
faulting trace of the parallelised program can be reordered into a sequentialised
trace with the same thread-local behaviour. This is established by showing that
traces of the program parallelised by our analysis have signalling barriers aligned
with the thread ordering (Lemma 6.14), and that any such trace can be reordered
into a sequentialised trace (Lemma 6.13).

3. Previous steps establish behaviour-preservation for non-faulting traces. Inserting
grant, wait, newchan and fork may introduce aborts. However, our parallelising
transformation is proof-preserving so the parallelised programs is also verified
using separation logic. This establishes, for every state satisfying the program
precondition, that the program cannot abort.

6.2.2 Proof details

We start with a lemma that establishes a simulation invariant between a program
decorated with calls to grant, wait and newchan and a program with these calls
replaced with skip.

Lemma 6.7 (wait, grant, newchan insertion). Let J−K↓ch be a program transformation
which replaces calls to newchan, grant and wait with skip. Let κ = 〈δ, η,L〉 and κ′ be
global states. We say that the invariant I(t, κ, κ′) is satisfied if:

• The thread identifier t is in dom(δ).

• For δ(t) = 〈C, σ, ω, γ〉, the program C executed by t does not contain fork.

• The thread waits for all channels it grants on, i.e., ωg ⊆ ωw, and all chan-
nels in ωw \ ωg have already been granted on but are not yet finalised, i.e.,
∀c∈ωw\ωg . η(c) /∈ {O,M}.

• Let σch ,�c∈ωw\ωg . η(c) be all resources the thread does not grant but waits for.

Then there exists η′ ⊆ η such that κ′ = 〈δ[t 7→ 〈JCK↓ch, σ⊕ σch, (∅, ∅), γ〉], η′,L〉
and for all channels c held by threads other than t, η′(c) = η(c).
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For any states κ, κ′, κ2, if I(t, κ, κ′) and κ Z=⇒ κ2, then there exists a state κ′2 such
that κ′ Z=⇒∗ κ′2 and I(t, κ2, κ′2). This property can be alternatively represented by the
following diagram:

κ
I(t)−→ κ′

Z=⇒

Z=⇒
∗

κ2
I(t)−→ κ′2

Intuitively, the invariant I expresses the simulation relation between programs con-
taining wait, grant and newchan (left-hand side of the diagram), and the equivalent
program without them (right-hand side).

Proof. There are two cases: either κ Z=⇒ κ2 is a transition over t, or it is a transition over
some other thread t′ 6= t. If κ Z=⇒ κ2 is a transition over t, we proceed by structural
induction over C.

• C is a primitive command in Prim. In this case, the result holds by the assumption
of behavioural monotonicity for primitive commands.

• C is a grant or wait for some channel c. In both of these cases, the corresponding
command JCK↓ch will be skip. Consequently the transition κ′ Z=⇒ κ′2 will be a
τ-transition, meaning κ′ = κ′2.

By assumption, the join of the thread-local state σ and state σch stored in accessible
channels in κ is equal to the thread-local state in κ′. Calling a grant takes some
local state and pushes it into a channel, which preserves this property. Similarly
calling a wait pulls some state out of an accessible channel and into local state,
which also preserves the property.

• C is a newchan. In this case, the corresponding command also be a skip, so
κ′ = κ′2. The effect of newchan will be to initialise a fresh channel not already in
η, and add these channels to the channel state for κ2. These channels are erased by
the invariant, so the property is preserved.

• C is alloc. The set L of unallocated locations is the same in κ and κ′. Consequently,
if a location can be allocated in κ, it can also be allocated in κ′.

• C is a sequential composition, loop, or conditional. The result follows trivially by
appeal to the induction hypothesis.

Suppose now that the transition is over some other thread t′ 6= t. By assumption
(the third property of I), we know that the channels erased by the invariant are not
shared with any other thread. We can therefore establish straightforwardly that such a
transition must be replicated exactly between κ′ and κ′2. The invariant is not disturbed,
because it does not mutate the content of other threads.

The next lemma establishes a simulation invariant between a program containing
calls to fork and a program with these calls erased.

Lemma 6.8 (fork insertion). Let J−K↓fk be a program transformation which replaces calls
to fork C with C. We say that the invariant J(t, κ, κ′) is satisfied if:
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• The thread identifier t is in dom(δ).

• For δ(t) = 〈C, σ, ω, γ〉, any calls to fork in C do not themselves include calls to
fork.

• Let σfk = � {σc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉}2 be thread-local states
and ωfk =

⊎{ωc | c ∈ child(t) ∧ δ(c) = 〈Cc, σc, ωc, γc〉} channel states of forked
child threads conjoined. By the well-formedness condition on global states (As-
sumption 6.2), both of these must be well-defined.

• There exists at most one child thread c ∈ child(t) such that δ(c) = 〈Cc, σc, ωc, γc〉
and Cc 6= skip.

• Either of the following two cases holds:

– If ∀c ∈ child(t). δ(c) = 〈skip, σc, ωc, ∅〉, then κ′ = 〈δ[t 7→ 〈JCK↓fk, σ⊕ σfk, ω]
ωfk, ∅〉], η,L〉.3

(In other words, all child threads of t have terminated, and the main thread
corresponds to the original sequential state.)

– If ∃!c ∈ child(t). δ(c) = 〈Cc, σc, ωc, γc〉 ∧ Cc 6= skip, then C = skip; C1 and
κ′ = 〈δ[t 7→ 〈Cc; JC1K

↓
fk, σ⊕ σfk, ω ]ωfk, ∅〉], η,L〉.

(In other words, there exists exactly one unterminated child thread, and join
of the states of the child threads and main thread correspond to the original
sequential state.)

For any states κ, κ′, κ2, if J(t, κ, κ′), and κ Z=⇒s(t) κ2, then there exists a state κ′2 such
that κ′ Z=⇒∗ κ′2 and J(t, κ2, κ′2). This property can be alternatively represented by the
following diagram:

κ
J(t)−→ κ′Z=⇒

s(t)

Z=⇒
∗

κ2
J(t)−→ κ′2

The invariant J expresses the simulation relation between programs containing fork
(left-hand side of the diagram) and the equivalent program without it (right-hand side).

Proof. Unlike with Lemma 6.7, there are three cases: either κ Z=⇒s(t) κ2 is a transition
over t; or it is a transition over some member of the set child(t); or the transition is over
some other, unrelated thread. First suppose that the transition is over t. We proceed by
structural induction on C:

• C ∈ Prim. By assumption, any behaviour in a small state σ will be reflected in a
big one, which suffices to ensure that the invariant holds.

2By� {σs | s ∈ S}, we mean�s∈S. σs.
3Note that σ⊕ σfk is well-defined because thread-local states of child threads are disjoint from the

thread-local state of their parent (Fig. 6.1).
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• C is alloc. The set L of unallocated locations is the same for κ and κ′. By the same
argument as Lemma 6.7, the same allocation step is therefore possible in both
global states.

• C is wait or grant. By the well-formedness assumption, resources held by chan-
nels must be disjoint from those held by other threads. This suffices to ensure
that wait and grant transitions can take place identically in the corresponding
fork-free program.

• C is fork. This will correspond to a τ-transition in the fork-erased program.
Because the transition over the program with fork is sequentialised with respect
to t, the transition can only be over t if all the children of t have reduced to skip.
Calling fork pushes some state to the child thread, and results in exactly one
active (non-skip) child thread.

• C is a loop, conditional, sequential composition. Property holds by appeal to the
induction hypothesis.

Now suppose the transition is over some thread c ∈ child(t). By assumption (the
fourth property of J), there can be at most one such thread. The state held by the child
thread must be a substate of that held in the fork-free program. Consequently, an
almost identical structural induction argument suffices to show that the simulation
property holds.

Finally, suppose that the transition is over some other thread t′ that is neither t nor
a child of t. Such threads cannot be affected by the behaviour of t and its children. It
is straightforward to show that any transition for the program can take place in the
corresponding fork-free program.

The previous two lemmas combined establish an invariant relating non-faulting
sequentialised traces of the parallelised program with traces of the sequential program.
It remains to show that terminating non-faulting traces of the parallelised program
can be reordered into sequentialised traces with the same thread-local behaviour. We
do this by introducing a well-founded order on traces in which sequentialised traces
are minimal elements, and showing that each signal-ordered trace (i.e., having its
signalling barriers aligned with the thread ordering) can be reordered to a behaviourally
equivalent trace smaller with respect to the well-founded order, eventually leading to a
behaviourally equivalent sequentialised trace.

Definition 6.9. We say that traces K1 and K2 are behaviourally equivalent if, for each
thread identifier t, the sequence of transitions over t in K1 and K2 are identical.

We first show that consecutive transitions of two different threads can be reordered
if the second thread does not wait for any channel that the first thread grants on. We
use this property in the subsequent lemma to inductively construct a behaviourally
equivalent sequentialised trace.

Lemma 6.10 (trace reordering). Suppose we have a two-step trace:

K = 〈δ1, η1,L1〉
t1Z=⇒ 〈δ2, η2,L2〉

t2Z=⇒ 〈δ3, η3,L3〉
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such that t1 6= t2, and that t1, t2 ∈ dom(δ1). Let δ1(t1) = 〈C, σ, ω, γ〉 and δ1(t2) =
〈C′, σ′, ω′, γ′〉. Suppose that t2 does not wait for any channel that t1 grants on, i.e., that
ωg ∩ω′w = ∅ holds. Then there exists a thread environment η′, an unallocated set L′,
and a two-step trace:

K′ = 〈δ1, η1,L1〉
t2Z=⇒ 〈δ1[t2 7→ δ3(t2)], η′,L′〉 t1Z=⇒ 〈δ3, η3,L3〉

The new trace K′ is behaviourally equivalent (Def. 6.9) to K.

Proof. We proceed by case-splitting on the shape of transitions over t1 and t2:

• One or both of the transition are thread-local (i.e. do not result in a labelled
transition in the thread-local semantics). It is straightforward to see that neither
transition can affect the other one, and the rearrangement result follows trivially.

• One or both of the transitions is a fork. The effect of such a transition is localised
to the parent and newly-created child thread. By assumption, neither thread
was created by either of these transitions. The rearrangement result follows
straightforwardly.

• One or both transitions is a newchan. Channels can only be transferred by fork,
and by assumption, neither transition created either of the threads. Consequently
the effect of a newchan call is confined to the local thread.

• Both transitions are wait (resp. grant). The threads could only affect one another
if both waited (resp. granted) on the same channel, but this is ruled out by the
well-formedness assumption that each end of each channel is held by at most one
thread.

• One transition is a wait and the other is a grant. Once again, the threads could
only affect one another if they waited and granted on the same channel. However,
by assumption of the lemma, the thread t1 cannot grant on any channel on which
t2 can wait. By the structure of the semantics, the transition t1 cannot wait for a
channel that is subsequently granted. So this case cannot occur.

• One or both transitions are a alloc. If one operation is a alloc and the other another
command, the threads trivially cannot affect one another. If both transitions are
alloc, the locations allocated must be distinct, and the transitions again can be
exchanged straightforwardly.

The constructed traceK′ is trivially behaviourally equivalent toK, since the thread-local
actions for each thread are identical.

Definition 6.11 (signal order). We describe a trace K as signal-ordered with respect to t if t
is a thread identifier such that for all states κ = 〈δ, η,L〉 ∈ K:

∀c ∈ child(κ, t). ∀k ∈ waits(κ, c).
((∃c′ ∈ child(κ, t). c′ < c ∧ k ∈ grants(κ, c′)) ∨ (η(k) /∈ {⊥,O,M}))

(In other words, if a child of t can wait on a channel k, some earlier child must be able
to grant on it, or the channel must already be filled.)
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Definition 6.12 (degree of sequentialisation). Let K be a trace. If K is not sequentialised
with respect to t, let c ∈ child(t) be the earliest thread in the child order with an
unsequentialised transition (that is, for all other children c′ with unsequentialised
transitions, c′ > c). Now, let F be the number of transitions from the originating fork
transition for c and the end of the trace. Let K be the number of transitions over c after
the first unsequentialised transition. Let D be the number of intervening transitions
between the originating fork and the first unsequentialised transition.

We call such a tuple (F, K, D) the degree of sequentialisation with respect to t. We order
such tuples lexicographically, with left-to-right priority, and lift this order to give a
partial order on traces <t. This order on traces is well-founded, with sequentialised
traces occupying the minimum position in the order.

Using the ordering on traces introduced in Definition 6.12 we now show that a trace
that is signal-ordered with respect to a thread t can be reordered to a behaviourally
equivalent trace that is sequentialised with respect to t.

Lemma 6.13 (sequentialisation). Let K be a trace such that

• K is signal-ordered with respect to t; and

• Let κ = 〈δ, η,L〉 be the final state in K and let t′ be the maximum thread in
child(κ, t) with transitions in K. For all threads t′′ ∈ child(κ, t) such that t′′ <
t′, δ(t′′) = 〈skip, σ, ω, γ〉 for some σ, ω, γ. (Note this holds automatically if K is
terminating.)

Then there must exist a trace K′ sequentialised with respect to t such that K is be-
haviourally equivalent to K′.
Proof. We show that any out-of-order trace K can be reordered by applying Lemma
6.10, to give a behaviourally equivalent trace with a lower degree of sequentialisation
w.r.t. t.

Consider a trace K that is signal-ordered but not sequentialised. Let t2 be the earliest
thread in the child order for t that has an unsequentialised transition. By the assumption
that the transition is unsequentialised, the preceding transition in the trace must be
on some other thread t1 6= t2, and must not be the fork that created the out-of-order
transition. Note that t1 also must not be some child of t earlier in the child order—
otherwise the transition over t1 would be the earliest out-of-order transition.

By the definition of signal-ordering we know that wait(κ, t2) ∩ grant(κ, t1) = ∅.
Consequently, we can apply Lemma 6.10, and push the transition over t2 earlier than
the transition over t1. Call the resulting trace K′′.

By Lemma 6.10, K′′ is behaviourally equivalent to K. As a trivial consequence, K′′
is also signal-ordered. As a deeper consequence, K′′ <t K (with respect to the order
given in Def. 6.12). There are three cases:

• The transition shifts left, but is still unsequentialised. The number of intervening
transitions from the originating fork decreases, while the other two measures are
unchanged.

• The left shift means the transition is sequentialised, but more transitions over
the same thread are unsequentialised. The number of transitions from the first
unsequentialised transition decreases, while the distance from the initial fork to
the end of the thread is unchanged.
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• The left shift means all transitions for the thread are sequentialised. The next
target thread must be later in the child order, meaning it is later in the trace. The
number of transitions from the initial fork to the end of the thread decreases.

As the order is well-founded, by repeatedly applying the lemma, we get a behaviourally-
equivalent trace that is sequentialised w.r.t. t.

We now establish that the pattern of barriers that we insert into the program during
our parallelisation algorithm results in a trace that is signal-ordered. In the interest of
clarity, we assume that the parallelised program Ppar constructed by the analysis has
the following simplified form:

ci := newchan();
grant(ci);
while(B) {
cj := newchan();
fork[P](C, ci, cj);

ci := cj;
}
wait(ci);

Here we assume that we only need a single active pair of channels ci/cj—the argument
generalises straightforwardly to the case with n channels. The assertion P is defined
so that: P ` fut(ci, P1) ∗ req(cj, P2) ∗ F, for some P1, P2 and F; and F 0 fut(x, P′) and
F 0 req(x, P′) for any x and P′. (In other words, the forked thread can only wait for ci
and grant on cj.)

Lemma 6.14 (construction of signal-ordered traces). Let κ = 〈δ, η,L〉 be a state and t
a thread identifier such that δ(t) = 〈Ppar, σ, (∅, ∅), ∅〉 and Ppar matches the standard
form for parallelised programs, described above. Let K be a trace with initial state κ.
Then K is signal-ordered with respect to t.

Proof. We establish this property by defining an invariant L(κ):

• Let κ = 〈δ, η,L〉 and δ(t) = 〈C, σ, ω, γ〉.

• There exists a channel c1 such that σs(ci) = c1, and waits(κ, t) = {c1}.

• Either η(c1) /∈ {⊥,O,M}, or ∃t′ ∈ child(κ, t). c1 ∈ grants(κ, t′).

We now show that signal-ordering holds for every step of the semantics, and that the
invariant holds for any state immediately preceding the execution of an iteration of the
main while-loop; that is, at any point when C = while(B){ . . . } wait(ci);.

• Suppose we execute from the beginning of the program to the beginning of the first
iteration while. It is easy to see by inspection of the semantics that the resulting
state κ will satisfy the invariant L. We create the channel c1, and the call to grant
ensures η(c1) is associated with some state, as required by the invariant.
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• Now suppose we execute a single iteration of the loop: that is, we assume the
boolean condition B holds, and apply the appropriate rule in the operational
semantics. The invariant cannot be disturbed by other running threads, because
by definition they can only call grant on the channel c1.

We call newchan, which creates a channel c2, associated with the variable cj.
Now we observe that, by the structure of P call to fork creates a thread t′ with
waits(κ, t′) = {c1} and grants(κ, t′) = {c2}. As a result, in the resulting state
waits(κ, t) = {c2}. The final assignment associates c2 to ci, which reestablishes
the invariant.

Each step in this execution satisfies signal-ordering. By induction this completes the
proof.

In Lemma 6.14 we assumed a specific program form constructed by the parallelising
transformation from §4.2. However, the soundness proof could be adapted to hold for
other parallelisation backends. As long as the analysis generates a parallelised program
with traces that are signal-ordered we could establish an analogue of Lemma 6.14 and
proceed with other steps of the soundness proof in the same way.

Lemma 6.15 (synchronisation erasure). Let P be a sequential program, and Ppar be a
program resulting from applying our parallelisation algorithm. Then P = JJPparK

↓
fkK
↓
ch,

where the (syntactic) equality of programs is defined up to insertion/erasure of skip
statements—that is syntactic manipulation using the identity C = C; skip.

Proof. The result follows immediately as our analysis only inserts channels and calls to
fork.

Lemma 6.16 (materialised variables). Materialising local variables, as described in §2.4.2,
has no effect on the operational behaviour of a program.

Proof. Let P be a program, and let P′ be a corresponding program in which the local
variables are materialised. Let K be a trace in which the program P is executed. When
inserted, the materialised variables are written but not read (they are subsequently used
in conditionals after loop-splitting). Therefore, there must be a trace K′ in which P′ is
substituted for P, which is identical to K aside from the materialised variables.

Lemma 6.17 (loop-splitting). Loop-splitting, as described in §4.2.4, has no effect on the
operational behaviour of the program.

Proof. By the fact that either a conditional or its negation must hold, and a straightfor-
ward appeal to the semantics of loops.

Finally, we prove the main theorem stating the soundness of our parallelisation
algorithm.

Theorem 6.18 (parallelisation soundness). Let P be a sequential program, and let Ppar
be the program resulting from applying our parallelisation algorithm to P (includ-
ing variable materialisation and loop-splitting). Let K be a non-faulting terminat-
ing trace with initial state κ = 〈δ, η,L〉, and let t be a thread identifier such that
δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. Then there exists a trace K′′ with initial state κ′′ = 〈δ[t 7→
〈C, σ, (∅, ∅), ∅〉], η,L〉 such that:
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1. For all thread identifiers t′ defined in K′′ such that t 6= t′, their thread-local
behaviour in K is identical to K′′.

2. Let κΩ be the final state in K, and κ′′Ω the final state of K′′. Let σ be the local state
associated with thread t in κΩ and σ′′ the corresponding state associated with t in
κ′′. There exists a state σ′ such that σ⊕ σ′ = σ′′.

Proof. By Lemma 6.14 the trace K must be signal-ordered with respect to t. Therefore
by Lemma 6.13 there exists a behaviourally-equivalent trace Kseq that is sequentialised
with respect to t. Because t has no child threads in κ, we can choose Kseq such that κ is
also its initial state.

We now show that there exist traces K′ and K′′, such that transitions in K are related
to K′ by the invariant J(t) (Lemma 6.8) and transitions in K′ are related to K′′ by the
invariant I(t) (Lemma 6.7).

We proceed by induction on the length of a prefix of Kseq. By Lemma 6.15, P =

JJPparK
↓
fkK
↓
ch. From this, it is straightforward to see that there exists a state κ′ = 〈δ[t 7→

〈JPparK
↓
fk, σ, (∅, ∅), ∅〉], η,L〉 such that J(t, κ, κ′) and I(t, κ′, κ′′).

Assume traces K′ and K′′ exist for the first n transitions of Kseq. Let κn be the final
state in this prefix. By assumption there exist states κ′n and κ′′n such that J(t, κn, κ′n) and
I(t, κ′n, κ′′n). Now show that for the next transition κn Z=⇒s(t) κn+1 there exist transitions
κ′n Z=⇒∗ κ′n+1 and κ′′n Z=⇒∗ κ′′n+1 such that J(t, κn+1, κ′n+1) and I(t, κ′n+1, κ′′n+1). This can
be visualised by the following diagram:

κn
J(t)−→ κ′n

I(t)−→ κ′′nZ=⇒
s(t)

Z=⇒
∗

Z=⇒
∗

κn+1
J(t)−→ κ′n+1

I(t)−→ κ′′n+1

This is an immediate consequence of Lemmas 6.7 and 6.8.
By induction, this suffices to establish the existence of the trace K′′. Corresponding

thread-local behaviour for threads t′ 6= t, and corresponding final state for thread t
follow immediately from the definitions of I(t) and J(t).

This result also holds if our analysis performs variable materialisation and loop-
splitting—to show this, we need only appeal to Lemma 6.16 and Lemma 6.17.

Corollary 6.19. If the chosen post-condition in the proof of the program is precise, then
the result of parallelisation is an equality, not a sub-state.

Proof. Consequence of the fact that at most one sub-state of a given state can satisfy a
precise assertion.

6.3 Termination

In this section we prove that our parallelisation algorithm cannot introduce non-
termination to the parallelised program.
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Lemma 6.20 (ensuring grant). Let Cpar be a program resulting from applying our
parallelisation algorithm to some sequential program C. LetK be a trace with initial state
κ = 〈δ, η,L〉, such that δ(t) = 〈Cpar, σ, (∅, ∅), ∅〉. For all states in κ′ = 〈δ, η,L〉 ∈ K
and all children c ∈ child(κ′, t) if c has terminated in κ′ (i.e. reduced to skip) then
grants(κ′, c) = ∅.

Proof. Consequence of the fact that in our analysis, each grant is injected along every
control-flow path. Consequently, a terminating thread must call grant for every channel
to which it has access.

Lemma 6.21 (trace extension). Let K be a trace that is signal-ordered with respect to t,
and let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the minimum child of t such that

δ(t′) = 〈C, σ, ω, γ, 〉 and C 6= skip. Then there exists a non-faulting transition κ
t′Z=⇒ κ′.

Proof. By examination of the thread-local semantics, we can see that only calls to wait
can block without faulting. For all other commands, either the thread can take a step, or
it faults immediately. Consequently, the lemma reduces to asking whether every call to
wait in the thread t′ can take a step.

A call to wait can only block if some prior thread has not called grant on some
channel. By the definition of signal-ordered (Def. 6.11), the channels for which t′ can
wait must either contain state, or must be held by some child thread earlier in the order.
By assumption, we know that all earlier threads have terminated, so by Lemma 6.20,
we know that no thread holds a pending grant. Consequently, the channel must contain
state, and wait can take a step.

Lemma 6.22 (trace erasure). Let K be a trace that is signal-ordered with respect to t,
and let κ = 〈δ, η,L〉 be the final state of K. Let t′ be the maximum child of t in dom(δ).
Then there exists a trace K′ such that K′ has no transitions over t′, and all threads other
than t′ have identical behaviour in K and K′.

Proof. By induction over the number of transitions over t in the trace. identify the final

transition over t′ in K, κn
t′Z=⇒ κn+1. We erase this transition, and then re-execute the

remainder of the transitions from the trace. By the definition of signal-order (Def. 6.11)
no other child thread can call wait on any channel held by t. Consequently, we must
be able to run the same sequence of thread-local actions after erasing the transition. By
applying this process, we can erase all transitions over t′.

Theorem 6.23 (termination). Let P be a sequential program, and let Ppar be a program
resulting from applying our parallelisation algorithm to P. If P is guaranteed to
terminate, then so is Ppar.

Proof. If P is terminating, then for any initial state, there must be a maximum number
of steps that the thread t running P can take. To prove the theorem, we prove the
contrapositive result: given that Ppar does not terminate, we can construct a trace for P

where t takes more than this number of steps.
Suppose we have an initial state κ = 〈δ, η,L〉 such that δ(t) = 〈Ppar, σ, (∅, ∅), ∅〉.

Suppose that κ can result in a nonterminating trace over t—that is, given any arbitrary
bound n, there exists a trace with initial state κ and more than n steps over t and its
child threads.
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Construct a sequential state κseq = 〈δ[t 7→ 〈Ppar, σ, (∅, ∅), ∅〉], η,L〉, and identify a
bound q such that no trace starting with κ′′ can take more than q steps over t. Choose a
trace K with initial state κ such that t and its children take more than q steps, excluding
synchronisation (that is, calls to fork, newchan, signal and wait). Note that by Lemma
6.14, K is signal-ordered.

Now we rearrange K to give a sequentialised trace of length greater than q.

• By applying Lemma 6.21, we extend the trace until the first n children of t together
take more than q non-synchronisation steps, and all children but the nth have
terminated.

• By applying Lemma 6.22, we erase the (n+1)th to maximum child threads of t,
along with associated calls to fork from t.

The resulting trace K has more than q non-synchronisation transitions from t and its
first n children, and in the final state κ′, all but the nth child thread have terminated.
By applying Lemma 6.13, we can construct a trace K′′ that has equivalent thread-local
behaviour, and that is sequentialised with respect to t.

We observe that, by Lemma 6.15, P = JJPparK
↓
fkK
↓
ch. By applying Lemmas 6.7 and 6.8,

construct a trace Kseq with initial state κseq. The invariants in Lemmas 6.7 and 6.8 only
erase synchronisation transitions. Consequently, the resulting sequential trace has more
than q transitions over the thread t. This contradicts our assumption, and completes the
proof.
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CHAPTER 7

RELATED WORK

Traditional approaches to automated parallelisation are generally based on checking the
independence of program statements. Here, a compiler performs dependency analysis,
generating constraints about program statements, and schedules statements that are
independent of each other for parallel execution. Dependency constraints are typically
derived from a program analysis that discovers how the result of one computation
affects the result of another.

These techniques have been successful for programs with simple data types, stati-
cally allocated arrays, and structured control-flow operators, such as loops, but have
been less effective when programs manipulate pointers and make extensive use of
dynamic data structures [HPR89, HN90, GHZ98, GPPS99]. In this dissertation, we
leverage separation logic because it provides a convenient means to express assertions
about dynamic or recursively defined resources. For example, [RCG09] investigates
how a separation-logic-based analysis can be adapted to express memory-separation
properties, thereby detecting independence between statements via interference check-
ing of proof assertions. In our approach, we do not check for such independence
directly in the proof, but instead use the proof to discover what resources different parts
of the program depend on, and inject appropriate synchronisation to ensure that the
parallelised version of the program respects these dependencies.

Thus, there are three main differences between our proposed parallelisation method
and prior work:

• In contrast to other approaches where the proof produced by a compiler is of
special form, strictly targeted at checking independence, we do not make any
assumptions about the program proof except that it be written in separation logic.
By virtue of separation logic’s semantics, any such proof describes all resources
accessed by the program and keeps track of their independence via separating
conjunction—a property that we crucially rely on to track fine-grained sequential
dependencies.

• Our approach starts with an unconstrained parallelised version of the program,
and then inserts just enough synchronisation to preserve sequential dependencies
and guarantee preservation of observable behaviour. By releasing the resources
that a thread does not need and acquiring the resources that it does, we implicitly
establish (an under-approximated) independence of certain parts of the program
as a byproduct of our analysis.
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• While the main usage scenario that we have presented is do-across parallelisation
of for-loops with heap-carried dependencies, our key concepts are in fact not
dependent on a specific loop structure. We foresee our approach being equally
applicable to less regular code patterns and other iteration structures.

Next we contrast our parallelisation method in more details with respect to ap-
proaches across related lines of work.

Resource-usage inference by abduction. We have defined an inter-procedural, context-
sensitive and control-flow-sensitive analysis capable of determining the resource that
will (and will not) be accessed between particular points in the program. At its core,
our analysis uses abductive reasoning [CDOY11] to discover redundancies—that is, state
used earlier in the program that will not be accessed subsequent to the current pro-
gram point. Using abduction in this way was first proposed in [DF10], where it is
used to discover memory leaks, albeit without conditionals, procedures, loops, or code
specialisation.

In [CDV09], abduction is used to infer resource invariants for synchronisation, using
a process of counterexample-driven refinement. Our approach similarly infers resource
invariants, but using a very different technique: invariants are derived from a sequential
proof (which also contains invariants for loops, etc), and we also infer synchronisation
points and specialise the program to reveal synchronisation opportunities.

Behaviour-preserving parallelisation. We expect our resource-usage analysis can
be used in other synchronisation-related optimisations, but in this dissertation, we
have used it as the basis for a parallelising transformation. This transformation is in
the style of deterministic parallelism [BYLN09, JAD+09, BAD+10, BS10]—although our
approach does not, in fact, require determinacy of the source program. In this vein, our
transformation ensures that every behaviour of the parallelised program is a behaviour
of the source sequential program (modulo the caveats about allocation and termination
discussed in §4.4).

Previous approaches to deterministic parallelism have not used specifications to
represent dynamically allocated resources. This places a substantial burden on the
analysis and runtime to safely extract information on resource usage and transfer—
information that is readily available in a proof. As a result, these analyses tend to be
much more conservative in their treatment of mutable data. Our proof-based technique
gives us a general approach to splitting mutable resources; for example, by allowing
the analysis to perform ad-hoc list splitting, as we do with move().

Loop parallelisation. Our approach transforms a sequential for-loop by running all
the iterations in parallel and signalling between them, so it can be seen as a variant
of a do-across style of loop parallelisation [TZ94]. There has been a vast amount of
work in last couple of decades on do-across dependence analysis and parallelisation
for loop nests. However, the focus of interest of these approaches are loop nests over
linear data structures (i.e., arrays). For instance, polyhedral models [BVB+09], the most
powerful dependence abstraction to date, assume an affine iteration domain of loop
nests. In contrast, our approach does not require a specific iteration domain or fixed
data-structure access patterns.
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Instead of parallel-for, we could have used a more irregular concurrency annota-
tion, for example safe futures [NZJ08], or an unordered parallel-for, as in the Galois
system [PNK+11]. In the former case, our resource-usage analysis would be mostly
unchanged, but our parallelised program would construct a set of syntactically distinct
threads, rather than a pipeline of identical threads. Removing ordering between iter-
ations, as in the latter case, would require replacing ordered grant-wait pairs with,
e.g., conventional locks and would then introduce an obligation to show that locks were
always acquired together, as a set.

Proof-driven parallelisation and program analyses. A central insight of our approach
is that a separation logic proof expresses data dependencies for parts of a program, as
well as for the whole program. These internal dependencies can be used to inject safe
parallelism. This insight is due to [RCG09, CMR+10] and [Hur09], which propose paral-
lelisation analyses based on separation logic. The analyses proposed in these papers are
much more conservative than ours, in that they discover independence which already
exists between commands of the program. They do not insert synchronisation con-
structs, and consequently cannot enforce sequential dependencies amongst concurrent
computations that share and modify state. Indeed, [RCG09] does not consider any
program transformations, since the goal of that work is to identify memory separation
of different commands, while [Hur09] expresses optimisations as reordering rewrites
on proof trees.

Bell et al. [BAW10] construct a proof of an already-transformed multi-threaded program
parallelised by the DSWP (Decoupled Software Pipelining) transformation [ORSA05].
This approach assumes a specific pattern of (linear) dependencies in the while-loop
consistent with DSWP, a specific pattern of sequential proof, and a fixed number of
threads. In our move() example, the outermost (parallelising) loop contains two
successive inner loops, while the example in Fig. 2.1 illustrates how the technique can
deal with inter-procedural and control-flow sensitive dependencies. In both cases, the
resulting parallelisation is specialised to inject synchronisation primitives to enforce
sequential dependencies. We believe examples like these do not fall within the scope of
either DSWP or the proof techniques supported by [BAW10].

Outside separation logic, Deshmukh et al. [DRRV10] propose an analysis which
augments a sequential library with synchronisation. This approach takes as input
a sequential proof expressing the correctness criteria for the library, and generates
synchronisation ensuring this proof is preserved if methods run concurrently. A ba-
sic assumption is that the sequential proof represents all the properties that must be
preserved. In contrast, we also preserve sequential order on access to resources. Con-
sequently, Deshmukh et al. permit parallelisations that we would prohibit, and can
introduce new behaviours into the parallelised program. Another difference is that
[DRRV10] derives a linearisable implementation given a sequential specification in the
form of input-output assertions; because they do not consider specialisation of multiple
instances of the library running concurrently, it is unclear how their approach would
deal with transformations of the kind we use for move().

Golan-Gueta et al. [GBA+11] also explore adding locks to sequential libraries; in
particular, they focus on tree- and forest-based data structures. They instrument the
library’s code so that it counts stack and heap references to objects, and then use these
reference counts to determine when to acquire and release locks to guarantee conflict-
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serialisability (and consequently, linearisability). The use of proofs in [GBA+11] is,
however, only indirect: they use a shape analyzer to check that the library’s heap
graph is tree-shaped and live variable analysis to eliminate redundant code. Another
difference is that our analysis does not assume a specific heap structure at any single
point in the program nor it requires additional instrumentation of heap objects.

Raychev et al. [RVY13] describe an alternative program analysis and synchronisation
inference mechanism. They take as an input a non-deterministic program (obtained
by e.g. “naively” parallelising the sequential program) and make it deterministic by
inserting barriers that enforce a thread schedule that avoids races. The thread ordering
is determined by eliminating conflicts in a thread-modular abstraction of the program,
following a set of rules to decide between feasible schedules. As a consequence, Raychev
et al. end up with a determinisation whose behaviour is implied by these rules rather
than by the behaviour of the original sequential program. To abstract the unbounded
state, they use a flow-insensitive pointer analysis and numerical abstract domains,
which works well for the structured numerical computations over arrays analyzed in
their examples, but which would be much less effective for more irregular computations
over dynamic data structures, as we consider here. For convergence, they employ a
simple widening strategy (they widen after a constant number of iterations around the
loop), which does not allow splitting of loop invariants, as we do in the transformation
of move().

Separation logic and concurrency. Separation logic is essential to our approach. It
allows us to localise the behaviour of a program fragment to precisely the resources
it accesses. Our proofs are written using concurrent separation logic [O’H07]. CSL
has been extended to deal with dynamically-allocated locks [GBC+07, HAN08, JP09],
re-entrant locks [HHH08], and primitive channels [HO08, BAW10, VLC10, LMS10].
Sequential tools for separation logic have achieved impressive scalability—for example
[CDOY11] has verified a large proportion of the Linux kernel. Our work can be seen as
an attempt to leverage the success of such sequential tools. Our experiments are built
on coreStar [BDD+11, DP08], a language-independent proof tool for separation logic.

The parallelisation phase of our analysis makes use of the specifications for paral-
lelisation barriers proposed in [DJP11]. That paper defined high-level specifications
representing the abstract behaviour of barriers, and verified those specifications against
the barriers’ low-level implementations. However, it assumed that barriers were already
placed in the program, and made no attempt to infer barrier positions. In contrast,
we assume the high-level specification, and define an analysis to insert barriers. The
semantics of barriers used in that paper and here was initially proposed in [NZJ08].

Deterministic Parallelism. As questions regarding the programmability of multi-
core systems become increasingly vocal, deterministic parallelism offers an attractive
simplified programming model that nonetheless yield performance gains. Safe fu-
tures [WJH05] provide deterministic guarantees for Java programs annotated with a
future construct using software transactional memory infrastructure; Grace [BYLN09]
is another runtime technique that uses memory protection hardware for the same pur-
pose. In both these systems, the observable behaviour of the parallelised program is the
same as a sequential version, a version in which future-creation operations are treated
as no-ops.
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Deterministic parallelism can also be profitably applied to explicitly parallel applica-
tions; these systems guarantee that the program produces the same output regardless of
the order in which threads run, but this result need not necessarily match a sequential
execution. CoreDet [BAD+10], is a compiler and runtime system that uses ownership
information along with a versioned memory to commit changes deterministically for
multi-threaded C++ programs. Dthreads [LCB11] works at a higher level as a direct re-
placement for the pthreads library, improving the scalability with an efficient commit
protocol and amortisation of overheads. Deterministic Parallel Java [JAD+09] uses a
type and region effect system to enforce deterministic guarantees for concurrent Java
programs.
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Part II

Specification-directed parallelisation
synthesis
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Part II is concerned with a method for specification-directed parallelisation synthesis.
We propose an approach in which we extract a faithful input-output specification of the
program behaviour, representing it in a more compact form than the original program,
and then use this specification for parallelised code synthesis. (As we show, such
specifications can also be used to solve certain program analysis and verification tasks
more easily.)

But why would we want to consider an approach like this? After all, if the specifica-
tion embeds all material information about the program behaviour, it is hard to expect
that the specification would be much easier to deal with than the original program.
However, as it turns out, for certain classes of programs we might be able to extract the
specification in an easier, “algorithmically manageable” form. Using such specification
in place of the original program we can then reduce verification and synthesis tasks on
programs to potentially more manageable tasks on specifications.

For instance, although checking whether two arbitrary programs have the same
behaviour is undecidable, if such programs have specifications with decidable equiv-
alence checking, we may be able to decide the equivalence of programs by checking
equivalence of the corresponding specifications. Next, by using specifications, we might
be able to perform certain algebraic optimisations more easily—for instance, reordering
two pieces of code. Finally, compactness of specifications might allow us to generate a
more efficient, optimised code directly from the specification, such as aforementioned
parallelised version of the program.

Extracting a faithful input-output specification of a program is, however, hugely
challenging. Automated analysis of program code containing loops and recursion or
infinite data domains easily enters the undecidable territory. We propose to combat these
problems by simultaneously exploiting two kinds of methods for exploring program
paths: one which over-approximates program behaviour (an example of which is
predicate abstraction) and another one which under-approximates it (an example of
which is symbolic testing). If the program under-approximation ever becomes equal to
the over-approximation then we have obtained a faithful specification.

The problem is that for realistic programs under-approximations will never converge
to a true specification, as they may involve infinite sets of potentially infinite paths.
The crux of our approach for extracting program specifications is to use grammar
induction to generate conjectures which systematically generalise the set of program
paths discovered in under-approximations. As we show, by alternating between such
conjectures and over-approximations, we can reach convergence for some non-trivial
classes of programs.

The attractiveness of specifications obtained this way is in that even for programs
with unbounded data and loops we may infer finite-state symbolic specifications. For
program parallelisation, the number of states in such specifications is often small enough
so that we can parallelise the program by speculatively running the specification from
all its states in parallel. In contrast to our proof-directed method in Part I which
explicitly enforces all relevant dependencies using the proof of a program, here we
merely acknowledge them by considering all execution scenarios. The role of the
specification is to account for all executions, ensuring that we do not miss some potential
behaviour.
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Structure of Part II. In §8 we give an informal overview of our method for specification-
directed parallelisation synthesis, with a focus on inference of faithful input-output
specifications. Technical background needed for the formal development of further
concepts and algorithms is given in §9. In §10 we formalise a class of input-output
specifications which we can faithfully extract from a certain class of programs. §11
presents a technique for synthesising such symbolic input-output specifications from
over-approximations and under-approximations generalised using grammar induction.
In §12 we present several practical applications of our inference technique. We finish by
discussing related work (§13).
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CHAPTER 8

OVERVIEW

In this chapter, we give an informal overview of our specification-directed paralleli-
sation synthesis. Central to this method is solving the problem of inferring a faithful
specification of program behaviour. We propose a technique called Σ∗, which by com-
bining black- and white-box analyses infers input-output specifications for a certain
class of programs known as stream filters (see §12 for practical examples of such pro-
grams). Σ∗ works on the control-flow graph without assuming any specific syntactic
structure of the program and relies on grammar induction to inductively generalise
program traces and an abstraction to guide the convergence. Once we obtain a faithful
specification of the program, we use the specification for program parallelisation.

We start the chapter by briefly introducing stream filters in §8.1. We then give an
overview of Σ∗ in §8.2. We illustrate how Σ∗ works on the example in §8.3. We conclude
the chapter by briefly describing how the specifications inferred by Σ∗ can be used for
parallelisation.

8.1 Stream filters

Modern software systems often process large amounts of data in a stream-like fashion.
By streams, we mean sequences of data items, processed in some order. Such stream
processing is inherent to many domains such as digital signal processing, embedded
applications, network event processing, financial applications, web applications, and
even to common desktop software. Likewise, big-data services running on a cloud are
nowadays faced with a need to not only scalably analyse large batches of past data but
also to continuously process streams of moving data.

In this part we focus on a simple notion of programs that applies to many of these
systems, called a filter. Filters are typically small fragments of code, but they facilitate
large scale stream processing [BFH+04, CLL+05, DHRA06, GAW+08, GTA06, GCTR08,
TKA02]. A filter iteratively reads a bounded number of items from an input stream at
once, performs some computation on those items, and writes the results to an output
stream. Filters exchange data via stream(s) with other parts of the program, and can also
be glued together into more complex structures. Unfortunately, reasoning about even
these relatively simple programs is difficult as their low-level implementation details
often obscure the high-level input-output behaviour that we want to reason about.
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Figure 8.1: The design of Σ∗. Arrows indicate the data flow.

8.2 Overview of Σ∗

The goal of Σ∗ is to automatically synthesise input-output specifications of programs
such as stream filters. In a nutshell, Σ∗ can be seen as an extension of Angluin’s L∗

automata-learning algorithm [Ang87] to learning models of programs,1 which exploits
two key ideas:

1. Σ∗ uses dynamic symbolic execution to discover path predicates (constraints
on input values) and output terms (expressions which generate output values),
and builds symbolic conjectures out of these using an L∗-like algorithm. By
symbolically representing equivalence classes of program’s input-output steps in
the symbolic conjectures, Σ∗ can discover input-output behaviour independently
of the alphabet of concrete values. However, there are no guarantees that symbolic
conjectures are either under- or over-approximations of the program’s input-
output behaviour.

2. Along with symbolic conjectures, Σ∗ builds an abstraction that is a finite-state
symbolic over-approximation of the program behaviour that we wish to learn.
Checking equivalence of (deterministic) symbolic conjectures and such (possibly
non-deterministic) over-approximations can be done algorithmically. Σ∗ imple-
ments an algorithm that either generates a separating sequence showing how the
conjecture and abstraction differ, or proves they are equivalent.

Starting with the trivial symbolic conjecture and the coarsest abstraction, Σ∗ iter-
atively refines the conjecture or the abstraction until the two become equivalent (see
Fig. 8.1). Otherwise, we compare the separating sequence returned by the equivalence

1L∗, designed to learn regular languages in a black-box manner, is not applicable to the general
software setting for two reasons. Firstly, L∗ requires a priori knowledge of the concrete alphabet of
the language. While that fits certain scenarios (such as inference of component interfaces [ACMN05,
SGP10, GRR12], where the alphabet corresponds to the set of component’s methods), the exact alphabet
of software internals (including, for instance, all values that arise during the execution) is hard to specify
in advance. Even if known, such alphabets are typically large (or practically infinite), so treating them
concretely as in L∗ hinders scalability. Secondly, L∗ merely conjectures the inferred model and to check
the conjecture relies upon an oracle (a teacher) that can answer equivalence queries. An omniscient oracle
for equivalence checking against software artefacts is, however, computationally intractable.
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prev = 0; cur = 0; i = 0;
while (true) {

cur = peek(0);
if (i < 2)

out(cur);
else

if (cur < prev)
out(cur + prev);

else
out(cur - prev);

prev = in();
i++;

}

Figure 8.2: Code snippet for the running example in §8.3.

checking algorithm with the output produced by the program. If the program does not
produce the same sequence of outputs as the abstraction then we call the separating
sequence spurious (infeasible in the program) and refine the abstraction. Otherwise, the
separating sequence represents a behaviour that the conjecture failed to capture, and
we refine the conjecture. Upon termination (which in general is not guaranteed, but
can be proven for a certain class of programs), the final conjecture faithfully captures
the input-output behaviour of the program, and is in a certain sense minimal such
specification.

8.3 Σ∗ illustrated by example

We continue by showing how Σ∗ works on the example given in Fig. 8.2. The program
reads input in an infinite loop using commands peek() and in(); peek(0) reads the
current input symbol and leaves it in the input stream, while in() reads the current
input symbol and moves onto the next one. Both commands halt if there is no more
input to read. In the first two iterations, the program prints the last read symbol (using
command out), and in every subsequent iteration it outputs the sum or difference of
the last two symbols, depending on their relative ordering.

We represent learnt conjectures and synthesised abstractions in the example using
a variant of symbolic finite-state transducers [BGMV12] that we call symbolic lookback
transducers (SLTs). To generate outputs, SLTs use a sliding window over a bounded
number of past inputs (see §10 for a formal definition). Each transition is labelled by a
symbolic predicate-term pair of the form p/t. The transition is taken when the predicate
p evaluates to true for a given sequence of concrete input symbols. The term t describes
the computed output. Predicates and terms are expressions over input symbols and
constants. We use λ0 to denote the current symbol and λ−i to denote symbols read i
transitions before. SLTs with lookback k are allowed to read only the current and the
last k symbols. All SLTs in the example have lookback 1.

We use (dynamic) symbolic execution [GKS05, SMA05, CE05] to gather sequences
of predicates and output terms occurring along the paths in the program execution.
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true/λ0

(a) C1

true/λ0 true/λ0

λ0 ≥ λ−1/λ0 − λ−1
λ0 < λ−1/λ0 + λ−1

(b) C2

true/λ0
true/λ0 + λ−1
true/λ0 − λ−1

(c) A1

true/λ0 true/λ0

true/λ0 + λ−1
true/λ0 − λ−1

(d) A2

Figure 8.3: Conjectures and abstractions for the example in Fig. 8.2.

For instance, given an input of length four, a possible execution might take twice the
then branch of the first if, then the else branch of the second if, and finally the then
branch of the second if. For that execution we would obtain a predicate sequence (the
path condition) ~p = true · true · (cur3 ≥ prev2) · (cur4 < prev3), and an output sequence
~t = cur1 · cur2 · (cur3− prev2) · (cur4 + prev3). In sequences such as ~p and~t, we use “·” to
denote the concatenation operator.

To obtain predicates and output terms formulated with regard to the input, we
relativise all references of variables in ~p and ~t so that they become expressed with
respect to the current position in the input stream. For instance, the relativised version
of ~p would be the sequence true · true · (λ0 ≥ λ−1) · (λ0 < λ−1), and of~t, the sequence
λ0 · λ0 · (λ0 − λ−1) · (λ0 + λ−1). As for SLTs, the variable λ−j in each element ~p|i of
the sequences above corresponds to the input symbol j positions before the current
position (i) in the input stream. Thus, e.g., λ0 in the third and fourth element of the
sequences correspond to the last two symbols read by the program. To generate a
concrete input from relativised path conditions, we need to derelativise them and pass
the derelativised formula to an SMT solver. In the case above, the solver might return a
concrete sequence 0 · 1 · 3 · 2 satisfying the relativised path condition.

Σ∗ begins processing the example by learning the first conjecture C1 (Fig. 8.3a), and
compares it against predicate abstraction A1 of the program with respect to an empty set
of predicates (Fig. 8.3c). Note that, unlike in the classic predicate abstraction, we keep
the input-output data flow intact. Equivalence checking of C1 and A1 produces the first
counterexample to equivalence between C1 and A1, say a predicate ~p1 = true and output
~t1 = (λ0 +λ−1), which is a behaviour captured by the abstraction, but not the conjecture.
Any concrete sequence satisfying those two formulae is a separating sequence. For
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while (true) {
x = in();
while (x != ’a’) {

x = in();
out(x);

}
}

q0 q1

λ0 = ′a′/ε λ0 6= ′a′/λ0

λ0 6= ′a′/ε

λ0 = ′a′/λ0

Figure 8.4: Left: a code example containing two nested loops. Right: the corresponding
SLT, as inferred by Σ∗.

example, take input λ−1 = 1, λ0 = 1. The program will produce output λ0 for that
input without reading λ−1, showing that ~p1/~t1 is infeasible in the program because
symbolic outputs do not match. We refine the abstraction A1 with respect to a new
set of predicates, obtained by some predicate selection method (e.g., by taking atomic
predicates in the weakest precondition computed along the path [Bal05]). Suppose such
method returns {i = 0, i ≥ 2} at this instance. The refined abstraction A2 is shown in
Fig. 8.3d. Equivalence checking of A2 and C1 produces the second counterexample to
equivalence, say ~p2 = true · true · true and~t2 = λ0 · λ0 · (λ0 − λ−1). Any sequence of
three symbols will satisfy ~p2 and it turns out that this counterexample to equivalence is
not spurious. Thus, we now have to refine the conjecture C1.

After processing the counterexample, Σ∗ learns conjecture C2 shown in Fig. 8.3b. C2
is correct, but Σ∗ does not know that yet, because equivalence checking of C2 and A2
returns the third counterexample to equivalence, say ~p3 = true · true · (λ0 < λ−1) and
~t3 = λ0 · λ0 · (λ0 − λ1). The third counterexample is again spurious. Thus, one more
time, we need to refine the abstraction. Using the same method for refinement as above,
we extend the set of predicates with λ0 < λ−1. Predicate abstraction computes A3,
which is equivalent to C2, and the process terminates, faithfully inferring the program’s
input-output relation, i.e., the specification of program’s input-output behaviour.

For the example shown on the left of Fig. 8.4, which contains two nested loops, Σ∗

terminates inferring a SLT with lookback 0 (shown on the right of Fig. 8.4).

8.4 Illustration of the parallelisation process

The objective of our specification-directed parallelisation synthesis is to take a sequential
program and produce a parallelised version of the program by using its specification.
Specifications in the form of SLTs can be easily executed but are inherently sequential.
We now illustrate how such specifications can exploit available hardware concurrency
using a simple speculative execution technique.

SLT specifications have an a-priori known number of internal states (which may
be fairly small for stream filters typically encountered in some domains, such as those
explored in §12). This allows an SLT to be speculatively executed on a portion of the
input by concurrently running replicas of the SLT, each starting from a different initial
state, and taking as the output what was generated in the run started from the “right”
initial state.

For example, let us consider the stream filter from Fig. 8.4. Its corresponding SLT
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Figure 8.5: Parallelisation of the SLT from example in Fig. 8.4 using speculative execution.

has two states, say, q0 and q1. Let us assume that we wish to parallelise the execution
of this filter on a system with 4 processor cores. Let us denote the portion of the input
stream held in the input buffer by ai · · · aj. Then we proceed as illustrated in Fig. 8.5. We
split the input buffer into ai · · · am and am+1 · · · aj (where i < m < j), and process each
portion of the input by a separate set of SLT replicas. In this example, each portion is
processed by two SLT replicas, started from states q0 and q1. After each SLT has finished
processing, we merge suitable outputs so that if say, processing of ai · · · am has finished
in state q1 then for am+1 · · · aj we take the output obtained by an SLT started from q1
(the other case is analogous). Note that if ai is the first element of the input stream or we
know from which state to start (e.g. because the previous execution batch has already
completed) then to process the first portion of the input buffer we need only a single
copy of the SLT.

This naïve strategy for splitting the input and mapping the SLT states to cores may
of course not be optimal, and more elaborate strategies as well as other parallelisation
backends are certainly possible. Our focus in the remainder of this part is, however, not
on such practical applications but on describing in detail the inference of SLTs by Σ∗.
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CHAPTER 9

TECHNICAL BACKGROUND

In the previous chapter we gave an overview of Σ∗ and our specification-directed
parallelisation method. In this chapter we turn to the formal development of Σ∗. We
begin, in §9.1 by formalising the kind of programs that facilitate stream processing,
examples of which we saw in §8. We also formally define concepts associated with
program analysis, which we use in the synthesis of over-approximations (§11.1) and
learning conjectures (§11.2). At the end of the chapter (§9.2), we introduce the class
of transductive and k-lookback programs. Our goal in subsequent chapters will be to
discern a subclass of such programs whose behaviour can be represented by SLTs (§10).

9.1 Transductive programs

We start by introducing the notation used throughout this part. Next we formalise the
syntax (§9.1.1) and semantics (§9.1.2) of programs that transform an input stream into
an output stream. We finish by explaining the concepts associated with the dynamic
symbolic execution (§9.1.3). Throughout the formal development we assume programs
working on streams of integers.

Preliminaries. Let Z be the set of integers, N = {i ∈ Z | i > 0} the set of naturals,
and B = {false, true} the set of booleans. For a set D, we denote by D∗ the free
monoid generated by D with concatenation as the operation and the empty word
ε as identity. We refer to words in D∗ as sequences. Sequences of predicates we denote
by ~p = p1 · · · pm. Individual predicates will typically be associated with sequences of
terms, for which we use notation t = t1 · · · tn. We identify sequences of such t-s as
members of the free monoid over terms, and denote them by~t. We denote the length
of ~p by |~p|, the i-th element of ~p by ~p|i and the subsequence pi · · · pi+k by ~p|[i,i+k]. For
f : D → C and D′ ⊆ D, we write f |D′ to denote the restriction of f on D′. For~a and
~b such that n , |~a| = |~b|, we write f [~a ←~b] to denote the function f ′ such that for all
i ∈ {1, . . . , n}, f ′(~a|i) =~b|i and for all x /∈ {~a|1, . . . ,~a|n}, f ′(x) = f (x). We use t[x 7→ y]
to denote the sequence of terms obtained from t by simultaneously replacing all free
occurrences of x with y. Vars(t) denotes the set of all free variables in t.
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Figure 9.1: Control-flow automaton based representation of the example in Fig. 8.2 from
§8.3. (The sequential composition of assignments on the outgoing edge of sN is merely a
“syntactic sugar” for a chain of individual assignments.)

9.1.1 Program representation

We first define syntactic representation of programs. Let V be the set of program vari-
ables. Expressions (terms) Exp[V], predicates BExp[V], and atomic commands Cmd[V]
over V are given by:

e ::= k | x | f(ē) | . . . ∈ Exp[V]
b ::= false | true | ¬b | b ∧ b | b ∨ b |

e = e | e 6= e | R(ē) | . . . ∈ BExp[V]
c ::= assume(b) | x := e | x := peek(k) |

x := in() | out(e) ∈ Cmd[V]

where k ∈ Z, x ∈ V, ē denotes a tuple of terms, while f and R are constructors for
terms and predicates. As long as the quantifier-free theory of Exp[V] with equality
and satisfiability of BExp[V] are decidable, particular details of the grammar are not
important. The command x := peek(k) reads a data item at offset k from the current
symbol in the input stream and stores the item to x if the input is available, otherwise
it causes the program to halt. The in() command works like peek(0) but in addition
consumes the item from the input stream and moves onto the next input symbol. The
command out(e) writes the value of e to the output stream.

We represent programs using control-flow automata [HJMS02] over the language
of atomic commands. The control-flow automaton is determined by a set of control
nodes N containing a distinguished node sN ∈ N representing the starting point of the
program and a function succ : N× Cmd[V] ⇀ N representing labelled edges. All nodes
either have a single successor or have all outgoing edges labelled with a label of the
form assume(b). In the latter case, we assume that all corresponding predicates b are
mutually exclusive and that their disjunction is a tautology.

Example 9.1. Fig. 9.1 shows the control-flow automaton for the example in Fig. 8.2 from
§8.3.
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JkKσ = k

JxKσ
.
=


σ(x) if x ∈ V,
x if x ∈ VI,
undefined otherwise

Jf(ē)Kσ
.
= f(Je1Kσ, . . . , JenKσ)

Figure 9.2: Symbolic evaluation of expressions. Symbol σ denotes a map of type Mem.

9.1.2 Symbolic semantics

Given a program P we now define its symbolic semantics. We represent the contents of
the input and the output stream using special variables VI , {in1, in2, . . .} (in-variables)
and VO , {out1, out2, . . .} (out-variables), respectively (with VI, VO and V mutually
disjoint from each other). On a particular run of P , all except finitely many of these
variables are undefined, and for those which are defined, inı corresponds to the ı-th
element of the input stream, and out to the -th element of the output stream. By ~in we
refer to the sequence of in-variables in1in2 . . . and we use `in to denote the length of the
data sequence in the input stream.

We evaluate expressions on a memory σ ∈ Mem , V ⇀ Exp[VI] as indicated in
Fig. 9.2. We execute commands on states of the form

State , N×Mem×OutStr×N×N.

The third component, OutStr , VO ⇀ Exp[VI], represents the symbols in the output
stream. The last two components of the state, the in-index and the out-index, store
indices of the current element in the input stream and the output stream, respectively.
We denote the components of a state s ∈ State by s.n, s.σ, s.ρ, s.ı, and s., respectively.
The initial state is s0 = (sN, ∅, ∅, 1, 1).

We represent the symbolic semantics of P by a labelled transition system (LTS)
T = (State, C, ) with State as the set of states, C ⊆ Cmd[V] as the finite set of labels,
and as the labelled transition relation. The relation ⊆ State× C× State is defined
by the rules given in Fig. 9.3, showing the effect of each command on a state. In each
rule we have n′ = succ(n, c). We write s c s′ to denote the transition (s, c, s′) ∈ .

9.1.3 Dynamic symbolic traces, path predicates and outputs

The LTS T encodes the symbolic semantics of P with respect to any input. Given
a concrete input ~a ∈ Z∗, we can construct a sequence of states in T representing
the (dynamic) symbolic trace of P driven by ~a, as is standard in dynamic symbolic
execution [GKS05, SMA05, CE05]. We start with the initial state s0 and at each step
we follow the transition si

c si+1, such that if c is of the form assume(b) then b is true
in si.σ[~in ← ~a]. We stop if we ever reach a state s f , which we call ending, such that

the in-index s f .ı equals `in + 1 or s f has an outgoing
_:=peek(k) -transition with k such

that s f .ı + k > `in. We define the symbolic trace of P on input~a, denoted τP (~a), as the
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(n, σ, ρ, ı, )
assume(b) (n′, σ, ρ, ı, )

(n, σ, ρ, ı, )
x:=e (n′, σ[x ← JeKσ], ρ, ı, )

(n, σ, ρ, ı, )
x:=peek(k) (n′, σ[x ← Jinı+kKσ], ρ, ı, )

(n, σ, ρ, ı, )
x:=in() (n′, σ[x ← JinıKσ], ρ, ı + 1, )

(n, σ, ρ, ı, )
out(e) (n′, σ, ρ[out ← JeKσ], ı,  + 1)

Figure 9.3: Symbolic semantics of commands. In each rule we have n′ = succ(n, c),
where c is the label of the c -transition.

finite sequence s0s1 . . . s f if an ending state is reached, or as the infinite sequence s0s1 . . .
otherwise.

We refer to a state si as in-state if si = s0, si = s f or the incoming transition reads an

input symbol, i.e., si−1
_:=in() si. Let τin

P (~a) , s̃0s̃1 . . . s̃n be the sequence of in-states from
τP (~a). We define a big-step transition to be a transition between two successive states
in τin

P (~a). For 1 ≤ i ≤ n, let pi be the conjunction of predicates b of the form assume(b)

encountered on all transitions between s̃i−1 and s̃i. In case no
assume(_) -transitions exist

between s̃i−1 and s̃i we set pi to true. Furthermore, for 1 ≤ i ≤ n, let ti be the sequence

of symbolic outputs (as written to out-variables by
out(_) -transitions) between s̃i−1 and

s̃i. If no output is generated we set ti to ε.
We define path predicates of P on input~a as the sequence πP (~a) , p1 · · · pn. Analo-

gously, we define the symbolic output of P on~a by θP (~a) , t1 · · · tn. The concrete output
of P on~a is defined by γP (~a) , θP (~a)[~in 7→~a].

9.2 Transductive and k-lookback programs

In order to be able to learn program behaviour, we have to make certain assumptions
about programs. Firstly, when considering the input-output behaviour of a program,
no path in a program should end up in a loop without reading an input, i.e., we do not
wish to allow infinite periods of silence during which the program would not read any
input. This first assumption allows us to extend conjectures of program behaviour in
the learning algorithm with new big-step transitions. Secondly, we need to assume that
programs produce uniformly bounded number of output symbols per each big-step
transition. This second assumption is inherent to symbolic transducers [BGMV12], on
which we base our notion of SLTs (§10). In the rest of this section we formalise these
assumptions.

Let T be the LTS of P and ξ any symbolic trace in T starting with s0 and ending

with an in-state. Let us denote by #in(ξ) the number of
_:=in() -transitions in ξ and by

#out(ξ) the number of
out(_) -transitions in ξ.
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Definition 9.1. We say that P is transductive1 if there are no infinite symbolic traces in
T with only finitely many in-states, and there exists M ∈ N such that for every ξ as
above we have #out(ξ) < M · #in(ξ).

As a consequence, if P is transductive then for every input ~a, τP (~a) is finite and
|θP (~a)| = |γP (~a)| < M · |~a|. Also note that all transductive programs have finite

lookahead, which is bounded by the largest k appearing in
_:=peek(k) -transitions.

Example 9.2. Consider the following program:

n := peek(0);
i := 1;
while (i <= n) {
out(i);
i := i+1;

}

This program is not transductive because the number of output symbols produced in
its single big-step transition is dependent on the value of the first input symbol, which
cannot be a priori bounded.

Besides transductiveness, we impose an additional requirement that is specific to
the type of transducers that we use to represent program behaviour in Σ∗, but that
could potentially be relaxed if we would use more expressive models (such as, e.g.,
transducers with registers [AC11, BGMV12]). This additional requirement asks that
transductive programs produce outputs from a bounded number of inputs in the past.
More formally:

Definition 9.2. We say that P is k-lookback if P is transductive and for every ξ as above,

each
out(e) -transition in ξ depends only on previous k inputs, i.e., if s

out(e) s′ then
Vars(JeKs.σ) ⊆ {ins.ı−k, . . . , ins.ı}.

Fig. 9.4 illustrates the relationship between the program classes of transductive and
lookback programs. In §11.1 and §11.2 we focus on a subclass of k-lookback programs
whose behaviour can be represented by SLTs (SLT-representable programs in Fig. 9.4),
which, as we show, can be learned by Σ∗’s learning algorithm.

Example 9.3. Consider the following program which computes prefix sums of the
sequence of numbers in the input stream:

n := 1;
while (true) {
s := in();
i := 1;
while (i < n) {
x := peek(-1*i - 1);
s := s + x;

1We use the term “transductive” to indicate that such a program implements a transduction, i.e., a
partial function Γ∗1 ⇀ Γ∗2 , where Γ1 and Γ2 are alphabets. Note, however, that there are transductions that
cannot be implemented by any transductive program as defined by Def. 9.1.
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Figure 9.4: Relationship between program classes: transductive (Def. 9.1), lookback
(Def. 9.2) and SLT-representable programs (Def. 11.2 in §11.1).

i := i + 1;
}
out(s);
n := n + 1;

}

This program is transductive, however, since the output computed in each big-step
transition involves all previous inputs, the program is not k-lookback for any k.

9.2.1 Input relativisation

In the development of over-approximations (§11.1) and the learning algorithm (§11.2),
we will need to rephrase symbolic expressions pertaining to program states so that
they use the offset from the current position in the input stream rather than from the
beginning. We next show how to relativise these expressions so that the offset becomes
relative to the current in-index.

Let Vλ , {. . . , λ−1, λ0, λ1, . . .} be an infinite set of λ-variables, indexed by a relative
offset. We use λ-variables so that λ0 stands for the current symbol in the input stream,
λ−i for the symbol i positions back and λi for the symbol i positions ahead. Let ~in ı7−→ ~λ
denote a variable substitution that maps each in-variable in to λ-variable λ−ı. We
define relativisation of a state s = (n, σ, ρ, ı, ) by Λ(s) , (n, σ[~in ı7−→ ~λ], ρ[~in ı7−→ ~λ], ).
Intuitively, Λ(s) relativises symbolic expressions in s with respect to the current in-
index. For general transductive programs, expressions in σ- and ρ-components of Λ(s)
may use unboundedly many λ-variables as the expressions can refer to inputs from
arbitrary far in the past. However, k-lookback programs use only up to k λ-variables
with negative index, namely, λ−k, . . . , λ−1.

118



CHAPTER 10

SYMBOLIC TRANSDUCERS WITH
LOOKBACK

In the previous chapter we formalised the syntax and semantics of programs that
transform an input stream of symbols into an output stream of symbols, and introduced
the notion of transductive and lookback programs. In this chapter we turn to a formal
description of symbolic finite-lookback transducers (SLTs), which serve as input-output
specifications for a subclass of lookback programs (namely, SLT-representable programs,
formally defined in §11.1). We carefully limited the expressivity of SLTs so as to be able
to represent interesting classes of stream-manipulating programs but still be able to
learn and check the corresponding SLTs for equivalence. Σ∗ uses SLTs to represent both
the synthesised over-approximations (§11.1) and symbolic conjectures (§11.2) in the
learning algorithm.

We parameterise SLTs by a parameter k, which limits the set of input variables that
can be used within expressions in SLT transitions. The k factor can be seen as a size of
the sliding window, from which an SLT can read inputs. In our formalisation (§10.1),
this window begins at the current input tape head position and covers k last symbols,
because we observed that such setting is most suitable for the practical examples we
considered (see §12). In §10.2, we present constructive algorithms for composition
(§10.2.1) and equivalence checking (§10.2.1) of such SLTs. There is no fundamental
reason why the sliding window could not also cover symbols ahead of the current
head position, which we briefly address in §10.2.3. We conclude by highlighting
characteristics of SLTs learned by Σ∗ (§10.2.4), which among other things allows efficient
equivalence checking of such SLTs.

10.1 Definitions

Symbolic lookback transducers (SLTs) can be seen as a generalisation of the classical
finite-state transducers. Finite-state transducers extend the basic model of finite-state
automata by augmenting state transitions with production of output (a single or a
sequence of output symbols) after receiving an input symbol (see [LY96] for a detailed
overview of various models of finite-state transducers). Symbolic finite-state transducers,
introduced by Bjørner et al. [BGMV12], extend finite-state transducers by symbolic
transitions, which allow the input-output step of the transducer to be defined using
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arbitrary predicates as triggers for accepting an input and symbolic terms for producing
an output. Our notion of SLTs extends symbolic finite-state transducers of Bjørner et al.
with a sliding window over the input, which allows an SLT to generate outputs based
on a bounded number of inputs from the past.

We now formally define symbolic finite-state transducers with k-lookback — k-SLTs.
The formal development is specialized to the case where the alphabet of input and
output symbols is Z, and the label theory for predicates and output terms is built
using the same grammar rules as program predicates and terms in §9. This technical
simplification aligns the assumptions in the exposition of SLTs with the assumptions
about programs given in §9.1

Instead of reading a single symbol from the input tape at a time, the tape head
of a k-SLT is effectively a window of size k + 1, reading the current and the last k
symbols. Equivalently, such a transducer can be seen as a transducer with k registers
updated in a FIFO manner on each transition—the newly read symbol is inserted, while
the oldest is removed from the queue. Rather than using registers, we use the set of
λ-variables Vk

λ := {λ−k, . . . , λ−1, λ0} so that λ0 is the current symbol and λ−i is the
symbol i positions back.

Definition 10.1. A symbolic finite transducer with lookback k (k-SLT) is a tuple A =
(Q, q0, F, ∆) where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states and ∆ ⊆ Q× BExp[Vk

λ]×Q× Exp[Vk
λ]
∗ is a finite transition relation.

Each (q, ϕ, q′, t) ∈ ∆ from the the Def. 10.1 defines a symbolic transition between
states q and q′, with the predicate ϕ being an input guard and the sequence of terms t a

symbolic output. We use a more intuitive notation q
ϕ/t−−→ q′ to denote such symbolic

transitions.

Definition 10.2. We say that SLT A is deterministic if for every two transitions q
ϕ/t−−→ r

and q
ϕ′/t′−−→ r′ if ϕ ∧ ϕ′ is satisfiable then r = r′ and (ϕ ∧ ϕ′)⇒ t = t′ is valid.

We next define how SLTs produce output. Before defining a run of an SLT, we
introduce some convenient notation. For brevity, we refer to the sequence λ−k . . . λ0

as ~λ. To process the input, k-SLT prepends it with k dummy symbols ⊥ /∈ Z. Any
operation with ⊥ yields ⊥ and every comparison with ⊥ (except ⊥ = ⊥) is false. For a
sequence~a, let us denote~a⊥ , ⊥k ·~a.

Definition 10.3. A run of a k-SLT A = (Q, q0, F, ∆) on ~a ∈ Zn is a finite sequence of
states q0 . . . qn such that there exists a sequence of transitions

q0
ϕ1/t1−−−→ q1

ϕ2/t2−−−→ q2 · · · qn−1
ϕn/tn−−−→ qn,

where ϕ1, . . . , ϕn ∈ BExp[Vk
λ] and t1, . . . , tn ∈ Exp[Vk

λ]
∗ such that for all 1 ≤ i ≤ n,

~a⊥|[i,i+k] satisfies ϕi. We say that A on the input~a produces the output~o ∈ Z∗ and write

~a�A ~o if qn ∈ F and for all 1 ≤ i ≤ n, oi = ti

[
~λ 7→~a⊥|[i,i+k]

]
, where~o|i = oi.

1While the choice of the label theory is not important as long as the satisfiability of predicates and the
quantifier-free theory of terms is decidable, generalisation to background structures (sorts) other than Z,
while straightforward, may render the equivalence checking undecidable.
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If A is deterministic, the run is uniquely determined by the input sequence. For a
deterministicA and~a ∈ Z∗, let us denote by πA(~a), θA(~a) and γA(~a) the corresponding
sequences ϕ1 · · · ϕn, t1 · · · tn, and o1 · · · on, respectively.

We define the transduction of (a possibly non-deterministic)A as a function TA : Z∗ →
2Z∗ defined by TA(~a) , {~o |~a�A ~o}. The domain of A is dom(A) , {~a ∈ Z∗ | TA 6=
∅}.

Definition 10.4. We say that A is single-valued if for all~a, |TA(~a)| ≤ 1.

Note that single-valued SLTs capture transductions that behave as partial functions
Z∗ ⇀ Z∗. Also note that deterministic SLTs are necessary single-valued (however, the
converse is generally not true [BGMV12]).

We conclude this section by noting that in the terminology of finite-state transducers
[LY96], an SLT can be seen as a variant of a symbolic sequential ε-input-free (i.e., real-
time) transducer which in general can be non-deterministic, and the number of different
outputs it may produce on an arbitrary input need not be bounded.

10.2 Algorithms for SLTs

In this section we describe algorithms for composition and equivalence checking of
SLTs.

10.2.1 Composition of SLTs

Given two transductions T1, T2 : Z∗ → 2Z∗ we define the composition T1 ◦ T2 as fol-
lows:2

(T1 ◦ T2)(~a) ,
⋃

~o∈T1(~a)

T2(~o)

SLTs are in general not closed under composition, as we now show:

Proposition 10.5. There exist deterministic SLTs A and B such that TA ◦ TB is not a
transduction of an SLT.

Proof. 3 We take A to be an SLT which outputs all input symbols satisfying some

predicate ϕ, i.e., we let A , ({p}, p, {p}, ∆A), where ∆A =

{
p

ϕ/λ0−−−→ p, p
¬ϕ/ε−−−→ p

}
.

Note that A is a deterministic 0-SLT.
We take B to be an SLT which swaps input symbols in pairs, i.e., we let B ,

({q0, q1}, q0, {q0, q1}, ∆B), where ∆B =

{
q0

true/ε−−−→ q1, q1
true/λ0·λ−1−−−−−−→ q0

}
. Note that B is

a deterministic 1-SLT.
Then in (TA ◦ TB)(~x) we obtain elements of ~x that match ϕ, swapped in pairs.

However, the distance between two consecutive elements that match ϕ is unbounded,
thus there is no possible lookback bound for a transducer that would realise TA ◦ TB .

2Contrary to the standard function composition, here we first apply T1 and then T2.
3This counterexample was suggested by Margus Veanes and Loris D’Antoni in a discussion following

POPL 2013.
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Figure 10.1: An example program (GetTags from [BGMV12]) and the associated 1-SLT.
The program extracts from an input stream all sequences of characters of the form
’<’ · c · ’>’, where c 6= ’<’.

Intuitively, if an SLT can output unboundedly long sequences of empty words (i.e.,
if there exist a sequence of transitions forming a cycle with satisfiable predicates and
ε outputs) then such SLT cannot be composed with another SLT since ε-output-cycles
can introduce arbitrary “gaps” in the output passed over for consumption to the SLT
being composed with. However, in practice the composition of SLTs can be effectively
computed in some common cases by the following recipe:

1. If SLTs A and B are both deterministic and A does not contain ε-output-cycles
then their composition can be incrementally computed by a depth-first search
similarly as the composition of symbolic finite-state transducers (SFTs) [VML11].
Specifically, given deterministic k-SLT A with no ε-output transitions and l-SLT B,
their composition will be a (k + l)-SLT A ◦ B such that TA◦B(~a) = TA ◦ TB.

2. If both SLTs can be translated to (possibly non-deterministic) SFTs then we can
directly employ the composition algorithm from [BGMV12]. For instance, any
0-SLT is obviously an SFT, however, in some cases a k-SLT (with k > 0) can also
be translated to an SFT (e.g., 1-SLT shown in Fig. 10.1 is equivalent to a 4-state
non-deterministic SFT from Example 3 in [BGMV12]).

3. As the final option, we translate SLTs to symbolic transducers with registers
[BGMV12], which can be trivially composed.

10.2.2 Equivalence checking

Equivalence checking of arbitrary non-deterministic SLTs is undecidable because it is
already undecidable to check equivalence of concrete non-deterministic ε-free finite-
state transducers [Iba77]. The principal cause for the undecidability in this general case
is the possibility of unboundedly many different outputs in runs of a transducer on a
given input. To combat the undecidability of equivalence checking we have to restrict
the allowed class of transducers. For instance, Demers et al. [DKR82] and Bjørner et
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al. [BGMV12] have shown how to decide the equivalence of transducers (symbolic
transducers, resp.) when they are single-valued.

While the technique of Bjørner et al. [BGMV12] could be adapted to SLTs to decide
the single-valued case, that would not suffice for Σ∗ as over-approximations of programs
(§11.1) need not to be bounded-valued. Fortunately, Σ∗’s learning conjectures are always
deterministic, so in fact we only need to check equivalence between a deterministic and
a (possibly non-single-valued) non-deterministic SLT.

The key insight to our algorithm uses the fact that to check whether a deterministic
and non-deterministic SLT are equivalent, it suffices to check whether their domains are
equal and their union (which is a non-deterministic SLT) is single-valued.

Lemma 10.6. A deterministic SLT A and non-deterministic SLT B are equivalent iff
dom(A) = dom(B) and A∪ B4 is single-valued.

Checking domain equivalence of SLTs can be done similarly as for symbolic trans-
ducers ([BGMV12]), by checking equivalence of the underlying symbolic automata
defined by predicate labels. We do not discuss the details of this construction as SLTs
learned by Σ∗ are total (see §10.2.4) in which case the domain check becomes trivial.

We next present a constructive algorithm for deciding single-valuedness of SLTs,
which is a symbolic adaptation of the algorithm of Demers et al. [DKR82] for deciding
single-valuedness of finite-state transducers.

Given a k-SLT A = (Q, q0, F, ∆), we define a linear context-free grammar5 GA =(
Q×Q, (BExp[Vk

λ]× Exp[Vk
λ]
∗) ∪ {•}, P, [q0, q0]

)
, where • 6∈ BExp[Vk

λ]× Exp[Vk
λ]
∗ and

the set of production rules P is given by

[q1, q′1] → (ϕ/t)[q2, q′2](ϕ′/t′) for all q1
ϕ/t−−→ q2, q′1

ϕ′/t′−−→ q′2 ∈ ∆
such that ϕ ∧ ϕ′ is satisfiable, t 6= ⊥ and t′ 6= ⊥;

[q, q′] → • for all q, q′ ∈ F.

By ⊥, our learning algorithm denotes outputs on transitions that are either infeasible
because of the constraints on the path condition, or subsumed by other predicates.

Theorem 10.7. Assuming decidability of the satisfiability of BExp[Vk
λ] and the quantifier-

free theory of Exp[Vk
λ] with equality, it is decidable whether a non-deterministic SLT is

single-valued.
4The unionA∪B ofA = (QA, qA

0 , FA, ∆A) and B = (QB, qB
0 , FB, ∆B) is defined by a product construc-

tion, as the least fixed point (which can be effectively computed by a depth-first search procedure) of
pairs of states Q ⊆ QA ×QB and transition relation under the following rules:

• (qA
0 , qB

0 ) ∈ Q is the initial state;

• if (qA, qB) ∈ Q, qA
ϕA/tA−−−→ q′A, qB

ϕB/tB−−−→ q′B, and ϕA ∨ ϕB is satisfiable then:

- (q′A, q′B) ∈ Q

- (qA, qB)
ϕA/tA−−−→ (q′A, q′B) and (qA, qB)

ϕB/tB−−−→ (q′A, q′B)

5A grammar (N, T, P, s) with a finite set of non-terminals (resp. terminals) N (resp. T), a finite set
of productions P, and a start symbol s ∈ N is linear context-free if its set of productions is of the form
N ::= TNT | T.
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Proof. From Def. 10.4 a non-deterministic SLT A = (Q, q0, F, ∆) is single-valued iff
for each ~a ∈ Z∗, ~o,~o′ ∈ TA(~a) implies ~o = ~o′. However, ~o,~o′ ∈ TA(~a) iff there

are sequences of transitions q0
ϕ1/t1−−−→ q1

ϕ2/t2−−−→ q2 · · · qn−1
ϕn/tn−−−→ qn and q0

ϕ′1/t′1−−−→

q′1
ϕ′2/t′2−−−→ q′2 · · · q′n−1

ϕ′n/t′n−−−→ q′n generating~o (resp.~o′) on~a such that (ϕ1/t1) . . . (ϕn/tn) •
(ϕ′n/t′n) . . . (ϕ1/t1)

′ is in the language of GA.
Thus, A is single-valued iff (ϕ1/t1) . . . (ϕn/tn) • (ϕ′n/t′n) . . . (ϕ1/t1)

′ ∈ L(GA) im-
plies equality of the outputs, which is the case iff the grammar GA generates a set of
palindromes. Checking whether the outputs match under the guards reduces to check-
ing the validity of formula (

∧
i ϕi) ⇒ t1 = t2, which can be done with O(|Q|2) calls

to the SMT solver implementing decision procedures for the satisfiability of BExp[Vk
λ]

and the quantifier-free theory of Exp[Vk
λ]. Checking whether a linear grammar gener-

ates a language of palindromes can be done in linear time by the result of Hopcroft
[Hop69].6

If A is not single valued then we can construct a witness for disequality between the
deterministic and the non-deterministic SLT by finding the shortest path from the start
symbol to the first reachable rule that does not generate a palindrome. This witness for
disequality is called a separating sequence.

10.2.3 Extension with lookahead

SLTs can be straightforwardly extended to incorporate lookahead. In our model of
SLTs, the sliding window begins at the current input tape head position and covers k
last symbols. Such window can also be made to cover symbols ahead of the current
head position by using additional λ-variables λ1, . . . , λl such that λi stands for the
symbol i positions ahead. A k-SLT with a lookahead l can be reduced to a (k + l)-SLT, so
equivalence checking of SLTs with lookahead can be reduced to equivalence checking
of SLTs.

10.2.4 SLTs learned by Σ∗

The definition of an SLT (Def. 10.1) uses a distinguished set of final states, as is customary
in the definitions of other kinds of transducers. However, SLTs that are synthesised
by Σ∗, either as over-approximations (§11.1) or symbolic conjectures (§11.2), have an
additional property that all their states are final. This property stems from the specific
way how the Angluin’s model of learning is applied in Σ∗, where it would be impossible
to learn SLTs with non-final states, as such transducers would allow inherent ambiguity
in where the output is produced.7

SLTs synthesised during the Σ∗ abstraction-refinement loop have an additional prop-
erty that the disjunction of guards from every state of such SLTs is valid. Together with
all states being final, this guarantees totality of the SLTs synthesised by Σ∗. Furthermore,
SLTs conjectured by the Σ∗ learning algorithm have mutually disjoint guards, which

6Hopcroft’s original algorithm [Hop69] decides whether an arbitrary context-free grammar generates
a set of palindromes and may require exponential time. However, linear context-free grammars are of
special form for which the algorithm can be straightforwardly adjusted to run in linear time.

7Existing algorithms for learning concrete transducers (e.g., [SG09, Vil96]) also require all states to be
final.
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ensures that they will always be deterministic. All these properties together allow us to
reduce equivalence checking between conjectures and over-approximations to deciding
single-valuedness as shown in §10.2.2.
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CHAPTER 11

SYNTHESIS OF SLTS WITH Σ∗

This chapter formally describes Σ∗—the technique central to Part II—that synthesises
symbolic input-output specifications of program behaviour. Σ∗ uses dynamic sym-
bolic execution [GKS05, SMA05, CE05] to discover symbolic input-output steps of the
program, and counterexample-guided abstraction refinement [CGJ+00, BMMR01] to
over-approximate program behaviour, and combines the two techniques into a sound
and complete (relative to abstraction) symbolic learning algorithm. The algorithm repre-
sents specifications using symbolic lookahead transducers (SLTs), which we presented
in §10.

The core algorithmic idea behind Σ∗ is to extend Angluin’s L∗ learning algorithm
so to use SLTs as symbolic conjectures. However, answering equivalence queries
between SLTs and programs is in general impossible. We therefore introduce a class of
programs for which we can compute over-approximations in the form of (possibly non-
deterministic) SLTs. Then we can use the equivalence checking algorithm from §10.2.2
to decide the equivalence between symbolic conjectures and over-approximations.

The rest of this chapter is structured as follows. In §11.1 we present our approach
for synthesis of over-approximations in form of SLTs. Then in §11.2 we describe the
learning components of Σ∗ algorithm. We finish the chapter by a concluding discussion
in §11.3.

11.1 Synthesis of over-approximations

We now present how to synthesise sound program over-approximations for a class of
programs with finite lookback. Overapproximations are computed in two steps. In the
first step, we construct an over-approximation of the program that is based on predicate
abstraction [GS97, BPR01]. In the second step, we transform the obtained abstraction to
an equivalent non-deterministic SLT. We refine such an SLT by augmenting the set of
predicates in predicate abstraction.

11.1.1 Abstraction of transductive programs

The goal of the abstraction is to abstract away the internal computation of the program
but in doing so to keep all of its original input-output behaviour. Let us consider the LTS,
T = (State, C, ), of a transductive program P as defined in §9.1.2. The abstraction
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ove-approximates the valuation of program variables V with predicates, but maintains
the original valuation of program variables that participate in the computation of output
terms. We parameterise our abstraction by a set of predicates Φ over program variables,
interpreted over V ⇀ Z. Let us denote by Pred(Φ) the set of boolean combinations
over predicates from Φ. We define the abstraction of T as the LTS T ] = (State], C, ])
constructed as follows. The set of abstract states State] is given by

State] , N× Pred(Φ)× (VD ⇀ Exp[VI])×OutStr×N×N

where the valuations of program variables are mapped to predicates in Pred(Φ) satisfied
by the valuation, while the data variables VD ⊆ V that are strongly live at any one of the
out(_) commands, are kept intact along with other components of the state. Using the
approximate post operator on Pred(Φ) computed with predicate abstraction we obtain
the transition relation ] on abstract states. We denote the components of an abstract
state s ∈ State] by s.n, s.σ, s.ϕ, s.ρ, s.ı, and s., respectively. We rely on the soundness of
the predicate abstraction to obtain the following.

Proposition 11.1. For every input~a, if τP (~a) = s0 . . . sn is a trace in T , then there exists
a trace τ]

P (~a) = s′0 . . . s′n in T ] such that for every 0 ≤ i ≤ n, si.n = s′i.n, si.ρ = s′i.ρ
si.ı = s′i.ı, si. = s′i., si.σ|VD

= s′i.σ and si.σ satisfies s′i.ϕ. Consequently, the output γ]
P (~a)

corresponding to the trace τ]
P (~a) is equal to γP (~a).

11.1.2 Translation to SLTs

We now translate the abstract LTS T ] = (State], C, ]) into an equivalent (possibly
non-deterministic) SLT. As in §9.2.1, let us also denote by Λ(s) the input-relativisation of
an abstract state s = (n, ϕ, σ, ρ, ı, ) ∈ State], defined analogously by Λ(s) , (n, ϕ[~in ı7−→
~λ], σ[~in ı7−→ ~λ], ρ[~in ı7−→ ~λ], ). We define an equivalence relation ∼ on State] as fol-

lows. For s, s′ ∈ State], we let s ∼ s′ iff for Λ(s) = (n, ϕλ, σλ, ρλ, ) and Λ(s′) =
(n′, ϕ′λ, σ′λ, ρ′λ, ′) we have n = n′, ϕλ ⇔ ϕ′λ and σλ = σ′λ. (Note that ∼ does not im-
pose equality of out-indices since the intent is to identify pairs of states which produce
equivalent output suffixes but with possibly different output prefixes.)

Relation ∼ can have infinitely many distinct equivalence classes in general, however,
we focus on programs having finite-index1 ∼, as we can represent such programs with
SLTs and learn with Σ∗.

Definition 11.2. We say that P is SLT-representable if for any choice of Φ, the correspond-
ing relation ∼ is of finite index.

SLT-representable programs necessarily have a bounded lookback.
Let us define paths]in(s, t) as the set of all  ]-sequences of states between s and

t such that there is a single input transition between states on the path from s to t.
For ξ ∈ paths]in(s, t), let us denote by π](ξ) the conjunction of assumed predicates on
transitions in ξ and let θ](ξ) be the produced symbolic output. We need the following
lemma for our translation to an SLT to be well-defined.

1An equivalence relation is said to be of finite index if the number of distinct equivalence classes is
finite.
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Lemma 11.3. If s ∼ s′ and t ∼ t′ then for every path ξ ∈ paths]in(s, t), there exists an
equivalent path ξ ′ ∈ paths]in(s

′, t′) such that π](ξ) = π](ξ ′) and θ](ξ) = θ](ξ ′).

We define AΦ to be the SLT (Q, q0, ∆) with Q , {[s]∼ | s is in-state} as the set of

states, q0 , [s0]∼ as the initial state and ∆ as the transition relation such that [s]
ϕ/t−−→

[s′] ∈ ∆ iff there exist ξ ∈ paths]in(s, s′), such that π](ξ) = ϕ and θ](ξ) = t. Intuitively,
AΦ represents all isomorphism classes of big-step transitions between the abstracted
in-states.

Lemma 11.4. If P is SLT-representable then AΦ is an SLT.

We can now show that AΦ captures exactly the behaviour of T ] thus AΦ soundly
over-approximates the behaviour of P .

Proposition 11.5. For all~a, γ]
P (~a) =~o iff~a⊥ �AΦ ~o.

Corollary 11.6. For all~a, if γP (~a) =~o then~a⊥ �AΦ ~o.

11.1.3 Refinement

Suppose that AΦ strictly over-approximates the behaviour of an SLT-representable P
on some input ~a, i.e., there exist ~o and ~o′, ~o 6= ~o′, such that γP (~a) = ~o and ~a �AΦ ~o′.
Then we need to refine the abstraction AΦ. We do so by adding enough predicates to Φ
to evidence infeasibility of the spurious run in AΦ that generates~o′.

Our approach to finding a new set of predicates for refiningAΦ is based on standard
counterexample feasibility analysis with weakest preconditions [Bal05]. The basic
idea is to build a predicate α from the spurious trace in AΦ generating~o′ so that α is
unsatisfiable if and only if the given trace is infeasible in P . Starting with false, α is
obtained by applying the weakest precondition of commands in P along the trace, until
the beginning of the trace. To maintain the syntactic form of assume-predicates collected
along the trace, we keep all substitutions in α explicitly. The set of all atomic predicates
in α is then used to augment Φ.2 Although more involved methods (e.g., based on Craig
interpolation) are possible, our experiments showed that this heuristic works well in
practice for our target classes of programs.

Completeness of the predicate selection method. Since our abstraction is based on
predicate abstraction and fully precise isomorphic representation of other components
of the state,AΦ in fact defines the strongest inductive invariant containing the reachable
set of states of P that is expressible as a Boolean combination of the given set of
predicates, while faithfully preserving the input-output relation in the relativised form.
If there exists a quantifier-free inductive invariant ψ which can be built using some
set of predicates Φ such that ψ uniquely identifies the reachable states of P , then the
construction of abstraction would converge. Assuming a complete decision procedure
for the underlying theory and a predicate selection method that would eventually build
such Φ, by the relative completeness of predicate abstraction [BPR02, JM06], we could
generate an invariant as strong as ψ.

2In some examples we employ additional heuristic that uses templates built from syntactic predicates
in the code.
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Although it is not clear how to construct such ψ directly from P , we can construct it
if the number of states n of an SLT AP that is behaviourally equivalent to P is known
a priori—by explicitly encoding a checking sequence [LY96] that distinguishes AP
from all other transducers up to n states. To abstract away the complexity of such
construction, we assume existence of a predicate selection method that eventually yields
a set Φ resulting in an abstraction AΦ equivalent to P . We will say that a predicate
selection method is complete if it is guaranteed to eventually generate a sufficient set of
predicates to construct AΦ equivalent to P . Our main result expresses completeness
of our learning algorithm relative to existence of such a complete predicate selection
method. However, we emphasise that the predicate selection mechanism does not
affect the soundness of Σ∗, nor the quality of inferred specifications, only the eventual
convergence.

11.2 The Σ∗ learning algorithm

In this section, we describe the Σ∗ learning algorithm and prove its main properties.
Our algorithm iteratively builds conjectures similarly as L∗. To make the presentation
reasonably self-contained, we first give a brief overview of L∗ (§11.2.1). We then
define the representation of symbolic conjectures (§11.2.2), followed by the detailed
presentation of the learning algorithm (§11.2.3) and its properties (§11.2.4).

11.2.1 Background: Overview of L∗

Here we give an informal overview of the classic L∗. See the paper of Angluin [Ang87]
for a more detailed description (or Shahbaz and Groz [SG09] for the Mealy-machine
version of L∗).

The goal of L∗ is to learn an unknown regular language D by generating a deter-
ministic finite automaton (DFA) that accepts D. L∗ starts by asking a teacher, who
knows D, membership queries over a known concrete alphabet to check whether certain
words are in D. The results of these queries are recorded in a so-called observation table.
Membership queries are iteratively asked until certain technical conditions are met,
upon which L∗ conjectures an automaton. L∗ asks the teacher an equivalence query
to check if the conjectured language is equivalent to D. The teacher either confirms
the equivalence or returns a counterexample, which is a word that distinguishes D
from the conjecture. L∗ uses the counterexample to devise new membership queries,
refining the conjecture. This procedure is repeated possibly forever until the conjecture
becomes equivalent to D. If D is indeed a regular language then L∗ is guaranteed to
find a (minimal) DFA for D after at most a polynomial number of membership and
equivalence queries.

An efficient approach to learning Mealy machines [SG09] can be achieved by modi-
fying the concept of the membership and equivalence queries to include the output and
the structure of the observation table to record output symbols instead of recording just
boolean answers. In Σ∗, we answer the membership queries by using a combination of
concrete and symbolic execution [GKS05, SMA05, CE05], and the equivalence queries
by equivalence-checking learnt conjectures and increasingly refined abstractions, using
the equivalence-checking algorithm for SLTs (§10.2.2).
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11.2.2 Symbolic conjectures

We proceed by giving notational conveniences used in the rest of the section and
defining the representation of symbolic conjectures used in Σ∗.

We first define a relativisation function for path predicates and symbolic outputs

by Λ(s1 . . . sn) , s1[~in
17−→ ~λ] . . . sn[~in

n7−→ ~λ], where ~in i7−→ ~λ is the variable substitution
defined in §9.2.1 and~s is either a path predicate or symbolic output. If~s is a symbolic
output~t, the same relativisation function is applied to each individual term in the subse-

quence, i.e., if t = t1 . . . tm then t[~in i7−→ ~λ] = t1[~in
i7−→ ~λ] . . . tm[~in

i7−→ ~λ]. We next define
witness as a function that takes a sequence of relativised predicates, derelativises them
by applying the inverse of the Λ substitution, computes a conjunction of derelativised
predicates

∧
1≤i≤|~p|

(
Λ−1(~p)

)
|i, passes the conjunction to an SMT solver, and returns

a concrete sequence of input symbols of length |~p| satisfying the conjunction, or ⊥
if the conjunction is infeasible. Finally, we point out that all equality (resp. inequal-
ity) checks = (resp. 6=) over predicates and terms in this section are syntactic equality
(resp. inequality) checks.3

Σ∗ constructs symbolic observation table similarly to L∗, but table entries are path
predicates and symbolic outputs (§9.1.3), rather than concrete words. The finished table
can be easily translated into an SLT, representing a conjecture. As in L∗, such conjecture
will always be deterministic.

Definition 11.7. A symbolic observation table is a quadruple (R, S, E, T) ⊆ (BExp[Vλ]
∗,

BExp[Vλ]
∗, BExp[Vλ]

∗, BExp[Vλ]
∗ × BExp[Vλ]

∗ ⇀ (Exp[Vλ] ∪ {⊥, ε})∗), where

- R ⊆ S is a set of relativised path predicates representing the identified states,

- S (resp. E) is a prefix- (resp. suffix-) closed set of relativised path predicates, and

- T is a map indexed by ~pp ∈ S,~ps ∈ E, containing the suffix of the relativised
symbolic output generated when processing ~ps immediately after ~pp, i.e., if~a =
witness(~pp · ~ps) and~t = Λ(θP (~a)) then T[~pp,~ps] =~ts, where~ts is a suffix of~t such
that |~ts| = |~ps|. Outputs generated by infeasible transitions are denoted by ⊥.

Intuitively, rows of the symbolic observation table are indexed by the elements of S
and columns by the elements of E. The set S contains exactly the path predicates from
R—the set of potential states of the conjecture—and additionally all the sequences that
extend sequences from R by exactly one big-step transition. The role of S is to exercise
all the transitions in the conjectured SLT. Finally, E is the set of suffixes that distinguish
different states in R from each other.

For ~p ∈ S, we denote by ~p-row the set {T[~p,~r] | ~r ∈ E}, i.e., the set of all outputs
from the observation table associated with path predicates obtained by splicing ~p with
all distinguishing suffixes from E.

The classic L∗ makes a conjecture when the table is closed, which means that every
sequence in S has a representative in R, i.e., ∀~p ∈ S . ∃~r ∈ R . ~p-row = ~r-row. We
define closedness in the same way as L∗. From a closed table, we can easily construct a

3At the cost of more complex exposition, we could use semantic equality and check that output terms
are equal under the guard restrictions. Such an approach might allow us to learn more compact SLTs.
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complete (for all states and input symbols, all transitions are defined) SLT as follows
(e.g., see [Ang87, SG09]):4

Definition 11.8. Let (R, S, E, T) be a closed observation table. Then the conjecture SLT
AC = (Q, q0, F, ∆) is constructed by letting:

- Q = R;

- q0 = {ε};

- F = R;

- ∆ = {(~p,~r,~p ·~r, T[~p,~r]) | ~p ∈ R,~r ∈ E, |~r| = 1}.

11.2.3 Symbolic learning

We begin by describing the FILLROWS algorithm that computes the missing entries
of the observation table, continue with the EXTENDTABLE algorithm that explores the
successor states of all states discovered at certain step, and end with the Σ∗ learning
algorithm.

Algorithm 7 computes the missing entries in the observation table. If the entry is
missing for some prefix ~pp ∈ S and suffix ~ps ∈ E, we first try to compute a concrete
witness~a by splicing together the prefix and the suffix (Line 2). While the sets S (and
R) contain path predicates that are collected along prefixes of some feasible paths in
P starting from the initial state, the set E contains suffixes of feasible paths. Naturally,
when we arbitrarily splice prefixes and suffixes of different paths, the resulting formula
might be infeasible. If feasible, we execute~a on P using dynamic symbolic execution
(Line 4) and collect the predicates (~r) and output terms (~t) from big-step transitions.
Note that the collected predicates~r might differ from ~pp · ~ps, but at least the prefix
(corresponding to ~pp) will always match. The suffix will not match if at any position
a path predicate exercised by~r following ~pp is more specific than the corresponding
predicate in ~ps (observation table is always extended so that added predicates cover
guards of all big-step transition from a state and are mutually disjoint). The outputs
corresponding to subsumed predicates and infeasible path conditions are marked ⊥.
Lines 6–10 replace the output terms at positions where the ~pp · ~ps and~r sequences differ
syntactically. Finally, lines 20–21 close the table.

Algorithm 8 takes a state representative~r, i.e., a path predicate that holds on the
shortest path to the identified state, and finds all the outgoing big-step transitions from
that state, adding the predicates from those transitions to E and the entire sequence
(~r extended by one transition) to S. The only interesting part of the algorithm is the
discovery of new transitions and the corresponding predicates. In the first iteration,
Line 6 extends the representative sequence~r with predicate true, effectively allowing the
solver to produce an arbitrary value for the last element of the concrete input sequence.
Executing the obtained concrete sequence and collecting predicates along the path, we

4In L∗, one also defines the consistency property, which would in our setting say that if two sequences
~p1,~p2 from R are equivalent, then both states reached by γP (witness(~p1)) and γP (witness(~p2)) must
produce the same output in the next big-step transition given the same input symbol. We maintain
the consistency of our symbolic observation table by always assuring that each state has only one
representative in the R set.
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Algorithm 7: The FILLROWS Algorithm.
input and output :Observation table OT

1 forall ~pp ∈ S,~ps ∈ E such that T[~pp,~ps] is undefined do
2 ~a := witness(~pp · ~ps)
3 if~a 6= ⊥ then
4 (~r,~t) := (Λ(πP (~a)), Λ(θP (~a)))

// assert(|~r| = |~t|)
5 ~ts := ε

6 forall 1 ≤ i ≤ |~t| do
7 if i > |~pp| then
8 if (~pp · ~ps)|i =~r|i then ~ts :=~ts ·~t|i
9

10 else ~ts :=~ts · ⊥
11

12 else
// assert(~pp|i =~r|i)

13 end
14 end
15 T[~pp,~ps] :=~ts
16 else
17 T[~pp,~ps] := ⊥
18 end
19 end
// Close the table

20 forall ~p ∈ S s.t. ¬∃~r ∈ R . ~p-row =~r-row do
21 R := R ∪~p // New state
22 end
23 Return OT
24

identify the first big-step transition guard predicate (rs). In every following iteration, we
negate a disjunction of the predicates discovered so far, until the disjunction becomes
valid (test at Line 4). All infeasible traces lead to a ghost state that has one self-loop
transition labelled true/⊥. The algorithm creates such a state automatically, if needed,
by filling the corresponding row with⊥, as even the prefix to the ghost state is infeasible.

Finally, Algorithm 9 infers a symbolic transducer. Lines 1–10 discover all the big-step
transitions from the initial state and the corresponding predicates. All the discovered
predicates are added to the set E. In the next three lines, we extend and close the table,
producing the first AC conjecture and the first abstraction AΦ of P . The loop beginning
on Line 16 checks the equivalence between the conjecture and abstraction. If they are
equivalent, the algorithm terminates returning the exact transducer implemented by
P . Otherwise, the counterexample is checked against P . If it is spurious, we refine the
abstraction, otherwise, we refine the conjecture. We use Shahbaz and Groz’s [SG09]
technique for processing the counterexamples adapted for our symbolic setting. First,
we collect the predicates from P along the path determined by the counterexample and
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Algorithm 8: The EXTENDTABLE Algorithm.
input and output :Observation table OT

1 forall~r ∈ R do // Extend all sequences from R
2 if ¬∃~ps ∈ E . |~ps| = 1∧~r · ~ps ∈ S then
3 s := false
4 while s 6⇔ true do
5 rs := ε
6 ~a := witness(~r · ¬s)
7 if a = ⊥ then
8 rs := ¬s
9 s := true

10 else
11 ~p := Λ(πP (~a))

// assert(|~p| = |~r|+ 1)
12 rs := ~p||~r|+1
13 s := s ∨ rs
14 end
15 E := E ∪ {rs}
16 S := S ∪ {~r · rs}
17 OT :=FILLROWS(OT)
18 end
19 end
20 end
21 Return OT
22

discard the longest prefix that is already in S. We denote the remaining suffix by ~ps. We
add all suffixes of ~ps to E (Line 26), to assure that E remains suffix closed.

11.2.4 Correctness and relative completeness

First, we state the main properties of Σ∗, and then proceed with the proof of relative
completeness and a discussion of computational complexity.

Lemma 11.9. Let T = (R, S, E, T) be a symbolic observation table. Then Σ∗ preserves
the following invariants:

1. R and S (resp. E) are always prefix- (resp. suffix-) closed.

2. For every ~p ∈ S there is a unique~r ∈ R such that ~p-row =~r-row.

3. For every~r ∈ R, there are r1
s , . . . , rn

s such that
∨n

i=1 ri
s ⇔ true and for all i, it holds

that~r · ri
s ∈ S.

4. The conjecture AC is closed at the end of each step.

Proof. (1) and (2) follow from Lines 15–16 in EXTENDTABLE, and from the initial state
and Lines 8 and 26 of Σ∗. Closedness follows from Lines 20–21 of FILLROWS.
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Correctness. R represents the part of the symbolic execution tree of P on which the
conjecture faithfully represents the behaviour of P , which is stated with the following
proposition.

Proposition 11.10 (Bounded correctness). After each step, for all~r ∈ R and~a such that
~a = witness(~r), γP (~a) = γAC(~a) holds.

One can rephrase bounded correctness as a guarantee given by Σ∗ in case Σ∗ is
interrupted before reaching a convergence. In other words, we can consider Σ∗ as
performing bounded model checking of the program with a state-space exploration
strategy guided by the learnt specification.

Completeness. The following lemma ensures that a progress is made after each con-
jecture refinement.

Lemma 11.11. If at some step of Σ∗, (~a,~o) is a separating sequence such that γP (~a) =~o,
then at the end of the step, for all~a′ such that~a′ = witness(πP (~a)), γAC(~a

′) = γP (~a′)
holds.

We state the completeness of Σ∗ relative to the completeness of the predicate selection
method.

Theorem 11.12 (Relative completeness). If P is SLT-representable and the predicate
selection method for refinement is complete, then Σ∗ terminates with AC being be-
haviourally equivalent to P .

Proof. First note that when AΦ is single-valued, then by the soundness of abstraction,
AΦ is in fact behaviourally equivalent to P . As the predicate selection method is
assumed to be complete, we will eventually obtain a single-valued AΦ.

The equivalence check of AΦ and AC always returns the shortest separating se-
quence (if one exists). There can be only finitely many shortest separating sequences of
a given length, and at each step such a sequence is used either to refine the conjecture
or to refine the abstraction. Therefore, the number of conjecture refinements must also
be finite.

11.2.5 Computational complexity

Next, we analyse the complexity of Σ∗. Let n be the number of states of the inferred SLT,
k the maximal number of outgoing big-step transitions from any state, m the maximal
length of any counterexample, and c the number of counterexamples. There can be at
most n− 1 counterexamples, as each counterexample distinguishes at least one state.
Since we initialise E with k predicates, |E| can grow to at most k + m(n − 1). The
size of S is at most n · k. Thus, the table can contain at most n · k · (k + m · n− m) =
O(n · k2 + m · n2 · k) entries. The k factor is likely to be small in practice, and our
equivalence checking algorithm finds the minimal counterexample. The SMT solver
is called once per each state (i.e., representative in R) and for each outgoing transition.
For each equivalence check, we might need to call the solver n2 times. Thus, the total
worst-case number of calls to the solver is O(n · k + n2), not including the number of
calls required for abstraction refinement, which depends on the abstraction technique
used.
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void foo(int a)
{

int i, c;
i = 0;
c = 0;
while (i < 1000) {

c = c + i;
i = i + 1;

}
assume(a <= 0);
error();

}

while (true)
{

i := 0;
c := 0;
while (i < 1000)
{

c := c + i;
i := i + 1;
x := in();
out(x);

}
}

Figure 11.1: Left: the original example from Figure 1 in [GHK+06], on which predicate
abstraction does not work well. Right: the example adapted to a transductive program
by adding reading an input and writing some output in the loop, and enclosing it with
an outer while(true)-loop.

11.3 Discussion

We conclude the chapter by briefly discussing use of predicate abstraction, SLT limita-
tions and inference of inexact specifications.

11.3.1 Predicate abstraction

To obtain an exact SLT specification of a program, Σ∗ relies on convergence of the
abstraction. One could rightfully ask why we need the whole learning machinery of Σ∗

as we presume the abstraction eventually becoming behaviourally equivalent (although,
in a possibly non-deterministic form) to the input-output specification. Our program is
deterministic, so as long as the abstraction is not single-valued it must contain infeasible
behaviour. Therefore, we could consider a procedure that just iteratively refines the
abstraction until the abstraction becomes single-valued.

Setting aside how to efficiently refine abstractions alone, an abstraction-only ap-
proach suffers from a fundamental limitation: SLTs generated by the abstraction can be
unboundedly larger than the ones learnt by Σ∗. For instance, consider the program from
Figure 11.1, which is considered as an example on which predicate abstraction does
not work well [GHK+06]. Then Σ∗ infers a single-state SLT, while by using predicate
abstraction alone we would obtain an SLT with 1000 states.

11.3.2 SLT limitations

Along with the dependency on the abstraction, ability of Σ∗ to infer complete input-
output specifications of program behaviour is limited by the expressive power of
symbolic conjectures. We have judiciously restricted SLTs so as to be able to represent
interesting real-world examples while still being able to learn and equivalence-check
them efficiently. However, there are still other interesting classes of programs that are
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not SLT-representable. At the cost of additional complexity, we believe it would be
possible to extend Σ∗ to work with symbolic versions of more expressive transducers
such as subsequential [Vil96] and streaming transducers [AC11] and in this way enable
learning of larger classes of programs.

11.3.3 Inexact specifications

While the main concern of this work is learning of exact input-output specifications,
inexact specifications inferred by Σ∗ before reaching a convergence could also be useful,
e.g., for automated testing based on dynamic symbolic execution [GKS05, SMA05,
CE05]. The learning component of Σ∗ can be seen as systematically exploring all paths
in the execution tree of a program, but in addition conjecturing the behaviour of not
yet explored branches. Conjectures could be used to guide the exploration strategy,
similarly as in MACE [CBP+11], which showed how concrete transducer conjectures
enable more effective testing of protocol implementations.
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Algorithm 9: The Σ∗’s Learning Algorithm.
init : R = {ε}, S = {ε}, E = ∅, T = ∅, i = 0, s = false
result : k-SLT AC

1 repeat// Fill 1st row
2 if s⇔ false then
3 a := randomly generated array of type Z[1]
4 else
5 a := witness(¬s)
6 end
7 p := Λ (πP (a)|1) // 1st pred. from path predicate
8 E := E ∪ p
9 T[ε, p] := Λ (θP (a)|1)

10 s := s ∨ p
11 until s⇔ true
12 (R, S, E, T) :=EXTENDTABLE(FILLROWS(R, S, E, T))
13 Generate AC from (R, S, E, T) as per Def. 11.8
14 Compute initial AΦ of P
15 while true do
16 Let (~a,~o) be a separating sequence between AC and AΦ
17 if~a = ε then
18 Return AC
19 end
20 if γP (~a) 6=~o then // Spurious counterexample?
21 Refine AΦ of P on (~a,~o)
22 else
23 ~p := Λ(πP (~a))
24 Let ~pp be the longest prefix of ~p s.t. ~pp ∈ S
25 Let ~ps be s.t. ~p = ~pp · ~ps
26 E := E ∪ Suffix (~ps)
27 (R, S, E, T) :=EXTENDTABLE(FILLROWS(R, S, E, T))
28 Generate AC from (R, S, E, T) as per Def. 11.8
29 end
30 end

31
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CHAPTER 12

APPLICATIONS OF Σ∗

The main application of Σ∗ advocated in Part II of this dissertation is automated synthe-
sis of program parallelisation, directed by input-output specifications. We described
in §8.4 a simple idea for speculative parallel execution of such specifications which
relies on the fact that SLT specifications inferred by Σ∗ have a finite, a-priori-known
number of states. In this short chapter we demonstrate that Σ∗ could be useful not only
for program parallelisation but also for other practical applications. In all, we consider
three application domains: web-sanitiser verification (§12.2), stream filter optimisation
(§12.3) and parallelisation (§12.4). For each application, we briefly explain the problem
setting and report empirical results obtained using our prototype implementation of Σ∗.

12.1 Implementation

We built our implementation on top of KLEE [CDE08] (a symbolic virtual machine
for the LLVM intermediate language) with STP [GD07] (an SMT solver for the theory
of bit-vectors and arrays) and CPAchecker [BK11] (a framework for program analy-
sis and verification, implementing lazy predicate abstraction). We patched KLEE to
generate relativised symbolic traces and answer membership queries for the learning
algorithm (§11.2), and used STP in the equivalence checking algorithm (§10.2.2). We
used CPAchecker for counterexample-guided predicate abstraction refinement (§11.1).
All experiments were run on a machine with an Intel Core2 Quad 2.8 GHz CPU and
NVIDIA GeForce GTX 460 GPU (with seven 1.42 GHz multiprocessors, 48 cores each).

12.2 Web sanitisers verification

To make web applications more secure, sanitisation is used to remove possibly malicious
elements from user input. Although small in numbers of lines of code, sanitisers in real-
world applications are surprisingly difficult to implement correctly [BCF+08, HLM+11],
often because low-level implementation tricks are obscuring the intended input-output
behaviour. By automatically inferring input-output specifications of sanitisers, we can
automatically check their properties such as commutativity, reversibility, and idempo-
tence using tools such as Bek [HLM+11].

We evaluated Σ∗ on the sanitisers from Google AutoEscape (GA) web sanitisation
framework, the same benchmarks used by Hooimeijer et al. [HLM+11]. We dropped the
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Benchmark Learned Int. bits #States #Trans. Lookback #AC refs. #AΦ refs. |Φ|
EncodeHtml [HLM+11] X 8 1 2 0 0 1 10
GetTags [BGMV12] X 48 3 7 1 4 5 6
CleanseAttribute X 40 2 4 1 0 3 14
CleanseCss X 40 1 2 0 0 2 16
CssUrlEscape X 40 1 11 0 0 1 12
HtmlEscape X 8 L + 1 7 · L L L L + 3 L + 11
JavascriptEscape X 16 3 16 2 2 6 20
JavascriptNumber X 41 17 19 16 17 23 41
JsonEscape X 8 L + 1 11 · L L L L + 3 L + 12
PreEscape X 8 L + 1 5 · L L L L + 3 L + 6
UrlQueryEscape X 8 2 11 0 2 5 19
XMLEscape X 8 L + 1 7 · L L L− 1 L + 2 L + 11
PrefixLine − 8
SnippetEscape − 8

Table 12.1: Experimental results. The benchmarks that Σ∗ successfully learned are
denoted by X. The last benchmark could be learned if Σ∗ were extended to handle
subsequential transducers. Int. bits is the size of the internal control and data state in
bits, #States the number of states in the final SLT, #Trans. the number of transitions
in the final SLT, #AC refs. the number of refinements of the conjecture, #AΦ refs. the
number of refinements of the abstraction, and |Φ| the size of the set of predicates in
the final abstraction. In each of the four benchmarks whose rows contain symbolic
expressions dependent on L, the particular L denotes the bound on the size of the buffer
internally used by the benchmark. The value of L depends on the characteristics of the
input language of the benchmark and is a priori fixed in our four benchmarks (e.g., for
HtmlEscape, it is bounded by the maximal length of tag names, attribute names and
special symbols).

ValidateUrl sanitiser, as it is effectively just a wrapper for calling other sanitisers. In
addition to GA sanitisers, we added to our benchmark suite the sanitisers EncodeHtml
[HLM+11] and GetTags [BGMV12].

We found out that 86% of GA sanitisers (12 out of 14) along with EncodeHtml
and GetTags are SLT-representable and were successfully learned by Σ∗ (Table 12.1).
In comparison, the authors of [HLM+11] had to invest several hours of a human
expert’s time into manual synthesis of each transducer from the source code. Only
two sanitisers could not be inferred by Σ∗. PrefixLine is effectively a 0-SLT, but
it is implemented by calling the memchr function in guards, which could only be
represented by nondeterminism, as memchr’s return value could be arbitrarily far
ahead from the start of the input string. SnippetEscape generates output from a
predefined set of symbols only at the end of the input, but it could be learned if Σ∗ were
extended to subsequential transducers by generalizing Vilar’s algorithm [Vil96] to the
symbolic setting.

12.3 Stream filter optimisation

Stream programs often consist of many interacting filters that have to be optimised
against various goals (e.g., speed, latency, throughput, . . . ). Two vital filter optimisations
are reordering and fusion. For instance, reordering might be profitable when it would
place a filter that is selective (i.e., drops some data) before a costly filter that does some
processing. However, we must ensure that the two filters are commutative in order for
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Benchmark Linear Stateless
Saxpy kernel [UGT09] + +
Radix-2 complex FFT filter [KDR+02] + +
FIR filter [LTA03] + +
Zig-zag descrambling filter in MPEG-2 [DHRA06] + +
Clsfr in L3-Switch bridge [CLL+05] − +
FM demodulator in StreamIt [TKA02] − +
MPEG-2 internal parser in StreamIt [TKA02] − −
GSM encoder/decoder in MiBench [GRE+01] − −

Table 12.2: Properties of eight filters inferred by Σ∗. The first four filters are linear and can
be optimised with existing techniques. Σ∗ enables fusion and reordering optimisations
for all eight filters. By stateless, we mean single-state transducers.

reordering to be safe. Filter fusion is used when it would be profitable to trade pipeline
parallelism for lower communication cost.

We conducted a set of experiments to explore the ability of Σ∗ to enable stream filter
optimisations such as reordering and fusion. Table 12.2 shows eight filters inferred
by Σ∗ indicating their two key properties: whether they encode a linear or non-linear
output function, and whether they are stateless (i.e., have a single state) or stateful (i.e.,
have more then one state). First four filters can be optimised with existing techniques
for optimizing linear filters [LTA03, ATA05]. To our knowledge, no optimisation tech-
niques used in existing stream program compilers can optimise the remaining filters in
Table 12.2. On the other hand, Σ∗ enables fusion and reordering optimisations for all
eight filters.

12.4 Parallelisation

Finally, we report a brief experiment on how SLT specifications of filters may enable
automated parallelisation. We considered two approaches to improving utilisation of
hardware concurrency by translating filters (1) to a vectorised implementation (available
in the CPU) and (2) to execute on multiple cores (available in the CPU and GPU).
Stateless filters are inherently data-parallel and lend themselves naturally to multi-core
implementations by simple replication and to vectorised implementation using vector
instructions (similarly as proposed in the approach of Veanes et al. [VMLL11]). Stateful
filters normally cannot be parallelised this way as their next invocation depends on the
previous invocation. However, SLT filters have usually small, a priori known, number
of states, so we can run each replica of an SLT filter from each state in parallel and merge
suitable outputs, as we described in §8.4.

To provide some insight into possible practical speedups, we generated SIMD imple-
mentations using intrinsics for Intel SSE4 vector instructions and GPU implementations
using NVIDIA CUDA 4.2 of 11 single-state SLTs (3 from Table 12.1, 6 from Table 12.2,
and 2 hand-crafted) and one three-state SLT inferred by Σ∗. Original source code repre-
sentations of all SLTs are stateful and some of them contain non-affine loop nests. For
the stateless SLTs, we obtained speedups in the range of 1.72 to 3.89 for the SSE versions,
and 1.5 to 2.7 for the CUDA versions. For the 3-state SLT, the speedup of the CUDA
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version was 2.3. CUDA versions were run using 1024 threads (resp. 1024 threads in
3 blocks) for the single-state (resp. three-state) SLTs. We established the baseline by
running the sequential version of SLTs compiled with gcc with all optimisations (-O3)
and SSE flags turned on.

We expect that it would be possible to build other parallelisation backends for
SLTs, such as for instance based on field-programmable gate arrays (see e.g. [HKM+08,
HWBR09]) or based on using more elaborate speculative techniques (e.g. [PRV10]).
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CHAPTER 13

RELATED WORK

In this chapter, we position our work with respect to the most relevant existing literature.
After discussing symbolic transducers and their learning algorithms, we proceed with a
discussion of connections with predicate abstraction, and conclude by briefly contrasting
Σ∗ approach to stream compiler optimisation and automated parallelisation to other
related approaches.

Symbolic transducers. Symbolic finite-state transducers have become a popular topic
lately [HLM+11, BV11, BGMV12, AC11]. Van Noord and Gerdemann [vNG01] intro-
duced the first simple symbolic transducers. The expressivity of those transducers
is severely limited as they are not able to establish functional dependencies from in-
put to output. In a series of papers [HLM+11, BV11, BGMV12], a group of authors
proposed symbolic finite-state transducers (SFTs) with registers (SFTRs), where input
(resp. output) symbols range over predicates (resp. terms). Bjørner and Veanes [BV11]
show an effective composition construction and prove that equivalence is decidable for
single-valued SFTRs with simple updates, as long as the underlying theory is decidable.
Unfortunately, their proof is not constructive and does not reveal how to efficiently
compute a separating sequence. Also, k-SLTs are less expressive than SFTRs. We care-
fully limited the expressivity of SFTRs (to obtain k-SLTs) so as to be able to represent
interesting real-world examples and constructively equivalence check learned k-SLTs.

One feature of SFTRs which makes them difficult to learn is that the set of final states
of an SFTR can be a strict subset of all states. Transducers with some non-final states
are partial functions that accumulate the output and yield it only when the last reached
state is final. Furthermore, the existence of non-final states allows ambiguity of where
the output is created. Thus, it is not surprising that the existing algorithms for learning
concrete transducers [SG09, OGV93, Vil96] require all states to be final, as we do.

Alur et al. proposed streaming transducers [AC11], which have two types of registers—
one for symbols and the other for strings. At every step, a streaming transducer can
make decisions based on the current state, the tag (ranging over a finite set of values)
of the next input symbol, and the ordering between next input symbol and symbols
stored in data registers. Each value stored in string registers can be either copied or
concatenated with a symbol, but has to be used only once. Alur et al. showed an
intricate proof of decidability of equivalence of streaming transducers. Inference of both
SFT(R)s [BGMV12, BV11] and streaming transducers [AC11] has been left as an open
question.
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Learning of symbolic transducers. Previous work on learning some variants of sym-
bolic transducers [HSJC12, BJR08, AJU10] focused on limited variations that have simple
guards which a priori fix the shape of predicates, and can either update registers or
output a sequence of concrete values in every transition. Learning algorithms for these
transducers postulate existence of an equivalence-checking oracle and work over con-
crete alphabets, relying on the shape restrictions to translate the L∗-inferred concrete
transducer to a symbolic one. These algorithms are exponential in both the length of
counterexamples and the number of parameters the guard predicates can have, as well
as in the number of registers. As software artefacts feature predicates that are unknown
prior to the analysis, if such algorithms were to be applied in the software setting,
they would need to exhaustively enumerate predicates, whose set is unbounded. In
contrast, by allowing Σ∗ to inspect the internal symbolic state of the program, we can
handle arbitrarily complex guard and output expressions, as long as (1) the program’s
input-output relation can be described using finitely many such expressions, and (2)
there exists a solver capable of checking satisfiability of guards and (in)equality of
output expressions.

There is another important point of difference. Instead of just assuming existence of
a suitable equivalence-checking oracle, like the prior work [HSJC12, BJR08, AJU10], we
propose an efficient algorithm for checking the learned conjectures against a synthesized
abstraction. Most importantly, the alternation between learning and abstraction allows
us to detect convergence, assuming an abstraction that can infer the strongest invariant
of program’s transition relation.

Learning in verification. Techniques for learning various types of automata have
been applied in a wide variety of verification settings: inference of interface invariants
[ACMN05, SGP10, GRR12], learning-guided concolic execution [CBP+11], composi-
tional verification [CGP03], and regular model checking [HV05]. In those settings,
except for [GRR12], learning is performed using concrete alphabets in a black-box man-
ner, even though source code is usually available. Independently of us, Giannakopoulou
et al. [GRR12] have developed a technique for learning component interfaces that com-
bines L∗ with symbolic execution to discover method input guards. However, their
approach treats method invocations as a single input step with no output, and, unlike
Σ∗, assumes that each method has a finite number of paths. Under this later constraint,
equivalence checking can be done by merely executing a sufficiently large number of
membership queries. Alur and Černý’s approach to synthesis of interface specifications
with JIST [ACMN05] also uses predicate abstraction. However, predicate abstraction
in JIST is used to check whether the synthesised interfaces are safe for a given safety
property. In general, such interfaces are approximate and may incorporate infeasible
behaviour. In addition, the paper [ACMN05] does not demonstrate that the technique
can be fully automated. In contrast, Σ∗ is fully automated and infers exact models upon
termination.

Predicate abstraction and property checking. Σ∗ uses predicate abstraction [GS97,
BPR01] to generate a finite-state model of the unbounded internal state space of the
program. Predicate abstraction has been successfully applied in counterexample-
guided abstraction refinement schemes for checking safety properties. Tools like SLAM
[BMMR01], BLAST [HJMS02], IMPACT [McM06], and SATABS [CKSY05] have demon-
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strated that predicate abstraction scales well to real-world programs with intricate
control-flow patterns. Compared to classical predicate abstraction, our goal is different—
we infer the exact input-output specification of a program so that we can generate
optimised code.

Although the goal of Σ∗ is different, it resembles some ideas used in property check-
ing. Most closely related is the idea of collecting predicates on conditional statements
as in automated testing [GKS05, SMA05, CE05], which has been previously combined
with predicate abstraction in the SYNERGY algorithm [GHK+06] and its descendants
[BNRS08, GNRT10]. While SYNERGY uses a combination of must and may analyses
to check safety properties faster, Σ∗ uses must (learning) and may (abstraction) to infer
a more compact input-output specification. Similarly as safety properties could be
checked with may analysis only, input-output specifications could be learned with our
predicate abstraction (Section 11.1.2) only, by refining abstractions until the relation
becomes single-valued. However, such relations can be unboundedly larger than the
ones learned by Σ∗, as we showed in §11.3.1.

The completeness of predicate abstraction depends on the choice of predicates for
abstracting the state space. Completeness of predicate abstraction is an active research
area [JM06, BPR02] and a number of heuristics exist whose incompleteness does not
manifest itself in practice [AKD+08, FQ02]. Assuming a predicate selection oracle
that eventually yields enough predicates for constructing the strongest invariant of
the program’s transition relation, one can show relative completeness of predicate
abstraction [BPR02, JM06]. We found that for the examples used in our study, a simple
oracle which mines predicates from sequences of predicates and output terms obtained
from the dynamic symbolic execution of the program was sufficient.

Optimizations of filters. The closest work to our application of Σ∗ for stream compiler
optimisations is on optimisations of linear filters [LTA03] and (slightly more general) lin-
ear state space systems [ATA05] in StreamIt. In another line of work [LDWL06], fusion
of filters for Brook has been developed using an affine model. Soulé et al. [SHG+10]
developed a proof calculus that allows analysis of non-linear filters, but they can per-
form reordering optimisations only if filters are stateless. In contrast, Σ∗ allows fusion
and reordering of stateful filters with non-linear input-output relations. Approaches for
numerical static analysis of linear filters (e.g., [Fer04, Mon05]) do not relate directly to
ours as their goal is to obtain deep numerical properties of filters (such as numerical
bounds) for safety-critical applications.

Automated parallelisation. Thies et al. [TCA07] extract pipeline partitions from legacy
streaming applications written in C by relying on programmer-provided annotations
indicating pipeline boundaries. In contrast, our approach does not require any an-
notations. For synchronous dataflow streaming applications, parallelism has been
exploited either by replicating stateless filters [BFH+04, GTA06, KM08], or by using
affine partitioning of loop nests [LDWL06]. In contrast, Σ∗ enables parallelisation of
non-linear stateful filters with non-affine loop bounds. There is a massive amount of
work on general cross-loop iteration dependence scheduling (e.g., see [BVB+09]). Σ∗ is
aimed at complementing such advanced techniques by enabling naïve parallelisation of
behaviourally simple loop nests that are not necessary polyhedral, disjoint or with a
clear pipeline structure.
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CHAPTER 14

CONCLUSION

14.1 Summary

This dissertation has presented two formal verification-based methods for automated
synthesis of program parallelisation:

• The method in Part I follows the proof-directed synthesis pattern illustrated
in Fig. 14.1a: a programmer supplies a sequential program and (optionally) a
lightweight specification, which are given to a formal verification tool to gener-
ate a program proof; the method then transforms the sequential program into a
concurrent program and uses the program proof to inject the appropriate synchro-
nisation.

• The method in Part II follows the specification-directed synthesis pattern illus-
trated in Fig. 14.1b: formal verification techniques are used to extract a rich
specification of the sequential program; the specification, compactly summarising
the exact program behaviour, is then used to generate a concurrent version of the
program.

14.2 Future research directions

Exploiting formal verification methods as advocated in this dissertation is by no means
limited only to automated synthesis of program parallelisation. Programs often have to
be optimised with respect to other goals such as memory usage or energy consumption,
which are, like speed, not intrinsic to the functional behaviour of the program. Thus
it may make sense to consider using formal verification techniques to develop ways
for automated program optimisation. With new, more automated and scalable formal
verification techniques being actively developed, there lies a potential to discover
novel program optimisation paradigms, and methods for improving existing program
optimisations, with a guaranteed reliability.

We conclude this chapter by laying out three potential research directions in formal
verification-driven program optimisation.
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(a) Proof-directed parallelisation synthesis.
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(b) Specification-directed parallelisation synthesis.

Figure 14.1: Two patterns of formal verification-based parallelisation synthesis presented
in this dissertation. (Dashed arrows indicate black-box use of existing verification
technology.)

14.2.1 Proof-directed compiler optimisation

The idea of using an (automatically constructed) program proof to guide the program
optimisation may have many undiscovered applications. Particularly interesting is
the separation logic proof setting: if a sequence of assertions forms a valid proof then
no command can ever access a memory location (or other resource) not described in
the precondition. In other words, a separation logic proof, regardless of the property
being proven, will always describe all the resources accessed by the program. This
insight opens up several follow-up topics. For instance, knowing memory footprints
at each program point may allow us to take better advantage of cache locality in
programs with recursive datatypes. Also, when checking the dependence of load
and store instructions, having deep alias information may enable better instruction
scheduling. Accurately tracking the heap-carried data dependencies and the heap layout
may also enable synthesis of more efficient FPGA circuits realising heap-manipulating
programs. Finally, using abductive reasoning, a valid separation logic proof can be
constructed automatically even for incomplete program fragments, which may enable
new, more holistic ways for utilising the instruction-level parallelism and performing
code vectorisation for processors with SIMD extensions.

14.2.2 Optimisation for energy-constrained devices

As smartphones are becoming ubiquitous computing devices, optimisation of energy
consumption is gaining more and more importance over the traditional optimisations
for merely speed or memory. Energy consumption of a mobile application is a result of
a complex interplay of many mobile phone components such as CPU, GPU, sensors,
network, etc. The role of the network is particulary interesting since modern mobile
applications often come partitioned into a client component running on the phone
and a server component running across the network, enabling offloading of on-device
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computation and other tasks to a remote server (cloud). By representing energy re-
sources with numerical tokens, separation logic-based approaches could enable new
ways for reasoning about energy consumption and its distribution, and consequently,
discover novel energy-oriented program optimisations. A more straightforward goal
in optimising specifically for energy would be to develop practical methods for auto-
matically discovering faithful models of power usage. Power models are of paramount
importance for optimising mobile applications in practice, however, device manufactur-
ers and operating system providers regularly do not provide them. Machine learning
techniques like grammar induction may be able to systematically infer such models
from power data.1

14.2.3 Optimisation for the cloud

Cloud computing is another emerging domain with under-developed program optimi-
sation techniques. In addition to optimisation for speed and memory, in this context
one often has to work towards satisfying various distributed systems’ goals such as
workload balance, fault tolerance, network topology, etc. While separation logic could
provide ways for capturing the underlying concurrency patterns (e.g. the barrier sig-
nalling used in Part I can be extended to capture the MapReduce synchronisation),
dealing with workload balance, fault tolerance or cloud-specific concepts such as elas-
ticity is difficult and would require prior theoretical research to discover adequate
formal models. Nevertheless, some specific problems can be immediately approached
by existing methods. For instance, an important practical problem is how to reduce
network congestion of MapReduce programs on clouds with separate storage and
compute nodes. The network has much lower throughput than compute nodes and is
often the bottleneck. Mappers typically receive a stream of data items, each with one
or more components, while the computation may require only a subset of data items,
or for a data item, only a subset of components. Such programs could be optimised by
synthesising filters that would filter the data at storage nodes before transferring it to
compute nodes. With some additional static analysis, the method developed in Part II
could synthesise such filters automatically.2

1In fact, I have succeeded in representing several smoothed power traces of various mobile phone
activity cycles by a variant of timed automata. I expect it to be possible to develop a learning algorithm
that combined with a guided program execution (in a spirit similar to Σ∗) could automatically infer
fine-grained power models of mobile phone components, and energy consumption specifications of
operating system API.

2For instance, I was able to infer several such symbolic transducer-based filters for example programs
provided with Hadoop.
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