
Technical Report
Number 916

Computer Laboratory

UCAM-CL-TR-916
ISSN 1476-2986

Capability Hardware
Enhanced RISC Instructions

(CHERI): Notes on the
Meltdown and Spectre Attacks

Robert N. M. Watson, Jonathan Woodruff,
Michael Roe, Simon W. Moore,

Peter G. Neumann

February 2018

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2018 Robert N. M. Watson, Jonathan Woodruff,
Michael Roe, Simon W. Moore, Peter G. Neumann,
SRI International

Approved for public release; distribution is unlimited.
Sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237 (“CTSRD”)
and FA8750-11-C-0249 (“MRC2”), as part of the DARPA
CRASH and MRC research programs. The views, opinions,
and/or findings contained in this report are those of the
authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
Department of Defense or the U.S. Government. Additional
support was received from St John’s College Cambridge, the
Google SOAAP Focused Research Award, the RCUK’s
Horizon Digital Economy Research Hub Grant
(EP/G065802/1), the EPSRC REMS Programme Grant
(EP/K008528/1), the EPSRC Impact Acceleration Account
(EP/K503757/1), the Isaac Newton Trust, the UK Higher
Education Innovation Fund (HEIF), Thales E-Security, ARM
Ltd, and HP Enterprise.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Abstract
In this report, we consider the potential impact of recently announced Meltdown and Spectre
microarchitectural side-channel attacks arising out of superscalar (out-of-order) execution on
Capability Hardware Enhanced RISC Instructions (CHERI) computer architecture. We observe
that CHERI’s in-hardware permissions and bounds checking may be an effective form of mit-
igation for one variant of these attacks, in which speculated instructions can bypass software
bounds checking. As with MMU-based techniques, CHERI remains vulnerable to side-channel
leakage arising from speculative execution across compartment boundaries, leading us to pro-
pose a software-managed compartment ID to mitigate these vulnerabilities for other variants as
well.

3



Acknowledgments
The authors of this report thank other members of the CTSRD, MRC2, and ECATS teams,
our past and current research collaborators at SRI and Cambridge, as well as colleagues at
other institutions who have provided invaluable feedback and continuing support throughout
this work:

Ross J. Anderson Jonathan Anderson Graeme Barnes John Baldwin
Hadrien Barral Stuart Biles Matthias Boettcher David Brazdil
Ruslan Bukin Brian Campbell Gregory Chadwick David Chisnall
James Clarke Serban Constantinescu Chris Dalton Nirav Dave
Brooks Davis Lawrence Esswood Anthony Fox Paul J. Fox
Paul Gotch Richard Grisenthwaite Jong Hun Han Andy Hopper
Alex Horsman Alexandre Joannou Asif Khan Myron King
Chris Kitching Ben Laurie Patrick Lincoln Anil Madhavapeddy
Ilias Marinos A. Theodore Markettos Tim Marsland Ed Maste
Alfredo Mazzinghi Dejan Milojicic Andrew W. Moore Will Morland
Alan Mujumdar Prashanth Mundkur Steven J. Murdoch Kyndylan Nienhuis
Robert Norton Philip Paeps Lucian Paul-Trifu Alex Richardson
Michael Roe Colin Rothwell John Rushby Hassen Saidi
Hans Petter Selasky Peter Sewell Muhammad Shahbaz Lee Smith
Stacey Son Ian Stark Andrew Turner Richard Uhler
Munraj Vadera Jacques Vidrine Philip Withnall Hongyan Xia
Bjoern A. Zeeb

The CTSRD team also thanks past and current members of its external oversight group for
significant support and contributions:

Lee Badger Simon Cooper Rance DeLong Jeremy Epstein
Virgil Gligor Li Gong Mike Gordon Steven Hand
Andrew Herbert Warren A. Hunt Jr. Doug Maughan Greg Morrisett
Brian Randell Kenneth F. Shotting Joe Stoy Tom Van Vleck
Samuel M. Weber

We would also like to acknowledge the late David Wheeler and Paul Karger, whose conver-
sations with the authors about the CAP computer and capability systems contributed to our
thinking on CHERI.

Finally, we are grateful to Howie Shrobe, MIT professor and past DARPA CRASH and MRC
program manager, who has offered both technical insight and support throughout this work. We
are also grateful to Robert Laddaga, Stu Wagner, Jonathan Smith, Dale Waters, John Launch-
bury, and Linton Salmon at the DARPA I2O, AEO, and MTO offices, who have continued
support for our work at DARPA, as well as to Daniel Adams, Laurisa Georgen, and Marnie
Dunsmore, SETAs supporting the DARPA CRASH, MRC, and SSITH programs.

4



Chapter 1

CHERI and Microarchitectural
Side-Channel Attacks

The purpose of this report is to briefly describe our early thoughts on the impact of the Melt-
down [9] and Spectre [8] vulnerabilities on the Capability Hardware Enhanced RISC Instruc-
tions (CHERI) architecture [14] developed by SRI International and the University of Cam-
bridge. These recently announced vulnerabilities allow attackers to exploit side channels stem-
ming from speculative execution to extract data across protection boundaries – for example,
allowing an unprivileged userspace attacker to retrieve private data from the kernel or another
process. CHERI is an architectural security feature providing fine-grained memory protection
and scalable compartmentalization based on a hybrid capability-system model [13].

As an architectural security model, CHERI depends on secure implementation in the mi-
croarchitecture; as with other architectural models (such as virtual memory and enclave tech-
nologies), implementations of CHERI may be susceptible to side-channel leakage through mi-
croarchitectural timing. However, an unexpected benefit to CHERI is that it also offers some
mitigating impact on one of the attack variants due to the potential for speculative checking of
bounds in the implementation of CHERI. In the remainder of this report, we briefly introduce
the concepts behind CHERI, describe the three variants of the Meltdown and Spectre attacks
that have been published, describe current mitigation techniques, and then discuss potential
implications for CHERI along with a proposed architectural change to help resist microarchi-
tectural side channels. We also consider the longer-term prospects for remaining microarchi-
tectural side channels.

1.1 Background
Before exploring the implications of CHERI for Meltdown and Spectre, we review the CHERI
architecture, Meltdown and Spectre attacks, and known mitigations for these attacks on current
architectures.

1.1.1 CHERI
CHERI is a hybrid capability-system architecture that blends historic ideas about capability sys-
tems with a conventional RISC architecture utilizing a Memory Management Unit (MMU) [14].
CHERI capabilities are implemented as a new hardware data type whose corruption and misuse

5



are prevented by tagged memory and guarded manipulation. CHERI’s hybrid nature enables
capability-system features to converge with more conventional architectural design choices:
capabilities are evaluated “within” virtual address spaces, and are implemented in a manner
intended to align strongly with current architectures, microarchitectures, and memory subsys-
tems.

CHERI is designed to continue to support (and extend) MMU-based software Trusted Com-
puting Bases (TCBs) implemented in the C and C++ programming languages by making it
efficient to implement the principles of least privilege and intentionality due to their strong
mitigating impact on software vulnerabilities. Target software includes operating-system ker-
nels and userspace libraries/tools, language runtimes, and large-scale C/C++ applications such
as web browsers. Although the capability primitives can be used for many purposes, we have
focused on investigating their use for highly compatible fine-grained language-oriented mem-
ory protection, as well as scalable software compartmentalization.

In the majority of our current use cases, CHERI capabilities protect references to concrete
code or data in memory, rather than abstract software-defined objects. Most typically, this
is done by using the capability type to implement C/C++-language pointers, which are then
subject to architectural integrity protection, efficient bounds checking, permission checking,
and other (so-called) safety properties. CHERI also supports sealed capabilities that are im-
mutable and non-dereferenceable, allowing CHERI’s protections to be applied to references to
software-defined objects – for example, allowing unforgeable object references to be passed to
untrustworthy software sandboxes, and to be used as the foundation for fast domain transitions.

With two notable exceptions (exception delivery and explicit protection-domain crossing),
the CHERI instruction-set architecture (ISA) implements monotonicity: the rights and bounds
of a new capability may be no greater than those of the capability from which it is derived.
Tagging and guarded manipulation ensure strong provenance validity for capabilities: a capa-
bility cannot be dereferenced unless it is a valid capability derived from another valid capability
via valid transformations. These transformations are ensured by the controlled introduction of
initial capabilities in the architecture (at CPU reset), tagged memory that allows in-memory
corruption by a data overwrite to be detected, and guarded manipulation that prevents non-
monotonic transformation and tag corruption. A complete description of the evolving CHERI
architecture can be found in our papers and technical reports [14].

1.1.2 Meltdown and Spectre Attacks

Speculative execution (or out-of-order execution) allows microarchitectures to speculatively
pursue computations based on predictions about the unknown future outcomes of branches
and data loads in execution. Instructions remain uncommitted until the missing data depen-
dency is present, at which time the speculatively executed instructions can either be committed
(due to the prediction being correct) or canceled (if the prediction was incorrect). With suf-
ficiently good predictions, speculative execution allows parallel computations in hardware to
substantially improve perceived serial execution. Today, this technique is widely deployed in
high-performance CPU designs, as many software execution patterns are highly predictable
based on past behavior: for example, CPUs routinely predict the outcome of branches and
jumps, based on prior execution of the same code having a strong predictive ability for future
executions.

Speculative execution is intended to be largely invisible to the architecture against which

6



programmers write software: mispredicted instructions are canceled, preventing their architec-
tural outcomes (register writebacks, memory stores, etc.) from being exposed to software. The
primary exception to this is through timing; where speculation is substantially accurate, perfor-
mance should improve, reducing the time it takes to perform operations that would otherwise
be more expensive. This timing side channel is measurable through a variety of techniques
(including highly accurate cycle counters in contemporary processors present for timekeeping
purposes), and allows software to detect when speculation is being effective. Side effects of
speculation are especially visible in its impact on caches, which will be filled with memory
on the basis of not just architectural execution, but also speculative execution. Timing side
channels therefore allow information to flow in two directions: (1) instruction execution can
guide future predictions, impacting the behavior of future speculation; and (2) a committed
instruction can observe cache timing information in order to infer prior speculated behavior.

The presence of timing side channels in the microarchitecture has long been understood: In
the early 2000s, multiple researchers identified timing-based channels allowing the extraction
of cryptographic keying material from hyperthreads sharing a first-level cache [2, 12, 10, 3, 4].
However, the degree to which the above two speculative effects, combined with cache timing
information, can be exploited by an unprivileged software adversary to extract private informa-
tion despite architectural security features (such as rings and virtual address spaces) has only
recently become apparent with the announcement of the Meltdown [9] and Spectre[8] attack
techniques. With these attacks, timing side channels allow malicious unprivileged code to ex-
tract the memory contents of the kernel or another target process by manipulating instruction
speculation and triggering a cache-timing side channel back to the attacker. Three variants have
been described [6]:

Variant 1: bounds-check bypass (CVE-2017-5753) Published by Koch et al., this vulnera-
bility allows the attacker to manipulate speculation such that software invariants (e.g.,
array bounds checks) are violated in speculation, with their side effects (e.g., out-of-
bounds loads and resulting computations) being detectable using cache side channels.
The authors demonstrate an attack in which a speculated out-of-bounds array access can
be triggered, allowing the contents of arbitrary kernel memory to be leaked via timing.

We observe that while bypassing bounds checks is a particularly catastrophic outcome
of the underlying vulnerability, there might be other potential non-bounds-check impli-
cations of security significance – e.g., bypassing kernel access-control checks dependent
on uncached data.

Variant 2: branch target injection (CVE-2017-5715) Published by Koch et al., this vulner-
ability relies on leakage of branch-predictor state between contexts, allowing an attacker
to train the branch predictor such that they can maliciously influence speculated control
flow in another security domain in order to leak data accessible in that domain back to
the attacker via a cache timing side channel. The authors demonstrate an virtualization-
based attack in which a guest operating system can guide speculated instructions in the
host to access known addresses based on private information, allowing the contents of
arbitrary host memory to be leaked via timing.

Variant 3: rogue data cache load (CVE-2017-5754) Published by Lipp et al., this vulnera-
bility relies on speculative loads being performed before hardware permission checks
(e.g., based on page permissions or ring), allowing architecturally inaccessible data to

7



be revealed through cache timing. The authors demonstrate arbitrary kernel memory
extraction from user space at hundreds of kilobytes per second.

1.1.3 Known Mitigations on Current Architectures
Several major CPU vendors have reported vulnerabilities in one or more of the variants, in-
cluding Intel [7], AMD [1], and ARM [5]. Prior to the public announcement of the Meltdown
and Spectre vulnerabilities, processor vendors were given substantial time to explore the im-
pact of the vulnerabilities, and develop potential firmware- and software-based mitigations –
in addition to develop longer-term hardware roadmaps that better address side-channel-based
attacks. Architectural and software mitigations documented by these vendors generally fall into
the following categories:

Branch avoidance in favor of conditional moves In some architectures (e.g., ARMv8, x86-
64), conditional-move instructions permit conditional behavior without the need for a
branch. Where these can be used in code generation for security-sensitive checks, there
is no branch prediction to be manipulated. In some implementations, speculation is still
possible, if the value to be tested by a conditional move is not yet available (e.g., due
to depending on an as-yet incomplete speculative load); in this case, explicit speculation
barriers will also be required (see below). However, for many common microarchitec-
tures (e.g., most ARM microarchitectures at the time of writing), this is a reasonable
form of mitigation as data-value speculation is not used, although software implementors
will wish to start introducing explicit barriers to guard against future microarchitectural
choices (see below).

Speculation barriers and code behaviors to limit speculation Where branches must be used,
or on microarchitectures where conditional moves can depend on predicted values, spec-
ulation barrier instructions can be used to prevent further speculative loads based on
unresolved branches or predicted values. These barriers can be inserted before security-
critical branches (e.g., for bounds and permission checks), at some cost to performance
due to a delay in issuing speculative memory accesses dependent on the unresolved
branch.

Intel and AMD already provide a Load Fence (LFENCE) instruction as a barrier to await
termination of all outstanding speculation before proceeding. Placing an LFENCE in-
struction following a software bounds check, but before memory access, will prevent
speculative execution of the memory access until the result of the check is known. AMD
further observes that ensuring that the outcome of a bounds check is a dependency for the
load will have a similar effect in stalling the load – e.g., by using the result of the bounds
check to mask the load address. On AMD processors, placing an LFENCE instruction
prior to an indirect jump will have a similar effect in controlling speculation across the
jump.

Intel and AMD are introducing three new classes of barriers to restrict speculation across
branches: to limit indirect branch prediction after an explicit barrier (IBPB), to restrict
branch speculation when set (IBRS), and to protect hyperthreads from branch-predictor
manipulation (STOBP). These features will be made available via new processors and/or
microcode patches.

8



ARM is introducing one additional new barrier instruction, Conditional Speculation De-
pendency Barrier (CSDB), which will prevent speculative loads, stores, instruction prefetches,
and indirect branches after the barrier from influencing cache allocation until the depen-
dency has been resolved.

The retpoline (“return trampoline”) technique causes indirect jumps to occur via an ar-
chitecture’s function-return mechanism, which prevents effective branch prediction on
Intel and AMD processors [11].

Limiting speculation has a potentially significant impact on performance, making it desir-
able to use these barriers only where necessary for security – and creating the opportunity
for accidental omission by programmers.

Explicit flushes of architectural and microarchitectural state Where microarchitectures al-
low branch-predictor state to be shared between rings (e.g., between userspace and ker-
nel), or between address spaces (e.g., between two user processes), an explicit invali-
dation of that state may be possible. This can be used during a context switch or on
entry to the kernel to prevent malicious manipulation of speculation using the branch-
predictor table. In general, architectures appear not to include portable interfaces to flush
branch-predictor state, unlike other shared microarchitectural state such as Translation
Lookaside Buffer (TLB) entries.

AMD has recommended that clearing untrusted values from registers when entering priv-
ileged mode, or sensitive code, will prevent speculative use of those values.

Implicit flushes of microarchitectural state Although explicit microarchitectural state inval-
idation may not be available in all architectures, it may be possible to reliably invalidate
that state through architectural behaviors that are known to affect that state. For example,
a well-defined sequence of branch or jump instructions may reliably flush the branch-
predictor table on specific microarchitectures. These sequences can similarly be inserted
in context switches or on entry to the kernel.

AMD suggests that flushing the branch-predictor table using a well-defined series of
function calls (sized to reflect the microarchitectural table size – e.g., 32) will also be
effective in preventing past branch behavior from affecting future branch prediction. This
instruction sequence can be used during entry to privileged modes to prevent userspace
behavior from influencing kernel branch prediction.

Unsharing user and kernel address spaces For performance reasons, it is common practice
to allow user and kernel code to share the same architectural address space, relying on
the ring mechanism and page permissions (or segments) to prevent undesired access.
On microarchitectures where unprivileged code can manipulate the speculative memory
accesses of privileged code despite that mechanism, another mitigation option is to place
kernel memory in a different address space than user memory.

This can be accomplished by arranging for the majority of kernel code to execute with a
different address-space identifier (ASID or PCID). Kernel Page Table Isolation (KPTI),
previously known as Kernel Address Isolation to have Side-channels Efficiently Re-
moved (KAISER), modifies the operating-system kernel to avoid leaving the kernel ad-
dress space mapped when operating in userspace. The performance impact of this tech-
nique could be substantial, as it may increase the footprint of ASIDs or PCIDs, or require

9



other further address-space manipulations – especially on architectures or microarchitec-
tures without support for TLB entries tagged with address-space identifiers.

On Intel and AMD processors, use of the SMEP (Supervisor Mode Execution Protection)
will prevent errant speculation of user instructions from kernel mode; SMAP (Supervi-
sor Mode Access Protection) will prevent errant access to user data via speculated kernel
loads and stores, reducing the tools available to attackers by virtue of use of user instruc-
tions or memory contents during speculative execution.

Architectural control-flow integrity Intel has observed that use of its recent Control-flow En-
forcement Technology (CET) to implement Control-Flow Integrity (CFI) can reduce gad-
gets available to attackers during speculation.

1.2 Applicability to the CHERI Architecture
CHERI is an architectural security technique that relies on correct implementation in the mi-
croarchitecture. CHERI’s features interact with the side-channel attacks described above in
a manner dependent on the specific microarchitecture, both offering some mitigating aspects,
and also requiring architectural change for CHERI.

Variant 1: Bounds-Check Bypass This attack depends on a mispredicted software bounds
check resulting in a speculative load that is out of bounds, in turn enabling a cache-based
timing side channel back to the attacker. With CHERI, bounds (and other) checks are
performed atomically with memory access, based on capability information stored in the
same register as the pointer value.

As long as data-value speculation is not performed on capabilities themselves, all neces-
sary capability information required to validate a speculative load will be reliably avail-
able to the microarchitecture – eliminating the opportunity for malicious manipulation of
speculative software-based bounds checking. It is therefore important that microarchitec-
tures that speculatively perform memory access via capabilities also perform associated
capability checks as well. This is a necessary condition before allowing any visible tim-
ing effects (e.g., cache perturbation).

It is unclear whether there are techniques to allow safe speculation based on predicted
capability values, and as such we recommend against such speculation.

Variants 2: Branch Target Injection Branch predictors must make predictions without ac-
cess to actual instructions or target addresses, whether represented as integer values or
CHERI capabilities. Branch target injection may therefore be equally effective against
CHERI as with traditional architectures, as the microarchitecture would not naturally
prevent the branch predictor from injecting speculative targets from one domain into an-
other, causing that domain to exercise its own rights to load data in a manner detectable
by the attacking domain. The vulnerable domain may be the kernel, another process, or
an in-address-space CHERI compartment.

Variants 3: Rogue Data Cache Load Where the values of capabilities themselves are not sub-
ject to being predicted, CHERI provides adequate information to the microarchitecture to
prevent undesired memory access beyond the bounds (or in violation of other restrictions)

10



in capabilities. As with Variant 1, the microarchitecture must ensure that any necessary
capability checks have passed before allowing any side effects of a memory access via
that capability to become visible via timing. This should also be possible with MMU
protection, and indeed only certain commercial memory systems are vulnerable to this
variant.

1.3 Implications for the CHERI Architecture
These observations motivate a number of thoughts on how the CHERI architecture should be
implemented, and perhaps also might be changed.

1.3.1 Speculative Memory Access via Capabilities
Most critically, it is clear that memory accesses via capabilities must not have timing-visible
side effects unless CHERI’s checks (tag, bounds check, permission check, seal check, ...) have
been satisfied by the microarchitecture. Otherwise, speculation across those checks may leak
information about out-of-bounds or protected memory. However, if implemented in keeping
with this design principle, CHERI offers substantial mitigation against Variants 1 and 3.

1.3.2 Speculated Capability Values
With CHERI, we are particularly concerned with the potential for data-value speculation (rather
than simply branch prediction) to lead to violation of invariants – especially where the value
of a capability might be speculated. This would mean that its bounds, permissions, and other
state might themselves be predicted. In an ideal world, speculated values would be limited
to capabilities actually held by the current protection domain – but it is not clear that this is
microarchitecturally viable, even if considering only current register-file entries. It may be that
speculating capability values has to be entirely disallowed in the presence of compartmental-
ization, which could have substantial cost.

1.3.3 Control-Flow Robustness in Speculation
Intel’s observation that CET may assist with limiting branch-predictor-based attacks due to re-
ducing the gadget space may also apply to capability-based limits on control flow. For example,
indirect branches by integer offset rather than to a target capability will be constrained to the
current program-counter capability’s bounds. Similarly, speculated indirect branches to target
capabilities will have their range limited by the permissions and bounds on the capability. It is
not yet clear to what extent this provides effective attack mitigation, however.

1.3.4 Branch-Predictor State
A natural design choice for microarchitectural implementations of CHERI will be to retain cur-
rent virtual-address-based branch predictors without also saving additional protection metadata
(such as bounds) for those target addresses. It is therefore important that any bounds checks
occur before a predicted target is inserted in the branch-predictor table to prevent predicted
addresses outside of accessible bounds from being being used speculatively.

11



1.3.5 Sharing Microarchitectural State Between Compartments
For Variants 2 and 3, it is important that the microarchitecture must control sharing of mi-
croarchitectural state, not only across ring or process boundaries (i.e., userspace to kernel, or
process to process), but also between CHERI compartments. For MMU-based isolation, it is
possible to tag state – e.g., in the branch predictor – with the originating ring and process. With
CHERI, however, the configuration of accessible capabilities can further define an in-process
compartment.

One approach would be to limit speculation beyond potential non-monotonic operations
in the architecture – specifically, exception delivery (increasingly understood for conventional
architectures) and userspace capability invocation (not present in conventional architectures),
as both of these grant access to capabilities not available to prior instructions. However, it is not
clear that this is a desirable approach, as these are frequent operations occuring in performance-
critical paths, and may not in fact require strong confidentiality protection.

1.4 Proposal: A CHERI Compartment Identifier (CID)
Another approach to controlling sharing of microarchitectural state between CHERI compart-
ments is to explicitly identify compartments to the microarchitecture so that persisting microar-
chitectural state can be tagged and used only in appropriate contexts. This technique is already
used with MMU-based compartmentalization by virtue of tagged TLBs: entries in the TLB are
tagged with address-space identifiers preventing an entry from matching the wrong process.
This would require introduction of an architectural CHERI compartment identifier (CID) to
explicitly identify when microarchitectural state is (or isn’t) allowed to be shared. As with the
ring and address-space identifier, this could be included in the tag on branch target buffer en-
tries (or any other microarchitectural state) to ensure that, for example, one compartment could
not train the branch predictor in order to direct speculative execution in another compartment.
We imagine that this mechanism would be in the form of a writable special register identifying
the current CID, which could be set with a suitable capability authorizing use of a range of
CIDs. CID changes would themselves require some care with respect to speculation, to ensure
that those changes were not improperly speculated across.

In keeping with the virtualizability goals of CHERI, the authorizing capability would be
able to specify bounds on what CIDs could be used, allowing domain-crossing code to be au-
thorized to select the microarchitectural state of selected compartments it is authorized to enter.
This approach comes with its challenges: for example, how should the state of a userspace
domain switcher itself be protected, to prevent speculation across the switcher from revealing
its own internal state, or the state of another compartment? One option here would be to also
incorporate the sealed-capability object type into the concatenated index, as this namespace is
also controlled. With exception-based domain switching, we believe that inclusion of the ring
identifier should be sufficient. Another critical question is how large the CID must be in order
to prevent collisions through reuse, as well as make partitioned delegation to multiple switchers
efficient: we suspect at least a 24-bit ID would be desirable, if not far larger. This proposed size
is based on the size of the object-type field in our 128-bit compressed-capability design, which
in turn is based on an estimate on an upper bound on the number of unique sealed capability
types that might be in use in a single address-space system. A larger size might be preferable,
as unique code segments may be combined with additional unique data segments to produce a

12



larger number of compartments.
An immediate concern to any microarchitect would be the size of the tag required on mi-

croarchitectural state. A large CID as well as an ASID and ring number may approach the
entire storage capacity of current branch target entries. We might suggest an architectural table
that maps a small number of active domains drawn from a larger architectural namespace to a
small internal microarchitectural namespace of, perhaps, 8 bits. When a new domain is inserted
that does not have a corresponding table entry, the kernel would replace an existing entry in the
active domain table, removing all microarchitectural state for the replaced domain. With this
mechanism, any partitioned microarchitectural state need be tagged with only a small number
of bits to identify an arbitrary domain. Clearly, this approach will be efficient only if the time
between insertion of new domains is large with respect to the cost of replacing a mapping in
the active domain table, which seems likely for a table of even modest size.

There are a various tradeoffs around the use of a CID to partition microarchitectural state.
Hard partitioning of that state may lead to performance loss where prior sharing led to per-
formance gain – e.g., where branch-predictor state was shared beneficially between two com-
partments sharing common code. This concern also arises in the context of harder partitioning
for MMU-based process schemes: forked processes executing common code (e.g., a language
runtime or server application) may benefit from branch-predictor leakage between tasks, which
would be prevented by partitioning. However, architectural CIDs need not map one-to-one with
software compartments: if only integrity or availability is required (and not confidentiality),
then a software compartment change can take place without requiring use of an independent
microarchitectural state.

1.5 Future Side-Channel Challenges

Potential side-channel leakage is endemic to current microarchitectural optimization techniques
– not just with respect to speculative execution, but also in any area where there is resource shar-
ing rather than hard partitioning between mutually distrusting parties. Historically, cache side
channels have been of particular interest because they have allowed effective attacks without
any need for speculation – and also are a key linchpin for both Meltdown and Spectre. It is rea-
sonable to anticipate that these and other side channels will remain relevant, and while effective
mitigations have been identified for the current attacks, the broader picture is far less clear.

1.5.1 Tagging Does Not Close All Side Channels

More generally, constraining matching of branch-predictor entries does not entirely close the
side channel, but simply makes it hard to maliciously impact choices in a victim task. Informa-
tion will still leak between address spaces (or compartments) by virtue of entry displacement;
while this has not been shown to be exploitable, history suggests that signal-analysis techniques
often prove able to extract signal from noise, even when the signal-to-noise ratio is very low.
Similarly, policy-based lookup and displacement constraints do not generalize well to all re-
source types – e.g., cache entries, bus contention, thread scheduling, etc.; this implies that many
side channels will continue to remain, even if it is not yet clear how to exploit those channels.

13



1.5.2 Tagging Performance Overheads
There are also potential performance costs to tagging and lookup constraints, which have not
yet been fully explored. For example, tagging branch-predictor entries with address-space iden-
tifiers may harm the performance of forked applications (such as the Android Dalvik language
runtime, or the Apache web server), where accidental sharing between address spaces might
lead to accurate branch prediction due to identical address-space layouts. This concern will
also apply to future attempts to limit state sharing between address spaces – or, in CHERI,
between compartments.

1.5.3 Principled Design and Microarchitectural Side Channels
We are intrigued by the possibility that a stronger expression of privilege (and privilege mini-
mization) visible to the architecture but enforceable in the microarchitecture can be effective in
mitigating microarchitectural side channels – a property that we did not foresee when design-
ing CHERI. This possibility has arisen through CHERI’s inclusion of fine-grained checking of
bounds, permission, and other properties in an architecture-visible manner; with extensions to
include a compartment ID, this would also allow software to limit speculation in the presence
of granular software compartmentalization. If generalizable, this would reinforce the view that
design principles such as the principle of least privilege remain a powerful approach to systems
design when it comes to not just preventing vulnerabilities, but also mitigating their inevitable
effects.

1.6 Conclusion
Microarchitectural side-channel attacks have long been known to the computer architecture and
security communities, epitomized by cache-timing side-channel attacks on cryptography dat-
ing to the early 2000s. However, recent attacks such as Meltdown and Spectre have illustrated
the power of those attacks against general-purpose systems software outside of more special-
ized environments and workloads. As an architectural security feature, CHERI is dependent
on correct and secure implementation in the microarchitecture, especially with respect to side
channels. By pushing greater knowledge of security-related constraints into the architecture,
CHERI offers the microarchitecture the opportunity to mitigate some forms of side-channel at-
tacks – for example, through its architectural bounds checking. To allow the microarchitecture
to mitigate other forms of side-channel attacks, CHERI requires modest extensions to expose a
more explicit notion of compartments (and compartmentalization) via the ISA. As understand-
ing of these attacks grows, we anticipate further insights into the impact of microarchitectural
side channels and architectural security features. Overall, we believe that the CHERI hardware-
software system architecture will continue to provide a sound basis upon which to explore
remediation of known vulnerabilities as well as avoidance of as yet unknown vulnerabilities.

14



Bibliography

[1] AMD. Software techniques for managing speculation on AMD processors.
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-
Processors.pdf, January 2018. Accessed 2018-01-31.

[2] D. J. Bernstein. Cache-timing attacks on AES. Technical report, University of Illinois at
Chicago, 2005.

[3] J. Bonneau. Robust final-round cache-trace attacks against AES. IACR Cryptology ePrint
Archive, 2006:374, 2006.

[4] J. Bonneau and I. Mironov. Cache-collision timing attacks against AES. In in Proc.
Cryptographic Hardware and Embedded Systems (CHES) 2006. Lecture Notes in Com-
puter Science, pages 201–215. Springer, 2006.

[5] R. Grisenthwaite. Cache speculation side-channels.
https://developer.arm.com/support/security-update/download-the-whitepaper, January
2018. Version 1.1, Accessed 2018-01-31.

[6] J. Horn. Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.co.uk/2018/01/reading-privileged-memory-with-
side.html, January 2018. Accessed: 2018-01-31.

[7] Intel. Intel analysis of speculative execution side channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-
Speculative-Execution-Side-Channels.pdf, January 2018. Revision 1.0; Accessed
2018-01-31.

[8] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative execution. ArXiv e-
prints, Jan. 2018.

[9] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

[10] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case
of AES. In Proceedings of the 2006 The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, CT-RSA’06, pages 1–20, Berlin, Heidelberg, 2006. Springer-
Verlag.

[11] Paul Turner. Retpoline: a software construct for preventing branch-target-injection.
https://support.google.com/faqs/answer/7625886, January 2018. Accessed 2018-01-31.

15



[12] C. Percival. Cache missing for fun and profit. In Proc. of BSDCan 2005, 2005.

[13] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum: Practical ca-
pabilities for Unix. In Proceedings of the 19th USENIX Security Symposium. USENIX,
August 2010.

[14] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson, J. Baldwin, D. Chis-
nall, B. Davis, A. Joannou, B. Laurie, S. W. Moore, S. J. Murdoch, R. Norton, S. Son, and
H. Xia. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Ar-
chitecture (Version 6). Technical Report UCAM-CL-TR-907, University of Cambridge,
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom,
phone +44 1223 763500, Apr. 2017.

16


	CHERI and Microarchitectural Side-Channel Attacks
	Background
	CHERI
	Meltdown and Spectre Attacks
	Known Mitigations on Current Architectures

	Applicability to the CHERI Architecture
	Implications for the CHERI Architecture
	Speculative Memory Access via Capabilities
	Speculated Capability Values
	Control-Flow Robustness in Speculation
	Branch-Predictor State
	Sharing Microarchitectural State Between Compartments

	Proposal: A CHERI Compartment Identifier (CID)
	Future Side-Channel Challenges
	Tagging Does Not Close All Side Channels
	Tagging Performance Overheads
	Principled Design and Microarchitectural Side Channels

	Conclusion


