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Hierarchical statistical semantic translation and realization

Matic Horvat

Summary

Statistical machine translation (SMT) approaches extract translation knowledge automat-
ically from parallel corpora. They additionally take advantage of monolingual text for
target-side language modelling. Syntax-based SMT approaches also incorporate knowl-
edge of source and/or target syntax by taking advantage of monolingual grammars in-
duced from treebanks, and semantics-based SMT approaches use knowledge of source
and/or target semantics in various forms. However, there has been very little research on
incorporating the considerable monolingual knowledge encoded in deep, hand-built gram-
mars into statistical machine translation. Since deep grammars can produce semantic
representations, such an approach could be used for realization as well as MT.
In this thesis I present a hybrid approach combining some of the knowledge in a deep
hand-built grammar, the English Resource Grammar (ERG), with a statistical machine
translation approach. The ERG is used to parse the source sentences to obtain Depen-
dency Minimal Recursion Semantics (DMRS) representations. DMRS representations are
subsequently transformed to a form more appropriate for SMT, giving a parallel cor-
pus with transformed DMRS on the source side and aligned strings on the target side.
The SMT approach is based on hierarchical phrase-based translation (Hiero). I adapt
the Hiero synchronous context-free grammar (SCFG) to comprise graph-to-string rules.
DMRS graph-to-string SCFG is extracted from the parallel corpus and used in decoding
to transform an input DMRS graph into a target string either for machine translation or
for realization.
I demonstrate the potential of the approach for large-scale machine translation by eval-
uating it on the WMT15 English-German translation task. Although the approach does
not improve on a state-of-the-art Hiero implementation, a manual investigation reveals
some strengths and future directions for improvement. In addition to machine translation,
I apply the approach to the MRS realization task. The approach produces realizations
of high quality, but its main strength lies in its robustness. Unlike the established MRS
realization approach using the ERG, the approach proposed in this thesis is able to re-
alize representations that do not correspond perfectly to ERG semantic output, which
will naturally occur in practical realization tasks. I demonstrate this in three contexts,
by realizing representations derived from sentence compression, from robust parsing, and
from the transfer-phase of an existing MT system.
In summary, the main contributions of this thesis are a novel architecture combining a
statistical machine translation approach with a deep hand-built grammar and a demon-
stration of its practical usefulness as a large-scale machine translation system and a robust
realization alternative to the established MRS realization approach.
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Chapter 1

Introduction

1.1 Motivation

Statistical machine translation (SMT) approaches starting with the seminal work by
Brown et al. (1990) transformed the field of machine translation. Whereas preceding
approaches used translation knowledge encoded by humans, statistical approaches obtain
translation knowledge automatically from sentence-aligned parallel corpora. The benefit
of using parallel corpora is the reduced cost of acquiring translation knowledge, provided
that a parallel corpus of sufficient size for a given language pair exists. In comparison,
transfer-based machine translation approaches take advantage of the translation knowl-
edge encoded by humans as well as the considerable monolingual knowledge in each of
the languages. In contrast to statistical approaches, the translation and monolingual
knowledge encoded by humans is typically more precise but sparser, yielding high quality
translations at the expense of coverage (in particular, lexical coverage) and robustness.
To take a specific example, the monolingual knowledge in the transfer-based machine
translation approaches by Oepen et al. (2004a) and Bond et al. (2005) is encoded in a
broad-coverage precision Head-Driven Phrase Structure Grammars (HPSGs). A broad-
coverage computational HPSG, such as the English Resource Grammar (Flickinger, 2000),
is developed by a linguist by (1) using a corpus to discover phenomena yet untreated by
the HPSG, and (2) extending the HPSG by encoding a generalization of the phenomena
using their linguistic intuitions and consulting linguistic literature (Baldwin et al., 2005).
In comparison, a probabilistic context-free grammar (PCFG) is estimated from a human-
annotated treebank, consisting of sentences annotated with corresponding syntactic trees
according to annotation guidelines. Because of this, an HPSG contains knowledge (e.g., in
the form of generalizations) which cannot necessarily be extracted from a treebank auto-
matically. Typically, a broad-coverage computational HPSG aims to be a high-precision
grammar, producing high quality analyses at the expense of coverage and robustness.
An example of a broad-coverage high-precision HPSG is the English Resource Grammar
(ERG). The ERG is a bidirectional grammar, which allows it to be used both for pro-
ducing analyses of input sentences (i.e., parsing) as well as producing sentences from an
input meaning representation (i.e., realization). The meaning representation framework
used by the ERG is Minimal Recursion Semantics (Copestake et al., 2005).
In order to achieve the best possible translation performance, machine translation sys-
tems use as much knowledge as possible. In the case of statistical machine translation,

13



14 1.1. MOTIVATION

the larger the size of the parallel corpus, the more knowledge can be extracted and the
better performance the SMT system can achieve. However, since performance of an SMT
system only grows logarithmically with increasing amount of parallel data (Och, 2005),
it is difficult to continue improving it by incorporating more knowledge in the form of
parallel text beyond a certain point. Because of this, knowledge from monolingual re-
sources is incorporated into the statistical machine translation system. A simple but
crucial source of knowledge for SMT approaches is the target language model, which
is based on monolingual text in the target language. Syntax-based statistical machine
translation approaches (see Section 2.1) also incorporate knowledge of source and/or tar-
get syntax by taking advantage of monolingual grammars induced from treebanks (such
as the Penn Treebank (Marcus et al., 1993)). Following the success of syntax-based SMT
approaches, semantics-based SMT approaches incorporate knowledge of source and/or
target semantics, including lexical semantics, predicate-argument structure, and semantic
role labelling information (see Section 2.2). However, no attempt has been made so far
to incorporate the considerable knowledge encoded in deep, hand-built grammars into
statistical machine translation.1

In this thesis I propose a new type of hybrid architecture which combines broad-coverage
grammar-based semantics with statistical machine translation approaches. In addition to
the knowledge encoded in a sentence-aligned parallel corpus (as used in SMT), the pro-
posed approach takes advantage of the linguistic knowledge encoded in the high-precision
English Resource Grammar. Specifically, the knowledge is incorporated into the source
side of a parallel corpus by parsing the source sentences using the ERG to obtain their
semantic representations. The statistical approach is based on hierarchical phrase-based
translation (Chiang, 2005, 2007), extended to take advantage of source-side semantic rep-
resentations encoded as graphs.

The source-side semantic representations encode aspects of lexical semantics and are in
many respects similar to a predicate-argument structure. In previous work, both types
of semantics were integrated into existing SMT approaches. However, the approach pro-
posed in this thesis goes beyond integrating semantics into an existing SMT approach. It
proposes to translate the semantic structures themselves. In that respect, it is similar to
syntax-based tree-to-string translation approach of Liu et al. (2006) and dependency-to-
string approaches of Xiong et al. (2007) and Li et al. (2015, 2016). It is no coincidence
that it builds on some of the machinery commonly used in syntax-based SMT. A related
semantics-based SMT approach by Zhai et al. (2013) maps predicate-argument structures
to the target side to provide a skeleton for the remaining translations. Perhaps the most
related approach in semantics-based SMT is the approach by Jones et al. (2012), who
present a statistical system translating Abstract Meaning Representations (Banarescu
et al., 2013), represented as directed acyclic graphs, using synchronous hyperedge re-
placement grammars. I review the related machine translation approaches in Chapter 2.

A strength of the statistical machine translation approach presented in this thesis is its
robustness. In contrast, robustness and coverage have typically been a weakness of ap-
proaches using the ERG and other hand-built deep grammars. The lack of robustness is
in large part a consequence of the high precision requirement. While the high-precision
outputs benefit the many applications of deep grammars, their lack of robustness limits

1The approach by Graham et al. (2009) takes advantage of similar knowledge encoded in the Lexical
Functional Grammar, but in a transfer-based machine translation approach with a statistical transfer
component. I discuss their work in more detail in related work, Section 2.3.
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its usefulness for others. In order to address part of the robustness problem, a robust
parsing approach was recently proposed by Packard and Flickinger (2017) following the
work of Zhang and Krieger (2011). The robust parsing approach is capable of achieving
much higher parsing coverage than the established approach, including parsing of un-
grammatical inputs. The approach is estimated on ERG parse trees and is therefore more
tightly coupled with the existing parsing approach compared to a standalone statistical
back-off approach. So far, no such solution existed for the reverse problem of realization.

In this thesis I use the same statistical machine translation architecture as for machine
translation for robust English Resource Grammar realization. In a similar vein to the
robust parsing approach, the robust realization approach using SMT is capable of realizing
flawed and ill-formed inputs, while taking advantage of the existing grammar knowledge,
as opposed to building a completely separate system.

In order to perform as well as possible in practical applications, a statistical machine
translation system must be capable of taking advantage of all available parallel training
data, in addition to incorporating new monolingual knowledge.2 In order to achieve that,
the approach proposed in this thesis is accompanied with an efficient implementation that
allows it to take advantage of millions of parallel training examples and be evaluated on
real-world inputs for both translation and realization applications.

To summarize, in this thesis I investigate two questions: (1) Can the hand-built deep
grammar based approaches and the statistical machine translation based approaches be
combined in a single, large-scale system?; and (2) Is the proposed approach promising for
the tasks of machine translation and realization?.

1.2 Hierarchical statistical semantic translation/re-
alization

Statistical machine translation approaches extract translation knowledge from sentence-
aligned parallel data and subsequently apply it to previously unseen sentences in the
source language to produce translations in the target language. In the approach proposed
in this thesis, the source-side sentences are parsed with the English Resource Grammar
in order to take advantage of the knowledge of the source language encoded in the deep
grammar. Using the resulting source-side semantics in a statistical machine translation
approach requires extending the existing statistical machine translation machinery. These
extensions constitute the approach proposed in this thesis (illustrated in a diagram later
in this chapter in Figure 1.1). In this section I describe my approach and motivation for
it in more detail.

The English Resource Grammar constructs a meaning representation, the Minimal Re-
cursion Semantics (MRS) representation, compositionally during parsing. The MRS rep-
resentation aims to include all semantically related information that can be derived from
syntax and morphology. The MRS representations have been demonstrated to be useful
in machine translation (Oepen et al., 2004a; Nichols et al., 2007; Bond et al., 2005, 2011).
However, a more convenient semantic representation for the statistical machine transla-
tion approaches considered in this thesis is a Dependency Minimal Recursion Semantics

2The alternative to such a large-scale system is a toy system with limited practical utility.
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(DMRS) representation (Copestake, 2009). DMRS representations are inter-convertible
with MRS, but encode the semantics of a sentence as a directed acyclic graph instead of
a flat semantic representation.

Not all information encoded in a DMRS graph is useful for its various applications. In
fact, some information may even harm its utility for a particular application. For instance,
some types of nodes in a DMRS graph do not contribute useful translation information
and are therefore redundant for the machine translation task considered in this thesis.
If such nodes are kept in a statistical translation approach, they increase the noise in
the parallel data while consuming extraneous computing resources. Because of this, I
introduce three methods for transforming DMRS graphs in order to make them more
suitable for use with the statistical machine translation approach, and translation and
realization tasks considered in this thesis.

The translation knowledge in statistical approaches is extracted from parallel sentences.
This requires an alignment between the words in a source sentence and words in a target
sentence. The word alignment is commonly produced using an unsupervised statistical
approach. Since the source sides considered in this thesis are DMRS graphs, their align-
ment to target sentence words requires some adaptation. The method proposed in this
thesis extends the source-side alignment information derived during ERG parsing, and
combines them with the word alignments produced by an unsupervised statistical ap-
proach. Together, the DMRS graph modelling and training example alignment methods
are described in Chapter 3.

The aligned parallel corpus is used by a statistical machine translation approach to extract
translation knowledge. My approach is based on hierarchical phrase-based translation
(Hiero). In Hiero, translation knowledge is encoded as a synchronous context-free grammar
(SCFG). A Hiero SCFG is extracted from word-aligned pairs of sentences (see Section 4.1).
However, since the source side is a DMRS graph in my approach, I extended the Hiero
SCFG formalism to comprise graph-to-string rewrite rules. The extension of SCFG to
source-side graphs also requires a novel rule extraction algorithm, which extracts a set of
rules from a single aligned DMRS graph - sentence pair.

In order to obtain a grammar that is capable of producing high quality translations or
realizations for a broad set of input DMRS graphs, rules are extracted from millions of
training examples. The extracted rules therefore need to be aggregated into the SCFG.
Aggregating graph-to-string rules requires addressing the graph isomorphism problem,
which I address with a heuristic solution to the related problem of graph canonization.
Since the resulting SCFG encodes the translation knowledge, it is interesting to investigate
its structure. Particularly compelling is the analysis that compares the differences in the
extracted SCFGs for translation and realization tasks. The grammar extraction and its
subsequent analysis are described in Chapter 4.

In hierarchical phrase-based translation, a previously unseen sentence is translated using
the translation knowledge encoded in an SCFG in a process called decoding (see Sec-
tion 5.1). The input sentence is parsed using the CYK algorithm and the resulting space
is explored to find the highest scoring translation. However, since the source sentence is
already parsed with the ERG to produce the DMRS graph in the proposed approach, a
different decoding strategy is needed. Instead, I propose a novel rule application algo-
rithm which determines the set of SCFG rules that can be applied to the input DMRS
graph in order to translate it to the target string.
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Each rule translates only a part of the input DMRS graph and rules are applied hierarchi-
cally to translate larger parts of the graph until the whole graph is translated. However,
as there exist many ways of translating a sequence of words, there exist many ways of
translating a part of a DMRS graph. Consequently, the competing rules produce com-
peting translation hypotheses. I encode the competing hypotheses in a hypothesis space
represented as a Finite State Acceptor (FSA), adapting the ideas of de Gispert et al.
(2010) to graph-to-string decoding. In order to choose the best translation, I score the
individual hypothesis with a log-linear model and the highest scoring hypothesis is chosen.
Decoding real-world inputs using an SCFG extracted from millions of training examples
is a resource intensive procedure. Consequently, I analyse the rule application algorithm
and decoder performance for both tasks considered in this thesis. The decoding part of
the approach and its performance analysis are described in Chapter 5.

In summary, the hybrid architecture combining statistical machine translation with broad-
coverage semantics presented in this thesis consists of three parts: (1) approaches and al-
gorithms concerned with modelling of input DMRS graphs and parallel training examples
(i.e., semantic data modelling, Chapter 3); (2) approaches and algorithms concerned with
extracting a synchronous-context free grammar from a corpus of aligned parallel exam-
ples (i.e., rule extraction, Chapter 4); and (3) approaches and algorithms concerned with
transforming a previously unseen DMRS graph into a target sentence using the extracted
synchronous context-free grammar (i.e., decoding, Chapter 5).

1.3 Machine translation

Machine translation is the task of translating a sentence in the source language to the
sentence in the target language while preserving the meaning conveyed by the source
sentence in the target sentence without direct human assistance.

The aim of the approach introduced in Section 1.2 and described in detail in Chapters 3, 4,
and 5 is to take advantage of the monolingual knowledge encoded in the deep English Re-
source Grammar by combining it with a statistical machine translation approach. In order
to investigate its potential as a large-scale translation system, I evaluate my approach on
the large-scale WMT-15 English-German translation task. The training dataset consists
of more than 4 million parallel sentences. I compare my approach to HiFST (Blackwood
et al., 2016), an established state-of-the-art implementation of hierarchical phrase-based
translation. The translation evaluation is described in Chapter 6.

Extracted translation knowledge, regardless of the parallel corpus size, is not exhaustive
for a broad-domain translation task due to the generative nature of language. A problem
occurs when a machine translation system encounters an input which it cannot translate
(i.e., due to the lack of required translation knowledge).3 A common solution to translat-
ing such inputs is to map them directly from the source language to the target language.
In Chapter 6, I introduce four types of non-grammar rules that improve the robustness of
my approach by taking advantage of the information encoded in the source-side DMRS
graphs.

3Trivial examples of such inputs include made-up names (e.g., Bellywinklestein) and large numbers
(e.g., 5,623,745 ), neither of which are likely to have occured in the parallel corpus.
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1.4 Realization

Natural language generation (NLG) is a sub-field of natural language processing (NLP)
concerned with producing utterances in a natural language from a computer-internal
representation. Since natural language generation is not as standardised as machine
translation, I discuss it here in more detail.

The natural language generation task is commonly decomposed into content planning and
surface realization. While content planning is concerned with what needs to be commu-
nicated, surface realization is concerned with how the content is to be communicated.
Therefore, surface realization (also referred to as just realization) is the task of creating a
fluent grammatical sentence from a meaning representation so that the sentence preserves
the meaning encoded by the representation.

This interpretation of the surface realization task assumes that the meaning represen-
tation is perfect and is sometimes referred to as tactical generation. In contrast, the
regeneration interpretation of the realization task accepts that a meaning representation
is a potentially flawed representation of the original sentence (or another object), because
it was obtained via an imperfect process, such as automatic parsing. Whereas in tactical
generation the main goal is to preserve the meaning of the input meaning representation,
the main goal in regeneration is to preserve the meaning conveyed by the original sentence.
Additionally, coverage and robustness are paramount in regeneration, since a flawed or
broken representation is an acceptable input.

A common way of representing the content to be communicated in an utterance is with
a meaning representation. Meaning representations differ greatly across the NLG litera-
ture in terms of their structural properties and the degree to which they pre-determine
their natural language realization. Perhaps the shallowest meaning representation is a
bag-of-words. The associated realization task is referred to as string regeneration and
corresponds to arranging the bag-of-words into a fluent sentence. Approaches for ad-
dressing the string regeneration problem span a wide range of techniques, for instance
CCG parsing (Zhang and Clark, 2011), phrase-based machine translation (de Gispert
et al., 2014), and graph-based modelling (Horvat and Byrne, 2014). On the other side of
the spectrum, Abstract Meaning Representation (AMR) is a representation which only
loosely constrains its natural language realization. For example, a recent approach by
Konstas et al. (2017) uses neural sequence-to-sequence models for both parsing and real-
ization. The related realization approaches are reviewed in Chapter 2.

The meaning representation considered in this thesis is Dependency Minimal Recursion
Semantics (DMRS). DMRS is a semantic representation grounded in predicate calculus
(see Section 3.1 for an introduction). However, since the representation is obtained com-
positionally via HPSG parsing, it remains somewhat tied to sentence syntax. Because of
this, a DMRS representation pre-determines its natural language realizations more than,
for instance, AMR does. The established approach to realization of DMRS representa-
tions uses chart generation with a bidirectional grammar (Carroll et al., 1999), such as
the ERG, and a stochastic realization reranking component (Velldal and Oepen, 2005).
Due to its reliance on the grammar, the established approach tends to produce grammat-
ical and fluent outputs that are guaranteed to be meaning preserving with respect to the
meaning representation. However, when realizing from meaning representations created
or modified by a system other than the bidirectional grammar, the established approach
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is inevitably brittle. Consequently, the established approach to MRS realization is well-
suited for tactical generation, but the lack of robustness means that it is less well-suited
for regeneration.

The statistical machine translation approach presented in this thesis has a complementary
set of strengths and weaknesses. Although it aims to produce grammatical and fluent
outputs of comparable quality to the established approach, it cannot hope to surpass it.
On the other hand, the statistical methods make it capable of realizing flawed or broken
meaning representations. This makes the proposed approach particularly well-suited for
the regeneration interpretation of the realization task and as a robust alternative to the
established approach. As discussed in Section 1.1, the robust realization approach fills
a void in the literature and is comparable in its purpose and objectives to the recently
proposed robust parsing approaches (Packard and Flickinger, 2017).

I evaluate the hybrid approach under both the tactical generation and regeneration in-
terpretations of the realization task. I compare it to the established approach to MRS
realization by mirroring the machine translation evaluation methodology. I define and
measure additional metrics that further elucidate the output quality of the proposed ap-
proach in terms of meaning preservation and grammaticality. In order to demonstrate
the robustness of the proposed approach I set up three tasks in which the meaning rep-
resentations are flawed or broken in various ways: (1) realization of heavily modified and
compressed DMRS graphs for the sentence simplification task; (2) realization of represen-
tations produced by the robust parser; and (3) realization of transferred representations
produced by a transfer-based machine translation system. The realization task evaluation
is described in Chapter 7.

1.5 System overview

Machine translation systems are complex: starting from the raw parallel text, on which
an SMT system is trained, to producing translations for an input sentence takes many
steps and requires many components. I collectively refer to these steps as the system.
Whereas the three parts of the proposed approach introduced in Section 1.2 are described
in subsequent Chapters 3, 4, and 5 in great detail, I dedicate this section to the discussion
of their use in the broader system.

The overall system architecture is illustrated in Figure 1.1. Components shown in colour
correspond to the three parts of the approach presented in the subsequent chapters: com-
ponents in red correspond to semantic data modelling (Chapter 3), components in green
correspond to rule extraction (Chapter 4), and components in blue correspond to de-
coding (Chapter 5). The same system implementation is used for both translation and
realization tasks by providing it with different data. For translation, the system is trained
on parallel translation data; for realization, the system is trained on monolingual data.
Additionally, the system uses monolingual data for language modelling and evaluation
data for evaluation.

Although I do not discuss the implementation details of individual components and al-
gorithms in this section, implementing all parts of the proposed approach was a major
software engineering undertaking. It could not be accomplished without building on the
work of others, in the shape of software packages, libraries, tools, and toolkits. I reference
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Figure 1.1: The overall architecture of the system proposed in this thesis. The individual system
components are shown in rectangles, while the data they consume or produce is shown in circles.
The colours group system components according to the chapters in which they are presented
(red, Chapter 3; green, Chapter 4; blue, Chapter 5).

them throughout the thesis as appropriate. The bulk of the codebase implementing the
proposed approach was written in the Python programming language, and is open-sourced
(see Section 1.6).
In the remainder of this section I give an overview of the system in greater detail (Sec-
tion 1.5.1) and describe how the system is parallelized in order to allow large-scale pro-
cessing (Section 1.5.2).

1.5.1 System overview

In order to get from raw parallel and monolingual data to a working statistical machine
translation system a long series of steps needs to be completed. In Figure 1.1 I gave a
general overview of the system. In this section I dissect the system into individual parts
and describe them in greater detail. The system overview is aided by the diagrams shown
in Figure 1.2. Each diagram corresponds to a different part of the system and, as before,
rectangles represent system components while the data they produce or consume is shown
in circles.
The parallel data preprocessing pipeline is illustrated in Figure 1.2a. In the first step,
the preprocessing component, source and target sentences are cleaned and Unicode nor-
malized. In order to reduce noise in the data, sentence pairs are filtered based on word
fertility and detected language mismatch.4 The sentences are tokenized, and in the case
of German, truecased. After preprocessing, the source-side sentences are parsed with the
English Resource Grammar and the resulting MRS representations are transformed into
DMRS graphs. The DMRS graphs are modified and augmented as described in Section 3.2
and nodes and edge labels, and target-side tokens are id-mapped. SMT word alignment
(see Section 3.3.3) is conducted for the translation task training data. The final step in

4Filtering based on word fertility refers to removal of sentence pairs with substantially different number
of tokens; language detection filters a sentence pair if either of the sides deviates from expected language
pairs.
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(a) Preprocessing pipeline.

(b) Language modelling pipeline.

(c) SCFG extraction pipeline.

(d) Rule application pipeline. (e) Translation mode decoding pipeline.

(f) Alignment mode decoding pipeline.

Figure 1.2: System overview diagrams. Each diagram corresponds to a different part of the
system: (a) illustrates the preprocessing pipeline used by other parts of the system; (b) and
(c) illustrate the training parts of the system; (d), (e), and (f) illustrate the decoding parts of
the system. The individual system components are shown in rectangles, while the data they
consume or produce is shown in circles.
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the preprocessing pipeline is formatting, which combines all of the above information into
a convenient XML format, which we will refer to as the DS format. The resulting graph-
to-string dataset in DS format is ready to be used by rule extraction, rule application, or
the decoder.
The language model estimation pipeline is illustrated in Figure 1.2b. Initially, target-
language monolingual data and target side of the parallel data are preprocessed using the
same preprocessing component as in Figure 1.2a. The cleaned, filtered, and tokenized
sentences are used to estimate and filter an n-gram language model. Language model
filtering to the parallel data target-side vocabulary reduces the n-gram language model
size significantly. If the language model is to be used for local pruning (see Section 5.5.2),
it is additionally converted into a Finite State Acceptor.
The synchronous context-free grammar extraction pipeline is illustrated in Figure 1.2c.
The input to rule extraction (see Section 4.2) are training examples in the DS format,
preprocessed using the preprocessing pipeline. The resulting set of graph-to-string rules
is aggregated and rule features are computed to form a graph-to-string SCFG (see Sec-
tion 4.3).
The rule application pipeline is illustrated in Figure 1.2d. The input is a tuning or testing
dataset in the DS format, preprocessed using the preprocessing pipeline.5 Given the input
DMRS graphs and the graph-to-string SCFG, rule application (see Section 5.3) creates
a set of applied rules and their corresponding graph coverages. Non-grammar rules (see
Section 6.1) are added to the applied rule set in order to improve system robustness.
The decoding pipeline in translation mode is illustrated in Figure 1.2e. The decoder (see
Section 5.4) represents each graph coverage as a Finite State Acceptor and from them
recursively creates a hypothesis space FSA. The hypothesis space FSA is composed with
an n-gram language model to get the final output of the decoder in translation mode.
The tuning pipeline for the log-linear model is illustrated in Figure 1.2f. The first part
of the pipeline is identical to the translation mode decoding pipeline. After decoding
in translation mode, the decoder is run in alignment mode with identical inputs, but
constrained to the translation mode output (see Section 5.6.1). The resulting alignment
FSTs are transformed into sparse FSTs, which encode rule feature contributions that
are required by the Lattice Minimum Error Rate Training (LMERT) to optimize log-
linear model parameters. The output of the tuning pipeline are updated log-linear model
parameters, which can be used in the next tuning iteration.

1.5.2 Parallelization

Large-scale processing is an important aspect of the approach proposed in this thesis. It
means that the system needs to be capable of extracting rules from millions of training
examples and decoding real-world inputs using the resulting grammars. In addition to an
efficient implementation, machine translation systems benefit from parallelization. Many
processing tasks in machine translation in general, and in our system specifically, are
embarrassingly parallel. That is, there is little to no effort required to decompose those
tasks into parallel ones. This is the case for machine translation because the processing
unit is a single sentence. Namely, decoding of each sentence is performed independently
of other sentences.

5Only the source side of the tuning or testing dataset is preprocessed and no filtering is conducted.
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In some machine translation subtasks, the information resulting from processing a single
sentence needs to be aggregated in order to produce the desired output. An example of
such a task is constructing the SCFG grammar from rule sets independently extracted
from training examples. This and similar tasks (for example, Brants et al. (2007), Dyer
et al. (2008), and Pino et al. (2012)) lend themselves well to a MapReduce programming
model (Dean and Ghemawat, 2004). Apache Hadoop is a popular open-source distributed
computing framework implementing the MapReduce programming model. An alternative
to Hadoop is Apache Spark.6 Compared to Hadoop, however, Spark enables a more com-
plex dataflow and a wider range of operations in addition to map and reduce. Instead of
storing all intermediate results on disk, it operates on data in-memory, which often makes
it more efficient (Zaharia et al., 2010). I consequently use Apache Spark for applicable
tasks in the proposed system.

In order to allow for large-scale processing with the proposed approach, several of the
pipelines described in Section 1.5.1 are parallelized. Decoding in translation and tuning
pipelines (Figures 1.2e and 1.2f) is parallelized by distributing sentence ranges as jobs on a
grid computing cluster of machines.7 The preprocessing pipeline including semantic data
modelling (see Figure 1.2a) and SCFG extraction pipeline (see Figure 1.2c) are parallelized
using Apache Spark. Apache Spark implementation of the rule application pipeline (see
Figure 1.2d) has a particularly complex computational model since it parallelizes not only
across sentences but also across SCFG rules. Grid computing cluster scripts and Apache
Spark pipeline implementations are distributed alongside the open-source release of the
codebase.

1.6 Contributions

In this section I collect and summarize the major thesis contributions discussed in the
introduction and described in great detail in the subsequent chapters. The major contri-
butions of this thesis are:

1. An architecture which combines the knowledge encoded in a deep hand-built gram-
mar with a statistical machine translation approach. The approach consists of three
parts:

(a) Algorithms and approaches for processing of DMRS graphs and alignment of
the graphs to source tokens, described in Chapter 3. In addition to the two
tasks considered in this thesis, the algorithms and approaches are useful for
a range of applications taking advantage of DMRS graphs, as discussed by
Copestake et al. (2016).

(b) A graph-to-string synchronous context-free grammar formulation and algo-
rithms for extracting it from a parallel corpus, described in Chapter 4.

(c) A rule application algorithm for applying the SCFG to graphs in decoding and
an adaptation of the decoder by Iglesias et al. (2009) for decoding graphs into
strings utilizing the mechanism of graph coverage, described in Chapter 5.

6http://spark.apache.org/
7Managed by Sun Grid Engine (SGE)
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2. A demonstration that the approach is useful in practice:

(a) as a large-scale machine translation system, demonstrated by applying the ap-
proach to a standard SMT English-German machine translation task, reported
in Chapter 6.

(b) as a robust statistical approach to realization of (D)MRS representations, filling
in the gap where no robust realization alternative currently exists, reported in
Chapter 7.
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Chapter 2

Related Work

The approach presented in this thesis builds on some of the machinery of syntax-based
statistical machine translation (as discussed in Chapter 1). A notable influence on my
approach is hierarchical phrase-based translation (Hiero) introduced by Chiang (2005,
2007). I describe hierarchical phrase-based translation in more detail in subsequent chap-
ters: Hiero rule extraction is described in Section 4.1, while Hiero decoding is described
in Section 5.1. In this chapter, however, I describe other related machine translation and
realization approaches.
A common motivation for syntax-based SMT is to improve on phrase-based SMT ap-
proaches in terms of reordering and long-distance sentence dependencies. Reordering
between source and target languages, particularly between syntactically diverging lan-
guage pairs (e.g., SVO versus SOV in Japanese-English translation), is a weakness of
phrase-based translation systems. Syntax-based SMT approaches address these prob-
lems by modelling the source-side syntax (Liu et al., 2006; Huang et al., 2006; Mi et al.,
2008b), the target-side syntax (Yamada and Knight, 2001; Galley et al., 2006; Marcu
et al., 2006), or both (Cowan et al., 2006; Zhang et al., 2008; Liu et al., 2009). I review
them in Section 2.1.
Following the success of syntax-based SMT approaches, various approaches integrating
deeper linguistic knowledge into SMT have been proposed. Several forms of semantics
have been integrated into SMT systems. For instance, lexical semantics were integrated
in phrase-based (Carpuat et al., 2006) and hierarchical phrase-based (Chan et al., 2007)
translation. Semantic role labelling and predicate-argument structure have been used
to enhance phrase-based (Xiong et al., 2012), hierarchical phrase-based (Gao and Vogel,
2011; Li et al., 2013), tree-to-string (Liu and Gildea, 2008, 2010; Wu et al., 2010b; Aziz
et al., 2011), and string-to-tree (Bazrafshan and Gildea, 2013) translation. I review the
semantics-based SMT approaches in Section 2.2.
Transfer-based machine translation (TBMT) approaches also frequently use semantics,
although in the form of meaning representations. In TBMT the knowledge is encoded via a
combination of hand-crafted and automatically acquired parsing, transfer, and realization
rules. In Section 2.3 I discuss deep-syntax approaches to translation which follow the
transfer-based MT paradigm, but introduce a statistical transfer component. I review the
transfer-based MT approaches using Minimal Recursion Semantics in Section 2.4.
Jones et al. (2012) demonstrated that graph grammars are a promising approach for
semantics-based machine translation. Consequently, I review graph grammar applications

25
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in Section 2.5.
Finally, in Section 2.6, I review notable statistical natural language generation approaches
starting with the seminal work of Knight and Hatzivassiloglou (1995) and Langkilde and
Knight (1998). I particularly focus on related approaches to generation that use statistical
machine translation methodology.

2.1 Syntax-based SMT

In general, syntax-based SMT approaches aim to address deficiencies of phrase-based SMT
systems, including reordering, particularly between syntactically diverging language pairs
(for example, SVO vs. SOV). The syntax-based SMT approaches relevant to the work
presented in this thesis and discussed here are approaches which directly model translation
of or into syntactic structures (such as constituent or dependency trees), instead of using
syntax as an additional feature or model in an otherwise non-syntactic system. There are
several ways of categorizing the wide variety of approaches to syntax-based SMT.1 For
instance, based on the input, we can recognize string-based and tree-based approaches.
The former accept strings as input and simultaneously parse and translate them. One
of the earliest approaches to syntax-based translation is the string-based approach by
Wu (1997), which simultaneously models source and target sentences. Other examples
of string-based approaches include work by Chiang (2005, 2007) (further discussed in
Sections 4.1 and 5.1), Galley et al. (2006) and Shen et al. (2008), discussed further below.
Tree-based approaches instead accept trees as input and translate them either into target
strings (Liu et al., 2006; Huang et al., 2006; Xiong et al., 2007; Mi et al., 2008b) or trees
(Quirk et al., 2005; Ding and Palmer, 2005; Zhang et al., 2008).
Approaches to syntax-based SMT differ based on the formalism they use. Two classes of
formalisms used most often are synchronous grammars and tree transducers. Synchronous
grammars are a generalization of grammars, which generate a pair of strings or trees
simultaneously. Synchronous grammars include inversion transduction grammar (ITG,
used by Wu (1997)) and synchronous context-free grammar (SCFG, used by Chiang (2005,
2007)). The latter, for instance, is a generalization of context-free grammars, generating a
pair of strings instead of a single string. Many approaches, however, trade computational
efficiency for more expressive formalisms. Two popular formalisms are synchronous tree-
substitution grammars (STSG; e.g., used by Eisner, 2003; Zhang et al., 2008; Chiang,
2010; Liu et al., 2009) and synchronous tree-adjoining grammars (STAG; e.g., used by
DeNeefe and Knight, 2009; Liu et al., 2011), which are a generalization of STSG with
tree adjunction. Shieber (2007) argues that STAG formalism is particularly well-suited to
machine translation. An informal review of the SCFG, STSG, and STAG formalisms is
given in Chiang and Knight (2006). Tree transducers are a generalization of Finite State
Transducers. Graehl and Knight (2004) discuss various forms of tree transducers and how
to train them. In particular, tree-to-string transducers (referred to as xRS) are often used
in syntax-based translation (Yamada and Knight, 2001; Eisner, 2003; Marcu et al., 2006;
Galley et al., 2006; Huang et al., 2006). A framework for unifying tree-transducer and
synchronous grammar formalisms was proposed by Shieber (2004, 2006).
Another way of categorizing the syntax-based approaches is based on whether they are
linguistically motivated or not, and if they are, which type of trees they use. Ap-

1This categorization is partially borrowed from Wu et al. (2010b).
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proaches by Wu (1997) and Chiang (2005, 2007) are examples of formally-syntactic but
not linguistically-motivated approaches. Most other work in syntax-based SMT is linguis-
tically motivated, using constituent trees (Marcu et al., 2006; Galley et al., 2006; Liu et al.,
2006; Huang et al., 2006; Mi et al., 2008b; Zhang et al., 2008; Liu et al., 2009) or depen-
dency trees (Lin, 2004; Quirk et al., 2005; Ding and Palmer, 2005; Xiong et al., 2007; Shen
et al., 2008, 2010; Tu et al., 2010). Below, I give more detail on linguistically-motivated
approaches to syntax-based SMT, organised based on the type of tree used (constituent
versus dependency) and directionality (string-to-tree, tree-to-string, tree-to-tree), while
the formalism used is mentioned when appropriate.

2.1.1 String-to-tree translation

One of the earliest approaches to syntax-based translation is the approach by Yamada
and Knight (2001). They describe a translation model that transforms parse trees into
strings. The approach treats translation as a channel of operations in which child nodes
in the source tree are reordered, new words are inserted, and finally the leaf words are
translated. Since the SMT system is based on the noisy-channel model, the decoder using
the above translation model works in the reverse direction of the channel. The decoding
algorithm, presented in Yamada and Knight (2002), therefore builds a target tree based
on an input string (similarly to how a parser builds a parse tree), using the tree-to-string
transducer (xRS) formalism. Translation approaches of this type are often referred to as
string-to-tree (or S2T) translation.
The first syntax-based translation system that outperformed a phrase-based baseline sys-
tem in a large scale evaluation was presented by Marcu et al. (2006). Dubbed SPMT, the
approach translates input strings using translation rules with syntactified target language
phrases to derive target language parse trees. A more expressive approach compared to
SPMT was presented by Galley et al. (2006). They extend the GHKM string-to-tree rule
extraction algorithm introduced by Galley et al. (2004) to extract larger (combined) rules.
Both SPMT and the approach by Galley et al. (2006) use the xRS formalism. Although
the improvements to the GHKM algorithm result in improved performance compared to
the baseline GHKM, the approach achieves significantly worse performance on a large-
scale translation task compared to the SPMT system. DeNeefe et al. (2007) improve
phrasal coverage of a syntax-based translation system compared to a phrase-based sys-
tem by combining the minimal and composed GHKM rules of Galley et al. (2006) with
the SPMT model 1 of Marcu et al. (2006), along with tree binarization of Wang et al.
(2007). DeNeefe and Knight (2009) approach S2T translation by using synchronous tree
adjoining grammar formalism.

2.1.2 Tree-to-string translation

An alternative to string-to-tree translation is tree-to-string translation (T2S), which mod-
els the syntax of the source language instead of the target language. Tree-to-string trans-
lation is performed in two steps: (1) parsing of the input string to obtain a syntax tree,
and (2) decoding the syntax tree with T2S transformation rules. The task of T2S de-
coder is therefore to find the best target string instead of finding the best target tree.
Tree-to-string decoders are often significantly faster than their S2T counterparts (Huang
et al., 2006). Liu et al. (2006) apply tree-to-string alignment templates to transform a
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constituent tree into a target string. T2S alignment templates describe alignment between
a source parse tree and a target string and are used to produce candidate translations in
bottom-up beam search. In contrast, Huang et al. (2006) extend tree-to-string transducers
to recursively convert input trees to strings. Based on lessons from phrase-based decod-
ing, Huang and Mi (2010) significantly improve T2S translation efficiency by developing
an incremental dynamic programming algorithm, making T2S translation 30 times faster
than the Moses phrase-based translation system (Koehn et al., 2007). Liu et al. (2011)
introduce synchronous tree adjoining grammar to T2S translation and cast decoding as a
tree parsing problem, while Xiao et al. (2014) use tree-to-string rules obtained via GHKM
algorithm to complement hierarchical phrase-based rules.
Neubig and Duh (2014) investigated why T2S translation systems are reported to achieve
state-of-the-art performance in some experiments, but lag behind other approaches in
others. They argue that T2S have the potential to achieve high performance, but are
sensitive to peripheral elements of T2S translation. By evaluating several systems on
Japanese-English and English-Japanese translation tasks, they found that parser accuracy,
alignment quality, and search algorithm all have significant effects on the final system
performance. In addition to their findings on the effect of parse quality on T2S translation,
Neubig and Duh (2014) found that using a forest of parse trees instead of 1-best parse
improved the translation performance further. Zhang and Chiang (2012) found that using
a forest improves on T2S translation because it allows the translation system to override
the syntactic constraints imposed by a single tree.
The extension from a single parse tree to a forest of parse trees is referred to as forest-to-
string translation (F2S). Mi et al. (2008b) introduced a translation system that translates
a packed forest containing exponentially many parses (namely, many more than a k-best
list of parses, which contains too few variations). As in T2S translation, F2S decoding
proceeds in two steps: (1) the input is parsed into a packed forest (e.g., a hypergraph),
which is subsequently (2) converted into a translation forest via pattern-matching tech-
niques similar to the ones used in T2S translation. Additionally, forest pruning is used
prior to the conversion to reduce the size of the packed forest. In complementary work,
Mi et al. (2008a) introduce rule extraction from a packed forest representation with the
aim of alleviating the consequences of parsing errors on extracted rule quality. They show
that forest-based rule extraction benefits the performance of tree-to-string and string-to-
tree translation approaches, but achieves the best performance with the forest-to-string
decoder of Mi et al. (2008b) (referred to as the forest-forest system).

2.1.3 Tree-to-tree translation

In tree-to-tree (T2T) translation, source parse trees are mapped to target parse trees. One
of the earliest approaches to T2T translation is by Cowan et al. (2006) in which source
parse trees are broken down into clauses and translated independently in sequence. Eisner
(2003) presented algorithms for tree-to-tree alignment, training, and decoding under the
STSG formalism. Approaches by Zhang et al. (2008) and Chiang (2010) use STSG for
tree-to-tree translation. Liu et al. (2009) pose that tree-to-tree translation approaches
thus far have been underperforming due to parse errors affecting 1-best T2T translation
and poorer rule coverage in comparison to S2T and T2S translation due to the lack of
linguistically-unmotivated mappings. They propose to use packed forests in a forest-based
tree-to-tree translation model using STSG learned from aligned forest pairs. The decoder
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decomposes trees in the source forest while building target forest in parallel. Using this
approach they achieve significant improvement over using 1-best trees (3.6 BLEU points).

2.1.4 Dependency tree translation

Instead of using constituent trees, Lin (2004) describe a model which uses dependency
trees on the source side and their mapping on the target side (i.e., not actual dependency
parses of the target side). The model translates paths in the source dependency tree
into mapped dependency tree fragments on the target side. Similarly to Lin (2004),
treelet translation approach by Quirk et al. (2005) projects the parsed source dependency
structure onto the target sentence in order to extract treelet phrase pairs (treelet is a
connected subgraph of the dependency tree). Using a tree-based reordering model, the
decoder searches for the best combination and ordering of treelet translation pairs in order
to translate the input dependency graph. Instead of projecting the source dependencies
to the target side, Ding and Palmer (2005) uses both source and target dependency trees
to estimate a translation model based on synchronous dependency insertion grammar
(SDIG) and create target-side dependency structures using a non-isomorphic tree-to-tree
transducer.

In contrast to previous dependency translation approaches, dependency treelet string
correspondence (DTSC) approach by Xiong et al. (2007) extends the treelet concept
from Quirk et al. (2005) to map source dependency structures to target strings directly.
Since the previous approaches lack reordering information specified in translation rules
and make up for it with heuristics (Lin, 2004; Xiong et al., 2007) or separate ordering
models (Quirk et al., 2005; Ding and Palmer, 2005), Xie et al. (2011) introduce head-
dependents rules, composed of a head and all its dependents on the source side, which
specify the ordering information directly.

Li et al. (2015) follow the rule extraction approach by Chiang (2007) to estimate a syn-
chronous edge replacement grammar (a graph grammar, further discussed in Section 2.5)
on pairs of edge-labelled dependency graphs and target strings. The converted depen-
dency trees are then translated using the CYK parsing algorithm. Li et al. (2016) present
a graph-based translation model that translates a graph into a string by segmenting the
graph into pieces, rather than extracting a recursive grammar. The source-side graphs
are augmented dependency trees with bigram edges representing the source word order.

Analogous to the difference between T2S and S2T translation, dependency trees can be
built on the target side. SDIG approach by Ding and Palmer (2005), introduced above,
is one such example. Shen et al. (2008) (and later Shen et al. (2010)) introduce string-to-
dependency translation, which builds dependency structures on the target side in a chart
parsing approach modelled after Chiang (2007). Instead of an n-gram language model, the
approach uses a dependency language model during decoding. With similar motivation as
F2S rule extraction by Mi et al. (2008a), Tu et al. (2010) formulate a dependency forest for
string-to-dependency rule extraction and dependency language model estimation, which
improve the string-to-dependency translation approach by Shen et al. (2008).
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2.2 Semantics-based SMT

Following syntax-based approaches to SMT, a number of approaches integrating various
forms of semantics into SMT have been proposed. Dependency graph-based approaches
discussed in Section 2.1.4 are sometimes considered as shallow semantics. Lexical seman-
tics using word sense disambiguation (WSD) were one of the earliest form of semantics
integrated into SMT (Carpuat et al., 2006; Chan et al., 2007; Carpuat and Wu, 2007a,b).
Particularly relevant to the approach presented in this thesis are approaches to SMT using
semantic role labelling as well as approaches using semantic representations of the entire
sentence. I discuss the translation approaches using semantic role labelling (SRL) and
predicate-argument structures (PAS) in Section 2.2.1. Finally, in Section 2.2.2, I describe
approaches to translation using Abstract Meaning Representation (AMR).
(Dependency) Minimal Recursion Semantics used in this thesis (introduced in Section 3.1)
shares similarities with the various forms of semantics discussed in this section. With re-
gards to lexical semantics, MRS representations disambiguate word senses to the extent to
which the senses affect the syntax, whereas WSD approaches disambiguate them further.
Semantic role labelling is the task of finding semantic roles for predicates in a sentence,
such as Agent, Patient etc. PropBank (Palmer et al., 2005) and FrameNet (Baker et al.,
1998) are two types of commonly used semantic roles. Semantic role labelling is closely
related to predicate-argument structures: whereas predicate-argument structure denotes
which predicates and arguments share a relationship, semantic roles denote the type of
relationship between them. Despite the similar naming scheme to PropBank (Palmer
et al., 2005), the notion of roles as used in SRL is somewhat different from the arguments
as used in MRS. On the other hand, an MRS can be written as a predicate-argument
structure. A discussion on the relationship between SRL and MRS and on the potential
addition of semantic roles to MRS can be found in Copestake (2009). In comparison to
MRS, Abstract Meaning Representations are derived non-compositionally and are conse-
quently further abstracted from the sentence syntax than MRS (see Bender et al. (2015)
for a detailed discussion).

2.2.1 Translation with SRL and PAS

Approaches for integrating semantic role labelling and predicate-argument structure infor-
mation into statistical machine translation are motivated by the studies of (1) Fung et al.
(2006), who investigated cross-lingual semantic verb frame argument mappings between
Chinese and English and found that 84% of semantic role mappings remained consistent;
and (2) Wu and Fung (2009b), who investigated potential contributions of semantic roles
to SMT.
Semantic role label information has most often been used to enhance an existing trans-
lation system, as opposed to translating these structures directly. One of the earliest
approaches utilizing SRL, introduced by Wu and Fung (2009a), proposes a two-pass ar-
chitecture in which a phrase-based SMT system first creates a hypothesis, followed by
reordering of the constituent phrases in order to maximize cross-lingual semantic role
label match between the source and target sentences. However, semantic role label in-
formation is more commonly integrated into an existing translation system in the form
of a model used as a feature. Xiong et al. (2012) introduce two discriminative models
of source-side predicate argument structure into a phrase-based translation system: (1)
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predicate translation model uses lexical and semantic contexts to translate verbal predi-
cates; (2) argument reordering model uses various source and target-side features to model
verbal argument reordering between source and target side.
Liu and Gildea (2010) incorporate semantic role information into a tree-to-string trans-
ducer via features modelling reordering and deletion of semantic roles. The target-side
semantic roles are created by projecting source semantic role labels to the target side via
word alignments. Li et al. (2013) present an approach to integrating SRL information
into hierarchical phrase-based translation system. In order to enable the use of semantic
role labels, they constrain the Hiero system with hard syntactic constraints. Similarly
to Liu and Gildea (2010), they project the source semantic role labels to the target side
and model the predicate-argument reordering between them. They integrate the model
into the constrained Hiero as a feature. Li et al. (2014) present a unified framework for
integrating soft linguistic (both syntactic and semantic) reordering constraints into Hiero.
Semantic constraints are based on the predicate-argument structures. The constraints are
incorporated into Hiero as a feature computed during decoding.
In addition to integrating SRL as a feature, SRL can be used to constrain or augment
rule extraction in syntax-based systems. Liu and Gildea (2008) augment the source-side
syntactic trees with semantic roles and use them in a tree-to-string translation system.
Similarly, semantic role labels are added to source-side syntactic trees in the T2S trans-
lation approach by Aziz et al. (2011). Wu et al. (2010b) propose to use deep syntac-
tic information based on an HPSG parse for tree-to-string translation. Their composed
translation rules are extracted based on the predicate-argument structure derived from
the HPSG parser (T2S rule extraction is detailed in Wu et al. (2010a)). Gao and Vo-
gel (2011) integrate SRL into Hiero by extracting SRL-aware SCFG rules in addition to
existing Hiero rules. SRL-aware rules incorporate target-side SRL information in their
non-terminals and take precedence over regular Hiero rules during decoding. Similarly to
the approach by Gao and Vogel (2011), Bazrafshan and Gildea (2013) extend a string-to-
tree SMT approach with semantic role label information by (1) augmenting target-side
syntax trees with semantic role label information before extracting rules with a modified
GHKM algorithm; and (2) extracting rules with the argument structure of a single pred-
icate, in addition to regular S2T rules. They extend their work in Bazrafshan and Gildea
(2014) by extracting the predicate-argument structure rules for both source and target
sides, instead of just target sides. Additionally, they present an SRL language model,
defining a probability distribution over sequences of semantic roles on the target side.
Rather than using SRL for modelling source-target translation and reordering, Haque
et al. (2011) use semantic role labels as source contextual features with the aim of im-
proving source sense disambiguation in a phrase-based system. Furthermore, SRL has
recently been used to encode information about lexical semantic affinities between predi-
cates and their arguments. Tang et al. (2016) use selectional preferences to put semantic
restrictions on verb arguments, based on semantic role labels. Nadejde et al. (2016) in-
troduce a selectional preference feature, modelling selectional preference of verbs on the
target side for their arguments (similar to work by Tang et al. (2016)) and nouns for
their prepositional arguments. Whereas Tang et al. (2016) integrate their model into
a phrase-based system, Nadejde et al. (2016) integrate the feature into a string-to-tree
system.
Instead of incorporating SRL information into an existing translation system, Zhai et al.
(2012) propose a standalone predicate-argument structure translation approach. The ap-
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proach transforms source PAS into target PAS, which subsequently provides the ordering
in which source elements are individually translated. The target PAS can be thought of
as a skeleton translation. The source to target PAS transformation rules are obtained
automatically from bilingual semantic role labelling. Even though the PAS-based trans-
lation approach can function independently, it achieves the best results when combined
with an established translation system. Zhai et al. (2013) extend the PAS-based transla-
tion approach by identifying two types of PAS ambiguities, gap and role ambiguity, and
proposing two methods to aid PAS disambiguation by using additional context.

2.2.2 AMR-based translation

An investigation on the suitability of AMRs as a minimally divergent transfer layer in
machine translation was carried out by Xue et al. (2014), comparing English AMRs to
Chinese and Czech AMRs. They concluded that using AMRs as a transfer layer would
require large and complex entries in the translation dictionary and it may therefore be
more appropriate to use abstract meaning representations just on the source or target
side.
Tamchyna et al. (2015) present an approach to use source-side semantic information in
the form of an AMR graph to rescore the outputs of a phrase-based translation system.
Jones et al. (2012) present a semantics-based approach to machine translation using AMR
(although the approach is flexible in terms of the meaning representation, the only re-
quirement being that it is a directed acyclic graph). The approach uses two synchronous
hyperedge replacement grammars (SHRGs): source SHRG is used to transform the source
language string into a meaning representation graph, while target SHRG is used to trans-
form the 1-best graph into the output string. The SHRG grammars are induced be-
tween surface forms and meaning representation with either of two grammar induction
algorithms presented in the paper. Synchronous hyperedge replacement grammar is an
instance of a graph grammar, which I review in Section 2.5.
Notably, the approach does not rely on graphs containing any alignment information.
Consequently, authors introduce a string-graph alignment algorithm. Similarly, Pour-
damghani et al. (2014) present a generative model and use EM to estimate alignments
between AMR graphs and strings. In contrast, the DMRS string-graph alignment pro-
cedure (described in Section 3.3.3) relies on the source string alignment information as-
sociated with each DMRS node, obtained as a by-product of the compositional parsing
procedure.

2.3 Deep-syntax translation

Lexical Functional Grammar (LFG) is a hand-built deep grammar and is to an extent
similar to the English Resource Grammar used in this thesis. In particular, LFG f-
structures approximate to basic predicate-argument-adjunct structures or dependency
relations (Cahill and van Genabith, 2006). However, MRS representations are more di-
rectly related to the LFG Glue Language / s-structures, since, for instance, f-structures
do not represent scope.
LFG f-structures were used in several transfer-based machine translation approaches. A
TBMT approach commonly consists of three steps: (1) parsing of the source sentence
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into a source meaning representation, (2) transferring the meaning representation into a
target meaning representation, and (3) realizing the target meaning representation into
the target string. Each step of the transfer-based MT pipeline is either fully hand-crafted,
fully statistical, or hybrid. Approaches with a statistical or hybrid transfer step are
relevant to the approach described in this thesis.

Riezler and Maxwell III (2006) present a TBMT approach using the LFG f-structures
with a statistical transfer component and hybrid approaches for parsing and realization
from f-structures. Transfer rules, mapping between dependency feature structures, are
acquired automatically from a parallel corpus. The transfer rules are used in a decoder
modelled after Pharaoh (Koehn et al., 2003), a phrase-based translation decoder. In-
stead of LFG, Bojar and Hajič (2008) describe a deep-syntax translation approach with
a statistical transfer component using the Functional Generative Description (FGD) Tec-
togrammatical layer. Their system is based on the STSG formalism (see syntax-based
SMT approaches in Section 2.1).

Particularly relevant to my work is the f-structure TBMT approach by Graham et al.
(2009) with a statistical transfer component. The decoder uses transfer rules automat-
ically induced from a parallel corpus using a procedure described in Graham and Gen-
abith (2009). Although the approach is unable to surpass a baseline Moses system, it
demonstrates improved performance on subsets of data,2 in particular translation of noun
compounds (Graham, 2012).3

The approach by Graham et al. (2009) shares similarities with the one presented in this
thesis. Namely, both approaches are statistical and use a similar source of monolingual
knowledge (i.e., a hand-built deep grammar). Nevertheless, the approaches differ signifi-
cantly in that Graham et al. (2009) use primarily a transfer-based approach to MT and
methodology, whereas I use statistical MT approach and methodology.4

2.4 Machine Translation with MRS/DMRS

The translation approach described in this thesis is based on (Dependency) Minimal
Recursion Semantics representations (introduced in Section 3.1). Minimal Recursion Se-
mantics was introduced in the context of a transfer-based translation system (Copestake
et al., 1995) and has since been used in several transfer-based and other approaches to
machine translation. I discuss the most notable approaches in this section.

Oepen et al. (2004a) introduce the LOGON initiative, a large-scale effort for high-precision
Norwegian machine translation. The Norwegian-English transfer-based translation system
is comprised of: (1) source-side parsing with a Norwegian LFG grammar and projection

2Although certainly not a toy system, the evaluation in Graham (2012) is conducted on a smaller scale
than in this thesis, using 360 thousand training examples compared to 4.25 million (see Chapters 6 and
7).

3A major problem for the system is generation from flawed representations. Consequently, it may
benefit from using the approach proposed in this thesis as a robust realization system (provided it is
adapted to be used with LFG f-structures). In Chapter 7 I demonstrate its potential as a realization
component in a different transfer-based MT approach.

4In some respects, my approach could be seen as transfer-based MT approach with a joint transfer
and realization component. However, that would diminish the prominence of transfer in transfer-based
machine translation.
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to MRS structures; (2) MRS-based transfer with rewriting rules; and (3) realization of
transferred MRS to English sentences with the ERG. Each of the steps in the transfer
pipeline can produce a number of outputs (e.g., a few hundred). Since the fan-out combi-
natorics are potentially prohibitive for exact exploration, n-best lists are considered after
each step. The rule-based components in the translation system are used to produce
grammatically and semantically coherent translations, whereas the ranking of competing
hypothesis is seen as a probabilistic task. Under that premise, Oepen et al. (2007) use
ranking models after every step of the transfer pipeline. While they use an existing parse
selection model, they describe new models for ranking of transfer outputs and target re-
alizations. Finally, they introduce a discriminative model for end-to-end reranking of the
complete list of candidate translations.
Building on the transfer infrastructure of the LOGON project, Bond et al. (2005) present
a fully open-source proof-of-concept Japanese-English MT system. Unlike in the work by
Oepen et al. (2004a), however, the source language sentence is parsed using the HPSG-
based JACY grammar (Siegel, 2000; Siegel et al., 2016), instead of using an LFG-based
grammar. The resulting MRS representations are transferred using a small set of hand-
constructed transfer rules and a small transfer lexicon. The English MRS representations
are realized with the ERG. Nichols et al. (2007) extend the work of Bond et al. (2005) on
Japanese-English translation by introducing several additions: (1) using reranking models
of outputs at all steps as proposed by Oepen et al. (2007); (2) automatically obtain open-
class transfer rules from a bilingual dictionary; and (3) combining the rule-based approach
with an SMT system (Moses) to improve system robustness. Bond et al. (2011) describe
further development efforts on the open-source Japanese-English translation and compare
its performance to a phrase-based translation system. In addition to obtaining open-
class transfer rules from bilingual dictionaries (as in Nichols et al. (2007)), they obtain
them from parallel corpora using Moses-generated phrase tables (in total, the system uses
105,000 automatically obtained transfer rules). The method for rule construction from
parallel corpora is described by Haugereid and Bond (2012).
Instead of a transfer-based approach, approaches by Wang et al. (2012), Simov et al.
(2015), and Simov and Osenova (2016) all use parts of (R)MRS analysis to enhance a
factor-based statistical machine translation approach for Bulgarian-English and/or English-
Bulgarian translation.

2.5 Graph grammars

Hyperedge replacement grammars (HRG) are a generalization of context-free grammars to
hypergraphs. Like synchronous context-free grammars, synchronous hyperedge replace-
ment grammars used by Jones et al. (2012) are an extension of HRGs with source and
target side for every rule. Drewes et al. (1997) give a comprehensive survey of HRGs,
while Bauer and Rambow (2016) study some of their limitations. In addition to machine
translation, SHRGs have also been used for parsing strings into meaning representation
graphs (Chiang et al., 2013; Peng et al., 2015).
HRG and SHRG are examples of (context-free) graph grammars, which are more powerful
and versatile than their string counterparts. However, the price of higher expressiveness
is increased computational complexity (Drewes et al., 2015). Consequently, approaches
in natural language processing that use graph grammars are usually evaluated on a small
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scale. For example, (1) Jones et al. (2012) evaluated their approach on an English-Chinese
translation task using GeoQuery data (Tang and Mooney, 2001; Lu and Ng, 2011), with
880 parallel sentences, 280 of which were used for evaluation; (2) Jones et al. (2013)
evaluate their approach to automatic extraction of HRGs on 5564 elementary semantic
dependency graphs (Oepen and Lønning, 2006) taken from the LOGON portion of the
Redwoods corpus (Oepen et al., 2004b) (like DMRS, elementary semantic dependency
graphs are derived from Minimal Recursion Semantics representation); (3) Peng et al.
(2015) evaluate their SHRG parsing approach on 2132 sentences with 3955 training and
2132 development sentences.

Despite the fact that the applications of graph grammars, like in examples above, of-
ten go significantly beyond toy example demonstrations, they are far removed from the
large-scale evaluations commonly conducted in statistical machine translation and pre-
sented in this thesis (see Chapters 6 and 7). Nonetheless, graph grammars are part of an
active research area on formal models of graph transformation whose major focus is im-
proving efficiency of graph grammar algorithms. A recent seminar titled “Formal Models
of Graph Transformation in Natural Language Processing” brought together researchers
in graph transformation and researchers in natural language processing in order to “as-
sess the state of the art, identify areas of common interest, and pave the way for future
collaborations” (Drewes et al., 2015).

A linguistically-motivated graph grammar formalism is s-graph grammars. Koller and
Kuhlmann (2011) introduced interpretable regular tree grammars (IRTGs) that gener-
alize over existing formalisms, including synchronous context-free grammars and tree
transducers. The IRTG formalism is extended by Koller (2015) to the synchronous case of
mapping between strings and graph-based semantic representations. The new formalism
is called s-graph grammar. The author shows its potential use for graph-based composi-
tional semantic parsing (or as they refer to it, construction). Notably, Groschwitz et al.
(2015) use s-graph grammars and present two algorithms for realization of strings from a
graph meaning representation. They evaluate the approach on a small-scale task of 1562
AMR-sentence pairs.

Braune et al. (2014) contrasts three formalisms for capturing the relation between se-
mantic graphs and English strings: (1) synchronous hyperedge replacement grammars,
(2) DAG-to-tree transducer (D2T), and (3) cascade-to-tree transducer (Cascade). They
manually constructed grammars to parse into and generate from 10,000 automatically
constructed graphs. They found that Cascade needed fewest rules and D2T the most. All
approaches performed well in terms of generation coverage (100%) and accuracy, but less
so with parsing coverage (around 5%). They conclude that the number of required rules
remains too high and that none of the formalisms elegantly captures the full complexity
of the dataset, especially for the parsing task.

2.6 Statistical realization

In this section I review some notable statistical realization approaches, but focus in partic-
ular on the realization approaches that take advantage of machine translation machinery.
A more extensive review of statistical approaches to realization can be found in Velldal
(2007).
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The seminal work that spurred statistical approaches in the natural language generation
field was the Nitrogen system by Knight and Hatzivassiloglou (1995) and Langkilde and
Knight (1998). The Nitrogen system operates in two stages, first generating all possible
sentences from a given semantic representation, encoded in a word lattice, followed by
selecting the best one using an n-gram language model. Langkilde (2000) improves its per-
formance by replacing the word lattice with a more compact forest structure. Langkilde-
Geary (2002) introduce Halogen, the successor to Nitrogen, which uses the same two-stage
approach as Nitrogen but improves on it in several aspects. The input to the Nitrogen
and Halogen system are Abstract Meaning Representations, a precursor to modern-day
AMR (Banarescu et al., 2013).
In terms of methodology, the work presented in this thesis is perhaps closest to Cahill and
van Genabith (2006) whose PCFG system for robust probabilistic realization is based on
approximations to an LFG automatically extracted from a treebank. The approach by
White (2004) performs realization from logical form inputs with a chart-based algorithm
employing a grammar. In this respect it is similar to the established MRS realization
approach which also employs chart-parsing with a grammar (Carroll et al., 1999).
Statistical machine translation approaches have previously been employed for tactical
generation. Wong and Mooney (2007) propose three methods for tactical generation
from formal meaning representations based on statistical machine translation on a limited
domain (RoboCup and GEOQUERY datasets): (1) using a phrase-based SMT system
on linearised parse trees, (2) inverting an SMT-based semantic parser based on SCFG,
and (3) a hybrid of the first two approaches. A related approach by Lu and Ng (2011)
adapts the SCFG formalism for realization from logical forms (typed lambda calculus).
White (2011) investigates an approach which has some similarities to the one proposed
in this thesis, using MT-style glue rules for robustness in conjunction with a realizer
based on CCG. However, his approach is directed at patching up failed realizations. In
the approach proposed by Flanigan et al. (2016), the AMR graph is transformed into a
spanning tree and subsequently decoded into a string using a tree-to-string transducer
and language model. The approach is trained on the pairs of treebanked AMR graphs
and corresponding strings. A competing approach by Pourdamghani et al. (2016) instead
learns to linearise AMR graphs into strings and subsequently uses a standard phrase-
based machine translation system for realization. The approach improves significantly on
the performance by Flanigan et al. (2016).
Due to the significant differences between meaning representations used (in terms of their
structure and the degree to which they pre-determine their natural language realizations),
the realization evaluation methodology is not as standardised. The first surface realiza-
tion shared task (Belz et al., 2011) was an attempt to standardise the surface realization
evaluation in order to accelerate the progress in surface realization approaches. Unfortu-
nately, the task did not succeed in setting a standardised evaluation methodology (Belz
et al., 2012).



Chapter 3

Semantic data modelling

In the first part of this chapter I introduce the Dependency Minimal Recursion Seman-
tics (DMRS), a semantic representation of a sentence that I use throughout the thesis.
DMRS is a directed acyclic graph with nodes corresponding to predicates and edges rep-
resenting the relationships between them. DMRS was introduced by Copestake (2009)
as an easy-to-read and easy-to-use alternative to Minimal Recursion Semantics (MRS)
representation (Copestake et al., 1995, 2005). DMRS and MRS representations are inter-
convertible between each other without any loss of information. MRS representations are
grounded in formal logic, such as predicate calculus. The standard method of obtaining
an MRS or DMRS representation of a sentence is via parsing using a hand-crafted gram-
mar. The grammar used in this thesis is the broad-coverage English Resource Grammar
(ERG; Flickinger, 2000). In Section 3.1 I provide a more detailed introduction to MRS,
DMRS, and related concepts.
DMRS was designed to include all semantically related information that can be derived
from syntax and morphology. However, not all information present in the representation
is useful for its applications. Moreover, some information may harm system performance.
Consequently, MRSs are often transformed for use in applications in an application-
specific way (for example, Herbelot and Copestake (2006); Bond et al. (2011); Packard
(2014); Yin et al. (2014)). In the second part of this chapter I describe three methods
for transforming DMRS graphs in order to make them more suitable for use with the
statistical machine translation approach and translation and realization tasks considered
in this thesis. The methods include node and edge labelling, grammar predicate filtering,
and removal of cycles in the underlying undirected graph. The latter two methods are,
by design, lossy and result in DMRS graphs which cannot be converted back into MRS
form. I describe the methods in detail in Section 3.2. Although the methods were de-
signed to make the DMRS graphs more suitable for the statistical machine translation
approach and translation and realization tasks, they have potential to be used in other
application-specific modelling of DMRS graphs. This is substantiated by their inclusion
in the pydmrs library released alongside the publication by Copestake et al. (2016).
The statistical machine translation approach proposed in this thesis is trained on a par-
allel corpus of examples. Specifically, a synchronous context-free grammar (described in
Chapter 4) is extracted from training examples consisting of a source-side DMRS graph
(after modelling), a target-side tokenized sentence, and the alignment between the two.
In the final part of this chapter I describe the methods for creating an alignment between
the DMRS graph nodes and sentence tokens. The alignment between the two is based on
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the alignment information provided as a result of parsing, but needs to be transformed
into a form more suitable for the statistical machine translation approach. In particular,
the original alignment is based on a different tokenization scheme and omits semantically
empty words. Furthermore, the alignment needs to be extended to the target-side lan-
guage for the translation task, which is accomplished using statistical word alignment. I
describe both source-side and target-side alignment in detail in Section 3.3.

3.1 Dependency Minimal Recursion Semantics

Minimal Recursion Semantics (MRS) is a framework for computational semantics
introduced by Copestake et al. (1995) and formally described in Copestake et al. (2005).
MRS was designed to be a tractable representation for large-scale parsing and realization,
while not sacrificing expressiveness. It provides flat semantic representations that enable
underspecification and can be integrated with grammatical representation in a number
of frameworks. Dependency Minimal Recursion Semantics (DMRS), introduced
by Copestake (2009), is an alternative representation inter-convertible with MRS. It has
minimal redundancy in its structure and was developed for the purpose of readability and
ease of use for both humans and computational applications. While MRS and DMRS
have been used in a wide variety of grammars, I concentrate here on the output by the
English Resource Grammar (ERG, Flickinger (2000)). The descriptions and examples in
this section and throughout the thesis will use the 1214 version of ERG.
In the remainder of this section I describe MRS (Section 3.1.1) and DMRS (Section 3.1.2)
in more detail using an example sentence. I conclude by briefly describing the English
Resource Grammar and parsing in Section 3.1.3.

3.1.1 Minimal Recursion Semantics

MRS is a meta-language for describing semantic structures in some underlying object
language: the object language usually discussed and used here is predicate calculus with
generalized quantifiers. To illustrate MRS, consider the sentence shown in (1) and the
corresponding (simplified) MRS in (2):

(1) No generally accepted formal definition of algorithm exists yet.

(2) LTOP: l2,
INDEX: l2,
RELS: < l4:_no(x, h7, _), l8:_general(e1, e2), l8:_accept(e2, _, x),
l8:_formal(e3, x), l8:_definition(x, y), l5:udefq(y, h6, _),
l3:_algorithm(y), l2:_exist(e4, x), l2:_yet(e5, e4), >
HCONS: < h7 =q l8, h6 =q l3 >

The main part of the MRS representation is the RELS list containing a bag of elementary
predications (EPs). Each EP has an associated label: for example, l8: _definition(x,
y) has label l8. Predicates corresponding directly to word lemmas are indicated with a
leading underscore. The other class of predicates are grammar predicates (sometimes
referred to as gpreds), which are used to convey additional information about the existing
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predicates. For example, udefq is a placeholder quantifier used in absence of other quan-
tifiers. udefq(y, h6, _) in (2) is used for that purpose for the bare singular algorithm.
Local top (LTOP) is the topmost label in the MRS that is not the label of a quantifier.
Index (INDEX) is an important feature in HPSG (as described in Pollard and Sag (1994)),
which, at sentence level, points to the syntactic head of the sentence, which is nearly always
the main verb of the sentence. In (2), both LTOP and INDEX point to the same label,
l2, associated with l2:_exist(e4, x) and l2:_yet(e5, e4) elementary predicates.
Finally, HCONS is a set of constraints which relate labels to argument ‘holes’ in quantifiers
and other scopal predicates. For example, _no_q(x, h7, _) is a scopal predicate whose
hole is denoted as h7. The constraint h7 =q l8 therefore specifies a qeq relationship
between h7 and l8.
In order to explain qeq constraints and underspecification, let’s examine (3), which shows
the scoped readings of (1) in the underlying object language:

(3) a. udefq(y, _algorithm(y), _no(x, _general(e1, e2) ∧ _accept(e2, _, x) ∧ _for-
mal(e3, x) ∧ _definition(x, y), _exist(e4, x) ∧ _yet(e5, e4)))

b. _no(x, udef(y, _algorithm(y), _general(e1, e2) ∧ _accept(e2, _, x) ∧ _for-
mal(e3, x) ∧ _definition(x, y)) _exist(e4, x) ∧ _yet(e5, e4))

To show the relationship between these structures and MRS, first observe that through
nesting of arguments each reading forms a tree, and that elements at each level of the tree
are always combined with conjunctions. The root of the tree corresponds to the topmost
quantifier. The MRS representation uses a list of predications instead of the explicit
conjunction. An element can be added to each predication to express its position in the
tree: this is the MRS label. Instead of expressing the relationship between the quantifier
(or other scopal predicate) and its arguments by embedding, MRS uses a ‘hole’ argument
to the quantifier and equates it to a label, as shown in (4):

(4) l5:udefq(y, h6, l4), h6=l3, l4:_no(x, h7, l2), h7=l8,
l8:_general(e1, e2), l8:_accept(e2, _, x), l8:_formal(e3, x),
l8:_definition(x, y), l3:_algorithm(y), l2:_exist(e4, x),
l2:_yet(e5, e4)

Specifying an LTOP and putting the hole-label equalities into HCONS results in what is
now formally an MRS. However, the MRS only corresponds to the first reading shown
in (3). Scope underspecification in MRS is a generalization of the trees corresponding to
the different scopes, maintaining the constraints between the elements via qeq constraints
(=q, equality modulo quantifier) between hole arguments and labels. Intuitively, a qeq
constraint, h =q l, enables one or more quantifiers to float between the label l and handle h.
Replacing the equalities with qeq constraints in the example above underspecifies scope,
giving the MRS shown in (2), and allowing both readings shown in (3).
Robust Minimal Recursion Semantics (RMRS) is a modified MRS representation
that in addition to underspecification of scope allows underspecification of relational in-
formation (Copestake, 2007). Namely, in RMRS, arguments (ARGs) are represented as
distinct elements and can be omitted or underspecified.
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The transformation process between MRS and RMRS splits off most elementary predicate
arguments and uses anchors (denoted with a) to relate EPs and ARGs. For example,
l8:_accept(e2, _, x) from (2) becomes l8:a4:_accept(e2) and ARG2(a4, x). Notice
that ARG0 of each EP is not split off. The ARG0 specifies a unique relationship between a
variable and its associated EP. For example, in (2), variable x is uniquely associated with
EP _definition(x, y). The full RMRS of (2) is shown in (5):

(5) LTOP: l2,
l4:a0:_no, BV(a0, x), RSTR(a0, h7), BODY(a0, _), h7 =q l8
l2:a1:_exist(e4), ARG1(a1, x)
l2:a2:_yet(e5), ARG1(a2, e4)
l8:a3:_general(e1), ARG1(a3, e2)
l8:a4:_accept(e2), ARG2(a4, x)
l8:a5:_formal(e3), ARG1(a5, x)
l8:a6:_definition(x), ARG1(a6, y)
l5:a7:udefq, BV(a7, y), RSTR(a7, h6), BODY(a7, _), h6 =q l3
l3:a8:_algorithm(y)

3.1.2 Dependency Minimal Recursion Semantics

A DMRS representation of a sentence is a directed acyclic graph (DAG) with elementary
predicates as nodes. It is constructed from a RMRS representation by combining three
subgraphs: (1) label equality graph, connecting EPs with shared labels; (2) handle-to-
label qeq graph, connecting handles and labels; and (3) variable graph, connecting EPs
with their arguments. I describe each in turn below.
As described in the previous section, two (or more) elementary predicates sharing a label
indicates a conjunction between them. For example, in (5), four EPs share the label
l8. The Label equality graph shows the conjunction relationships between nodes
representing elementary predicates. The label equality graph for RMRS in (5) is shown
in Figure 3.1a. Notice that a conjunction between n EPs results in n(n− 1)/2 undirected
edges (Copestake, 2009).
The second graph is the hole-to-label qeq graph indicating the qeq constraints between
holes and labels. Given a qeq constraint between a hole and a label, a directed edge
connects the node with a hole to a node with the specified label. If several nodes share
the label, a directed edge is created to each of them. In (5), there are two qeq constraints.
Its hole-to-label qeq graph is shown in Figure 3.1b.
The final graph is the variable graph, which shows the argument relationships between
nodes representing EPs. An argument relationship between an EP and a variable is
represented as a directed edge between the EP and variable’s uniquely associated EP (via
its ARG0, described in Section 3.1.1). For example, ARG1(a5, x) specifies a directed
edge, labelled with ARG1, between l8:a5:_formal(e3) and EP associated with variable
x, which is l8:a6:_definition(x). The variable graph of (5) is shown in Figure 3.1c.
The DMRS graph is constructed by combining the three graphs described above. As label
equality and hole-to-label qeq graphs contain redundant edges, a deterministic method is
used for selecting the edges to keep in the final DMRS representation. Since the variable
graph does not contain redundancies, it is used to guide the selection:
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(a) DMRS label equality graph.

(b) DMRS handle-to-label qeq graph.

(c) DMRS variable graph.

(d) Final DMRS graph after merging separate graphs.

Figure 3.1: Construction of DMRS graph for sentence “No generally accepted formal definition
of algorithm exists yet.” from MRS representation. First, three graphs are constructed from
MRS: (a) label equality, (b) handle-to-label qeq, and (c) variable graphs. The final DMRS
graph, shown in (d), is the result of combining the three graphs and deterministically removing
redundant edges.

1. If the merged graph contains both a label equality and variable edge between a pair
of nodes, the two edges are combined. The label of the combined edge has the form
ARG/EQ (for example, two edges between _formal_a_1 and _definition_n_of_3_sg
become one, labelled as ARG1/EQ). Note that since label equality edges are undi-
rected, the resulting edges maintain direction of variable edges.

2. Remaining label equality edges are tested for transitivity and removed if found to
be redundant. This removes most remaining label equality edges. The exceptions
yield undirected /EQ edges, which I address in Section 3.2.3.

3. Variable graph edges that do not have a matching label equality edge are la-
belled as ARG/NEQ (for example, ARG1/NEQ between _definition_n_of_3_sg and
_algorithm_n_1_3_sg).

4. Hole-to-label qeq and variable graph edges are combined and labelled as ARG/H.
Redundant hole-to-label qeq edges are removed by selecting a head among nodes
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sharing the same label and removing all edges that do not connect to it (for example,
RSTR/H edge is kept between _no_q and _definition_n_of_3_sg, but not between
_no_q and other nodes).

Merging of the three graphs and removing redundant edges results in the final minimally-
redundant DMRS graph. The DMRS graph for our example is shown in Figure 3.1d.

3.1.3 MRS in English Resource Grammar and parsing

Minimal Recursion Semantics was primarily designed to be used with grammars developed
within a typed feature structure formalism, but is not specific to it (Copestake et al., 2001).
MRS is therefore framework-independent. For example, MRS could be used with cate-
gorial grammars encoded in feature structures (Copestake et al., 2005). However, MRS
is most often used with a Head-driven Phrase Structure Grammar. Head-driven Phrase
Structure Grammar (HPSG; Pollard and Sag (1994)) is a heavily-lexicalized unification-
based grammar, which uses typed feature structures to encode syntactic information.
The English Resource Grammar (ERG, Flickinger (2000)) is a broad-coverage grammar
of English written in the HPSG framework. Copestake et al. (2005) define how MRS
can be represented as a feature structure and used in ERG as a semantic representation,
alongside other feature structures representing syntax.
An HPSG feature structure representation of a sentence is created using a parser employ-
ing unification to combine lexical and phrasal feature structures. MRS representation of
a sentence is therefore constructed compositionally in parallel with the syntactic analysis
of a sentence. I use the ACE parser (Packard, 2016a) with the ERG in order to parse
sentences for translation and realization tasks. Parsing settings and parsing coverage
statistics are described in experimental setup sections in Chapters 6 and 7.
During parsing, the parser keeps track of the parts of the sentence covered by individual
predicates. Therefore, each predicate in an MRS (see Section 3.1.1), and consequently
each DMRS node (see Section 3.1.2), has an associated character span in the original
(source) sentence. Later in the chapter, I use predicate character spans in order to obtain
source alignments in order to construct training examples (see Section 3.3.1).

3.2 DMRS graph modelling

MRS (and consequently DMRS) was designed to include all semantically related informa-
tion that can be derived from syntax and morphology. However, not all information pre-
sented in a representation is useful for its applications. Moreover, some information may
harm system performance. Consequently, MRSs are often transformed for use in applica-
tions in an application-specific way (for example, Herbelot and Copestake (2006); Bond
et al. (2011); Packard (2014)). The same is true for DMRS graphs used for translation
and realization with statistical machine translation approaches presented in this thesis.
In this section I therefore describe three methods that are used to modify a DMRS graph
in order to make it more suitable for algorithms presented later in the thesis, including
rule extraction (Section 4.2), rule application (Section 5.3), and decoding (Section 5.4).
These methods, by design, result in DMRS graphs that cannot be converted back into
MRS.
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In Section 3.2.1 I introduce node and edge labels which condense semantic features as-
sociated with each node and edge into a single label. Node and edge labels are used by
subsequent algorithms (including the ones listed above) as the definition of the graph.
Some node semantic features are discarded when creating a label as they are not useful
for translation and realization tasks and their inclusion would result in more fine-grained
labels, leading to sparsity of the extracted grammar.

In Section 3.2.2 I introduce grammar predicate filtering that removes certain types of
grammar predicate nodes from DMRS graphs that do not contribute information useful
for translation and realization. Reducing the size and complexity of the graph by removing
these nodes helps both decoding and rule extraction algorithms in terms of computational
efficiency and grammar sparsity respectively.

Finally, in Section 3.2.3 I introduce graph cycle removal that breaks cycles in the under-
lying undirected DMRS graph. Although rule extraction and rule application algorithms
can operate on graphs with such cycles in them, they are not able to decompose these
cycles into smaller units. Therefore, I describe a cycle breaking algorithm and accompa-
nying heuristics that break the cycles in the underlying undirected graph by choosing to
remove an edge whose removal will cause the least semantic information to be lost.

3.2.1 Node and edge labelling

Each node in a DMRS graph (introduced in Section 3.1) is associated with many pieces of
information. For example, a node representing a noun predicate may include information
about predicate lemma, part-of-speech class, predicate sense, person, and number. Algo-
rithms presented in subsequent chapters need an efficient way of comparing whether two
nodes are the same. In the case of rule application (presented in Section 5.3), knowing
whether a node of a rule in a grammar is the same as the node of the input sentence is
the first step in deciding whether a rule can be used to decode the given input graph.
In order to efficiently compare nodes and edges, I introduce node and edge labels, which
enable direct comparison of strings (or integers if encoded as ids).

The information included and excluded from a label has an important effect on grammar
quality. For example, including every piece of information associated with a node in a
label will result in a grammar that does not generalize well. Such a grammar will contain
a large number of rules that apply to few input DMRS graphs, causing parts of input
graphs to be undecodable. On the contrary, excluding important information from the
label will result in a grammar that generalizes too much. The resulting grammar will
contain fewer rules that apply to many input DMRS graphs, causing incorrect decoding
of those graphs. Consequently, information included in node and edge labels is of vital
importance and was chosen in order to be suitable for translation and realization tasks.

In the first part of this section I will describe the available node information and the node
label composition. The final part of the section will define edge labels.

The available DMRS node properties are presented in Table 3.1. I recognize two dis-
tinct classes of nodes: real predicate and grammar predicate nodes. The general label
composition for real predicate nodes is:

_lemma_pos_sense
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Property Description
Predicate
lemma Predicate lemma, for example ‘stand’ for verb ‘standing’.
pos Part-of-speech class, for example verb, noun, adjective/adverb, preposi-

tion, and quantifier.
sense Predicate sense, for example ‘for’ for verb ‘standing (for election)’.
gpred Indicating a grammar predicate.
carg Constant argument, stores predicate symbols of numbers, named entities,

etc., which are not stored in the lexicon. For example, ‘56’ and ‘Mark’.
Nominal features
gend Gender, namely ‘m’, ‘f’, and ‘n’.
ind Individuated (boolean), corresponds roughly to the notion of countabil-

ity.
num Number, namely ’sg’ and ’pl’.
pt Pronoun type, for example standard and reflexive.
pers Person, namely first, second, third.
Tense, aspect, and mood
tense Verb tense, for example present, past, future, and untensed.
perf Perfective versus imperfective (boolean) aspect.
prog Progressive versus nonprogressive (boolean) aspect.
mood Mood and modality, corresponding to opinions/attitudes of the speaker,

for example indicative and subjunctive.
Sentential features
sf Sentence force, for example proposition, question, and imperative.

Table 3.1: Node property descriptions and their availability across different node types. For
some properties additional values exist when they are underspecified, for example ‘m-or-f’ and
‘prop-or-ques’.

Examples of such labels include: _on_p_temp (temporal preposition ‘on’, e.g., ‘on Tues-
day’), _illegal_a_for (adjective ‘illegal’), and _the_q (quantifier ‘the’). Note the ab-
sence of sense information in the quantifier example. In the case of missing node proper-
ties, they are simply ignored when constructing the label.1

The general label composition for a grammar predicate node is:

carg_gpred

Examples of grammar predicate labels include: compound (joining two parts of a com-
pound), neg (denoting a negation), and 8_card (cardinal number ‘8’).
Below I define more granular labels for some classes of real and grammar predicate nodes:

1Although the general real predicate label composition is identical to the label composition typically
used in Minimal Recursion Semantics, the two should not be confused. The subsequent label compositions
discussed in this section differ from the ones used in Minimal Recursion Semantics.
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1. _lemma_pos_sense_pers_num for noun predicates (pos=‘n’). The default value of
pers and num if not specified is ‘3’ and ‘sg’ respectively. Examples:
_chemistry_n_1_3_sg (‘chemistry’), _instrument_n_of_3_pl (‘instruments’).

2. _lemma_pos_sense_tense_sf_perf_prog for verb predicates (pos=‘v’). The de-
fault value for sf is ‘prop’. Examples: _fill_v_1_past (‘filled’), _happen_v_1_pres_ques
(question ‘(what) happens’).

3. carg_gpred_num for noun-like grammar predicates. Examples: USA_named_n_sg
(‘USA’), person_sg (for example corresponding to ‘everyone’), winter_season_sg
(‘winter’).

4. gpred_pers_num_gend for pronoun grammar predicates. Examples: pron_3_sg_n
(‘it’), pron_2 (‘you’), pron_2_sg (‘yourself’).

Some of the node properties in Table 3.1 are omitted from these definitions despite their
relative importance in English (for example, pronoun type and individuated boolean (pt
and ind in Table 3.1)) due to the trade-off between grammar precision and sparsity
(discussed above). The node properties used were determined based on their perceived
relative importance to translation and realization and small-scale qualitative experiments
evaluating their effect.
Compared to node label composition, edge labels are straightforward. DMRS edge labels
have two parts: (1) rargname is the argument name (e.g., ‘ARG1’), and (2) post represents
MRS label equality, qeq, etc. (e.g., ‘EQ’). Both properties correspond to the underlying
DMRS subgraphs, discussed in Section 3.1.2. The edge label is a composition of the two
properties:

rargname/post

Examples of edge labels include: ARG1/NEQ, RSTR/H, and L-INDEX/NEQ.

3.2.2 Grammar predicate filtering

In this section, I introduce grammar predicate filtering. Grammar predicate filtering is
the task of removing certain types of grammar predicates which are unlikely to be useful
in realization or translation, in order to improve decoding performance and reduce data
sparsity. The grammar predicate classes to filter were identified manually and are filtered
only when their removal would not result in a disconnected graph.
Grammar predicates, introduced in Section 3.1.1, are a class of over one hundred differ-
ent predicates occurring in different contexts. They are used by the grammar to convey
additional information about lexicalized predicates. For example, a common grammar
predicate is compound, which has the purpose of connecting two parts of a proper name
or a noun-noun compound (e.g., connecting predicates ‘Walter’ and ‘White’ in Figure 3.2);
proper_q is a quantifier for proper names when they are not explicitly quantified (e.g.,
‘Walter White finds cooking fun.’ shown in Figure 3.2 versus ‘The Walter I saw yester-
day.’); nominalization indicates that a non-noun predicate is being used as a noun (e.g.,
indicating that ‘cooking’ is used as a noun in ‘Walter White finds cooking fun.’); udef_q



46 3.2. DMRS GRAPH MODELLING

Figure 3.2: Example of compound, proper_q, nominalization, and udef_q grammar predicates
(gpreds) in the sentence ‘Walter White finds cooking fun.’

is a ‘placeholder’ quantifier in absence of other quantifiers (occurs twice in ‘Walter White
finds cooking fun.’). The DMRS graph of the example sentence is shown in Figure 3.2.
Each of the four grammar predicate examples is highlighted in turn.
Grammar predicate nodes make the DMRS graph larger and introduce additional com-
plexity, which has negative consequences on translation and realization: (1) larger graph
size increases the computing resources and time required for decoding (demonstrated in
Section 5.7); and (2) additional complexity increases data sparsity in the extracted gram-
mar (described in Chapter 4).
In order to alleviate this problem, I constructed a set of grammar predicates to filter based
on their purpose and their value to translation and realization tasks. Most commonly
filtered grammar predicates include:

1. udef_q - Shown in example above, udef_q is inserted by the grammar if there are
no other quantifiers present (described in Section 3.1).

2. pronoun_q - pronoun_q is a quantifier for pronouns.

3. proper_q - Shown in example above, proper_q is a quantifier for proper names
when they are not explicitly quantified.

4. ellipsis - Signifies a gap in a sentence (e.g., ’Marie doesn’t know when’ [...]), but
often occurs due to a misparse.

As can be seen from their descriptions, these predicates either do not add information
that could be used for realization or translation or they introduce additional noise in the
data that has the potential to harm realization or translation. The manually constructed
set of grammar predicates to filter includes 30 out of 108 types of grammar predicates.
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Figure 3.3: DMRS of sentence ‘Walter White finds cooking fun.’ after grammar predicate
filtering. Note the reduced size and simplified structure.

I list the full set of filtered grammar predicates in Appendix A.1. Below I describe the
algorithm used for filtering.
FilterGpred(G,F ) is an algorithm that removes grammar predicates from graph G if

Alg. 3.1they occur in the filter set F .

1. (Initialize the list of nodes to filter.) Set NF ← [ ].

2. (Find nodes to filter.) For each node ni in G, append ni to NF if ni is a gpred node
and its gpred type is in F .

3. (Remove nodes from graph.) For each node ni in list NF , test if its removal would
create a disconnected graph. If it does not, remove from graph G node ni and any
edge starting or terminating at ni.

4. (Return.) Return filtered graph G.

The result of filtering grammar predicates from example in Figure 3.2 is shown in Fig-
ure 3.3. Filtering removed 4 grammar predicate nodes (two udef_q and two proper_q
nodes), reducing the size of the DMRS (node set) by 36%. Before filtering, rule applica-
tion algorithm (described in Section 5.3) extracted 36 different rule source sides for the
example sentence. After filtering, it extracts 19, a reduction of 47% which greatly helps
the grammar data sparsity. Evaluating its effect on dataset level, filtering reduced the
average number of grammar predicates per sentence from 7.25 to 3.47 (evaluated on 1774
sentences of filtered newstest2013 dataset, introduced in Chapter 6).

3.2.3 Graph cycle removal

Semantic representations, including DMRS and AMR representations (Banarescu et al.,
2013), often model sentence semantics as a directed acyclic graph. However, in addition to
DMRS representations being directed acyclic graphs, they are often polytrees. A polytree
is a directed acyclic graph whose underlying undirected graph is a tree (Rebane and Pearl,
1987). That is, many DMRS graphs would be acyclic even if their edges were undirected.
In DMRS representations, cycles in underlying undirected graphs arise due to the variable
graph, described in Section 3.1.2 (the exception are cycles caused by undirected /EQ edges,
discussed below). They are often used to model specific phenomena (such as control).
The polytree property of DMRS graphs is important because of the requirements of
rule extraction and rule application algorithms described in Sections 4.2 and 5.3. These
algorithms can operate on directed acyclic graphs, but are not able to decompose the cycles
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(a) Conjunction index/handle cuug. Note that outgoing edges R-INDEX/NEQ and
R-HNDL/H of node _and_c form a cuug via _be_v_id_pres and neg nodes.

(b) By removing the R-INDEX/NEQ edge, the cuug is broken.

Figure 3.4: An example of conjunction index/handle cuug in sentence “And that’s not all.”.

in underlying undirected graph into more fine-grained rules. Therefore, it is beneficial to
make every DMRS graph a polytree.

In this section, I describe the approach for converting DMRS directed acyclic graphs into
polytrees. The algorithm recognizes the most common phenomena that cause cycles in the
underlying undirected graph and breaks them by removing an edge. These phenomena are
targeted with individual heuristics in order to remove as little semantic information from
the DMRS graph as possible. A general cycle breaking strategy removes the remaining
cycles. In the remainder of this section, I will refer to a cycle in the underlying undirected
graph as cuug. Below, I show the examples of five most common phenomena causing
cuugs in DMRS and describe the heuristic for breaking them.

Firstly, conjunction index/handle cuug occurs with conjunction nodes which have one
or two pairs of outgoing edges, for example: R-INDEX/NEQ and R-HNDL/H, and L-INDEX/NEQ
and L-HNDL/H. Pairs of edges essentially occur due to notation overloading in the gram-
mar, where a single type of conjunction node may be used in multiple contexts. An
example of a cuug when one such pair connects to two different nodes is shown in Fig-
ure 3.4a. The cuug breaking heuristic removes the INDEX edge, for whichever pair of edges
is part of the cuug. In the example, R-INDEX/NEQ edge is removed, making the resulting
graph shown in Figure 3.4a acyclic.

EQ cuug occurs due to the presence of an undirected /EQ edge (see Section 3.1.2) in the
DMRS graph. The heuristic for breaking the cuug removes the /EQ edge. An example of
an EQ cuug is shown in Figure 3.5a, while its acyclic version is shown in Figure 3.5b.

Control is a construction in which the subject of a non-finite clause is understood to be
the same as the controller. Take sentence “Singapore seeks babies to save its economy” as
an example. ‘Singapore’ is the controller, that is the understood subject, of the non-finite
clause ‘save its economy’. In DMRS, a control construction is represented with a cuug.
The DMRS of the example sentence is shown in Figure 3.6a. The cuug is broken by
removing the edge between the non-finite clause predicate (_save_v_1) and the controller
subject (Singapore_named_sg). The resulting acyclic graph is shown in Figure 3.6b.

Small clause is a construction similar to control, which has a clause without an overt
verb. Like control, small clause constructions are represented with cuugs in DMRS. An
example of a small clause DMRS is shown in Figure 3.7a. The cuug breaking heuristic
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(a) EQ cuug. Note that /EQ edge forms a cuug via _complete_a_1,
_explain_v_1_pres, and neg nodes.

(b) By removing the /EQ edge, the cuug is broken.

Figure 3.5: An example of EQ cuug in sentence “Some are also completely unexplained.”.

(a) Control cycle between nodes _in+order+to_x, _save_v_1,
Singapore_named_sg, and _seek_v_1_pres.

(b) By removing the ARG1/NEQ edge between Singapore_named_sg and _save_v_1,
the cuug is broken.

Figure 3.6: An example of control cuug in sentence “Singapore seeks babies to save its economy”.

(a) Small clause cuug between nodes _place_v_1_pres, _in_p, and pron_1_pl.

(b) By removing the ARG1/NEQ edge between _in_p and pron_1_pl, the cuug is
broken.

Figure 3.7: An example of small clause cuug in sentence “We’re well placed in the ranking.”.
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(a) Verb or adjective conjunction cuug between nodes _or_c, _win_v_1,
_war_n_1_3_sg, and _lose_v_1_pres.

(b) By removing the longer edge ARG2/NEQ edge between _win_v_1 and
_war_n_1_3_sg, the cuug is broken.

Figure 3.8: An example of verb or adjective conjunction cuug in sentence “A war that is neither
lost or won”.

removes the edge between the matrix verb and its subject. The resulting example graph
is shown in Figure 3.7b.

Finally, verb or adjective conjunction cuug occurs with a conjunction of two verbs or
adjectives referring to the same subject. The cuug is broken by removing one of the two
edges between the verbs/adjectives and the subject. In the case of translation, the longer
edge (spanning most aligned source tokens, described below) of the two is removed. In
the case of realization, a random choice is made between the two. A different strategy is
used for realization because source tokens are not available (this corresponds to the use
of different default breaking strategies between the tasks, explained below). An example
with a conjunction of two verbs is shown in Figure 3.8a and resulting acyclic graph in
Figure 3.8b.

The five heuristics described above are used by the graph cuug removal algorithm to
iteratively remove cuugs from a graph. The algorithm is described below.

CuugRemoval(G) is an algorithm that removes cycles from the underlying undirected
Alg. 3.2 graph of G to make G a polytree.

1. (Remove cuugs until none are left.) While G contains a cuug:

(a) Detect type of cuug in the following order: (1) conjunction index, (2) eq edge,
(3) control, (4) small clause, and (5) verb or adjective conjunction.

(b) When a cuug type is detected, attempt to break it using the corresponding
heuristic (described above).

(c) If none of the above types of cuug are detected, break it with the default cuug
breaking strategy.

(d) After the cuug is broken, execution proceeds to another loop iteration.

2. (Return.) Return G with no cuugs in underlying undirected graph.
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The five cuug types listed in statement (1a) correspond to the five cuug breaking heuristics
discussed above. The remaining cuugs are broken with a default cuug breaking strategy.
The default strategy differs between translation and realization approaches. In the case
of translation, all edges forming the cuug are collected and the longest edge is removed
in order to break the cuug. For graph G = (V,E), I define edge length as:

len(e) = min
ti∈A(vi),tj∈A(vj)

|index(ti)− index(tj)| (3.1)

where vi and vj are elements of V and incident to edge e, e ∈ E. A(v) returns the set
of tokens aligned to node v and index(t) returns the position of token t in the source
sentence. The alignment of nodes to source sentence tokens is discussed in Section 3.3.1.
For now, suffice to say that each node can be aligned to multiple tokens of the source
sentence. The edge length is therefore computed as the minimum token distance between
a pair of source tokens, each aligned to one of the vertices connected by the edge.

The translation default cuug breaking strategy is a proxy for preserving local semantic
information in favour of semantic dependencies between more distant parts of the sentence.
However, the source sentence token information is not available in realization, where the
starting point is the DMRS graph on its own. A simplified default cuug breaking strategy
for realization considers all edges forming the cuug and breaks the edge going to the most
modified node. For graph G = (V,E), I define node modification count as:

mod_count(v) =
∣∣∣E−(v)

∣∣∣ (3.2)

where E−(v) denotes the set of incoming edges to node v, v ∈ V . The target node
modification count resembles the edge length as more modified nodes will tend to be
further away in the original source sentence. The goal is therefore again to preserve local
semantic information in favour of semantic dependencies between more distant parts of
the sentence.

In Table 3.2 I show the statistics of cuug occurrence on a set of 2830 sentences. Around
half of sentence DMRS graphs contain at least one cuug. The most common phenomenon
are EQ cuugs, occurring in 28.6% of all sentences and accounting for 41.1% of all cuugs.
The five heuristics for specific phenomena break 82.9% of all cuugs; the remaining 17.1%
cuugs are broken with the default strategy.

Finally, I demonstrate the result of cuug breaking algorithm on a DMRS of sentence
“She saw some things there and came out stronger.” shown in Figure 3.9a. The DMRS
graph contains three cuugs shown in different colours. The algorithm first breaks cuugs
1 and 2 by detecting them to be conjunction index cycles and using the corresponding
heuristic. This removes edges L-INDEX/NEQ between nodes _and_c and _see_v_1_past,
and R-INDEX/NEQ between nodes _and_c and _come_v_out_past. The third cuug is a
verb or adjective conjunction cuug with two verbs referring to the same subject. How-
ever, the cuug cannot be broken with the corresponding heuristic because of the subord
node preventing its detection. Therefore the final cuug is broken with the default cuug
breaking strategy, which removes edge ARG1/NEQ between nodes _come_v_out_past and
pron_3_sg_f, based on its distance between the corresponding tokens. The resulting
acyclic graph is shown in Figure 3.9b.
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cuug type % sentences % cuugs
Conj. index/handle 9.6 11.8
EQ 28.6 41.1
Control 11.8 14.5
Small clause 4.0 4.6
Verb or adj. conj. 9.4 10.9
Other (default) 12.6 17.1
All 49.2 100.0

Table 3.2: Occurrence of cuugs types on a set of 2830 sentences (newstest2013 described and
used in Chapters 6 and 7 for tuning, consisting of 3000 sentences, 170 of which did not produce
a parse). Sentence column gives a percentage of sentences containing at least one cuug of a given
type. Cuug column gives the proportion of cycles of that type out of a total of 2,496 detected
(and broken) cuugs.

(a) DMRS graph before cycle removal with three cuugs, shown in red, green, and blue.

(b) DMRS graph (polytree) without cuugs, after three edges are removed.

Figure 3.9: DMRS graph for sentence “She saw some things there and came out stronger.” (a)
before and (b) after cycle removal.

3.3 Alignment

In statistical machine translation, alignment refers to the problem of determining the
links (alignments) between words in source language and words in target language that
are translation equivalent. SMT alignment usually forms the first step of training an
SMT system and is required for extracting a phrase table or a grammar. In the approach
presented in this thesis, rule extraction (described in Section 4.2) is a procedure used
for extracting rules from pairs of aligned DMRS graphs and tokenized sentences. In this
section I therefore consider the problem of aligning nodes of a DMRS graph to sentence
tokens.

In Section 3.3.1 I describe the problems of and solutions to source alignment, which is con-
cerned with aligning DMRS nodes to a tokenized source sentence. I additionally discuss
the issues of punctuation. In Section 3.3.2 I describe an approach to obtain source-target
alignments, which are necessary for translation rule extraction. Source-target alignments,
between DMRS nodes and target sentence tokens, are obtained by extending source align-
ments to target tokens by using SMT alignments. Finally, in the background Section 3.3.3,
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Figure 3.10: Alignment between DMRS and untokenized source sentence as obtained by ERG
parsing procedure. Note that each alignment is a character span over the sentence.

I describe the problem of alignment in statistical machine translation and common ap-
proaches used to solve it.

3.3.1 Source alignment

Source alignment refers to the problem of determining alignments between DMRS nodes
and tokens of the source sentence (i.e., the sentence that was parsed to obtain the DMRS
graph). In the case of realization, source alignments are used directly for rule extraction;
in the case of translation, they are extended to target side via SMT alignments (described
in Section 3.3.2).
Nodes of a DMRS graph include partial information about their alignment to the source
sentence already. Namely, the character range of the untokenized source sentence is
known for each node of the graph, obtained as a by-product of the ERG parsing procedure
(introduced in Section 3.1.3). In order to obtain full alignments to source sentence tokens,
three problems need to be solved: (1) misalignment between ERG-style tokenization and
Penn Treebank (PTB) style tokenization; (2) unaligned source tokens; and (3) excessive
grammar predicate alignments. Below, I address each of the problems in turn. I conclude
the section with a discussion of punctuation.
An example of the ERG character range alignments to an untokenized sentence is shown
in Figure 3.10. The character ranges of each node over an untokenized source sentence
implicitly define an ERG tokenization of the source sentence. As it is evident from the
example figure, ERG-style tokenization differs from the more common PTB-style tok-
enization in several ways, as discussed by Fares (2013):

1. Most punctuation marks are treated as pseudo-affixes to words instead of being
tokenized off as it is common in PTB-style tokenization. This can be seen in the
alignment of _trade_n_of node to string ‘trade.’

2. Hyphens and slashes can introduce token boundaries (e.g., ‘open-’, ‘source’).

3. Contracted negations are not tokenized off. We can observe this in the alignment
of nodes _be_v_id and neg to the same string ‘wasn’t ’.

4. ERG treats some multi-word expressions as a single token (e.g., ‘ad hoc’).

Although ERG-style tokenization has its strengths (Fares, 2013), it is not well suited to
the domain of statistical machine translation. For example, consider the token ‘trade.’
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Figure 3.11: Alignment between DMRS and PTB-style tokenized source sentence, obtained by
relating provided ERG-style tokenization to PTB-style tokenization. Note that each alignment
is a single link between a node and a token.

listed as an example above. In order to translate such a token using SMT methods,
an exact occurrence of it needs to be seen in the training data. Even in the case that
a sentence ending in ‘trade.’ occurs in the training data, it is likely that the aligned
target string, for example ‘Handel’ in German, will not occur at the end of sentence. The
aligned token will therefore not include the full stop and the extracted rule will delete it
altogether. PTB-style tokenization is more suitable to the domain of SMT, as it separates
the full stop into a standalone token, allowing for easier token reordering between the two
languages and extracting fewer rules. Despite these disadvantages, ERG tokenization has
features that could benefit translation: splitting of hyphenated words and treating multi-
word expressions as a single token. In the solution I describe below, these features are
preserved.
The goal of source alignment is aligning DMRS nodes to a PTB-style tokenized source
sentence. In the first step, the alignments are created using the existing character spans
associated with each node. I relate the two styles of tokenization with an algorithm that
first matches nodes that align to a single token and then uses that information to align
nodes with multiple tokens. The algorithm’s token match between the two tokenization
style is achieved without respect to whitespace, capitalization, and punctuation differ-
ences. An additional degree of difference between the two tokens is allowed with the
use of the Levenshtein distance. The result of this algorithm for the example introduced
above is shown in Figure 3.11.
Note, however, that in Figure 3.11 some tokens, namely ‘to’ and ‘at’, are not aligned to any
node. In fact, they were not included in any node’s character span in Figure 3.10 either.
These tokens, referred to as null semantics items or contentless lexical entries, as their
name implies do not carry semantic meaning on their own and are therefore not aligned
to any node (however, contentless lexical entries may contribute to semantics of other
predicates, for example influencing their tense, e.g., auxiliary have). Their treatment in
MRS is in line with the usual practice in formal semantics (Copestake et al., 2005).
However, regardless of their paucity of meaning, a realization system needs to realize
such words alongside semantically meaningful ones in order to produce fluent output; were
unaligned words missing, source-target alignment for translation described in Section 3.3.2
would fail to create alignments necessary to produce equivalent words on the target side.
Therefore, it is necessary to find suitable alignments for all unaligned tokens. I describe
a heuristic approach below. Note that ERG faces the same problem (Carroll et al., 1999)
and that our heuristics were initially developed from corresponding rules found in ERG
(known as trigger rules).
The approach uses heuristics associated with most common unaligned token strings to
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Figure 3.12: Alignment between DMRS and PTB-style tokenized source sentence, additionally
extended with alignment to previously unaligned tokens (shown in red).

decide which node the unaligned token should be aligned to:

1. If an applicable heuristic function exists for an unaligned token (for example, a
heuristic function for aligning do), it is used to determine its alignment. If no
applicable heuristic functions exist, the token remains unaligned.

2. Adjacent unaligned tokens are considered first as a unit (for example, has been,
much rather), before they are considered as individual tokens.

3. A heuristic alignment function attempts to align a token to a node, which is already
aligned to tokens to its left or right. An alignment is created if the node matches
the set of criteria defined by the function. For example, the heuristic function for
aligning token ‘do’ attempts to align it to a verb node in present tense, aligned
to the nearest token to its right; the heuristic function for aligning ‘much rather’
attempts to align it to a conjunction node with lemma ‘rather+than’, aligned to the
nearest token to its right.

The heuristic alignment functions were manually defined in an iterative process where I
qualitatively evaluated their performance on a set of sentences. The result of aligning
previously unaligned tokens of the example introduced above is shown in Figure 3.12.
The final problem of source alignment relates to excessive grammar predicate alignments.
In rule extraction, alignments constrain which group of nodes (i.e., subgraph) aligned
to a sequence of nodes can be extracted as a rule (detailed description is provided in
Section 4.2). Consequently, when a node is aligned to a large number of tokens, it harms
the ability of the rule extraction algorithm to extract effective rules.
An example of such a node can be seen in Figure 3.12 with nominalization. As described
in Section 3.2.2, a nominalization grammar predicate indicates that a non-noun predicate
is being used as a noun. As such, it is aligned to the sequence of tokens ‘reducing illegal
drug trade .’ Due to constraints imposed by its alignments, rules for token sequences
‘trade’, ‘drug trade’, and ‘illegal drug trade’ cannot be extracted by the rule extraction
algorithm.
The type of alignment behaviour we observed above only occurs with certain types of
grammar predicates. As a somewhat crude solution, I limit the maximum number of
tokens that a grammar predicate can be aligned to to three.2 If a grammar predicate
aligns to more than three tokens, all of its alignments are removed. The result of this

2The maximum number of tokens that a grammar predicated can be aligned was determined qualita-
tively in a small experiment of 100 sentences.
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Figure 3.13: Alignment between DMRS and PTB-style tokenized source sentence, with removed
alignments for the grammar predicate nominalization.

alignment filter for our example is shown in Figure 3.13 and represents the final state of
source alignments for the example sentence.

Finally, I conclude this section with a discussion on the topic of punctuation. In the
description of the first problem of source alignment, the mismatch between ERG and
PTB-style tokenization, I noted the difference in how the two tokenization styles handle
punctuation. Punctuation is not explicitly represented in DMRS graphs in the form
of nodes and is instead attached as a pseudo-affix to the preceding token (a discussion
on punctuation in ERG can be found in Adolphs et al. (2008)). As discussed above,
such handling of punctuation is undesirable for rule extraction in most SMT systems as
it harms extraction of rules in general. Consequently, the solution to the first problem
ignores punctuation when matching between tokens in the two tokenization styles, leaving
the punctuation tokens unaligned. This can be seen in the final aligned Figure 3.13, where
the full stop at the end is not aligned to any node.

Handling of punctuation in such a way has the downside of extracting fewer rules deal-
ing with punctuation and negatively impacts the performance of the system. However,
unaligned (punctuation and other) tokens occurring in between aligned tokens are still
extracted as part of the encompassing rule, meaning that in many cases internal punctu-
ation is dealt with sufficiently. The bigger problem are punctuation tokens at the end of
the sentence, for many of which no rules are extracted. A simple solution to this problem
is a post-processing step which attaches end punctuation accordingly.

Additionally, I explored an alternative approach to dealing with punctuation, which was
used in Horvat et al. (2015). In the alternative approach, the DMRS graph was augmented
with punctuation nodes, which were attached to the nodes aligned to the preceding token
in the source sentence. The approach treads the line of using information that should
not be available at decoding time - attaching punctuation nodes to existing nodes based
on source sentence information - but can be seen as a post-parsing step to make the
punctuation information explicit in the graph. The strength of the approach is that it
makes the punctuation position in realization very clear and easy to reproduce. The
downside of the approach is that it is less useful for translation, as it does not allow
for reordering of punctuation tokens in the target language. In fact, punctuation tokens
could only appear in a translation next to tokens which correspond to tokens which had
punctuation next to them in the source sentence. Due to these limitations, I instead opted
for the more straightforward solution described above.
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(a) Alignment between DMRS and source sentence tokens, and SMT alignments between source
and target sentence tokens.

(b) Extended alignment between DMRS and target sentence tokens.

Figure 3.14: Extending source alignments to target sentence tokens using SMT alignments for
example in Figure 3.13.

3.3.2 Source-target alignment for translation

Source alignment, described in the previous section, creates alignments between DMRS
nodes and source sentence tokens. Source alignments are sufficient to create training
examples for realization rule extraction. In order to extract translation rules, however,
alignments between DMRS nodes and target sentence tokens are needed.

I propose a simple approach that takes advantage of source alignments and of alignments
between source and target language sentence tokens. The latter are referred to as word
alignments in statistical machine translation and are obtained using an unsupervised
approach such as Expectation Maximization. I describe the word alignment problem and
common approaches to it in the following section (Section 3.3.3).

The translation alignments are obtained by extending the source alignments, from DMRS
nodes to source tokens, to target tokens via the word alignments. The example from pre-
vious section (Figure 3.13) combined with word alignments is shown in Figure 3.14a. The
resulting alignments between DMRS nodes and target tokens are shown in Figure 3.14b.

3.3.3 Alignment in SMT

In the previous section, I described how the alignments between DMRS nodes and target
sentence tokens are obtained for the translation task training examples. The procedure
requires alignments between source and target language sentence tokens, referred to as
word alignments in statistical machine translation. In this background section, based on
the paper by Och and Ney (2003), I describe the word alignment problem and the most
common approaches to solving it.
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The alignments between two sentences can be complicated. They can include reorderings,
omissions, insertions, and one-to-many relationships. Generally, alignment between two
sequences of words (in source and target language) can be defined as a subset of the
Cartesian product between their word indices. However, word alignments are commonly
restricted with the additional condition that each source word is aligned to exactly one
target word.
The seminal work on word alignment by Brown et al. (1993) (IBM Models 1-5, described
below) models translation process with word alignment as a hidden variable. Their mod-
els belong to the class of statistical word alignment approaches. In statistical models,
alignment is introduced as a hidden variable to the standard translation probability:

Pr(fJ1 | eI1) =
∑
aJ

1

Pr(fJ1 , aJ1 | eI1) (3.3)

where an alignment maps source position j to target position aj and f and e denote source
and target words.
Although linguistic knowledge can be considered for word alignment, most commonly
used word alignment approaches in SMT are language agnostic. The only requirement
is a sentence-aligned bilingual corpus with sentences segmented into words. However,
morphology needs to be considered in morphologically rich languages in order for word
alignment to be successful (Och and Ney, 2003). The remainder of this section focuses
on statistical word alignment models.
The difference between most commonly used statistical models is in how they decom-
pose the probability Pr(fJ1 , aJ1 | eI1) in Equation 3.3. The Hidden Markov Alignment
Model decomposes the probability into three parts: length, alignment, and lexicon prob-
abilities. It introduces two assumptions: (1) first-order dependence for alignments (i.e.,
alignment probability only conditions on one previous alignment), and (2) lexicon prob-
ability depends only on the aligned word:

Pr(fJ1 , aJ1 | eI1) = p(J | I)
J∏
j=1

p(aj | aj−1, I)p(fj | eaj
) (3.4)

where J and I correspond to length of target and source sentences respectively.
Whereas HMM uses first-order dependence, Models 1 and 2 use zero-order dependence.
Model 1 assumes a uniform distribution for alignments (which means that word order
does not affect them):

Pr(fJ1 , aJ1 | eI1) = p(J | I)
(I + J)J

J∏
j=1

p(fj | eaj
) (3.5)

In Model 2, word order does affect the alignment probabilities:

Pr(fJ1 , aJ1 | eI1) = p(J | I)
J∏
j=1

p(aj | j, I, J)p(fj | eaj
) (3.6)

Models 3, 4, and 5 are fertility-based alignment models with a more complicated structure
than Models 1 and 2. Fertility-based models include a probability modelling that a target
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word is aligned to a certain number of source words (its fertility). Fertility-based models
are described using inverted alignments (from target to source), with the requirement
that all positions of the source sentence must be covered exactly once (allowing source
words to be aligned to the empty word). Models 3-5 define inverted alignment probability
distribution with increasing complexity. For brevity, I omit the alignment probability
definition of Models 3-5 (an intuitive description and definition can be found in Och and
Ney (2003)).
Models 3 and 4 are deficient: the probabilities of all valid arguments do not sum to
one. Model 5 is therefore a reformulation of Model 4 with a refined alignment model
that avoids deficiency. Och and Ney (2003) point out an interesting similarity between
the HMM alignment model and Model 4: “HMM predicts distance between subsequent
source language positions, whereas Model 4 predicts distance between subsequent target
language positions.” In summary, the alignment models described above differ mainly on:
(1) alignment model (zero- or first-order dependence), (2) fertility model they use, and
(3) whether they are deficient.
Computing the best alignment (Viterbi alignment) has polynomial complexity for Models
1, 2 and the HMM alignment model (Vogel et al., 1996). However, the task is infeasible
for Models 3-5. Instead, Model 1 or 2 Viterbi alignment is greedily improved with the
refined model in order to obtain pseudo-Viterbi alignment. The statistical model param-
eters (probabilities) are estimated using maximum-likelihood approach by applying the
Expectation Maximisation algorithm (Baum, 1972). The models are usually trained in
succession on the same data: final parameters of a previous model are used as a starting
point for the next model by weighing its alignments.
Finally, I address the restriction of allowing each source word to align to exactly one word.
As observed by Och and Ney (2003), this restriction results in a systematic loss of recall.
The solution is to train alignments in both translation directions and combine the two
sets of alignments. Two common methods of combining alignments are intersection and
union. Union has lower precision but higher recall (the opposite is true for intersection),
which is preferable for SMT and is consequently most commonly used.
In this thesis I use the HMM model in both directions, whose alignments are subsequently
combined via union, for aligning source and target words (see Section 6.2).
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Chapter 4

Rule extraction

A synchronous context-free grammar (SCFG) employed by hierarchical phrase-based trans-
lation(Hiero; Chiang, 2005, 2007) is used in decoding of a previously unseen input as a
resource from which rules applicable to the input are drawn from. It serves a similar
purpose as a phrase table in phrase-based translation (Koehn et al., 2003). A Hiero
SCFG is extracted automatically from a large sentence-aligned parallel corpus. Rules
extracted from training examples and conforming to Hiero constraints are subsequently
aggregated to form the SCFG. Each training example consists of a source- and target-side
sentences and the word alignment between them (statistical word alignment is described
in Section 3.3.3). I review the Hiero SCFG and rule extraction in more detail in the
background Section 4.1.
Unlike string inputs and outputs of Hiero, the inputs to the statistical machine trans-
lation approach discussed in this thesis are DMRS graphs. Consequently, the standard
string-based synchronous context-free grammar employed by Hiero and the associated rule
extraction algorithms are insufficient for the proposed approach. In the second part of the
chapter I describe (1) the adaptation of the string-based synchronous context-free gram-
mar formulation to accommodate DMRS graphs on the source side and (2) the associated
rule extraction algorithm.1 The rule extraction algorithm extracts a set of graph-to-string
rules from a single training example, consisting of a source-side DMRS graph, a target-side
token sequence, and the alignment between them (see Chapter 3). The rule extraction
algorithm proceeds in two stages. It starts by finding semantic subgraphs of the source-
side DMRS graph and constructing terminal graph-to-string rules from those subgraphs.
It then proceeds to create non-terminal rules by iteratively subtracting terminal rules
from other rules. The extracted rules are subject to a set of rule constraints modelled
after Hiero rule constraints that ensure that they are faithful to the training example, are
useful for translation and realization tasks, and can be used tractably by the decoding
algorithms described in Chapter 5. The adapted graph-to-string SCFG and the associated
rule extraction algorithm are described in Section 4.2.
The rule extraction algorithm is task-agnostic: it extracts rules for both translation and
realization tasks in exactly the same way. The difference between the two tasks is in the
provided training example. The source-side DMRS graph is in a different language than
the target token sequence for the translation task, whereas they are in the same language
for the realization task.

1An initial version of the adapted SCFG and the rule extraction algorithm was described in Horvat
et al. (2015).

61



62 4.1. HIERARCHICAL PHRASE-BASED RULE EXTRACTION

In order to extract a grammar that is capable of producing high quality translations and
realizations, rules are extracted from millions of training examples. Extracted rules are
subsequently aggregated to form a synchronous context-free grammar. However, graph-
to-string rule aggregation poses a challenge. Determining the equality of a pair of graphs is
known as the graph isomorphism problem. I address the problem by proposing a heuristic
solution to the related problem of graph canonization.
The decoder uses a log-linear model to select the best translation or realization of an input
DMRS graph (see Section 5.4.3). The log-linear model relies on rule features in order to
make that decision. In addition to the standard set of SMT rule features, I define rule
type indicator features based on the DMRS structure in the rules’ source-side graphs. I
describe grammar construction and rule features in more detail in Section 4.3.
I conclude this chapter by analysing the grammars extracted by the proposed rule extrac-
tion and grammar construction approach. I extract a number of translation and realiza-
tion grammars with a range of training set sizes. I analyse and compare the extracted
grammars in terms of their size, rule counts, and rule types. I describe the experiment
setup and report the results in Section 4.4.

4.1 Hierarchical phrase-based rule extraction

Hierarchical phrase-based translation (also referred to as Hiero) is an approach to trans-
lation that builds on phrase-based translation by introducing the concept of hierarchical
phrases. It was initially introduced by Chiang (2005) and expanded by Chiang (2007).
Hiero served as an inspiration and a starting point for the graph-to-string translation
and realization approaches described in this thesis. In this background section I therefore
describe the hierarchical phrase-based grammar and how it is extracted. In a similar vein,
I describe the hierarchical phrase-based translation decoder in Section 5.1.
Hierarchical translation in Hiero is based on a synchronous context-free grammar for-
malism. Namely, hierarchical phrase pairs are formally productions of a synchronous
context-free grammar. Synchronous context-free grammar (SCFG) is a generaliza-
tion of a context-free grammar (CFG) that generates pairs of token sequences instead of a
single token sequence. SCFGs were originally developed for compilation of programming
languages (Lewis and Stearns, 1968; Aho and Ullman, 1969), but have been found to be
useful for applications in natural language processing, such as machine translation (Chi-
ang and Knight, 2006). Hiero SCFG consists of rewrite rules with an aligned pair of
right-hand sides:

X → 〈γ, α,∼〉 (4.1)

where X is a non-terminal symbol, γ and α are source and target sequences of terminal
and non-terminal tokens, and ∼ represents a one-to-one correspondence between non-
terminal symbols in γ and α (shown as co-indexation). Two additional rules, called glue
rules, allow Hiero to function similarly to the phrase-based translation model by combining
hierarchical phrases sequentially, which improves its robustness:

S → 〈S0X0, S0X0〉
S → 〈X0, X0〉

(4.2)
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A single non-terminal type, X, is used in Hiero (in addition to the start symbol, S, used
in glue rules) as opposed to using many types of non-terminals as in some syntactic CFG
parsing approaches (e.g., VP, NP). Shallow-n grammars are an extension to Hiero which
introduce additional (linguistically uninformed) non-terminal types into Hiero SCFG in
order to reduce overgeneration and adapt the grammar complexity to specific language
pairs (Iglesias et al., 2009; de Gispert et al., 2010).

The Hiero SCFG is an automatically extracted grammar, not based on any linguistic
intuitions. Hiero rules are extracted from a word-aligned corpus of triples (f, e,∼), where
f is the source sentence, e is the target sentence, and ∼ is the word alignment between
them (word alignment was described in Section 3.3.3). Hiero rule extraction is a two
step process. Firstly, initial phrase pairs consisting of terminals only are identified from
a triple (f, e,∼) so that (1) they contain at least a pair of aligned tokens and that (2) no
token in the initial phrase is aligned to a token not contained in the phrase. Secondly,
rules are constructed from the initial phrase pairs and non-terminal phrase pairs, which
are constructed by finding phrases that contain other phrases and replacing them with
non-terminal symbols.

The above rule extraction procedure results in a large volume of extracted rules. The
large volume of rules has the negative consequence of slowing down training and decod-
ing. Additionally, it results in spurious ambiguity, which is the case when the grammar
produces many alternative derivations which have the same target sides and feature vec-
tors. Spurious ambiguity makes decoding more expensive due to the need to consider
increased volume of alternative derivations and is detrimental to model tuning (described
in Section 5.6) due to reduced number of distinct hypotheses. In order to avoid these
problems, additional constraints are applied to the extracted rule set. These are:

1. A rule must contain at least one token on each side to ensure it is based on some
lexical evidence.

2. A rule must not contain unaligned tokens at the edges of the phrase pairs.

3. The length of initial phrases is limited to 10 tokens on both sides.

4. Rules are limited to five tokens (including non-terminal symbols) on the source side.

5. Rules can contain at most two non-terminal symbols (X0 and X1).

6. Adjacent non-terminals on the source side are prohibited.

The hierarchical phrase-based decoder uses a log-linear model defined over derivations D
to choose the best derivation (i.e., the best sequence of SCFG rules):

P (D) ∝ PLM(e)λLM ×
∏

(X→〈γ,α〉)∈D
w(X → 〈γ, α〉) (4.3)

where PLM(e)λLM is the language model score, (X → 〈γ, α〉) is a rule in derivation D,
and w(X → (γ, α)) is a function that assigns a weight to a rule using rule features (but
excluding the language model feature):



64 4.2. RULE EXTRACTION

w(X → 〈γ, α〉) =
∏
i 6=LM

fi(X → 〈γ, α〉)λi (4.4)

where fi is a rule feature function and λi is the corresponding rule feature weight.
The model uses the language model probability and rule features to make its prediction.
The following rule features are used by Hiero: bidirectional phrase probabilities P (γ |
α) and P (α | γ), lexical weights Pw(γ | α) and Pw(α | γ), rule penalty exp(−1) (so
that a preference for longer or shorter derivations can be learned), and word penalty
exp(−#T (α)) (counting the number of terminal tokens, so that a preference for longer
or shorter outputs can be learned). Additionally, there is a penalty feature for glue rules,
exp(−1).

4.2 Rule extraction

The goal of rule extraction is to produce a Synchronous Context-Free Grammar (SCFG)
consisting of rewrite rules of the form:

r = X → 〈g, e,∼〉 (4.5)

where r is either a terminal or non-terminal rule, X is the non-terminal left-hand side, g
is a partial DMRS graph, e is a sequence of tokens, and ∼ is a one-to-one correspondence
between non-terminal occurrences in g and e. The partial DMRS graph g, g = (V,E),
consists of nodes and edges. The frontier node vf , vf ∈ V , is the node which replaces a
non-terminal node when the rule is applied hierarchically.
Examples of translation and realization terminal and non-terminal rules are shown in
Figure 4.1. The one-to-one correspondence between source and target-side non-terminals,
∼, is shown implicitly via the non-terminal co-indexation between source and target sides,
while the frontier nodes are shown in bold.
The rule extraction algorithm extracts rules such as the ones shown in Figure 4.1 from
a sentence triple 〈G,E,∼〉, where G is a DMRS graph, E is a token sequence, and ∼ is
the alignment between them. A sentence triple 〈G,E,∼〉 is the result of DMRS graph
modelling and alignment, described in Sections 3.2 and 3.3 respectively. An example
realization input sentence triple is shown in Figure 4.2. Observe that both rules shown
in Figure 4.1b were extracted from the sentence input in Figure 4.2.
A graph-to-string SCFG derivation begins with a pair of non-terminals - a non-terminal
node on the source side and a non-terminal symbol on the target side. In a single derivation
step, a rule, such as the ones shown in Figure 4.1, is used to replace a non-terminal on
both sides. On the source side a non-terminal node is replaced with the frontier node
of the rule’s partial DMRS graph. On the target side, the corresponding non-terminal
symbol is replaced with the rule’s target token sequence. An example derivation is shown
in Figure 4.3. Since the graph-to-string SCFG is used to derive only the target-side strings
in this thesis, the frontier nodes are not computed by the rule extraction algorithm and
are omitted from subsequent example rules shown in this chapter.
The rule extraction algorithm extracts rules from a sentence triple by: (1) finding suit-
able (semantic) subgraphs of the input graph; (2) constructing terminal rules from those
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(a) Example of a terminal (top) and non-terminal (bottom) translation rule.

(b) Example of a terminal (top) and a non-terminal (bottom) realization rule.

Figure 4.1: Examples of terminal and non-terminal translation and realization rules. In the
remainder of the chapter I show only realization rules as examples.

Figure 4.2: An example sentence triple 〈G,E,∼〉 of DMRS graph, token sequence, and alignment
between them, used as an input to the rule extraction algorithm.

subgraphs; (3) iteratively subtracting terminal rules from other rules (both terminal and
non-terminal) to create non-terminal rules; and (4) filtering resulting rules.

In the remainder of this section, I present the rule extraction algorithm in detail. As
the algorithm is too complex to present in one go, I present sub-parts of the algorithm
first. In Section 4.2.1 I describe the algorithm that creates a set of semantic subgraphs
based on the semantic parse of the input graph. I continue by describing the algorithm for
creating a non-terminal rule’s source-side graph in Section 4.2.2. In Section 4.2.3 I present
the constraints imposed on terminal and non-terminal rules. Finally, in Section 4.2.4, I
give the full rule extraction algorithm and show the rules it extracts from the example in
Figure 4.2.

4.2.1 Semantic subgraphs

Rule extraction algorithm begins by creating a set of subgraphs of the input DMRS graph.
These subgraphs are consequently used to create rule source sides (g in Equation 4.5).
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(a) A set of rules in the order of their application for derivation in (b).

(b) Derivation of the example shown in Figure 4.2 using rules listed in (a).

Figure 4.3: Example derivation of a graph-to-string synchronous context-free grammar.
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Not every subgraph of the input DMRS graph can be used as a rule source side, however.
Namely, a subgraph needs to be created with respect to the semantic parse represented by
the input DMRS graph. In this section I present an algorithm that traverses the DMRS
graph with respect to its parse and creates a set of (what I will refer to as) semantic
subgraphs.
In broad strokes, the algorithm creates a subgraph at a particular node ntop by traversing
the input graph G, without crossing over to nodes that it has previously created subgraphs
for. The algorithm is then recursively called on child nodes of ntop, repeating the procedure
until a subgraph has been created at every node. In the case that a top node has a parent
which has not yet been visited, a subgraph is first created for the parent node. The initial
top node is INDEX, which points to the main verb of the sentence. When INDEX is not
provided by the parser, LTOP is used instead (both INDEX and LTOP were introduced in
Section 3.1.1). In the remainder of the section I present the full algorithm in two parts
and demonstrate its operation on the example DMRS graph shown in Figure 4.2.
CreateSemanticSubgraphs(G, ntop,V) is a recursive algorithm that creates induced

Alg. 4.1subgraphs of graph G that correspond to the semantic parse represented by the graph.
The algorithm starts at top node ntop. V is the set of previously visited nodes - an empty
set when initially calling the algorithm.

1. (Initialize variables.) Initialize semantic subgraph set G ← {}.

2. (Find unvisited parent nodes.) Set Pu ← P (ntop) \ V . Parent nodes of node n are
nodes for which an edge originating in parent node and ending in n exists in G,
P (n) = {p | p ∈ V (G) and (p, n) ∈ E(G)}.

3. (Condition on number of unvisited parents.) If |Pu| == 0:

(a) (Create semantic subgraph.) Create semantic subgraph g,
g ← CreateSemanticSubgraph(G, ntop,V) (using Algorithm 4.3 on page 69),
and add it to G.

(b) (Find child nodes.) Find child nodes of node n. Child nodes of node n are
nodes for which an edge originating in n and ending in a child node exists in
G, C(n) = {c | c ∈ V (G) and (n, c) ∈ E(G)}.

(c) (Recurse with children.) For every child node c in C(n), make a recursive call to
CreateSemanticSubgraphs(G, c,V ∪ {ntop}), where the set of visited nodes
V is extended with current top node ntop. G is extended with the resulting set
of subgraphs from each recursive call.

4. (Condition on number of unvisited parents.) If |Pu| > 0:

(a) (Choose top parent.) Choose top parent ptop from Pu based on part of speech
priority heuristic: conjunction > verb > preposition > quantifier > adjective
> noun.

(b) (Recurse with parent.) Call CreateSemanticSubgraphs(G, ptop,V) and ex-
tend G with the the resulting set of subgraphs. Note that a subgraph for ntop
is not created, but will eventually be created in one of the subsequent parent’s
recursive calls.

5. (Return.) Return G.
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1 be, {}
2 → sign , {be}
3 → a, {be}
4 → sign , {be ,a}
5 → good, {be ,a}
6 → sign, {be ,a,good}
7 → winter , {be ,a,good ,sign}
8 → come, {be ,a,good ,sign}
9 → winter, {be ,a,good ,sign ,come}

10 → frost , {be}
11 → compound, {be}
12 → morning, {be , compound }
13 → frost, {be , compound }

Figure 4.4: Trace of CreateSemanticSubgraphs algorithm for graph in Figure 4.2 and starting
top node be. At each step, the current pair (ntop,V) is shown. Arrows indicate recursive calls
of the algorithm: green arrows for children and red arrows for parents. Creation of a subgraph
from a node is indicated in bold. Note that a single subgraph is created at every node.

An algorithm trace for the example graph in Figure 4.2 is shown in Figure 4.4. The
algorithm execution starts at the INDEX node be as ntop (I will refer to nodes by their
lemmas for brevity) and an empty set of previously visited nodes V . A subgraph is created
from node be. The algorithm is then recursively called on both child nodes of be: sign
and frost, which is indicated by nested green arrows. The set of previously visited nodes
is expanded with node be.
However, a subgraph is not created for sign node in the first instance. This is because
sign node has two parent nodes which have not yet been visited: a and good. Based on
the parent priority heuristic (algorithm step 4a), a (a quantifier) is chosen as top parent
over good (an adjective). The algorithm is then recursively called for node a without
expanding set V . After creating a subgraph at node a, a recursive call is made to its
child, sign, again with expanded V . However, as there is still an unvisited parent node
(good), the process is repeated until V = {be, a, good}, at which point a subgraph at sign
node can finally be created. Algorithm execution then proceeds with the child nodes of
sign.
Subgraph creation at a give node in Figure 4.4 is indicated with the node name shown
in bold. A subgraph is created at a node by traversing as much of the DMRS graph as
possible without traversing a previously visited node. The full algorithm is given below.
CreateSemanticSubgraph(G, ntop,V) is an algorithm that creates a semantic subgraph

Alg. 4.2 of graph G, starting at node ntop, and constrained by the set of previously visited nodes
V . An example of creating a semantic subgraph is shown in Figure 4.5.

1. (Initialize subgraph node set.) Initialize subgraph node set N = {ntop}.

2. (Initialize traversing set.) Initialize set of nodes to traverse T = A(ntop)\V . A(n) de-
fines adjacent nodes of node n, A(n) = {a | a ∈ V (G) and ((a, n) ∈ E(G) or (n, a) ∈
E(G))}. The set of previously visited nodes V is excluded from the traversing set.

3. (Repeat.) While the traversing set is not empty, |T | > 0:
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Figure 4.5: Semantic subgraph created for ntop = sign and V = {be, a, good}. The resulting
subgraph nodes are shown with boxes around them, while the set of previously visited nodes is
indicated by crossed edges leading to them.

(a) (Select a node.) Select a random node from the traversing set, n ∈ T .
(b) (Extend subgraph node set.) Add node n to the subgraph node set, N =
N ∪ {n}.

(c) (Extend traversing set.) Extend the traversing set with new adjacent nodes,
T = T ∪ (A(n) \ V). The set of previously visited nodes V is again excluded
from the traversing set.

4. (Create subgraph.) Create induced subgraph g from graph G with node set V (g) =
N .

5. (Return.) Return subgraph g.

The example in Figure 4.5 corresponds to line 6 of Figure 4.4: ntop = sign and V =
{be, a, good}. The subgraph created without traversing nodes in V contains the following
nodes: {sign, come, winter}. The full set of semantic subgraphs created for the input
graph in Figure 4.2 is shown in Figure 4.6. Nine semantic subgraphs were created in total,
at each of the nine node names shown in bold in Figure 4.4.

4.2.2 Graph subtraction

In the previous section I presented the algorithm for creating a set of terminal subgraphs
of the input DMRS graph G corresponding to the semantic parse of the input graph.
After terminal subgraphs are created, the rule extraction algorithm uses them as source
sides to create terminal rules. The procedure for doing so is relatively straightforward
and is presented as part of the rule extraction algorithm in Section 4.2.4.
The algorithm then proceeds to create non-terminal rules. It does so by comparing pairs
of rules and checking whether one rule’s source side is a subgraph of the other rule’s
source side (the same is done to check subsequence of target sides). When a subgraph
relationship is found between a pair of source sides (and subsequence relationship exists
between target sides), a non-terminal source side is created by subtracting the subgraph
from the other graph and replacing it with a non-terminal node. In this section I describe
the algorithm that achieves this. An example of graph subtraction is shown in Figure 4.7.
CreateNonterminalGraph(g, gT , i) is an algorithm that given a graph g and its sub-

Alg. 4.3graph gT replaces the occurrence of subgraph gT in g with a non-terminal node Xi.

1. (Initialize non-terminal graph.) Initialize gNT with g, V (gNT ) = V (g) and E(gNT ) =
E(g).
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Figure 4.6: Nine semantic subgraphs constructed using the CreateSemanticSubgraphs algo-
rithm for the initial graph shown in Figure 4.2.

2. (Remove intersected nodes.) Remove nodes of gT from gNT , V (gNT ) = V (gNT ) \
V (gT ). Note that this leaves edges in gNT without origin or end nodes.

3. (Remove intersected edges.) Remove edges of gT from gNT , E(gNT ) = E(gNT ) \
E(gT ).

4. (Remove incoming orphaned edges.) Remove edges with origin node in gT and end
node in gNT , E(gNT ) = E(gNT ) \ {e | e = (no, ne), no ∈ V (gT ), ne ∈ V (gNT )}. This
removes edges whose origin node was removed.

5. (Add nonterminal.) Add a non-terminal node: V (gNT ) = V (gNT ) ∪ {Xi}.

6. (Replace outgoing orphaned edges.) Define the set of edges EO as edges with origin
node in gNT and end node in gT , EO = {e | e = (no, ne), no ∈ V (gNT ), ne ∈ V (gT )}.
Then each edge in EO is replaced with an edge that has the same origin node as the
original and has Xi as the end node: f : e = (no, ne) −→ e = (no, Xi). This replaces
edges whose end node was removed.

7. (Return.) Return non-terminal graph gNT .
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(a) Larger of the input graphs. (b) Subgraph input graph.

(c) Non-terminal graph resulting from subtraction and replacement.

Figure 4.7: Graph subtraction example. The graph in (b) is subtracted from the graph in (a)
and replaced with a non-terminal node X_0 to produce the graph in (c).

Figures 4.7a and 4.7b show example input graph and its subgraph respectively, while
Figure 4.7c shows the resulting graph after the algorithm replaces the subgraph with a
non-terminal node.

4.2.3 Rule constraints

So far, I have described how semantic subgraphs are obtained from the input graph (Sec-
tion 4.2.1) and how a non-terminal graph is created from a pair of graphs (Section 4.2.2).
Before giving the full rule extraction algorithm in the following section (Section 4.2.4), I
describe the constraints imposed on the extracted rules. The rule constraints extend the
Hiero rule constraints described in Section 4.1 to graph-to-string translation. They ensure
that extracted terminal and non-terminal rules (1) correspond to the relationship observed
between input source graph and target string via the alignment between them, (2) are
useful for translation and realization tasks, and (3) can be used tractably by the decoding
algorithms described in Chapter 5. I start by defining the terminal and non-terminal
constraints and continue with an informal explanation and counter-examples.

Given the input sentence triple 〈G,E,∼〉, a terminal rule rT = X → 〈gT , eT ,∼〉 con-
forms to the following constraints:

1. gT is a connected subgraph of G consisting of terminal nodes and eT is a subsequence
of E consisting of terminal tokens.

2. gT node set consists of at least one node aligned to at least one token of eT .

3. No node in V (G) \ V (gT ) is aligned to a token in eT and no token in E = e1eT e2
other than tokens in eT is aligned to a node in gT .

4. gT is semantically complete. A graph gT is semantically complete if for every node
ni ∈ V (gT ) holds that {nj | (ni, nj) ∈ E(G)} ⊆ V (gT ).

Given the sentence triple 〈G,E,∼〉, a non-terminal rule rT = X → 〈gNT , eNT ,∼〉
conforms to the following constraints:
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1. gNT is a connected graph consisting of terminal and non-terminal nodes and eNT is
a sequence of terminal and non-terminal tokens.

2. gNT node set consists of at least one terminal node aligned to at least one terminal
token of eNT .

3. No node in V (G)\V (gNT ) is aligned to a token in eNT and no token in E = e1eNT e2
other than tokens in eNT is aligned to a node in gNT .

4. No edge originates from any non-terminal node of gNT .

5. No non-terminal node of gNT assumes underlying structure.

Since non-terminal rules are created by subtracting terminal rules from one another (as
described in Section 4.2.2), the semantic completeness constraint imposed on terminal
rules extends to non-terminal rules and is therefore not repeated there.
I demonstrate the purpose of terminal and non-terminal rule constraints by showing ex-
ample rules breaking each of them in turn in Figures 4.8 and 4.9 respectively. Initially,
Figure 4.8a shows a terminal rule extracted from the example in Figure 4.2 that conforms
to all terminal rule constraints.
Terminal rule constraint 1 ensures that there exists a well-defined method of applying
a rule to an input graph in translation or realization (as opposed to the indeterminate
way a disconnected graph could potentially be applied to an input graph). Figure 4.8b
shows an example of a rule with a disconnected graph on the source side, breaking the
constraint.
Terminal rule constraint 2 prevents extracting insertion rules on one hand (empty source
side) or deletion rules on the other hand (empty target side). The former are especially
undesirable as they would introduce many contending rules at decoding time for every
input graph without discrimination. The constraint ensures that there is some lexical
evidence observed on the source side before a rule is applied. The deletion rules, on
the other hand, have the potential to significantly increase the size of the grammar.
Instead, deletion of source graph nodes is enabled by general deletion rules introduced in
Section 6.1.2. Figure 4.8c shows an example of a rule with an empty target side, breaking
the constraint.
Terminal rule constraint 3 corresponds to the equivalent Hiero alignment constraint. It
ensures that rules are extracted based on the evidence in the sentence pair and alignment
between them. That is, no input graph node (or an input sentence token) that is aligned
to a token (or a node) in a rule is missing from the rule. Figure 4.8d shows an example of
a rule with missing alignments, breaking this constraint. Namely, tokens sign of aligned
to the rule’s source node _sign_n_of_3_sg are missing from the rule target side.
Finally, terminal rule constraint 4 ensures that the full argument structure of every predi-
cate is extracted with the rule. Figure 4.8e shows an example of a semantically incomplete
rule. Namely, the argument of node _sign_n_of_3_sg (connected with ARG1/EQ edge in
the input graph, as shown in Figure 4.2) is missing from the example rule.
An example of a non-terminal rule conforming to all non-terminal constraints is initially
shown in Figure 4.9a. Non-terminal constraints 1 and 3 are very similar in function to
their terminal counterparts. Non-terminal constraint 1 differs from terminal constraint 1
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(a) Terminal rule conforming to all terminal rule constraints.

(b) Rule breaking terminal constraint 1 (disconnected subgraph).

(c) Rule breaking terminal constraint 2 (empty target side).

(d) Rule breaking terminal constraint 3 (misaligned).

(e) Rule breaking terminal constraint 4 (semantically incomplete).

Figure 4.8: Examples of terminal rules conforming to terminal rule constraints (a) and not
conforming to them (rest).

(a) Non-terminal rule conforming to all non-terminal rule constraints.

(b) Rule breaking non-terminal constraint 2 (non-lexicalised target side).

(c) Rule breaking non-terminal constraint 4 (non-terminal node with outgoing edge).

Figure 4.9: Examples of non-terminal rules conforming to non-terminal rule constraints (a) and
not conforming to them (rest).
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slightly, in that it does not require the source-side graph to be a subgraph and target-side
sequence to be a subsequence of the original, due to the presence of non-terminal nodes
and tokens. I consequently do not discuss them further.
Non-terminal constraint 2 is similar to its terminal counterpart (terminal constraint 2):
it prevents extraction of insertion and deletion rules not grounded in lexical evidence. An
example breaking the constraint is shown in Figure 4.9b - the example has a non-terminal
token on its target side and no terminal tokens.
Non-terminal constraint 4 prevents extraction of rules that assume properties of non-
terminal nodes. For example, non-terminal rule in Figure 4.9c assumes that node X_0 has
an argument of type ARG1/EQ. The constraint additionally prevents extraction of rules
which would increase spurious ambiguity arising from arbitrary assignment of underlying
nodes to two adjacent non-terminal nodes.
Finally, non-terminal rule constraint 5 relates to the way non-terminal graphs are con-
structed (algorithm described in Section 4.2.2). In the construction of gNT , the gT sub-
graph is replaced in gNT by a non-terminal node. This constraint states that there is a
single node in subgraph gT to which nodes outside of gT (but inside gNT ) connect to. That
is, if there were multiple nodes in gT to which nodes outside gT would connect to, the
non-terminal node which replaces gT in gNT would assume a certain underlying structure,
which would result in extracted rules that are not context-free.

4.2.4 Rule extraction algorithm

In the previous subsections I introduced sub-parts of the rule extraction algorithm: in
Section 4.2.1 I introduced the algorithm for extraction of semantic subgraphs from the
input graph; in Section 4.2.2 I introduced the algorithm for subtracting a subgraph from
a graph and replacing it with a non-terminal node; finally, in Section 4.2.3 I introduced
terminal and non-terminal rule constraints imposed on extracted rules. In this section, I
bring the sub-parts together to present the full rule extraction algorithm that extracts a
set of terminal and non-terminal rules from a single sentence triple, consisting of a source
graph, a target string, and the alignment between them.
RuleExtraction(G,E,∼, N, Vmax) is an algorithm which, given a graph G, a target token

Alg. 4.4 sequence E and the alignment ∼ between them, extracts a set of rules R. Parameter N
controls the maximum number of non-terminals allowed in a rule; parameter Vmax controls
the maximum node set size of the source-side subgraph.

1. (Create candidate terminal subgraphs.) GT ← CreateSemanticSubgraphs(G).
Create terminal subgraphs of graph G with respect to the semantic parse of the
graph.

2. (Create candidate terminal rules.) For every terminal subgraph gT of G, create
a terminal rule rT = X → 〈gT , eT ,∼〉 by constructing eT for subgraph gT via
alignments ∼.

3. (Apply terminal rule constraints.) For every candidate terminal rule rT , check that
it conforms to terminal rule constraints. Terminal rules that conform to the
constraints are collected in RT .
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4. (Initialize variables.) Initialize current working rule set Rws ← RT . Initialize result
rule set Rres ← RT .

5. (Repeat.) Repeat for N iterations to create rules with up to N non-terminals. Keep
track of iteration number with i← 0, incrementing it after each loop.

(a) (Initialize new working rule set.) Set Rnew ← {}.
(b) (Find candidate rule pairs.) For every rule r = X → 〈g, e,∼〉 ∈ Rws, find

terminal rules rT = X → 〈gT , eT ,∼〉 ∈ RT , such that:
• Terminal source-side graph gT is a subgraph of graph g, V (gT ) ⊂ V (g) and
E(gT ) ⊂ E(g). Determining the subgraph property is a trivial problem
since both graphs are derived from the same initial graph G.
• Terminal token sequence eT is a subsequence of e.

Each such pair of rules (r, rT ) is a candidate for creation of a non-terminal rule.
(c) (Create candidate non-terminal rules.) For every candidate pair of rules (r, rT ),

a non-terminal rule rNT = X → 〈gNT , eNT ,∼〉 is created by: (1) creating a
non-terminal graph gNT with CreateNonterminalGraph(g, gT , i); and (2)
creating a non-terminal token sequence eNT by replacing subsequence eT in e
with a non-terminal token Xi.

(d) (Apply non-terminal rule constraints.) For every candidate non-terminal rule
rNT , check that it conforms to non-terminal rule constraints. Non-terminal
rules that conform to constraints are collected in Rnew.

(e) (Update variables.) Extend result set Rres with Rnew. Set Rws ← Rnew. In
the next iteration, the working rule set Rws will contain newly created non-
terminal rules with an additional non-terminal.

6. (Filter.) Filter result rule set Rres based on Vmax.

7. (Return.) Return Rres.

In order to keep the rule extraction procedure computationally tractable, two parameters
can be used: (1) A rule contains at most N non-terminals; and (2) the size of the rule’s
source-side graph node set is limited to Vmax. For all examples and experiments in the rest
of the thesis, N = 2, Vmax = 5. I remark on the effect of these constraints in Section 4.4.
The full set of rules extracted in Figure 4.2 is shown in Figure 4.10. In total, 20 rules
were extracted: 6 terminal rules and 14 non-terminal rules (11 with one non-terminal, 3
with two non-terminals).

4.3 Grammar construction

In the previous section (Section 4.2) I introduced the rule extraction algorithm, which
takes a single example triple (DMRS graph, target sentence, and their alignment) as input
and extracts a set of rules. In order to construct a realization or translation grammar,
rule extraction algorithm extracts sets of rules from a large training set of example triples
(in most experiments in this thesis, training set sizes will contain millions of examples -
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Figure 4.10: The full set of rules (20) extracted from the sentence triple shown in Figure 4.2.
The rules are roughly grouped according to the extent of the input graph they were extracted
from (i.e., graph coverage, introduced in Section 5.2) for readability.



CHAPTER 4. RULE EXTRACTION 77

see experiments in Chapters 6 and 7). Subsequently, the extracted sets of rules are used
to construct a grammar. Grammar construction is the topic of this section.
Each rewrite rule can occur only once in the grammar. Therefore, in order to construct a
grammar, extracted rules need to be aggregated. Aggregating rules requires determining
whether two rules are the same, and consequently, whether two graphs are the same.
This is known as the graph isomorphism problem. Graph canonization, described in
Section 4.3.1, is a heuristic solution to the graph isomorphism problem. It transforms
the rule’s source-side graph, which is specific to the example triple from which the rule
was extracted, into a canonical representation. Canonical representations of source-side
graphs allow comparison and aggregation of rules extracted from any example triple. This
reduces the problem of aggregating rules into a grammar to a comparison of strings solved
in a distributed computation environment, as described in Section 1.5.
A grammar is used by the decoder to translate or realize an input graph. Graph canoniza-
tion additionally enables grammar queries at decoding time (see Section 5.3). The result
of such a query contains many competing rules that could be used to decode the input
graph. The decoder uses rule features and a log-linear model in order to select the best
set of rules to use (see Section 5.4.3). I conclude this section by describing grammar rule
features and their computation in Section 4.3.2. The set of rule features consists of stan-
dard SMT features including bidirectional translation probabilities, rule count indicator
features, and word and rule penalties. Additionally, I define rule type indicator features
based on the DMRS structure in the rules’ source-side graphs.

4.3.1 Graph canonization

In order for the rules extracted from individual sentences to be aggregated into a gram-
mar, rules’ source-side graphs need to be compared to each other so that their equality
can be determined. Determining equality of two graphs is known as the graph isomor-
phism problem. The graph isomorphism problem belongs to the NP (nondeterministic
polynomial time) complexity class, but is not known to belong to either P or NP-complete
classes (Read and Corneil, 1977). Additionally, the rule application algorithm presented
in Section 5.3 queries the grammar for rules that are applicable to a particular input
graph. Querying the grammar also requires determining equality of a pair of graphs. In
this section, I present a heuristic solution to the DMRS graph isomorpishm problem that
addresses the related graph canonization problem in order to enable rule aggregation and
grammar querying.
The rule extraction algorithm presented in Section 4.2 circumvents the graph isomor-
phism problem. The source-side graphs of rules created by the algorithm contain specific
references to their input DMRS graph. Namely, the unique node ID information assigned
by the parser is preserved from the DMRS graph to the rule source sides. Using node
ID information simplifies and speeds up the rule extraction algorithm. For example, the
subgraph property between a pair of graphs can be computed trivially by comparing their
respective node IDs. However, node IDs are specific to an input example triple and do
not generalize between different examples. Consequently, they cannot be used for rule
aggregation discussed in this section. A solution is therefore needed to determine equality
of two source-side graphs, which means addressing the graph isomorphism problem.
A related problem to graph isomorphism is graph canonization. Graph canonization is the
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problem of finding a graph’s canonical form, such that the canonical forms of two isomor-
phic graphs are the same. Therefore, the graph isomorphism problem can be solved by
transforming both input graphs to their canonical forms and comparing them (Read and
Corneil, 1977). The graph canonization problem is at least as computationally hard as
graph isomorphism (Read and Corneil, 1977). However, it presents a more convenient for-
mulation of the graph isomorphism problem for rule aggregation and grammar querying.
Namely, representing DMRS graphs as canonical strings makes it easy to compare millions
of graphs in a large distributed computation environment (described in Section 1.5).
I propose a two-step heuristic solution to address the graph canonization problem. In the
first step, the assignment of non-terminal indexes is made canonical. In the second step,
a canonical ordering over the nodes of the graph is produced. The canonical ordering can
be used to produce a canonical graph by augmenting each node label with its index in
the canonical ordering. The canonical ordering can also be used to represent the graph
in its canonical form as a string. I describe both steps in turn below.
The first step, the canonization of non-terminal index assignment, is only relevant to
graphs with two or more non-terminals. In Algorithm 4.3 on page 69 the non-terminal
node resulting from the subtraction of a subgraph is assigned index i, which is the sub-
traction loop iteration number. Therefore, the first subtracted subgraph will be replaced
with node X0, the second with X1, etc. As there is no canonical order in which the
subgraphs are subtracted from the graph, the assignment of non-terminal node indexes is
arbitrary. In this step of the graph canonization solution, the non-terminal node indexes
are reassigned so that they are the same between isomorphic graphs.
NonterminalIndexCanonization(g) is an algorithm that given a graph g with two or

Alg. 4.5 more non-terminal nodes produces a graph with canonical non-terminal indexes.

1. (Create canonical non-terminal node representations.) Represent each non-terminal
node vNT ∈ V (g) as a concatenation of string representations:

(a) Lexicographically sorted list of incoming edges of node vNT ,

E−(vNT ) = {e | e = (vi, vNT ), e ∈ E(g)}

Each incoming edge e = (vi, vj) is represented as a concatenation of its origin
node and edge label, (label(vi), label(e)). The end node label is omitted since
it is the non-terminal label with the index that is being reassigned.

(b) Lexicographically sorted list of edges one-step removed from node vNT ,

Eosr = {ej | ei = (vi, vNT ), ei ∈ E−(vNT ), (ej = (vi, vj) or ej = (vj, vi)), ej ∈ E(g)}

Each one-step removed edge e = (vi, vj) is represented as a concatenation of
its origin node, end node, edge label, and relative edge direction, (label(vi),
label(vj), label(e), direction(e, vNT )). Edge direction is relative to the non-
terminal node vNT , i.e. it has a value of 1 if it is an incoming edge to the node
adjacent to vNT , and a value of 0 if is an outgoing edge.

2. (Sort non-terminal nodes.) Sort the non-terminal node set by lexicographically
comparing their canonical representations.
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3. (Reassign non-terminal node indexes.) Reassign non-terminal node indexes based
on their position in the sorted list of non-terminal nodes.

CanonicalNodeOrdering(g) is an algorithm that given a graph g produces a heuristic
Alg. 4.6canonical ordering over its nodes V (g).

1. (Create canonical node representations.) Represent each node v, v ∈ V (g), as a
concatenation of string representations:

(a) Label of node v.
(b) Lexicographically sorted list of incident edges of node v,

E(v) = {e | e = (vi, v) or e = (v, vi), e ∈ E(g)}

Each incident edge e = (vi, vj) is represented as a concatenation of its origin
node, end node, edge label, and relative edge direction, (label(vi), label(vj),
label(e), direction(e, v)).

(c) Lexicographically sorted list of edges one-step removed from node v,

Eosr = {ej | ei = (vi, v), ei ∈ E(v), (ej = (vi, vj) or ej = (vj, vi)), ej ∈ E(g)}

Each one-step removed edge e = (vi, vj) is represented as a concatenation of
its origin node, end node, edge label, and relative edge direction, (label(vi),
label(vj), label(e), direction(e, v)).

2. (Sort graph nodes.) Lexicographically sort node set V (g) by their string represen-
tations to produce a node ordering.

3. (Return.) Return ordering of nodes in V (g).

The output of the Algorithm 4.6 is an ordering over the nodes of the graph. From it, a
canonical string representation of a graph can be created by concatenating node labels
in their order. Take the source-side graph of the terminal rule in Figure 4.1 for example.
The first step of the algorithm produces a string for each of the three nodes:2

(_morning, [compound-_morning-ARG2/NEQ-1], [compound-_frost-ARG1/EQ-0])
(compound, [compound-_frost-ARG1/EQ-0, compound-_morning-ARG2/NEQ-0], [])
(_frost, [compound-_frost-ARG1/EQ-1], [compound-_morning-ARG2/NEQ-0])

Each node representation is, as discussed above, composed of three parts: (node label,
lexicographically sorted list of incident edges, lexicographically sorted list of edges one-step
removed). Each edge representation is, in turn, composed of four parts: (origin node
label, end node label, edge label, direction). Recall that edge direction is specified relative
to the original node, i.e. it has a value of 1 if it is an incoming edge to the node adjacent
to original node and a value of 0 if is an outgoing edge. Lexicographic sort (step 2 of
the algorithm) over the three node representation strings yields the following canonical
ordering of nodes:

2For brevity, only the lemma part of the node label is used in the example.
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Figure 4.11: An example graph for which Algorithm 4.6 can produce two different node orderings.
Node labels are a, b, etc., while the possible node orderings are indicated with indexes following
the colon sign. 0|1 indicates that a pair of nodes could be arbitrarily assigned 0 and 1 between
them.

[_frost, _morning, compound]

Finally, a canonical graph string representation can be created:

[_frost, _morning, compound], [2-0-ARG1/EQ, 2-1-ARG2/NEQ]

The above presented algorithm is a heuristic algorithm in order to keep the grammar
construction procedure efficient. Consequently, the algorithm does not guarantee a correct
solution for every input. Due to the heuristic of looking at adjacent and one-removed set
of edges (but not further than that), the algorithms presented above can incorrectly
determine two isomorphic graphs to be non-isomorphic.

An example graph is shown in Figure 4.11. Notice that in step 1 of the Algorithm 4.6,
the same node representation string is created for both nodes with label a:

(a, b-a-α-1, b-c-β-0)
(a, b-a-α-1, b-c-β-0)

Since they share the same representation, the ordering between the two nodes with label
a is not deterministic (either order could be produced). The two orderings over nodes of
the graph produced by the algorithm in step 2 are indicated in Figure 4.11. From these
two node orderings, two different graph representations can be created. Consequently, a
pair of isomorphic graphs may happen to not share the same representation.3

The effect of encountering such a graph in practice would be that (1) a pair of extracted
rules that are the same are not aggregated together and instead form two separate rules;
and (2) the matching rules cannot be found in the grammar for a given query graph,
produced in rule application (described in Section 5.3). However, neither scenario can
happen in practice. The problematic graph requires a minimum of seven nodes in order
to sufficiently distance the pair of offending nodes so that they share the same node
representation. As stated in Section 4.2.4, the number of nodes in a source-side graph is
limited to five in the current system.

3Notice that the graph in Figure 4.11 is not symmetric due to node d, which has two outgoing edges
with two different labels, 0 and 1. If the graph was symmetric, the two graph representations resulting
from the two orderings would be the same, avoiding the negative consequences.



CHAPTER 4. RULE EXTRACTION 81

4.3.2 Rule features

We can observe several properties of rules after they have been aggregated. For instance,
how many times has a rule been seen in the training set? How often was the source side
translated with this rule’s target side? How often was the target side a translation of this
rule’s source side? What is the structure of the source-side graph? These rule properties
form rule features. Rule features are used in decoding by a log-linear model in order to
score competing (realization or translation) hypotheses via the rules that were used to
produce them (hypothesis scoring and selection is described in Section 5.4.3). Therefore,
the purpose of rule features is to discriminate between competing rules in order to produce
the best hypothesis given a grammar.
In this section, I introduce a set of dense rule features inspired by Bender et al. (2007)
and Iglesias et al. (2009), and commonly used in statistical machine translation systems:
bidirectional translation probabilities, rule count features, and word and rule penalties (I
do not use the bidirectional lexical models). In addition to these commonly used features,
I constructed a set of rule type features, which classify each rule into one of 14 types
based on the structure of its source-side graph. I describe both sets of features below.

• Source-to-target probability, P (e | g), is the probability of the target-side se-
quence e given the source-side graph g, estimated as a relative frequency over ex-
tracted rules (Koehn et al., 2003):

P (e | g) = count(e, g)∑
e count(e, g) (4.6)

• Target-to-source probability, P (g | e), is the probability of the source-side graph
g given the target-side sequence e. Like source-to-target probability, it is estimated
as a relative frequency over extracted rules:

P (g | e) = count(e, g)∑
g count(e, g) (4.7)

• Rule count indicator features, namely ‘rule count 1’, ‘rule count 2’, and ‘rule
count more than 2’ indicator features (an indicator feature equals -1 if a rule meets
its condition, otherwise it is 0). These features are computed based on counts over
extracted rules, for rule count 1:

c1(e, g) =

1 if count(e, g) == 1
0 otherwise

(4.8)

and similar for the other two features.

• Word penalty, −#T (e), is the negated count of the number of terminal tokens on
the target side of a rule. The word penalty feature allows the log-linear model to
learn a preference for shorter or longer outputs (Chiang, 2007).

• Rule penalty, −1, is a constant penalty for using a rule. The rule penalty fea-
ture allows the log-linear model to learn a preference for shorter or longer deriva-
tions (Chiang, 2007) (since competing hypotheses can use variable number of rules).
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• Rule type indicator features is a collection of 14 features based on a rule’s
source-side graph. Each rule belongs to a single rule type.

Rule type indicator features take advantage of the DMRS structure in the source-side
graphs to recognize different types and functions of rules (for example, basic versus non-
basic rules, and noun compound versus verb phrase rules). I describe each rule type
below,4 but omit the details on how each type is detected.5

� Basic noun indicates (a source graph representing) a noun, a noun-like grammar
predicate, or a nominalization relationship. Example rule:

� Basic quantifier indicates a quantifier relationship (in the source-side graph) be-
tween a terminal quantifier node (its pos=q, see Table 3.1) and a non-terminal node.
Example rule:

� Basic modifier indicates a modifier relationship between a terminal modifier node
(pos=a) and a non-terminal node. Example rule:

� Basic verb indicates a verb relationship between a terminal verb node (pos=v)
and its non-terminal argument nodes. Example rule:

� Basic conjunction indicates a conjunction relationship between a terminal con-
junction node (pos=c) and its non-terminal argument nodes. Example rule:

� Basic preposition indicates a preposition relationship between a terminal prepo-
sition node or preposition-like grammar predicate, and its non-terminal argument
nodes. Example rule:

� Verb phrase indicates a graph representing a verb phrase. The top verb node must
not have any incoming edges to ensure that it is not, for example, a conjunction
phrase with a verb phrase as one of its arguments. Example rule:

4I use syntactic terminology (e.g., verb phrase rule type) here for convenience. The terminology is
usually interchangeable, but it is not guaranteed to be.

5In general, a rule is assigned the first rule type (in the order presented) matching the required set of
conditions (indicated with its description).
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Note the difference between verb phrase and basic verb rule types - while a basic verb
rule captures only the immediate relationship between a verb and its arguments, a
verb phrase rule contains additional nodes, capturing their realization/translation
in the context of the verb node. Subsequent rule types share a similar relationship
with their basic rule type counterparts.

� Modified verb phrase indicates a verb phrase with a node (pos=a or grammar
predicate not) modifying the verb. Example rule:

� Noun compound indicates a compound relationship between nouns. The com-
pound grammar predicate node must not have any incoming edges (for the same
reason as described above). Example rule:

� Full noun phrase indicates a graph representing a noun phrase without any non-
terminal nodes. Example rule:

� Partial noun phrase indicates a graph representing a noun phrase which contains
non-terminal nodes. Example rule:

� Conjunction phrase indicates a graph representing a conjunction phrase. At least
one node without any incoming edges must be a conjunction node (pos=c or selected
grammar predicates). Example rule:

� Preposition phrase indicates a graph representing a preposition phrase. At least
one node without any incoming edges must be a preposition node or a preposition-
like grammar predicate. Example rule:

� Other is a special rule type that indicates that a source-side graph does not belong
to any other defined rule type. Example rule:
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In Section 4.4 I analyse the occurrence of rule types in the extracted translation and
realization grammars.
One set of rule features not discussed here are non-grammar rule indicator features. They
mark special purpose rules that are not extracted from the training set but are instead
constructed for each decoding input graph individually. Non-grammar rule types include
disconnected graph glue rules, deletion glue rules, CARG rules, and mapping rules. I
introduce them in Section 6.1. Finally, language model score is an important feature used
to score target-side output. However, the feature is not computed for a single rule, but
is instead computed across the output of multiple rules (i.e., the hypothesis). I describe
the details of how the language model score feature is computed in Section 5.4.3.

4.4 Rule extraction analysis

In this chapter I described the algorithms involved in extracting a grammar from a train-
ing set of examples. I conclude the chapter by analysing a number of translation and
realization grammars in terms of their size, rule counts, and rule types (the latter two
properties are referring to the grammar rule features described in Section 4.3.2). I start by
analysing and comparing a translation and a realization grammar extracted using the full
set of training examples. I continue by analysing and comparing grammars for both tasks
across different training set sizes. I conclude with a brief discussion on the consequences
of limiting the number of non-terminals and the number of nodes in a rule.
All grammars discussed in this section were estimated on the WMT15 English-German
translation corpus. The corpus consists of 4.25 million training examples (a more detailed
description is given in Section 6.2.1). For the translation task, the parallel sentence pairs
are used in English to German direction, while the realization tasks uses only the English
side. The English sentences of both tasks are parsed and the resulting graphs are processed
(described in Section 3.2). The processed graphs are aligned to the corresponding German
sentences in the case of translation, and to the original English sentences in the case of
realization (described in Section 3.3). The result of these steps is a training set consisting
of example triples (source-side graph, target-side sentence, and the alignment between
them) required to extract a grammar.
The grammar sizes extracted from the full training set of 4.25 million examples are re-
ported in Table 4.1. The realization grammar contains many more rules than the trans-
lation grammar (around 29 million versus 16 million rules, respectively), despite the fact
that DMRS representations are closer to realization. This is a consequence of the align-
ments between source and target sides: (1) the translation alignments are obtained with a
statistical word alignment algorithm and are therefore noisier than the realization align-
ments; (2) translation alignments contain more reordering, which can violate some of
the rule constraints (described in Section 4.2.3), preventing rules from being extracted.
In the following paragraphs, we investigate further differences between the grammars by
comparing the composition of the two grammars in terms of rule counts and rule types.
In addition to the grammar sizes, the composition of the two grammars in terms of rule
counts is also shown in Table 4.1. Rule count refers to the number of times a given
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Rule count Proportion of rules (%) Number of rules (millions)
Translation Realization Translation Realization

1 87.3 83.0 14.30 24.05
2 6.5 8.3 1.07 2.41
3-5 3.6 5.0 0.59 1.46
6-10 1.3 1.8 0.21 0.51
11-20 0.7 0.9 0.11 0.26
21-50 0.4 0.6 0.07 0.17
>50 0.3 0.4 0.05 0.12
All 16.38 28.97

Table 4.1: Composition of the full translation and realization grammars in terms of rule counts
(i.e., rules extracted once, twice, three to five times, etc.).

grammar rule has been extracted (recall that rule count is used as a feature, described
in Section 4.3.2). The majority of both grammars consists of rules that have only been
observed once (also referred to as singletons). There is a higher proportion of singletons
in the translation grammar than in the realization grammar.

Another way of analysing the composition of the two grammars is according to the rule
types defined in Section 4.3.2. They correspond to the differences in rule source-side
graphs. For example, they can be divided into basic rule types (a single terminal node
and potentially non-terminal nodes as its arguments) and non-basic rule types (containing
additional terminal nodes as context); they can also be divided according to their function
(e.g., decoding a verb versus decoding a noun). Every rule belongs to a single rule type.
The distribution and the absolute number of rule types of the two grammars is shown in
Figure 4.12.

Overall, preposition phrase is the most frequent rule type for both tasks, followed by verb
phrase. This is expected because (1) both rule types occur frequently in the training
examples (more so than, for example, conjunction phrase) and (2) they are the most
inclusive rule types alongside conjunction phrase (for instance, a preposition phrase can
contain a verb phrase or a noun phrase). Looking at the absolute numbers, the realization
grammar has twice as many rules of preposition, verb phrase, and conjunction phrase types
compared to the translation grammar. However, the translation grammar has a larger
proportion of basic rule types compared to the realization grammar. Basic noun and basic
verb rule types are especially prominent. Not only that, despite the translation grammar
being significantly smaller than the realization grammar, it has a larger absolute number
of all basic rule types.

Basic quantifier rules in particular account for a very small proportion of either grammar:
0.07% and 0.02% of the translation and realization grammars respectively. The translation
grammar contains twice as many basic quantifier rules as the realization grammar (around
11 thousand versus 5 thousand). This is the case because there exist more ways of
translating quantifiers between languages than there is ways of realizing them within a
language (for example, English quantifier the can be translated into any of { die, der,
das, den, dem, des ... } depending on the gender, case, and number, as well as additional
contracted forms such as am). Additionally, translation rule extraction is affected by
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(a) Proportion of rules of each type in the full
translation and realization grammars.

(b) Number of rules of each type in the full
translation and realization grammars.

Figure 4.12: Composition of the full translation and realization grammars in terms of rule types,
as defined in Section 4.3.2.

noisy alignments.

The eight most frequently extracted rules for both grammars are shown in Figure 4.13.
Firstly, we can observe that the most frequent rules decode very common and general
DMRS structures, namely quantifiers and common pronouns. Consequently, the top
eight rules are all basic rules (with the exception of the realization grammar’s preposition
phrase rule) and there is a rough correspondence between the translation and realization
rules. We can also observe that the translation grammar has five basic quantifier rules
to the realization grammar’s two, which reaffirms the evidence for the above explanation
about basic quantifiers (conveniently, four rules translating node _the_q are in the top
eight translation rules). Despite the top rules being general, their exact order will depend
on the corpus from which they were extracted. If, for example, the corpus consisted of
dialogue sentences, we would expect the top translation rules to include translation of
pron_2 to du, Sie, dir, dich etc.

The analysis so far has focused on the two grammars extracted from the full training
set. These grammars are subsequently used in translation and realization expirements
reported in Chapters 6 and 7. I continue the analysis of rule extraction by investigating
how the size of the training set affects the size of the grammar and its composition in
terms of rule counts and rule types. I extracted four additional grammars for each of the
translation and realization tasks by randomly sampling examples from the training set. A
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(a) c = 572123, Basic quant. (b) c = 2190855, Basic quant.

(c) c = 392191, Basic quant. (d) c = 848328, Basic quant.

(e) c = 307639, Basic noun (f) c = 652851, Basic conj.

(g) c = 235058, Basic conj. (h) c = 647631, Basic prep.

(i) c = 231454, Basic noun (j) c = 589742, Basic prep.

(k) c = 189971, Basic quant. (l) c = 431083, Prep. phrase

(m) c = 150321, Basic quant. (n) c = 429017, Basic noun

(o) c = 142175, Basic quant. (p) c = 376389, Basic prep.

Figure 4.13: The top eight most frequently extracted rules in the full translation (left column)
and realization (right column) grammars.
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(a) Translation and realization grammar growth with increasing training set size.

(b) Translation grammar composition of rule
counts.

(c) Realization grammar composition of rule
counts.

Figure 4.14: Translation and realization grammar size (top row) and grammar composition
(bottom row) with increasing number of training examples. Grammar composition is shown in
terms of proportion of rules with a given rule count (e.g., the proportion of rules observed more
than 50 times).

total of five grammars for each task were trained on 0.5, 1, 2, 3, and 4.25 million training
examples.
Figure 4.14a shows the grammar size at different training set sizes. We can observe
that both the translation and the realization grammar size grows linearly with increasing
training set size. The realization grammar growth is significantly steeper than the growth
of the translation grammar. However, the factor of difference between them decreases
with increasing training set size: the realization grammar is 1.91 times the size of the
translation grammar at 0.5 million training examples, and only 1.76 times the size at
4.25 million training examples. This may indicate that the linear growth is tapering off
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(a) Translation grammar composition of basic
versus non-basic rule types.

(b) Realization grammar composition of basic
versus non-basic rule types.

(c) Growth of the number of basic quantifier rules with increased training set size.

Figure 4.15: Translation and realization grammar rule type composition (top row) and number
of basic quantifier rules (bottom row) with increasing number of training examples. Grammar
rule type composition is shown in terms of basic versus non-basic rule types.

with the larger training set size. However, the full training set size is not large enough to
determine that conclusively.

The grammar composition in terms of rule counts with increasing training set size is
shown in Figures 4.14b and 4.14c for the translation and realization tasks respectively.
The proportion of singletons decreases with increasing training set size for both tasks,
but faster for the realization task. Conversely, the proportion of all other rule counts
increases, with the proportion of rules extracted more than 50 times increasing the most
(by 26% and 30% for the two tasks respectively).

Finally, we take a look at how the increase in training set size affects rule types in the
grammar. I show the proportion of basic versus non-basic rule types with increasing
training set size in Figures 4.15a and 4.15b for the translation and realization task respec-
tively. As noted above with the full grammar sizes, we can observe that basic rule types
form a larger part of the translation grammar compared to the realization grammar, at
all training set sizes. However, the proportion of basic rule types decreases with increased
training set size for both tasks. Intuitively, this makes sense, since basic rule types are
more constrained compared to non-basic rule types (see description in Section 4.3.2).

Earlier in the section, I discussed the basic quantifier rule type in the full grammar.
To complement that discussion, I show the number of rules with basic quantifier rule
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type as a function of increasing training set size in Figure 4.15c. We can observe that
the translation grammar contains significantly larger number of basic quantifier rules at
every training set size, reaffirming the discussion above. What may come as a surprise
is that the number of basic quantifier rules keeps growing with additional training data,
despite quantifiers being a closed class. This is because different translations/realizations
of quantifiers exist, including non-literal translations. So more data encountered means
that more possible ways of translating/realizing them are extracted. To some extent, this
will also be due to the noise in alignments, in which case the extracted rules are incorrect.
The rule extraction algorithm presented in Section 4.2.4 requires specifying two param-
eters, the maximum number of non-terminals and the maximum number of nodes in a
rule. Limiting the number of non-terminals and the number of nodes in a rule is neces-
sary in order to prevent the grammar size increasing beyond what can be feasibly used
by the decoder. All examples and experiments reported in this thesis limit the number
of non-terminals to two and the number of nodes to five. These heuristic constraints
match the Hiero constraints described in Section 4.1, where rules can contain at most two
non-terminal symbols, and the source side can contain at most five tokens.
Limiting the number of nodes in a rule to at most five limits the size of the semantic context
captured by a rule. However, since the semantic context in a DMRS graph is immediately
adjacent, it is a less restricting limit compared to Hiero, where semantically related words
can be spread more than five tokens apart. Limiting the number of non-terminals in a rule
to two is more constraining. It means that no basic rule can be extracted for predicate
nodes with three arguments or more. However, such predicate nodes are uncommon and
the grammar will contain rules with partially specified arguments.
In summary, I found that the realization grammar is significantly larger that the transla-
tion grammar at all training set sizes, despite the DMRS representations being closer to
the target sentences in realization than in translation. This is a consequence of the noise
in translation alignments and translation reordering constraining rule extraction. The size
of both grammars grows linearly with increasing training set size, but the growth of the
realization grammar is significantly steeper than the growth of the translation grammar.
In terms of grammar composition, the majority of rules of both grammars have only been
observed once, but their proportion decreases with increasing training set size. Verb and
preposition phrases are most frequent rule types encountered in both grammars, and, as
anticipated, the proportion of basic rules decreases with increasing training set size.

4.5 Realization grammar comparison
The grammar presented in this chapter, henceforth referred to as HSSR (hierarchical
statistical semantic realization) grammar, and the ERG are both used for realization of
DMRS graphs (see Chapter 7). I conclude this chapter with a discussion of differences
and similarities between them.
In the realization task the HSSR grammar encodes the relationship between DMRS graphs
and strings. Similarly, the ERG can be seen as both defining the set of grammatical
strings and providing a mapping between these strings and structures.6 Unlike the ERG,
the HSSR grammar does not constrain the set of grammatical strings or well-formed
structures. This formal difference between the grammars is not a limitation of the HSSR

6The semantics is part of this structure and the DMRS used in this thesis is derived from it. Copestake
(2002, p. 83) discuss this in the context of the formalism used by the ERG.
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grammar, but is instead what makes the HSSR grammar robust, as demonstrated in
Chapter 7.
The ERG is an instance of a typed feature structure grammar. The typed feature structure
formalism is Turing equivalent, and is therefore capable of encoding anything computable.
However, the ERG does not make full use of the capacity of the formalism. Similarly,
the HSSR grammar does not make full use of the SCFG formalism (e.g., constraints in
Section 4.2.3). Consequently, the following discussion is in terms of some phenomena that
are captured in the ERG as opposed to HSSR, not the theoretical power of the formalisms
they use.
• Since the ERG is a precision grammar, it is designed to constrain the set of gram-

matical strings to those which the grammarian considers well-formed.

• ERG constraints lead to a notion of global well-formedness. For instance, a string
which consists of well-formed phrases will not be grammatical unless the phrases
are related by rules and the full structure meets the root condition. On the other
hand, HSSR grammar has no guarantees of well-formedness or grammaticality.

• HSSR rules are always lexicalised and do not incorporate the rich notion of features
that the ERG uses. Consequently, ERG rules capture generalizations which HSSR
rules do not. For example, HSSR rules will only capture agreement and subcatego-
rization properties in some specific contexts rather than completely.

• The restriction to two non-terminals in HSSR was discussed in section 4.4. Although
the ERG generally limits rules to be at most binary branching, the availability of
the rich feature structures means that this restriction is not problematic (e.g., for
ditransitives and other cases where a predicate has three arguments). Comparable
constraints are not fully captured in HSSR.

Limiting our discussion to realization from well-formed DMRS, the main requirements of
the realization system are (1) appropriate determination of lexemes from DMRS predi-
cate symbols, (2) appropriate insertion of semantically empty lexemes, (3) correct mor-
phophonology, and (4) ordering. Consequently, some limitations of the HSSR grammar
compared to the ERG constraint system are irrelevant. For example, the fact that a verb
such as ‘allow’ (in the sense of ‘allows (us) to see’) requires two complements will not be
captured in the HSSR grammar. However, a well-formed DMRS will specify both com-
plements, making the limitation of the HSSR grammar irrelevant. Similarly, the language
model will capture some constraints that the HSSR rules do not (e.g., the phrase ‘I see’
will be preferred to ‘I sees’ when constructed using two (context-free) rules).
In this section, the discussion of differences and similarities between HSSR grammar/rules
and ERG focused on the realization task. In the translation task, HSST (hierarchical
statistical semantic translation) grammar is comparable to the combination of transfer
rules and realization grammar in the DELPH-IN approach to machine translation (e.g.,
Bond et al. (2011), see Sections 2.4 and 7.4.3). Although the comparison is complicated
by the transfer rules (in addition to the fact that the target grammar would be German),
most of the points above still apply. However, in translation the input to the realization
system is not necessarily a well-formed DMRS and realization acts as a filter on the
outputs of transfer.7

7In Bond et al. (2011), ERG realization is used as a filter of ill-formed transferred MRS (personal
communication with Francis Bond).
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Chapter 5

Decoding

Decoding in statistical machine translation refers to the transformation of a sentence in
the source language into a sentence in the target language. In hierarchical phrase-based
translation (Hiero; Chiang, 2005, 2007), the input to the decoder is a sentence represented
as a sequence of tokens. The Hiero decoder uses a synchronous-context free grammar as
a resource from which translation rules are drawn (see Chapter 4). It typically organizes
the translation rules into a CYK grid according to the part of the input sentence they
translate. The decoder then proceeds to explore the CYK grid in order to construct a
set of translation hypotheses. I describe Hiero decoding in more detail in the background
Section 5.1.
Instead of a token sequence, the input to a decoder for the approach discussed in this
thesis is a DMRS graph. This difference necessitates building a new type of a decoder that
is able to transform the structure of a graph into a sequence of target tokens. Whereas
token spans are used in a Hiero decoder to keep track of the parts of the input sentence
covered by a rule, they cannot be used to keep track of the parts of a graph. Because
of this, I introduce graph coverage in place of a token span, which can be represented as
a bit vector with ones corresponding to the covered nodes. I describe graph coverage in
more detail in Section 5.2.
Unlike in Hiero, where potentially many competing parses of an input sentence exist,
the DMRS graph itself already encodes a preferred reading. Consequently, I propose a
rule application algorithm in place of CYK parsing used by a Hiero decoder. The rule
application in many ways mimics the rule extraction algorithm presented in Section 4.2.
Given an input DMRS graph and a graph-to-string SCFG, the rule application algorithm
constructs a graph coverage grid. The grid consists of cells containing graph-to-string
rules, which can be used to transform the corresponding part of the graph into a sequence
of tokens. The rule application algorithm starts by finding semantic subgraphs of the
input DMRS graph, in the same way as the rule extraction algorithm. Likewise, non-
terminal subgraphs are created by subtracting terminal subgraphs from other subgraphs.
The terminal and non-terminal subgraphs are subsequently used to query the SCFG to
obtain the set of all graph-to-string rules that could be applied to the input graph. The
rule application algorithm is described in detail in Section 5.3.
The resulting graph coverage grid needs to be explored in order to construct a set of
translation or realization hypotheses. In order to achieve this, I adapt the ideas behind
HiFST (Blackwood et al., 2016), a Hiero decoder which compactly encodes the target-
side hypothesis space as Finite State Transducers (FSTs), for graph-to-string decoding.
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The resulting graph-to-string decoder encodes each graph coverage cell as a Recursive
Transition Network (RTN), with rule non-terminals as pointers to cells lower in the grid.
The full hypothesis space FST is constructed by recursively expanding the top RTN cell.
A log-linear model is defined over the derivations and is used to compute the weight
of the FST arcs. Finding the best hypothesis then corresponds to finding the shortest
path in the hypothesis space.1 I describe the hypothesis space construction and the best
hypothesis search in Section 5.4.
The size of the hypothesis space grows with the size of the input graph and the size of the
grammar. Consequently, decoding a large input graph using a large grammar can result in
a high memory cost and a long decoding time. I introduce two strategies to alleviate this
problem: (1) cell selection, which reduces the number of RTNs that need to be created
and expanded without negatively impacting output quality, and (2) local pruning, an
adaptation of local pruning used in HiFST, which reduces the size of cell RTNs via lossy
pruning, allowing a trade-off between output quality and decoding efficiency. I describe
the two strategies in Section 5.5.
The log-linear model used to score the hypotheses is based on rule features described in
Section 4.3.2 and a language model. In order to tune the model parameter weights, I use
the Minimum Error Rate Training (MERT; Och, 2003) procedure commonly used to tune
statistical machine translation systems. In order to use MERT, I extend the hypothesis
space construction to additionally keep track of derivations, following the ideas introduced
by de Gispert et al. (2010). I describe model parameter tuning in Section 5.6.
As with rule extraction and grammar construction approaches, the proposed rule appli-
cation algorithm and the graph-to-string decoder are task-agnostic: they can be applied
to both translation and realization tasks without any modification. Consequently, con-
trasting the rule application algorithm and graph-to-string decoder performance on the
two tasks makes for an informative comparison. I compare the graph-to-string decoder
performance in terms of algorithm running time conditioned on the input graph size. In
addition to running time, I compare the rule application algorithm performance between
the two tasks in terms of the resulting number of applied rules. I report the results in
Section 5.7.

5.1 Hierarchical phrase-based decoding

In this background section, I describe decoding in hierarchical phrase-based translation.
I also describe HiFST, an approach to hierarchical phrase-based decoding using Finite
State Transducers that simplifies and improves upon the cube pruning approach of Chi-
ang (2007). The HiFST decoder, introduced by Iglesias et al. (2009) and improved by
de Gispert et al. (2010), forms the basis of our graph-to-string decoder described in sub-
sequent sections.
In Section 4.1 I described Hiero rule extraction procedure and the resulting synchronous
context-free grammar. The approach defines a log-linear model over derivations, using
rule features and a language model feature. The task of a Hiero decoder is then to find the
highest-scoring translation. As noted by Chiang (2007), the decoding procedure would be

1An initial version of the rule application algorithm and the graph-to-string decoder was described in
Horvat et al. (2015).
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a straightforward dynamic-programming algorithm with a weighted context-free grammar
if not for the language model. The reason for the complication arises because the language
model features are non-local, that is it cannot be computed for a single rule. Instead, a
language model score needs to be computed in the context of nested rules. That is to say,
computing a language model score for from X0 is not possible, whereas for from London
is.
Hiero decoder uses a variant of the CYK (Cocke–Younger–Kasami) parser, CYK+ (Chap-
pelier and Rajman, 1998), operating on the weighted context-free grammar. Informally,
it populates the CYK grid (such as the one shown in Figure 5.1a) from the bottom-up
by considering the input token subsequences and checking whether grammar rules joining
them exist, while keeping track of model probabilities. It concludes when it reaches the
top cell covering the entire input token sequence.
When constructing the CYK grid, the Hiero decoder uses beam search to manage the size
of the search space. This means a maximum of β top candidates are kept in every CYK
grid cell, potentially resulting in search errors. To improve decoding efficiency the Hiero
decoder also employs hypothesis recombination, which merges equivalent items in a CYK
cell, keeping the weight of the better scoring item.
Adding a language model score to the Hiero decoding procedure described so far is
achieved using cube pruning, which was introduced by Chiang (2007). Iglesias et al.
(2009) introduced decoding with Weighted Finite State Transducers (WFST, see Sec-
tion 5.4.1) as an alternative to cube pruning which is easier to implement and reduces the
number of search errors significantly. They named the improved system HiFST.
HiFST uses a similar parsing procedure to parse the source sentence and determine the
placement of grammar rules over the sentence’s CYK grid. However, instead of using
beam search and cube pruning, HiFST constructs a WFST of all possible translations of
the source sentence span in each cell. When a rule contains a non-terminal, a pointer to
another cell is created. If a cell is pruned during the search, these pointers are expanded.
After all cell WFSTs are created, the top-most cell, which covers the entire source sentence
span, is expanded into a translation WFST encoding all possible translations of the source
sentence. Finally, the translation WFST is rescored by composing it with a language
model WFST.
Constructing and operating on the WFSTs is accomplished using standard FST opera-
tions, including determinization, minimization, composition, and replacement. The best
translation is found using the shortest-path operation. The use of standard FST opera-
tions, provided by an external library, makes the decoder implementation simple (Iglesias
et al., 2009). Additionally, experiments in Iglesias et al. (2009) and de Gispert et al.
(2010) show that HiFST requires less pruning and therefore results in fewer search errors
and improved translation performance.

5.2 Graph coverage

In Hierarchical Phrase-Based Translation, a rule coverage denotes the part of the source
sentence translated by the rule. A rule coverage is expressed in terms of a token span.
For example, rule R1:3 : X ← 〈s1X0, t1X0〉 translates tokens 1 to 3 of the source sentence.
During Hiero decoding, rules are grouped by their coverage in a modified CYK grid, as
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(a) Hiero modified CYK grid for a source sen-
tence of length five.

(b) Graph coverage grid for a graph with four
nodes. The arrows demonstrate the cell cover-
age hierarchy.

Figure 5.1: Examples coverage grids based on token spans (a) and graph coverage (b).

shown in Figure 5.1a. Each cell in the CYK grid refers to a token span over the source
sentence, based on its horizontal (starting token index) and vertical position (length of
the token span).
Non-terminal symbols inside rules are also assigned coverages. For example, in the above
rule R1:3, the non-terminal X0 covers the source token sequence from the second to the
third token. In the CYK grid, rules with non-terminal symbols point to cells lower in
the grid, indicating the non-terminal’s coverage and the rules that could be nested in the
non-terminal’s place. The arrow represents a rule’s non-terminal symbol pointing to a
cell covering a subspan of its coverage.
Token spans, however, cannot be used to express the coverage of a graph. Instead, in this
section I define graph coverage to denote the part of the source graph translated by a
graph-to-string rule. A graph coverage CG of graph G = (V,E) consists of the covered
set of nodes CG ⊆ V .
There exists a hierarchy of coverages of graph G. Namely, CG1 is higher in the hierarchy
than CG2 , CG1 > CG1 , if CG2 is a proper subset of CG1 , CG2 ⊂ CG1 . Like subset, hierarchy
is a transitive property.
Since it is cumbersome to refer to a coverage as a subset of the node set, I use bit vector
coverage as a concise representation of graph coverage. Assuming a bijective function
f : V → O, where O = {o; 1 ≤ o ≤ |V |}, which creates an ordering over the nodes of
graph G, graph coverage CG can be represented as a bit vector of length |V |. Each node
v of graph G has a corresponding position in the bit vector BV :

BV [f(v)] =

1, if v ∈ CG
0, if v /∈ CG

(5.1)

A particular position in the bit vector has a value of 1 if the node is in the covered node
set, otherwise its value is 0. An example of a hierarchy of coverages for a graph with four
nodes is shown on a grid in Figure 5.1b.2 The hierarchy of coverages can also be stated
as a bitwise comparison of coverage bit vectors: If, for every v in V :

2Note that hierarchy relationship is transitive and therefore the exhaustive relationships are not shown
in the figure.
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(a) An example input graph coverage. The covered nodes are highlighted, while their node IDs
are shown in parentheses.

(b) An example rule. (c) Coverage grid for graph shown in (a). A cell’s vertical
position represents the number of nodes covered.

Figure 5.2: A graph coverage example. An example graph in (a) is covered by the rule in (b).
Assuming that the node labels represent the ordering function, the rule coverage can be expressed
as the bit vector 01X0X0. The coverage grid for graph in (a) is shown in (c). The shaded cell
contains the rule shown in (b). The arrow points to the coverage of rule’s non-terminal symbol
lower in the hierarchy.

BVG1 [f(v)] ∨BVG2 [f(v)]⇔ BVG1 [f(v)] (5.2)

is true, BVG1 > BVG2 . A non-terminal symbol X in a rule R with graph coverage CGR

has an associated graph coverage CGX
such that CGX

is lower in the hierarchy compared
to CGR

, CGR
> CGX

. This constraint ensures that nested rules always cover a subset
of nodes covered by the parent rule. Bit vector representation of graph coverage can be
extended to represent not only the rule’s graph coverage but also the coverages of rules’
non-terminal symbols:

BV [f(v)] =


Xn, if v ∈ CGXn

1, if v ∈ CG
0, if v /∈ CG

(5.3)

Similar to Hiero, graph-to-string rules can also be grouped in a grid according to their
coverage. An example of rule’s graph coverage is shown in Figure 5.2.

While the size of the CYK grid of word spans grows in O(n2) space with input size,
the size of the grid of graph coverages grows in O(2n). In practice, however, the space
of possible graph coverages of a given input graph is severely constrained by the rules
present in the grammar.
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5.3 Rule application

In this section, I describe rule application, the first part of decoding a DMRS graph into
the target string. Rule application identifies (1) which rules from the translation grammar
can be used to translate the input graph, and (2) the rules’ corresponding graph coverages
(introduced in the previous section).
The synchronous context-free grammar constructed with the rule extraction algorithm
(introduced in Section 4.2) consists of terminal and non-terminal graph-to-string rules.
In the case of terminal rules, a simple rule application algorithm would take every terminal
rule in the grammar and determine whether it can apply it to the input DMRS graph,
by checking whether rule’s source side is a subgraph that respects the semantic parse.
However, determining whether a graph is a subgraph of another graph is a well-known
NP-complete problem of subgraph isomorphism. In the case of non-terminal rules, the
additional difficulty of rule application stems from non-terminal symbols, which can cover
different parts of the graph.
To address both the problem of subgraph isomorphism and non-terminal rules, I propose
a rule application algorithm that (1) emulates rule extraction to generate terminal and
non-terminal rule source sides that could be used to decode the input graph, and (2)
searches the grammar for rules with matching source sides.
The proposed rule application algorithm formulation avoids the subgraph isomorphism
problem. Instead, it needs to address its special case, the graph isomorphism problem,
where the latter is not known to be NP-complete (Read and Corneil, 1977). As discussed
in Section 4.3.1, the graph isomorphism problem can be solved via graph canonization.
Namely, determining whether two graphs are isomorphic is accomplished by finding a
canonic representation for each of them and comparing the two representations: if they
are the same, the graphs are isomorphic. In the case of rule application, finding a pair
of isomorphic graphs means that an applicable rule for the given input graph is found in
the grammar.
I presented a heuristic solution for graph canonization in Section 4.3.1 for the purpose
of aggregating rules for grammar construction. I use the same solution for the rule ap-
plication algorithm described below. In particular, the source-side graphs generated for
the input graph are transformed into their canonical representations prior to querying
the grammar, whose rules are already in a canonical representation. The above described
formulation is well-suited to processing in a distributed computational environment and
therefore viable for use with large grammars in practice (see discussion in Section 1.5).
In the remainder of this section, I present the rule application algorithm and demonstrate
its operation on an example.
RuleApplication(G,R, N, Vmax) is the algorithm which, given graph G and grammarR,

Alg. 5.1 computes RG - the rules from grammar R applicable to graph G, and for every applicable
rule its possible coverages of graph G. Parameter N controls the maximum number of
non-terminals allowed in a rule; parameter Vmax controls the maximum node set size of
the source-side subgraph. The parameter values should match the ones used in the rule
extraction algorithm presented in Section 4.2.4.

1. (Create terminal subgraphs.) Create the set of terminal subgraphs of G,
GT ← CreateSemanticSubgraphs(G) (Algorithm 4.1 on page 67).
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2. (Compute terminal subgraph coverages.) For each subgraph g in GT , compute its
coverage of graph G.

3. (Initialize variables.) Initialize current working set Gws ← GT . Initialize result set
Gres ← GT .

4. (Repeat.) Repeat for N iterations to create source-side graphs with up to N non-
terminals. Keep track of iteration number with i ← 0, incrementing it after each
loop.

(a) (Initialize new working set.) Set Gnew ← {}.
(b) (Find candidate graph pairs.) For every graph g ∈ Gws, find terminal graphs

gT ∈ GT , such that gT is a subgraph of graph g, V (gT ) ⊂ V (g) and E(gT ) ⊂
E(g). Determining the subgraph property is a trivial problem since both graphs
are derived from the same initial graph G. Each such pair of graphs (g, gT ) is
a candidate for creation of a non-terminal graph.

(c) (Create candidate non-terminal graphs.) For every candidate pair of graphs
(g, gT ), create a non-terminal graph gNT by calling CreateNonterminal-
Graph(g, gT , i) (Algorithm 4.3 on page 69). Additionally, for each gNT , com-
pute non-terminal coverage of graph G.

(d) (Apply non-terminal graph constraints.) For every candidate non-terminal
graph gNT , check that it conforms to non-terminal graph constraints (de-
fined in Section 4.2.3). Non-terminal graphs that conform to constraints are
collected in Gnew.

(e) (Update variables.) Extend result set Gres with Gnew. Set Gws ← Gnew. In the
next iteration, the working rule set Gws will contain newly created non-terminal
graphs with an additional non-terminal symbol.

5. (Filter and canonicalize.) Filter result graph set Gres based on Vmax and transform
remaining graphs into their canonical form (using heuristic solution described in
Section 4.3.1).

6. (Query grammar.) Intersect the set of graphs Gres with rules’ source-side graphs of
grammar R to obtain applicable rules RG and associated coverages of G: RG =
{(r, CG(g)) | r = 〈g, e,∼〉, r ∈ R and g ∈ Gres}

7. (Return.) Return RG.

Let’s look at an example of rule application output for the sentence “Frank’s guilty plea-
sure is a good rack of ribs.” The algorithm was set to produce source-side graphs with
at most two non-terminal symbols and at most five nodes (N = 2, Vmax = 5). Figure 5.3
shows the DMRS graph of the sentence at the top, and the source-side graphs created by
the rule application algorithm (after filtering and canonization step) at the bottom. The
source-side graphs are grouped according to the number of non-terminals they contain
- zero, one, or two. This grouping reflects the order in which the rule application algo-
rithm constructs the source-side graphs: terminal source-side graphs (no non-terminals,
corresponding to step 1 of the algorithm) are constructed first, followed by non-terminal
graphs with increasing number of non-terminals (step 4 of the algorithm).
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(a) Input DMRS graph.

(b) Terminal source-side graphs.

(c) Non-terminal source-side graphs (1 non-terminal).

(d) Non-terminal source-side graphs (2 non-terminals).

Figure 5.3: Rule application output for the example sentence “Frank’s guilty pleasure is a
good rack of ribs.” At the top of the figure is the input DMRS graph representing the example
sentence. The remaining three parts of the figure show the filtered output of the rule application
algorithm at three iterations of the algorithm loop (statement (4)), increasing the number of
non-terminal symbols in the extracted source-side graphs. Note that coverages, which are part
of the algorithm output, are omitted from the figure for clarity.
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(a) Source-side graph created by the rule appli-
cation algorithm (shown in Figure 5.3).

0 0 0 0 0 1 1 1 X0

(b) Coverage output by the rule application al-
gorithm for the graph in (a).

(c) Input DMRS graph covered by the source-side graph shown in (a) (non-terminal coverage is
shaded).

Figure 5.4: Rule application coverage output example for a single source-side graph.

Figure 5.5: The set of six applicable rules returned by the rule application algorithm for the input
DMRS graph shown in Figure 5.3a given the grammar consisting of rules shown in Figure 4.10.

Note, however, that only filtered source-side graphs are shown in Figure 5.3 (i.e., the set
Gres created after step 5). There are additional source-side graphs that are created during
the algorithm execution that contain more than five nodes, but are subsequently filtered.
For example, one of the terminal graphs that is later filtered out is the input DMRS graph
itself (shown at the top of Figure 5.3).

The output of rule application algorithm are both source-side graphs and their coverages
of the input graph. For clarity, Figure 5.3 did not show the coverages. Instead, I show
the coverage output for an example source-side graph in Figure 5.4.

In the final step of the rule application algorithm (before returning the output), the
filtered source-side graphs are used to query the grammar R in order to obtain the set of
applicable rules. Let’s assume that the grammar R consists of rules shown in Figure 4.10,
which were extracted from a single example shown in Figure 4.2.3 Intersecting the example
grammar R with the filtered source-side graphs shown in Figure 5.3 yields a set of six
applicable rules. They are shown in Figure 5.5.

3Of course, in practice, the grammar will be constructed from rules extracted from millions of examples.
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5.4 Decoding

In the previous section, I described rule application as a procedure that, for a given graph
we wish to decode, identifies applicable rules and organizes them in a grid according to
their coverage. In this section I describe the procedure for creating the hypothesis space
and selecting the best hypothesis given the rule application output.
The hypothesis space is represented as a Weighted Finite State Acceptor (WFSA). A
WFSA is an automaton in which each transition (arc) between two states has (1) an
input label and (2) a weight that indicates the cost of using the arc. In a Weighted
Finite State Transducer (WFST) an arc has an output label in addition to the input
label. All automata discussed in this chapter are weighted, unless stated otherwise. We
therefore adopt terms FSA and FST to mean weighted automata. Finally, Recursive
Transition Network (RTN) is an automaton based either on FSA or FST that can contain
non-terminal arc labels pointing to other automata.
When constructing the hypothesis space, every rule’s target side and weight are repre-
sented as an RTN. RTNs representing rules with the same coverage are grouped into cell
RTNs so that the cell RTN accepts every rule’s target side. The non-terminal arc label
referring to another RTN is an encoding of that RTN’s graph coverage. In order to cre-
ate the FSA representing the hypothesis space, a replacement algorithm starting at the
top cell (the one covering the largest part of the input graph) recursively replaces RTN’s
non-terminal labels with corresponding automatons. Finally, the FSA is composed with
the language model FSA to add the language model scores. The best hypothesis is then
selected as the shortest path through the hypothesis space FSA.
The work described in this section is in large part a reimplementation and adaptation of
the ideas behind HiFST decoder introduced in Section 5.1. Our implementation of the
decoder uses the OpenFST library4 (Allauzen et al., 2007) and pyFST library (Chahuneau,
2015), a Python interface to OpenFST, to construct and operate on automata. In the
remainder of the chapter I adopt the mathematical notation used by de Gispert et al.
(2010) and Allauzen et al. (2014) to formally describe automata and the hypothesis space
construction and manipulation.

5.4.1 Finite state transducers

In this section I formally define semirings, weighted finite state transducers, and recursive
transition networks, which are used in constructing the hypothesis space. The definitions
are based on Allauzen et al. (2007, 2014).
A semiring (K,⊕,⊗, 0̄, 1̄) is a set K with generalizations of binary addition ⊕, which
is associative, commutative, and has the zero element 0̄ as identity, and multiplication
⊗, which is associative, has the unit element 1̄ as identity, has 0̄ as annihilator, and
distributes with respect to ⊕ (Cohn, 2003; Allauzen et al., 2007, 2014). A semiring differs
from a ring in that it may lack negation (Allauzen et al., 2014).
A weighted finite state transducer (WFST) is a tuple T = (Σ,Ω,Q, I,F , E, λ, ρ)
defined over semiring K, where Σ is a finite input alphabet, Ω is a finite output alphabet,
Q is a finite set of states, I is a set of initial states, I ⊆ Q, F is a set of final states,

4http://www.openfst.org
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F ⊆ Q, E is a finite set of transitions between two states with input and output labels,
E ⊆ Q× (Σ ∪ {ε})× (Ω ∪ {ε})×K×Q, λ is initial state weight assignment, λ : I → K,
and ρ is final state weight assignment, ρ : F → K (Allauzen et al., 2007). ε is the empty
string which as an input label denotes a transition which can be taken without consuming
a symbol or as an output label does not output a symbol (Mohri, 2002).
A special case of WFST without output labels is weighted finite state acceptor
(WFSA). WFSA is a tuple A = (Σ,Q, I,F , E , λ, ρ), where E ⊆ Q× (Σ∪ {ε})×K×Q.
A recursive transition network (RTN) is a tuple R = (Σ,N , Tn,S) defined over
semiring K, where Σ is a finite input alphabet, N is a finite alphabet of non-terminal
symbols, Tn is a family of WFSTs with input alphabet Σ ∪ N and n ∈ N , and S is the
root non-terminal, S ∈ N .
In the remainder of this chapter, I use LT , LA, and LR to refer to WFSTs, WFSAs, and
RTNs respectively.

5.4.2 Hypothesis space construction

The input to construction of hypothesis space is a coverage grid R, consisting of cells
R(CG) which group rules according to their coverage. For each rule r = 〈g, e,∼〉, r ∈
R(CG), an RTN LR(CG, r) is constructed to represent the rule’s target-side sequence S.
LR(CG, r) is a single-path acceptor constructed by concatenating acceptors LR(CG, r, i)
corresponding to elements of S = S1...S|S|. If Si is a terminal symbol, it is used as arcs’
input label. If Si is a non-terminal symbol, its input label is a pointer to a graph coverage
lower in the hierarchy. Therefore:

LR(CG, r) =
⊗

i=1...|S|
LR(CG, r, i) (5.4)

LR(CG, r, i) =

A(Si) if Si ∈ Σ
LR(C ′G, r′) otherwise

(5.5)

where ⊗ is the concatenation operation and A(t), t ∈ Σ returns a single-arc automaton
accepting symbol t (de Gispert et al., 2010). An example of terminal and non-terminal
rules and their RTNs is shown in Figures 5.6b and 5.6c.
For each cell R(CG), its RTN LR(CG) is constructed as a union of LR(CG, r), r ∈ R(CG):

LR(CG) =
⊕

r∈R(CG)
LR(CG, r) (5.6)

where ⊕ is the union operation. An example of a cell RTN is shown in Figure 5.6d.
Finally, the replacement algorithm converts a recursive transition network into a finite
state acceptor (Allauzen et al., 2014). Starting from the top cell LR(CGtop) (cell which
covers the largest part of the input graph, usually the cell that covers the entire graph),
the algorithm recursively expands RTNs by replacing their non-terminal labels with cor-
responding automatons. The constructed FSA LA encodes all hypotheses allowed by the
grammar for the graph G. An example is shown in Figure 5.6e.
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(a) Graph coverage grid
containing three rules.

(b) From top to bottom,
rules R1, R2, and R3.

(c) From top to bottom, RTNs
LR(011, R1), LR(111, R2), and
LR(111, R3).

(d) Cell RTN LR(111) created for coverage 111
from the union of LR(111, R2) and LR(111, R3)
rule RTNs.

(e) The final FSA LA created via the recursive
replacement operation started from the top cell
RTN LR(111).

Figure 5.6: An example of construction of the hypothesis space FSA from rule application
output (shown as a graph coverage grid in (a) and corresponding rules in (b)). Rule RTNs are
constructed from rule target sides (c) and grouped according to their coverage to create cell
RTNs (d). Finally, the final FSA is created via the replacement operation (e).

5.4.3 Selecting best hypothesis

The constructed FSA LA can represent a large number of hypotheses. A mechanism for
ranking them is needed to choose the best one. In FSA construction, a hypothesis is
formed by applying a sequence of rules - a derivation. I use a log-linear model to score
the derivations that generate the hypotheses in order to choose the best one. The log-
linear model is the standard approach to scoring derivations in Hierarchical Phrase-Based
Translation (Chiang, 2005, 2007; de Gispert et al., 2010). Following de Gispert et al.
(2010), I use the tropical semiring defined as (R ∪ {∞},min,+,∞, 0) when constructing
the RTNs and for ranking the hypotheses in the final FSA. Due to the use of tropical
semiring, rule probabilities pr are transformed to rule costs, cr = − log pr.
As described in Section 4.3.2, a number of features are computed for each rule. The
feature importance is determined by its weight. Therefore, the cost of a rule cr in a
log-linear model is:

cr =
∑
f∈F

f(r)λf (5.7)

where F is the set of feature functions, f(r) is the value of feature f for rule r, and λf is
the weight of feature f . Tuning of feature weights is discussed in Section 5.6.
Unlike rule features described so far, a language model score is not associated with a rule.
Instead, an N -gram target language model scores target-side symbols based on N − 1
previous symbols. Therefore, a language model score cannot be computed for a rule’s



CHAPTER 5. DECODING 105

target symbol sequence in isolation nor can it be computed over non-terminal symbols.
For this reason, the language model scores are applied to the hypothesis FSA LA via
intersection (Allauzen et al., 2007) with the target language model FSA.5 As with rule
probabilities, language model probabilities are transformed to costs (− log) for use with
the tropical semiring.
The cost of a derivation d is the sum of the cost of its sequence of rules r1...rN , alongside
the language model score:

cd = clm(e)λlm +
N∑
n=1

crn

= clm(e)λlm +
∑
f∈F

λf
N∑
n=1

f(rn)
(5.8)

where e is the derivation hypothesis string, λlm is the language model weight and

clm(e) = − log(plm(e)) (5.9)

where plm is the language model. Selecting the best hypothesis from the FSA is therefore
equal to finding the lowest cost derivation d̃:

d̃ = arg min
d∈D

cd

= arg min
d∈D

− log(plm(e))λlm +
∑
f∈F

λf
N∑
n=1

f(rn)
(5.10)

When constructing the rule RTN LR(CG, r), the rule cost cr is associated with the final
RTN state. According to the tropical semiring, the cost of a sequence of rule RTNs (i.e.,
derivation) is the sum of their individual rule costs. This corresponds to the definition
of derivation cost in Equation 5.8. Therefore, the search for the best hypothesis in LA
corresponds to finding the shortest path through the FSA (intersected with the language
model FSA) under the tropical semiring. The shortest path is found using the shortest
path operation in OpenFST (Allauzen et al., 2007).

5.5 Improving decoding efficiency

The decoding procedure described in Section 5.4 can require significant time and compu-
tational resources for large input graphs and grammars. In this section I introduce two
approaches to improve the decoding efficiency: in Section 5.5.1 I describe cell selection, a
procedure which reduces the set of cell RTNs that need to be constructed without intro-
ducing any errors, while in Section 5.5.2 I describe local pruning, an approach that reduces
the size of cell RTNs via pruning and allows a trade-off between quality and efficiency.
The latter was previously used for the same purpose by the HiFST decoder.

5Language model application is done efficiently using the applylm tool of the HiFST toolkit (Blackwood
et al., 2016)
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5.5.1 Cell selection

In Section 5.4.2 I described the process of building cell RTNs based on rules and coverages
resulting from rule application. However, not every cell ends up being used in the final
FSA. Cell selection identifies such cells and avoids creating them in order to improve
decoding efficiency. Unlike local pruning described in the following section, cell selection
does not introduce any errors into the decoding process.
The result of rule application for a given graph are rules and their coverage of the input
graph. These rules are grouped according to their coverage into cells, which are then
encoded as RTNs. Subsequently, a replacement algorithm creates the FSA by recursively
expanding cell RTNs, starting from the top cell (i.e., the one covering the largest part of
the graph, usually covering the entire graph). In order for an RTN to be expanded and
included in the FSA, it needs to be referenced by a non-terminal arc in one of the higher
coverage RTNs, which themselves need to be referenced by the top cell. Therefore, any
cell that is not referenced by the top RTN or one of its descendants, will not be expanded
by the replacement algorithm. If we can identify such cells, we can avoid creating them.
This is achieved by the CellSelection algorithm described below.
CellSelection(CT ) is a recursive algorithm which, given a cell CT , identifies the set of

Alg. 5.2 cells referenced by CT or one of its descendants.

1. (Initialize selected cell set.) C ← {CT}.

2. (Recurse on directly referenced cells.) For every rule r ∈ CT , identify non-terminal
references ci to lower coverage cells, and for every ci update C with CellSelec-
tion(Cci

).

3. (Return selected cell set.) Return C.

Calling the CellSelection algorithm with the top cell gives us the set of cells that need
to be created during hypothesis space construction (Section 5.4.2), avoiding creating cells
that are not going to be used.

5.5.2 Local pruning

Using a non-trivial size grammar results in many competing rules that can be used to
decode a part of the input graph. The RTNs representing these coverage cells can grow
very large, containing millions of states and edges. When presented with such large RTNs,
the recursive replacement algorithm fails to create the final FSA in reasonable time and
space. This behaviour provides motivation for controlling the size of the search space
using local pruning. Local pruning reduces the size of RTNs before they are expanded
by the replacement algorithm by pruning away low scoring hypotheses. In this section, I
describe the local pruning algorithm. Using local pruning can result in search errors as the
optimal hypothesis may be pruned away before the search for shortest path is conducted
on the final FSA. Because of this, I also describe a simple method for controlling the use
of local pruning based on node coverage and number of states.
Before a cell RTN can be pruned, it needs to be expanded into an FSA in order to replace
non-terminal transitions with terminal ones. However, the expanded FSA is still not
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complete, as it is missing the language model scores and pruning without language model
scores could result in removing potentially high-scoring hypotheses. Because of this,
language model scores need to be added to the cell FSA before pruning. However, they
need to be removed after pruning so that the final FSA can still be intersected with the
language model. Since not all cells are pruned (method for deciding which cells to prune
is described later in this section), were language model scores not removed, some of them
would include language model scores and some of them would not. The LocalPrune
algorithm stated below addresses all of these issues.

LocalPrune(c,M,LM, t, n) is the algorithm which, given a coverage c, a mapping M
Alg. 5.3of coverages to their RTNs, and a language model LM, prunes the RTNM(c) according

to pruning threshold t and n-shortest paths.

1. (Create cell FSA.)M(c)← fstReplace(M(c),M). Expand cell RTNM(c) into an
FSA with recursive replacement algorithm.

2. (Create cell LM FSAs.) Create two cell c language model FSAs, LMc+ and its
counterpart with negative weights LMc−, by intersecting unweighted FSA M(c)
with language model FSA LM.

3. (Intersect cell and LM FSAs.) M(c) ← fstIntersect(M(c),LMc+). Intersect cell
FSA with LM FSA to create a cell FSA with correct weights.

4. (Prune cell FSA.) M(c) ← prune(M(c), t, n). Prune cell FSA by unioning two
FSAs: (1) cell FSA pruned with threshold t and (2) cell FSA of n shortest paths.

5. (Remove LM weights.) M(c)← fstIntersect(M(c),LMc−). Intersect cell FSA with
LM FSA with negative weights to remove LM weights from the cell FSA.

6. (Return.) ReturnM(c).

The actual pruning of the cell FSA (step 4 of LocalPrune algorithm) consists of two
parts. In part (1) OpenFST prune operation is used to remove all hypotheses that have a
score that is more than threshold t worse than the score of the best hypothesis. However,
the resulting FSA can vary in size significantly depending on the scale of scores. In order
to avoid pruning the FSA too much, part (2) adds a constant number n of top hypotheses
to the pruned FSA. This guarantees that the pruned cell will contain at least n hypotheses
or remain unpruned if there are fewer than n hypotheses to begin with.

As indicated above, local pruning can introduce search errors. Therefore, it is desirable
to only use local pruning when necessary, as opposed to applying it to every RTN in
construction. In order to control when local pruning is applied to an RTN, its number of
states and graph coverage are compared to a set of configured conditions. Namely, the
conditions specify the minimum number of states for a given number of covered graph
nodes which trigger local pruning. This control mechanism mirrors the mechanism used
by HiFST decoder, which uses the number of states and the length of the word span
instead. The pruning conditions are set experimentally based on decoding time and
memory consumption.
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5.6 Tuning

The graph-to-string decoder presented in Section 5.4 uses a log-linear model to score the
hypotheses in order to choose the best one. Achieving the best possible translation quality
requires the log-linear model parameters to be tuned. The standard tuning procedure of
statistical machine translation systems is the Minimum Error Rate Training (MERT).
MERT optimizes the model parameters by evaluating the translation performance on a
tuning set (a set of sentences for which reference translations exist) in terms of the BLEU
score (BLEU metric is described in Section 6.2.2).
MERT procedure optimizes the log-linear feature weights by varying them and observing
the number of translation errors that occur, choosing the set of weights that produce the
minimum number of errors. To achieve this, MERT requires N -best list of translation
hypotheses to be produced for each sentence, as well as individual feature contributions
of each rule used to create the hypothesis. However, the hypothesis space construction
described above does not keep track of individual feature contributions. To remedy this,
I adopt the tuning procedure described by de Gispert et al. (2010).
In Section 5.6.1 I describe decoding with alignment, which allows for keeping track of
feature contributions of individual rules needed for MERT. Due to the increased com-
putational needs of decoding with alignment, it is conducted with a constrained target
space, previously generated by regular hypothesis space construction. Finally, I describe
minimum error rate training and lattice minimum error rate training in the background
Section 5.6.2.

5.6.1 Decoding with alignment

In hypothesis space construction (see Section 5.4.2) rule’s target sides are encoded as input
labels of FSA arcs. This enables FSAs to compactly represent the hypothesis space, since
individual arcs can be shared by many rules and consequently many hypotheses. However,
in doing so, it does not keep track of the rules that are used to construct a particular
hypothesis.
Such FSA construction is sufficient for translating a sentence, as long as the arc scores are
correct, which is ensured by using the tropical semiring. However, tuning the log-linear
model parameters with MERT requires individual feature contributions to be computed
for every hypothesis. As features are associated with rules, this means that for every
hypothesis we need to know which set of rules was used to construct it (note that this is
not as strong of a requirement as keeping track of hypothesis derivations).
To accommodate this requirement by MERT, I adapt decoding with alignment as de-
scribed by de Gispert et al. (2010) in the HiFST decoder. In hypothesis space construction
of decoding with alignment, Finite State Acceptors are replaced by Finite State Trans-
ducers. Output arc labels are used for target tokens, whereas the input labels are used
to keep track of rule indices. The constructed rule FSTs can be viewed as a mapping
from a rule id to a sequence of target tokens. For decoding with alignment, Equations 5.4
and 5.5 are redefined as:

LR(CG, r) = AT (r, ε)
⊗

i=1...|S|
LR(CG, r, i) (5.11)
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Figure 5.7: Decoding with alignment of the example from Figure 5.6. From top to bottom, rule
RTNs LR(011, R1), LR(111, R2), LR(111, R3), cell RTN LR(111), and final FST LT . The final
FST encodes two hypothesis: (1) input rule id sequence 2,1 and output target token sequence
t1,t2,t3; (2) input rule id sequence 3 and output target token sequence t1,t4,t5.

LR(CG, r, i) =

AT (ε, Si) if Si ∈ T
LR(C ′G, r′) otherwise

(5.12)

where AT (r, t), t ∈ Σ returns a single-arc transducer accepting the index of rule r in the
input and the symbol t on the output (de Gispert et al., 2010).

A hypothesis in the final FST produced by decoding with alignment contains a sequence
of target tokens on the output labels and a sequence of rules used to produce the target
tokens on the input labels. An example of the hypothesis space constructed by decoding
with alignment is shown in Figure 5.7. Note that the example is constructed from the
same coverage grid shown in Figure 5.6b and that the final hypothesis space FST encodes
the same two hypotheses on output labels as the final hypothesis space FSA shown in
Figure 5.6e.

As stated above, FSAs are able to compactly represent the hypothesis space due to arc
sharing by many hypotheses. In decoding with alignment, the potential for arc sharing
and consequently compact representation of hypothesis space is significantly reduced: two
hypotheses can share an arc only if they used the same rule to produce it. This can be
seen in the final FST of example in Figure 5.7, which has 8 nodes and 9 arcs compared
to 5 nodes and 5 arcs of FSA in Figure 5.6e, despite encoding the same target token
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hypotheses. Consequently, the hypothesis space produced by decoding with alignment
can grow significantly larger, making it computationally infeasible for many sentences.
To address this problem, de Gispert et al. (2010) propose a three-step decoding procedure
for tuning with MERT, which I adopt here:

1. Construct the hypothesis space FSA (as described in Section 5.4.2) and prune it so
that N -best hypotheses are left in the FSA.

2. Construct the hypothesis space FST (as described in current section) with a target
space constrained to N -best FSA from the previous step.

3. Convert the hypothesis space FST to an FSA with feature contributions as arc
labels.

Constraining the target space in step 2 is achieved using a full and substring reference
acceptors during decoding with alignment. The full reference FSA accepts only the N -
best hypotheses from step 1 of the decoding procedure. The substring reference FSA in
addition also accepts any substring of the same hypotheses. The details on construction
of reference FSAs based on N -best hypothesis FSA are described in de Gispert et al.
(2010).
The target space of decoding with alignment is constrained by composing the final FST
with the full reference FSA. This means that only top N hypothesis derivations are kept in
the FST. However, the efficiency problem remains unaddressed for RTNs used to construct
the hypothesis space. To remedy this problem, RTNs are constrained by composing them
with the substring reference FSA, which bears similarity to local pruning described in
Section 5.5.2.
Finally, in step 3 of the decoding procedure, individual feature contributions towards each
hypothesis are identified. This is achieved by composing the FST constructed in step 2
with a mapping FST which maps sequences of rule indices to their feature values. The
feature values are represented as a vector of floating point numbers. The mapping FST
is constructed from the grammar and takes advantage of the tropical sparse tuple weight
semiring, which allows it to store vectors of feature values as arc labels.6

5.6.2 Lattice Minimum Error Rate Training

Minimum Error Rate Training (MERT), introduced by Och (2003), is a procedure
for tuning parameters of a log-linear SMT model using a non-differentiable objective func-
tion. MERT superseded other tuning procedures using maximum likelihood and related
criteria because it enables the use of automatic evaluation metrics, such as BLEU, as train-
ing criteria. These alternative training criteria enable direct optimization of translation
quality and better reflect the performance on unseen test data.
Given source sentences fS1 and reference translations rS1 , the SMT system produces N-
best lists of candidate translations Ks = {es,1, ..., es,N}. The number of errors for a
translation e with respect to the reference translation is measured with function E(r, e).
Assuming errors for individual sentences can be summed to produce corpus error count,

6I use the HiFST alilats2splats tool to accomplish the third step of the decoding procedure.
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E(rS1 , eS1 ) = ∑
s∈S E(rs, es). The goal of MERT is then to find a set of parameters λF such

that the number of translation errors across the corpus is minimized:

λ̂F = arg min
λF

∑
s∈S

E(rs, ê(fs;λF )) (5.13)

where the translation candidate from N-best list with lowest derivation cost under current
parameters is chosen:

ê(fs;λF ) = arg min
e∈Ks

cd(e;λF ) (5.14)

The basic variant of MERT chooses a single parameter λf∈F to optimize at a time by vary-
ing its values alongside a line in the parameter space. For each sentence candidate set Ks,
an upper envelope of scores at different values of the parameter λf∈F is computed. The
upper envelope encodes all possible outcomes of varying a single parameter for the given
sentence and can be projected onto error counts of corresponding translation candidates.
Corpus wide error counts are obtained by merging sentence upper envelopes and the corre-
sponding error counts. Optimal value of parameter λf∈F can then be found by traversing
the corpus error surface and finding the minimum. After parameters are updated, new
sentence candidate translations are computed and the process is repeated (Och, 2003;
Macherey et al., 2008).
Lattice Minimum Error Rate Training (LMERT) is an extension of MERT that
yields faster tuning convergence and explores a larger space of candidate translations (Macherey
et al., 2008). Whereas MERT uses an N-best list of translation candidates for each sen-
tence, LMERT uses a lattice. As N-best lists capture only a small part of the search
space, the number of tuning iterations that require retranslating sentences after param-
eter update is large. On the other hand, lattices encode a significantly larger number of
translation candidates, which in turn reduces the number of iterations until parameter
convergence. The two candidate representations require different algorithms to compute
the upper envelope: MERT uses the SweepLine algorithm, while LMERT uses the Lattice
Envelope algorithm (both algorithms are described in Macherey et al. (2008)).
I used the LMERT implementation included with the HiFST SMT system7 for tuning
system parameters presented in this thesis. The HiFST LMERT implementation is based
on the work by Waite et al. (2011), who model the optimization as computing the shortest
distance in a Weighted Finite-State Transducer with Tropical Polynomial Weights.

5.7 Decoding performance analysis

In previous sections I described rule application and decoding components. In this section
I demonstrate their performance on a representative dataset in terms of running time
(rule application and decoder) and number of rules produced (rule application). These
experiments demonstrate the viability of the system presented in this thesis for large-
scale translation and realization tasks. It is important to note, however, that the system
implementation (partly described in Section 1.5) is not optimized or mature. The results

7https://ucam-smt.github.io/
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(a) Rule application sentence running time distribution (RuleApplication algorithm steps 1-5).

(b) Translation task rule application rules. (c) Realization task rule application rules.

Figure 5.8: Rule application runtime (top row) and number of applicable rules (bottom row) for
1774 sentences grouped by number of nodes. The number of rules is normalized by the number
of graph nodes. I do not show outliers in (b) and (c) in order to preserve clarity.

should therefore only give an indication of what performance can be achieved, but not its
limits. I begin the analysis with rule application in Section 5.7.1 and finish with decoding
in Section 5.7.2.

5.7.1 Rule application

I evaluate the rule application performance in terms of running time and number of rules
produced per sentence. The applied rules are subsequently used by the decoder, whose
performance I evaluate in the following section (Section 5.7.2).

Rule application performance is evaluated on newstest2013 dataset filtered to DMRS
graphs with 20 or fewer nodes, yielding 1774 sentences (this dataset is used for tuning
in Chapters 6 and 7). Both translation and realization grammars have been estimated
on the same corpora (WMT15 en-de translation corpora, described in Section 6.2.1).
The translation grammar contains 15.1 million rules, whereas the realization grammar
contains 26.9 million rules. The rule application algorithm uses the same parameter
values as were used for estimating the grammars. Both translation and realization rule
application therefore use N = 2 and Vmax = 5.
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I evaluate rule application algorithm running time per sentence for algorithm steps 1-5
(RuleApplication algorithm in Section 5.3). The performance of RuleApplication algo-
rithm steps 1-5 is identical for translation and realization if performed on the same dataset.
Consequently, I report running times only once, in Figure 5.8a. The algorithm for each
sentence was run on a single CPU core.

Figure 5.8a is a box and whisker chart showing distribution of sentence running times
at each graph node set size. Outliers (sentence running times more than 1.5 times the
interquartile range, IQR = Q3−Q1 or the length of the box, away from either end of the
box) are shown as individual data points. I will use this type of chart to present decoding
performance in the remainder of the section.

Based on Figure 5.8a we can conclude that the running time of steps 1-5 of RuleApplica-
tion algorithm increase faster than linearly. The degree of dispersion (spread) of sentence
running time increases with the number of graph nodes representing a sentence. The
longest sentence running time is 4.12 seconds for a sentence with 19 nodes. Compared to
decoder sentence running times reported in the following section, rule application presents
a minor part of the total time needed to decode a sentence.

The final algorithm step (step 6), querying the grammar, is performed for the entire
set of sentences with Apache Spark operations (Section 1.5). Therefore, its individual
sentence running times cannot be reported. Instead, I report the total running time of
rule application for the entire dataset. The complete rule application (steps 1-6) was run
on 1774 sentences with Apache Spark on a single machine with the following settings:
16 CPU cores, 10 GB driver RAM limit, 12 GB executor RAM limit, and 50 partitions.
In addition to steps 1-6 of rule application algorithm, glue, CARG, and disconnected
rules (introduced in Section 6.1) were created for each sentence for both translation and
realization tasks. Mapping rules were also created for translation task. The total running
time was 1077 seconds (17 minutes 57 seconds) for translation task and 994 seconds (16
minutes 34 seconds) for realization task.

Figures 5.8b and 5.8c show the number of resulting applicable rules for translation and
realization tasks respectively. The number of applied rules is normalized by the number
of sentence graph nodes. We can observe that, apart from graphs with five nodes or fewer,
the number of applicable rules per node found by rule application algorithm is constant.
I theorize that the variability of applicable rules per node for graphs with five nodes or
fewer occurs due to two related reasons: (1) graphs with five nodes or fewer often represent
commonly used phrases and may have therefore been observed in the training corpora,
yielding additional rules translating the input graph as a whole; (2) the RuleApplication
algorithm parameter Vmax = 5 specifies that the maximum number of nodes in a rule’s
source side is five, which means that rules that fully translate these graphs can exist, in
addition to more granular rules translating parts of them.

Figures 5.8b and 5.8c additionally show there is a marked difference in the number of
applicable rules per node between translation and realization tasks. Whereas realization
grammar yields around 400 applicable rules per graph node, translation grammar yields
around double that amount. I hypothesize that the difference is the result of different
grammar composition arising from the noise introduce by SMT alignments (described
in Section 3.3.3). In particular, I observed that translation task applicable rules are
dominated by rules translating very common graph fragments, such as determiners (for
example, corresponding to the X_0).
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(a) Translation task in translation mode. (b) Translation task in alignment mode.

(c) Realization task in translation mode. (d) Realization task in alignment mode.

Figure 5.9: Decoding runtime for 1774 graphs (filtered newstest2013 of graphs with up to 20
nodes, described in Chapter 6) grouped by number of nodes.

5.7.2 Decoder

I evaluate decoder performance in terms of running time, comparing translation mode de-
coding (described in Section 5.4) and alignment mode decoding (described in Section 5.6.1)
for translation and realization tasks. Translation mode decoding includes hypothesis space
construction, language model application, and n-best shortest-path search. On the other
hand, alignment mode decoding includes only hypothesis space construction, constrained
to the n-best results of translation mode.
Decoding performance is evaluated on the same newstest2013 dataset as rule application.
Additionally, it uses the applied rules produced for translation and realization tasks in
the previous section. I use a German 4-gram language model estimated on monolingual
corpora and target side of parallel corpora (details are described in Section 6.2.1) for
translation mode of translation task. I use an English 4-gram language model for the
equivalent realization task (details in Section 7.1.1).
Translation mode hypothesis space construction of both translation and realization tasks
is pruned with the following setting: (8, 20, 9), (5, 200, 5), (3, 100, 5), (1, 50, 7).
Each triplet is interpreted as: (1) minimum number of graph nodes covered by a cell
for the pruning condition to be applicable; (2) minimum number of FST states in a cell
for the pruning condition to be applicable; (3) pruning threshold used if both (1) and
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Figure 5.10: Translation task in translation mode runtime including outliers.

(2) are met. Pruning conditions are specified in the same order as presented above;
the first applicable condition is used for pruning. The pruning setting was determined
experimentally by increasing the severity of pruning until all sentences were translated
within specified memory and time constraints.
As described in Section 5.5.2, every time pruning is executed, n-shortest paths are kept
regardless of their score; n = 100 for both translation and realization task in these exper-
iments. Note that local pruning is not used in alignment mode, where hypothesis space
construction is instead constrained to the final pruned FSA of translation mode. This
FSA is produced (in translation mode) by keeping 2000 n-shortest paths alongside any
path below pruning threshold of 9.
The decoder has limits set on its running time and memory use. In translation mode, it
can use up to 40 GB of memory to decode a sentence in up to 2000 seconds on a single
CPU (note that language model application and final pruning are excluded from these
constraints). The equivalent limits for alignment mode are 60 GB and 1000 seconds.
The experiment results are shown in Figure 5.9. Figure 5.9a shows the running time of the
translation task in translation mode. Like similar figures shown in Section 5.7.1, sentences
are grouped according to their DMRS graph size and their distributions are shown with
box and whisker charts. We can observe that running time increases (reasonably close
to) linearly with increased number of graph nodes. As in rule application performance
results, dispersion of sentence running time increases with the number of graph nodes
representing a sentence.
However, unlike in the equivalent rule application figure (Figure 5.8a), I do not show
outliers as they make the resulting figure difficult to interpret. This is because a small
number of sentences have a much longer running time than the large majority of them.
I show the results with outliers in Figure 5.10 for translation mode of translation task.
Note that the sentence running time limit of 2000 seconds was hit in two instances.
Performance between translation and realization tasks is comparable: they are evaluated
and trained on the same datasets and use the same pruning settings.8 However, we can

8The English language model was trained on a (significantly) larger monolingual corpus than the
German one, but that has a small effect on translation mode running time.
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observe a significant difference in running time between Figures 5.9a and 5.9c. The differ-
ence stems from the number of applied rules used in each. As seen in the previous section
(Figures 5.8b versus 5.8c), there are around twice as many rules per graph node in trans-
lation task compared to realization task (800 versus 400), which results in significantly
longer decoding times. Note that realization running times could be adjusted to similar
levels as in translation task by relaxing the local pruning conditions. As described above,
both tasks use the same set of pruning conditions, which were manually tuned to make
translation task tractable.
Alignment mode is considerably faster compared to translation mode, which can be ob-
served both for translation and realization tasks. This result may come as a surprise
considering that (1) alignment transducers often contain more states and arcs than their
translation counterparts, as observed in Section 5.6.1, and (2) the fact that alignment
mode is more computationally demanding in HiFST (Allauzen et al., 2014). (1) is ex-
plained by alignment mode’s constrained hypothesis space generation, which considers
far fewer translation hypotheses. (2) is explained by the inherent difference in decoding
tasks between HiFST and work presented in this thesis. HiFST decoder (and other Hiero
decoders) use CYK to consider many parses of the source sentence string, while graph-
to-string decoder considers a single parse of a sentence (although it considers multiple
derivations that achieve that parse). This means that graph-to-string decoder considers
a smaller set of derivations, trusting that the DMRS graph is a good parse of the source
sentence, making alignment mode that computes the derivations less tasking.



Chapter 6

Translation

In this chapter I apply the statistical machine translation approach proposed in this thesis
(see Chapters 3, 4, 5) to the problem of machine translation. The approach translates a
DMRS graph in the source language to a target language string. A DMRS is a semantic
representation of a sentence, modelled as a directed acyclic graph. DMRS was designed
to include all semantically related information that can be derived from syntax and mor-
phology. Applying the proposed approach to the machine translation problem therefore
follows the trend of using deeper linguistic knowledge in statistical machine translation.
It takes advantage of the monolingual knowledge encoded in the high-precision grammar
(the ERG) used to obtain DMRS representations from input sentences.

When I first evaluated the performance of the proposed approach on the translation task I
found that it did not perform well on real-world data. The system lacked robustness that
is inherent in hierarchical phrase-based translation, in particular due to Hiero’s glue rules.
Consequently, I introduce several types of non-grammar rules, which are not extracted
from parallel data but are instead constructed for each input graph as needed during the
rule application stage of decoding (see Section 1.5.1). Non-grammar rules include (1)
disconnected graph glue rules, which are similar in purpose to Hiero glue rules (Chiang,
2007), (2) node deletion rules, which allow not translating a node if no grammar rules
exist for it, (3) carg rules for mapping carg nodes, such as named entities and numbers,
directly from source to target side, and (4) mapping rules which allow the same to be
done for any source node. With the exception of the last type, non-grammar rules are
equally valuable for the realization task (see Chapter 7). I describe the four types of
non-grammar rules in detail in Section 6.1.

The approach proposed in this thesis is a large-scale statistical machine translation sys-
tem (see Section 1.5). Consequently, the proposed approach can be trained on millions
of training examples and use the resulting grammar for decoding of real-world inputs
on a large-scale. However, a limitation of the current decoder is that it accepts DMRS
graphs containing up to 20 nodes. As demonstrated in Section 5.7, this is not an in-
herent limitation of the approach but rather of its implementation. In lieu of a more
efficient implementation, other strategies such as splitting DMRS graphs and decoding
them separately, analogous to sentence splitting employed in other SMT systems, can be
implemented.

In order to demonstrate its ability to be used as a large-scale statistical machine translation
system, I evaluate it on the (large-scale) WMT15 English-German translation task. I
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compare my approach to a state-of-the-art SMT system, the HiFST implementation of
hierarchical phrase-based translation (Blackwood et al., 2016) (see Section 5.1). I describe
the set-up of both systems and report on some associated preliminary experiments in
Section 6.2. I also describe in more detail the BLEU and METEOR metrics, which are
used for evaluating translation quality compared to a reference translation. In addition
to evaluation of final system performance, I use BLEU for model parameter tuning (see
Section 5.6). Finally, I report and discuss the evaluation results in Section 6.3.

6.1 Non-grammar rules

In Chapter 4 I introduced the rule extraction and grammar construction algorithms which
create a translation or a realization grammar. The grammar is subsequently used by the
decoder to decode previously unseen DMRS graphs. In practice, however, the decoder
encounters graphs which it cannot decode using the extracted grammar: (1) disconnected
graphs consisting of several components, and (2) graphs which contain nodes for which no
rule exists in the grammar. Consequently, only a part of the input graph can be decoded.
In this section, I introduce non-grammar rules which alleviate this problem by enabling
the decoder to decode as much of the input graph as possible. These rules significantly
improve robustness of the approach presented in this thesis. Unlike the grammar rules,
which are extracted from training examples, non-grammar rules are created for each input
graph to be decoded at the rule application stage (Section 5.3). They are used both by
the translation system described in this chapter and the realization system described in
Chapter 7.
The remainder of the section is organized as follows. In Section 6.1.1 I describe glue
rules, which enable decoding of disconnected graph components. The glue rules get their
name based on their resemblance to glue rules used by Hiero (introduced in Section 4.1).
Deletion rules, described in Section 6.1.2, allow decoding of graphs with nodes for which
no rules exist in the grammar by deleting the offending node. Instead of deleting the node,
carg rules (Section 6.1.3) allow decoding of a node using its carg property. Finally, in
Section 6.1.4, I describe mapping rules which allow mapping of source side tokens directly
to the target side. They are only applicable to the translation task discussed in this
chapter, since source alignment information is not available during realization decoding.

6.1.1 Disconnected graph glue rules

A connected graph (here, as in Section 3.2.3, I refer to the underlying undirected graph
of a DMRS graph) is a graph in which there exists a path between every pair of nodes.
Conversely, a disconnected graph is a graph that is not connected. A disconnected DMRS
graph is caused either by parsing (a bug in the ERG or a consequence of robust parsing
settings, see Section 6.2.1) or by one of the DMRS modelling steps (see Section 3.2).
Disconnected graphs occur rarely: around 1 graph in every 150 is disconnected in new-
stest2013 and newstest2014 datasets. A disconnected graph consists of connected compo-
nents. The example disconnected graph shown in Figure 6.1, for instance, consists of two,
marked as C1 and C2. Disconnected graphs cause problems for the decoder as only the
largest component is decoded. The solution I describe in this section creates glue rules
which join connected components and enable the decoder to decode all of them.
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Figure 6.1: An example disconnected DMRS graph presented to the decoder, parsed from “The
aim, however, wasn’t to stop commuters getting to work but prevent protesters from reaching
parliament.” The disconnected graph is caused by the DMRS modelling steps.

Figure 6.2: Disconnected graph glue rules for the example graph in Figure 6.1.

Recall that the decoder creates the hypothesis space from the cell which covers the largest
part of the input graph (Section 5.4.2). Usually this cell is the one covering the entire
graph. However, in the case of a disconnected graph, no such cell exists, since no rules
exist that would join the two disconnected components of the graph together. Instead,
the hypothesis space is created for the disconnected component of the graph that covers
the largest part of the input graph, whereas the smaller components of the graph are left
undecoded. In the example in Figure 6.1, the C1 component is decoded, while the C2
component is left undecoded.
The solution described in this section creates special glue rules for every disconnected
input DMRS graph. A glue rule joining the disconnected components of the graph al-
lows the decoder to decode all disconnected components. On the target side, a glue rule
concatenates the target sides of the individual components. Since the target side order
of the components is not known, every possible target order (i.e., permutation) is cre-
ated. Therefore, given a disconnected graph with n components, a set of n! disconnected
graph glue rules is created. In practice, only n = 2 was observed in newstest2013 and
newstest2014 datasets. The two disconnected graph glue rules created for the example in
Figure 6.1 are shown in Figure 6.2.
A glue rule allows decoding of disconnected components by placing them in a particular
order on the target side. However, this may not create a fluent target side. In the example
above, the C2 graph component corresponds to the string “getting to work but prevent
protesters” in the original sentence. Placing the string (i.e., its realization or translation)
before or after the string corresponding to component C1 in Figure 6.1 does not yield a
fluent output. Instead, the ‘correct’ placement of C2 target string would be inside C1
target string. However, since the information where in C1 it should be placed is not
present in the input graph (since the components are disconnected), it is placed before or
after the C1 target string.
Disconnected graph glue rules are distinguished from other rules with a disconnected
graph glue rule indicator feature. Additionally, the rule penalty feature (introduced
in Section 4.3.2) is associated with each rule.

6.1.2 Deletion rules

What happens when a node in a graph cannot be decoded because there is no suitable
rule in the grammar? The decoder is unable to decode the coverage cell corresponding
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Figure 6.3: An example DMRS input graph to the decoder, parsed from “In Quebec, there are
palliative care beds for 11,700 inhabitants.”

(a) Terminal deletion rule. (b) Non-terminal deletion rule.

Figure 6.4: Examples of deletion rules constructed for the input DMRS graph in Figure 6.3.

to the node, as well as any coverage cell higher in the hierarchy (cell hierarchy is defined
in Section 5.2 and an example is shown in Figure 5.1b). This has severe negative conse-
quences: only the largest subgraph that is not in the hierarchy can be decoded. In this
section, I describe deletion rules which instead allow deletion of the node for which no
rule exists, while enabling other parts of the graph to be decoded fully.

Let’s take the DMRS input graph in Figure 6.3 as an example, and assume that no rules
exist for decoding nodes Quebec_named_sg and 11,700_card. The cell hierarchy of node
11,700_card includes nodes _for_p, _be_v_there_pres, and _in_p_state, while the
cell hierarchy of Quebec_named_sg includes only _in_p_state. Consequently, the largest
subgraph that can be decoded corresponds to the string “palliative care beds”.

Deletion rules are created for every node of the input graph. Two types of deletion rules
are created: terminal and non-terminal. A terminal deletion rule is created for a node
without any outgoing edges (i.e., without any arguments). An example of a terminal
deletion rule for node Quebec_named_sg is shown in Figure 6.4a.

In order to allow decoding of node’s arguments, a non-terminal deletion rule is created for
nodes with outgoing edges (i.e., with arguments). An example non-terminal deletion rule
for node 11,700_card is shown in Figure 6.4b. In the case where a node has more than
one argument, a set of n! deletion rules is created in order to allow for all permutations
of the n non-terminal tokens on the target side (similar to disconnected graph glue rules
described in Section 6.1.1).

A deletion rule (set) is created for every node in the input DMRS graph regardless of
whether grammar rules for each node exist. In addition to decoding nodes for which
no grammar rules exist, this enables the decoder to delete nodes for which grammar
rules do exist. Consequently, deletion rules compete with grammar rules and the decoder
must choose between them using its log-linear model and rule features (as described in
Section 5.4.3). Similarly to disconnected graph glue rules, deletion rules are distinguished
from other rules with a deletion rule indicator feature. Additionally, the rule penalty
feature (introduced in Section 4.3.2) is associated with each rule.

Returning to our example in Figure 6.3, the decoder provided with the deletion rules
(including the two deletion rules shown in Figure 6.4) is now able to decode the subgraph
corresponding to the string “In, there are palliative care beds for inhabitants.”
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(a) Terminal carg rule. (b) Non-terminal carg rule set.

Figure 6.5: Examples of carg rules constructed for the input DMRS graph in Figure 6.3.

6.1.3 carg rules

Common numbers and named entities (e.g., ‘one’, ‘David’) are often encountered in the
training set. Consequently, rules for decoding them are extracted during grammar ex-
traction. However, there are an infinite number of such predicates which are not present
in the training data and which no rules are extracted for. When such predicates occur in
the graphs presented to the decoder, they cannot be decoded (instead, they are deleted
using deletion rules presented in Section 6.1.2). In this section, I introduce carg rules in
order to provide rules for such predicates so that they are decoded instead of deleted.

carg rules take advantage of the carg node property (introduced in Section 3.2.1). The
carg property stores predicate symbols of numbers, named entities, etc., which are not
stored in the lexicon. For example, the input graph in Figure 6.3 contains two carg nodes,
Quebec_named_sg and 11,700_card.

A carg rule is created for each carg node of an input graph. Two types of carg rules
are created: terminal and non-terminal. A terminal carg rule is created for a carg node
without any outgoing edges (i.e., without any arguments). An example of a terminal carg
rule for node Quebec_named_sg is shown in Figure 6.5a.

As with disconnected graph glue rules (Section 6.1.1) and deletion rules (Section 6.1.2),
a set of non-terminal carg rules is created for a carg node with outgoing edges (i.e., with
arguments). Each non-terminal carg rule in the set has a different ordering of non-terminal
tokens on its target side. An example non-terminal carg rule set for node 11,700_card
is shown in Figure 6.5b.

A carg rule is created for every node with the carg property in the input graph, regardless
of whether a grammar rule for it exists. Consequently, like deletion rules, carg rules
compete with grammar rules and the decoder must choose between them using its log-
linear model and rule features. Two additional features are used to distinguish carg rules
from their grammar counterparts:

• carg terminal rule indicator feature, equals -1 if the carg rule contains only
terminal nodes and tokens (for example, rule in Figure 6.5a), otherwise it equals 0.
This feature largely corresponds to rules constructed for named carg nodes.

• carg non-terminal rule indicator feature, equals -1 if a carg rule contains both
terminal and non-terminal nodes and tokens (for example, rules in Figure 6.5b),
otherwise it equals 0. This feature largely corresponds to rules constructed for card
and ord carg nodes.
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Additionally, word penalty and rule penalty features (introduced in Section 4.3.2) are
also associated with each carg rule. Grammar rule features, such as source-to-target and
target-to-source probabilities, and rule count indicator, on the other hand, cannot be
estimated for carg rules, as carg rules are created independently for each input DMRS
graph. Finally, note that carg rules with different target side ordering are discriminated
between with the help of a language model.

carg rules often produce the desired decoding of a node, as shown in example rules in
Figure 6.5. However, in some cases, carg rules produce a technically correct decoding of
a node, but not the desired one. For example, since ERG normalises numbers (e.g., ‘a
million’ results in a carg value of ‘1,000,000’), a carg rule decodes a cardinal number node
as a sequence of digits instead of words (e.g., ‘1,000,000’ instead of ‘a million’). Similarly, a
translation carg rule will decode a named node by preserving its source language form (e.g.,
‘United States’ instead of ‘Vereinigten Staaten’). Although still beneficial (and certainly
better than deleting the node with a deletion rule), such carg rules may not improve the
BLEU score (described in Section 6.2.2), which requires exact n-gram matches.

6.1.4 Mapping rules

Since carg rules (see Section 6.1.3) are limited to nodes with the carg property (e.g.,
numbers and named entities), I introduce in this section mapping rules, which enable
transferring the source-side tokens corresponding to every node directly to the target side
for the translation task.

Mapping rules, like carg rules, rely on source-side information. Instead of using the carg
node property, however, they use the source alignment information. Source alignment
(introduced in Section 3.3.1) is the alignment between graph nodes and source sentence
tokens. Therein lies their limitation to the translation task - source alignment information
is not available during decoding for the realization task.

Similarly to carg rules, mapping rules are created for every node in the input graph, with
the exception of carg nodes. A mapping rule’s target side consists of the tokens aligned
to the particular node, in the order they appear in the source sentence. Identically to
carg rules, a set of non-terminal mapping rules needs to be created for each node with
outgoing edges (i.e., with arguments) to allow for different non-terminal token ordering
on the target side. The full set of translation mapping rules for the example input graph
in Figure 6.3 is shown in Figure 6.6.

Mapping rules have a similar feature set as the carg rules: in addition to word and rule
penalty features, they are distinguished via two features:

• Mapping terminal rule indicator feature, equals -1 if the mapping rule contains
only terminal nodes and tokens, otherwise it equals 0.

• Mapping non-terminal rule indicator feature, equals -1 if a mapping rule
contains both terminal and non-terminal nodes and tokens, otherwise it equals 0.



CHAPTER 6. TRANSLATION 123

Figure 6.6: Set of translation mapping rules created for the example input graph in Figure 6.3.

6.2 Experimental setup

6.2.1 Translation systems

In this section I describe theHSST (Hierarchical Statistical Semantic Translation) system
evaluated in subsequent sections, and the HiFST system used for comparison. In order
to make the systems comparable, they are both trained, tuned, and evaluated on the same
data, specified and distributed by the WMT15 English-German translation task.1 I first
describe the HSST system, followed by the HiFST system.

The English-German WMT15 training data consists of the parallel corpora from three
domains: European parliamentary proceedings, automatically crawled data, and news
commentary. I preprocessed and filtered the parallel sentences using the preprocessing
steps described in Section 1.5. After preprocessing, the English side of the parallel data
was parsed with ERG/ACE (ERG version 1214 and ACE version 0.9.23; Flickinger, 2000;
Packard, 2016a). ERG/ACE parsing was conducted with non-default settings: { max-
chart-megabytes=7000, max-unpack-megabytes=8000, timeout=15, r=‘root_informal
root_inffrag’, tnt-model=wsj.tnt }.

In particular, a shorter timeout is necessary due to the large volume of data. An experi-
ment on a subset of data showed that increasing the timeout beyond 15 seconds did not
yield substantial parsing coverage increase (see Table 6.2). The additional root instances
allow for more robust parsing, which is necessary to achieve a high parsing coverage on
less well-formed data (for instance, crawled data).

The resulting MRS representations were converted to DMRS graphs using the pyDelphin
library (version 0.5; Goodman, 2016). The summary of the parallel training corpora is
shown in Table 6.1.

In order to tune and evaluate the systems, I used the English-German WMT15 develop-
ment sets: newstest2013 for tuning and newstest2014 for testing. The sets consists of 3000

1WMT15 translation task webpage: http://www.statmt.org/wmt15/translation-task.html
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Corpus Description Sent. pairs
(millions)

Parsed

Europarl v7 European parliamentary proceedings 1.89 80.6%
CommonCrawl Automatically crawled websites 2.14 81.0%
News Commentary v10 News analysis from Project Syndicate 0.21 85.4%
Combined 4.25 80.8%

Table 6.1: Summary of the parallel training corpora in terms of the number of sentence pairs
after preprocessing and the percentage of preprocessed English sentence that were successfully
parsed.

Timeout Timed out % Parsed %
5 sec 17.9 76.4
10 sec 14.3 80.0
15 sec 7.8 86.2
20 sec 7.0 87.0

Table 6.2: Results of the experiments for the parsing timeout setting conducted on a subset of
1000 English sentences of the News Commentary dataset.

and 3003 manually translated sentence pairs respectively, half of which were translated
from English to German, and the other half vice versa.
The two sets were preprocessed in the same way as the training data. The English sides
were parsed with relaxed memory and time constraints, since the two sets are much smaller
and it is desirable for tuning and test sets to contain as many parsed sentences as possible.
The following parse settings were changed for tune and test dataset in comparison to the
training data settings: { max-chart-megabytes=14000, max-unpack-megabytes=16000,
timeout=120 }. The resulting parsing coverage is 94.3% for newstest2013 and 92.8% for
newstest2014.2

Since the decoder implementation is not mature (as discussed in Section 5.7), I decided
to limit the size of the graphs presented to the decoder (either for tuning or testing)
to a maximum of 20 source nodes (and a minimum of 1 node, excluding unparsed sen-
tences).3 The filtered newstest2013 and newstest2014 datasets contain 1774 and 1574
graph-sentence pairs respectively.
An important aspect of the ERG/ACE setup is the maximum entropy model used for
parse ranking (i.e., choosing the order of the parses). In particular, three models trained
on data in different domains are available:

• wsj.mem trained on Wall Street Journal, treebanked4 as part of the DeepBank
project (Flickinger et al., 2012).

2Since the WMT development sets are carefully selected and translated by human translators, it is
likely that the increased parsing coverage is in large part a consequence of better-formed text, more so
than it is a consequence of the increased parsing settings.

3Note that the graph size constraint only applies to graphs used as inputs to the decoder. Graphs of
all sizes are used for rule extraction.

4Treebanking refers to the manual selection and correction of the top ERG parse.
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• wescience.mem trained on the WeScience treebank, consisting of Wikipedia arti-
cles (Ytrestøl et al., 2008).

• redwoods.mem trained on data from a variety of domains, including WeScience and
LOGON treebanks. The latter consists of Norwegian tourism brochures (Oepen
et al., 2004a).

In an evaluation of parsing performance of the three models on different data domains,
Packard (2015) found significant differences between in-domain versus out-of-domain per-
formance. Consequently, I set up a small-scale evaluation to test which of the models is
the most appropriate to use for parsing the training, tune, and test datasets. I consid-
ered the wsj.mem and redwoods.mem models, but excluded wescience.mem, since none
of the data comes from Wikipedia. I compared the 1-best parsed MRS against the gold
MRS (obtained via human expert treebanking5) on a random sample of 100 sentences
from the newstest2013 tuning dataset. Both models achieved good performance. The
redwoods.mem model matched 43% of the gold MRS representations, compared to the 52%
matched by the wsj.mem model. Despite these results, I opted to use the redwoods.mem
model since (1) a large majority of the training data does not consist of news text, (2) it
is the more general of the two maximum entropy models, and (3) I have observed that
it is important to use a consistent ranking model for all the data, as opposed to using
different models on different parts of the data. Therefore, the results can be seen as a
reaffirmation that even in the most favourable circumstances (newstest2013 consists of
news text), the difference between two models is not too great.
In order to construct the training examples for rule extraction, word alignments between
source and target sentences from the training data were extended to alignments between
source graphs and target sentences (see Section 3.3). Training data word alignments
were obtained by running the MTTK toolkit (Deng and Byrne, 2006), implementing the
HMM alignment model, in both directions and unioning the two sets of alignments (see
Section 3.3.3). The translation grammar extracted from the training examples consists
of 16.5 million rules. The rule extraction and rule application algorithms use N = 2 (at
most two non-terminals) and Vmax = 5 (at most five source nodes).
The decoder uses local pruning with the following pruning conditions: (1,50,7) (3,100,5)
(5,200,5) (8,20,9), and 100 shortest paths (see Sections 5.5.2 and 5.7.2 for explanation).
The decoder is limited to 40 GB of memory and 2000 seconds of execution per sentence in
the translation mode. The alignment mode uses 5000 top hypotheses from the translation
mode and is limited to 40 GB of memory and 1000 seconds of execution per sentence.
The decoder uses a language model as an important feature: a 2-gram FSA language
model is used for efficient local pruning during hypothesis space construction (see Sec-
tion 5.5.2), while a 4-gram language model is applied to the final FSA. The n-gram
language models were estimated using the KenLM toolkit with interpolated modified
Kneser-Ney smoothing (Chen and Goodman, 1998) on 2.6 billion words of German text
specified for the WMT15 translation task. The monolingual German text consists of (1)
the German side of WMT15 training data, (2) News Crawl 2007-2014 corpus, and (3)
all of German text from the Europarl v7 and News Commentary corpora. The pruning
language model was converted from the standard ARPA to an FSA using the OpenGrm
library.6

5I would like to thank Dan Flickinger for the treebanking of the gold dataset
6http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary
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The HiFST system (partly introduced in Section 5.1) is a strong hierarchical phrase-
based translation system implementation (Blackwood et al., 2016), trained, tuned, and
evaluated on the same data as the HSST system. The two systems also share the same 4-
gram language model. The HiFST SCFG consists of shallow-1 rules (Iglesias et al., 2009),
which I found to perform best on the English-German translation task (see Section 4.1
for a description of Hiero rule extraction). The systems uses the standard set of features
as presented in Iglesias et al. (2009): target language model, source-to-target and target-
to-source phrase translation models, source-to-target and target-to-source lexical models,
word and rule penalties, number of usages of the glue rule, and three rule count features.
Additionally, the system uses provenance features (bidirectional translation and lexical
models). Like the HSST system, the HiFST system was tuned using LMERT (Macherey
et al., 2008) with the BLEU metric (Papineni et al., 2002) on the tuning set.

6.2.2 BLEU

BLEU is an automatic machine translation evaluation metric introduced by Papineni
et al. (2002). It is widely used to measure incremental progress of statistical machine
translation systems. The main reasons for its popularity are its inexpensiveness and
high correlation with human judgement of translation quality over the entire dataset.
Despite its popularity, it is widely acknowledged that BLEU is a flawed metric. Callison-
Burch et al. (2006) show that in certain scenarios, BLEU score does not correlate well
with human judgement of translation quality and that the metric should not be used
for comparisons of systems with radically different approaches to machine translation. I
use the BLEU metric for tuning the approach proposed in this thesis (see Section 5.6)
and to evaluate performance of the translation systems discussed in this chapter and the
realization systems in Chapter 7. In the remainder of this section I describe how the
BLEU score is computed.

The BLEU metric measures the closeness of a translation hypothesis to a reference trans-
lation using N-gram precision:

BLEU = BP · exp( 1
N

N∑
n=1

log pn) (6.1)

where pn is the clipped N-gram precision, computed by dividing the number of N-gram
matches by the total number of n-grams in the translation, clipped to the maximum
number of occurrences of the N-gram in the reference; N is the highest order of N-grams
used in the computation of the BLEU score (frequently, N = 4). 1

N

∑N
n=1 log pn is therefore

a geometric mean of N N-gram precisions.

BP refers to the brevity penalty, which penalizes short translations. Short translations
receive high N-gram precision scores, as it is easier to achieve high precision for a small
number of N-grams compared to a large number of N-grams. The brevity penalty is
computed using the following formula:

BP =

1 if len(trans) > len(ref)
e(1−len(ref)/len(trans)) otherwise

(6.2)
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The BLEU score is commonly computed over the entire dataset and can be easily extended
to use multiple reference translations in order to get a more reliable relative score. I use
the NIST’s mteval-v137 script to compute BLEU scores in this thesis.

6.2.3 METEOR

METEOR is an automatic machine translation evaluation metric introduced by Banerjee
and Lavie (2005) which addresses some of the weaknesses of the BLEU metric. A major
weakness of the BLEU metric (see Section 6.2.2) is that it does not measure recall directly.
It indirectly compensates for it via the brevity penalty. The METEOR metric addresses
this problem by computing both (unigram) precision and recall based on an alignment
between the hypothesis and translation.
The METEOR score of a single pair of hypothesis and reference translation is computed
based on generalized unigram matches between them. A unigram match between a hy-
pothesis and a reference occurs if two unigrams share the same surface or stemmed form.
Additionally, WordNet synonyms are considered. Based on the unigram matches, align-
ments between the hypothesis and reference translation are created. An alignment is a
mapping between unigrams such that every unigram in a translation maps to zero or one
unigram in the other translation. For each alignment, a score is computed as a combina-
tion of unigram-precision, unigram-recall, and fragmentation penalty. Unigram precision
is computed as a ratio of mapped hypothesis unigrams to all hypothesis unigrams, while
unigram recall is the ratio of mapped hypothesis unigrams to all reference unigrams. From
unigram precision and unigram recall, the Fmean score is computed:

Fmean = 10 · P ·R
9 · P +R

(6.3)

Fragmentation penalty accounts for gaps and differences in the word order and is com-
puted as follows:

Pen = 0.5 · ( #chunks
#matched_unigrams)3 (6.4)

where a chunk comprises of adjacent unigram matches. The score of an alignment is
computed as:

score = (1− Pen) · Fmean (6.5)

The METEOR score of a single pair of hypothesis and reference translation is chosen as
the maximal scoring alignment score between the two. The overall system METEOR is
computed from aggregate statistics accumulated over the entire test set.
Several generalizations and additions were introduced in the subsequent versions of the
METEOR metric. In particular, values such as 0.5 and 3 in penalty computation and
the balance between precision and recall in the Fmean were parametrized and are tuned
to maximize correlation with human judgements for each target language (Lavie and
Agarwal, 2007). Additionally, unigram precision and recall distinguish between content

7Available from ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl
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newstest2013 newstest2014
System BLEU BLEU-cased METEOR BLEU BLEU-cased METEOR
HSST 13.1 12.5 31.8 12.7 12.0 33.2
HiFST 20.2 19.2 41.0 20.0 19.0 42.5

Table 6.3: Translation performance of the HSST and HiFST systems on newstest2013 and new-
stest2014 datasets (tune and test set, respectively). Performance of the systems is characterized
in terms of case-insensitive and case-sensitive BLEU scores and METEOR score.

and function words. In the following section, I use METEOR version 1.5 (Denkowski and
Lavie, 2014).8

6.3 Translation evaluation

In this section I present the translation evaluation results of the proposed approach. The
automatic evaluation metric results are summarized in Table 6.3. The HSST system is
outperformed by the HiFST system according to both BLEU and METEOR metrics.
The difference between the systems is smaller according to the METEOR metric. As
expected, both system perform worse according to the case-sensitive BLEU score (BLEU-
cased), although the decrease in performance is somewhat smaller for the HSST system
than for the HiFST system (-0.6 and -0.7 BLEU points versus -1.0). Both systems also
perform slightly worse on the test set than they do on the tuning set in terms of BLEU
score. This is expected, since the systems were tuned to improve the tuning set BLEU
score. On the other hand, the METEOR scores are higher for both systems on the test
set.
In addition to the automatic translation quality evaluation, I conducted a small-scale
human evaluation of the translation outputs, similar to the evaluation described in Bond
et al. (2011). The evaluation was conducted on a random set of 100 sentences from the
newstest2014 dataset. Two native German speakers9 were asked to compare the HSST
and HiFST translations to a German reference sentence and decide which translation they
preferred (giving it a score of 1.0). The competing translation outputs were presented in
randomised order so that the evaluators did not know which system each translation came
from. A third option10 allowed the evaluators to rank the systems equally (giving each a
score of 0.5). Under these criteria, the HSST system achieved a combined score of 31.25,
while HiFST scored 68.75. The human evaluation therefore confirmed the results of the
automatic evaluation using BLEU and METEOR metrics. The full evaluation results for
the 100 sentences are reported in Appendix A.3.
Since both systems make various translation errors, it is informative to investigate the
types of errors they make and compare the systems in that respect. Such an investi-
gation requires some linguistic intuition in order to recognize different types of errors.

8Available at https://www.cs.cmu.edu/̃ alavie/METEOR/. I used the German ranking parameters,
tuned on the WMT human binary system rankings. Additionally, normalization and matching with exact,
stem, and paraphrase were used.

9Neither of the evaluators had a (computational) linguistics background.
10The third option was ‘Unentschieden’ (or ‘Equal’). Special thanks goes to Alex Kuhlne for his help

with translating the instructions into German and choosing instructive examples.
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Consequently, in addition to a linguistically-uninformed evaluation, I conducted a limited
informal linguistically-informed investigation into the performance of the HSST system
and its differences compared to the HiFST system, with native and non-native German
speakers who are familiar with linguistics. I report the findings of the investigation in
Section 6.3.1. I discuss the reasons for performance differences and potential future im-
provements in Section 6.3.2.

6.3.1 Analysis

In this section I describe some initial findings of the manual output investigation of trans-
lation outputs. The description is aided by example translations shown in Figure 6.7.
Additional example translations are shown in Appendix A.2.

I start by showcasing the use of non-grammar rules in translation examples (discussed
in Section 6.1). In the first example, the HSST system makes use of the carg rules (see
Section 6.1.3) to translate European and ESO directly from the source sentence in English
to the target sentence in German. In the reference sentence, European is not used in its
source form, whereas ESO is. The first part of the phrase, Southern, is not a carg, so
the HSST system translates it as südlichen. In comparison, HiFST translates the entire
phrase in its English form. In the second example, the HSST system does not translate
South (in South America), employing a deletion rule (see Section 6.1.2).11

In both examples, we can observe that the HSST translation is missing end punctuation.
This is a consequence of DMRS graphs not directly representing punctuation, meaning
that the punctuation tokens are not aligned to any graph nodes. Since the rule extraction
algorithm does not allow unaligned tokens at the either end of the target token sequence,
end punctuation is omitted by the HSST system (see Section 3.3.1 for more details).

In our investigation, we observed that HiFST tends to omit the verb in translation more
frequently than HSST. For instance, the HSST translates the verb in example 3 as führt
(although in incorrect tense), whereas HiFST only translates the auxiliary hat. In ex-
ample 4, HSST correctly translates had as hatten, whereas HiFST omits it altogether.12

Finally, in example 5, HiFST again translates auxiliary habe but not the main verb went,
whereas the HSST system translates the verb correctly.13

These three examples also show that BLEU is a flawed translation evaluation metric.
Omitting the verb is a severe translation mistake, but is not treated differently than, for
instance, omitting a function word, since BLEU makes no distinction between the types
of words in a matching n-gram (see Section 6.2.2). METEOR does make a distinction be-
tween matching function and content words, but does not distinguish between adjectives,
nouns, and verbs.

Example 6 demonstrates several problems occurring in HSST translations (although atyp-
ically many in a single translation): incorrect gender agreement (Vater and die), incorrect
lexical choice (verb vertrieben wurden), and inserted word (auch).14 In example 7, parts

11Neither system translates the second example particularly well (e.g., poor lexical choice, and wrong
tense in the HSST translation).

12Additionally, HSST does not translate Communist, and both translations have poor agreement.
13But incorrectly inserts Noch at the beginning of the sentence.
14Additionally, coffin of my Oxford career is translated as coffin of Oxford, my career.
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1. View of the European Southern Observatory (ESO) in the Chilean Andes.
Blick auf das Observatorium der Europäischen Sternwarte (ESO) in den Chilenis-
chen Anden.

H Blick auf die südlichen European Observatory, ESO in den chilenischen Anden
B Angesichts des European Southern Observatory (ESO) in den chilenischen Anden.

2. Those who speak with authority never commit to anything, whereas we South Amer-
icans sign everything.
Die, die lehren, verpflichten sich nie zu etwas, und im Gegenzug dazu unterzeichnen
wir die Südamerikaner immer alles.

H Diejenigen, die sich mit der Kompetenz habe noch nie etwas begangen, während
wir, die Amerikaner haben alles unterzeichnet

B Diejenigen, die sich mit der Behörde nie zu irgendetwas verpflichten, während wir
im Süden die Amerikaner alles unterschreiben.

3. The Internet has caused a boom in these speculations.
Das Internet hat diese Spekulationen erhöht.

H Das Internet führt zu einem Boom in diesen Spekulationen
B Das Internet hat zu einem Boom in diesen Spekulationen.

4. Even my Communist friends always had impeccable manners.
Selbst meine kommunistischen Freunde legten stets einwandfreie Manieren an den
Tag.

H Selbst meine Freunde hatten immer tadellosen Manieren
B Sogar meine kommunistischen Freunden immer tadellosen Manieren.

5. I never went back.
Ich kehrte nie zurück.

H Noch nie ging ich zurück
B Ich habe nie wieder.

6. It was my father who drove the nail into the coffin of my Oxford career.
Es war mein Vater, der den letzten Nagel in den Sarg meiner Oxford-Karriere schlug.

H Mein Vater war es auch, die den Nagel in den Sarg von Oxford, meine Karriere
vertrieben wurden

B Es war mein Vater, fuhr den Nagel in den Sarg meiner Karriere.

7. Honestly, there’s only one reason I’d stop, and that’s my little girl.
Ehrlich gesagt gibt es nur einen Grund, warum ich aufhören würde, und das ist
mein kleines Mädchen.

H Ehrlich gesagt, es würde ich, nur ein Grund zu stoppen, und das ist mein kleines
Mädchen

B Ehrlich, es gibt nur einen Grund, ich würde aufhören, und das ist mein kleines
Mädchen.

Figure 6.7: Example HSST and HiFST translations from the newstest2013 dataset. For each
example I show the original English sentence and its reference translation (in italics), followed
by the HSST translation (H ) and HiFST translation (B).
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1. He loves well-educated people who come from good backgrounds, and they love
him.
Er mag Leute mit guter Erziehung und den höchsten Titeln, und sie lieben ihn.

H Er liebe es, dass gut gebildete Menschen, die aus guten Verhältnissen, und sie
lieben ihn

2. However, the European Central Bank (ECB) took an interest in it in a report
on virtual currencies published in October.
Dennoch hat die Europäische Zentralbank (EZB) in einem im Oktober veröf-
fentlichten Bericht über virtuelle Währungen Interesse hierfür gezeigt.

H Aber die Europäische Zentralbank EZB hat ein Interesse daran, dass es in einem
Bericht über virtuelle Währungen, die im Oktober veröffentlicht worden

3. Jorge says he knows the 35 friends he has on FB and his nine followers on
Twitter.
Jorge versichert, 35 Freunde zu kennen, die er in FB hat und neun Folger in
Twitter.

H Jorge sagt, dass er weiß, dass die 35 Freunde, die er auf FB und neun seiner
Anhänger auf Twitter

4. This season, you have taken on a new stature with PSG.
In dieser Saison haben Sie mit PSG ein neues Ausmaß angenommen.

H Sie hat sich eine neue Statur mit PSG in dieser Saison

5. Who came up with this idea?
Von wem stammt diese Idee?.

H Wer kann denn wirklich mit dieser Idee

Figure 6.8: HSST translation examples with inserted filler words or sentence structures. For each
example I show the original English sentence and its reference translation (in italics), followed
by the HSST translation (H ).

of the HSST translation are correct,15 however the middle of the sentence (es würde ich,
nur ein Grund zu stoppen) could be described as a ‘word salad’.
A recurrent problem observed with HSST translations is insertion of filler words or sen-
tence structures that are not warranted by the source sentence or its analysis. I show
additional example translations with such problems in Figure 6.8. A frequently inserted
sentence structure is the relative clause (starting with dass in examples 1, 2, and 3).
Individual filler words, such as wirklich and reflexive sich, are also inserted occasionally
(examples 4 and 5). I discuss potential reasons for these problems in Section 6.3.2.
In summary, the manual analysis confirmed that the HSST system performs worse than
HiFST, although perhaps not to the degree indicated by the evaluation metric scores. A
potential strength of the HSST system in comparison to HiFST is translation of verbs. In

15In particular, Ehrlich gesagt and und das ist mein kleines Mädchen.
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the following section I discuss some of the reasons for the difference in system performance.

6.3.2 Discussion

The manual investigation of translation outputs reported in Section 6.3.1 indicated that
insertion of relative clauses and words such as ‘sich’ into translations when not warranted
by the source sentence is a recurrent problem of the HSST system. I hypothesize that
this behaviour originates in the inability of the HSST system to translate certain parts
of the input graphs (i.e., due to missing grammar rules) and instead being forced to use
deletion rules (see Section 6.1.2). Since the system is tuned to optimize the BLEU score
on the tuning dataset, it is severely penalized for producing short outputs via the brevity
penalty (see Section 6.2.2). Consequently, it is likely that the parameter tuning results
in the system compensating for short outputs by producing unnecessarily long outputs
when it can, in the form of relative clauses and inserted words. This affects the translation
quality of all sentences, not only the sentences for which the system is missing grammar
rules.
This observation led me to work on improving the capabilities of the system to translate
(parts of) input DMRS graphs that it previously could not. Notable parts of the approach
presented in this thesis are a result of these efforts, including graph cycle removal (see
Section 3.2.3), disconnected graph glue rules (see Section 6.1.1), and 3-arg deletion rules.
The latter are not described explicitly, but rather form a subset of deletion rules (see
Section 6.1.2) which enable translation of predicates with more than two arguments via
deletion. These additions helped reduce the frequency of the insertion problems and
improve the quality of the system in terms of BLEU score. Despite the reduced frequency,
the insertion problems persisted as shown in Section 6.3.1.
However, when investigating the outputs of the realization system (reported in Chapter 7),
no such problems were observed. Despite the inherent difference in the two tasks, a com-
parison between the two systems is intriguing. The translation and realization systems are
based on the identical approach proposed in this thesis. However, the realization system
performs significantly better in terms of producing grammatical and fluent outputs that
preserve the meaning of the DMRS meaning representation (see Section 7.3) compared
to the translation system, when trained, tuned, and evaluated on data of equal size. I
discuss the differences between the translation and realization systems below in order to
further elucidate the translation system performance.
The DMRS representation is not an interlingua, but is instead a language-specific abstrac-
tion from a surface sentence. Consequently, there is a close to one-to-one correspondence
between English surface tokens and English DMRS predicates. The correspondence be-
tween English DMRS predicates and German surface tokens, on the other hand, is not as
close. In other words, there are significantly more ways of translating an English predicate
into German, than there are ways of realizing an English predicate. The difficulty of the
English-German translation task in particular is further exacerbated by the rich German
morphology, which results in even more possible ways of translating a single English pred-
icate (i.e., with different suffixes, such as ‘-e’, ‘-en’, ‘-em’, ‘-es’). A simplified conclusion
is that the translation task is more difficult that the realization task.
However, one might expect that as a result, the translation grammar would be signif-
icantly larger than the realization grammar. As we observed in Section 4.4, the exact
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opposite is true: the translation grammar is significantly smaller than the realization
grammar at all training set sizes (29 versus 16 million rules, extracted from the full train-
ing dataset), despite using the identical grammar extraction procedure. The difference in
rule extraction can only be attributed to the alignments between source-side nodes and
target-side tokens. Since English predicates do not correspond to German tokens as well
as to English tokens, the alignments between them are less uniform. Additionally, the
reordering between the two languages means that tokens that are contiguous in English
can appear at different parts of the sentence in German. Consequently, the terminal and
non-terminal constraints (see Section 4.2.3) are more constraining for the translation task
than they are for the realization task, which results in fewer rules being extracted.
The translation system could potentially require more training data to achieve better
performance. However, preliminary experiments on smaller training set sizes using an
earlier version of the system suggested that this is not the case. Although increasing the
training set size does improve translation performance (e.g., +1.0 BLEU point going from
1 to 2 million training examples), the increases provide diminishing returns (+0.5 BLEU
point going from 2 to 4.25 million training examples).
The rule extraction problem is further exacerbated due to noise in translation alignments.
Whereas realization alignments between DMRS nodes and English tokens are obtained
via the parser and heuristic methods (see Section 3.3.1), they need to be extended to
German tokens for the translation task. This is achieved via a noisy statistical unsuper-
vised approach (see Section 3.3.3), which introduces significant errors into the translation
training data. Neubig and Duh (2014) demonstrated that the alignment quality has a
significant effect on the performance of a syntax-based tree-to-string translation approach,
much more so than on the (hierarchical) phrase-based systems, which are more resilient.
It is likely that the graph-to-string approach presented in this thesis is similarly affected
by the translation alignment quality.
Preliminary experiments with an alternative statistical word aligner, GIZA++, did not
show promising improvements in terms of translation quality. Following Neubig and Duh
(2014), I also experimented with the Nile toolkit (Riesa and Marcu, 2010), a supervised
alignment approach which takes advantage of source and target syntax information. How-
ever, the Nile toolkit proved to be impractical to run on the training set sizes used in this
thesis.
Based on observations from manual investigation (see Section 6.3.1), there is potential for
my approach and HiFST to complement each other in their strengths. Although I do not
report it in this thesis, I attempted several low-level integration strategies between the two
systems. One type of integration combined HiFST and HSST FSAs of cells which covered
the same spans. Such integration has potential to alleviate the problem of missing HSST
translation rules and complement them with HiFST rules. Unfortunately, the attempted
integration strategies did not yield the desired results in preliminary experiments and
would require further work.
In summary, the HSST system does not perform as well as HiFST due to coverage prob-
lems stemming from rule extraction. Nonetheless, promising avenues for improvements
exist, including improving translation alignment quality and integrating the proposed
approach with a complementary SMT system such as HiFST.
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Chapter 7

Realization

Realization, introduced in Chapter 1, is most often interpreted as the task of creating
a fluent sentence from a meaning representation. This interpretation of the realization
task assumes that the meaning representation is perfect. It corresponds to the classical
task of tactical generation. The main criterion for this interpretation of realization is
preservation of meaning as specified by the meaning representation. Additional criteria
are grammaticality and fluency of the output as well as coverage and robustness.
In contrast, the regeneration interpretation of the realization task does not assume that
the meaning representation is perfect. Instead, it accepts that the meaning representation
is potentially a flawed representation of the original sentence (or another object) because
it was obtained via an imperfect process (e.g., automatic parsing). This interpretation is
more application-orientated than the tactical generation interpretation, since it perceives
realization in the extended context in which the meaning representation was obtained
as opposed to an isolated task (i.e., the pipeline view). The difference is illustrated in
Figure 7.1a.
The main criterion of realization under the regeneration interpretation is no longer mean-
ing preservation as specified by the meaning representation, but meaning preservation
as intended by the original sentence. Whereas in the first interpretation, not realizing a
flawed or broken representation may be seen as acceptable, that is not the case under the
second interpretation. Consequently, the coverage and robustness criteria are paramount
in addition to meaning preservation. Grammaticality and fluency of the output remain
of equal importance.
The meaning representations considered in this thesis are (D)MRS representations (in-
troduced in Section 3.1). The established approach to realization of MRS (and since they
are inter-convertible, DMRS) representations uses chart generation against a grammar, as
presented by Carroll et al. (1999). Consequently, both parsing and realization rely on the
same grammar (in this thesis, the ERG). In addition to chart generation, the realizer uses
a maximum entropy model for realization reranking (Velldal and Oepen, 2005; Velldal,
2007).
The reliance on a grammar is both a strength and a weakness of the established approach
to realization. The realizer tends to produce high quality grammatical realizations for rep-
resentations that were created by a parser using the same grammar. In fact, the approach
is guaranteed to be meaning preserving (with respect to the meaning representation) and
to output only grammatical sentences, while output fluency is addressed with realization
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(a) The tactical generation interpre-
tation (top) and the regeneration in-
terpretation (bottom) of the realiza-
tion task.

Parsing Realization
Precision ERG/ACE ERG/ACE
Robustness Robust parsing

with PCFG
Proposed
approach

(b) Relationship between ERG/ACE parsing and realiza-
tion approaches compared to robust parsing of Packard
and Flickinger (2017) and robust realization proposed in
this thesis.

Figure 7.1: Realization task interpretation (a) and relationship between parsing and realization
approaches (b).

reranking. This makes the established approach to MRS realization particularly well-
suited to the tactical generation interpretation of the realization task. However, when
presented with meaning representations that have been created by an external system or
that have been augmented or modified after they have been parsed, the realization ap-
proach has proved to be brittle. Instead of degraded performance, the somewhat flawed
or broken representations result in the failure of the realizer to produce any output. In
many such applications, for instance in the transfer-based machine translation system
LOGON (Lønning et al., 2004), much effort has been spent on ensuring that the resulting
representations are such that they can be realized. The lack of robustness makes the
established approach to MRS realization on its own less well-suited for the regeneration
interpretation of realization.
The machine translation approach to realization presented in this thesis provides a com-
plementary set of strengths and weaknesses. It does not hope to surpass the output quality
(in terms of grammaticality and fluency) of the established realizer, although an objective
is to come as close as possible. Instead, it provides a robust alternative that is capable
of producing a realization even when the input representations are flawed. Consequently,
the approach is well-suited for the regeneration interpretation of the realization task.1

Robustness is a weakness of both ERG/ACE realization and parsing approaches. In many
DELPH-IN applications, a common strategy is to back-off to a robust statistical approach
when the original system fails to produce an output. The downside of such a strategy
is that the statistical approaches are decoupled from the original system and therefore
do not take advantage of any ERG knowledge. Recently, a robust parsing approach was
introduced by Packard and Flickinger (2017) following the work of Zhang and Krieger
(2011). The robust parsing approach is capable of achieving much higher parsing cov-
erage than the established approach, including parsing of ungrammatical inputs. The
approach is based on a PCFG estimated on ERG parse trees and is therefore more tightly
coupled with the existing parsing approach compared to the standalone statistical back-off
approaches. So far, no such solution existed for robust realization. I argue that the ma-
chine translation approach presented in this thesis is the realization equivalent to robust
parsing. The robust realization approach shares many objectives with the robust parsing

1A drawback of the decoder is its constraint of decoding graphs with at most 20 nodes. However, the
limitation is not inherent to the approach, but to the current implementation of it, as demonstrated in
Section 5.7.
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(a) The realization setting in which the DMRS is assumed to be correct.

(b) The realization setting in which the DMRS is created by the parser.

(c) The realization setting in which the DMRS is created by an external system.

Figure 7.2: The three realization settings considered in the evaluation.

approach: (1) it is capable of realizing inputs that are imperfect; (2) given flawed inputs,
it can produce outputs of degraded quality instead of failing to produce an output at all;
and (3) it is trained on representations produced by the ERG and is therefore more tightly
coupled with the existing realization approach. The relationship between the approaches
is illustrated in Figure 7.1b.

In this chapter, I evaluate and compare the machine translation approach to realization
with the established approach under both interpretations of the realization task. Since
the interpretation of the realization task affects how the systems should be evaluated, I
define three realization scenarios. The first scenario corresponds to the tactical generation
interpretation in which the representations are assumed to be correct. The second and
third scenarios both correspond to the regeneration interpretation but differ on how the
meaning representation is obtained. The second scenario considers meaning representa-
tions obtained via parsing, whereas the third scenario considers representations created or
modified via an external system (e.g., a transfer-based machine translation system). The
difference between the two scenarios is significant for (D)MRS representations because
producing DMRS graphs with an external system can potentially result in DMRS graphs
which are not only flawed (as when produced via parsing), but also not well-formed.2 I

2Well-formedness of (D)MRS representations is not used as a precise term in this chapter, but rather
as a conflation of several types of (D)MRS well-formedness.
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refer to such representations as non-ERG. The three different scenarios are illustrated in
Figure 7.2.

This chapter is structured as follows. In Section 7.1.1 I give details on the four systems
considered in this chapter. I refer to my approach as the HSSR system, and introduce
two established realization systems, ERG/ACE and ERG/ACE++, as well as a combined
approach ERG/ACE++HSSR. I describe the evaluation metrics used in this chapter in
Section 7.1.2.

I compare my approach to the standard approach to realization in each of the three sce-
narios outlined above. In order to evaluate the realization systems in the first scenario
(the meaning representations are considered perfect), I obtained manually-curated gold
representations. I present the experiment, results, and subsequent analysis in Section 7.2.
In Section 7.3, I evaluate the realization systems in the second realization scenario, re-
alizing representations obtained from a parser. Finally, in Section 7.4, I consider the
third scenario, in which representations are created or modified by an external system.
Initially, I demonstrate the ability of the HSSR system to realize heavily modified and
compressed DMRS graphs, output by a simplification application. I continue by compar-
ing and analysing the performance of the established approach against the HSSR system
on representations produced as a result of robust parsing with a PCFG. Finally, I use
the HSSR system as the realization component of a transfer-based machine translation
system and demonstrate its robustness compared to the established approach.

7.1 Experimental setup

7.1.1 Realization systems

HSSR or Hierarchical Statistical Semantic Realization system uses the same implemen-
tation as the HSST system introduced in Section 6.2.1 (recall that the system overview
is given in Section 1.5).3 The HSSR system is trained on the English side of the WMT15
English-German data introduced in Section 6.2.1. The two systems share the parsed MRS
representations of the English sentences (refer to Section 6.2.1 for ACE parsing settings).
The system was trained on lower-case English target strings in order to help reduce the
grammar and language model sparsity. Similarly, the filtered English sides of newstest2013
and newstest2014 datasets introduced in Section 6.2.1 were used for tuning and testing
the HSSR system, respectively. As with translation, both datasets were filtered to contain
graphs with at most 20 nodes. Additional datasets used in the experiments are described
in their respective sections.

The bigram pruning FSA and the final four-gram language model were estimated using
the same settings as with the HSST system (refer to Section 6.2.1) on 8.6 billion words of
English text, consisting of (1) the English side of WMT15 training data, (2) News Crawl
2007-2014 corpus, (3) News Discussion 2015, and (4) all parts of the 5th edition of the

3The cycle removal step of graph modelling differs slightly between the two systems (the translation
system can use source sentence token distance while the realization system cannot; see Section 3.2.3).
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English Gigaword.4

The realization grammar extracted from the training examples consists of 28.6 million
rules. The rule extraction and rule application algorithms use N = 2 (at most two non-
terminals) and Vmax = 5 (at most five source nodes). The decoder uses local pruning
with the following pruning conditions: (1,100,7) (3,200,5) (7,500,7) (8,100,9), and 200
shortest paths (see Sections 5.5.2 and 5.7.2 for explanation). As with the HSST system,
the decoder is limited to 40 GB of memory and 2000 seconds of execution per sentence in
the translation mode. The alignment mode uses 5000 top hypotheses from the translation
mode and is limited to 40 GB of memory and 1000 seconds of execution per sentence.

ERG/ACE is the established realization system for English as available out of the box.
It uses the English Resource Grammar version 1214 and the ACE realizer version 0.9.23.
The system uses default memory and timeout settings (experiments on a subset of data
did not show improvement in realization quality or coverage with increased settings).

ERG/ACE++ is an improved version of the ERG/ACE system with a simple approach
to unknown word handling. Unknown words are words that do not appear in the ERG
lexicon. They are nonetheless parsed by the ERG/ACE parser and assigned a Penn tree-
bank part-of-speech tag (e.g., NNS, JJ). However, the realization part of the ERG/ACE
system is currently not able to realize such predicates, which leads to a failure to realize
a meaning representation. ERG/ACE++ bypasses this problem by introducing a pre-
processing step that converts the unknown predicate to a known predicate based on its
part-of-speech tag (for example, _fermions/NNS_u_unknown is converted to _cat_n_1 and
_curative/JJ_u_unknown to _sweet_a_to). A dictionary of up to five different substi-
tute predicates for each relevant part-of-speech tag was manually specified. Subsequently,
the preprocessed MRS representation is realized by the ERG/ACE system. Finally, in a
postprocessing step, the known realizations of the substitute predicates are replaced with
the original unknown word forms (for example, _cat_n_1 given NNS part-of-speech tag
is realized as cats and subsequently replaced with fermions).5

ERG/ACE++HSSR is a simple system combination of the ERG/ACE++ system and
the HSSR system. Namely, the HSSR system is used when the ERG/ACE++ system fails
to produce an output.

7.1.2 Evaluation measures

BLEU is a machine translation quality metric introduced by Papineni et al. (2002). I
described the BLEU metric in Section 6.2.2. Apart from being ubiquitous in (especially
statistical) machine translation, BLEU is often used to evaluate the output of realiza-
tion systems (Belz et al., 2011). Espinosa et al. (2010) investigated the use of various
automatic evaluation metrics to measure the quality of realization output and found that
BLEU correlates moderately well with human judgment of adequacy and fluency. They

4The 5th edition of the English Gigaword corpus (LDC2011T07) consists of newswire text from seven
international sources: Agence France-Presse, English Service (afp), Associated Press Worldstream, En-
glish Service (apw), Central News Agency of Taiwan, English Service (cna), Los Angeles Times/Washing-
ton Post Newswire Service (ltw), New York Times Newswire Service (nyt), Washington Post/Bloomberg
Newswire Service (wpb), and Xinhua News Agency, English Service (xin).

5Credit for the solution on the plaintext version of this problem goes to Ewa Muszyńska, although
solutions in similar spirit may have a long history.
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concluded that BLEU is a useful metric for measuring incremental progress of a realiza-
tion system, but needs to be complemented with other methods when comparing different
realization systems. In particular, BLEU does not measure whether the realizations are
meaning-preserving and grammatical. Because of this, I introduce two additional metrics
to evaluate the quality of the HSSR system (described below).
ERG/ACE match metric compares the realization outputs of the HSSR system against
the ERG/ACE++ system. The metric is defined as the percentage of matched realized
sentences out of those that were realized by the ERG/ACE++ system in a given dataset.
For a match to occur between a pair of realized sentences, an exact string match is required
after the following text normalizations: (1) normalizing whitespace to single spaces, (2)
removing case information, and (3) removing punctuation. The ERG/ACE match metric
can be generalized from comparing the top realization outputs of the two systems, to
comparing the n1-best HSSR realizations against the n2-best ERG/ACE++ realizations.
In the general case, a match occurs if at least one pair of realizations from the two n-best
lists matches as specified above. Typical n values used in the subsequent sections are 1,
5, 10, 20, and 50.
ERG/ACE parseable metric is defined as the percentage of the HSSR realizations that
can be parsed by the ERG/ACE parser. The metric measures the grammaticality of the
HSSR output, since the ERG/ACE parser will fail to parse ungrammatical realizations.
As with the ERG/ACE match metric, the ERG/ACE parseable metric can be generalized
to n-best realizations of the HSSR system, where at least one of the realizations in the
n-best list must be parseable.

7.2 Realization of gold DMRS representations

In the chapter introduction I described three realization scenarios considered in this thesis.
In this section, I evaluate and compare the HSSR system to the established approaches
on the first of the three scenarios, in which the DMRS representation is considered to be
correct. In order to be considered correct, a DMRS representation needs to be validated
via the process of treebanking by an expert (I will refer to DMRS representations obtained
in this manner as gold representations). This scenario is well-suited to the established
approach to realization, which is guaranteed to produce meaning-preserving grammatical
outputs (in fact, it could be considered as the perfect scenario for the ERG/ACE realiza-
tion systems). The approach presented in this thesis does not hope to surpass the output
quality of the established approach on this task, but aims to come as close as possible.
The objective of the experiment presented in this section is therefore to establish the rela-
tive performance of the realization systems introduced in Section 7.1.1 in this realization
scenario.
The gold evaluation set used in this section consists of 90 treebanked (D)MRS represen-
tations.6 Prior to treebanking, the English sentences were randomly sampled from the
newstest2013 dataset.
The BLEU score and realization percentage results of the four systems on the gold evalu-
ation set are reported in Table 7.1. The HSSR system achieves a high overall BLEU score

6The same gold dataset as used in Section 6.2.1 is used here. Eight sentences out of the total of
100 could not be treebanked under the ERG 1214, while the resulting DMRS graphs of two sentences
exceeded the 20 node limit.
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System BLEU (brevity penalty) BLEU on realized8 % realized (#)
HSSR 63.3 (1.0000) 100 (90/90)
ERG/ACE 65.7 (0.8812) 88 (80/90)
ERG/ACE++ 68.8 (0.9334) 73.7 (1.0000) 92 (83/90)
ERG/ACE++HSSR 71.3 (1.0000) 100 (90/90)

Table 7.1: Gold DMRS realization result summary. Performance of the systems is characterized
in terms of BLEU score and percentage of graphs realized.

and is able to realize all representations. As expected, the HSSR system is outperformed
by the ERG/ACE system in terms of BLEU score (+2.4 BLEU points). However, the
ERG/ACE system is unable to realize 12% of the representations. Its BLEU score is
severely penalized because of it, as can be seen from the associated brevity penalty (see
Section 6.2.2). The improved ERG/ACE++ system increases the number of sentences
realized, which results in a 3.1 point BLEU score increase.7 Despite the unknown word
improvements of the ERG/ACE++ system compared to the ERG/ACE system, 8% of the
representations could still not be realized. Finally, the combined ERG/ACE++ and HSSR
system achieves the highest BLEU score (+2.5 BLEU points compared to ERG/ACE++
system) and realizes 100% of representations.

The ERG/ACE++ system failed to realize 7 out of 90 representations. In most cases, the
reason for not realizing gold representations are missing trigger rules, which are respon-
sible for realization of semantically empty words (discussed in Section 3.3.1).9 On the
other hand, the HSSR system is able to realize all 90 representations, demonstrating its
robustness in this realization scenario. The best HSSR realizations of the seven represen-
tations that the ERG/ACE++ system was unable to realize are shown in Figure 7.3.10 In
comparison to the original treebanked sentence, examples 2 and 5 are perfect realizations,
examples 1, 3, 6, and 7 are somewhat broken, whereas the realization in example 4 is
severely broken.

An alternative measure of the HSSR system realization quality is the match percentage
metric (introduced in Section 7.1.2), which measures the number of HSSR system real-
izations that (fuzzily) match the realizations of the ERG/ACE++ system. The match
percentage results on the gold evaluation set are shown in Figure 7.4a. Around 23% of
the 1-best HSSR realizations match the 1-best ERG/ACE++ realization. This is a surpris-
ingly high number considering there are many ways of realizing a single representation.
The 20 node limit may contribute to this somewhat, since shorter sentences will tend
to have fewer possible realizations. We can also observe that the HSSR 1-best realiza-
tion occurs in the ERG/ACE++ 5-best realizations around 34% of the time. However,
increasing the size of the ERG/ACE++ n-best realizations beyond 5-best does not yield
further improvements to the matched percentage. The size of the HSSR n-best list can

7Such dramatic BLEU point improvements are observed due to the small size of the dataset.
8‘BLEU on realized’ column refers to the BLEU score on the examples the system was able to realize,

without being penalised by the BLEU score brevity penalty (see Section 6.2.2). This score is reported in
relevant result tables for the ERG/ACE++ system.

9There is a long tail of infrequent trigger rules that are yet to be added to the ERG.
10Note that the HSSR realizations have only partial punctuation (see Section 3.3.1) and are in lower

case (see Section 7.1.1), with the exception of the first character in a sentence, which is automatically
capitalized during post-processing.
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1. And ourselves, with our 88 soldiers killed, plus the wounded, the maimed.
And we, with our 88 soldiers killed, plus the wounded, the maimed as

2. Every year, 13 million migrant workers come to Moscow, St. Petersburg and other
cities in Russia.
Every year, 13 million migrant workers come to moscow, st. petersburg and other
cities in russia.

3. But with time - as promised by the Federal Migration Service - tests will become manda-
tory for all non-residents.
But with time, as promised by the federal migration service, which tests will become
mandatory for all non residents

4. This is about 1.1% more than it spends on salaries right now.
This is about more than right now than it spends on salaries’ is 1.1%

5. Condoms can reduce the risk of contraction, however, they do not offer 100% protec-
tion.
Condoms can reduce the risk of contraction, however, they don’t offer 100% protection

6. It’s all right for us - and our children - to be bored on occasion, they say.
They say that it is all right for us and our children bored on occasion

7. It spends USD 1,300 per year on policies to encourage people to have more children.
$1,300 per year it spends on policies that encourage people to have more children.

Figure 7.3: 1-best realization outputs of the HSSR system. The original treebanked sentences
are shown in italics for reference.

also be increased, evaluating whether the HSSR system is capable of generating realiza-
tions matching the ERG/ACE++ system, but did not score them as highly. We can see
that increasing the size of the HSSR n-best list gives significant but diminishing returns
in terms of matching the realization outputs of the ERG/ACE++ system. In particular,
matching the 5-best HSSR outputs against the ERG/ACE++ outputs yields a substantial
improvement in the matched percentage (between 10-15 percentage points). The highest
matching percentage, 59%, is achieved comparing the 50-best to a 50-best realization list.

In Figure 7.5, I compare a sample of the HSSR and ERG/ACE++ realizations to the
original treebanked sentences. The first example shows a pair of identical realizations
between the two systems (apart from an additional comma). The second example shows an
example of the two systems generating different but correct realizations, neither of which
are identical to the reference sentence. In fact, the 20-best list of the HSSR system contains
both the reference sentence and the ERG/ACE++ realization. The 50-best ERG/ACE++
realization list contains the reference sentence, but not the HSSR realization. In the third
example, the HSSR realization is substantially broken, while the ERG/ACE++ realization
is somewhat marked but essentially correct in comparison with the reference sentence.
Investigating the reason for the broken HSSR realization revealed that the HSSR system
had at its disposal the carg rules for realizing ‘I/43’ and ‘I/34’ (see Section 6.1.3), but
instead chose to use deletion rules (see Section 6.1.2). Finally, the fourth example shows
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(a) Performance of the HSSR system in matching outputs of the ERG/ACE++ system on the
gold dataset of 90 sentences.

(b) Performance of the HSSR system in matching outputs of the ERG/ACE++ system on the gold
subset of the parsed newstest2013 dataset, corresponding to the 90 treebanked representations.

Figure 7.4: Performance of the HSSR system in matching outputs of the ERG/ACE++ system
for two datasets. n-best outputs of both systems are considered for n = {1, 5, 10, 20, 50}..

an instance in which the ERG/ACE++ realization is arguably worse than the one by the
HSSR system (largely, due to the inserted commas and better fluency of the HSSR system
output).11

Overall, the HSSR realizations of gold representations are generally of high quality, but
often noticeably worse than their ERG/ACE++ counterparts. However, despite the inputs
being gold representations, the ERG/ACE++ system fails to realize 9% of them. Therein
lies the strength of the HSSR system, since it is able to realize all gold representations.
The combined ERG/ACE++HSSR system shares the strengths of both systems, indicating
that in the case of gold representations, the HSSR system should be used in absence of a
ERG/ACE++ realization.

11Admittedly, it was difficult to find an ERG/ACE++ realization of a gold representation that was
worse than its HSSR counterpart.
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1. This summer’s recruits are used to playing matches at a high level.
H/g This summer’s recruits are used to playing matches at a high level.
E/g This summer’s recruits are used to playing matches, at a high level.

2. They say, if you touch the walls on the street of your sign, fortune will come
to you.

H/g Fortune will come to you if you touch the walls on the street of your sign, they
say

E/g They say that fortune will come to you if you touch the walls on the street of
your sign.

3. The I/43 and I/34 roads have been chemically treated around Svitavy.
H/g Chemical, the and roads have been treated around svitavy
E/g The I/43 and I/34 roads have been treated around Svitavy, chemically.

4. First: "army or military loot," i.e. weapons that were stolen during the fighting
in the Caucasus.

H/g First: Army loot or military weapons that were stolen during the fighting in
the caucasus.

E/g First : army or military loot i. e. weapons, which, were stolen during the
fighting in the Caucasus.

Figure 7.5: The 1-best realization outputs of the HSSR and ERG/ACE++ systems for four gold
representations. The original treebanked sentences are shown in italics for reference, followed
by the HSSR and ERG/ACE++ realizations.

7.3 Realization of ERG-parsed DMRS representations

In the previous section, I evaluated the four realization systems introduced in Section 7.1.1
in the first realization scenario (see Figure 7.2a), in which the representations are assumed
to be correct. This scenario is not often encountered in practice, since it is rare for meaning
representations to be treebanked by a human. Instead, the representations are commonly
obtained via the ERG/ACE parser (briefly introduced in Section 3.1.3). Unlike the gold
representations, representations obtained via parsing are subject to parsing errors, such
as incorrect prepositional phrase attachment (PP attachment). ERG parsing is about as
accurate as the best competing parsers (Ivanova et al., 2013). Parsing errors generally have
adverse effects on ERG/ACE realization performance, since the incorrect interpretation
of the original sentence will likely lead to incorrect realizations. On the other hand, the
HSSR system is more robust to parsing errors, since it is trained on parsed examples and
therefore has the capacity to ‘overlook’ common parsing errors. Namely, if a parsing error
happens frequently, the HSSR system will have rules at its disposal to realize the intended
meaning of the original sentence.12

12In practice, these rules are distinguished from the rules taking the meaning representation at face
value only by the rule features (see Section 4.3.2) and it is therefore up to the log-linear model (see
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System BLEU (brevity penalty) BLEU on realized % realized (#)
HSSR 63.4 (1.0000) 100 (90/90)
ERG/ACE 63.4 (0.8569) 86 (78/90)
ERG/ACE++ 67.3 (0.9206) 73.1 (1.0000) 91 (82/90)
ERG/ACE++HSSR 72.4 (1.0000) 100 (90/90)

Table 7.2: Realization result summary of the gold subset of the parsed newstest2013 dataset.
Performance of the systems is characterized in terms of BLEU score and percentage of graphs
realized.

In this section, I evaluate the performance of the realization systems on ERG-parsed rep-
resentations. In the first experiment, presented in Section 7.3.1, I repeat the experiment
from Section 7.2, only this time the 90 representations are derived from a parser instead of
treebanking. Since the set of 90 representations is relatively small, I additionally evaluate
the realization systems on two larger datasets (newstest2013 and newstest2014 initially
introduced in Section 6.2.1) in Section 7.3.2. This evaluation gives a more reliable in-
dication of relative realization system performance on parsed representations and is the
realization equivalent to the translation system evaluation presented in Section 6.3.

7.3.1 Realization of ERG-parsed gold subset

In Section 7.2, I compared the four realization systems (introduced in Section 7.1.1)
by realizing gold representations in a scenario where the representations are assumed
to be correct. To achieve this, the 90 representations were treebanked by an expert
human. In this section, I repeat the experiment from Section 7.2 on the 90 corresponding
representations obtained via the ERG/ACE parser (I will refer to these as simply parsed
representations).13

The results are shown in Table 7.2. The HSSR system achieves roughly the same perfor-
mance as when realizing the gold representations (+0.1 BLEU score). Since the system
was trained on parsed representations, this result is expected. As in the gold repre-
sentation experiment, the system was able to realize all input representations. On the
other hand, the performance of the ERG/ACE system decreased significantly (-2.3 BLEU
points) in part due to realizing 2 representations fewer. The ERG/ACE++ system shows
a similar trend in decreased BLEU score (-1.1 BLEU points) and 1 fewer representation
realized. On the other hand, the performance of the combined system increased by 1.3
BLEU points.

The matched percentage of the HSSR realizations to the ERG/ACE++ realizations is
shown in Figure 7.4b. Compared to the same metric on the gold representations (shown
in Figure 7.4a), the matched percentage is higher with the parsed representations, but
not significantly so. Increasing either the HSSR or ERG/ACE++ n-best list size leads to
diminishing improvements over the performance on the gold representations. In fact, the

Section 5.4.3) to decide which interpretation to score highly.
13Note that the newstest2013 dataset was used to tune the HSSR system. However, as demonstrated

in evaluation in Section 7.3.2, there isn’t a significant difference in the HSSR system performance on the
tuned dataset compared to a previously unseen dataset.
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parsed realizations achieve the same matched percentage (59%) as gold realizations when
comparing the two 50-best lists.
Instead of comparing the realizations between the two systems, the same matched per-
centage metric can be used to compare the realization outputs of a single system between
the gold and parsed representations. The 1-best ERG/ACE++ realizations of the gold and
parsed representations match in 80% of the cases, whereas they match in only 65% of the
cases for the HSSR system. This indicates that the HSSR system is less constrained by
the input representation. However, since its BLEU score remained roughly the same, the
35% of top (parsed) realizations that are different are on average of comparable quality
to the gold realizations. Surprisingly, in 14% of the cases, there is not a single matching
realization between 50-best realizations generated by the HSSR system. In ERG/ACE++,
this only happens in 6% of the cases. This reaffirms the observation that the HSSR system
is less constrained by the input representation - not only in the top realization, but in the
top 50 realizations.
Example realization outputs are shown in Figure 7.6. In Figure 7.6a I show examples of
the 1-best HSSR realizations that are different between gold and parsed representations.
The examples correspond to the ones shown in Figure 7.3, which the ERG/ACE++ system
was unable to realize. Compared to the realization produced from the gold representation,
the first example is improved by dropping the unnecessary ‘which’. The second example,
which I deemed as severely broken in Section 7.2, is substantially improved when realized
from the parsed representation. The same can be observed in the third example, which
can now be considered a perfect realization when compared to the original sentence.
In Figure 7.6b I contrast the realization outputs of the HSSR and the ERG/ACE++ sys-
tems and compare them to their respective realization outputs of gold representations.
In the first example, both the HSSR and ERG/ACE++ realizations of the parsed rep-
resentation are worse than their gold counterparts (in the HSSR realization, correctly
assigning the subject of ‘to mine’ is an improvement). The second example shows an
interesting difference in realizations between the gold and parsed representations of the
HSSR system: the parsed representation is realized in passive instead of active voice. On
the other hand, the ERG/ACE++ realization of the parsed representation remains the
same as with the gold representation. In the final example, the HSSR realization of the
parsed representation is better than its realization of the gold representation due to not
dropping the word ‘shudder’.
Based on the experimental results and the analysis in this section, we can conclude that the
HSSR system maintained its performance in realizing parsed representations in compari-
son to realizing gold representations. On the other hand, the ERG/ACE and ERG/ACE++
system performance decreased, in part due to fewer realized representations. Comparison
of the realizations of the same system between two sets of representations indicated that
the HSSR system is more sensitive to the input representations and its realizations tend
to vary more. However, this did not result in degraded performance, as indicated by the
consistent BLEU score. Instead it results in alternative realizations of similar quality,
which we observed in the example realizations.

7.3.2 Realization of ERG-parsed datasets

The previous two realization experiments described in Section 7.2 and Section 7.3.1 were
conducted on a small dataset of 90 representations. Due to the small size of the dataset,
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1. But with time - as promised by the Federal Migration Service - tests will become
mandatory for all non-residents.

H/g But with time, as promised by the federal migration service, which tests will
become mandatory for all non residents

H/p But with time, as promised by the federal migration service tests will become
mandatory for all non residents

2. This is about 1.1% more than it spends on salaries right now.
H/g This is about more than right now than it spends on salaries’ is 1.1%
H/p This is right now, about 1.1 percent more than it spends on salaries

3. It spends USD 1,300 per year on policies to encourage people to have more
children.

H/g $1,300 per year it spends on policies that encourage people to have more chil-
dren.

H/p It spends $1,300 per year on policies that encourage people to have more chil-
dren.

(a) Comparison of the 1-best HSSR realizations of the gold (top) and parsed (bottom) repre-
sentations.

1. People come like hungry fish to bait, and then mine coal in Siberia.
H/g People come to bait like hungry fish and then coal is mined in siberia
H/p People come to like to be baited, and then to mine coal in siberia hungry fish
H/p People come to bait, like hungry fish, and then mine coal, in Siberia.
E/p People come to like hungry fish to bait and then mine coal in Siberia.

2. The Internet has caused a boom in these speculations.
H/g The internet has caused a boom in these speculations
H/p A boom in these speculations have been caused by the internet.
E/g The Internet has caused a boom in these speculations.
E/p The internet has caused a boom in these speculations.

3. The atmosphere would have made a Stalinist shudder with apprehension.
H/g The atmosphere, which would have made a stalinist with apprehension
H/p It would be the atmosphere to have made a stalinist shudder with apprehension
E/g The atmosphere would have made an Stalinist shudder with apprehension.
E/p The atmosphere would have made a stalinist shudder, with apprehension.

(b) 1-best example realizations of the HSSR (H ) and ERG/ACE++ (E) systems, compared to
the reference sentence. For each of the two systems, the 1-best realization of the gold (g) and
the parsed (p) representation is shown.

Figure 7.6: Examples of 1-best realization generated by the HSSR and ERG/ACE++ systems.
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newstest2013 newstest2014

System BLEU BLEU on
realized % realized BLEU BLEU on

realized % realized

HSSR 63.6 100 63.4 100
ERG/ACE 51.0 76 49.5 75
ERG/ACE++ 65.7 68.7 93 65.2 66.4 93
ERG/ACE++HSSR 67.6 100 66.0 100

Table 7.3: Parsed DMRS realization result summary on the large newstest2013 and newstest2014
datasets. Performance of the systems is characterized in terms of BLEU score and percentage
of graphs realized.

minor changes in realization quality and in the number of realized sentences resulted in
large changes in BLEU score. In this section, I compare the four realization systems
on two larger parsed datasets in order to obtain a more reliable relative performance
comparison. The newstest2013 and newstest2014 datasets (consisting of 1774 and 1574
graphs) were initially introduced in Section 6.2.1 (later in the context of realization in
Section 7.1.1) and previously used to evaluate the performance of the HSST system on
the translation task (see Section 6.3).14

The realization performance on the two datasets is summarized in Table 7.3. The per-
formance of the HSSR system in terms of BLEU score is comparable to the performance
reported in experiments described in the previous sections. Additionally, the HSSR sys-
tem continues to demonstrate its robustness by realizing all input representations. On
the other hand, the realization percentage of the ERG/ACE system is significantly lower
than in the previous experiments (76% and 75% on the current two datasets compared to
88% and 86% in the previous two experiments). Consequently, its BLEU score is signif-
icantly lower as well (-12.6 BLEU points compared to the HSSR system). However, the
ERG/ACE++ system maintained a similar realization percentage as in the two previous
experiments (93%), indicating that the ERG/ACE system suffered low realization per-
centage primarily due to unknown words occurring frequently in the two larger datasets.
The ERG/ACE++ system BLEU score remains higher than the HSSR BLEU score, but
the relative difference is smaller (+2.1 and +1.8 on newstest2013 and newstest2014 ver-
sus +5.5 and +3.9 points in the previous experiments). Finally, the combined system
ERG/ACE++HSSR remains the strongest system with the highest reported BLEU scores
and realizing all input representations of both datasets. Compared to the variations in
BLEU score of the ERG/ACE systems, the HSSR system demonstrates very consistent
performance. This may be due to the HSSR parameter tuning, which optimizes the BLEU
metric, whereas the ERG/ACE systems do not.

The matched percentages between the HSSR and ERG/ACE++ systems for newstest2013
and newstest2014 datasets are shown in Figure 7.7. The matched percentages for the
newstest2013 dataset are similar compared to the percentages reported for the subset
of newstest2013 dataset. However, there is a significant difference between the matched
percentages between the newstest2013 and newstest2014 datasets. This may be because
newstest2013 was used for tuning or simply due to the differences in the datasets them-
selves. Due to the increased size of the datasets, the matched percentages for both datasets

14Additionally, the newstest2013 dataset was used to tune the HSSR system parameters.
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(a) Performance of the HSSR system in matching outputs of the ERG/ACE++ system on the
parsed newstest2013 dataset.

(b) Performance of the HSSR system in matching outputs of the ERG/ACE++ system on the
parsed newstest2014 dataset.

Figure 7.7: Performance of the HSSR system in matching outputs of the ERG/ACE++ system for
the two parsed datasets. n-best outputs of both systems are considered for n = {1, 5, 10, 20, 50}.

are smoother in comparison to the previous experiments (shown in Figure 7.4), especially
with increasing size of the ERG/ACE++ n-best list.

There is a match for the top HSSR realization in the top 50 ERG/ACE++ realizations 34%
of the time in the newstest2013 dataset. The corresponding number for the newstest2014
dataset is 28%. In order to characterize the quality of the remaining 66% and 72%
HSSR realizations, I computed how many of the unmatched top HSSR realizations can
be parsed with ERG/ACE (the ERG/ACE parseable metric described in Section 7.1.2).
77% of unmatched 1-best HSSR realizations for newstest2013 can be parsed, and 80%
for newstest2014, indicating a high degree of grammatical outputs of the HSSR system
(furthermore, there is a parseable realization in the top five HSSR unmatched realizations
89% of the time for both datasets15). This leaves 18% of the top HSSR realizations of both
newstest2013 and newstest2014 which are neither matched by the ERG/ACE++ 50-best
realizations nor parseable with ERG/ACE.

The results discussed above are in large part consistent with the previous two experiments,
15Hence, ERG parsing could be used as a filter to avoid very broken HSSR outputs.
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but are more reliable because of the larger size of the two datasets used. The HSSR system
remained consistent in the BLEU score achieved and in realizing all input representations.
On the other hand, the ERG/ACE system performed significantly worse than previously
due to unknown words. This deficiency is addressed in the improved ERG/ACE++ system,
which outperforms the HSSR system in terms of BLEU score, but is still unable to realize
7% of input representations. As before, the best results on parsed data are achieved by
the combined system.

7.4 Realization of non-ERG representations

In the previous two sections (Sections 7.2 and 7.3), the HSSR system proved to be capable
of robustly producing high quality outputs. Unlike the established approach, it is able
to realize all input representations, while the quality of its realizations comes close to
the established approach on both gold and ERG-parsed representations. However, while
ERG-parsed representations may be flawed due to parsing errors, both gold and ERG-
parsed representations are well-formed. In this section, I consider representations which
may not be only flawed but also not well-formed. Such representations are often a result
of an external system, which either creates the representation or modifies an existing
representation for a particular application. I refer to such representations as non-ERG.
Realizing non-ERG representations constitutes the third realization scenario (shown in
Figure 7.2c). As discussed and observed previously, the reliance on the grammar means
that the ERG/ACE realizer is brittle when presented with non-ERG representations.
Instead of producing realizations of degraded quality, the established approach fails to
produce any output at all. The HSSR system, on the other hand, is more robust, as
evident from the experiments in the previous sections, and therefore capable of realizing
such inputs.
I demonstrate the robustness of the HSSR system on representations in three experiments.
In Section 7.4.1, I consider a sentence simplification application, which removes significant
parts (nodes and edges) of input DMRS graphs in order to simplify the original sentence.
I show that the HSSR system is capable of realizing such heavily modified representations.
Robust parsing with a PCFG is a recent addition to the DELPH-IN arsenal that enables
parsing of sentences that were previously out of coverage. However, despite being useful
for some applications, the resulting representations are often not well-formed. In Sec-
tion 7.4.2, I demonstrate that the HSSR system achieves significantly better performance
than the established approach on realizing representations resulting from robust parsing.
Finally, in Section 7.4.3, I demonstrate that using the HSSR system as the realization
component has the potential to improve performance and coverage of a transfer-based
machine translation system.

7.4.1 Realization for sentence simplification

Sentence simplification is the task of shortening the sentence by removing non-essential
information while preserving the main message of the sentence. A variant of the task is
sentence compression, in which a sentence is simplified only by removing tokens so that
the simplified sentence is a token subsequence of the input sentence. A recent successful
approach to the sentence compression task by Filippova et al. (2015) uses LSTMs to
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delete tokens in the input sentence (refer to their related work section for a review of
previous approaches). Sentence compression has been used to improve other tasks. For
instance, Hasler et al. (2016) improve translation of long sentences with complex syntax
and long-distance dependencies by using translations of a simplified sentence to guide the
translation of the full sentence.16

Of particular interest is an approach to sentence compression attempted by Eva Hasler
for the purpose of improving SMT (as in Hasler et al. (2016)), which makes use of DMRS
representations.17 Sentence compression is achieved by parsing the source sentence with
ERG/ACE, using graph modelling methods described in Chapter 3, and then compressing
it by removing nodes and edges using a set of heuristics. The compressed sentence is
obtained from the tokens aligned to the remaining nodes (the heuristic token alignments
are obtained as described in Section 3.3.1).

Instead of using the aligned tokens to obtain the simplified sentence, the compressed
DMRS graphs can be realized with the HSSR system presented in this thesis. Such
an approach can no longer be considered as sentence compression, since the realization
system is not constrained to produce a token subsequence of the original sentence. Using
a realization component instead allows for paraphrasing of the original sentence, which
could be considered as a broader task of sentence simplification. However, the distinction
is not important for the purposes of this thesis. Rather, our interest is in demonstrating
the ability of the HSSR system to realize heavily modified DMRS graphs resulting from
sentence compression.

In the remainder of this section, I briefly summarize the DMRS-based sentence compres-
sion approach. I continue by discussing the performance of the HSSR system in realizing
compressed DMRS graphs and comparing the realized sentences to simplified sentences
obtained via token alignment. I do not compare the HSSR system to the ERG/ACE sys-
tems since the compression heuristics rely on graphs modified with the methods described
in Chapter 3. The changes to the graphs make them unrealizable by the ERG/ACE sys-
tem.

The DMRS graph compression approach introduced above consists of a series of steps
which remove nodes and edges from the original graph. The steps include: (1) removal
of constructions such as ‘said X’, ‘explained X’ etc.; (2) removal of the right sides of
coordinated constructions; (3) removal of relative clauses; (4) removal of appositions; (5)
removal of nodes modifying the main verb of the sentence; and (6) removal of nodes con-
nected via ?/EQ edge (under certain conditions). Finally, all nodes that are disconnected
from the main part of the graph as a result of these steps are also removed. An example
of a sentence compressed with the DMRS-based approach is shown in Figure 7.8.

Using the above approach I compressed 1574 graphs of the newstest2014 dataset. I subse-
quently realized the graphs using the (unmodified) HSSR realization system presented in
Section 7.1.1. For comparison, I created compressed sentences from heuristically aligned
tokens, as in the original approach using the heuristically aligned tokens (I refer to it as
align system). Both approaches reduced the length of the original sentences by around a
half. The compression ratio, defined as the number of tokens after simplification divided
by the number of tokens before simplification computed over the entire dataset, is 50.8%

16Note that in their work, Hasler et al. (2016) use manually created simplified sentences instead of
creating them with an automatic approach, which they leave for future work.

17Unpublished work at the time of writing.
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This was also confirmed by Peter Arnold from the Offenburg District Office.
(a) The uncompressed sentence.

(b) The DMRS graph of uncompressed sentence after DMRS graph modelling steps.

(c) The compressed graph.

This was confirmed by Peter Arnold.
(d) The compressed sentence obtained from (c).

Figure 7.8: An example of sentence compression using the DMRS-based approach and token
alignment.

for the HSSR system and 52.4% for the align system. The similar compression ratios are
expected since the systems share the DMRS-based compression algorithm. The HSSR
system likely has a slightly lower compression ratio due to node deletion in cases where
it could not realize parts of the compressed DMRS graph.
The two systems often produce identical simplified sentences: 41.2% of sentences match
when compared using the matched percentage metric (introduced in Section 7.1.2). I
highlight some differences between the approaches by examining example outputs shown
in Figure 7.9. Additional example outputs are shown in Appendix A.4.
The HSSR is capable of reordering or paraphrasing the sentence (example 1 and 2).
However, occasionally, the reordering yields a worse results (example 3). The token
alignment is a heuristic approach, which means that it may omit tokens. This can be
observed in example 4 in which the ‘of’ token is omitted from the compressed sentence.
The HSSR system is also able to create a fluent sentence from a heavily compressed DMRS
(example 5 and 6).
The HSSR system makes some frequent mistakes. When the grammar does not contain
a rule to realize a node, it instead uses its deletion rules (example 7). This contributes
to the robustness of the HSSR system, but in the case of simplification results in a
more compressed output then intended by the DMRS-based algorithm. Sometimes, the
deletion is not as elegant as in the above example and instead results in a broken sentence
(example 8). Another type of mistake observed several times is failing to realize negation,
which severely affects the meaning of the sentence (example 9). The HSSR system also
occasionally inserts additional words when they are not needed (example 10).
In conclusion, the HSSR system demonstrated its robustness by realizing heavily modi-
fied DMRS graphs for the sentence simplification task. In comparison to the alignment
approach, the HSSR system enables paraphrasing and reordering, which is a departure
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1. They were unable to visit two sites because of security concerns, the inspectors
said.

H The inspectors said they were unable to visit sites.
A They were unable to visit sites the inspectors said.

2. Frankfurt parking fees to increase dramatically
H Frankfurt parking fees to increase dramatically
A Dramatically increased frankfurt parking fees

3. The government in Jerusalem fails to confirm an attack on the Syrian airforce
base

H The government fails to confirm an attack
A Fails to confirm an attack the government.

4. According to accusations, this was part of a turf war and represented a demon-
stration of power.

H This was part of a turf war.
A This was part a turf war.

5. Bamford is appealing the sentence and has been granted bail of 50,000 baht.
H The sentence is being appealed.
A Is appealing the sentence.

6. It makes me yearn for the many promises that disappeared.
H I yearn for the promises
A Me yearn for the promises.

7. "New Express’s editorial management was disordered," the regulator said in a
statement.

H New express’s editorial management.
A New express’s editorial management was disordered.

8. While Murphy said the purpose of the trip is to help improve relationships, he
said some "tough love" will also be dispensed.

H He said that also, some tough love.
A He said some tough love will also be dispensed.

9. It was not something people wanted.
H It was something
A It was not something.

10. Aircraft electronic device rules to stay in force in Australia for now
H Aircraft electronic device rules, for now, though, to stay in force in australia
A Aircraft electronic device rules to stay in force in australia for now

Figure 7.9: Sentence simplification examples from the newstest2014 dataset. The original sen-
tence is shown in italics and two simplified versions of it are shown below (top - simplified with
the HSSR system; bottom - simplified with the align system).
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from the strict sentence compression task. It is important to note that the HSSR system
was not adjusted for the sentence simplification task. For instance, in order to make it
more suitable for the simplification task, the system parameters could be tuned on gold
simplified sentences. The entire machine translation approach introduced in this thesis
could potentially be used to train a simplification system. Additionally, a modification of
the existing rule constraints (see Section 4.2.3) would allow learning of explicit deletion
rules, as opposed to using only general deletion rules (introduced in Section 6.1.2). A sim-
ilar approach to sentence simplification using statistical machine translation (specifically,
tree-to-tree transducers) was described by Cohn and Lapata (2008).

7.4.2 Realization for robust parsing

One of the downsides of ERG/ACE parsing (briefly described in Section 3.1.3) is its
coverage. The parser is unable to parse a proportion of input sentences either (1) due
to their ungrammaticality and/or unusualness, or (2) due to errors in the grammar. The
parsing coverage can be increased by allowing informal roots, which I used in parsing for
the experiments presented in this thesis (see Section 6.2.1). The resulting parsing coverage
is around 81% for training data and 94% and 93% for newstest2013 and newstest2014
respectively (see Section 6.2.1 for full details).

Recently, robust ERG/ACE parsing using a probabilistic context-free grammar (PCFG)
was introduced by Packard and Flickinger (2017). With robust parsing, an analysis can
be produced even when the input sentence is not well-formed. Using the PCFG approach,
100% parsing coverage can be achieved. The downside of robust parsing with a PCFG
is that, although the output is a useful MRS, it may not be completely well-formed.
As discussed and demonstrated in this chapter, the established ERG/ACE realization
approach is in large part incapable of realizing MRS representations that are not well-
formed. Consequently, the robust parsing approach is limited in regeneration scenarios,
since the resulting MRS representations cannot be used to produce target sentences (e.g.,
after modification). The HSSR system, on the other hand, is not so sensitive to the
well-formedness of the meaning representations and is therefore capable of realizing the
representations created by the robust parser. In the remainder of this section I briefly
describe robust PCFG parsing, followed by a description of the experimental setup and
a discussion and comparison of realization system performance on the representations
obtained with the robust parsed using a PCFG.

Summarizing the presentation by Packard (2016b), robust parsing uses a probabilistic
context-free grammar as an alternative to parsing sentences with an HPSG. Following
the work of Zhang and Krieger (2011), the PCFG is estimated on the derivation trees
obtained from the existing (HPSG-based) ERG/ACE parser, in addition to the gold tree-
banks. Parsing a sentence with a PCFG results in a derivation tree which usually fails
to unify. Therefore, the robust parsing approach has a second part, robust unification,
which enables a feature structure to be constructed. The resulting feature structure may
not be well-formed, but contains a useful MRS representation. By adjusting the PCFG
estimation, it is possible to achieve 100% parsing coverage. There are two downsides
of robust parsing: (1) the parsing accuracy of parses obtained in a robust way is lower
compared to the standard ERG/ACE parser (there is a trade-off between parsing accu-
racy and coverage), and (2) using a large PCFG for robust parsing results in a dramatic
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newstest2013r newstest2014r

System BLEU BLEU on
realized % realized BLEU BLEU on

realized % realized

HSSR 45.3 100 50.7 100
ERG/ACE 0.1 11 2.8 26
ERG/ACE++ 0.2 55.3 12 3.4 51.2 28
ERG/ACE++HSSR 46.1 100 50.2 100

Table 7.4: Result summary of realization for robust parsing. Performance of the systems is
characterized in terms of BLEU score and percentage of graphs realized.

increase in parsing time. The latter issue can be partially addressed via pruning with
supertagging.
In this section, I evaluate the realization performance of the four realization systems
(presented in Section 7.1.1) on the representations obtained with the robust parser. In
particular, I robustly parse the sentences of the newstest2013 and newstest2014 datasets
that could not be parsed with the regular ERG/ACE parser. The PCFG18 used for
robust parsing in this section was trained on 100 thousand treebanked sentences (gold)
and 50 million ERG/ACE parsed sentences of the WikiWoods corpus (Flickinger et al.,
2010). Apart from specifying the additional PCFG setting, the same ERG/ACE parsing
settings as listed for newstest2013 and newstest2013 datasets in Section 6.2.1 were used.
The same graph modelling steps as described previously were used to process the DMRS
graphs after the MRS to DMRS conversion. In line with previous experiments, the final
DMRS graph set was filtered to contain graphs with at most 20 nodes, yielding 71 and 75
graphs for newstest2013 and newstest2014 datasets respectively. I will refer to the new
datasets as newstest2013r and newstest2014r to avoid confusion.
The evaluation results are summarized in Table 7.4. The HSSR system significantly out-
performs the ERG/ACE and ERG/ACE++ systems on both datasets. The two ERG/ACE
systems are outperformed primarily due to their inability to realize representations that
are not well-formed. In total, they are unable to realize between 70 and 90 percent of the
representations, whereas the HSSR system is capable of realizing all of them. There is
only a minor improvement in the performance of the ERG/ACE++ system compared to
the ERG/ACE system. However, there is a significant difference in terms of realization
quality between the two datasets for all realization systems, which can only be explained
by the differences in the datasets themselves (for instance, the ERG/ACE system is able
to realize 26% of the newstest2014r and only 11% of the newstest2013r). We can also
observe that the combined system is not necessarily the best option: while it is the best
performing system on newstest2013r, it is worse compared to the HSSR system on the
newstest2014r dataset (although the difference is only 0.5 BLEU point). Example real-
izations are shown in Appendix A.5.

7.4.3 Realization for transfer-based MT

Transfer-based machine translation is an important application of MRS and related tech-
nologies (part of the DELPH-IN consortium) with a long history (Copestake et al., 1995;

18Originally downloaded from http://sweaglesw.org/linguistics/csaw/download/ww-1214-gp2.pcfg.bz2
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Oepen et al., 2004a; Bond et al., 2005; Oepen et al., 2007; Nichols et al., 2007; Bond
et al., 2011). I reviewed most notable approaches to translation with MRS in Section 2.4.
The common goal of transfer-based translation is to produce high quality outputs. This
comes at the expense of translation coverage. For example, the Japanese-English transfer-
based MT system presented by Bond et al. (2011) produces translations for 26% of input
Japanese sentences. In order to alleviate the coverage problem, the transfer MT system
can be combined with a back-off SMT system (Nichols et al., 2007; Bond et al., 2011).
However, this is not an ideal solution, since the two systems are completely decoupled
and the SMT system does not benefit from any part of the transfer system.
Each stage of the parse-transfer-realize pipeline is responsible for a reduction in the final
end-to-end coverage. In particular, Bond et al. (2011) report a 54% realization cover-
age (in comparison, parsing and transfer achieve 80% and 60% coverage respectively).
The low realization coverage is largely a consequence of malformed MRS representations,
created via semantic transfer. In order to improve the transfer-based MT system cover-
age and consequently performance, the robust HSSR system can be used instead of or
in combination with the high precision but brittle ERG/ACE realizer. With 100% real-
ization coverage (extrapolating the HSSR performance observed in previous experiments
presented in this chapter), the transfer MT system presented in Bond et al. (2011) would
achieve end-to-end coverage of 48%, an increase of 84%.
In order to evaluate the capabilities of the HSSR system for realization of transferred
representations, I setup a simplified Japanese-English transfer pipeline (in comparison
with the system presented in Bond et al. (2011)) and compare the realization system
performance on the transferred English MRS representations in terms of BLEU score and
coverage achieved.
The transfer-based MT system used in the experiments in this section uses the JACY
grammar19 (Siegel et al., 2016) in YY mode, using Japanese segmentation and tokeniza-
tion.20 Japanese-English transfer grammar21 consists of hand-crafted transfer rules and
a large number of transfer rules automatically obtained from bilingual dictionaries and
parallel corpora (see Section 2.4). I introduce several simplifications in comparison to
the transfer system of Bond et al. (2011), which make the experiments easier to set up,
more tractable, and fairer for realization component comparison. Instead of considering
5-best outputs for each input at every step, I only consider 1-best output after every
step to improve ease of setup and tractability. Consequently, each realization system is
presented with a single transferred English MRS representation for each input Japanese
sentence and only the 1-best realization output is considered. Since there is only one
realization output, I also do not use the end-to-end reranking component. The omission
of end-to-end reranking is also due to fairness of realization system comparison, since the
discriminative model was trained with the ERG realization system.22 Finally, I do not
use a back-off SMT system. These simplifications result in a Japanese-English transfer
system that is significantly weaker than reported in Bond et al. (2011). Regardless, this
should not meaningfully affect the primary purpose of the experiments reported in this

19JACY grammar was obtained from https://github.com/delph-in/jacy. Latest change to the grammar
was made on November 30 2016 (commit hash 41c6ea4).

20MeCab version 0.996, available at http://taku910.github.io/mecab/.
21Japanese-English transfer grammar is available at http://svn.emmtee.net/trunk/uio/tm/jaen/ (revi-

sion 25328).
22An HSSR-friendly end-to-end reranking model could be trained with the HSSR realization system

outputs, but I consider that to be out of the scope of this thesis.
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section, which is the evaluation and comparison of the realization systems on transferred
MRS representation inputs.
I realize transferred representations with the four realization systems described in Sec-
tion 7.1.1. Unlike in previous experiments presented in this chapter, the systems need to
be augmented in order to make them suitable for realizing transferred representations:

• Instead of using ERG version 1214, both the ERG/ACE and the ERG/ACE++
systems use ERG version 1212 in experiments reported in this section. This is
because the Japanese-English transfer grammar has not been updated with the
latest ERG 1214 changes, meaning that both systems achieve better coverage with
the older grammar. The same issue affects the HSSR system but I opted not to
address it.23

• When the transfer component does not have a lexical rule for transferring a Japanese
predicate, the predicate is transferred in its Japanese form (e.g., ja:_oyogi_n_1_rel).
Neither the ERG/ACE nor the HSSR system are able to realize such predicates (the
ERG/ACE realization fails whereas the HSSR system is forced to delete the pred-
icate). I introduced preprocessing steps for both the ERG/ACE++ and the HSSR
system that allow them to pass the Japanese predicate lemma to the target side
(e.g., translated as ‘oyogi’).24

• The ’ja:’ prefix of transferred grammar predicates is removed for both realiza-
tion systems and some common transferred grammar predicates, which cause the
ERG/ACE realization failure and/or HSSR deletion, are mapped or deleted from
the representation.

• The HSSR system is unable to realize nodes with underspecified properties (e.g.,
Japanese third person pronoun without a specified number) since it has never ob-
served underspecified labels in the training data. As an approximate solution, un-
derspecified node properties are specified as the most frequent value for the given
property (e.g., underspecified number is set to singular).25 In order to enable real-
ization of underspecified variables in the ERG/ACE systems, I disabled the ACE
subsumption test.

• Since the ERG/ACE system is sensitive to the quality of the transferred MRS,
I use it as a pre-selection criterion for the other realization systems. Namely, if
a particular representation can be realized with ERG/ACE, that representation is
subsequently realized by the ERG/ACE++ and the HSSR systems. Similarly, if none
of the transferred representations could be realized by the ERG/ACE system but

23The HSSR system was trained on representations obtained with ERG 1214. In order to address
the ERG version mismatch and obtain the best realization performance, an HSSR grammar could be
extracted from training examples obtained with ERG 1212. However, since the HSSR system is more
robust to diverging inputs, I opted not to extract a new grammar.

24The ERG/ACE++ system uses a similar approach as when handling unknown words, described in
Section 7.1.1; the HSSR system treats the lemma as a carg and consequently allows it to be realized with
a carg rule (see Section 6.1.3).

25A more principled approach would consider translations of all possible specified values. A similar
problem is caused by overly specified properties (e.g., Japanese second person singular pronoun, with
masculine or feminine gender), although a solution - removing the irrelevant information - is straightfor-
ward.
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Coverage % BLEU BLEU on
realized

Realization system Parse Transfer Realization End-to-end
HSSR

80.7 88.9

98.6 70.7 3.7
ERG/ACE 10.7 7.7 0.0
ERG/ACE++ 29.4 21.1 0.6 7.2
ERG/ACE++HSSR 98.6 70.7 4.5

Table 7.5: Japanese-English translation coverages of a transfer-based system using different
realization systems.

a representation could be realized by the ERG/ACE++ system, it is pre-selected to
be realized by the HSSR system.

The four realization systems are compared on the first 1000 sentences of the development
part of the Japanese-English Tanaka corpus (Tanaka, 2001) used in Bond et al. (2011).
Since the sentences in the Tanaka corpus tend to be short, they were not filtered based
on their respective node set size. Instead, the HSSR system filtered the DMRS graphs
with more than 20 nodes internally.
The coverage results are shown in Table 7.5. We can observe that the transfer coverage
is considerably higher than the 60% coverage reported by Bond et al. (2011), while the
ERG/ACE and ERG/ACE++ realization coverages are both significantly lower. This
is likely a consequence of several factors. The most important factor is likely to be
the missing well-formedness check after the transfer component of the pipeline, which
would reject ill-formed transferred MRS before attempting to realize them.26 Another
contributing factor is the changes to the JACY and the ERG grammars since the last
update to the Japanese-English transfer grammar, which yield small incompatibilities
between the transfer pipeline components. Compared to the ERG/ACE and ERG/ACE++
systems, the HSSR system achieves a significantly higher realization coverage, which
results in a significantly higher end-to-end coverage. I do not compare the realization
system BLEU scores due to low coverages of the ERG/ACE and ERG/ACE++ systems.
Instead, I examine the quality of the outputs qualitatively below.
In Figure 7.10 I contrast example HSSR realizations with corresponding ERG/ACE real-
izations and compare them to the reference translations. The HSSR system performs well
in many instances compared to the ERG/ACE system (examples 1, 2, and 3) by produc-
ing more fluent and grammatical realizations closer in meaning to the reference sentence.
The transferred representations preserve the meaning of the original sentence to a varying
degree. When they do not preserve it well, neither of the systems is capable of producing
realizations similar to the reference sentences (examples 4, 5, and 6). A weakness of the
HSRR system is incorrect choice of possessive pronoun and subject-verb agreement, which
the ERG/ACE system has comparatively few problems with (examples 7 and 8). The
HSSR system uses its deletion rules in order to realize predicates for which it has no rules
in the realization grammar, which results in realizations with missing words (examples 9
and 10). The HSSR realization in example 9 also exhibits the heuristic of specifying the

26In Bond et al. (2011), ERG realization is used as a filter of ill-formed transferred MRS (personal
communication with Francis Bond).
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underspecified determiner to the most frequent determiner (the), which is an incorrect
choice in this instance.
Even though in some of the above examples the transferred representations did not pre-
serve the meaning of the original sentence, they were sufficiently well-formed to be realized
by the ERG/ACE system. This only happened in 10.7% of the cases, as shown in Ta-
ble 7.5. In further 18.7% of the cases, the transferred MRS representations were realized
with the improved ERG/ACE++ system, but not with the ERG/ACE system. Examples
of such HSSR and ERG/ACE++ realizations are shown in Figure 7.11a. Both systems are
capable of producing realizations of relatively high quality (example 1 and 2). Many of
these representations contain untransferred Japanese predicates, which the ERG/ACE++
system (like the HSSR system) realizes directly (examples 3 and 4). The HSSR system is
prone to occasionally producing an unusual realization (example 5).
Finally, in Figure 7.11b I show example HSSR realizations for which no corresponding
ERG/ACE or ERG/ACE++ realizations were produced. The HSSR system can pro-
duce high quality realizations from ill-formed inputs (example 1), but more commonly
it produces realizations of degraded quality (examples 2 and 3). As in examples in Fig-
ure 7.11a, the realizations are interspersed with Japanese lemmas due to untransferred
Japanese predicates (examples 4 and 5). When the system cannot realize a predicate
node, it deletes, which results in shortened output (example 6) as observed previously.
Occasionally, it also produces somewhat humorous realizations (example 7). Additional
example realizations are shown in Appendix A.5.
In conclusion, the transfer MT experiment reported in this section demonstrated the
ability of the HSSR system to realize representations of varying degrees of well-formedness
into realizations of potentially degraded quality. Furthermore, the coverages reported
in Table 7.5 and the evidence observed from analysing the realization outputs indicate
that the HSSR system has good potential to be used as the realization component of
a transfer-based translation system. However, more extensive experiments with a non-
simplified transfer pipeline are required in order to make a conclusive claim.27 Notably,
the HSSR system has not been adapted to transfer MT realization task in a significant way
(apart from the heuristic adjustments discussed above). Further realization performance
improvements are likely to be obtained by extending the SCFG with rules extracted for
the specific transfer MT realization task. In particular, rules extracted from (transferred
MRS, reference translation) pairs would allow the HSSR system to learn to accommodate
the systematic errors made by the transfer component.

27I consider such experiments to be out of the scope of this thesis.
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1. He waited on his master.
H Served as him, to that master.
E He served to that master.

2. I walked along the street.
H I walked along the street
E I walked me, along the street.

3. She was displeased at my letter.
H She saw the letter of me and it took offense
E I saw a letter of me, and they took her offense.

4. The plague was about that year.
H That year was caught by the plague.
E A plague caught that year.

5. She was injured in the car accident.
H As that auto accident, she injured
E Injured her, as that automobile accident

6. Do your best!
H Yourself, do the time.
E Do the goods.

7. His manner to us was kind.
H He’s attitude, which is gentle
E His attitude was gentle.

8. Tadpoles become frogs.
H The tadpole become the frog
E The tadpole becomes the frog.

9. The maid arranged the knives and forks on the table.
H The maid enumerated the the knife and the to the table.
E The maid enumerated knives and the folks to the table.

10. A strong yen is shaking the economy.
H The strong yen the economy.
E A strong yen is jolting the economy.

Figure 7.10: Transfer MT HSSR and ERG/ACE realization examples from the Tanaka dataset.
The original sentence is shown in italics, while the two realizations are shown below (H - HSSR
system; E - ERG/ACE system).
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1. There was a strong wind that day.
H The strong wind was blowing that day
E A strong wind was blowing that day.

2. History repeats itself.
H The history repeats
E The history repeats you.

3. Those ruins were once a splendid palace.
H This ruin the palace well katsute
E This ruin katsutely was the palaces well.

4. We visited Mito Park, which is famous for its plum blossoms.
H We did the mito, park, who was famous as the ume flower to the mi
E We did the famous Mito parks, as the ume flower, to the mi.

5. Appearances are against her.
H The situation of the hungarian national the disadvantage to her
E The situation is the disadvantages, to her.

(a) HSSR and ERG/ACE++ realization examples which ERG/ACE could not realize. The
reference sentence is shown in italics, while the two realizations are shown below (H - HSSR
system; E - ERG/ACE++ system).

1. The sound of the violin is very sweet.
The violin is very beautiful

2. There are many races in the United States.
The many race are living in to america

3. China’s desert support more people than are in Japan.
More than japan, the chinese desert are supporting the many man

4. The Sphinx began to walk around him.
Sphinx begin his mawari walk

5. I got two Bs this semester.
The semester the 2 ryou exist of the now.

6. I saw a house whose roof was red.
The red roof.

7. Cowards die many times before their deaths.
The coward dies, all the way to the front.

(b) HSSR realization example which neither of the ERG/ACE systems could realize. The
reference sentence is shown in italics.

Figure 7.11: Transfer MT realization examples from the Tanaka dataset produced by the HSSR
and ERG/ACE++ systems.
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Chapter 8

Conclusions

In this thesis I described a hybrid approach combining the knowledge in a deep hand-built
grammar with a statistical machine translation approach and subsequently demonstrated
its performance on the machine translation and surface realization tasks. In this chapter,
I review and discuss each of the major contributions of this thesis (originally listed in Sec-
tion 1.6) and consider the associated future research directions. I conclude by enumerating
minor contributions and summarizing the thesis.

8.1 Novel architecture

The statistical machine translation approach proposed in this thesis comprises three parts:
(1) approaches and algorithms concerned with modelling of input DMRS graphs and
parallel training examples, (2) approaches and algorithms concerned with extracting a
synchronous-context free grammar from a corpus of parallel examples, and (3) approaches
and algorithms concerned with transforming a previously unseen DMRS graph into a
target sentence using the extracted synchronous context-free grammar.
In Chapter 3, I introduced three methods for transforming DMRS graphs which remove
redundant and potentially harmful information to adapt the graphs for translation and re-
alization tasks. The methods include node and edge labelling, grammar predicate filtering,
and removal of cycles in the underlying undirected graph. The methods have potential
to be used in other application-specific modelling of DMRS graphs, which is validated
by their inclusion in the pydmrs library released alongside the publication by Copestake
et al. (2016). Additionally, I described a method for extending the source-side alignments
derived during ERG parsing, and combining them with alignments obtained via statistical
word alignment, in order to create alignments between the two sides of parallel training
examples. As with the DMRS graph modelling methods, alignment methods have ap-
plications beyond this thesis. For instance, they were used in a sentence compression
approach, which I discussed in Section 7.4.1.
In Chapter 4, I extended the SCFG formalism of Hiero (Chiang, 2005, 2007) to comprise
graph-to-string rules. I introduced a rule extraction algorithm to extract graph-to-string
rules from aligned DMRS graph - sentence pairs. In order to aggregate graph-to-string
rules into an SCFG, I addressed the graph isomorphism problem by proposing a heuristic
solution to the related problem of graph canonization. I subsequently analysed and com-
pared the grammars extracted for the translation and realization tasks and found that
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(1) the full realization grammar contains significantly more rules than the full transla-
tion grammar, (2) the majority of rules of both grammars have only been observed once,
and (3) that the size of both grammars grows linearly with increasing training set size,
although (4) the realization grammar growth is significantly steeper than the growth of
the translation grammar.
In Chapter 5, I described a novel rule application algorithm which given an input DMRS
graph finds applicable rules from the SCFG. In order to use the applicable rules to trans-
late the input DMRS graph, I adapted the ideas behind FST decoding of de Gispert et al.
(2010) for graph-to-string decoding. As with rule extraction and grammar construction
approaches, the proposed rule application algorithm and graph-to-string decoder are task-
agnostic. I analysed their performance on both translation and realization tasks and found
that (1) the running time of the rule application algorithm increases faster than linearly
with increasing graph size, but represents a minor part of the total sentence decoding
time; (2) the number of applicable rules per graph node found by rule application algo-
rithm is constant for each task, but much higher for the translation task (800 versus 400
rules per graph node), a likely consequence of the noise introduced by SMT alignment; (3)
the decoder running time increases (reasonably close to) linearly with increasing graph
size, but is significantly longer for the translation task.

Future work The current approach does not model punctuation directly, since punc-
tuation is not explicitly represented in DMRS graphs. Indirectly, punctuation symbols
are included in extracted rules as unaligned tokens. A potential solution could be to
directly model the translation of punctuation with a dedicated synchronous context-free
grammar. Alternatively, a more advanced postprocessing solution (e.g., using an LSTM)
could predict target-side punctuation. The graph-to-string decoder limits inputs to at
most 20 nodes in size. As observed from decoding analysis, this is a limitation of the de-
coder implementation and not of the proposed approach. Consequently, a more efficient
decoder implementation would be able to decode larger input DMRS graphs. Finally, I
made many decisions in the approach proposed in this thesis, where alternatives could be
explored.

8.2 Machine translation

I applied the proposed approach to the machine translation task. The approach takes
advantage of the monolingual knowledge available in the English Resource Grammar for
translation by incorporating it in a statistical machine translation approach. I demon-
strated the ability of the approach to be used as a large-scale practical machine translation
system by evaluating it on the WMT15 English-German translation task. I compared my
approach to the state-of-the-art HiFST system (Blackwood et al., 2016), implementing
hierarchical phrase-based translation. The evaluation shows that my approach does not
improve on the state-of-the-art Hiero system on the English-German translation task in
terms of BLEU and METEOR scores and according to human judgements. The manual
investigation of outputs confirmed that Hiero performs better than the proposed ap-
proach, but that the difference in quality between the two systems is perhaps not as big
as suggested by the automatic evaluation metrics. For instance, the manual investiga-
tion suggested that a potential strength of my approach compared to Hiero is translation
of verbs, which have an important effect on translation quality, but are not adequately
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quantified by the automatic evaluation metrics. It also revealed some common problems,
in particular insertion of filler words and sentence structure, a likely result of missing
translation rules.

Future work Although translation evaluation results are somewhat disappointing, in
that the proposed approach did not improve on Hiero performance, there are several av-
enues for future research. Neubig and Duh (2014) reported that alignment quality had a
significant effect on tree-to-string translation quality. In their experiments, a T2S system
trained on alignments derived with a discriminative alignment method of Riesa and Marcu
(2010) outperformed the system trained on unsupervised Giza++ alignments. The ap-
proach by Riesa and Marcu (2010) uses source and target-side syntactic information and
a small amount of gold alignment data1 to train a supervised machine learning approach
(implemented in the Nile toolkit2). I anticipate that a similar improvement in transla-
tion quality could be achieved for my approach by using the discriminative alignment
approach.3

The manual investigation of outputs in Section 6.3.1 showed that my approach and Hiero
may have complementary strengths. Integrating the two approaches has potential to yield
improvements on standalone Hiero performance. Different integration strategies could be
explored, for instance on the level of hypotheses (i.e., high level integration) or combining
parts of hypotheses (i.e., low level integration).4

Tree-to-string syntax-based SMT approaches decode a parse tree into a string (see Sec-
tion 2.1.2). The extension from a single parse to a forest of parse trees improves T2S
translation because it allows the translation system to override the syntactic constraints
imposed by a single tree (Zhang and Chiang, 2012). Similarly, the semantic constraints of
an input DMRS graph could be relaxed by considering the n-best parses for translation of
a single sentence. In a first attempt, the n-best DMRS graphs could be decoded indepen-
dently, combining the resulting FSA hypothesis spaces. A more complex approach would
encode the n-best DMRS graphs in a packed representation, potentially as a hypergraph,
which would necessitate an extension to the graph-to-string decoder presented in Chap-
ter 5. Since there is little variation in closely ranked ERG parses, a more advanced parse
selection strategy than selecting n-best parses might be required for taking full advantage
of hypergraph decoding. An additional related research direction is grammar extraction
from hypergraphs. Mi et al. (2008a) show that extracting rules from a packed forest rep-
resentation results in substantial improvements to both tree-to-string and forest-to-string
translation, by alleviating the problem of parsing errors on extracted rule quality. Hence,
a similar approach might be beneficial for the approach presented in this thesis.

In recent years, the rising popularity of deep learning has sparked a new machine trans-
lation paradigm referred to as neural machine translation (NMT). In NMT, the machine

1German-English gold alignment data consisting of 300 sentences can be found here: https://user.phil-
fak.uni-duesseldorf.de/ tosch/downloads.html. Credit to Thomas Schoenemann for the gold annotation
and data distribution, and Eva Hasler and Lars Ahrenberg for bringing it to my attention.

2Available at https://github.com/jasonriesa/nile.
3However, in preliminary experiments not discussed in this thesis, I was unable to use the Nile toolkit

on the scale of the WMT15 training data.
4Although not discussed in this thesis, I experimented with low-level integration, in which the Hiero

CYK cells represented as FSAs were combined with HSST grid coverage cells aligning to the same span
of words. Preliminary experiments did not yield as substantial improvements as desired initially, but
were not conclusive.
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translation system is a neural network trained in an end-to-end fashion via backprop-
agation. A common neural network architecture used in NMT is a multilayered Long
Short-Term Memory (LSTM) encoder/decoder architecture. Some of the prominent NMT
approaches include the work by Sutskever et al. (2014), Bahdanau et al. (2015), and Lu-
ong et al. (2015). In a talk at the 2014 workshop on syntax, semantics, and structure
in statistical translation (Baldwin, 2014), Tim Baldwin argued that semantics should
be viewed in a wider sense and that recent NMT approaches should be considered as
instances of novel semantic machine translation. In this view, NMT approaches learn
semantic representations of input sentences from their surface words. This is in contrast
to the approach presented in this thesis, which relies on a notion of semantics designed by
linguists. An interesting avenue of future work would explore the possibility of extending
an NMT approach to use semantics in the form of a DMRS as an input instead of surface
words.

8.3 Realization

In addition to machine translation, I applied the proposed approach to the MRS re-
alization task. I considered the tactical generation and regeneration interpretations of
realization. Whereas the former assumes that the meaning representation is perfect, the
latter accepts that the meaning representation is potentially a flawed representation of
the original sentence (or another object) because it was obtained via an imperfect pro-
cess (e.g., automatic parsing). I evaluated the realization performance of the proposed
approach in comparison to the established approach under both interpretations of the
realization task. The tactical generation interpretation required evaluating the realiza-
tion systems by realizing gold representations (see Section 7.2). The proposed approach
produced realizations of high quality, but nonetheless often of worse quality than the es-
tablished approach. The difference in performance was smaller, however, on realization
of ERG-parsed representations (see Section 7.3). Notably, the established approach was
unable to realize 7% of the input representations, whereas the proposed approach realized
all of them.
In Section 7.4, I demonstrated the robustness of my approach by using it as a realiza-
tion system in three applications: sentence simplification, robust parsing realization, and
transfer-based machine translation. In the first application (Section 7.4.1), the proposed
approach was able to realize heavily modified DMRS graphs for the sentence simplification
task by producing realizations of reasonable quality. When realizing the representations
obtained using robust parsing (Section 7.4.2), the proposed approach demonstrated its
ability to produce high quality realizations and its robustness, by realizing all input rep-
resentations. It significantly outperformed the established approach, which only realized
10-30% of input representations. Finally, I used the proposed approach as the realization
component in a transfer-based machine translation system (Section 7.4.3). The proposed
system was able to realize representations of varying degrees of well-formedness, into real-
izations of potentially degraded quality. The reported coverages and the evidence observed
from analysing the realization outputs indicate that the HSSR system has good potential
to be used as the realization component of the transfer-based translation system.

Future work The approach was not significantly adapted for any of the three applica-
tions enumerated above. Even better performance could be achieved if the system was
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tuned and/or trained for the specific task. Adapting the approach to a specific task by
tuning requires a small amount of task-specific gold data. For instance, in the case of
transfer-based MT realization, a few hundred pairs of transferred representations and
reference translations would be required. The log-linear model parameters can be sub-
sequently adjusted via LMERT tuning to optimize the BLEU score (see Section 5.6). A
more significant task adaptation entails extracting an SCFG from the task-specific train-
ing examples and combining the task-specific SCFG with the existing SCFG (if sufficient
task-specific training data exists, such combination may not be necessary). An additional
feature distinguishing the task-specific rules would allow the log-linear model to better use
the two sets of rules after tuning. In comparison to tuning, task-specific training requires
training example pairs to be aligned. For the three tasks discussed above, alignments can
be obtained via statistical word alignment (see Section 3.3.3).

Using the proposed approach for transfer-based machine translation is a particularly
promising application. The high precision nature of the transfer-based machine trans-
lation system of Bond et al. (2011) means that while the system produces high quality
outputs, it has a low coverage. The system is consequently complemented with a back-off
SMT system, which is used when the transfer-based system does not produce an output.
Replacing or complementing the existing realization pipeline component with the robust
realization approach would provide a significant boost to the transfer-based end-to-end
coverage. Such a solution is preferable to using a back-off SMT system, since it ties
closely to the remainder of the transfer-based system and is able to take advantage of
its strengths. In order to demonstrate the usefulness of robust realization approach for
transfer-based machine translation, further experiments need to be conducted.

8.4 Minor contributions

Minor contributions of the thesis consist of (1) implementations of the major contributions,
released as open-source libraries, and (2) original solutions to problems I solved in order
to complete this thesis, which may be useful to others but that are not widely applicable.
I list them below:

1. The open-source code for DMRS graph processing5 described in Chapter 3. The py-
dmrs library includes (1) an interface for the pydelphin MRS to DMRS conversion,
(2) DMRS preprocessing including gpred filtering, labelling, cycle removal, source
token alignment, and DMRS preprocessing for HSSR Japanese-English transfer MT
realization (see Section 2.4), and (3) mapping of DMRS node and edge labels to
unique ids in order to facilitate further DMRS graph operations (e.g., rule extrac-
tion).

2. The open-source code for grammar estimation and decoding6 described in Chapters 4
and 5. The library includes code implementing rule extraction, rule application, and
decoding algorithms, as well as scripts for running the translation and realization
system on Sun Grid Engine and Apache Spark (see Section 1.5).

5Located at https://github.com/matichorvat/pydmrs
6Located at https://github.com/matichorvat/hsst
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3. The extension of the pyfst python library7 with additional functionality needed
for decoder implementation described in Chapter 5. The extensions include phi
composition, encode and decode operations, a combined FST minimization and
determinization operation, and enabling bypassing the use of a symbol table in
favour of a more efficient operation directly with integers.

4. The DMRS modelling library8 released alongside the Copestake et al. (2016) pub-
lication, which was a joint effort with several colleagues (listed as co-authors of the
paper). The library duplicates and extends part of the functionality of the pydmrs
library.9 Notably, it also includes a browser-based DMRS graph visualization tool
which is based on the work of Mike Goodman and was used to produce DMRS graph
figures throughout the thesis.

5. Non-grammar rules (see Section 6.1) complement the SCFG rules extracted from
a parallel corpus in order to significantly improve the robustness of the approach
described in this thesis. The idea behind the functionality of non-grammar rules
is not novel: disconnected graph glue rules (Section 6.1.1 are based on Hiero glue
rules (Chiang, 2007), token deletion rules exist in HiFST, and various methods of
transferring source words directly to target side have been used previously. However,
the adaptation of these ideas to decoding of graphs and their close integration which
allows them to compete with grammar rules works particularly well for the approach
described in this thesis and may prove useful to others.

8.5 Summary

In this thesis I described in detail a new hybrid approach that combines the knowledge
from a deep hand-built grammar such as the English Resource Grammar and a statistical
machine translation approach. I demonstrated that the proposed approach is a practical
approach for machine translation by applying it to a large-scale English-German trans-
lation task. I additionally demonstrated that, when applied to realization, the proposed
approach provides a complementary set of strengths and weaknesses to the established
MRS realization approach. In particular, it is capable of robustly realizing flawed or bro-
ken representations, making it a suitable realization equivalent to robust parsing by Zhang
and Krieger (2011) and Packard and Flickinger (2017). I proposed and discussed several
promising future research directions for the approach and its uses in machine translation
and realization tasks. Additionally, the approach described in this thesis enables inves-
tigations into the similarities and differences between machine translation and surface
realization tasks.

7Located at https://github.com/matichorvat/pyfst2
8Located at https://github.com/delph-in/pydmrs
9Somewhat confusingly, it also shares its name.
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Appendix

A.1 Filtered grammar predicates

In Section 3.2.2 I describe the grammar predicate filtering procedure, in which certain
grammar predicate nodes are removed from DMRS graphs. I list the thirty filtered ERG
1214 grammar predicate types below:

• approx_grad

• cop_id

• def_explicit_q

• def_implicit_q

• ellipsis

• ellipsis_expl

• ellipsis_ref

• elliptical_n

• eventuality

• focus_d

• generic_nom

• generic_verb

• hour_prep

• id

• idiom_q_i

• interval

• interval_p_end
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• interval_p_start

• number_q

• parg_d

• pronoun_q

• proper_q

• property

• prpstn_to_prop

• string

• timezone_p

• udef_q

• unknown

• unspec_adj

• v_event

A.2 Translation examples

In Section 6.3.1 I discuss the performance of the HSST system on English to German
translation. The discussion includes a few example translations by the system in Fig-
ure 6.7. In this section I give further 50 HSST translation examples (in particular, the
first 50 sentences of the filtered newstest2014). Each example consists of three sentences:
the English sentence being translated, the reference, and the 1-best HSST translation.

1. Gutach: Increased safety for pedestrians
Gutach: Noch mehr Sicherheit für Fußgänger
Gutach: Mehr Sicherheit für Fußgänger

2. Two sets of lights so close to one another: intentional or just a silly error?
Zwei Anlagen so nah beieinander: Absicht oder Schildbürgerstreich?
Dies waren die beiden two sets of lights to one another. Beabsichtigt oder nur eine
dumme Fehler

3. Yesterday, Gutacht’s Mayor gave a clear answer to this question.
Diese Frage hat Gutachs Bürgermeister gestern klar beantwortet.
Gestern gab der Bürgermeister eine klare Antwort auf diese Frage
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4. The Kluser lights protect cyclists, as well as those travelling by bus and the residents
of Bergle.
Die Kluser-Ampel sichere sowohl Radfahrer als auch Busfahrgäste und die Bergle-
Bewohner.
Die Kluser Lichter, die dem Schutz der Radfahrer als auch für die Fahrt mit dem
Bus und die Einwohner aus dem Bergle

5. The system, which officially became operational yesterday, is of importance to the
Sulzbachweg/Kirchstrasse junction.
Die gestern offiziell in Betrieb genommene Anlage sei wichtig für den Kreuzungs-
bereich Sulzbachweg/Kirchstraße.
Das System, die gestern in Betrieb genommen wurden, ist von großer Bedeutung für
die Kreuzung und Kirchstrasse

6. "At times of high road and pedestrian traffic, an additional set of lights were required
to ensure safety," said Eckert.
"Bei dem hohen Verkehrs- und Fußgängeraufkommen musste zu deren Sicherheit
eine weitere Ampel her", so Eckert.
Eckert sagte, dass eine zusätzliche Ampel mussten die für die Gewährleistung der
Sicherheit in Zeiten des hohen Straße und pedestrian traffic

7. This was also confirmed by Peter Arnold from the Offenburg District Office.
Dies bestätigt auch Peter Arnold vom Landratsamt Offenburg.
Auch Peter Arnold bestätigt, dass sich das vom Bezirk Offenburg, office

8. There are three sets of lights per direction of travel.
Pro Fahrtrichtung gibt es drei Lichtanlagen.
Es gibt drei Arten von Leuchten pro Fahrtrichtung

9. Arnold explained the technology used by the new system: It is fitted with two radar
sensors.
Arnold erklärte die Technik der neuen Anlage: Diese ist mit zwei Radarsensoren
ausgestattet.
Arnold erklärte, die Technologie, die von dem neuen System genutzt: Es ist ausges-
tattet mit zwei Sensoren von Radar

10. If the street is clear, the pedestrian obtains a green light immediately, if not, there
is a delay of around 15 seconds.
Ist die Straße frei, kommt unmittelbar Grün für den Fußgänger, wenn nicht, dauert
es etwa 15 Sekunden.
Wenn die Straße liegt auf der Hand, sofort in der Fußgängerzone ein grünes Licht
erhalten, wenn nicht, gibt es eine Verzögerung von etwa 15 Sekunden
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11. An additional radar sensor checks whether the green phase for the pedestrian can be
ended.
Ein weiteres Radarsensor prüft, ob die Grünphase für den Fußgänger beendet werden
kann.
Ein zusätzlicher Sensor Radar wird überprüft, ob die grüne Phase für die Fußgänger
zu beenden kann

12. Of course, drivers must also play their part and keep their eyes on the road.
Natürlich müsse der Autofahrer hier als Partner mitdenken und die Fahrbahn
beobachten.
Natürlich müssen auch die Fahrer ihre Rolle spielen und dass sie ’s eyes on the road

13. However, Director Fresacher seems to have little trust in the text.
Dabei scheint Regisseur Fresacher dem Text wenig zu vertrauen.
Allerdings Director Fresacher hat anscheinend wenig Vertrauen in den Text

14. In particular, the actresses play a major role in the sometimes rather dubious staging.
Vor allem die Schauspielerinnen kommen bei den mitunter etwas fragwürdigen
szenischen Umsetzungen dran.
Vor allem die Schauspielerinnen spielen eine große Rolle in der mitunter recht frag-
würdige Inszenierung

15. They are manhandled, their heads held under water, tacked to the wall by their
evening gowns.
Sie werden hart angefasst, mit dem Kopf unter Wasser getaucht, mit ihren Aben-
droben an die Wand getackert.
Sie, die ihre Köpfe unter Wasser durch den Abend, sie an die Wand

16. However, the source text makes barely any reference to this intense delivery.
Der Text vermittelt sich auf diese angestrengte Weise jedoch kaum.
Allerdings ist der Text von Quelle ist kaum noch Bezug auf diese intensive Lieferung

17. A black box in your car?
Eine Blackbox im Auto?
Eine schwarze Box, in der Sie ’s car

18. The usually dull arena of highway planning has suddenly spawned intense debate and
colorful alliances.
Das normalerweise eher langweilige Gebiet der Straßenplanung hat plötzlich eine
intensive Debatte mit bunten Allianzen entfacht.
Plötzlich ist die übliche langweilige Arena der Planung der Autobahn intensive De-
batte und bunte Bündnisse

19. The tea party is aghast.
Die Tea Party ist entsetzt.
Die Tea Party
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20. The American Civil Liberties Union is deeply concerned, too, raising a variety of
privacy issues.
Die amerikanische Bürgerrechtsvereinigung (ACLU) ist ebenfalls zutiefst besorgt und
äußert eine Reihe von Datenschutzbedenken.
Die American Civil Liberty Union betrifft, so tief, wodurch sich eine Vielzahl von
Fragen der Privatsphäre

21. And while Congress can’t agree on whether to proceed, several states are not waiting.
Doch während man sich im Kongress nicht auf ein Vorgehen einigen kann, warten
mehrere Bundesstaaten nicht länger.
Und da weitergehen soll, ist erstaunlich, in dem Kongress nicht einig: Mehrere
Staaten nicht warten

22. Thousands of motorists have already taken the black boxes, some of which have GPS
monitoring, for a test drive.
Tausende von Autofahrern haben die Fahrtenschreiber, von denen einige mit GPS-
Überwachung ausgestattet sind, bereits getestet.
Tausende Autofahrer haben sich bereits die schwarzen Boxen, die zum Teil moni-
toring GPS für einen test drive

23. This really is a must for our nation.
Das ist wirklich ein Muss für unser Land.
Das ist in der Tat so etwas wie ein Muss für unsere Nation

24. There is going to be a change in how we pay these taxes.
Die Art und Weise, wie wir diese Steuern zahlen, wird sich verändern.
Da wird es eine Änderung sein, wenn es darum geht, wie wir diese Steuern zahlen

25. The technology is there to do it.
Die Technologie dafür ist da.
Die Technologie ist da, um es zu tun

26. Americans don’t buy as much gas as they used to.
Doch in Amerika wird nicht mehr so viel getankt wie früher.
Amerikaner kaufen keine so viel Gas, wie sie es zu

27. Cars get many more miles to the gallon.
Autos verbrauchen weniger Benzin.
Autos viel mehr Meilen pro Gallone

28. The federal tax itself, 18.4 cents per gallon, hasn’t gone up in 20 years.
Die staatliche Mineralölsteuer von 18,4 Cent pro Gallone (weniger als 4 Eurocent
pro Liter) ist seit 20 Jahren nicht gestiegen.
Die Steuer selbst auf Bundesebene, die 18,4 Cent pro Gallone noch nicht aus der
Welt oben in 20 Jahren
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29. Politicians are loath to raise the tax even one penny when gas prices are high.
Politiker wagen bei hohen Spritpreisen nicht, die Steuer auch nur um einen Cent
anzuheben.
Politiker geben ungern ein, wenn die Gaspreise hoch, auf dem auch die Steuer

30. "This works out as the most logical alternative over the long term," he said.
„Das stellt die langfristig sinnvollste Alternative dar“, sagte er.
Er sagte, das Ergebnis als die vernünftigste Alternative, die sich über die lange
Amtszeit

31. Wonks call it a mileage-based user fee.
Bürokraten bezeichnen es als meilenbasierte Benutzergebühr.
Wonks bezeichnet sich selbst als a user fee, die sich Meilen

32. People are paying more directly into what they are getting.
Die Leute bezahlen direkt für das, was sie bekommen.
Mehr Menschen, die dafür zahlen direkt dazu zu bringen, was sie konsumieren

33. Several states and cities are nonetheless moving ahead on their own.
Mehrere Bundesstaaten und Großstädte bewegen sich nichtsdestotrotz auf eigene
Faust in diese Richtung.
Dennoch bewegt sich mehrere Staaten und Städte über ihre eigenen nächsten
Schritte

34. The most eager is Oregon, which is enlisting 5,000 drivers in the country’s biggest
experiment.
Am engagiertesten ist Oregon, das derzeit 5.000 Fahrer für das größte Experiment
des Landes anwirbt.
Die am meisten mit Spannung als 5.000 Fahrer Oregon in das Land der größte
Experiment

35. Those drivers will soon pay the mileage fees instead of gas taxes to the state.
Diese Fahrer werden bald die Meilengebühren statt der Mineralölsteuer an den Bun-
desstaat zahlen.
Bald ist der Staat den Fahrern die Gebühren Meilen statt Gas, Steuern

36. Nevada has already completed a pilot.
Nevada hat bereits ein Pilotprojekt abgeschlossen.
Nevada hat ein Pilot bereits abgeschlossen

37. New York City is looking into one.
New York City erwägt ebenfalls ein solches.
1 als New York City.
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38. Illinois is trying it on a limited basis with trucks.
Illinois testet es in eingeschränktem Maße mit Lkws.
Illinois probiert es über einen bestimmten Basis mit Lastwagen

39. The concept is not a universal hit.
Das Konzept ist kein universeller Hit.
Das Konzept ist ein universeller Hit nicht

40. It was not something people wanted.
Die Leute wollten es nicht.
Es war etwas, was Menschen nicht

41. There is no need to build an enormous, unwieldy technological infrastructure that will
inevitably be expanded to keep records of individuals’ everyday comings and goings.
Es bestehe keine Notwendigkeit, eine gigantische, sperrige technologische Infras-
truktur aufzubauen, die unweigerlich dazu verwendet werden würde, Daten über die
täglichen Bewegungen von Einzelpersonen zu erfassen.
Es gibt keine Notwendigkeit für den Bau unweigerlich eine enorme technologische
Infrastruktur, um die Aufzeichnungen über die Personen aus dem täglichen Leben
behalten

42. If you can do that, Khan said, the public gets more comfortable.
Damit, so Khan, wäre auch die Öffentlichkeit beruhigter.
Die Öffentlichkeit wird noch komfortabel, wenn Sie in der Lage sind, das zu tun,
sagte Khan.

43. The hunt for that technology has led some state agencies to a small California startup
called True Mileage.
Die Jagd nach dieser Technologie hat einige Behörden zu einem kleinen Startup-
Unternehmen namens True Mileage in Kalifornien geführt.
Die Jagd, für diese Technologie ein kleines Startup namens wirklich einige staatliche
Agenturen

44. The firm was not originally in the business of helping states tax drivers.
Die Firma ist ursprünglich nicht angetreten, um Bundesstaaten bei der Besteuerung
von Autofahrern zu helfen.
Das Unternehmen ist nicht in das Geschäft der Staaten zu helfen, Autofahrer zu
besteuern

45. There have been some big mistakes in some of these state pilot programs.
In einigen dieser öffentlichen Pilotprogramme wurden große Fehler gemacht.
In einigen dieser Staat, Pilot Programme gab es bereits einige große Fehler

46. There are a lot less expensive and less intrusive ways to do this.
Es gibt wesentlich billigere und weniger intrusive Möglichkeiten, dies umzusetzen.
Es gibt viel weniger kostspielig, weniger einschneidende Möglichkeiten, dies zu tun
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47. In Oregon, planners are experimenting with giving drivers different choices.
In Oregon experimentieren die Planer damit, Autofahrern eine Reihe von
Auswahlmöglichkeiten zu geben.
In Oregon Planer experimentiert mit Fahrer anders entscheiden zu geben

48. They can choose a device with or without GPS.
Sie können sich für ein Gerät mit oder ohne GPS entscheiden.
Sie können sich aussuchen, ein Gerät, mit oder ohne GPS

49. Some transportation planners, though, wonder if all the talk about paying by the mile
is just a giant distraction.
Einige Verkehrsplaner fragen sich allerdings, ob das ganze Gerede über das Bezahlen
pro Meile nicht nur ein riesiges Ablenkungsmanöver sei.
Einige Planer Transport muss sich fragen, ob alle, die Rede, in der es um die
Bezahlung durch die Meile, nur eine riesige Ablenkung

50. If we do this, hundreds of millions of drivers will be concerned about their privacy
and a host of other things.
Wenn wir das tun, machen sich Hunderte Millionen von Autofahrern sorgen über
ihre Privatsphäre und zahlreiche andere Dinge.
Wenn wir das tun, Hunderte von Millionen Fahrer kümmert sich darum, ihre Pri-
vatsphäre und eine Menge anderer Dinge

A.3 Manual translation evaluation results

In Section 6.3 I report the performance of the HSST system on English to German trans-
lation compared to the HiFST system. The systems are evaluated in a manual experiment
on 100 sentences by two evaluators. In this section, I show the full results of the manual
evaluation. Each example consists of three sentences: the German reference sentence
(italics), the HSST translation (H ), and the HiFST translation (B), and the preference
of each evaluator (HSST, HiFST, or neither).

1. Jeder Hersteller plant anders.
H Jeder Hersteller planen sie in eine andere Art und Weise
B Jeder Hersteller es auf eine andere Art und Weise

Evaluator 1: neither, Evaluator 2: HSST

2. Der öffentliche Nahverkehr werde auch teurer.
H Auch der öffentliche Nahverkehr wird teurer werden
B Der öffentliche Nahverkehr wird auch teurer

Evaluator 1: HSST, Evaluator 2: HSST
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3. Der Veganismus, er ist ein wichtiger moralischer Fingerzeig, der auf das Bewusstsein
schlägt.

H Veganism ist ein wichtiger moralischer Kompass zu sein, das eine Wirkung auf Sie
’s Bewusstsein

B Veganismus ist eine wichtige moralische Kompass, das hat einen Effekt auf Ihr Be-
wusstsein
Evaluator 1: HiFST, Evaluator 2: HiFST

4. Soll heißen: Déjà Vu steht auch für Verlässlichkeit.
H Das heißt: Auch Déjà Vu steht für Zuverlässigkeit
B Das heißt: Déjà Vu steht auch für Verlässlichkeit

Evaluator 1: HiFST, Evaluator 2: HiFST

5. Bei der Konzeption der frühen Internetdienste stand im Vordergrund, Kommunika-
tion möglich zu machen.

H Bei der Gestaltung der frühen internet services lag der Schwerpunkt auf Kommu-
nikation möglich machen

B Bei der Gestaltung von den frühen Internet Services, der Schwerpunkt lag auf Kom-
munikation möglich
Evaluator 1: HSST, Evaluator 2: HSST

6. Rettungskräfte brachten das Mädchen ins Krankenhaus.
H Rescue workers brachte das Mädchen ins Krankenhaus
B Rettungskräfte nahmen das Mädchen ins Krankenhaus

Evaluator 1: HiFST, Evaluator 2: HiFST

7. Zu uns kommen Kunden aus jeder sozialen Schicht.
H Wir sind der Ansicht, dass Kunden aus allen Bereichen des Lebens
B Wir sehen Kunden aus allen Gesellschaftsschichten

Evaluator 1: HiFST, Evaluator 2: HiFST

8. „Nun hat Franziskus diese acht Kardinäle ausgewählt, die ihm helfen sollen“, sagte
Valero.

H Jetzt, wo Franziskus diesen acht Kardinäle gewählt haben, um ihm zu helfen, sagte
Valero

B "Jetzt Franziskus ausgewählt hat diesen acht Kardinäle, ihm zu helfen", sagte Valero
Evaluator 1: HSST, Evaluator 2: HSST

9. Von großem Interesse für die Forscher sind auch Jupiter und seine Monde.
H Auch Jupiter und seinen Monden ist von großem Interesse für die Forscher
B Jupiter und seinen Monden sind auch von großem Interesse für die Forscher

Evaluator 1: neither, Evaluator 2: HiFST
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10. In einigen dieser öffentlichen Pilotprogramme wurden große Fehler gemacht.
H In einigen dieser Staat, Pilot Programme gab es bereits einige große Fehler
B Es gab einige große Fehler in einigen dieser Staat Pilot Programme

Evaluator 1: neither, Evaluator 2: HiFST

11. Diese Grundidee gab es aber schon seit 1913 im Ort.
H Aber diese Grundidee, die in der Lage, die sich seit 1913
B Aber diese Grundidee gesprochen worden in den Standort seit 1913

Evaluator 1: neither, Evaluator 2: neither

12. Was er herausfand, war schockierend.
H Was er hat, das ist erschreckend
B Was er fand, war erschreckend

Evaluator 1: HiFST, Evaluator 2: HiFST

13. Im Grunde genommen sind vegane Gerichte für alle da.
H Im Grunde genommen für alle Gerichte vegan
B Im Wesentlichen, vegane Gerichte sind für jedermann

Evaluator 1: HiFST, Evaluator 2: HiFST

14. Die Kluser-Ampel sichere sowohl Radfahrer als auch Busfahrgäste und die Bergle-
Bewohner.

H Die Kluser Lichter, die dem Schutz der Radfahrer als auch für die Fahrt mit dem
Bus und die Einwohner aus dem Bergle

B Die kluser Lichter Radfahrer schützen, so gut wie die mit dem Bus zu reisen und
die Bewohner von bergle
Evaluator 1: neither, Evaluator 2: neither

15. Letztendlich entscheidet das Kind über das Geschlecht, das besser zu ihm passt – und
das ist wunderbar.

H Letztendlich wird das Kind entscheiden, ob er oder sie sich wohler fühlt, mit welcher
Sex wird, und das ist eine wunderbare Sache

B Letztlich wird das Kind entscheiden, welches Geschlecht er oder sie sich wohler fühlt
mit - und das ist eine wunderbare Sache
Evaluator 1: HiFST, Evaluator 2: HiFST

16. Der in Guangzhou ansässige Neue Express hatte einen seltenen öffentlichen Aufruf
zur Freilassung des Journalisten Chen Yongzhou abgedruckt.

H Der neue Express, die sich bereit erklärt, die einem seltenen öffentlichen Plädoyer
für die Freilassung von Journalist Chen Yongzhou

B Die neuen Express einen seltenen öffentlichen Plädoyer für die Freilassung des Jour-
nalisten Chen Yongzhou
Evaluator 1: neither, Evaluator 2: neither
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17. Auftakt ist bereits am Freitag die Stoppelackerparty mit DJ Ralf.
H Das Feiern wie am Freitag mit dem Stoppelacker aus dem Bereich der Party mit DJ

Ralf
B Die Feierlichkeiten beginnen am Freitag, mit dem "stoppelacker" (Feld) Party mit

DJ Ralf
Evaluator 1: HiFST, Evaluator 2: HiFST

18. Er widmet sein Leben dieser Organisation und sein Wunsch, dem kamerunischen
Volk zu helfen, kennt keine Grenzen.

H Er seinem Leben gibt, um diese Organisation, und er gewillt ist, den Menschen zu
helfen

B Er gibt sein Leben für diese Organisation, und seinen Wunsch, Kamerun Menschen
zu helfen ist
Evaluator 1: neither, Evaluator 2: HiFST

19. Salem: Johanna Rahner beim Ökumenischen Gesprächsforum
H SALEM: Johanna Rahner auf der Ecumenical Forum auf dem Laufenden
B SALEM: Johanna rahner in der ökumenischen Diskussion Forum

Evaluator 1: neither, Evaluator 2: HiFST

20. Einige Verkehrsplaner fragen sich allerdings, ob das ganze Gerede über das Bezahlen
pro Meile nicht nur ein riesiges Ablenkungsmanöver sei.

H Einige Planer Transport muss sich fragen, ob alle, die Rede, in der es um die
Bezahlung durch die Meile, nur eine riesige Ablenkung

B Einige Transport Planer, aber frage mich, ob all das Gerede über die Zahlung von
der Meile ist nur eine riesige Ablenkung
Evaluator 1: neither, Evaluator 2: neither

21. Es bestehe keine Notwendigkeit, eine gigantische, sperrige technologische Infras-
truktur aufzubauen, die unweigerlich dazu verwendet werden würde, Daten über die
täglichen Bewegungen von Einzelpersonen zu erfassen.

H Es gibt keine Notwendigkeit für den Bau unweigerlich eine enorme technologische
Infrastruktur, um die Aufzeichnungen über die Personen aus dem täglichen Leben
behalten

B Es besteht keine Notwendigkeit für den Bau einer riesigen, schwerfällig technologis-
che Infrastruktur, die zwangsläufig erweitert werden, um Aufzeichnungen über den
Alltag der Einzelnen und
Evaluator 1: HiFST, Evaluator 2: neither

22. Die Einsatzkräfte gingen in die Wohnung und fanden die Leiche in einem Zimmer.
H Rescue workers in die Räumlichkeiten und stellten fest, dass der Körper in ein

Schlafzimmer
B Rettungskräfte in die Räumlichkeiten und den Körper in einem Schlafzimmer ge-

funden
Evaluator 1: neither, Evaluator 2: HSST
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23. „Sie trommeln die ganze Nacht, damit wir wach bleiben und unsere Arbeit fortsetzen
können“, sagt Bwelle.

H Trommeln Sie die ganze Nacht, um uns wach zu halten und unsere Arbeit fortsetzen,
sagte Bwelle

B "Sie sind zu schlagen Trommeln die ganze Nacht wach, um uns und unsere Arbeit
fortsetzen," bwelle gesagt
Evaluator 1: neither, Evaluator 2: neither

24. „Deutschland muss aufwachen“, erklärt Oliver Grün, Präsident des BITMi, der
kleine und mittlere IT-Firmen in Deutschland vertritt.

H Oliver Grün, Präsident des BITMi vertritt deutsche IT, kleine und mittlere Un-
ternehmen sagen, dass Deutschland sich darüber bewußt werden müssen

B "Deutschland muss aufwachen", sagt Oliver Grün, Präsident des bitmi, das sind die
kleinen und mittelgroßen deutschen Unternehmen
Evaluator 1: HiFST, Evaluator 2: HiFST

25. Highlander-Games auf dem Kaltenhof
H In Kaltenhof highland games
B Highland Games in kaltenhof

Evaluator 1: HSST, Evaluator 2: HiFST

26. Deutsche Ausweise haben neben M und W künftig eine dritte Zuweisung, X für
intersexuell, so das Innenministerium.

H Nach Angaben des Innenministeriums für den deutschen Pass hat, wird eine dritte
Bezeichnung, die nicht mit der M oder F - X

B Deutsche Pässe haben ein Drittel andere Bezeichnung als M oder F – X, für die,
nach Angaben des Innenministeriums
Evaluator 1: neither, Evaluator 2: HSST

27. Es gibt wesentlich billigere und weniger intrusive Möglichkeiten, dies umzusetzen.
H Es gibt viel weniger kostspielig, weniger einschneidende Möglichkeiten, dies zu tun
B Es gibt viel kostengünstiger und weniger aufdringlich Möglichkeiten, dies zu tun

Evaluator 1: HiFST, Evaluator 2: HiFST

28. Geschicklichkeit und Kraft müssen die Teilnehmer beim Wassereimertragen über 50
Meter unter Beweis stellen.

H Müssen dann die Teilnehmer ihr Geschick und ihre Stärke unter Beweis stellen,
indem sie mit einem Eimer Wasser, 50 Meter

B Die Teilnehmer müssen dann ihre Geschicklichkeit unter Beweis stellen und Stärke
mit einem Eimer Wasser 50 Meter
Evaluator 1: neither, Evaluator 2: HSST
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29. Bei dem deutschen Gesetz geht es um die Zuweisung bei der Geburt.
H Deutsche Gesetz geht es darum, sich bei der Geburt
B Das deutsche Recht geht es um die Zuordnung bei der Geburt

Evaluator 1: neither, Evaluator 2: HiFST

30. Daher entspricht eine herkömmliche E-Mail eher einer offenen Postkarte als einem
versiegelten Brief.

H Aus diesem Grund ist es notwendig, dass eine herkömmliche E-Mail ist wie eine
Postkarte, die täglich mehr als in einem verschlossenen Brief

B Aus diesem Grund ist eine herkömmliche E-Mail eher einer offenen Postkarte als
einem versiegelten Brief
Evaluator 1: neither, Evaluator 2: HiFST

31. Reine Pflanzenmargarine sei eine gute Alternative zu Butter, Joghurt lasse durch
Sojajoghurt ersetzen.

H Rein pflanzliche Margarine ist eine gute Alternative zu Butter, Joghurt, durch Soja
Joghurt ersetzt werden

B Rein pflanzliche Margarine ist eine gute Alternative zu Butter und Joghurt ersetzt
werden kann durch Soja Joghurt
Evaluator 1: neither, Evaluator 2: HiFST

32. Vegane Ernährung erfordert pflanzliche Alternativen zu Eiern, Milch und Milchpro-
dukten.

H Vegane Ernährung propagiert pflanzliche Alternativen zu Eiern, Milch und Milch-
produkten

B Vegane Ernährung propagiert pflanzliche Alternativen zu Eiern, Milch und Milch-
produkte
Evaluator 1: HSST, Evaluator 2: HSST

33. Der Stamm muss senkrecht abgeworfen werden, soll sich einmal überschlagen und
dann gerade zum Liegen kommen.

H Wenn die Logdatei ab und dann bis zum Ende zu liegen, der gerade sein muss
B Die Anmeldung muss geworfen werden vertikal, einmal und dann abschließend

liegend geradeaus
Evaluator 1: neither, Evaluator 2: HiFST

34. Sie weiß aber auch, dass sie zu den wenigen Menschen gehört, die sich überhaupt
mit dem Thema ’Wohnen im Alter’ auseinandersetzen.

H Aber sie weiß, wie sie ist einer der wenigen Menschen tatsächlich für den Umgang
mit dem Thema im Alter leben

B Aber sie ist sich bewusst, dass sie zu den wenigen Menschen, die eigentlich mit dem
Thema ’Wohnen im Alter
Evaluator 1: HiFST, Evaluator 2: neither
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35. Für Fragen und Informationen steht das Tourismusbüro der Stadt Haigerloch zur
Verfügung.

H Der Tourist Office der Stadt Haigerloch, dass Sie mit Informationen zur Verfügung,
für Fragen und

B Die Stadt Tourismusbüro für Fragen zur Verfügung steht und Ihnen Informationen
zur Verfügung zu stellen
Evaluator 1: neither, Evaluator 2: HiFST

36. Am engagiertesten ist Oregon, das derzeit 5.000 Fahrer für das größte Experiment
des Landes anwirbt.

H Die am meisten mit Spannung als 5.000 Fahrer Oregon in das Land der größte
Experiment

B Ammeisten gespannt ist Oregon, die 5.000 Fahrer in das Land der größte Experiment
Evaluator 1: HiFST, Evaluator 2: neither

37. Eine Anfrage der FDP habe das bestätigt.
H Bestätigt wird dies durch eine Anfrage der FDP
B Eine Anfrage der FDP bestätigt

Evaluator 1: HSST, Evaluator 2: HSST

38. Drei Tage später wurde sie von einem Spaziergänger im Steinbruch in ihrer
misslichen Lage entdeckt

H Drei Tage, in denen sie später von a dog walker in dem Steinbruch gefangen
B Sie war drei Tage später von einem Hund Walker in dem Steinbruch gefangen

Evaluator 1: neither, Evaluator 2: HiFST

39. In den zentralen Blöcken 12 und 13 der Südtribüne regte sich nichts.
H Die zentrale Bestandteile der der Süden stand, Blöcke, 12 und 13, in nichts nach
B In den zentralen Blöcken des Südens, die Blöcke stehen 12 und 13, bewegte sich

nichts
Evaluator 1: neither, Evaluator 2: HiFST

40. Kinderträume werden wahr
H Children ’s dreams, der Wirklichkeit
B Die Träume der Kinder

Evaluator 1: neither, Evaluator 2: HSST

41. Die Namen der anderen teilnehmenden Abgeordneten sollen in den kommenden
Tagen veröffentlicht werden.

H In den kommenden Tagen werden zur Herausgabe von Namen von allen teil-
nehmenden lawmakers

B Die Namen der anderen teilnehmenden Gesetzgeber werden in den kommenden
Tagen veröffentlicht
Evaluator 1: HiFST, Evaluator 2: HiFST
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42. Google steigerte sein Angebot mehrmals und bot zuletzt 4,4 Milliarden US-Dollar.
H Google steigerte sie ’s bid, mehrmals, die im Endeffekt mit weniger als 4,4 Milliarden

Dollar
B Google erhöhte sein Angebot mehrere Male, letztlich mit so viel wie 4,4 Milliarden

Dollar
Evaluator 1: neither, Evaluator 2: HiFST

43. Sie verglich mehrere Sprichwörter mit den entsprechenden Bibelstellen und erklärte
die Bedeutung.

H Sie verglich mehrere deutsche Sprichwörter, mit der entsprechenden Verse der Bibel
und erklärt die Bedeutung

B Mehrere deutsche verglichen sie mit den entsprechenden Bibel Verse und erläutert
die Bedeutung
Evaluator 1: HSST, Evaluator 2: HSST

44. Im Laufe von fünf Wochen war das Angebot um 25 Millionen Barrel gestiegen.
H In fünf Wochen hat sich Versorgung erhöht sich durch die mehr als 25 Millionen

Barrel
B In fünf Wochen Lieferungen haben sich um mehr als 25 Millionen Barrel

Evaluator 1: neither, Evaluator 2: HSST

45. Er sagte, damit sollte eine Kontaminierung der Beweise verhindert werden, was aber
„übereifrig“ und schlecht umgesetzt worden sei.

H Er sagte, Ziel war die Belastung in Beweise zu vermeiden, aber es übereifrig und
armen hingerichtet

B Er sagte, es sei zur Verhinderung der Kontaminierung von Beweisen aber war
"übereifrig" und schlecht ausgeführt
Evaluator 1: HiFST, Evaluator 2: HiFST

46. Sie kommen aus einem Umkreis von 60 Kilometern um das Dorf – und das zu Fuß.
H Sie kommen aus 60 Kilometer rund um das Dorf, und sie kommen zu Fuß
B Sie kommen aus 60 Kilometer rund um das Dorf, und sie kommen zu Fuß zu erreichen

ist
Evaluator 1: HSST, Evaluator 2: HSST

47. Das soll ruhig so weitergehen.
H Müssen wir komponieren bleiben und weiter für sich
B Wir müssen bleiben komponiert und zu halten

Evaluator 1: neither, Evaluator 2: neither

48. Ich meine wirklich, er sollte in den Fußstapfen der anderen Kerle folgen.
H Ich glaube wirklich, dass er folgt den Spuren der anderen Jungs sollten
B Ich bin wirklich der Meinung, dass er auf den Spuren von den anderen Jungs

Evaluator 1: HiFST, Evaluator 2: HiFST
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49. Auf einem Geländerundgang müssen die Kinder erraten, welche Geschichten der
Wahrheit entsprechen oder doch gelogen sind.

H Zu einem Rundgang durch die Räumlichkeiten zur Verfügung. Daran müssen sich
die Kinder an die Arbeit, raus Geschichten wahr sind und which have been made
up

B Auf einem Rundgang durch die Räumlichkeiten, die Kinder für die Arbeit, welche
Geschichten wahr sind und welche gemacht wurden
Evaluator 1: neither, Evaluator 2: HiFST

50. Ansonsten sollten wir erwägen, es Norwegen gleichzutun und unsere wirtschaftliche
Unabhängigkeit behalten.

H Geschieht dies nicht, sollten wir darüber nachdenken, Norwegen und Behalten wir
wirtschaftliche Unabhängigkeit

B Ansonsten sollten wir darüber nachdenken, Norwegen und unsere wirtschaftliche
Unabhängigkeit zu behalten
Evaluator 1: neither, Evaluator 2: neither

51. Der Zuschauer sieht, dass das Zerlegen der Keulen weiterhin Handarbeit ist.
H Der Betrachter fest, dass die Gelenke immer noch mit der Hand
B Der Betrachter sieht, dass die Gelenke immer noch von Hand geschnitzt

Evaluator 1: neither, Evaluator 2: neither

52. Der Einzelhandelsausschuss der IHK Frankfurt hält das "für keine gute Idee".
H Die Retail, Komitee, das die Frankfurter Kammer aus Industrie und Handel ist der

Ansicht, dass dies nicht sein, dass es eine gute Idee
B Der Einzelhandel Ausschuss der Frankfurter Industrie- und Handelskammer ist der

Ansicht, dass dies "keine gute Idee
Evaluator 1: HiFST, Evaluator 2: HiFST

53. Auch die Strafverfolgungsbehörden und Geheimdienste haben legale Möglichkeiten,
E-Mails abzufangen oder zur Kenntnis zu nehmen.

H Auch law enforcement authorities and secret services hat rechtliche Genehmigung
abgefangen oder E-Mails zur Kenntnis zu nehmen

B Strafverfolgungsbehörden und Geheimdienste haben rechtliche Genehmigung ab-
hören oder E-Mails zur Kenntnis nehmen
Evaluator 1: HiFST, Evaluator 2: HiFST

54. Afroamerikanische und hispanische Mädchen erreichen tendenziell eher die Pubertät
als ihre weißen Altersgenossinnen, wie Untersuchungen zeigen.

H Was in der Regel erreichen und Mädchen früher als die weißen Pendants in ihrer
Pubertät, research shows

B Afroamerikanischen und hispanischen Mädchen neigen dazu, zu erreichen, die Pu-
bertät früher als ihre weißen Pendants, Forschung zeigt
Evaluator 1: HiFST, Evaluator 2: HiFST
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55. Durch den entstehenden Brand und die Rauchentwicklung wurden zwei Menschen
verletzt, einer davon konnte aber noch einen Notruf absenden.

H Das entstandene Feuer verletzt zwei Menschen, und man konnte damit die Ausbre-
itung von Rauch, die ein Notfall anrufen

B Zwei Menschen wurden verletzt durch das daraus resultierende Feuer und die Aus-
breitung von Rauch, aber in der Lage war, einen Notruf zu machen
Evaluator 1: HiFST, Evaluator 2: HiFST

56. Ein Blick ins Innenleben am Opschlag 8 gibt dem Betrachter auf Anhieb ein gutes
Gefühl.

H Von Anfang an ein gutes Gefühl Malta dem Betrachter einen Blick in die internen
Abläufe am Opschlag, 8

B Ein Blick in die internen Abläufe opschlag 8 gibt ein positives Gefühl, von Anfang
an
Evaluator 1: HiFST, Evaluator 2: HiFST

57. Ich lese derzeit ein furchtbar trauriges Buch.
H Diese Tage, wo ich ein furchtbar trauriges Buch lesen
B Ich lese ein furchtbar trauriges Buch in diesen Tagen

Evaluator 1: HiFST, Evaluator 2: HiFST

58. Deutschland ist die erste europäische Nation, in der ein drittes Geschlecht für Kinder
anerkannt ist, die mit nicht eindeutigen Genitalien geboren wurden.

H Deutschland wurde die erste europäische Nation, ein drittes Geschlecht anerkannt
für Babys, mit zweideutigen Genitalien geboren

B Deutschland wurde zum ersten europäischen Nation zu erkennen, ein drittes
Geschlecht für Neugeborene mit zweideutigen Genitalien
Evaluator 1: HSST, Evaluator 2: HiFST

59. Was soll man dann tun - bei Rot fahren?
H Sollten dem fahren, was Sie tun können, wenn wir was red
B Was sollten Sie tun - fahren durch auf Rot

Evaluator 1: neither, Evaluator 2: HiFST

60. Sie verdienten so viel wie Lehrer und könnten gut davon leben.
H Lehrer, die die sie verdienen, und ein gutes Leben machen kann
B Sie verdienen so viel wie Lehrer und gut leben können

Evaluator 1: HiFST, Evaluator 2: HiFST

61. In Großbritannien lag das Plus nur bei 6%, in Frankreich bei 19%.
H In Great Britain, Wachstum liegt bei nur sechs Prozent und in Frankreich auf der

19%
B In Großbritannien, das Wachstum liegt bei nur 6%, und in Frankreich bei 19%

Evaluator 1: HiFST, Evaluator 2: HiFST
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62. Patek ist der letzte der Bali-Bomber, der vor Gericht stand.
H Patek ist die letzte, die Justiz zu stellen, dass die Bombenleger von Bali
B Patek ist die letzte der Bombenleger von Bali, sich Gerechtigkeit zu stellen

Evaluator 1: HiFST, Evaluator 2: HiFST

63. Es ist perfekt, aber es lügt.
H Es ist perfekt, aber es liegt
B Es ist perfekt, aber es liegt

Evaluator 1: neither, Evaluator 2: neither

64. Das ist kein Kampf, zu dem man kleine Kinder zu diesem Zeitpunkt zwingen sollte.
H Das ist eine Schlacht junge Kinder an dieser Stelle muss, bestehen nicht
B Das ist nicht ein Kampf junger Kinder sollten an dieser Stelle

Evaluator 1: neither, Evaluator 2: HiFST

65. Während die Anteile von Yahoo-Mail zuletzt gefallen waren, konnte GMail von
Google deutlich zulegen.

H Google Mail von Google, die es geschafft haben deutlich wachsen, während es in den
vergangenen sank die Zahl der Konten von Yahoo Mail

B Während die Zahl der Yahoo Mail hat in jüngster Zeit gesunken, Googles Gmail
gelungen, deutlich zu wachsen
Evaluator 1: HiFST, Evaluator 2: HiFST

66. Nach Ansicht von Professor Vallortigara kommunizieren die Hunde nicht absichtlich
miteinander durch diese Bewegungen.

H Er dachte nicht, dass absichtlich die dogs each other durch diese Bewegungen, sagte
Prof

B Prof. vallortigara sagte, er denke nicht, dass die Hunde wurden absichtlich die
Kommunikation untereinander durch diese Bewegungen
Evaluator 1: HiFST, Evaluator 2: HiFST

67. Mit diesem Spiel beginnt die Saison neu für uns.
H Die Saison beginnt für uns mit dieser Partie
B Die Saison beginnt für uns mit diesem Match

Evaluator 1: HSST, Evaluator 2: HiFST

68. Das beginnt etwa bei den Hochzeitskleidern.
H Das beginnt mit der Hochzeit "," Kleidung
B Das beginnt mit der Hochzeit Kleidung

Evaluator 1: HiFST, Evaluator 2: HiFST
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69. „Ich äußerte eine ganze Reihe von Dingen, die man in Erwägung ziehen sollte, und
das war eines davon“, erklärte Daley dem Magazin.

H "Auf die Frage, ob geprüft, eine ganze Menge Dinge, und das war einer von ihnen
das Papier Daley

B "Ich war lautstark über die Suche in eine ganze Reihe von Dingen, und das war einer
von ihnen", erzählte der Zeitung
Evaluator 1: neither, Evaluator 2: neither

70. In Oregon experimentieren die Planer damit, Autofahrern eine Reihe von
Auswahlmöglichkeiten zu geben.

H In Oregon Planer experimentiert mit Fahrer anders entscheiden zu geben
B In Oregon, Planer experimentieren mit Fahrer geben unterschiedliche Entscheidun-

gen
Evaluator 1: HiFST, Evaluator 2: HiFST

71. Außerdem lobte er die Familienfreundlichkeit im Landkreis.
H Er lobte auch die familienfreundliche Ansatz in den Bezirk
B Er lobte auch das familienfreundliche Konzept in den Bezirk

Evaluator 1: HiFST, Evaluator 2: HiFST

72. "Immobilieninvestments bieten eine attraktive Verzinsung", sagte Ulbrich.
H Ulbrich sagte, dass property investments bietet eine attraktive Rendite abwerfen
B "Eigentum Investitionen bieten eine attraktive Rendite abwerfen", sagte Ulbrich

Evaluator 1: neither, Evaluator 2: HiFST

73. „Sie kommen ein besseres Angebot“, sagte er.
H Er hat erklärt, dass Sie ein besseres Angebot bekommen werde
B "Sie gehen, um eine bessere Behandlung zu bekommen", sagte er

Evaluator 1: HSST, Evaluator 2: HSST

74. Sollte eine Mutter besorgt sein, wenn ihrer Tochter schon im Alter von sieben oder
acht Jahren Brüste und Schamhaare wachsen?

H Sollte eine Mutter die Tochter her breast, Knospen und Schambehaarung um 7 oder
8

B Eine Mutter sollte alarmiert sein, wenn ihre Tochter zu sprießen beginnt, Brust- und
Schamhaare auf 7 oder 8
Evaluator 1: neither, Evaluator 2: neither

75. Da allerdings scheiden sich die Geister, wie Stefanie Koch vom Modehaus Kleider-
müller betont.

H Allerdings unterscheidet sich die Meinungen von im Modehaus, betont als Stefanie
Koch

B Allerdings gehen die Meinungen auseinander, wie Stefanie Koch von der modehaus
kleidermüller betont
Evaluator 1: HiFST, Evaluator 2: HiFST
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76. Die Stadtwerke Pfullendorf bilden das letzte Glied in dieser Kette.
H Die kommunale Energie, Pfullendorf, Unternehmen bilden das letzte Glied in dieser

Kette
B Die kommunalen Energieunternehmen bildet das letzte Glied in dieser Kette

Evaluator 1: HiFST, Evaluator 2: HiFST

77. Haben die Roboter noch eine weitere Aufgabe?
H Andere Aufgaben hat der Roboter
B Die Roboter haben andere Aufgaben

Evaluator 1: neither, Evaluator 2: neither

78. Obamas Rückzieher in der Gesundheitspolitik
H Obama ’s health care "," walk back
B Obamas Gesundheitsfürsorge zu Fuß zurück

Evaluator 1: neither, Evaluator 2: neither

79. Ein Rettungswagenteam brachte den Verletzten zur ärztlichen Behandlung ins
Klinikum.

H Ein Krankenwagen brachte den verletzten Mann zur medizinischen Behandlung in
die Klinik

B Ein Krankenwagen brachte den verletzten Mann in die Klinik für die medizinische
Behandlung
Evaluator 1: HSST, Evaluator 2: HSST

80. Ob es sich um einen Bewohner handle sei noch unklar, wie ein Sprecher der Polizei
in Bayreuth sagte.

H Ein Sprecher der Polizei in Bayreuth sagte, dass noch nicht das Haus, ist unklar, ob
diese Person in

B Ob diese Person war, die in dem Haus leben, ist noch unklar, sagte ein Sprecher der
Polizei in Bayreuth
Evaluator 1: HiFST, Evaluator 2: HiFST

81. Rockstar fordert einen hohen Schadensersatz von Google, da es behauptet, Googles
Patentverletzung sei absichtlich, so die Anschuldigung.

H Rockstar ist auf der Suche nach größeren Schäden, wie es behauptet, dass die Google
’s patent infringement, so heißt es in der Klage gegen Google

B Rockstar ist auf der Suche nach höheren Schäden gegen Google, wie es behauptet
der Patentverletzung von Google ist, so die Klage
Evaluator 1: HiFST, Evaluator 2: neither

82. Weitere nennt der Vegetarierbund zum Weltvegantag am 1. November.
H Weitere Beispiele für die Welt "," Vegan Day werden vom Verein zur Verfügung

gestellt, die am 1. November
B Die vegetarischen Verein weitere Beispiele auf Welt veganen Tag am 1. November

Evaluator 1: HiFST, Evaluator 2: HiFST
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83. Der 67-Jährige habe schließlich den Tod seiner Mutter eingeräumt.
H Schließlich tritt der Tod seiner Mutter wurde von den Jahren, wenn es alten als

bestätigt
B Die 67 Jahre alte schließlich eingeräumt, den Tod seiner Mutter

Evaluator 1: neither, Evaluator 2: HiFST

84. Daneben ist die Rolle des alten Fischers durch und durch eine Charakterrolle, die
Janson exzellent meistert.

H Darüber hinaus ist die Rolle des alten Fischers hervorragenden Janson ein Rolle
Charakter durch und durch

B Darüber hinaus ist die Rolle des alten Fischers ist eine Figur, durch und durch, was
Janson Meister ausgezeichnet
Evaluator 1: neither, Evaluator 2: neither

85. Das sind die wirklichen europäischen Neuigkeiten: Der große, nach dem Krieg
gefasste Plan zur Vereinigung Europas ist ins Stocken geraten.

H Hier ist die echte europäische news: Schließlich der große Plan, Europa zu vereinigen,
wie bei der Post "," Krieg ist ins Stocken geraten

B Hier ist die echte europäische Nachricht: Der große Plan der Nachkriegszeit zu
vereinen, hat Europa schließlich ins Stocken geraten ist
Evaluator 1: HiFST, Evaluator 2: HiFST

86. Heute mit Mitte fünfzig denkt Waltraud Ries anders darüber.
H Jetzt geht es in der Mitte der 50er Jahre her, Waltraud Ries haben unterschiedliche

Gedanken, wenn es darum geht, it
B Jetzt, in ihrem, Waltraud Ries hat andere Gedanken

Evaluator 1: neither, Evaluator 2: HiFST

87. Die Regierung gibt Renamo die Schuld für die Zusammenstöße und beschuldigt die
Organisation, Soldaten angegriffen zu haben.

H Die Regierung die Konflikte auszulösen, wirft er vor, er Angriffe gegen Soldaten
B Die Regierung wirft für die Auslösung der Zusammenstöße und ihm vorwirft, er

Soldaten anzugreifen
Evaluator 1: neither, Evaluator 2: neither

88. Pastoren könnten als Seelsorger ganz nah bei den Menschen sein.
H Der Minister ist in der Nähe von Menschen als Arbeitnehmer können
B Als pastoralen Arbeitnehmer, Minister können für die Menschen in der Nähe

Evaluator 1: neither, Evaluator 2: neither
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89. Doch nur wenige Besucher, die die beiden filigranen Kirchtürme bestaunen, ahnen,
dass es auch unter dem Dom eine Menge zu entdecken gibt.

H Doch nur wenige Besucher die geschmückte Kirche, zwei Türme im Klaren, dass es
neben der Kathedrale, haben viel zu entdecken gibt

B Aber nur wenige Besucher, die an den beiden verzierten Kirche Türme erkennen,
dass es viel zu entdecken unter der Kathedrale
Evaluator 1: HiFST, Evaluator 2: HiFST

90. Arnold erklärte die Technik der neuen Anlage: Diese ist mit zwei Radarsensoren
ausgestattet.

H Arnold erklärte, die Technologie, die von dem neuen System genutzt: Es ist ausges-
tattet mit zwei Sensoren von Radar

B Arnold erklärte, die Technik des neuen Systems: Es ist ausgestattet mit zwei Radar,
Sensoren
Evaluator 1: HSST, Evaluator 2: HiFST

91. Wir entschuldigen uns bei allen Ticketinhabern für die hierdurch entstandenen
Unannehmlichkeiten.

H Wir würden uns wünschen, dass für alle Inhaber von Tickets für das daraus entste-
hende Unannehmlichkeiten um Entschuldigung

B Wir entschuldigen uns für alle Inhaber von Tickets für jegliche Unannehmlichkeiten
verursacht hat
Evaluator 1: neither, Evaluator 2: HiFST

92. „Wir sind sicher, dass der Händler allein gehandelt hat und dass die Angelegenheit
eingedämmt ist“, erklärte Credit Suisse.

H Credit Suisse hat gesagt, wir sind uns sicher, dass der Händler alleine gehandelt,
und die Sache

B "Wir sind zuversichtlich, dass der Händler allein handelte und dass die Angelegen-
heit", sagte der Credit Suisse
Evaluator 1: HSST, Evaluator 2: neither

93. "Jetzt verschwindet die Scheibe im Jumbo", kündigt er die Test-Verspeisung an.
H Und er sagte, dass das Stück verschwinden, jetzt je nach innen in die Ankündigung

seiner Übersicht dessen, das Produkt
B "Und jetzt die Scheibe im Inneren verschwinden wird", sagte er, der ankündigte,

seine Kostprobe des Produkts
Evaluator 1: HiFST, Evaluator 2: HiFST
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94. Statt Burgern, Rühreiern oder Gummibären hinterherzutrauern, habe der Veganer
schnell ganz neue Produkte entdeckt, die Begeisterung stieg an.

H Die vegan muss feststellen, dass die völlig neue Produkte begeistert er wirklich
schnell, und nicht als vermisst "," Burger, Rührei oder

B Anstatt fehlende Burger, Rührei oder Bären, die vegane schnell entdeckt hat völlig
neue Produkte, die wirklich begeistern ihn
Evaluator 1: HiFST, Evaluator 2: HiFST

95. „Ich möchte, dass wir unseren Zauber wiederfinden“, sagte er.
H "Ich möchte, dass wir ’s back Glücksbringer, die wir bekommen, sagte er
B "Ich möchte, dass wir, um unsere Mojo zurück", sagte er

Evaluator 1: neither, Evaluator 2: HiFST

96. Doch seine neueste Schöpfung soll noch ambitionierter werden.
H Doch die nächsten seiner Schöpfung, der, selbst ambitionierter
B Aber seine nächste Gründung liegt, noch ehrgeiziger zu sein

Evaluator 1: HiFST, Evaluator 2: neither

97. Peter Lau, Spezialist des technischen Rettungsteams, sagte: „Ruby hatte ein Riesen-
glück.“

H Technische Rettung, Spezialist Officer Peter Lau sagte,. Ruby hatte einen sehr
glücklichen Flucht

B Fachliche und technische Rettung Officer Peter Lau sagte: "Ruby hatte sehr viel
Glück entkommen
Evaluator 1: neither, Evaluator 2: HiFST

98. Wenn ein solches Kind geboren wurde, dann rief man nicht den Psychiater, sondern
den Chirurgen.

H Als diese Kinder zur Welt kam, waren Sie doch den Psychiater nicht möglich, daß
Sie ein Chirurg

B Wenn diese Kinder geboren wurden, Sie nicht rufen Sie den Psychiater, Sie haben
sich dafür ausgesprochen, ein Chirurg
Evaluator 1: HiFST, Evaluator 2: HiFST

99. Seit 2006 wurden in Mexiko mehr als 77. 000 Menschen im Zusammenhang mit der
Drogenkriminalität getötet.

H Seit dem Jahr 2006 mehr als Menschen getötet worden in Verbindung mit Dro-
genkriminalität in Mexiko

B Seit 2006 mehr als 77.000 Menschen getötet wurden, im Zusammenhang mit Dro-
genkriminalität in Mexiko
Evaluator 1: HiFST, Evaluator 2: HiFST
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100. Die Tat hatte landesweit Entsetzen ausgelöst.
H Das Verbrechen Entsetzen bundesweit verursacht
B Das Verbrechen hatte bundesweit Entsetzen

Evaluator 1: HSST, Evaluator 2: HiFST

A.4 Simplification realization examples

In Section 7.4.1 I discuss the performance of the HSSR system on realizing simplified
DMRS graphs. The discussion includes a few examples of realized sentences in Fig-
ure 7.4.1. In this section I give further 25 HSSR simplified DMRS realization examples
(in particular, the first 25 sentences of the filtered newstest2014). Each example consists
of three sentences: the unsimplified sentence, the simplified realization by HSSR, and the
simplified realization produced by token alignment (a baseline approach).

1. Gutach: Increased safety for pedestrians
H (Feral): Increased safety.
A Gutach: Increased safety

2. Two sets of lights so close to one another: intentional or just a silly error?
H So, two sets of lights close to each other: ’, intentional or just a silly error.
A Two sets of lights so close to one another: Intentional or just a silly error?

3. Yesterday, Gutacht’s Mayor gave a clear answer to this question.
H That’s mayor gave a clear answer to this question.
A Gutacht’s mayor gave a clear answer to this question.

4. The Kluser lights protect cyclists, as well as those travelling by bus and the residents
of Bergle.

H Cyclists are protected by the lights.
A The kluser lights protect cyclists.

5. The system, which officially became operational yesterday, is of importance to the
Sulzbachweg/Kirchstrasse junction.

H The system is of importance.
A The system is of importance.

6. "At times of high road and pedestrian traffic, an additional set of lights were required
to ensure safety," said Eckert.

H An additional set of lights, were required to ensure safety.
A An additional set of lights were required to ensure safety.

7. This was also confirmed by Peter Arnold from the Offenburg District Office.
H This was confirmed by peter arnold
A This was confirmed by peter arnold.
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8. There are three sets of lights per direction of travel.
H There are sets of lights.
A There are sets of lights.

9. Arnold explained the technology used by the new system: It is fitted with two radar
sensors.

H Arnold explained the technology used by the new system: It is fitted with radar
sensors

A Arnold explained the technology used by the new system: It is fitted with radar
sensors.

10. If the street is clear, the pedestrian obtains a green light immediately, if not, there
is a delay of around 15 seconds.

H A green light is obtained by the pedestrian
A The pedestrian obtains a green light.

11. An additional radar sensor checks whether the green phase for the pedestrian can be
ended.

H Can to end the green phase.
A The green phase can be ended.

12. Of course, drivers must also play their part and keep their eyes on the road.
H Drivers must also play their part.
A Drivers must also play their part.

13. However, Director Fresacher seems to have little trust in the text.
H Director, seems to have trust.
A Director fresacher seems to have trust.

14. In particular, the actresses play a major role in the sometimes rather dubious stag-
ing.

H In particular, the actresses play a major role
A In particular, the actresses play a major role.

15. They are manhandled, their heads held under water, tacked to the wall by their
evening gowns.

H They
A They manhandled.

16. However, the source text makes barely any reference to this intense delivery.
H The source text makes any reference to this intense delivery
A The source text makes any reference to this intense delivery.

17. A black box in your car?
H A black box in your car.
A A black box in your car?
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18. The usually dull arena of highway planning has suddenly spawned intense debate
and colorful alliances.

H The dull, arena has spawned debate, intense and colorful alliances
A The dull arena has spawned intense debate and colorful alliances.

19. The tea party is aghast.
H The tea party are aghast
A The tea party aghast.

20. The American Civil Liberties Union is deeply concerned, too, raising a variety of
privacy issues.

H The american civil liberty union is concerned
A The american civil liberties union is concerned.

21. And while Congress can’t agree on whether to proceed, several states are not waiting.
H And, while it can’t be congress to agree on to proceed, several states are not waiting
A And while congress can’t agree on whether to proceed, several states are not waiting.

22. Thousands of motorists have already taken the black boxes, some of which have GPS
monitoring, for a test drive.

H Motorists, however, have taken the black boxes, some gps monitoring
A Thousands motorists have taken the black boxes some of which have gps monitoring.

23. This really is a must for our nation.
H This is a must
A This is a must.

24. There is going to be a change in how we pay these taxes.
H There’s going to be a change.
A There is going to be a change.

25. The technology is there to do it.
H The technology is there
A The technology there.

A.5 Robust parsing realization examples

In Section 7.4.2 I discuss the performance of the HSSR system on realizing MRS repre-
sentations produced by a robust parser. In this section I give 25 HSSR realizations of
such representations from the filtered newstest2013 dataset. Each example consists of
two sentences: the original English sentence that was parsed by the robust parser and the
HSSR realization.

1. His state recently put tracking devices on 500 cars to test out a pay-by-mile system.
Recently, he’s state tracking devices on 500 cars to test a system that, by mile
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2. The free marketeers at the Reason Foundation are also fond of having drivers pay
per mile.
Also, the free marketeers at the reason foundation, was fond of having drivers’ pay
per mile

3. In case of emergency, support is provided by the Königsfeld daytime task force.
In case of emergency support is provided by the daytime ’task force.

4. anniversary of the first documented mention of the town, are drawing closer.
Anniversary of the first documented mention of the town is drawing closer

5. As part of the anniversary celebrations, a number of events are planned both in
Geisingen and Kirchen-Hausen.
A number of events are planned as part of the anniversary celebrations in Geisingen
and Hausen where

6. Council sets its sights on rail system
It’s sights on rail system, which is set by council

7. The possibilities are, however, limited - Cheops is a small mission with a budget of
150 million Euro.
However, the possibilities are limited. Cheops is a small mission, with a budget of
150 million euros.

8. They want to find our what role the giant planet has played in the development of
the solar system.
What they want to find’s a role that the giant planet has played in the development
of the solar system.

9. The new carry-on fee is for bags in the overhead bin, so small bags under the seat
will still be free.
The new fee is for bags, so small bags under the seat are still free in the overhead
bin

10. Frontier’s new carry-on fee won’t start until summer, though a date hasn’t been set.
Though a date has not been set, new frontier’s to carry on fee won’t start until
summer.

11. Most haven’t touched carry-on bag fees, though.
To carry on ’fees which have not been touched by most

12. Frontier has gone the furthest in this area, though.
Frontier has gone the furthest in this area.

13. Learning rather than unemployment: Tourism pilot project for the untrained
For the und was trained by learning, rather than unemployment: Tourism pilot
project
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14. In October, the number of jobless fell slightly by 22, to a total of 1,307.
22 the number of jobless to a total of 1,307 slightly in october

15. Was given a three-year prison sentence at Liverpool Crown Court
Was given a three-year prison sentence at liverpool crown court

16. We will find you and put you before the courts.
You will be found and we’ll put you the courts.

17. Town Council delighted with solid budget
Solid town council budget

18. Because fewer investments were made in the 2012 budgetary year than planned, the
reserves also came in higher.
Also, the reserves came in higher because fewer investments were made in the 2012
budgetary year, rather than

19. Among the issues to be addressed was that of dual nationality, in which regard both
sides have opposing ideas.
Dual nationality in what regard is among the issues to be addressed 2 were opposing
ideas sides

20. Car driver seriously injured in accident
Accident car driver seriously in.

21. With its ultra-modern yet cosy café ambience, it looks like a place designed to make
you feel good.
With ultra- modern yet cosy café, it’s ambience, it looks like a place designed to
make you feel good

22. Not only was he received with great applause from the audience, but was also wel-
comed by his sister Philippine.
But he was received with great applause from the audience, which was also welcomed
by his sister, philippine

23. However, the Rhineland team have already been refused the licence twice.
Twice, however, the team will be Rhineland have already been refused the license.

24. The Court of Arbitration is the authority of last resort.
The court of arbitration, which is the authority.

25. Piercing beep disturbs residents
Piercing disturbs residents.
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A.5 Transfer-based MT realization examples

In Section 7.4.3 I use the HSSR system as a realization component in the Japanese-
English transfer-based machine translation system. The discussion includes a few example
translations by the system in Figures 7.10 and 7.11. In this section I give further 50
translation examples. Each example consists of three sentences: the Japanese sentence
being translated, the English reference, and the 1-best HSSR translation.

1. 彼は泳ぎを教えてくれた
He taught me how to swim.
He kureru it - show the oyogi

2. あなたを見ていると私はあなたのお父さんを思い出します
You remind me of your father.
You exist and i see you ’

3. 昨日その手紙を書いておけばよかったのだが
I ought to have written the letter yesterday.
If it write that ii of the yesterday

4. サリーはケンより２つ年上です
Sally is two years senior to Ken.
The two more senior than ken sally

5. ここではタバコを吸ってはいけない
You are not supposed to smoke here.
Isn’t it, as you know, the koko the cigarette

6. その事故では君が悪いのだ
You are to blame for the accident.
Kind yourself as that accident

7. 私は通りにそって歩いた
I walked along the street.
I walked along the street

8. 私はベートーベンが今までの最高の作曲家だと思います
I think Beethoven is as great a composer as ever lived.
I think it made the now than ever’s ka composed no the beethoven.

9. バイオリンの音色はとても美しい
The sound of the violin is very sweet.
The violin is very beautiful
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10. 木曜島はオーストラリア最北端ヨーク岬とニューギニア島の間のトレス海峡に位置する
Thursday Island is situated in the Torres Strait between Australia’s northernmost
Cape York and New Guinea.

11. 文学と哲学との関係
The relationship between literature and philosophy.
The literature and the philosophy relationship

12. 彼は真実を言っていた
He said truth.
He was telling the truth.

13. 彼女の詩をどう思いますか
What do you think of her poem?
She’s poem it thinks way

14. その年はペストがはやった
The plague was about that year.
That year was caught by the plague.

15. 戦争はその国を貧乏にした
The war made the country poor.
That the war made poor province.

16. 父は私の腕をつかまえた
My father caught me by the arm.
The i’s caught me. ’

17. 彼は病院で気が付いた
He regained consciousness in the hospital.
The ki tsuku as the hospital himself.

18. 英語が得意な人もいれば、数学が得意な人もいる
Some are good at English, and others are good at mathematics.
The hito too

19. 警察は彼の失踪を調査している
The police are looking into his disappearance.
The investigation of the him.

20. クレジットカードを盗まれてしまったのでお電話したいのですが
I’m calling because my credit card has been stolen.
It it it it the credit it
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21. 私はいやいやその仕事をした
I did the work against my will.
That work i suru iyaiya

22. 彼は今度の選挙で職に復帰するだろう
He will get his job back at the next election.
As the new year’s, he returns to the position

23. 残りの夏休みは働くつもりです
I plan to work the rest of the summer.
The hataraku tsumori the nokori vacation

24. 私はよく冬にスキーにいったものだ
I used to go skiing in winter.
The mono i it went yoku in winter to the ski.

25. 彼は文句無しの巨人だ
He is altogether a giant.
The phrase ’nashi kyojin he

26. 私たちの計画はうまくいくだろう
Our plan will work out well.
Our plan goes umai

27. 彼らは工場を建設するだけの資金を持っている
They have enough capital to build a second factory.
The fund, however, have been dake motsu them the factory.

28. 口を慎んだらどうだ
You’d better hold your tongue.
Dara it way it abstained from the mouth.

29. 私の忠告がなかったら、彼は破滅していただろう
But for my advice he would have been ruined.
If it doesn’t exist the advised him myself.

30. この荷物を四時まで預かってください
Could you hold these bags until four this afternoon?
This baggage azukaru it made the than the four it yourself.

31. 最善を尽くしなさい
Do your best!
Yourself, do the time.
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32. 彼はたいへん想像力に富んだ作家です
He is a very imaginative writer.
The him the hungarian national tomu the imagination a lot

33. 彼の態度にはこれという変化は見られない
He’s shown no appreciable change of attitude.
He’s attitude, isn’t it to see the changed it toiu

34. マユコは私の質問に答えられなかった
Mayuko could not answer my question.
I don’t mayuko to the

35. 彼女は乱暴な運転をする人に対しては、いつも批判的だ
She is always critical of reckless drivers.
The hito that drives the criticized teki she always about violent

36. 鳥が空を高く飛んでいる
Some birds are flying high in the sky.
The sky the bird takai exist

37. 部屋はシーンとしていた
There was quiet in the room.
It suru the room with the

38. そうは思えないねえ
No, I don’t think so.
It sou isn’t it

39. 彼女は私の手紙を見て腹を立てた
She was displeased at my letter.
She saw the letter of me and it took offense

40. メイドはテーブルにナイフとフォークを並べた
The maid arranged the knives and forks on the table.
The maid enumerated the the knife and the to the table.

41. 驚いた事に、その子供は横浜からはるばる一人でここにやってきた
To my surprise, the child came here by himself all the way from Yokohama.
As the one that child came harubaru from yokohama to the koto to the koko

42. 彼は恐怖で青ざめた
He turned pale with fear.
He turned pale as the fear
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43. ずっとその話を避けてきたくせに
You... you never wanted to talk about it.
That story to the zutto

44. 偶然そのレストランを見つけた
I found that restaurant by accident.
It found that restaurant

45. 私は朝、食べなかったから空腹だ
I am hungry because I did not eat breakfast.
The hunger i of the did not eat it

46. 狭い部屋をせいぜい広く使った
I made the best of my small room.
Hiroi seizei it used the narrow room.

47. 私は少しもお金を持っていません
I don’t have any money.
Not the money i motsu sukoshi mo

48. 和子が胸をはだけて赤ん坊に乳をふくませた
Kazuko bared her breast and fed the baby.
The breast はだける, and kazuko made for the baby to build the milk.

49. 彼は会員の特典を持っている
He has the privileges of membership.
It motsu the membership he exist

50. 彼は、彼女をはいらせるためにわきに寄った
He stood aside for her to enter.
Her himself to the tame it makes to the わき
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