
Technical Report
Number 911

Computer Laboratory

UCAM-CL-TR-911
ISSN 1476-2986

Proofs for ‘Verifying Spatial Properties
of Array Computations’

Dominic Orchard, Mistral Contrastin,
Matthew Danish, Andrew Rice

September 2017

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2017 Dominic Orchard, Mistral Contrastin,
Matthew Danish, Andrew Rice

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Proofs for ‘Verifying Spatial Properties of Array
Computations’

Dominic Orchard Mistral Contrastin Matthew Danish
Andrew Rice

Abstract

This technical report provides accompanying proofs for the paper: Verifying
Spatial Properties of Array Computations. We show three properties of the lattice
model of the stencil specification language. 1) that it is sound with respect to the
equational theory of region specifications; 2) that is it sound with respect to the
theory of region approximation; 3) that the inference algorithm is sound. We further
derive useful identities on the specification language and properties of Union Normal
Form—the data structure used to implement the model. Core definitions from the
paper are restated here to make the overall report more self contained.

Numbering for definitions, lemmas, propositions, theorems, and sections is aligned to the
paper [1] for easy cross-reference.

Definition 1 (Induction variables). An integer variable is an induction variable if it is
the control variable of a “for” loop (do in Fortran), incremented by 1 per iteration. A
variable is interpreted as an induction variable only within the scope of the loop body.
Throughout, syntactic variables i, j, k range over induction variables.

Definition 2 (Array subscripts and indices). An array subscript, denoted a(ē), is an
expression which indicates the element of an N -dimensional array a at the N -dimensional
index ē, specified by a comma-separated sequence of integer expressions e1, . . . , eN . We
also refer to each one of these ei as an index. An index ei is called relative if the expression
involves an induction variable. An absolute index is an integer expression which is constant
with respect to the enclosing loop, i.e., it does not involve an induction variable.

Definition 3 (Origin). For an array subscript a(ē), the index ē is called an origin index,
if all e ∈ ē are naked induction variable expressions, e.g., a(i, j). We refer to this as
the “origin” since the indices are offset by 0 in each dimension relative to the induction
variables.

Definition 4 (Neighbourhood and affine index). For an array subscript a(ē), an index
e ∈ ē is a neighbourhood index (or neighbour) if e is of the form e ≡ i, e ≡ i + c,
or e ≡ i - c, where c is an integer constant and i is an induction variable. That is,
a neighbourhood index is a constant offset/translation of an induction variable. (The
relation ≡ here identifies terms up-to commutativity of + and the inverse relationship of
+ and − e.g., (-b) + i ≡ i - b).

An affine index is an index expression of the form a*i + b, where a and b are constants.

3



4 Equational & approximation theories

Proposition 1 (Centered approximation). For any dimension n, depth k, and pointed
attribute p:

forward(dim=n,depth= k, p) � centered(dim=n,depth= k, p)

backward(dim=n,depth= k, p) � centered(dim=n,depth= k, p)

Proof. Proof of the first inequality:

fwd(dim=n,depth=k,p)
� fwd(dim=n,depth=k,p) + bwd(dim=n,depth=k,p) (Combined)
≡ ctd(dim=n,depth=k,p) (Centered)

Proof of the second inequality:

bwd(dim=n,depth=k,p)
� fwd(dim=n,depth=k,p) + bwd(dim=n,depth=k,p) (Combined)
≡ ctd(dim=n,depth=k,p) (Centered)

Proposition 2 (Point approximation). Let R be one of forward, backward, and centered,
n a fixed dimension, and k a fixed depth, then we have

pointed(dim=n) � R(dim=n,depth= k)

R(dim=n,depth= k, nonpointed) � R(dim=n,depth= k)

Proof. Proof of the first inequality:

ptd(dim=n)
� R(dim=n,depth=k,nonpointed) + ptd(dim=n) (Combined)
≡ R(dim=n,depth=k) (Overlapping pointed)

Proof of the second inequality:

R(dim=n,depth=k,nonpointed)
� R(dim=n,depth=k,nonpointed) + ptd(dim=n) (Combined)
≡ R(dim=n,depth=k) (Overlapping pointed)

5 Semantic model

5.1 Lattice model or regions

The underlying domain of our semantics is the set P(ZN) that is, sets of integer vectors of
length N . We characterise various subsets of this space used in our model, called: index
schemes, interval schemes, regions, and subscript schemes.

4



Definition 5 (Index scheme). An N -dimensional index scheme S is a set of integer
vectors (S ∈ P(ZN)) which can be written as the Cartesian product of N subsets of Z,
i.e.

∃S1 ⊆ Z, . . . , SN ⊆ Z . S =
N∏
i=1

Si

with the additional condition that every Si is either finite (i.e., ∃n.|Si| = n) or Si = Z.

We use S, T, U to denote index schemes throughout. Henceforth, we implicitly assume
index schemes are N -dimensional1 for some N when it is clear from the context.

Index schemes can be projected in the ith dimension by πi : P(ZN) → P(Z). For an
index scheme S, we refer to πi(S) as the ith component of S. We assume that i, when
used for projection, always lies between 1 and N .

Lemma 1. Intersection distributes over index schemes. That is, for index schemes S, T

S ∩ T =
N∏
i=1

πi(S) ∩ πi(T )

Thus intersection is closed for index schemes: the intersection of two index schemes is an
index scheme.

Proof.

S ∩ T =

{
x
∣∣∣ ∧

1≤i≤N

xi ∈ πi(S)

} ⋂ {
x
∣∣∣ ∧

1≤i≤N

xi ∈ πi(T )

}

=

{
x
∣∣∣ ∧

1≤i≤N

(xi ∈ πi(S) ∧ xi ∈ πi(T ))

}

=
N∏
i=1

πi(S) ∩ πi(T )

Union however is not itself an index scheme because union does not distribute over Carte-
sian product (recall, index schemes must be definable as a Cartesian product of integer
sets). However, a more restricted property holds.

Lemma 2. If S and T are index schemes where πi(S) = πi(T ) for all 1 ≤ i ≤ N apart
from some dimension k, then:

S ∪ T = π1(S)× · · · × (πk(S) ∪ πk(T ))× · · · × πN(S)

1Whenever the model is used, the particular dimensionality N is derived from source code, from the
static type of the array being analysed.

5



Proof.

S ∪ T =

{
x
∣∣∣ ∧

1≤i≤N

xi ∈ πi(S)

} ⋃ {
x
∣∣∣ ∧

1≤i≤N

xi ∈ πi(T )

}

=

x
∣∣∣ ∧

1≤i≤N
i 6=k

xi ∈ πi(S) ∧ xk ∈ πk(S) ∨
∧

1≤i≤N
i 6=k

xi ∈ πi(T ) ∧ xk ∈ πk(T )


=

x
∣∣∣ ∧

1≤i≤N
i 6=k

xi ∈ πi(S) ∧ xk ∈ πk(S) ∪ πk(T )


= π1(S)× · · · × (πk(S) ∪ πk(T ))× · · · × πN(S)

Definition 6 (Intervals with an optional hole). We define an extended notion of closed
interval on Z which may contain a hole at the origin, written [a . . . b]c where a and b
are drawn from Z with a ≤ 0 ≤ b and c is drawn from B = {true, false}. Intervals are
interpreted as sets as follows:

[a . . . b]c , {n | a ≤ n ≤ b ∧ (c ∨ n 6= 0)}

If the superscript to the interval is omitted it is treated as true (no hole). We also add
the distinguished interval [−∞ . . .∞], which is simply an alias for Z, but this notation
avoids separate handling of the infinite interval in the following definitions, lemmas, and
their proofs.

We denote the set of all intervals with an optional hole as Interval.

Lemma 3. Union and intersection are closed for Interval, where we have the following
dual identities:

[a . . . b]c ∩ [d . . . e]f = [max{a, d} . . .min{b, e}]c∧f

[a . . . b]c ∪ [d . . . e]f = [min{a, d} . . .max{b, e}]c∨f

Proof. We give the proof of the first identity and the second one is similar.

[a . . . b]c ∩ [d . . . e]f =
{
n
∣∣∣ a ≤ n ≤ b ∧ (¬c =⇒ n 6= 0)

}
∩{

n
∣∣∣ d ≤ n ≤ e ∧ (¬f =⇒ n 6= 0)

}
=
{
n
∣∣∣ max {a, d} ≤ n ≤ min {b, e} ∧ (¬c ∨ ¬f =⇒ n 6= 0)

}
= [max {a, d} . . .min {b, e}]c∧f

We define a subset of index schemes called interval schemes, where each component of an
index scheme is a member of Interval .

6



Definition 7 (Interval scheme). An interval scheme is an N -dimensional index scheme
such that each component of the scheme is a holed interval (Definition 6) (since intervals
define either finite subsets of Z or Z in its entirety).

IntervalN denotes the set of all N -dimensional interval schemes.

Interval schemes are composed by union and intersection to form a region, which describes
the extent of a specification in our language.

Definition 8 (Region). The set of all N -dimensional regions, denoted RegionN is defined
as the smallest set satisfying the following:

1. If R is in IntervalN , then R is in RegionN .

2. If R and S are in RegionN , then so are R ∩ S and R ∪ S.

Proposition 3. (RegionN ,∪,∩,>,⊥) is a bounded distributive lattice with top element
> = ZN and bottom element ⊥ = ∅.

Proof. Straightforward, the join and meet are mapped to ∪ and ∩, the set is inductively
defined to be closed under these operations. Union and intersection are associative, com-
mutative, and absorptive under closed sets and then they are also for RegionN . This is
enough to show that, it is a lattice.

Further, we have ZN ∩ R = R and ∅ ∪ R = R with ZN and ∅ belonging to RegionN .
This makes the lattice bounded.

Finally, the lattice is distributive since union distributes over intersection and vice
versa when the set is closed under these operations.

The set of regions RegionN is the target of our specification language model. However,
the model must also incorporate information about approximation and multiplicity spec-
ification modifiers. This information is provided by the following labelled variants.

Definition 9. Mult and Approx are parametric labelled variant types with injections given
by:

Mult a , mult a | only a Approx a , exact a | lower a | upper a

e.g., lower is an injection into Approx, of type lower : a→ Approx a.
These injection functions are used to mark the model of regions (RegionN) with mul-

tiplicity and approximation information.

During specification and consistency checking, Mult is used to determine whether re-
peated indices should be allowed, while Approx is used to determine if the region in the
specification should be treated as a lower bound, an upper bound, or in exact correspon-
dence with the region defined by the stencil computation.
Finally, we define another subset of index schemes called subscript schemes where each
component of an index scheme is either a singleton set or Z. This is used to model array
index terms from source code.

Definition 10 (Subscript scheme). A subscript scheme S is an index scheme where:

∀i. 1 ≤ i ≤ N =⇒ ∃p. πi(S) = {p} ∨ πi(S) = Z

That is, the ith component of the set is either a singleton in Z or all of Z.

7



J−Ka : approx→ (A→ ApproxA)
JatLeastKa = lower
JatMostKa = upper
JεKa = exact

J−Km : mult→ (A→ MultA)
JreadOnceKm = once
JεKm = mult

JnonpointedK = false
JεK = true

(a) Interpretation of modifiers

J−KN : region→ RegionN
Jr + sKN = JrKN ∪ JsKN
Jr * sKN = JrKN ∩ JsKN
JrconstKN = promoteN(dim(rconst), JrconstK)

J−K : rconst→ Interval
Jpointed(dim=i)K = [0 . . . 0]true

Jcentered(dim=i,depth=k,p)K = [−k . . . k]JpK

Jforward(dim=i,depth=k,p)K = [0 . . . k]JpK

Jbackward(dim=i,depth=k,p)K = [−k . . . 0]JpK

(b) Interpretation of regions and region con-
stants

Figure 1: Semantic model of specifications

5.2 Denotational semantics for specifications

Figure 1 shows the interpretation of the syntactic components.

Definition 11 (Semantics of specifications). An interpretation function J−KN maps closed2

specifications to an element of Mult(Approx(RegionN)) as follows:

Jmult, approx, regionKN = JmultKm (JapproxKa JregionKN)

Definition 12. Let promoteN : N>0 × Interval→ IntervalN be a function generating an
interval scheme such that if v is promoteN(i, [a . . . b]c), then πi(v) = [a . . . b]c and πj(v) = Z
in all other dimensions j.

Definition 13. Given a region constant rconst, let dim(rconst) ∈ N>0 be the dimension
for which that region constant is defined, e.g., dim(centered(dim=d,depth=k)) = d.

Theorem 1 (Equational soundness). The lattice model is sound with respect to the equa-
tional theory. Let R and S be N-dimensional region terms, then we have

∀R, S,N. R ≡ S =⇒ JRKN = JSKN

Proof. Both ≡ and = are equivalence relations. We only need to show that each property
associated with specifications equivalence holds as an equality in the model.

Basic & Subsumption These follow from basic properties of lattices.

Dist This is immediate from the definition of distributive lattice (see Proposition 3).

2That is, we assume there are no occurrences of rvar in a specification being modelled. Any open
specification containing region variables can be made closed by straightforward syntactic substitution
with a (closed) region.

8



Overlapping pointed Counterparts of individual regions for some Boolean p are given
below:

JR(dim=n,depth=k,nonpointed)KN = promoteN(n, [−k . . . k]false)

Jpointed(dim=n)KN = promoteN(n, [0 . . . 0]true)

JR(dim=n,depth=k)KN = promoteN(n, [−k . . . k]true)

Using Lemma 2, it is sufficient to show [−k . . . k]p ∪ [0 . . . 0]true = [−k . . . k]true

holds. This immediately follows from Lemma 3.

Centered Let Jp1K, Jp2K, and Jp3K be p1, p2, and p3 respectively. We know that p1 is
p2 ∨ p3 from (Centered) definition. Then we get the following interpretation for
region constants involved in the equivalence:

Jcentered(dim=k,depth=n,p1)KN = promoteN(n, [−k . . . k]p2∨p3)

Jforward(dim=k,depth=n,p2)KN = promoteN(n, [0 . . . k]p2)

Jbackward(dim=k,depth=n,p3)KN = promoteN(n, [0 . . . k]p3)

Using Lemma 2, it is sufficient to show [−k . . . k]p2∨p3 = [0 . . . k]p2∪[−k . . . 0]p3 holds.
This immediately follows from Lemma 3.

Theorem 2 (Approximation soundness). The lattice model is sound with respect to the
theory of approximation. Let R and S be N-dimensional regions, then we have

∀R, S,N. R � S =⇒ JRKN ⊆ JSKN

Proof. Both � and ⊆ are partial orders on sets. We only need to show that each inequality
holds in the model.

Equivalence Region equivalence is modeled with set equality and the partial order on
regions is modeled with subset relation. Partial orders are reflexive and the model
of equivalence agrees with that of the partial order, so this rule holds.

Combined * and + maps to meet and join operations in the lattice. All meets and joins
in a lattice satisfy these inequalities.

Depth When m is k and l (with k ≤ l) in R(dim=n,depth=m,p), we obtain the inter-
pretations promoteN(n, intk) and promoteN(n, intl) for some N as interpretations of
regions. Call these ks and ls respectively. One way to show ks ⊆ ls is to show that
the intersection of ks and ls is ks.

To show that the intersection is ks, we use Lemma 1 which reduces the problem to
showing that the intersection of intk and intl is the former since at every point except
n the intervals agree, hence the intersection remains the same at these dimensions.
Then we use Lemma 3 to calculate the intersection. From the initial assumptions,
we have k ≤ l, so the maximum of the lower bounds is −k and the minimum of
lower bounds is k. This equivalent to the interval intk. Note that pointedness is
the same for both intervals and depths are positive integers, so the pointedness is
preserved under intersection. This shows the intersection of ls and ks is indeed ks
and concludes the proof.

9



5.3 Modelling array subscripts

Definition 14 (Individual array terms). Recall array subscript terms of the form a(ē)
from Definition 2. We interpret these terms with a partial interpretation to subscript
schemes (a subset of index schemes) J−Katerm : array-term 7→ P(ZN). The interpretation
is defined when all indices are either absolute or neighbourhood indices (Definition 4).

Ja(ē)Katerm =
∏

1≤i≤N

subscript(ēi) subscript(e) =

{
{c} e ≡ j± c
Z e is absolute

where j is an induction variable. Note that this interpretation function produces subscript
schemes, but these are not necessarily members of IntervalN or RegionN .

Definition 15 (Collections of array terms). Given an set of A of array terms flowing to
a particular statement in code, we take the union of the interpretations of array terms to
give a model of the array access in the computation by:

JAKaterm =
⋃
a∈A

JaKaterm

5.4 Union Normal Form

Definition 16 (Union Normal Form). A set V ∈ P(ZN) is in union normal form (UNF)
if it can be expressed as the union of a finite number of N -dimensional index schemes;
that is, there is a finite set of index schemes S such that V =

⋃
T∈S T . We refer to S as

the support of V .

Lemma 4. A set in UNF has a finite representation.

Proof. By their definition, N -dimensional index schemes can be written as the Cartesian
product of N sets which are either finite subsets of Z or Z itself. Thus, index schemes
have a finite representation as a finite list of its components which are either finite sets
or Z, which can be marked with a single representative symbol.

Thus, a set V in UNF can then be represented finitely by its support S, whose elements
(which are index schemes) are all finitely represented.

Lemma 5. The model of a region specification produces a RegionN which can be converted
into UNF.

Proof. Since RegionN is a distributive lattice (with ∪ and ∩) (Proposition 3), its elements
can be converted into a union of intersections of index schemes via the property: (S ∪
S ′)∩(T ∪T ′) = (S∩T )∪(S∩T ′) and because the base elements in the inductive definition
of RegionN are IntervalN elements, which are index schemes. Since ∩ is closed over index
schemes (Lemma 1), the result is a union of index schemes, i.e. in UNF.

Lemma 6. The model of array subscripts in code (Definition 14) already produces a set
in union normal form: a UNF of subscript schemes (by Definition 15).

10



Proof. Definition 15 takes the union of interpretations of array terms (drawn from a set
A), using the interpretation J−Katerm (Definition 14). The interpretation of array terms
produces either a singleton, or Z, thus it maps array subscripts to subscript schemes
(which are also index schemes). Thus the result of JAKaterm is in UNF.

6 Algorithms: analysis, checking, and inference

6.3 Inferring specifications automatically

Definition 17 (Adjacent). Two index schemes S and T are adjacent written adjacent(S, T ),
iff πi(S) = πi(T ) for all 1 ≤ i ≤ N apart from some dimension k such that πk(S) = [a, b]
and πk(T ) = [b + 1, c] (these are standard closed intervals, rather than holed intervals of
Interval).

(See the paper, Section 6.3, for the full definition of coalesce and coalesceStep).

Lemma 7. For a set S of index schemes, coalesceStep(S) is a set of index schemes.
Furthermore, if every index scheme in S has components which are all either finite closed
intervals or Z, then every index scheme in coalesceStep(S) similarly has all components
as finite closed intervals or Z.

Proof. From the assumptions of the lemma, the input set S is a set of index schemes. We
proceed inductively on the size of this input set.

• Base case, S = ∅, returning ∅. Trivially satisfies the property that the output set
contains index schemes.

• Inductive step, coaleseStep({T} ∪ S).

The output set is always built from members of the input set, which are always
index schemes as shown in the two cases of coalesceStep.

In the first case, the output set is built from the singleton set {T} (where T is
an index scheme by the input property) and the recursive call to coalesceStep(S).
Applying the inductive hypothesis, a set of index schemes is thus produced.

In the second case, coalesce is non-empty. The application of coalesce(T,S) produces
a set of index schemes: by Lemma 2, the union of two index schemes is an index
scheme if all components are equal except at most one component. Contiguity
(Definition 17) matches this precondition, thus coalesce maps sets of index schemes
to sets of index schemes. Thus, the recursive call to coalesceStep is applied again to
a set of index schemes.

Corollary 1. A subscript scheme has components which are either Z or a singleton set
(which is a closed interval e.g., {n} = [n, n]) thus the fixed-point of coalesceStep on S0
(the initial set of subscript schemes from the analysis) yields a set of index schemes whose
components are finite intervals or Z.

11



Proof. Let C be the property that a set contains all closed integer inverals or Z.
Firstly, coalesce preserves the C-property since it takes the union of elements, where

a union of two closed sets which are adjacent yields another closed set.
Then coalesceStep produces a C set if it is applied to a C set, by induction on the

cardinality of the input set. The base case is trivial. In the inductive step:

• if coalesce(T,S) = ∅ then {T} (which satisfies C) is unioned onto coalesceStep(S−T )
which preserves C (by induction).

• if coalesce(T,S) 6= ∅ then coalesceStep is applied to a set built from the union of
coalesce(T,S) which is C preserving and S - {T} (also C preserving). Thus, the
result has the C-property (since the output set is built only from the input set).

Note that we first apply coalesceStep to a set S0 of subscript schemes, which satisfies
C as they are either singleton intervals of Z. Thus, coalesceStep(S0) yields a C-set and
therefore the fixed point µcoalesceStep(S0) satisfies the C property: that the output set
of index schemes are all expressible via closed integer intervals or Z.

Definition 18. (Convert) We map a component of an interval scheme to a region constant
using J−K−1, combining each component with * and combining the resulting regions by
+:

convertN(S) =
∑
S∈S

∏
πi(S)6=Z

Jπi(S)K−1 (1)

Where summation is by the syntactic + and product is by the syntactic *.

Theorem 3 (Inference soundness). For all region specs R, then infer(JRKN)N ≡ R

Proof. This follows by induction on the definition of regions syntax R and by definitions
of inference and the semantics sharing the same underlying model and using inverse
mappings between each other.

For constants, we map to promoteN(i, JrconstK) which by convert, in (1) is mapped
back to rconst since convert is defined in terms of the inverse mapping J−K−1.

For Jr+sKN = JrKN ∨ JsK we map to a Union Normal Form of interval spaces which is
converted back directly by convert. Similarly for *.

References

[1] Dominic Orchard, Mistral Contrastin, Matthew Danish, and Andrew Rice, Veri-
fying Spatial Properties of Array Computations. PACM Progr. Lang. 1, OOPSLA,
Article 75 (October 2017), 30 pages.

12


	Equational & approximation theories
	Semantic model
	Lattice model or regions
	Denotational semantics for specifications
	Modelling array subscripts
	Union Normal Form

	Algorithms: analysis, checking, and inference
	Inferring specifications automatically


