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Hardware Verification using Higher-Order Logic !

Albert Camilleri Mike Gordon Tom Melham

Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG

Abstract

The Hardware Verification Group at the University of Cambridge is investigating how
various kinds of digital systems can be verified by mechanised formal proof. This paper
explains our approach to representing behaviour and structure using higher-order logic.
Several examples are described, including a ripple-carry adder and a sequential device for
computing the factorial function. The dangers of inaccurate models are illustrated with a
CMOS exclusive-or gate.

1To appear in the proceedings of the IFIP International Working Conference: From H.D.L. Descriptions
to Guaranteed Correct Circuit Designs, Grenoble, September 9-11, 1986,
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1 Introduction

Formal methods have always played a role in hardware design and verification. Logic cir-
cuits are routinely specified with logical operators such as - (not), A (and) and Vv (or)
and then shown to be correct by formal proof using the laws of boolean algebra. Although
boolean algebra is adequate for representing and reasoning about the logic-level behaviour
of simple combinational circuits, it cannot represent sequential behaviour, or higher-level
data-types such as integers. This is not surprising; it is well known that propositional
calculus (a formalism equivalent to boolean algebra) is not capable of representing much of
mathematics. The formalisation of mathematics requires a logical system at least as power-
ful as set theory or type theory [9]. In this paper, we describe an approach to specifying and
verifying hardware based on a version of type theory called higher-order logic [3]. The at-
traction of this logic is that it provides a directly usable theory of functions. Our approach
to specifying hardware uses predicates whose arguments are functions. Higher-order logic
can directly represent such predicates and provides efficient inference rules for reasoning
about them. In set theory, predicates and functions are introduced as certain kinds of sets
and the various inference rules (e.g. the rules of A-conversion) must be laboriously derived.
In the long term it is not clear that this is a disadvantage, but it does make it harder to
get off the ground with set-theory than with type theory.

The choice of a formalism for hardware verification involves a compromise between ex-
pressive power and ease of proof. A simple and restricted formalism will make the proofs of
some devices easy but may make it hard to specify complex devices simply and concisely.
A powerful formalism will be expressive enough for a wide class of devices but may involve
difficult proofs. Higher-order logic makes available the results of general mathematics, al-
lowing (in principle) the construction of whatever mathematical tools are needed to deal
with the verification task at hand. To make proofs tractable, however, we do not develop
special methods for each circuit to be verified, but rather look for general constructions
and techniques applicable to wide classes of circuits. '

The organisation of this paper is as follows: first we describe how behaviour and structure
can be directly represented by logical formulas, next we illustrate how hardware can be
verified by formal proof using just the laws of logic, we then discuss an example that
shows some of the dangers of using models that are too simple, and finally we give two
more substantial examples to show that the approach is applicable to less trivial systems.
The first of these examples is an n-bit adder; it illustrates how a logic circuit can be
proved to correctly implement a specification expressed in terms of a higher level data-
type (numbers). The second example illustrates our approach to modelling sequential
behaviour. An implementation operating at a ‘fine grain’ low-level time-scale is shown to
implement a specification expressed at a ‘coarser grained’ higher level time-scale. Both
these two examples illustrate the use of abstraction in specification and verification. In the

first example we have data abstraction and in the second one temporal abstraction.




2 Representing behaviour with predicates

Consider a device Dev with external lines ai, a2, ..., am, bi, b2, ..., bn.
at b1
a2 pev | . P2
am ——— I bn

The behaviour of this device can be specified by defining a predicate Dev with m-+n argu-
ments such that Dev(a;,az,...,am,b1,b2,...,b,) holds if and only if a;, a3, ..., am, b1, b2,
..., b, are allowable values on the corresponding lines of Dev.

We will use predicate calculus to formally specify behaviour. ‘P(z)’ means ‘z has property
P’. The unary boolean operator - denotes negation. The infixed binary boolean operators
V, A, D and = denote disjunction (‘or’), conjunction (‘and’), implication (‘implies’) and
logical equivalence (‘if and only if’) respectively. The quantified terms Vz. t[z] and Jz. t[z]
mean ‘for all z it is the case that t[z]’ and ‘for some z it is the case that t[z]’ respectively.
The conditional term (t — t; | t;) means ‘if t is true then t, else ¢;’. The two truth-values
representing truth and falsity are represented by the boolean constant symbols T and F
respectively.

We allow variables to range over functions and the arguments of predicates to be func-
tions. As we will see below, the ‘values’ needed to model sequential devices will sometimes
be functions from time to data-values. Predicates on such values will thus be predicates
whose arguments are functions; such predicates are called higher-order. For example, the

behaviour of a unit-delay device (i.e. a register) can be specified with a predicate Del defined
by:

Del(z,0) = Vt. o(t+1) = i(t)

Here ¢ and o are functions that map times (represented by non-negative integers) to values
(represented by booleans). These functions are in the Del relation if and only if for all
times ¢, the value of o at time t+1 (.. the ‘next’ time) equals the value of ¢ at time ¢.
Notice that Del is a partial specification; its definition leaves the value of o at time zero
unspecified. Using predicates to represent behaviour makes it simple to write such partial
specifications, without having to deal with partially defined ‘output functions’.
Higher-order predicates are not needed to model combinational devices. For example, a

delayless switch can be represented by the predicate Switch defined by:
Switch(g,a,b) = (9 D (a =1))

The condition Switch(g, a,b) holds if and only if whenever g is true then a and b are equal.
For example, Switch(T,F,F) holds because T D (F=F) is true, and Switch(F, T,F) holds
because F D (T=F) is true, but Switch(T, T,F) does not hold because T O (T=F) is false.
We will see later how such switches can be used as a simple but nevertheless useful model

of transistors.




The predicate Switch specifies a bidirectional device; there is no input/output distinction
between a and b. Being able to deal with bidirectional devices in this way is one of the

reasons for representing behaviour with predicates, rather than with functions from inputs

to outputs.

3 Representing structure with predicates

Consider the following structure:

D1
b D2

L

D3 d

This is a device, D say, that is built by connecting together three component devices D1,
D2 and D3. The external lines a, b, ¢ and d are external and specify D’s interface to the
outside world; the lines p and q are internal.

Suppose the behaviours of D1, D2 and D3 are specified by predicates D,, D; and Dj
respectively. Each device constrains the values on its lines. For example, if a, b and p denote
the values on the lines a, b and p, then D1 constrains these values so that D,(a, b, p) holds.
To get the constraint imposed by the whole device D we just A-together the constraints
imposed by D1, D2 and D3. The combined constraint is thus:

Dy(a,b,p) A Di(p,d,c) A Ds(q,b,d)

This expression constrains the values on the external lines a, b, ¢ and d as well as the
internal lines p and q. If we regard D as a ‘black box’ with the internal lines invisible, then
we are really only interested in what constraints are imposed on its external lines. The
variables a, b, ¢ and d will denote possible values at the external lines a, b, ¢ and 4 if
and only if the conjunction above holds for some values p and g. This can be expressed
formally using the existential quantifier 3 by specifying that a, b, ¢, d are possible values

on the output lines of D if and only if:
3p q. Dy(a,b,p) A Di(p,d,c,q) A Ds(q,b,d)

We can therefore define a predicate D representing the behaviour of D by:
D(a,b,c,d) = 3p q. Di(a,b,p) A Di(p,d,c,q) A Ds(g,b,d)

Thus we see that the behaviour corresponding to a circuit is got by conjoining the con-
straints corresponding to the components and then existentially quantifying the variables

corresponding to the internal lines. This technique of representing circuit diagrams in logic
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is fairly well known [10]. In the terminology of CCS [13] we are using conjunction for

parallel composition and existential quantification for hiding. Other ways of representing

structure in logic are also possible [4].

4 Eliminating existential quantifiers

The existentially quantified variables used to hide internal signals can often be eliminated
by a sequence of simple logical deductions. A common form of specification defines the
output values of a device as a function of the inputs. For example, the definitions of the

predicates Dy, D; and D3, mentioned above, could take the form:

Dl(a, b, p) =Ep= Fl(a" b)
Di(p,d,c,q) = c=Fs(p,d) Aq=Fi(p,d)
D3(Qa b’ d) = d= FS(q’ b)

In this case, the existential quantifiers in the above definition of D can be eliminated as

follows:

1. Expanding D using the definitions of Dy, D; and Ds gives:

D(a,b,c,d) = Ip q. p=Fi(a,b) Ac=Fy(p,d) A
g = Fy(p,d) A d = Fs(q,b)

2. Substituting with the equations for p and ¢ yields:

D(a,b,c,d) = Ip q. p = Fyi(a,b) A c = F3(Fi(a,b),d) A
g = Fy(F1(a,b),d) A d = F3(Fy(Fi(a,b), d),d)

3. The existential quantifiers can now be moved ‘inwards’ using rules such as:
(Fz.ti A ty) = (Fz.t1) Aty (z not free in ¢;)
giving

D(a,b,¢c,d) = (3p.p = F1(a,b)) A c = F2(F1(a,b),d)A
(3¢. g = F4(F1(a,b),d)) A d = Fs(Fy(F1(a,b),d),b)

4. (Jz.z=tm) is true for all tm (if z is not free in tm) by 3-introduction applied to the

left hand side of tm=tm. Thus, the expression for D can be reduced to:
D(a,b,c,d) = ¢ = F2(Fi(a,b),d) Ad = Fs(Fy(Fi(a,b),d),d)
which completes the elimination of the existential quantifiers in the definition of D.

This method of eliminating existential quantifiers — which uses only logical inference —
is widely applicable and easily automated. In some cases, however, it may be inconvenient
or impossible to eliminate the existential quantifiers using this method and other means

of dealing with them must be used. An example involving such a case will be considered

later.



5 A CMOS inverter

This first example is trivial, but it illustrates the general idea of verification by formal

proof. The standard CMOS implementation of an inverter is:

Pwr

p1

p2
Gnd

The inverter shown above can be viewed as a structure built out of four components: a
power source, a ground, an n-transistor and a p-transistor.

A power source

Pwr

can be modelled by a predicate Pwr that constrains the value on the line p always to be T:
Pwr(p) = (p=T).
Dual to Pwr is ‘ground’

Gnd

which can be modelled by a predicate Gnd that constrains the value on the line p always
to be F: Gnd(p) = (p=F).
In CMOS there are two kinds of transistors: n-transistors and p-transistors. An n-

transistor

g

|

a—1 1___p

can be modelled as a switch: Ntran(g,a,b) = (¢ D (¢ =b)).




A p-transistor

g
a ' l b
can be modelled as a switch: Ptran(g,a,b) = (-g D (¢ = b)) which conducts when its

gate(i.e. line g) is low.
Conjoining together the constraints from the four components of the inverter and exis-

tentially quantifying the internal line variables yields the following definition of a predicate

Inv:
Inv(i,0) = 3p; pa. Pwr(p1) A Ptran(, p1,0) A Ntran(i, 0, p2) A Gnd(p;)

If Inv(f, 0) holds then the values ¢ and o are constrained to be in the relation determined
by the inverter circuit above. It follows by standard logical reasoning that if Inv is defined
as above, then the constraint on ¢ and o imposed by the inverter circuit is exactly what we

want, namely o = —¢. An outline of the formal proof of this is as follows:
1. By the definition of Inv:
Inv(i,0) = dp; p2- Pwr(p1) A Ptran(t, p1,0) A Ntran(z, 0, p2) A Gnd(p,)
2. Expanding using the definitions of Pwr and Gnd yields:
Inv(i,0) = 3p1 p2. (p1 = T) A Ptran(, p1, 0) A Ntran(s,0,pz) A (p2 = F)
3. Eliminating the existential quanfiﬁers by the method outlined above yields:
Inv(i,0) = Ptran(¢, T,0) A Ntran(s, 0, F)
4. Expanding using the definitions of Ptran and Ntran results in:
Inv(i,0) = ((=F) D> (T=0)A((i=T)D(o=F))
5. From which we can derive:
Inv(T,0) = (o=F) A Inv(F,0) = (0=T)
and finally, using the excluded middle axiom Vi.t=T V 1=F, we can derive:

Inv(i,0) = (0 = i)



6 A CMOS exclusive-or (XOR) gate

The next example illustrates some of the dangers of using an inaccurate model. Consider

the circuit shown in Figure 1.

i1
i2 Jm, o

p3

{2

Gnd

Figure 1: Incorrect Design of an Exclusive-Or Gate

If transistors are modelled by switches then it is easy to show that this circuit implements

an exclusive-or gate. The proof proceeds as follows.
1. From the circuit diagram:
Xor_lmp(il,iz,o) = le D2 Ds. PW[(pI) A Gnd(pz) A
Ptran(¢y,p1,p3) A Ntran(sy, ps,p2) A
Ptran(iz,t1,0) A Ntran(is,o0,ps)

2. Expanding with the definitions of Pwr and Gnd and eliminating the existentially

quantified variables p; and p; gives:

Xor_lmp(iy,t2,0) = Ips. Ptran(z;, T,ps) A Ntran(zy,ps,F) A
Ptran(#,11,0) A Ntran(t,, 0, ps)

3. By the definitions of Ntran and Ptran:

Xor_lmp(il,iz,o) = 3})3. (—11:1 D (p3=T)) A (tl D) (p3=F)) A
(—11:2 D) (Ozil)) A (22 D (o=p3))

4. Boolean algebra and laws for equality give:

Xor-lmp(il,iz,o) = 3[)3 (p;; = “11:1) A (0 = —i(ilziz))




5. Eliminating the existential quantifier gives:
Xor-lmp(il,iz,o) = (0 = '“'(t'lziz))

Despite this correctness proof, the circuit may not work in practice. Transistors don’t
always behave likes switches in the way represented by the definitions of Ptran and Ntran.
The actual behaviour of an n-transistor is that it conducts (is ‘on’) if its gate voltage is
higher, by some threshold, than the voltage on one of its other lines, otherwise it doesn’t
conduct (is ‘off’). Dually, a p-transistor is ‘on’ if its gate voltage is lower, by some threshold,
than the voltage on one of its other lines. For definiteness, suppose T is 5v, F is Ov and
the thresholds are 1v. Thus, for example, a p-transistor is off (i.e. non-conducting) unless
its gate voltage is at least 1v less than the voltage on one of its other lines. Consider now
the situation with i1 at Ov and i2 at 5v. The p-transistor connected to Pwr will be on and
so p3 will be at 5v. Clearly the p-transistor whose gate is connected to 12 will be off, but
what about the n-transistor below it whose gate is also connected to 12? This has 5v on
its gate and on one of its other lines (namely the one connected to p3). If the voltage at o
is 5v then this n-transistor will be off and o will float. As soon as some charge is removed
from o (e.g. by the circuitry it is connected to), its voltage will begin to drop. When o’s
voltage gets below 4v the n-transistor connected to it will start to conduct and so o will
be charged up again by Pwr. After a short time the voltage at o will rise above 4v and
the transistor will switch off again, leaving o at about 4v. The upshot of this is that if the

_circuit is used to drive anything that requires any power, then the n-transistor connected

to o will repeatedly switch on and off to maintain the voltage at o at about 4v.

Pur

o
14

pl

p3

1

Gnd

Figure 2: Correct Exclusive-Or Gate Design




Unfortunately, this rather weak and unstable output voltage may be inadequate to drive
other parts of the circuit. It is possible that things could be made to work by adjusting
the size of transistors, but doing this is a bit dodgy and certainly isn’t clean CMOS design.
In fact, the above circuit is not normally used. The standard exclusive-or gate given in
textbooks is shown in Figure 2. This has an extra pair of transistors that ensure that if i1
is low then o is connected to i2, thereby preventing the nasty behaviour just described.

This circuit is formally equivalent to the simpler one if transistors are modelled by Ptran
and Ntran. This shows how important it is to use accurate models. It is no good verifying

an implementation using a model that doesn’t represent the actual behaviour of the parts

involved.

7 A 1-bit full-adder

This example will illustrate the proof of a 1-bit full-adder in preparation for the verification
of the n-bit adder discussed in the next example.

A full-adder generates a sum and carry-out from two inputs and a carry-in. Together,
the components Sum and Carry (shown in Figure 3) compute the binary addition of three
bits. For example, if 11, 12 and cin had values 1, 1, and O respectively, then Sum would

compute the binary sum 0 and Carry would compute the carry-over value of 1.

i1 i2 ein
I l
sum ) carry
I I
o} cout

Figure 3: Full Adder

The desired behaviours of the components Sum and Carry are specified by the predicates

Sum and Carry:

Sum(il, iz,cin,o) = (0 = (—lil A "'1:2 A cm) \% (’11:1 A iz A "'Cin) \Y
(1:1 A —liz A —win) \% (11 A iz A czn))

Carry(t1,12, ctn,cout) = (cout = (i3 A t3) V (11 Acin) V (12 A cin))

We could take Sum and Carry as primitives with the above behaviour (derived from their
truth-tables) but instead we will derive these behaviours from a lower-level implementation

using simpler components (as shown in Figure 4).

10



cin N ph
L p2
i2 —
”} p3 cin
Do Dy,

Figure 4: Implementations of Carry (left) and Sum (right).

We take the components in the implementation of Sum and Carry to be primitives, defined
by:

OR(i1,12,0) = (0 =1,V i,)
AND(iy,43,0) = (0 =11 A13)
XOR(i1,72,0) = (0 = (81 A —iz) V (=1 A i)

3

The definitions of the predicates Sum_Imp and Carry_Imp below are based on the structures

shown in Figure 4.
Sum_Imp(iy, 12, cin,0) = Ip. XOR(i1,p,0) A XOR(iz,¢in,p)
Carry_Imp(iy, £2, cin, cout) =
dplp2p3p4.
AND(i;,13,p1) A AND(iy,cin,p2) A

AND(iz,cin,p4) A OR(pl,p2,p3) A
OR(p3, p4, cout)

From these definitions it is routine to prove that:
Sum(ty, 12, cin,0) = Sum_Imp(iy, 13, cin, o)

Carry(t1,12, cin, 0) = Carry_Imp(iy, 1z, cin, o)

The following is an outline of the proof of correctness for the implementation of Sum. The

proof for the imple%nentation of Carry is almost identical.
1. The theorem we wish to prove is:

Sum(iy, 12, cin,0) = Sum_Imp(iy, 13, cin,o)

2. Expanding using the definition of Sum_Imp, gives:

Sum(ty, 12, cin,0) = Ip. XOR(ty, p,0) A XOR(t2, cin,p)

11



. Expanding using the definition of XOR yields:

Sum(iy, 12, cin,0) =
Ip.(0 = (11 A -p) V (mi1 Ap)) A
(p = (82 A —ein) V (—iz A cin))

. Eliminating the existential quantifier gives:

Sum(ty,13,¢in,0) =
(0 = (81 A ~((i2 A —ein) V (i3 Acin))) V
(1 A ((£2 A —~ein) V (-1 A cin))))

. Expanding using the definition of Sum and breaking up the equivalence into two

implications we obtain:

(0 = (mt1 A g Acin) V (- Atz A —ein) V
(81 A iz A —ein) V (51 Atz A cin))

D

(0 = (1 A ~((i2 A —ein) V (-42 Acin))) Vv
(=#1 A ((£2 A —ein) Vv (—i2 A ein))))

and

(0 = (11 A ~((2 A —ein) V (—iz Acin))) Vv
(—i1 A ((52 A —ein) V (=12 A cin))))

D

(0 = (—iy A iz Acin) V (—ty Aty A —cin) V
(81 A —i3 A —ein) V (i3 Ada A cin))

. Assuming the antecedent of each of the implications, and rewriting in the consequents,

we derive:

(m81 A =ta Acin) V (mip Atz A-ein) Vv
(£1 A =13 A —cin) V (81 A1z A cin)

(t1 A =((¢2 A —cin) V (-2 Acin))) V
(=11 A ((52 A —ein) V (—i2 A cin)))

and

(il A "'((1‘2 A —‘Cin) \% (ﬁiz A c1n))
(=21 A ((32 A —ein) V (—13 Acin))

(—t1 A iz Acin) V (ot Aty A cin) V
(11 A i3 A —ein) V (83 A dy A cin)

)V
)

which can be proven by simple boolean algebra, hence proving the original term.

12



8 An n-bit adder

We now outline the verification of the n-bit adder shown in Figure 5. We represent n-bit
inputs and outputs with functions from integers (representing bit-positions) to booleans.
For example, a(0), a(1) and a(2) represent the first three bits of input a. In order to relate

bit-strings to integers we define a function Val by primitive recursion, as follows:

Val(0, f) = Bitval (f(0)) A
Val(n+1, f) = (2" x Bitval(f(rn+1))) + Val(n, f)

Bitval is a function which maps the boolean truth-values, T and F, to the integer values, 1

and O respectively.
Bitval(z) = (z — 1|0)

Next we need to capture the logic in Figure 5 by first defining a 1-bit adder slice, using

the Sum and Carry predicates defined in the previous section.

Add1(iy, 53, cin, out, cout) = Sum(iy, 12, cin,out) A Carry(iy, 13, cin, cout)

a(n) b(n) a(n-1) b(n-1) a(0) b(0)
cou‘—‘t add1  [¢ add1 € €1 Add1 *;;
out(n) out(n-1) out(0)

Figure 5: Implementation of a Binary Adder.

Figure 5 above, showing iterated 1-bit adder slices, can be represented in logic in various

ways [6]. The most straightforward is the simple recursive definition given below:

Adder(0, a, b, cin, out, cout) = (cout = cin) A
Adder(n+1,a,b, cin,out, cout) =
3 cn. Adder(n, a, b, cin,out,cn) A Add1(a(n), b(n), en, out(n), cout)
Hence, as one can see from the definition of Adder, if the value of n is 0 then we are
performing absolutely no addition at all but merely wiring cin through to cout.

One can now show that an n-bit adder correctly performs binary addition by proving the

following theorem.

Vn.V f g cin out cout.
Adder(n+1, f,g,cin,out,cout) D
(2! x Bitval(cout)) + Val(n,out) =
Val(n, f) + Val(n, g) + Bitval(cin)

13



The proof proceeds as follows by performing mathematical induction on n. The basis

and step cases obtained are:

V f g cin out cout .
Adder(0+1, f, g, cin,out,cout) D
(2°+! x Bitval(cout)) + Val(0, out) =
Val(0, f) + Val(0, g) + Bitval(cin)

and

V f g cin out cout.
Adder(n+1, f, g, cin,out, cout) D
(2"*! x Bitval(cout)) + Val(n, out) =
Val(n, f) + Val(n, g) + Bitval(cin)
»
Vf g cin out cout.
Adder(n+1+1, f,g,cin,out,cout) D
(2n+1+! x Bitval(cout)) + Val(n+1,0ut) =
Val(n+1, f) + Val(n+1, g) + Bitval(cin)

Proving the basis case is straightforward but the step case is very tedious though not too
difficult. Only a very brief outline of this proof will therefore be given.

1. The proof of the basis case is done by repeatedly expanding using the definition of
Adder to obtain:

(Fen. (en = cin) A Add1(f(0),g(0), cn,out(0), cout)) O
(2°+! x Bitval(cout)) + Val(0, out) = Val(0, f) + Val(0, g) + Bitval(cin)

which is proved by eliminating the existential quantifiers, expanding using the defi-
nitions of Add1, Sum, Carry, Val and Bitval, and using the excluded middle axiom to

perform boolean case analysis on f(0), g(0) and cin.

2. The induction step is proved by expanding using the definitions of Adder, Addi,
Sum, Carry and Val, assuming the induction hypothesis, and performing resolution to

obtain:

Vn f gcenout cout.
(out(n+1) = (=f(n+1) A ~g(n+1) A cn)v
(-f(n+1) A g(n+1) A —en)V
(f(n+1) A ~g(n+1) A men)v
(f(n+1) A g(n+1) A cn)) A
(cout = (f(n+1) Ag(n+1)) V (f(n+1) Acn) V (g(n+1) A cn))
D
(27*1 x Bitval(out(n+1))) + (2" x Bitval(cout)) =
(27*1 x Bitval(g(n+1))) + (2! x Bitval(f(n+1)))+
(27*! x Bitval(cn))

which can be proved by rewriting and repeated use of the excluded middle axiom.

14



9 A sequential device

We now consider the formal verification of a sequential device for computing the factorial
function. The design of this device was first considered in [5], where it was proven correct

using a formalism based on denotational semantics.

9.1 The specification

The factorial device has an input line, in and two output lines, out and ready:

out

Factorial

in ready

The boolean output line ready indicates when the device is ready to read an integer on
the input line, in. If ready is high at some time ¢, then the numerical value on the input
line at that time, say n, is loaded into the device. The ready line will then remain low
for n units of time, while the device computes the factorial of n. During this computation
time the output line, out, will have the value O and the value on in will be ignored. When
the computation is finished, the result n! will appear on out for one unit of time (at time
t+n+1). The ready line will then go high again (at time ¢t+n+2) and the whole cycle will
be repeated for a new input.

The behaviour of Factorial is specified formally by the higher-order predicate Factorial,

defined as follows:

Factorial(ready, in,out) =
Vn t.ready(t) A n=in(t) D
Next(t,t+n+2,ready) A
V' (t<t' At'<t+n+1) D (out(t')=0) A
out(t+n+1) = Fact(n)
Here, the time-varying value on the line ready is modelled by the function ready from time
(integers) to booleans. The numeric values on the lines in and out also vary over time;
they are therefore represented by the functions tn and out which map time to integers.
Notice that this model is an abstraction; any physical realisation of Factorial will
necessarily have maximum possible input and output values. While there are ways of
formally relating descriptions which are at different levels of abstraction, we will consider
here only the higher level of abstraction specified by Factorial.
The definition of Factorial states that if the ready line is high at some time ¢ and n is the
value on in at that time — i.e. ‘ready(t) A n=tn(t)’ — then it will be the case that:

1. The next time after time ¢t that ready will be high is time t+n+2:

Next(t,t+n+2, ready)



2. The output out will be zero from time ¢ up to time t+n+1:
Ve, (t<t' A t'<t+n+1) D (out(t')=0)

3. The output out at time t+n+1 will be the factorial of n:
out(t+n+1) = Fact(n)

The variable n is used in the specification for readability only, allowing us to write, for
example, ‘t'<t+n+1’ rather than ‘t'<t+in(t)+1’.
The predicate Next is defined by:

Next(tl,tg, f) =<tz A f(tz) A Vt. (t1<t A t<tz) ) ﬂf(t)
and the function Fact is defined by primitive recursion as follows:

Fact(0) =1A
Fact(n+1) = (n+1) x Fact(n)

9.2 The implementation

The implementation of the factorial device, shown in figure 6, uses three components, Down,

Mult and Test.

in
]
Down
1
— 11
Test Mult

12

out ready

Figure 6: The Factorial Device Implementation

The Down device latches the input on line in when ready is high and counts down, on
line 11, from the input value to zero. The successive values of the count generated by Down
are input to Mult which builds up the factorial result on line 12 by repeated multiplication.
The line 12 is given the initial value 1 by Mult when ready is high. The device Test controls
the other two components via the ready line and outputs the result once 11 becomes zero.

The formal specifications of these three'components are:
Down(in,ready,l1) = V. 11(t-+1) = (ready(t) — in(t) [ 11(t) — 1)
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Mult(ready, 11,12) = Vt.12(t+1) = (ready(t) — 1|12(t) x 11(t))

Test(I1,12, out, ready) = Vt. out(t) = (11(t)=0 A -ready(t) — {2(t) | 0)A
Vt.ready(t+1) = (11(t)=0 A —ready(t))

and the connection of components, Fact_Imp, is defined by:

Fact_Imp(ready, in,out) = 31112. Down(in,ready,l1) A
Mult(ready, 11,12) A
Test(l1,12, out,ready)

9.3 The correctness proof

We wish to show that Fact_Imp is a correct implementation of the factorial device as specified

by Factorial. Formally, the logical theorem we want to prove is:
Fact Imp(ready, in, out) D Factorial(ready, in, out)

That is, whenever the signals ready, in and out satisfy the Fact_Imp relationship then they

will also satisfy the Factorial relationship.
Expanding the correctness statement using the definition of Fact_lmp gives:

31112. Down(in,ready,l1) A Mult(ready,!1,12) A Test(l1,12,0ut,ready) D
Factorial(ready, in, out)

Because the right hand side of the equation for I1 in the definition of Down involves the
variable /1 itself, we will not be able to use the simple technique for eliminating existential
quantifiers outlined previously. Notice, however, that [1 and {2 do not occur in the conse-
quent of the above implication. Since, for all terms ¢; and ta, ‘(3z.t1) D to’ is equivalent to

“Vz.(t; D t2)’ if = does not occur free in t;, the above implication can be reduced to:

Down(in,ready,l1) A Mult(ready,!1,12) A Test(l1,12,0ut,ready) D
Factorial(ready, in, out)

Expanding with the definition of Factorial gives:

Down(in,ready,l1) A Mult(ready,!1,12) A Test(l1,12,o0ut,ready) D
Vnt.ready(t) A n=in(t) D
Next(t,t+n+2,ready) A
Ve (t<t' A t'<t+n+1) D (out(t')=0) A
out(t+n+1) = Fact(n)
The three conjuncts in the consequent are just the three correctness conditions of the

specification. The proof of this correctness statement proceeds by considering each of these

correctness conditions in turn.
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9.4 Verification of condition 1
The first correctness condition specifies the behaviour of the ready signal. Formally, we

must show that:

Down(in, ready,!1) A Mult(ready,11,12) A Test(l1,12, out,ready) D
ready(t) A n=tn(t) D Next (t,t+n+2,ready)

The proof of this lemma proceeds by first observing that if the ready line is high at time ¢
then it will be low at time t+1; this follows from the equation for ready in the definition of
Test (see section 9.2). Also, if ready is high at time ¢ and the input at time ¢ is n then the
line 11 will have the value n at time ¢t-+1, by the definition of Down. Formally, we have:

Down(in,ready,i1) A Mult(ready,l1,12) A Test(I1,12, out,ready) D (1)
ready(t) A n=in(t) D (-ready(t+1) All(t+1)=n)

We then show that if the ready is low at some time ¢ and the line 11 has some value, say
num, at time ¢ then ready will remain low until the moment of time after line 11 reaches

zero. That is, the next time ready will be high will be time t+num-+1. Formally:

Down(in,ready,!1) A Mult(ready,l1,12) A Test(I1,12,0ut,ready) D
Vnumt. —ready(t) A l1(t)=num D Next(t,t+num+1,ready)

The proof of this lemma is done by induction on num and use of the definitions of ready
and [1. The variable num is not introduced here merely for readability but is included to

put the lemma in a form suitable for doing induction. Specialising the variables num and

t to n and t+1 respectively, gives:

Down(in,ready,l1) A Mult(ready,!1,12) A Test(I1,12,0ut,ready) D
(—ready(t+1) Al1(t+1)=n) D Next(t+1,t+14n+1,ready)

This theorem, together with (1) and the simple fact that:
= f(t1+1) A Next(t;+1,t, f) D Next(ty,2a, f)
give the result:

Down(in,ready,l1) A Mult(ready,!1,12) A Test(l1,12,o0ut,ready) D
ready(t) A n=in(t) D Next (t,t+n+2,ready)

which completes the proof of the first correctness condition. -

9.5 Verification of condition 2

The second condition of the specification is that the value on output line, out, during the

loading and computation phase is 0. The lemma we wish to prove is:

Down(in,ready,l1) A Mult(ready,l1,12) A Test(l1,12,0out,ready) D
ready(t) A n=in(t) D (Vt'. (t<t' At'<t+n+1) D out(t')=0)
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To prove this lemma, we begin by showing that if ready is low at time ¢ and line 11 has

the value num at time ¢, then the value on out between time t and t+num will be 0:

Down(in,ready,l1) A Mult(ready, 11,12) A Test(I1,12, out,ready) D (2)
Vnumt. (=ready(t) A l1(t)=num) D (V'. (t<t' At'<t+num) D out(t')=0)

This lemma is proved by induction on num and use of the definitions of 1, ready and out.
Again the variable num is introduced to make induction possible.

By case analysis on the condition ‘num = 0’, it is possible to show that:

Down(in,ready,!1) A Mult(ready,l1,12) A Test(l1,12, out,ready) D (3)
Vnumt. (-ready(t) A 11(t)=num) D (V¢'. (t=t' A t'<t+num) D out(t')=0)

since, if num+#0 then out(t)=0 by the specification of out and, if num=0, then the term
(t=t' A t'<t+num)

is false for all t' and so the implication
Vi, (t=t' A t'<t+num) D out(t')=0

will be true.
Combining (2) and (3) yields:

Down(in, ready,!1) A Mult(ready,l1,12) A Test(l1,12,0ut,ready) D
Vnumt. (-ready(t) All(t)=num) D (V¢'. (t<t' A t'<t+num) D out(t')=0)

Specialising the variables num and ¢ to n and t-+1 respectively, we have:

Down(in, ready,1) A Mult(ready,i1,12) A Test(l1,12,0ut,ready) D
(—ready(t+1) AlL(t+1)=n) D (VI (t+1<t' A t'<t+1+n) D out(t')=0)

Rewriting t+1<t' to t<t' in and again using (1) we have:

Down(in,ready,1) A Mult(ready,1,12) A Test(l1,12,0ut,ready) D
ready(t) A n=in(t) D (Vt'. (t<t' At'<t+1+n) D out(t')=0)

which, along with the fact that ready(t) D out(t)=0, immediately yields:

Down(in,ready,!1) A Mult(ready,1,12) A Test(I1,12,0ut,ready) D
ready(t) A n=in(t) D (Vt'. (t<t' At'<t+n+1) D out(t')=0)

which completes the proof of the second lemma needed for the correctness statement.

9.6 Verification of condition 3

The third and final condition which the implementation has to satisfy is that it correctly

computes the factorial:

Down(in,ready,!1) A Mult(ready,i1,12) A Test(1,12, out,ready) D
ready(t) A n=in(t) D out(t+n+1) = Fact(n)
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It is possible to proceed to prove this lemma directly. We will not do this but will instead

illustrate the use a more general theorem, which can be applied to the proofs of many

similar devices. The theorem is:

Y fun fghloadt s.
Vt.load(t) = f(s(t))A
V. s(t+1) = (load(t) — g(i(¢)) | h(s(t)))A (4)

Vb, fun(5) = (/(h(8)) b | fun(k(5))) >
Vt.load(t) A Next(t,t+d+2,load) D s(t+d+1)=fun(g(i(t)))
This theorem is intended to be applied to a device which operates as follows. The device
has a load indicator output, load, whose value is some function of the device’s internal
state. When load is high at some time ¢ then the device’s internal state at the next moment
of time (i.e. time t+1) will be determined by some function of the input at time t. When
load is false at time ¢ then the device’s internal state at time ¢+1 will be some function of

only its state at time ¢ — input is ignored when the load indicator is false. Formally, this

behaviour is expressed in (4) by the equations:

Vt.load(t) = f(s(t))

Vt.s(t+1) = (load(t) — g(i(t)) | k(s(t)))
Here, the functions ¢ and s model the input and state of the device as they change over
time; () models the input at time ¢ and s(t) the internal state at time ¢. The function f
defines the function load which models the value of the load indicator, 1load. Notice that
the value of load at time ¢ depends only on the state at time t. The function A is used to
compute the next state of the device when the load indicator is false and the function g is
used to compute the initialised state of the device when the load indicator is true.

The variable fun in (4) denotes a recursively defined function which when given a state,
b, of the device yields the first state after b where the load indicator is just about to become
true — t.e. the first state where one more application of the next state function, h, will
give a state in which the load indicator, as defined by f, is true. Thus the function fun
‘iterates’ the application of the next state function h until the just before load indicator

becomes true. Formally:
Vb. fun(b) = (f(h(b)) — b fun(h(b)))
The conclusion of theorem (4) is:
Vt.load(t) A Next(t,t+d+2,load) D s(t+d+1)=fun(g(:(t)))

This states that if load is true at some time ¢t and the next time after ¢ that load is true
will be time t+d+2 then the internal state at time t+d+41 will be given by the function
fun applied to the state initialised by the input at time ¢. ;
The proof of theorem (4) is straightforward but tedious and so will not be given here.
The main step consists of an induction on the variable d.
We begin the application of theorem (4) to the proof the final correctness condition by

representing the state of the factorial device with a single function. The factorial device
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has ‘internal state’ at time ¢ modelled by the three signals I1, {2 and ready. We will
represent this internal state by the triple: (I2(t), l1(t), ready(t)) and define the internal

state function, S, as follows:

S(t) = (12(t), 11(t), ready(t))

The ready signal will be used as the load indicator for the factorial device. Notice that

ready(t) is a function of the internal state at time t, as required by theorem (4):

Down(in,ready,!1) A Mult(ready,l1,12) A Test(l1,12,0ut,ready) D (5)
Vt.ready(t) = Third(S(t))

where Third(vy, vz, vs) = vs.
When ready(t) is true the next state of the device is the triple (1,in(t),F) and, when
ready(t) is false, the next state is the triple (12(t) x11(t),11(t)—1, 11(t)=0) so the next state

and initialisation state functions, H and G, are defined:
H(m,n,t) = (m x n,n —1,n = 0)

G(nufn) = (1,num, F)
Notice that the state equation for S is:

Down(in,ready,l1) A Mult(ready,!1,12) A Test(l1,12, out,ready) D 6
VE.S(t+1) = (ready(t) — G(in(t)) | H(S(%)) (6)

as required by theorem (4). We are now ready to define the function which iterates the
state changes of the factorial device in the way required of fun in theorem (4). The state

iteration function (which operates on a triple of values) is defined by primitive recursion

as follows:

Fun(m,0,t) = (m,0,t) A
Fun{m,n+1,t) = Fun(mx(n+1),n,F)

It is easy to show that Fun has the recursive form required by theorem (4). Le. that:

Down(in,ready,!1) A Mult(ready,l1,12) A Test(l1,12,0ut,ready) D
Vb. Fun(b) = (Third(H(8)) — b | Fun(H(5))) (7

Specialising the variables fun, f, g, h, load, { and s in theorem (4) to Fun, Third, G, H,

ready, in and S respectively, yields:

Vt.ready(t) = Third(S(t))A
Vt.S(t+1) = (ready(t) — G(in(t)) | H(S(2)))A
Vb.Fun(b) = (Third(H(b)) — b | Fun(H(b))) >
Vt.ready(t) A Next(t,t+d+2,ready) D S(t+d+1) = Fun(G(in(t)))

Which, using theorems (5), (6) and (7) simplifies to:

Down(in,ready,l1) A Mult(ready,!1,i2) A Test(l1,12,out,ready) D
Vt.ready(t) A Next(t,t+d+2,ready) D S(t+d+1) = Fun(G(in(t)))
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Which can be used along with the first correctness condition, to derive:
Down(in,ready,l1) A Mult(ready, 11,12) A Test(l1,12, out,ready) D (8)
ready(t) A n=in(t) D S(t+d+1) = Fun(G(n))

Using induction on n, the definition of Fact and the definition of G, it is easy to show that:

Fun(G(n)) = (Fact(n),0,F)
Which, along with the definition of S, and theorem (8) gives:

Down(in,ready,!1) A Mult(ready,l1,12) A Test(l1,12,out,ready) D

ready(t) A n=in(t) D

(12(t+n+1),11(t+n+1),ready(t4+n+1)) = (Fact(n),0,F)
The conclusion of this theorem states that ready is false at time t-+n+1 and /1 has the
value 0 at time t+n+1 and that [2(t+n+1) = Fact(n) so, by the equation for out, we have

that:

Down(in,ready,l1) A Mult(ready,l1,12) A Test(l1,12,0ut,ready) D
ready(t) A n=in(t) D out(t+n+1) = Fact
which is the last correctness lemma to be proven. This completes the correctness proof of

the factorial device design.

10 The ‘false implies everything’ problem

The correctness of the CMOS examples and the 1-bit full adder were formulated as logical

equivalences of the form:
Vig s tm01 - 0. IMp(f1,...y8m,01,...,0,) = Spec(ty,...,tm,01,...,0,)

where Imp is a predicate representing the implementation, Spec is a predicate representing
the specification, ¢, ... , t,, are the inputs and o0y, ..., 0, are the outputs. For simple
examples, this is often the appropriate way to state correctness and some systems can only
handle such equivalences [2,5]. For complex devices, it is usually wrong to require that the
implementation be logically equivalent to the specification. The specification will typically
be some sort of abstract description of behaviour, operating on different data-types and
at a different timescale to the implementing circuit. In such cases correctness is more

appropriately formulated as an implication of the form:

Viy e tmoy -+ 0n. Imp(fy,...,4m,01,...,0,) D Spec(Abs(iy,... ,tm,04,... ,04))

where Abs is a data abstraction function. The correctness of both the adder and the
factorial device were formulated in this way (the data abstraction for the factorial device
was trivial).

It is a property of implication that F O z is true for any z, i.e. ‘false implies everything’.

Thus if the implementation formula Imp(sy,...,7,,01,...,0,) were equivalent to F then it
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would correctly implement every specification. An example of such a paradoxical implemen-
tation is easily obtained by considering a circuit in which both power (modelled by Pwr) and
ground (modelled by Gnd) are connected to a single line p. Since ((p=T)A(p=F)) =F
it follows that the the formula representing this circuit will be equivalent to F. It is easy to
see what has gone wrong. The definitions Pwr(p) = (p = T) and Gnd(p) = (p = F) assert
that the outputs of Pwr and Gnd are always equal to T and F respectively, but this cannot
be the case when these outputs are connected.

Several approaches to this problem have been proposed. For example, Mike Fourman has

suggested that correctness be reformulated as

(Viy -+ tm01 =+ On. IMP(i1, ...y tm, 01,00 050m) D Spec(t1,--+stmyO1y+++40n)) A

(Vll s im. 301 ***0Onp. lmp(il, e ,im,ol, e ,Om))

The second conjunct of this asserts that for all possible input values there are some output
values consistent with it. If this is true then the .implementation formula is never equal
to F and so the ‘false implies everything’ problem cannot arise. Although this maneuver
appears to work it seems a bit ad hoc and is not easily generalised to bidirectional circuits.
Another approach is to look for a better model in which the problem doesn’t arise. The
essential idea is to recognise that there are more values than can be modelled with just T
and F. For example, if power is connected to ground then some sort of ‘high current’ value
appears. The value appearing on a line must be a ‘union’ of all the values being driven onto
the line. The union of high and low is then defined to be a ‘high current’ value. Recent
work by Glynn Winskel on combining Milner’s calculus of communicating systems with

Bryant’s discrete circuit theory offers the hope of a successful model along these lines.

11 Related work

The general idea of representing hardware directly in predicate calculus is well known.
Various approaches differ in the particular details of the representation and the particular
version of predicate calculus used. Work based on first-order logic includes the proof of
equivalence of some asynchronous hardware devices {1] and Warren Hunt’s impressive use of
the Boyer-Moore theorem-prover to verify the FM8501 microprocessor [11]. The approach
described in this paper is influenced by the elegant work of Keith Hanna on ‘Veritas’ 8]
and Ben Moszkowski’s work on modelling hardware using Interval Temporal Logic [7].
Considerable success in generating proofs fully automatically has been obtained by Harry
Barrow of Schlumberger Palo Alto Research [2]. His ‘“VERIFY’ system employs a specialised
representation of behaviour based of state machines. It has been used to automatically
verify a number of complicated circuits with several levels of hierarchy including a multiplier
and a little computer. As the CMOS XOR example described above shows, we need
better models of transistors. A promising and completely different approach to representing
behaviour is being developed by George Milne at Edinburgh. Milne’s circuit calculus called
‘CIRCAL’ may be a better framework in which to model transistors than pure logic. As
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mentioned in the previous section, Glynn Winskel at Cambridge is working on combining

Bryant’s model of MOS with Milner’s CCS. This also looks as though it will lead to more

accurate transistor models.

12 Conclusions and current research

The examples described in this paper illustrate the general approach being taken at Cam-
bridge but are not representative of the current state-of-the-art. Several much more com-
plex examples have been successfully specified and verified including a microprocessor [12]
and a simple local area network.

Formal verification is very expensive using current theorem-proving technologies. Experts
are needed to guide proof generating tools and typical proofs take months of work. In the
short term it is likely that verification by formal proof will only be worthwhile for those
systems whose failure would result in disasters such as loss of life, destruction of costly
equipment, or recall of a mass produced product. Examples of such systems include aircraft
control systems, nuclear reactor monitors, satellite systems, medical devices and chips in
automobiles.

The first commercially available formal verification systems may be able to generate
correctness proofs of simple designs fully automatically, but they are likely to need manual
guidance for more complicated ones. A possible scenario is that in-house system designers
will verify those parts of their designs that can be done automatically but will contract-out
the difficult parts to a ‘verification shop’ staffed by a new kind of professional (‘verification
engineers’). To see if this scenario is feasible one of us (Gordon) has taken on a contract
to verify a microprocessor designed for safety critical applications. This contract has only
just started; it is hoped that it will show that existing methods and tools are robust and

powerful enough to be used on real examples.
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