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Summary

Smartphones have evolved from simple candy-bar devices into powerful miniature

computing platforms. Today’s smartphones are complex multi-tenant platforms: users,

OS providers, manufacturers, carriers, and app developers have to co-exist on a single

device. As with other computing platforms, smartphone security research has dedicated

a lot of effort, first, into the detection and prevention of ill-intentioned software; second,

into the detection and mitigation of operating system vulnerabilities; and third, into the

detection and mitigation of vulnerabilities in applications.

In this thesis, I take a different approach. I explore and study attack vectors that

are specific to smartphones; that is, attack vectors that do not exist on other computing

platforms because they are the result of these phones’ intrinsic characteristics.

One such characteristic is the sheer number of sensors and peripherals, such as an

accelerometer, a gyroscope and a built-in camera. Their number keeps increasing with

new usage scenarios, e.g. for health or navigation. So I show how to abuse the camera and

microphone to infer a smartphone’s motion during user input. I then correlate motion

characteristics to the keyboard digits touched by a user so as to infer PINs. This can

work even if the input is protected through a Trusted Execution Environment (TEE), the

industry’s preferred answer to the trusted path problem.

Another characteristic is their form factor, such as their small touch screen. New input

methods have been devised to make user input easier, such as “gesture typing”. So I study

a new side channel that exploits hardware and software interrupt counters to infer what

users type using this widely adopted input method.

Another inherent trait is that users carry smartphones everywhere. This increases the

risk of theft or loss. In fact, in 2013 alone, 3.1M devices were stolen in the USA1, and

120, 000 in London2. So I study the effectiveness of anti-theft software for the Android

platform, and demonstrate a wide variety of vulnerabilities.

Yet another characteristic of the smartphone ecosystem if the pace at which new

devices are released: users tend to replace their phone about every 2 years, compared to

4.5 years for their personal computers. For already 60% of users today3, the purchase of

a new smartphone is partly funded by selling the previous one. This can have privacy

implications if the previous owner’s personal data is not properly erased. So I study

the effectiveness of the built-in sanitisation features in Android smartphones, lifting the

curtains on their problems and their root causes.

1http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-

million-last-year/index.htm
2http://www.london.gov.uk/media/mayor-press-releases/2013/07/mayor-challenges-

phone-manufacturers-to-help-tackle-smartphone
3https://www.gartner.com/newsroom/id/2986617
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This thesis demonstrates that smartphone platforms have, by their nature, enabled

new and specific avenues of attack. I hope these findings provide new insights for all

stakeholders involved in the development of smart platforms.
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Chapter 1

Introduction

1.1 Chapter Outline

Smartphones have become ubiquitous, with almost two billion people owning one at the

time of writing. These hand-held devices are used for everything: banking, games, Internet,

emails, chat, pictures, etc. With every new technology we get new security challenges and

paradigms, and these are the topic of my dissertation. My thesis is that smartphones enable

new attack vectors that are specific to them. It is paramount to study and understand

these specific vulnerabilities to better protect users.

Therefore, in this work, I explore attack vectors inherent in mobile platforms. I have

identified the following (non-exhaustive) characteristics:

Sensors and Peripherals: Smartphones come with a wide variety of built-in sensors

and peripherals. In Chapter 3, I devise a novel side channel attack that uses the built-in

camera to recover sensitive PINs entered by a user. This attack is possible because of

the way users type on their smartphones: a user jiggles his phone by typing. The attack

reduces the entropy of PINs and highlights some of the challenges that designers must be

aware of when implementing a trusted input path inside a Trusted Execution Environment

(TEE).

Form factor: Smartphones are portable hand-held devices. As such, they are small

in size and have a virtual keyboard implemented on top of a touch screen rather than

a physical keyboard. To improve the typing experience, new input methods have been

devised. The most popular is “gesture typing”, which is shipped on newer Android versions

by default. With gesture typing, users swipe their finger from one character to another

rather than tapping each key individually. In Chapter 4, I study a novel side-channel attack

against this input method to recover sentences entered by users. I show that malicious

(permissionless) apps installed on an Android device can monitor the system-wide screen’s

hardware interrupt counter and software interrupt counter, and then correlate these to

11
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text entered by users through supervised machine-learning techniques. These findings

highlight a new way in which system-wide resources can threaten user privacy.

Personal: Smartphones are personal devices. Users keep them nearby all the time and

carry them everywhere. But this increases the risk of devices being lost or stolen. In 2012

alone, smartphone robberies represented almost 50% of all robberies in San Francisco, 40%

in New York City and were up 27% in Los Angeles1. In Chapter 6, I study the effectiveness

of anti-theft software for the Android platform. I discover a wide variety of vulnerabilities

that allow a thief to recover a user’s personal data, even if the phone is remotely locked or

erased through anti-theft software. I highlight the erroneous assumptions made by app

developers and certain limitations of the Android API.

Development pace: The life cycle of a typical smartphone is short: users replace their

smartphone on average every 2 years, compared to 4.5 years for their desktop computers.

Often the purchase of a new smartphone is partly funded by selling the previous one.

Gartner anticipates the refurbished phone market being worth 140M by 20172. This can

have privacy implications if personal data is not properly erased. In Chapter 5, I study

the so-called Factory Reset function in Android smartphones. I provide a detailed analysis

of when, why and how it fails, highlighting the complexity of Android’s multi-tenant

ecosystem. I also provide concrete guidelines for Google and other vendors to improve the

reliability of the Factory Reset function.

1.2 Publications

During the course of my PhD, I have published the following:

• L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me While I Type: Inferring

Text Entered Through Gesture Typing on Android Keyboards,” in Proceedings of

Privacy Enhancing Technologies Symposium (PETS), 2016.

• S. Khattak, T. Elahi, L. Simon, C. M. Swanson, S. J. Murdoch, and I. Goldberg,

“SoK: Making Sense of Censorship Resistance Systems,” in Proceedings of Privacy

Enhancing Technologies Symposium (PETS), 2016.

• L. Simon, “A Gentle Introduction to Side Channel Attacks on Smartphones,” book

chapter, in The Book of Payments: Historical and Contemporary Issues in the

Cashless Economy BBL and LE, editors (Palgrave).

• L. Simon and R. Anderson, “Security Analysis of Android Factory Resets,” in

Proceedings of 4th Workshop on Mobile Security Technologies (MoST), 2015.

1gizmodo.com/5953494/hold-on-tight-smartphone-mugging-is-more-popular-than-ever
2https://www.gartner.com/newsroom/id/2986617

gizmodo.com/5953494/hold-on-tight-smartphone-mugging-is-more-popular-than-ever
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• L. Simon and R. Anderson, “Security Analysis of Android Factory Resets,” in Black

Hat Mobile Security Summit, 2015.

• L. Simon and R. Anderson, “Security analysis of consumer-grade anti-theft solutions

provided by android mobile anti-virus apps,” in 4th Mobile Security Technologies

Workshop (MoST), 2015.

• S. Khattak, L. Simon, and S. J. Murdoch, “Systemization of pluggable transports

for censorship resistance,” arXiv preprint arXiv:1412.7448, 2014.

• L. Simon and R. Anderson, “PIN Skimmer: Inferring PINs Through The Camera

and Microphone,” in Proceedings of 3rd Annual ACM CCS Workshop on Security

and Privacy in Smartphones and Mobile Devices (SPSM), 2013.
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Chapter 2

Background

2.1 Mobile Platforms

The cellphone market has changed radically over the last ten years. A decade ago, Symbian

was the leading operating system with more than 50% market share1, and Nokia was the

uncontested hardware market leader with 50% market share2. These two giants of the

ecosystem at the time are nowhere to been seen today. The last decade has seen vicious

competition, with many unsuccessful attempts by OEMs and carriers to capture mobile

market share. For example, MeeGo OS was Nokia’s last attempt to get back in the game,

after iOS and Android had stolen its lead. Ubuntu Touch was an attempt by Canonical to

launch an innovative open-source OS, but it failed to gain traction. Firefox Mobile was led

by Telefonica and targeted developing countries, but the project was discontinued in 2015.

Blackberry phones, once leaders in the enterprise sector, now represent less than 0.3% of

shipments in 20153. Tizen is an ongoing effort by Samsung to break free from dependency

on Android. CyanogenMod is a customized version of Android which OEMs and vendors

can use without having their hands tied to Google4,5. From this battle, two operating

systems have emerged victorious: Google’s Android OS, and Apple’s iOS. Together they

represent more than 95% of shipped devices in 2015 (Fig. 2.1).

The smartphone ecosystem comprises many entities (or stakeholders), and this has

direct implications on the security of mobile platforms. One major stakeholder of any

mobile platform is the OS provider: it develops, designs, and maintains the main

components of the smartphone OS with which users interact. The provider controls the

overall strategy of the OS, such as new features to incorporate in future releases, security

1http://www.internetnews.com/wireless/article.php/3584431
2http://www.canalys.com/newsroom/64-million-smart-phones-shipped-worldwide-2006
3http://www.idc.com/prodserv/smartphone-os-market-share.jsp
4http://uk.businessinsider.com/cyanogen-taking-over-android-2015-1
5http://www.techtimes.com/articles/46820/20150418/microsoft-partners-cyanogen-

bring-windows-apps-android-phones-google-worry.htm
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Android

82.8%

Others

0.7%

iOS

13.9%

Windows

2.6%

Figure 2.1: Smartphone OS market share in Q2 20151

mechanisms, etc. By controlling Android, Google can also align the OS development with

its overall business strategy.

The Trusted Execution Environment (TEE) is a headless, invisible OS used for

performing sensitive tasks and storing sensitive data. It can be used for enforcing a trusted

boot, for storing encryption keys and payment credentials, etc. The TEE is generally

shielded from the smartphone OS through hardware features. The set of requirements

that a TEE implementation must meet (e.g. APIs to communicate with the smartphone

OS, the security requirements, etc.) are defined by a not-for-profit industry association

called GlobalPlatform2. In practice, vendors tend to implement their own TEE from

scratch, either because they want special features or because available code-reviewed TEE

implementations are not free. This creates vulnerabilities.

The vendors, a.k.a. as Original Equipment Manufacturers (OEMs), design

the smartphones themselves. They decide what hardware goes into which device (e.g.

camera resolution, screen size), and control the marketing strategy for each device they

release. For business reasons, OEMs must differentiate their offer from their competitors’.

Customisation is visible through the user interface and additional software pre-installed.

The conception of a phone must happen fast because users upgrade their device every 2

years; this pace has implications for the security of devices.

Carriers, a.k.a. as mobile network operators (MNOs), provide access to the

1http://www.idc.com/prodserv/smartphone-os-market-share.jsp
2https://www.globalplatform.org

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.globalplatform.org


2.1. MOBILE PLATFORMS 17

mobile network for both voice and data usage. Historically, they have subsidized devices

from OEMs in many countries and this continues today. Many of their contracts run

over 1.5 or 2 years, and bundle mobile network access with a brand new device. This

may partly explain why most users change their phone every 2 years. Carriers may also

pre-install software on devices to offer additional services and for differentiation.

To connect to a mobile network (e.g. GSM, 3G), a phone must speak the relevant

wireless protocol. So all smartphones come with a “hidden” OS called the baseband OS

(or simply the baseband) that implements the protocol and radio stack. The baseband

runs on a dedicated processor that is different from the one where the smartphone OS runs.

To differentiate the two processors, it is common to refer to the smartphone OS one as the

“application processor”, and to the baseband one as the “baseband (radio) processor”. The

baseband provider is the entity that provides the baseband OS, it is distinct from the

smartphone OS provider. Cryptographic keys used by the baseband to authenticate to

the mobile network are stored on a SIM card, a tamper-resistant smart card. The SIM

card is owned by the carriers, but is designed and implemented by SIM providers (e.g.

Gemalto). The baseband OS comes with its own set of vulnerabilities and privacy issues.

End users are people who use devices. In particular, they can seamlessly install

software, a.k.a. apps, from an online app store. Apps are developed by app developers

through an SDK provided by the OS provider. In addition to the default OS app store,

certain OEMs also have their own online store. But there does not seem to be much

traction for those since app developers would rather release their app on the OS store to

reach a greater number of users.

App developers do not work for free. Sometimes a user must pay at installation time

or “in-app” for additional features. But most of the time, developers resort to embedding

ad libraries to monetize their app. These libraries are provided by advertisers, and

automatically display ads to users. The more an ad network knows about a user, the

more targeted the ads will be, the more likely a user is to click it, and the more likely the

app developer will be to make money. The incentives are perverse as users may want to

disclose as little information about themselves, while app developers generally want the

opposite.

Even with two dominant OSes, maintaining different code bases for each can be a

daunting task for app developers. Therefore, there exist 3rd-party SDK providers that

make life easier for developers by providing a unified API across different OSes.

In the next sections, we zoom in each of the dominant mobile platforms and highlight

how they differ from the above general picture.
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2.1.1 Windows

Windows Mobile is a group of mobile operating systems developed by Microsoft. The first

release dates back to 2000. Originally, the devices principally targeted were enterprise

pocket PCs and smartphones. They were based on Windows-CE, an OS for embedded

devices. To remain competitive with iOS and Android, Microsoft shifted its offer towards

Windows Phone (WP), with the goal of making it a consumer product rather than a

corporate-only device. The first version, WP7, was released in 2010 and was still based on

Windows-CE. WP8 moved away from Windows-CE and uses a Windows-NT kernel instead;

it was released in 2012, and support for WP7 ended in 2014. WP8 apps are developed with

a phone version of the Windows Runtime a.k.a. Windows Phone Runtime; it supports apps

written in C#, VB.NET and C/C++. In 2013, Microsoft acquired Nokia’s smartphone

division; and as a result, most Windows phones are manufactured by Nokia today. It costs

USD 19 for an individual and USD 99 for an enterprise to create a developer account and

publish apps on the store. Microsoft takes a 30% cut of developers’ revenue.

WP8 supports a range of security features1. Secure boot mitigates the risk of rootkits.

Code signing is mandatory for all OS components including drivers and pre-installed

apps. This is used to verify the integrity of the OS during secure boot. Apps also require

code signing and go through a vetting process before they are made available on the

Windows store for end users to download. Apps run in a sandboxed environment called a

“chamber” with a minimum set of “capabilities”. A capability gives an app the right to

access a resource, such as the phone’s current location, the phonebook, etc. The capabilities

required by an app must be listed by its app developer at compilation time. The list is

approved by end users at installation time in an all-or-nothing fashion. If a user installs

an app, this grants it access to the entire list of capabilities requested, and no fine-grained

revocation is possible afterwards. Full disk encryption (FDE) is also supported through

the Bitlocker technology. However the encryption keys are backed up in the Microsoft

cloud2. It is possible for enterprises to implement internal security policies on employees’

devices through Exchange ActiveSync.

2.1.2 iOS

iOS is Apple’s mobile OS. The first iPhone was released in 2007 and marks a milestone

in the evolution of smartphones3. It democratised touch screen displays while the leader

Symbian was still banking on physical keyboards or a stylus. Unlike Windows and Android,

Apple is the only OEM that ships iOS devices. In fact, there is only a single line of devices

1http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-blogs-

components-weblogfiles/00-00-01-55-06/8272.20_2C00_206.01_5F00_WP-8_5F00_

SecurityOverview_5F00_102912_5F00_CR.pdf
2http://windows.microsoft.com/recoverykey
3http://blog.gotchamobi.com/mobile-marketing/a-brief-history-of-smart-phones

http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-01-55-06/8272.20_2C00_206.01_5F00_WP-8_5F00_SecurityOverview_5F00_102912_5F00_CR.pdf
http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-01-55-06/8272.20_2C00_206.01_5F00_WP-8_5F00_SecurityOverview_5F00_102912_5F00_CR.pdf
http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-01-55-06/8272.20_2C00_206.01_5F00_WP-8_5F00_SecurityOverview_5F00_102912_5F00_CR.pdf
http://windows.microsoft.com/recoverykey
http://blog.gotchamobi.com/mobile-marketing/a-brief-history-of-smart-phones
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known as the “iPhone”. As a result, Apple acts both as the OS provider and the OEM,

and controls both software and hardware end-to-end. This has obvious advantages both

in terms of product integration, security, reactivity, and time-to-market. Like Windows,

there is a single app store. It costs USD 99 annually for a developer account, and Apple

takes a 30% cut on developers’ revenue. Apps are written in objective C, C or swift.

Apple phones have a wide range of security features. Code signing is mandatory for

every executable page, with the exception of the browser for JIT (this is in contrast to

Android where foreign code can be loaded at runtime in various ways [1]). iOS implements

Mandatory Access Control to shared resources such as the file system. By installing an app,

a user does not grant it any permissions, except for basic ones such as Internet access. At

runtime, when an app attempts to access sensitive resources (e.g. phone location, address

book, microphone), iOS prompts the user with a runtime dialog asking the user to confirm

or deny the access. Even once granted, permissions can individually be revoked in the

phone’s Settings menu at the user’s discretion. iOS also comes with secure boot with

cryptographic keys stored in hardware, encrypted partitions, and an integrated fingerprint

scanner1. For corporate users, Apple has partnered with IBM to boost its app offering2.

2.1.3 Android

Android OS is Google’s mobile OS. Its first release dates back to 2008. At the time, iOS’s

walled garden platform was the dominant player. So Google took a different approach by

promising a completely open source platform which OEMs and carriers alike can customise

to meet their needs. In return for providing the OS for free, OEMs and carriers must

pre-install Google services on it. There seems to be growing resistance from carriers

and OEMs towards Google’s not-so-open-source practices3. In turn, this creates space

for competitive OSes (CyanogenMod and Tizen) that promise truly open-source stacks.

Google Play is the official app store, but users are allowed to install apps from third-party

app stores not endorsed by Google. This is referred to as “sideloading” an app. This is

necessary for users in countries where the Google store is not accessible (e.g. China). It

costs a one-time USD 20 fee to create a developer account. Apps are written in Java and

C with JNI bindings.

The Android OS uses a Linux kernel with patches to improve battery life. Google

created Android with the idea that individual app components could talk to each other. So

Google incorporated a new IPC mechanism called Binder that apps can use to communicate.

Essentially, one can consider Android as a collection of “locally-networked” apps. And

this means that app developers must be careful about the confidentiality and integrity of

inter-app messages they transmit.

1https://www.apple.com/business/docs/iOS_Security_Guide.pdf
2https://www.apple.com/uk/business/mobile-enterprise-apps/
3http://uk.businessinsider.com/google-should-ditch-android-open-source-2015-4

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/uk/business/mobile-enterprise-apps/
http://uk.businessinsider.com/google-should-ditch-android-open-source-2015-4
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Android’s security model is based on the concept of application sandboxes. Prior to

Android 4.3, application sandboxes were implemented on top of Linux discretionary access

control (DAC), with different applications having different userids, and the application-

layer permission model relied on this application sandbox. In Android 4.3, Android added

Mandatory Access Control (MAC) through SELinux to tighten its security. Permissions

are declared by app developers at compilation time, and are used to restrict access to

system resources at run time. As for Windows, permissions were initially accepted in

an all-or-nothing fashion at installation by users. But starting from Android 6, this has

changed: individual permissions can now be revoked on a per-app basis in the phone

settings menu. Unlike on iOS, there is no runtime prompt and permissions are granted by

default. It is a user’s responsibility to “opt-out”. To compensate for its liberal approach,

Android ships with an on-device AV called “VerifyApps” that scans apps at installation.

Furthermore, Google scans apps in the Play store, and has the ability to scan the majority

of Android apps available on third-party stores through its web infrastructure. There

is also a vast amount of data that Google can mine for each Google developer account.

Thanks to surveillance and blacklisting, the number of infected devices has dropped sharply

over the last few years [2, 3]. But even this is not always sufficient, and malicious apps

regularly get through. In 2015 for example, Lookout found 20K apps containing rooting

functionalities in third-party stores1. In addition, there is a great deal of fragmentation

resulting from the numerous customizations applied by carriers and OEMs to different

phones. Combined with the pace at which devices are released, this creates vulnerabilities

that Google cannot mitigate alone.

Although customisation does introduce some vulnerabilities, it can also provide security

benefits. Samsung’s KNOX platform provides additional security through a special ARM

CPU mode called TrustZone. This mode prevents tagged resources (CPU caches, filesystem,

RAM, peripherals) from being accessed by the smartphone OS. Android also offers Mobile

Device Management (MDM) features through the Admin APIs, and a dual-persona option

called “Android for Work” was added in Lollipop (Android 5). Android supports FDE

through dm-crypt but only recently has it been integrated with the phone hardware.

Out-of-the-box, Android can also be customised by users themselves if they wish too,

through a process known as “rooting”. Rooting essentially gives a user root access to a

device. This is in sharp contrast to Apple and Microsoft’s approach. In practice however,

many OEMs try to prevent this and some even void the device warranty if they detect it.

Still, hackers often find ways to root a device through OS vulnerabilities.

1https://blog.lookout.com/blog/2015/11/04/trojanized-adware/

https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
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2.2 Security Enabler

Besides the new risks associated with smartphones, one must also acknowledge the security

benefits they can provide. In other words, smartphones are also “security enablers”.

The major area of research in this space is user authentication beyond character-based

passwords, for example by leveraging smartphone sensors and the touch screen [4].

The most-widely known is Android’s “gesture pattern” a.k.a. “graphical passwords”.

It is more usable than a traditional password, but its entropy is not always better than

a PIN because users do not select patterns randomly enough [5]. Picture passwords

also suffer from the same issue, which allows attackers to guess a significant number of

them in practice [6]. Some research has also gone into making passwords shoulder-surfing

resistant [7] and smudge resistant [8, 9]. Shake-On-It (Shot) [10] is a key exchange system

that uses the built-in vibrators and accelerometers to exchange data between two phones

with physical contact, thereby preventing relay attacks.

Two-Factor Authentication (2FA) may be the main practical security use of smart-

phones. It has been common via SMS for a decade, and smartphones make it easier to

deploy app-based versions of the same idea. Sound-proof [11] is a 2FA system that verifies

the proximity of a computer and a smartphone by comparing the ambient noise recorded

through their respective microphones. SigVerify [12] uses the accelerometer and gyroscope

to authenticate users and provide a proof of liveliness, based on a pattern a user draws by

waving the device in the air. Smartphones can also be used as a replacement to smartcards

by implementing a PKCS#11 token.

Another research direction to improve on passwords is called “continuous authentica-

tion”. In this paradigm, users are continuously authenticated through behavioural features.

These can be based on the way users interact with common UI elements [13], how they

touch their screen [14–19], how their hands move and hold a device [20], as well as other

characteristics such as when emails come in, which apps are used and when [21], etc.

There is a London startup1 banking on how users enter their PIN for authentication. As

continuous authentication provides only a certain level of guarantee, sometimes even these

systems must resort to a “strong” authentication mechanism such as a password. Deciding

when to strongly authenticate users incurs the same usability penalty that continuous

authentication tries to solve, so there are usability-security trade-offs [22]. Pico [23]

proposes an authentication platform based on a cloud of smart wearable devices. The

insight is that the combination of these wearable devices can uniquely identify you and it

is hard for an adversary to steal all of them.

Another line of research is to add biometrics to devices. A fingerprint scanner is already

shipping with iPhones, and Google has recently added support to Android. Besides

fingerprints, face recognition has also been supported on certain phones but this does not

1https://aimbrain.com

https://aimbrain.com
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appear to be so reliable1. There is also a startup2 developing ear-based biometrics. The

FIDO3 alliance has produced a flexible authentication standard that is being implemented

in recent devices. The big Internet giants such as Facebook and Google also use data-driven

behavioural biometrics to detect account compromise, and smartphones play an important

role in these. For example, if someone’s phone is currently in Paris but a login attempt is

made from Brazil, this can raise red flags.

2.3 Platform Vulnerabilities

For each stakeholder presented in Section 2.1, sub-classes of vulnerabilities have been

discovered. These may be platform-specific or generic, and we present them in the following

sections. The majority of mobile security research has been dedicated to evaluating the

security and privacy of the smartphone OS. So not surprisingly, there is a rich literature

on this. More specifically, the majority of papers are about Android so this is naturally

reflected in the following sections. There are probably four major reasons why this is the

case. First, Android has the largest market share (Section 2.1). Second, Android is open

source: anyone can review the code, compile it and run it, which reduces the barrier to

entry for most researchers. Academic researchers often do not have the resources and skills

to reverse-engineer binary code. It is time-consuming and risky, as they may find nothing

they can publish. Third, Android is more liberal in what it allows apps to do (e.g. runtime

code loading, background services, etc.), which increases the attack surface. Fourth, unlike

iOS, Google allows third-party OEMs. This means that the numerous entities involved

during the conception of a smartphone increase the risk of mistakes and bugs.

2.3.1 Smartphone OS Vulnerabilities

Vulnerabilities introduced by the OS provider directly affect the smartphone OS. Android

has seen its share of such problems, although no mass-scale exploitation has been uncovered

to date.

The most criticised part of Android has been its permission system. Users must

accept permissions on an all-or-nothing basis at installation time. No revocation is possible

afterwards. This has generated a large body of work. As odd as it might seem, Google itself

did not originally seem to know exactly which APIs needed which permissions. So some

early papers were just about clarifying this mapping [24]. Not surprisingly, app developers

1http://www.pcmag.com/article2/0,2817,2396321,00.asp
2http://www.cta.tech/Blog/Articles/2015/July/STARTUP-STORIES-Unlock-Your-Phone-

with-Your-Ears.aspx
3https://fidoalliance.org/fido-alliance-announces-72-certified-authentication-

products/

http://www.pcmag.com/article2/0,2817,2396321,00.asp
http://www.cta.tech/Blog/Articles/2015/July/STARTUP-STORIES-Unlock-Your-Phone-with-Your-Ears.aspx
http://www.cta.tech/Blog/Articles/2015/July/STARTUP-STORIES-Unlock-Your-Phone-with-Your-Ears.aspx
https://fidoalliance.org/fido-alliance-announces-72-certified-authentication-products/
https://fidoalliance.org/fido-alliance-announces-72-certified-authentication-products/
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did not understand the system either, and often requested more permissions than their

app needed [25]. Another issue with the permission system is whether permissions are

presented to users in an intelligible way. In 2012, people still did not understand them

well enough [26, 27] to make educated privacy decisions about apps. Certain permissions

were better understood than others though, for example the location one [28]. The only

way to gauge why an app needs sensitive permissions is to read its description and the

reviews in the app store. Some research has indeed tried to automate this process by

designing tools that assess the match between an app’s natural-language description and

the permissions it requests [29, 30]. But this can only take you so far. Furthermore, there

is also an underground economy of trading mobile app reviews [31].

There have been various efforts to re-think the permission model (i) to make it more

intuitive to users [32–36], (ii) to make permissions revocable after installation and at

runtime [37–39], and (iii) to grant permissions based on OS-controlled UI elements that

convey implicit user consent [40]. Google added a post-installation revocation feature in

Android 6 (Marshmallow).

Another related issue with permissions is the way they are granted during installation

and upgrade. Researchers found that malicious apps could request non-existing system

permissions. But when these become defined in a future version of the OS, the upgrade

process would automatically grant them [41, 42]. Other problems with the installation

process include a TOCTTOU vulnerability during app binary verification because the

latter is saved on a shared partition1. This allows an app to change the permissions

displayed to users during installation. Installation issues also include the (in)famous series

of so-called MasterKey vulnerabilities that allow tampering with an application’s code

without altering its original signature2,3. Stagefright is a recent series of vulnerabilities

affecting the parsing routines of multimedia files4 [43]. There is a clear trend towards

looking at the part of the OS written in native (i.e. C/C++) code today. This has received

a lot less attention than the Java parts to date.

Another feature of Android we touched upon in Section 2.1.3 is the network-like

communication that apps use to (i) request services and (ii) subscribe to asynchronous

events from system and third-party apps. The IPC mechanism is called Binder, on top of

which messages called “Intents” are transmitted. Intents are comprised of subelements

including the message itself and “routing” information used by the OS to deliver it to the

expected application. The IPC mechanism is actually trickier that it originally looked, so

some early papers documented how it works and the common pitfalls to avoid [44]. In

1http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-

vulnerability-could-expose-android-users-to-malware/
2https://bluebox.com/uncovering-android-master-key-that-makes-99-of-devices-

vulnerable/
3http://www.saurik.com/id/19
4https://blog.zimperium.com/zimperium-zlabs-is-raising-the-volume-new-

vulnerability-processing-mp3mp4-media/

http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
https://bluebox.com/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/
https://bluebox.com/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/
http://www.saurik.com/id/19
https://blog.zimperium.com/zimperium-zlabs-is-raising-the-volume-new-vulnerability-processing-mp3mp4-media/
https://blog.zimperium.com/zimperium-zlabs-is-raising-the-volume-new-vulnerability-processing-mp3mp4-media/
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practice, this means that certain messages may be intercepted and/or tampered with by a

malicious app [45], that the origin of an intent can be spoofed [46], and that supposedly-

private app functions may be exposed to other apps – the so called confused deputy

problem [47]. This does not solely affect third-party apps but also system apps and vendor

apps1 [48]. On a similar note, there has also been concern that multiple benign-looking

apps may communicate so as to share their individual permissions. So runtime systems

have been devised to help spot these [49].

Another widespread issue is the webview javascript bridge bug. It was apparently

disclosed by a blogger in 20122,3 (although we recall reading about it a year earlier on a

Chinese blog). All mobile platforms support web-based apps. These apps run javascript

code loaded inside a web engine. On Android, this engine is called a “webview”. To

interface javascript code with native APIs, so-called “javascript bridge” functions must

be implemented. These are entry points that are callable from javascript. Within these

bridge functions, an app developer can query native APIs to access the contact list, the

geolocation, etc. so long as the app has the relevant permissions. However, the Android

engineers overlooked the fact that any Java object inherits from the Object class, which

itself provides methods to construct new objects through reflection. This means that an

attacker who can load malicious code into a web app can use an innocuous-looking bridge

function to access all sensitive information allowed by the permissions granted to the app.

There have been few attempts to break the crypto in Android, but one major incident

is the (in)famous OpenSSL’s PRNG bug. It was found to be predictable because all apps

inherit from a common process (the Zygote) and the PRNG state was simply duplicated

across forks [50]. The same work also identified that the PRNG was not properly seeded

in certain cases. The theft of USD 5700 worth of Bitcoins was attributed to this bug in

20134.

There has also been some research into the user interface side of things. Early on in

2010, a wave of UI-redressing attacks hit Android [51]. They involved a UI component

called a Toast that can be overlaid on top of a foreground app by a permissionless app

running in the background. More recently, this area has regained interest, with researchers

discovering more ways to implement UI-hacking attacks to spoof UI elements, DoS users

or monitor what they do5,6 [52, 53]. On a higher level, researchers have also studied what

a “secure” mobile UI should look like [40, 54].

Another line of research has studied the interaction of the smartphone OS with the

1http://www.cvedetails.com/cve/CVE-2015-3843/
2http://d3adend.org/blog/?p=314
3https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-

remote-code-execution/
4http://arstechnica.com/security/2013/08/google-confirms-critical-android-crypto-

flaw-used-in-5700-bitcoin-heist/
5http://drops.wooyun.org/papers/9769
6http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/

http://www.cvedetails.com/cve/CVE-2015-3843/
http://d3adend.org/blog/?p=314
https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/
https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/
http://arstechnica.com/security/2013/08/google-confirms-critical-android-crypto-flaw-used-in-5700-bitcoin-heist/
http://arstechnica.com/security/2013/08/google-confirms-critical-android-crypto-flaw-used-in-5700-bitcoin-heist/
http://drops.wooyun.org/papers/9769
http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/
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physical world, such as secondary physical devices connected via short range wireless

technology. Early research looked at phone exploitation through its NFC stack [55–57].

Since then, researchers have looked at the access controls between an Android phone and a

Bluetooth-paired device. The take away message is that the Android OS does not provide

a reliable framework for a phone app and an IoT device to authenticate each other [58].

Therefore in practice, it is often possible to intercept messages between the two devices,

or even spoof one of them. More robust access control frameworks have been devised to

mitigate these risks [59]. More recently, research has also demonstrated how to control a

phone’s voice interface by playing inaudible sounds from a distance [60].

A few papers have looked at iOS security too. Researchers found that runtime user

confirmation popups ran in the same address space as apps, therefore an ill-intentioned

app could “skip” the user confirmation to access sensitive information without user

approval [61]. Flaws in the iTunes syncing process have also been showcased: once

a computer is compromised, it can install malicious apps on a connected iPhone [62].

Vulnerabilities called “cross-app resource access attacks (XARA)” have been discovered

recently. They are caused by a lack of app authentication when accessing sensitive resources

such as the Keychain. As a result, malicious apps may steal credentials stored by other

apps [63].

In this dissertation, we also look at platform vulnerabilities. For example in Chapter 4,

we show that some information about what users type in their keyboard is inadvertently

leaked to other apps by the OS. In Chapter 5, we present flaws in the Factory Reset of

Android smartphones.

2.3.2 OEM-Introduced Vulnerabilities

Besides vulnerabilities introduced by the smartphone OS provider, customisations by

OEMs can also affect the smartphone OS. This mostly applies to Android devices. iPhones

are exempt from this problem since Apple does not license its OS to other OEMs.

The first paper about OEM customisations set out to look for confused-deputy attacks

on 8 stock android phones [64]. Using static dataflow analysis techniques, researchers found

that for the 13 permissions they examined, 11 were leaked by pre-installed apps. Each

phone leaked up to 8 permissions. A following paper the next year (2013) showed that

85% of OEM-installed apps had more permissions than they needed to run, and concluded

that between 65% and 80% of permission leaks were caused by OEM customisations [65].

The following year, researchers moved lower in the stack and looked at driver-level

customisations. They found that the permissions of certain device files (e.g. /dev/camera)

were read/write-able by permissionless apps on the phone [66]. Other research has
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showcased vulnerabilities in Qualcomm drivers1,2. More recently, researchers have also

found that OEMs inadvertently relax the default SELinux policy when customising their

phones [67].

There is a long list of OEM-introduced vulnerabilities reported by industry researchers

too. Samsung hit the headlines several times. Some of its phones suffered from the

so-called “USSD vulnerability”, which allowed a malicious webpage to push commands

to the Dial app. This led to premium number charges or factory reset of the device3.

Samsung was caught removing bound checks in its GPU driver to improve performance,

giving permissionless apps the ability to read/write arbitrary memory pages [68]. Users’

fingerprints collected by the Samsung S5 were not processed securely on the device4. The

default Samsung keyboard did not properly validate input it received through HTTP,

which allowed a network attacker to gain remote code execution5 [69]. Google showcased

11 security vulnerabilities affecting the latest Samsung S66. A recent path traversal attack

(i.e. improper validation of filenames) led to remote code execution from a malicious

webpage7,8.

Other OEMs have also had their share of problems. One can simply look at the

number of root exploits found by hackers to customise their phones9,10 [70]. The Trusted

Execution Environment (TEE) is also a source of problems. It has been little studied

but vulnerabilities have still emerged, often leading to root exploits and/or secure boot

bypass on various phone models11,12,13. The diversity of TEE implementations in industry

eventually leads to a greater attack surface and risk of vulnerabilities14,13 [71].

It is hard to release bug-free software, hence it is essential for devices to receive regular

and timely updates. Unfortunately, these do not occur often enough in practice on the

Android platform [72]. This is probably due to the many stakeholders slowing down the

1http://mlsec.org/joern/docs/2014-inbot.pdf
2http://androidvulnerabilities.org/by/manufacturer/Qualcomm
3https://www.nowsecure.com/blog/2012/09/25/remote-ussd-code-execution-on-android-

devices/
4http://www.theguardian.com/technology/2015/apr/23/samsung-investigating-

fingerprint-hack-galaxy-s5
5https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-

using-arbitrary-file-writes-and-multidex-applications/
6http://googleprojectzero.blogspot.co.uk/2015/11/hack-galaxy-hunting-bugs-in-

samsung.html
7http://blog.quarkslab.com/remote-code-execution-as-system-user-on-android-5-

samsung-devices-abusing-wificredservice-hotspot-20.html
8https://code.google.com/p/google-security-research/issues/detail?id=489
9http://wiki.cyanogenmod.org/w/Devices

10http://androidvulnerabilities.org/by/manufacturer/
11http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
12http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.

html
13http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
14http://bits-please.blogspot.com.ar/2015/08/exploring-qualcomms-trustzone.html

http://mlsec.org/joern/docs/2014-inbot.pdf
http://androidvulnerabilities.org/by/manufacturer/Qualcomm
https://www.nowsecure.com/blog/2012/09/25/remote-ussd-code-execution-on-android-devices/
https://www.nowsecure.com/blog/2012/09/25/remote-ussd-code-execution-on-android-devices/
http://www.theguardian.com/technology/2015/apr/23/samsung-investigating-fingerprint-hack-galaxy-s5
http://www.theguardian.com/technology/2015/apr/23/samsung-investigating-fingerprint-hack-galaxy-s5
https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/
https://www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/
http://googleprojectzero.blogspot.co.uk/2015/11/hack-galaxy-hunting-bugs-in-samsung.html
http://googleprojectzero.blogspot.co.uk/2015/11/hack-galaxy-hunting-bugs-in-samsung.html
http://blog.quarkslab.com/remote-code-execution-as-system-user-on-android-5-samsung-devices-abusing-wificredservice-hotspot-20.html
http://blog.quarkslab.com/remote-code-execution-as-system-user-on-android-5-samsung-devices-abusing-wificredservice-hotspot-20.html
https://code.google.com/p/google-security-research/issues/detail?id=489
http://wiki.cyanogenmod.org/w/Devices
http://androidvulnerabilities.org/by/manufacturer/
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://bits-please.blogspot.com.ar/2015/08/exploring-qualcomms-trustzone.html
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process, as well as the lack of incentives to maintain older devices – OEMs and carriers

make money when they sell devices, so maintaining older devices would be economically

unsound. There may also be a resource issue, as deadlines cause a developer to move its

customisation team from the current product to the next one, leaving no-one to maintain

legacy versions.

In this dissertation, we also present OEM vulnerabilities. For example in Chapter 5, we

highlight flaws in the way vendors have patched the Factory Reset of Android smartphones.

In Chapter 6, we show how certain vendor customisations may allow thieves to retrieve

personal information on a PIN-locked device.

2.3.3 Carrier-level Vulnerabilities

Carriers maintain the mobile network and provide SIM cards. Phones access the network

through the baseband OS which is provided by a third party. Security issues can therefore

emerge (i) at the mobile network level, (ii) at the SIM level, and (iii) in the baseband OS.

SIM-based attacks are almost unheard of since the SIM incorporates hardware protection

mechanisms that require lab attacks in order to be bypassed. Such attacks do not scale

easily. Two prominent attacks are worth mentioning though. The first was demonstrated

by Karsten Nohl in 2013. He demonstrated how he could recover the 56-bit DES encryption

key of a SIM by sending a text message that spoofed the identity of the carrier1 [73].

The hack worked because of the small keyspace. The second was the recovery of SIMs’

cryptographic keys through Differential Power Analysis (DPA)2 [74] at low cost. The

takeaway message is that SIM cards are becoming so cheap that certain manufacturers no

longer implement known side-channel countermeasures.

Baseband attacks have been gaining interest too3. They have been studied by Wein-

mann [75], Mulliner [76] and Solnik and Blanchou [77]. In particular, Solnik and Blan-

chou [77] demonstrated a complete bypass of the main OS lock screen on Android and

iOS devices. They exploited Over-The-Air (OTA) update mechanisms used by carriers.

More recently, researchers managed to hack into the Samsung Galaxy S6 baseband and

reflash it remotely4.

The mobile network has its own set of wireless protocols such as GSM, 3G, 4G and

LTE. These protocols have had their share of problems. A5/1, a stream cipher used to

provide over-the-air communication in GSM, has a key length of 56/64 bits only. This was

a deliberate choice to allow government agencies to break it. Not surprisingly, breaking it

1https://srlabs.de/rooting-sim-cards/
2https://www.youtube.com/watch?v=x8exHMhGy1Q
3https://www.youtube.com/watch?v=D59oYs3wUFA
4http://www.theregister.co.uk/2015/11/12/mobile_pwn2own1/

https://srlabs.de/rooting-sim-cards/
https://www.youtube.com/watch?v=x8exHMhGy1Q
https://www.youtube.com/watch?v=D59oYs3wUFA
http://www.theregister.co.uk/2015/11/12/mobile_pwn2own1/


28 CHAPTER 2. BACKGROUND

has also become feasible for less funded attackers with just USD 10001,2 [78–80]. Breaking

more recent versions of the cipher is also an area of interest [81]. An even bigger issue with

GSM is its lack of authentication of the base station. It is therefore possible for anyone

with a radio transmitter to act as a base station and trick mobile devices into connecting

to it. Such MiTM devices are called Stingers or IMSI-catchers [82]. They can capture the

IMSI and IMEI for tracking purposes, as well as intercept audio data of outgoing calls.

Mechanisms to detect them have been proposed3,4 [83]. Vulnerabilities in GSM’s paging

procedure can also lead to communication interception [84]. With the rise of femtocells,

attacking a carrier’s network using temporary infrastructure has also become a realistic

threat to consider [85].

IMSI-catchers require an attacker to be in the vicinity of its targets. But there exist

other techniques to achieve the same remotely. The Signalling System No.7 (SS7) is a

signalling protocol for public switched telephone network (PSTN). It is used for call setup

and teardown. Through the standardization of the SIGTRAN protocol, it has become

possible to transfer SS7 messages over IP networks such as carriers’ networks. SS7 messages

are neither encrypted nor authenticated. Therefore, they allow attackers to remotely track

mobile subscribers as well as redirect communications for interception5,6,7,8 [86].

There has been a renewal of interest in the privacy implications of carriers’ network

protocols, such as the limitation of temporary IMSI (TIMSI) to prevent IMSI-catcher-based

tracking [87, 88] and the feasibility of tracking on LTE networks [89]. By leveraging network

delays resulting from the radio state of a mobile device (e.g. idle state), it is even possible

for a remote device to identify a victim IP by sending the victim a few messages [90]. More

recently, LTE implementation vulnerabilities have also been showcased. Voice-over-LTE

uses the smartphone OS and the SIP protocol to handle call initialization and tear down.

This, combined with the lack of access control implemented by carriers, means that a

malicious app running on the smartphone OS can implement caller-spoofing, over-billing

and denial-of-service attacks by sending rogue SIP packets onto the network9 [91]. There

is also a permission mismatch on Android, since voice services – usually protected through

a CALL PHONE permission, can be accessed with the innocuous internet permission –

for sending SIP packets. Similar issues are reported in [92]. Battery-draining and DoS

attacks were also demonstrated by exploiting NAT and firewall rules implemented by

cellular middleboxes [93].

1https://srlabs.de/decrypting_gsm/
2https://www.youtube.com/watch?v=0hjn-BP8nro
3https://secupwn.github.io/Android-IMSI-Catcher-Detector/
4https://opensource.srlabs.de/projects/snoopsnitch
5http://secuinside.com/archive/2015/2015-2-7.pdf
6http://www.ptsecurity.com/upload/ptcom/SS7_WP_A4.ENG.0036.01.DEC.28.2014.pdf
7http://blog.ptsecurity.com/2015/01/mobile-eavesdropping-via-ss7-and-first.html
8https://www.washingtonpost.com/news/the-switch/wp/2014/12/18/german-researchers-

discover-a-flaw-that-could-let-anyone-listen-to-your-cell-calls-and-read-your-texts/
9https://www.kb.cert.org/vuls/id/943167

https://srlabs.de/decrypting_gsm/
https://www.youtube.com/watch?v=0hjn-BP8nro
https://secupwn.github.io/Android-IMSI-Catcher-Detector/
https://opensource.srlabs.de/projects/snoopsnitch
http://secuinside.com/archive/2015/2015-2-7.pdf
http://www.ptsecurity.com/upload/ptcom/SS7_WP_A4.ENG.0036.01.DEC.28.2014.pdf
http://blog.ptsecurity.com/2015/01/mobile-eavesdropping-via-ss7-and-first.html
https://www.washingtonpost.com/news/the-switch/wp/2014/12/18/german-researchers-discover-a-flaw-that-could-let-anyone-listen-to-your-cell-calls-and-read-your-texts/
https://www.washingtonpost.com/news/the-switch/wp/2014/12/18/german-researchers-discover-a-flaw-that-could-let-anyone-listen-to-your-cell-calls-and-read-your-texts/
https://www.kb.cert.org/vuls/id/943167
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2.4 App Vulnerabilities

A large proportion of app vulnerabilities result from design choices in the smartphone OS

of the kind discussed in Section 2.3.

One prominent issue on Android is that many apps improperly authenticate and parse

incoming IPC messages1 [45–47, 94] (Section 2.3.1). More subtle IPC problems arise

when dealing with web-based apps. Because of web mashups, it becomes impossible for

a receiving app (e.g. Facebook) to identify the origin of a request [95, 96]. Prominent

apps such as Facebook create custom handlers for url schemes (e.g. fb:// ) which could be

subverted to access supposedly-private functions in the app – a special case of improper

“intent” validation. Similar issues have been identified in third-party mobile development

SDKs [97]. More generally, mobile development SDKs add an extra layer where things

can go wrong2.

At the network level, apps sometimes improperly validate SSL certificates. Both

static [98] and dynamic [99] analysis tools have been devised to detect such problems –

the latter being far more accurate. Researchers have also demonstrated that they can

infer what users do on their phone by monitoring app traffic [100]. It is even possible for

an Android app to work out if a user is home by monitoring the characteristics of traffic

between an app and its associated home surveillance/motion detection system [101].

Certain apps do not properly authenticate the origin of code they load at runtime [1].

Web-based apps do not properly validate their input, leading to cross-site scripting

vulnerabilities [102]. Apps do not always follow the best practices for storing authentication

tokens [103] (e.g. static hard-coded credentials). As early Android versions did not support

a secure storage necessary to do this properly without killing usability, it may be unfair to

blame app developers. Moreover, the impact of such problems is limited in practice.

Most of the studies cited above attempt to identify a certain class of vulnerabilities

in a large amount of apps, often through static analysis. Some papers take a different

approach, by looking for a wide variety of vulnerabilities within a smaller set of apps. This

usually requires manual analysis. For example, many popular Chinese apps were found

to implement authentication improperly to their remote server [104], and this can be as

stupid as hardcoding credentials in the app [105]. Popular banking apps were found to do

not always follow best security practices either [106].

In this dissertation, we perform a thorough security analysis of the prominent Android

anti-theft apps [107]. We highlight a set of problems such as improper API use, SSL

validation issues, etc. (Chapter 6).

1http://www.cvedetails.com/cve/CVE-2015-3843/
2http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-

straight-on-moplus-sdk-and-the-wormhole-vulnerability/

http://www.cvedetails.com/cve/CVE-2015-3843/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
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2.5 Malware

2.5.1 Malware Categories

Research on identifying malicious apps has generated the greatest number of papers in

the mobile security literature. But it is often not easy to compare approaches taken by

different researchers because there is no consensus on what should be considered to be

malware. So in the following, we lay out a list of malware “types” that are prevalent in

the literature.

In the early days of mobile security research (2007-2011), malware principally referred

to an app that could gain root access to a device. The reason for this simplified view

may have been the immaturity of the field. Within the first three years after Android’s

initial release, so many root vulnerabilities were discovered1 that there was little point

looking beyond root malware anyway.

Since then, the community has sharpened its understanding of what can be considered

malware. Google itself maintains a list of 17 different types of malware in its yearly security

report [108] – probably the most granular and comprehensive classification available. Google

goes further than most other research endeavours by even considering DoS and malicious

websites in its classification. This level of granularity is not essential to understand mobile

malware, so we keep the description simpler in the following paragraphs.

Adware and spyware are not malware in the ordinary sense, since they do not trick

users into installing software; neither do they exploit vulnerabilities in devices. They play

and abide by the same rules as other apps, except that they abuse them somewhat. Adware

is a major problem on mobile platforms because ad libraries are packaged into legitimate

apps by developers. So ad libraries enjoy the same level of permissions and rights as the

applications themselves do. This increases the attack surface both on Android2 [109] and

iOS3. There have been proposals to implement privilege separation between apps and

their ad components [110–114], but none have been deployed. Furthermore, these do not

prevent exploitation of OS vulnerabilities by ad libraries2. Spyware abuses the permission

system and siphons out more information than strictly needed, or simply does not alert

users when and why it collects personal information. Data collected may include device

identifiers, users’ email addresses, contacts, user location, etc. Spyware has emerged as

the biggest threat to the mobile ecosystem, and this may explain in part why Google has

introduced permission management features in Android 6. A lot of papers have looked at

the detection of spyware, through field studies [115, 116], static analysis [117, 118] and

dynamic analysis [119, 120].

1http://androidvulnerabilities.org/by/year/
2https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
3https://www.fireeye.com/blog/threat-research/2015/11/ibackdoor_high-risk.html

http://androidvulnerabilities.org/by/year/
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
https://www.fireeye.com/blog/threat-research/2015/11/ibackdoor_high-risk.html
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Another type of malware is chargeware. These apps attempt to make money by

charging users. They used to involve sending SMS to premium numbers. Google actively

scans for these now. Recent Android versions also prompt users with a confirmation

dialog if they detect an app sending a text to a premium number. Chargeware has also

been WAP-based: in this scenario, attackers exploit WAP billing by automating website

interactions. According to Google, chargeware declined by 60% between the first and last

quarters of 2014 thanks to Google’s VerifyApps system [108].

Another emerging type of malware is so-called ransomware. These apps lock up the

phone screen or user files. Then they ask users to pay a ransom to get it unlocked. There

is little academic research on this yet, but the technique has been gaining in popularity

recently among malware authors [108].

There is such a rich spectrum of malware type that the term “Potentially Harmful

Application (PHA)” has been coined to cover them all. PHA encompasses any app

or behaviour that could, potentially, elicit undesired behaviours. As a result, many

papers consider the detection of only a subset of PHA, be it through static [121–125] or

dynamic [126–129] analysis. Overall, various sandbox frameworks have emerged to help

researchers study malware, e.g. [130, 131].

A recurring question about mobile security in general is the extent to which malware is

a problem. Mobile Anti-Virus companies claim Android is riddled with malware, whereas

Google believes 99% of users do not benefit from installing a mobile AV app1. In 2015,

Symantec again claimed that 17% of all Android apps were malware2. Even though

Android surely could not withstand targeted attacks by well funded attackers, research

has repeatedly found little evidence of malware in the Google Play store. Infection rates

reported have been below 0.5% [121, 122, 132, 133]. By the end of 2015, Google [108]

and Alcatel-Lucent [3] independently reported around 0.1% infection rates for PHA. So

this raises an other question: are we good enough at detecting mobile malware? Perhaps

not quite; in 2015, a root app on the Google Play store was installed by more than 100K

users3!

2.5.2 Malware Distribution Channels

One prominent way to distribute malware is through repackaged apps in third-party app

stores. Static and dynamic analysis approaches have been devised to detect them [134–137].

Another avenue to distribute malware is through ad libraries and networks4. More

interestingly, attackers are increasingly going after developers themselves, e.g. by distribut-

1https://nakedsecurity.sophos.com/2014/07/09/googles-android-security-chief-dont-

bother-with-anti-virus-is-he-serious/
2https://www.symantec.com/security_response/publications/threatreport.jsp
3https://securelist.com/blog/mobile/71981/taking-root/
4https://blog.lookout.com/blog/2015/11/04/trojanized-adware/

https://nakedsecurity.sophos.com/2014/07/09/googles-android-security-chief-dont-bother-with-anti-virus-is-he-serious/
https://nakedsecurity.sophos.com/2014/07/09/googles-android-security-chief-dont-bother-with-anti-virus-is-he-serious/
https://www.symantec.com/security_response/publications/threatreport.jsp
https://securelist.com/blog/mobile/71981/taking-root/
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
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ing trojanized IDEs on third-party websites1, through phishing techniques and by trying

to buy the data app developers collect.

Another, little-studied way to install malware on devices is by infiltrating the supply

chain. In January 2014, it was hypothetised that a newly-discovered android bootkit was

inserted into devices by retailers in an IT mall in Zhongguancun, Beijing2. Later in March,

Marble security firm claimed having discovered a pre-installed malicious NetFlix app in

phones from various vendors3. One month later, Kaspersky also detected pre-installed

malware supposedly installed with a kit sold by Chinese company Goohi4. In 2015, the

German company G Data also found evidence of Android devices pre-loaded with malware5.

The company believes the malware was introduced by middlemen who operate in China.

Other companies like mSpy6 openly sell smartphones from various vendors pre-loaded with

spyware.

2.5.3 Mitigation Solutions

Mitigation techniques against malware can be broadly classified into (i) those that require

OS changes and (ii) those that only require an app to be installed. App-based mitigations

are usually less robust than OS-based ones, but they can be widely deployed.

The first work to suggest using a normal app to prevent spyware is Aurasium [138].

This takes as input an Android installation file, injects a library into it, and outputs a new

installation file. The injected library is launched at runtime and hooks into all syscalls. This

allows Aurasium to intercept accesses to sensitive resources such as contacts, etc. A similar

system called I-Arm-Droid [139] re-writes the Java bytecode so as to instrument sensitive

APIs at runtime. AppCage [140] uses Software Fault Isolation (SFI) to sandbox untrusted

code. NativeWrap [141] confines different web domains into different security domains by

re-writing webview apps. Boxify [142] is an Android app that intercepts all a non-trusted

app’s access attempts to shared resources. This is achieved by running the untrusted app

in a confined process through Android’s isolated process feature. PrivacyGuard [143] runs

a VPN server on a smartphone to proxy and filter other apps’ traffic.

Another approach to mitigating malware is through OS changes. There is a wide

spectrum of work. The first approach improves Android’s permission model by adding

flexible permission management features [37–39]. As we mentioned in Section 2.3.1, a

subset of these ideas was eventually incorporated by Google into Android 6. Another

1https://www.fireeye.com/blog/threat-research/2015/11/xcodeghost_s_a_new.html
2http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
3http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-

on-new-phones/
4https://www.securelist.com/en/blog/208213028/Caution_Malware_pre_installed
5https://securelist.com/blog/mobile/71981/taking-root/
6http://www.mspy.com/spy-phone/

https://www.fireeye.com/blog/threat-research/2015/11/xcodeghost_s_a_new.html
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-on-new-phones/
http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-on-new-phones/
https://www.securelist.com/en/blog/208213028/Caution_Malware_pre_installed
https://securelist.com/blog/mobile/71981/taking-root/
http://www.mspy.com/spy-phone/
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line of work mitigates system and/or privileged application compromise by retrofitting

Mandatory Access Control (MAC) into the existing OS, such as with SELinux [144]

or Tomoyo [145]. Google incorporated SELinux into Android 4.3. A few projects take

isolation further through so-called lightweight virtualization. These leverage container-like

ideas to create virtual namespaces [146–148]. More reliable still, we find solutions based

on actual microkernels [149] and virtualization [150] that further reduce the attack surface.

Using hardware features of ARM CPUs, ARMLock [151] implements SFI to run untrusted

code.

2.6 Side Channels

Side-channel leaks can affect a wide range of communication layers such as protocols,

applications, the OS, the CPU, etc. Side-channel attacks abuse subtle information leakage

in design and/or implementation. In the following paragraphs, we give a brief overview of

side channels in general, then we focus on those that are specific to smartphones.

On smart cards, power-analysis side channels were introduced by Kocher [152] and

can recover keys by monitoring power consumption during cryptographic operations.

Cryptographic keys can also be recovered by unprivileged software through cache-timing

attacks if the code path or data access is data-dependent, e.g. unprotected RSA modular

exponentiation [153] or AES table lookups [154, 155]. With the rise of virtualization

and cloud computing, interest in this area has blossomed [156–158]. Approaches for

cache-based attacks include the L3-cache Flush+Reload [159–161] and Flush+Flush [162],

the L1-cache Prime+Probe [163, 164], and Evict+Time [163] techniques. These attacks

have been hampered on ARM, and by extension on smartphones, because of a lack of

(i) unprivileged flush instruction and (ii) support for inclusive shared last-level caches.

The literature on cache-based side channels on ARM is therefore sparse [165–168]. Some

recent attempts to port existing x86 techniques on to newer ARM CPUs with support for

inclusive shared last-level cache (ARM Cortex-A53/A57) have recently succeeded [169], so

these are becoming a practical threat.

Another general category of side channels are those based on protocols. Cache [170]

statistically fingerprints 802.11 implementations through their duration field. Nmap1 sends

a series of network packets to a machine and infers the OS it runs based on its network

stack behaviour.

Another general category of side channels are those based on radio. Perta et al. [171]

abuse the different radio states of cellular phones to infer the phone IP address; the

time it takes a phone to reply to incoming traffic depends on its level of radio activity.

Brik et al. [172] identify the source network card of an IEEE 802.11 frame through passive

radio-frequency analysis.

1https://nmap.org/

https://nmap.org/
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Another category of side-channels are those based on traffic. Stöber et al. [173]

identify smartphones based on their traffic. Conto et al. [100] infer a smartphone user’s

activity based on its internet traffic. More generally, internet packet length and timing

characteristics are also used for webpage fingerprinting [174] and identifying protocols such

as Tor [175]. Traffic analysis can also be used to infer voice content in encrypted VoIP

traffic [176, 177].

More specific to smartphones, we find attacks that abuse sensors and/or peripherals.

Mäntyjärvi et al. [178] use gait recognition through the accelerometer to identify users.

Michalevsky et al. [179] infer a person’s gender by recovering spoken words through

smartphone accelerometers. Sarfraz et al. [180] infer a user’s location through their

smartphone accelerometer. Michalevsky et al. [181] also infer a person’s location by

monitoring their phone’s power consumption – it’s correlated with the distance to the

base station. TapLogger [182], TouchLogger [183], and TapPrint [184] infer a PIN entered

on a smartphone by monitoring phone motion inferred from real-time accelerometer data.

Dey et al. [185] fingerprint devices based on their accelerometer characteristics. Our work,

presented in Chapter 3, works out the PIN through the phone camera, which is used to

infer device motion during user input.

At the API level, Zhou et al. [186] infer the location of a user’s smartphone through its

software voice assistant. Specifically, they leverage the mutually exclusive access control of

the audio API to infer the length of spoken words, and from these deduce the directions

taken by a user.

The last category of side channels are those based on virtual filesystems such as procfs.

Zhang and Wang [187] demonstrate how an app’s stack pointer exposed by procfs can be

used to fingerprint keystroke events and infer a user’s password. Jana and Shmatikov [188]

infer information contained in a webpage by monitoring the memory footprint of the

web browser while it loads the page. More recently, Zhou et al. [186] show how traffic

information gleaned by a smartphone app through virtual files can be used to fingerprint

Twitter and identify the user.

In this dissertation, we explore two novel side channel attacks. In Chapter 3, we

estimate the motion of a smartphone during user input through the front camera; and we

use this motion as a side channel to infer PINs. In Chapter 4, we exploit the timing of the

screen’s hardware interrupts and of the context switch to infer what users type on their

phone.

2.7 Forensics

There are three reasons why smartphone forensics matter. First, forensics are valuable

for law enforcement agencies. They must support different platforms and a myriad of
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different apps and phone models. This, coupled with the lack of privileges that normal

apps have, makes forensic software challenging to write. Second, thieves could also extract

personal information from devices they steal. Unlike the police, thieves need not support

all models because they can target the most common phones only. Third, data could also

be extracted from second-hand devices, and even if users have sanitised their device, as

we show through our study of Android Factory Reset in Chapter 5.

2.7.1 Data Acquisition

Cannon [189], Osborn1, and Ossmann and Osborn [190] attempted to access personal data

on smartphones with physical access to them, by exploiting Android’s debug options and

bootloader mis-configurations. Vulnerabilities in the trusted boot, TEE and Bootloader

implementations can also be used to gain OS-level access to the chip2,3,4,5,6,7,8 [71].

Breaking into the device through the baseband OS [75–77] also gives enough privilege

to perform data acquisition. Pereira et al. [191] discuss the security implications of

non-standard AT commands exposed by certain Samsung phones via USB; these could

be also used to access personal data even on screen-locked devices. Mahajan et al. [192]

use commercial software on 5 different devices to recover Viber and Whatsapp chats from

unlocked Android smartphones. The forensic software they use requires Android’s debug

option to be enabled for storage acquisition.

Müller et al. [193] use a cold boot attack on Samsung Nexus devices to recover

FDE keys from RAM. Their hack, however, requires an open (or unlocked) Bootloader.

To mitigate cold boot attacks, Copl et al. [194] use ARM-specific mechanisms to keep

application code and data on the System-on-Chip (SoC) rather than in DRAM. Tresor [195]

implements AES using x86’s debug registers. AESSE [196] achieves similar goals through

SSE instructions. CleanOS [197] is a customised OS that keeps plaintext key and data in

memory only when necessary. Encryption keys are not stored on the smartphone but in

the cloud: they are requested on a need-to-know basis and erased from RAM after use.

1http://www.irongeek.com/i.php?page=videos/derbycon2/1-2-9-kyle-kos-osborn-

physical-drive-by-downloads
2http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.

html
3http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
4http://bits-please.blogspot.com.ar/2015/08/exploring-qualcomms-trustzone.html
5https://www.codeaurora.org/projects/security-advisories/lk-insufficient-

verification-tagaddr-when-loading-device-tree-cve-2014-0974
6https://www.codeaurora.org/projects/security-advisories/incomplete-signature-

parsing-during-boot-image-authentication-leads-to-signature-forgery-cve-2014-0973

7https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-

bypasses-signature-verification-cve-2014-4325
8https://www.codeaurora.org/projects/security-advisories/lk-improper-partition-

bounds-checking-when-flashing-sparse-images-cve

http://www.irongeek.com/i.php?page=videos/derbycon2/1-2-9-kyle-kos-osborn-physical-drive-by-downloads
http://www.irongeek.com/i.php?page=videos/derbycon2/1-2-9-kyle-kos-osborn-physical-drive-by-downloads
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-bootloader.html
http://bits-please.blogspot.com.ar/2015/08/exploring-qualcomms-trustzone.html
https://www.codeaurora.org/projects/security-advisories/lk-insufficient-verification-tagaddr-when-loading-device-tree-cve-2014-0974
https://www.codeaurora.org/projects/security-advisories/lk-insufficient-verification-tagaddr-when-loading-device-tree-cve-2014-0974
https://www.codeaurora.org/projects/security-advisories/incomplete-signature-parsing-during-boot-image-authentication-leads-to-signature-forgery-cve-2014-0973
https://www.codeaurora.org/projects/security-advisories/incomplete-signature-parsing-during-boot-image-authentication-leads-to-signature-forgery-cve-2014-0973
https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
https://www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
https://www.codeaurora.org/projects/security-advisories/lk-improper-partition-bounds-checking-when-flashing-sparse-images-cve
https://www.codeaurora.org/projects/security-advisories/lk-improper-partition-bounds-checking-when-flashing-sparse-images-cve
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Hardware attacks through unprotected JTAG1,2 and UART [190] can also be used

for data acquisition on smartphones. Attaching a bus monitor to monitor data transfers

between a CPU and main memory is also feasible, and commercial solutions already exist3,4.

DMA attacks have been reported by Becher et al. [198], Boileau [199], Witherden5, and

Piegdon [200], although not on smartphones. Breeuwsma et al. [201] present low-level

acquisition techniques to copy all a flash’s content through flasher tools, JTAG, or physical

extraction.

2.7.2 Data Reconstruction

Algorithms to descramble data after acquisition are paramount, especially to make sense

of scattered pieces of data. GUITAR [202] is an algorithm that attempts to reconstruct

the user interface through data remnants found in RAM. Zandwijk and Peter [203] devise

methods to make sense of this raw data: this involves overcoming LFSR-based scrambling

and leveraging binary cyclic codes used by the chip firmware. Luke and Stokes [204],

Billard and Hauri [205], and Lewis and Kuhn [206, Chapter 5] devise various techniques

to recover video files and even generic files from flash-based media. Walls et al. [207, 208]

present algorithms for forensic triage of non-sanitised feature phones and smartphones.

2.7.3 Secure Deletion

Some studies have looked at users’ practices upon device disposal. For example, Garfinkel

and Shelat [209] studied sanitisation practices of second-hand magnetic hard disks and

found no standard practice in 2003, with only 9% of disk properly sanitised. How to perform

“secure deletion” has also been a topic of interest. Wei et al. [210] empirically assessed the

reliability of hard drive techniques and of the SSDs’ built-in sanitisation commands. They

found that built-in commands are often effective, but sometimes implemented incorrectly by

manufacturers. Because flash-based media do not support in-place data update, they found

that all existing hard drive techniques for individual file sanitisation fail. This was also

reported by Freeman and Woodward [211]. Gutmann [212] looked at techniques to achieve

analog sanitisation on hard drives, and devised the well-known 35-pass overwrite technique.

File sanitisation techniques generally rely on data encryption: storage sanitisation is then

performed by securely erasing keys using built-in commands or raw flash access [213–215].

In this dissertation, we study the Factory Reset of Android smartphones (Chapter 5).

We present its flaws and reveal the drivers behind them.

1http://www.forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S3_%28SGH-I747M%29
2https://copgeek018.wordpress.com/2012/04/03/157/
3http://www.epnsolutions.net/ddr.html
4http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
5https://freddie.witherden.org/pages/ieee-1394-forensics.pdf

http://www.forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S3_%28SGH-I747M%29
https://copgeek018.wordpress.com/2012/04/03/157/
http://www.epnsolutions.net/ddr.html
http://www.futureplus.com/download/datasheet/fs2334_ds.pdf
https://freddie.witherden.org/pages/ieee-1394-forensics.pdf
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2.8 This Dissertation

We now discuss where this dissertation stands in comparison with the overall mobile

security research field.

In Chapter 3, we explore a novel side channel that uses the built-in camera and

microphone in Android to infer PINs entered by a user in a secure app running in

the Trusted Execution Environment (TEE). Previous researchers have shown that the

accelerometer and gyroscope are a source of side channel. In this chapter, we broaden the

scope of attacks and show that all shared resources (e.g. peripherals, sensors, wearable

devices) that allow an incoming flow of information may be used as side channel. This

chapter raises awareness of the difficulty of properly designing a trusted path, and the

limitations of the current GlobalPlatform guidelines.

In Chapter 4, we explore a new side channel based on the timings of the screen’s

hardware interrupts and software interrupts that the Android OS exposes to permissionless

apps. We use machine learning techniques to correlate the timings to what a user types on

their phone. This is a vulnerability introduced by the OS provider, Google; and it could

be abused to create spyware.

In Chapter 5, we present vulnerabilities in the way the Android OS erases personal

data during the Factory Reset. We also highlight OEM failures to patch these flaws.

People with access to second-hand devices could recover personal data from the previous

owner even if the phone has been “wiped”.

In Chapter 6, we conduct a security analysis of anti-theft apps for the Android

platforms. We encover a wide variety of vulnerabilities in these apps; highlight the

difficulty of developers to comprehend security APIs; and present some flaws introduced

by OEMs. This chapter highlights the complexity of the Android ecosystem.
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Chapter 3

Inferring PINs Through The Camera

and Microphone

Previous researchers have studied the use of the phone accelerometer and gyroscope as side

channel data to infer PINs. Here, we describe a new side-channel attack that makes use of

the video camera and microphone to infer PINs entered on a number-only soft keyboard

on a smartphone. The microphone is used to detect touch events, while the camera is used

to estimate the smartphone’s orientation. We then correlate the orientation to the digit

tapped by a user. We hope to raise awareness of side channel attacks even when strong

isolation such as TrustZone is used to protect sensitive applications.

For the evaluation, we use a Nexus S and a Galaxy S3. When considering a set of

50 4-digit PINs, the correct PIN entered by a user is one of the 2 most likely predicted

PINs 30% of the time; and one of the 5 most likely predicted ones 50% of the time. When

selecting from a set of 200 8-digit PINs, the correct PIN is one of the 5 most likely predicted

PINs 45% of the time; and one of the 10 most likely predicted ones 60% of the time.

It turns out to be difficult to prevent such side-channel attacks, so we provide guidelines

for developers to mitigate present and future side-channel attacks on PIN input.

The work presented in this chapter was published in the 3rd Annual ACM CCS

Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM) [216], and

is in collaboration with Ross Anderson. The idea of using the camera as side channel was

suggested by Viktor Konstantinov, an undergrad at Cambridge from the Mathematics

department. I worked on the implementation and evaluation. Ross helped with the writing

and reviewing of the final paper.

3.1 Introduction

To provide stronger isolation for sensitive applications (e.g. DRM, payment, banking,

corporate emails), some smartphone vendors employ additional isolation mechanisms.

39
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Figure 3.1: Attack scenario.

Samsung’s KNOX1 and BlackBerry’s Balance2 use so-called “containers” running on top

of a single kernel. Users access their corporate documents in the “Work container” which

is shielded from the “Home container” where third-party apps are installed. Theoretically,

malware running in “Home” can exploit vulnerabilities in the shared kernel to get access

to “Work”. So to enhance protection even further, hardware-based isolation primitives are

also deployed. The current trend is to run two entire OSes in parallel on the application

CPU. The default OS (e.g. Android, WP, BB, etc.) runs as usual and can be customized

with third-party apps; while the other OS only runs sensitive apps (e.g. corporate emails,

banking apps, etc.). This separation can be achieved through virtualization, a microkernel,

or ARM’s TrustZone technology3. TrustZone is the solution that is currently being

deployed by vendors. The default OS (e.g. Android) is usually referred to as the Rich

Execution Environment (REE), the Insecure OS or the Untrusted OS. The separate OS

hosting sensitive apps is usually referred to as the Trusted Execution Environment (TEE),

the Secure OS, or the Trusted OS. Fig. 3.1 illustrates the concept with one Untrusted OS

(left) and one Trusted OS (right).

While a user types sensitive information within the Trusted OS, the Insecure OS cannot

access the screen, thereby providing an allegedly secure input path. This can be used to

protect sensitive user input such as the unlock PIN, banking PINs or payment PINs for

NFC. However, the sheer amount of shared hardware between the Trusted OS and the

Untrusted OS opens up the possibility of side channel attacks. We already mentioned that

through accelerometer readings, previous researchers showed that PINs can be inferred

(Section 2.6). The insight is that device orientation is correlated to the digit touched by a

user; and the orientation can be approximated through accelerometer data.

In this work, we evaluate the feasibility of using the video camera and microphone

1https://www.samsungknox.com/en/support/knox-workspace/white-papers
2http://crackberry.com/blackberry-balance
3http://www.arm.com/products/processors/technologies/trustzone.php

https://www.samsungknox.com/en/support/knox-workspace/white-papers
http://crackberry.com/blackberry-balance
http://www.arm.com/products/processors/technologies/trustzone.php
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to infer device orientation. By recording audio during PIN input, we can detect touch

events (Section 3.3.4). By recording video from the front camera during PIN input, we can

retrieve the frames that correspond to touch events and extract their relative orientation

to a reference position. We show that this can be used to infer which part of the screen is

touched.

The main contributions of this work are:

• The design, implementation and evaluation of a new side-channel attack that recovers

PINs through the front video camera and microphone;

• Raising awareness of the difficulty of properly designing a trusted path. Specifically,

all shared resources need careful consideration when reasoning about its security.

• Practical OS-level countermeasures to mitigate sensors-based side-channel attacks

on sensitive input.

3.2 Attack Principles

Infection

We assume that the user has naively installed a malicious application from an app store

(Google’s or a third-party’s), or maliciously been tricked into installing it via social

engineering techniques. We initially assumed that the malicious application had exploited

a vulnerability in Android and had gained root access on the device. We later discovered

that, with some ingenuity, the attack could be performed by any app with camera and

microphone permission (Section 3.6.1).
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Phone Architecture

We assume a smartphone with two OSes running in parallel. A good example of such

a phone is the Samsung Galaxy S3 which concurrently runs the Android OS and the

TrustZone OS. Even though the malicious app has gained root access in the Android OS,

the architecture of the phone ensures that it cannot access sensitive data in the TrustZone

OS. As a plausible attack scenario, we assume the Trusted OS runs a banking application

protected by a PIN. When a user wants to transfer money via the banking app, he opens

the app in the Trusted OS and enter his PIN. When a user interacts with the Trusted

OS, the Android OS (and hence the rootkit) cannot access the screen, hence providing a

trusted path between the Trusted OS and the user. However, the rootkit still has access

to certain shared resources like the accelerometer, the camera, the microphone, the GPS,

etc. that can be used as side channels (Fig. 3.1). We will explain in Section 3.6.1 that if

the banking application runs in the Android OS (rather than in TrustZone OS), other

Android apps can also perform the attack without requiring root access.

PIN Settings

We focus the investigation on (digit-only) PINs because they are commonly used on phones

(e.g. NFC payments, SIM PIN, unlock PIN, “dialed” PINs for banking services). We

assume that a user types a PIN by touching the screen with the thumb of the hand holding

the smartphone, as depicted in Fig. 3.2. Furthermore, we assume that the user touches

the OK-button after entering his PIN in order to validate it. The PIN pad presented by

the banking app is depicted in Fig. 3.4: it is identical to the one used to unlock Android

smartphones. As user feedback, we assume the Trusted OS provides short vibrations upon

each of the user’s inputs. This is a common feature of smartphones’ virtual keyboards and

it is also one of the available options for the Android PIN lock screen, as depicted in the

security settings view in Fig. 3.3.

Objective

Fig. 3.4 depicts the PIN pad displayed by the banking app running in the Trusted OS.

Each button maps to a specific part of the screen. Our objective is to guess which part

of the screen is touched by a user, through the front video camera and microphone data

accessible to the Android OS while a user interacts with the banking app in the Trusted

OS.

Cashing Out

Once the trojan in the Untrusted OS has inferred the PIN used to unlock the banking app

running in the trusted OS, attackers need to cash out. We imagine that real miscreants
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would advertise the PINs of phones they have compromised in underground forums along

with the location of the devices. Remember that the trojan has root access in Android so

has access to the GPS at will. Since smartphone theft is a growing problem, we imagine

that smartphone thieves would “optimize” their theft by selectively tracking potential

victims for whom the banking app’s PIN is advertised in an underground forum.

3.2.1 Attack Flow

The attack has four modes of operation depicted in Fig. 3.6.

Monitoring Mode

In Monitoring Mode, the rootkit in the Untrusted OS monitors the user’s behaviour to

decide when to acquire data from the camera and microphone. In this mode, the rootkit

can make use of all sensors (e.g. GPS, accelerometer, gyroscope) available to the Android

OS to ascertain that necessary conditions are met before recoding data from the camera

and microphone. For example, if the victim is in motion (e.g. walking), the data are

noisy so it is important to filter them. We have not implemented this mode but previous

research suggests this could be possible [217, 218]. This mode is left for future research.

Collecting Mode

In Collecting Mode, the user interacts with the malware, for example in the form of a

malicious game running in the Android OS (Fig. 3.5). In this mode, a malicious game

can legitimately receive all touch events from a user and simultaneously record data from

the front camera. Every time a user touches the screen, the malicious app takes a picture

with the front camera and saves the image to disk along with the digit it represents. Later,

when WiFi becomes available (Section 3.2.2), the pictures can be uploaded to a remote

server for processing. As presented later in the paper, the overall size of saved data is less

than 2.5MB. Note that the number of smartphones with an embedded front camera is

steadily growing as it enables the development of enhanced services like video calls.

Learning Mode

In Learning Mode, the remote server extracts relevant features from the collected data.

The features are then fed to a learning algorithm in order to build a prediction model.

In the future, we imagine that the Collecting and Learning phases could be skipped by

building a generic model “offline” from a large set of users. For the current investigation

though, we train each user individually.
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Figure 3.6: Modus operandi of trojan.

Logging Mode

In Logging Mode, i.e. when a user enters his PIN in the banking app in the Trusted OS,

the malicious app turns on the front camera. It stores the video file (which contains the

audio) on the phone before opportunistically uploading it to a remote server for processing.

The server runs the algorithm trained in the Learning Mode to predict the PIN. At this

point, the miscreants have a list of possible PINs for the banking app running on the

compromised phones; which they could sell in the underground market. As presented later

in the paper, the overall size of the video is less than 400KB.

3.2.2 Stealthiness

To be successful, malware must hide their behavior.

Overhead/Battery

Image processing algorithms are run on a remote server, not on the phone; so there is no

noticeable battery drain noticeable by the victim. Similarly, the extraction of features, the

training of the learning algorithm, and the predictions are performed server side so they do

not cause battery drain on the phone. Because the data to upload does not exceed 2.5MB
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for each mode of operation, there is no noticeable effect on battery when transferring data

to the remote server.

Camera Use

The use of the camera must also be stealthy in order not to raise the victim’s suspicion.

Some phones have a LED that is automatically turned on when the camera is in use. The

LED can be disabled via an API exposed by the Android OS. One possible drawback of this

method is that it might not be supported by all android phones because of manufacturer

customizations of the OS. Some phones also have a shutter sound when pictures are taken.

The shutter sound could be disabled by temporarily muting the speakers while taking

pictures. This could be an issue if the user is listening to music on his phone while malware

mutes the phone. Our initial threat model considers malware with root access to the

Android OS, where a robust way to disable both the LED and the shutter sound could be

to tamper with the OS drivers.

Data Saved on Phone

As previously described, the trojan stores pictures in the Collecting Mode and a few

seconds of video in the Logging Mode. As presented later in the paper, the data does not

exceed 2.5MB for each mode of operation. We believe real malware would tamper with

OS libraries to hide such files from users (as PC rootkits do).

Network Activity

The trojan requires Internet in order to upload the pictures stored during the Collecting

Mode and a few seconds of video stored during the Logging Mode. To remain undetected

by the victim, it can tamper with OS libraries to hide the number of packets sent to and

received from a remote server. It is equally important to ensure not to incur charges

to users for data usage. This is a genuine problem because some users have a limited

amount of data they can spend per month. To this end, we believe a real trojan would

opportunistically wait for a WiFi network to be in range to upload the data. Most users

have a WiFi router at home to access the Internet, so a trojan would be able to upload

data stealthily over WiFi every night when victims are home. If the trojan wants to hide

network activity from the ISP, it could also make use of Domain Generation Algorithms

(DGN) to be more covert1.

1http://www.pcworld.com/article/2038893/pushdo-botnet-is-evolving-becomes-more-

resilient-to-takedown-attempts.html

http://www.pcworld.com/article/2038893/pushdo-botnet-is-evolving-becomes-more-resilient-to-takedown-attempts.html
http://www.pcworld.com/article/2038893/pushdo-botnet-is-evolving-becomes-more-resilient-to-takedown-attempts.html
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Permissions

The permissions needed by the trojan at installation time could arouse user suspicion. The

stealthiness depends on the components exploited to root the phone. For example, some

Android root exploits1 do not need any permissions while others might. After exploitation,

the rootkit could tamper with the relevant OS components to hide itself entirely from the

victim.

3.3 Implementation Details

To test the feasibility of this attack, we ideally need a Trusted OS-enabled smartphone

to run the PIN pad of Fig. 3.4. The Samsung Galaxy S3 features a TrustZone-based

TEE called MobiCore developed by G&D2. Developing applications for MobiCore requires

certification by G&D, so this is not possible at the moment.

So, to test the attack, we built the PIN pad of Fig. 3.4 as an Android application and

ran it on the Google Nexus S and Samsung Galaxy S3 smartphones. While a user enters a

PIN, the application also records the video stream from the front camera.

3.3.1 Collecting Mode

In order to build a prediction model, the trojan first needs to interact with users. We

collected samples from users interacting with an Android application we developed. In

practice, the application could be disguised as a game to trick users into touching certain

areas of the screen (Fig. 3.5). The game takes a picture with the front camera when

the user touches an icon and saves the images to disk. For the Nexus S, images have a

resolution of 176× 144 pixels and are of size 6.5KB each. For the Galaxy S3, images have

a resolution of 320× 240 pixels and are of size 24KB each.

3.3.2 Feature Extraction

After collecting mode, the server extracts relevant features from the images. Fig. 3.7

illustrates what happens when the user touches digit #1. In order for the thumb to touch

the button, the supporting fingers push the phone upward towards the thumb. This has

the effect of making the orientation of the smartphone change slightly. Note that the

change of smartphone orientation is not the effect of the thumb touching the smartphone,

but the necessary condition for the thumb to reach the button. This is different from

accelerometer-based attacks which exploit the resulting orientation changes due to taps

1http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
2http://www.gi-de.com/en/trends_and_insights/mobicore/mobicore_1/mobicore.jsp

http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage/
http://www.gi-de.com/en/trends_and_insights/mobicore/mobicore_1/mobicore.jsp
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Figure 3.10: Homography Matrix between an OK-frame and a digit-#1 frame.

on the screen. As features, we use the relative rotation between two images taken at the

same position. As point of reference on the screen, we use the OK button because it is

always touched last and we know its position beforehand. Fig. 3.8 illustrates the relative

rotation between an OK-button image and a digit-#1 image as seen by the front camera.

The relative rotation between an OK-button image and a digit image is computed as

follows. First, given a digit image and an OK-button image, we extract the common key

points using the RANdom Sample Consensus (RANSAC) method [219]. Key points are

depicted as white circles in Fig. 3.8. They mostly correspond to the chest and the face of

the user. This observation highlights the importance of using the front camera rather than

the rear camera. The rear camera usually points to the floor. The floor often exhibits a

homogeneous color and/or repetitive patterns, which makes the extraction of key points

more difficult.

Secondly, given the common key points, we determine the relative rotation from

the OK-button image (the reference) to the digit image. To this end, we compute the

Homography Matrix (HM) [220], a 3× 3 matrix that represents the rotation between two

images taken at the same position. Here, we implicitly assume that the focal point of the

camera is contained into the phone. This is a fair assumption: the focal distance is 0.9mm

for the Nexus S and 2.5mm for the Galaxy S3. Fig. 3.10 shows the Homography Matrix

representing the rotation between the two images of Fig. 3.8. The precision has been

reduced to 5 digits to ease the reading. Fig. 3.9 shows the image of the OK-button by the

Homography transformation of Fig. 3.10: it is rotated in such a way that it is identical to

digit #1 image (apart from the missing pixels replaced by a black background).
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We consider each element of the HM as a feature, and therefore use 9 (3× 3) features.

The open-source library OpenCv1 is used for all these image manipulations.

3.3.3 Learning Mode

The objective in the Learning Mode is to use the features extracted from the images (i.e.

the components of the HM) and train a learning algorithm in order to build a prediction

model.

We store each feature as a numerical value with a maximum precision of 14 digits.

As a learning algorithm, we use a Support Vector Machine (SVM) implemented with

the open-source libraries LibSVM2 and Weka3. When predicting a digit, the classifier

outputs a probability for each of the possible digits, and we select the digit with the

highest probability as the prediction. To build the model, we proceed in two phases. In

the first “pre-experiment” phase, we get data from two users. The training data is used

to experiment with the data and try different SVM parameters. We repeatedly (i) split

the data into a 70% sub-training set and a 30% sub-test set, (ii) train the SVM on the

sub-training set with different parameters, (iii) test the trained SVM on the sub-test set;

until we find a configuration that leads to good predictions on the sub-test set. This

process leads us to select the nu-SVC classifier with linear kernel, the normalized-feature

option and nu = 0.5. Between 35% and 50% of the digits are correctly predicted on the

sub-test. In the “experiment phase”, users’ training data is split into a 70% sub-training set

and a 30% sub-test set (Section 3.4.1). The SVM is trained on the sub-training set while

the sub-test set is used to evaluate how the trained SVM performs. Both the extraction

phase and the Learning phase are performed server-side, not on the phone.

3.3.4 Logging Mode

In Logging Mode, the objective is to use the prediction model constructed in the Learning

Mode in order to predict the PIN entered by a user in the PIN pad of Fig. 3.4.

While a user enters his PIN, the application turns on the front camera and records the

video stream to a file. The video file contains one video stream and one audio stream. On

the Google Nexus S, the video stream is composed of consecutive image frames sampled

at 15Hz, of resolution 176 × 144 pixels, encoded with UYV420p and compressed with

H.264. The 16-bit mono audio stream is sampled at a much faster frequency of 16KHz

and encoded with AAC. The Samsung Galaxy S3 has similar video properties but frames

are sampled twice as fast (30Hz) and have a higher resolution of 640× 480 pixels. Three

seconds of video represent about 75KB for the Nexus S and 390KB on the Galaxy S3.

1http://opencv.org
2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
3http://www.cs.waikato.ac.nz/ml/weka/

http://opencv.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.11: Audio signal during vibrations

in a controlled environment on Nexus S.

Figure 3.12: FFT coefficients of vibration

signal on Nexus S.

Figure 3.13: Audio signal while watching

youtube video during PIN input.

Figure 3.14: Convolution product of ab-

solute value of filtered signal with 30ms-

wide rectangular window.

Unlike in collecting mode, malware cannot legitimately receive touch events because the

architecture of the phone prevents it (Section 6.1). Fortunately, the Trusted OS provides

short vibrations upon each of the user’s inputs (Section 4.2.3). When the vibrations

occur, they loop back into the microphone, and we try to extract them from the audio

stream contained in the video file to detect touch events. Hence, it is the microphone

that allows us to detect touch events in this phase. Once we have touch events, we can

extract the features of the corresponding frames (Section 3.3.2) and use them as input to

the prediction model (Section 3.3.3) to predict PINs.
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Vibration Characteristics

Fig. 3.11 shows an audio sample in a controlled (silent) environment captured by the

Nexus S’s microphone during a vibration. The top image represents the raw audio sample;

the bottom image represents the same sample passed through a lowpass filter to remove

the noise. In the filtered signal, the vibrations start at sample 1000 with the maximum

amplitude reached at sample 1500, representing 30ms. After sample 1500, the signal

progressively attenuates and finishes at sample 3000.

The spectrum of the filtered signal within the sample range [1000, 2000] is shown in

Fig. 3.12. We can deduce that the vibrations occur at a frequency of 180Hz. Hence,

in order to de-noise the audio stream on the Nexus S, we decided to use a butterworth

bandpass filter of order 3 with lowcut 175Hz and highcut 185Hz. A similar analysis shows

that the vibrations occur at a frequency of 205Hz on the Galaxy S3; so we use a bandpass

filter with lowcut 200Hz and highcut 210Hz to de-noise the audio signal.

Vibrations in Noisy Environment

Fig. 3.13 represents the audio signal extracted from a video recorded by the Nexus S while

a user types a PIN and watches video from a nearby desktop computer: the top image

represents the unfiltered signal, the bottom image represents the same signal passed through

the bandpass filter (Section 3.3.4). In the filtered signal, the touch events become apparent.

Essentially, the de-noising is reliable in environments which exhibit few harmonics in the

passband ([175, 185] for Nexus S; [200, 210] for Galaxy S3).

Improving Vibration Detection in Noisy Environments

If the noisy environment contains harmonics in the passband, the de-noising method is not

fully reliable. So to further protect against false positives (i.e. a touch event is detected

when it is not actually present), we convolve the absolute value of the filtered signal with

a rectangular window of duration 30ms. Recall from Section 3.3.4 that the vibrations

actually last 30ms. Fig. 3.14 shows the result of the convolution product on the filtered

signal of Fig. 3.13. The 5 peaks indicate frames corresponding to a touch event. Given the

assumptions made in Section 4.2.3, the first 4 peaks correspond to a 4-digit PIN, while

the 5th corresponds to the OK button.
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Table 3.1: Renamed digits.

Meaning digit for LHU digit for RHU

Ftop Far from thumb, top position #3 #1

Ntop Near thumb, top position #1 #3

Fmid Far from thumb, middle position #6 #4

Nmid Near thumb, middle position #4 #6

Fbot Far from thumb, bottom position #9 #7

Nbot Near thumb, bottom position #7 #9

3.4 Evaluation

3.4.1 Setup

In collecting mode, we collect samples from four users: two right-handed, the other two

left-handed. Users are seated and interact with an app we developed for 2 minutes by

touching digits on a screen. We obtain an average of 10 touch events for each digit and

for the OK-button. This is each user’s training set, about 650KB to save on disk for the

Nexus S and 2.4MB for the Galaxy S3.

For each image in the training set, we extract the HM using all the OK-button images

as a reference (Section 3.3.2). Then we use the HM data to build the prediction model.

On a Linux machine with a 2.4GHz CPU and 1GB of RAM, it takes less than 1.5 minutes

and 3 minutes to compute all the HMs for the Nexus S and Galaxy S3 respectively. The

resulting HM data is split into a 70% sub-training set and a 30% sub-test set. The SVM

is trained on the sub-training set while the sub-test set is used to evaluate how well the

trained SVM performs. It takes about 8s to build the prediction model on the sub-training

set.

To evaluate the predictions, we randomly select 100 8-digit PINs. Users enter each

PIN once in the PIN pad of Fig. 3.4. This represents the evaluation set, and is different

from the training set collected in collecting mode. We run the prediction model on the

evaluation set, and we discuss the results in the following sections.

3.4.2 Single-Digit Prediction

To present the results, we first needed to understand the influence of a user’s handedness

on digit prediction. Re-consider Fig. 3.7. For a right-handed user, the left part of the

screen is “far” from the thumb while the right part is “near”. For the thumb to reach a

“far” screen position (e.g. digit #1), the supporting fingers need to “lift” the phone more

than for a “near” screen position (e.g. digit #9). Inversely, for a left-handed user, the

right part of the screen is “far” from the thumb and the left part is “near”. Hence, to
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Table 3.2: Confusion matrix for Nexus S.
Ftop #2 Ntop Fmid #5 Nmid Fbot #8 Nbot #0

Ftop 49.8 7.0 1.8 18.9 3.2 1.6 12.7 2.0 1.3 1.9

#2 3.4 21.0 8.7 12.8 13.3 6.1 15.4 8.1 3.4 7.9

Ntop 1.6 15.2 12.2 4.5 13.1 10.5 8.4 12.4 9.9 12.3

Fmid 16.6 16.8 4.1 26.3 6.0 3.0 17.5 3.6 1.9 4.4

#5 2.3 18.3 11.4 6.9 14.4 9.0 9.1 12.4 6.2 9.9

Nmid 1.7 10.8 13.4 3.6 12.6 11.9 4.8 12.8 12.9 15.4

Fbot 6.0 21.1 6.8 19.4 9.1 4.5 19.3 5.5 2.4 6.1

#8 2.0 17.4 12.4 5.3 13.6 10.2 7.5 12.3 7.8 11.6

Nbot 1.1 8.9 14.5 1.7 11.8 13.4 3.9 16.5 16.3 12.0

#0 1.5 12.9 12.7 4.3 13.9 10.6 7.5 14.3 8.6 13.7

Table 3.3: Confusion matrix for Galaxy S3.

Ftop #2 Ntop Fmid #5 Nmid Fbot #8 Nbot #0

Ftop 57.3 8.8 3.0 13.4 2.8 1.4 7.4 2.4 1.6 1.9

#2 9.3 20.1 11.7 10.6 10.0 5.8 11.3 7.7 7.3 6.1

Ntop 2.5 13.9 14.5 5.6 13.4 11.1 7.5 9.4 14.3 7.8

Fmid 26.1 15.4 6.4 19.6 5.8 2.9 12.3 4.6 2.9 4.0

#5 3.8 16.4 14.1 6.9 11.7 8.2 9.6 10.6 10.3 8.4

Nmid 1.4 9.9 15.8 4.0 12.5 14.2 5.7 10.1 17.8 8.6

Fbot 15.1 13.2 8.8 19.4 8.3 4.7 12.8 6.7 4.7 6.4

#8 3.5 15.4 13.9 10.2 11.2 8.5 9.5 10.3 8.6 8.9

Nbot 2.1 7.0 14.6 3.8 12.4 14.9 4.1 10.7 20.7 9.7

#0 2.6 14.3 15.0 8.1 11.9 9.1 9.9 11.2 8.3 9.7

present the predictions independently of users’ handedness, we rename digits according

to the “role” they play. For example, Ftop represents the digit in the top position of the

screen which is “Far” from the thumb. For a right-handed user, Ftop is digit #1; for a

left-handed user it is digit #3. Digits #2, #5, #8 and #0, being in the middle of the

screen, play the same “role” regardless of users’ handedness, so we do not rename them.

Table 3.1 gives the renamed digits with their associated “real” digit for left-handed users

(LHU) and right-handed users (RHU). For a visual representation, Fig. 3.16 depicts a pad

with renamed digits for a right-handed user.

For each digit entered by a user, the prediction model outputs the list of predicted

digits sorted by probability from the highest to the lowest. We aggregate and normalize

the probabilities to obtain the confusion matrices. Table 3.2 and Table 3.3 represent the

confusion matrices for the Nexus S and Galaxy S3 respectively. Each row of the matrix

represents the actual digit entered by a user, while each column represents the predicted

digit. Ideally, if all predictions were correct, the matrix would have 100 (100%) on its
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Figure 3.15: Areas reachable by the

thumb with little help from supporting

fingers.

Figure 3.16: PIN-pad with renamed

digit for a right-handed user.

Figure 3.17: Rotation of thumb with

interphalangeal joint.

Figure 3.18: Rotation of thumb with

carpometarcarpal joint.

diagonal and 0 anywhere else.

Consider the matrix for Nexus S (Table 3.2). For digit Ftop (row 1), Ftop (column

1) obtains 49.8% of the aggregated probability, Fmid (column 4) obtains 18.9% of the

probabilities, digit Fbot (column 7) obtains 12.7% of the probability and other digits obtain

negligible probability. On the other end, for digit Nmid (row 6), Nmid (column 6) obtains

only 11.9% of the probability (just better than a random guess), while digits #0, #2, Ntop,

#5, #8 and Nbot all get more than 10% of probability. Digit Nmid is located near digit

#2, Ntop, #5, Nbot and #8 so it is not surprising that Nmid is mispredicted as one of them

(Fig. 3.16). More surprisingly and less intuitively, digit #0 obtains more than 15% of the

probability while it is not a neighbour of digit Nmid. We explain why in the following

paragraphs.

As previously mentioned, when the thumb reaches for a digit, the fingers supporting the

phone bring it forward. The thumb itself can also rotate around two axes, which greatly
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influences the results. The first rotation is with the interphalangeal joint as depicted

in Fig. 3.17. When touching screen positions “near” the thumb, the thumb can use

its interphalangeal joint to reach neighbouring digits without help from the supporting

fingers. However for “far” digits, the thumb needs to be in a “stretched” position and the

interphalangeal joint does not help. Hence, one expects more “noise” and worse predictions

for digits that are “near the thumb” (because pictures taken from the camera are similar).

The second rotation is with the carpometacarpal joint as depicted in Fig. 3.18. In

Fig. 3.15, we have drawn areas that can be reached by the thumb without (or with little)

help from the supporting fingers. The areas represent part of a circle, centered at the

carpometarcarpal joint. The areas become thicker as we move towards the thumb to

account for the noise due to the rotation with the interphalangeal joint. Digits in these

areas should be mis-predicted as each other more often.

Given the explanations above and the approximate areas drawn in Fig. 3.15, one can

understand why digit #0 obtains more than 15% for digit Nmid: #0 and Nmid can be

reached by the thumb with the carpometacarpal joint rotation. One can also predict that

digit #2 and Fbot, though not neighbours, should be mispredicted as each other; this is

confirmed by the confusion matrices. Similarly, digits Ntop, #8 and #0 should also be

mispredicted as one another; this is also confirmed.

We also noticed little difference between the predictions on the Nexus S and Galaxy S3,

despite the fact that the Galaxy S3 has a larger screen than the Nexus S. We expected that

the larger the screen, the better the results would be, but the only noticeable improvement

is the Ftop digit which is better predicted on the Galaxy S3.

3.4.3 PIN Predictions

To evaluate PIN predictions, one can vary both the PIN length (i.e. the number of digits)

and the size of the set. Varying the set size is motivated by the fact that users do not

select their PIN randomly [221]. According to [222], with the 20 most common 4-digit

PINs representing about 27% of all user-selected PINs. To predict a PIN, we first sort the

PIN predictions by probability and keep the 30 most likely. For example, for a 50-PIN set,

we obtain a list of the 50 possible PINs sorted by probability; which we truncate to keep

the top 30 PINs only. If the correct PIN appears in first position, then the PIN is correctly

predicted in 1 attempt. If the PIN appears in position n, the PIN is correctly predicted

after n attempts. Intuitively, the larger the set, the greater the number of attempts to

correctly guess a PIN.

Influence of the Phone

For simplicity, here we only present the results for 4-digit PINs. We consider subsets of

the entire PIN space of size 50, 75, 150, and 200. Fig. 3.19 shows the prediction results for
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Figure 3.19: Percentage of 4-digit PINs cor-

rectly guessed for Nexus S and Galaxy S3

for PIN sets of size 50 and 150.

Figure 3.20: Percentage of 4-digit PINs cor-

rectly guessed for Nexus S and Galaxy S3

for PIN sets of size 75 and 200.

Figure 3.21: Percentage of 4-digit PINs cor-

rectly guessed for Nexus S for different sizes

of PIN set.

Figure 3.22: Percentage of 5-digit PINs cor-

rectly guessed for Nexus S for different sizes

of PIN set.

Figure 3.23: Percentage of 6-digit PINs cor-

rectly guessed for Nexus S for different sizes

of PIN set.

Figure 3.24: Percentage of 7-digit PINs cor-

rectly guessed for Nexus S for different sizes

of PIN set.
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Figure 3.25: Percentage of 8-digit PINs cor-

rectly guessed for Nexus S for different sizes

of PIN set.

Figure 3.26: Percentage of PINs correctly

guessed for Nexus S for a 200-PIN set for

different PIN lengths.

Figure 3.27: Percentage of PINs correctly

guessed for Nexus S for a 150-PIN set for

different PIN lengths.

Figure 3.28: Percentage of PINs correctly

guessed for Nexus S for a 100-PIN set for

different PIN lengths.

Figure 3.29: Percentage of PINs correctly

guessed for Nexus S for a 75-PIN set for

different PIN lengths.

Figure 3.30: Percentage of PINs correctly

guessed for Nexus S for a 50-PIN set for

different PIN lengths.
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PIN sets of size 50 and 150; Fig. 3.20 shows the results for PIN sets of size 75 and 200.

For instance, for a 50-PIN set (Fig. 3.19), 50% of the PINs are correctly guessed after 5

attempts. As in Section 3.4.2, we noticed that the size of the phone has little influence on

the results. Therefore, in the following sections, we only present the prediction results for

the Nexus S phone.

Influence of Set Size

Here we vary the size of the PIN set we consider. Intuitively, the larger the size of the

PIN set, the worse the predictions. We present the results for PINs of size 4 to 8 digits in

Fig. 3.21 to Fig. 3.25.

Consider 4-digit PINs (Fig. 3.21). For a set of 50 PINs, about 30% of the PINs are

correctly guessed after 2 attempts, and 50% after 5 attempts. For a set of 200 PINs,

near 30% of the PINs are correctly predicted after 5 attempts. After 10 attempts (the

maximum number of attempts allowed to unlock an iPhone), about 60% of a set of 50

PINs are correctly inferred, and about 40% of a set of 200 PINs. After 20 attempts (the

maximum number of attempts allowed on Android devices), more than 80% of a set of 50

PINs are guessed and about 50% of a set of 200 PINs.

Influence of PIN Length

Here we vary the length of the PINs from 4 to 8 digits. The results are presented in

Fig. 3.26 to Fig. 3.30. The straight line “rand” represents the prediction results of random

guessing.

Consider a set of 200 PINs (Fig. 3.26). For 4-digit PINs, 30% are correctly guessed

after 5 attempts. As the length of the PIN increases, the predictions improve: for 8-digit

PINs, more than 45% of the PINs are correctly guessed after 5 attempts. This seems

counter-intuitive at first. However, there is a reasonable explanation. First, the more

the digits in a PIN, the more information one has and hence the greater the “distance”

between them. Second, by keeping the size S of the PIN set constant, increasing the

PIN length L is equivalent to decreasing the ratio R = S/N where N = 10L is the size

of the entire PIN space. For instance, for a set of 200 4-digit PINs, R = 200/104 = 2%

of the entire PIN space, while for 8-digit PINs, R = 200/108isonly0.002%. Keeping the

size of the set constant seems unfair because increasing the PIN length is supposed to

increase the PIN space and make guessing more difficult. However, studies [221] show

that users do not select their PINs randomly, so there is no direct correlation between

the theoretical size of the PIN space and the one resulting from users’ selection. As a

convincing example, consider the space of passwords we use to access our email accounts.

In theory, infinitely-long passwords of randomly-selected bytes are possible so the password
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space has an infinite size. In practice however, we select finite passwords containing mainly

ASCII characters; and often passwords are predictable English words.

3.5 Limitations

First, the relative rotation changes between two frames are calculated through a homog-

raphy matrix, which in turn relies on finding key points between two video frames. In

some cases, the number of key points obtained is not large enough to calculate the HM.

Fortunately, such cases are rare and can be discarded in Collecting Mode. In logging mode,

however, this problem leads to missing digit predictions. Detecting key points also relies

on good pictures. This could be hampered by poor light and other lighting effects. More

advanced image processing could be applied to overcome these problems. The speed at

which the user types a PIN can also influence the quality of extracted frames: if he types

a PIN too fast, it may render frames blurred and hamper the detection of the key points.

Second, this attack considers people who hold their phone and type PINs with the same

hand. We do not known the percentage of the population that falls into this category. Most

side-channel papers we mentioned in Section 2.6 assume that users use one hand to hold

the phone and the other to enter their PIN. In this regard, our study is complementary.

Third, the attack currently considers a user who types an L-digit PIN followed by the

OK-button (L+ 1 touch events). It does not account for a user who unintentionally types

a wrong digit, deletes it and continues typing. Other side channel papers do not consider

this either (Section 2.6).

Fourth, in real-life scenarios, the collecting mode may be itself subject to noise. It

is debatable whether a practical trojan would be able to acquire non-noisy information

during collecting mode. In Section 3.2.1, we called this mode the ‘monitoring mode’ and

mentioned that it is left to future research. The use of other sensors (e.g. accelerometer,

GPS) could perhaps be used for this mode, as suggested by [217].

Fifth, the detection of touch events in logging mode relies on the assumption that

few noise-frequencies are present in the passband ([175Hz , 185Hz ] for Nexus S, and

[200Hz , 210Hz ] for Galaxy S3). This assumption is not guaranteed to hold every time a

user enters a PIN. The human voice is assumed to have a spectrum between 300Hz and

3000Hz, so the de-noising should filter out most of people’s conversations. But in our

tests, we found that some male voices actually have a wider spectrum with low frequencies

reaching down to 100Hz. In case false positives are detected (i.e. more than L+ 1 touch

events; with L the PIN length), the trojan could simply discard the data.
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3.6 Possible Countermeasures

In this section, we present possible countermeasures to mitigate side-channel attacks

based on sensors and peripherals. We also take into account previous papers that use

accelerometer and/or gyroscope readings to infer PINs (Section 2.6). We also consider

mitigations for devices that do not have a TEE because low-end devices may not support

it.

3.6.1 Non-TEE devices

For devices that do not have a TEE, the PIN-pad application runs in the default OS

and can be attacked by other apps. On Android, an application can record video only

if it has screen focus. But there are ways around this restriction. First, using the

SYSTEM ALERT WINDOW permission, apps can create floating activities, i.e. windows

that display on top of other apps. Using a transparent 1 × 1-pixel floating activity, a

malicious app could gain constant screen focus whilst remaining invisible to users, enabling

it to capture video at will. Second, even without the former permission, applications with

the CAMERA permission could take pictures even when running in background. Burst

mode achieves 15Hz on both the Nexus S and Galaxy S3, so the attack remains possible.

One caveat with the burst mode is that the time between two consecutive pictures is not

always constant, so greater care must be taken to select the correct pictures for each touch

event.

At the application level, mitigation options are limited. In Android, access to the

microphone is exclusive so malware cannot access it if the PIN application does. However,

access to other resources like accelerometer and gyroscope is always shared. An OS-level

mitigation is more appealing because it centralizes the changes in one place and benefits all

applications. In Android, there are mainly two ways to prompt a user to enter a PIN. The

first is to use an AlertDialog1 with the option android:password=“true” in the manifest

file. Upon displaying an AlertDialog with this option, we suggest the OS also deny access

to shared sensors/peripherals resources to other user-installed applications. The second

way to prompt for a PIN is via a GUI component (Activity). In this case, we suggest

the OS expose a PasswordActivity which inherits from the Activity. The sole use of the

PasswordActivity would be to inform the OS that the activity is used to collect sensitive

information from users. When displayed, the OS should deny access to shared resources

to other user-installed applications.

1http://developer.android.com/reference/android/app/AlertDialog.html

http://developer.android.com/reference/android/app/AlertDialog.html
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3.6.2 TEE-enabled devices

Here, the PIN-pad runs in the TEE. In this case, we also suggest an OS-level solution.

The OS should provide a PIN/password GUI component callable by TEE applications.

When the component is displayed, the OS (or the hypervisor) should deny access to

shared resources to the untrusted OS and other TEE applications. The component should

provide a default customizable PIN/password layout, but should also allow the application

developers to write their own layout from scratch.

3.6.3 Other Considerations

In 2013 (when this work was published), the camera, the microphone, the accelerometer,

and the gyroscope had been identified as side channels to infer PINs on smartphones.

Unfortunately, it is not possible to anticipate which other shared resources can be used

for side-channels. It is also likely that new sensors will be added to phones in the future;

and this raises the question of which resources should remain accessible during PIN input.

A naive solution would deny access to all resources, but this may affect usability. For

instance, when a call comes in, a user needs to hear the ring-tone while unlocking his

phone; otherwise he would miss the call. For these reasons, we think the use of a whitelist

is more appropriate: deny access to all shared hardware resources except those explicitly

allowed. The shared hardware resources we consider are the (video) camera, microphone,

speakers, screen, BT, NFC, and on-board sensors1. Essentially, any incoming input should

be prohibited as it may contain side-channel information about the PIN. The speakers

could be in the white-list since they output sound but do not allow incoming information

in. A more restrictive white-list could allow speakers only when used by the default “call

application” or other system services. All the above, however, does not protect against

side channels carried out by wearable devices such as smartwatches that are connected to

the phone. Malware on a smartphone could instruct a smartwatch to record accelerometer

readings during user input. Even if Bluetooth was disabled during the input, smartphone

malware could wait till the end of user input to request the collected data be sent over by

the watch. Therefore, to thwart multi-device side-channel attacks, all devices should be

aware of a common policy. In the smartwatch example, this would mean disabling reading

from all sensors and incoming data channels.

An orthogonal countermeasure to mitigate side-channel attacks is to use longer PINs (or

passphrases) to increase the guessing entropy [223, 224], but this affects memorability and

usability. Another additional countermeasure could be to enforce a maximum number of

PIN attempts, as with bank cards. Unfortunately, the number of smartphone applications

requiring a PIN will increase over time, forcing users to re-use them across applications

and services. This makes it more difficult to enforce a maximum number of PIN attempts.

1http://developer.android.com/reference/android/hardware/Sensor.html

http://developer.android.com/reference/android/hardware/Sensor.html
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Randomising the position of the digits of the PIN pad is also an option to consider.

Some online banking websites already use this on desktop applications. However, we

believe this would cripple usability on phones. Banks have deployed randomised PIN pads

mainly for money transfer; and a typical user may transfer money just a few times a month.

In comparison, users need to unlock their phone throughout the day and make payments

several times every day. If many applications randomised their PIN pad, it would further

aggravate usability. Clearly, a randomised pad is not acceptable for all applications: for

instance “payment companies” (e.g. Visa, PayPal) rely on building “frictionless” payment

systems to maximize the number of users’ purchases. With a randomised pad, users can

no longer make payments reflexively. Last but not least, some users tend to remember

their PIN by the position of the digits on the screen rather than by the digits themselves.

A more drastic solution is to get rid of passwords entirely. This could be achieved

through biometrics, electronic devices which the phone can sense [23] and/or progressive

authentication [225].

3.7 To Patch or Not to Patch

In the previous section, we concluded that a sound trusted path should stop any incoming

flow of information (e.g. sensors, network, peripherals) to a user’s personal devices (smart-

phone, wearable devices, etc.). But is the countermeasure worth being implemented in

practice? We discuss this now.

There are several aspects to take into account. First, the reliability of the attack. In

its current form, the attack is probabilistic. Hence to be exploited, it may require a large

number of infected devices. The second aspect is monetisation. An attacker may collude

with thieves to acquire a victim’s device and physically unlock the banking app with the

stolen PIN. For this, an attacker would need to recruit a network of thieves: this is not

impossible, but it requires effort. A potential problem with the mitigation is that it may

break certain apps that need continuous access to resources, e.g. a pedometer app. It is

hard to assess how many apps would break and make people unhappy. So unless Google

investigates this more carefully, it may be desirable to not patch now: there are easier

ways to attack smartphones at present (Section 2). Attackers also tend to bank on reliable

techniques rather that probabilistic ones in practice.

This does mean the findings of this chapter should be ignored. In fact, as the saying

goes, “attacks only get better”. For high-value targets such as politicians for example, we

suggest working towards implementing the countermeasure. Often times, attackers exploit

a series of smaller vulnerabilities to poke holes in a system.
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3.8 Summary

In this chapter, we investigated the feasibility of inferring PINs entered by users with the

use of the front video camera and microphone. The orientation of the smartphone during

PIN input is extracted from the video stream and correlated to the position of the digit on

the touchscreen. We presented the design, implementation and evaluation through an app

we developed for the Android platform. We demonstrated that the camera, usually used

for conferencing or face recognition, can be used maliciously to infer users’ touch events

too. Sensors and peripherals are not the only sources of side channels though, as we will

illustrate in the next chapter.



Chapter 4

Interrupt-based Side Channel on

Android

We present a new side-channel attack against soft keyboards that support gesture typing

on Android smartphones. An application without any special permissions can observe the

number and timing of the screen hardware interrupts and system-wide software interrupts

generated during user input, and analyze this information to make inferences about the

text being entered by the user. System-wide information is usually considered less sensitive

than app-specific information, but we provide concrete evidence that this may be mistaken.

Our attack applies to all Android versions, including Android M where the SELinux policy

is tightened.

We present a novel application of a recurrent neural network as our classifier to infer

text. We evaluate our attack against the “Google Keyboard” on Nexus 5 phones and use

a real-world chat corpus in all our experiments. Our evaluation considers two scenarios.

First, we demonstrate that we can correctly detect a set of pre-defined “sentences of

interest” (with at least 6 words) with 70% recall and 60% precision. Second, we identify

the authors of a set of anonymous messages posted on a messaging board. We find that

even if the messages contain the same number of words, we correctly re-identify the author

more than 97% of the time for a set of up to 35 sentences.

Our study demonstrates a new way in which system-wide resources can be a threat

to user privacy. We investigate the effect of rate limiting as a countermeasure but find

that determining a proper rate is error-prone and fails in subtle cases. We conclude that

real-time interrupt information should be made inaccessible, perhaps via a tighter SELinux

policy in the next Android version.

63
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4.1 Introduction

Around 100 billion mobile apps were downloaded by users in 20141. As users, we expect

a certain level of isolation between these apps. For example, we expect that a benign

permissionless app such as a weather app cannot read sensitive information entered in a

messaging app. In this paper, we show that this basic assumption does not hold on soft

keyboards that support “gesture typing”. This new mode of acquisition can compromise

users’ privacy. The “gesture typing” mode has been introduced to improve usability on

small-sized touch screen smartphones. In this mode, users swipe their finger from one

character to another rather than tap each key individually (Section 4.2). This feature is

enabled by default on Samsung and Nexus devices.

The attack leverages supposedly harmless information exposed by the OS to every

process on the device, namely the system-wide screen’s hardware interrupt counter and the

system-wide software interrupt (a.k.a. context switch) counter. Intuitively, when a user

interacts with the screen, such as (i) touching it or (ii) moving the finger on the screen, the

Android kernel receives a hardware interrupt from the interrupt controller, which it can

act upon to retrieve the current finger location. The number of hardware interrupts leaks

some information about what a user types (Section 4.2). Second, a soft-keyboard app

must keep track of a user’s finger position on the screen in order to infer the word entered.

Conceptually, this requires a soft-keyboard app to retrieve information from kernel-land

into user-land. This effectively requires performing context switches. The number of

context switches (a.k.a. software interrupts) the OS undergoes leaks some information

about what a user types (Section 4.2), even when other processes run – our test phones

have 200 running processes on average and 60 apps installed (Section 4.3).

The attack monitors the system-wide interrupt counters and uses supervised machine

learning to infer information about text entered by users. For this, we borrow techniques

from the NLP community; through the use of a sequence model based on a Recurrent

Neural Network (RNN) (Section 4.2.3). We evaluate the attack in two different scenarios:

1. Detection of pre-defined sentences: Given a set of sentences of interest, we ask

if we can detect when a user enters them. This could be used by curious advertising

libraries embedded in benign apps to infer personal information entered e.g. in

messaging apps. For example, an ad library could detect a search term such as “how

to lose weight” into a search engine or messaging app. We are able to correctly

detect sentences containing at least 5 words 60% of the time with 55% accuracy

(Section 4.3).

2. User identification: Given a set of sentences and users, we ask if we can identify

which users typed which sentences. This could be used to de-anonymize users of

1http://www.statista.com/statistics/263794/number-of-downloads-from-the-apple-app-

store/

http://www.statista.com/statistics/263794/number-of-downloads-from-the-apple-app-store/
http://www.statista.com/statistics/263794/number-of-downloads-from-the-apple-app-store/
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“anonymous” messaging apps such as YikYak. Even if sentences have the same

number of words, we correctly re-identify their author 97% of the time (Section 4.3).

To mitigate this attack, we investigate rate limiting, but find it is more cautious to

prohibit access to interrupt timing data entirely (Section 4.4).

In summary, the contributions are as follows:

• We present, design and evaluate a new side-channel attack against soft-keyboards

that support gesture-typing. These keyboards have been downloaded hundreds of

millions of times from Google Play, and they come pre-installed in Samsung and

Nexus devices.

• We highlight the limitation of the current SELinux policy in all Android versions,

including the latest stock Android M and customized versions used in the Samsung

KNOX security container. This allows a permissionless benign app installed on an

Android smartphone to breach a user’s privacy.

• We propose practical enhancements to the OS platform. After highlighting the

imitations of rate limiting, we suggest prohibiting access to interrupt timing data –

as well as other global statistical resources – altogether in the next Android version.

• On the scientific front, this is the first work to apply a Recurrent Neural Network

(RNN) to a side-channel problem.

4.2 Background and Threat Model

4.2.1 Android Soft-keyboards & Gesture Typing

The Android OS lets users install “keyboard apps”1 to replace the default soft keyboard.

The Android OS allows only one keyboard app to be enabled at any time, and this is

configurable by a user. We refer to the keyboard app that is currently enabled as simply

“the keyboard app” in the rest of the paper. When an app requires user input (e.g. through

displaying an EditText Java object), the Android OS launches the keyboard app. This

runs in a different process under a different user ID. A user effectively enters text in the

keyboard app, which in turn sends it back to the callee app via IPC (APIs are standard

and defined by the Android framework). The keyboard app can be used to provide new

features, such as encryption [226] or novel input methods which are the focus of this paper.

Over the years, keyboards with a “gesture typing” mode have emerged to ease user

input on small-sized touch-screen devices. At the time of writing, two keyboard apps with

1Technically, these keyboard apps are built on top of the Android Input Method Editor (IME) API.



66 CHAPTER 4. INTERRUPT-BASED SIDE CHANNEL ON ANDROID

Figure 4.1: Path of finger during input of word “hello” (red), “ask” (green) and “très”

(light blue).

gesture typing are prevalent. The Swiftkey app (10M-100M downloads) is the default

keyboard on Samsung devices, used by both “untrusted” apps and apps running within the

Samsung enterprise KNOX container. The Google Keyboard app (100-500M downloads)

now comes pre-installed in newer Android devices.

Gesture typing is a mode whereby a user slides their finger from one letter to another

without lifting the finger off the screen. Fig. 4.1 shows the “path” that a user’s finger

would typically follow to enter the word “hello” in the keyboard (red trace). First, a user

positions their finger on the letter “h” on the screen, then drags the finger to the letter

“e”, ’l’ and then ’o’, at which point he lifts the finger off the screen. Each subsequence ( ~he,
~el, ~lo) can be represented as a vector. When the finger transitions from one subsection

(e.g. ~he) to the next (e.g. ~el), the finger typically changes direction. Fig. 4.1 also shows an

exception to this – the word “ask” (green trace).

When a user lifts their finger off the screen, the keyboard app interprets it as the end

of a word and the “space” character is automatically added to the text. The process is

repeated for each word in a sentence. The keyword app keeps track of the position of

the finger on the screen and infers the most likely word entered by a user. This is fairly

accurate in practice. The keyboard app is however limited by the dictionary of words it

knows, that is, it never outputs misspelled words, unknown abbreviations or slang words.

If a user really wants to enter words that are not recognized by the app (e.g. “lol”), he

must add them to the “personal dictionary” section of the phone Settings.

4.2.2 Android & procfs

The Android OS is built on top of Linux. Its security model is based on the concept of

application sandboxes. Prior to Android 4.3, application sandboxes were implemented

on top of Linux discretionary access control (DAC). Upon installation, an Android app

was given a unique user ID (UID) and ran with the privileges of that user every time it

was started. The application-layer permission model relied on this application sandbox.
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A permission (e.g. “Camera”) was generally mapped to a dedicated Linux group (e.g.

the “permission” group). Permissions had to be declared by app developers in the

AndroidManifest.xml file, and were used to restrict access to system resources at run time.

To these mechanisms, Android 4.3 adds the use of Mandatory Access Control (MAC)

through SELinux. In practice, the SELinux policy is not as tight as one might expect, as

we shall see shortly.

From Linux, Android inherits the proc filesystem (procfs), a virtual filesystem that

provides aggregated information about the system as well as detailed information about

processes. Android also adds new entries within the procfs. The procfs information can help

app developers during troubleshooting, and also provide useful information for which there

is no Android API. Process-specific information is generally accessible under /proc/[PID]/*

and /proc/pid stat/[UID]/*, where PID is the process ID and UID the unique user ID. The

security implications of process-specific information have been demonstrated in various

papers [186, 187, 227] (Section 2.6 in Chapter 2). For example, Zhou et al. [186] show

how traffic volume information gleaned through the file /proc/uid stat/[UID]/tcp snd

and /proc/uid stat/[UID]/tcp snd can be used to fingerprint the Twitter app traffic and

identify a Twitter user. Such attacks worked before Android M because the SELinux

security policy was too loose, i.e. certain process-specific files remained readable by any

app on a device.

In Android M however, the SELinux security policy was tightened up to fix this, in

that an app can no longer access another process’s specific files in procfs. This appeared

to stop one app attacking another by relying on process-specific information. However,

we decided to study the details more carefully. For example, what are the implications

of exposing the file /proc/interrupts which contains real-time interrupt counters received

from peripheral? What are the security implications of exposing the file /proc/stat that

contains an aggregated software interrupt (a.k.a. context switch) counter? As we shall see,

they open substantial side channels with very real security and privacy implications.

4.2.3 Attack Overview

The threat model we consider is a non-malicious but curious app running on the victim’s

device. This app does not require special permissions besides internet access (to send

gleaned data to remote attackers) which, from Android M onwards, is automatically

granted and non-revocable. This app does not actively attempt to break out of the

sandbox; instead it observes and monitors publicly available “events” from the system

while a user enters text in a victim app. Specifically, these “events” are the variations

of (i) the system-wide screen interrupt counter and (ii) the system-wide context-switch

counter, accessible through the files /proc/interrupts and /proc/stat respectively.

For each unique word entered by a user, the system undergoes a series of events that
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# Samsung Galaxy S Plus with Swiftkey keyboard

$ cat /proc/interrupts

[...]

247: 7489 msmgpio qt602240-ts

# Samsung Galaxy S3 with Google keyboard

$ cat /proc/interrupts

[...]

387: 31695 0 0 s5p_gpioint melfas-ts

# Nexus 5 with Google keyboard

$ cat /proc/interrupts

[...]

362: 4016 msmgpio s3350

Figure 4.2: Interrupt of interest in the file /proc/interrupts. The counter is highlighted in

red and underlined.

can be used as a “fingerprint” to recognize that word. The challenge is that these events

contain noisy data and have low entropy. Therefore, we use supervised machine learning

to create a fingerprint. The fingerprint is constructed from training data and is used to

infer sentences entered later in victim apps. In certain attack scenarios, training data

are not even required (Section 4.3.4). In the general case however, we need a fingerprint,

and we use both the screen interrupt counter and the system-wide context switch (a.k.a.

software interrupt) counter as described in the following paragraphs.

Screen Interrupt Counter

This is available through the world-readable file /proc/interrupts. Fig. 4.2 shows the

relevant line containing the screen interrupt counter for different phones and keyboards.

Fig. 4.3 (top) shows variations of the screen interrupt counter while a user types the word

“hello” on a Nexus 5. The first section (denoted as (1)) corresponds to a user positioning

their finger on the letter “h” and dragging it to the location of the letter “e”: the interrupt

counter increases linearly with the number of CPU cycles. When the number of CPU

cycles reaches 6.5, the interrupt counter ceases to increase and remains constant for a

short period of time. This corresponds to the user’s finger transitioning from subsection
~he to ~el. This transition generally involves the finger (i) slowing down, (ii) reaching a zero

speed, and finally (iii) re-accelerating to reach the next letter. While the finger is idle

(zero-speed), the screen need not report changes to the OS, so the OS no longer receives
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(1) (2) (3)

h e l o

Figure 4.3: Screen interrupt counter (top) for word “hello” on Nexus 5; the “ideal” zero-

speed events of the user’s finger I would ideally want to infer (middle); the zero-speed

events detected in practice (bottom). I assume that the user drags their finger towards

the letter “l” once only, hence the single “l”. The keyboard app automatically infers the

second “l”.

screen interrupts. This explains the plateau between each subsection (Fig. 4.3, top).

Fig. 4.3 (middle) depicts zero-speed positions of the finger as inferred by an “ideal”

processing routine. These zero-speed events are indicative of the word entered so we use

their positions as a feature for word fingerprinting. In practice, zero-speed events often

correspond to a change of direction by the user’s finger (e.g. to transition from subsequence
~he to ~el). Sometimes however, no change of direction is needed to transition between

subsequences. This is illustrated in Fig. 4.1 (green trace) when entering the word “ask” –

〈 ~as, ~sk〉 = ‖ ~as‖‖ ~sk‖ (i.e. cos(θ) = 1). Certain users still voluntarily slow down their finger

around the letter “s”, which also creates a zero-speed event we can observe. Note that

the absence of zero-speed events does not reduce the effectiveness of the attack, since it is

itself indicative of a specific word.

In practice, we may either miss zero-speed events or detect false positive ones. For

example, the path of the finger may be a curve rather than a sequence of straight-line

vectors. This is often the case if the angle θ between two consecutive subsequences is

small, as illustrated in Fig.4.1 (light blue trace; ~tre to ~es correspond to French word “très”

which means “very”). For this reason, some changes of direction (and their corresponding

zero-speed events) may not be reliably observable. Therefore, in practice, we observe a
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$ cat /proc/stat

[...]

ctxt 1781433

Figure 4.4: Software interrupt in the file /proc/stat.

h e l o
(1) (2) (3)

Figure 4.5: Speed of the software interrupt counter during input of word “hello” by a user.

I assume that the user drags his finger towards the letter “l” once only, hence the single

“l”. The keyboard app automatically infers the second “l”.

probability distribution of zero-speed events (Fig. 4.3, bottom), with different zero-speed

events giving different amounts of information about words. Fig. 4.3 (bottom) illustrates

the zero-speed events that the detection routine would typically detect in practice.

Global Context Switch Counter

From here on, we use the terms “context switch” and “software interrupt” interchangeably.

The software interrupt counter is accessible through the file /proc/stat. The relevant line is

shown in Fig. 4.4. Unlike the screen’s interrupt counter, the line is the same on all devices

as it is hardware-independent. We found that its first derivative (i.e. its speed) provides

information about text entered in the keyboard. Before computing the derivative of the

counter, we first pass it through a Savitzky-Golay smoothing filter [228]. The context

switch counter speed corresponding to Fig. 4.3 is shown in Fig. 4.5 (word “hello”). During

subsection (1) ( ~he), the user’s finger starts idle at letter “h” (x-axis around 1). Its average
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i trust you

long zero-speed 
events

oy u

Figure 4.6: Screen’s hardware interrupt counter during input of the sentence “I trust you”

by a user. Long zero-speed events are used to detect words.

speed then increases until it reaches a local maxima which remains roughly constant on the

interval [4, 6]. Finally, its speed decreases to a local minima when the finger reaches letter

“e” at around 6.5. The same pattern repeats on intervals [7, 12] and [12, 17] corresponding

to subsections ~el and ~lo respectively.

These patterns are rather intuitive. As it starts idle, the finger must first accelerate (i.e.

its speed increases). Half-way through a subsection (say, ~he), its speed starts to decrease

until it reaches a local minimum. At this point, a new subsection starts and the pattern

repeats itself. The variation of the global switch counter is caused by the keyboard app

context-switching into kernel-land to retrieve the finger’s current location. The speed

of the finger is correlated with the speed at which the context switch counter varies as

illustrated in Fig. 4.5. Therefore, this counter carries some information about the entered

text, and we use it as an additional feature for word fingerprinting.

It is important to realize that monitoring (i.e. reading) the context switch counter

may affect the measurements, since it involves invoking the syscall read() which requires a

context switch. However, this turns out to have little effect on the attack for the following

three reasons:

1. We read the file at almost constant intervals, so the number of context switches we

generate is almost constant over time. Since we use the first derivative of the context

switch counter, and the derivative of a constant function is zero, the measurement

effect is to a first approximation removed;
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2. Even if the interval between consecutive reads is not exactly constant, the smoothing

filter we use further mitigates any artefacts generated by monitoring;

3. We use the same monitoring routine during the training and attack phase, so any

residual artefacts we may add are taken into account when we create the fingerprints.

Sentence Decomposition into Words

A requirement of the attack is the ability for an attacker to chop a sentence (i.e. its

corresponding series of “events”) into its corresponding words. To this end, we re-use the

global screen’s interrupt counter. Recall from Section 4.2.1 that the keyboard app detects

the end of a word when a user lifts his finger off the screen. While the finger does not

touch the screen, there is no activity on the screen to be reported to the OS. Therefore

the screen’s interrupt counter remains constant. This corresponds to zero-speed events.

However, the zero-speed events induced by lifting off the finger last a lot longer than

those caused by transitions between word sub-sequences. This is illustrated in Fig. 4.6 for

the sentence “I trust you”. We use this heuristics to detect the end and start of words.

Through the evaluation (Section 4.3), we find this works more than 95.5% of the time in

practice. This allows us to reliably chop a sentence signal into its constituent word signals.

These are then passed through a fingerprinting routine as described next.

Supervised Training & Classification

Once we have word signals, we can use them to train a classifier. We first investigated

using an SVM to classify words individually, but were not satisfied with the results: for half

of users, word predictions were correct less than 10% of the time only. We wanted to find

a solution that generalizes better across users. So we decided to explore a solution based

on a Recurrent Neural Network (RNN). This can naturally model sequences of arbitrary

length and consider contextual-information in a sentence beyond a local context-window.

As detailed in the seminal paper by Mikolov et al. [229], it can theoretically propagate

an unbounded history of previous words – we use a history of 5 words in our setup. In

this regard, it is also more general than a Markov chain, which assumes that a word only

depends on its immediate predecessor.

We use the RNN as a supervised classifier; that is, we train it using labelled examples

to minimize classification errors on the training data. But unlike with an SVM, we train

the RNN using lists of word signals representing sentences rather then individual word

signals. At attack time, we use the trained RNN to classify decomposed word signals from

intercepted keyboard swiping. The architecture of the RNN is shown in Fig.4.7(a); it is an

Elman recurrent neural network [230] that consists of an input layer xt, a hidden layer ht

with a recurrent connection to the previous hidden layer ht−1 and an output layer yt.
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xt

ht-1

ht

yt

U

W

V

(a)

st-2 st-1 st... ...st+1 st+2

(b)

Figure 4.7: The architecture of the recurrent neural network. (a) shows the state of the

RNN at any given time step. (b) shows the RNN unfolded across the entire input sequence.

A context-window size k = 5 is used, and the middle of the context-window is st; the

bottom layer is the input layer, the middle and top layers are the hidden and output layers,

respectively.

The input layer is a real-valued vector representing a context-window of word signals,

with the current signal at position t in the middle. The hidden layer ht−1 keeps a

representation of all a sentence’s context history up to the current word signal. The current

hidden layer ht is computed using the current input xt and hidden layer ht−1 from the

previous position. The output layer represents probability scores of all possible words,

with the size of the output layer being equal to the size of the vocabulary set.

To train the RNN, we feed to it all sentence signals in the training data one at a time,

where each sentence is represented as a list of decomposed word signals. Moreover, each

word signal has a corresponding ground-truth word label from the vocabulary set. The

goal of training is to make the RNN as accurate as possible at predicting ground-truth

words according to some loss function, which measures the classification error of the RNN

on the training data.

Concretely, let Si = s0, s1, . . . , sn be a list of word signals for sentence i in the training

data, and Wi = w1, w2, . . . , wn be the ground-truth words for Si. To train the RNN on
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(Si,Wi), it reads all the signals in Si in a left-to-right manner, and at each position t such

that 0 ≤ t ≤ n, the input xt fed into the network is:

xt = [st−⌊k/2⌋; . . . st; . . . ; st+⌊k/2⌋], (4.1)

where the right-hand side is the concatenation of all signals in a size k context window

(we use k = 5 in all the evaluations). As the RNN moves across the input signals in Si, it

keeps a representation of all previously seen signals in its hidden layer up to the current

step t, and it uses the values stored in ht−1 plus xt to make a new prediction. Fig. 4.7(b)

shows the RNN unfolded over an entire input sequence.

The RNN is trained with a cross-entropy objective, so does maximum-likelihood

estimation over the training data. We use the backpropgation-through-time algorithm [231,

232] and stochastic gradient descent to minimize the cross-entropy error:

L(Θ) = −
∑

i

log pi +
λ

2
‖Θ‖2 , (4.2)

where the second part is an L2 regularization term to prevent over-fitting and λ is a

regularization constant (I use λ = 10−5); Θ is the parameterization of the network and

consists of three matrices which are learned during supervised training1. Matrix U contains

weights between the input and hidden layers, V contains weights between the hidden and

output layers, and W contains weights between the previous hidden layer and the current

hidden layer. Minimizing the loss in Eq. 4.2 maximizes the probabilities of desired output

in the training data and minimizes the probabilities of incorrect output.

To make a prediction, the following recurrence2 is used to compute the hidden layer

activations at input position t:

ht = f(xtU+ ht−1W), (4.3)

where f is a non-linear activation function; here we use the sigmoid function f(z) = 1
1+e−z .

The output activations are calculated as:

yt = g(htV), (4.4)

where g is the softmax activation function g(zi) = ezi∑
j e

zj that squeezes raw output

activations into a probability distribution. The probability scores at the output layer

represent the probability of a word given all previous words, p(wt | wt−1, wt−2, . . . , w0),

and are used in the attack scenarios that we describe in later sections.

1Note that the matrices are carried over across all predictions, and it is not the case that three new

matrices are created for each new prediction. After each prediction, the values in these matrices are

updated by backpropagation.
2I assume the input to any layer is a row vector unless otherwise stated.
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Training Phase

In the general case, the attack requires a preliminary “training phase” during which we

build a set of word fingerprints using the RNN. Concretely, as word fingerprint features,

we use the following information for each word:

• The length (in CPU cycles) that it spawns. This is extracted from the system-wide

screen’s interrupt counter.

• The location of its zero-speed events. This is also extracted from the system-wide

screen’s interrupt counter.

• A stream of discretized values (sampled at regular time intervals) of the first derivative

of the system-wide context switch counter.

In certain attack scenarios, the training phase is not even needed (Section 4.3.4). When

it is needed, this phase requires users to enter lists of words in the keyboard app while

another app collects the corresponding signals (i.e. the counters). These are used to train

the RNN classifier and create the fingerprint set. Obviously, this phase requires knowledge

of the words that are entered by users in order to map them to their corresponding signal.

Currently, we build the fingerprint set (i.e. a training model) for each user in order to

evaluate the efficiency of the attack (Section 4.3). In practice, the training phase could be

performed by apps that receive enough genuine user input. For example, a repressive state

might require citizens to use approved apps extensively for everything from tax returns to

school homework, and seek to use the fingerprints generated from them to identify people

who sent subversive messages via encrypted messaging apps provided by firms in other

countries who were not prepared to respond to demands for monitoring or decryption.

And perhaps eventually it could be possible to eliminate the need for per-user training

by building the fingerprint set with enough users – such that the resulting fingerprint set

works for most users. In this study, however, we focus on evaluating the feasibility of the

attack rather than scaling it.

Attack Phase

In the attack phase, a malicious permissionless app records the counters from procfs while

a user enters text in another victim app on the phone. Note that the attack could also be

performed by a “normal” app against a “secure” app running in a KNOX container. Unlike

in the training phase, the malicious app can only observe the signals (i.e. the counters) but

not the words themselves. Using the fingerprint set at its disposal, it matches the observed

signals against this set using the RNN – through the scores ouput by the output layer.

More specifically, for a given sentence signal, the RNN outputs, for each word signal in a
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sentence signal, a probability that the word signal corresponds to a particular dictionary

word.

The malicious app must first determine when to start collecting the signals. When

it detects that the user interacts with a “screen view” of interest (e.g. the conversation

screen of WhatsApp where users enter chat messages), it starts signal collection. The

means of detecting the current “screen view” (a.k.a. “Activity” in Android parlance) are

not a contribution of this study. They have been demonstrated by previous work1,2,3 [227].

User input is indicated by a signal similar to Fig. 4.6, i.e. with consecutive screen activity

periods interleaved with short/long zero-speed events. The initial finger tap to pop the

keyboard and the last finger tap corresponding to the “Send” button provide the attacker

with further cues, which can be used to find the start and end of target input.

4.3 Evaluation

4.3.1 Methodology

Corpus

We use the NPS Internet Chatroom Conversations corpus (Release 1.0) [233] available

through the NLTK framework [234]. It consists of around 10000 English sentences gathered

from age-specific chat rooms of various online chat services in October and November 2006.

Within the corpus, we restrict ourselves to the most common 200 words, to which we

refer as the “dictionary” from here on. The choice of 200 words strikes a balance between

testing our techniques and the burden we put on study participants; by entering dictionary

words 15min every day, it took no less than three weeks to collect these samples for each

participant.

Participants

We recruited participants through word-of-mouth among acquaintances. We went for this

option so we could meet them regularly if need be. When improvements to the software

were suggested by participants, we could patch our software and deploy it rapidly. We

had 8 participants in our study, three females and five males. Two of them used the

gesture feature on their own phone. Their age was between 25 and 40 years old. Three of

them have a Computer Science degree, while the others have backgrounds in Psychology,

Criminology, Biology, Electronics, and Telecommunications. All have at least a Bachelor’s

1https://gist.github.com/jaredrummler/07a3f723e96ec06fb761
2https://developer.android.com/reference/android/app/ActivityManager.html#

getRunningTasks%28int%29
3http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/

https://gist.github.com/jaredrummler/07a3f723e96ec06fb761
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningTasks%28int%29
https://developer.android.com/reference/android/app/ActivityManager.html#getRunningTasks%28int%29
http://www.modzero.ch/modlog/archives/2015/04/01/android_apps_in_sheeps_clothing/
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degree, and five have a PhD. Five are native English speakers. These demographics are

not representative of the general population. However, our study is radically different

from behavioural studies where demographics play a significant role. In this study, we are

only interested in simple characteristics, such as finger speed, when people enter words in

gesture-based keyboards. This is a pilot study and in any case we believe the results will

generalize (as we will discuss later).

Before the experiment, we asked participants if they used gesture typing on their phone.

Those who did were told they could start immediately. The rest were asked to familiarize

themselves with it and only start once they felt at ease with it. That typically took a

few hours or days. We did this because we wanted to assess our attack on people who

actually know how to use the feature. If we tested beginners who drag their finger slowly

from one letter to another, it could create a bias in our favour, and artificially improve

the efficiency of our attack: recall from Section 4.2.3 that the slower a user’s finger, the

easier it is to detect “zero-speed” events reliably to build a word fingerprint. After this

preliminary requirement, we assumed that participants’ typing characteristics did not vary

significantly over the experiment period. So we did not retrain users over the course of

the experiment. If changes in typing characteristics were a concern, one could update the

model with the most recent data. The task that participants completed is described next.

Data Collection

We built a proof-of-concept (PoC) victim app and malicious app to run side-by-side on the

Android platform. These apps run in different processes under different UIDs. Therefore

they belong to different sandboxes, as would be the case in practice (Section 4.2.2). We

gave a Nexus 5 (OS ≥ 4.4) to the participants we recruited for the study.

Each participant enters lists of dictionary words in the victim app while the mali-

cious app runs in the background and collects signals (i.e. the counters) from the files

/proc/interrupts and /proc/stat. In the list of words entered by participants, each dictio-

nary word appears 20 times, resulting in 4000 (20 ∗ 200) word samples. On average, these

samples represent 40MB per user when zip-compressed. We discuss how a curious app

could upload this data stealthily to a remote server in Section 4.6. It takes three weeks for

each participant to complete the data-collection task. The phones given to participants

have about 60 apps installed on them, and an average of 200 processes running (as reported

by the ps command). WiFi is enabled at all times. During the course of the experiment,

participants witnessed the Android OS downloading updates; news apps regularly pushing

articles; and games showing notifications. Our malicious app only monitors the PoC victim

app, for ethical reasons.
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Fingerprint Creation & Testing

These steps are run on a desktop in our evaluation (we discuss the feasibility of doing

them on phones in Section 4.6). Signals collected from participants correspond to lists of

words, so first, we chop each signal into its constituent word signals, using the heuristics

presented in Section 4.2.3. This works over 99.5% of the time in practice. Once we have

individual word signals, we randomly pick 85% of them as the training set, i.e. to create

the corresponding word fingerprint. The other 15% are used as the testing set, that is, as

unknown input we attempt to predict. For both the training and testing sets, we combine

word signals to construct sentences in the corpus. These sentence signals are then used as

input to the RNN (either for training or prediction). A trained model needs between 1.1

and 1.3MB worth of data when compressed, and up to 3MB without compression.

4.3.2 Word Prediction

We first want to understand how well words are inferred within a sentence. In this scenario,

the RNN takes as input unknown sentence signals from users (i.e. from the testing set),

and ranks each dictionary word in order of likelihood for each constituent word signals.

The word that appears in the first position is the most likely word entered by the user

given the signal, while the one that appears last is the least. For evaluation, we use all

the word signals in our testing set. Fig. 4.8 shows the position of the correct word in the

ranked list. About 34% of the time, the correct word appears in first position (first bin of

the histogram); this is ≈ 68 times better than a random guess (prandom guess =
1

200
= 0.5%).

The correct word appears in second position 9% of the time (second bin of histogram),

etc. Fig. 4.9 shows the cumulative distribution of the position of the correct word in the

ranked list. About 80% of the time, the correct word appears in the first 22 positions. Of

course, there were some variations among participants, but the results did not indicate a

correlation between users who had previously used swipe keyboards, and those who had

not.

4.3.3 Detection of Sentences of Interest

Given a set of pre-defined sentences of interest (e.g. “I’m pregnant” or “I want to lose

weight”), we ask if we can efficiently detect if a user enters them. A practical attack could

be a school looking for pupils who sent messages bullying other students; parents trying to

monitor the topic of discussion of their kids on social media; or just a curious app peeking

at text entered by a user in the Google search bar. For the evaluation, we randomly select

a set of sentences from our chat corpus. A sentence of interest (“SoI” from herein) need

not span an entire sentence though; it may only be a subset of a longer sentence. For

example, for the SoI “I’m pregnant”, we want to detect it within longer sentences such as
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Figure 4.8: Distribution of the position of correct word guess.
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Figure 4.9: Cumulative distribution of the position of correct word guess.

“I think I’m pregnant too”. Our detection routine outputs a match if, for each word in an

SoI, the word appears in the first N positions in the ranked list output by the RNN. For

the evaluation, we vary the parameter N .

Fig. 4.10 shows the True-Positive-Rate (TPR) vs. False-Positive-Rate (FPR), a.k.a. the

ROC curve for SoIs. For SoIs containing at least 4 words, we correctly detect them 50%

of the time with a False Positive Rate (FPR) close to 0. The results are similar for SoIs

containing at least 5 and 6 words. An important metric missing from the ROC plot is the

precision of our matching algorithm, that is, when we output a match, how often are we

correct? Fig. 4.11 answers this question. For SoIs containing at least 4 words, we correctly
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Figure 4.10: TPR-FPR curve (ROC) of known sentence detection. The shadow area

represents the standard deviation for sentences containing at least 4 words.
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Figure 4.11: Precision-Recall curve of known sentence detection.

detect them 50% of the time (TPR = 0.5); and when we output a match we are correct

35% of the time (PPV = 0.35). This corresponds to a False Positive Rate (FPR) near 0

on the ROC curve of Fig. 4.10. For SoIs containing at least 5 words, the results improve:

we correctly detect them 60% of the time (TPR = 0.6); when we output a match, we

are correct 55% (PPV = 0.55). This corresponds to a False Positive Rate below 0.5%

on the ROC curve. Intuitively, as the number of words in a sentence increases, we have

more information to distinguish sentences. Therefore, for sentences with at least 6 words,

results further improve to a TPR = 0.7 and PPV = 0.6 corresponding to a FPR ≤ 0.05

on the ROC curve.
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Figure 4.12: YikYak messaging board example.

4.3.4 De-Anonymization of Users

Given a list of known sentences entered by a set of users, we ask if we can efficiently map

each sentence to the user that entered it. As per our threat model outlined in Section 4.2.3,

we assume that each user has our curious app running on their device. A practical attack

scenario could be to identify users of “anonymous” messaging board apps such as YikYak

messenger1, which has more than 1M downloads on Google Play. Such apps let users write

“anonymous” posts on a messaging board. A school could try to find which pupil posted

an inappropriate message. YikYak messaging boards are arranged by location: posts are

visible to all users in the vicinity of the sender. Posts are anonymous in the sense that they

do not contain a name, pseudonym or location data that would link them to their author

(Fig. 4.12). Posts do contain a time, but this is not very precise. During a time period T ,

U users may post anonymously to the board. Assuming these U users are infected by a

curious app, we ask if it can identify which user entered which post. We first used the

YikYak app ourselves to see how many messages were posted on average over time. We

found that within one minute, no more than a dozen messages were posted in our area.

Let N be the number of sentences posted during a time period T on an anonymous

messaging board. We denote a sentence as Seni,1≤i≤N . On each user’s device, the curious

app observes a signal Sigi,1≤i≤N as described in Section 4.2.3. Since there are N posts,

there are exactly N signals that correspond to them. Note that certain users could be the

author of multiple posts, that is, the number of users U ≤ N .

1http://www.yikyakapp.com/

http://www.yikyakapp.com/
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Sentences of different lengths

If sentences on the messaging board each contain a different number of words, it becomes

straightforward to map them to their corresponding signal Sigi by simply counting the

number of words in each Sigi. As detailed in Section 4.2.3, we detect the number of words

contained in a signal by counting “long” zero-speed events in the signal. Once we have

the number of words entered by each user, we just map these to the length of sentences on

the messaging board. No matter how many words each sentence contains, so long as each

of them contains a different number of words, we can identify their author virtually all

the time. The only condition is that we manage to properly count the number of words

in a sentence, and our experiment reveals this works over 99.5% of the time in practice.

Interestingly, in this attack, we neither need the user training phase nor the fingerprint.

To make the task challenging, we study the case where all sentences have the same length.

Sentences with same length

This is the worst-case scenario for the attacker. Let L be the number of words in all

sentences posted on the messaging board. The first step of our re-identification routine

is to compute, for every signal Sigi and every sentence Seni, a score that represents the

likelihood that the signal Sigi corresponds to Seni. Recall from Section 4.2.3 that our

fingerprint routine outputs, for any of the L word signals Sigi[k], 1 ≤ k ≤ L in a sentence

Sigi and a dictionary word DW, the probability that Sigi[k] corresponds to DW. We define

the score scorei,j for sentence Seni and signal Sigj as:

scorei,j
def
==

L
∑

k=1

log(proba(Sigi[k] == Senj[k])), (4.5)

where Seni[k] is the k
th word of Seni, Sigj [k] is the k

th word-signal of Sigj , and proba(WS ==

DW) is the probability that word-signal WS corresponds to dictionary word DW, as output

by the RNN.

We then build a square “score matrix” where each row i represents a signal, each

column j represents a sentence, and each element in the matrix is the score scorei,j (sci,j)

as illustrated in Fig. 4.13.

Sentence Prediction. We first evaluate how well we can infer the correct sentence

given a sentence signal. Specifically, for each signal Sigi (i.e. for each row i in the score

matrix), we rank each sentence score (sci,j,1≤j≤N) in increasing order. That is, the first

sentence in the ranked list corresponds to the sentence with the highest score, and the last

with the lowest score. Fig. 4.14 shows the position of the correct sentence in the ranked

list for a set of N = 35 sentences. Recall that in practice, about a dozen messages are

posted every minute. We nevertheless raise the bar to up to N = 35 messages for our
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Figure 4.13: Score matrix.
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Figure 4.14: Position of correct sentence in ranked list (35 sentences).

evaluation. For sentences containing 3 words, the correct sentence appears in first position

about 63% of the time. This increases to 77% and 86% for sentences containing 4 and 5

words respectively.

Naive Re-Identification Algorithm. Given a signal Sigi and its corresponding list

of scores sci,j,1≤j≤N , a simple solution to de-anonymize users is to select the top score in

the list. We call this solution the naive solution. In our experimental setup, we randomly

select N sentences each containing L words. Then we run the naive algorithm. We repeat

this 200 times and average the results. These are presented in Fig. 4.15. For example, for

sentences containing 5 words and for a set of 35 sentences, we correctly re-identify their

author 86% of the time. This is consistent with the results of Fig. 4.14. In order to increase

readability, and since the mean error between individual runs was always below 10%, we

omit error bars. As the number of sentences in the set decreases, the results improve: for

a set of 10 sentences each containing 5 words, we reach 92% de-anonymization. Intuitively,

the more words a sentence contains, the more information we have about it. Therefore, as

the number of words increases in a sentence, the re-identification improves (Fig. 4.15). We



84 CHAPTER 4. INTERRUPT-BASED SIDE CHANNEL ON ANDROID

1 2 3 4 5
# words in sentence

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
se

n
te

n
ce

s 
co

rr
e
ct

ly
 d

e
-a

n
o
n
y
m

is
e
d

Naive, 35 sentences
Naive, 25 sentences
Naive, 20 sentences
Naive, 15 sentences
Naive, 10 sentences

Figure 4.15: De-anonymization of sentences using the “naive” method.

next show how to improve these results significantly.

Optimal Re-Identification Algorithm. Naive re-identification is not optimal, so

here we describe a better method. Our goal is to maximize the sum of the scores when

selecting sentences corresponding to signals. Looking back at the score matrix (Fig. 4.13),

this means our goal is to select a set of optimal scoresi,j . Since each sentence corresponds

to a single signal, each row and column must have exactly one score selected; and the sum

of the selected scores must be optimal.

Practically speaking, this means there are N ! possible assignments to test. For N = 20

sentences, this means more than 1018 ≈ 260 candidates; and for N = 35 sentences, this

means 1040 ≈ 2130 candidates. This is greater than the strength of a 1024-bit RSA key

(280). Fortunately, our problem is equivalent to the so-called “assignment problem” [235]

for which there exist solutions that run linearly in the size of the input, i.e. in O(N). More

specifically, we use the Munkres algorithm [235] that runs in O(N) with O(N2) space

requirements.

As in the naive method, we randomly select N sentences each containing L words and

run the Munkres algorithm. We repeat this 200 times and average the results. These are

presented in Fig. 4.16. For a set of 35 sentences each containing 4 words, we correctly

guess the author of more than 92% of the signals (it is around 77% with the naive method).

Regardless of the set size, we correctly guess the author of more than 97% of the signals

when sentences contain 5 words.
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Figure 4.16: De-anonymization of sentences using “Munkres algorithm”.

4.4 Countermeasures

Store/Cloud-based

Cloud-level mitigation techniques such as Google’s Bouncer can be used to vet apps before

they reach end users’ devices. In addition to static and dynamic code analysis, Google

can use the large amount of data it stores about developers, such as their activity across

Google services, whether their IP has ever been associated with suspicious activity, and

so on. This is a powerful tool. However, we have no visibility about what checks Google

performs, and they are not infallible: from time to time some malicious apps manage to

evade them.

App-level

At the app level, we are limited. An app cannot disable gesture typing from the default

keyboard app. However Android allows arbitrary apps to include their own custom

keyboard layout/code through the KeyboardView API. This way an app could provide its

own keyboard without the gesture typing feature. However, re-implementing a keyboard

can be tedious, and removing gesture typing could greatly inconvenience users who have

grown accustomed to it.

Zhang et al. [101] suggest killing apps that may be collecting side-channel information

in the background while the foreground app performs sensitive tasks. This provides some

level of protection without changing the OS or the apps being protected. However it comes

with several caveats. First, their approach relies on the assumption that a malicious app

must monitor resources at high frequency to be successful. But Michalevsky et al. [181]
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show that high sampling is not always necessary: by sampling the power consumption once

a second, they can infer the route driven by a user (we discuss subsampling in the case of

our attack later). Second, their techniques only protect foreground apps, not background

processes. Third, they rely on monitoring app-specific procfs files; these are no longer

accessible in Android M.

We conclude that app-level countermeasures are fragile and limited, so we investigate

OS-level countermeasures next.

OS-level

OS-level countermeasures are more reliable since the OS can enforce a global policy that

an app cannot. On Android, there have been inconsistencies between what resources

are available through the framework APIs vs. those available through virtual files. The

framework APIs enforce the permission model but the same is not always true for virtual

files – certain permissions can be bypassed. For example, the virtual file /proc/net/arp

exposes the BSSID (i.e. the MAC address) of the WiFi Access Point a phone is currently

connected to. This allows a curious app on the phone to find the location of a user’s

phone without requiring location permissions [186]. There are other pieces of information

available through app-specific and global files in the virtual file system procfs (as well

as /sys). These represent the main source of leaks and inconsistencies that break the

permission model. Therefore, we advocate restoring consistency, that is, we advocate

prohibiting access to any virtual files (except those “owned” by the requesting app),

perhaps through a stricter SELinux policy. Recall from Section 4.2.2 that the SELinux

policy still allows access to certain global virtual files as of Android M. Of course, denying

access to global virtual files could break apps that rely on them. In practice, we think

this should affect only a very small number of apps, if any, as global virtual files exposed

by procfs only provide admin-like information for troubleshooting, rather than relevant

information for mobile apps. A trade-off could be to allow users to toggle this feature on

and off for certain apps through an additional option within the “Developer” menu in

phone Settings.

When we responsibly disclosed this work to Google, it became clear that they worried

that protecting global procfs entries could break some utility apps. So might it be possible

to have the OS rate-limit virtual file access, rather than prohibit it entirely? We study

this for both attack scenarios in the following sections.

Rate-Limiting to Prevent the Detection of SoIs. Recall from Section 4.3.3 that

in this scenario, an attacker has a pre-defined set of sentences of interest (SoIs), and wants

to detect when these are entered by a user. Our current attack relies on the ability of an

attacker to chop the sentence signal into its constituent word signals. For this, we used

the zero-speed events extracted from the screen’s interrupt counter (Section 4.2.3). If all
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word signals look “enough” like the words of an SoI, we output a match. Therefore one

way to defend against our current implementation is to make it infeasible for an attacker

to correctly infer the number of words entered by a user. Note however that this may not

thwart more advanced attacks that build a fingerprint based on the entire sentence signal

rather that its constituent word signals.

Fig. 4.17 shows the effect that subsampling (i.e. rate limiting) has on our detection

routine. With a reduction of the sampling rate by 2 (“2 subs”), we correctly detect the

number of words in an 8-word sentence about 80% of the time only. This drops down to

10% for a 10-fold reduction, which corresponds to about 10ms on a Nexus 5. Therefore a

10-15ms rate-limiting policy appears to already provide good security.

However, looking back at our data, we found that we could improve our original word-

splitting routine to use the software interrupt rather than the screen hardware interrupt.

Fig. 4.18 illustrates the effect that subsampling has on the first derivative of the software

interrupt counter. The top signal shows the original signal corresponding to a 4-word

sentence. Even with a 500-fold reduction of the sampling rate, the number of words is till

clearly visible. With a 1000-fold reduction, the detection becomes unreliable, and appears

impossible with a 3000-fold reduction. Fig. 4.19 shows the number of words detected by

our new routine subjected to subsampling (for all samples collected from users). Even

with a 200-fold sampling rate reduction, more than 60% of the time we correctly detect

the number of words (8). As we further reduce the sampling rate, the number of words

detected moves towards zero. But even with a 3000-fold reduction of the sampling rate, we

detect the presence of one word (50% of the time) rather than no word at all. A rate limit

of 1.4-3s (“1400 subs”-“3000 subs” in Fig. 4.19) thwarts our attack on SoI detection, since

with such sampling rates we never correctly detect the number of words in a sentence. Of

course, this only defeats our current implementation, and it would be more prudent to

prohibit access to virtual files entirely as suggested earlier.

Rate-Limiting to Prevent the Re-Identification of Users. In this scenario, we

have a list of sentences posted on an “anonymous” messaging board by a set of users.

We try to determine which user entered which sentence. We have extensively studied the

re-identification of users when sentences contain the same number of words, as this is

the worst-case scenario for an attacker (Section 4.3.4). If we apply the 1.4s rate limiting

policy as for SoI detection, an attacker can no longer detect the number of words reliably,

so this seems to thwart re-identification attacks on sentences with the same number of

words. Recall that without the right number of words, we cannot extract where words

start and end in the signal stream, as a result of which we cannot extract the features

necessary for fingerprint. The 1.4s rate, however, is still not enough if sentences contain

a different number of words. As we mentioned in Section 4.3, in this case an attacker

need not train on users, but only detect the number of words. Let us consider 2 signals

Sig1 and Sig2 corresponding to 2 sentences Sen1 and Sen2 containing L1 = 3 and L2 = 8
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Figure 4.17: Distribution of the number of words detected using the screen interrupt

counter, for sentences containing 8 words.
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Figure 4.18: Effect of subsampling on the first derivative of the number of software

interrupts measured by a malicious app.

words respectively. Even if an attacker cannot reliably infer the number of words in each

Signi, she may be able to re-identify users solely based on the estimated number of words

detected. Fig. 4.20 shows the number of words detected for sentences containing 3 and 8

words respectively, when subjected to subsampling. For example, for a 1000-fold reduction

of sampling rate, if an attacker detects 5 words, she is sure the signal corresponds to

Sen2 containing 8 words, since our routine never detects more than 3 words for a signal

corresponding to a 3-word sentence. So let us consider the following re-identification

heuristics:
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Figure 4.19: Distribution of the number of words detected using the software interrupt

counter, for sentences containing 8 words.

Sigi =







Sen1, if NdetectedWord ≤ Ncutt−off ,

Sen2, otherwise.
(4.6)

where Ncutt−off = 3 and Ncutt−off = 0 for 1000-fold reduction and 3000-fold reduction

of sampling rate respectively. This allows an attacker to correctly re-identify users 84%

and 43% of the time respectively. In other words, even a rate limit of 3s is not enough to

thwart re-identification attacks that are based on the number of words and, in effect, on

phrase length. We conclude that finding the right rate that thwarts all attacks – including

those still unknown to us – is nontrivial. It is more prudent to simply prohibit access to

virtual files as we first suggested.

4.5 To Patch or Not to Patch

In the previous section, we concluded that the OS should not expose the interrupt files

to user-installed apps. More generally, in an attempt to prevent future side channels, we

think it would be desirable to protect all procfs files. But is the countermeasure worth

being implemented in practice? We discuss this now.

As for the attack presented in Chapter 3, the sucess of the interrupt-based side channel

is probabilistic. However, an attacker need not physical access to a device to exploit it, and

a malicious app suffices. This suggests this vulnerability should be closed before attacks

become smarter and stealthier. One question that remains is the extent to which the

mitigation may break utility apps. As far as hardware/software interrupts are concerned,
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Figure 4.20: Distribution of the number of words detected using the software interrupt

counter, for sentences containing 8 and 3 words.

we doubt they are useful to utility apps. So we suggest the countermeasure be implemented.

As for other procfs files, there may be a higher chance that removing them breaks certain

apps. So further investigation should assess which procfs files are indeed necessary. Once

these files are identified, Google could create relevant APIs and permissions to provide

the same functions. Permissions make triage of potentially malicious apps feasible. More

expensive resources (e.g. dynamic or manual analysis) can then be dedicated to vet these

apps.

4.6 Discussion

The dictionary set we used was limited by experimental constraints (Section 4.3). In terms

of dictionary size, the practical limiting factor was the burden put on study participants.

We were unable to test our techniques for larger set sizes. This is an area that will no

doubt attract more work in the future.

We also attempted to recover arbitrary words. However, this turned out to be chal-

lenging. We investigated language models in combination with the RNN, but did not

achieve satisfying results. One major issue was the lack of a large chat dataset to create a

language model. We think our corpus was too small. We thought of using other sources of

chat data such as Twitter, but were put off by the restrictions on the use of the data. In

fact, Twitter now blocks large-scale downloads entirely to prevent data mining.

For now, we have demonstrated that aggregated interrupt counters consitute a threat.

We are confident that our results could be improved in two ways. First, as noted above,
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a larger chat corpus would help an attacker develop good language models. These are

typically trained over millions of entries, while our corpus had only a few thousand. It

would be very valuable to understand the full implications of such attacks under ideal

conditions.

Second, we believe fine tuning the classifier parameters could also improve our results.

More data from users could help to take advantage of deep learning capabilities of the

RNN. Again, artifical neural networks excel at understanding complex data relationship

through millions of samples, but we trained ours with less than 20 occurrences of each

word for each user. The restricted number of participants made it difficult to assess the

feasibility of creating a “master” model that works for most users to avoid the per-user

training phase. Realisticallly, this may require hundreds or even thousands of users. It

was out of scope of this paper, since we focused on piloting the attack, rather than scaling

it. Consequently, with our current implementation, predictions made through a model

trained on one user simply do not work for another. But the history of HCI suggests that,

with enough users, we can move from user-dependent recognition to user-independent

operation.

As well as scaling the attack across users, it may be worth while trying to scale the

attack across devices. We demonstrated it on the Nexus 5, but we are confident it will

generalize; we have looked at various phone models, and their counter streams all show

similar properties during user input. However, different phones have different hardware

and software characteristics. So could we build a model by training users on one phone,

and predict text entered on a different one? This is another topic for further research.

As detailed in Section 4.3, our current implementation collects data on phones, but

data pre-processing, fingerprint creation and prediction are performed offline on a desktop.

But the processing power of current smartphone is not a barrier; we could do all the

data processing locally. Model creation on a standard desktop takes a few minutes at

most with code written in python. We believe the same computation would be feasible

on a smartphone if we reimplemented it in C, albeit with a slight performance hit. The

prediction phase is a lot faster and takes at most a few seconds on our desktop. Software

that can collect data and build a model locally opens up the prospect that a malware writer

could collect data at scale and use it for the methodological improvements described here,

including building a better language model and developing user-independent recognition

techniques.

Stealthy malware must blend in its environment in terms of energy consumption,

network activity, and data storage. Energy consumption during data collection would be

negligeable because the curious app monitors input only when needed. There is no busy

loop constantly executing to drain the battery. Where energy consumption could become

an issue is during model training if this was done on the phone. To be stealthy, malware

could do this in steps, rather than all at once, e.g. by spreading the computation over
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several days, or doing it only when the phone is plugged in to a power socket. In terms of

storage, models take a bit over 1MB at rest (i.e. compressed) and about 3MB when used

(uncompressed). Data collected for the training phase is about 40MB when compressed

(Section 4.3). Although this is not small, neither is it big enough to make users suspicious.

In the case where data processing is offloaded to a server, network activity should also be

camouflaged, e.g. by uploading data over several days, or only when in wifi.

We use phones with around 60 apps for our evaluation. The apps generate noise

for the counters we monitor. Our results show that under normal conditions, this noise

is negligible. We also investigated our attack under heavy load while the browser was

downloading a 100MB file. The download spanned the entire user input. Under this

condition, our attack did not work. So our current implementation is very sensitive to

ambient noise. But this does not mean that all such attacks will be. Even if the side

channel turns out to be inherently sensitive to high loads, users generally only interact

with one app at a time on smartphones. So maybe most of the time the system is under

low load and the attack remains feasible, or maybe the curious app can just discard data

when heavy load is detected.

Another interesting question is how we could combine sensor-based side channels with

our attack. This is something we have not attempted yet. Another kind of attack that

may become possible through monitoring interrupt counters is inference of what users

type on normal keyboards. Attacks based on keystroke dynamics would benefit from the

interrupt-based side channel described in this paper. The screen’s hardware interrupt

counter may also be used to infer other user activities on the screen. It could also have

been used, for example, by PIN Skimmer [236] – where the authors used the microphone

to detect user taps.

In short, the attack we have presented in this paper is really just an early prototype,

and can probably be improved and extended in all sorts of interesting ways. Rather than

waiting for this to happen, it may be prudent to tackle the problem now.

4.7 Summary

We presented a novel attack against Android soft keyboards that support gesture typing. By

monitoring the number of screen’s hardware interrupts and aggregated software interrupts

during user input, we show that it is possible to breach users’ privacy, both by identifying

some sentences a target user typed and by identifying which user typed some incriminating

sentence.

To the best of our knowledge, this work is the first to leverage global information

exposed by procfs. This goes against the general belief that non-app-specific information

exposed through virtual files is harmless. The attack also applies to the latest Android

version where app-specific virtual files are inaccessible.
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We investigated the efficiency of rate limiting as a countermeasure, but found that

determining a proper rate limit is nontrivial and fails in subtle use cases. Therefore we

advocate removing access to global virtual files in the next Android version.
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Chapter 5

Security Analysis of Android Factory

Resets

We study the implementation of Factory Reset on 21 Android smartphones from 5 vendors

running Android versions v2.3.x to v4.3. We estimate that up to 500M devices may not

properly sanitise their data partition where credentials and other sensitive data are stored,

and up to 630M may not properly sanitise the internal SD card where multimedia files are

generally saved. We found we could recover Google credentials on all devices presenting a

flawed Factory Reset.

Full-disk encryption (FDE) has the potential to mitigate the problem, but we found

that a flawed Factory Reset leaves behind enough data for the encryption key to be

recovered. We discuss practical improvements for Google and vendors to mitigate these

risks in the future. Recent Android versions try to take advantage of ARM’s TrustZone

technology to secure encryption keys. This was not the case at the time we did the work.

The work presented in this chapter was published in the 4th Workshop on Mobile

Security Technologies (MoST) [237], and is in collaboration with Ross Anderson. I

developed tools and scripts, and performed the evaluation across all devices. Ross helped

with the writing and reviewing of the final paper. This work was also presented at the

2015’s BlackHat Mobile Security Summit in London [238].

5.1 Introduction

The extraction of data from resold devices is a growing threat as more users buy second-

hand devices1 to amortise the purchase of a new device. Trade press reports2 have already

1http://blogs.which.co.uk/technology/phones-3/mobile-phone-price-tracking/
2http://blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-themselves-

online-every-day

95

http://blogs.which.co.uk/technology/phones-3/mobile-phone-price-tracking/
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Figure 5.1: Market size of user smartphones.

raised doubts about the effectiveness of Android “Factory Reset”, but this chapter presents

the first comprehensive study of the issue.

According to a survey by Sanford C. Bernstein1 in 2012, half of the US smartphone

users said they would trade in their device the next time they upgrade. Overall, different

surveys tend to agree on the current size of the used smartphone market (Fig 5.1). Sanford

C. Bernstein estimate that 3 percent (53M) of phones were resold in 2012. Gartner2

estimate that 56M smartphones were resold in 2014. Deloitte Global3 estimate that 80M

devices were resold worldwide in 2015. Nationwide, Deloitte India4 expect 13 percent of

Indian users to trade in their used phone in 2016. It is hard to validate these numbers as

there is usually little information on how the studies were conducted. In fact, predictions

for 2017-2018 vary greatly across studies (Fig 5.1). But it is not unreasonable to expect

over 100M devices resold in 2018: this would represent below 5 percent of the wordwide

shipment. So this does not represent a significant fraction of the overall market. However,

in terms of numbers, if an ill-intentioned group of people were to get their hands on

a fraction of these devices, then large-scale attacks may become feasible. What is a

determining factor for this to happen? We discuss this next.

1http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-

poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/
2https://www.gartner.com/newsroom/id/2986617
3http://www2.deloitte.com/au/en/pages/technology-media-and-telecommunications/

articles/tmt-predictions-2016-telecomm-used-smartphones-17-billion-market.html
4http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-

iphone/

http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/
http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/
https://www.gartner.com/newsroom/id/2986617
http://www2.deloitte.com/au/en/pages/technology-media-and-telecommunications/articles/tmt-predictions-2016-telecomm-used-smartphones-17-billion-market.html
http://www2.deloitte.com/au/en/pages/technology-media-and-telecommunications/articles/tmt-predictions-2016-telecomm-used-smartphones-17-billion-market.html
http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-iphone/
http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-iphone/
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Some surveys qualitatively assess what happens to used phones. For example, Deloitte

India1 estimate that two third of resold devices are resold to individuals, whereas the other

third is traded to carriers and manufacturers. Deloite UK estimate that 20 percent of all

phones are given/sold to a family member2. This cannot lead to large scale attacks since

there is a limit to the number of relatives someone has. The same study estimates that 12

percent of devices are resold online. Groups of individuals could buy in bulk from online

websites to scale attacks. But as we discuss in Section 5.4.3, we think this is difficult in

practice. About eight percent of devices are traded in with carriers, manufacturers, or

retail shops. There is little data about what happens to devices that these organisations

collect. Usesd phones may be recycled, destroyed, or resold. Regardless of this, rogue

employees in these organisations may get access to a sufficient quantity of devices to scale

their attack. According to Sanford C. Bernstein3, in 2012 the majority of used phones

were collected in the US and resold to emerging markets, in particular China. Employees

of the organisations in charge of the devices in the origin/destination countries could also

mine devices in mass. So in effect, a determining factor for large scale attacks is the ability

to gather a large number of devices, not what happens to the devices next.

Data sanitisation problems have the potential to disrupt market growth. If users fear

for their data, they may stop trading their old devices, and buy fewer new ones; or they

may continue to upgrade, but be reluctant to adopt sensitive services like banking or

healthcare apps, thereby slowing down innovation. Last but not least, phone vendors may

be held accountable under consumer protection or data protection laws.

To sanitise their devices, users are advised to use the built-in “Factory Reset” function

on device disposal. Previous reports [239] have raised occasional doubts about the

effectiveness of the implementations of this in Android, with claims that data can sometimes

be recovered. This work provides the first comprehensive study of the problem. It (i)

quantifies the amount of data left behind by flawed implementations, (ii) provides a

detailed analysis of affected devices (versions, vendors), (iii) reveals the drivers behind the

flaws, and (iv) discusses practical solutions to mitigate these problems (Section 5.3 and

Section 5.6).

Concretely, we have found that a flawed Factory Reset lets an attacker access a user’s

Google account and its associated data backed up by Google services, such as contacts

and WiFi credentials (Section 5.4). The study unveils five critical failures: (i) the lack

of Android support for proper deletion of the data partition in v2.3.x devices; (ii) the

incompleteness of upgrades pushed to flawed devices by vendors; (iii) the lack of driver

support for proper deletion shipped by vendors in newer devices (e.g. on v4.[1,2,3]); (iv)

1http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-

iphone/
2https://www.deloitte.co.uk/mobileuk/assets/pdf/Deloitte-Mobile-Consumer-2015.pdf
3http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-

poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/

http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-iphone/
http://dazeinfo.com/2016/02/01/used-smartphone-market-growth-india-usa-uk-apple-iphone/
https://www.deloitte.co.uk/mobileuk/assets/pdf/Deloitte-Mobile-Consumer-2015.pdf
http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/
http://www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-market-poised-to-explode-apple-iphone-holding-up-better-than-samsung-galaxy/
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Figure 5.2: Yaffs2 with raw flash access vs. Ext4 with logical block access. On an eMMC

(right), the logical block N is mapped to the physical block N + 3 by the eMMC, and

remapped to block M after an overwrite. MTD stands for Memory Technology Device.

the lack of Android support for proper deletion of the internal and external SD card in all

OS versions; and (v) the fragility of full-disk encryption to mitigate those problems up to

Android v4.4 (KitKat).

In summary, the contributions are as follows:

• This is the first comprehensive study of Android Factory Reset. We studied 21

Android smartphones from 5 vendors running Android versions from v2.3.x to v4.3.

• We highlight critical failures such as the lack of support by the Android OS and/or

vendor-shipped drivers for secure deletion. These problems may affect devices even

after upgrades are received.

• We discuss practical improvements for Google and vendors to mitigate these risks in

the future.

5.2 Technical Background

5.2.1 Flash & File Systems

Smartphones use flash for their non-volatile memory storage because it is fast, cheap and

small. Flash memory is usually arranged in pages and blocks. The CPU can read or write

a page (of typically 512+16 to 4096+128 data+metadata bytes), but can only erase a

block of from 32 to 128 pages. Each block contains both data, and “out-of-band” (OOB)

data or metadata used for bad block management, error correcting codes (ECC) and file

system bookkeeping. Blocks must be erased prior to being written to; yet flash chips

support only a finite number of program-erase cycles, so wear-levelling algorithms are
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used to spread the erase and write operations uniformly over all blocks. It is also worth

mentioning that flash storage is usually over-provisioned, i.e. a chip has more internal

space than it advertises to the OS, in anticipation of bad blocks and to further reduce

wear.

Early Android devices (like Froyo, Android v2.2.x) used the flash-aware file system

yaffs2 that handles wear-levelling and error correction. Since Gingerbread (v2.3.x), devices

generally come with an embedded MultiMediaCard (eMMC) with proprietary wear-levelling

algorithms implemented in hardware. An eMMC does not give the OS access to the raw

flash, but exposes a block-like device, on top of which the OS lays a block file system like

ext4. Blocks only give the OS a logical view of memory. Internally, each block is mapped

to a corresponding physical block on the flash by the eMMC controller. When data in a

logical block N is updated by the OS (Fig. 5.2, right), the corresponding physical block

would typically be added to a “to-be-erased” list, then remapped to a “clean” physical

block M , thereby leaving the original block content untouched. Therefore, to achieve

secure deletion, eMMC standards define specific commands that must be used to physically

remove data from memory.

5.2.2 Secure Deletion Levels

When removing a file, an OS typically only deletes its name from a table, rather than

deleting its content. The situation is aggravated on flash memory because data update

does not occur in place, i.e. data are copied to a new block to preserve performance,

reduce the erasure block count, and slow down the wear. Therefore, there exist various

recommendations, guidelines, and standards for sanitising data. The following levels of

data sanitisation are relevant depending on the threat model considered [210].

The highest level of sanitisation is analog sanitisation, this degrades the analog signal

that encodes information, so that its reconstruction is impossible even with the most

advanced sensing equipment and expertise. For example, NIST’s Guidelines for Media

Sanitization (NIST 800-88) have a “purging” level that corresponds to analog sanitisation.

The second level is digital sanitisation. Data in digitally sanitised storage cannot

be recovered via any digital means, including the bypass or compromise of the device’s

controller or firmware, or via undocumented drive commands. Unimpeded physical access

to a flash chip and the manufacturer’s data sheet may be required, but these are not

available for typical smartphones.

The third level is logical sanitisation. Data in logically sanitised storage cannot be

recovered via standard hardware interfaces like standard eMMC commands. For example,

this corresponds to NIST 800-88’s “clearing” level. For cellphones and PDAs, NIST 800-88

suggests “clearing” them by manually deleting data followed by a Factory Reset.
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In this study, we consider cheap data recovery attacks that require neither expensive

equipment to physically extract data from the chip nor specific per-chip knowledge. Only

attacks that are oblivious to the underlying chip scale across devices and are likely to be

profitable if exploited at scale. Therefore, in the rest of this document, by “proper” or

“secure” sanitisation, we mean logical sanitisation.

5.2.3 Linux Kernel Deletion APIs

Privileged userspace programs can erase flash blocks through the ioctl() system call exposed

by the Linux kernel. On raw flash, the ioctl ’s MEMERASE option provides digital saniti-

sation. On an eMMC, there are two different options. The first is BLKDISCARD which

provides no security guarantees. Internally, the kernel generally implements BLKDISCARD

by passing the eMMC command “DISCARD” or “TRIM” to the chip. These do not request

the eMMC to purge the blocks. They simply indicate that data is no longer required so

that the eMMC can erase it if necessary during background erase events. They would

typically be used when unlink ing a file. The second ioctl option is BLKSECDISCARD

and provides “secure” deletion. The kernel implements BLKSECDISCARD by passing

to the chip one of the many “secure deletion” commands defined by eMMC standards.

The actual eMMC command used depends on support by the chip. There is an “ERASE”

command for logical sanitisation, and commands such as “SECURE TRIM”, “SECURE

ERASE”, and “SANITIZE” for digital sanitisation.

5.2.4 Data Partitions

Android smartphones share three common partitions for data storage (Fig. 5.3). The first

is the data partition, generally mounted on /data/, that hosts apps’ private directories.

An app’s private directory cannot be read or written to by other apps, so it is commonly

used to store sensitive information such as login credentials. On older phones with a small

data partition, one can also install apps on an external SD card; but this is usually not

the default behaviour.

The second partition storing user data is the internal (primary) SD card. Despite its

name, it is not an SD card per se, but a partition physically stored on the same chip.

It is generally mounted on /sdcard/ or /mnt/sdcard/, which is readable/writeable by

applications. It is generally FAT-formatted or emulated with the Filesystem in Userspace

(FUSE). In the latter case, files are physically stored on the data partition. The internal

SD card is mainly used to store multimedia files made with the camera and microphone; it

is generally exposed to a computer connected via USB – via Mass Storage, Media Transfer

Protocol (MTP) or Picture Transfer Protocol (PTP).

The last partition containing user data is the external, removable SD card. It offers

similar functionality to the internal SD card, but can be physically inserted and removed
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by the user. If there is no internal SD card on the device, the external one becomes the

“primary SD card”; otherwise it is called the “secondary SD card”. The primary and

secondary SD cards are sometimes referred to as “external storage”.

Some devices also have hardware key storage. When supported, it is used principally

by the default Account Manager app.

Recovery Bootloader boot /sdcard/ /data/

Code partitions Data partitions

image.jpg
video.mp4

system/
wifi/
private_dir_app0/
private_dir_app1/

Figure 5.3: Common Android partitions. Each rectangle represents a partition on the

same flash storage.

5.3 Analysis of Android Factory Reset

In the rest of the study, we refer to a “Factory Reset” or a “wipe” interchangeably.

5.3.1 Methodology

Between January and May 2014, we bought second-hand Android phones from eBay and

from phone recycling companies in the UK, randomly selecting devices based on availability.

As the project might possibly uncover personal information, it was first submitted to the

university’s ethics process for approval. In the rest of the paper, we refer to a “device” as

the unique pair (phone name, OS version).

Devices Tested

We studied 26 different devices from 5 vendors1, running Android versions ranging from

v2.2 (Froyo) to v4.3 (Jelly Bean). The list of devices is as follows:

Froyo (v2.2.x): HTC Nexus One, Motorola Defy.

Gingerbread (GB, v2.3.x): Galaxy S Plus, HTC Wildfire S, HTC Desire S, Galaxy

S, Galaxy S2, Galaxy ACE, LG Optimus L3, Nexus S.

Ice Cream Sandwich (ICS, v4.0.x): HTC Sensation, Galaxy S3, HTC Desire C,

Galaxy S2, LG Optimus L5.

1Samsung, HTC, LG, Motorola and Google
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Figure 5.4: Android OS distribution for Froyo, KitKat (KK), Gingerbread (GB), Ice

Cream Sandwich (ICS) and Jelly Bean (JB).

Jelly Bean (JB, v4.[1-3]): Nexus 4 (x2), Motorola Razr I, LG Optimus L7, Nexus

S, Galaxy Note 1, HTC One S, HTC One X.

Other devices in our sample for which we do not present results (too few devices)

include the Motorola Defy (Eclair, v2.1.x), Nexus 4 and Nexus 5 (KitKat, v4.4).

Android versions in the sample were the ones more frequently resold and traded at

the time of the study. Fig. 5.4 shows the distribution of Android versions for our samples,

compared to active devices in June 2013 and in March 2014, as reported by Google’s

Dashboard1. The samples are not representative of the OS version distribution at the time

of acquisition, but are similar to the world-wide distribution 6 months earlier, in June 2013

(as one might expect from the time taken for new phones to enter the second-hand market).

In September 2013, Google announced that one billion devices had been activated2. This

represents 340M Gingerbread (GB, v2.3.x) devices, 230M Ice Cream Sandwich (ICS,

v4.0.x) devices and 380M Jelly Bean (JB, v4.[1-3]) devices. The samples are representative

of the second-hand market at the time of acquisition. We use the number of devices

and their distribution across versions (in June 13) to approximate the number of devices

affected by flawed Factory Resets throughout the following sections. Estimates are based

on the assumption that each device accounts for the same percentage of the overall device

population. This is not true in practice, and this is a limitation of the evaluation.

1developer.android.com/about/dashboards/index.html
2plus.google.com/+SundarPichai/posts/NeBW7AjT1QM

developer.android.com/about/dashboards/index.html
plus.google.com/+SundarPichai/posts/NeBW7AjT1QM
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(a) Factory Reset in Settings. (b) Factory Reset in Recovery.

Figure 5.5: Factory Resets provided by most devices.

Pattern writing and validation

We tested each partition of interest (Section 5.2.4) by overwriting it with unique identifying

patterns. Then we sanitised the device with the Factory Reset function and attempted to

recover the written patterns. We investigated the Factory Reset suggested by vendors1,

that is, the one in Android Settings (Fig. 5.5(a) – recommended by 90% of vendors) and

the one in Recovery/Bootloader mode (Fig. 5.5(b) – recommended by 70% of vendors if

the phone cannot be booted). The Recovery and Bootloader modes are special modes a

phone can be booted into via a combination of hardware keys. More specifically, we used

the following steps to test each partition of interest:

Root Access. To be able to write to a partition bit-by-bit, we first needed low-level

access to the flash storage. In the case of yaffs2, this meant access to the raw flash, while

for an eMMC it meant access to the logical blocks. Android does not give such low-level

access to apps. Rather, one needs to “root” the device. We achieved this with known

root exploits or by booting a custom Recovery – in the latter we would backup the stock

Recovery first. Previous work [240] suggested loading custom code via the Bootloader

without requiring root access within the Android OS. However this only works on a handful

of devices today.

Writing Patterns. We wrote identifying patterns on the entire partition. Each

pattern was 1/4th the device block size. For external storage, we wrote the patterns with

the Android OS. For the data partition, devices would sometimes crash and reboot: in

1Alcatel, BlackBerry, Apple, HTC, Samsung, HuaIi, Nokia, Motorola, Lenovo, Sony, LG
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this case we resorted to using a custom Recovery booted in the previous step. All patterns

were delimited with common 10-byte HEADERs and FOOTERs (Fig. 5.7), and uniquely

identified by a 4-byte counter (ID). We filled each pattern with random bytes (RANDOM)

to avoid the underlying chip using compression, and added a 16-byte MD5 DIGEST over

the RANDOM bytes for verification. Pattern generation was done on a laptop, and sent to

the phone via USB with the Android Debug Bridge (adb) utility shipped with the Android

SDK (Fig. 5.6).

# laptop: forward port 12345 to device

$ adb forward tcp:12345 tcp:12345

# device

$ /dev/busybox nc -l -p 12345 | /dev/busybox dd of=/dev/block/mmcblk0p2

# laptop: pipe pattern to local port

$ ./echo_pattern | nc localhost 12345

Figure 5.6: Pattern writing for Galaxy S’s data partition (i9000). Reading a partition is

achieved with similar commands.

HEADER ID DIGEST RANDOM ID FOOTER

Figure 5.7: Pattern written to a partition of interest.

Sanitisation. We performed a wipe with one of the recommended options given by

vendors, i.e. (i) the Factory Reset in Settings, and (ii) the option in the Recovery/Bootloader

mode. Because of the lack of formatting and file system introduced by the patterns, some

devices would fail to perform the wipe on external storage. In this case, we first re-formatted

them with the built-in Settings option. When we had installed a custom Recovery, we

would also take care of re-installing the original one prior to the wipe (with a backup).

Imaging. We imaged the entire partition with similar commands as presented in

Fig. 5.6.

Validation. The last step was the recovery and validation of patterns. We searched

for non-deleted pattern candidates using their known header and footer, then validated

each candidate by verifying the digest over the random data. We also investigated which

percentage of the disk was properly sanitised (i.e. zeros for an eMMC or ones for a raw

flash), in order to confirm that it was consistent with the number of patterns we had

recovered.
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Figure 5.8: Percentage of devices with flawed logical sanitisation. Results for primary and

secondary SD cards (i.e. external storage) implicitly assume the use of the Factory Reset

in Settings since the Recover/Bootloader Factory Reset only sanitises the data and cache

partitions.

5.3.2 Results and Discussion

Preliminary Results

We found that the sanitisation of external storage occurs only if a user selects the

additional option “External Storage” in the Factory Reset in Settings. In this case, the

Android OS first performs the sanitisation of external storage and then reboots into

Recovery/Bootloader mode where the data partition and the cache partition (which

contains mainly optimized .odex java classes) are sanitised. If a user Factory Resets his

device with Recovery/Bootloader instead of Settings, external storage is not sanitised –

subtle difference between devices are provided in the following paragraphs. Fig. 5.8 shows

the results of built-in sanitisation for all devices studied.

Sanitisation of the data partition

Recall from Section 5.2.4 that the data partition stores sensitive information from Google

and third-party apps, such as credentials.

On devices running the oldest version of Android we studied (Froyo, v2.2.x), the data

partition was logically sanitised. These devices use a raw flash with the yaffs2 file system

(Section 5.2.1), where it is infeasible to reformat (i.e. write) a partition without first

properly sanitising it (i.e. erasing previous blocks). The Android Open Source Project
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Table 5.1: Chronology of Factory Reset Implementations in AOSP.
OS Versions

Code Partition Froyo (2.2.x) GB (2.3.x) ICS (4.0.x) JB (4.1.[1-3]) KK (4.4)

Android
primary SD format() ✗ format() ✗ format() ✗ ioctl(BLKDISCARD) ✗ ioctl(BLKDISCARD) ✗

secondary SD none ✗ none ✗ none ✗ none ✗ none ✗

Recovery data ioctl(MEMERASE) ✓ ioctl(BLKDISCARD) ✗ ioctl(BLKSECDISCARD) ✓ ioctl(BLKSECDISCARD) ✓ ioctl(BLKSECDISCARD) ✓
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(AOSP1) reveals the use of the ioctl ’s MEMERASE command by the Recovery mode

(Table 5.1), this provides digital sanitisation and confirms the results of Fig. 5.8.

From Gingerbread onwards (≥ v2.3.x), all devices we encountered use eMMCs (except

one), where it is possible to reformat a partition without properly sanitising it first – since

the eMMC erases blocks on behalf of the OS. Fig. 5.8 shows that about 90% (≈ 300M)

of Gingerbread (v2.3.x) devices sanitise the data partition insecurely, in that at most a

few hundred MB are deleted, representing between 60% and 99.9% of the data partition

depending on its size. The Android Open Source Project (AOSP) reveals the use of the

ioctl ’s BLKDISCARD command by the Recovery mode (Table 5.1), this does not provides

logical sanitisation and therefore confirms the results of Fig. 5.8. The only device in our

sample that properly deletes the data partition is the HTC Wildfire S (Gingerbread); and

it is because it uses yaffs2 rather than an eMMC.

As shown in Table 5.1, the following Android version (ICS, v4.0.x) marked the intro-

duction of logical sanitisation support via BLKSECDISCARD in the AOSP code. This

contradicts the results from Fig. 5.8 that show that 60% (≈ 140M) of ICS (v4.0.x) devices

incorrectly sanitise the data partition. Many of these ICS devices in our sample were

initially released with GB (v2.3.x) and received upgrades to ICS (v4.0.x). We verified

that the phone binaries indeed contained the newer code from AOSP, i.e. with logical

sanitisation support. We then turned our attention to lower-level code, and found that

vendor upgrades likely omitted device drivers necessary to expose the logical sanitisation

functionality from the underlying eMMC. In practice, this means that the secure command

BLKSECDISCARD is not supported by ioctl, and it returns errno 95 (EOPNOTSUPP).

It could be the case that the eMMC itself does not support secure deletion, but we think

this is unlikely since the 2007’s 4.2 eMMC standard2 already provided the compulsory

“ERASE” command for logical sanitisation. We found evidence corroborating this claim on

certain phones at least: when unlocking the Bootloader3 of the HTC Sensation XE, the

data partition was properly sanitised whereas it was not during a Factory Reset. Devices

affected include the Samsung Galaxy S Plus, S (25M units sold4) and S2 (40M units

sold 4), and the HTC Sensation XE. Only the Google Nexus S in our sample properly

sanitised its data partition after receiving upgrades to ICS. The problem is likely to persist

after further upgrades to Jelly Bean (JB, v4.[1-3]), although we could not ascertain this as

our sample did not contain such devices.

Besides upgrade issues, devices shipped with newer Android versions such as ICS

(v4.0.x) and JB (v4.[1-3]) are not free of problems either (Fig. 5.8). They too are not

always shipped with proper device drivers for secure deletion. For example, the LG

1android.googlesource.com
2www.jedec.org/standards-documents/docs/jesd-84-b42
3This procedure lets users install custom software, but wipes data to prevent a thief from recovering

user’s data via forensic software
4www.tomshardware.com/news/Samsung-Galaxy-S-S2-S3,20438.html

android.googlesource.com
www.jedec.org/standards-documents/docs/jesd-84-b42
www.tomshardware.com/news/Samsung-Galaxy-S-S2-S3,20438.html
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Optimus L5 shipped with ICS did return errno EOPNOTSUPP when we attempted a

secure deletion. More intriguing, the Motorola Razr I, shipped with JB (v4.[1-3]), did not

return any errors, but the secure deletion resulted in no block being deleted at all. Due to

these driver issues, Fig. 5.8 shows that 15% (≈ 55M) of JB (v4.[1-3]) devices improperly

sanitise the data partition.

Sanitisation of the Primary SD Card

Recall from Section 5.2.4 that the primary SD card corresponds either to the internal one

or to a physically removable one in the absence of the former. It mainly hosts multimedia

files made with the camera and possibly third-party apps.

We found that no Froyo (v2.2.x) and Gingerbread (GB, v2.3.x) devices we examined

logically sanitised their primary SD card. This represents more than 340M devices. The

AOSP code reveals that in these versions, Android only formats the primary SD card with

a call to Fat::format() (Table 5.1), this confirms the results from Fig. 5.8. In practice, a

few dozen MB at most are logically sanitised.

As depicted in Table 5.1, the AOSP reveals no code changes in the sanitisation of the

primary SD card in the following Android version (ICS, v4.0.x). Yet, Fig. 5.8 shows about

40% (≈ 90M) of ICS devices properly sanitise their primary SD card (i.e. ≈ 140M of devices

do not). One may conclude that vendors have customised the AOSP code and added secure

deletion support for the primary SD card, but this is incorrect. This logical sanitisation

is due to the following reasons: (i) the primary SD card on these phones corresponds to

the internal one, (ii) these devices use an emulated SD card physically stored on the data

partition (Section 5.2.4) and (iii) proper sanitisation of the data partition is implemented

as per AOSP, and so gets “inherited” by the primary SD card. Only when these three

fortunate conditions are met can one be confident that the primary SD card is logical

sanitised.

The following Android version (JB, v4.[1-3]) marked the addition of insecure deletion

via ioctl ’s BLKDISCARD command. This confirms why 40% (≈ 150M) of devices still fail

to logically sanitise their primary (internal or external) SD card. At the time of writing,

we are not aware of any changes to the handling of the primary SD card, therefore we

expect these results to hold on all other Android versions.

Sanitisation of the Secondary SD Card

In our sample, no devices properly sanitised the secondary (external) SD card. We found

that Android generally does not attempt to sanitise it at all (Table 5.1), which explains

the results from Fig. 5.8.
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Vendor Customisation Inconsistencies

Besides the various differences of sanitisation between versions and models already high-

lighted, we discovered other vendor issues. For example, we mentioned that only the

Factory Reset in Settings provides an option to sanitise the primary SD card (Section 5.3.2).

Therefore one might advise users to use Settings rather than Recovery to sanitise devices.

Unfortunately, vendor customisations sometimes make Recovery more reliable. For ex-

ample, the two HTC One-series phones in our sample properly sanitised their primary

(internal) SD card in Recovery (contrary to AOSP), but not in Settings (as one would

expect from the AOSP source code). It is likely that this result holds for many of the other

HTC One-series devices. This also violates HTC guidelines: on its website1, it suggests

users first try Settings, and resort to Recovery only “if you can’t turn HTC One [X] on

or access settings”. On its web page, HTC has put up a note to discharge itself of any

responsibility: “A factory reset may not permanently erase all data from your phone,

including personal information”.

eMMC implementation of logical sanitisation

In general, We found that devices in our sample logically sanitised all bytes requested

through the ioctl command, except for one phone: the Google Nexus 4. This has an

6189744128B data partition, fully used by the file system. The last 16KB were not sanitised

and fully recoverable about 20% of the time after a Factory Reset. Our hypothesis is that

this might be a bug in the eMMC itself (or its corresponding drivers), since we have not

seen similar problems in other devices.

Number of logical blocks to sanitise

If issued with the non-secure sanitisation command “DISCARD”, an eMMC applies a

“don’t care” policy to the block. According to the standard, “the original data may be

remained partially or fully accessible to the host dependent on device”. This further means

that data originally exposed at a logical block located at logical offset LOorg, could be

re-mapped at a different logical offset, say LOremapped as shown in Fig. 5.9. If the file

system of size M does not fill the entire partition, there is a risk that the deleted block’s

data “crosses” the filesystem boundary. Therefore, if the sanitisation only attempts to

securely sanitise the blocks used by the file system ([0,M ] in Fig. 5.9), it is plausible that

some remapped blocks (within ]M,S]) would not be purged. We stress that we have not

found evidence of this happening in our device sample. However, in order to reduce the

possibility of this happening, we suggest vendors erase the entire partition, rather than

just the part used by the file system. In our device sample, the HTC One-series phones

1www.htc.com/us/support/htc-one-s-t-mobile/howto/315367.html

www.htc.com/us/support/htc-one-s-t-mobile/howto/315367.html
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left a few MB of space at the end of the data partition. It would be more cautious to

sanitise the entire partition. Similarly, the AOSP code currently truncates the partition

size to a multiple of 4096 when creating the file system and when computing the size to

wipe during Factory Reset. Sanitising the entire partition would be more prudent.

Logical view seen by OS

Physical view in eMMC

MLOorg LOremapped S

Figure 5.9: Cross file system boundary example for the data partition.

5.4 Data Recovery in Practice

Our objective here was not to implement new tools and algorithms, but to evaluate the

feasibility and scalability of attacks. Data on Android smartphones is generally stored in

SQLite databases and text-like files.

To extract SQLite files, we initially investigated the use of file carving with Scalpel [241].

File carving is the practice of searching for files by leveraging the knowledge of their content

and structure, rather than relying on file system metadata1. In practice, we found that

the database file header and its content were not always contiguously allocated, probably

because of repetitive updates. Furthermore, each application’s database has a different

layout, and records are not always located contiguously on the partition. Therefore, parsing

the data from such fragments is not fully reliable with simple techniques. So we used

SQLite file carving only as a preliminary step.

We quickly realised that most of the data (including database files), exhibits spe-

cific and distinct formats. For instance, the list of installed apps is stored in the file

/data/system/packages.xml with a well-defined structure of the form<package name=“a.b.c”

codePath=“/system/app/myapp.apk” ...>. Therefore we primarily used pattern matching

to recover data on all second-hand phones from Section 5.3.1, and file carving solely to

extract multimedia files.

1A simple file carver would search for files’ headers and footers. More advanced ones would also look

for file fragment candidates and piece them together using certain properties of the underlying data.
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Table 5.2: Practical Recovery of Data

Storage Extraction Percentage Devices Attack usage Comments

Phone Owner data partition automated pattern matching on third-party 100% contact user to blackmail extraction through default

apps like Facebook or Google (assuming compromising data Phonebook app’s data generally

accounts app is recovered) requires some human intervention

Installed apps data partition automated pattern matching on 100% identify high-value targets /

/data/system/packages.xml adjust forensic strategy based

on easy-to-retrieve app-formatted data

Contacts data partition automated pattern matching on third-party 100% sell in underground markets associating names to contact details

apps like Facebook or WhatsApp (Fig. 5.10(a)) in Phonebook app data generally

requires some human intervention

Browsing data partition automated pattern matching 100% blackmail user

Credentials data partition automated pattern matching for 100% sell in underground markets Google master token recovered 80%

browser cookies, WiFi (Fig. 5.10(b)), of the time

Google (Fig. 5.10(c)) and other apps.

Multimedia data partition, automated file carving (Photoreca) for 100% blackmail user

primary SD camera-made images and video

and Ib thumbnails

Conversations data partition automated pattern matching for 100% blackmail or sell in underground identifying SMS required some

third party messaging apps and emails markets human intervention, emails recovered

in 80% of devices but only a few

ahttp://www.cgsecurity.org/wiki/PhotoRec
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5.4.1 General Results

We hunted for the information shown in Table 5.2 in devices with a flawed Factory Reset.

For example, we recovered some “Conversations” (SMSes, emails, and/or chats from

messaging apps) in all devices (Column “Percentage Devices”) using pattern matching

(column “Extraction”). Compromising conversations could be used to blackmail victims

(column “Attack usage”). Gmail app emails were stored compressed. By searching for

relevant headers, we were able to locate candidates and then decompress them. We

found emails in 80% of the flawed devices, but generally only a few per device (column

“Comments”).

5.4.2 Case Study: Hijacking Google Accounts

To improve usability and user engagement, most smartphone apps replace passwords with

authentication tokens the first time a user enters his password. After the first password-

based authentication, users are automatically logged-in with the authentication token;

emails can be retrieved, calendar notifications downloaded, etc. without user intervention.

These tokens are often stored on non-volatile flash storage on the data partition. Some

Google tokens for the account username@gmail.com, are shown in Fig. 5.10(c). The first

one, which we call the “master token”, is the long random string starting with “AFc”. It

gives access to most Google user data. As a test, we Factory Reset a test phone, then

recovered the master token. We then created the relevant files and rebooted the phone.

After the reboot, the phone successfully re-synchronised contacts, emails, and so on. We

recovered Google tokens in all devices with flawed Factory Reset, and the master token

80% of the time. Tokens for other apps such as Facebook can be recovered similarly. We

stress that we have never attempted to use those tokens to access anyone’s account.

5.4.3 Possible Attackers

Individuals buying devices on auction websites such as eBay are possible attackers. They

need to spend a non-negligible time to bid and follow up on auctions. Furthermore,

they have to pay a few dollars for commission and shipping fees for each device. So

low-value data like contacts and email addresses do not seem profitable. Recovery and

analysis of conversations and images (to blackmail victims) would generally require human

intervention or more advanced tools, with the possible exception of browser history where

simple keyword search can be effective. Blackmailing users requires enough devices to

hit compromising data and enough users to hit a gullible mark. But this requires (i) a

significant time investment to bet on/follow items and (ii) great logistics to buy, process,

and re-sell devices. Therefore we think that only people with enough time on their hands
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(a) Whatsapp contacts with name and phone number.

(b) WiFi passwords.

(c) Android tokens.

Figure 5.10: Example of pattern matching results.

could make extra cash on top of an existing income this way. In general, high-value data

like banking credentials appear likely to be the most profitable criminal option.

Smartphone salesmen in brick-and-mortar shops can process devices cheaply, since it

may be part of their job to receive second-hand devices and they can scan these devices

without paying auction and shipping costs. So low-value data may be profitable for them.

As it is common for merchants to talk to customers, they could also identify higher-than-

average-value targets suitable for blackmail. Attackers who can add forensic software to

the recycling chain may further increase the number of devices processed, and the amount

of low-value data recovered. Attackers with access to corporate devices could also gain

access to high-value data. On the other hand, shop staff will be easier for the police

to identify and arrest once a complaint of blackmail is made. Thieves are yet another

category of attackers: data are less likely to be deleted from a stolen device, so they are

out of scope of this chapter – we study such attacks in Chapter 6.

Although a lot of data can be recovered using pattern matching, this does not necessarily

translate into actual profitability.

5.5 Alternative Sanitisation Methods

We have considered the following methods to mitigate flawed Factory Resets.

Filling up the partition of interest with random-byte files, in the hope of overwriting

all unallocated space, could be achieved via third-party non-privileged apps after the
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built-in Factory Reset. This would require the app to be installed manually by users after

a Factory Reset is performed. Otherwise, Google credentials stored on the file system

(necessary to install an app from Google Play) will not be erased by the procedure. This

sanitisation procedure also adds an additional layer of uncertainty because it uses the

file system rather than direct flash access. File systems also vary across devices and may

be proprietary (such as Samsung’s RFS). We therefore felt this option would not scale

reliably across devices, and we discarded this method in our tests.

Overwriting the entire partition “bit-by-bit” once did provide logical sanitisation for all

devices and all partitions we studied; it is therefore a reliable alternative. The drawback of

this method is that it requires privileged (i.e. root) access to devices in practice. Therefore,

it is likely to put off ordinary users. This method does not provide thorough digital

sanitisation, since the flash is over-provisioned – but an attacker is unlikely to recover the

data through public APIs exposed by the Linux kernel. Note that physical extraction of the

eMMC is not necessarily required to recover data, for example if the eMMC exposes hidden

features accessible with a patched kernel or a custom driver. Yet this is phone-dependent

and out of scope of our threat model. To have high certainty that all blocks are erased, one

would need to overwrite the partition multiple times to purge all additional blocks. But

this would require knowledge of the wear-levelling algorithms and over-provisioning for

every eMMC, which are generally proprietary. Furthermore, the over-provisioning could

differ even for instances of the same device, for example if different grades of flash were

used. Since we were concerned only with massively scalable attacks, we did not consider

this issue further, but firms with high assurance requirements might have to unless they

can use encryption, which we consider next.

Enabling Full Disk Encryption (FDE) on first use of the device would be more

appropriate for ordinary users if devices support it. Enabling FDE only before performing

a Factory Reset (as suggested by Google1) may only provide logical sanitisation, not

thorough digital sanitisation (plain-text data could still be present on the flash as it

is over-provisioned). FDE was introduced in ICS (v4.0.x) so it cannot help the large

number of affected GB (v2.3.x) devices. On one HTC phone running GB (v2.3.x), we

found an encryption option, but it left all the data behind. We assume this was a vendor

customisation and may only encrypt allocated space. FDE for the internal SD card is

not supported on all phones, and not all v4.x devices support FDE on the data partition

despite AOSP’s support. As a rule of thumb, only devices with an emulated internal

SD card inherit the “encryption support” from the data partition when supported. On

supported Android versions, the encryption key is stored encrypted with a key derived

from a salt and a user-provided PIN (or password). This encrypted blob is referred to as

the “crypto footer” in the AOSP source code. An attacker who gains access to the crypto

footer has enough information to brute-force the user’s PIN offline. The footer is stored

1www.bbc.com/news/technology-28264446

www.bbc.com/news/technology-28264446
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in a dedicated partition or in the last 16KB of the data partition – the exact location is

configured by vendors through the “encryptable=” option of the Android fstab file. In

either case, we found that a flawed Factory Reset failed to erase this footer. Consequently,

to logically sanitise a device with encryption, it is essential to select a strong password

to thwart offline brute-force attacks. As most people just use a 4-6 digit PIN, it would

usually be trivial to brute-force.

Mobile Anti-Virus (MAV) apps have a “remote wipe” feature to sanitise data on lost

or stolen smartphones. We study their effectiveness in Chapter 6 and show that remote

wipe functions are not an alternative to a flawed built-in Factory Reset.

5.6 Recommendations

For vendors, we recommend using a recent eMMC with support for digital sanitisation,

and to properly expose it in the Bootloader, Recovery and Android kernels. More

generally, previous research has shown that vendors’ customisations are a source of security

problems [66, 191, 242]. Therefore, we provide the following guidelines to the AOSP

developers, hoping they can reduce the chance of slip-ups in the future:

1. Use an emulated primary SD card: this ensures that only one partition needs to be

properly sanitised on the phone, reducing the space for mistakes.

2. Erase the entire partition, not only the part explicitly used by the file system. This

reduces the chance of unfortunate surprises due to eMMC wear-levelling block manage-

ment and deletion implementation problems.

3. Implement sanitisation of all partitions in one place only; for example in Recovery

mode or Bootloader mode; and have Settings simply have the phone reboot into the

appropriate mode with the right parameters. Having the relevant code in one place

eases code review, testing, and reduces possible mistakes.

4. Expose an option to have the Recovery mode perform a sanitisation validation, by

reading back the entire partition and checking it.

5. Provide test units for vendors to test sanitisation in the Android Compliance Suite

Test (CST). Have the tests fail if secure sanitisation fails, e.g. if not supported or if the

verification step 4 fails.

6. Do not resort to an insecure sanitisation if the secure one fails - as it is currently the

case1.

1source.android.com/devices/tech/security/best-practices.html
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7. Before a Factory Reset takes place, a broadcast Intent could be sent to apps, so that

they could take necessary steps to invalidate their credentials – assuming that Internet

connection is available.

8. Store the encryption metadata at the start of the data partition in a crypto header,

rather than at the end in a crypto footer. This reduces the risk of dictionary attacks in

the event of flawed sanitisation, since the first blocks are generally overwritten during

partition formatting. Storing the metadata on the data partition also ensures that

there is only one partition to take care of, as above. We discuss improvements to the

current encryption implementation next.

5.7 Encryption Requirements

A typical FDE implementation must protect the keys from an attacker with physical

access to a non-wiped device, e.g. JTAG attacks, cold boot attacks, etc. The FDE key

should also be protected at rest: this typically involves encrypting the FDE key with a

combination of a user-supplied password/PIN and/or keys stored on CPU’s protected

non-volatile storage [243]. It also involves compartmentalising the software, determining

which parts should be allowed to see the key in clear, the access control for users, etc. This

is non-trivial in practice: as shown by the recent FBI vs. Apple case, a single mistake can

be fatal1.

If the sole purpose of FDE is to mitigate a flawed Factory Reset (FR), the implemen-

tation can be simpler. In fact, if the threat model is only an attacker who attempts to

recover data from a wipe phone, it is no longer necessary to implement access controls and

software compartmentalisation: we only need the FDE key and metadata to be properly

erased during Factory Reset. The current Android implementation keeps the FDE key in

a footer. The key is encrypted under a user-supplied PIN with low entropy. If the FR is

flawed and does not erase the footer, the FDE key may be recovered by brute forcing the

PIN offline. Can we improve on this simple design to mitigate a flawed FR?

The first solution is to increase the entropy of the key that encrypts the FDE key. For

this, we need hardware support because users cannot remember long keys. For example,

the CPU may come with dedicated non-volatile storage to store additional long keys.

This storage should be digitally sanitised during Factory Reset. The deletion of the key

material implies personal data stored on the larger chip is irrecoverable. It is hard for this

solution to scale across multiple Android phone vendors, but possible for iOS devices that

are vertically integrated – in fact iOS uses a similar approach [243].

The second solution does not require hardware support. A device may store the

encrypted footer on a different chip which Android can digitally sanitise. This is simple to

1http://www.bbc.co.uk/news/technology-35601035

http://www.bbc.co.uk/news/technology-35601035
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implement with “raw flash” as presented in Section 5.3. During FR, the Android kernel

only needs to sanitise the chip that stores the footer, whereas the FR of the larger eMMC

containing personal data may fail safe. As presented in Section 5.3, the code that erases

the “raw flash” is less prone to coding mistakes and vendor customisation problems. This

solution is simple to deploy, and the code can be released in the Android source tree to

make auditing feasible.

The third solution is to have a dedicated chip that does FDE in hardware. This is a

viable solution for a platform such as iOS which is vertically integrated. On the contrary,

for Android, there are problems with this approach. First, this would put security in the

hands of additional vendors/suppliers: but researchers have repeatedly shown how this

introduces vulnerabilities (Section 2.3 in Chapter 2). In fact, there is already evidence that

SSD manufacturers sometimes implement sanitisation incorrectly [210]. Second, we fear

this solution would hamper design/code security audits by third-party security researchers.

To conclude, for the sole purpose of mitigating a flawed Factory Reset, the second

option is the simplest to implement reliably and deploy at scale for the Android platform.

This, however, does not account for the access controls, trusted boot, software compart-

mentalization, etc. that would be required to thwart a more capable attacker with physical

access to a non-wiped device.

5.8 Summary

We conducted the first thorough analysis of Android factory reset functions by studying

21 Android smartphones from 5 vendors running Android versions v2.3.x to v4.3. We

presented a detailed and chronological analysis of flaws across Android versions. We

tracked these issues to (i) Android failures, (ii) inadequate vendor upgrade practices, and

(iii) improper vendor integration and testing practices.
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Chapter 6

Security Analysis of Android

Anti-Theft Apps

In this chapter, we study the “anti-theft” mechanisms available to consumers to thwart

unauthorised access to personal data on stolen Android smartphones. With millions of

devices stolen in the USA in 2013 alone, such attacks are a serious and growing problem.

The main mitigation against unauthorised data access on stolen devices is provided by

“anti-theft” apps; that is, with “remote wipe” and “remote lock” functions. We study the

10 most downloaded Mobile Anti-Virus (MAV) apps that implement these functions. They

have been downloaded hundreds of millions of times.

We investigate the general security practices of MAVs, as well as the implementation of

their “remote wipe” and “remote lock” functions. Through the analysis, we uncover flaws

that undermine MAV security claims and highlight the fragility of third-party security apps.

We find that MAV remote locks can be unreliable due to poor implementation practices,

Android API limitations, and vendor customisations. We find that mobile OS architectures

leave third-party security apps little leeway to improve built-in Factory Resets, therefore

MAV remote wipe functions are not an alternative to a flawed built-in Factory Reset. We

conclude the only viable solutions are those driven by vendors themselves.

The work presented in this chapter was published in the 4th Workshop on Mobile

Security Technologies (MoST) [244], and is in collaboration with Ross Anderson. I

conducted the analysis for all apps. Ross helped with the writing and reviewing of the

final paper.

6.1 Introduction

The extraction of personal data on stolen devices is a growing concern. In 2012, smartphone

robberies represented almost 50% of all robberies in San Francisco, 40% in New York

119
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City and were up 27% in Los Angeles1. In 2013, 3.1M devices were stolen in the USA2,

and 120, 000 in London3. For the half of all users who do not lock their screen4, the

main anti-theft protections in use today are “remote wipe” and “remote lock” functions.

Products that offer these remote anti-theft data protections include a range of enterprise

and consumer-grade offerings.

In this study, we focus on the latter and study the 10 most downloaded Mobile Anti-

Virus (MAV) apps. When we conducted this study, the Google Play store showed that

these apps were prevalent with the top 2 MAVs downloaded between 100M and 500M

times each, the third between 50M and 100M times, and the following 4 between 10M

and 50M. In comparison, the top enterprise app (for mobile device management) was

downloaded less than 5M times.

Our analysis reveals eight issues: (i) misinformation given to users following a remote

wipe and lock; (ii) questionable MAV authentication practices; (iii) the limitation of, and

the restriction imposed by, Android’s APIs and architecture; (iv) the misuse of Android

security APIs by MAVs; (v) inconsistency of Android’s API across versions; (vi) incorrect

Android API documentation; (vii) MAV reliance on carrier network (in)security; and (viii)

unfortunate customisations by vendors.

For example, we found that because of Android API differences across versions, 9

MAVs can be un-installed by a thief before a Gingerbread (v2.3.x) phone is remotely

locked by its user; because of API misuse, 4 MAV locks can be bypassed (Section 6.6);

and because of vendor customisations, all MAV locks can be circumvented.

By comparing MAV remote wipe functions with the findings on Android built-in Factory

Resets (Chapter 5), we find that mobile OS architectural decisions that were aimed at

enhancing security (e.g. the permission system and lack of root access) get in the way of

MAVs that attempt to improve the reliability of flawed factory resets. Therefore, MAV

remote wipe functions are not an alternative to a flawed built-in factory reset (Section 6.7).

In summary, the contributions are as follows:

• We present the first comprehensive study of Mobile AV (MAV) implementations in

the context of device theft, including their general security practices and anti-theft

functions.

• We uncover major failures that may affect millions of users. These flaws are not

only caused by questionable practices by MAV developers, but also by vendor

1gizmodo.com/5953494/hold-on-tight-smartphone-mugging-is-more-popular-than-ever
2www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-

last-year/index.htm
3www.london.gov.uk/media/mayor-press-releases/2013/07/mayor-challenges-phone-

manufacturers-to-help-tackle-smartphone
4www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-

last-year/index.htm

gizmodo.com/5953494/hold-on-tight-smartphone-mugging-is-more-popular-than-ever
www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
www.london.gov.uk/media/mayor-press-releases/2013/07/mayor-challenges-phone-manufacturers-to-help-tackle-smartphone
www.london.gov.uk/media/mayor-press-releases/2013/07/mayor-challenges-phone-manufacturers-to-help-tackle-smartphone
www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
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customisations and by the limitation of the Android OS. Remote lock functions can

therefore be bypassed, and remote wipe functions are not an alternative to flawed

Factory Resets.

• We discuss possible countermeasures, but conclude that only vendor-provided soft-

ware has the potential to raise the reliability of anti-theft mechanisms.

6.2 Background

A prerequisite to understanding this chapter is Section 5.2 of Chapter 5 that introduces

(i) flash memory and file systems (Section 5.2.1); (ii) the different data partitions present

on a typical Android phone (Section 5.2.4); and (iii) the different levels of sanitisation

(Section 5.2.2).

For a fair comparison with built-in Factory Resets, we take the same approach as in

the previous chapter, in that we consider a remote wipe to be “secure” or “proper” if it

provides logical sanitisation.

Throughout this chapter, we refer to the “device sample” or just the “sample” as the

pool of devices studied in Chapter 5.

6.2.1 Bootloader, Recovery and Safe Modes

Besides partitions storing personal user data, phones also store (binary) executable files in

dedicated partitions (Fig. 5.3 in previous Chapter 5). These contain binaries to boot in

normal mode (i.e. Android) and other less-known special modes of operation. Android

smartphones generally have three extra modes of operation that are useful to our discussion:

the Bootloader mode, the Recovery mode and the Safe mode. A user can boot into them

by pressing a combination of hardware keys on the device. There exist subtle variations

between vendors, so we try to keep the description general.

The Recovery mode is generally a headless Android OS used for performing updates

and backups to the current installation: updates may be stored in external storage or sent

in-band from a computer connected via USB. The Bootloader is not based on Android,

and it allows flashing new software and partitions to a device, generally via USB. To

achieve their functionalities, both the Recovery and Bootloader mode must run with high

privileges. Typically, this means unrestricted access to both the Android OS binaries and

partitions storing user data. There are three kinds of Bootloader and Recovery protections

we have found on devices: open, protected, and locked.

Open Bootloaders/Recoveries let anyone with physical access to a device install custom

updates. We found this to be true for most Samsung and LG devices in the devices we

used in Chapter 5.
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Locked Bootloaders attempt to lock devices to a certain carrier or vendor by enforcing

signature verification on software updates. This is true of most HTC devices we encountered.

To disable the signature verification, a locked bootloader needs to be “unlocked”. This may

be possible via OS or bootloader exploits. HTC also lets users “unlock” their Bootloader

through their website, but voids the warranty of the device thereafter. Upon unlock,

the Bootloader is supposed to wipe all data on the device, so as to prevent thieves

from recovering users’ data after installing forensic software. We note that a locked

Bootloader/Recovery is not a panacea: as the key used to sign a software update is owned

by the vendor, an insider – or a server or CA compromise – could leak it to attackers.

We stress that this is not a hypothetical scenario: for one phone in our sample, we found

an implementation of Recovery that passed the signature verification and let us root the

device. In practice, a locked Bootloader/Recovery may provide enough security for average

users, but not for firms with high assurance requirements.

Protected Bootloaders/Recoveries genuinely try to protect users: the lock does not

serve any business purpose. Users are empowered to unlock their Bootloader to install

custom software without voiding the warranty. This is mostly true of Google phones.

Unlike open and locked Bootloaders, a protected one can be “re-locked”. If a thief wants

to install forensic software on the device, he can unlock the Bootloader but this will also

wipe the device’s data.

The Safe Mode boots the main Android OS, but disables all user-installed apps. This

is primarily used for users to un-install misbehaving apps, for example malware that may

lock the screen and render the phone unusable. Even though apps are disabled in the

user interface, they can still be launched via a shell. Obtaining a shell can be achieved

by first enabling the Android Debug Bridge (adb) developer option in the default phone

Settings; and then plugging the device into a computer via USB. By design, this gives a

shell prompt on the computer to interact with the device.

6.2.2 Mobile Anti-Virus (MAV) Apps and Device Admin API

At the time of the study, Mobile Anti-Virus (MAV) apps had already been downloaded

hundreds of millions of times from the Google Play store. They generally achieve their

remote anti-theft protections with an app installed on the device in combination with

an online web interface accessible from a standard web browser. A user who loses his

phone can log in the web interface and remotely instruct the phone app to wipe or lock

the device. An exception amongst the apps we studied was Dr.web: instead of using a

web interface, it required users to define trusted phone numbers, from which a user could

send remote commands to his lost phone via SMS.

A simple attack against anti-theft solutions is the use of “Faraday bags” to block all

radio-frequency communications between a stolen device and its cloud service, thereby
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preventing any remote action from a device’s owner. We leave this problem aside for the

moment and discuss possible countermeasures in Section 6.8. In this study, we highlight

other important issues which we believe are relevant to improve the reliability of current

anti-theft solutions in general.

All MAVs make use of a special set of functions accessible via Android’s “Device

Administration API”, that provides administration features at the system level. Once an

application is granted access to this API, it becomes a “device admin” and gains access

to security “policies” like the password policy (e.g. to enforce password strength), or the

encryption policy. Each policy within the admin set must be explicitly requested in an

app’s manifest. Fig. 6.1 shows the relevant code for requesting access to the force-lock,

wipe-data, reset-password and disable-camera policies. Unlike traditional Android

permissions, the admin permission and policies are not granted at installation time: they

must be approved all at once by a user in the Android default Settings. When not granted,

an app can still run, but without admin privileges. The two admin policies relevant

to this study are the wipe and screen lock policies that can be used to protect users’

data when devices are lost. At runtime, an admin app with the wipe-data policy can

invoke the wipeData(int flag) function to perform a wipe. It currently supports wiping

the data partition only (flag = 0) or with the additional wiping of the primary SD card

(flag =WIPE EXTERNAL STORAGE ). The API does not support wiping the secondary

(external) SD card. Internally, wipeData() uses the device’s built-in Factory Reset – so

its reliability varies across devices as presented in Chapter 5. An admin app with the

force-lock policy can also use the built-in PIN screen to lock the phone screen (e.g. by

invoking the lockNow() function). One additional security protection is that an admin

MAV cannot be un-installed unless its admin privileges are first removed in the default

Android Settings. Nevertheless, even an admin MAV has limitations: it cannot access

other apps’ private directories in the data partition, nor can it bypass the file system to

read/write arbitrary content from/to storage.

If a user forgets to enable the admin permission for a MAV, the app can neither use

built-in wipe and lock features, nor overwrite partitions reliably bit-by-bit to sanitise data

storage. Therefore, it must resort to less reliable ad-hoc mechanisms. For example, it

may use public Android APIs with the traditional permissions granted at installation time

(like contact APIs to remove contacts from the Phonebook app). However, this generally

results in the deletion of records in the associated SQLite file, which does not provide

logical sanitisation. For external storage (which is accessible by all apps), a non-admin

app may fill existing files with random bytes, unlink them, create new ones (in the hope

of overwriting unallocated file system space), or format the partition. User-installed apps

generally do not expose sanitisation APIs on the phone, so their data would typically

remain intact. As for the screen lock, a MAV could detect when it loses screen focus, and

subsequently launch one of its “views” (a.k.a. Android Activities) to foreground to “lock”

the screen.
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# =========== AndroidManifest.xml ==========

<receiver android:permission="BIND_DEVICE_ADMIN">

<intent-filter>

<action android:name="DEVICE_ADMIN_ENABLED" />

</intent-filter>

<intent-filter>

<action android:name="DEVICE_DISABLE_REQUESTED"/>

</intent-filter>

</receiver>

# =========== device_admin.xml ==========

<device-admin [...] >

<uses-policies>

<reset-password />

<force-lock />

<wipe-data />

<disable-camera />

</uses-policies>

</device-admin>

Figure 6.1: Device admin request example. Permission and action names are purposely

shortened for readability. Two broadcast receivers are declared: one to receive a notification

when the user has accepted the admin permission, another when the user is trying to

disable it in the default Android Settings. Four policies are requested.

6.3 Methodology

We restricted ourselves to the 10 most-downloaded MAVs on Google Play – the Google

Device Admin app was not in the top 10. We downloaded them using a Samsung

Galaxy S Plus phone between Nov. 2013 and Apr. 2014. The Samsung Galaxy S Plus

runs Gingerbread (v2.3.5), has a primary SD card formatted in FAT, and we inserted

a secondary 2GB removable SD card in its slot. We conducted a review of each app’s

code using apktool1 and simple runtime analysis to validate our findings. For the runtime

analysis, we added logging code to apps and repackaged them. Many apps already shipped

with some code to log runtime information; so in this case, we also toggled relevant

variables in the code to enable the logging.

In the following sections, we report our findings on the general security of MAV

solutions, and specifically focus on anti-theft functions in Section 6.6 and Section 6.7. We

also report on the discussions we had with MAV developers after responsible disclosure of

1code.google.com/p/android-apktool/
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the findings.

6.4 Account Authentication

MAVs are sensitive-permission hungry, and their web interface is a proxy to the rich

functionalities they offer. Through the web interface, MAVs offer sensitive functions

such as access to personal data backups, remotely taking pictures, remotely enabling the

microphone, etc. By gaining access to a victim’s account, an attacker could therefore

remotely access personal information or lock the device to demand a ransom. To protect

user accounts, all MAVs in our sample ask users to select a password at first run of the

app.

Findings

We found questionable authentication practices (Table 6.1, column “Account Password”).

For example, all MAVs accept short passwords – ranging from 4 (Dr.web) to 8 minimum

characters (Kaspersky). Four of them do not accept special characters (McAfee, Avira,

TrendMicro and TrustGo). Avast does accept special characters, but processes them

somehow: when entering the password hello”’@#%&*/-+(), we could then log in with the

truncated version hello”’@#%. More generally, all apps accept weak passwords, except

Kaspersky which enforces the use a combination of uppercase, lowercase and numerals.

We hypothesise that in practice, it is difficult for MAVs to enforce strong passwords: as

users rarely interact with MAVs or their corresponding web interface, they would inevitably

forget their password if not easily memorable. Furthermore, if a password is set up on a

phone, the keyboard limitations make it inconvenient to mix upper and lower case, let

alone adding non-alpha characters.

We also found indications that certain web services may not store user credentials

properly. When websites enforce a maximum password length, it is often indicative of bad

storage practices – when stored hashed, passwords can be arbitrarily long [245]. Three

MAVs (McAfee, TrustGo, and Norton) fall in this category (column “length” in Table 6.1).

We were not able to verify improper credential storage for these apps though. We tried

the “recover lost password” but this only provided a reset link, not a clear-text password.

Nevertheless, there is no valid reason for MAVs to limit the length of passwords for more

paranoid users.

Online rate limiting is a natural defensive measure against online guessing attacks. At

the time of the study, we found that three products implemented it (McAfee, Norton and

Lookout, column “online rate limiting” in Table 6.1). For Norton, the lockout period did

not work when we tested it. By the time this work was first published as a conference

paper, more MAV solutions had implemented rate-limiting in their web interface, but
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some still failed to enforce it in within the app – so an attacker could reverse-engineer

the protocol between the app and its server to brute-force the password. It is important

to realise that while account locking might thwart an all-out targeted online guessing, a

slower, distributed, throttled attack could still succeed [246]. Rate limiting and account

locking also interact poorly with targeted smartphone theft: if, prior to stealing a device,

an attacker can lock her victim’s account (or render its access slower), she can prevent

him from remotely locking or wiping the stolen device.

Response from MAVs

MAVs that responded acknowledged these findings. They generally pointed out that usable

authentication is challenging. Therefore we think this is an area worth investigation in

future research.

6.5 App Configuration & User Interface

Without admin privileges, MAVs cannot take advantage of built-in lock and wipe features;

yet admin privileges must be granted explicitly by users. It is commonly accepted that it

is hard for users to configure and use security software safely [247–250], and this can be

even harder for small-screen devices. Therefore, it is important for MAVs to warn, guide,

and inform users accordingly.

Findings

As shown in Table 6.1, only four MAVs warn users if they do not run as admin (column

“in-app warning”). For Avira, if a user clicks the warning but does not subsequently grant

admin privileges, the warning disappears for ever. Norton, Avast, and TrendMicro go

further in the wrong direction: they display “Anti-Theft is on”, “You are protected” and

“Device now protected” respectively, either in the app or the online interface, even when

apps do not run as admin. The column “in-app flow” (Table 6.1) refers to a MAV that

automatically launches the Android Settings view for granting admin privileges, when a

user visits the relevant “Anti-Theft feature” menu of the app. This reduces the chance of

misconfiguration, since a user need not struggle with finding the relevant Settings option.

Three apps take this approach. However, we found that if a user has granted admin

privileges, but later decides to remove them, apps generally fail to notify “out-of-band”

(i.e. outside the app – this is important as users do not interact with AV apps regularly

and would miss in-app notifications).

Similarly, none of the MAVs warn users about app misconfiguration in the web interface

either (column “web warning”). Furthermore, most of them misinform users about the
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Table 6.1: MAV Implementations: General Findings

User interface Account Password SSL

web in-app in-app online length special only certificate pinning

warning warning flow rate limiting characters strong validation

AVG ✗ ✗ ✗ ✗ 6 ≤ l < ∞ ✓ ✗ ✓2 ✗

Lookout ✗ ✗ ✗ 1hour wait if 5 ≤ l < ∞ ✓ ✗ ✓2 ✗

13 incorrect

attempts0

Avast ✗ “Issues”1 ✗ ✗ 7 ≤ l < ∞ ✓0 ✗ ✓2 ✗

Dr.web n/a ✗ ✓ n/a 4 ≤ l < ∞ n/a n/a n/a n/a

Norton ✗ ✗ ✗ CAPTCHA and 6 ≤ l ≤ 50 ✓ ✗ ✓2 ✗

account locked0

1hour

McAfee ✓1 orange flag ✓ reset password 8 ≤ l ≤ 32 ✗ ✗ ✓3 ✗

after 5 attempts

Kaspersky ✗ “issues” ✓ ✗ 8 ≤ l < ∞ ✓ ✓ ✓2 ✓

TrustGo ✗ ✗ ✗ ✗ 6 ≤ l ≤ 15 ✗ ✗ ✓ ✓

TrendMicro ✗ ✗ ✗ ✗ 8 ≤ l < ∞ ✗ ✗ ✗2 ✗

Avira ✗ “Action ✗ ✗ 5 ≤ l < ∞ ✗ ✗ ✓ ✗

Required!”

✗means absence of protection, whereas ✓is the opposite. 0implementation problems are reported in the text of the paper.
1warning provided but in a specific tab. 2use of http at registration time or startup.
3 certificate validation during registration is broken.
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results of a remote wipe and lock : they merely claim it is “successful” even if the phone

app does not run as admin. We provide further details in Section 6.6 and Section 6.7 why

the lack of admin privileges significantly reduces the reliability of anti-theft functions. A

few solutions do give information in the web interface but only after a wipe command is

issued, which is generally too late because this happens when the device is already lost.

Given the lack of guidance and warning provided by MAVs to users, it is likely that

many users will run an insecure setup. In fact, during the course of this study, we realised

the need to enable the “admin” privileges through reading Android API documentation.

Throughout the following sections, we therefore take account of this observation and

highlight several consequences.

Response from MAVs

MAVs that responded acknowledged these findings. They all say that they are taking

actions to improve the UI of their app.

6.6 Lock Implementations and Effectiveness

One anti-theft option for users to protect their data on stolen devices is to remotely lock the

phone screen, generally through a web page provided by MAVs. In the following sections,

we assume that the Android Debug Bridge (adb) is disabled or protected in the device

Settings (if not, then a thief can get an interactive shell and access user data as described

in Section 6.2.1). As users may have improperly configured their MAV (Section 6.5), we

study outcomes whether it runs as admin or not. The following sections present the many

attack vectors we discovered during the study.

6.6.1 Removal of MAVs & API Misuse

Finding 1

When a MAV does not run as admin, it must resort to ad-hoc solutions to implement the

screen lock, and must additionally ensure the app starts at device boot time. At boot

time, there is a race condition, in that the custom lock screen should appear fast enough

to prevent a thief from un-installing the MAV. We found that for four MAVs, the custom

screen lock does not show up quickly enough and can therefore be un-installed (column

“race protection” in Table 6.2). By rebooting a stolen device and winning the race, a thief

can remove the app and prevents the owner from remotely protecting the device.
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Table 6.2: MAV remote Wipe and Lock Functions

Wipe Lock

data lock on-device un-install admin lock non-admin lock counter reset race

partition primary SD secondary SD rate limiting protection protection protection protection protection

AVG admin admin,format, unlink1 user-selected ✗ ✗ bp:brute-force bp:Safe mode n/a ✓

unlink 4-6-digit PIN or

“alpha” password

Lookout admin file overwrite, file overwrite, random 4-digit PIN T = N
3
× 1min0 ✗ ✓0 bp:Safe mode bp:remove battery ✗

unlink unlink

Avast admin unlink,format, unlink,format user-selected ✗ bp:GSM BTS bp:GSM BTS bp:Safe mode n/a ✗

admin 4-6-digit PIN

Dr.web admin admin,unlink unlink 4-char password ✗ ✗ bp:Safe mode bp:Safe mode n/a ✓

Norton admin admin format or random 4-digit PIN optional wipe ✗ ✓ bp:Safe mode ✓ ✓

unlink2 after 10 attempts

McAfee admin admin,unlink, unlink,format3 user-selected 1hour wait after bp:Safe mode bp:Safe mode bp:Safe mode bp:remove battery ✗

format3 6-digit PIN 10 attempts

Kaspersky admin unlink unlink user-selected ✗ n/a built-in lock ✓ n/a ✓

4-16-digit PIN

TrustGo admin unlink unlink web password 30min wait ✗ bp:Safe mode bp:Safe mode ✓ ✓

after 5 attempts

TrendMicro admin format,unlink format,unlink web password ✗ ✗ bp:Safe mode bp:Safe mode n/a ✗

Avira admin unlink unlink,format user-selected unlock with ✗ ✓ bp:Safe mode ✓ ✓

4-digit PIN web only after

3 attempts

✗means absence of protection, whereas ✓is the opposite. “bp:method” means that the protection is present but can either be bypassed using “method” or its effectiveness reduced using “method”.

Note that vendors’ customisations may allow bypass of properly implemented protections. 0implementation problems are reported in the text of the paper.
1only if the app is not an admin and formatting of the internal (primary) SD card fails. 2only if the app is not an admin. Format if SDK >= 17, unlink files otherwise. 3formats if a tablet.
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Finding 2

By design (Section 6.2.1), the Safe mode lets a thief un-install a MAV so long as the app

does not have admin privileges. A race condition is no longer needed in this case, and all

MAVs incorrectly configured by users (i.e. non-admin) are therefore vulnerable. Again, a

user who remotely locks his screen is generally left clueless about the problem since MAV

web interfaces do not provide details (Section 6.5).

Finding 3

An admin MAV should invoke the built-in screen lock, which eliminates race conditions

and safe mode bypass on the condition that it requests the force-lock policy and calls

the relevant APIs (e.g. lockNow()). We found that four MAVs misuse the security API, in

that they do not enable the default screen lock even though they request the force-lock

policy (Dr.web, McAfee, TrustGo, and TrendMicro). They can therefore be bypassed via

Safe mode (Table 6.2, column “admin lock protection”). Although Avast properly enables

the built-in lock, it can also be bypassed – we defer this discussion to Section 6.6.4.

Finding 4: Even if an admin MAV properly enables the built-in lock screen, a thief

could un-install the app before a user has remotely locked his device – on the condition

that he first manages to remove the admin privileges. We found that seven MAVs leave

the removal of admin privileges unprotected (Table 6.2, column “un-install protection”).

Only three apps take account of this attack vector. Kaspersky enables the built-in screen

lock on first run of the app; the device remains locked at all time without the need for

remote activation, and so is immune to this attack. McAfee and Avast prompt a thief

with a PIN if he attempts to remove admin privileges. For Avast, the lock (including

the anti-removal lock) can be bypassed, but we defer the discussion to Section 6.6.4. For

McAfee, it misuses the Android API so its anti-removal lock can be circumvented by

re-booting into Safe mode, and the app subsequently removed. McAfee’s code for handling

the removal of admin privileges is illustrated in Fig. 6.2. It uses the callback function

onDisabled() to be notified of admin changes: when this function is called by the Android

framework, McAfee locks the screen. Unfortunately, on Gingerbread devices (v2.3.x), the

onDisabled() function is called only after the admin privileges are disabled. As a result,

the subsequent call to lock the screen cannot make use of the built-in lock screen and

must be implemented by the app itself. Therefore, when rebooting into Safe mode, the

lock screen does not show up since apps are disabled in this mode (Section 6.2.1). At this

point, the app can also be removed as it no longer has admin privileges.

Further investigation reveals that the onDisabled() function is called before admin

privileges are dropped on subsequent Android versions we tested (ICS (v4.0.x), Jelly Bean

(v4.[1-3]). This problem is aggravated because the Android documentation is incorrect.
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public class McAfeeReceiver extends DeviceAdminReceiver {

public void onDisabled(Context paramContext,

Intent paramIntent){

[...] // removed

displayLockScreen();

}

}

Figure 6.2: Code of McAfee’s anti-removal screen.

More specifically, it is oblivious to differences between versions1. It only states that

the onDisabled() function is “called prior to the administrator being disabled” without

specifying the relevant Android versions. We used the Internet Archive2 to trace changes

to the API description. We found that the API documentation was also incorrect at

the time when Gingerbread was the most recent Android version (Dec 2010 – Oct 2011).

Another function, onDisabledRequested(), is called before admin privileges are dropped for

all Android versions we tested. So it is more reliable, but MAV apps currently do not use

it.

There are also usability problems associated with the protection of app removal. As

users tend to forget passwords/PINs, a user who genuinely attempts to un-install a MAV

may be presented with a (PIN) screen lock he cannot remove. Therefore MAVs must

provide additional information in their lock screen, e.g. to guide users how to reset the

PIN. But the default Android lock screen has certain limitations, in that it cannot be

customised. As a result, additional information cannot be provided with the default lock

screen, and MAVs resort to implementing their own lock screen; which we explained can

be bypassed through race conditions or Safe mode. Android Lollipop (v5.0) provides a new

function (startLockTask()3) for “screen pinning”, that is, to “temporarily restrict users

from leaving your task”. However this would still be by-passable in Safe mode. Therefore,

we think Android would benefit from a customisable lock screen.

Response from MAVs

Problems were generally acknowledged. One company argued that the Safe mode bypass

of their lock screen was “low risk” because “third-party apps do not run in Safe mode”.

This is incorrect. First, a thief could read a user’s emails manually and gain access to

1developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
2web.archive.org/web/20100501000000*/https://developer.android.com/reference/

android/app/admin/DeviceAdminReceiver.html
3https://developer.android.com/about/versions/android-5.0.html

developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
web.archive.org/web/20100501000000*/https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
web.archive.org/web/20100501000000*/https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
https://developer.android.com/about/versions/android-5.0.html
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credentials for other websites – e.g. contained in emails or through a reset link sent to

their Inbox. Second (Section 6.2.1), even though disabled in the user interface, apps can

be installed and launched via a shell in Safe mode to automate the process.

One company argued that they do not enable the built-in lock because it may violate

the Google policy. This states that “an app downloaded from Google Play [...] must not

make changes to the user’s device outside of the app without the user’s knowledge and

consent”. We told them we disagreed because when remotely locking their device, a user

is implicitly giving consent.

Regarding the lack of un-installation protection, we have received feedback from few

developers. In fact, many tested apps did not have a proper contact/email for bug reports.

We had to use the “customer support” portal instead. Customer support assured us they

would forward the bug report to the engineers but we have not heard from them in most

cases.

6.6.2 Rate Limiting

Finding 1

Admin MAVs that properly enable the built-in screen lock generally also overlay their own

lock on top of the default lock screen. This is used to customise the look-and-feel or offer

additional information. For example, MAVs sometimes want to provide an email address

to contact the phone owner if the device is lost. This overlay is also a source of problems.

The built-in screen lock, on most devices, enforces a 30sec wait period after 5 failed PIN

attempts. Unfortunately, half the MAVs do not have rate limiting protection on their

custom screen-lock (column “on-device rate limiting”), thereby annihilating the protection

of the built-in one. This makes brute force practical since MAVs accept common weak

PINs like “1111” or “1234”. Only Kaspersky warns users to use at least 7 digits, yet it

still accepted weak PINs. This issue again highlights a limitation of the default lock screen,

in that it cannot be customised enough, therefore MAVs have tried to find ways around

this. This suggests that the default lock screen would benefit from an additional admin

“lock rate limiting” policy for apps to express requirements such as “enforce an X sec wait

after Y successive incorrect PINs”.

Finding 2

Some MAV apps do enforce stronger rate-limiting policies than the built-in default (column

“on-device rate limiting”). For Lookout however, we found that it could be circumvented

on our Galaxy S Plus even when the app runs as admin: by clicking the Home button, a

thief can navigate away from the Lookout ’s custom screen lock, and benefit from the lower

rate limiting of the built-in one. In Safe mode, a non-admin MAV’s custom screen lock
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does not show up, so if the built-in lock has less protection, a thief can use that instead

– on certain devices such as the Samsung Galaxy S Plus, the built-in screen has no rate

limiting.

Finding 3

In order to enforce rate-limiting after too many incorrect PIN attempts, MAVs must store

a retry counter. For Lookout, we found that removing the battery resets the retry counter,

and for McAfee, it decreases it by one. This attack is not always practical, as a thief must

reboot the phone but the boot time may exceed the wait period enforced by a MAV. In

Lookout ’s case, it significantly decreases the wait period – which increases linearly with

the number of incorrect PIN attempts (Table 6.2, column “on-device rate-limiting”).

Finding 4

If an attacker knows the username of his victim, he could also leverage the lack of rate

limiting in the online interface to unlock the screen remotely (Section 6.4). This is mostly

true in targeted attacks. In non-targeted ones, it may still be possible because some

MAVs, by default, display the owner’s email address in their custom lock (e.g. Avira and

TrendMicro). This unintentionally leaks the username necessary to perform an online

dictionary attack.

6.6.3 MAV Response

The findings were acknowledged. One company responded to “Finding 4” by masking

some of the characters in the email address.

6.6.4 Network-level Attacks

Finding 1

Avast, downloaded more than 100M times on Google Play, has an option (including

in its “anti-removal” lock) that lets thieves send temporary unlock PINs via SMS to

a (compulsory) contact pre-configured by the genuine device owner. This function is

accessible in the custom screen lock. When used, the stolen device sends a temporary PIN

via SMS – in clear – to a trusted contact. It is known that GSM only authenticates a

phone to the network, but not the network to the phone. Therefore it is possible to have

the phone connect to a rogue GSM station – a.k.a. Base Transceiver Station (BTS) – to

intercept the SMS. Because phones usually fall back to GSM in the absence of 3G, a thief
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could set up a rogue BTS to intercept the temporary PIN and bypass the lock screen to

remove the app. Other interception techniques are presented in Section 2.3 of Chapter 2.

Similarly, Dr.web locks/unlocks devices through commands sent via SMS from a trusted

contact. If the SMS sender is a pre-configured trusted “buddy”, a password is not required

(this is enabled by default). In a targeted scenario where a trusted buddy’s phone number

is known, a thief could spoof the SMS’s sender ID to bypass the password. One could use

online services, a rogue BTS station, or a femtocell.

Finding 2

Recall from Section 6.2.2 that MAVs generally keep a TCP connection to a server in

order to receive remote commands to be executed on the device. An attacker who can

impersonate as a MAV server could therefore send an unlock command to the phone app.

MAVs generally use TLS to secure their connection and properly verify their server’s

certificate but do not implement pinning (Table 6.1, column “SSL”). TrendMicro, however,

did not properly validate the CN of the certificate. It accepted any domain (i.e. CN) so

long as it was signed by a trusted CA. McAfee improperly authenticated its server during

account registration: the app accepted selfsigned certificates as well as certificates signed

by a trusted CA but for a different domain (i.e. CN). Even though they used TLS, Avast,

AVG, Lookout, Norton, Kaspersky, and TrendMicro additionally made some non-encrypted

requests. Instead of maintaining a TCP connection to their server, certain MAVs such

as Avira re-use the Google connection and push commands to the phone through Google

push APIs. We found that the Google service did not implement certificate pinning. On

a side note, TrustGo’s user web interface used a combination of http and https, making

cookie recovery trivial for a network attacker.

MAV Response

The latest version of their apps fixes certificate validation issues – not necessarily pinning.

We have not received feedback regarding unprotected PINs and commands sent via carriers’

networks (Finding 1).

6.6.5 Vendor and Customised Android Failures

Even if anti-theft functions are properly implemented by MAVs, customisations by vendors

may allow an attacker to bypass their protection.
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Finding 1

We refer to “charging mode” as the mode in which a device is, when it is switched off and

plugged into a power supply. We found that certain phones boot up a headless Android

and expose a debugging interface when booted in charging mode. For example, the LG L7

running Jelly Bean (v4.1.2) exposes adb: the data partition is mounted and one folder

is writeable, so an attacker could push code and exploits. The Samsung Galaxy S Plus

also exposes adb but we did not have enough permissions to push files; yet it remains a

concern.

Finding 2

On phones with open Bootloaders, a thief can install custom upgrade: this bypasses

admin MAV screen locks and the built-in one. Thieves could therefore install forensic

software to recover personal data. Protected Bootloaders may also contain logic errors or

vulnerabilities1,2. We found that on the Google Nexus running Android v4.2, unlocking

the Bootloader did not erase the data partition; on the HTC Desire C, a Bootloader unlock

wiped only the data partition; and on the HTC Desire S, there was a Bootloader option to

read arbitrary files. When booted in Recovery mode, the Samsung Galaxy S2 also exposes

adb, and the LG L7 further has a writeable folder. The latter even warns “Using this

mode, service center can back up and recover your data”.

Finding 3

Users who want more control over their device may install a custom Recovery from which

they gain additional functionalities, such as root access, the ability to install custom

Android builds, custom UI themes, etc. As the Recovery has unrestricted access to Android

binaries and data partitions (Section 6.2.1), it is important to prevent unauthorised users

(i.e. thieves) from accessing it. We found this is not always the case. For example, prevalent

Recoveries such as CWM3 or TWRP4 often expose unprotected options that allow flashing

arbitrary software via USB even when the screen is locked in the Android OS. In our tests,

we could push arbitrary Android updates via the following options. The “zip updates”

option accepts arbitrary updates from files present on the primary SD card, so an attack

is feasible on phones with a removable primary SD card. The “adb sideload” accepts

updates sent in-band via USB. Newer Android versions protect adb-via-USB using a

1www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-

signature-verification-cve-2014-4325
2www.codeaurora.org/projects/security-advisories/incomplete-signature-parsing-

during-boot-image-authentication-leads
3www.clockworkmod.com
4www.teamw.in/project/twrp2

www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
www.codeaurora.org/projects/security-advisories/fastboot-boot-command-bypasses-signature-verification-cve-2014-4325
www.codeaurora.org/projects/security-advisories/incomplete-signature-parsing-during-boot-image-authentication-leads
www.codeaurora.org/projects/security-advisories/incomplete-signature-parsing-during-boot-image-authentication-leads
www.clockworkmod.com
www.teamw.in/project/twrp2
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public-key authentication scheme tied to the owner’s computer (though bypassable on

certain devices1,2). This security feature was not enforced in the custom recoveries we

tested: adb generally remained available and unprotected even when not enabled in the

Android Settings, and the signature verification on updates could be toggled off manually.

Finding 4

Vendors also have desktop software that one can use to backup or transfer files from a

smartphone via USB (like Samsung Kies or HTC Sync Manager). We found that the

activation of the HTC Sync Manager automatically enables the Android Debug Bridge

(adb) on the device – probably because it piggy-backs on its protocol. Some HTC devices

keep adb on even when the screen is locked, allowing a thief to get an interactive shell on

the device via USB. We leave a comprehensive security analysis of vendors’ software for

future research.

6.6.6 Misc

Android has in the past been victim of PIN bypass vulnerabilities that let a thief access

partially, or fully, a device’s user interface and data. It may be because of third-party

apps34 or vendor customisations5. These were out of scope of this study.

Even when a lock cannot be bypassed, current Android phones allow a thief to Factory

Reset the device from the Recovery or Bootloader mode. This deletes the data, but not

always securely (Chapter 5). Therefore, a thief could alternatively Factory Reset a device

and use forensic tools to recover insecurely-deleted data on devices with a flawed Factory

Reset function. This may change in newest Android devices with the “kill-switch” function

introduced to curb phone theft in certain US states. This was out of scope of our study.

Some HTC devices have a DIAGnostic that can be accessed via specially-formatted

SIMs or SD cards known as “gold cards”. It gives access to vendors’ “repair menus”. On

our devices, data was wiped when entering the menu, but this may not be the case on

other models.

We discuss hardware attacks and baseband attacks in Section 6.8.

1labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-

bypass
2github.com/secmobi/BackupDroid
3seclists.org/fulldisclosure/2013/Jul/6
4www.bkav.com/top-news/-/view_content/content/46264/critical-flaw-in-viber-allows-

full-access-to-android-smartphones-bypassing-lock-screen
5shkspr.mobi/blog/2013/03/new-bypass-samsung-lockscreen-total-control

labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass
labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass
github.com/secmobi/BackupDroid
seclists.org/fulldisclosure/2013/Jul/6
www.bkav.com/top-news/-/view_content/content/46264/critical-flaw-in-viber-allows-full-access-to-android-smartphones-bypassing-lock-screen
www.bkav.com/top-news/-/view_content/content/46264/critical-flaw-in-viber-allows-full-access-to-android-smartphones-bypassing-lock-screen
shkspr.mobi/blog/2013/03/new-bypass-samsung-lockscreen-total-control
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6.6.7 Encryption to the Rescue

The use of Full Disk Encryption (FDE) has the potential to mitigate many of the attacks

when the phone is powered down, so long as the encryption key cannot be recovered.

On Android devices that support FDE, the encryption key is stored encrypted with a

key derived from a salt and a user-provided PIN (or password)1. This encrypted blob

is referred to as the “crypto footer” in the AOSP source code. We found that if the

PIN entered by a user is invalid, Android reads a retry counter from the crypto footer,

increments it and writes it back. By monitoring power consumption, an attacker could

detect the write back, and cut the power supply to circumvent the write2. This attack

was well known in the smartcard community in the 1990s; by fifteen years ago, it was

standard practice to increment the retry counter before each PIN prompt and reset it only

if a correct PIN is entered [251].

Another problem stems from the “Fast boot” option on HTC devices. It is enabled by

default, and when powered down, a device transitions into a hibernation/sleeping state so

as to speed up boot time. When powered up, the PIN is not prompted so it may be stored

in RAM or on disk. Failure to disable the fast boot option may undermine the benefit of

FDE. We leave this for future research.

6.7 Wipe Implementations

6.7.1 General Results

The second option provided by anti-theft functions is the “remote wipe”. We study MAV

wipe implementations with admin privileges granted or not.

Admin MAVs

Table 6.2 (column “data partition”) shows that all MAVs use the admin API to sanitise

the data partition. For external storage though, implementations differ.

Half of them use the admin API to sanitise the primary SD card (the internal SD card

on the test Galaxy S Plus). If the sanitisation fails, they implement “backup” mechanisms.

For instance, AVG, Avast, and McAfee format the partition and unlink all files; this does

not provide logical sanitisation.

The other half of MAVs misuses the Android security API in the sense that they

do not pass the flag WIPE EXTERNAL STORAGE to sanitise external storage, and

1Newer Android versions make use of TrustZone to improve security
2Limitations: (i) a full kernel is running with certain userspace processes, (ii) the OS may cache (and

therefore delay), the write-back to non-volatile storage, (iii) rebooting the device may be too slow.
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Table 6.3: Wipe Implementations without admin privileges
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AVG ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Lookout ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Avast ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Dr.web n/a ✗ ✗* ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Norton ✓ ✗ ✗* ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

McAfee ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Kaspersky ✗ ✓ ✗* ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

TrustGo ✗ ✗ ✗* ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

TrendMicro ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Avira ✓ ✗ ✗* ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

*data is nevertheless removed by deleting the corresponding files on the SD card

this even when apps have been granted admin privileges. Instead, they resort to ad-

hoc mechanisms: they generally format the partition and/or unlink files; this does not

provide logical sanitisation. We think the misuse of the Android API may be caused

by misleading/outdated Android documentation: it states that the flag parameter to the

wipeData(int flag) function “must be 0”1.

The Android API currently does not expose an API to securely sanitise the secondary

SD card. Therefore, all MAVs implement their own mechanisms to sanitise it, as a result

of which data is always recoverable. We note that even when used properly, the admin

API does not ensure that logical sanitisation is available on the device (Chapter 5).

Non-Admin MAVs

When MAVs do not run as admin, they must resort to other mechanisms to sanitise

partitions, e.g. by using Android APIs (Section 6.2.2). Recall that this situation is likely to

arise because of UI issues highlighted in Section 6.5. In this case, MAVs attempt to delete

data as shown in Table 6.3; but this does not provide logical sanitisation. Furthermore,

we found that none of the MAVs manage to remove the primary account using Android

APIs. Some of them try to, but fail because the OS does not seem to allow it: this failure

is never reported to a user in the online interface. Android does not appear to expose an

API to delete browser, WiFi and VPN credentials, and no MAVs manage to delete them.

A thief could also attempt to recover MAV credentials on the phone in order to access

1https://developer.android.com/guide/topics/admin/device-admin.html

https://developer.android.com/guide/topics/admin/device-admin.html
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online backups made by a user. We found that only TrendMicro attempts to delete its

“own data” (Table 6.3).

We also found that three MAVs display success for a remote wipe in their web interface,

even if the wipe has yet to be performed (Table 6.3, column “result timing”). This is

because on reception of the wipe command from their server, MAV apps acknowledge it:

some web interfaces interpret this as wipe success. All apps, to some extent, misinform

users about wipe results, merely claiming that a remote wipe succeeds when errors occur,

like when an exception is thrown, when formatting fails, or when a file cannot be unlinked.

They all fail to give accurate details about the wipe results in general. McAfee, Avast,

and Avira fare slightly better because they indicate that the wipe cannot use the built-in

Factory Reset if admin privileges are not granted. But this is too late when the device is

already lost.

6.7.2 Case Studies of Lookout and Avast

Lookout and Avast both have unique implementations for sanitising external storage.

Lookout sanitises external storage by overwriting files before unlink ing them. Its developers

implicitly assume that the file system overwrites files “in-place”. We tested this hypothesis

by creating 1000 files on the primary SD card of the Galaxy S Plus (FAT-formatted). We

overwrote the files, and found that more than 90% of them were not updated “in-place” by

the file system – and thus were recoverable. We ran the same experiment with Lookout ’s

remote wipe, and obtained similar results.

Avast has a special option called “thorough wipe” to sanitise external storage. This

creates a 1MB file and overwrites it 1000 times with 0s (all values are hardcoded in the

app). Its developers implicitly assume that the file system does not update files “in-place”,

which would ensure that 1GB of space is overwritten. We showed this to be mostly true on

the Galaxy S Plus’s primary SD card formatted with FAT. However, on an ext4-formatted

partition, we found that more than 99% of files were updated “in-place” on an HTC One S.

Hence, mostly the same blocks, spanning 1MB, are overwritten. Furthermore, all devices

we have encountered, have at least 2GB of primary SD card, while some have up to 25GB

(HTC One X). As a result, even if 1GB of data was indeed overwritten, it would not

represent the entire partition. Note that the ext4 filesystem may also use compression

which will further reduce the amount of data overwritten.

These two examples highlight how the security permission model can sometimes backfire

and have a negative impact on security: because third-party apps cannot legitimately

gain high privileges (i.e. root), they cannot overwrite an entire partition bit-by-bit, and

therefore they resort to unreliable methods to mitigate a flawed Factory Reset (Chapter 5).
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MAV Response

We have received feedback only from one of the two companies. The dev team said they

are trying to improve the reliability of remote wipe without impacting usability.

6.7.3 Inherent Problem of Remote Wipe

We found an inherent timing problem between the time of wipe and the time of success

displayed to users in the web interface: We call this problem the “Time-Of-Wipe-Time-Of-

Success (TOWTOS)” attack. Concretely, this occurs when a wipe completion is reported

to the user in the web interface before the wipe effectively takes place on the phone, and

the wipe subsequently fails. The failure could be caused by the removal of the battery

by a thief, by the phone being shutdown, or by a TLS truncation attack [252] by a thief

attempting to desynchronise the phone app and the server. This is currently inevitable for

a MAV that performs an admin wipe because it must report to the user before it is itself

wiped. Lookout aggravates this problem by launching a 10s timer before launching an

admin wipe. The TOWTOS highlights another limitation of the current Android admin

API, in that it is not possible for an app to report results to its web service after a wipe

completes.

6.8 Discussion

We have highlighted three main failures in remote data protection functions: (i) the misuse

of Android security APIs by MAVs, (ii) the limitation of Android APIs and permission

model, (iii) vendor customisation issues. One attack we discarded till now is the use

of Faraday bags. There are two lines of thought to mitigate it. The first involves an

online server that is contacted during user authentication to a device, the approach is

taken by CleanOS [253], KeyPad [254] and other theft-resilient solutions [255]. However,

these can severely impact usability by (i) degrading responsiveness of the device during

authentication when there is poor network coverage, and (ii) by locking a genuine user

out if a server is DoSed, unavailable, or if there is no network coverage.

Therefore, solutions that solely rely on the user and device seem the only viable options.

Authentication based on user behaviour [256], swipe characteristics [257], context [258],

typing characteristics [259] and app usage [260] are appealing but usually lack accuracy

and speed as well as increasing power consumption. Solutions based on an extra device

users carry [23] often impose extra cognitive load and are seen as a burden. Biometrics

such as Apple’s fingerprint are relatively fast and effortless, and therefore appealing to

average users on high-end devices.
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Overall, we think that device-based solutions are more likely to offer usable protections

against the attacks described in this paper. More importantly, given the limitations

imposed by the Android API and the permission model, we think the only viable solutions

are those driven by vendors themselves. They, only, can integrate their solutions seamlessly

whilst taking full advantage of the platform and hardware features. The rise of wearable

computing may also enable better authentication mechanisms if battery life improves; this

is another avenue for future research to consider.

6.9 Summary

We studied consumer-grade protections against unauthorised access to personal data on

stolen Android smartphones. We further highlighted the market and technical fragmenta-

tion which means that there is no consistent security guarantee across devices.

We unveiled critical failures on mobile antivirus remote lock and remote wipe functions.

In addition to the limitations imposed by the Android security model and APIs, these are

caused by questionable MAV designs and vendor customisations.
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Chapter 7

Conclusions

Through this work, we explored how intrinsic characteristics of the smartphone ecosystem

enable new avenues for attack. We focused our work around the four following axes.

The first axis revolves around built-in sensors and peripherals. In Chapter 3, we

continued an already existing line of research that explores the impact of built-in sensors

on security. While previous work focused on accelerometer-based side channels to infer

PINs entered by users, we showed that the built-in camera and microphone are also a

source of leakage during PIN input; and they can be abused to infer PINs too. This

chapter showed that all shared resources need to be carefully considered because they open

up the possibility of side-channel attacks on both one-OS and multiple-OS smartphones.

We hope this study raises awareness of the difficulty of designing a sound trusted path in

general. Designers must be aware of side-channel risks and engineer the overall system

accordingly. On smart OSes, reasoning about the security of a trusted path becomes even

more complex as new features and services are added over time. We provided OS-level

guidelines to prevent side channels based on sensors and peripherals being exploited during

user input. The guidelines roughly say that when a user performs a sensitive action, any

incoming data should be disabled, and the same policy should be enforced on connected

wearable devices. To improve our results, future research could better incorporate the

a-priori probability distribution of PINs, inter-key measurements, and other sensors’ data.

One could also investigate different supervised algorithms, monitor PIN input several

times, or try to detect touch events without the microphone (i.e. from the video alone).

Another approach could be to adapt this work for pattern lock inference.

The second axis revolves around attacks caused by smartphones’ particular form factors.

These are small touch-screen devices where usability can be an issue when entering text.

In Chapter 4, we focused our attention on a recent input method known as “gesture typing”

that was designed to ease user input on smartphones. We studied how an attacker could

abuse the system-wide screen hardware counter and software counter to infer what users

type on their phone through the gesture typing feature. To the best of our knowledge,

this work is the first to leverage global information exposed by procfs to do this. This
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goes against the general belief that non-app-specific information exposed through virtual

files is harmless. The attack also applies to the latest Android version where app-specific

virtual files, repeatedly shown harmful by previous research, are inaccessible. Unlike the

attack studied in Chapter 3, we think this one could have been prevented. There have

been numerous papers showcasing the danger of unprotected procfs. This line of research

started more than ten years ago when people realised that procfs exposed each application’s

current instruction pointer. In 2009, Zhang and Wang [187] exploited the exposure of the

stack pointer to conduct a keystroke-dynamics attack on password input. Such attacks

have attracted interest again recently in the context of Android. But by ignoring previous

warnings and by not adhering to the principle of least privileges, Android designers are

enabling potential attacks that could be easily prevented. This demonstrates a lack of a

principled security analysis during the OS design.

The third axis revolves around the personal aspect of smartphones. They have become

ubiquitous and we carry them everywhere we go. Hence, we are likely to lose them. In

Chapter 6, we studied anti-theft software for Android. Among the vulnerabilities we

discovered, we highlighted the misuse of Android security APIs by mobile antivirus apps,

certain limitations of the current Android APIs, vendor-introduced issues, and the lack of

proper API documentation. We think most of these issues could have been prevented if

testing had been done more thoroughly. This, again, shows a lack of a principled approach

to security in industry today. Functionality testing is usually performed intensively, but

not adversarial testing. In the case of anti-theft software, we think that functional and

adversarial testing are near identical since the core function of these apps is to enhance

security. Yet, little testing seems to have been done by developers. Future research

on anti-theft solutions could investigate in more detail the level of security provided by

smartphones when capable attackers have physical access to them. This could encompass

new attack vectors introduced by HTC’s “Fast boot” option, by device-management vendor

software, and by the new “kill-switch” introduced in the USA to curb smartphone theft.

The fourth axis we studied revolves around the fast pace at which people change their

device (≈ 2 years). Already 60% of users trade in their old device to amortise the purchase

of the new one. In Chapter 5, we studied the effectiveness of Android Factory Reset used

by people to sanitise their device before selling it. We showed that one version of Android

was particularly affected as it did not erase sensitive data. We also reported several issues

in other versions, generally caused by deficiencies in upgrades pushed by vendors. Any

vulnerability introduced by Google has long-lasting repercussions because vendors still fail

to push upgrades promptly, and sometimes they even release new products running older

Android versions (e.g. smartTVs). We think the problems in Factory Reset highlight two

issues. First, the maintenance of smart devices in a fast-changing technology environment

is prone to errors. In fact, early Android versions that used raw flash properly erased non

volatile memory storage. But when the market moved to the use of eMMC, a vulnerability

was introduced during the port. Second, Factory Reset problems again demonstrate a
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lack of thorough adversarial testing before product release. We consider that the Factory

Reset problems could have been prevented. Future research on device sanitisation should

continue to investigate the level of security provided by smartphones’ built-in sanitisation

functions, to see whether the situation improves following the disclosures we reported. It

could also investigate the level of security provided by these, i.e. whether they provide

digital sanitisation or not. Another avenue to investigate is how to provide a Factory Reset

that also re-initialises the code partition to thwart malware-infected phones. Restoring an

infected device to a pristine state could become important in the future. There have been

cases of malware that gains root access being found on both Google Play1 and third-party

app stores2 recently. Backdooring resold devices or infiltrating the supply chain is also

likely to become a threat in the future. In January 2014, it was hypothetised that a

newly-discovered android bootkit was inserted into devices by retailers in an IT mall

in Zhongguancun, Beijing3. Later in March, the Marble security firm claimed having

discovered a pre-installed malicious NetFlix app in phones from various vendors4. One

month later, Kaspersky also detected malware supposedly pre-installed with a kit sold

by Chinese company Goohi5. Other companies like mSpy6 also sell smartphones from

various vendors that come pre-loaded with spyware. Apple’s solution to this is to provision

a phone’s software through iTunes on an Apple computer (the device must be plugged

into the computer via USB). It is not clear if this would work for Android devices. First,

the procedure assumes a trusted computer, but many machines affected by malware run

Windows. So if the computer is infected, would a user believe the computer or the phone if

they display inconsistent messages? Would this lead to social-engineering attacks? Second,

if the phone malware has taken over the device, the phone might attempt to install malware

on the computer, via (i) social engineering, (ii) by exploiting Windows autorun/autoplay

features [261], by exploiting USB driver vulnerabilities, or simply by masquerading as

a Human Interface Driver (HID, e.g. a keyboard) [261] to gain code execution on the

computer. All these scenarios must be carefully considered in a non-“walled garden”

environment such as Android. Another avenue to address the code sanitisation problem

could be a special hardware button on phones to reflash the OS without the need for

a computer. But how would one educate people to push this button? More research is

needed if we are to do this properly.

To summarise, we have explored those inherent characteristics of smartphones that can

be abused to attack them. Out of the four attacks we studied, we think three could have

been prevented. All the vulnerabilities we exploited results from not following best security

1https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/
2https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
3http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
4http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-

on-new-phones/
5https://www.securelist.com/en/blog/208213028/Caution_Malware_pre_installed
6http://www.mspy.com/spy-phone/

https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/
https://blog.lookout.com/blog/2015/11/04/trojanized-adware/
http://blogs.360.cn/360mobile/2014/01/17/oldboot-the-first-bootkit-on-android/
http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-on-new-phones/
http://www.pcadvisor.co.uk/news/security/3505208/pre-installed-malware-turns-up-on-new-phones/
https://www.securelist.com/en/blog/208213028/Caution_Malware_pre_installed
http://www.mspy.com/spy-phone/
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practice, and demonstrate the lack of a systematic and principled approach to security

design and testing in the industry today. The mobile space provides an increasingly rich

list of failures at every stage of the development process: design, conception, testing,

maintenance, documentation, etc. This can only lead to ever more attacks.

How can we curb this trend towards complacency in security? Better tools should

be developed to help design and testing. More importantly, we must research how to

incentivise people and corporations to do the right thing. More research is needed to

help organisations better structure their development cycle to minimize mistakes whilst

remaining competitive and reactive. For example, should we advise companies to have

a dedicated security group to test products (such as Google’s Project Zero)? Or do we

advise companies to have a security-savvy person affiliated to each product to assist other

developers through the development cycle? Would this scale? Shall we try to sensitise all

developers to security as Microsoft tried in 2003? And what would be the best approach?

Learning takes time and effort: so how could we make it easier for developers to stay

up-to-date with security theory and practice? Given the pace at which companies must

develop products to remain competitive and innovative, a better understanding of how to

best structure the security development life cycle appears necessary.
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