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Abstract

Programming languages are the way developers communicate with computers—just like
natural languages let us communicate with one another. In both cases multiple languages
have evolved. However, the programming language ecosystem changes at a much higher
rate compared to natural languages. In fact, programming languages need to constantly
evolve in response to user needs, hardware advances and research developments or they
are otherwise displaced by newcomers. As a result, existing code written by developers
may stop working with a newer language version. Consequently, developers need to search
(analyse) and replace (refactor) code in their code bases to support new language versions.

Traditionally, tools have focused on the replace aspect (refactoring) to support de-
velopers evolving their code bases. This dissertation argues that developers also need
machine support focused on the search aspect.

This dissertation starts by characterising factors driving programming language evolu-
tion based on external versus internal forces. Next, it introduces a classification of changes
introduced by language designers that affect developers. It then contributes three tech-
niques to support developers in analysing their code bases.

First, we show a source code query system based on graphs that express code queries
at a mixture of syntax-tree, type, control-flow graph and data-flow levels. We demonstrate
how this system can support developers and language designers in locating various code
patterns relevant in evolution.

Second, we design an optional run-time type system for Python, that lets developers
manually specify contracts to identify semantic incompatibilities between Python 2 and
Python 3.

Third, recognising that existing codebases do not have such contracts, we describe a
dynamic analysis to automatically generate them.





Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Alan Mycroft, for his
amazing support during my PhD. Alan has allowed me the freedom to explore my own
ideas, and we even got to write a 400 page book together! I would also like to thank my
PhD examiners David Greaves and Jeremy Singer for their constructive feedback.

My great thanks to Qualcomm and the Cambridge Computer Laboratory for offering
me a scholarship to undertake this research.

I would also like to thank my friends and the Cambridge Programming Research Group
for their continuous encouragements throughout the years.

Finally, I would like to thank my parents for their endless support and advice.





Contents

1 Introduction 11
1.1 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Programming Language Evolution 15
2.1 Darwinian evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 External vs. internal forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Survey of language features . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Business-driven evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Control of the ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 IP protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Dealing with programming language evolution . . . . . . . . . . . . . . . . 26

3 Notions of language compatibility 29
3.1 Behavioural compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Explicit semantic change . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Quiet semantic changes . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Source compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Lexer/Parser level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Type-checker level . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Data-flow level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Data compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Performance-model compatibility . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Binary compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



3.5.3 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4 API contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.5 Compiler artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Security compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Source code queries with graph databases 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Graph Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Graph Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Program Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 A Graph model for source code . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Source code queries via graph search . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Implementing java.lang.Comparator . . . . . . . . . . . . . . . . . . 51
4.5.2 Extending java.lang.Exception . . . . . . . . . . . . . . . . . . . . . 51
4.5.3 Recursive methods with their parent classes . . . . . . . . . . . . . 51
4.5.4 Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.5 Covariant array assignments . . . . . . . . . . . . . . . . . . . . . . 53
4.5.6 Overloaded Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.4 Comparison with other systems . . . . . . . . . . . . . . . . . . . . 59

4.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.1 Software querying systems . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.2 Repository querying systems . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Incompatibility-finding via type-checking 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Design space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Type-checking approaches . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Type declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Basic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Type annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Function type signatures . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Qualified parametric data types . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Type annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



5.5 Parametric polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.1 Type annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Function type signatures . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Bounded quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.1 Type annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.2 Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.1 Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.2 Function objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7.3 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9.1 Case study targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10 Compatibility checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.10.1 Python 2 vs. Python 3 . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.10.2 Incompatibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Dynamic discovery of function type signatures for Python 91
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Required facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Collecting source-code facts . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.1 Collection mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.2 Representation of the set of facts . . . . . . . . . . . . . . . . . . . 98

6.5 Amalgamation of the facts . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 Remove duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.3 Disjoint union of results and exceptions types . . . . . . . . . . . . 100
6.5.4 Unify functions by common super classes . . . . . . . . . . . . . . . 101
6.5.5 Factorise cartesian product of functions . . . . . . . . . . . . . . . . 102
6.5.6 Infer parametric polymorphic function . . . . . . . . . . . . . . . . 103
6.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7.1 Case study targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7.4.1 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



6.7.4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7.4.3 Call-site vs. Call-strings . . . . . . . . . . . . . . . . . . . 111

6.8 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.8.1 Detecting API changes . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.8.2 Regression testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.8.3 Program comprehension . . . . . . . . . . . . . . . . . . . . . . . . 113

6.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusions 117
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 A Corpus querying platform . . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Contracts for programming language evolution . . . . . . . . . . . . 118
7.2.3 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 129



Chapter 1

Introduction

This dissertation has two related aims. First, it argues that programming language evo-
lution is a complex and important subject which affects code maintained by developers.
Second, it presents a search-based approach and three instances of tools to support devel-
opers in understanding the impact of programming language evolution in their codebases.

Programming language evolution Programming languages are the way developers
communicate instructions to computers—just like natural languages let us communicate
with one another. In both cases multiple languages have evolved. However, the program-
ming language ecosystem changes at a much higher rate compared to natural languages.
This dissertation claims that there are various reasons that cause this evolution. We ar-
gue that programming languages need to constantly evolve otherwise they are displaced
by newcomers. In fact, programming languages need to change because of multiple pres-
sures. We see two main forces influencing programming language evolution: external and
internal. External forces include change in hardware, trends in the industry and research
developments. For example, many traditionally object-oriented programming languages
such as Java, C# and C++ have adopted functional programming features as a way to
facilitate programming on multicore architectures. For instance, the most recent ver-
sion of Java (Java 8) supports lambda expressions and a new declarative API to process
collections.

Internal forces come from clumsiness or inefficiencies in existing versions of the lan-
guage and may not necessarily be influenced by the ecosystem outside of the language.
For example, language designers may need to fix bugs or design mistakes. In addition,
developers may become frustrated with the verbosity of certain code patterns and prac-
tices. For example, iterating over a container before Java 5 required substantial set-up
work. The for-each construct introduced in Java 5 addressed that specific issue.

Programming languages which do not react to these two forces are simply supplanted.
Many examples of programming languages that were once popular include Ada, Algol,
Cobol, Pascal, Delphi and Snobol.

Incompatible evolution Evolving programming languages is however challenging at
various levels. Martin Buchholz, a JDK engineer, claims that “Every change is an incom-
patible change. A risk/benefit analysis is always required” [48].

Firstly, evaluating a proposed language change is difficult; language designers often
lack the infrastructure to assess the change. Language designers often have to rely on
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mailing lists and community surveys. Recently, language designers of mainstream pro-
gramming languages have argued for the use of real-world data to drive language evolution
issues [63]. However, conducting studies can be difficult and time consuming. As a result,
they are infrequently conducted and this may lead to arbitrary decisions. For exam-
ple, older but rarely used features may remain in future language versions to maintain
backward compatibility, increasing the language’s complexity (e.g., FORTRAN 77 to For-
tran 90). Similarly, developers have few means to understand the compatibility of their
codebase with a new language version. How frequently do now-discouraged source-code
patterns occur in their codebases?

Secondly, the impact on developers can be negative. For example, if two language
versions are incompatible developers may reject the new language version. However, older
versions are often not supported by language designers. Consequently, developers may
miss important bug fixes and security updates. This is a major industrial problem. For
instance, Python 2 and 3 have major incompatibilities. This issue affects large companies
such as Google that maintain millions of line of code written in Python 2. Alternatively
to rejecting a new language version, developers may choose to co-evolve their codebase
(which may be costly) but what guarantees do they have that their code still behaves as
intended after migrating to a newer version?

Every change to a programming language has the potential to affect programs written
in this language. A recent study shows that developers lack awareness of the subsequent
possible incompatibilities [52]. To tackle this issue, this dissertation builds upon previous
work and establishes a classification of incompatible changes composed of six categories
by analysing bug reports and compatibility guides from several programming languages.

Search-based approach Language designers and developers have few means to un-
derstand the impact of programming language evolution. An established research field in
software engineering is called change-impact analysis [34, 112, 109]. This is a process that
predicts and determines the parts of a software system that can be affected by changes to
that same system. It useful to software maintainers for several reasons. For example, it
lets them estimate the cost of changes. As a result, they can plan further development and
testing resources accordingly. This dissertation relates the idea of change impact analysis
to programming language evolution. We argue that developers also need tools so they can
determine the parts of their codebases which are affected by changes in a programming
language. More concretely, we present a search-based approach summarised in Figure 1.1.
Concretely, we develop three tools that language designers and developers can make use
of:

1. Search: a scalable and expressive source code query language to locate code patterns
using full source-code detail in large codebases. It can be used by language designers
to rapidly test programming language evolution hypotheses such as “Are covariant
arrays used frequently by developers?”. In addition, it can be used by developers
to understand the compatibility of their codebase with a new language version by
searching for deprecated patterns or source of incompatibilities.

2. Verify : a runtime type checking system exemplified for Python as a form of migra-
tion contracts based on function type signatures that easily integrates in existing
developer infrastructure. Developers can specify contracts and get a clear diagnosis
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and explanation if type contracts are violated by migrating to a different language
version.

3. Infer : A dynamic light-weight type inference tool for Python to automatically pro-
vide insights useful for migration about a Python program. In addition, it alleviates
the burden of manual annotation of function type signatures which are used for ver-
ification.

Figure 1.1: Search-based approach to programming language evolution impact analysis

Our results suggest that search-based tools can provide useful insights to developers
to manage programming language evolution. We found that the techniques we developed
are lightweight and simple to integrate in large programs and can efficiently diagnose
programming language evolution issues that would be difficult for developers to manually
locate and understand.

1.1 Chapter outline

The rest of this dissertation is structured in the following manner.

Programming language evolution (Chapter 2) characterises factors driving language
evolution based on external versus internal forces. It is based on a study of language
feature specifications from several programming languages. Some material of this chapter
was published in the book Java 8 in Action [125].

Notions of language compatibility (Chapter 3) establishes a classification of incom-
patible changes introduced into programming languages that affect developers. It provides
a survey of use cases based on an analysis of compatibility guides and bug reports from
several programming languages.
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Expressive and scalable source code querying (Chapter 4) addresses the problem
of searching for complex code patterns to help developers and language designers examine
code to understand the impact of language changes. This work was published in Science
of Computer Programming [127].

Run-time type-checking for Python (Chapter 5) addresses the problem that cer-
tain classes of incompatibilities are difficult to locate accurately in dynamically-typed pro-
gramming languages. It contributes a run-time type-checking system for Python which
let programmers annotate their code to produce diagnosis and explanations about the
location of these incompatibilities. This work influenced the design of a standard type
annotation language as part of a Python enhancement proposal by Rossum et al [132].

Dynamic inference of Python function signatures (Chapter 6) contributes a dy-
namic analysis to automatically provide migration insights about a Python program. This
analysis generates function type signatures to alleviate the burden of manual annotation
for programmers.

Conclusions (Chapter 7) concludes by summarising the contributions made in this
dissertation and discusses ideas for further work in the field of programming language
evolution.
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Chapter 2

Programming Language Evolution

In this chapter, we argue that programming language evolution is an important subject
which affects developers, language designers and researchers. Specifically, we investigate
the driving forces for changes introduced in programming languages.

Subsequent chapters explore various practical aspects of programming language evolu-
tion. In particular, we focus on dealing with incompatible changes. For now, we consider
programming language evolution in general.

We start our exposition by investigating the programming language ecosystem his-
tory and relate it to Darwinian theory of “survival of the fittest”. In addition, we link
programming language evolution to the field of evolutionary linguistics.

Next, we establish a framework to frame programming language evolution by analysing
programming-language specifications and their associated migration guides. Our frame-
work is based on external forces such as research developments and industry trends and
internal forces such as how developers are using the programming language in practice.
We focus our survey on the evolution of Java, C# and Python as microcosms because
of their popularity. However, we argue that the principles apply to other programming
languages too.

Next, we claim that today’s programming language ecosystem has become heavily
controlled by large technology firms. We discuss the business-driven motivations for them
wanting to more tightly control programming language evolution. An example of this
which we describe is the release of new programming languages such as Swift, Go and
Hack owned by Apple, Google and Facebook respectively for their internal use as well as
development on their platforms.

Finally, we summarise major research strands in the context of programming language
evolution as well as positioning the contributions of this dissertation.

2.1 Darwinian evolution

With the 1960s came the quest for the perfect programming language. In a landmark ar-
ticle, Peter Landin noted in 1966 that there had already been 700 programming languages
and speculated on what the next 700 would be like [77]. Many thousands of programming
languages later, academics have concluded that programming languages behave like an
ecosystem: new languages appear and old languages are supplanted unless they evolve.
We all hope for a perfect universal language, but in reality certain languages are bet-
ter fitted for certain niches [51]. For example, C and C++ remain popular for building
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operating systems and various other embedded systems, because of their small runtime
footprint and in spite of their lack of programming safety. This lack of safety can lead
to programs crashing unpredictably and exposing security holes for viruses and the like;
indeed, type-safe languages such as Java and C# have supplanted C and C++ from var-
ious applications when the additional runtime footprint is acceptable. Prior occupancy
of a niche tends to discourage competitors. Changing to a new language and tool chain
is often too painful for just a single feature, but newcomers will eventually displace ex-
isting languages, unless they evolve fast enough to keep up. For example, once popular
languages such as Ada, Algol, COBOL, Pascal, Delphi, and SNOBOL have now faded.

We see this evolution as a Darwinian evolution: programming languages need to evolve
to survive. Knuth et al. already observed in 1976 that programming languages need
to evolve rapidly in response to current needs or are displaced [74]. In his paper, he
surveys the evolution of high-level languages from 1945 to 1957 and their ability to express
algorithms. He compares these languages by implementing an algorithm called TPK
designed to highlight the power of each of them. He notes that languages up to Fortran
1 did not support features that are now seen as fundamental in computer science such
as data structures other than arrays, control structures and recursion. Consequently,
such languages did not manage to have a larger impact. Social factors such developer
demographics and social networks are also an important driver of programming language
evolution; this is often overlooked when considering the adoption of new features [85].

Similar evolutionary pressures are highlighted in research fields outside of computer
science, for example, in evolutionary linguistics (a field dedicated to researching the origins
and development of natural languages such as English [47]). As with the deprecation of
programming languages, many once-popular languages are now rarely spoken. However,
natural languages evolve over a scale of decades and centuries. This allows society to
adapt gradually. Programming languages evolve at a much faster rate, on the scale of
years, which puts developers under greater pressure to keep up.

2.2 External vs. internal forces

In this section, we propose a framework based on two distinct forces that are driving
programming language evolution:

1. External forces such as changes in hardware, industrial trends and research devel-
opments. For example, the ubiquity of multi-core architectures has forced various
programming languages such as Java to include simpler programming language con-
structs to help programmers efficiently work with parallelism.

2. Internal forces such as inefficiencies in the language or perceived clumsiness. For
example, the use of certain language features may prove to be error-prone or inef-
ficient. Consequently, language designers need to address this to satisfy developers
that are working using their programming languages on a day to day. As exam-
ple of that is implementing the enumerator pattern in older versions of C#, which
required a lot of set-up work and was simplified in C# 2.0. In addition, bugs or
ambiguities in the language specification implementation that need to be fixed are
also an internal force. For example, several languages have bug reports available
online that the community can contribute to by reporting problems they encounter
when working with the programming language.
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We argue that the evolution of existing mainstream programming languages can be
characterised into two main categories: the evolution of languages tends to be either a
combination of both external and internal forces or just internal forces. By contrast,
new but not yet popular (or indeed novel) programming languages are mostly driven
from external forces by their nature of being new languages. Figure 2.1 visualises this
through a two-axis graph representing external and internal forces. The area (1) represents
changes introduced principally by internal forces. The area (2) represents changes that are
driven from both external and internal forces. These are two main areas representing the
evolution of mainstream programming languages. The area (3) represents changes driven
principally by external forces and in general corresponds to non-mainstream programming
languages.

Figure 2.1: External vs. Internal forces

In the next section, we present a survey of various language features to illustrate how
external and internal forces interact in the context of programming language evolution.

2.3 Survey of language features

In the following section, we discuss the insights of a survey of language-feature proposals
and specifications from Java, C# and Python within our framework of external and
internal forces. Table 2.1 summarises the survey.
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Programming Language Version Feature Forces

Java

1.8 Streams External + partly internal
1.8 Lambda expressions External + partly internal
1.7 Improved type infer-

ence for generic in-
stance creation

Internal

1.7 Improved Exception
Handling

Internal

5 Generics External + partly internal
5 Enhanced for loop Internal + partly external

C#
3.5 LINQ External + partly internal
2.0 Generators Internal + partly external

Python
2.5 Conditional expres-

sion
Internal

2.0 List comprehensions Internal + partly external

Table 2.1: Survey summary

2.3.1 Java

In this subsection, we discuss the introduction of various major and minor changes in
different versions of Java by reviewing their specifications. Specifically, we consider:

• Lambda expressions and the Streams API introduced in Java 8

• Improved type inference for generic instance creation and improved exception han-
dling in Java 7

• Generics and the enhanced for loop introduced in Java 5

Java 8 streams

Programmers are increasingly dealing with large sets of data (datasets of terabytes and up)
and wishing to exploit multi-core computers or computing clusters effectively to process it.
Java’s existing Collection API makes this difficult to do efficiently and correctly without
expert knowledge. To support this need Java 8 introduced the Streams API which is a
lazily evaluated collection-like data structure which can execute its operations in parallel.
For example, naively calculating the variance of a data set in parallel can now be expressed
in a few lines compared to equivalent code using the lower-level fork/join framework [124]:

public static double varianceStreams(double[] population){

double average =

Arrays.stream(population).parallel().average().orElse(0.0);

double variance =

Arrays.stream(population).parallel()

.map(p -> (p - average) * (p - average))

.sum() / population.length;

return variance;

}
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We see the introduction of streams as driven by two external forces. On the one hand,
multi-core architectures are now mainstream. To get additional performance, program-
mers have no choice but deal with these architectures. As a result, language designers
need to provide new means for programmers. On the other hand, the addition of Streams
to Java was influenced by the existence of similar offerings outside of Java which provides
an additional external force. In fact, the original Java proposal explicitly says “Linq and
Plinq in particular are seen as extremely valuable by .NET developers and a subject of
much envy by Java developers” [14]. One can note that programming for multi-core has
always been very error-prone for programmers [119]. The introduction of a higher-level
API can therefore be seen as also partly driven from internal forces.

Java 8 lambda expressions

Java 8 also introduced closures. This introduction is seen as an external force by several
languages offering this feature. In fact, the original Java 8 proposal states [15]:

“Many other commonly used object-oriented programming languages, in-
cluding those hosted on the JVM (for example Groovy, Ruby, and Scala)
and hosted on other virtual machines (C# on the CLR), include support for
closures. Therefore, Java programmers are increasingly familiar with the lan-
guage feature and the programming models it enables.”

However, the main motivation given there is to “simplify the creation and consumption
of more abstract, higher-performance libraries”. The idea of representing a function as
an object could be implemented in earlier versions of Java via various design patterns
including anonymous inner classes. However, these are verbose solutions which were
unsatisfactory for programmers. The introduction of lambda expression can therefore
also be seen as driven from internal forces because it is syntactically simpler than an
equivalent anonymous inner class. Compare how to create a predicate for testing whether
an apple is green before Java 8:

Predicate<Apple> isGreenApples = new Predicate<Apple>(){

public boolean test(Apple a){

return a.getColour() == GREEN;

}

};

and using Java 8:

Predicate<Apple> isGreenApple =

(Apple a) -> a.getColour() == GREEN;

Java 7 improved type inference for generic instance creation

Java 7 introduced a form of type inference for generic instance creation. Instead of writing:

Map<String, List<String>> myMap = new HashMap<String, List<String>>();

Programmers can now write more concisely:
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Map<String, List<String>> myMap = new HashMap<>();

The <> (called the diamond operator) infers the type arguments from the context.
Consequently, the code is less verbose by avoiding the duplication of writing complex
types. This feature was originally proposed by the community on a mailing list [22].
The author of the proposal highlights that there are alternative available ways to express
this idea but which are considered bad styles: “The requirement that type parameters
be duplicated unnecessarily like this encourages an unfortunate overabundance of static
factory methods, simply because type inference works on method invocations (and doesn’t
for new)”. This feature is therefore mainly driven from an internal force whereby a lacuna
in the language encouraged developers to use clumsier alternatives.

Java 7 improved exception handling

Java 7 introduced two enhancements to exception handling. First, a single catch clause
can now catch more than one exception type which lets developers write more concise
code. For example:

catch (IOException ex) {

logger.log(ex);

throw ex;

}

catch (SQLException ex) {

logger.log(ex);

throw ex;

}

can be written as:

catch (IOException|SQLException ex) {

logger.log(ex);

throw ex;

}

This enhancement is driven from an internal force. Indeed, developers were writing
and maintaining duplicate code for a simple pattern. The addition of multi-catch results
in simpler code.

Second, Java 7 corrected an issue with how exceptions are rethrown. The code below
illustrates the changes. Previously, the statement throw exception would throw a Foo

exception. Now, it throws a DaughterOfFoo exception.

class Foo extends Exception {}

class SonOfFoo extends Foo {}

class DaughterOfFoo extends Foo {}

class Test {

void test() {

try {

throw new DaughterOfFoo();
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} catch (final Foo exception) {

try {

throw exception; // first incompatibility

} catch (SonOfFoo anotherException) {

// second incompatibility: is this block reachable?

}

}

}

}

Prior to Java 7, a rethrown exception was treated as throwing the type of the catch

parameter. Now, when a catch parameter is declared final, the type is only known to
be the exception types which are thrown in the try block and which also are a subtype
of the catch parameter type. This enhancement is driven purely from an internal force:
fixing a shortcoming in the language. This improvement led to two incompatibilities
where existing code behaved differently.

Java 5 generics

Java 5 introduced generics, a feature which adds additional compile-time type safety
checking. It removes the needs for explicit casts from Object which reduces the possibility
of runtime type errors [41]. For example, prior to Java 5 programmers had to write code
such as:

List apples = new ArrayList();

apples.add(new Apple());

Apple a = (Apple) apples.get(0);

The List declares a method get to have the return type Object. Consequently, an
explicit cast is required to tell the rest of the program that the elements are of type Apple.
If the programmer gets the cast wrong, a runtime-error occurs. This can be frustrating
for programmers and represented an internal force pushing for change. With generics,
programmers can now write the following more concise and safer code:

List<Apple> apples = new ArrayList<Apple>();

apples.add(new Apple());

Apple a = apples.get(0);

Clearly the motivation of this feature is to help developers write safer code. How-
ever, the generics proposal also included polymorphic methods and the ability to specify
user-defined generics. Parnin et al. recently showed that generics have suffered from slow
programmer uptake apart from simple use of homogenous collections; this weakens the
internal force justification [101]. In addition, the implementation of generics for Java 5
was based on external research work by Bracha et al. [42], which detailed a fully back-
wards compatible proposal for Java. They noted that many other languages at the time
supported generics: “Adding generics to an existing language is almost routine”. This
supports the argument that the addition of generics was mostly driven from external
forces.
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Java 5 enhanced for loop

Prior to Java 5, iterating over a collection was verbose. Programmers had to explicitly
use the methods of an Iterator object. For example, the following code iterates through
a list of numbers:

Iterator itr = numbers.iterator();

while (itr.hasNext()) {

Object e = itr.next();

System.out.print(e + " ");

}

Programmers can now use the enhanced for loop (i.e. for-each) which reduces verbosity
by hiding the boilerplate:

for (Integer e: numbers) {

System.out.println(e + " ");

}

The initial feature proposal highlights the internal force for this construct: “ease of
development and significantly reduces verbosity of a very common construct” [16]. In
addition, the official guide strongly recommends its use “So when should you use the for-
each loop? Any time you can. It really beautifies your code” [9]. The for-each construct
was clearly introduced to solve a programming clumsiness. Note that other competitor
mainstream languages such as C# already supported a similar construct. This may have
acted as an external force for the language designers to include it in Java.

2.3.2 C#

In this section, we review the introduction of two features in C#:

• LINQ in C# 3.5

• Generators in C# 2.0

LINQ

C# version 3.5 added the embedded query language LINQ [82], which lets programmers
process data in declarative manner. Before the introduction of LINQ, programmers had
to work with multiple different languages (e.g. SQL for database and XPath for XML)
or APIs to query data. Using LINQ, programmers can now write the following uniform
query where the data could come from various sources such as a database, an in-memory
collection or an XML file:

var results =

data.Where(invoice => invoice.Price > 5000)

.Select(invoice => {invoice.ID, invoice.Customer});
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The popularity of databases and the need to query them is the external force that
motivated LINQ. Indeed, nearly every application needed to work with data. In addition,
programmers tended to adopt the declarative style of SQL. However, the introduction
of LINQ can also be seen as an internal force since existing mechanisms in the language,
such as the existence of multiple APIs for various data formats, were unsatisfactory and
time-consuming to work with.

Generators

C# lets programmers define iterators (called enumerators) associated with a user-defined
type. Programmers can then use the foreach construct to iterate over it as discussed ear-
lier. However, this process requires a lot of boilerplate code and is known as implementing
the enumerator pattern using an external class. C# 2.0 introduced an improvement that
enable programmers to create iterators as generators. This feature can make it possible
for classes to declare how the foreach statement will iterate over their elements. For
example, instead of declaring and implementing a separate IEnumerator which needs to
manage the state of the iteration, C# 2.0 programmers can now directly implement the
GetEnumerator method using a yield statement as follows:

public class Range : IEnumerable {

private int start;

private int end;

public Range(int s, int e) {

start = s;

end = e;

}

public IEnumerator GetEnumerator() {

for(int i = start; i <= end; i++) {

yield return i;

}

}

}

This feature is driven by an internal force: the enumerator pattern is difficult and
time-consuming to implement and programmers need to do it frequently. The proposal
for the iterator feature takes inspiration from research languages such as CLU, Sather
and Icon, which supported a similar feature. This is an external force that influenced the
introduction of this feature into C# [3].

2.3.3 Python

In this section we review the introduction of two features in Python:

• Conditional expressions in Python 2.5

• List comprehensions in Python 2.0
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Conditional expressions

Python 2.5 added conditional expressions with syntactic form of X if C else Y. The
initial proposal argues that programmers were making several errors when attempting to
achieve the same affect using the and and or operators [131]; this motivated the need for
a new construct. As a result, conditional expressions can be seen as driven by an internal
force.

List comprehensions

Python 2.0 added list comprehensions to provide a more concise way to create lists in
certain situations. Furthermore, list comprehensions was introduced as a concise replace-
ment for inefficient combinations of map(), filter() and nested loops. This is clearly an
internal force. For example, the following code:

map(lambda x: x**2, filter(isprime, range(1, 99))

is equivalent to the following Python 2.0 code using list comprehensions:

[x**2 for x in range(1, 99) if isprime(x)]

However, the mailing list discussing the proposal mentions that the syntax took inspi-
ration from Haskell. This represents an external force.

2.3.4 Discussion

It is interesting to notice that smaller additions to features in mainstream languages are
mainly driven from internal forces. However, subsequent features are driven by both
external and internal forces. Specifically, external forces are driving the early develop-
ment of the programming language ecosystem with the creation of new features in nicher
programming languages. These features are then only later incorporated as evolutionary
changes into mainstream languages. Another force which we have not considered is that
of business-driven evolution, which we merit a section to itself.

2.4 Business-driven evolution

So far we have argued that programming language evolution is driven based on external
and internal forces. We noted that “industrial need” is an important external force.
However, we also believe that an emerging related actor which influences the programming
language ecosystem and its evolution are large technology firms such as Apple, Google
and Facebook.

We develop three arguments as to why large technology companies are becoming new
influences in programming language evolution:

1. Control of the ecosystem

2. IP protection

3. Revenue
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2.4.1 Control of the ecosystem

In the last decade, a new phenomenon has hit us. Many large technology companies
now control existing programming languages or create their own programming language.
For example, Apple recently released Swift, a new programming language for iOS and
OS X. Google released Go, a language for systems programming. Google also released
Dart, a programming language to replace Javascript. Facebook recently released Hack,
a programming language that can be seen as a new version of PHP. Red Hat released
Ceylon, a programming language born out of “frustration with Java” and designed to
replace it [4]. We see this strategy as a way to isolate themselves against “natural”
programming language evolution.

One can see the release of these industrially supported languages as a good cause
for the community. However, there is also a business-driven motivation. In fact, it is
attractive for a company to minimise dependency on external technology which may
change in directions that are inconvenient to their business.

As noted above, Facebook recently introduced Hack. The programming language was
born because of internal forces: programmers at Facebook were frustrated with shortcom-
ings with PHP and not being able to address them. As a result, they created a similar
programming language but more tightly specified which they can control. In addition,
it can also benefit recruitment of skilled engineers which see programming in PHP as
unattractive. Moreover, Facebook has thousands of engineers which use the language at
work that can then act as evangelists; this acts as a counter-force to the natural evolution
of PHP.

With the exploding growth of web applications, Google released Dart, a programming
language which aims to replace the ubiquitous JavaScript. In addition, Google is working
on integrating Dart inside Chrome, the most popular browser at the moment, which is also
developed by Google. As a consequence, Dart may steal developers from the JavaScript
community. Microsoft recently released Typescript also an alternative to ECMAScript
and seen as a direct competitor to Dart.

A related issue is that of several companies that hire the main leader of a language
community. For example, Dropbox has hired Guido van Rossum, the inventor of Python,
because they make heavy use of Python internally. Facebook has hired Andrei Alexan-
drescu, the language designer of the programming language D. These kinds of hire exposes
interesting conflict-of-interest questions about the future direction of programming lan-
guage evolution. Is it driven entirely by the community or is it influenced by business
needs of the company that employs a key developer?

2.4.2 IP protection

Oracle recently acquired Sun. Through this acquisition they have taken ownership of
Java as well. This can be seen as a strategic move to control a programming language
that Oracle’s competitors such as Google and IBM heavily rely on. For example, Google
has invested its future in Java by making it the main language on the Android platform.
Relatedly, Oracle recently sued Google for copyright infringement of the Java API [20].
In fact, Google’s implementation of its mobile operating system Android used the same
names, structure and functionalities as the Oracle Java API to attract developers in the
Java community to develop on their platform.
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2.4.3 Revenue

Another reason why it is attractive to control a programming language is that it can result
in additional revenue. For example, Jetbrains, a company behind the popular IntelliJ
IDEA IDE, is developing Kotlin, an alternative language to Java and Scala. Jetbrains
openly says that “we expect Kotlin to drive the sales of IntelliJ IDEA” [28].

We can see a similar historical example with Pascal. The company Borland developed
two dialects to Pascal, which shipped with a paid integrated development as apart of their
main business model: Turbo Pascal (cheaper) and Borland Pascal (more expensive).

However, programming languages can bring revenue from multiple different avenues.
For example, Google’s programming languages are offered as part of their cloud-computing
offerings. By building a large community of users Google is able to sell more of their
products. Microsoft provides paid tools, support and training to develop using C#.
Typesafe, the company co-founded by Martin Odersky, the creator of Scala, influences
the development of Scala. Its main business model is to offer a package that includes
commercial support, maintenance, and tools to develop in Scala. Typesafe also offers
training and consulting services on Scala frameworks they develop.

2.4.4 Discussion

The conclusion from this section is that programming language evolution is more subtle
than we can think. As we discussed, there are several forces which can influence the
programming language ecosystem. However, large technology firms is also one relevant
force which may not always act in the best interest of “natural” programming language
evolution with developer needs in mind.

2.5 Dealing with programming language evolution

We discussed that programming language evolution may happen in response to several
factors. Changes to the language raise the question of how can developers deal with
existing code bases? In fact, as programming languages evolve, older versions are often
discontinued and not supported any longer. In addition, new features in languages often
let programmers express intent more clearly compared to older idioms. It is possible
for programmers to manually migrate codebases to a newer version. However, manual
location and transformations of relevant source code in a program are time-consuming
and prone to errors. This is even more pronounced for backward incompatible changes
introduced in the context of programming language evolution as we discuss in the rest of
this dissertation.

Previous work has suggested the use of automated techniques to support developers
with programming language evolution. For instance, Pirkelbauer et al. presented the
notion of source code rejuvenation: the automated migration of legacy code [107, 106].
They contrast it to the notion of refactoring in several ways. While refactoring involves
improving the design of existing code in a behaviour-preserving manner, they argue that
source code rejuvenation is a process to improve existing code by taking advantage of
improvements to a new version of the language and associated libraries (e.g. eliminating
outdated idioms). In contrast with refactoring, source code rejunevation does not neces-
sarily have to preserve behaviour. Various researchers have released automated tools to
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support source code rejunevation and argued that it benefits maintenance, verification,
extension, and understandability of code. For example, Overbey et al. presented the tool
Photran to replace use of old Fortran features with their modern equivalents [98, 99]. This
work was extended by Orchard et al. who developed CamFort to show that it is possible
to locate and transform sophisticated programming patterns in Fortran using a general
analysis infrastructure [97].

However, automated migration may not always possible. A new version of a program-
ming language may introduce incompatibilities with respect to an older version. These
incompatibilities can be time-consuming and expensive for programmers to locate in large
code bases. In addition, incompatibilities can also be subtle and difficult to understand
as a developer. This problem is the focus of this dissertation. We argue that auto-
mated support for searching code bases for incompatibilities is also necessary to support
developers with programming language evolution. The next chapter introduces notions
for language compatibility and the remaining chapters contributes three techniques to
support developers in searching and analysing their code bases.
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Chapter 3

Notions of language compatibility

In the previous chapter, we presented an analysis of the causes of programming language
evolution. We argued that changes introduced in programming languages are driven by
both external and internal forces.

This chapter focuses on changes that are not compatible with previous versions of
a programming language. Subsequent chapters deal with tools to support developers in
locating changes that are not compatible.

A compatible change is a change that keeps an existing program working as it did
before. A change that is incompatible may produce a different runtime behaviour, or the
source code of the program may not compile using the new language compiler. We refer
to these compatible changes in a new language version as backward-compatible changes.
Figure 3.1 formalises this notion. We define backward compatibility between two versions
v and v’ as a predicate which indicates that all the programs in the syntax set of version
v have the same behaviour in version v’1.

Bcomp(v, v′) = ∀P ∈ Lang(v) we have Behaviourv(P ) = Behaviourv′ (P )

Lang(v): syntax set for language version v

Behaviourv(P ): Behaviour of program P with language version v

Figure 3.1: Forward and Backward Compatibility

A recent study shows that programmers lack awareness of compatibilities beyond
compile errors [52]; this forms part of the motivation for this chapter. A naive definition of
a compatible language change from version 1 to version 2 is a change where every program
in language version 1 is a valid program in version 2 and has the same behaviour.

This chapters has two aims. First, we argue that language compatibility is more subtle
and goes beyond this simplistic definition. Second, the main contribution of this chapter
is to establish an extended non-exhaustive classification of backward-compatible changes.
We build upon previous work [44, 48] which introduced behavioural compatibility, source
compatibility and binary compatibility. We constructed this extended classification by
analysing bug reports and compatibility guides from several languages including Java,
Python and PHP.

Concretely, we make two advances:

1Note that forward compatibility refers to a design principle that allows a system to accept input
intended for a later version rather than a property of a system

29



1. We further include performance-model compatibility, data compatibility and security
compatibility.

2. We present a detailed composition of the different kinds of behavioural compatibility,
source compatibility and binary compatibility.

We use this classification in later chapters to design tools to support developers in
searching the location of changes that are not backward compatible. One goal of this
classification is to provide programmers with a checklist to better understand the possible
compatibility issues when migrating their codebases to different language and library
versions. Figure 3.2 summarises the classification visually.

Figure 3.2: Six categories of backward compatibility

Figure 3.2 shows that backward compatibility is a topic that is more complex than
one immediately imagines. In fact, the figure shows six main categories of backward
compatibility: source, binary, performance-model, behavioural, data and security. Each
category is then further divided with finer-grained sub-categories. The rest of this chapter
investigates each category in details with real-world use cases of incompatible changes
introduced in programming languages. We also discuss that incompatible changes do not
always fit into a single category but can have cross-cutting characteristics.

3.1 Behavioural compatibility

Behavioural compatibility means that a program written in version n of programming
language will produce exactly the same behaviour at runtime given the same input us-
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ing version n + 1 of the programming language. In this section, we classify behaviour
incompatible-changes into semantic and quiet changes.

3.1.1 Explicit semantic change

A change may alter the meaning of a program in a different version of the program-
ming language. We highlight two such semantic changes exemplified in real programming
languages: producing a different value or result and using a different type coercion.

Different result In Python 2 an expression such as 1/2 returns 0 (of type int) as both
arguments of the division operator are ints. However, 1.0 / 2 returns 0.5 as one of the
argument is a float. To contrast, in Python 3 the division operator always returns a
float and the result is 0.5 in both cases.

As another example, the function ip2long() in PHP 4 returns an integer representa-
tion of an IP address given its string representation or -1 if it fails. In PHP 5 it now returns
FALSE when an ill-formed IP address is passed as argument to the function. These ex-
amples can result in behavioural incompatibilities if the control flow of the program is
based on the result of that function.

Such semantic changes can also be the result of fixing an implementation bug. For
example, prior to Java 8, calling BigDecimal.stripTrailingZeros on a string value
numerically equal to zero would return that value (e.g. 0.00 would return 0.00 instead of
0). Now the method instead returns the constant BigDecimal.ZERO [90].

Different coercion In PHP 4 an object with no class member variables is considered
empty. However, in PHP 5 it is no longer considered empty. The code below in PHP 5
would print “bar” but in PHP 4 would not print anything.

<?php

class foo { }

$o = new foo();

if ($o) {

echo "bar";

}

?>

3.1.2 Quiet semantic changes

The ANSI/ISO C rationale document formalises the notion of quiet changes [69]:

“Any change to widespread practice altering the meaning of existing code
causes problems. Changes that cause code to be so ill-formed as to require
diagnostic messages are at least easy to detect. As much as seemed possible
consistent with its other goals, the Committee has avoided changes that qui-
etly alter one valid program to another with different semantics, that cause
a working program to work differently without notice. In important places
where this principle is violated, the Rationale points out a quiet change”.
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Such changes are not specific to C and can occur in other programming languages too.
We highlight four categories of quiet changes exemplified in Java: unspecified behaviour,
improper behaviour, timing and threading model.

Unspecified behaviour In Java 7, build 129, the implementation of the methods
getMethods, getDeclaredMethods and getDeclaredConstructors from java.lang.Class

changed the order in which they return the methods and constructors of a class. As a
result, user code that relied on this order might not work as they did before [17]. How-
ever, the specification for these methods never prescribed a particular order. But some
users assumed there was an order based on previous implementation behaviour. Such user
assumptions in the presence of “underspecified specifications” can be a major source of
quiet semantic changes.

Improper behaviour Java 1.2.0’s reflection API let users change the value of a final
field using the Field.setAccessible and Field.set method. However, this was consid-
ered as a bug in the implementation rather than the specification and was prohibited in
future versions by throwing an exception [88]. Consequently, any programs that relied on
this pattern prior to Java 1.2.0 would unexpectedly terminate in later releases.

Timing assumptions One can also imagine timing assumptions made by users can also
result in quiet changes. For example, the control flow of a program may depend on the
observed time of a built-in operation (e.g. a time out mechanism). If the implementation
of the operation is changed or even run on different hardware, the program may not
behave as expected. Related is the idea of timing attack [75]. An attacker may be able
to compromise an encryption algorithm by analysing the time taken to encrypt different
inputs. For example, Java 6u17 updated the implementation of MessageDigest.isEqual
which was vulnerable to a timing attack because it was doing byte-by-byte comparison
and returning on first inequality [5]. It was modified to run in constant time instead.

Threading model Assumptions about the threading model could result in errors. For
example, changing a method from synchronized (prevents threads interference) to non-
synchronized in Java could result in race conditions over shared data that can affect
the behaviour of the running program. As another example of how threading model
assumptions can affect the outcome of a program, in the previous chapter we discussed
the Streams API in Java 8 which lets developer express data-processing queries that
abstract the underlying threading model. The following code will produce a different
output depending on whether a sequential or parallel stream is passed as argument to the
method totalCost because the DELIVERY FEE could be added multiple times by more
than one thread:

int totalCost(Stream<Purchase> items) {

return items.reduce(DELIVERY_FEE,

(tally, item) -> tally + item.cost());

}
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3.1.3 Discussion

We have described two classes of behavioural imcompatibilities: explicit semantic changes
which violate an existing specification and quiet semantic changes which introduce seman-
tic changes but do not necessarily break a previous specification.

An interesting observation is that behavioural changes can also be classified in terms
of “visibility” for programmers. For example, a function producing a different value (0.5
instead of 0) can be inspected in the source code by identifying the uses of that function.
To contrast, a subtle rule change in type coercion (e.g. PHP 4’s empty definition) is
insidious for programmers because it is difficult to immediately observe or understand by
simply inspecting the source code. In fact, conversions are typically implicit (no syntactic
keywords), which renders them invisible to the programmer.

In addition, one can notice that changes do not necessarily have a clear-cut categori-
sation. In fact, change may have cross-cutting characteristics. For example, we discussed
that changes in timing assumptions of an operation can result in behavioural incompatibil-
ities. Moreover, it may break the performance-model expected by the user. Furthermore,
changes in timing assumptions can also result in security problems via timing attacks as
we discussed earlier.

3.2 Source compatibility

In its simplest form, source compatibility means that an existing program will still compile
after introducing a change. For example, adding a method to an interface in Java is not
source compatible. Indeed, existing implementations will not re-compile because they first
need to implement the new method. This incompatibility occurs at the type-checker level.
In this subsection, we make two statements. First, we argue that source-incompatible
changes can be sophisticated and go beyond simple errors such as adding a new reserved
keyword in the language. Second, we show that most source incompatibilities can be
categorised into three main categories: parser, type-checker and data-flow.

3.2.1 Lexer/Parser level

Source incompatibilities can occur when language designers alter the grammar rules of
the language such as introducing new reserved keywords.

Lexical For example, Java 1.4 introduced a new assert keyword. As a consequence,
existing programs that used assert as an identifier became invalid in subsequent versions
of Java.

Syntactical In Python 2 print was a statement. In Python 3 it is now a function,
and using it as a statement (without parentheses) will produce an error. Concretely, the
following line is valid in Python 2 but invalid in Python 3:

print "Hello World"
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3.2.2 Type-checker level

Source incompatibilities can occur when language designers update parts of the language
or libraries that rely or work with specific type information. For example, changing the
signatures of components such as interfaces and classes from the built-in language API
results in type errors.

Type system updates Java 7 fixed a bug in the method type-inference mechanism [91].
The following code was valid in Java 6 but is now invalid in Java 7:

class Test {

<Z> List<Z> m(List<? super Z> ls) { return null; }

void test(List<String> ls) {

List<Integer> i = m(ls);

}

}

The type-inference mechanism previously inferred Integer for the type variable Z

which was problematic since the method m receives a list of String.

As another example, Java 7 fixed an implementation problem with overloaded meth-
ods. Java 6 allowed the following code:

class Test {

int m(List<String> ls) { return 0; }

long m(List<Integer> ls) { return 1; }

}

However, this is problematic due to how generics are implemented by the Java com-
piler. Generics information are simply ignored (“erased”) when compiled to JVM byte-
code. As a result, both methods compile to JVM bytecode that will have the same
parameter arguments which is disallowed. Java 7 now rejects this code.

Different API contract Java 7 added a method to the interface
javax.lang.model.type.TypeVisitor to reflect other additions to the language. As a
consequence, any user code directly implementing this interface prior to Java 7 fails to
re-compile in Java 7. This general issue of improving an API is problematic for APIs
designers because it breaks user code. To evolve APIs in a compatible way, Java 8
introduced a new feature called default methods. Default methods bundle implementation
code inside a method of an interface and let implementing classes inherit from the code.

However, breaking an API contract can involve more than the parameter and return
type of a method. For example, Java 7 changed three methods from the Path2D class
from non-final to final. As a result of this change on the modifiers of these methods,
any subclass overriding these methods from the Path2D class, which compiled in Java 6
fails to re-compile in Java 7.
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3.2.3 Data-flow level

Source incompatibilities can also occur at the data-flow level. For example, a change to
the data-flow analysis rules of a language may render user code unreachable which causes
compilation to fail in Java.

For instance, we already mentioned in Section 2.3.1 that Java 7 introduced improved
checking for rethrown exceptions. Previously, a rethrown exception was treated as throw-
ing the type of the catch parameter. Now, when a catch parameter is declared final,
the type is known to be only the exception types that were thrown in the try block and
are a subtype of the catch parameter type.

This new feature introduced two source incompatibilities with respect to Java 6. The
code below illustrates the changes. Previously, the statement throw exception would
throw a Foo exception. Now, it throws a DaughterOfFoo exception. As a consequence,
the catch block catch(SonOfFoo anotherException) is not reachable anymore as the
try only throws a DaughterOfFoo exception. Java forbids unreachable code and as a
consequence the program would result in a compile error.

class Foo extends Exception {}

class SonOfFoo extends Foo {}

class DaughterOfFoo extends Foo {}

class Test {

void test() {

try {

throw new DaughterOfFoo();

} catch (final Foo exception) {

try {

throw exception; // first incompatibility

} catch (SonOfFoo anotherException) {

// second incompatibility: is this block reachable?

}

}

}

}

3.2.4 Discussion

We discussed that a source incompatible change in its simplest form means that a program
which previously compiled, stops compiling after a change is introduced. We argued
that source incompatibilities can surface in three main categories which reflect compiler
phases: lexer/parser, type-checker and data flow levels. However, compilers are becoming
more sophisticated with many different compiler phases. For example, the Scala compiler
enumerates over 30 different compiler phases including tail-call elimination and inlining. It
is theoretically possible that bugs slip through in the compiler implementation at various
different phases, which when fixed, may cause previous programs to stop compiling.
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3.3 Data compatibility

We present another aspect of compatibility which we refer to as data compatibility. A pro-
gramming language can have various mechanisms to work with data. These mechanisms
may also change during the evolution of the programming language. We classify these
mechanisms into two main categories: serialisation and representation. For example,
many languages support a serialisation mechanism to store and transmit data structures.
Similarly, there are several different ways to represent fundamental data such as numbers
and strings whose representation can also evolve.

3.3.1 Serialization

Serialisation compatibility is concerned with when an instance of a class is serialised,
stored and the structure of the class is later changed. The data stored may not be
compatible with the new version of the class. Similarly, if an instance of the new class is
serialised and then stored, it may not be compatible with the older version of the class.

Java provides a guide outlining compatible and incompatible changes with regard to
serialization [89]. For example, deleting a field from a class is an incompatible change
because when the instance of the new class is serialised, the data will not contain the
value of the field. If the data is read by an older version of the class its field will be set
to a default value which may results in behavioural incompatibilities.

3.3.2 Representation

String representation String datatypes in many programming languages were in the
past represented as one byte per character based on the ASCII encoding scheme. How-
ever, this scheme is limited because several alphabets such as Chinese and Japanese have
more than 256 characters. As a result, various other encodings exist to address this rep-
resentation problem. Unicode is the preferred standard today. Two popular encodings of
unicode are UTF-16 which is a 16-bit encoding and UTF-8 which is a 8-bit variable-width
encoding that maximizes compatibility with ASCII.

However, the adoption of a different encoding can cause incompatibilities in program-
ming languages. For example, in Python 2 both text and binary data strings were imple-
mented as byte strings. In Python 3, it was decided that all text strings should follow the
unicode standard [130]. Mixing text strings with binary data strings (e.g. concatenating)
in Python 2 was accepted because they were both represented as 8-bit strings. However,
this results in errors in Python 3 because text strings are now unicode, which cannot be
concatenated with binary data strings.

Number representation As with strings, there are several ways to represent floating-
point numbers. For example, before the IEEE 754 standard was introduced computer
manufacturers had their own incompatible formats [64].

3.4 Performance-model compatibility

Some changes to a language may introduce differences with respect to the performance-
model assumptions of users both at the speed and memory level. This can be problematic
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when users for example rely on the fact that an operation or a code pattern is cheap and
this is changed in later version of the language. We refer to such changes as performance-
model compatibility. We argue that users are often unaware of such changes because they
typically have no visible output. To help understanding for programmers, we classify
such changes into two main categories: speed, which is concerned with the execution time
of the program and memory, which is concerned with the memory consumption of the
program.

3.4.1 Speed

Prior to Java 1.7u6 strings were implemented with an internal array char[], an offset

and a count field. Most strings usually start at offset zero and count is the length of
the internal array. However, calling the method String.substring created a new string
which shared the internal char[] with a different offset and count. This implementation
allowed to execute String.substring in constant time and save memory by sharing the
internal array.

However, this approach caused memory leaks when the users wanted to extract a small
string from a very large string. Even if the large string could be discarded, there was still
a reference to it from the smaller string via the internal array they both share. Since Java
1.7u6 the internal offset and count field were removed and String.substring returns
a copy of the required section from the larger string [92, 95, 94]. As a result, the large
string can be discarded and the running application avoids memory leaks. In addition,
a string has now also a smaller memory footprint. However, this new implementation
implies that the complexity of String.substring is now linear (bounded by the size of
the section to copy) instead of constant.

3.4.2 Memory

In Java, entries of a Map are typically stored in buckets accessed by the generated hashcode
of the key. But if many keys return the same hashcode, then performance of search
operations will deteriorate, because buckets are implemented as lists with O(n) retrieval.
In Java 8 (Oracle’s JVM implementation), after a certain threshold is reached, the buckets
are now dynamically replaced by sorted binary trees, which have O(log(n)) retrieval.
However, the trade-off is that sorted binary trees have an increased memory footprint
compared to lists [93].

3.4.3 Discussion

We argue that performance-model compatibility is often overlooked by library designers.
For example, the Java API does not enforce any guarantees on the performance-model as
part of the specification or documentation. By contrast, the Standard Template Library
(STL) in C++ supports the idea of complexity guarantees as part of the interface of a
component. For example, a vector is guaranteed to have run-time complexity of element
access in constant time. Nonetheless, the specification is only a simplification to make it
accessible for users. For example, it does not support memory usage constraints.

Another element of performance compatibility which is increasingly important is power
consumption. For example, on mobile devices energy consumption affects battery life. En-
ergy consumption in large data centres can significantly limit expansion because of cooling
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requirements. A survey indicates that programmers lack knowledge and awareness about
software energy-related issues. More than 80% of the programmers do not take energy
consumption into account when developing software [100]. Increase of IO operations and
inefficient data structures are contributors to worse energy consumption.

3.5 Binary compatibility

When a change is introduced to a library or certain other units of a program (e.g. classes,
packages or modules), other parts of the program that depend on these units typically
also need to be re-compiled to work as intended. Changes that needs re-compilation of
dependent parts are called binary incompatible changes [53]. Different languages have
different notions of what binary compatibility means exactly.

For example, in contrast to Java, C++ is compiled ahead of time. C++ compilers
usually compile class-field accesses into hard-coded offsets based on the layout information
of other classes at compile time. This can results in compatibility problems such as the
fragile base class problem [86]. In fact, changing the order of the declaration of virtual
functions in a class is often binary incompatible because the order of entries in the virtual
table of that class will change too. Other units which are using that class will use incorrect
offsets. Similarly adding a new public member can change the offsets of previous members
and result in a binary incompatibility.

In contrast, the JVM uses references to look up fields and methods at run-time instead
of hard-coded offsets which prevents most of these problems.

Nonetheless, the Java language specification defines binary compatibility by “a change
to a type is binary compatible with (equivalently, does not break binary compatibility
with) pre-existing binaries if pre-existing binaries that previously linked without error
will continue to link without error.”

In Java, the runtime linking process consists of three steps: verification, preparation
and resolution. It is possible for changes to be binary incompatible at any of these steps.
Examples of binary incompatibility changes are well-documented [137]. They include
removing a field from a class or changing the signature of a method.

Although undesirable there have been binary incompatible changes during Java’s his-
tory. For example, as we mentioned earlier, Java 7 changed three methods from the
Path2D class from non-final to final. Because of this, any subclasses that override these
methods would fail to link. In addition, it is also a source incompatible change because
re-compiling these subclasses would also fail.

Note that these issues are not only restricted to Java. Other languages which compile
to Java bytecode can also run into binary compatibility problems. For example, adding
a new method to a Scala trait is binary incompatible. To discover binary compatibil-
ity issues, Scala provides a tool called the Scala migration manager that reports binary
incompatibilities between two releases of the same library [26].

We highlight five main concerns relating to binary compatibility problems:

1. Related to the layout of data types (e.g. removing members)

2. Related to hierarchy (e.g. removing a supertype)

3. Related to modifiers (e.g. making a class final)
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4. Related to API signatures (e.g. changing result or argument type)

5. Related to compiler artefacts (e.g. synthetic methods – methods automatically
generated by the compiler rather than being written by hand by the programmer)

We now examine each of these concerns in turn.

3.5.1 Layout

Changes introduced to the layout of a data type can result in binary incompatibilities.
For example, re-ordering virtual functions in a C++ class will change the virtual table’s
offsets. However, other classes are still dependent on the outdated offsets unless they are
recompiled. Similarly, adding and removing public fields can cause layout issues.

3.5.2 Hierarchy

Changes introduced to the type hierarchy in a program can result in binary incompati-
bilities. For example, shrinking a class’ (e.g. A) set of superclasses and superinterfaces
(either directly or transitively inherited) breaks compatibility. In fact, another class B

may be relying on a subtyping relationship of A that is no longer valid after the change.

3.5.3 Modifiers

Changes introduced to the modifiers of program elements can result in binary incompati-
bilities because the modifiers introduce different contracts. For example, in Java changing
a non-abstract class to abstract is binary incompatible because attempts to create new
instances of that class will produce a linking error (abstract classes cannot be instanti-
ated). Changing a non-final class to be final will throw a VerifyError as final classes
cannot be subclassed.

3.5.4 API contracts

Changes introduced to the contract of an API can result in binary incompatibilities. For
example, in Java, changing the result type of a method may result in a NoSuchMethodError
because the call-site refers to a method that no longer exists. In other words, changing
the signature (including parameters) of a method can be seen as deleting the old method
and adding a new method with the new signature.

3.5.5 Compiler artefacts

There are other changes that may be considered binary incompatible depending on the
compilation process. In fact, some compilers generate metadata or artefacts which are
invisible to the programmer but can result in binary incompatibilities. For example, the
Java compiler inlines the value of constant fields. If the value of a constant is later changed
then classes referencing it will hold the outdated value unless they are re-compiled. As
another example, the Java compiler automatically generates synthetic methods that are
not hand written by programmers. For instance, the Java compiler generates synthetic
methods in the context of covariant overriding (i.e. the ability in a subtype to override a
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method in a supertype and return a more specific type). This mechanism may result in
subtle incompatibilities in the context of separate compilation. To illustrate this, we first
explain how the Java compiler implements covariant overriding. Next, we show how the
problem can arise in the context of separate compilation. Given the following code:

class A {

Object get() { ... }

}

class B extends A {

@Override

String get() { ... }

}

The JVM does not consider that B overrides the method get in A because they have
different signatures based on the return type (String and Object respectively). As a
result, the Java compiler generates an extra overloaded version of the get method in the
class B (called a bridge method) as follows to provide the illusion that B.get overrides
A.get:

Object get() {

return ((B) this).get();

}

Now let us assume we have the following two classes:

class C {

}

class D extends C {

String get() { ... }

}

and later the class C is changed as follows without recompiling D:

class C {

Object get() { ... }

}

In this scenario, D.get looks like it is covariantly overriding C.get. However, because
the class D was separately compiled and the bridge method in D not generated, if someone
invokes get()Object on a D object, it will get the implementation from C instead of D.
While this is not strictly a binary incompatibility in the sense that it does not throw a
link error, it produces a strange behaviour which requires re-compilation to fix.
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3.5.6 Discussion

We showed that there are various sources of backward compatibility including layout,
hierarchy, modifiers, API contracts and compiler artefacts. However, these sources can
also be classified as “visible” and “invisible”. We highlighted this distinction already when
discussing behavioural incompatibilities in Section 3.1.3. For example, compiler artefacts
are invisible elements to the programmer as they are not present in the source code.
As a result, understanding the compatibility impact of changes is even more difficult
for users. The idea of analysing the impact of a requirement change has already been
advocated within the software engineering community. In fact, because software are
increasingly large and complex, several tools have been developed to support developers
in assessing the cost of a requirement change in a software and to identify the related
affected artefacts [112, 40, 109]. In this dissertation, we argue that automated tools
are also needed for developers to support the comprehension and evaluation of changes
introduced by programming language evolution.

3.6 Security compatibility

Some changes can affect the security of running applications. We categorise these changes
under security compatibility. We distinguish two categories of security related changes:

1. changes that downgrade the security of the application

2. changes that upgrade the security of the application, but may stop the application
running as before by introducing additional restrictions

For example, PHP 5.3 deprecated the the magic quotes functionality which was later
completely removed in PHP 5.4. Magic quotes was a functionality to reduce injection
exploits by automatically escaping special characters with a backslash in incoming data
to the PHP script. Unfortunately magic quotes had several problems which gave users a
false sense of security. For example, they did not fully protect against cross-site scripting
attacks. However, its removal may have opened new security bugs in existing code that
was previously protected against. For instance, beginner programmers frequently relied on
it to avoid basic SQL injections. Another example of downgrading security by introducing
a change occurred in the OpenSSL package on Debian. A line of code was commented out
in the implementation to remove an uninitialised data warning. However, this resulted
in making the random number generator more guessable and the implementation less
secure [25].

In general, security updates are intended to upgrade the security of a system. However,
it can also result in incompatibilities. For example, recently, Java 8 mandated that
certificates are blocked if they contain RSA keys of less than 1024 bits in length. The
compatibility states that “With this key-size restriction, those who use X.509 certificates
based on RSA keys less than 1024 bits will encounter compatibility issues with certification
path building and validation. This key size restriction also impacts JDK components that
validate X.509 certificates, for example signed JAR verification, SSL/TLS transport, and
HTTPS connections.” [96]
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3.7 Summary

In this chapter, we have argued that backward compatibility is more subtle than it appears
and is an important topic that concerns developers. Our claim is confirmed by a recent
study which shows that programmers lack awareness of compatibilities beyond compile
errors [52].

We developed a classification of backward compatibility across six categories by sur-
veying bug reports and compatibility guide from several programming languages including
Java, Python and PHP. Our classification builds upon previous work [44, 48] which in-
troduced behavioural compatibility, source compatibility and binary compatibility.

Concretely, we made two contributions. First, we established that changes can also
be categorised by performance-model compatibility, data compatibility and security com-
patibility. Second, we presented a finer-grained detail of the different kinds of behavioural
compatibility, source compatibility and binary compatibility. One aim of this work is to
contribute a checklist for programmers to better understand the possible compatibility
issues when migrating their codebases to different language and library versions.

Furthermore, we discussed that the idea of analysing the impact of a new requirement
change has already been advocated by the software engineering community. In fact,
because software is increasingly large and complex, several tools have been developed
to support developers in assessing the cost of a requirement change in a software and
to identify the related affected artefacts [112, 40, 109]. In this dissertation, we argue
that automated tools are also needed for developers to support the comprehension and
evaluation of changes in the context of programming language evolution. With this in
mind, subsequent chapters focus on developing program comprehension tools to support
programming language evolution. Particularly, we look at source and behavioural changes.
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Chapter 4

Source code queries with graph
databases

In the previous chapters, we argued that programming language evolution is an important
topic. In fact, it affects developers because they have to maintain and migrate code written
in older language versions. We discussed that often changes between language versions
introduce subtle incompatibilities that are hard to understand yet manually locate in
source code. Consequently, programming language evolution can be time-consuming and
expensive for programmers to deal with in practice.

In this chapter, we present an automated tool to help language designers and devel-
opers gather information about source code which would be difficult to collect manually.
We show how this tool is useful for program comprehension and in the context of pro-
gramming language evolution for language designers. Next chapters focus on more subtle
issues that arise with locating behavioural incompatibilities.

4.1 Introduction

Large programs are difficult to maintain. Different modules are written by different soft-
ware engineers with different programming styles. However, enhancements to a system
often require modifying several parts at the same time. As a consequence, software en-
gineers spend a large amount of their time understanding the system they are working
on.

Various automated tools have been developed to assist programmers to analyse their
programs. For example, several code browsers have been developed to help program
comprehension through hyperlinked code and simple queries such as viewing the type
hierarchy of a class, or finding the declaration of a method. These facilities are nowadays
available in mainstreams IDEs but are limited to fixed query forms and lack flexibility.

Recently, several source code querying tools have been developed to provide flexible
analysis of source code [45, 50, 2, 11, 70, 66]. They let programmers compose queries
written in a domain specific language to locate code of interest. For example, they can
be used to enforce coding standards (e.g. do not have empty blocks) [13], locate poten-
tial bugs (e.g. a method returning a reference type Boolean and that explicitly returns
null) [8], code to refactor (e.g. use of deprecated methods), or simply to explore the
codebase (e.g. method call hierarchy).

Such tools are also useful for programming language designers to perform program
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analysis on corpora of software to learn whether a feature is prevalent enough to influence
the evolution of the language. For example, a recent empirical study made use of a source
code query language to investigate the use of overloading in Java programs [62].

Typically, source code querying tools make use of a relational or deductive database to
store information about the program because it is inconvenient to store information about
large programs in main memory. However, they typically let users query only a subset of
the source code information (e.g. class and method declarations but not method bodies)
because storing and exposing further information affects the scalability of the querying
system. As a result, existing querying facilities have different trade-offs. We distinguish
between two categories. On one hand, some systems scale to programs with million lines
of code but provide limited information about the source code. For example, statement
level information is discarded. On the other hand, some systems store more information
about the source code but do not scale very well to large programs.

In this chapter, we argue that it is possible to build a system which allows expressive
queries on the full source code of a program and that also scales to large programs.

We observe that programmers are familiar with compiler-like graph structures such as
the parse tree, control flow graph and type hierarchy. We therefore suggest that the graph
data model [33] is a natural conceptual fit for representing source code information. We
present a model for Java source code that can be queried for expressive queries involving
full structural, type and flow information. For example, we can query statement level
information, the actual type of any expression, the type hierarchy, the call graph of any
method, read/write dependencies of variables and fields as well as liveness information.
In addition, we explain how our model can be easily extended via overlays and queried
using graph traversal operations.

We implemented a source code querying system based on this model using a graph
database (i.e a database specialised for storing and traversing graph-like structures). Ex-
periments show that our prototype based on Neo4j [18] scales to programs with million
lines of code and compares well to existing work.

The main contributions of this chapter are as follows:

• The identification of different views of a program that are useful to query for common
software engineering tasks and language design questions (Section 4.3). We make
these available as graph overlays (Section 4.4).

• A model for representing Java source code information based on the graph data
model that can support structural, type and flow queries (Section 4.4 and 4.5).

• An implementation of a source code query system based on this model using a graph
database (Section 4.6).

• A detailed set of experiments that demonstrates that our prototype is expressive
and scales with increased program sizes (Section 4.7).

4.2 Background

In this section, we describe the graph data model and graph databases.
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4.2.1 Graph Data Model

The graph data model encodes entities and relationships amongst them using a directed
graph structure [33]. It consists of sets of nodes and edges, where nodes represent entities
and the edges represent binary1 relationships between these entities. Nodes and edges
can be labelled, typically with the name of the entity they represent, but possibly with a
tuple of name and further values, such as “weight:3”. For our purpose, we will refer to
such tuples as properties on nodes or edges.

As an example, a node may have a property nodeType holding the string/enumeration
value JCBinary to represent a binary expression. This node would typically be connected
to two other nodes via two distinct edges labelled LEFT and RIGHT to connect the left and
right child nodes of a binary expression.

By contrast, the relational model represents entities as tuples that are grouped into
formal relations. Relationships between entities are encoded by combining relations based
on a common attribute.

4.2.2 Graph Databases

Databases supporting the graph data model are often referred to as graph databases.
They can be accessed via queries expressing graph operations such as traversal, pattern
matching and graph metrics. In Section 4.5 we discuss a graph query language called
CYPHER, which is used by the Neoj4 graph database.

By contrast databases supporting the relational model are referred to as relational
databases. They are typically accessed using SQL as the query language.

There are two fundamental differences between relational and graph databases which
we exploit in our work.

First, graph databases provide index-free adjacency. In other words, records them-
selves contain direct pointers to list of connected nodes. This obviates the need to combine
relations based on a common attribute to retrieve connected records. Vicknair et al. eval-
uated the performance of a graph database against a relational database. They report
that graph databases executed better for traversing connected data, sometimes by a factor
of ten [134].

Second, relational databases depend on a schema to structure the data whereas graph
databases typically do not have this requirement (i.e. they support semi-structured data).
In practice, it means that in a graph database all records need to be examined to deter-
mine their structures, while this is known ahead of time in a relational database. This
potential source of inefficiency is addressed in some graph databases which provide index
facilities to map certain structures known ahead of time to a list of records. In addition,
because graph databases do not depend on a schema, they can be more flexible when the
structure of records needs to be changed. In fact, additional properties can be added to
or removed from records seamlessly, which facilitates the addition of user-defined over-
lays. In relational databases, a modification of the schema is required before altering the
structure of records.

1In principle the formulation allows hyper-graphs with hyperedges of having more than two nodes,
but we only find the need to use ordinary directed edges.
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4.3 Program Views

In this section, we identify various syntactic and semantic properties of programs which
are useful in searches. We make these available as overlays in the graph model (see
Section 4.5) so we can form queries combining various concepts, such as “find a local
variable which is declared in a method called recursively and which has multiple live
ranges”. These overlay properties can be seen as database views. For each property, we
discuss their use for common software engineering tasks and language design questions.

• Text/lexical
These queries express grep-like queries to match pattern on the source code. Such
queries have an expressive power limited to regular expressions. Such queries are
useful to check certain coding standards (e.g. check whether variable declarations
follow a naming convention) and also for program comprehension (e.g. track certain
keywords in the code base). There exist many regular-expression-based code search
facilities such as Google code search [10].

• Structure
Structural queries operate on the abstract syntax tree (AST). These queries can
be classified in two categories global structure (e.g. querying for abstract method
declarations within a specific class) and statement-level (e.g. querying for a chain of
if statements to refactor into a switch) [103].

• Semantic Hierarchy
These queries explore semantic hierarchies among program entities. For example, a
query language could provide support for the overriding or implementation hierar-
chy of methods. In addition, it could provide support for the type hierarchy defined
in the code base. This is useful both for program comprehension (e.g. to find all con-
crete classes of an interface) and optimisation (e.g. perform class hierarchy analysis
and eliminate dynamic dispatches).

• Type
Here we effectively query a type-decorated AST of the program. For example, in the
context of program comprehension one could query method calls on a variable that
has a particular type. Such a query requires the availability of variables declaration’s
type. In addition, some coding standards require type information (e.g. avoid the
use of covariant arrays).

• Control Flow
Control flow queries investigate the possible execution paths of a program. Such
information can be useful in the context of program comprehension. For instance,
to get a high-level overview of an algorithm or to compute software metrics such as
the cyclomatic complexity. In addition, one may which to explore a codebase by
querying for all method calls made inside a program entry point (e.g. main()) or to
analyse which parts of a module are calling a methods from a database API. Such
query requires access to the method call graph of a program.

• Data Flow
Data flow queries examine the flow of values in a program. For example, one could
query whether a variable is used in the future by inspecting the liveness set of
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each statement. This is useful for optimisation and for removing unused variables.
In addition, in the context of program comprehension one could query whether a
method reads or write a specific field, the reaching definition of an assignment, or
the number of items a variable may point to.

• Threading primitives
Many programming languages including Java provide threading primitives at the
language level (e.g. synchronized and wait). Such primitives could be specified as
an overlay to query concurrency properties of a program such as what parts of the
source code spawns and joins threads.

• Compiler Diagnostics
It is sometimes useful to access extra information generated by the compiler. For
example, one may want to query the list of warnings associated with a specific block
of code. In addition, in the context of program comprehension it could be useful to
query various decisions made by two versions of a compiler to identify incompatibil-
ities. For example, Java 8 brings more aggressive type inference compared to Java
7. There has been discussion about how to identify possible incompatibilities by
inspecting the inference resolutions log generated by the Java compiler (the default
javac) [12].

• Runtime Information
Run-time information is useful in order to investigate the impact of code at run time
such as its memory consumption and CPU usage. For example, synchronized blocks
are often responsible for performance bottleneck. In fact, there are query technolo-
gies that can analyse a Java heap to facilitate application troubleshooting [19].

• Version History
Certain type of queries can only be answered by analysing the version history of a
codebase. For example, in the context of program comprehension it could be useful
to query for methods that have been updated the most, to find all modifications
made by a specific commiter or simply to perform code diffs [73]. Such informa-
tion is also useful for programming language research to investigate the adoption of
certain development practices, new libraries or language features over time [102].
In addition, recent work suggested the use of version history to mine aspects from
source code [43].

4.4 A Graph model for source code

Our model to represent source code information consists of several compiler-like graph
structures. We enhance these structures with additional relations, which we call overlays,
to enable and facilitate queries over multiple program views.

In our model, source code elements are represented as nodes and the relationships
amongst them as edges. We focus on Java. However, our methodology can be applied
to any object-oriented language. The design of our model was guided by our motivation
to support full structural information about the source code as well as type and flow
information.

We provide some examples on how to query our model. Data manipulation is explained
in more detail in Section 4.5.
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4.4.1 Abstract Syntax Tree

The AST of a program is a directed acyclic graph where the nodes represent source code
entities and the edges represent directed parent to child relationships. The AST fits
therefore naturally with the graph data model.

The Java compiler defines different types of AST node types to represent different
source code elements. For example, a method declaration is represented by a class named
JCMethodDecl, a wildcard by a class named JCWildcard. We map the AST nodes into
nodes in our graph model and we use these class names to identify the nodes. We store
the names in a property called nodeType (an enumeration containing JCMethodDecl etc)
attached to each node.

Some AST node have fields pointing to other AST nodes to represent parent-child
relationships. For example, a binary expression is represented by a JCBinary class, which
contains a field named lhs pointing to its left child expression and another field named rhs

pointing to its right child expression. We map these names to labelled edges. As an exam-
ple, in our model JCBinary is mapped to a node with a property (nodetype:"JCBinary"),
two edges labelled respectively LHS and RHS connecting two separate nodes with a property
(nodetype:"JCExpression").

The complete list of relationships consists of around 120 different labelled edges and
can be accessed on the project home page [29]. It includes IF THEN to represent the
relationship of an if statement and its first branch, IF ELSE to represent the relationship
of an if statement with its last branch, STATEMENTS to represent a block enclosing a list
of statements etc. Note that we also add a relation ENCLOSES on top of these (i.e. an
overlay) to represent the general relationship of a node enclosing another one.

This model lets us retrieve source code elements using the nodeType property as a
search key. Searching for certain source code patterns becomes a graph traversal problem
with the correct sequence of labelled edges and nodes. For example, finding a while loop
within a specific method can be seen as finding a node JCMethodDecl connected to a
JCWhileLoop with a directed labelled edge ENCLOSES.

Additionally, we define two properties on the nodes that are useful for software engi-
neering metrics queries: size (e.g. number of lines of code or character count that this
node represent in the source file) and position (e.g. starting line number and/or offset of
this node in the source file). These are implemented easily as the javac front-end provides
them for every syntactic object.

4.4.2 Overlays

The most obvious graph model of source code is the abstract syntax tree. However,
even finding the source-language type of a node representing a variable use is difficult as
we need an iterative search outwards through scopes to find its binding occurrence in a
definition which is where the type is specified.

What we need is an additional edge between a variable use and its binding occurrence—
this additional relation is an overlay. For example, we connect method and constructor
invocations to their declarations with a labelled edge HAS DECLARATION and variables and
field uses to their respective definitions with a labelled edge HAS DEFINITION to access
these directly. Similarly we might want to precompute a program’s call graph and store
it as an overlay relation instead of searching for call nodes on demand.

Sometimes it is also desirable to distinguish different instances of a same labelled
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edge. For example, while a class declaration contains a list of definitions, it is useful to
distinguish between field and method definitions to facilitate querying. This is why we
distinguish these with DECLARES FIELD and DECLARES METHOD overlays.

Similarly, it is difficult to know ahead of time all possible information that users may
want to query. For example, users may want to query for overloaded methods. Such
a query could be defined by processing all methods nodes available in our model and
grouping them by fully-qualified name and returning the groups that occur more than
once. However, this query would be a lot more efficient if methods nodes had a pre-
computed property stating that they are overloaded methods.

As explained earlier, the graph data model relies on semi-structured data so new
overlays can be added without the schema to change. As a result, our model can easily
cache results of queries as additional relations or nodes.

We now describe the pre-computed overlays in our model corresponding to the program
views described in Section 4.3.

Type Hierarchy

We overlay the type hierarchy defined in the program on top of the AST. We connect nodes
that represent a type declaration with a directed edge to show a type relation. These edges
are labelled to distinguish between an IS SUBTYPE IMPLEMENTS or IS SUBTYPE EXTENDS

relation. These overlays lets us map the problem of finding the subtypes of a given type
as a graph path finding query. As a result, we do not need to examine class and interface
declarations to extract the information. Note that we prefer to add overlays for 1-step
relations (e.g. direct subtype) as transitive closure can be simply expressed and computed
by a graph query language (see Section 4.5).

Override Hierarchy

Similarly, we overlay the override hierarchy of methods defined in the program on top
of the AST. We connect method declaration nodes in the AST with the parent method
they override using labelled edges OVERRIDES. As a result, we can query the override
hierarchy directly instead of examining each class and method declaration to extract the
information.

Type Attribution

We overlay a property called actualType on each expression node in the AST. It holds the
string representation of the resolved type of an expression. This facilitates common source
code queries such as finding a method call on a receiver of a specific type. Indeed, this
query would simply retrieve the method invocation nodes (labelled JCMethodInvocation)
and check that the property actualType is equal to the desired type. Similarly, one can
find covariant array assignments by comparing the actualType property of the left-hand
and right-hand side of an assignment node (labelled JCAssign).

The Java compiler also defines an enumeration of different type kinds that an expres-
sion can have. These includes ARRAY, DECLARED (a class or interface type), INT, LONG. We
store these values in a typeKind property.
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Method Call Graph

We construct the method call graph by extracting the method invocations from the body
of each method declaration. Each method invocation is resolved and associated with its
method declaration based on two filters: the static type of the receiver (conservative call
graph) and all possible subtypes of the receiver static type (rich call graph). We connect
a method invocation node with its resolved method declaration(s) with a labelled edge
CALLS for the conservative call graph and CALLS DYN for the rich call graph.

Typical source code queries such as finding all the methods called within the entry
point of a class can be seen as a traversal query on the generated call graph. In addition,
we can easily find recursive methods by finding method declarations nodes with a CALLS

loop.

Data Flow

Dataflow analysis is a vast topic; this work describes only a simpler set of data flow
queries. We connect each expression with the declaration of the variables that they use
using a GEN edge. Similarly, variables that are necessarily written to are connected to
the expression with a KILLS edge. Such information is useful for performing certain data
flow analysis such as live variable analysis. For writes, we consider the conservative set
of variables that must be written to.

Next, we construct the read and write dependency graphs for each block. We inspect
block declarations (e.g method declarations, loops) to extract any field and variable ac-
cesses. We connect the blocks to the field or variable declarations that they read from or
write to using READS and WRITES edges. The READS set of a block can be seen as the union
of all the outgoing nodes connected with a GEN edge from all the expressions contained
inside that block. Similarly, the WRITES set can be seen as the union of all outgoing
nodes connected with a KILLS edge from all the expressions contained inside that block.
This additional overlay is useful to easily compose program comprehension queries such
as finding out which fields are written to by a given method declaration.

4.5 Source code queries via graph search

In this section, we describe how one can write source code queries using our model. We
show that a query language specialised for graph traversal that supports graph pattern
matching, path finding, filtering and aggregate functions can express all queries expressible
in existing Datalog approaches.

Hajiyev et al. highlighted that a source code query language needs to support recursive
queries to achieve high expressiveness [66]. Indeed, certain queries such as traversing the
subtype hierarchy or walking tree structures require recursion. To this end, they suggested
Datalog, which supports built-in transitive closure. Graph pattern matching (i.e the ability
to match certain parts of a graph in a variable) can be seen as binding a set of nodes in a
variable based on the values of node properties and labeled edges. Path finding operations
have also built-in transitive closure in order to traverse the full graph.

We show examples of source code queries using CYPHER, a graph query language
for the Neo4j database [18]. Its use obviates the need for complex translation to other
database query languages such as Codequest [66]. CYPHER also supports aggregate
functions such as COUNT(), SUM(), which appear only as extensions to Datalog. Such
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operations are useful to express software metric queries because they often need to apply
arithmetic operations on a group of data.

The next subsections describe in detail several of source code queries written in
CYPHER. The examples combine program comprehension queries and research queries
of interest to language designers.

4.5.1 Implementing java.lang.Comparator

We introduce the syntax of CYPHER by showing a simple query to retrieve all classes
implementing the interface java.util.Comparator in Figure 4.1 (Listing 1).

The START clause indicates a starting point in the graph. We then iteratively bind
in the variable p to all the nodes that have a property nodeType equal to ClassType by
looking up the index of nodes called node auto index. Next, we use the MATCH clause
to generate a collection of subgraphs matching the given graph pattern. Specifically,
we look for subgraphs starting at a node bound to a variable n which has an outgoing
edge labelled IS SUBTYPE IMPLEMENTS connected to p. Next, we eliminate any subgraphs
where p is not of type java.util.Comparator by using a WHERE clause on the property
fullyQualifiedName. Finally, we return the elements of all the matched subgraph as a
list of tuples.

Table 4.2 shows an extract of the output from executing this query on the source code
of the program Hsqldb.

4.5.2 Extending java.lang.Exception

We can modify this query to find all classes that are directly or indirectly subtypes of
java.lang.Exception as shown in Figure 4.1 (Listing 2). We generate a collection of all
subgraphs starting at a node bound to the variable n that is connected to a node m that
represents java.lang.Exception. We use the asterisk (*) to specify a form of transitive
closure: here that the path to reach m can be of arbitrary length as long as it is solely
composed of edges of type IS SUBTYPE EXTENDS. Finally, we bind all the subgraphs that
were matched into a variable path, which we return.

Table 4.3 shows an extract of the output from executing this query on Hsqldb. The
class FileCanonicalizationException extends BaseException, which itself extends
java.lang.Exception

4.5.3 Recursive methods with their parent classes

In Figure 4.1 (Listing 3) we show how to search for classes containing recursive methods.
First, we look up the index of nodes to find all method nodes that have the property
nodeType equal to JCMethodDecl and iteratively bind them to the variable m. Next we
specify a graph pattern using the MATCH clause that generates a collection of all subgraphs
starting at a node c (a class declaration) that is connected to m. In addition, we specify
that the method m is calling itself by specifying an edge CALLS from m to m (conservative
call graph).
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Listing 1

START p=node : node auto index ( nodeType=’ClassType ’ )
MATCH n− [ :IS SUBTYPE IMPLEMENTS]−>p
WHERE p . fu l lyQua l i f i edName =’ java . u t i l . Comparator ’
RETURN n , p ;

Listing 2

START m=node : node auto index ( nodeType=’ClassType ’ )
MATCH path=n−[ r : IS SUBTYPE EXTENDS∗]−>m
WHERE m. fu l lyQua l i f i edName =’ java . lang . Exception ’
RETURN path ;

Listing 3
START m=node : node auto index ( nodeType=’JCMethodDecl ’ )
MATCH c− [ :DECLARES METHOD]−>m− [ :CALLS]−>m
RETURN c ,m;

Listing 4 START n=node : node auto index ( nodeType =’JCWildcard ’ )
RETURN n . typeBoundKind , count (∗ )

Listing 5

START n=node : node auto index ( nodeType=’JCAssign ’ )
MATCH lhs <−[:ASSIGNMENT LHS]−n− [ :ASSIGNMENT RHS]−>rhs
WHERE

has ( l h s . typeKind ) AND l h s . typeKind=’ARRAY’ AND
has ( rhs . typeKind ) AND rhs . typeKind=’ARRAY’ AND
l h s . actualType <> rhs . actualType

RETURN n ;

Listing 6

START m=node : node auto index ( nodeType =’JCMethodDecl ’ )
MATCH c− [ :DECLARES METHOD]−>m
WHERE m. name <> ’< i n i t >’
WITH

c . fu l lyQua l i f i edName +”:”+m. name as fu l lyQua l i f i edMethod ,
count (∗ ) as overloadedCount

WHERE overloadedCount > 1
RETURN fu l lyQua l i f i edMethod , overloadedCount
ORDER BY overloadedCount DESC;

Figure 4.1: Examples of source code queries written in CYPHER

4.5.4 Wildcards

Parnin et al. investigated the use of generics by undertaking a corpus analysis of Java
code [102]. In this example, we show how a query can investigate the use of generic
wildcards. We would like to group the different kinds of wildcards by the number of their
occurrences which appear in the source code. CYPHER provides aggregate functions
such as count(*) to count the number of matches to a grouping key. We can use this
function in a RETURN clause to count the number of occurrences based on typeBoundKind
property of nodes of type JCWildcard as shown in Figure 4.1 (Listing 4). Figure 4.4
shows a possible output of running this query.

n.typeBoundKind count(*)

UNBOUNDED WILDCARD 67

EXTENDS WILDCARD 32

Figure 4.4: Result for grouping Java wildcards by kinds
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Start node (n) End node (p)
{nodeType:"JCClassDecl",

lineNumber:36,

position:1654,size:473,

simpleName:"StringComparator",

fullyQualifiedName:"org.hsqldb.lib.StringComparator"}

{nodeType:"ClassType",

fullyQualifiedName:"java.util.Comparator"}

{nodeType:"JCClassDecl",

lineNumber:56,

position:2444,size:9564,

simpleName:"SubQuery",

fullyQualifiedName:"org.hsqldb.SubQuery"}

{nodeType:"ClassType",

fullyQualifiedName:"java.util.Comparator"}

{nodeType:"JCClassDecl",

lineNumber:86,

position:3576,size:417,

simpleName:"",

fullyQualifiedName:"<anonymous java.util.Comparator>"}

{nodeType:"ClassType",

fullyQualifiedName:"java.util.Comparator"}

Figure 4.2: Example output for the query implementing java.lang.Comparator on the
source code of the program Hsqldb

Node (n) Outgoing relationship (r)
{nodeType:"JCClassDecl",

lineNumber:2002,

position:83668,size:1388,

simpleName:"FileCanonicalizationException",

fullyQualifiedName:"org.hsqldb.persist.LockFile.FileCanonicalizationException"}

:IS_SUBTYPE_EXTENDS

{nodeType:"JCClassDecl",

lineNumber:1937,

position:81667,size:1684,

simpleName:"BaseException",

fullyQualifiedName:"org.hsqldb.persist.LockFile.BaseException"}

:IS_SUBTYPE_EXTENDS

{nodeType:"ClassType",fullyQualifiedName:"java.lang.Exception"}

Figure 4.3: Example output for the query directly and indirectly extending
java.lang.Exception on the source code of the program Hsqldb

4.5.5 Covariant array assignments

We recently conducted a corpus analysis to investigate the use of covariant arrays and
found that these are rarely used in practice [128]. In Figure 4.1 (Listing 5), we show how
one could find uses of covariant arrays in assignment context.

First, we look up nodes of type JCAssign, which represent an assignment in the AST.
We iteratively bind them to the variable n. Next, we use a MATCH clause to decompose
an assignment into its left and right children, which we bind respectively in the lhs and
rhs variable. We ensure that these nodes are both tagged as holding an expression of
type ARRAY by restricting the typeKind property using a WHERE clause. Finally, we also
ensure that the resolved type (e.g. String[]) of the left hand side and right hand side of
the assignment are different by checking the actualType property, which hold the string
representation of the type of expression.

4.5.6 Overloaded Methods

Recent work has investigating how Java programmers make use of overloading by un-
dertaking a corpus analysis of Java code [62]. This research question can be partially
answered by composing a query which retrieves overloaded methods. Figure 4.1 (Listing
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6) shows how to generate a report of what method names in which classes are overloaded
along with the degree of overloading.

First, we bind all nodes of type jCMethodDecl to variable v. We then generate all
subgraphs connecting n with a node c (a class declaration) with a DECLARES METHOD

relation. We add an additional constraint using a WHERE clause to eliminate subgraphs
where the method nodes are constructors (methods named <init>). Next, we generate the
fully qualified name of the method by concatenating the fully qualified class declaration
name with the method name. We use this as the grouping key for the count(*) aggregate
function. Finally, we return the fully qualified method names that appear more than once
(i.e overloaded methods) together with how many times they occur.

4.6 Implementation

In this section, we give an overview of the implementation of our source code querying
system.

Our current prototype consists of a Java compiler plugin to analyse source code files
and a Neo4j graph database to store the source code information converted in our graph
model. We selected Neo4j [18] as our database backend because it is established in the
community, has a Java API and also provides a graph query language that supports the
necessary features described in Section 4.5. The source code of our prototype (1300 lines
of Java code) can be accessed on the project homepage [29].

The first part of our system is responsible for parsing Java source code files, analysing
them and converting them into our graph model. To this end, we developed a Java
compiler plugin that accesses the Java compiler structures and functionalities via API
calls [126]. We used this mechanism because a compiler plugin interacts in harmony with
existing building tools such as ant and maven that rely on the Java compiler. Users of
our tool can therefore compile their programs normally without running external tools.
However, the Java compiler requires the entire project to compile before it can be pro-
cessed. There are alternatives such as Eclipse JDT [7] that do not have this requirement
but that do not integrate so smothly with standard building tools.

Our compiler plugin traverses the Abstract Syntax Tree (AST) of each source code
file. It translates the AST elements and their properties to graph nodes in Neo4j. Links
between AST elements are translated to labelled edges between the created nodes. We
retain the full AST and do not throw away any information. Additionally, we implemented
the type hierarchy, type attribution and call graph overlays described in Section 4.4.

Neo4j provides indexing facilities that map a key to a set of records. We use these
facilities to index nodes based on the nodeType property in order to improve the speed
of specific AST node retrieval queries. Finally, source code queries can be executed by
writing CYPHER queries through the shell interface provided with the Neo4j server.

4.7 Experiments

In this section, we evaluate the scalability and performance of our system. We describe a
set of experiments and their results demonstrate that our system scales well.

First, we evaluate the performance of queries related to code exploration. Next, we
investigate the performance of queries related to programming language evolution that
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make use of richer source code information. Finally, we also compare performance of
certain queries supported by JQuery [70].

4.7.1 Experimental Setup

Our framework intercepts all calls to javac by replacing its binary on the standard search
path with an executable file that calls javac with our compiler plugin. As a result, any
Java build tools (such as ant or maven) that use javac to compile files will automatically
process the source code in the graph database.

We selected four Java open source programs of various sizes. We summarise them in
Table 4.5. In addition, we created a corpus of 12 Java projects totalling 2.04 million lines
of code, which can be accessed on the project home page. It includes Apache Ant, Apache
Ivy, AoI, HsqlDB, jEdit, Jspwiki, Junit, Lucene, POI, Voldemort, Vuze and Weka.

We selected these programs from the Qualitas Corpus, which is a curated collection
of software systems intended to be used for empirical studies of code artefacts [120].
Many studies in Java have used this corpus. We used a working subset of the corpus
because several of the projects included in the corpus did not compile or were missing
build instructions which is necessary to perform our compiler analysis.

We ran the experiments on two machines with Neo4j standalone server 1.9.M04 and
OpenJDK 1.7.0 using 4GB of heap size:

• A typical personal computer used for programming tasks: a MacBook Pro with
2.7GHz Intel Core i7, 8GB of memory and running OSX 10.8.2

• An Amazon EC2 instance (m3.2xlarge) with 30GB of memory and EBS storage
running Linux. We provide the virtual image on the project homepage for repro-
ducibility.

We ran the database server with default settings. However, it is possible to tune
certain configuration parameters such as memory usage to gain additional performance.

Our experiments consist of running different queries on the programs and report the
reponse time. We distinguish between a cold system and a warm system to investigate
the impact of caching on performance.

• We report the response time of a query after restarting the querying system each
time (cold).

• We run the same queries twice and report the faster response time (warm).

In a real scenario, it is possible for a developer to run the same query several times. In
practice, a production source-querying system could even warm the cache ahead of time
with common queries to enhance performance. Having similar sub-queries in common
will also benefit from the cache.
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Application Description # of Java files LoC

Junit 4.2 Java unit test framework 79 3206

Apache Ivy 4.2.5 Dependency manager 601 67989

Hsqldb 2.2.8 Relational database engine 520 160250

Vuze Bitorrent client 3327 509698

Corpus 12 open source software 13559 2038832

Figure 4.5: Summary of Java projects used for the experiments

4.7.2 Queries

Code Exploration Queries

Source-code querying systems are useful to developers in order to rapidly explore a code-
base by retrieving some elements. We ran the following queries that explore a given
codebase (the syntax for them is described in Section 4.5):

1. Find all classes that directly implement
java.util.Comparator (Figure 4.1, Listing 1)

2. Find all classes that directly or indirectly extend
java.lang.Exception (Figure 4.1, Listing 2)

3. Find all recursive methods together with their parent classes (Figure 4.1, Listing 3)

Programming Language Evolution Queries

Source code querying systems can also be used by programming language researchers to
retrieve usage information about certain features or patterns. For each project, we ran
the following research queries as these were investigated in previous work (the syntax for
them is described in Section 4.5):

1. Report the ratio of the usage of generic wildcards (Figure 4.1, Listing 4)

2. Find all covariant array assignments (Figure 4.1, Listing 5)

3. Find all overloaded methods (Figure 4.1, Listing 6)

4.7.3 Results

We show the absolute response time to the queries in Figure 4.7. Queries 4 and 6 have a
response time less than half a tenth of a second. This shows that while our system can
efficiently traverse graph structures, aggregate operations are also efficiently executed.
Figure 4.6 presents the execution time expressed as ratios relative to the program Hsqldb.
The results shows that the query response times scale linearly with increasing program
size.

We found that running queries with a hot cache decreases response time by a factor
of 3x to 5x compared to a cold cache. Finally, we also found that a larger machine does
not directly improve performance of queries. We note a net improvement for the largest
programs (Corpus) for query 3 and 5 with a cold cache.
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Figure 4.7: Absolute queries times on MacBook and EC2

Figure 4.6: Queries times on MacBook relative to Hsqldb (cold)

We report memory usage, number of nodes, properties and relationships about the
generated graph as described by the system administration of Neo4j in Table 4.8.
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Figure 4.9: Graph metics

Application Memory Storage (MiB) # Nodes # Properties # Relations

Junit 14.72 16209 43874 16678
Apache Ivy 143.94 188296 514755 196389
Hsqldb 373.56 562193 1535100 583404
Vuze 1410 2002771 5225382 2073828
Corpus 5043.73 7126121 18937054 7424652

Figure 4.8: Metrics for generated graphs of Java projects

Figure 4.9 compares graph metrics and Figure 4.10 plots the memory storage usage.
It shows that the memory scales comparatively as the number of lines of code increases.
The number of properties in the graph is roughly a constant multiplier over the number
of nodes and relations. The objective of our evaluation was to explore whether our
source code graph data model implemented using a graph database could act as suitable
system for source code querying. We compare to previous work which has conducted
benchmarks on different graph databases including Neo4j to evaluate factors such as graph
memory consumption and runtime performance for graph algorithms (e.g. traversal and
connectedness) [71, 81, 37].
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Figure 4.10: Lines of Code vs. Memory storage

4.7.4 Comparison with other systems

Unfortunately, we could not find a working implementation for recent system such as
Codequest and JTL. However, the authors reported absolute times of general source code
queries executed on their system, which we briefly compare with. The reader should
note that it is difficult to make a fair comparison since the queries were executed on
slower machines than we used for our experiments. However, our system stores more
information about the source code of programs, which also impacts performance. For
example, CodeQuest, JTL and JQuery do not support method bodies, generics or types
of expressions.

JTL The authors reported execution times between 10s and 18s for code exploration
queries carried out on 12,000 random classes taken from the Java standard library. How-
ever, it is unclear whether the experiment were performed with a cold or warm system.

We reported times of 0s to 12s running on a cold system and 0s to 3s with a warm
system by running queries on a larger data set (a Corpus of over 13,000 Java source files
and 2.04 million lines of code). Note that our setup is given an advantage because the
JTL experiments were reported on a 3GHz Pentium 4 processor with 3GB of memory
whereas we used a more modern machine (MacBook Pro with 2.7GHz Intel Core i7 with
8GB of memory).

Codequest The authors ran various queries on different database systems. We compare
with the fastest times they report, which were found on a quad Xeon 3.2Ghz CPU with
4GB of memory and using XSB (a state of the art deductive database). The authors
reported times between 0.1s and 100s. The slowest query is looking for methods overriding
a parent method defined as abstract. In the Codequest system, the overriding relation
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between methods is compted on the fly. In our system, the override relation is already
pre-computed as an overlay on the AST.

JQuery We created three queries in JQuery (not to be confused with the jQuery
JavaScript library): finding recursive methods, classes declaring public fields and over-
loaded methods as shown in Figure 4.11. We tested them on the ivy program (68K LoC)
because JQuery failed indexing larger projects such as Hsqldb. This deficiency was al-
ready reported by other work [45, 66]. All queries executed in a couple of seconds except
overloaded methoded which took over 30s on our MacBook machine.

// 1 . r e c u r s i v e methods
method (?C, ?M) , c a l l s (?M, ?M, ?L) ;

// 2 . c l a s s e s d e c l a r i n g pub l i c f i e l d s
c l a s s (?C) , f i e l d (?C, ?F) , mod i f i e r (?F , pub l i c ) ;

// 3 . over loaded methods
method (?C1 , ?M1) , method (?C2 , ?M2) ,
l i k e T h i s (?M1, ?M2)

Figure 4.11: Test queries for JQuery

4.8 Related work

In this section, we review existing source code querying systems and highlight what in-
formation about the program is lost and the consequential restrictions on source code
queries.

Source code querying systems can be classified in two categories:

1. software: query the source code of one piece of software in particular.

2. repository: query the source code of multiple projects at the same time.

We provide a detailed comparison of software-level source code querying languages in
a previous paper [129]. We evaluated whether their expressiveness suffices for language
design research. To this end, we studied several use cases of recent Java features and their
design issues – investigating their expressibility as queries in the source code querying
languages we examined. For example, one use case asks to query for covariant array
assignments. We found that only two query languages provide the minimal features
required to express all our use cases.

4.8.1 Software querying systems

Java Tools Language (JTL) is a logic-paradigm query language to select Java elements
in a code base and compose data-flow queries [45]. The implementation analyses Java
bytecode classes. Since JTL is based on bytecode analysis rather than source code analysis,
several queries are inherently restricted. For example, Java generics are compiled to casts
during the bytecode translation.
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Browse-By-Query (BBQ) reads Java bytecode files and creates a database represent-
ing only classes, method calls, fields, field references, string constants and string constant
references [2]. This database can then be interrogated through English-like queries.

SOUL is a logic-paradigm query language [50]. It contains an extensive predicate library
called CAVA that matches queries against AST nodes of a Java program generated by
the Eclipse JDT .

JQuery is a logic-paradigm query language built on top of the logic programming lan-
guage TyRuBa [70]. It analyses the AST of a Java program by making calls to the Eclipse
JDT. JQuery includes a library of predicates that lets the user query Java elements and
their relationships.

Codequest is a source code querying tool combining Datalog as a query language and
a relational database to store source code facts [66]. Datalog queries are translated to
optimised SQL statements. The authors report that this approach scales better compared
to JQuery. However, only a subset of Java constructs are supported and types of expres-
sions are not available. For example, one could not locate assignments to local variables
of a certain type.

.QL is an object-oriented query language. It enables programmers to query Java source
code with queries that resemble SQL [49]. This design choice is motivated as reducing the
learning curve for developers. In addition, the authors argue that object-orientation pro-
vides the structure necessary for building reusable queries. A commercial implementation
is available, called SemmleCode, which includes an editor and various code transformation.

Jackpot is a module for the NetBeans IDE for querying and transforming Java source
files [11]. Jackpot lets the user query the AST of a Java program by means of a template
representing the source code to match. However, Jackpot does not provide any type
information for AST nodes

PMD is a Java source code analyser that identifies bugs or potential anomalies including
dead code, duplicated code or overcomplicated expressions [21]. One can also compose
custom rules via an XPath expression that queries the AST of the program. However,
types of expressions are not available.

4.8.2 Repository querying systems

Sourcerer is an infrastructure for performing source code analysis on open source
projects [35]. It consists of a repository of Java projects downloaded from Apache,
Java.net, Google Code and Sourceforge. Source code facts of the projects in the reposi-
tory are extracted and stored in a relational database that can be queried. Information
available include program entities such as classes or local variable declarations. It also
includes relations between entities such as CONTAINS (e.g. a class containing a method)
or OVERRIDES (e.g. a method overrides a method).
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Sourcerer focuses on storing structural information. For example, statements within
a method are not available. In addition, queries involving types of expressions are not
supported.

Boa is an infrastructure for performing metadata mining on open source software repos-
itories [54]. It indexes metadata information about projects, authors, revision history and
files. However, it store no source code facts. The infrastructure provides a query language
to mine information about the repositories. For example, one can query the repositories
to find out the 10 most used programming languages. Currently Boa indexes more than a
million projects from Github, Google Code and Sourceforge. Overall scalability is achieved
by using a Hadoop as a map-reduce framework to process the data in parallel.

4.9 Conclusion

This chapter presented the design and implementation of a source code querying system
using a graph database that stores full source-code detail and scales to program with
million lines of code.

First, we described a model for Java source code based on the graph data model. We
introduced the concept of overlays, allowing queries to be posed at a mixture of syntax-
tree, type, control-flow-graph and dataflow levels (Section 4.4).

Next, we showed that a graph query language can naturally express queries over source
code by showing examples of code exploration and language research queries written in
CYPHER (Section 4.5).

Finally, we evaluated the performance of our systems over programs of various size
(Section 4.7). Our results confirmed that graph databases provide an efficient implemen-
tation for querying programs with million lines of code while also storing full source-code
detail.
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Chapter 5

Incompatibility-finding via
type-checking

In the previous chapter, we described how a source-code querying system can help de-
velopers locate parts of code relevant to programming language evolution. We argued
that the data structures generated by a compiler can be exposed and queried to identify
relevant code patterns. We presented several examples for Java. Conveniently, the Java
compiler makes available type information in these data structures at compile time. This
type information is useful to express sophisticated code patterns (i.e. beyond simple text
match) which is required to locate non-trivial incompatible changes.

This chapter turns to dynamically-typed languages which typically do not have type
information available at compile time. In fact, such information about a program may only
be available during the program’s execution. Consequently, it is difficult for programmers
to understand and locate the source of problems caused by incompatible changes.

To tackle this issue, this chapter proposes a system which uses type annotations that
are checked during the program’s execution and reports errors. The reported errors pro-
vide useful insights to the programer about the location of code affected by changes. We
show how this system can help programmer understand incompatible changes when a
program is executed with a different language version by using the type annotations as
contracts. We present this system for Python but much of this work is language-agnostic.
The implementation of our system has two important characteristics. First, we design
a rich language to express type annotations which can cater for various common use
cases with code written using a dynamically-typed language. Second, the checking and
reporting mechanism monitors the input and output behaviour of function definitions at
runtime. We implemented the type-checking mechanism as a lightweight library which
dynamically enhances function definitions with type-checking capabilities to facilitate the
integration of our system into existing projects. Our system makes use of local inference
to implement certain features of the type system.

5.1 Introduction

Python is a dynamically-typed programming language that is popular because of its sim-
ple syntax which makes it very accessible. Indeed, Python has been ranked in the top
ten most-used programming languages of the TIOBE index (monthly update of popular
language use) for the past ten years [117]. Python is used for many applications such as
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scientific calculations, building large websites or just scripting [58].
As we mentioned in Chapter 3, Python 3 introduced various behavioural incompati-

bilities with Python 2. Specifically, these incompatibilities involve different objects (i.e.
with different types) returned by Python operations and functions. We revisit these issues
in more detail later.

This chapter develops a type-checking system for Python using type annotations pro-
vided by the programmer. The type annotations are checked during the program’s exe-
cution to help programmers locate errors. In our system called pytypedecl, programmers
annotate the arguments and result of functions with the types that they expect. The
type-checker can then report a list of precise type errors when the type assertions are
violated. In other words, pytypedecl lets programmers adopt a design-by-contract style
in Python using runtime checks [84]. Our approach differs from a full blame-tracking
approach because violations are only checked at the entrance and exit of a particular
function. As a result, our system has a smaller overhead. Type assertions may fail for
various reasons, for example, if the programmer introduces a mistake in the code or if the
program is run with a different version of Python which introduces type incompatibilities.
The programmer can then interactively fix the function definition that is the source of
the problem. Figure 5.1 illustrates our system using a program written in Python 2 and
later executed using Python 3.

Figure 5.1: Incompatibility-finding via type-checking

There have been many attempts to provide enhanced type-checking for dynamic lan-
guages such as gradual typing and type inference [78, 56, 121, 60]. However, most systems
are typically difficult to integrate in an existing developer infrastructure within a large
company. For example, these systems are typically implemented as a separate indepen-
dent tool or an extension of the language. This makes them problematic to integrate into
a build pipeline or company infrastructure constraints. Some systems may also require
modifications to existing source code files to add type annotations.
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Pytypedecl is designed as a Python package. Programmers annotate functions and
these type annotations are specified in separate files. In addition, pytypedecl provides
a rich language to express types to be able to check various constraints. Pytypedecl
supports exceptions, union types, intersection types, noneable types, interface types and
parametric polymorphism. We will discuss these features in the next sections.

The rest of this chapter is structured as follows. First, we present the design space
for our proposed system and describe its formalisation in an iterative manner. Next, we
describe the implementation of our system. Then, we evaluate pytypedecl’s features on a
set of Python programs. We then provide further detail about the behavioural incompati-
bilities in Python 2 and Python 3 and develop supporting examples of how pytypedecl can
help programmers understand incompatibilities introduced during programming language
evolution. Finally, we present related work and conclusions.

5.2 Design space

This section discusses the design space for developing a tool for Python which helps
developers locate errors resulting from incompatible types. First, we discuss type-checking
approaches and the trade-offs of implementing them for Python. Next, we review the
expressiveness of type declarations of other programming languages in comparison to
Python. Finally, we argue for a new approach which provides additional type declarations
than what Python offers together with type-checking at boundaries of function.

5.2.1 Type-checking approaches

In this subsection we discuss existing type-checking approaches that are related to our
work. Table 5.2 summaries the trade-off of existing approaches in Python.

Static type-checking Static type-checking verifies that a value conforms to a type
at compile time, before the program is run. As a result, programmers can find common
programming errors earlier. For example, the following code in Java is caught as a compile
error because it is forbidden to subtract an int from a String:

String hello = "hello";

int number = 1;

System.out.println(hello - number);

// Operator "-" cannot be applied to java.lang.String and int

Adding static type-checking to Python is difficult because many idioms rely on Python’s
dynamic features including introspection (e.g. hasattr) and runtime code evaluation us-
ing eval and exec [111]. The use of these features generate values whose types can only
be determined when the program is run. Additionally, many common code pattern require
additional complexity in the type-system to include flow and context-sensitive checking.
For example, a variable’s type in Python can differ along different paths such as inside an
if block. In addition, because Python does not support static type-checking out of the
box, implementing it requires developing and maintaining a separate system which parses
and checks Python code.
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Dynamic type-checking Dynamic type-checking verifies type safety at run time (i.e.
when the program is run) [122]. One benefit of this approach is that it allows rapid
prototyping as the programmer does not have to think in terms of type constraints.
However, as a consequence, dynamic type-checking can cause a program to fail at runtime.
For example, the following code in Python will only fail when the program is executed:

"hello" - 1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: ’int’ and ’str’

However, such errors can often occur later in the execution of the program, long after
the operation that caused it. Consider the following Python code:

def getPrice():

return 10000, # accidental trailing comma, creates a tuple

def halfPrice(price):

return price / 2

price = getPrice()

halfPrice(price)

Running this program results in the following error at runtime:

Traceback (most recent call last):

File "ex1.py", line 9, in <module>

halfPrice(price)

File "ex1.py", line 5, in halfPrice

return price / 2

TypeError: unsupported operand type(s) for /: ’tuple’ and ’int’

The error only occurs at line 5, after the getPrice function was called and during the
execution of the function halfPrice. A static type-checking system would report before
the program is run that getPrice should return an int but returns a tuple instead.

Mixed typing The presence of static type-checking and dynamic type-checking are
not mutually exclusive. For example, Java supports covariant arrays. For example, type
safety of an assignment to a component of the array is only checked at run-time to ensure
that the value being assigned is appropriate [65].

Object[] objects = new String[5];

objects[0] = 1;

//java.lang.ArrayStoreException: java.lang.Integer

Many approaches have been proposed in the literature to strike a balance between the
benefits of static type-checking and dynamic type-checking. These approaches are referred
to as mixed typing [78]. For example, Fagan et al. proposed soft-typing [56]. They key
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idea is that runtime checks are inserted in the program to log parts of the program that
may contain potential errors using a static-checking approach.

Thatte et al. proposed quasi-static typing [121]. Part of the program annotated with
types are statically checked and the other parts dynamically checked. However, later
work showed that this mechanism does not statically catch all type errors in completely
annotated programs because an unknown type was treated as both the top and bottom
of the subtype lattice. This work was later extended by Siek et al [116]. and is known as
gradual typing, which we discuss next.

Gradual typing Gradual typing lets programmers use static type-checking for certain
parts of their code and dynamic type-checking for other parts of their code. As a result
they can catch errors earlier than in a pure dynamic type-checking system but they can
also benefit from the flexibility provided by dynamic type-checking. When values flow
from a statically-checked part of the code into a dynamically-checked part of the code
and vice versa, gradual typing inserts dynamic type casts to ensure consistency. These
type casts are used to localise the source of an error. The process of localising the source
of the error is called blame tracking. Consider the previous example using explicit Python
3 type annotations syntax:

def getPrice():

return 10000, # oops trailing comma

# Python 3 type annotations syntax

def halfPrice(price: int) -> int:

return price / 2

price = getPrice()

halfPrice(price)

The value price flows into the function halfPrice which is statically typed and
expects an int as argument. Instead of producing the latent error shown previously where
the division operator is not supported for a tuple and int, blame tracking immediately
reports that a value of an invalid type was passed as argument to halfPrice.

Type inference A related topic to type-checking is that of type inference. The general
idea is that an inference algorithm can automatically deduce types for values based on
their use. Such analysis can be performed both without running the program (static type
inference [60]) and by running the program (dynamic type inference [32]). Approaches
to add static type-inference to Python include using the Cartesian Product Algorithm
(CPA) [114]. This was shown to work on a subset of Python’s language features using
small isolated programs which do not call external libraries. Recent experiments have
shown that inference using CPA can take up to 7s for a program of 1000LoC [79]. Today’s
programs are in the region of hundreds of thousands of lines of code. In addition, CPA is
inaccurate in the presence of dynamic features which are idiomatic in Python as discussed
previously. We present an alternative type inference technique in the next chapter.
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Type-checking Approach Pros Cons

Static
• Catch errors before

program is run

• Complex type system

• Does not deal with
dynamic language fea-
tures

• Replacement front-
end

Dynamic
• Rapid prototyping

• Avoid infeasible paths
• Latent errors

Mixed

• Catch some errors be-
fore program is run

• Allows use of dynamic
language features

• More complex type
system

• Replacement front-
end

Figure 5.2: Type-checking approaches for Python

5.2.2 Type declarations

This section briefly presents an overview of the design space for expressing type annota-
tions in Python by comparing with other programming languages. It then summarise a
list of type annotation features which are implemented in our system and presented in
subsequent sections.

Python 3 already provides syntactic support for describing function signatures. Pro-
grammers can add annotations around function parameters and return values. For exam-
ple in Python 3, one can describe a function get which has a parameter i of type int

and returns a str:

def get(i: int) -> str:

...

However, these signatures in Python 3 are used purely for documentation. Moreover,
the expressiveness of this syntax is limited. For instance, exceptions and overloaded
signatures are not supported. The lack of support for more sophisticated type annotations
is part of our motivation for designing a more expressive type declaration language, which
we develop in the next sections. We selected a set of features based on common use cases
that can be expressed in Scala, Typescript, the type annotation language accepted by
the Closure compiler (a tool maintained by Google which support type annotations for
JavaScript), Java and C#. Figure 5.3 compares the type features supported in other
programming languages and what Python 3 currently offers. We then describe each
feature and how they are incorporated into pytypedecl’s type declaration language.

Function signature Functions can be given a signature following the Python 3 function
annotation convention. However, Python 3’s syntax does not allow users to specify a list
of possible exceptions that the function may raise.
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Feature Scala Java C# Closure compiler Typescript Python 3
Function signature 3 3 3 3 3 limited
Overloading 3 3 3 3 3 5

Interfaces 3 3 3 3 3 5

Noneable types 3 3 3 3 3 5

Union types 5 5 5 3 3 5

Intersection types 3 3 5 5 5 5

Generics 3 3 3 3 3 5

Figure 5.3: Type declaration design space

Overloading A function is allowed to have multiple different signatures. This is not
supported in the Python 3 function annotation syntax.

Interfaces An interface describes a set of operations that a type must support. It can
be seen as defining a structural type with an additional name to refer to that structure.
Interfaces can also be multiply inherited, as in Java and traits in Scala.

Noneable types A noneable type can represent the range of values for its value type
as well as an additional None special value in Python. For the rest of the chapter, we will
use the syntax of trailing ? to indicate that a type is noneable. For example, a parameter
of type int? can accept a int or a None value.

Union types It is sometime convenient to indicate that a type can hold values from
a type or another one. Union types express this idea. For example int | float (the
operator | here is used for denoting disjunction) indicates that a value may be an int or
a float. There is no limit to the number of types of a union. Note that a noneable type
is shorthand for the union of a given type and the built-in Python type NoneType. Hence
int? is equivalent to int | NoneType.

Intersection types An intersection type describe a type that belongs to all values
of a list of types [110]. For example, the intersection type Readable & Writable (the
operator & here is used for denoting intersection) describes a type that supports the
operations open, close, read and write. However, the intersection type int & float

would not be very useful because there is no Python value that is both an int and a
float.

Generics Types can be parameterised with a set of type arguments, similarly to Java
generics. For example, list[str] describes a list that only contains strings, dict[int,
str] describes a dictionary of keys of type int and values of type str.

We now describe how our toolpytypedecl fits in the design space.

5.2.3 Discussion

Our tool pytypedecl verifies type signatures in Python code by type-checking function
boundaries at runtime. This design choice was influence by three requirements:
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• Precision: catch latent errors

• Practicability : naturally integrates in existing Python development workflow

• Simplicity : the type system should feel familiar to Python developers and deliver
understandable diagnostics

Static-type checking is too strict as it does not allow the use of dynamic language
features such as eval, exec and hasattr which are common idioms in Python[111].
Moreover, many common code pattern require additional complexity in the type-system
to include flow and context sensitivity checking which are unfamiliar to Python developers.
An extreme example of how a complex static type-checking system can cause harms for
its users is that of Scala where compile errors are often problematic to understand [1].

In addition, implementing static-type checking for Python requires developing and
maintaining separate tools to parse and type-check annotated programs which restrict
its adoption in industrial settings. In fact, this was pointed out as a key requirement in
the design of Coverity to enable its adoption: “tools could often require painful, time-
consuming customization or integration efforts for teams that used anything but the most
common technologies such as plain Makefiles with a single target, antfiles” [38, 6].

The downside of a full dynamic-typing approach is that they do not catch latent
errors. Mixed typing approaches combine both approaches but as a result also share
similar downsides to static-type checking including a complex type system and require
separate tools.

We propose a system called pytypedecl inspired from contract systems which catches
latent errors earlier than dynamic-type checking and facilitate adoption by naturally inte-
grating in a developer’s workflow. Our system consists of a runtime type checking system
that checks runtime tags of Python values against statically declared types which are
specified on functions. We designed a type declaration language to specify these types as
presented in the previous section.

Our system is implemented as a library which means it only needs to be imported
in a Python module that requires type-checking without interfering with the developer
workflow. An analysis of Python projects that we present in Section 5.8.2 shows that
Python developers manually implement similar type-checks to act as unit tests which
require long-term code maintenance. This strengthen the need for our system.

5.3 Basic system

This section presents a basic system which only considers a first-order version of Python
(i.e. no higher-order functions and generators), Python built-in types, noneable, union,
intersection and interface types but no parametric or ad-hoc polymorphism. In the next
sections we successively enrich the type system. Firstly, we include qualified parametric
data types for built-in types and user-defined class types. Secondly we include parametric
polymorphism for functions. We then include bounded quantification. Finally, we also
include overloading and discuss support for more sophisticated Python features including
generators and first-class functions.
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5.3.1 Type annotations

We start by introducing the syntax for the static type annotations used in the basic
system. We then develop the type checking rules for programs that use these types.

All data in Python is represented by objects. Every object has a type, a value and one
or more bases (i.e. super-classes) from which it inherits. An object’s type determines the
operations supported by an object and also defines the possible values for that object’s
type. A type can be a built-in type such as an int, float or object but also a user-
defined class type such as Fruit. A value defines the content of the object and may
include attributes. To avoid confusion with the static types defined in pytypedecl we will
refer to an object type in Python as a type tag. The type tag of an object can be returned
using the built-in Python function type(). Type tags can only be user-defined classes or
Python built-in types such as int, float, list etc. In pytypedecl, we will refer to these
elementary type tags as ground types.

Figure 5.4 presents the grammar for the types available in the basic system.

identifier ::= (letter|” ”)(letter|digit|” ”)∗
op ∈ Operations ::= identifier

b ∈ BaseType ::= int | float | list | ...

c ∈ ClassType ::= identifier

g ∈ GroundType ::= BaseType | ClassType

ex ∈ ExceptionType ::= Classtype

t ∈ Type ::= b | c | Unknown |

Noneable[t] |

Union[t1, ..., tp] | Intersection[t1, ..., tq] |

Interface[identifier, {op1, ..., ops}]

Figure 5.4: Static types for basic system

The type annotations in pytypedecl includes Python built-in types as part of the
BaseType set. The set ClassType refers to user-defined classes and the set ExceptionType
to exceptions. We will use the meta-variables b, c, g and ex to refer respectively to base
types, class types, ground types and exception types.

As shown in Figure 5.4, the set Type represents all the possible type annotations in
pytypedecl. We will use the metavariable t to refer to a type in pytypedecl. In addition
to base types and class types it also includes the type Unknown to specify that the type
of a value is not known (i.e. it is dynamic) and various type constructors:

• A Noneable type describes a type that can be either the built-in type NoneType or
another type. It is analogous to nullable types in other systems [115].

• A Union type represents a union of several types. For example Union[int, float]

indicates that a value may be an int or a float [68].

• An Intersection type represents a type that belongs to all values of a list of types.

• An Interface type describes a set of operations that a type must support. It can
be seen as defining a structural type with an additional name to conveniently refer
to that structure [80]. Interfaces can also be multiply inherited. For conciseness
purposes in our system an Interface contains not only the operations it defines
explicitly but also the operations it inherits implicitly from its super interfaces.

We now discuss where these type annotations can appear.
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5.3.2 Function type signatures

In pytypedecl, types appear as part of a summary function signature in a separate file
for a Python function. A summary function signature consists of a type annotation for
each parameter, a type annotation for the return type and an optional list of exception
types that the function may raise. Figure 5.5 presents the syntax for a summary function
signature.

def f(p1 : t1, ... pn : tm) → t0 raises ex1, ..., exn

Figure 5.5: Function type signature syntax

The absence of a type annotation for a parameter or return type implies that the type
is Unknown. A value of type Unknown is not type-checked by pytypedecl. In the subsequent
sections, we will refer to the summary function signature of a given function as its formal
definition. We now describe how the summary function signatures are used to type-check
Python programs.

5.3.3 Type checking

Pytypedecl is designed to only check types at function boundaries. When a function is
called, pytypedecl looks up its associated summary function signature. Pytypedecl then
checks that the value of each argument of the function call instance is compatible with
the respective static type annotation declared in the function signature.

After that, the body of the function is executed. The result or a possible exception
raised is captured and checked that it is consistent with the function signature. Figure 5.6
summaries these steps.

check(f, [a1, ..., an], [t1, ..., tn], t0, [ex1, ..., exm]):

∀i ∈ [1..n] : assert isCompatible(ai, ti)
try:

ra := f(a1, ..., an)
assert isCompatible(ra, t0)
return ra

except Exception as ex:

assert ex ∈ [ex1, ..., exm]
raise ex

Figure 5.6: Type-checking function boundaries

We outline the type checking mechanism with the routine check, which takes as first
argument a reference to the function associated with the function call instance, a list
of actual arguments, a list of pytypedecl types for each argument, a result type and a
list of possible exceptions. If the function returns a value after execution, we check its
type is compatible with the result type declared in the function signature. If it raises an
exception, we check that the exception was declared in the list of exceptions.

A further design option is whether to also check the arguments on function exit as well.
This is useful to check whether the arguments are mutated with conflicting values within
the body of a function. For example, in the following code, the fact that the parameter
id is an int and the function body assigns a str to it is not captured with the rules
outlined in Figure 5.6:
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def get(id: int) -> str

if id == 0:

id = "admin"

else:

id = "user"

return id

Note that, this is less important here because changes to id do not affect the caller.
However, if id was a list of numbers then an element inside the list could be updated to
a string by accident. Checking arguments on function exit would capture these kind of
problems.

Figure 5.7 provides the definition of isCompatible that checks whether a value is
compatible with its formal definition. The parameter a refers to an actual value and t to
a type available in pytypedecl as defined in Figure 5.4. We use a special syntax to apply
pattern matching on the parameters of the isCompatible function using a case clause.

In a nutshell, built-in and named class types are simply checked using Python’s
instance built-in function. The instance function is a predicate which tells whether
a value is a subtype a given type tag. To satisfy the union of several types, we only need
to check if the value is compatible with at least one type in the list of types encapsulated
by the union. To contrast, to satisfy the intersection of several types, we need to check
that the value is compatible with all types in the intersection list. Finally, to check if a
value is compatible with an interface, we check if the value supports all operations listed
in the interface type. Interfaces are used to support structural typing so the name of
the interface is ignored in the type-checking process. The built-in Python function dir is
used to return the list of operations for a given value.

isCompatible(a, t):

| case Unknown = true
| case a BaseType = isinstance(a, t)
| case a ClassType = isinstance(a, t)
| case a Union[t1, ..., tp] = ∃t′ ∈ [t1, ..., tp] : isCompatible(a, t′)
| case a Intersection[t1, ..., tp] = ∀t′ ∈ [t1, ..., tp] : isCompatible(a, t′)
| case a Interface[name, (op1, ..., ops)] = ∀op ∈ [op1, ..., ops] : op ∈ dir(a)

Figure 5.7: Type-checking a function call

5.4 Qualified parametric data types

We now consider an extended system that includes parametric data types. Python sup-
ports several built-in heterogenous containers such as list, set and dict. In this section,
we extend our typesystem with homogenous containers as well as parametric user-defined
classes. The remainder of this section uses the following terminology:

• Data types such as list, set and dict are parametric type constructors.

• We call list[int] a type instance and int is its (singleton) tuple of type arguments.
We will refer to qualified parametric data types as a parametric type constructor that
is given an explicit tuple of type arguments.
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• A parametric user-defined class is a user-defined class that is parameterised over
types. For example Pair[int, float] is a parametric user-defined class where
Pair is a user-defined class, and int, float is its tuple of type arguments.

We consider type variables (e.g. list[T] where T is a type variable) appearing in
function signatures in the next section.

5.4.1 Type annotations

Pytypedecl allows built-in containers such as list, tuple, set and dict to be param-
eterised as well as user-defined class types. Figure 5.8 extends the type annotations
specification from Figure 5.5 to support type annotations for qualified parametric data
types.

t ::= ... |

list[t] | tuple[t1, ..., tp] | set[t] | dict[t1, t2] |

ClassType[t1, ..., tu]

Figure 5.8: Extended grammar with qualified parametric data types

5.4.2 Type checking

We now present the type checking mechanism for qualified parametric data types. We
consider container integrity which is responsible for checking whether a parameterised
type holds values that are compatible with its type arguments. Parametric types with a
single type argument such as list and set can be simply checked by iterating through
all the values of the container. In Python, iteration is typically implemented by pro-
viding an implementation for an iterator object. Tuples are type-checked by checking
whether each element is compatible with its associated type argument. Note that since
types are only checked on entry of functions (and mutations inside the function body
are not tracked), it is convenient to treat parametric data types covariantly by default
(e.g. a programmer might want to pass a list[Apple] where a list[Fruit] is expected
provided that Apple is a subtype of Fruit).

User-defined classes require a different type-checking mechanism because they can
have an arbitrary number of type arguments. In our system, the user is responsible for
providing an iterator which extracts a tuple of values. Each value is associated to a type
argument. This iterator can be used to check whether the values are compatible with the
associated type arguments. Figure 5.9 extends the definition of the isCompatible routine
presented in Figure 5.7 to support parametric qualified types. Note that for user-defined
classes, we use the meta-variable c which ranges over all user-defined classes to identify
parametric user-defined classes.

5.4.3 Discussion

Another form of type checking that pytypedecl does not consider is structure integrity
which is responsible for checking whether a type instance is well formed in a similar way
to an algebraic data type. For example, to check whether an AST is correctly constructed
(e.g. only supported arithmetic operations appear in an expression). Such checking can
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isCompatible(a, t):

| ...

| case a list[t] = isinstance(a, list) ∧ ∀e ∈ a : isCompatible(e, t)
| case a set[t] = isinstance(a, set) ∧ ∀e ∈ a : isCompatible(e, t)
| case a tuple[t1, ..., tp] = isinstance(a, tuple)∧

∀i ∈ {1, .., p} : isCompatible(a[i], ti)
| case a dict[t1, t2] = isinstance(a, dict)∧

∀(k, v) ∈ a : isCompatible(k, t1) ∧ isCompatible(v, t2)
| case a c[t1, ..., tu] = isinstance(a, c)∧

∀(e1, ..., eu) ∈ a :
isCompatible(e1, t1) ∧ ... ∧ isCompatible(eu, tu)

Figure 5.9: Type-checking qualified parametric types

be provided by the iterator implemented by the user or as the data structure is created
via its constructor.

5.5 Parametric polymorphism

We now extend pytypedecl by introducing parametric polymorphism for functions. For
example, in Java, the signature below describes a generic method named identity which
is parameterised with the type variable T:

<T> T identity(T e);

The type variable is used to specify that the type of the parameter e and the result
type of the method have to be identical. In a more mathematical notation, the type of
identity is ∀ a.a → a, where a is a type variable.

We extend the type system of pytypedecl with a similar mechanism. Our implemen-
tation makes use of type inference via unification to verify the constraints placed by the
type variables. We discuss how to extend this mechanism with bounded quantification (i.e.
specifying a type bound on the type variables) in the next section. The rest of this section
starts by extending the type declarations in pytypedecl with support for type variables.
It then outlines the type checking mechanism to support parametric polymorphism.

5.5.1 Type annotations

We extend the grammar of the type annotations presented in Figure 5.8 to include type
variables. Figure 5.10 presents the update to the grammar. For simplicity, type variables
can only be a single upper-case letter identifier from A to Z included. The meta-variable
v refers to the set of all type variables. We add a new type BoundedTypeVariable to
represent a type variable in the type declaration language. It is included in the set of
possible pytypedecl types denoted by the meta-variable t. We will consider that all types
variables have a default bound that is object for now. I.e. in a more mathematical
notation, ∀ a ≤ object, where a is a type variable and object is its default bound. In
the next section, we extend the system with more specific bounds.
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upper ::= ’A’ | ... | ’Z’

v ∈ TypeVariable ::= upper

t ::= ... | BoundedTypeVariable[v, t]

Figure 5.10: Type variables

5.5.2 Function type signatures

We extend the syntax for the summary function type signatures in pytypedecl to support
type variables. In a similar syntax to Scala, an optional list of type variables can be
declared before the function name as shown in Figure 5.11.

def f[v1, ..., vn](p1 : t1, ... pn : tm) → t0 raises ex1, ..., exn

Figure 5.11: Function type signature supporting type variables

We now discuss the implementation of the type checking mechanism to support type
variables.

5.5.3 Type checking

Consider the following function signature in pytypedecl

findItem[T](a: list[T], b: T) -> bool

Given a call instance findItem(e1, e2), the type-checking process needs to infer a
ground type for the type variable T that is consistent with the type tags of the parameters
discovered at runtime. If no ground type can be inferred then the call instance does not
type-check.

We propose a semantic unification algorithm for inferring the type variables. Before
we outline the algorithm, we describe an example to motivate its development. Suppose
a call instance to findItem where the first parameter e1 has type list[Apple] (i.e. all
the values inside the list are type Apple) and the second parameter e2 is type Apple. The
type-checking process would succeed because T is unified to the type Apple. However,
suppose another call instance to findItem received for the second parameter a value of
type Banana instead. Then type-checking would fail with a simple equational unification
because Apple and Banana are different types. Nonetheless, Fruit is also an acceptable
type for T. To solve this problem, pytypedecl unifies a type variable by calculating the
least common upper bound between possible types for it. We choose to allow the least
upper bound except in the case when the least upper bound is object. If we did not make
this exception, all type variables could be inferred to object which defeats type-checking.

Figure 5.12 presents the extension to the pytypedecl type checking mechanism to
support parametric polymorphism. The unification algorithm used for inference of type
variables has four components:

1. The set v of possible type variables as defined in Figure 5.10.

2. A set of elements that can be associated to type variables. In pytypedecl case,
elements are the set g of ground types as defined in Figure 5.4.
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3. A type variable mapping TVM: v → g assigning a ground type to each type variable.

4. An equivalence relation on g indicating when elements are considered equal. As
described previously, pytypedecl type-checks a type variable for two different ground
types when they have a common least upper bound that is not object.

The updated check routine presented in Figure 5.12 initialises a fresh type variable
mapping TVM for each call instance being type checked. TVM is then shared with the
isCompatible routine and updated via side-effect. Figure 5.12 also shows the updated
implementation for isCompatible. We define a separate routine leastUpperBound to
find the least upper bound between two ground types. It uses three helper functions:

• a function getSuperTypes which transitively returns all super-types of a given
ground type including itself.

• a function getMostSpecific which given a list of ground types returns the most
specific type that is not object. If there are none it fails.

• a function issubclass (which is built-in function in Python) which takes two ground
types as argument g1 and g2 and returns true if g1 is a direct or indirect subclass of
g2.

5.6 Bounded quantification

So far all type variables had an implicit default bound of object. We now add bounded
quantification [105] to pytypedecl. A bound restricts a type variable to only range over
subtypes of a given type. For example, in Java, the following generic method restricts the
type variable T to only range over subtypes of Message.

<T extends Message> T combine(T m1, T m2);

Pytypedecl supports type bounds over ground types which are restricted to be built-in
Python types and class types as presented in Section 5.3. As a result, pytypedecl does not
allow parametric types or type variables to appear as a bound. This restriction allows the
inference rules to remain simple. This section starts by extending the syntax for function
type signatures in pytypedecl to support type bounds. We then extend the type-checking
mechanism to support it.

5.6.1 Type annotations

Pytypedecl uses the operator <: to express a sub-typing constraint for a type variable.
The left-hand side is a type variable and the right-hand side is a ground type. If no type
bound is specified, by default pytypedecl assumes it is object. Figure 5.13 adds syntactic
support for type bounds in pytypedecl.
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check(f, [a1, ..., an], [t1, ..., tn], t0, [ex1, ..., exm]):

TVM := {}
∀i ∈ [1..n] : assert isCompatible(ai, ti, TVM)
try:

ra := f(a1, ..., an)
assert isCompatible(ra, t0, TVM)
return ra

except Exception as ex:

assert ex ∈ [ex1, ..., exm]
raise ex

isCompatible(a, t, TVM):

| Unknown TVM = True
| a b TVM = isinstance(a, b)
| a c TVM = isinstance(a, c)
| a Union[t1, ..., tp] TVM = ∃ti ∈ [t1, ..., tp] : isCompatible(a, ti, TV M)
| a Intersection[t1, ..., tp] TVM = ∀ti ∈ [t1, ..., tp] : isCompatible(a, ti, TV M)
| a Interface[name, (op1, ..., ops)] TVM = ∀op ∈ [op1, ..., ops] : op ∈ dir(a)
| a list[t] TVM = isinstance(a, list) ∧ ∀ei ∈ a : isCompatible(ei, t, TV M)
| a set[t] TVM = isinstance(a, set) ∧ ∀ei ∈ a : isCompatible(ei, t, TV M)
| a tuple[t1, ..., tp] TVM = isinstance(a, tuple) ∧ ∀i ∈ {1, .., p} : isCompatible(a[i], ti, TV M)
| a dict[t1, t2] TVM = isinstance(a, dict)∧
∀(ki, vj) ∈ a : isCompatible(ki, t1, TV M) ∧ isCompatible(vj , t2, TV M)
| a c[t1, ..., tu] TVM = isinstance(a, c)∧
∀(e1, ..., eu) ∈ a : isCompatible(e1, t1, TV M) ∧ ... ∧ isCompatible(eu, tu, TV M)
| a BoundedTypeV ariable[v, t1] TVM =
isCompatibleForTypeV ariable(a,BoundedTypeV ariable[v, t1], TV M)

isCompatibleForTypeVariable(a, BoundedTypeVariable[v, t], TVM):

if v /∈ dom(TVM) :
TVM := TVM ∪ {v → type(a)}
return True
else :
if isCompatible(a, TVM(v), TV M) :
return True
else if let lub := leastUpperBound((type(a), TV M(v)) :
TVM := TVM ∪ {v → lub}
return True
else :
return False

leastUpperBound(g, t):

| case object = object
| case object = object
| case g1 g2 = getMostSpecific(getSuperTypes(g1) ∩ getSuperTypes(g2))
| otherwise Fail

Figure 5.12: Type-checking with type parameters with no bounds

def f[v1 <: g1, ..., vn <: gn](p1 : t1, ... pn : tm) → t0 raises ex1, ..., exn

Figure 5.13: Function type signature supporting type variables

5.6.2 Type checking

We now outline the changes to the type checking mechanism to support type bounds.

To support type bounds with ground types we need to modify the type-checking
algorithm presented in Figure 5.12 when a type variable appears as a type for an argument.
In such a situation, pytypedecl checks whether the type of the argument is always a
subtype of the declared bound for the type variable. This leads to the following updated
isCompatibleForTypeVariable algorithm presented in Figure 5.14.
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isCompatibleForTypeVariable(a, BoundedTypeVariable[v, t], TVM):

if v /∈ dom(TVM) :
if isCompatible(a, t, TV M)
TVM := TVM ∪ {v → type(a)}
return True
else :
return False

else :
if isCompatible(a, TVM(v), TV M) :
return True
else if let lub := leastUpperBound((type(a), TV M(v)) :
TVM := TVM ∪ {v → lub}
return True
else :
return False

Figure 5.14: Bounded type parameters with ground types

5.6.3 Discussion

Pytypedecl restricts type bounds to be ground types for simplicity. This restriction means
typedecl does not support more sophisticated patterns such as allowing a type bound to
be another type variable, which can add significant complexity to our system [104]. Our
motivation for this restriction is that previous research has shown that advanced use of
generics are used little in practice beyond qualified parametric types [101] which were
developed in Section 5.4.

5.7 Other features

This section describes other features supported in pytypedecl’s type system: overloading,
function objects and generators.

5.7.1 Overloading

Pytypedecl allows multiple function type signatures for a single function definition. For
example, an add operation can be described as follows:

def add(a: int, b: int) -> int

def add(a: float, b: int) -> float

def add(a: int, b: float) -> float

def add(a: float, b: float) -> float

This description is more precise that using unions which do not express the relationship
between the argument types and the return type:

def add(a: int or float, b: int or float) -> int or float

Pytypedecl uses the multiple signatures to type-check a call instance. It simply checks
whether at least one function type signature is compatible. In comparison to other lan-
guages like Java, function type signatures in pytypedecl are not used for dispatching.
Consequently, there is no need for a selection process or to check for ambiguous function
type signatures.
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5.7.2 Function objects

Python supports first-class functions. In Python, a function (include a lambda) can be
passed or returned from another function as an object. The function object can be distin-
guished from other objects via its type tag function. Pytypedecl uses a special syntax
to specify the summary signature of a function object, which is shown in Figure 5.15. It
consists of a tuple specifying the argument types in order and the result type. Pytypedecl
does not support type variables for function objects’s arguments and return type to keep
the inference algorithm simple. In fact, a reference to the function object could be used
in other parts of the program which would make it difficult to infer a meaningful type for
a type variable.

t ::= ... | FunctionType[{t1, ..., tw}, t0]

Figure 5.15: Function objects

To type-check the signature of a function passed as argument or returned from a
function, pytypedecl creates a new function object that first checks the arguments, then
calls the original function, and then checks the return value from that call. This procedure
is similar to the algorithm presented in Figure 5.6. This technique is generally referred to
as proxy objects and previous work has taken a similar approach [57, 108].

5.7.3 Generators

Python supports generators. A generator can be seen as a function that behaves like a
lazy iterator. Pytypedecl supports qualified parametric generators, similarly to built-in
containers such as list and set, which we discussed in Section 5.4. To type-check a
generator, pytypedecl first creates a proxy generator that calls the generator. This proxy
generator checks that the produced value is consistent with the generator’s argument type
and forwards the value back.

5.8 Implementation

In this section, we explain the implementation of pytypedecl. We start by giving an
overview of how to adopt pytypedecl in a Python program. We then outline its architec-
ture.

5.8.1 Overview

Pytypedecl consists of a type declaration language for Python as well as a runtime type-
checker. Pytypedecl is available as a standard Python package which can be imported to
use the type-checking facilities. The programmer defines a separate type declaration file
where he provides types declarations for the classes and functions that he wishes to be
type-checked. We chose to provide signatures in a separate file instead of mixing them
with Python source code for several reasons. First, this approach minimises changes to
an existing system by adding new files instead of modifying existing files. Second, it
requires a simpler implementation in comparison to parsing a Python file to identify the
pytypedecl signatures.
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Type declarations def MakeAnnouncement(emails:list[str]) -> None

Python code

import sys

from pytypedecl import checker

def MakeAnnouncement(emails):

for addr in emails:

cls.SendEmail(addr)

checker.CheckFromFile(sys.modules[__name__], __file__ + "td")

if __name__ =="__main__":

MakeAnnouncement("name@example.com")

Error with pytypedecl

TYPE_ERROR:

Function: MakeAnnouncement,

parameter: emails => FOUND: str but EXPECTED: list[str]

Figure 5.16: Pytypedecl usage example

To use pytypedecl, the programmer needs to follow two steps. First, create a type
declaration file with the extension .pytd that mirrors the name of the Python file. This
type declaration files specifies the signatures of the functions to type-check. Next, the
programmer needs to explicitly call the type-checker in the Python file by importing the
pytypedecl Python package. The type-checker will then automatically insert runtime
checks. Note that pytypedecl lets programmers also use the type declaration file as doc-
umentation without making modification to the Python file (e.g. if they decides not to
use the type-checking facility).

We illustrate in figure 5.16 how to use pytypedecl. First the programmer specifies
the type declarations for the functions he wishes to type-check. In this case, the func-
tion MakeAnnouncement should take a list of strings as argument. Next, the program-
mer explicitly calls the type-checking mechanism by importing the pytypedecl package
in the appropriate file. In this case, the result is a type error because the function
MakeAnnoucement was given a string as argument instead of a list of strings. Note that
the code would otherwise be accepted and wrongly executed by the Python interpreter.

5.8.2 Architecture

Pytypedecl is implemented as a Python package. As a result, programmers can simply
import it just like any other Python package to use it. Our prototype consists of two mod-
ules. The first module is responsible for parsing function type signatures in pytypedecl.
The second module is responsible for adding checks to the user code using the function
type signatures. Figure 5.17 depicts the architecture of pytypedecl.
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Figure 5.17: Pytypedecl architecture

The parser module is written using a parser generator. We chose to use a parser gen-
erator as it is simpler to maintain and make updates to the grammar of the function type
signatures. The type-checker module implements the system we outlined in the previous
sections. It makes use of Python reflective features to iterate through the functions in
a given file. Each function definition slot is replaced with a proxy function object that
performs type-checking on the original function.

5.9 Evaluation

This section evaluates pytypedecl on a set of programs and libraries which we annotated
with function type signatures. We report the ease of the annotation process, the type
annotations used and the performance overhead of pytypedecl. We then discuss limita-
tions of pytypedecl. The next section discusses how pytypedecl can be used for locating
incompatibilities in a program for different versions of Python.

5.9.1 Case study targets

To the best of our knowledge, there is no standard benchmark available for conducting
studies of code artefacts in Python like Qualities Corpus [120] for Java which we used in
the previous chapter. Consequently, we selected three open-source Python program as
case studies by performing a search on Github. Our selection of these programs was based
on two criteria. First, we selected programs by searching different domains on Github:
games, maths library and graphics. The intention was to represent different possible style
of programming in Python and explore whether this affects the resulting type annotations.
Second, the programs had to be of reasonable size ( ≤ 5000LoC) so we could manually
analyse them. We manually annotated these programs using pytypedecl. The programs
have various sizes and represent different uses of Python.
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• Sudoku-Solver: a program for solving sudoku puzzles

• Python-colormath: a Python module that provides common colour math operations.

• Latimes-calculate: a Python maths library for journalism

Application Description LoC

Sudoku-Solver Game 399
Latimes-calculate Numerical library 1287
Python-colormath Graphics 3448

Figure 5.18: Summary of case study targets

5.9.2 Methodology

We now outline how we conducted the evaluation. As described at the beginning of the
chapter, we developed our tool to help developers identify programmer errors. We argued
that our system should have two main requirements:

1. Able to express various common use cases for dynamically-typed language

2. Convenient to integrate with existing Python programs

To satisfy these requirements we argued for two design decisions. First, we designed a
rich type declaration language with features inspired from other programming languages
as discussed in Section 5.2. Second, we argued for a lightweight type-checking system
which only monitors the input and output behaviour of functions and is implemented as
a library.

To evaluate our system, we executed the program’s main entry point or test suite if
available. We then explored the source code of the programs and manually annotated
them using pytypedecl function signatures. We report the performance impact of using
our tool, what features of the type declaration language were used in practice and our
experience with the annotation process.

5.9.3 Results

This section describe our findings. Table 5.19 summaries the the evaluation results.

Application execution time (s) # annot. fcts. Features
unann. annot. ε ∪ ∩ ι [] ∀ <: Ω

Sudoku-solver 0.58 1.2 18 - - - - 15 - - -
unitrest 5.6 5.8 14 - 3 - - - - - -
python-colormath 0.25 0.64 22 5 2 - 2 - - - -

Features: ε: Exceptions, ∪: Union, ∩: Intersection, ι: Interface, []: Qualified parametric
types, ∀: Parametric polymorphism, <:: Bounded, Ω: Overloading

Figure 5.19: Summary of case studies results

83



Efficiency The maximum recorded performance overhead of running pytypedecl was
3x the original execution time. Previous work have reported much larger overhead using
heavier use of wrappers and smaller programs [108]. This suggests that a lightweight type-
checking mechanism based on monitoring of inputs and outputs of function is practical
to use.

Type annotation features We found that most type annotations were using features
from the basic system presented in Section 5.3. Nonetheless simple parameterisation
of containers was common in the sudoku project to model a grid. We also found that
declaring an interface Iterable in pytypedecl was useful as a particular function in the
Python-colormath project was checking whether the function argument supported the
iter operation:

hasattr(wp_src, ’__iter__’):

The type annotations used did not include more advanced features such as parametric
functions, bounded type variables and overloading. This results support previous research
that found that generics and overloading are used less frequently or dependent on the
application domain [101, 62].

Annotation process The process of annotating the programs was relatively straight-
forward. We examined the arguments and results of functions and their use to infer their
types. Certain functions in the examined programs had type information as comments
which could be re-used and facilitated the annotation process. In certain cases, we had to
iterate the annotation process as we missed less obvious cases. For example, the unirest

program’s function expected mostly str values and occasionally unicode objects. Even
though the process was more time consuming for a larger program like Python-colormath
we expect the original authors of the function to be faster at the annotation process.

We also found that certain parts of code were doing manual type checking, which
suggests an automatic system like pytypedecl can be beneficial to developers. For example,
the Python-colormath program was explicitly checking the arguments of the function
inside its body:

if isinstance(target_cs, str):

raise ValueError("target_cs parameter must be a Color object.")

if not issubclass(target_cs, ColorBase):

raise ValueError("target_cs parameter must be a Color object.")

During the annotation process we also found an inconsistency in the names of function
arguments with respect to their types. For example, one function accepted a argument
rowNum which accepts int values but another one accepted an argument named blockNum

which accepts float values. Type annotations can be useful to highlight similar discrep-
ancies.

5.9.4 Limitations

In this section, we discuss limitations of the design of pytypedecl and its implementation.
We classify the limitations into two groups: coverage of errors and unsupported Python
features.
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First, our type-checking mechanism is designed to only monitor the input and output
of functions. Consequently, our approach is well-suited for programs which are written
in a functional-style and makes use of immutability. For these programs, our approach
provides a lighter-weight alternative to a traditionally heavier blame-tracking approach
and provides similar error-finding capabilities. However, our approach is unable to re-
port errors due to side-effects within function bodies. Nonetheless, as we mentioned in
Section 5.3, this can be partially addressed by also validating the types of parameters at
the exits of a function as a way to check for possible mutations. Another limitation of
pytypedecl is that it is not able to track assignments to attributes of objects. The impact
of this limitation can be reduced if accesses to attributes in the Python program were
refactored to getter and setter functions, which can be type-checked using pytypedecl.

Second, our implementation does not support certain Python features. Pytypedecl
does not support nested functions. For example, in the code below, it is not possible in
pytypedecl to type-check the function addHeader and addFooter because they are defined
within the function format.

def format(s):

def addHeader(s):

return "Hi " + s.title()

def addFooter(s):

return s + "\nKind regards"

return addFooter(addHeader(s))

A possible solution is to implement monitoring of nested functions using introspection.
Nested functions are made available via a tuple of code objects within the parent function.
However, this tuple is immutable. Consequently, one would have to create a copy of the
parent function with an updated tuple of code objects that contains a wrapped version of
the nested function. The implementation of this mechanism results in additional runtime
overhead and complexity. Moreover, nested functions are not publicly visible and meant
for use as helper functions. Consequently developers can type-check the parent function
which makes use of the nested functions as part of its implementation.

In addition, pytypedecl implements a decorator mechanism to enhance functions with
type checking by wrapping function definitions with type-checking capabilities. However,
programmers can also decorate functions using a built-in Python annotation feature to
extend the behaviour of a function. Consequently, our mechanism conflicts with a function
that is already explicitly decorated. For example, in our case study we found that the
program Python-colormath was making use of decorators. The code below uses a user-
defined decorator named color conversion function to return a new function which
extends the decorated function with modified attributes:

@color_conversion_function(CMYColor, BaseRGBColor)

def CMY_to_RGB(cobj, target_rgb, *args, **kwargs):

...

Another potential limitation which could prevent adoption of pytypedecl is that of
object identity (i.e. reference equality). In Python, object identity can be checked using
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the is operator. The type-checking mechanism we developed in pytypedecl extends func-
tions by creating a new proxy function which extends the original one. As a consequence,
the created function has a different identity to the original one, which may break code
that relied on object identity. We also explained that features such as generators and
attributes can be implementing using a similar technique.

Finally, our implementation only supports positional arguments. Nonetheless, we
found in the programs we analysed that named arguments were also occasionally used.
Our system could be extended with support for named arguments by incorporating a store
mapping parameter names to their associated types as part of a function signatures. A
call instance can be type-checked by looking up the type expected for a given parameter
name using the store.

5.10 Compatibility checking

In this section, we discuss how a type checking system like pytypedecl can be used by
developers to report incompatibilities introduced in different language versions. While
we focus on Python 2 and Python 3, the approach is language agnostic. This section
starts by providing background on Python 2 and Python 3. It then discusses several
use cases of incompatibilities involving different type tags and how pytypedecl can report
easier-to-understand error logs.

5.10.1 Python 2 vs. Python 3

The Python community is currently facing a dilemma. There are currently two versions of
Python: Python 2 and Python 3. The latter version brings many backward incompatible
changes to Python 2 in order to clean up the language. In other words, the same program
written in Python 2 is unlikely to run in Python 3. Consequently, upgrading to Python
3 requires an extensive analysis and corrections of the new errors thrown when running a
program written for Python using the Python 3 interpreter.

The incompatibilities introduced in Python 3 fit in the ‘behavioural’ and ‘source’
categories that we presented in Chapter 3. Source changes include changing some state-
ments to become built-in functions and exception handling having a different syntax.
Behavioural changes include several function returning different object types. The major
change however is data related: all text strings are unicode by default. As a consequence
of these backward incompatible changes, upgrading a codebase to Python 3 can be quite
daunting. There are static tools such as 2to3, which aims to automatically fix certain
incompatibilities. However, because of Python’s dynamic typing they are often not good
enough to locate all problems because some errors can only be found during program exe-
cution. In addition, the errors reported can be cryptic and do not locate the exact source
of the problem. The following quotes taken from issues on Github and blogs illustrate
this problem.

• on unicode: ”this will be maybe an impossible task to do because of one feature:
unicode strings. We currently extensively use unicode [...].”[27]

• on using 2to3: ”this is something that 2to3 does not pick up and most likely you will
not either. At least in my situation it took me a long time to track down the problem
because some other implicit conversion was happening at another place.”[23]
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5.10.2 Incompatibilities

We now describe the three main semantic incompatibilities in the changes from Python
to Python 3. In addition, we exemplify how a type-checking system like pytypedecl can
help identify sources of incompatibilities.

Unicode and binary data Strings in Python 2 can be seen as holding either textual
data or binary data. In fact, the type str and bytes are aliased. However, in Python 3
strings are now always unicode and there is a distinction between textual data (str) and
binary data (bytes). In Python 2 there is a separate type unicode to distinguish unicode
data. This change can lead to confusing code behaviour because bytes in Python 2 are a
sequence of characters but a sequence of integers in Python 3. In addition, functions such
as open() can return either str or bytes in Python 3 depending on the opening mode.
However, in Python 2 str and bytes are the same. Furthermore, mixing textual data
and binary data in Python 3 leads to runtime errors (e.g. concatenating a str object
and a bytes object is not allowed). Figure 5.20 illustrate this problem. The code fails
because in Python 3 the open function returns a binary string. Comparing a unicode
string ”hello” with a binary string ”hello” returns False, which is a valid comparison in
Python 2.

Figure 5.20: str vs. bytes

Type declarations
def assertEquals(s1: str, s2: str) -> bool

def slurp(filename: str, mode: str) -> str

Valid Python 2

import sys

import checker # pytypedecl package

def assertEquals(s1, s2):

assert(s1 == s2)

def slurp(filename, mode):

return open(filename, mode).read()

# opt for typechecking

checker.CheckFromFile(sys.modules[__name__], __file__ + "td")

data = slurp("data.txt","rb") # "hello"

assertEquals("hello", data)

Error in Python 3

File "open.py", line 8, in <module>

assertEquals("hello", data)

File "open.py", line 2, in assertEquals

assert(s1 == s2)

AssertionError

Error with pytypedecl
TYPE_ERROR: Function: slurp, returns <class ’bytes’>

but EXPECTED <class ’str’>

Integers In Python 2 an expression such as 1/2 returns 0 (of type int) as both arguments
of the division operator are ints. However, 1.0 / 2 returns 0.5 as one of the argument is
a float. To contrast, in Python 3 the division operator arguments are always converted
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to float and the result is 0.5 in both cases. Figure 5.21 illustrates the problem.

In addition, Python 2 distinguishes between two kinds of integers: int (size of 32 or
64bit) and long integers (unlimited size). In Python 3, both kinds are unified into the
type int which behaves like Python 2’s long (except that the printable version using the
function repr() no longer has a trailing L). The type long disappears from Python 3.

Figure 5.21: Integer division
Type declarations def pivot_index(len: int) -> int

Valid Python 2

def pivot_index(len):

return len/2

list = [4, 1, 3, 10, 4]

index = pivot_index(len(list))

print(list[index])

Error in Python 3

File "integer.py", line 6, in <module>

print(list[index])

TypeError: list indices must be integers,

not float

Error with pytypedecl
TYPE_ERROR: Function: pivot_index, returns <class ’float’>

but EXPECTED <class ’int’>

Views and iterators instead of list Many built-in functions such as map, filter and
zip return a list in Python 2. To contrast, in Python 3 they return an iterator which
is more memory efficient. However, iterators have different semantics and functions that
can operate on them. In addition, iterators are lazy and can be consumed only once in
comparison to a list that is eager and can be consumed multiple times. The Python 2
semantics can be preserved in Python 3 programs by manually converting the result of
these functions from an iterator to a list). Nonetheless, the preferred idiom in Python
3 is to use iterators instead of the less memory efficient list when possible. Furthermore,
in Python 2 the methods keys(), values() and items() on a dictionary return a copy
of the elements inside a list. In Python 3, they now return a view which can access the
original elements. Figure 5.22 illustrates the problem.
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Figure 5.22: Dictionary and views
Type declarations def concat(l1: list, l2: list) -> list

Valid Python 2

def concat(l1, l2):

return l1 + l2

d = {1:’a’, 2:’b’}

l = concat(d.keys(), d.values())

Error in Python 3

File "dict.py", line 5, in <module>

l = concat(d.keys(), d.values())

File "dict.py", line 2, in concat

return l1 + l2

TypeError: unsupported operand type(s) for +:

’dict_keys’ and ’dict_values’

Error with pytypedecl

TYPE_ERROR: Function: concat,

parameter:

l1 => FOUND <class ’dict_keys’> but EXPECTED <class ’list’>

parameter:

l2 => FOUND <class ’dict_values’> but EXPECTED <class ’list’>

5.11 Related work

Many type systems have been proposed in the literature to enhance dynamically-typed
languages with additional type-checking. This section reviews existing tools that are
related to our work.

Reticulated Python brings gradual typing to Python [135]. It is a source-to-source
translator that accepts Python 3 code. It uses a combination of type annotations on
functions and type inference for local variables to generate code which adds type-checking
to the original program. It provides three different dynamic type casts to deal with
parts of code that can not be statically checked. The first mechanism is called guarded
semantics which wraps a value into a proxy object. The proxy object contains information
such as line number and error message that will be reported if type-checking fails. The
second mechanism is called transient semantics, which checks the type of a value without
a proxy object. The third mechanism, is named monotonic semantics, which is similar
to the guarded mechanism but instead of using proxy objects, type information is stored
with the original values themselves as a tag. In comparison to our work, pytypedecl uses
a combination of transient semantics to check the input and output of function definitions
and also proxy objects to implement typechecking for generators and function objects. In
addition, Reticulated Python’s type system does not support generics.

The Ruby Type Checker (rtc) is a tool that type-checks ruby programs at runtime
using explicit type annotations [108]. Rtc also checks types at function entrances and
exits. However, rtc uses proxy objects. In other words, each type-annotated object is
wrapped by a proxy object which performs typechecking. In comparison, pytypedecl uses
a simpler approach where values are type-checked immediately at function boundaries.
Nonetheless, generators and function objects are also implemented using function objects.
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In addition, pytypedecl’s type-system also supports interfaces and noneable types as we
described in Section 5.3. Finally, types in pytypedecl are declared in an external file.
This approach enables programmer to gradually annotate their code without committing
changes to code files.

Mypy is a language that has a Python-compatible syntax and implements several
Python’s features [78]. In comparison to our work, mypy supports type inference and
explicit type annotation to statically check programs. However, the motivation behind
pytypedecl and mypy is different. Pytypedecl was designed as a library so that it inte-
grates with an existing toolchain whereas mypy runs as a separate program. Pytypedecl
and mypy share similar type declaration features such as generics, overloading and union
types. However, mypy does not support bounded type parameters and interfaces.

Cython is a superset of Python that is focused on performance [36]. Programmers
can annotate Cython code with explicit types, which are then compiled to C. However,
Cython introduces several incompatibilities with Python syntax. In other words, a Cython
program may not run with a Python interpreter. In comparison to our work, Cython’s
type system features are different. For example, it does not support exceptions, gener-
ics or interfaces. In addition, Cython’s type syntax was designed to feel familiar to C
programmers. Pytypedecl’s type declaration language was designed to feel “Pythonic”.

Julia is a dynamic language which supports explicit type annotations [39]. Pytypedecl’s
type system has similar features to Julia’s type system but also fundamental differences.
For example, both Julia and pytypedecl support optionally annotated types, union types,
generic functions and bounded type parameters. However, Julia and pytypedecl deal with
ad-hoc polymorphism differently. Julia has an algorithm for selecting the most-specific
method from a list of overloaded signatures to resolve which method body to execute.
In pytypedecl we similarly allow multiple signatures but only have one method body.
In addition, pytypedecl treats parametric types to be covariant by default and supports
other type system features such as intersection types, noneable types and interfaces.

5.12 Conclusion

This chapter described a system called pytypedecl which uses type annotations that are
checked during the program’s execution and reports errors. Our system has two main
characteristics. Firstly, it consists of a rich type declaration language to express function
type signatures for function definitions in a program. Secondly, type-checking happens
at function boundaries. We implemented the type-checking mechanism as a lightweight
library to minimise the overhead of integrating our system into existing projects. We
showed how the use of type annotations as contracts can be useful to locate errors ap-
pearing when upgrading to a new language version. We illustrated this with supporting
examples in Python 2 and Python 3. Finally, the work presented in this chapter influenced
the design of a standard type annotation language as part of a Python 3 enhancement
proposal by Rossum et al [132].
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Chapter 6

Dynamic discovery of function type
signatures for Python

In the previous chapter, we presented a runtime technique for Python which dynamically
type checks function calls against statically declared signatures. The type checking mech-
anism described used a list of function type signatures that act as contracts for the input
and output of the functions defined in a program. We showed that this technique can
support developers in locating the source of potential errors when running a problematic
program. Such errors include programming errors as well as incompatibilities introduced
when migrating to a different language version. In addition, we argued that the set of
function signature declarations is also useful for documentation and future maintenance
of the program.

So far, the function type signatures were manually provided by the programmer. For
new projects, writing signatures alongside function bodies can naturally be part of the
development process. Nevertheless, the manual process of adding function signatures
can hinder the adoption of this technique in existing large projects. In fact, manually
annotating functions with type signatures requires a good understanding of the internals
of the project and can be time-consuming. In addition, large projects are often developed
by multiple programmers at different periods of the project lifespan. Worse, programmers
who were involved with the project may not be available anymore to document it.

This chapter contributes an automated approach for generating function type signa-
tures to alleviate the burden for programmers. We present a lightweight mechanism which
monitors the input and output behaviours of functions as the program is run. This in-
formation is then amalgamated to produce function type signatures. We implemented
and evaluated this technique on several Python projects. We found that this technique
provides sufficient insights about the program in order to reduce manual annotation. In
addition, the generated output is manageable by programmers. This technique is also
language-agnostic and can be implemented in other programming languages.

6.1 Introduction

Type checking is useful to locate the source of errors in a program. Typically, a static
type checking system relies on explicit type annotations for verification. In addition, type
annotations have shown to be useful for documentation and maintenance of programs.
These type annotations are usually provided manually by the programmer. However,
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several systems also provide type inference where type annotations can be deduced au-
tomatically. As a result, type inference lightens the burden on programmers to provide
type annotations themselves.

In the context of dynamically-typed languages, there have been several attempts at
bringing type inference to languages like Python. Traditionally, this research has fo-
cused on implementing type inference as a static analysis [60, 114]. In other words, type
information about the program is deduced without actually executing the program.

Nonetheless, static type inference for dynamically-typed languages can also have sev-
eral drawbacks for programmers. First, most dynamically-typed languages have subtle
semantics and features which make it difficult to develop static type inference. For exam-
ple, it is possible for a variable’s type to differ along different paths such as inside an if

block:

function process(id):

if(condition):

return "2"

return 1

In addition, it is possible for programs to add and remove attributes at runtime.
Moreover, programmers my use other reflective features such as eval to evaluate an
expression at runtime and exec to evaluate a text string as code to execute. For example,
the following program will evaluate an expression entered by the user (e.g. ”1 + 2”) using
eval. It will then execute the code passed as a string to exec.

e = eval("input()")

a = eval("1 + 1 + e")

exec("b = a * 2")

print b

As a result, implementations of static inference systems often only address a subset
of the language and provide approximative results, which can hinder the benefits of its
output in terms of documentation and type checking. More sophisticated systems tend
to perform slower because they need to run more complex analysis.

Another downside of static type inference systems for dynamically-typed languages is
that they are generally implemented as a separate tool or even a different language with a
separate compiler. Consequently, they are difficult to integrate with a company’s existing
build system and internal policies which can prevent the adoption of these tools.

To address these issues, this chapter argues for a lightweight dynamic approach which
infers function type signatures by monitoring the execution of the program. We present a
system which complements the work presented in the previous chapter. In fact, the system
we present also tracks the input and output behaviours of the functions when the program
is executed. However, instead of using this information for verification, it is amalgamated
to produce function type signatures for the functions defined in the program. Figure 6.1
outlines the process in simple terms.

We show how this technique can be implemented as a library which facilitates integra-
tion in an existing tool chain. We found that monitoring the input and output behaviours
of functions can result in a lot of information to manage for programmers. For example,
we evaluated our tool with a program of over 30,000 lines of code, which resulted to an
average number of 2.5 function type signatures per function definition. To address this
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Figure 6.1: Monitoring of functions

particular issue, we describe several techniques which amalgamate the collected type infor-
mation to reduce the number of function type signatures presented to programmers. Our
evaluation show that these techniques can significantly reduce the number of function type
signatures per function as well as still produce enough useful insights for programmers.
In addition, we found that the performance overhead of our system was manageable.

The main contributions of this chapter are as follows:

• The presentation of a lightweight dynamic system for monitoring and amalgamating
type information of dynamically-typed languages

• A set of techniques for collapsing a list of call instances into manageable function
type signatures

• An implementation and evaluation of our system for Python

The rest of this chapter is structured as follows. Section 6.2 presents the architecture
of our monitoring system. Section 6.3 tackles the question of what information needs to
be collected. Section 6.4 tackles the questions of how to collect the required information.
Section 6.5 discusses how this information is amalgamated to produce manageable func-
tion type signatures. Section 6.6 describe the implementation of this system for Python.
Section 6.7 evaluates our system for Python programs from different application areas
and sizes of up to 25,000 LOC. Finally, Section 6.9 describes related work.

6.2 Architecture

This section outlines the architecture of our type monitoring and amalgamation system
called pytypemonitor. Its purpose is to infer function type signatures. The design of the
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system is programming language agnostic, however, this chapter focuses on Python.

We divide the system into three distinct modules. Each module is decoupled from one
another in a similar manner to Daikon’s architecture [55]. As a result, each module can be
improved on separately, extended or replaced with a different implementation. Figure 6.2
presents a diagram of the architecture.

Figure 6.2: Architecture

Collecting and emitting facts This first module is responsible for collecting source-
code information about the Python program. We will refer to this information as facts.
There are several possible techniques to collect the facts including instrumenting the
program, static analysis or runtime monitoring. We outline them in the next section.
This module generates a list of facts which can becomes the input of the second module.
We discuss what facts to collect in order to provide useful insights about the program in
Section 6.3 .

Amalgamation of the facts The second module is responsible for processing and
summarising the facts collected by the first module. For example, it may apply various
transformations such as removing duplicates or combining facts together. In other words,
the second module is analogous to a compiler’s optimisation phases. It then presents the
result to a third module that is responsible for the textual generation of the function type
signatures.

Generation The third module reads the result from the previous module and generates
function signatures in a specific format. We presented a type declaration in the previous
chapter, however, one has the flexibility to use a different type declaration language
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if required. For example, in the previous chapter we discussed other type declaration
proposals for Python including mypy [78] and PyCharm [24].

6.3 Required facts

Before we outline the mechanisms to collect information from a Python program, we need
to determine what information is required to produce useful insights about the program.
We refer to this information as source-code facts and describe them in this section. In the
next section, we present our mechanism to collect the facts.

Our system monitors the input and output behaviour of functions. When a function
is called in the program, we refer to this as a call instance. There are four essential facts
about a given call instance that we can collect:

1. type of the receiver (i.e. the type of the object the function or method is called on)

2. types of arguments at entrance and exit

3. return type

4. exceptions raised

Note that a particular call instance can only produce a 3-tuple of these facts because
it either returns a result or throw an exception.

To track the input behaviour of a function we record the types of the arguments of
the call instances. As we explained in the previous chapter, it can also be useful to keep
track of whether the types of arguments are changing during the execution of a function.

In addition, to produce a function type signature we need to locate the function
definition associated with a call instance. For this we need to record the file and class
where that function or method is defined.

We presented the type declaration language of pytypedecl in the previous chapter to
describe function type signatures. We now detail what further facts are useful to collect
to express function type signatures that make use of the various features in the type
declaration language such as generics, union types and overloading.

Containers The type declaration language described in the previous chapter includes
both heterogenous containers and homogenous containers. Heterogenous containers can
have elements of a variety of types. For example, the types list or dict describe het-
erogenous containers. On the other hand, homogeneous containers have elements of a
single type or subtype of a common type that is different than object. For example, the
type list[int] describes a homogeneous list that contains only elements of type int. As
a result, to differentiate between the two kinds of containers we need to track the type of
each element for all containers coming in and out of a function.

Objects The type of each argument can be determined using the built-in type() func-
tion in Python. If the type returned is a non-builtin type (e.g. of a user-defined class),
we can record the name of the instance’s class by inspecting the attribute class of
the object. There are two additional facts that are useful to collect to summarise call
instances into function type signatures.
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First, we can collect the type hierarchy for each new type discovered at the time of call.
The type hierarchy can be useful to avoid a union for each call instances when they share
a common supertype. We explain in Section 6.5 how this transformation is implemented.
As an example, if a function eat is called with an object of type Apple and another object
of type Banana, we can realise that both Apple and Banana share a common supertype
Fruit and summarise the two call instances below into a single function type signature
for eat which only takes a Fruit object as input:

def eat(f):

pass

eat(Apple())

eat(Banana())

Second, if the types do not have an explicit nominal subtyping relation, they may still
have an implicit structural subtyping relation if their sets of operations intersect. Our
type declaration language supports this idea via interfaces. As a result, it is also useful
to record the operations supported by the objects coming in and out of a function. Note
that Python allows new attributes to be added to objects at runtime, which may make it
more difficult to infer a structural subtyping relation. We can mitigate this by tracking
the operations both at entrance and exit of a call instance to gather further insights.

Other useful facts There are other interesting facts that can be collected using more
complex monitoring. We outline them briefly. However, pytypemonitor does not support
them to keep a low monitoring overhead.

• Function objects : Python supports first-class functions in two forms. First, one
can pass an existing named function as an argument to another function. Second,
one can also pass a lambda expression. In both cases, the argument will have
the Python type tag function. However, function objects can themselves take
arguments, return a result and throw exceptions. To track this information, we
would need to keep track of the arguments and output of all function objects passed
as an argument or returned from a function.

• Generator : Generator objects behave like iterators and produce values. They can
be seen as functions which return a new value at each call. One could monitor the
type of each value produced by a generator to infer whether it is a homogenous
generator or heterogenous generator.

• Attributes : It is possible to also monitor the attributes (i.e. properties) of each
object coming in and out of a call instance. This provides further insights about
the structure of the data types available in the program.

6.4 Collecting source-code facts

We now outline how we monitor the input and output behaviour of call instances to collect
source-code facts. We wrap each function definition within a proxy. This section starts
by reviewing alternative monitoring mechanisms and then presents our approach. Next,
we describe how the facts are represented so they can be processed by the amalgamation
module to produce function type signatures.

96



6.4.1 Collection mechanisms

There are several possible mechanisms to collect information about the program. We
review the pros and cons of each mechanism in relation to our goal and then present the
approach we developed.

Static analysis The main advantage of static analysis is that it does not require to
run the program to infer type declarations. As a result, static analysis does not impact
the runtime performance of the program. However, there are a few downsides. First, the
programmer needs to run an external tool to run the analysis, which may be inconvenient
to integrate with an existing build system or continuous integration environment. Second,
static analysis typically provides over-approximations as it is not based on actual program
runs.

Instrumenting Another approach, called instrumentation, is to place several hooks
inside a program to monitor required information. Typically this technique is implemented
by a program transformation step which rewrites the original program and adds code to
monitor program points of interest. Adding instrumentation to a program at compile-
time is fast in comparison to a whole program analysis. The downside of this approach
is that it requires pre-processing the existing source code using an external tool. This
approach was selected by Daikon, JSTrace and Mino [55, 123, 113] which we review in
Section 6.9. In addition, it typically provides incomplete result as it is dependent on the
the code coverage. Instrumentation also adds a runtime overhead to monitor information.

Tracing Several dynamically-typed languages come with a built-in module which allow
code tracing. It is a mechanism which provides information about the execution of the
application at runtime. For example, Python includes the module sys which allows to
place various program hooks at runtime and inspect stack frames of functions being called.
It is typically used to implement debugging facilities. Unlike instrumentation, it does not
require to transform source code to add hooks inside the program to monitor.

Proxy objects Another technique which we developed in the previous chapter is to
dynamically wrap interesting program elements via proxy objects at runtime. In other
words, at runtime, each function definition is decorated with monitoring capability. Con-
sequently, call instances of that function are tracked and can also dispatch to the original
function. This is the approach we selected as a lightweight mechanism to monitor the in-
put and output behaviour of functions. It can be simply implemented in Python thanks to
its reflection capabilities. The advantage of this approach is that it can be implemented as
a library which is simple to integrate with an existing development infrastructure. How-
ever, it brings additional runtime performance overhead in comparison to a purely static
analysis approach. Note that this technique has lower overhead compared to full dy-
namic taint analysis. Indeed, taint analysis requires to propagate the information along
the program’s execution. We detail the implementation of our mechanism in the next
subsection.
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6.4.2 Representation of the set of facts

We now discuss a suitable format for representing and storing facts about the program
as discussed in the previous section. We outline two criteria that the representation
should meet in terms of structure and extensibility. First, the representation should allow
easy traversal of the data. In other words, the representation should facilitate lookups
of information. Second, the representation should be extensible for additional new facts
that may need to be recorded.

Given these two criteria, we use a representation which is a mix of a graph for hierar-
chical information and a document-oriented structure.

In relation to our work, in chapter 4, we argued that a graph representation was
suitable for querying and storing hierarchical information. We showed that type hierarchy
can be simply queried with a language that supports transitive closure. This is why we
propose a similar graph representation for the purpose of recording the type hierarchy in
a Python program. However, unlike the type hierarchy, information about a call instance
does not exhibit deeply connected structures. This is why we propose and use in our
prototype a document-oriented approach based on a JSON structure constructed from
key-value pairs for this information. In the JSON format, a key is a text string representing
a named property and a value can be either a text string, an ordered list of values or a
document itself.

In addition, a document allows for semi-structured data. In other words, documents
may share structural similarity but do not necessarily adhere to the same schema. This
property allows us to extend a particular document on an ad-hoc basis with any additional
information that may be useful.

Data collected at a call instance has three main components:

1. Metadata about the function including its name, its associated class if any, the
program location of the call instance and timestamp

2. Parameters of the function including their positions and the types at entry

3. The return type of the function or any exception that was raised

The first component can be simply modelled as a set of key-value pairs. The second
component can be modelled as a list that stores the types of the arguments sorted by the
argument index position. Each element in that list is an entry recording the type of the
argument and the index of the element represents the position of the argument in the
call instance. Finally, the the third element can be also simply modelled as a key-value
pair. The fact that a document is semi-structured data allows us to extend the document
in the future with any additional information that may be useful. This is an essential
characteristic for our system because it is designed for agile modification. For example,
if we later decide to record additional facts about the arguments of a call instances, we
can extend the document to include this information (e.g. the types at exit or the type of
each element inside a container to differentiate between a homogenous and heterogenous
container). Figure 6.3 illustrates the structure for representing the essentials facts and
then extended with additional facts about the argument types.
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Figure 6.3: Data representation of a call instance

6.5 Amalgamation of the facts

The described implementation of the facts collection records a possible function type
signature for each call instance. This is overwhelming for programmers to manage and
get useful insights from. For example, a call-site inside a loop may produce numerous call
instances which are producing separate function type signatures. However, in practice
several call instances may share the same information such as the same return type and
types of the arguments. This section presents five techniques for reducing the output of
the monitoring by combining the facts of related call sites. Our evaluation on several
programs shows that these techniques can significantly reduce the amount of generated
function type signatures. We found that these techniques generated an average number
of 2.5 function type signatures per function definition.

6.5.1 Overview

This section briefly describes five techniques for producing useful function type signa-
tures for programmers from a set of call instances encountered during the execution of a
program.

The definition of useful is difficult to define. In the context of this work, we are looking
to produce function type signatures that will serve as documentation for developers. As
a result, we are interested in signatures that are maintainable and readable by develop-
ers. This is why we prefer conciseness over verbosity, even though readability is also a
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subjective matter. This means that when there are multiple representation of the same
concept, we favour the concise alternative features of the type declaration language when
possible. For example, we make use of union types where possible instead of multiple sim-
ilar overloaded signatures of a function to reduce the noise of the function type signatures
produced.

The techniques described can be seen as transformations similar to optimisation phases
produced by compilers. As a consequence, the order of the transformation phases can
produce different results. We discuss this issue in Section 6.5.7 and evaluate the result of
applying these techniques in Section 6.7.

6.5.2 Remove duplicates

The most straightforward transformation phase is to remove duplicate function type sig-
natures. Since a function type signature is recorded for every call instance during the
program execution, it is likely that redundant information is produced. For example,
given two identical function type signatures:

def foo(a: int) -> int

def foo(a: int) -> int

We can simply transform them to one function type signature

def foo(a: int) -> int

Note that the keyword def is not formally part of the signature but is convenient for
reading.

6.5.3 Disjoint union of results and exceptions types

In certain cases, function signatures produced may have identically list of arguments but
only differ by the return type. In which case we can produce a single function signature
which takes the union of the two result types. For example:

def foo(a: int) -> int

def foo(a: int) -> float

can be transformed to the following more compact signature:

def foo(a: int) -> int or float

We also unify result types and exceptions. Given that a call instance can return either
a value or raise an exception, we combine them using a Java-like signature:

def foo(a: int) -> int raises Exception

def foo(a: int) -> int

becomes

def foo(a: int) -> int raises Exception
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A similar transformation can be applied when several function type signatures raise
exceptions. For example:

def foo(a: int) -> int raises A

def foo(a: int) -> int raises B

can be transformed to the following more compact signature:

def foo(a: int) -> int raises A, B

Note that the following signatures

def foo(a: int) -> int raises A

def foo(a: int) -> float raises B

could be transformed to the following compact signature:

def foo(a: int) -> int or float raises A, B

However, this new function type signature loses precision over the above overloaded
versions. With this signature, a call instance that returns float and raises an exception
A will be valid. Note that, the two above overloaded function type signatures for foo do
not accept this case.

6.5.4 Unify functions by common super classes

Assuming we have a union of several types: (t1 ∪ ...∪ tn) (through overloading or explicit
union type). The type could be simplified to simply t if the set (t1, ..., tn) represents all
the direct subtypes of t.

As a concrete example, the following overloaded function type signatures:

def enjoy(f: Apple) -> boolean

def enjoy(f: Banana) -> boolean

can be first transformed to a union type as follows:

def enjoy(f: Apple or Banana) -> boolean

Provided the class inheritance graph shows that that the type Fruit is a direct super-
type and that Apple and Banana are the only subtypes of Fruit, then the signature can
be transformed to the following more compact form:

def enjoy(f: Fruit) -> boolean

However, this transformation raises interesting questions:

• What if there is more than one suitable supertype?

• What if only a partial list of subtypes of Fruit occur?
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Ambiguous super type If more than one supertype is acceptable, we chose to pick an
arbitrary type from the list of acceptable supertypes. However, there are several possible
other ways to decide which one to select:

1. Ask the programmer explicitly which type is most suitable.

2. Provide a union of all possible suitable types. This could result in a further optimi-
sation if this set also shares a common supertype that is not object.

3. Have a custom rule-based system to make the decision. For example, from a list of
possible supertypes, we may want to select the type that appears most frequently
in other function type signatures.

Partial list of subtypes It is possible that the analysis only finds a partial list of
subtypes. For example, the set (t1 ∪ ... ∪ tn−1) contains all subtypes of the type t except
tn. Can we simplify the type to just t? We highlight two strategies to answer this
question. In our work, we take an approximate approach.

• conservative: if only a partial list of subtypes is available then it cannot be replaced
by a supertype. In fact, a supertype may accept subtypes which were not supposed
to be accepted.

• approximate: if a partial list of subtypes is available we may want to replace it
by a supertype. There are different levels of confidence that can be used to make
the decision. For example, if more than half of the subtypes are available then
the programmer may want to replace the union with an appropriate supertype. In
practice, if a partial list of subtypes is present it is likely that the supertype is
intended. In our work, we selected a heuristic to simplify to the common supertype
if at least four subtypes are provided.

6.5.5 Factorise cartesian product of functions

A set of signatures may be a cartesian product expansion of unions. In general, given
a list of overloaded signatures and set of types for each parameter position P1, ...Pn, we
can transform the set of all signatures {(p1, ..., pn) | p1 ∈ P1 ∧ ... ∧ pn ∈ Pn} to the single
signature (P1 ... Pn). Section 6.7.3 shows an example as part of our evaluation.

For example, the following overloaded function type signatures:

def f(x: int, y: int) -> bool

def f(x: int, y: float) -> bool

def f(x: float, y: int) -> bool

def f(x: float, y: float) -> bool

can be simplified to the more compact form:

def f(x: int or float, y: int or float) -> bool
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6.5.6 Infer parametric polymorphic function

Parametric polymorphic functions are useful both conceptually for structure and for doc-
umentation. In fact, they convey that the intent of the function is to abstract over a
type. More explicit intent helps improve the maintainability of code. In addition, para-
metric polymorphic functions are more concise in comparison to equivalent overloaded
signatures. For example, given a list of function signatures as follows where the observed
argument type and return type coincide to be the same:

def identity(x: int) -> int

def identity(x: float) -> float

def identity(x : bool) -> bool

We can transform this list of signatures to a more concise and meaningful parametric
function signature as follows, where T is a type parameter for the function identity:

def identity[T](x: T) -> T

This transformation example raises the following question: given a list of signatures,
how and when can we transform them to a parametric function signature? Since our
system does not include data-flow information, we use a statistical inference. In our
work, we decide to apply a unification algorithm and then have a simple heuristic based
on the observed number of identical parametric function type signatures. However, more
advanced forms of inference are possible. For example, Message et al. developed a system
that uses statistical techniques to make type judgements [83].

First, we distinguish between two levels of confidence based on the information avail-
able:

• conservative: this mechanism guarantees no false positives. In other words, a
function is inferred to be parametric only if the available information demonstrates
this.

• optimistic: this mechanism allows for false positives. In other words, the available
information does not completely guarantee that the function is in fact parametric.

We now describe our system based on a substitution algorithm to infer parametric
function type signatures. The algorithm operates in three phases:

1. Unification: for each given function type signature, associate a fresh type variable
for each distinct ground type (e.g. int, list, bool) that appears more than once
in the function type signatures

2. Factorisation: combine signatures that have overlapping type variables in similar
parameter positions and return type. Any remaining type variables is reverted back
to their associated ground type.

In the first step, we assign a type variable from an ordered list of fresh variables ranged
over by A, B, C ... Z to each new ground type that appears in a parameter as well as in
the return position. We apply this process for each function type signature and using the
same ordered list of fresh variables. For example, the following signature:
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def foo(a: int, b: int, c: str) -> int

def foo(a: float, b: float, c: bool) -> float

def foo(a: str, b: str, c: bool) -> str

will be transformed to:

def foo[A](a: A, b: A, c: str) -> A

def foo[A](a: A, b: A, c: bool) -> A

def foo[A](a: A, b: A, c: bool) -> A

This step is effectively a unification system where ground types form atomic terms,
each type of a parameter is assigned a variable and the equivalence relation is simply
whether the value of the variable are equal.

Finally, the step phase combines identical signatures, which produces:

def foo[A](a: A, b: A, c: str) -> A

def foo[A](a: A, b: A, c: bool) -> A

Note that the phase remove duplicates could also do this final transformation.
This signature can be further compacted by applying the disjoint union phase:

def foo[A](a: A, b: A, c: str or bool) -> A

6.5.7 Discussion

We described five different transformation phases which aimed to produce more compact
function signatures from a collection of recorded facts about the program. However, we
did not discuss the order for these phases.

This problem is related to compiler optimisation phases ordering [133]. Different
optimisation phases in the compiler can interact with each other. As a result, the choice
of order may increase or reduce opportunities for optimisations. In addition, different
orders may produce different output code with different characteristics such as speed and
memory consumption. For example, should we apply a common-sub expression (CSE)
phase before the register allocation phase? The CSE phase may increase the number of
variables required and cause a cheap-to-recompute expression to be stored in memory
rather than into a register. However, in certain cases CSE may reduce the number of
registers required as well. Different techniques have been suggested to find solutions to
the phase-order problem including using genetic algorithms [46] and machine learning [76].

Whitefield et al. described a general framework for approaching code-improving trans-
formations [136]. They present a specification language (Gospel) that can express con-
ditions and dependencies amongst transformations to analyse how transformation phases
interact.

In relation to our work, different transformation phases orders may produce function
type signatures that have different levels of conciseness and readability. We argued earlier
that readability is often a matter of taste and is therefore difficult to quantify.

We have therefore chosen an ordering of the transformations phases as defined in
Figure 6.4.
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Figure 6.4: Transformation phase orders
Order Phase
1 Remove duplicates
2 Disjoint union of results and exceptions types
3 Factorise cartesian product of functions
4 Unify functions by common super classes
5 Infer parametric polymorphic function

We now justify the chosen order.

1. We can always apply the remove duplicates phase first as redundant information
does not contribute to subsequent phases

2. After that, we factorise function type signatures that have the same argument list
but differ in result type and exception raised.

3. Next, we factorise cartesian product of functions. This phase can collapse several
signatures into a single form that is more concise.

4. The previous two phases generated several unions which may share a common super
class. This is why, we choose to follow up with inferring functions by common super
classes.

5. Finally, the resulting signatures can be further collapsed by inferring parametric
types

Note that, certain phases could be applied again to further compact generated function
type signatures. For example, phase 5 may produce two function type signatures as
follows:

def foo[A](a: A, b: A, c: str) -> A

def foo[A](a: A, b: A, c: bool) -> A

This signature can be further compacted by applying the disjoint union phase:

def foo[A](a: A, b: A, c: str or bool) -> A

6.6 Implementation

In this section, we give an overview of the implementation of our type monitoring system.

Our prototype consists of two modules. The first module is responsible for monitoring
and recording type information of Python programs. The second module is responsible
for combining the type information to produce function type signatures.
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Monitoring module The first module is implemented as a Python module. It contains
one main entry point function called MonitorFunctions which iterates through each
function and method definitions inside a module and decorates them with monitoring
capabilities. Developers need to add the following line inside a Python file to monitor
function calls (the Python expression sys.modules[ name ] returns pairs of function
names and bodies in the current module).

monitoring.MonitorFunctions(sys.modules[__name__])

The implementation of MonitorFunction is summarised as follows where Functions,
Classes, MonitorFunction and MonitorMethod are helper functions we defined:

def MonitorFunctions(module):

for f_name, f_def in Functions(module):

module.__dict__[f_name] = MonitorFunction(module, f_def)

for c_name, c_def in Classes(module):

for m_name, m_def in MethodsForClass(c_def):

setattr(c_def, m_name, MonitorMethod(module, c_def, m_def))

The helper functions make use of Python introspection features to inspect informa-
tion about a module. Function definitions in a module can be looked up by iterating
the module’s built-in dictionary where keys are names of functions and values are objects
representing instances of a function definition. Similarly, we inspect all classes and meth-
ods of a module using the built-in inspect Python module which provides facilities to
dynamically examine the content of modules and classes. We then use Python’s built-
in decorators features to wrap each function and method with monitoring capabilities.
Figure 6.5 illustrates the process.

Figure 6.5: Monitoring of python modules
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Almagamation module We implemented the amalgamation module in Java. Each
reduction phase is implemented as a function that takes as input a list of function type
signatures and produces as output another list of function type signatures. This enables
the user to chain phases in a customised ordering. The implementation of the reduction
phases make use of Java 8’s Stream API which provides many common data manipulation
out of the box such as filtering, duplicate removal and grouping.

6.7 Evaluation

In this section, we evaluate our system. We performed case studies on five open source
Python programs. We ran the test suites distributed with each of these programs using
our tool to gather type information. We found that for these case studies the performance
overhead of our monitoring technique was manageable, ranging from the same execution
time to 2x - 5x slowdown. We also found that the accuracy and completeness of type
information is dependent on the test suite coverage. Larger projects tended to provide
larger test suites which produced better coverage.

6.7.1 Case study targets

We selected five open-source Python program from Github. The programs have various
sizes and domains to represent different uses of Python. As we mentioned in the previous
chapter, there is no standard benchmark for conducting empirical studies on Python pro-
grams which led us to search Github to select appropriate programs for our analysis. In
addition, we selected larger programs than the previous chapter because we are perform-
ing an automated analysis instead of manual analysis and as a result we are no longer
constrained by the size of the programs. We selected larger programs to reflect the size
real-world applications — with the largest nearing 35000 LoC.

Table 6.6 summarises these programs and the number of lines of code without com-
ments. They are:

ystockquote A small Python program which retrieves stock quote data from Yahoo
Finance. This program illustrates the kind of scripts that are common in the Python
community. The program is composed of one main file that contains three principal
functions to query the Yahoo API. We modified it to add our type monitoring and run
the test suite packed with the program.

expecter An assertion library for writing declarative assertions in unit tests and used
by experienced developers. It is composed of one principal file containing several classes
and methods. The library also provides several test suites. We modified the main file to
add our type monitoring and then ran each test suite packaged with the program.

python-statlib A statistics library to showcase numerical programs. This library is
composed of two main modules: stats.py which contains several statistics functions and
pstat.py which contains common functions to manipulate lists. We modified each module
to add our type monitoring and then ran the test suite packaged with the program.
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webpy A web framework that was previously used by Reddit to showcase server appli-
cations. It is composed of one principal folder containing several modules responsible for
different components such as the main application server, session management, form han-
dling and various utilities. The program includes a test suite. We modified each module
to add our type monitoring and then ran the test suite.

python-toolbox A collection of Python utilities for various tasks such as working with
files, caching, data structures and manipulating iterables. It is composed of several mod-
ules which come each with a test suite.

Application Description LoC

ystockquote Finance script 373
expecter Testing library 430
python-statlib Numerical library 5134
webpy Web framework 7667
python-toolbox Utilities 34511

Figure 6.6: Summary of case study targets

6.7.2 Methodology

As described at the beginning of the chapter, we developed pytypemonitor to provide
insights about a program to help developers annotate functions with type information. We
argued for a tool having two characteristics. First, the tool should be lightweight to allow
simple integration in the developer workflow. Second, the tool should produce sufficient
insights about the program to alleviate manual type annotation for programmers. To
gather evidence, we conducted the following process:

1. Analyse the number of function and method definitions in each program

2. Run the test suite of the program and record the execution time. We record the
average of five runs.

3. Add monitoring capability to the program

4. Run the test suite again and record the execution time. We record the average of
five runs

5. Log type information about call instances in a separate file

6. Perform amalgamation of type information

7. Report results

6.7.3 Results

We now describe the results of running our tool on the selected Python programs. Fig-
ure 6.7 reports the data.
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First, the results indicate that the tool’s performance overhead is dependent on the
the number of call instances. This is expected as each call instance is wrapped with
the monitoring capability. The results collected shows that despite this, the performance
overhead is manageable ranging from the same execution time to 2x - 5x the normal
execution time. Second, we found the insights produced by our tool are dependent on
the coverage of the testing suite. For example, only 3 functions in ystockquote when
executed out of 84 function definitions, which is only a 4% coverage. This is expected
given that our analysis is dynamic and produce results based on the program execution.
Nonetheless, manual inspection of ystockquote shows that the other functions are only
simple helper getter functions and the 3 functions monitored are indeed the main public-
facing functions. In comparison, the analysis webpy produced a coverage of 83% and
python-toolbox a coverage of 96%.

Metric ystockquote expecter python-statlib webpy python-toolbox

# function defs 86 24 163 442 1815
# function defs monitored 3 15 19 370 1743
coverage ratio 4% 65% 12% 83% 96%
normal execution time 0.5s 0.1s 0.1s 4.8s 0.7s
monitored execution time 0.5s 0.1s 0.1s 9.3s 3.6s
# recorded call instances 3 121 47 96507 1095240

Figure 6.7: Summary of results

Analysis of python-toolbox We analysed python-toolbox in more detail to evalu-
ate the practicality of insights produced by the reduction module. We found that the
reduction phase significantly reduces the complexity of the output from the monitoring
module.

We first applied the remove duplicate, disjoint union of results and cartesian factori-
sation phases because these phases are simple reductions that do not require a heuristic.
We found that the vast majority of call instances were duplicate. In fact, the reduction
phase only left 5193 call instances, which is 0.45% of the original set of call instances.
Next, the disjoint union of results and exceptions types factorised the set further to 4802
call instances, which is a reduction of 7% of the previous phase. From this resulting set we
found that 19% of call instances described unique function definitions and 81% were two
or more call instances for a single function definition. We found that the cartesian factori-
sation was not frequently applicable. In fact, only one function definition met the criteria.
It is called cute divmod in the math tools.misc package and returns the division and
modulo for two numbers as a tuple:

def cute_divmod(a: float, b: int) -> tuple

def cute_divmod(a: int, b: float) -> tuple

def cute_divmod(a: int, b: int) -> tuple

def cute_divmod(a: float, b: float) -> tuple

The above function type signatures were simplified to:

def cute_divmod(a: int or float, b: int or float) -> tuple
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Next, we analysed the result of the factorisation by type parameter and factorisation
by supertype phases.

By applying the factorisation by type parameter, we found three related function
definitions in the testing framework packaged in python-toolbox that were candidates.
The method baseAssertEqual, getAssertEqualityFunc are method helpers for the
method assertEqual. All these three methods check whether two argument are equal
and could be simplified to use a type parameter:

def _baseAssertEqual[T](a: T, b: T)

def _getAssertEqualityFunc[T](a: T, b: T)

def assertEqual[T](a: T, b: T)

Using this reduction 82 call instances could be reduced to three signatures, representing
2% of the set of call instances after the disjoint union phase.

Finally, we found that common supertype elimination helps simplify signatures further.
We opted for an approximate approach and used the supertype (object excluded) if four
or more subtypes were available. We found one method called exit using manage context

produced 277 distinct call instances that could be simplified to one function. We manually
inspected its definition and its parameter names confirmed the validity of this grouping:

__exit_using_manage_context(self, exc_type, exc_value, exc_traceback):

The argument exc type is always of type type, the argument exc value of type
Exception and exc tracback of type traceback.

Nonetheless, we found this reduction to be mostly useful with methods dealing with
collections. Several call instances were operating on collections which all share iterable

as supertype. For example, the method logic max produced the following call instances:

python_toolbox.logic_tools.logic_max(set) -> list

python_toolbox.logic_tools.logic_max(list) -> list

python_toolbox.logic_tools.logic_max(listiterator) -> list

python_toolbox.logic_tools.logic_max(tuple) -> list

These call instances can be reduced to the following simpler signature where set,
list, listiterator and tuple are all iterables.

python_toolbox.logic_tools.logic_max(Iterable) -> list

This reduction collapsed an additional 352 call instances, representing 7% of the set
of call instances after the disjoint union phase

After applying the five phases we found that the average number of generated signa-
tures per function definition was 2.5 signatures. This result indicates that out lightweight
technique can provide useful insights for programmers for future maintainability but with-
out overwhelming them with too many multiple generated signatures.

6.7.4 Limitations

We now describe two limitations of our tool: coverage of the programs analysed and the
Python features that are not supported.
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6.7.4.1 Coverage

First, because it relies on a dynamic analysis, functions which are never called will not
be monitored. For example, in the ystockquote program, only 3 functions out of 86 were
monitored because the test suite did not cover them. A static analysis tool would be able
to pick them up. Consequently, programmers may want to first get insights through a
dynamic analysis and complement it with a static analysis if necessary.

6.7.4.2 Features

Second, our system does not monitor object attributes and nested functions. One could
monitor access to attributes in Python by intercepting the setattr and getattr

methods of objects. These functions are called respectively when an attribute is assigned
to and accessed. For example, the following code monitors type information on assignment
to the attribute content of the Box object:

class Box(object):

def __setattr__(self, name, value):

print str(name) + ":" + str(type(value))

self.__dict__[name] = value

if __name__ == "__main__":

b = Box()

b.content = 10

print b.content

We did not consider attributes in our system because they can typically be exposed
through “getter” functions. In addition, intercepting each attribute access results in
additional runtime overhead. For similar reasons, our system does not support nested
functions. In fact, nested functions are not as useful (for monitoring purposes) as top-
level functions because they are called within the parent function. As we explained in
the previous chapter, one could implement monitoring of nested functions using Python’s
introspection module. Nested functions can be accessed via a tuple of code objects within
the parent functions. Nonetheless, the tuple is immutable. As a result, one would have to
create a copy of the parent function with an updated tuple of code objects that contains a
wrapped version of the nested function with monitoring capabilities. The implementation
of this mechanism would result in additional runtime overhead and complexity which is
why pytypemonitor does not support it. Finally, our systems does not monitor functions
that are already decorated. This is because our tool uses the decorator mechanism to add
monitoring to a function. Consequently, it would conflict with existing decorators on that
function.

6.7.4.3 Call-site vs. Call-strings

Pytypemonitor records call-sites independently giving a set of call-sites. A possible exten-
sion to the monitoring process would be to record the sequence of call-sites including the
types of input and output leading to a particular call-site (known as a call-string). This
information would provide more accurate context which is useful for inferring parametric
polymorphic signatures. Nonetheless we have noted in our evaluation in Section 5.8.2
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that parametric polymorphism had limited scope in the Python programs we analysed
beyond trivial collection processing functions. In addition, despite the additional accu-
racy that call-strings provide, they would lead to a foreign textual representation for type
declarations. Consequently, it would hinder ease of understanding by developers familiar
with type annotations as supported by mainstream programming languages.

6.8 Use Cases

We describe three use cases for our tool. First, pytypemonitor can be used to detect API
changes within a program introduced by two different version of Python or with different
versions of a module. Second, it can be used as a form of regression testing when used in
combination with our tool pytypedecl. Third, pytypemonitor can generally be used as a
program comprehension tool for generating documentation about a new code base which
developers can then read to inspect particular code locations of interest.

6.8.1 Detecting API changes

Our tool can be used to detect API changes by:

1. Run pytypemonitor on the program using its test suites to generate type declarations
used as API contracts

2. Run pytypemonitor on the program using a different language version

3. Perform a diff between the two sets of generated API contracts to locate possible
incompatibilities

We conducted the following experiment on the ystockquote programme. Running it
using Python 2.7 produced the following signature for the method request() which is
responsible for fetching data for a specific stock:

_request(str, str) -> unicode

Running the same tests using Python 3 produced a different signature, indicating a
change occurred to the API. In fact, the method request() returned unicode in Python
2.7 but now returns str using Python 3. These two objects have different semantics.

_request(str, str) -> str

After inspecting the body of request() it was found that it is also dependent on the
urlopen module which produces different result bytes or str depending on the different
Python versions.
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6.8.2 Regression testing

The goal of regression testing is to assert that changes introduced in code do not affect
parts of the program that should continue to work correctly. It is typically performed by
re-running test cases testing functionality of older features and ensuring that the program
behaviour is the same.

Our tool pytypemonitor complements pytypechecker (described in the previous chap-
ter) to provide a form of regression testing of APIs. In fact, to conduct regression testing,
a set of contracts about the behaviour of the program is required to check against. The
action is:

1. Run pytypemonitor on the program using its test suites to generate type declarations
used as API contracts

2. Make changes to the program’s implementation as new requirements are introduced

3. Enable runtime type checking by using pytypechecker and the generated type dec-
larations

4. Run the program and collect assertions errors resulting from API breaking changes

Performing this workflow on the ystockquote program results in an immediate run-
time error indicating that the old signature is violated.

6.8.3 Program comprehension

From a broader perspective, we see pytypemonitor as a useful tool for automatically
generating documentation about the APIs of a particular program. Documenting code is
seen as good software development practice. However, many developers do not like it as it
is seen as time-consuming. Our tool can be used to produce concise type declarations to be
used as a replacement for API documentation. This is useful for improving productivity
when locating appropriate parts of the program that require further exploration.

6.9 Related work

Rubydust An et al. [31] presented a dynamic type inference algorithm and implemen-
tation for Ruby called Rubydust. In a nutshell, Rubydust’s type inference algorithm
introduces a type variable for each field, method parameter and return type and infers a
ground type for them based on constraints produced using dynamic runs of the program.
It is implemented by making use of proxy objects which wrap each field, method pa-
rameter and return type with the associated type variable. Constraints are solved offline
once dynamic runs have been collected. Rubydust works as a library by making use of
Ruby’s introspection features. Their work was evaluated on small scale programs (from
96LoC to 750LoC). The authors report that the overhead of using proxy objects is quite
high compared to the original program. For example, they report an overhead of up to
2800x the original running time. In comparison, our system reported a significantly lower
overhead of 2x to 5x for programs 40x larger.
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Starkiller Starkiller is a tool that compiles Python programs into equivalent C++
programs [114]. As part of the compilation process, it performs static type inference to
generate optimised code. Starkiller’s type inference is flow-insensitive and based on the
Cartesian Product Algorithm [30].

In contrast with the traditional type-inference approach using unification [87, 67],
the Cartesian Product Algorithm (CPA) infers types by statically modelling data flow.
Concretely, for each function definition, the algorithm calculates the cartesian product of
the possible type sets of each parameter. The type sets of each parameter is resolved at
each call-site by looking up the data flow graph of each actual argument. In comparison to
our work, pytypemonitor has several benefits over Starkiller. First, it is not restricted to
a subset of Python features. For example, Starkiller does not support Python’s dynamic
features such as eval and eval which are permitted using pytypemonitor. Second, it uses
a flow-insensitive analysis which may lead to loss of precision during type inference. By
constrast, pytypemonitor always uses the possible execution paths because it perform the
monitoring as the program is executed. Third, pytypemonitor caused only small overhead
of 2x to 5x for medium sized programs which makes it practical to enable on production
systems.

Mino Mino is a system that performs static type inference of Python programs [123].
However, Mino takes a different approach compared to traditional constraint-solving tech-
niques. Mino sees type inference as a classification problem which can be solved using
machine-learning techniques. Indeed, Mino relies on a training set of existing Python
program which are already labelled with type information. Mino then uses this training
set to infer the type of similar looking program structures. For example, variables named
i are usually counters or index variables and can be inferred to be integers. In relation
to our work, Mino has only reported this technique to infer built-in Python types such as
int, list, dict and tuple.

JSTrace JSTrace is a tool for JavaScript which discovers type annotations for func-
tions [113]. Rather than using a static analysis approach, JSTrace performs a dynamic
analysis. The tool performs the analysis in two phases. First, the input program is pre-
processed with additional instrumentation code to capture type information. Next, the
modified input program is run to gather type information which are then used to gen-
erate concrete type annotations. The author reports that this approach did not impact
performance when used with interactive user applications.

It is interesting to point out that the idea of tracing types emitted by a dynamically-
typed program at runtime is not new. This idea has been used by just-in-time compilers to
optimise the execution of dynamically-typed languages. Type traces are used to generate
type-specialised native code [61]. In addition, it is also used as a way to supplement static
type inference [59, 72].

Dynamic behaviour of Python applications Static analysis of Python code has
been explored by several previous work including Starkiller described above. However,
they typically restrict Python’s expressiveness by assuming that most dynamic features
such as reflection (e.g. adding a field at runtime) are not used in practice. To confirm
these assumptions, Holkner et al. undertook a study that measures the dynamic behaviour
of 24 open source Python programs. They found that reflective features were highly used

114



in all Python programs. This strengthens our case for using dynamic type-inference as
an alternative to static analysis.

Daikon system Daikon is a system that can infer likely program invariants such as
whether a variable is in a certain range or is non-null [55]. Daikon works in three steps.
First a given program is instrumented to write data trace files. Second, the instrumented
program is run with a test suite. Finally, the invariant detector reads the data trace files
and generates potential behavioural invariants. In comparison with our work, function
type signatures can also be seen as a kind of program invariants. Nonetheless, our system
directly monitors the behaviour of the program via proxy objects instead of a separate
instrumentation phase. In addition, type information of a program are reduced to provide
manageable function type signatures for programmers.

6.10 Conclusion

This chapter described pytypemonitor, a lightweight system that dynamically infers func-
tion type signatures for Python programs. We developed this system to help developers
get insights about their programs. This system supports the typechecking mechanism
we presented in the previous chapter by easing the number of manual type annotation
required by developers. The architecture of the system we presented is extensible and
applicable to other dynamically-typed languages. It consists of three components: col-
lection of source code facts, amalgamation of source code facts and translation to a type
declaration language. We demonstrated the use of proxy objects which monitor the input
and output behaviour of functions as a collection mechanism. In addition, we presented
five techniques which simplify the collected information to produce manageable function
type signatures. In addition, we presented the implementation of our system and showed
that the performance overhead of our monitoring mechanism was manageable. Finally, we
evaluated our system on five Python programs and showed that it produce useful insights
given sufficient coverage for larger programs.

115



116



Chapter 7

Conclusions

This chapter concludes this dissertation with an overall summary, overview of future work
and final remarks.

7.1 Summary

This dissertation had two related aims. First, we argued that programming language
evolution is a complex and important subject that affects both language designers and
developers. Second, this thesis made the argument that programming language evolution
can be supported with program comprehension tools.

To this end, this dissertation started by characterising the multiple factors driving
programming language evolution. It then established a classification of incompatible
evolution changes. Finally, we developed three instances of tools to provide insights about
programming language evolution. We provided supporting evidence and evaluation for
these tools. We found that the techniques we developed are lightweight and simple to
integrate in large programs and can diagnose programming language evolution issues that
would be difficult for developers to manually locate and understand.

In summary, this dissertation made the following contributions.

Chapter 2 characterised factors driving language evolution based on developer needs,
influences from other programming language communities and business-driven agendas.
Some material of this chapter was published in the book Java 8 in Action [125].

Chapter 3 argued that imcompatible programming language evolution is problematic
for language designers and developers. To this end, this chapter established a classification
of incompatible changes introduced into programming languages that affect developers.
It provided a survey of use cases based on an analysis of compatibility guides and bug
reports from several programming languages.

Chapter 4 contributed a search-based system that lets language designers and devel-
oper locate relevant code patterns in large code bases. This work was published in Science
of Computer Programming [127].
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Chapter 5 addressed the problem that certain classes of incompatibilities are diffi-
cult to locate accurately in dynamically typed programming languages. It contributed a
lightweight run-time type-checking system for Python which let programmers annotate
their code to produce diagnosis and explanations about the location of these incompati-
bilities. This work influenced the design of a standard type annotation language as part
of a Python 3 enhancement proposal by Rossum et al [132].

Chapter 6 contributed a dynamic analysis to automatically provide migration insights
about a Python program. This analysis generated function type signatures to alleviate
the burden of manual annotation for programmers.

7.2 Further work

We hope the work presented in this dissertation opens new research avenues for program-
ming language evolution. This section suggests further research in the following areas.

7.2.1 A Corpus querying platform

The source-code querying system we presented in Chapter 4 can be extended into a corpus
querying platform to help language design decisions. In fact, there are several proposals
such as Qualitas Corpus (a corpus of open source software) that aim to help language
researchers examine code [120]. A successful platform requires a user-friendly source code
query language that is close to the original source code programming language. Such
queries could be translated to queries in our system. Our system could also be extended
with support for version history [118]. This would enable researchers to ask a wider range
of questions such as adoption of certain development practices, new libraries or language
features over time. Finally, our system stores as overlays those relations corresponding
to compiler data structures, such as control-flow graph and call graph. However, this is
rather ad-hoc and inefficient. Ideally, we would like overlays to be seen as cached results
of queries. This would be very attractive, in that a user query may then be defined as
pre-calculating and storing overlay relations before the query is evaluated.

7.2.2 Contracts for programming language evolution

The work we presented with Python in Chapter 5 and 6 made trade-offs in terms of
expressiveness and simplicity. For example, it focused on type-level information and
did not support annotations for local variables and nested functions. In addition, it is
implemented as a runtime analysis. An interesting extension would be to design a hybrid
approach which allows both static type checking and dynamic type checking while also
simply integrating with existing toolchains. This would enable our system to minimise the
time spent on runtime analysis. Another interesting direction is to apply this technique
to other level of incompatibilities which we presented in Chapter 2 such as behavioural
and security incompatibilities.
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7.2.3 Refactoring

This dissertation focused on providing search support in the context of programming lan-
guage evolution. Further work is required to integrate search techniques with refactoring
approaches. In fact, another problematic aspect for developers is the manual code changes
required after identifying code location of interest. This idea has already been applied in
the context of upgrading code bases which use deprecated idioms. However, this mech-
anism could also be applied to automatically fixing incompatibilities when upgrading to
a newer language version. For example, a search tool may identify source code locations
that introduce incompatibilities. Another tool could make code transformation sugges-
tions or fix the incompatibilities if possible. Such a tool could then be provided as part
of the language compiler toolchain.

7.3 Final remarks

In closing, we hope this dissertation will spur further interest in establishing programming
language evolution as a research field of its own. We have argued in this dissertation that
programming language evolution is a cross-disciplinary subject that can benefit not only
from academic research in programming language and software engineering but also from
linguistics and social and economic research. In addition, it is crucial that industrial needs
are taken in consideration because companies and developers are the first to suffer from
language evolution. To this end, it is essential that academic research and industry work
together for the benefit of all users of programming languages.
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