
Technical Report
Number 901

Computer Laboratory

UCAM-CL-TR-901
ISSN 1476-2986

Signal maps for
smartphone localisation

Chao Gao

February 2017

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2017 Chao Gao

This technical report is based on a dissertation submitted
August 2016 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, King’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Signal maps for smartphone localisation

Chao Gao

Summary—Indoor positioning has been an active research area for 20 years. Systems based on
dedicated infrastructure such as ultrasound or ultra-wideband (UWB) radio can provide centimetre-
accuracy. But they are generally prohibitively expensive to build, deploy and maintain. Today, signal
fingerprinting-based indoor positioning techniques, which use existing wireless infrastructure, are
arguably the most prevalent. The fingerprinting-based positioning system matches the current signal
observations (fingerprints) at a device to position it on a pre-defined fingerprint map. The map is
created via some form of survey. However, a major deterrent of these systems is the initial creation
and subsequent maintenance of the signal maps. The commonly used map building method is the
so-called manual survey, during which a surveyor visits each point on a regular grid and measures
the signal fingerprints there. This traditional method is laborious and not considered scalable. An
emerging alternative to manual survey is the path survey, in which a surveyor moves continuously
through the environment and signal measurements are taken by the surveying device along the path.
A path survey is intuitively better than a manual survey, at least in terms of speed. But, path surveys
have not been well-studied yet.

This thesis assessed the path survey quantitatively and rigorously, demonstrated that path survey
can approach the manual survey in terms of accuracy if certain guidelines are followed. Automated
survey systems have been proposed and a commodity smart-phone is the only survey device required.
The proposed systems achieve sub-metre accuracy in recovering the survey trajectory both with and
without environmental information (floor plans), and have been found to outperform the state-of-the-
art in terms of robustness and scalability.

This thesis concludes that path survey can be streamlined by the proposed systems to replace
the laborious manual survey. The proposed systems can promote the deployment of indoor position-
ing system in large-scale and complicated environments, especially in dynamic environments where
frequent re-survey is needed.

3

Acknowledgements

I could not have completed my PhD without the help of many people. In particular, I wish to
thank my supervisor Dr. Robert Harle for his time and patience, I wish to thank my parents for
their love and support, and I wish to thank my friends and brothers for being with me along my
PhD journey. I wish to thank everyone in the Digital Technology Group for the kind advice, fun and
friendly atmosphere they provided. Finally, I wish to thank the Cambridge Commonwealth, European
& International Trust and the China Scholarship Council for their financial support through the CSC
Cambridge Scholarship.

5

Contents

1 Introduction 15
1.1 Research questions . 16
1.2 Limitations of scope . 17
1.3 Thesis outline . 18

2 Related work 21
2.1 Dedicated infrastructure solutions . 21
2.2 Existing infrastructure solutions . 22
2.3 Infrastructure-free solutions . 23
2.4 Combined/Fused solutions . 24
2.5 Summary . 24

3 Quantitative assessment of path survey 25
3.1 Introduction . 25
3.2 Path surveying techniques . 26
3.3 A ground-truthed survey dataset . 27

3.3.1 Environment and devices . 27
3.3.2 Manual survey . 28
3.3.3 Path survey walks . 28
3.3.4 GP regressed map . 29

3.4 Point comparison on regressed maps . 30
3.5 Positioning comparison on GP regressed maps . 32

3.5.1 Positioning method . 32
3.5.2 Map directionality and space coverage of survey path 33
3.5.3 Segment survey evaluation . 36
3.5.4 Sample density evaluation . 36

3.6 Conclusions and further work . 37

4 Automated signal survey 39
4.1 Introduction . 39
4.2 Related work . 40
4.3 Magnetic mapping but not positioning . 41
4.4 Magnetic sequence-based loop detection . 41

4.4.1 Matching algorithm . 42
4.4.2 Match validation . 42

4.5 A magnetic surveying system . 43
4.5.1 PDR . 43
4.5.2 PDR line filter (optional) . 45
4.5.3 SLAM front-end and back-end . 46

7

4.5.4 Map generation . 46
4.5.5 Positioning . 46

4.6 Testbeds . 48
4.6.1 Floor plans . 48

4.7 Evaluation . 49
4.7.1 SLAM trajectory accuracy . 49
4.7.2 Positioning accuracy . 51

4.7.2.1 WGB2a . 51
4.7.2.2 WGB1 and WGB2 . 53
4.7.2.3 ENG, KX, and RUTH . 53

4.8 Conclusions and further work . 55

5 Optimised graphslam back-end 57
5.1 Introduction . 57
5.2 Related work . 58
5.3 Problem formulation . 58
5.4 State-of-the-art algorithms . 60

5.4.1 g2o . 60
5.4.2 SGD . 61
5.4.3 Toro . 61
5.4.4 Datasets . 61
5.4.5 Evaluation . 62

5.4.5.1 Algorithm settings . 62
5.4.5.2 Odometry constraints . 63
5.4.5.3 Metrics . 65
5.4.5.4 Results and analysis . 66

5.5 Optimised back-end design . 67
5.5.1 Motivation . 67
5.5.2 Optimisation based on tree operation and approximation 68

5.5.2.1 Linear-time pose computation 68
5.5.2.2 Tree-based H estimation . 69
5.5.2.3 Speeding up H estimation by approximation 70

5.5.3 Error propagation over selected constraints only 72
5.5.3.1 Structural feature of loop closures and constraints 72
5.5.3.2 Constraints selection and error propagation 75

5.6 Evaluation . 78
5.7 Conclusions . 80

6 A robust survey trajectory recovery system 81
6.1 Introduction . 81
6.2 Dedicated surveying . 82
6.3 Related work . 82
6.4 Trajectory recovery by state-of-the-art algorithms 83

6.4.1 Inputs . 83
6.4.2 Methods . 83
6.4.3 Result analysis . 85

6.5 Motivations . 85
6.6 System overview . 89

8

6.7 PF1 . 90
6.8 Straight line filter . 90
6.9 Loop closure detection and validation . 91
6.10 PF2 . 94
6.11 Evaluation . 95

6.11.1 Loop closure detection and validation . 96
6.11.2 Trajectory outputs, particle clouds and room ambiguities 96
6.11.3 Signal map results . 96

6.12 Conclusions . 98

7 Conclusions 99
7.1 Research contributions . 99
7.2 Contributions to the research questions . 100

7.2.1 Research question 1: how well can a path survey approach a manual survey? 101
7.2.2 Research question 2: how should the path survey be performed in order to

provide best positioning performance? . 102
7.2.3 Research question 3: how can the surveyor’s path be recovered accurately and

efficiently? . 102
7.2.4 Research question 4: what inputs are needed for accurate trajectory recovery? 103

7.3 Limitations and future work . 103
7.3.1 Overcome environmental limitation . 103
7.3.2 Fuse multiple survey paths . 104
7.3.3 Achieve 3D signal survey . 104
7.3.4 Automatic update of signal maps . 105
7.3.5 Preserve user privacy . 105

7.4 Final words . 106

A Datasets and evaluation results for SLAM 107

Bibliography 127

9

List of Figures

1.1 Manual survey and path survey. 16
1.2 Thesis outline. 19

2.1 Sample GP regression map built from a path survey. 23

3.1 The test area. 28
3.2 The survey points . 28
3.3 Survey walk paths . 29
3.4 Sample signal surveys and the resulting GP maps. 30
3.5 RSS90 maps from point comparison of various GP maps (W1–W4) with the manual

survey (MS) GP map. 31
3.6 RSS90 distribution (CDF). 31
3.7 Corridor directionality for BLE and WiFi . 33
3.8 Positioning results for directionality analysis. 34
3.9 The positioning results of W1MS (W1 maps evaluated against manual survey data)

broken down by distance of manual test point from the W1 survey path. 35
3.10 The positioning CDF results for W1, W2 and W3 maps evaluated against fingerprints

generated from W4 data. 36
3.11 Sample density evaluation. 37

4.1 Example magnetic loop closure for both scalar and vector magnetic fields. 42
4.2 An example of a false loop closure. 44
4.3 System architecture. 44
4.4 The value of the PDR line filter. 45
4.5 Sample SLAM component outputs. 47
4.6 Sample WiFi Gaussian Processes maps from survey walks. 47
4.7 Result of magnetic SLAM. 50
4.8 SLAM accuracy for WGB2a testbed. 51
4.9 Positioning errors in the WGB2a testbed. 52
4.10 The WiFi positioning CDF results for Ideal-SLAM maps created from W1 and W3

broken down by distance of test point from the survey trajectory. 52
4.11 Positioning errors in WGB1 and WGB2. 53
4.12 Result of magnetic SLAM. 54
4.13 Error CDFs for RUTH, ENG and KX, separated by distance of test points from the

survey trajectory. 55

5.1 An example of constraints in a pose graph. 59
5.2 The illustration of loop closures and loop closure constraints. 59
5.3 Two sample datasets (WGB2a-1 and WGB2-3) used for evaluation of SLAM back-

end algorithms. 62

11

5.4 g2o results when odometry constraints are discarded. 64
5.5 χ2 errors and SO errors. 66
5.6 SLAM results on WGB2a-1 and WGB2-3. 67
5.7 Example of linear-time pose computation. 69
5.8 Example of two types of loop closures. 72
5.9 Illustration of constraints and their affected poses. 73
5.10 Illustration of solving selected constraints in the two types of loop closures respec-

tively shown in Figure 5.8. 74
5.11 MSGD results on WGB2a-1 and WGB2-3. 78
5.12 CPU time per iteration of SGD, MSGD− and MSGD. 79
5.13 χ2 errors for different algorithms on dataset WGB2-3. 79

6.1 Example scaling errors from SLAM without a floor plan. 81
6.2 The groundtruth of Path-1. 85
6.3 Example outputs of the conventional particle filter plus smoother approach. 86
6.4 Example outputs of the conventional particle filter plus smoother approach on longer

walks. 87
6.5 Relationship between execution time and number of particles. 88
6.6 The work flow of the proposed trajectory recovery system. 89
6.7 Examples of PF1-traj, segment pair and maximum segment pair. 91
6.8 Loop closure detection/validation examples for two maximum segment pairs. 92
6.9 Illustration for MSP finding algorithm. 93
6.10 Loop closure validation. 95
6.11 The results of the proposed system on the path Path-1, Path-2 and Path-3. 97
6.12 The error CDFs when applying a FL smoother and our proposed system on Path-1 data. 97
6.13 The estimated trajectory of Path-3 in the table area. 97
6.14 Sample signal map and final positioning result . 98

A.1 Dataset of WGB2a. 108
A.2 Dataset of WGB1. 109
A.3 Dataset of WGB2. 110
A.4 Dataset of ENG, RUTH and KX. 111
A.5 SLAM results on WGB2a. 112
A.6 SLAM results on WGB1. 113
A.7 SLAM results on WGB2. 114
A.8 SLAM results on ENG, RUTH and KX. 115
A.9 MSGD results on WGB2a. 116
A.10 MSGD results on WGB1. 117
A.11 MSGD results on WGB2. 118
A.12 MSGD results on ENG, RUTH and KX. 119

12

List of Tables

3.1 Number of samples for a single WiFi/BLE beacon in different directional datasets. . 33
3.2 Survey durations . 37

4.1 WGB2a SLAM Accuracy Summary. 49

5.1 Statistics of all datasets . 63

6.1 Statistics on loop closures before and after validation. 96

13

Chapter 1

Introduction

Determining the location of people indoors is a crucial enabler for pervasive computing appli-
cations. Research into indoor location systems began more than 20 years ago [58, 51, 2]. Multiple
techniques have been used for positioning. For example, the Active Badge determines a person’s lo-
cation to room accuracy based on Infra-red signals [91]. The Active Bat [37, 92, 97] and the Cricket
system [74, 82, 6] provide centimetre-level accuracy by the use of ultrasonic sensors. However,
these systems require dedicated infrastructures which are prohibitively expensive to build, deploy and
maintain.

Today, arguably the most prevalent indoor location systems are based on signal fingerprinting:
devices are provided with a pre-existing signal map for the environment, and an online positioning
phase matches the current signal observations at a device to position it on this map. This kind of
system is usually based on WiFi [5], mainly due to its ubiquity, but many other signals such as
Bluetooth Low Energy (BLE) [22], cellular [73], DECT [53], and magnetic field strength [12] can be
used. The advantage of fingerprinting systems is the capability of fine-grained continuous positioning
and tracking. The prerequisite of fingerprinting is a map of some spatially-variant but temporally-
stable signals. For instance, WiFi fingerprinting requires us to build a map that associates WiFi
Received Signal Strength (RSS) with positions. However, the initial creation and the subsequent
long-term maintenance of the signal maps are a major challenge for fingerprinting systems.

In early work, manual surveys were used to build the signal maps, which required a surveyor
to visit each point on a regular grid and measure the signal fingerprint there. In 2010, a WiFi-based
indoor positioning system was deployed at the COEX complex in Seoul, Korea, which took 15 survey-
ors 2 weeks to complete the signal survey work in an area of more than 450,000m2 [35]. In dynamic
environments like this huge shopping mall, frequent re-surveying is necessary but prohibitively ex-
pensive. To illustrate, Figure 1.1a shows the survey points for a typical manual survey (but in a much
smaller area). Obviously, this process has many disadvantages, which are summarised below:

• It is laborious and not considered scalable. For large-scale environments like a shopping mall,
this process is especially tedious and costly in terms of man-hours.

• The way of manually specifying the position of current survey point is often inaccurate, which
can cause erroneous signal maps and affect the ultimate positioning performance.

• If the environment is very dynamic, regular resurveys may be needed, but performing the man-
ual survey frequently is not scalable.

An alternative survey method is what we term a path survey, during which the surveyor moves
continuously through the environment and signal measurements are taken by the surveying device

15

16 1.1. RESEARCH QUESTIONS

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(a) An example of grid-based manual survey. Red
points are the survey points. 206 minutes were
used for this survey.

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(b) An example of a path-based survey in the same
environment. Trajectory in black is the survey
path the surveyor took. Red points are the survey
points where signal samples were taken along the
path. 9.6 minutes were used for this survey.

Figure 1.1: Manual survey and path survey. Please note that the two sample surveys were performed with the aid of an
high-accuracy external positioning system (i.e. the Bat system [1]) to provide the groundtruthed position of the sample
device (surveyor) in real time. Without Bat, the grid-based manual survey could take even longer time and it would be a
challenge for the path survey to recover survey trajectory accurately.

along the path. Figure 1.1b shows a typical path survey. The paths could be pre-defined or entirely ad-
hoc. For example, applications such as WiFiSLAM, Google Indoor Maps [61] and IndoorAtlas [44]
require the surveyor to move in manually-specified straight line segments. A more efficient way is
to estimate the survey path by Pedestrian Dead Reckoning (PDR) algorithms applied to commodity
inertial sensors found in smartphones. However, PDR algorithms drift quickly, so the error needs
to be constrained by floor plans if available, or by the application of Simultaneous Localisation and
Mapping (SLAM) algorithms1. Once the survey path is recovered (manually or via the algorithms
like SLAM), it is interpolated at the times signal measurements were made to produce a sequence of
survey points. Signal maps are then generated from signals collected along these paths rather than a
regular grid of points.

In terms of speed, a path survey is undoubtedly better than a traditional grid-based manual survey.
However, path surveys are not well-studied. This thesis investigates key aspects of path surveys, with
quantitative and rigorous analysis results given. Based on these, automated signal survey systems are
proposed to streamline the signal survey process. Efficient and robust algorithms are proposed and
evaluated against state-of-the-art alternatives.

1.1 Research questions
How well can a path survey approximate a manual survey? The signal maps generated from a

path survey can be seen as approximations to those that result from a detailed manual survey.
But how well can the path survey approximate the manual survey? A quantitative and rigorous
analysis is provided in Chapter 4.

1In robotics, SLAM algorithms localise a robot in an unknown environment and simultaneously build a map of this
environment. In the signal survey context, SLAM algorithms can be used to estimate the walking trajectory of the
surveyor. Observations like wireless and environmental information are typically used by SLAM to achieve this task.
Please refer to [86] for details of various SLAM algorithms.

CHAPTER 1. INTRODUCTION 17

How should the path survey be performed in order to provide best positioning performance? A
path survey can be carried out in different ways in an environment (e.g. with different degrees
of coverage). How a path survey is taken can affect the ultimate performance. Clear guidelines
need to be provided and followed properly.

How can the surveyor’s path be recovered accurately and efficiently? The key for a path survey is
the accurate recovery of the survey trajectory. PDR algorithms drift quickly so cannot be used
alone. How PDR errors can be corrected robustly and efficiently is not well-studied. Automated
path survey systems need to be designed and evaluated to answer this question.

What inputs are needed for accurate trajectory recovery? Floor plans can be used to constrain
PDR errors, but they are not always available. Is a floor plan indispensable to a path survey?
How should the survey system deal with the cases both with and without floor plans?

1.2 Limitations of scope
This thesis focuses on a single component of a complete indoor positioning system—the signal

survey component. The following limitations apply:
Signal mapping but not positioning. A signal map associates some property of the signal (usually

signal strength) with locations in an unknown environment. This thesis is concerned with how
to build this signal map, the key to which is to recover the survey trajectory accurately, effi-
ciently and robustly. To evaluate the signal maps being built by the proposed automated survey
systems, some commonly used positioning techniques (e.g. the Gaussian Process Regression-
based fingerprinting) are adopted. This is a straight-forward way to prove the reliability of the
signal maps. And it is also useful for the comparisons between performance of different survey
techniques. But we should note that multiple factors can affect the ultimate positioning per-
formance, e.g. whether using the survey data as input to a regression algorithm to generate a
continuous map, what kinds of algorithms are used to achieve positioning and tracking. How
these factors affect the positioning accuracy and how to achieve better positioning results will
not be covered in this thesis. The basic idea of this thesis is that better trajectory recovery re-
sults in better signal maps, and better maps give better positioning regardless of the positioning
algorithms. Therefore, this thesis focuses on the signal mapping but not positioning.

Empirical fingerprinting only. In some works a signal propagation model is built to achieve posi-
tioning by estimating the distance to signal sources (e.g. through trilateration). Signal survey
for this kind of positioning scheme could be seen as mapping for the signal sources in the en-
vironment. This can be achieved through typical SLAM algorithms. However, a reliable signal
propagation model is hard to build for complicated environments as found indoors. And this ap-
proach cannot be used on signals without point sources associated with specific measurements
(e.g. magnetic fields). So this thesis deals with the signal survey for empirical fingerprinting
purpose only. For this purpose, we associate only the signal strength information with locations
but do not infer the positions of signal sources explicitly (although it is achievable from the
maps we build).

Signal survey by dedicated surveyor but not crowdsourcing.. Some researchers have advocated
crowdsourcing the radio maps. In some sense, the survey is then ‘free’: a survey point is created
by any device that knows its location (or can be subsequently located) and can measure the local
signals. A portion of the radio map is created and maintained simply by one or more devices
being in that area and willing to report measurements. This is a highly scalable concept, but
there are a number of practical issues that have prevented wide usage of it to date:
• Device heterogeneity makes it difficult to combine crowdsourced measurements. A num-

ber of previous works have reported significant differences in the signal strength measure-

18 1.3. THESIS OUTLINE

ments made on one phone model to those made on another in the same context [48].

• Even the same device can record a different fingerprint at the same location according to
its context. For example, being carried in-hand vs in-pocket vs in-bag vs within a dense
crowd.

• The crowdsourced data collection is battery-intensive. It usually requires all of the iner-
tial sensors to be on, continuous WiFi scanning, etc. Typical users are reluctant to run
sensors they are not directly using since they reduce battery life; heat up the phone; and
interfere with normal usage (e.g. repeated WiFi scanning adversely impacts the WiFi
performance).

• Map quality can vary dramatically according to the volume and quality of the crowd-
sourced data in a specific space. This results in inconsistent location accuracy, which is
difficult for location-aware applications to handle.

• Security and privacy are potentially at risk. Malicious users could contrive to adapt the
map to their advantage, and privacy is at risk unless the data are carefully anonymised
(which may be difficult given that devices must be individually profiled for best results).

Based on the above consideration, this thesis investigates a different approach. We retain the
notion of a dedicated surveyor (i.e. a user who is willing to follow specific guidelines to ex-
plicitly collect the fingerprint data needed), and focus instead on how to make their job much
easier. By removing the laborious manual survey, we enable efficient signal surveying without
accepting the disadvantages of crowdsourcing listed above. The remaining cost is the need for
a dedicated surveyor to do the survey task, perhaps on a (semi-) regular basis. We are able to
reduce this cost to a simple walk that passes within a few metres of anywhere that positioning
is required. Surveying a typical office space takes only minutes and may even be carried out
by security personnel or cleaning staff (both of which are expected to visit all of the building
regularly).

1.3 Thesis outline
The outline of the remainder of this thesis is as follows, with a graphical illustration shown in

Figure 1.2.
Chapter 2 describes existing indoor positioning systems, highlights both the advantages and disad-

vantages of fingerprinting-based systems, and motivates the remainder of this thesis.
Chapter 3 quantitatively evaluates path surveys with reference to a detailed manual survey. To ex-

plore the upper-bound of real-world path survey performance, an alternative high-accuracy lo-
cation system is used to compare best-case path surveys to manual surveys in terms of map qual-
ity and positioning performance. Guidelines about how the path survey should be performed
are provided. This chapter demonstrates that a path survey can provide maps of equivalent
quality to a manual survey if the provided guidelines are followed and an accurate trajectory is
estimated.

Chapter 4 introduces a SLAM-based dedicated surveying system that uses the fast-varying mag-
netic field to constrain the trajectory, which is then used to generate maps of other signals
such as WiFi/BLE. The proposed system achieves high accuracy and efficiency using only a
smartphone. No external infrastructure or floor plans are required. It also has features such
as supporting free movement of the surveyor and allowing one-shot (push-to-fix) positioning.
Extensive experiments demonstrate the efficiency and reliability of the proposed system,

CHAPTER 1. INTRODUCTION 19

Chapter 1 & 2

Introduction and

Related Work

Chapter 3

Quantitative Assessment

of Path Survey

Chapter 4

Survey Trajectory

Recovery Without

Floorplans

Chapter 6

Survey Trajectory

Recovery With

Floorplans

Chapter 5

SLAM Backend

Optimisation

Chapter 7

Conclusions

Automated Survey Systems

Figure 1.2: Thesis outline.

Chapter 5 optimises the SLAM back-end component used in the system proposed in the previous
chapter. State-of-the-art SLAM back-end algorithms are evaluated comprehensively. An opti-
mised back-end algorithm is proposed and evaluated against the state-of-the-art. The proposed
algorithm is shown to outperform state-of-the-arts in some key aspects.

Chapter 6 proposes a survey system that uses floor plans and magnetic sequence-based loop closures
to recover the survey trajectory. It differs from the system proposed in Chapter 2 by producing
trajectories consistent with a floor plan. The proposed system is evaluated against state-of-the-
art algorithms and shown to be more robust to noisy PDR results.

Chapter 7 concludes the thesis with summarised contributions and answers to the research questions
posed in this chapter. The outline for future work is given.

Chapter 2

Related work

The larger aim of this work is to provide indoor location and so it is important to review the current
state-of-the-art. Existing indoor positioning systems can be divided into three categories: the systems
based on dedicated infrastructure, the systems based on existing infrastructure and infrastructure-free
systems. We will consider each in turn.

2.1 Dedicated infrastructure solutions

This type of system requires the deployment of dedicated infrastructure to provide positioning
service indoors. Typical technologies adopted by these systems include infra-red (IR), Bluetooth
Low Energy (BLE), ultrasound, and ultra-wideband (UWB). The most significant advantage of them
is the ability to achieve great robustness and high accuracy. They are usually based on the concept of
proximity or on properties of a signal as it passes through space (e.g. directionality or time of flight).

A good proximity example is the Active Badge system, which is an indoor location system based
on IR sensor networks [91]. It provides room scale accuracy based on a simple idea: IR signals
cannot penetrate walls so it can robustly position a user to a room. Despite its robustness (because of
the simple rationale it adopts), the coarse location accuracy is its major drawback.

More recently, many proximity-based systems are based on BLE beacons. A well-known solution
is the Apple’s iBeacon [43]. This kind of system deploys BLE beacons at specific points of interest.
These beacons communicate with nearby mobile devices. The physical location of a device is inferred
from the information embedded in the messages being transmitted (e.g. distance could be inferred
based on the received signal strength when receiving a BLE message). An iBeacon works like a
location marker. So a large number of BLE beacons are needed if continuous positioning is required,
which is expensive for large-scale environments like a shopping mall.

Many signals have been used for timing-based positioning. For example, ultrasound-based solu-
tions give much higher positioning accuracy than proximity systems. A representative ultrasound-
based system is the Active Bat [37, 92, 97]. This system requires to deploy ultrasonic beacons in the
environment, and attach a ultrasonic sensor to each user. By estimating the distance between a user
and 3 or more beacons, the position of the user could be inferred by trilateration. Active Bat locates
people to within 3 cm 95% of the time with a 10–15Hz update rate. Another similar system is the
Cricket system [74, 82, 6].

Other systems are based on radio signal, notably UWB [78, 60, 31]. These systems work in a
similar manner as the ultrasound-based systems: UWB beacons are required to be installed in the
environments and UWB sensor needs to be attached to the target being tracked. Typical accuracy of
UWB positioning system is within 10 cm [60].

21

22 2.2. EXISTING INFRASTRUCTURE SOLUTIONS

However, the most important disadvantage of all the systems described above is the cost to build,
deploy and maintain these dedicated infrastructure. For example, a large number of sensors need not
only to be deployed, but also to be charged. Power consumption of both ultrasound and UWB sensors
are high, so battery-based charging solution is not suitable for long term deployment. Therefore, pow-
ering the sensor network by mains electricity is necessary. But wiring cables throughout a building for
hundreds or even thousands of sensors is not practical. So although these systems exist commercially
(e.g. both Ubisense 1 and DecaWave 2 provide UWB-based positioning solutions) and can provide
high-accuracy positioning performance, they are usually deployed for only niche applications and not
likely to be used in daily life. Moreover, most modern smartphones are not equipped with any IR,
ultrasound or UWB sensors, which further limits the popularity of such systems.

2.2 Existing infrastructure solutions
This type of indoor positioning system is built upon re-using the infrastructure that has already

been deployed. For example, currently more and more WiFi routers are deployed in public areas. If
a WiFi signal propagation model could be built, then the distance between a mobile device and each
WiFi access point could be estimated. With three or more such estimations, the positioning of this
mobile device could be inferred by trilateration. However, building a reliable radio propagation model
for the complicated indoor environments is hard. Instead, the most prevalent existing infrastructure
solutions are based on the empirical fingerprinting method. Rather than building a radio propagation
model, this method matches the current signal observations (fingerprints) at a device to position it on
a pre-defined fingerprint map. The idea began with the RADAR system [5]. Since then there have
been a plethora of research and commercial systems using indoor fingerprinting (e.g. [38, 99, 47]).
These systems have generally used WiFi signals or BLE signals [22], but cellular [73], DECT [53],
and magnetic field strength [12] have also been used.

The fingerprinting-based systems have significant advantages like low deployment cost (infras-
tructure is already there for use, especially in public areas) and reasonable accuracy (typically be-
tween 2–5m on average). But the initial creation and subsequent maintenance of the signal maps is a
major deterrent of these systems. As described in Chapter 1, the signal map is usually created via a
manual survey. We advocate that a path survey is a promising alternative to manual survey but it has
not been well-studied yet.

Manual surveys result in a set of survey points distributed throughout the space of interest. These
points can be used as-is, forming a raw map. Positioning is then usually achieved through a k-NN
approach to find the best matching k survey points, where k typically lies in the range 1–5 [38].

An alternative approach is to use the survey data as input to a regression algorithm to generate a
continuous map. For a dense manual survey there is often little sensitivity to the sophistication of the
regression algorithm since it is only being tasked with predicting the values a short distance from one
or more inputs.

However, for a path survey the interpolation or regression stage is often crucial. Because the
path only samples an irregular subset of the space, there is a greater need to predict values further
from the survey points. It is difficult to predict the variation of WiFi-like signals with distance in
an indoor environment and so non-parametric regression techniques are favoured. Gaussian Process
(GP) regression has emerged as the de-facto regression algorithm for WiFi data [25, 24]. Full details
are available elsewhere ([75]). Here we note only that the technique provides a normal distribution
for the signal value at any given point in space, rather than a single value. So, we therefore have an

1http://ubisense.net
2http://www.decawave.com/

CHAPTER 2. RELATED WORK 23

0
5

1
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tre
s

Metres

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(a) The expected value at each point in space.

0
5

1
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tre
s

Metres

dBm
2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

(b) The variance estimate at each point in space.

Figure 2.1: Sample GP regression map built from a path survey.

expected value and a variance estimate at each point in space (Figure 2.1).

2.3 Infrastructure-free solutions
The infrastructure-free systems do not rely on external infrastructure to achieve positioning. In-

stead, they track the motion of the human (or any moving object) using sensors mounted on the body.
Typical sensors used by these systems include the inertial measurement unit (IMU) and visual sensors
(cameras).

Visual odometry (VO) systems estimate the motion of a moving object (e.g. a smartphone or a
robot) by active vision [80], which can achieve sub-pixel accuracy in ideal case. However, vision-
based systems are easily affected by environmental factors. For example, good light condition and
rich visual features in the scene are key factors to the success of VO systems. Also, vision algo-
rithms usually require high computational cost, so special hardware like the graphics processing unit
(GPU) is often needed. Finally, they require the camera to be outside the pocket and have privacy
implications.

IMU is usually used to implement the inertial navigation system (INS). An IMU-based INS inte-
grates the acceleration and rotation to track the motion of the target relative to its initial position [88].
Typical IMUs used for human tracking – the Pedestrian Dead Reckoning (PDR) systems – are based
on the microelectromechanical systems (MEMS) [95]. The advantage is that they can be small and
light so convenient to be mounted on human body. But a common problem is that the inevitable
drift accumulates quickly over time. So, instead of making no assumptions about the movement of a
pedestrian, the prior knowledge of human gait cycle could be used to constrain the INS [28, 45]. A
commonly used method is the zero–velocity updates (ZUPTs) [81, 67, 66], which requires mounting
the IMU on a pedestrian’s foot in order to correct the INS when the foot is grounded (so the velocity
should be zero). This method could largely reduce the drift but a dedicated foot-mounted IMU is
needed.

PDR algorithms could also be implemented on a modern smartphone [36]. However, mounting
a smartphone on user’s foot is not suitable in most cases, and ZUPTs cannot be applied on a hand-
held smartphone (the movement of hands is arbitrary). So smartphone-based PDR systems are usually
based on step detection technique: the steps could be detected using simple techniques such as thresh-
olding the magnitude of the accelerometer [8], the direction of each step can be inferred by gyroscope
output, and the step length can be estimated empirically or learned based on a mathematical model [3],
then, the motion of a pedestrian can be tracked using a handheld smartphone only. However, due to
the gyroscope noise (MEMS sensors on modern smartphone) and possible errors in the step detection
as well as step length estimation, drift is also inevitable in the step-based PDR systems.

In summary, without applying any external constraints on the pedestrian’s movement, a pure PDR

24 2.4. COMBINED/FUSED SOLUTIONS

system (either running on a smartphone or using a foot-mounted IMU) would give noisy trajectory
estimate. But by combing building floor plans and particle filters, PDR can track a pedestrian to the
metre level [93, 96, 94, 49, 52].

The common disadvantage of the infrastructure-free systems is that they can only provide relative
positioning. The initial position of a user cannot be determined in a “push-to-fix” style, i.e. they
cannot tell where the user starts. Although the initial position may be inferred eventually if floor
plans and particle filters are available, many applications still cannot be enabled without immediate
position fix.

2.4 Combined/Fused solutions
Each of the three kinds of solutions described above has its own drawbacks, but we believe that by

combining/fusing different kinds of systems, more practical solutions could be achieved. The focus
of this thesis is on how to fuse the existing infrastructure solutions (i.e. fingerprinting systems) and
the infrastructure-free methods (i.e. PDR or VO systems) to achieve low-cost positioning systems.
As mentioned before, the traditional method to build the signal map (i.e. the manual survey) for
fingerprinting systems is expensive and not scalable for frequent re-survey. Then if we can use the
infrastructure-free methods to enable efficient path survey, the initial creation and subsequent main-
tenance of the signal maps could be low-cost. By achieving this, the fingerprinting-based positioning
systems could be easily deployed and maintained in large-scale environments.

The key to path survey is accurate trajectory recovery. VO systems could achieve this but they
typically have strict requirements on environmental conditions and are much more computationally
intensive than PDR algorithms. So, PDR systems are favoured. They are ideally suited to a dedicated
surveyor performing a path survey in an arbitrary environment: the surveyor perform the survey by
simply walking around holding the survey device, and then the survey path can be recovered by the
PDR system.

Rai et al. proposed a similar approach for crowdsourcing [4]. In practice, however, consumers
are resistant to permanently turn on the necessary sensors and processing due to high battery con-
sumption. Turning it on for short periods might be acceptable, but it is typically difficult to set a start
position on the floor plan when initialising the system from cold. In addition, PDR algorithms are
not yet robust enough to deal with the arbitrary positions and movements of a smartphone seen when
crowdsourcing.

The problem with the PDR systems is that drift accumulates as time goes on. Some systems
have applied Simultaneous Localisation and Mapping (SLAM) techniques to constrain PDR drift.
These systems use the spatially-varying signals to correct PDR error. Once a trustworthy trajectory
is established, the observed signals are re-used to form a path survey. Most SLAM path survey
approaches are based on graph optimisation (e.g. [42, 24]), although particle filters are also used [23],
as well as hybrids [21]. We discuss the technical details of such algorithms where they arise later in
this thesis.

2.5 Summary
The Fingerprinting-based indoor positioning systems are promising for large-scale deployment.

But the traditional method to build the signal maps for these systems is not scalable. This thesis
focuses on an efficient alternative map building method, i.e. the path survey method. The rest of this
thesis first gives quantitative assessment of the path survey. After that, robust, efficient and accurate
path survey systems are proposed and evaluated. More related work is also given in relevant chapters.

Chapter 3

Quantitative assessment of path survey

3.1 Introduction
Indoor location systems have a rich history of technologies and techniques [58, 51, 2]. However,

no single system has yet emerged to provide ubiquitous indoor positioning, primarily due to the
need to deploy local infrastructure of some sort. The most prevalent systems are those that are able
to leverage existing infrastructure, and of those most are based on applying signal fingerprinting
techniques to WiFi signals [5]. Devices are provided with a pre-existing signal survey (map) for
the building, which they use to position themselves. The fingerprinting approach in general is a
flexible one that can be applied to any spatially-varying but temporally stable signal. Furthermore,
the fingerprint maps may have uses other than positioning (for example to assist the deployment of
WiFi access points to ensure uniform coverage and minimal overlap).

The key issue with fingerprinting is the creation of the signal maps (often called the survey or
offline process) and their maintenance over the long term. Early work in this area used manual surveys,
requiring a surveyor to visit each point on a regular grid and measure the signal fingerprint there. This
is a laborious and time-consuming process that is a deterrent to the creation and use of such systems.

An emerging approach is the use of what we term path surveys. Here the surveying device is
somehow tracked as it moves continuously through the environment and records signal measure-
ments. Signal maps are then generated from signals collected along these paths rather than from a
regular grid of points. The paths themselves may come from an alternative location system, or be
jointly estimated based on the signal to be mapped using a variant of a Simultaneous Localisation and
Mapping (SLAM) algorithm. These maps can be seen as approximations to the conventional manual
survey. To date, however, there is no quantitative and rigorous analysis about how well such path
surveys approximate their manual equivalents, and no guidelines about how the path survey should
be performed.

In this chapter, we explore these issues in detail. We make four primary contributions:

1. We describe the collection of a dataset containing a detailed manual survey and ground-truthed
path surveys.

2. We consider Bluetooth Low Energy in addition to the usual WiFi signal.

3. We use an accurate ground truth to compare best-case path surveys to manual surveys in terms
of map quality and positioning performance, which gives the upper bound of real-world path
survey performance.

4. We provide guidelines for path survey based on our quantitative analysis; We demonstrate that
by following our guidelines, a path survey can achieve good efficiency and accuracy.

25

26 3.2. PATH SURVEYING TECHNIQUES

3.2 Path surveying techniques
A path survey collects signal survey points along a continuous path through space rather than at

discrete, evenly-distributed points. Like the signal it is measuring, the path may be dedicated to the
survey task (where a surveyor moves with the sole purpose of building the maps); or opportunistic
(where crowd-sourced measurements are collected from users moving with some other purpose in
mind).

The primary advantage of a dedicated surveyor is that the movement can be constrained: the
surveyor can be instructed to provide good spatial coverage; to provide occasional manual position
fixes; and to move in a way that produces good position estimates. For example, some proposed
schemes use some form of Pedestrian Dead Reckoning (PDR) algorithm applied to inertial sensors in
the survey device. This can give high quality trajectory estimates if the user keeps the device in one
position and only ever walks in the direction it points in (i.e. no side steps or back steps) at a constant
speed. Applications such as WiFiSLAM, Google Indoor Maps [61] and IndoorAtlas [44] took this
one step further and require the surveyor to move in manually-specified straight line segments. The
segments are then interpolated at the times signal measurements were made to produce a line of
survey points. More advanced algorithms from the SLAM family may also be applied by having the
surveyor perform particular actions (usually walking in loops).

Crowd-sourced data bears some similarity to the segment-walking technique just described: mul-
tiple users are expected to contribute short segments that can be combined over time to form a compre-
hensive survey. Since the users behave naturally, a higher density of measurements will be associated
with more popular regions. Thus crowdsourced maps are naturally more detailed in high footfall areas
such as corridors, at least in principle. In practice, crowdsourcing is challenging due to the lack of
constraint in the trajectories and movements: patchy spatial coverage; devices being held in different
ways; segments being non-linear with complex movements that are difficult to characterise. Even if
a trajectory can be established, it is often difficult to anchor it to the floor plan, and thus to provide
enough reliable survey points to make a comprehensive map.

Some have argued that crowd-sourcing is the solution to the maintenance of a map surveyed
through some other means. Assuming there is sufficient redundancy in the observed signals to ac-
curately position the user using only a subset of the received signals, a random sample consensus
(RANSAC) algorithm can be applied to identify and correct outlier measurements [26]. The key
challenge here is verifying that the estimated position is sufficiently accurate to drive an update. To
date there has been no detailed study of the validity of crowd-sourced signal maps, although it shows
promise.

The key requirement of the path survey is to recover the survey path taken by the surveyor. We
divide the above-mentioned techniques into two classes:

• PDR-based Survey. Fusing step detection PDR algorithms running on a consumer device with
a building floor plan can provide accurate tracking around a building [93, 96]. The best results
are obtained when the device user moves smoothly and continuously; turns regularly; and holds
the device in one position. In addition to the floor plan, various Simultaneous Localisation and
Mapping (SLAM) techniques can be applied to correct PDR error. The core requirement is that
the path contains loops that the system can observe by monitoring the signal environment.

• Segment Survey. This uses the approach popularised by Google Indoor Maps and IndoorAtlas.
The surveyor manually marks a small number of points on a floor plan image and then walks in
straight lines between them. Unlike the PDR-based survey, this manual path specifying method
is difficult to deal with complicated survey routes. So typically only a few segments along
corridors are used.

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 27

The accuracy of the path derived by either method is affected by multiple factors. The most obvi-
ous one is the noisy sensors in the survey devices (typically smartphones). The algorithms (SLAM,
particle filter etc.) used to correct PDR error have impacts on the PDR-based survey accuracy. The
user’s behaviour mode (e.g. whether the user walks along the specified segment accurately) can affect
the segment survey accuracy.

To quantitatively evaluate the performance of a path survey, we use an accurate positioning
system—the Bat system [1]—to simulate best-case path surveys. The Bat system is an ultrasonic
time-of-flight system installed throughout the test environment capable of 3D positioning to an accu-
racy of 3 cm 95% of the time with a 10–15Hz update rate. We require the surveyor to hold the survey
device and behave just like conducting a normal PDR-based survey or a segment survey, but use the
Bat system to accurately recover the survey path. In this way, we are able to give an upper bound for
the real-world path survey results.

3.3 A ground-truthed survey dataset
We have collected an extensive dataset in order to bound and assess the performance of path

surveys in a real-world environment using consumer devices. A detailed manual survey of WiFi and
BLE signals was taken in addition to a series of ground-truthed path survey walks.

3.3.1 Environment and devices
Our tests were performed in a wing of the William Gates Building housing the Computer Labora-

tory at the University of Cambridge. The building itself is a three-storey office building constructed
from brick, steel and concrete. Internal walls are constructed from plasterboard, wood and metal.

We gathered signal data using a custom application running on an Android smartphone (Google
Nexus 5). The application recorded WiFi RSSI and BLE RSSI data which we considered to be
amenable to fingerprinting. The Android WiFi subsystem was set to use 2.4 GHz only since this
reduced the scan period from around 4 s to 1.5 s: a significant reduction that allowed us to better
localise a scan spatially when the device was moving. All the WiFi internet connections (and BLE
connections as well) were disconnected manually throughout the experiments, such that the signal
RSSI can be recorded continuously without interruption.

When performing path surveys we also recorded magnetometer data (magnetic field without hard-
iron compensation and estimated hard-iron bias along the x, y and z axis), accelerometer data (accel-
eration force along the x, y and z axis including gravity) and gyroscope data (rate of rotation around
the x, y and z axis) by Inertial Measurement Unit (IMU) on the smartphone for PDR. The sample
rate for IMU data is above 100 Hz. Android system API calls were used to record all these sensor
data mentioned here. Also, we shut down any applications that may use IMU sensors in order not to
interfere with data recording.

For accurate ground truth, the Bat location system was synchronised with the Android phone via
NTP (Network Time Protocol). The active tag that the Bat system tracks was firmly attached to the
back of the smartphone. So the Bat system was able to track the smartphone to within 3 cm 95% of
the time with a 10–15Hz update rate.

During the experiments, the smartphone is handheld flat in front of the body of the surveyor (as if
being used to navigate). The surveyor was asked not to wave the smartphone intentionally during the
data recording, thus to keep the smartphone in a fixed position relative to the human body.

The test environment contained three WiFi APs; additional APs from the floor below and adjacent
areas were also observed. The RSSI information of all these observed beacons was recorded. The APs
had been previously deployed by the building’s IT staff to provide good communications coverage

28 3.3. A GROUND-TRUTHED SURVEY DATASET

throughout the building (i.e. explicitly not with positioning in mind). As such they were representative
of most office buildings. Seven BLE beacons were available in the area, each set to advertise a unique
identifier at 12 Hz. These were deployed solely for the purpose of positioning. The beacons were
attached to the ceiling (corridors) or on ledges above windows (offices). Figure 3.1 illustrates the test
area and the positions of the WiFi APs and BLE beacons within it.

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

w
if

i
1

w
if

i
2

w
if

i
3

b
le

 2
0

b
le

 2
1

b
le

 2
2

b
le

 5
5

b
le

 5
4

b
le

 5
6

b
le

 5
3

Figure 3.1: The test area.

3.3.2 Manual survey
We performed a manual survey in the test environment. Unlike previous works, we did not attempt

to establish a set of positions on a regular grid since this was both very laborious and error-prone.1

Instead, we used an approximate grid but measured the position of the device accurately at each survey
point using the Bat system. In this way we achieved comprehensive spatial coverage and accurate
survey positions. We aimed for an inter-point spacing of 1 m to provide a detailed survey—Figure 3.2
illustrates the survey points on a floor plan (rooms without survey points were not accessible during
the survey).

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Figure 3.2: The survey points

During surveying the device was handheld as if being used to navigate. To examine body shad-
owing effects the surveyor rotated about a vertical axis through the phone to point in each of the four
cardinal directions of the building.2 2.5 s of data were collected in each orientation. This period
allowed for tens of BLE beacon measurements, and up to two measurements of each WiFi AP per
survey point per orientation.

3.3.3 Path survey walks
We performed four different survey walks (labelled W1, W2, W3, and W4) with the same device

held by the surveyor as if navigating. The Bat system provided ground truth location. W1 was
carefully chosen to represent a dedicated surveyor visiting every room and area covered by the manual
survey; W2 and W3 involved walking the corridor multiple times (to simulate segment survey); W4

1It is difficult to accurately mark a 1 m grid across a large indoor space and even more difficult to ensure that a device
is being held over a marked position when surveying

2These were approximately aligned with the magnetic cardinal directions. For simplicity we assume them to be the
same herein.

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 29

was free-form and visited many, but not all, of the surveyed rooms (see Figure 3.3). In total the walks
contained 2,191 steps.

0 5 10
0

5

10

15

20

25

30

35

40

45

(a) W1
0 5 10

0

5

10

15

20

25

30

35

40

45

(b) W2
0 5 10

0

5

10

15

20

25

30

35

40

45

(c) W3
0 5 10

0

5

10

15

20

25

30

35

40

45

(d) W4

Figure 3.3: Survey walk paths

3.3.4 GP regressed map
Both manual surveys and path surveys result in a set of survey points distributed throughout the

space of interest. The difference is that the survey points given by a manual survey are usually
distributed more even and denser than those given by a path survey. To generate a continuous map,
Gaussian Process (GP) regression can be used to predict signal strength distribution on arbitrary points
based on the measurements collected on the survey points (Section 2.2). Please refer to [75] for more
details about GP regression. Here we note only that it provides a normal distribution (represented
with mean and variance) for the predicted signal strength distribution at an arbitrary point in space.

For every survey, we generated a GP map for each signal source3. Figure 3.4 shows sample
WiFi and BLE RSS measurements taken during different surveys and the GP regressed maps (mean
and variance at each point) that result from them. It can be seen that for the BLE GP maps, the
variance grows quickly the further from survey points/paths we move, correctly encapsulating the
growing signal propagation uncertainty. But this is less obvious for the WiFi GP maps because the
WiFi signals attenuate much slower (so the correlation is stronger) over space than BLE signals4.
Figure 3.4i shows an extreme case of this: the variance of the WiFi manual survey GP map is almost
evenly distributed. This means that WiFi signals have strong correlation over space. So when good
survey coverage is given (manual survey), the uncertainty of the prediction made by the GP is low
everywhere.

Please note that the manual survey and all the path surveys used the accurate Bat system to infer
sample positions. This is arguably a best-case scenario that would be very hard to reproduce in an
arbitrary environment today. Nonetheless it serves as an important bound.

3We adopt the open source library provided by [75] to train the survey data and generate GP maps.
4Please note that the WiFi beacons are deployed for the purpose of better wireless network coverage, while the BLE

beacons are deployed for positioning purpose only. So the signal strength of WiFi is generally much stronger than that of
BLE.

30 3.4. POINT COMPARISON ON REGRESSED MAPS

WiFi BLE
Manual Survey Path Survey W1 Manual Survey Path Survey W1

A
lig

ne
d

Si
gn

al
s

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(a)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(b)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(c)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(d)

G
P
µ

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm

−
9

0

−
8

0

−
7

0

−
6

0

−
5

0

−
4

0

−
3

0

(e)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm

−
9

0

−
8

0

−
7

0

−
6

0

−
5

0

−
4

0

−
3

0

(f)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm

−
9

0

−
8

0

−
7

0

−
6

0

−
5

0

−
4

0

−
3

0

(g)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm

−
9

0

−
8

0

−
7

0

−
6

0

−
5

0

−
4

0

−
3

0

(h)

G
P
σ
2

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm
2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

(i)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm
2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

(j)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm
2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

(k)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm
2

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

(l)

Figure 3.4: Sample signal surveys and the resulting GP maps.

3.4 Point comparison on regressed maps
When surveying for the purposes of wireless network deployment, the GP map itself is the end

goal. Furthermore, we might expect intuitively that better map approximations allow for better online
positioning. To meaningfully compare GP maps directly is a challenge since each position is associ-
ated with a normal distribution rather than a scalar value. Hence we must first establish a metric to
compare normal distributions.

Comparison of normal distributions. For two normal distributions, N (µ1, σ
2
1) and N (µ2, σ

2
2), we

form the distribution of the differences, which has the form N (µ1 − µ2, σ
2
1 + σ2

2). Since we are only
interested in the magnitude of the difference, we convert this normal distribution to a folded normal
distribution, the CDF of which is given by:

F (X;µ, σ) =
1

2

(
erf
(
x+ µ√

2σ

)
+ erf

(
x− µ√

2σ

))
(3.1)

for µ=µ1 − µ2 and σ2=σ2
1 + σ2

2 . We then estimate the RSS difference corresponding to the 90%
confidence interval, RSS90. Hence 90% of the time the two distributions would agree to within RSS90.

Comparison of GP maps. We evaluate RSS90,i at each of the grid point positions covered by the
manual survey since these points are associated with the lowest uncertainty in the manual survey-
derived GP map. The distribution of RSS90,i acts as a measure of the agreement between the two
maps. Two very similar maps would show a strong concentration of RSS90 values within the expected
measurement noise, whilst differing maps would not.

We visualise the RSS90 by heatmap (Figure 3.5) and CDF (Figure 3.6). The colour (value) c of a
point on the RSS90 map represents that at this point, the predicted RSS values by a path survey GP
map and a manual survey GP map agree to within c dBm 90% of the time. Similarly, the interpretation
of a point (x,y) on the CDF is the proportion of grid points (y) where we expect the two maps to agree
to within x dBm 90% of the time.

Figure 3.6b shows that for the BLE signal, the GP maps of W1 and W4 (which covered the space
more comprehensively than W2 and W3) are very similar to the manual survey. This is because these

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 31

RSS90 Map - WiFi RSS90 Map - BLE

W
1

vs
M

S

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(a)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(b)

W
2

vs
M

S

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(c)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(d)

W
3

vs
M

S

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(e)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(f)

W
4

vs
M

S

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(g)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

1
0

1
5

2
0

2
5

3
0

(h)

Figure 3.5: RSS90 maps from point comparison of various GP maps (W1–W4) with the manual survey (MS) GP map.

10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

RSS
90

 (dBm)

W1 vs Manual Survey
W2 vs Manual Survey

W3 vs Manual Survey
W4 vs Manual Survey

(a) WiFi

20 40 60 80 100 120 140
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

RSS
90

 (dBm)

W1 vs Manual Survey
W2 vs Manual Survey

W3 vs Manual Survey
W4 vs Manual Survey

(b) BLE

Figure 3.6: RSS90 distribution (CDF).

32 3.5. POSITIONING COMPARISON ON GP REGRESSED MAPS

survey paths cover the space comprehensively. Conversely W2 and W3 (which only visit a subset
of the rooms in the manual survey and hence require prediction further from the survey path) exhibit
good results only within a metre or so of the survey path.

However, this phenomenon is less obvious for the WiFi signal. One possible reason is that the
WiFi signal variance over space is lower than that of the BLE signal. As can be seen in Figure 3.4,
the WiFi signal attenuates more slowly than BLE over space. This is confirmed by the GP regression
results—as is common we use a squared exponential (SE) covariance function (or “Gaussian kernel”)
to encode the correlation between nearby measurements:

kSE(r) = σ2
fexp

(
− r

2

2l2

)
(3.2)

where r is the distance between two spatial locations, σ2
f is the signal variance, and l is the charac-

teristic length-scale that determines how the correlation weakens with distance [75, 25]. The signal
variance σ2

f and the characteristic length-scale l are usually learnt from the training data. For the
W1 WiFi and BLE maps in Figure 3.4, the learned values of the signal variance σ2

f are 44.08 and
193.72 respectively, and the learned values for the characteristic length-scale l are 4.96 m and 2.50 m
respectively. These values show that WiFi signals in distant locations correlate better than their BLE
counterparts. This means it is easier for GP regression to predict the signal strength distribution in
more distant locations for WiFi than BLE.

However, we note that the RSS90 values can be affected by many factors. For example the signal
sample density, multipath, body shadowing, beacon deployment, environmental settings. So, it is
complicated to take into account every possible factor that affects the final GP maps and a rigorous
interpretation is hard to provide. The proposed visualisation method of GP map difference gives us
an intuitive feeling about how the path survey map differs from the manual survey map. We see
that when doing the path survey for BLE signal, the survey path should pass all possible locations
where positioning requests may happen as closely as possible. The following sections evaluate the
positioning performance of the GP maps to cross-validate the analysis results given in this section.

3.5 Positioning comparison on GP regressed maps
Positioning using GP maps requires the use of multiple maps (or equivalently, signals from mul-

tiple sources). It is therefore feasible that good positioning results could be achieved even when one
or more GP maps are very poor approximations to the true map. To see this, consider a GP map with
high variances associated with most of the evaluation points (which is an indication that the GP map
is not of high quality). A sensible positioning algorithm would derive very little information from
such a map—in effect, it should be discarded. Provided there are enough low-variance evaluations
for other GP maps, a good positioning results is then possible. In this section we study the results of
positioning using maps from path and manual surveys.

3.5.1 Positioning method
We adopt the signal strength-based location estimation method described in [25] to evaluate the

positioning performance. We first use the raw data to generate GP maps and then use a standard
Bayesian localisation algorithm to incorporate the variance estimate as well as the mean at each GP
map location. To estimate a person’s location, x, conditioned on observation of a set of signal strength
measurements (fingerprints), z, we used:

p(x|z) ∝ p(x)p(z|x) (3.3)

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 33

(a) WiFi (b) BLE

Figure 3.7: Corridor directionality for BLE and WiFi

where p(x) is the prior probability of the person being at x; and p(z|x) is the likelihood of observing
a set of signal strength measurements at location x. p(z|x) is directly given by the GP regression.

We divided the environment into a grid of square cells of length 1 m or less, For each step at each
cell we computed p(x|z) and selected the cell with the maximum as the person’s location. Signal
strength measurements lower than -90 dBm were discarded. Note that the positioning algorithm did
not assume prior information—i.e. our results are for one-shot positioning. This is achieved by setting
p(x) to a uniform distribution over the whole space. A recursive tracking scheme that would seed each
positioning calculation with the posterior from the last would be expected to perform better, but could
mask a bad positioning result.

3.5.2 Map directionality and space coverage of survey path

Table 3.1: Number of samples for a single WiFi/BLE beacon in different directional datasets.

Manual Survey Path Survey W1
East-facing WiFi 1460 77
West-facing WiFi 1452 70
East-facing BLE 1374 703
West-facing BLE 1407 626

We first study the directionality of the survey data. Previous works have highlighted an orienta-
tion dependency in RSS measurements on handheld consumer devices. The dependency is primarily
caused by body shadowing: the attenuation of a signal that must pass through the human body as it
travels directly from source to receiver. The extent of this dependency is important for a path sur-
vey, since it may demand paths be traversed in both directions. This would clearly add to the time
and complexity of the surveying task. In addition, it affects how we use the orientation information
of the survey data. If the orientation plays an important role in the positioning accuracy, than more
complicated orientation-based positioning algorithm is preferred.

We expect directionality to be strongest along vectors that pass through the source, and it is thus
most easily observed along the straight corridor in our data. Figure 3.7 shows the East-facing and
West-facing RSS values observed at the survey points in the corridor, plotted against the distance
along the corridor (the distance increases in the westerly direction). The general trends are shown by
the two smoothed lines. In both cases there is a clear offset between the trends that corresponds to
higher RSS when approaching a source compared to receding from it.

Our survey data contained orientation information, allowing us to generate both:

34 3.5. POSITIONING COMPARISON ON GP REGRESSED MAPS

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

MS
W1

 Wifi Dir

MS
W1

 Wifi Omni

W1
MS

 Wifi Dir

W1
MS

 Wifi Omni

W1
W4

 Wifi Dir

W1
W4

 Wifi Omni

(a) Inside corridor area - WiFi

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

MS
W1

 BLE Dir

MS
W1

 BLE Omni

W1
MS

 BLE Dir

W1
MS

 BLE Omni

W1
W4

 BLE Dir

W1
W4

 BLE Omni

(b) Inside corridor area - BLE

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

MS
W1

 Wifi Dir

MS
W1

 Wifi Omni

W1
MS

 Wifi Dir

W1
MS

 Wifi Omni

W1
W4

 Wifi Dir

W1
W4

 Wifi Omni

(c) Outside corridor area - WiFi

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

MS
W1

 BLE Dir

MS
W1

 BLE Omni

W1
MS

 BLE Dir

W1
MS

 BLE Omni

W1
W4

 BLE Dir

W1
W4

 BLE Omni

(d) Outside corridor area - BLE

Figure 3.8: Positioning results for directionality analysis. AABB implies a map generated from AA data tested using the
data from BB. Directional maps are labelled ‘Dir’, non-directional maps ‘Omni‘.

• Directional Maps. For each signal source, divide corresponding signal strength sample dataset
into several subsets according to the surveyor’s direction when taking each sample. Then, create
a map for each cardinal direction. When positioning, use only the map corresponding to the
direction of movement. Here we only use the east-facing and west-facing datasets because these
correspond to the major direction of the building. The number of samples in each dataset for a
single signal source is shown in Table 3.1.

• Omnidirectional Map. For each signal source, create a single map using all the survey data af-
ter discarding the orientation labels. The directionality should then manifest as a larger variance
in the values collected at each survey point.

We produce these two kinds of map using various datasets and evaluate their positioning perfor-
mance using different dataset as fingerprints (input). We consider the corridor separately from the rest
of the space because we expect more significant directionality there. The analysis results are shown
in Figure 3.8.

First we look at the positioning results of the manual survey map (MSW1 in Figure 3.8). For
both inside and outside corridor areas, WiFi directional map outperforms omnidirectional map (about
1.46 m and 4.00 m at the 90th percentile respectively). It is the same for BLE but less significantly
(about 0.65 m and 2.21 m at the 90th percentile respectively). This shows that map directionality does
affect the positioning performance. If a manual survey is affordable, conducting the signal sampling
in different directions do improve positioning performance.

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 35

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m Omni

1~2m Omni

>=2m Omni

0~1m Dir

1~2m Dir

>=2m Dir

(a) WiFi

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m Omni

1~2m Omni

>=2m Omni

0~1m Dir

1~2m Dir

>=2m Dir

(b) BLE

Figure 3.9: The positioning results of W1MS (W1 maps evaluated against manual survey data) broken down by distance
of manual test point from the W1 survey path.

However, the omnidirectional map generated from W1 achieves better results than the directional
map when evaluated using the manual survey data (W1MS). This is especially significant for WiFi.
One of the key factors is that the amount of training data used to generate the directional map is very
small (as shown in Table 3.1). Hence the directional map is not a good representation of the signal
distribution over the space. The results also show that W1 maps (W1MS) are generally outperformed
by manual survey maps (MSW1). One important reason is that the W1 map is evaluated using the
manual survey data as fingerprint input, so most of the test points are away from the W1 survey path,
which requires good signal distribution prediction to achieve good positioning results. But the sparse
training data is not sufficient to produce a good regressed map, that is why the positioning perfor-
mance is poorer. Figure 3.9 classifies the positioning results of (W1MS) by the distances between
the test points and the (nearest points on the) survey path. It shows positioning accuracy decreases
dramatically when the distance exceeds 2 m. This is less significant for WiFi directional map because
its positioning accuracy is already very poor.

In real life, people tend to follow some common path when walking indoors. For example, people
may take the same route when walking around a room (the furniture somehow “define” the route)
and people tend to walk along the centre of a narrow corridor instead of walking close to the walls.
This means in reality, the locations where a positioning request may happen are likely to be on those
common paths. The W1 survey path is such a path that going around the whole space following the
most probable pedestrian route. The W4 survey path can be seen as a subset of W1, so, if we use W4
data as fingerprint input to evaluate the performance of W1 map, the real life positioning performance
can be simulated. In this case, the distances between test points to the survey path are almost zero,
which is supposed to give better accuracy. This is confirmed by the positioning results shown in
Figure 3.8: the positioning performance of W1 map evaluated by W4 data (W1W4) is similar or even
better than manual survey map (MSW1). So for a path survey, good space coverage is necessary to
achieve good positioning performance. This requires the survey path to cover the locations where
positioning request can possibly happen within 1∼2 m. In this way, all positioning requests are in the
high-confidence areas on the GP regressed map and it can achieve good positioning performance as
the manual survey does.

The results on Figure 3.8 also show that when evaluating W1 maps against W4 data (W1W4), only
for the WiFi signal inside the corridor area, omnidirectional map outperforms directional map but in
all other cases, a directional map gets slightly better results. From these results we conclude that a
path survey should cover paths in both directions for optimal results. But not doing so is not, how-
ever, likely to degrade the result significantly if good space coverage is provided (but the possibility of

36 3.5. POSITIONING COMPARISON ON GP REGRESSED MAPS

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

W1
W4

 Wifi Omni

W2
W4

 Wifi Omni

W3
W4

 Wifi Omni

W1
W4

 BLE Omni

W2
W4

 BLE Omni

W3
W4

 BLE Omni

(a) Inside corridor area.

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

W1
W4

 Wifi Omni

W2
W4

 Wifi Omni

W3
W4

 Wifi Omni

W1
W4

 BLE Omni

W2
W4

 BLE Omni

W3
W4

 BLE Omni

(b) Outside corridor area.

Figure 3.10: The positioning CDF results for W1, W2 and W3 maps evaluated against fingerprints generated from W4
data.

applying more sophisticated orientation-based positioning algorithm to achieve more significant im-
provements in positioning accuracy cannot be excluded). Also, considering that omnidirectional map
has better performance for test points further away from the survey path (Figure 3.9), we recommend
to use omnidirectional map for the path survey data. The additional advantage of using omnidirec-
tional maps is that we do not need to produce multiple maps for each direction, which reduces the
map storage as well as the position computation cost, and excludes the need for reliable orientation
estimation at all times.

3.5.3 Segment survey evaluation
In Section 3.2 we have mentioned a special kind of path survey – the segment survey, in which

typically only a few segments along corridors are used. The W2 (walking up and down corridor once)
and W3 (walking up and down corridor twice) are good representations of segment survey. By the
analysis given so far, we can infer that segment survey cannot provide good positioning performance
as a PDR-based survey like W1 does. We confirm this by using the W4 data as fingerprint input
to evaluate W1, W2 and W3 omnidirectional maps. Results are given in Figure 3.10. It shows
that outside the corridor area, W1 outperforms W2 and W3 significantly for both WiFi and BLE.
This is because the test points are all on the low confidence areas of the W2 and W3 maps. It also
shows that inside the corridor area, W1 outperforms W2 and W3 for WiFi positioning but they have
indistinguishable results on BLE positioning. This shows the importance of sample density. W1
has more samples in the corridor area than W3, and W3 has more than W2, so WiFi positioning
performance of W1 is better than W2 and W3. But the sample rate of BLE is much higher than that
of WiFi (10 Hz vs 0.5 Hz) on the android phone we use, which mitigates the difference in the sample
density of the three surveys. So the difference in the BLE positioning performance is less significant
than the difference in the WiFi positioning performance.

So we conclude that, segment survey which only covered the corridor area of the environment
does not give good positioning performance. Good space coverage is necessary when taking the path
survey.

3.5.4 Sample density evaluation
To quantitatively evaluate how the sample density affects the positioning performance of the GP

maps, we sparsify the training data of W1 to generate different GP omnidirectional maps. These maps

CHAPTER 3. QUANTITATIVE ASSESSMENT OF PATH SURVEY 37

0 100 200 300 400
0

5

10

15

20

25

Sparsification factor

7
5

th
 p

e
rc

e
n

ti
le

 o
f

lo
c
a

lis
a

ti
o

n
 e

rr
o

r
(M

e
tr

e
s
)

Wifi

BLE

(a) WiFi.

Figure 3.11: Sample density evaluation. The training data of W1 are sparsified to different extent (get 1 out of n samples)
and resultant GP maps are evaluated using fingerprints generated from W4 data. When the sparsification factor reaches
300, there are too few WiFi samples to generate a valid GP regressed map.

are evaluated using W4 data as fingerprint input. Results are shown in Figure 3.11. It shows that the
positioning performance decreases with the extent of sparsification, but with WiFi map decreases
much more dramatically than BLE map. This is because the sample rate of WiFi is extremely low
compared with BLE (about 0.5 Hz vs 10 Hz). Therefore, repeating some part of the paths multiple
times is necessary when taking the path survey because this can improve the map quality by increasing
the number of signal samples (especially for WiFi positioning).

3.6 Conclusions and further work
In this chapter we proposed a method to visualise the difference between GP maps generated

from manual survey and path survey. Straight-forward positioning experiments were also conducted
to show various features of path survey maps. Based on our analysis we propose several guidelines
about how the path survey should be taken. By following these guidelines, path survey can be a low-
cost alternative for the laborious manual survey: in our experiments the manual survey took more
than 3 hours but each of the W1–W4 took less than 10 minutes (Table 3.2).

Table 3.2: Survey durations

Survey W1 W2 W3 W4 Manual
Time (mins) 9.6 2.1 3.3 7.5 206

The guidelines are as follows:

1. The survey path should pass within 1∼2 m of any given point where positioning might be
required. This is to provide good space coverage so that all positioning requests happen in the
high-confidence areas of the GP regressed map.

2. The surveyor should repeat some parts of the path to increase the signal sampling density.
This is especially necessary for WiFi positioning because the WiFi sample rate on a modern
smartphones is typically as low as 0.5∼1.0 Hz.

3. For the directionality of the wireless signals, we have found that ignoring this does not degrade
the positioning performance significantly. But considering the possibility of more sophisticated

38 3.6. CONCLUSIONS AND FURTHER WORK

orientation-based positioning algorithm being proposed, the surveyor can still try to pass in
both directions (e.g. walking up and down a corridor) to record the directional information for
potential use. This will also increase the sample density of the signals.

Our survey guidelines are simple to follow and so anyone equipped with a smartphone can quickly
perform a survey. Many public buildings have security or building management personnel who regu-
larly walk through them—these offer an ideal opportunity to preform regular surveys.

Please note that in most cases, a high-accuracy external positioning system like the Bat system
used here is seldom available. PDR algorithms can be used to recover the survey path but with large
errors and drifts in the results. Then repeating some parts of the path is very valuable not only because
it can increase the signal sampling density, but also because it can provide spatial constraints between
sample points on the survey path. These constraints are called loop closures. The loop closures can be
used to correct the PDR result so that the survey path can be accurately recovered without an external
positioning system (details about this are in the following chapters of this thesis).

So, this chapter has proved the feasibility of the path survey, and provides guidelines about how
the path survey should be taken, which is the foundation of our following works.

Chapter 4

Automated signal survey

The previous chapter shows that a path survey can significantly lower the survey efforts and pro-
vide similar positioning performance as a manual survey given that it follows the suggested guide-
lines. However, the path survey evaluated in the previous chapter is based on a high-accuracy external
positioning system (i.e. the Bat system) to recover the survey trajectory. With this groundtruthed
survey trajectory, the recorded signal strengths can be aligned to the environment accurately. In real
life, such a high-accuracy system is rarely available for the signal survey, and the survey device is
typically a commodity smartphone with erroneous sensors. So accurate path recovery is difficult. If
the survey path cannot be recovered accurately, the signal strength information cannot be aligned to
the environments correctly, which causes errors in the signal maps and hence lowers the performance
of the path survey. To solve this problem, this chapter proposes a high-efficiency and high-accuracy
path survey system which uses a commodity smartphone as the survey tool. We test our system in a
range of testbeds, prove that it offers a robust and fast easy way to survey an environment.

4.1 Introduction

Path surveys require that we estimate the trajectory of the device accurately. The estimated tra-
jectory itself can be built using Pedestrian Dead Reckoning (PDR) algorithms applied to commodity
inertial sensors found in smartphones. However, PDR algorithms drift quickly and techniques must
be used to constrain the error. Recent work has successfully limited this drift by the application of
constraints such as floor plans, or the application of Simultaneous Localisation and Mapping (SLAM)
algorithms (introduced in more detail in Section 4.2).

There is also a question of whether the survey process is dedicated (whereby the device is pur-
posely moved to build a fingerprint map, as per our case) or opportunistic (where the trajectories
are crowdsourced as multiple devices move through the space for other purposes—see e.g. [40]). Al-
though appealing, opportunistic surveying faces many challenges that have yet to be solved, including
heterogeneity of devices, uncontrolled movements, changes in device orientation, etc.

In this chapter we introduce a SLAM-based dedicated surveying technique that uses the fast-
varying magnetic field to constrain the trajectory, which is then used to generate maps of other sig-
nals such as WiFi/BLE. Our contributions over established work include an algorithm for sequence
matching of magnetic signals rather than point matching; support for free movement of the surveyor;
the use of magnetic signals to survey but other signals that are more amenable to regression and allow
one-shot or push-to-fix positioning; and detailed experimental testing in five testbeds.

39

40 4.2. RELATED WORK

4.2 Related work
SLAM algorithms were originally developed in robotics to allow joint estimation of a robot’s local

map and its position or path within it [17]. Most approaches are designed with accurate robot odome-
ter and precise sensors (usually laser scanners) in mind. In moving to a smartphone platform, accurate
odometer is typically replaced with approximate relative motions from PDR [8] and accurate room
scans by noisy signal measurement processes. For a path survey, as the user walks the smartphone
collects signal scans and their path is estimated using PDR. To combat the inevitable drift that accrues
in the PDR path a SLAM algorithm is used to correct the path. The process is usually considered in
terms of a front-end and back-end; the former determines constraints between parts of the trajectory;
the latter solves the system under these constraints. When used with PDR broadly two classes of
SLAM algorithm may be used:

• Full SLAM. The SLAM engine has a model for the propagation of the signal source (e.g. a
WiFi propagation model). The back-end jointly estimates the locations of the signal sources
and the trajectory in the same space. Once done the signal fingerprint at any point (i.e. the map)
can be estimated. This approach is very valuable when we have point signal sources (e.g. WiFi)
but cannot be used on signals without point sources associated with specific measurements (e.g.
magnetic fields).

• Path smoothers. The front-end derives constraints from loop closures. The idea is that, when
the user revisits position p(ta) at time tb, the system will observe the same (or very similar)
signal measurements. Thus it can infer a loop has been travelled and it can infer the constraint
that p(ta) = p(tb). The back-end then estimates the path.

Based on the consideration that building a reliable radio (WiFi/BLE) propagation model for
the complicated indoor environments is hard, we use the path smoother SLAM algorithm and the
spatially-variant but temporally-stable magnetic field signal to infer loop closures. In the context
of pedestrian surveying, this requires the user to repeat parts of their path, forming loops. For the
purpose of path smoothing, many different SLAM algorithms exist: for pedestrian SLAM important
approaches include those based on graph optimisation (e.g. [42]) and particle filtering (e.g. [18, 23]).

We are not the first to consider location determination using sequences of magnetic readings: both
the LocateMe system [83] and IndoorAtlas [44] use a similar approach to us. Our work differs in a
number of ways from LocateMe. Firstly, we use the magnetic sequence matching within a SLAM
framework for surveying rather than for online positioning; secondly, we use different signals (WiFi,
BLE, etc.) for online positioning; thirdly, we perform more comprehensive signal matching (Lo-
cateMe matches to a corridor while we show how to match to a co-ordinate position). The IndoorAt-
las system is not openly described so is hard to compare to. However, from the limited information
available in patents, similar differences apply.

The MagSLAM system proposed by Robertson et al. ([76]) uses magnetic magnitude within a
SLAM framework. Their work differs in a number of ways. Firstly they use a particle filter im-
plementation of SLAM (based on FootSLAM) applied to a foot-mounted Inertial Measurement Unit
(IMU). This produces a much better PDR trajectory estimate since the drift can be constrained by the
application of ZUPTs and ZARUs before SLAM is applied. Here we use an unconstrained smart-
phone as the sensor, producing a very noisy PDR input. Accounting for this noise in a particle filter
is very difficult to do since the particle number must increase dramatically to account for it. Con-
sequently we use a graph-based offline SLAM approach. MagSLAM also produces magnetic maps
for subsequent positioning. In our experience such maps are not temporally or spatially stable and
we advocate their use only during the survey—we discuss our reasoning in detail in the next sec-
tion. Lastly, while we explicitly consider sequences of magnetic measurements, MagSLAM does so

CHAPTER 4. AUTOMATED SIGNAL SURVEY 41

only implicitly. As a user walks and a distinctive sequence is observed, confidence will grow in the
particles representing hypotheses following the correct path. We return to this presently.

4.3 Magnetic mapping but not positioning

Magnetic signals often vary fast indoors, which can allow for accurate detection of loop closure
points. This makes it a very good signal for surveying with. However, we have found magnetic
fingerprint maps to be a poor choice for online positioning for a number of reasons:

• Ease of decalibration. The magnetometers inside consumer smart devices are susceptible to
noise from nearby electrical components and are affected by nearby ferrous materials (e.g.
keys in a pocket). Manual recalibration is needed quite frequently to get reliable magnetic
measurements.

• Accurate positioning needs movement. A given magnetic measurement is not spatially unique
and does not vary predictably. Thus one-shot positioning (where we estimate position from a
single measurement) is highly unreliable. Movement allows for sequences of measurements
that are more spatially unique. Systems that implicitly consider sequences (e.g. MagSLAM)
will struggle to initialise a position based only on a magnetic map.

• Limited regression suitability. Generating 2D fingerprint maps from linear trajectories re-
quires the use of regression. However, the fast-varying nature of magnetic signals means that it
is impossible to predict the magnetic signal even a short distance from the trajectory (the typi-
cal magnetic coherence length is only 30 cm). Ultra high frequency (UHF) signals, by contrast,
have a longer coherence length of around 3 m, allowing better regression.

• Device orientation is rarely known. In a general positioning scenario the device orientation is
rarely known to any accuracy and may even vary during the positioning computations. Thus we
are limited to using the scalar magnitude of the field, which introduces more location ambiguity.

• Areas of low variability. A typical indoor space will have subareas where the magnetic field
is broadly uniform, especially when considering only magnetic field magnitude. Map-based
positioning is not available in such areas.

4.4 Magnetic sequence-based loop detection

We use a path-smoother SLAM algorithm that depends on us providing exteroceptive constraints,
most notably loop closures. We cannot reliably detect loops based on comparing the current magnetic
fingerprint to those collected earlier in the survey since very disparate locations can exhibit very sim-
ilar magnetic fingerprints. We argue that matching sequences of magnetic measurements rather than
points can provide more robust localisation. To match, we take windows of the magnetic field vector
and search for similar magnetic windows in the history of the walk. We use the full 3D magnetic vec-
tor since this provides further spatial locality (Figure 4.1), and we can instruct a dedicated surveyor
to hold the device in (approximately) the same orientation relative to their body. Since the surveyor
may traverse a path in either direction, we search both chronologically and reverse chronologically.

42 4.4. MAGNETIC SEQUENCE-BASED LOOP DETECTION

0 10 20 30
0

5

10

15

20

25

30

35

Meters

M
e
te

rs

(a) Path with loop closure.

500 1000 1500 2000 2500 3000 3500 4000 4500

25

30

35

40

45

50

55

Index

S
ig

n
a
l
s
tr

e
n

g
th

 (
µ

T
)

(b) Magnitude.

500 1000 1500 2000 2500 3000 3500 4000 4500

−20

−15

−10

−5

0

5

10

15

20

Index

S
ig

n
a
l
s
tr

e
n
g
th

 (
µ

T
)

(c) X component

500 1000 1500 2000 2500 3000 3500 4000 4500

−25

−20

−15

−10

−5

0

5

10

15

20

Index

S
ig

n
a
l
s
tr

e
n
g
th

 (
µ

T
)

(d) Y component

500 1000 1500 2000 2500 3000 3500 4000 4500

−45

−40

−35

−30

−25

−20

Index

S
ig

n
a
l
s
tr

e
n

g
th

 (
µ

T
)

(e) Z component

Figure 4.1: Example magnetic loop closure for both scalar and vector magnetic fields. The loop closure in Figure 4.1a
consists of two segments marked in red and green respectively on the survey path. Figure 4.1b, 4.1c, 4.1d and 4.1e show
the magnitude and vector magnetic fields collected along the full survey path, with magnetic sequences correspond to the
loop closure marked in corresponding colours. This example shows the similarity between magnetic sequences for loop
closure segments.

4.4.1 Matching algorithm
We use Dynamic Time Warping (DTW) to match sequences of magnetic vectors. Given two

sequences, seqa and seqB (assuming seqB is longer than seqa), DTW finds the part of seqB (denoted
as seqb) that best matches seqa. Crucially it will compress or stretch one sequence to find the best
match, which helps to mitigate speed changes as the surveyor walks. The variant of DTW used here
is called unconstrained or open-begin-end DTW (OBE-DTW), for which full details are available
in [32]. To reduce the computational load, we use a local matching strategy, whereby subsequences
of the historical trajectory are selected based on their proximity to the last known position of the
device (we used a range of 10 m)

4.4.2 Match validation
The DTW algorithm terminates having found the best match of the subsequence to the larger

sequence. There is always a match found, albeit not always a good one. A typical survey walk of
a few minutes therefore produces many hundreds of ‘matches’, many of which are false positives.
These false positive loop closures can have catastrophic effects on the SLAM result hence need to be
dealt with properly. In principle, a robust SLAM back-end (the part of a SLAM system responsible
for optimising the output given the constraints) is supposed to have the ability to reject or deactivate
false positive constraints [85, 84, 70, 57, 56, 11]. However, when a large proportion of constraints
are false positive, the back-end can become confused. Therefore, a robust front-end that can reject
enough false positive loop closures is important. Here we focus on the loop closure validation in the
front-end. We filter the DTW output to identify the matches that are accurate and consistent (these
hopefully represent valid loop closures). We prove by experiments that by filtering out false positive
loop closures in the front-end, a normal SLAM back-end is able to give good SLAM result. But we
should still note that it could definitely increase the system robustness if robust SLAM back-end is
used together with our front-end validation method (though higher computational cost is needed).

To validate matches found by the DTW, we apply five simple but effective empirical criteria as
follows:

CHAPTER 4. AUTOMATED SIGNAL SURVEY 43

1. The normalised distance between matches must be less than 10 µT. This quantity is com-
puted as the sum of the distances between the aligned elements normalised by the number of
elements [32].

2. The compression ratio must be less than 5. for two matching sequences, seqa and seqb,
of lengths na and nb samples, the compression ratio is Cr = max(na,nb)

min(na,nb)
. It represents how

stretched or compressed DTW has made a sequence to match it—we expect minimal stretching
or compression corresponding to minimal speed changes.

3. The temporal distance must be greater than 10 s. Two consecutive sequences are likely to
generate false positive matches. We impose a minimum temporal separation between the first
measurements of each proposed matching sequence pair.

4. The physical distance must be within 10 m. If a match is found for two sequences physically
close in the PDR trajectory, there is a greater chance that the match is valid.

5. The segment topology should be similar. The spatial shape of the matched sequences in the
PDR trace should also match. For two matched sequences seqa and seqb returned by DTW, we
have spatial co-ordinates XA, YA, XB, YB. We form two new sequences, seqdiffX = XA−XB,
seqdiffY = YA − YB and use the variances of these two sequences to indicate similarity. We
use an empirical threshold of 0.5 m2.

Many DTW schemes filter based on criteria 1 and 2 above. However, these are insufficient for
magnetic sequence matching—Figure 4.2 provides an example where criteria 1 and 2 are met since
the magnetic waveforms are similar. In this example, the topology criterion would cause the match to
be discarded.

One thing to note is that the proposed topology comparison method (the fifth criteria proposed
above) is a simple linear algorithm. There are more advanced methods which could achieve the same
goal. For example, Horn et al. [39] proposed a closed-form solution to compute the optimal rigid-
body transformation T (consists of rotation and translation) and the scale s that best transform one
set of point to match another corresponding point set. Then the topological similarity can be inferred
from s and the magnitude of T . Similar methods to assess topological similarity of two segments
include the Iterative Closest Point (ICP) [90]. The loop closure validation could be more robust by
the use of these more advanced methods, but the computational cost would be higher. For the ease of
implementation, we adopted the proposed low-cost method which works well by our experiments.

4.5 A magnetic surveying system
We have incorporated the loop detection and validation algorithms in a system that operates in two

modes: survey (in which the signal maps are built by a dedicated surveyor) and positioning (in which
a device is positioned using the surveyed maps). A block diagram of the key survey components is
shown in Figure 4.3, each of which is described in this section.

4.5.1 PDR
The PDR component provides a trajectory estimate based on dead reckoning algorithms applied

to the accelerometer and gyroscope sensors. Many factors that affect the performance of PDR, most
notably how and with what consistency the user holds the phone. In the scenario we propose, PDR is
only used during the surveying process, which is carried out by a dedicated surveyor. It is therefore

44 4.5. A MAGNETIC SURVEYING SYSTEM

0 10 20 30 40 50

0

5

10

Meters

M
e
te

rs

PDR path Query segment Matched segment

(a) The surveyor’s trajectory with an incorrect sequence match
highlighted.

50 100 150 200

−30

−20

−10

0

10

20

Index

S
ig

n
a

l
S

tr
e

n
g

th
 (

µ
T

)

matched−X
query−X
matched−Y
query−Y
matched−Z
query−Z

(b) The magnetic waveform. The green and red sequences cor-
respond to the coloured segments in 4.2a

Figure 4.2: An example of a false loop closure. The normalised DTW distance is 3.53 µT with a compression ratio of
2.09.

PDR

PDR Line Filter (optional)

SLAM Frontend

SLAM Backend

Map Generation

Raw trajectory

Aligned trajectory

Loop closures

Corrected Trajectory

WiFi, BLE, etc. maps

Mobile device held by surveyor

Accel, gyro

M
ag

ne
ti

c
fi

el
d

R
SS

: W
iF

i,
B

L
E

, e
tc

.

Figure 4.3: System architecture.

CHAPTER 4. AUTOMATED SIGNAL SURVEY 45

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

(a)
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

(b)

Figure 4.4: The value of the PDR line filter. (a) The raw PDR trajectory. (b) the filtered trajectory, which is significantly
closer to the true path taken.

reasonable to assert the phone is held in a convenient location—we assume it is held out in front as if
navigating, and the user’s heading matches that of the phone. Under these circumstances even simple
PDR algorithms can be used successfully [8]1. We take a representative and commonly-used PDR
algorithm based on thresholding the magnitude of the accelerometer (as described in [8]). Figure 4.4a
shows an example PDR output.

4.5.2 PDR line filter (optional)
Humans tend to walk in straight lines wherever possible. However, in this work we rely on gyro-

scopes for orientation tracking and these typically exhibit bias errors that are only partially compen-
sated for in smartphones. These bias errors cause estimated trajectories to bend incorrectly, which is
particularly problematic for the higher-level algorithms we apply. This component identifies likely
straight-line segments and filters them to be straight. The filter works by looking at the difference in
heading between consecutive PDR steps (the turning angle):

1. Loop over all steps in PDR result, grouping consecutive steps with a turning angle of less than
3◦. Flag each group with more than 15 steps as a straight line.

2. Reset the the turning angle of each step within a straight line group to zero.

3. (Optional, if the building is rectangular). Set the heading of the first straight line as a reference
orientation. Loop from the second straight line, if the difference of the orientation with the first
straight line is within Pthresh=15◦, then assume this straight line is parallel to the first line; if the
orientation difference is within [90-Pthresh, 90+Pthresh], then assume this line is perpendicular
to the first line and change the line orientation accordingly.

Figure 4.4 illustrates the value of the PDR line filter on a typical rectangular building. For this kind
of survey path which consists of many long straight lines, the proposed line filter is necessary, because

1Please note that there is a growing body of research on PDR aimed at relaxing the assumption about device placement.
Our proposed system can use these more advanced PDR algorithms as inputs. However, the stability and robustness of
these PDR algorithms in uncontrolled crowd-sourcing contexts has yet to be proven. We choose simple PDR algorithms
and ensure their robustness by constraining the device usage in order to focus on the higher levels of the system.

46 4.5. A MAGNETIC SURVEYING SYSTEM

the SLAM back-end algorithm does not have sufficient information to explicitly correct lines which
are wrongly bent (it simply “moves” lines towards each other if implied by a given loop closure).
But for the survey path consists of mostly curved lines (e.g. the one shown in Figure 4.5a), applying
this line filter or not causes no significant difference in the final results. Also, the proposed line filter
would straighten any shallow curve in the path, even those that were genuinely curves. However, it is
rare to find buildings with curved corridors so this problem is minor (the line straightening component
can be omitted entirely in buildings with curved paths). Therefore, we decide to apply the PDR line
filter or not on a case-by-case basis.

4.5.3 SLAM front-end and back-end
SLAM frameworks are typically split into two tasks: the front-end (which identifies constraints)

and the back-end (which optimises the system under those constraints). We use the GraphSLAM
(or graph-based SLAM) back-end to optimise the entire trajectory based on all loop closures [86].
GraphSLAM does this using a pose graph. The front-end builds the graph where each node in the
graph corresponds to a position estimate for a given time step. Consecutive steps correspond to
nodes linked by edges that represent the constraints of the step itself (length, turning angle). Loop
constraints determined as in Section 4.4 are added by connecting the two nodes where the loop occurs
by an edge. The GraphSLAM back-end optimises the spatial configuration of the nodes to best satisfy
the constraints.

Many modern implementations of GraphSLAM adopt a least-squares error minimisation tech-
nique in the back-end [59]. To cope with the high frequency of magnetic measurements (which leads
to very large matrices to be solved) we adopted a stochastic gradient-descent GraphSLAM (SGD-
SLAM) [71, 72]. SGD-SLAM solves a single constraint at a time instead of trying to solve all at
once. This breaks the problem into many tiny problems and speeds up the process. Figure 4.5 gives
two examples of the front-end and back-end outputs.

4.5.4 Map generation
Fingerprint maps were generated using Gaussian Processes regression applied to the SLAM tra-

jectory estimate and the signals measured en-route. Each location was associated with a signal mean
and variance; this is illustrated in Figure 4.6. Note that the variance climbs steeply within a few metres
off the trajectory, correctly capturing the high uncertainty that comes from having no measurements
there.

4.5.5 Positioning
As in Section 3.5.1, a standard Bayesian localisation algorithm was used to position based on

the signal maps, which is briefly repeated here. To estimate the person’s location, x, conditioned on
observation of a set of signal strength measurements (fingerprints), z, we used:

p(x|z) ∝ p(x)p(z|x) (4.1)

where p(x) is the prior probability of the person’s location and p(z|x) is the likelihood of observing
a set of signal strength measurements at location x. The signal map generated from the Gaussian
Processes regression was used to estimate p(z|x) as described in [25].

In practice we divided the environment into a grid of square cells of length 1 m or less, For each
step at each cell we computed p(x|z) and selected the cell with the maximum as the person’s location.
Signal strength measurements lower than -90 dBm were discarded. We tested two priors: a uniform

CHAPTER 4. AUTOMATED SIGNAL SURVEY 47

Input PDR Front-end output Back-end output

W
1

-9
.6

m
in

ut
es

0
5

1
0

1
5

0

1
0

2
0

3
0

4
0

5
0

(a) Raw PDR

0
5

1
0

1
5

0

1
0

2
0

3
0

4
0

5
0

(b)

0
5

1
0

1
5

0

1
0

2
0

3
0

4
0

5
0

(c)

W
G

B
1

-1
6.

2
m

in
ut

es

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

(d) Filtered PDR
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

(e)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(f)

Figure 4.5: Sample SLAM component outputs. Each red lines in the middle column indicates a selected loop closures.

Aligned signal on floor plan GP µ GP σ2

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

dBm

−
9

0

−
8

0

−
7

0

−
6

0

−
5

0

−
4

0

−
3

0

(a)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e

tr
e

s

Metres

dBm

−
9
0

−
8
0

−
7
0

−
6
0

−
5
0

−
4
0

−
3
0

(b)

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

M
e
tr

e
s

Metres

dBm
2

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

(c)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

d
B

m

−90

−80

−70

−60

−50

−40

−30

(d)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Metres

M
e

tr
e

s

d
B

m

−90

−80

−70

−60

−50

−40

−30

(e)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Metres

M
e
tr

e
s

d
B

m
2

20

30

40

50

60

70

(f)

Figure 4.6: Sample WiFi Gaussian Processes maps from survey walks.

48 4.6. TESTBEDS

distribution across cells (representing one-shot or push-to-fix positioning); and the previous posterior
distribution (representing a tracking scenario). As expected, the tracking prior gave a slightly higher
accuracy, although the difference in error was rarely less than 1 m. For brevity we focus on the results
of the uniform prior since this assesses the performance of the system in the most difficult scenario.

4.6 Testbeds
We used a number of different testbeds to assess our survey system:

1. WGB1. The first floor of the William Gates Building at the University of Cambridge. This is
an office environment with long corridors, small office rooms and large lecture halls.

2. WGB2. The second floor of the William Gates Building with long corridors connecting indi-
vidual office as per WGB1.

3. ENG. A large office area in the Engineering Department at the University of Cambridge. It
featured a large open space and computers scattered throughout.

4. KX. The concourse in London King’s Cross train station. A very large, roughly rectangular
open space with lots of people moving through it.

5. RUTH. The Rutherford building at the University of Cambridge. A concrete building featuring
corridors and (restricted access) laboratories,

One wing of the WGB2 testbed (WGB2a) was instrumented with the Bat systems [1] that allowed
for accurate trajectory ground truth in order to assess the system more quantitatively. Additionally, the
manual survey of the WiFi and BLE signals in all non-restricted areas of WGB2a from the previous
chapter was available. We also use the walks W1–W4 as described in Section 3.3: W1 visited all non-
restricted rooms; W2 was a simple walk up and down the corridor (only); W3 traversed the corridor
(only) multiple times; and W4 visited only a subset of the non-restricted rooms.

For the remaining testbeds, ground truth was obtained in two ways. The first involved a series of
checkpoints that the surveyor logged as they passed them. The second involved manually matching
turning points in the trajectory to known locations on a floor plan. Neither approach gives an accuracy
comparable to that available in the WGB2a testbed, but the results from different testbeds ensure the
results have more general relevance.

When testing, the surveyor walked continuously with an Android smartphone held out as if navi-
gating. The smartphone recorded the inertial sensor outputs and the Received Signal Strengths (RSS)
of WiFi and Bluetooth Low Energy (BLE) signals. All recorded data were then transferred to a desk-
top machine for offline processing. For a practical system, we do not envisage running the various
optimisation algorithms on mobile devices, but rather offloading such computations to the cloud—
this approach has worked well for similar systems e.g. WiFiSLAM. For all results presented here, the
survey was carried out by an author, in line with our belief that the survey should be carried out by a
dedicated surveyor fully aware of the how the system works.

4.6.1 Floor plans
Accurate digital floor plans were available for WGB1, WGB2 and WGB2a, but not for the other

testbeds. The surveying system does not rely on such floor plans, although they can help with visu-
alisation and context derivation for the subsequent positioning service. For visualisation in this work

CHAPTER 4. AUTOMATED SIGNAL SURVEY 49

we manually align and scale our outputs to bitmaps of the relevant floor plan if a digital version is
unavailable. In general such bitmaps might be obtained by photographing the fire evacuation sign or
similar.

4.7 Evaluation

4.7.1 SLAM trajectory accuracy

We assess the SLAM accuracy within testbed WGB2a (walks W1–W4) since it provided an ac-
curate ground truth trajectory. Figures 4.5a, 4.5b, and 4.5c show the outputs of the various stages of
the system for W1 and Figure 4.7 shows the result for W2–W4. In Figure 4.7, the first column shows
the raw PDR output; the second shows the line-filtered output; the third highlights the selected loop
closures in red; and the fourth shows the final trajectory, which can be compared with the ground
truth in the fifth column. Subjectively we observe that the final trajectory is significantly better than
the original input. To assess more quantitatively we use two metrics commonly found in the robotics
literature:

• Absolute Error (ABS). This is the distance between the estimated position and the ground
truth position at each epoch. It requires a manual alignment of the SLAM trajectory to the floor
plan.

• Subjective-Objective Error (SO). This metric aims to characterise how well the SLAM tra-
jectory reproduces the loop closures in the ground truth. In essence it is the average distance
between points on the SLAM trajectory that match to loop closure points on the ground truth
trajectory. Thus a perfect SLAM trajectory would have an SO error close to 0 m, and increasing
values indicate a worse SLAM result. More complete definitions can be found in [7, 42].

Table 4.1: WGB2a SLAM Accuracy Summary.

ABS SO
(m,m2) (m,m2)

(mean, variance) (mean, variance)
PDR N/A (1.27,5.78)

SLAM (0.73,0.18) (0.22,0.15)

Table 4.1 shows the aggregate values of these metrics for the test walks, whilst Figure 4.8 gives
the CDF of the values. As expected from visual inspection, the raw PDR trace has high error2. The
SLAM output has significantly reduced errors, validating the use of the magnetic sequence matching
for trajectory correction even on consumer-grade smartphones. Please also note that our magnetic
SLAM accuracy (0.22 m and 0.15 m2 for mean and variance respectively) also outperforms the accu-
racy of the state-of-the-art WiFi GraphSLAM algorithm (2.23 m and 1.56 m2 for mean and variance
respectively) which is reported in [42].

2ABS error for raw PDR was not computed since it cannot be unambiguously aligned to the ground truth.

50 4.7. EVALUATION

Raw PDR path
PDR line fil-
tered path

Path with loop
closures

SLAM result Ground truth path

W
2

(2
.1

m
in

ut
es

)

0 5 10
0

5

10

15

20

25

30

35

40

45

(a)
0 5 10

0

5

10

15

20

25

30

35

40

45

(b)
0 5 10

0

5

10

15

20

25

30

35

40

45

(c)
0 5 10

0

5

10

15

20

25

30

35

40

45

(d)
0 5

0

5

10

15

20

25

30

35

40

45

(e)

W
3

(3
.3

m
in

ut
es

)

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

(f)
0 5 10 15

0

5

10

15

20

25

30

35

40

45

(g)
0 5 10 15

0

5

10

15

20

25

30

35

40

45

(h)
0 5 10

0

5

10

15

20

25

30

35

40

45

(i)
0 5

0

5

10

15

20

25

30

35

40

45

(j)

W
4

(7
.5

m
in

ut
es

)

0 5 10 15
0

10

20

30

40

50

(k)
0 5 10 15 20

0

10

20

30

40

50

(l)
0 5 10 15 20

0

10

20

30

40

50

(m)
0 5 10

0

5

10

15

20

25

30

35

40

45

(n)
0 5 10

0

5

10

15

20

25

30

35

40

45

(o)

Figure 4.7: Result of magnetic SLAM. X-axis and Y-axis are coordinates measured in metres. Note that the results were
aligned to the floor plan manually.

CHAPTER 4. AUTOMATED SIGNAL SURVEY 51

0 2 4 6 8
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Absolute Error of Slam

Sub−obj Error of Slam

Sub−obj Error of PDR

Figure 4.8: SLAM accuracy for WGB2a testbed.

4.7.2 Positioning accuracy
In this subsection we quantitatively assess the positioning accuracy achieved in each testbed using

the auto-generated signal maps. We present results for ‘push-to-fix’ positioning (i.e. each position
estimate was based on a uniform prior) since this represents the most challenging case for indoor
location systems, and something that cannot be achieved using magnetic signal maps.

Note that the positioning accuracy is a function of the map quality, the user’s movement pattern,
the positioning algorithm in use, and many other factors. As such, the previous SLAM accuracy met-
rics are arguably the fairest assessment of the magnetic SLAM performance. However, the positioning
accuracy metric is well understood and all that was available in the other testbeds.

4.7.2.1 WGB2a

The ground truth and manual survey available for testbed WGB2a allowed for a detailed position-
ing accuracy assessment. We present results from three types of map: a Manual-survey map created
from the data in the manual survey only; Ideal-SLAM maps created from the high accuracy ground
truth trajectories of W1, W3, and W43 (representing the best possible result that could come from
SLAM); and Actual-SLAM maps created from the SLAM trajectory output for survey walk W1, W3
and W4 by the system described in this chapter.

For a baseline we used the fingerprints observed for survey walks W1, W2, W3 and W4 to po-
sition using the manual-survey map. This represents the positioning accuracy that would have been
achieved on those walks if the manual survey was used. To evaluate the walks directly, we used the
measurements taken during the manual survey as input to be matched to the SLAM-derived maps.
The results for both Ideal-SLAM and Actual-SLAM are shown in Figure 4.9.

For both WiFi and BLE maps, we observe that the manual map provided the best positioning
accuracy (7.6 m and 4.1 m, 90th percentile respectively). The W1 maps performed better than the W4
maps, which performed better than the W3 maps. This is as expected: W1 visited every room in the
manual survey, whilst W4 only visited a subset and W3 only visited the corridor. Thus W3 required
greater extrapolation since there were more test points further away from the survey path, and hence
more positioning occurring in regions of low map confidence. Figure 4.10 demonstrates this by
classifying the errors by their distance from the survey trajectory. For the W3 map (Figure 4.10b), we
see that the test points near the trajectory (i.e. along the corridor) gave similar error profiles to those
for the W1 map (around 10 m, 90th percentile). However, there are a large number of test points away

3The short duration of walk W2 meant very few WiFi scans were completed, so it is hard to build a meaningful map
with good signal prediction quality.

52 4.7. EVALUATION

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Manual Survey Map
W1 Ideal−SLAM Map
W1 Actual−SLAM Map
W3 Ideal−SLAM Map
W3 Actual−SLAM Map
W4 Ideal−SLAM Map
W4 Actual−SLAM Map

(a) WiFi

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Manual Survey Map
W1 Ideal−SLAM Map
W1 Actual−SLAM Map
W3 Ideal−SLAM Map
W3 Actual−SLAM Map
W4 Ideal−SLAM Map
W4 Actual−SLAM Map

(b) BLE

Figure 4.9: Positioning errors in the WGB2a testbed.

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m

1~2m

2~3m

>=3m

(a) W1

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m

1~2m

2~3m

3~4m

4~5m

>=5m

(b) W3

Figure 4.10: The WiFi positioning CDF results for Ideal-SLAM maps created from W1 and W3 broken down by distance
of test point from the survey trajectory.

from the trajectory, and these exhibit far higher errors (around 20 m, 90th percentile). When taken as
a whole, the error profile in Figure 4.9a is thus much worse for W3.

The Ideal-SLAM and Actual-SLAM lines in Figure 4.9 are generally very similar, with the Ideal-
SLAM performing marginally better. This is further evidence that the magnetic SLAM scheme we
describe in this work is able to approximate the trajectory to a high accuracy. It is interesting to
note that even the Ideal-SLAM maps, with their ‘perfect’ trajectories did not reproduce the manual
map accuracy. We attribute this to three factors: the first is that the inputs to the manual-survey map
are distributed regularly and comprehensively through the environment and regression further than a
metre from a survey point was not necessary; the second is that more data were collected at each of
the manual survey points, allowing a better picture of the variation to be built there (to emphasise this
point, the manual survey was built from 5847 WiFi scans, whilst W1, the longest of the survey walks,
used only 485 scans); and the third is that the Ideal-SLAM maps are evaluated against fingerprints
generated from manual survey data, most of which were taken 1∼2 meters or further away from the
survey path.

Overall, these results confirm the need for the trajectory to fully explore the space, by which
we mean it must pass within a few metres off any given point where positioning might be required.
Crucially, the generated maps within this range of the trajectory are a good approximation of the
manual survey maps. Whilst better accuracy can always be achieved from a detailed manual survey,
this must be weighed against the time taken to survey. For context the WGB2a manual and walk

CHAPTER 4. AUTOMATED SIGNAL SURVEY 53

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Wifi Same Day
Wifi 2 Weeks Later
Wifi 4 Weeks Later

BLE Same Day
BLE 2 Weeks Later
BLE 4 Weeks Later

(a) WGB1

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Wifi Same Day
Wifi 1 Week Later
Wifi 5 Weeks Later

BLE Same Day
BLE 1 Week Later
BLE 5 Weeks Later

(b) WGB2: Dense signal zone

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Wifi Same Day
Wifi 1 Week Later
Wifi 5 Weeks Later

BLE Same Day
BLE 1 Week Later
BLE 5 Weeks Later

(c) WGB2: Sparse signal zone

Figure 4.11: Positioning errors in WGB1 and WGB2.

survey durations are given in Table 3.2.

4.7.2.2 WGB1 and WGB2

For each of these larger testbeds we generated a signal map from a single survey walk and tested
its positioning performance on a test walk. To see how the maps degraded over time, the WGB1 test
walk was repeated two and four weeks later, and the WGB2 test walk one and five weeks later.

The results for WGB1 are shown in Figure 4.11a. They show a small degradation over time, sug-
gesting that a monthly resurvey would be appropriate. The degradation is more noticeable for WiFi
than BLE positioning. We attribute this to the much higher density of BLE beacons than WiFi access
points, making the positioning more resilient (and of higher accuracy in general). We emphasise this
trend by splitting the WGB2 results into errors for a subarea with dense WiFi and BLE coverage
(Figures 4.11b) and one with sparse coverage (Figure 4.11c). For both WiFi and BLE the positioning
accuracy falls with increased sparsity—indeed, the BLE coverage is so poor that WiFi positioning
generally outperformed BLE in the sparse area. Again we note the temporal degradation of the accu-
racy, although there is now a marked fall in WiFi accuracy within a week of the survey. We attribute
this to a physical change to the access point, based on three observations. Firstly, the BLE positioning
in the same area was unaffected; secondly, the positioning performance after 1 and 5 weeks is very
similar; and thirdly we have not seen this behaviour before.

Given both WGB1 and WGB2 are typical office environments, it seems reasonable from these
results that dedicated signal surveys could be carried out every one or two months. This seems like a
feasible demand given that a survey is non-specialist and takes only a few minutes.

4.7.2.3 ENG, KX, and RUTH

The positioning results for the remaining testbeds are based on WiFi measurements collected on
a survey walk followed by a test walk. Sample results are shown in Figure 4.12, with the error CDFs
in Figure 4.13. Unlike the WGB1 and WGB2 testbeds, the survey paths did not cover the space
completely. Therefore we would expect areas of good quality positioning (near the trajectory) and
areas of poor quality (away from it). When such variable quality is present and we do not uniformly
test the space, the error CDF is highly dependent on the test path taken. For example, if we were only
to test along the survey path, we would observe only low errors. Consequently we present CDFs for
groupings of test points based on their distance from the survey trajectory.

Overall we see that the office-like environment of RUTH exhibited slightly better accuracies than
the WGB1 and WGB2 test data. We attribute this to a combination of factors (e.g. the building

54 4.7. EVALUATION

Raw path Filtered path with loop
closures

SLAM result

W
G

B
2

(1
2.

6
m

in
s)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

(a)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

(b)
] 0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

R
ut

h
(6

.6
m

in
s)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

(d)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

(e)
0 10 20 30 40 50 60

0

5

10

15

20

(f)

E
ng

(4
.2

m
in

s)

0 5 10 15 20 25
0

5

10

15

20

25

30

(g)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

(h)
0 5 10 15 20 25

0

5

10

15

20

25

30

(i)

K
X

(1
3.

6
m

in
s)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

(j)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

25

(k)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

(l)

Figure 4.12: Result of magnetic SLAM. X-axis and Y-axis are coordinates measured in meters.

CHAPTER 4. AUTOMATED SIGNAL SURVEY 55

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m

(a) RUTH

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m

>=1m

(b) ENG

0 5 10 15 20 25 30
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

0~1m

1~2m

>=2m

(c) KX

Figure 4.13: Error CDFs for RUTH, ENG and KX, separated by distance of test points from the survey trajectory.

construction materials), but also the less accurate (and less frequent) ground truth may have masked
some slightly larger errors.

The errors for ENG and KX are notably worse. We attribute this to both testbeds containing
large, open space with relatively sparse WiFi coverage near the centre (in such large spaces, WiFi is
inevitably deployed to give comprehensive coverage with minimal overlap of base station ranges). In
the case of KX, it is also a particularly dynamic environment which does not lead to the radio signal
stability desirable for map-based positioning. Nonetheless, the accuracy is around 20 m at the 95%
confidence level, which still provides useful positioning in such a large area (approximately 30 m by
125 m). Given that regular manual signal surveying is not possible in such an area, this accuracy is
highly valuable, especially since it derives from a simple 13.6 minute walk.

4.8 Conclusions and further work
This chapter presented a robust, time-efficient scheme for signal surveying using a dedicated sur-

veyor walking around a space with a consumer-level mobile device such as a smartphone. Specifically
we found:

• Repeated parts of a trajectory (loops) can be accurately detected by comparing sequences of
magnetic measurements. We have described a robust technique to detect and validate loop
closures using this signal.

• A SLAM scheme can be used to estimate the trajectory from a Pedestrian Dead Reckoned
(PDR) input from a smartphone accelerometer and gyroscope. Using a testbed with high accu-
racy ground truth available, we showed a point on the estimated trajectory has an average error
of 73 cm, with a subjective-objective error under 0.22 m.

• Gaussian Processes regression applied to radio signals observed during the survey can provide
good positioning results within a few metres off the trajectory, but not beyond. The errors are
greater than if the map were constructed using a detailed manual survey (around 2 m at the 90%
confidence level for WiFi and push-to-fix positioning). However this loss in accuracy is offset
by the much shorter survey time (a matter of minutes rather than hours). In many environments
a detailed manual survey is not a realistic possibility as a one-off event, never mind a regular
one.

We have evaluated our survey system in five different environments, from which we make the
following recommendations for the best results:

56 4.8. CONCLUSIONS AND FURTHER WORK

• A dedicated surveyor should be used to ensure trustworthy PDR and to allow the use of the
magnetic vector (not just the scalar magnitude) for loop detection.

• Signals other than the magnetic signal should be favoured for the ultimate positioning. This
is because magnetic signals can change quickly and they have poor locality (to the extent they
cannot reliably support push-to-fix positioning)

• The survey trajectory should enter into every room and pass within 3–4 m of everywhere (or
1–2 m for the best performance) that a position may be requested. Regression schemes cannot
reliably predict the fingerprints beyond this range.

Once a trusted fingerprint map has been constructed, it may be possible to update or refine the map
using crowdsourced PDR traces. There are many challenges inherent in this, not least that people tend
to avoid the loops necessary to constrain the PDR drift. We hope to investigate this in detail in the
future.

Chapter 5

Optimised graphslam back-end

5.1 Introduction

The previous chapter introduced a high-efficiency and high-accuracy path surveying system which
only uses a commodity smartphone as the survey tool. This system was tested in a range of testbeds,
proving that it offers a robust and fast way to survey an environment. In this context, the noisy trajec-
tory was recovered by a state-of-the-art PDR algorithm and pre-processed by a line filter (optionally).
The loop closures were detected by matching magnetic signal sequences using a DTW algorithm.
False positive loop closures were filtered out by the validation strategy described before. The fil-
tered trajectories and validated loop closures were then processed by another critical component of
this system, the SLAM back-end. This back-end takes the noisy trajectory and the loop closures as
input, and generates a corrected trajectory that is the most consistent with all the loop closures. The
problem the back-end solves is the well studied GraphSLAM (graph-based SLAM) problem in the
area of robotics [86]. GraphSLAM optimises the trajectory according to all the available information
from motion sensors and observations (loop closures)1. It does this using a pose graph. The nodes of
the graph are formed by the poses (i.e. positions in the environment) of the survey device for every
magnetic signal scan during the survey. The PDR outputs (steps, step length and turning angles) give
an initial estimate of the poses. Consecutive nodes are linked by edges that represent the constraints
between them (distance, turning angle). These constraints are called odometry constraints in robotics.
Loop closure constraints (determined as described in Section 4.4) are added to the pose graph as edges
connecting corresponding nodes where the loop occurs. This kind of edge represents a transformation
with zero translation and zero turning angle, which means the two nodes should be in the same physi-
cal position in the space, i.e. they should have same pose values (x,y and heading). The GraphSLAM
back-end optimises the spatial configuration of all the nodes to best satisfy the odometry constraints
and loop closure constraints.

Many modern implementations of GraphSLAM adopt a least-squares error minimisation tech-
nique [59]. This technique requires to iteratively solve a linear system whose size is proportional to
the number of nodes (poses). When the number of nodes is large (more than thousands), the time
needed to solve the linear system becomes the bottleneck of this algorithm. Because the magnetic
scanning frequency is high (50 ∼ 100 Hz), a 10-minute walk can generate a graph with 30,000 to
60,000 nodes, leading to very large matrices to solve, so an efficient and scalable GraphSLAM al-

1Please note that we can alternatively treat the trajectory correction problem as a filtering problem and solve it using
the algorithms like a particle filter. However, without enough environmental constraints (e.g. a floor plan), it is difficult
to represent the posterior of the system efficiently (particles may grow unboundedly). So we choose to treat the trajectory
correction problem as an optimisation problem and use GraphSLAM to solve it. We return to the alternative approach in
the next chapter.

57

58 5.2. RELATED WORK

gorithm is necessary. This chapter first evaluates three state-of-the-art GraphSLAM algorithms (g2o,
Toro, SGD) using the datasets from the automated surveying system. The evaluation results shows
that the SGD algorithm outperforms others in this particular scenario. It adopts a stochastic gradient-
descent method [71, 72], solving only a single constraint per time instead of trying to solve all at once.
This strategy breaks the problem into many tiny problems and speeds up the process. However, SGD
is not optimised for this use case. We show how it can be improved so that it solves our problems
more efficiently. At the end of this chapter, we evaluate the improved SGD algorithm (MSGD) using
the same datasets to demonstrate its value.

5.2 Related work
Graph-based optimisation has been studied intensely in the area of robotics. Many algorithms

utilise the sparsity of the information matrix 2 of the pose graph to efficiently optimise the graph [87,
20]. However, they irrevocably introduce linearisation error that can lead to poor estimates. Lu and
Milios [59] suggested a brute-force nonlinear least squares implementation to optimise the pose graph.
However, this method has unaffordable time complexity in real applications. Many more efficient al-
gorithms have been proposed since then. For example, some algorithms introduced Gauss-Seidel
relaxation to speed up the graph optimisation [16, 29]. Olson et al. [71] introduced the stochastic gra-
dient descent method which was originally used to train artificial neural networks into GraphSLAM.
Their method (denoted as SGD herein) did not try to solve the large linear system formed by all the
constraints in the graph directly. Instead, it attempted to solve only one constraint per time and opti-
mised the graph iteratively. They proposed an incremental state space to capture the cumulative nature
of the robot motion. Based on this parameterization, the update can be performed efficiently. Grisetti
et al. [34] further extended the parameterization of the state space by adopting a tree structure to per-
form the stochastic gradient descent update more efficiently (denoted as Toro herein). More recently,
with the development of modern linear solvers, a series of algorithms attempt to solve the large non-
linear least square graph optimisation problem by iteratively linearising the current state and solving
the large linear system. For instance, Preconditioned Conjugate Gradient (PCG) and sparse Cholesky
decomposition were both used to solve large linear systems efficiently [63, 46, 50]. The most gen-
eral and state-of-the-art algorithm in this category is g2o [55], which was found to outperform many
other algorithms when applied to the graph optimisation problem in robotics. To summarise, the
state-of-the-art GraphSLAM algorithms can be roughly classified into two categories: those based on
stochastic gradient descent (representative algorithms are SGD and Toro); and those based on mod-
ern linear solvers to solve the linear systems formed by linearisation of the non-linear least square
problem at the current state (the typical algorithm is g2o). When solving graph-based optimisation
problems, SGD and Toro have been found to be more robust to poor initialisations but g2o has been
found to converge faster. This chapter evaluates the abilities of the three representative algorithms to
solve the SLAM problem in the automated signal survey context. Based on the evaluation results, an
optimised algorithm is proposed to solve the specific SLAM problem more efficiently.

5.3 Problem formulation
The GraphSLAM problem is to minimise the errors in a pose graph based on the constraints

(edges) between nodes (Figure 5.1). This pose graph has two kinds of constraints: the odometry
constraints that connect consecutive poses (denoted as Codo), and the loop closure constraints based

2The information matrix is also called the inverse covariance matrix. The elements of this matrix encode the con-
straints information between different poses, providing information to correct errors in the pose graph.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 59

i+4i+3i+2i+1i

j+4j+3j+2j+1j

m+1m

Odometry Constraint

nm

Loop Closure Constraint

Figure 5.1: An example of constraints in a pose graph. Each node of the graph represents a pose of the system. Constraints
between consecutive poses are odometry constraints; the other constraints are loop closure constraints.

on observations (denoted as Clp). Here, the observations are the magnetic loop closures. Once a loop
closure is detected, a group of constraints are added to the system (Figure 5.2). Let C = Codo ∪ Clp
be the set of all constraints in the pose graph, X be the state vector of all the poses. The chi-squared
(χ2) errors of the whole pose graph can be formulated as

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80
!""#$%&"'()*!

!""#$%&"'()*!

!""#$%&"'()*!

!""#$%&"'()*!

Figure 5.2: The illustration of loop closures and loop closure constraints. The figure on the left is a survey trajectory
with identified loop closures; the figure on the right is the zoomed-in view of four loop closures. Because we detect loop
closures by matching magnetic sequences, when a loop closure is detected, a sequence of magnetic scans are matched
to another. Then each scan-to-scan matching forms a constraint in this loop closure, which is represented by a red line
connecting corresponding points on the trajectory. It can be seen that the detection of a loop closure will cause a group of
constraints to be added to the system.

F (X) =
∑
i∈C

Fi =
∑
i∈C

eTi Ωiei (5.1)

where Ωi is the information matrix (as mentioned in Section 5.2) of a particular constraint i, ei is the
residual error of this constraint. If the related poses of constraint i are pose m and pose n, let zmn be
the observed value of the observation between the two poses and hmn the predicted observation value.
Then the error of constraint i is

ei = zmn − hmn

60 5.4. STATE-OF-THE-ART ALGORITHMS

The GraphSLAM algorithm tries to find a configuration of X (X∗) that minimises F :

X∗ = arg min
X

F (X)

By linearisation (first order Taylor expansion) of the error ei at the current state X we can get

ei(X + ∆X) ' ei + Ji∆X

where, ei is the error at current state X , Ji is the Jacobian of ei at current state. Then the χ2 error Fi
becomes

Fi(X + ∆X) = ei(X + ∆X)TΩiei(X + ∆X)

' (ei + Ji∆X)TΩi(ei + Ji∆X)

= eTi Ωiei + 2eTi ΩiJi∆X + ∆XTJTi ΩiJi∆X

(5.2)

differentiating Equation 5.2 with respect to ∆X we obtain:

∂Fi
∂∆X

= 2JTi ΩiJi∆X + 2JTi Ωiei

then differentiating Equation 5.1 with respect to ∆X we get:

∂F

∂∆X
=
∑
i∈C

∂Fi
∂∆X

=
∑
i∈C

(2JTi ΩiJi∆X + 2JTi Ωiei)

= 2JTΩJ∆X + 2JTΩe

(5.3)

let Equation 5.3 equal 0:

2JTΩJ∆X + 2JTΩe = 0

JTΩJ∆X = −JTΩe
(5.4)

then we obtain the value of ∆X that minimises F :

∆X = −(JTΩJ)−1JTΩe (5.5)

and the solution is
X∗ = X + ∆X (5.6)

Most algorithms iteratively solve this problem until convergence.

5.4 State-of-the-art algorithms
This section gives a brief introduction to three state-of-the-art algorithms: g2o, Toro and SGD.

Please refer to [55, 71, 34] for detailed and complete descriptions about these algorithms.

5.4.1 g2o
This is a conventional non-linear least square method that iteratively linearises the error F at

current state X , computes ∆X (as in Equation 5.5) and adds ∆X to current state X (as in Equation
5.6). Because the size of the linear system (Equation 5.4) is proportional to the number of poses,
without a modern linear solver, this method is impractical. The idea of g2o is to use modern linear
solver such as sparse Cholesky decomposition to solve the linear system efficiently. The prerequisite
is that the information matrix JTΩJ is sparse and positive definite.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 61

5.4.2 SGD
The SGD algorithm also solves the linear system iteratively, but in a different way: when com-

puting ∆X , it does not consider all the constraints simultaneously, instead, it computes ∆X based on
just one single constraint selected randomly. The update equation becomes:

X∗ = X + λH−1JTi Ωiei (5.7)

where H = JTΩJ , and λ is the learning rate, which decreases with the iteration. The use of λ
is necessary for the system to converge to an equilibrium point because the pose graph generally
contains antagonistic constraints. The H is used as the pre-conditioner to scale and distribute errors
according to the importance of each constraint and node. To avoid expensive computation in the
inversion of H , it is approximated as

H ' diag(H)

Thus the inversion of H can be computed trivially by inverting its diagonal elements. Using
the proposed incremental state space [71], the update caused by solving a constraint is actually to
distribute weighted residual errors to a sequence of consecutive poses. For example, if a constraint
connects two poses with indices a and b respectively, then solving this constraint is to distribute the
errors among poses [a+1, a+2, ...b]. A naive implementation requires O(N) (assume the graph con-
tains N poses) time to perform the update of a single constraint. A special binary tree was proposed
to speed up this process. It can help to perform each update in O(logN) time. More discussion about
this tree is given in Section 5.5.2.1, and please refer to Section 4.3.4 of [69] for detailed description.

5.4.3 Toro
The Toro algorithm is based on the same stochastic gradient descent method as SGD, but it adopts

a tree parameterization of the pose graph. With this parameterization, the number of nodes involved
in the update of each constraint depends only on the topology of the environment, and the interactions
between antagonistic constraints are kept small. In this way, Toro will typically converge much faster
than SGD.

5.4.4 Datasets
The inputs of the SLAM back-end are the outputs of the SLAM front-end, i.e. the trajectory

needed to be corrected and the identified loop closures. We use a number of real datasets collected in
various testbeds to evaluate the three state-of-the-art SLAM back-end algorithms. All the datasets are
processed by the SLAM front-end (discussed in Chapter 4) to get the filtered paths and loop closures.
Two examples of these processed results are shown in Figure 5.3. All the datasets are shown in
Appendix A, where Figure A.1 shows 4 datasets collected in WGB2a testbed, Figure A.2 shows 5
datasets collected in WGB1 testbed, Figure A.3 shows 4 datasets collected in WGB2 testbed, Figure
A.4 shows 2 datasets collected in ENG testbed, 2 datasets collected in RUTH testbed and 2 datasets
collected in KX testbed. Details about the testbeds, groundtruth and data collecting were given in
Section 4.6.

Please note that we applied the line-filter algorithm (Section 4.5.2) to most of the original PDR
trajectories. This is because if a loop closure connects two wrongly bent straight-line segments, the
back-end will simply move the segments towards each other, but cannot straighten them. Also the
magnetic loop closures do not provide rich enough information about how the orientation of a pose
relates to the environment. So we simply assume the poses connected by a loop closure constraint
should have the same orientation. Therefore, to get good final results, it is necessary to use the line

62 5.4. STATE-OF-THE-ART ALGORITHMS

Groundtruth Filtered path Filtered path with loop
closures

W
G

B
2a

-1

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(a)

0
5

1
0

1
5

0

1
0

2
0

3
0

4
0

5
0

(b)

0
5

1
0

1
5

0

1
0

2
0

3
0

4
0

5
0

(c)

W
G

B
2-

3
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(d)

0
2

0
4

0
6

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(e)

0
2

0
4

0
6

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(f)

Figure 5.3: Two sample datasets (WGB2a-1 and WGB2-3) used for evaluation of SLAM back-end algorithms.

filter to identify likely straight-line segments in the original PDR trajectory and filter them to be
straight.

For all the datasets, the numbers of poses, odometry constraints, loop closure constraints and loop
closures are shown in Table 5.1. Each pose corresponds to one magnetic scan during the survey. An
odometry constraint is the spatial relationship between two consecutive magnetic scans. This relation-
ship is inferred from PDR result. Loop closure constraints correspond to the loop closures detected
by the SLAM front-end. As described in Section 4.4, the front-end matches magnetic sequence win-
dows to detect loop closures, so each time a loop closure is detected, a group of constraints are added.
The relationship between a loop closure and the loop closure constraints it introduces is not used by
g2o, Toro and SGD, but in Section 5.5 we discuss how this information can be used to design a more
efficient SLAM back-end algorithm.

5.4.5 Evaluation
5.4.5.1 Algorithm settings

We adopt an open source implementation of the g2o 3. This open source package incorporates
many different robust kernels as well as various modern linear solvers/optimisers. We found by
experiment that different combinations of these components produced similar results on our datasets.
So we chose the default settings:

• Robust kernel: None;

• Optimiser: “gn var cholmod”, i.e. “Gauss-Newton: Cholesky solver using CHOLMOD (vari-
able blocksize)”.

We also adopt an open source implementation of Toro 4 and use the default settings as well.
We implemented the SGD algorithm using the C++ language. It randomly selected a constraint

to process each time (as in [69]) rather than iterating through all constraints in a fixed order (as

3https://openslam.org/g2o.html
4https://www.openslam.org/toro.html

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 63

Table 5.1: Statistics of all datasets

Dataset Poses Odometry Constraints Loop Closure Constraints Loop Closures
WGB2a-1 26262 26261 10382 29
WGB2a-2 3982 3981 596 2
WGB2a-3 8177 8176 996 4
WGB2a-4 20671 20670 7221 29
WGB1-1 18551 18550 1370 26
WGB1-2 25958 25957 16213 109
WGB1-3 14639 14638 2820 19
WGB1-4 13353 13352 1338 9
WGB1-5 29941 29940 790 5
WGB2-1 7490 7489 152 5
WGB2-2 15692 15691 2690 27
WGB2-3 17645 17644 9690 130
WGB2-4 16195 16194 401 5
ENG-1 4314 4313 237 4
ENG-2 12748 12747 1125 7

RUTH-1 7218 7217 7200 60
RUTH-2 7980 7979 4117 23

KX-1 16402 16401 1165 20
KX-2 21499 21498 6094 41

in [71]) because we found randomisation (which is better for escaping local minima) gave much
better performance for all our datasets.

5.4.5.2 Odometry constraints

The inputs for the g2o and Toro include all the poses, odometry constraints and loop closure
constraints. But the odometry constraints are excluded for SGD to avoid over-constraining the system.
Unlike g2o and Toro, SGD does not rely on the odometry constraints to maintain the topology of the
trajectory. It simply loops over each loop closure constraint and distributes errors among poses related
to this constraint (the poses related to a constraint include the two poses connected by it and all the
poses between them on the trajectory). The topology of the pose graph is maintained naturally by the
mechanism of the algorithm.

Contrarily, odometry constraints are compulsory for both g2o and Toro. Toro relies on the con-
nectivity of the input pose graph to build the special tree structure it adopts. The lack of enough
odometry constraints can cause the pose graph to be non-connected, which results in the failure of the
tree building process. For g2o, the Cholesky solver it adopts requires the information matrix H of the
system to be positive-definite. The lack of odometry constraints can cause some diagonal elements of
H to be zero, which causes it to be non-positive definite. The use of the LM (Levenberg-Marquardt)
algorithm can seemingly relax this restriction because LM will add a damped identity matrix I to the
information matrix:

H ′ = H + λI

where λ is the damping factor. However, in this case, g2o is still not working for the following
reasons: g2o corrects the errors in the system by ‘moving’ poses in the pose graph to the ‘right’
place, and it moves the poses according to the gradient of the system. The gradient of the system is
computed based on every constraint the system has. So different constraints related to a single pose act

64 5.4. STATE-OF-THE-ART ALGORITHMS

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(a) g2o result on RUTH-1 (with odometry
constraints discarded).

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(b) g2o result on RUTH-2 (with odometry
constraints discarded).

i+4i+3i+2i+1i

j+4j+3j+2j+1j

(c) The pose graph in Figure 5.1 (with
odometry constraints discarded).

i+4i+3i+2i+1ij j+1 j+2 j+3 j+4

(d) g2o result on the pose graph shown on
the left. The sizes of the blue poses are
deliberately reduced to show the overlap
more clearly.

Figure 5.4: g2o results when odometry constraints are discarded. Figure 5.4a and 5.4b show the g2o results on the two
RUTH datasets (which are shown in Figure A.4i and A.4l). The odometry constraints were discarded when applying g2o.
The results showed that any poses not connected by any constraint just stay where they are. Each result has a χ2 error of
zero because any two poses connected by a constraint are simply moved towards each other until overlap. This is more
clear if using the pose graph in Figure 5.1 to illustrate: if all the odometry constraints are discarded (Figure 5.4c), then
g2o will cause pose j to overlap with pose i, pose j + 1 to overlap with pose i + 1,..., i.e. any two poses connected by a
loop closure constraint will ultimately overlap with each other (Figure 5.4d).

as ‘springs’ to constrain where this pose should be moved to. Specifically, the odometry constraints
between consecutive poses act as a spring system. This spring system tries to maintain the topology
of the trajectory against the effects of the loop closure constraints. Without the odometry constraints,
most poses are connected by only a loop closure constraint. Then any two poses connected by a loop
closure constraint will be simply moved towards each other regardless how the topology of trajectory
is, and this can easily damage the trajectory topology.

This difference between SGD and g2o comes from their state space choices. SGD adopts an
incremental state space (incremental pose) while g2o adopts a global state space (global pose). The
state space representation determines how errors will be spread over poses when solving a constraint:
In SGD, the error embedded in a constraint will be spread not only over the two poses connected by
this constraint, but also over the poses between them on the trajectory, by which the topology of the
trajectory is naturally maintained. However, g2o distributes error only over the two poses connected
by this constraint, and this will cause two problems as shown in Figure 5.4:

1. Any poses not connected by any constraints will just stay where they are.

2. Any two poses connected by a single constraint will be simply moved towards each other until
overlap.

Therefore, g2o cannot give reasonable results when there are no odometry constraints to maintain
the topology of the pose graph.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 65

5.4.5.3 Metrics

In robotics literature, there are three common metrics used to evaluate the performance of a SLAM
back-end5:

• Chi-Squared Error (χ2 error). This kind of error is used when the groundtruth data about
the trajectory is unavailable. Equation 5.1 is the χ2 error of the whole system, and this is what
the GraphSLAM algorithms explicitly attempt to minimise. We can normalise this error by the
number of constraints and use the normalised χ2 error as a direct indicator of the performance
of different SLAM back-end algorithms:

χ2
normed = mean(

∑
i∈C

Fi) = mean(
∑
i∈C

eTi Ωiei) (5.8)

However, as reported in [69], what χ2 error tells us is how much error is embedded in the
constraints, but not how well the resultant trajectory approaches the groundtruth, i.e, good χ2

error does not necessarily mean good map (trajectory) quality. Figure 5.5a shows the χ2 error
of different algorithms on dataset WGB2-3. It shows that the χ2 error of all the algorithms
being tested converged to 0. However, as we will show later in this section, the correspond-
ing results can be far from the groundtruth. We found this is the common case when testing
the three state-of-the-art algorithms. In the signal survey context, a good SLAM back-end is
required to return corrected trajectories that well approach the groundtruth. Therefore, from a
practical perspective, we do not use the χ2 error to evaluate the performance of these back-end
algorithms. To avoid confusion, please note that the SLAM back-end algorithms are still trying
to minimise the χ2 error when correcting the pose graph because no groundtruth information is
available (otherwise we do not need to solve it). So we emphasise that the χ2 error is only used
by the back-end algorithms themselves but not for our evaluation purpose when comparing the
performance of different back-end algorithms.

• Subjective-Objective Error (SO error). This metric is used frequently to evaluate SLAM
back-end results (and was mentioned in Section 4.7.1. We give a brief review here to compare
with other kinds of metric). Like the χ2 error, the SO error is also used when no groundtruth
information is available. The intuitive interpretation of this error is: it evaluates how accurately
a SLAM back-end algorithm corrects the errors related to the loop closure constraints. A cor-
rected trajectory returned by a perfect SLAM back-end should have an SO error close to 0. We
refer the reader to [7, 24, 42] for its mathematical description and application examples.

• State-Squared Error (SS error). This metric is proposed in [69]. For a graph with n poses, de-
note the configuration of the result trajectory byX , whereX = {(x1, y1), (x2, y2), ..., (xn, yn)},
and denote the groundtruth configuration by X̄ , where X̄ = {(x̄1, ȳ1), (x̄2, ȳ2), ..., (x̄n, ȳn)}.
Then :

SSerror = mean{dis2i | dis2i = (xi − x̄i)2 + (yi − ȳi)2} (5.9)

This is actually the mean squared Euclidean error between the (x, y) pose positions on the
result trajectory and the groundtruth trajectory. However, this metric is relevant to the rigid-
body transformation of the pose graph. For example, rotating, scaling or translating either
the result trajectory or the groundtruth trajectory does not affect the topology of the trajectory
(nor the χ2 error of the result), but it affects the SS error computed by Equation 5.9. To give an

5We have mentioned two metrics in Section 4.7.1. Here, we introduce several more advanced metrics for better
evaluation of back-end algorithms.

66 5.4. STATE-OF-THE-ART ALGORITHMS

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Iteration

χ
2
 E

rr
o

r
p

e
r

C
o

n
s
tr

a
in

t

g2o

toro

sgd

(a) χ2 errors.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Iteration

S
O

 E
rr

o
r

[m
]

g2o

toro

sgd

(b) Subjective-objective errors.

Figure 5.5: χ2 errors and SO errors when applying different algorithms on dataset WGB2-3.

unambiguous comparison, as suggested by [69], a rigid-body transform T that minimises the SS
error should be computed and applied to either the result trajectory or the groundtruth trajectory
beforehand. Given the configurations of the result trajectory and the groundtruth trajectory, this
transform T can be computed by the algorithm proposed in [39]. Then, Equation 5.9 is used to
compute the SS error of the SLAM results.

Empirically we found that each SLAM back-end algorithm will give a χ2 error approaching 0
after enough iterations regardless how good the quality of the result trajectory is. Both SO and SS
errors are better indicators of the result quality. However, the SO error is not as sensitive to the SLAM
result quality as SS error is. For example, Figure 5.5b shows the SO errors of different algorithms on
dataset WGB2-3. Compared with the SS errors (Figure 5.6h) and the result trajectories (Figure 5.6e,
5.6f and 5.6g), we find that SS errors are more sensitive to the result quality. Therefore, although SO
error is a good metric to measure how well a back-end algorithm optimises the trajectory according to
the loop closures (Section 4.7.1), to better compare the performance of different back-end algorithms,
we use the SS error. 6 We first compute the rigid-body transform T that minimises the SS error, and
then apply it to the groundtruth trajectory to get the transformed groundtruth configuration X̄t. Then
we use X̄t to compute the SS error by Equation 5.9. We run 100 iterations of g2o, SGD and Toro on
each dataset and present the results below.

Figure 5.6 show the results of each algorithm on two sample datasets. It can be seen from these
figures that SS error is a good indicator of the quality of the SLAM result: lower SS errors correspond
to better result (map) quality, as proved by SGD results which approach the groundtruth well; higher
SS errors correspond to worse quality, as shown by the results of g2o and Toro, which are distorted to
an unacceptable extent.

5.4.5.4 Results and analysis

The results of Toro, g2o and SGD on each dataset are shown in Appendix A (Figure A.5, A.6,
A.7 and A.8). These figures show that in most cases, g2o and Toro failed to converge to acceptable
results, but SGD worked well on each dataset. As described before, all the three back-end algorithms
explicitly minimise the χ2 error of the pose graph (because of the lack of groundtruth), but we use the
SS error to evaluate their results (because it is a good indicator about how well a trajectory approaches
the groundtruth). We should note that minimising the χ2 error can cause the SS error to be minimised

6Please note again that without the groundtruth information, the SLAM back-end algorithms are still trying to minimise
the χ2 error so as to correct the pose graph. The SS error is only used for evaluating the back-end results when we have
groundtruth.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 67

g2o Toro SGD State Squared Error
W

G
B

2a
-1

0 5 10 15 20
0

5

10

15

20

25

(a)
0 5 10 15 20 25

0

5

10

15

20

25

30

35

(b)
0 5 10

0

5

10

15

20

25

30

35

40

45

(c)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(d)

W
G

B
2-

3

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

(e)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

(f)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

(g)

0 20 40 60 80 100
0

50

100

150

200

250

300

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(h)

Figure 5.6: SLAM results on WGB2a-1 and WGB2-3. The trajectories (the red is the transformed groundtruth and the
blue the slam result) and the SS errors are the results of the 100th iteration of different algorithms.

but not necessarily. Actually, as stated before, the χ2 error of all the three algorithms converges to zero
after enough iterations. However, whether an algorithm converges to the minimum SS error (or con-
verges to a result that has the best quality from a practical perspective) depends on how this algorithm
approach the minimum χ2 error. Generally speaking, the methods based on Cholesky decomposition
like g2o can typically find the lowest χ2 error because they usually take the path directly leading to it.
However, these methods can easily get stuck in local minima because the state space of the non-linear
optimisation problem have long valleys with small χ2 error. In contrast, the randomised algorithms
like SGD are capable of escaping local minima and finding the path leading to the global minimum
when exploring the state space. Actually, Toro has a very similar error distribution mechanism as
SGD to optimise the graph. However, Toro iterates over each constraint in a fixed order pre-defined
by the tree structure it adopts, and, it is this fixed order that keeps the high efficiency of Toro. This
fixed order makes Toro much less randomised than SGD, which leads to worse results.

In summary, the SGD algorithm achieves the best performance on our problem. The evaluation re-
sults presented here are similar to the results reported in [69], but here we compare the SGD algorithm
with state-of-the-art algorithms on a specific problem.

5.5 Optimised back-end design

5.5.1 Motivation
In the context of automated signal survey, the number of loop closure constraints can be very

large. Table 5.1 shows the statistics of all the datasets collected during each survey for this work.
The duration of each survey ranges from 2 minutes to 15 minutes. Because the magnetic scanning
frequency is high (usually between 50 to 100 Hz), in larger areas where the survey time is much
longer, the number of loop closure constraints in the pose graph can be even larger than shown in
Table 5.1. Figure 5.12 shows that the execution time per iteration of SGD increases dramatically as
the number of constraints increases, which means SGD is not scalable to deal with larger datasets.

68 5.5. OPTIMISED BACK-END DESIGN

Another motivation for more efficient back-end is that from a practical perspective, the surveyor
usually needs to know the SLAM result immediately after a survey has been done so that she knows
whether she needs to re-do the survey (sometimes the survey path cannot be successfully recovered
because the path does not contain enough loop closures). In this case real-time feedback of the
SLAM result is very valuable, by which the surveyor can take action immediately after the SLAM
goes wrong.

To increase the efficiency and scalability of the automated survey system, a possible way is to
reduce the size of the pose graph being built, i.e. reduce the number of nodes (poses) and edges (con-
straints). For example, we can convert the pose graph consisting of high-frequency magnetic sample
points (about 100 hz) and related constraints to the pose graph consisting of PDR step points (about
1.0 hz) and related constraints. This would reduce the size of the pose graph but could result in loss
of information. For instance, the magnetic loop closure constraints provide much richer information
about how a PDR step should be stretched, compressed or aligned, which is better to fine-tune the
trajectory in the correction process. There are also many research works about how to sparsify the
pose graph based on more generalised and advanced techniques [54, 9, 10, 89, 62, 41].

Obviously, another way to increase the system efficiency is to optimise the back-end algorithm
itself. This is the focus of this section. We show how SGD can be optimised according to the features
of magnetic-sequence based loop closures. We demonstrate that the optimised algorithm is more effi-
cient for large datasets than the original SGD algorithm, so more suitable for large-scale deployment
of indoor positioning.

5.5.2 Optimisation based on tree operation and approximation
5.5.2.1 Linear-time pose computation

As described in Section 5.4.2, SGD requires to estimate a pre-conditioner H to scale the distribu-
tion of residual error. The process to estimate H is shown in Line 6 to 15 of Algorithm 1 (where H is
approximated by its diagonal elements stored in M), during which the function getPose needs to be
called E times for a graph with E constraints. getPose computes current pose values by adding all
the changes made to a pose. These changes are made by solving corresponding constraints: solving a
constraint connecting two poses with indices a and b respectively will distribute an array of weighted
errors among poses with indices [a+ 1, a+ 2, ...b]. The trivial way to implement this is using an array
to hold all the pose values, which means O(N) time (assuming this pose graph has N nodes/poses) is
needed to perform updates over corresponding poses.

SGD adopts a special binary tree proposed in [69] to speed up this process. Each node i (0 ≤ i <
N) of the tree holds a node value ni and maintains a pose value vi. The pose value vi is defined as the
sum of the node value nj from node i up to the root of the tree along the ancestry chain. Because it is
a binary tree, so each vi can be computed in O(logN) time. The most important advantage of the tree
is that it supports the operation of adding some amount to each vi with i ≥ I , where I is an arbitrary
index and 0 ≤ I < N . This can be done by the tree in O(logN) time because the amount only needs
to be added to a set of nj with j ∈ J , where J is the index set of nodes such that each path from
node j ≥ I to the root goes through exactly one node with its index in J . Section 4.3.4 of [69] has
shown that the size of J is O(logN) and also given an example of this operation. As described above,
solving a constraint requires to distribute an array of weighted errors over a consecutive sequence of
poses with indices [a+ 1, a+ 2, ...b]. Then by this tree, we can first perform an O(logN) operation to
distribute some amount over poses [a + 1, a + 2, ...N] and then perform another O(logN) operation
to distribute some amount over poses [b+ 1, a+ 2, ...N] to achieve the update of the constraint [69].

In summary, we need O(logN) time to solve a constraint and the same time to read a pose value
vi. The latter is the getPose operation in Algorithm 1. So O(ElogN) time is needed to compute all

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 69

necessary poses for a single estimation of H . This time complexity is high for a graph with dense
constraints, especially for the pose graph built from the magnetic sequence-based automated survey.
Therefore, if all the poses can be computed before the estimation of H in a faster way, the time
complexity can be reduced. Obviously, the naive implementation to compute all the poses by the tree
needs O(NlogN) time. Below we show how to utilise the special structure of the tree to compute all
the poses in linear time (O(N)).

0

1 2

3

4

5 6

7

Figure 5.7: Example of linear-time pose computation. This is a binary tree adopted by SGD to maintain pose values. We
take the node 5 as an example. The pose value v5 is the sum of node values n5, n4 and n0, i.e. v5 = n5 + n4 + n0.
Similarly, we have v4 = n4 + n0. Then we can get v5 = n5 + v4. So, if we can compute the pose values of any parent
nodes (node 4 here) earlier than any children (node 5 here), we can compute all pose values in O(N) time. For example,
the breadth fist search order (BFS) meets this requirement: v0 = n0, v1 = n1 + v0, v2 = n2 + v0, v4 = n4 + v0, v3 =
n3 + v2, v5 = n5 + v4, v6 = n6 + v4, v7 = n7 + v6.

Recall that each node of the tree represents a pose in the graph (and holds the pose value vi), and
computing a pose value is to sum the node value nj from node i up to the root along the ancestry
chain. Then, computing a pose value vi can be seen as adding the node value ni to its parent node’s
pose value. So, if we can compute the pose values of all the nodes in an order that the pose value
of any parent node is always computed earlier than its children, we are able to compute all the pose
values in linear time (O(N)). Fortunately, the breadth first search (BFS) (or depth first search, DFS)
order of the tree meets this requirement and can be found trivially when the tree is built. When we
need to compute all the poses of the tree, we only need to compute the pose values of all the nodes in
the BFS/DFS order, which can be done in O(N) time. An example is shown in Figure 5.7.

In this way, we can compute all the poses in linear time before the computation of H . In a graph
with dense constraints (E ' N), the time complexity is then much lower than the originalO(ElogN).

5.5.2.2 Tree-based H estimation

With the above improvements, as shown in Algorithm 1, the calculation of M = diag(H) re-
quires O(EN) time (getPose only needs O(1) time now). By careful inspection, we find that when
estimating M , each constraint causes the same amount of value distributed to a continuous part of
the diagonal elements of H (Line 11 to 14), which is the similar process as updating the poses when
solving a constraint. Therefore, we can use the same tree-based mechanism to maintain the elements
of M and speed up the M estimation. Thus each constraint needs only O(logN) time to update M .
So the M estimation process can be done in O(Elog(N)) time.

After M is computed, it is then used in the stochastic gradient descent process to compute
totalWeight for each constraint (Line 17 to 23). Each totalWeight requires O(N) time to compute,
so a single iteration requires O(EN) time to compute totalWeight for all the constraints. We can
also accelerate this by the method proposed in Section 5.5.2.1 to compute all the tree values. Because
M is now computed using the tree, we can first recover each element of M (Mi, i ∈ [1 : numPoses])

70 5.5. OPTIMISED BACK-END DESIGN

in linear time by the method proposed in Section 5.5.2.1. Then, define cmWeighti =
∑

j∈[1,i] 1/Mj ,
so that the totalWeight for each constraint can be computed in O(1) time as shown in Algorithm 2.
Now, each iteration needs only O(N + E) time to compute totalWeight for all constraints.

Algorithm 1 Pre-Conditioner Estimation in SGD
1: iters = 0
2: loop
3: iters++
4: ...
5: // Update approximation H = JTΩJ , M = diag(H)
6: M = zeros(numPoses, 3)
7: for all a, b, tab,Ωi in Constraints do
8: poseA = getPose(a)
9: R = rotation matrix of poseA

10: W = RΩiR
T

11: for i = a+1 to b do
12: Mi,1:3 = Mi,1:3 + diag(W)
13: ...
14: end for
15: end for
16:
17: // Modified Stochastic Gradient Descent
18: for all a, b, tab,Ωi in Constraints do
19: ...
20: totalWeight = zeros(1, 3)
21: for i = a+1 to b do
22: totalWeight = totalWeight+ 1/Mi

23: end for
24: ...
25: end for
26: end loop

5.5.2.3 Speeding up H estimation by approximation

In the context of the magnetic sequence matching, when a loop closure is detected, a group of
constraints are added to the graph. This feature can be used to further speed up the estimation of H .
As shown in Algorithms 1 and 2, a value W = RΩiR

T needs to be computed for each constraint
when estimating M . W is actually the information matrix of the constraint in the global reference
frame. The computation of W needs two matrix operations. From Figures A.1, A.2, A.3, A.4 we can
see that most loop closures are detected along straight line segments, so it is reasonable to assume
that the orientations of poses in a consecutive pose sequence (related with a group of constraints) are
mostly the same. Also, the information matrix Ωi of any constraint in a group is the same. Therefore,
we can use the W of any constraint in a group to approximate the W for the other constraints in the
same group. In this way, W only needs to be computed once for a group of constraints. For the high
frequency magnetic scans, a group usually contains hundreds of constraints, so this approximation
makes a significant difference.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 71

Algorithm 2 Improved Pre-Conditioner Estimation
1: iters = 0
2: loop
3: iters++
4: ...
5: // Update approximation H = JTΩJ , M = diag(H)
6: M = zeros(numPoses, 3)
7: {Compute all poses in linear time}
8: for all a, b, tab,Ωi in Constraints do
9: poseA = getPose(a) // This is O(1) now

10: R = rotation matrix of poseA
11: W = RΩiR

T

12: // Distribute values in O(log(N)) time by tree
13: {Distribute diag(W) over Mi, i ∈ [a+ 1, b]}
14: ...
15: end for
16:
17: {Recover Mi, i ∈ [1, numPoses] in O(N) time by proposed tree operation}
18:
19: // Compute cumulative weight
20: cmWeight1 = 1/M1

21: for i = 2 to numPoses do
22: cmWeighti = cmWeighti−1 + 1/Mi

23: end for
24:
25: // Modified Stochastic Gradient Descent
26: for all a, b, tab,Ωi in Constraints do
27: ...
28: totalWeight = cmWeightb − cmWeighta
29: ...
30: end for
31: end loop

72 5.5. OPTIMISED BACK-END DESIGN

5.5.3 Error propagation over selected constraints only

!!"
!!"#$

i+2i+1i i+k-1i+k-2

l+k-3l+k-2l+k-1 ll+1

!!$!!% !!&

j+2j+1j j+k-1j+k-2

!"!"#$!$
!%

!&
Type I loop closure

with k constraints

Type II loop closure

with k constraints

Figure 5.8: Example of two types of loop closures. The pose graph showed here is typical for the situation when the
surveyor walks up and down a corridor. Two loop closures are shown in the pose graph: a Type I loop closure with k
constraints I1 to Ik; a Type II loop closure with k constraints II1 to IIk. The rule to classify loop closures is: write the
index number of poses in the older sequence (i.e. the pose sequence with smaller index numbers) in ascending order (i.e.
i, i+1, ...i+ k− 1), if the index number of poses in the later sequence (i.e. the pose sequence with larger index numbers)
is increasing (i.e. j, j + 1, ..., j + k − 1), then this is a Type I loop closure; otherwise (i.e. l+ k − 1, l+ k − 2, ..., l), this
is a Type II loop closure.

5.5.3.1 Structural feature of loop closures and constraints

As described above, a detected loop closure adds a group of constraints to the system. The original
SGD algorithm solves every constraint iteratively in the pose graph, which can fine tune the solution
to approach the global minimum state. Figure 5.8 shows two abstracted loop closures and their
corresponding constraints (each loop closure introduced k constraints). Please note that a loop closure
relates an older pose sequence to a later one. So if we always write the index number of poses in the
older sequence in ascending order, the loop closures can be classified into two categories based on the
order (increasing or decreasing) of the index number of poses in the later sequence.

Solving a constraint in SGD is equivalent to distributing the error over a consecutive sequence of
poses. For example, in Figure 5.8, solving the constraint I1 in Type I loop closure spreads the error
of I1 over Posei+1, Posei+2,..., ,Posej−1, Posej . Similarly, solving the constraint II1 in Type II loop
closure spreads the error of II1 over Posei+1, Posei+2,..., Posel+k−2, Posel+k−1. Figure 5.9 gives
more examples about which poses are affected by solving corresponding constraints in Figure 5.8.
In Figure 5.10, we draw which poses are affected by solving a certain constraint on each row, and
align the poses with the same indices vertically, thus to show the fact that solving constraints within
the same loop closure group affects many common poses. For instance, solving I1 in the Type I loop
closure affects Posei+1 to Posej and solving I2 in the Type I loop closure affects Posei+2 to Posej+1.
So, the poses affected by solving I1 and solving I2 respectively have Posei+2 to Posej overlapped.

Because in either kind of loop closure, the poses affected by different constraints in the same loop
closure group overlap heavily, solving a constraint can affect the states of other constraints within
the same loop closure group. For example, solving a constraint C may cause other constraints that
consistent with C to be solved or nearly solved, but it might cause constraints that antagonistic to C
being pushed off their solved states (if they have been solved or nearly solved). The SGD algorithm
uses a decreasing learning rate to modulate the interactions between constraints. During an iteration,
each constraint in a loop closure group will be solved. But in practice, as we demonstrate later, solving
only two or three selected constraints in a loop closure group is enough to find a reasonable solution,
and this can largely reduce the computational cost.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 73

!!"
!!"#$

!!$!!% !!&

l+1 ll+k-3l+k-2l+k-1

i+k-2 i+k-1i+2i+1i

j j+k-2 j+k-1j+2j+1

!"!"#$!$
!%

!&

(a) Solving the constraint I1 in the Type I loop closure affects Posei+1 to Posej .

!!"
!!"#$

!!$!!% !!&

l+1 ll+k-3l+k-2l+k-1

i+k-2 i+k-1i+2i+1i

j j+k-2 j+k-1j+2j+1

!"!"#$!$!%
!&

(b) Solving the constraint I2 in the Type I loop closure affects Posei+2 to Posej+1.

!!"
!!"#$!!$

!!% !!&

l+1 ll+k-3l+k-2l+k-1

i+k-2 i+k-1i+2i+1i

j j+k-2 j+k-1j+2j+1

!"!"#$!$
!%

!&

(c) Solving the constraint II1 in the Type II loop closure affects Posei+1 to Posel+k−1.

!!"
!!"#$!!$

!!% !!&

l+1 ll+k-3l+k-2l+k-1

i+k-2 i+k-1i+2i+1i

j j+k-2 j+k-1j+2j+1

!"!"#$!$
!%

!&

(d) Solving the constraint II2 in the Type II loop closure affects Posei+2 to Posel+k−2.

Figure 5.9: Illustration of constraints and their affected poses. The constraint and the poses it affects are marked in red.

74 5.5. OPTIMISED BACK-END DESIGN

i+
2

i+
1

i
j

j-1

i+
3

i+
2

i+
1

j+
1

j

i+
h
+
1

i+
h

i+
h
-1

j+
h
-1

j+
h
-2

i+
k

i+
k
-1

i+
k
-2

j+
k
-2

j+
k
-3

i+
k
+
1

i+
k

i+
k
-1

j+
k
-1

j+
k
-2

...

...

i+
h
-1

j+
h
-1

I1

I2

Ih

Ik
-1

Ik

j+
h

(a)
Solving

constraints
in

Type
I

loop
closure.

A
ssum

e
thatbased

on
the

rules
described

in
Section

5.5.3,constraintIh
is

the
m

ax
error

constraint(i.e.
the

C
m

a
x),constraint

I2
and

Ik−
1

are
the

selected
constraints

(i.e.
C

I
a

and
C

I
b

respectively).
W

hen
solving

I2
and

Ik−
1 ,the

bounded
residualerrors

are
distributed

am
ong

only
the

poses
thatnot

covered
by

Ih
(i.e.

P
ose

i+
2

to
P
ose

i+
h−

1
and

P
ose

j
+
h

to
P
ose

j
+
k−

2).

i+
2

i+
1

i
l+
k
-1

l+
k
-2

i+
3

i+
2

i+
1

l+
k
-2

l+
k
-3

i+
h
+
1

i+
h

i+
h
-
1

l+
k
-h

l+
k

-h
-1

i+
k

i+
k
-
1

i+
k
-
2

l+
1

l

i+
k
+
1

i+
k

i+
k
-
1

l
l-
1

......

i+
h
-
1

II1

II2

IIh

IIk
-1

IIk

l+
k
-h

l+
k

-h
+
1

(b)Solving
constraints

in
Type

IIloop
closure.A

ssum
e

thatbased
on

the
rules

described
in

Section
5.5.3,constraintIIh

is
the

m
ax

errorconstraint(i.e.the
C

m
a
x),constraintII2

is
the

selected
constraint(i.e.the

C
I
I).W

hen
solving

II2 ,the
bounded

residualerrors
are

distributed
am

ong
only

the
poses

thatnotcovered
by

IIh
(i.e.

P
ose

i+
2

to
P
ose

i+
h−

1

and
P
ose

l+
k−

h
+
1

to
P
ose

l+
k−

2).

Figure
5.10:Illustration

ofsolving
selected

constraints
in

the
tw

o
types

ofloop
closures

respectively
show

n
in

Figure
5.8.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 75

5.5.3.2 Constraints selection and error propagation

Below is the proposed method to solve only two or three selected constraints in a loop closure
group:

1. For a group of constraints, first solve the constraint with the max χ2 error (denote this constraint
as Cmax). This step requires us to compute the χ2 errors for all constraints and find the one with
the max χ2 error. The χ2 error e of a constraint is:

e = rTWr ' rT r (5.10)

where r is the residual error of this constraint and W = RΩiR
T , which is assumed constant for

a given group as per Section 5.5.2.3. Please note that approximating e as rT r is not appropriate
in theory because different components of r need to be scaled properly. But this makes little
difference in the converged results as we tested.

2. Next, we solve a very small set of constraints that are consistent with Cmax. Define the con-
sistency between two constraints as: a constraint Ca with residual error ra is consistent with
another constraint Cb with residual error rb if 7:

ra ∗ rb > 0

We select the set of constraints that needs to be solved based on these rules:

(a) All constraints in this set are consistent with Cmax;
(b) The constraints in this set cover as many poses as possible;
(c) This set contains as few constraints as possible.

Solving these selected constraints can push the solution in the same direction, and the conflict-
ing effects of antagonistic constraints can be attenuated. Since very few constraints need to be
solved for a loop closure group, the computational cost can be lowered. The selection process
is trivial (Figure 5.10):

• For the Type I loop closure, loop from the first constraint to Cmax until a constraint that is
consistent with Cmax is found (represent it by CIa); then loop from the last constraint to
Cmax until a consistent constraint is found (represent it by CIb).
• For the Type II loop closure, loop from the first constraint to Cmax until a consistent

constraint is found (represent it by CII).

Thus, the constraints to be solved for the Type I loop closure are Cmax, CIa and CIb; the con-
straints to be solved for the Type II loop closure are Cmax and CII . However, it should be noted
that, when solving CIa , CIb and CII , we do not distribute errors over the poses that overlapped
with the poses affected by Cmax, because this will disturb the solved state of Cmax. Instead, we
distribute errors only over the poses that are not covered by Cmax. And, to avoid over optimi-
sation, we bound the residual errors conservatively before distribution. Figure 5.10 provides an
example of this process. The detailed algorithm is shown in Algorithm 3.

In summary, instead of solving all the constraints in a loop closure group, only two or three
selected ones are solved so as to largely reduce the computational cost.

7Here we assume r is a scalar for simplicity’s sake. In practice, r is a vector (e.g. r = x, y, heading) and solving a
constraint requires to distribute errors separately for each component. In this case, our method can be applied in the same
way for each component.

76 5.5. OPTIMISED BACK-END DESIGN

Algorithm 3 Error Propagation
1: iters = 0
2: loop
3: iters++
4: ...
5: // Modified Stochastic Gradient Descent
6: // We show only how the Type I loop closure is solved
7: // Solving Type II is similar so omitted here for brevity
8: // Each loop closure corresponds to a mini-batch (group) of constraints
9: for all Mini− batch in Constraints do

10: {Find max error constraint Cmax = {amax, bmax, emax, tmax,Ωmax}}
11: weightmax = cmWeightbmax − cmWeightamax
12: Solve Cmax
13:
14: // Loop from first constraint to Cmax
15: for C = {a, b, e, tab,Ωi} from first constraint to Cmax do
16: if C is not consistent with Cmax then
17: continue;
18: end if
19: weightoverlap = 0
20: if b > amax then
21: weightoverlap = cmWeightb − cmWeightamax
22: end if
23: eoverlap = emax ∗ weightoverlap/weightmax
24: eresidual1 = e− eoverlap
25: // Check consistency again
26: if e ∗ eresidual1 < 0 then
27: continue;
28: end if
29: totalWeight = cmWeightb − cmWeighta
30: weightresidual = totalWeight− weightoverlap
31: eresidual2 = e ∗ weightresidual/totalWeight
32: // Bound the error conservatively to avoid over optimisation
33: eresidual = (|eresidual1| < |eresidual2|)?eresidual1 : eresidual2
34: W = RΩiR

T

35: d = 2Weresidual
36: λ ∝ 1

iters
// the learning rate

37: β = (amax − a) ∗ λ ∗ d
38: if |β| > |eresidual| then
39: β = eresidual
40: end if
41: {Distribute β over posea+1 to poseamax by tree operation}
42: break;
43: end for

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 77

Algorithm 3 Error Propagation (continued)
44: // Loop from last constraint to Cmax
45: for C = {a, b, e, tab,Ωi} from last constraint to Cmax do
46: if C is not consistent with Cmax then
47: continue;
48: end if
49: weightoverlap = 0
50: if a < bmax then
51: weightoverlap = cmWeightbmax − cmWeighta
52: end if
53: eoverlap = emax ∗ weightoverlap/weightmax
54: eresidual1 = e− eoverlap
55: // Check consistency again
56: if e ∗ eresidual1 < 0 then
57: continue;
58: end if
59: totalWeight = cmWeightb − cmWeighta
60: weightresidual = totalWeight− weightoverlap
61: eresidual2 = e ∗ weightresidual/totalWeight
62: // Bound the error conservatively to avoid over optimisation
63: eresidual = (|eresidual1| < |eresidual2|)?eresidual1 : eresidual2
64: W = RΩiR

T

65: d = 2Weresidual
66: β = (b− bmax) ∗ λ ∗ d
67: if |β| > |eresidual| then
68: β = eresidual
69: end if
70: {Distribute β over posebmax+1 to poseb using tree operation}
71: break;
72: end for
73: end for
74: end loop

78 5.6. EVALUATION

MSGD Result State Squared Error State Squared Error
(Zoomed In)

W
G

B
2a

-1

0 5 10
0

10

20

30

40

50

(a)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(b)

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(c)

W
G

B
2-

3

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(d)

0 20 40 60 80 100
0

50

100

150

200

250

300

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(e)

0 20 40 60 80 100

3

3.5

4

4.5

5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(f)

Figure 5.11: MSGD results on WGB2a-1 and WGB2-3. The trajectories (the red is the transformed groundtruth and the
blue the slam result) and the SS errors are the results of the 100th iteration.

5.6 Evaluation
We use all the datasets used to test g2o, Toro and SGD to test the optimised SGD algorithm (we

refer to it as MSGD herein, where ‘M’ means magnetic mapping or ‘mini-batch’ 8). Two sample
results of MSGD (100th iteration) are shown in Figure 5.11 (we also repeat the SS errors of SGD,
Toro and g2o in these figures for ease of comparison). We show all the results of MSGD in Appendix
A (Figure A.9, A.10, A.11 and A.12).

On four datasets (WGB1-1, ENG-2, RUTH-1 and KX-2) MSGD provided similar performance to
SGD (Figure A.10c, A.12f, A.12i and A.12r). We should note that the SS errors of both SGD and
MSGD vary within a small range after convergence. This is because both of them take stochastic
steps in the state space around a minimum. However, the amplitude of the fluctuations in the SS
errors of MSGD is larger than that of SGD. This is because MSGD is ‘more randomised’ than SGD:
SGD simply solves every constraint in the system, while MSGD solves only a few selected constraints
based on their importance. In different iterations MSGD solves different constraints, which causes
different changes to the SS error, and that is where the large fluctuation comes from. But as long as
the amplitude of the fluctuation is within a small range (not exceeds 1 m2 in most cases), the final
result is still stable and approaches the groundtruth.

In terms of the SS error, for these five datasets: WGB2a-1, WGB2a-4, WGB1-4, ENG-1 and
KX-1, SGD provides better performance than MSGD (Figure A.9c, A.9l, A.10l, A.12c and A.12o).
But for these ten datasets: WGB2a-2, WGB2a-3, WGB1-2, WGB1-3, WGB1-5, WGB2-1, WGB2-2,

8‘Mini-batch’ is a terminology used in machine learning area, which means in the training process, a mini-batch of
information is used per time rather than a single piece of information nor all the information (the whole batch). In our
case, we process a mini-batch of constraints per time instead of process a single constraint or all the constraints together.

CHAPTER 5. OPTIMISED GRAPHSLAM BACK-END 79

WGB2-3, WGB2-4 and RUTH-2, MSGD performs better (Figure A.9f, A.9i, A.10f, A.10i, A.10o,
A.11c, A.11f, A.11i, A.11l and A.12l). In terms of the trajectory quality shown on corresponding
figures, the difference between these two algorithms are subtle. So, MSGD achieves almost the same
or better performance as SGD.

However, MSGD is more scalable than SGD as shown in Figure 5.12. In this figure, MSGD−

is the MSGD without the constraints selection in Section 5.5.3.2 (with the optimisations described
in Section 5.5.2 only). This is to show the effects of different optimisations. It shows that with the
optimisation by tree and approximation (Section 5.5.2), MSGD− largely reduces the time cost of
SGD. The constraints selection (Section 5.5.3.2) then achieves further cost reduction: full MSGD
gains up to 40% improvements in execution time compared with MSGD−. Please note that this
improvement also increases as the number of constraints increases, which demonstrates the scalability
of MSGD. The full MSGD algorithm is 3 to 8 times faster than SGD and the time per iteration of
MSGD increases much more slowly than that of SGD when the number of constraints is increasing.
Actually, the computational cost of MSGD is proportional to the number of loop closures but not the
number of constraints. A loop closure can add hundreds of loop closure constraints to the pose graph,
so MSGD is a more scalable solution for large-scale automated survey.

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Number of Constraints

T
im

e
 p

e
r

It
e
ra

ti
o
n
 [
s
]

sgd

msgd
−

msgd

Figure 5.12: CPU time per iteration of SGD, MSGD− and MSGD. MSGD− is the MSGD without the constraints selection
in Section 5.5.3.2 (with the optimisations described in Section 5.5.2 only). The data of the execution time was obtained
by running each algorithm on every dataset shown in Table 5.1. Odometry constraints are discarded.

0 20 40 60 80 100

5

10

15

20

Iteration

χ
2
 E

rr
o
r

p
e
r

C
o
n
s
tr

a
in

t

g2o
toro

sgd
msgd

Figure 5.13: χ2 errors for different algorithms on dataset WGB2-3.

We should also notice that SGD exhibited slight divergence on 10 datasets: WGB2a-2, WGB2a-3,
WGB2a-4, WGB1-2, WGB1-3, WGB2-2, WGB2-3, WGB2-4, RUTH-1 and RUTH-2 (Figure A.9f,
A.9i, A.9l, A.10f, A.10i, A.11f, A.11i, A.11l, A.12i and A.12l). However, MSGD does not have
the same problems even though it has larger amplitude of fluctuation. This can be attributed to the
strategy of MSGD again. MSGD solves as few consistent constraints as possible. Only the consis-
tent constraints with the most importance and the most coverage (affect more poses than others) are

80 5.7. CONCLUSIONS

selected as candidates to be solved. In this way, MSGD keeps the interaction between antagonis-
tic constraints small, thus achieving better consistency in the system states after solving a group of
constraints within a loop closure. So, the solution will not be pushed away from the minimum area.
However, SGD simply solves every constraint within a loop closure regardless their impacts to the
stability of the system states, which causes divergence in these results. Please recall that both SGD
and MSGD explicitly minimise the χ2 error instead of the SS error. We take the SLAM results on
WGB2-3 as an example. It can be seen that the χ2 error of SGD (Figure 5.13) gradually converged to
zero (with small fluctuation) as expected while the SS error (Figure 5.11f) slightly diverged. However,
both the χ2 error and SS error of MSGD did not show divergence though exhibited fluctuation. This is
because when minimising the χ2 error, MSGD takes the consistency between constraints into account
(as described in Section 5.5.3.2, MSGD selects only the consistent constraints in a loop closure group
to solve). However, SGD simply picks up a constraint randomly with no consideration about if this
constraint is antagonistic to the others. So although the SGD minimises the χ2 error gradually, the SS
error is not necessarily minimised (This confirms with the analysis given in Section 5.4.5.4). That is
why SGD exhibited divergence in some datasets.

5.7 Conclusions
We have introduced a novel variant of the SGD algorithm that is optimised for magnetic sequence

SLAM, MSGD. It has been demonstrated that although MSGD has slightly larger fluctuations in the
SS errors (after convergence) than SGD, they achieve equivalent trajectory quality. MSGD is also
found to be more efficient and scalable when dealing with much larger datasets. In addition, MSGD
does not have the problem of divergence as the SGD does. Therefore, for large-scale automated
survey in indoor environments, we believe MSGD is a better solution.

However, we should note that the SLAM back-end discussed here works without any environ-
mental information (e.g. a floor plan). So, the resultant trajectory may have incorrect scale and might
violate the environmental constraints (examples are given in the next chapter). Without a floor plan,
this is the best we can get. When we do have a floor plan, it can be incorporated to the path survey
system so that environment-consistent survey trajectory can be recovered. This case is discussed in
the next chapter.

Chapter 6

A robust survey trajectory recovery system

6.1 Introduction

Chapter 4 and 5 have demonstrated a GraphSLAM-based system to estimate a trajectory for a ded-
icated surveyor when a floor plan is unavailable. The loop closures are detected by a window-based
searching scheme that matches similar magnetic sequences recorded along the survey path. However,
these loop closures only give information about the spatial relationships between the surveyor’s po-
sitions at different time points/steps, so the optimised trajectory may have incorrect scale and might
violate the environmental constraints. Figure 6.1 gives an example where the SLAM output appears
visually correct until manually aligned with the floor plan. We observe that the path crosses the walls
and different parts of the trajectory have different scaling errors.

We should note that when a digital floor plan is not available, this is the best result we can get. This
chapter, however, deals with the opposite case: if we do have a digital floor plan, how can we best
recover the survey trajectory? This chapter proposes PFSurvey, a system that uses smartphone ac-
celerometer, gyroscope and magnetometer data to estimate a dedicated surveyor’s trajectory post-hoc
using Simultaneous Localisation and Mapping (SLAM) techniques and particle filters to incorporate
a building floor plan. We show how the survey trajectory can be recovered so that it not only satisfies
all the loop closure constraints but also has correct scale and remains consistent with the environment
(floor plan).

0
1

0
2

0
3

0
4

0
5

0
6

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

(a) PDR result.
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b) SLAM result plotted on floor
plan.

Figure 6.1: Example scaling errors from SLAM without a floor plan. (a) the raw PDR result, which is the input. (b) the
output result after manual alignment to the floor plan.

81

82 6.2. DEDICATED SURVEYING

6.2 Dedicated surveying

As in previous chapter, we emphasise that we assume a dedicated surveyor here. This is motivated
by our belief that PDR algorithms are not sufficiently mature to robustly estimate the trajectories of
arbitrary multi-purpose devices. Assuming a dedicated surveyor afford us a number of advantages:

• the surveyor will carry the smartphone consistently;

• the surveyor will cover the area comprehensively following best-practice guidelines; and

• a start position can be manually specified

Since a live position estimate is not required, we can afford to use greater computational resources
to post process the data.

6.3 Related work

Floor plans have been used to constrain PDR drift. A particle filter is typically used to ensure
the trajectory remains consistent with the floor plan. Systems such as [93, 52] provide instantaneous
location estimates—i.e. at time t = T they sample the probability distribution for the current position
based on all measurements and state for 0 < t < T . The position estimate is usually taken as the
weighted mean of the samples.

Here, however, we do not require instantaneous location estimation as the data arrive but rather
a best estimate of the trajectory post-hoc. Thus at time t = T we want to estimate the probability
distribution given the events at all epochs, even the ‘future’ ones (t > T). Essentially, knowing where
we are now may allow a better estimate of where we were, particularly if we were uncertain at the time
(e.g. a multi-modal distribution). Particle smoother algorithms are commonly used to provide the best
post-hoc estimates. For example Fixed Lag Smoothing (FL) [49], Forward Filter Backward Smoother
(FFBS) [14] and Forward Filter Backward Simulation (FFBSi) [33]. These involve retaining the
particle distributions at each epoch (which can be costly in terms of storage) and reprocessing at
various stages (which can be computationally costly). They are discussed in more detail in Section
6.4.

A simpler but less formally correct approach was described anonymously in [18] (DP-SLAM)—
we refer to it as particle pruning. An ancestor tree for each particle is retained as before. However,
when a particle is not resampled we walk up its ancestor branch, removing any parent particles in
previous epochs that have no other child (‘pruning’). At the end of the filter, the position at each
epoch is computed as the weighted mean of the remaining particles for that epoch. The pruning
approach is less resource-intensive but needs a large number of particles to ensure older epochs do
not suffer particle depletion.

An alternative post-hoc approach is like the work in Chapter 4, which uses external spatially-
variant signals (possibly even those we wish to map) to enable SLAM. The core idea is to search
the external observations for evidence of loops in the trajectory (the external observations will return
to values recorded earlier in the trajectory). These form loop closures that are used to constrain the
post-hoc trajectory estimate. The SLAM algorithms are either graph-based (e.g. GraphSLAM [42])
or use particle filters (e.g DP-SLAM [18] and FastSLAM [64]). They have been used when a floor
plan was unavailable, giving unanchored trajectories.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 83

6.4 Trajectory recovery by state-of-the-art algorithms

6.4.1 Inputs
The primary goal of this work is to produce the best trajectory estimate consistent with and an-

chored to a floor plan. The simplest solution is to feed the raw PDR trajectory (herein referred to as
PDR-traj) into a wall-sensitive particle filter and then use a particle smoother to recover the optimal
trajectory. An alternative to PDR-traj is the SLAM-corrected PDR results as demonstrated in Chapter
4 and 5, which we refer to as SLAM-traj.

6.4.2 Methods
The particle filter algorithm approximates the system state x given all the measurements y up

to time step t by a set of particles and weights {xit, wit}
N
i=1. Each particle holds a hypothesis about

the state xi with a weight wi associated. By incorporating the floor plan and treating the PDR-traj
or SLAM-traj as a sequence of step events, a particle filter can track incrementally the position of
the surveyor during the whole survey process, and thus align the survey trajectory to the floor plan.
In the proposed scenario of signal survey, the initial state (position and heading) of the surveyor is
unknown. So a large number of particles are spread over the environments (over the whole floor or the
room/corridor where the survey starts at) to initiate the particle filter. As a step event is reported (from
the PDR-traj or SLAM-traj), a new generation of particles is sampled. The states of the particles in the
new generation are estimated by ‘moving’ one step from their original states (i.e. their parents’ states)
according to the step event. The new sates will be weighted based on how well their observations and
states match. For example, with the incorporation of the floor plan, a particle that moves across a wall
will be given a weight of 0 (killed), because it violates the fact that a wall is impassable. After that,
another step event is reported and a newer generation of particles will be sampled and weighted...

A particle filter estimates the posterior distribution of state xt given observations z up to time step
t:

p(xt|z1:t)
which is most tracking applications care about. But in the signal survey case, we need to estimate the
surveyor’s positions (system states) at all time steps, i.e. to recover the whole survey trajectory. So
what we need to know is the system state at an arbitrary time step given all the measurements taken
during the survey. Actually, this is the marginal smoothed distribution:

p(xt|z1:T) with T > t

Typically, a particle smoother achieves this goal. There are many variants of particle smoother al-
gorithm [79, 15]. To evaluate, we select the most commonly used ones in indoor localisation or
trajectory generation applications [68, 49, 77]:

1. Fixed Lag Smoothing (FL). This particle smoother (also called Backtracking [49]) approxi-
mates the marginal smoothing density p(xt−L|z1:t) by the weights at the latest time step t:

p(xt−L|z1:t) ≈
N∑
i=1

witδ(xt−L − xit−L)

This smoother is trivial to implement but the value of L is difficult to decide. Small L tends to
give poor approximation while large L causes degeneracy problem (because most particles at
time step t may share common ancestors). Empirically, a value between 20 to 50 was found to
achieve good performance [15].

84 6.4. TRAJECTORY RECOVERY BY STATE-OF-THE-ART ALGORITHMS

2. Forward Filter Backward Smoother (FFBSm). This is a less degenerate particle smoother [14],
which is also called Reweighting Particle Smoother or Marginal Particle Smoother. It approxi-
mates the smoothing distribution by reweighting the particles as follow:

• Start by setting wiT |T = wiT for i = 1, 2, ..., N .

• From time step t = T − 1, T − 2, ..., 0, new weights are computed as

wit|T =
∑
j

wjt+1|T
witp(x

j
t+1|xit)[

Σlwltp(x
j
t+1|xlt)

]
After the reweighting, the marginal smoothing distribution can be approximated as

p(xt|z1:T) ≈
N∑
i=1

wit|T δ(xt − xit)

An obvious disadvantage of FFBSm is the high computational complexity, which is O(N2T).

3. Forward Filter Backward Simulation (FFBSi). This is suggested in [33], which approxi-
mates the smoothed distribution by simulation of M trajectories backwards. A single trajectory
is simulated as follows:

• Choose x̃T = xiT with probability wiT
• For time step t = T − 1, T − 2, ..., 0

(a) New weights are computed as

wit|t+1 = witp(x̃t+1|xit)

(b) Choose x̃t = xit with probability wit|t+1

M iterations result in M sample trajectories that approximate the smoothing distribution with
equal weights. The computational cost of FFBSi is O(MTN). An efficient implementation of
FFBSi algorithm is proposed in [13].

In addition to particle smoothers, a low-cost approach as mentioned in Section 6.3 is the particle
pruning:

• Start by setting
S̃T = ST = {xiT , wiT}, i = 1, 2, ..., n

.

• For time step t = T − 1, T − 2, ..., 0,

– Setting S̃t = St.

– For each particle p in S̃t, if there is not a particle q in S̃t+1 such that q is p’s child, then
delete p from S̃t.

The basic idea of this strategy is that if a particle is not being re-sampled, it is less likely that it
holds the true hypothesis about the system state. So we iteratively remove parent particles without
any child. Particle pruning can be integrated into the filtering process to dynamic prune the particles
at each time step, which can greatly save memory usage.

After smoothing or pruning, the system state – the position of the surveyor – at each time step can
be estimated by the weighted mean of the smoothed (or pruned) particle cloud.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 85

6.4.3 Result analysis

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Figure 6.2: The groundtruth of Path-1.

The left column of Figure 6.3 shows the results when using PDR-traj as the input of conventional
particle filter and smoother (or pruning). The raw PDR-traj path exhibits typical drift issues seen
when walking a path such as the ground truth (Figure 6.2, obtained using a high accuracy ultrasonic
positioning system [1]). The error is sufficiently high that various smoothers give significantly differ-
ent trajectory results (Figures 6.3b–6.3f). It is shown that FL smoother improves the non-smoothed
result better than both FFBSM and FFBSi do. This is partially because we choose a small M for
FFBSi and use much less particles for FFBSm due to the high computational costs. Moreover, the
trajectories are not truly consistent with the floor plan, since they cross walls (or enter wrong rooms)
at various points. The explanation for this can be seen in Figure 6.3g, which shows an instantaneous
particle distribution corresponding to the point marked with a blue dot in the preceding images. The
high PDR uncertainty results in multi-modal distributions spanning multiple rooms. The position es-
timate is a weighted average of these particles and so can cross walls. This room ambiguity is very
serious for a path survey: a small perturbation to any of these systems could easily result in signal
data being assigned to the incorrect room and the subsequent radio map containing serious errors.

A natural adaptation of this system would be to take the SLAM-corrected trajectory (i.e. SLAM-
traj) as input. The right column of Figure 6.3 illustrate this idea. Compared to PDR-traj (with both
heading and scaling errors) the SLAM-traj has much lower heading noise as can be seen in Figure 6.3h.
However, the scale errors persist and we typically find that the final result is only marginally better.
For these runs we see that only the FL smoother was able to correctly recover the path (in fact part of
the trajectory still penetrates walls if observed carefully, but the error is negligible). However, closer
inspection of the particles at the position marked with a blue dot in the smoother outputs shows that
the distribution was still multi-modal (Figures 6.3g and 6.3n). This is more obvious for longer walks
such as those in Figure 6.4, where the FL smoother produced poor results (highlighted in magenta)
when faced with multi-modal distributions.

6.5 Motivations
We believe that a fundamental reason for the ambiguities in the PDR-traj-based filtering results

is the lack of sufficient constraints to distribute weights reasonably over the particles. The wall-
sensitive particle filter and smoother kills all particles violating environmental constraints and gives
all the surviving particles the same weight, e.g. a weight of 1

N
for number of surviving particles, N .

Thus, all surviving particles have equal probability of being re-sampled no matter how likely it is
they hold the true hypothesis of the system state. For the results in Figure 6.3 and 6.4, the particle
clusters spread in the wrong locations have similar weight sums with the particle clusters in the correct
place. This causes ambiguities and incorrectness in the final result. While loop closures can assist
by limiting the drift (i.e. keeping the particle clouds small), the common techniques used to process
them cannot incorporate floor plan constraints.

86 6.5. MOTIVATIONS

Use PDR-traj as input Use SLAM-traj as input
In

pu
t

0
1

0
0

1
0

2
0

3
0

4
0

5
0

(a) PDR-traj

N
o

sm
oo

th
in

g

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(b)

Pr
un

in
g

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(c)

FL

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(d)

FF
B

Sm

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(e)

FF
B

Si

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(f)

Pa
rt

ic
le

C
lo

ud

0
5

10
051015202530354045

Particle weight

00.
2

0.
4

0.
6

0.
8

1

(g)

In
pu

t

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(h) SLAM-traj

N
on

-S
m

oo
th

ed

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(i)

Pr
un

in
g

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(j)

FL

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(k)

FF
B

Sm

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(l)

FF
B

Si

0
5

1
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

(m)

Pa
rt

ic
le

C
lo

ud

0
5

10
051015202530354045

Particle weight

00.
2

0.
4

0.
6

0.
8

1

(n)

Figure 6.3: Example outputs of the conventional particle filter plus smoother approach. The groundtruth trajectory is
shown in Figure 6.2. The lag L was set to 50 for the FL smoother. M was set to 100 for FFBSi.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 87

Input (PDR-traj) FL Particle Cloud
Pa

th
-2

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

(a)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

P
a
rt

ic
le

 w
e
ig

h
t

0

0.2

0.4

0.6

0.8

1

(c)

Pa
th

-3

0 20 40 60 80
0

20

40

60

80

100

(d)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(e)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

P
a
rt

ic
le

 w
e
ig

h
t

0

0.2

0.4

0.6

0.8

1

(f)

Figure 6.4: Example outputs of the conventional particle filter plus smoother approach on longer walks.

To solve this problem, the proposed PFSurvey attempts to use both the floor plan and loop closures
simultaneously to produce a more robust and accurate trajectory estimate. The core fusion process is
a particle filter, but a series of pre-processing steps are necessary to create suitable loop closures.

Chapter 4 shows how the loop closures can be detected by looking for similarities in magnetic
sequences. It also shows that a pure signal similarity based detection method can produce lots of
false positive loop closures (Figure 4.2). Therefore, it is critical to validate the detected loop closures.
Section 4.4 shows how they can be validated by comparing the closeness, topological similarities, etc.
between the corresponding path segments. This method requires the topology of the PDR-traj to be
good enough to help distinguish between true and false loop closures. However, the PDR-traj can
be heavily distorted because of the gyroscope bias errors. Hence, a straight-line filter was applied to
the PDR-traj to improve its topology before loop closure detection (Section 4.4). This straight-line
filter naı̈vely assumes all straight-line segments are either parallel or vertical to each other because
no environmental information is available. It cannot deal with more complicated survey path and
environments where this assumption does not hold. Also, it does nothing but straighten segments
that appear to be almost straight. So, large drifts still exist in the filtered trajectory. These can cause
confusions and difficulties in the topology-based loop closures detection/validation: a strict parameter
setting 1 results in many false negative loop closures while a more relaxed parameter setting produces
many false positive ones. Also, an empirical parameter setting might not work for different cases
because the drifts in the PDR results are quite unpredictable (could range from 2 to 10 metres or even
larger).

With the availability of the floor plan, we propose a better loop closure detection method, which
uses a wall-constraints-only particle filter to improve the topology of PDR-traj at the very beginning.
This pre-processing can be kept low-cost because the time complexity of a particle filter is (generally)

1For example, we can assert that any two segments which are more than n meters away cannot contain true loop
closures, then a very small value of n is a strict parameter setting and a very large n is a relaxed parameter setting.

88 6.5. MOTIVATIONS

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Number of particles
S

e
c
o

n
d

s

Figure 6.5: Relationship between execution time and number of particles when applying particle filter on the PDR-traj
shown in Figure 6.3a.

proportional to the number of particles it uses in the filtering process. Figure 6.5 shows the relation-
ship between the execution time and the number of particles of a typical particle filter algorithm. The
results were got by running the particle filter multiple times using different numbers of particles. It
can be seen that when the particle number is as low as hundreds, the cost to run a particle filter is
minimal for an offline survey trajectory recovery system (less than 5 seconds for the 10-minute sur-
vey walk Path-1 with about 950 steps as shown in Figure 6.3a)2. With this minimal cost, although the
filtering result is still incorrect (we can take the result shown in Figure 6.3d as an example, although
it uses much more particles than hundreds), it does have a better topology than the original PDR re-
sult, which is more suitable for loop closure detection/validation. For example, the distances between
path segments that could possibly contain loop closures are all within a reasonable range which can
be captured by an empirical threshold (e.g. 2 ∼ 3 metres). Inspired by this, we run a light-weight
particle filter to improve the PDR-traj as the very first step, and apply an improved loop closure de-
tection/validation scheme later. This scheme greatly increases both the quality and quantity of the
detected loop closures. These loop closures will then be used by another particle filter to formally
recover the survey trajectory and give robust results.

Please note that the major motivation of the proposed system is to solve the room ambiguity
problem in the particle filter results. The basic assumption is that the filtering process succeeds
in the trajectory recovery (the particle cloud holds the true hypothesis of the system state at any
given time point). It is possible that the particle filter fails during the filtering process, e.g., all the
particles are killed because of violating the wall constraints. An important reason is that the number
of particles being used is insufficient so that the particle cloud cannot well approximate the true
probability distribution of the system state. In this case, restarting the particle filter with more particles
(through tuning the parameters which control the number of particles) can help solve this problem.
However, the computational resource is not unlimited, so the trade-off between success rate and
computational cost needs to be made. A feasible method for higher efficiency is to use discrete
system state space, i.e., discretise the floor plan [98]. But in this case another trade-off between
the discretisation granularity (e.g., discretise the floor plan to be 1 ∗ 1 m2 or 2 ∗ 2 m2 grids) and the
tracking accuracy (larger granularity typically gives lower tracking accuracy) needs to be made. In our
experiments, particle filters can always succeed when using a reasonable error model and sufficient
particles. So this thesis does not deal with the failure case, and focuses on solving the tracking

2The particle filter was implemented in C++ and the laptop used for this experiment has a 2.8 GHz Intel Core i7 CPU
and 16 GB memory. The execution time shown here is the time used to run a single filtering process (“Re-sampling -
Propagation - Correction” as described in [93]) for a step event. To estimate the total run time needed for a whole survey
walk, simply multiply the execution time shown in this figure by the number of steps taken during the walk.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 89

ambiguity problem only.

6.6 System overview

The system architecture is illustrated in Figure 6.6 and contains a series of components:

PDR-traj

WallsPF1

Loop Closure

Detection & Validation

PF2

Loop

Closures

Recovered

Trajectory

(PF2-traj)

PF1-traj
Straight Line

Detection

Straight-Line

Steps

Figure 6.6: The work flow of the proposed trajectory recovery system.

1. Particle Filter 1 (PF1). This step takes the PDR-traj as input, runs a wall-constraints-only
particle filter to improve the topology of PDR-traj. This is to bound the PDR drift using the
floor plan to reduce heading errors. We denote the resultant trajectory of this step as PF1-traj.

2. Straight line constraints. We typically build our environments to be rectilinear and thus tend
to move in straight lines. However, in the PDR results straight line steps often bend due to bias
errors from the gyroscopes. We use a simple threshold-based method to identify straight-line
steps in the PDR results. Then we weight particles in PF2 according to how well their headings
match the orientations suggested by the environments (rooms or corridors).

3. Loop closure detection & validation. This step detects and validates loop closures using
the partially-corrected PF1-traj. Without the initial PF1 pass, robustly identifying true loop
closures is often all but impossible. We provide details of our detection and validation scheme
in Section 6.9.

4. Particle Filter 2 (PF2). This step adopts a customised particle filter to produce an accurate and
correct survey trajectory that is consistent with the environment. It uses the wall, straight-line
and loop closure constraints to weight the particles using PDR-traj as input. We denote the
resultant trajectory of this step as PF2-traj, which is the final output.

90 6.7. PF1

The design of PF1 and PF2 were largely inspired by previous work [93]—a particle filter-based
tracking in 3D environments using a foot-mounted IMU. This foot-mounted IMU can accurately
measure the height changes in the step events, which is a critical contributor to the convergence and
accuracy of the particle filter. We will show that without the accurate 3D movement measurements,
we are still able to achieve good performance. In our proposed system, PF1 adopts a framework that is
very similar to the particle filter described in [93, 96]. PF2 is based on PF1 but has two more kinds of
constraints incorporated in the weighting process. Both PF1 and PF2 adopt a particle pruning strategy
to largely ease the cost of particle smoothing. The following sections describe the PF1, PF2 and the
loop closure detection/validation methods in detail.

6.7 PF1

The primary aim of PF1 is to correct large heading errors using the floor plan. PF1 is based on
the filter described in [93, 96]. We adapt it to use 2D step vectors from handheld smartphones, which
are more noisy than the inputs used in the original work. In particular the step length is unknown. We
represent a step event as mi = (l, δθi), where l is a fixed step length of 0.75 m and δθi is the heading
change of the surveyor during this step as estimated by the gyroscope. The error models for these two
components are assumed to be independent and Gaussian:

el ∼ N (0, σ2
l)

eδθ ∼ N (0, σ2
δθ)

(6.1)

We set the uncertainty in the heading change σδθ = 0.5◦ and the step length uncertainty to σl =
λl3. We set λ = 0.5 to capture our lack of knowledge of the true step length.

We use the KLD adaptive resampling algorithm [27, 93] to dynamically vary the number of
particles appropriately at each step. The parameters used for KLD were set empirically: bin sizes
∆x = ∆y = 2.0 m and ∆θ = 30◦; bounding parameters δ = 0.01 and ε = 0.0109238; and
nmin = 504. With these parameters PF1 typically uses hundreds of particles and can finish within
3∼5 seconds for a 10-minute survey walk (about 950 steps), assuming the surveyor provides the
initial room or corridor (a reasonable expectation for a dedicated surveyor).

To generate an output path we apply the pruning smoother. Since we do not care about room
ambiguities in the output of PF1, it offers the least resource-intensive solution. Other smoothers
could be applied but would come at additional complexity for no particular accuracy gain.

The result of applying PF1 on the PDR-traj in Figure 6.3a is shown in Figure 6.7. This improve-
ment in topology can greatly facilitate the work of the loop closure detection and validation.

6.8 Straight line filter

This component first identifies candidates for straight-line steps from the original PDR-traj. It
uses a simple threshold-based method: we identify consecutive steps where the turning angle is less
than 5◦ to form candidate straight line steps. Where there are 10 or more candidates in a row, we assert
that they are all straight line steps. The remaining candidates are discarded. Figure 6.10d, 6.10e and
6.10f show examples of identified straight-line steps (highlighted in blue) in PDR-traj.

3Our step variance is proportional to the step length, although that quantity is a constant here.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 91

Segment Pair Maximum Segment Pair 1 Maximum Segment Pair 2

0 5 10
0

5

10

15

20

25

30

35

40

45

(a) Segment A.
0 5 10

0

5

10

15

20

25

30

35

40

45

(b) Segment B.
0 5 10

0

5

10

15

20

25

30

35

40

45

(c) Segment A.
0 5 10

0

5

10

15

20

25

30

35

40

45

(d) Segment B.
0 5 10

0

5

10

15

20

25

30

35

40

45

(e) Segment A.
0 5 10

0

5

10

15

20

25

30

35

40

45

(f) Segment B.

Figure 6.7: Examples of PF1-traj, segment pair and maximum segment pair. The black trajectories are the PF1-traj
generated by applying PF1 on the PDR-traj in Figure 6.3a. A segment pair and two maximum segment pairs are shown
in the PF1-traj. Each segment pair/maximum segment pair consists of two segments A and B, which are marked in green
and red respectively. The segment pair shown in the first column is contained by the Maximum Segment Pair 1 in the
second column.

6.9 Loop closure detection and validation

For optimal results, this component must detect a sufficient number of true-positive loops in the
trajectory without also detecting many false-positive loops. In principle loops can be detected directly
from the PDR-traj (e.g. by looking for the same external signal values at different times). This leads
to a large number of false positive closures since signals can reasonably adopt the same values at
different spatial locations. We seek instead to find loop closures that link parts of the estimated
trajectory that are already spatially close. This is the motivation for the PF1: it corrects the large
heading errors that result in even true loop closures being spatially far apart (and hence difficult to
distinguish from false positive closures).

We have developed closure detection algorithms based on monitoring sequences of magnetic read-
ings (Chapter 4). Magnetic signals are ideally suited to the task: they have strong variance over space
and the sensors are low power with frequent updates. We have not found them to be a good signal
to map for subsequent localisation because they are very easily influenced by small changes to the
environment and hence transient in nature. But during a single dedicated survey walk lasting minutes
not hours, the signal is stable. The technique proceeds as follows:

1. Generate PF1-traj as in Section 6.7.

2. Maximum Segment Pair (MSP) search. A segment is any consecutive part of the position
sequence, s = {is : ie}, where is and ie are the start and end indices in PF1-traj. We process
PF1-traj to find segment pairs, (s1, s2), which are spatially close and hence candidates for being
loop closures (we verify this latter property in the next point).

Clearly an arbitrary segment could be contained within another (e.g sj = {i4, i6} is contained
by the longer sk = {i4, i9}). To avoid duplicating effort in subsequent steps we wish to find the
Maximum Segment Pairs (MSPs), which are simply the segment pairs containing the longest

92 6.9. LOOP CLOSURE DETECTION AND VALIDATION

Maximum Segment Pair 1 Maximum Segment Pair 2
Se

qu
en

ce
of

M
ag

ne
tic

M
ag

ni
tu

de

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

20

25

30

35

40

Index A

M
a

g
n

it
u

d
e

 (
µ

T
)

(a) Segment A.

500 1000 1500 2000 2500 3000

20

25

30

35

40

Index A

M
a

g
n

it
u

d
e

 (
µ

T
)

(b) Segment A.

500 1000 1500 2000 2500 3000 3500 4000 4500

20

25

30

35

40

Index B

M
a
g
n
it
u
d
e
 (

µ
T

)

(c) Segment B.

500 1000 1500 2000 2500 3000 3500

20

25

30

35

40

Index B

M
a

g
n

it
u

d
e

 (
µ

T
)

(d) Segment B.

W
ar

pi
ng

Pa
th

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

500

1000

1500

2000

2500

3000

3500

4000

4500

Index A

In
d
e
x
 B

(e)

500 1000 1500 2000 2500 3000

1500

2000

2500

3000

Index A

In
d
e
x
 B

(f)

M
ag

ne
tic

L
oo

p
C

lo
su

re
s

0
1

0
0

1
0

2
0

3
0

4
0

5
0

(g)

0
1

0
0

1
0

2
0

3
0

4
0

5
0

(h)

PD
R

L
oo

p
C

lo
su

re
s

0
1

0
0

1
0

2
0

3
0

4
0

5
0

(i)

0
1

0
0

1
0

2
0

3
0

4
0

5
0

(j)

Figure 6.8: Loop closure detection/validation examples for two maximum segment pairs in Figure 6.7.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 93

0 1 2 3

4

5678

Figure 6.9: Illustration for MSP finding algorithm.

segments possible without their elements violating the spatial proximity rule. Examples are
given in Figure 6.7.

Our algorithm for finding the MSPs is described briefly here for the situation illustrated in
Figure 6.9, which shows a short 9-step trajectory. We first visit each index of PF1-traj, linking
it with all other indices that lie within a distance, R (shown as green circles for the first few
steps). We then make a sequential pass over PF1-traj, checking the linked indices to see if they
are increasing (or decreasing) in sequence, indicating they run in parallel. In the example, we
move from 0 to 3 and simultaneously observe 8,7,6,6,5 (we observe 6 twice due to variance
in the step length causing it to be in range of multiple earlier steps). Thus we find an MSP
{{0 : 3}, {8 : 5}}

3. Sequence-based magnetic loop closure detection. Having found an MSP, we must then deter-
mine the loop closures it contains. We do so using the magnetic signal strength. We associate
each magnetic measurement with a PF1-traj position using time interpolation.

Figure 6.8a and 6.8c, Figure 6.8b and 6.8d are typical examples of magnetic signals in MSPs.
We seek to align the waveforms to get point-to-point correspondences (loop closures). Since the
two segments within an MSP may be of different length, we apply Open-Begin-End Dynamic
Time Warping (OBE-DTW) with an ‘asymmetric’ step pattern [32] to find these correspon-
dences. OBE-DTW compresses or stretches the time series to create a ‘warping path’ between
the segments. A point (i, j) on the warping path means the ith element of M1 matches to the jth

element of M2 (Figure 6.8e and Figure 6.8f). A horizontal segment in the warping path means
DTW has either stretched one of the signals to fit (accounting for a speed difference) or mapped
a chunk of the segment to one value on the the other segment since that chunk does not match
anything. The latter situation leads to false positive closures.

We therefore filter the warping path, splitting the segments into sub-segments at each horizontal
part of the warping path. For example, several sub-segments are created from Figure 6.8e and
Figure 6.8f respectively (all shown in red). The sub-segments are carried forward as possible
matchings (sequences of loop closures).

4. Closure validation. The closure detection algorithm produces a large number of potential
closures based solely on the magnetic observations. We apply a series of spatial criteria to
reject matched subsequences, N and M , that we are not confident in. The criteria are based
on empirical constants chosen to be aggressive in culling closures—we would rather have a
few true positive closures than a lot of true positives mixed with false positives. As such the
constant values are not particularly sensitive.

• Either length(N) or length(M) must be larger than 2.5 metres (about 3∼4 human steps).
We expect that at least 3∼4 steps are contained in a valid loop closure sequence.

94 6.10. PF2

• Assume length(N) > length(M), then the length(N)
length(M)

must be less than 2.0. This is to en-
sure the magnetic time series are not over compressed (stretched) because speed changes
are not expected to be great.

• M and N must be physically close. Because PF1 has corrected the trajectory to within
some scaling errors we do not trust any any instances where M and N are not physically
close. To assess this we compute the mean spatial distance between the matched points of
M and N on PF1-traj, Dmean. We require this value empirically to within 3.0 m.

• Additionally we expect the shapes of the two segments to be similar. To capture this we
use the variance of the distances between the matched points, Dvar. We require this value
empirically to lie within 1.0 m2. Please note that more advanced methods to compare the
shapes of two segments could be used as discussed in Section 4.4.2.

5. Closure step mapping. The final step is to take the dense set of validated closures (Figure 6.8g
and 6.8h) and map them to closures at the detected step times—i.e. map the closures to links
between steps (Figure 6.8i and 6.8j) rather than arbitrary points along the trajectory. This can
be done using interpolation by time.

6.10 PF2
The previous stages can be seen as pre-processing for this major pass with a particle filter. The

filter is an extended version of PF1 where we seek higher accuracy output. To that end we adapt the
KLD resampling parameters such that ∆x = ∆y = 0.5 m, ∆θ = 1◦. and nmin = 16433. We must
also incorporate the straight line and loop closure constraints at the particle reweighting stage. The
full reweighting procedure for particle pi,t incorporating step st is:

1. Initialise the particle weight to 1: wi,t = 1

2. If the step crosses a wall, set wi,t = 0 and return.

3. If st is marked as a straight-line step, find the room/area wall that is closest to parallel to the step
direction. We model the acute angle α between this wall and the step vector as a random variable
drawn from a folded normal distribution with mean 0 and variance σ2

α. We then multiply the
particle weight by the probability of the measured α:

wi,t = wi,t · TruncN (α | 0, σ2
α) = wi,t ·

√
2

σα
√
π
e
− α2

2σ2α

where σa is set to 2.5◦, which is half of the turning angle threshold for straight line detection.

4. If st is associated with a loop closure we compute the Euclidean distance d between the new
particle position and the other point specified by this loop closure. We model this distance
using a folded normal distribution with mean 0 and variance σ2

d. We multiply the weight by the
probability of the observed distance:

wi,t = wi,t · TruncN (d | 0, σ2
d) = wi,t ·

√
2

σd
√
π
e
− d2

2σ2
d

where σd = 1.0 m empirically.

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 95

Path-1 Path-2 Path-3
U

nv
al

id
at

ed
lo

op
cl

os
ur

es

0 10
0

10

20

30

40

50

(a)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

(b)
0 20 40 60 80

0

20

40

60

80

100

(c)

Va
lid

at
ed

lo
op

cl
os

ur
es

0 10
0

10

20

30

40

50

(d)
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

(e)
0 20 40 60 80

0

20

40

60

80

100

(f)

Figure 6.10: Loop closure validation.

Since the loop closures remove the room ambiguities, the PF2 output does not require a compli-
cated smoother. Here we use the simple pruning approach again. More advanced smoothers can be
applied, although at significant additional cost for marginal or no gain in our experience. With this
approach PF2 typically finishes within 2.5 minutes for a 10-minute survey walk (about 950 steps).

6.11 Evaluation

The data used to demonstrate and evaluate this work were collected in the William Gates Building,
a three-storey office building at the University of Cambridge, UK. Data collection was done using a
consumer Android smartphone that logged WiFi and BLE scan results, along with the accelerometer,
gyroscope and magnetometer sensor values (Section 3.3). A variety of path surveys were carried out
in the building, of which three are used throughout this work: Path-1 covered a single corridor where
high accuracy ground truth location was available; while Path-2 and Path-3 cover the entire floor but
with only coarse ground truth available (the sequence of rooms visited and the actions performed in
each were recorded).

96 6.11. EVALUATION

6.11.1 Loop closure detection and validation
Figure 6.10 illustrates the loop closures detected from the PF1-traj, drawn onto the PDR-traj

(since this represents the input to PF2). Both unvalidated and validated loop closures are shown in the
top and bottom row respectively to demonstrate the need for the validation. Note that the classification
of a loop closure was done post-hoc using the final trajectory—it would not be known at this stage. In
the images, green lines represent true-positive closures while brown lines denote false-positives. The
validated row also shows detected straight-line steps in blue and highlights some true-positive loop
closures that are considered in more detail in Section 6.11.2.

Path-1 Path-2 Path-3
Before After Before After Before After

True 304 284 84 68 280 196
False 217 37 158 21 565 53
Ratio 0.58 0.88 0.35 0.76 0.33 0.79

Table 6.1: Statistics on loop closures before and after validation.

Table 6.1 summarises the statistics on loop closures for the three paths. We observe that the
validation algorithm was highly conservative as intended; it rejected a large number of closures. In
all cases it significantly boosted the percentage of true loop closures above 0.7 as intended. False
positives were thus moved to a minority and could not adversely impact the results (which are shown
in the next Section 6.11.2).

6.11.2 Trajectory outputs, particle clouds and room ambiguities
Figure 6.11 shows some sample outputs from PFSurvey for the three paths. The top row shows the

estimated trajectory in black, with a magenta highlight corresponding to the magenta loop closures in
Figure 6.10. The bottom row shows the probability distribution corresponding to the positions marked
with a blue dot in the top row. Note these positions match those used to generate Figure 6.3g, 6.3n,
6.4c and 6.4f, which gave multi-modal distributions spanning multiple rooms.

Considering Path-1 first: we see that the addition of loop closures has produced a uni-modal
distribution that means there is no room ambiguity (Figure 6.11d). The availability of accurate ground
truth for Path-1 also allows us to plot the error CDF for this run of PFSurvey and a typical run of the
conventional filter plus smoother (Figure 6.12). We observe that the PFSurvey result is more accurate
in general: 1.1 m rather than 1.4 m 90% of the time. Note that the CDF is in some senses misleading
sine it does not capture the room ambiguity clearly.

The outputs of PFSurvey for the larger scale Path-2 and Path-3 are also shown in Figure 6.11.
Although these survey walks did not have accurate ground truth available, the estimated paths are
visually indistinguishable from the paths taken and enter no erroneous rooms, unlike their equivalents
in Figure 6.4. The magenta-highlighted loops in Figure 6.11c result from walking around some large
tables that were not in the floor plan. We subsequently measured the positions of the tables and we
show them overlaid with the estimated trajectory in Figure 6.13 to illustrate the quality of the result
from PFSurvey.

6.11.3 Signal map results
Figure 6.14a shows the Path-1 input to the signal map generation process for a particular WiFi

access point. The focus of this work is the generation of this input, but we show a typical regressed

CHAPTER 6. A ROBUST SURVEY TRAJECTORY RECOVERY SYSTEM 97

Path-1 Path-2 Path-3
Tr

aj
ec

to
ry

0 5 10
0

5

10

15

20

25

30

35

40

45

(a)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(c)

Pa
rt

ic
le

cl
ou

d

0 5 10
0

5

10

15

20

25

30

35

40

45

P
a
rt

ic
le

 w
e
ig

h
t

0

0.2

0.4

0.6

0.8

1

(d)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

P
a
rt

ic
le

 w
e
ig

h
t

0

0.2

0.4

0.6

0.8

1

(e)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

P
a
rt

ic
le

 w
e
ig

h
t

0

0.2

0.4

0.6

0.8

1

(f)

Figure 6.11: The results of the proposed system on the path Path-1, Path-2 and Path-3.

0 0.5 1 1.5 2 2.5 3 3.5
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

Fixed Lag Smoother

Proposed System

Figure 6.12: The error CDFs when applying a FL smoother and our proposed system on Path-1 data. Mean errors are
0.83 and 0.65 metre respectively. The errors are measured by the high-accuracy Bat system.

30 40 50

60

Figure 6.13: The estimated trajectory of Path-3 in the table area. Four large round tables (not in the floor plan) have been
added.

98 6.12. CONCLUSIONS

0 5 10
0

5

10

15

20

25

30

35

40

45

d
B

m

−90

−80

−70

−60

−50

−40

−30

(a) PFSurvey
output

0 5 10
0

5

10

15

20

25

30

35

40

45

Metres

M
e

tr
e

s

d
B

m

−90

−80

−70

−60

−50

−40

−30

(b) GP map (µ)

0 5 10
0

5

10

15

20

25

30

35

40

45

Metres

M
e

tr
e

s

d
B

m
2

20

25

30

35

40

45

50

55

60

(c) GP var (σ2)

0 5 10 15 20
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Metres

MS
path

 Wifi

PFS
path

 Wifi

PFS
ms

 Wifi

MS
path

 BLE

PFS
path

 BLE

PFS
ms

 BLE

(d) Positioning CDF

Figure 6.14: Sample signal map and final positioning result

output using Gaussian Processes (Figures 6.14b and 6.14c) for illustration. Figure 6.14d gives the
final positioning results for a separate test walk in the Path-1 area. The results are gathered using
the setup and methodology in Chapter 4 and show WiFi and BLE accuracy when using both the
generated maps and a conventional manual survey (MS) as described in Chapter 4. It can be seen that
the accuracy is marginally better using the generated maps. This is a consequence of the test path not
straying far from the path survey input (Figure 6.14a). This is not an unreasonable occurrence since
we would assume a dedicated surveyor to walk through all accessible areas, leaving few spaces where
a user could be far from the survey trajectory.

6.12 Conclusions
In this chapter we have described and evaluated PFSurvey, a system designed to allow a dedicated

surveyor to build a signal survey for a space in a matter of minutes using a commodity smartphone,
assuming a floor plan of the space is available. The system uses a series of pre-processing steps to
generate reliable loop closures between points on a noisy dead-reckoned trajectory. These are then
fused with the floor plan to provide a robust, accurate trajectory that can be used to generate maps of
any quantity measured during the survey.

We have evaluated PFSurvey in a large building and shown that it can successfully solve the
room ambiguity problem that typically results from using solely the floor plan to constrain the dead-
reckoning drift. We have demonstrated that the PFSurvey trajectory can be used to build detailed
signal maps that allow positioning accuracy on a par with conventional, laborious manual surveying.

Chapter 7

Conclusions

7.1 Research contributions

This thesis has considered low-cost techniques to create signal maps for a fingerprinting-based
indoor positioning system. The signal maps associate some property of the signal (usually signal
strength) with locations. The fingerprinting-based positioning system matches the current signal ob-
servations (fingerprints) at a device to position it on this map. There are two kinds of method to build
a signal map. The first one is the traditional manual survey, in which signal samples are collected
in regular grid positions; the second is called path survey which collects signal samples continuously
when a surveyor is walking along the (pre-defined or arbitrary) survey path. Path surveys are supposed
to be more efficient than manual survey but have not been well-studied before this work.

The first research contribution of this thesis was to quantitatively evaluate path surveys with ref-
erence to a detailed manual survey:

• Smartphone-grade equipment was used to map both WiFi and Bluetooth Low Energy (BLE)
signatures throughout our testbed.

• Upper-bound of real path survey performance has been provided by the use of an alternative
high-accuracy location system to simulate perfect trajectory input.

• Gaussian Process (GP) regression maps were generated for both path survey and manual survey.
A method to visualise the difference between these Gaussian maps was proposed.

• The impact of signal directionality on the positioning result has been investigated.

• Guidelines about how the path survey should be performed have been provided. It was demon-
strated that by following our guidelines, a path survey can provide similar accuracy to a manual
survey but with lower cost. Our survey guidelines are simple to follow, and many public build-
ings have security or building management personnel who regularly walk through them. These
offer an ideal opportunity to preform regular path surveys.

The key to a path survey is accurate trajectory recovery. Based on these analytical results and the
guidelines provided, an automated survey system was proposed:

• We advocated the use of a dedicated surveyor to hold the survey device in a convenient and
stable manner, so that even simple PDR algorithm can successfully (but only roughly) recover
the survey path.

99

100 7.2. CONTRIBUTIONS TO THE RESEARCH QUESTIONS

• A SLAM system that corrects the noisy PDR results based on loop closures (i.e. revisits to the
same locations) was proposed. This system consists of a front-end that matched sequences of
magnetic measurements within a survey walk to identify loops in the trajectory, and a back-end
that corrects the noisy PDR results based on the magnetic loop closures.

• High accuracy was achieved by the proposed system. For a 10 minute walk in our experiments,
this system achieved an average error of any point 73 cm, and a subjective-objective error of
22 cm.

• The resultant signal maps have been found to give good positioning accuracies within 3–4 m
of the trajectory (best performance was achieved within 1–2 m) and come close to the manual
survey accuracies, despite requiring significantly less manual effort.

• The proposed system uses a commodity smart-phone as the only survey tool. No external
infrastructures or floor plans are required. It supports free movement of the surveyor, and
allows one-shot (push-to-fix) positioning.

This system relies on a good SLAM back-end. The back-end takes the noisy PDR trajectory and
the loop closures as input, produces a corrected trajectory that is the most consistent with all the
loop closures. The following contributions have been made to make the back-end more efficient and
scalable:

• Three state-of-the-art GraphSLAM algorithms (g2o, Toro and SGD) have been evaluated against
an extensive dataset. The evaluation has shown that SGD algorithm outperforms others.

• Because SGD is not optimised for the case of signal survey, a novel variant MSGD algorithm
was proposed and demonstrated to achieve higher robustness and efficiency. For large-scale
datasets, MSGD was found to be about 8 times faster than SGD (on the largest dataset being
tested), and the improvements in speed are supposed to be more significant for even larger
datasets.

So far, the proposed system can recover the survey trajectory based on the loop closure informa-
tion. But the system has no awareness of whether the recovered trajectory satisfies the environmental
constraints. When no environmental information like a floor plan is available, this is the best we can
get. When we do have a digital floor plan, we have shown how we can take this one step further, i.e.
recovering the survey trajectory so that it is consistent with the environment:

• The trajectory recovery problem was formulated as a tracking problem: given the rough initial
position of the surveyor, we track incrementally the position of the surveyor during the whole
survey process so as to recover the survey trajectory. The most commonly used algorithm that
achieves this goal is particle filter and smoother.

• Experiments demonstrated that the state-of-the-art particle filter & smoother algorithms are not
robust enough to recover the survey trajectory. The reason why they fail has been analysed
and a more robust survey trajectory recovery system has been proposed. This system detects
the loop closures in a more robust way, incorporates both the magnetic loop closures and the
environmental information (i.e. the floor plan) in the filtering process, achieves high-accuracy
(a mean error of 0.65 metre) with more robustness than the state-of-the-art alternatives.

7.2 Contributions to the research questions
This thesis has addressed the research questions listed in Section 1.1. They are examined and

summarised in turn below.

CHAPTER 7. CONCLUSIONS 101

7.2.1 Research question 1: how well can a path survey approach a manual
survey?

To compare path survey and manual survey, quantitative and rigorous analysis of their various
aspects (the map quality, map directionality, positioning performance, etc.) have been given.

In Chapter 3, RSS90 maps were proposed to visualise how the GP regression maps generated from
path survey data approach GP maps from manual survey data. To eliminate the trajectory recovery er-
ror, the path surveys were performed using an external high-accuracy positioning system to simulate
best-case trajectory recovery. The results have shown that the similarities between these two kinds
of maps degrades faster in BLE maps than WiFi maps as the distance from the survey path increased.
This can be explained by the trained parameters for GP regression: WiFi typically has a longer char-
acteristic length-scale than BLE (4.96 m vs 2.50 m in the example shown in Section 3.4). This means
that WiFi signals in distant locations correlate better than their BLE counterparts, so it is easier for
GP regression to predict the signal strength distribution in more distant locations for WiFi than BLE.
However, it should be noted that the generation of a GP map is affected by multiple factors and a
rigorous interpretation is hard to provide. The proposed visualisation method of GP map difference
just gives us an intuitive feeling about how the path survey map approaches the manual survey map
for different signals.

To cross-validate these analysis results, the positioning performance of different GP maps has
been evaluated. The directionality of the survey data was studied first. By inspection the RSS values
taken in the corridor area where strong directionality is expected, a clear offset in RSS values has
been shown when the measurements are taken in different directions. Both directional maps and
omnidirectional maps were generated to examine whether this kind of offset affects the positioning
results. It was shown that the path survey map differs from the manual survey map in this aspect. For
a manual survey map, it was found that map directionality does affect the positioning performance,
which causes 2.54 m and 1.56 m improvements (at the 90th percentile) in positioning accuracy for
WiFi and BLE respectively. But for path survey map, omnidirectional maps were found to outperform
directional maps because too little training data is available for the generation of directional maps
(especially for WiFi because modern smartphones have much lower WiFi sample frequency than that
of BLE). Another important conclusion is that the positioning accuracy is inversely proportional to
the distance between where the positioning request is issued and the nearest point in the survey path
(this has been also confirmed by the positioning results in Chapter 3). The results have shown that best
positioning performance for a path survey map can be achieved when this distance is within 1∼2 m.
In this case, all positioning requests are in the high-confidence areas on the GP regressed map and
it can approach the positioning performance of the manual survey map. This has cross-validated the
analysis results given by RSS90 based GP map comparison.

It can be inferred from these results that segment survey, in which typically only a few segments
along corridors are used, cannot provide good positioning performance as a PDR-based survey or
a manual survey with better space coverage. And, in addition to the space coverage, positioning
performance should be proportional to the signal sample density as it affects GP map quality. Both of
these have been confirmed by quantitative evaluation results.

Summary Based on our analysis, we can conclude that given sufficient density of measurements,
a path survey produces accurate results within 1∼2 m of the path if the trajectory is accurately
estimated. It may in fact have more data along the path than a manual survey, hence giving a better
result on it. This is good in general since we often travel along set paths. But it is of little use away
from the path.

102 7.2. CONTRIBUTIONS TO THE RESEARCH QUESTIONS

7.2.2 Research question 2: how should the path survey be performed in order
to provide best positioning performance?

The answer to the last question has shown how a path survey approaches a manual survey in
different situations. Based on this, we have proposed several guidelines about how the path survey
should be performed. By following our guidelines, the path survey can provide as good performance
as manual survey but with minimal cost. We repeat the guidelines below:

1. The survey path should pass within 1∼2 m of any given point where positioning might be
required. This is to provide good coverage so that all positioning requests happen in the high-
confidence areas of the GP regressed map.

2. The surveyor should repeat some parts of the path to increase the signal sampling density.
This is especially necessary for WiFi positioning because the WiFi sample rate on a modern
smartphone is typically as low as 0.5∼1.0 Hz.

3. For the directionality of the wireless signals, although we have found that not considering this
does not degrade the positioning performance significantly. But considering the possibility of
more sophisticated orientation-based positioning algorithm being proposed, the surveyor can
still try to pass a path in both directions (e.g. walking up and down a corridor) to record the
directional information for potential use. And this can also increase the sample density of the
signals.

Summary By following these simple guidelines, path survey can be a low-cost alternative for
the laborious manual survey: a typical manual survey takes more than 3 hours in a 500 m2

area, while a path survey typically takes less than 10 minutes.

7.2.3 Research question 3: how can the surveyor’s path be recovered accu-
rately and efficiently?

To streamline the path survey, two automated signal survey systems were proposed. They dealt
with the cases with and without floor plans, respectively. The system architectures for both systems
are shown in Figure 4.3 and 6.6 respectively. Both of them make the path survey a simple and
efficient process. What the surveyor needs to do is hold the survey device (e.g. a commodity smart-
phone) and walk around the environment freely, but following the guidelines from Section 7.2.2.
After walking, the proposed survey systems can recover the survey trajectory accurately and robustly.
Once the survey path is recovered, they are interpolated at the times signal measurements were made
to produce a sequence of survey points. Signal maps can then be built and indoor positioning can be
achieved. Compared with the manual survey, the proposed systems minimise the operations that need
human involvements, which keeps the survey process automated and accurate.

The key of these systems is the ability to recover the survey path accurately and robustly. For both
systems, the use of a dedicated surveyor was advocated to conduct the path survey. It is therefore
reasonable to assert the phone is held in a convenient location consistently. Under these circumstances
even simple PDR algorithms can recover the survey path successfully. However, the PDR drifts
quickly so the raw PDR results are noisy and erroneous. The proposed systems take the raw PDR
results as input and recover the survey path by correcting PDR errors. To achieve this, it is necessary
to have sufficient information about how the PDR results should be corrected (or what is wrong with
the PDR results in other words). This information comes in the form of constraints. We propose
to use sequence-based magnetic loop closure constraints for the PDR trajectory correction. Robust
algorithms have been proposed to detect and validate magnetic loop closures both with and without

CHAPTER 7. CONCLUSIONS 103

floor plans. When floor plans are not available, the trajectory correction problem can be formulated
as a Graph optimisation (GraphSLAM) problem.

An efficient GraphSLAM algorithm (MSGD) was proposed and found to outperform state-of-the-
art algorithms in terms of robustness and scalability. A mean subjective-objective error of 22 cm was
achieved using our system, which significantly outperforms the state-of-the-art algorithms (1.27 m).
However, without floor plan information, the best we can get is to recover the trajectory so that it is
consistent with all the loop closure constraints, but no environmental constraints are considered. This
means the recovered trajectory might have incorrect scale and be inconsistent with the environments.

When we do have a floor plan, two more kinds of constraints have been proposed to work with
the magnetic loop closure constraints in recovering the trajectory: the straight line constraints and
the floor plan constraints. In this case, the trajectory recovery problem is formulated as a filtering
problem. We have shown that how the three kinds of constraints can be used by particle filters to
recover the trajectory. We have demonstrated by experiments that the proposed system is more robust
than the state-of-the-art particle filter & smoother algorithms. A mean error of 0.65 m was achieved
by our system.
Summary The path survey can be streamlined to an extremely simple process: the surveyor just needs
to hold the survey device in a stable manner and walk around, then signal strength information can be
automatically recorded by the device and the waking trajectory can be recovered using the proposed
systems. High robustness and sub-metre accuracy can be achieved by the proposed systems.

7.2.4 Research question 4: what inputs are needed for accurate trajectory re-
covery?

As described in the answer to the last question, the proposed automated survey systems use a com-
modity smart-phone as the survey tool, which is the only hardware we require. We have demonstrated
that sub-metre accuracy can be achieved even when no floor plan information is available. What we
relied on to recover the trajectory was just the sensor data available in a modern smart-phone, such as
the acceleration, angular rate and magnetic fields data. When floor plans are available, we can make
the trajectory recovery more robust: recover the trajectory so that it satisfies not only the loop closure
constraints but also the environmental constraints.
Summary We conclude that the minimum inputs for an automated survey system are the inertial
sensor, the magnetic sensor and a sensor for whatever signal is to be used (these sensors could be
from a modern smart-phone) and (optionally) a floor plan.

7.3 Limitations and future work
The automated survey systems proposed in this thesis have been proven to provide robust and

accurate performance. They can help to deploy indoor positioning service in large-scale and compli-
cated environments efficiently. However, they still have some limitations when applied in real life.
Here we briefly discuss some of these limitations and motivate potential future work.

7.3.1 Overcome environmental limitation
One of the basic ideas of the proposed systems is to robustly detect loop closures in the survey

path, which is based on matching sequences of magnetic signals. However, due to the fast-varying
nature of magnetic signals, it is hard to predict magnetic signal strength distribution over space. This
means that the prerequisite for robust sequence-based matching is that the surveyor should exactly

104 7.3. LIMITATIONS AND FUTURE WORK

repeat the same path segments more than once and record the same magnetic sequence each time she
traverses a segment. Therefore, different environments could affect the performance of the proposed
systems. In office-like environments where clear walking paths are “pre-defined” by narrow corri-
dors and/or furniture, the surveyor’s walking trajectory is well constrained and it is more likely that
some path segments are repeated exactly by the surveyor more than once. But if the signal survey
is performed in the environments with large open spaces, the surveyor may not be able to exactly
repeat enough path segments because there is no clear paths to follow. In this case, if the surveyor
does not deliberately follow history walking trajectory, it is difficult to detect loop closures in the sur-
vey path by matching magnetic sequences. Despite this limitation, the cost of magnetic field-based
SLAM (including sequence-based loop closure detection and trajectory optimisation) is much lower
than more flexible systems like the vision-based SLAM systems [65, 19]. Vision-based systems are
able to detect loop closures without the limitation of exact path segment repeating, e.g., the state-of-
the-art Bags of Binary Words method which uses environmental features to detect loop closures [30].
So, it is interesting to integrate the low-cost magnetic field-based SLAM into more expensive but
more flexible vision-based systems. The purpose is to develop a robust, low-cost and flexible SLAM
system that can be used in various environments for signal survey.

7.3.2 Fuse multiple survey paths

This thesis only considers the case when there is only one surveyor surveying an environment in
one go. But it is possible that the interested environment is very large so that a single surveyor may not
be able to cover the whole area in a single attempt. In this case, either the surveyor needs to perform
several survey walks, or multiple surveyors should be used to simultaneously survey this environment
(with different surveyors surveying different areas). Both of these would produce multiple survey
paths that need to be fused to generate a complete signal map. Then how to fuse multiple survey paths
is an interesting research area and several potential challenges need to be solved. When the floorplan
is unavailable, a basic requirement of successful trajectory fusion is that there are sufficient parts of
these paths overlapping with each other. Then a problem needs to be solved is how to efficiently detect
loop closures both intra-trajectory and inter-trajectory. We have shown that how intra-trajectory loop
closures can be detected efficiently and robustly. But inter-trajectory loop closure detection is more
challenge. In this case, there is no spatial constraints on the searching range of potential loop closures.
Exhaustive searching between any segments on each path is very inefficient. Also, this causes that
false positive loop closures are more difficult to eliminate. In the case when a floorplan is available.
We can first fuse long paths by locating them to the floor plan using particle filters. For short paths
that could not be well located to the floor plan by particle filters, we can fuse them with those long
paths by loop closures as in the no-floorplan case. Then similar problems about intra-trajectory and
inter-trajectory loop closure detection need to be solved.

7.3.3 Achieve 3D signal survey

The proposed systems are assumed to work in 2D environment. The trajectory recovery tech-
niques they adopted cannot deal with 3D movements yet. This is a limitation of the proposed sys-
tems. For example, if the environment we are surveying is not a flat area, the survey path cannot
be recovered properly. Or, if we’d like to deploy an indoor positioning system in a multiple-storey
building, we need to conduct signal survey floor-by-floor, and the signal information in the staircase
areas cannot be easily mapped. Therefore, 3D mapping capability is useful in real applications. To
deal with 3D movement, the system should be able to detect the surveyor’s changes in height. A
foot mounted IMU is capable of 3D tracking but requires extra hardware. Modern smart-phones are

CHAPTER 7. CONCLUSIONS 105

usually equipped with barometers that can track the altitude of the device. But they are too noisy
to achieve accurate height tracking. Another possibility is to adopt the visual odometry techniques
which use cameras to infer 3D motion of the device [80]. However, vision system typically require
high computational costs to deal with large amount of image data. This is not a problem if the image
processing is conducted offline on a desktop PC, but might be a challenge if the images are processed
on the smartphone (e.g., to give real-time feedback to the surveyor). Also, combining the smart-phone
camera with its IMU sensors to achieve efficient and accurate 3D tracking is an interesting research
area.

7.3.4 Automatic update of signal maps

Real environments could be dynamic. For examples, WiFi access points could be turned off or
moved, new beacons can be deployed, furniture might be rearranged. These factors can affect the
signal strength distribution in the indoor environment. For an indoor positioning system deployed
for long-term usage, frequent re-survey is needed to deal with dynamic environments. Re-surveying
using the proposed systems is efficient, but still requires a dedicated surveyor to perform the survey
every time. To minimise the cost, it is interesting to explore the possibility of automatic update
of signal maps in dynamic environment. When an initial signal survey is done using the proposed
system, we’ve build a signal map for each signal source (e.g. every WiFi and BLE beacon). If
only a small portion of them are changed, fingerprinting might still be able to position users to a
certain accuracy. Then the changes in the affected signal sources could be detected by comparing the
latest signal information (passed to the positioning system from the users) with corresponding signal
maps, and updates can be made to correct outdated signal maps. To achieve this, lots of research
problems need to be solved. For example, how to fuse the positioning uncertainty information and
signal measurement noise to achieve robust signal map updating. A potential method is to select
well-localised user path (e.g., a path which is long enough and could be localised to the floor plan
accurately by simply a PDR algorithm and a particle filter) and create mini-signal maps by Gaussian
process regression using only the data collected during this path. Then, for a signal source, we have
two Gaussian distributions for the signal strength distribution at each spatial point: one from the
initial map and the other from the latest path. By checking the statistical compatibility of these two
distribution (e.g., by χ2 test), we can choose to fuse these two hypotheses or simply discard the old
one.

7.3.5 Preserve user privacy

This thesis focuses on the low-cost deployment method of indoor positioning system. Hopefully,
in the future such systems will be deployed in more and larger indoor areas and people’s location
can be tracked really accurately indoors. On the bright side, more location-based services could
help improve people’s life. However, the problem about how to preserve user privacy could arise.
Therefore, an important future research area is how to design the indoor positioning system so that it
could not only track people accurately but also preserve user privacy. A possible system architecture
for privacy-preservation purpose is that the users download the signal maps on their smartphones and
compute their locations locally. Data transmission from user to the server should be strictly restricted
in order to protect user privacy as much as possible. However, if no user data is uploaded to the server,
it is difficult to achieve automatic map updates like mentioned before. If data transmission from user
to server is necessary, proper encryption methods should be used. We leave this for future work.

106 7.4. FINAL WORDS

7.4 Final words
This thesis assessed the path survey quantitatively and rigorously, demonstrated that path survey

can approach the manual survey in terms of accuracy if certain guidelines are followed. Automated
survey systems have been proposed and a commodity smart-phone is the only survey device required.
The proposed systems achieve sub-metre accuracy in recovering the survey trajectory both with and
without environmental information (floor plans), and have been found to outperform the state-of-the-
art in terms of robustness and scalability. For the indoor positioning systems which are supposed to
be deployed in large-scale and complicated environments, the proposed systems can greatly ease the
signal survey process. For dynamic environment where frequent re-survey is needed, our proposed
systems are especially valuable.

Appendix A

Datasets and evaluation results for SLAM

All the datasets that used to evaluate different SLAM back-end algorithms are shown in Figure
A.1, A.2, A.3 and A.4. Figure A.1 shows 4 datasets collected in WGB2a testbed. Figure A.2 shows 5
datasets collected in WGB1 testbed. Figure A.3 shows 4 datasets collected in WGB2 testbed. Figure
A.4 shows 2 datasets collected in ENG testbed, 2 datasets collected in RUTH testbed and 2 datasets
collected in KX testbed. Details about the testbeds, groundtruth and data collecting were given in
Section 4.6

The evaluation results of Toro, g2o and SGD on each dataset are shown in Figure A.5, A.6, A.7
and A.8.

The evaluation results of MSGD on each dataset are shown in Figure A.9, A.10, A.11 and A.12.

107

108

Groundtruth Filtered path
Filtered path with
loop closures

W
G

B
2a

-1

0 5 10
0

5

10

15

20

25

30

35

40

45

(a)
0 5 10 15

0

10

20

30

40

50

(b)
0 5 10 15

0

10

20

30

40

50

(c)

W
G

B
2a

-2

0 5
0

5

10

15

20

25

30

35

40

45

(d)
0 5 10

0

5

10

15

20

25

30

35

40

45

(e)
0 5 10

0

5

10

15

20

25

30

35

40

45

(f)

W
G

B
2a

-3

0 5
0

5

10

15

20

25

30

35

40

45

(g)
0 5 10 15

0

5

10

15

20

25

30

35

40

45

(h)
0 5 10 15

0

5

10

15

20

25

30

35

40

45

(i)

W
G

B
2a

-4

0 5 10
0

5

10

15

20

25

30

35

40

45

(j)
0 5 10 15 20

0

10

20

30

40

50

(k)
0 5 10 15 20

0

10

20

30

40

50

(l)

Figure A.1: Dataset of WGB2a.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 109

Groundtruth Filtered path
Filtered path with
loop closures

W
G

B
1-

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0
6

0

(a)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(b)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(c)

W
G

B
1-

2

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1
0

2
0

3
0

4
0

5
0

6
0

(d)
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(e)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(f)

W
G

B
1-

3
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(g)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

(h)
0

2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

(i)

W
G

B
1-

4

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(j)

0
1
0

2
0

3
0

4
0

5
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(k)

0
1
0

2
0

3
0

4
0

5
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(l)

W
G

B
1-

5
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(m)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

(n)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

(o)

Figure A.2: Dataset of WGB1.

110

Groundtruth Filtered path
Filtered path with
loop closures

W
G

B
2-

1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

(a)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

(b)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

(c)

W
G

B
2-

2
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(d)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(e)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(f)

W
G

B
2-

3

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1
0

2
0

3
0

4
0

5
0

(g)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(h)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(i)

W
G

B
2-

4

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

0
1

0
2

0
3

0
4

0
5

0

(j)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(k)

0
2
0

4
0

6
0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

(l)

Figure A.3: Dataset of WGB2.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 111

Groundtruth Filtered path
Filtered path with
loop closures

E
N

G
-1

0 5 10 15 20
0

5

10

15

20

25

(a)
0 10 20

0

5

10

15

20

25

30

(b)
0 10 20

0

5

10

15

20

25

30

(c)

E
N

G
-2

0 5 10 15 20
0

5

10

15

20

25

(d)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

(e)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

(f)

R
U

T
H

-1

0 10 20 30 40 50 60
0

5

10

15

20

(g)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

(h)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

(i)

R
U

T
H

-2

0 10 20 30 40 50 60
0

5

10

15

20

(j)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

(k)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

(l)

K
X

-1

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

(m)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

25

(n)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

25

(o)

K
X

-2

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

(p)
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

(q)
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

(r)

Figure A.4: Dataset of ENG, RUTH and KX.

112

g2o Toro SGD State Squared Error

W
G

B
2a

-1

0 5 10 15 20
0

5

10

15

20

25

(a)
0 5 10 15 20 25

0

5

10

15

20

25

30

35

(b)
0 5 10

0

5

10

15

20

25

30

35

40

45

(c)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(d)

W
G

B
2a

-2

0 5 10 15 20 25
0

5

(e)
0 5

0

5

(f)
0 5 10

0

5

10

15

20

25

30

35

40

45

(g)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(h)

W
G

B
2a

-3

0 5 10 15 20
0

5

10

15

20

25

30

35

40

(i)
0 5 10

0

5

10

15

20

25

30

35

40

(j)
0 5 10 15

0

5

10

15

20

25

30

35

40

45

(k)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(l)

W
G

B
2a

-4

0 5 10 15 20 25
0

5

10

15

20

25

30

(m)
0 5 10 15 20 25

0

5

10

15

20

25

30

35

(n)
0 5 10 15 20

0

5

10

15

20

25

30

35

40

(o)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(p)

Figure A.5: SLAM results on WGB2a. The trajectories (the red is the transformed groundtruth and the blue the slam
result) and the SS errors are the results of the 100th iteration of different algorithms.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 113

g2o Toro SGD State Squared Error

W
G

B
1-

1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

(a)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(b)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(c)

0 20 40 60 80 100
0

5

10

15

20

25

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(d)

W
G

B
1-

2

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

(e)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

40

45

(f)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

(g)

0 20 40 60 80 100
0

500

1000

1500

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(h)

W
G

B
1-

3

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

(i)
0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

(j)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

(k)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(l)

W
G

B
1-

4

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

(m)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

(n)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

(o)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(p)

W
G

B
1-

5

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

(q)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

(r)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

(s)

0 20 40 60 80 100
1

2

3

4

5

6

7

8

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(t)

Figure A.6: SLAM results on WGB1. The trajectories (the red is the transformed groundtruth and the blue the slam result)
and the SS errors are the results of the 100th iteration of different algorithms.

114

g2o Toro SGD State Squared Error

W
G

B
2-

1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

(a)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

(b)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

(c)

0 20 40 60 80 100
2

3

4

5

6

7

8

9

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(d)

W
G

B
2-

2

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

(e)
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

(f)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

(g)

0 20 40 60 80 100
0

20

40

60

80

100

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(h)

W
G

B
2-

3

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

(i)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

(j)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

(k)

0 20 40 60 80 100
0

50

100

150

200

250

300

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(l)

W
G

B
2-

4

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

(m)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(n)
0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

(o)

0 20 40 60 80 100
0

10

20

30

40

50

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(p)

Figure A.7: SLAM results on WGB2. The trajectories (the red is the transformed groundtruth and the blue the slam result)
and the SS errors are the results of the 100th iteration of different algorithms.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 115

g2o Toro SGD State Squared Error

E
N

G
-1

0 5 10 15 20
0

5

10

15

20

25

(a)
0 5 10 15 20 25

0

5

10

15

20

25

30

(b)
0 5 10 15 20

0

5

10

15

20

25

30

(c)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(d)

E
N

G
-2

0 5 10 15 20 25
0

5

10

15

20

25

(e)
0 5 10 15 20 25

0

5

10

15

20

(f)
0 5 10 15 20 25

0

5

10

15

20

25

30

(g)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(h)

R
U

T
H

-1

0 5 10 15 20 25
0

5

10

15

20

(i)
0 10 20 30 40 50

0

5

10

15

20

(j)
0 10 20 30 40 50

0

5

10

15

(k)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(l)

R
U

T
H

-2

0 5 10 15 20 25 30
0

5

10

15

20

(m)
0 5 10 15 20

0

5

10

15

(n)
0 10 20 30 40 50

0

5

10

15

20

25

(o)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(p)

K
X

-1

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

(q)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

(r)
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

20

(s)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(t)

K
X

-2

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

(u)
0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

45

(v)
0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

(w)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o

toro

sgd

(x)

Figure A.8: SLAM results on ENG, RUTH and KX. The trajectories (the red is the transformed groundtruth and the blue
the slam result) and the SS errors are the results of the 100th iteration of different algorithms.

116

MSGD Result State Squared Error State Squared Error (Zoomed In)

W
G

B
2a

-1

0 5 10
0

10

20

30

40

50

(a)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(b)

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(c)

W
G

B
2a

-2

0 5 10
0

5

10

15

20

25

30

35

40

45

(d)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(e)

0 20 40 60 80 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(f)

W
G

B
2a

-3

0 5 10 15
0

5

10

15

20

25

30

35

40

45

(g)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(h)

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(i)

W
G

B
2a

-4

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

(j)

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(k)

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(l)

Figure A.9: MSGD results on WGB2a. The trajectories (the red is the transformed groundtruth and the blue the slam
result) and the SS errors are the results of the 100th iteration.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 117

MSGD Result State Squared Error State Squared Error (Zoomed In)
W

G
B

1-
1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

(a)

0 20 40 60 80 100
0

5

10

15

20

25

Iteration
S

S
 E

rr
o
r

[m
2
]

g2o
toro

sgd
msgd

(b)

0 20 40 60 80 100

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(c)

W
G

B
1-

2

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(d)

0 20 40 60 80 100
0

500

1000

1500

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(e)

0 20 40 60 80 100

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(f)

W
G

B
1-

3

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(g)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(h)

0 20 40 60 80 100

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(i)

W
G

B
1-

4

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(j)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(k)

0 20 40 60 80 100

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(l)

W
G

B
1-

5

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(m)

0 20 40 60 80 100
1

2

3

4

5

6

7

8

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(n)

0 20 40 60 80 100

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(o)

Figure A.10: MSGD results on WGB1. The trajectories (the red is the transformed groundtruth and the blue the slam
result) and the SS errors are the results of the 100th iteration.

118

MSGD Result State Squared Error State Squared Error (Zoomed In)

W
G

B
2-

1

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

(a)

0 20 40 60 80 100
2

3

4

5

6

7

8

9

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(b)

0 20 40 60 80 100

2.8

2.85

2.9

2.95

3

3.05

3.1

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(c)

W
G

B
2-

2

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(d)

0 20 40 60 80 100
0

20

40

60

80

100

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(e)

0 20 40 60 80 100

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(f)

W
G

B
2-

3

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(g)

0 20 40 60 80 100
0

50

100

150

200

250

300

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(h)

0 20 40 60 80 100

3

3.5

4

4.5

5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(i)

W
G

B
2-

4

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

(j)

0 20 40 60 80 100
0

10

20

30

40

50

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(k)

0 20 40 60 80 100

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(l)

Figure A.11: MSGD results on WGB2. The trajectories (the red is the transformed groundtruth and the blue the slam
result) and the SS errors are the results of the 100th iteration.

APPENDIX A. DATASETS AND EVALUATION RESULTS FOR SLAM 119

MSGD Result State Squared Error State Squared Error (Zoomed In)
E

N
G

-1

0 5 10 15 20
0

5

10

15

20

25

30

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(b)

0 20 40 60 80 100

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(c)

E
N

G
-2

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(d)

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(e)

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(f)

R
U

T
H

-1

0 10 20 30 40 50 60
0

5

10

15

20

(g)

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(h)

0 20 40 60 80 100
3.6

3.8

4

4.2

4.4

4.6

4.8

5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(i)

R
U

T
H

-2

0 10 20 30 40 50 60
0

5

10

15

20

25

30

(j)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(k)

0 20 40 60 80 100

0.9

1

1.1

1.2

1.3

1.4

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(l)

K
X

-1

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

(m)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(n)

0 20 40 60 80 100

4.8

5

5.2

5.4

5.6

5.8

6

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(o)

K
X

-2

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

(p)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(q)

0 20 40 60 80 100

7

7.5

8

8.5

9

9.5

10

10.5

Iteration

S
S

 E
rr

o
r

[m
2
]

g2o
toro

sgd
msgd

(r)

Figure A.12: MSGD results on ENG, RUTH and KX. The trajectories (the red is the transformed groundtruth and the
blue the slam result) and the SS errors are the results of the 100th iteration.

Bibliography

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A. Hopper. Imple-
menting a sentient computing system. IEEE Computer, 34(8), August 2001.

[2] Klaithem Al Nuaimi and Hesham Kamel. A survey of indoor positioning systems and algo-
rithms. In Innovations in Information Technology (IIT), 2011 International Conference on, pages
185–190. IEEE, 2011.

[3] Diego Alvarez, Rafael C González, Antonio López, and Juan C Alvarez. Comparison of step
length estimators from weareable accelerometer devices. In Engineering in Medicine and Biol-
ogy Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pages 5964–
5967. IEEE, 2006.

[4] Anshui Anshul Rai, Krishna Kant Chintalapudi, Padmanabhan Venkat, and Rijurekha Sen. Zee
: Zero-effort crowdsourcing for indoor localization. In Proceedings of The 18th Annual Inter-
national Conference on Mobile Computing and Networking (MobiCom), august 2012.

[5] Paramvir Bahl, Venkata N. Padmanabhan, and Anand Balachandran. Enhancements to the radar
user location and tracking system. Technical report, 2000.

[6] Hari Balakrishnan and Nissanka Bodhi Priyantha. The cricket indoor location system: Experi-
ence and status. In 2003 Workshop on Location-Aware Computing, page 7, 2003.

[7] Michael Bowling, Dana Wilkinson, Ali Ghodsi, and Adam Milstein. Subjective localization
with action respecting embedding. In Robotics Research, pages 190–202. Springer, 2007.

[8] Agata Brajdic and Robert Harle. Walk detection and step counting on unconstrained smart-
phones. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiq-
uitous computing, pages 225–234. ACM, 2013.

[9] Nicholas Carlevaris-Bianco and Ryan M Eustice. Generic factor-based node marginalization
and edge sparsification for pose-graph slam. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 5748–5755. IEEE, 2013.

[10] Nicholas Carlevaris-Bianco and Ryan M Eustice. Conservative edge sparsification for graph
slam node removal. In Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 854–860. IEEE, 2014.

[11] Luca Carlone, Andrea Censi, and Frank Dellaert. Selecting good measurements via 1 relax-
ation: A convex approach for robust estimation over graphs. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2667–2674. IEEE, 2014.

121

122 BIBLIOGRAPHY

[12] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and Micaela
Wiseman. Indoor location sensing using geo-magnetism. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages 141–154, New
York, NY, USA, 2011. ACM.

[13] Randal Douc, Aurélien Garivier, Eric Moulines, Jimmy Olsson, et al. Sequential monte carlo
smoothing for general state space hidden markov models. The Annals of Applied Probability,
21(6):2109–2145, 2011.

[14] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

[15] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of Nonlinear Filtering, 12(656-704):3, 2009.

[16] Tom Duckett, Stephen Marsland, and Jonathan Shapiro. Fast, on-line learning of globally con-
sistent maps. Autonomous Robots, 12(3):287–300, 2002.

[17] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part i. Robotics
& Automation Magazine, IEEE, 13(2):99–110, 2006.

[18] Austin Eliazar and Ronald Parr. Dp-slam: Fast, robust simultaneous localization and mapping
without predetermined landmarks. In in Proc. 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI-03, pages 1135–1142. Morgan Kaufmann, 2003.

[19] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular
slam. In European Conference on Computer Vision, pages 834–849. Springer, 2014.

[20] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly sparse delayed-state filters.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pages 2417–2424. IEEE, 2005.

[21] Ramsey Faragher and Rob Harle. Smartslam - an efficient smartphone indoor positioning system
exploiting machine learning and opportunistic sensing. In Proceedings of the 26th International
Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+ 2013,
Nashville, Tennesse, September 2013.

[22] Ramsey Faragher and Robert Harle. Location fingerprinting with bluetooth low energy beacons.
Selected Areas in Communications, IEEE Journal on, 33(11):2418–2428, 2015.

[23] R.M. Faragher, C. Sarno, and M. Newman. Opportunistic radio slam for indoor navigation
using smartphone sensors. In Position Location and Navigation Symposium (PLANS), 2012
IEEE/ION, pages 120 –128, April 2012.

[24] Brian Ferris, Dieter Fox, and Neil Lawrence. Wifi-slam using gaussian process latent variable
models. In Proceedings of the 20th international joint conference on Artifical intelligence, IJ-
CAI’07, pages 2480–2485, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[25] Brian Ferris, Dirk Haehnel, and Dieter Fox. Gaussian processes for signal strength-based loca-
tion estimation. In In proc. of robotics science and systems. Citeseer, 2006.

[26] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM,
24(6):381–395, 1981.

BIBLIOGRAPHY 123

[27] Dieter Fox. Kld-sampling: Adaptive particle filters. In Advances in neural information process-
ing systems, pages 713–720, 2001.

[28] E. Foxlin. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Computer Graphics
and Applications, 25(6):38–46, November 2005.

[29] Udo Frese, Per Larsson, and Tom Duckett. A multilevel relaxation algorithm for simultaneous
localization and mapping. Robotics, IEEE Transactions on, 21(2):196–207, 2005.

[30] Dorian Gálvez-López and Juan D Tardos. Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[31] Sinan Gezici and H Vincent Poor. Position estimation via ultra-wide-band signals. Proceedings
of the IEEE, 97(2):386–403, 2009.

[32] Toni Giorgino. Computing and visualizing dynamic time warping alignments in r: the dtw
package. Journal of statistical Software, 31(7):1–24, 2009.

[33] Simon J. Godsill, Simon J. Godsill, Arnaud Doucet, and Mike” West. Monte carlo smoothing
for non-linear time series. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,
99:156–168, 2004.

[34] Giorgio Grisetti, Cyrill Stachniss, Slawomir Grzonka, and Wolfram Burgard. A tree parameteri-
zation for efficiently computing maximum likelihood maps using gradient descent. In Robotics:
Science and Systems, 2007.

[35] Dongsoo Han, Sukhoon Jung, Minkyu Lee, and Giwan Yoon. Building a practical wi-fi-based
indoor navigation system. IEEE Pervasive Computing, 13(2):72–79, 2014.

[36] R. Harle. A survey of indoor inertial positioning systems for pedestrians. Communications
Surveys Tutorials, IEEE, 15(3):1281–1293, Third 2013.

[37] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a context-aware
application. Wireless Networks, 8(2):187–197, 2002.

[38] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche. A comparative survey of wlan location
fingerprinting methods. In Positioning, Navigation and Communication, 2009. WPNC 2009. 6th
Workshop on, pages 243–251, March 2009.

[39] Berthold KP Horn. Closed-form solution of absolute orientation using unit quaternions. JOSA
A, 4(4):629–642, 1987.

[40] AKM Mahtab Hossain and Wee-Seng Soh. A survey of calibration-free indoor positioning
systems. Computer Communications, 2015.

[41] Guoquan Huang, Michael Kaess, and John J Leonard. Consistent sparsification for graph op-
timization. In Mobile Robots (ECMR), 2013 European Conference on, pages 150–157. IEEE,
2013.

[42] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. Efficient, gener-
alized indoor wifi graphslam. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1038–1043, May.

[43] iBeacon. https://support.apple.com/en-gb/ht202880 (accessed july 2016).

124 BIBLIOGRAPHY

[44] IndoorAtlas. http://www.indooratlas.com (accessed september 2014).

[45] Antonio Ramón Jiménez, F Seco, José Carlos Prieto, and Jorge Guevara. Indoor pedestrian
navigation using an ins/ekf framework for yaw drift reduction and a foot-mounted imu. In
Positioning Navigation and Communication (WPNC), 2010 7th Workshop on, pages 135–143.
IEEE, 2010.

[46] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. isam: Incremental smoothing and
mapping. Robotics, IEEE Transactions on, 24(6):1365–1378, 2008.

[47] Thomas King, Stephan Kopf, Thomas Haenselmann, Christian Lubberger, and Wolfgang Ef-
felsberg. Compass: A probabilistic indoor positioning system based on 802.11 and digital
compasses. In Proceedings of the 1st international workshop on Wireless network testbeds, ex-
perimental evaluation & characterization, WiNTECH ’06, pages 34–40, New York, NY, USA,
2006. ACM.

[48] Mikkel Baun Kjærgaard. Indoor location fingerprinting with heterogeneous clients. Pervasive
and Mobile Computing, 7(1):31–43, 2011.

[49] Martin Klepal and Stephane Beauregard. A Backtracking Particle Filter for fusing building
plans with PDR displacement estimates. 2008 5th Workshop on Positioning Navigation and
Communication, 2008:207–212, 2008.

[50] Kurt Konolige, Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard, Benson Limketkai, and
Regis Vincent. Efficient sparse pose adjustment for 2d mapping. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 22–29. IEEE, 2010.

[51] Hakan Koyuncu and Shuang Hua Yang. A survey of indoor positioning and object locating
systems. IJCSNS International Journal of Computer Science and Network Security, 10(5):121–
128, 2010.

[52] Bernhard Krach and Patrick Robertson. Integration of foot-mounted inertial sensors into a
Bayesian location estimation framework. 2008 5th Workshop on Positioning Navigation and
Communication, 2008(2):55–61, 2008.

[53] Matthias Kranz, Carl Fischer, and Albrecht Schmidt. A comparative study of dect and wlan
signals for indoor localization. In Pervasive Computing and Communications (PerCom), 2010
IEEE International Conference on, pages 235–243. IEEE, 2010.

[54] Henrik Kretzschmar and Cyrill Stachniss. Information-theoretic compression of pose graphs for
laser-based slam. The International Journal of Robotics Research, 31(11):1219–1230, 2012.

[55] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard. g
2 o: A general framework for graph optimization. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 3607–3613. IEEE, 2011.

[56] Yasir Latif, César Cadena, and José Neira. Robust loop closing over time for pose graph slam.
The International Journal of Robotics Research, page 0278364913498910, 2013.

[57] Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. Robust pose-graph loop-closures with
expectation-maximization. In 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 556–563. IEEE, 2013.

BIBLIOGRAPHY 125

[58] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of wireless indoor positioning
techniques and systems. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 37(6):1067–1080, 2007.

[59] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for environment map-
ping. Autonomous robots, 4(4):333–349, 1997.

[60] Mohamed R Mahfouz1, Aly E Fathy, Michael J Kuhn1, and Yahzou Wang. Recent trends and
advances in uwb positioning. 2009.

[61] Google Indoor Maps. https://www.google.com/maps/about/partners/indoormaps/ (accessed
september 2014).

[62] Mladen Mazuran, Gian Diego Tipaldi, Luciano Spinello, and Wolfram Burgard. Nonlinear graph
sparsification for slam. In Proc. Robot.: Sci. & Syst. Conf, pages 1–8, 2014.

[63] Michael Montemerlo and Sebastian Thrun. Large-scale robotic 3-d mapping of urban structures.
In Experimental Robotics IX, pages 141–150. Springer, 2006.

[64] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fastslam: A fac-
tored solution to the simultaneous localization and mapping problem. In AAAI/IAAI, pages
593–598, 2002.

[65] Raul Mur-Artal, JMM Montiel, and Juan D Tardós. Orb-slam: a versatile and accurate monoc-
ular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[66] John-Olof Nilsson, Amit K Gupta, and Peter Händel. Foot-mounted inertial navigation made
easy. In Indoor Positioning and Indoor Navigation (IPIN), 2014 International Conference on,
pages 24–29. IEEE, 2014.

[67] John-Olof Nilsson, Isaac Skog, Peter Händel, and KVS Hari. Foot-mounted ins for everybody-
an open-source embedded implementation. In Position Location and Navigation Symposium
(PLANS), 2012 IEEE/ION, pages 140–145. IEEE, 2012.

[68] Henri Nurminen, Anssi Ristimaki, Simo Ali-Loytty, and Robert Piché. Particle filter and
smoother for indoor localization. In Indoor Positioning and Indoor Navigation (IPIN), 2013
International Conference on, pages 1–10. IEEE, 2013.

[69] Edwin Olson. Robust and efficient robotic mapping. Phd thesis, Dept. of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, June 2008.

[70] Edwin Olson and Pratik Agarwal. Inference on networks of mixtures for robust robot mapping.
The International Journal of Robotics Research, 32(7):826–840, 2013.

[71] Edwin Olson, John Leonard, and Seth Teller. Fast iterative alignment of pose graphs with
poor initial estimates. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 2262–2269. IEEE, 2006.

[72] Edwin Olson, John J Leonard, and Seth J Teller. Spatially-adaptive learning rates for online
incremental slam. In Robotics: Science and Systems, 2007.

[73] Veljo Otsason, Alex Varshavsky, Anthony LaMarca, and Eyal De Lara. Accurate gsm indoor
localization. In UbiComp 2005: Ubiquitous Computing, pages 141–158. Springer, 2005.

126 BIBLIOGRAPHY

[74] Nissanka Bodhi Priyantha. The cricket indoor location system. PhD thesis, Massachusetts
Institute of Technology, 2005.

[75] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[76] Paul Robertson, Martin Frassl, Michael Angermann, Marek Doniec, Brian J Julian, Maria Gar-
cia Puyol, Mohammed Khider, Michael Lichtenstern, and Luca Bruno. Simultaneous localiza-
tion and mapping for pedestrians using distortions of the local magnetic field intensity in large
indoor environments. In Indoor Positioning and Indoor Navigation (IPIN), 2013 International
Conference on, pages 1–10. IEEE, 2013.

[77] Michael Roth, Fredrik Gustafsson, and Umut Orguner. On-road trajectory generation from gps
data: a particle filtering/smoothing application. In Information Fusion (FUSION), 2012 15th
International Conference on, pages 779–786. IEEE, 2012.

[78] Zafer Sahinoglu, Sinan Gezici, and Ismail Guvenc. Ultra-wideband positioning systems. Cam-
bridge, New York, 2008.

[79] Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press, 2013.

[80] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. Robotics &
Automation Magazine, IEEE, 18(4):80–92, 2011.

[81] Isaac Skog, John-Olof Nilsson, and Peter Händel. Evaluation of zero-velocity detectors for foot-
mounted inertial navigation systems. In Indoor Positioning and Indoor Navigation (IPIN), 2010
International Conference on, pages 1–6. IEEE, 2010.

[82] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. Tracking moving
devices with the cricket location system. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services, pages 190–202. ACM, 2004.

[83] Kalyan Pathapati Subbu, Brandon Gozick, and Ram Dantu. Locateme: Magnetic-fields-based
indoor localization using smartphones. ACM Trans. Intell. Syst. Technol., 4(4):73:1–73:27, Oc-
tober 2013.

[84] Niko Sünderhauf and Peter Protzel. Switchable constraints for robust pose graph slam. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1879–1884. IEEE,
2012.

[85] Niko Sünderhauf and Peter Protzel. Towards a robust back-end for pose graph slam. In Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pages 1254–1261. IEEE,
2012.

[86] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.

[87] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin Ghahramani, and Hugh
Durrant-Whyte. Simultaneous localization and mapping with sparse extended information fil-
ters. The International Journal of Robotics Research, 23(7-8):693–716, 2004.

[88] D. Titterton and J. Weston. Strapdown Inertial Navigation Technology. The American Institute
of Aeronautics and Astronautics, 2004.

BIBLIOGRAPHY 127

[89] John Vial, Hugh Durrant-Whyte, and Tim Bailey. Conservative sparsification for efficient and
consistent approximate estimation. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 886–893. IEEE, 2011.

[90] Sen Wang, Hongkai Wen, Ronald Clark, and Niki Trigoni. Keyframe based large-scale indoor
localisation using geomagnetic field and motion pattern. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on, pages 1910–1917. IEEE, 2016.

[91] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The active badge location system. ACM Trans-
actions on Information Systems (TOIS), 10(1):91–102, 1992.

[92] Andy Ward, Alan Jones, and Andy Hopper. A new location technique for the active office.
Personal Communications, IEEE, 4(5):42–47, 1997.

[93] O Woodman and R Harle. Pedestrian localisation for indoor environments. In Proceedings of
the 10th international conference on Ubiquitous computing, pages 114–123. ACM, 2008.

[94] Oliver Woodman and Robert Harle. RF-Based Initialisation for Inertial Pedestrian Tracking.
Pervasive Computing 7th International Conference Pervasive 2009 Nara Japan May 1114 2009
Proceedings, 5538:238–255, 2009.

[95] Oliver J Woodman. An introduction to inertial navigation. University of Cambridge, Computer
Laboratory, Tech. Rep. UCAMCL-TR-696, 14:15, 2007.

[96] Oliver J. Woodman. Pedestrian localisation for indoor environments. Phd thesis, Computer
Laboratory, University of Cambridge, September 2010.

[97] Oliver J Woodman and Robert K Harle. Concurrent scheduling in the active bat location sys-
tem. In Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010
8th IEEE International Conference on, pages 431–437. IEEE, 2010.

[98] Zhuoling Xiao, Hongkai Wen, Andrew Markham, and Niki Trigoni. Lightweight map matching
for indoor localisation using conditional random fields. In Information Processing in Sensor
Networks, IPSN-14 Proceedings of the 13th International Symposium on, pages 131–142. IEEE,
2014.

[99] Moustafa Youssef and Ashok Agrawala. The horus wlan location determination system. In
Proceedings of the 3rd international conference on Mobile systems, applications, and services,
MobiSys ’05, pages 205–218, New York, NY, USA, 2005. ACM.

