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Summary

The CAP research project was set up in 1969 to investigate mem-
ory protection by designing and building a computer with hardware
support for a very detailed protection system based §n the use of
capabilities. The computer has been built and an operating system
written which exploits its protection facilities. It is time,
therefore, to assess how successful the project has been. A
necessary component of such an assessment is an evaluation of the
CAP's protection system and this thesis presents the results of
the author's research in this area.

Protection in computer systems is first introduced with a brief
description of various models of protection systems and mechanisms
for the provision of protection. There follows a description in
some detail of the CAP computer and the CAP Operating System with
particular attention paid to those aspects of the design which are
relevant to the research reported. A brief introduction to perf-
ormance evaluation techniques is given followed by a discussion
of performance evaluation on the CAP computer.

The need for measuring the benefits and costs of protection is
discussed and there is a detailed critical description of previous
research in this area. A simple model of a protection system is
presented as is a protection measure based on this model. There
is then a discussion of how the services provided by modules in
the system fit into the model and the protection measure. The app-
W;ication of the protection measure to the CAP Operating System is

',describedu The results led to suggestions for the improvement of




the protection aspects of the operating system and these are disc-
ussed in detail. The implications of the results for operating
system design in general are also discussed.

The experiments to investigate the cost of using the protection
provided on the CAP are described next. Some performance evalua-
tion work was done in connection with the protection cost experi-

ments and this too is described.
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Chapter 1

1. Introduction

The CAP research project was started in 1969 to investigate pro-
tection in computer systems by designing and building a complete
system with hardware support for a capability-based protection
mechanism. An introduction to the use of capabilities for protec-
tion is given in Wilkes's book [Wilkes 1975] and the philosophy
behind the design adopted is described in detail in Walker's
thesis [Walker 1973] and in various papers by Needham and others
[Needham 1972,1973,1974(a),(b)]. The hardware and microprogranm
are described in the CAP Hardwafe Manual and the CAP System Pro-
grammer's Manual [Herbert 1978(a),(b)]. By late 1976 an operating
system for the CAP was sufficiently complete to support ordinary
users. It is described in the CAP Operating System Manual
[Herbert 1978(c)] and the philbsophy behind some of the design
decisions is discussed in Slinn's thesis [Slinn 1977]. Three
papers presented at the ACM 6th Symposium on Operating Systems
Principles give an overview of the current state of the project
and discuss the CAP's protection mechanisms and the filing system
used in the CAP Operating System [Needham 1977(a),(b),(c)].

The CAP project has reached the stage when it is time to try to
assess how successful the project has been. A necessary component
of such an assessment is work directed at evaluating the perf-
ormance of the CAP's hardware, microprogram and operating system.

For a project which is concerned with research into protection a




particularly important aspect of assessing its success is the
measurement of protection. This thesis presents a teéhnique for
measuring protection in computer systems. The'technique was app-
lied to the cAP Operating System and the results showed how the
operating system could be brought closer to a state of minimum
privilege. The author has submitted two papers, one of which has
already been accepted for publication, reporting this work on pro-
tection measurement [Cook 1978(a), (e¢)].

There is no shortage of publications dealing with protection:
for instance, a survey paper by Saltzer [1975] lists 100
references. However, there is an almost complete absence of papers
dealing with the quantitative aspects of protection. Some research
Projects are reportedly looking at the costs [Saltzer 1974(b)] but
when the benefits and/or costs of protection are mentioned at all
in the literature it is almost always in qualitative terms such
as "each (security policy) incurs a cost for protection which is
roughly linear with the degree of Security achieved" [Jones 19751
or "this cost (of switching protection domains) in Hydra is
considerable" [Cohen 19751. Some rough cost indications are given
in Weissman [1969] and Chastain [1973]. An extensive search of the
literature revealed only one paper [Ellis 1974] which addressed
the quantitative aspects of the benefits of protection and one
thesis [Wyeth 1976] reporting research into a methodology for the
quantitative comparison of protection systems. Wyeth's work draws
on the accuracy and Suitability measures of Jones (19731 which the

latter used to derive a qualitatively based partial ordering of
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a number of protection mechanisms. Ellis claims to be "the first
to present a mathematically rigorous definition (with proofs) of
the degree of protection of a system". The author has not found
any evidence to refute his claim. Ellis's and Wyeth's work have
not exhausted this area of research and the shortcomings of their
respective approaches are discussed later in this thesis (Chapter
5).

Also reported in the thesis are a number of performance evalua-
tion experiments carried out in order to assess the cost of using
the CAPfs protection system. The author made use of the CAP's pro-
grammable microprogram as one of the monitoring tools for theée
experiments. Although there have been very feﬁ'published cases of
the use of microprogramming as a monitoring tool [éaél 1972,Denny
1975,1977]; the experiments reported in this thesis demonstrated
that it can be used to good effect to complement the use of
hardware and software monitors. A paper reporting the results of
the author's performance evaluation work has been accepted for

publication [Cook 1978(b)].

1.1 Qutline of thesis

Protection in computer systems is introduced in Chapter 2 with
a brief description of various models of protection systems and
mechanisms for the provision of protection. Several capability~-
based protection systems are mentioned.

Lhapter 3 describes the CAP computer and the CAP Operating
System in some detail paying particular attention to the aspects

of the design which are relevant to the research reported in this
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thesis,

A brief introduction to performance evaluétion techniques is
given in Chapter U4 which concludes with a section devoted to perf-
ormance evaluation on the CAP computer.

In Chapter 5 the need for a measure of the benefits and costs
of protection is discussed and there is a detailed critical
description of previous research in this area [Jones 1973, Ellis
1974, Wyeth 1976]. A simple model of a protection system is
presented as is a protection measure based on this model. Finally,
there is a discussion of how the services provided by the modules
in a system fit into the model and the protection measure.

Chapter 6 describes the application of the protection measure to
the CAP Operating System and discusses the implications of the
results for operating system design.

The experiments to investigate the cost of using the protection
provided on the CAP are described in Chapter 7. Some performance
evaluation work was done in connection with the protection cost
experiments and this too is described.

Chapter 8 contains some concluding rémarks and suggestions for
further research.

It is inevitable that many technical terms, some specific to the
CAP project, are used in this thesis and a Glossary is provided
to help the reader. The Glossary includes a brief description of
the various modules of the CAP Operating System. It is followed
by a list of references. Finally, there are appendices giving the

details of the experiments and their results.




Chapter 2

2, Protection and c¢apabilitv-based systems

2.1 Protection

Computer security is concerned with the protection of data
against accidental or intentional disclosure, destruction or mo-
dification [Browne 1976]. It includes protection which for the
purpose of this thesis will be taken to refer to the logical and
physical mechanisms that control access to data inside a computer
system. This does not imply that other aspects of computer sec-
urity (e.g. guarding against wire tapping) are not important; only
that they are outside the scope of this thesis, as too are
considerations of control protection as distinet from access pro-
tection [Cohen 1975] except insofar as control protection is pro-
vided by way of access protection. The purpose of protection is
to ensure that, at any point in the execution of a job by means
6f a computer, only those objects are accessible that are required
to be so and only in the access mode necessary for performance of
the task in hand [Needham 1972]. This is the so-called principle
of minimum (or LQQQL) privilege®* adherence to which has been a
basic design aim in the development of the CAP Operating System
[(Needham 1977(a)].

* The principle of minimum privilege, that every program and every
user of the system should operate with the least set of privileges
necessary to complete the job, is stated in Saltzer [197U(a)].
Needham [1972] sees minimisation of privilege as the purpose of
protection but does not state the principle formally. Jones
[1973] refers to the same idea as the need-to-know principle.
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The first abstract model of a protection system was developed
by Lampson [1971] and was extended by Graham and Denning [Graham
1972]. The essential features of Lampson's access matrix model are
(a) a set of objects, the entities to which access must be
controlled, each having an assdciated unique identification
number; (b) a set of domains, the entities which permit access to
objects; (¢) an access matrix which governs the accessing of
objects by domains; and (d) a set of rules governing the manipula-
tion of the access matrix. Graham and Denning allow more than one
process to run in a domain and replace Lampson's set of domains
by a set of subjects, the entities which request access to
objects. A subject is regarded as a (process,domain) pair.

The model developed by Jones [1973] is expressed in terms of the
environment of a process, the environment being composed of a set
of rights, each specifying an object and an access mode applicable
to that objeect, and three rules, the Enforcement Rule, the Right
Transfer Rule and the Environment Binding Rule. The purpose of
these rules is to ensure that a process is made to operate in an
environment that specifies the subset of objects in the system
that the process can reference as well as the variety of ways in
which the process can access each object in the subset. The objec-
tive of Jones's model is the attainment of the principle of
minimum privilege.

Graham and Denning describe three practical implementations for
storing the access matrix. The first uses the idea of storing the

matrix by rows, the capability approach to protection [Dennis
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1966]. The storing of the access matrix by columns, the second ap-
proach they describe, corresponds to the access control list ap-
proach of Multics [Glaser 1967,Saltzer 1974(a)]. The third ap-
proach represents a compromise between the capability and access
control 1list implementations. This is the lock and key system

[Needham 1972].

2.2 Capability-based systems

There have been a number of attempts to implement capability-
based protection systems one of which, the Plessey System 250
[(England 1972,1974], is commercially available. Most memory pro-
tection systems in current use are based on the idea of two modes
of operation. The protection system operates in one of the modes,
the unprivileged mode, but not in the other, the privileged mode.
The operating system normally runs in privileged mode and thus has
the rights to access ;ll the computer's memory and to execute any
of the machine's instructions including the privileged instruc-
tions whose use is denied to programs running in unprivileged
mode. The two-state machine has been extended to three states in
the PDP 11/45 [Digital 1971] and generalised in Multics which uses
a protection system based on rings of decreasing privilege
[Schroeder 1972(a)]. Even Multics, though an improvement on
earlier systems, leaves a good deal to be desired because of the
hierarchical structuring of the available protection environments:
a process running in a given ring has access to all material in

lower numbered rings but no access to any material in higher
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rings. Typical of the shortcomings of an hierarqhical system is
its inability to enable an input routine and an output routine to
have access to their own buffers without either the former routine
also having access to the output buffer or vice versa [Needham
19721].

A consequence of the inadequacies of systems based on an
hierarchy of privilege has been the growth of interest in more
general protection systems and, in particular, in systems using
capabilities. (It is worth noting in passing that the segment
descriptors of Multics are essentially capabilities (Graham 1972]
although Multics is not normally classified as a capability-based
system.) Fabry [1968] argued in favour of hardware support for the
implementation of a capability-based protection system and alsd
introduced the important idea of copying capabilities. The Chicago
Magic Number computer described by him was never completed for
reasons which the author has not found in the literature.
Nevertheless, Fabry's work has had a considerable influence on the
design of the CAP,.

The premature termination of the development of the CAL system
is, on the other hand, well documented [Sturgis 1973,Lampson
1976]. The CAL project set out to develop an operating system with
a protection system uniformly based on capabilities. It was
terminated because the system proved to be neither efficient
enough nor usable enough to be put into service, one of the
" reasons for the inefficiency being the implementation of protec-

tion domain switching entirely in software.
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In another capability-bésed system implemented by software, the
Hydra system [Wulf i974,1975], the costs involved in switching
protection domains are described as "considerable" [Cohen 1975]
with the undesirable result that they discourage the use of Hy -
dra's mechanism for protecting procedures. In the original Multics
system the rings were implemented by software and the resultant
high overheads caused design decisions to be taken which are being
reversed [Schroeder 1975] now that the protection rings are imp-
lemented in hardware [Schroeder 1972(a)].

Hydra provides sophisticated protection mechanisms by means of
wﬁich'various protection policies may be implemented [Joneé
1975,Levin 1975]. The mechanisms are based on five»philosoﬁhicai
principles [Cohen 1975]: - |

1. Information can be divided into distinct objects for purp-
oses of protection
2. Objects are distinguished by type (e¢.f. class in Simula
[(Dahl 1966])
3. Access to objects is controlled by capabilities
4. Each program should execute with the smallest set of access
rights necessary
5. All knowledge about the representation and implementation
of operations for each type of object should be hidden in
modules called subsystems.
The concept of type in Hydra centres round the notion that a type
is an abstraction of a class of objects, and that the abstraction

specifies not only the representatién of the objects but also the




overations that apply to them. The protection mechanism ensures
that manipulation of an object is possible only by invoking those
operations defined for its type. A central feature of Hydra is
that users may define their own types in which case the operations
for manipulating objects of that type are specified as Hydra pro-
cedures. This makes the high cost of using such procedures partic-
ularly unfortunate.

Hardware support for protection, the lack of which adversely af-
fects the Hydra systeﬁ and proved fatal for the CAL system, was
foreseen as a requirement by Fabry [1968,1974]. It is difficult
to see how a sophisticated protection mechanism can be made cheap
~enough to use without such supporting hardware. The design of the
Chicago Magic Number computer [Fabry 1968] included hardware for
handling capabilities: there were special capability registers as
well‘as the more usual data registers. The Plessey System 250
(England 1972,1974] also incorporates a set of capability
registers, eight in this case, and provides hardware implemented
mechanisms for manipulating capabilities and for switching protec-
tion domains.

The Cambridge University CAP system, which is described in
detail in Chapter 3, is another with hardware support for
capabilities. In a paper about the CAP system, Needham and Wilkes
[Néedham 1974(a)] set out the following reasons for providing a
hardware supported protection system:~

"1. To make it possible for a user to write freely in any lang-

uage he likes, including machine code, without danger that
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he will, by inadvertance or by design, interfere with the
operating system or interfere with other users.

2. To enable users to set up protected subsystems without any
changes being necessary in the operating system.

3. To limit the amount of damage caused to stored information
in the case of a hardware fault or software bug.

4, To make it possible for changes to be made to the operating
system without incurring serious risk of catastrophic
consequences if a software error is made."

They argue that hardware protection to satisfy their first objec=-
tive is én essential for any multiprogrammed computer system to
whioﬁ‘users have frée access. Objective #, which is really a spe-
cial case of 3, could be extended to cover the development of the
operating system as ﬁell.as changes to it. While developing the
operating system for the CAP those involved have made the qualita-
tive observation that bugs have been easier to locate and correct
because the protection system has confined their effects.

The CAP system differs from the other capability~based systemsA.
described above in being a nested-address-space system whereas
they are all global-object-name systems [Lauer 1974]. Hydra, for
example, uses an unique identifier to distinguish an object from
all other objects that -ever existed in the past or will ever exist
in the future. In the CAP an object is uniquely identified by the
appropriate context-dependent interpretation of the address
presented by the process wishing to access the object: the

mechanism is described in detail in Section 3.3. Thus, in dif-
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ferent éontexts, a given object will, in general, be referred to
by different addresses. Protection and addressing are intimately
bound up in the CAP and the context in which an address is
interpreted corresponds to a particular protection regime. Prob-
lems arise in connection with checking the validity of arguments
passed as the parameters of a call to a protected procedure (i.e.
a procedure call which involves a switch to another protection
environment). This area is one that gives rise to difficulties
whenever there exist several interacting protection regimes each
having different access to some virtual address space [Schroeder

1972(b) 1.
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Chapter 3

It is appropriate at this stage to clarify what is mgant by a
protection domain, particularly in relation to the CAP [Needham
1974(a)]. A procéss needs some body of code, a procedure, in which
to run. During its lifetime a process may run in many procedures,
some unique to itself, some shared with other processes which are
running at the same time. At any particular moment, a process will
have access to a certain set of data segments and there will be
a certain set of;procedures which it is entitled to enter. These
sets of data segments and procedures constitute the protection
domain in which thg process is operating at that time. The protec-
tion domain may pg modified by additions to or deletions from the
sets of data segments and procedures. Also, a process may switch
to operate in a different protection domain by entering one of the
set of procedures in its current domain. Needham and Wilkes
[Needham 1974(a)] take the point of view that changes in the do-
main of protection in which a process is running can only take
place on a change of procedure, what is referred to in this thesis
as domain switching; however, in practice domain modification has
also been emploYed in developing the CAP Operating System. In this
thesis the term nggin ¢hange will be used to mean a modification
to a domain and’the term domain switch for the operation of making

a new domain current by entering a procedure. Needham [1972] disc-

i
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usses the use of domain changing and domain switching to bring ab-
out a change in the protection regime under which a process is

operating.

3.2 The basic machine

The hardware and microprogram of the CAP computer are described
in detail in the CAP Hardware Manual [Herbert 1978(b)]. An outline
of the basic machine is given here with a more detailéd descrip-
tion of those aspects which are particularly relevant to the
résearch reported in this thesis. Unless specifioallyfétated ot~
herwise, the microprogram referred to is the normal méde
interpreter written by Dr R.D.H.Walker. |

The CAP is a word-addressable computer with a word comprising
32 bits. The macro-programmer has access to 16 registers (B0-B15)
each of 32 bits and up to 192K 32-bit words of core store. This
store is made up of two modules each of 32K, the Plessey store,
which may be (and normally are) interleaved, and a s}ﬁgle module
of 128K, the Phillips store. The former has a cycle time of 2.5
microseconds, somewhat reduced by interleaving, whereas the latter
is much slower with a cycle time of 10-12 microseconds and no
possibility of interleaving. The different cycle times of the
Plessey and Phillips stores means that care must be taken in
interpreting the results of timing experiments. lAbsolﬁte store
addresses are represented by 20-~bit patterns presented to the
store bus. These are interpreted by the store hardwarg in ace-
ordance with the amount of store available at the time; Ipterposed

between the CAP and the store bus are two,256-wgbd modplO'slave

'
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stores for read requests and a 32-word modulo write buffer. These
slave stores further complicate the interpretation of timings. Al1l

macro=-instructions have the same 32-bit format:-

| F (8 bits) | Ba (4 bits) | Bm (4 bits) | N (16 bits) |
where
F = function code
Ba = one of the B registers: ba = contents of register Ba

1

Bm = one of the B registers: bm contents of register Bm
N = an unsigned integer.

In the specification of instructions,

n bm + N,

n

5} contents of the store location addressed by n:indicated by [n].
The CAP is not linked to peripherals directly, apart from the

intimate teletype and the paper-tape reader controlled by the
microprogram, but controls them via a hardware link to a
peripheral processor (a Modular One). The peripherals currently
connected are:-

(a) paper-tape reader

(b) paper-tape punch

(¢) line printer

(d) multiplexor which can support up to 108 terminals - at

present four are normally connected
(e) fixed-head fast Burroughs disc of 500K words

(f) moving-head CDC disc unit with exchangeable disc packs

each of T000K words.
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At present the link is transferring data more slowly than had

been expected, the transfer of a 32-bit CAP word taking about 8

microseconds.

Most of the time taken is accounted for by computa-

tion in the Modular One.

The hardware logic of the CAP is divided into 9 pages:=

Page
Page
Page
Page
Page
Page
Page
Page

Page

A

B

.o

peripherals, stores, Modular One
slave stores

store control

Capability Unit

CPU

microprocessor control
micro-store extension

arithmetic

spare

The hardware configuration is given in Figure 3.1.
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microprogram.
paper-tape
reader

Phillips store
(10-12 usecs)

Plessey store
(2.5 usecs)

wlll

intimate
teletype

16K

MOD-ONE
core
store

128K 32K 32K
store bus
"Slave
stores
CAP
h/w
link
Peripheral MOD-ONE
processor
Peripherals

Figqure 3.1 : CAP hardware configquration
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The interpretation of machine instructions is done by the micro-
program. Two registeés, FR and AR, are loaded from the main store
and the appropriate microcode is executed for the particular
instruction. To facilitate this, a separate micro-store, the Func-
tion Memory (FM), contains one micro-instruction for each macro-
order. This may be a jump to a section of the microprogram to deal
with a complex machine instruction or, in simple cases, may in
itself be sufficient to complete the interpretation of the
instruction. Each Function Memory entry also contains 2 bits
(FMR) giving access request information for that machine instruec-
tion. |

The microprogram can aocess.dirgcgly the 16 B registers and also
16 working space registers, the A registers, all of 32 bits. These
can be donnected to an arithmetic-logic unit whose output is gated
into a fast shift register, register D. This is the central
register, accepting results and data and transmitting data as
necessary. |

The arithmetic unit performs floating and fixed point operations
and has its own separate control which is started by the micropro-
gram. Data is transmitted to and from the unit via register D.

The entire machine is controlled by the microprogram. The micro-
program store of U4K-64 words (the top 64 words are hard-wired) is
volatile apart from 7 bootstrap instructions for loading the
microprogram. The various parts of the CAP are controlled through
a V-store. There are 256 V-addresses which are control signals

with data to/from register D enabling various control registers
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to be set and sensed and data to be moved to and from D. For
example, the paper-tape reéder used for bootstrap loading of the
microprogram is controlled this way.

The overall layout of the microprogram processor is shown in
Figure 3.2.

There are eight types of micro-instruction, each of 16 bits, and
these are divided into three formats. Two hardware links are pro-
vided for use with the jump-and-link micro-instruction; thus,
microprogram subroutines can only be nested to a depth of two
(i.e. limited to a call within a called suproutine). Another link
is used to store the microprogram location'cbﬁnter after a micro-

program trap, i.e. on the micro-processor entering interrupt mode.
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Main store

floating
point v-store
unit

Arith-~ :

metic/ Capability

Logic ‘ Unit

Unit

| | (32) (@) |
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Al5 B15
al4 Bl4

2 ]

] 4 }

' |

N ]

A ] ; B
registers : ! registers
(32 bits) : X (32 bit. .

)
: |
‘ '
t 1
a0 BO
F(8) Ba(4) Bm(4) (32)
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03 Y N T S B Sl FMR
Function
Memory
ey | |=-----=r=mmmmesl 7T B T T T et FM
0 1 2 cmcccmmmammm e m e mm— = s === = mmm = - 255

Figure 3.2 : CAP microprogram processor layout
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When implementing many simple machine orders very few micré—
instructions are needed besides those which are more or less
common to all orders. There is a considerable benefit to be ob-
tained from arranging for'this common part to be done as quickly
as possible and to this end the microprogram always executes its
stage one even though this may have to be partly undone later in
some cases. The operations incorporated in stage one are :-

(a) an inétruction 1s fetched from main store and the program
‘counter (B15) incremented
(b) the standard address modification (n = bm + N) is done
(e¢) for Read or Read-and-Write orders, a word is read from
main store. Hﬁrdwére assistance ensures that this is done
only for R and RW orders. The 2 FMR bits in the Function
Memor& entry indicate the type of order.
(d) the appropriate instruction in the Function Memory is
executed
(e) for Write and Read-and-Write orders, a word is written to
main store,
In many cases, the single micro-instruction in the FM is suf-
ficient to complete the macro-order. Otherwise, the FM instruction
is a jump to a piece of microprogram to finish the work. External
‘interrupts are dealt with at the beginning of the interpretation
of macro-orders, that is at the time when the jump to the start
of stage one takes place.
Description of the Capability Unit is deferred until later (Sec-

tion 3.5) as it will be more readily understood after the process
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structure and protection system of the CAP have been outlined.

A i r

The CAP architecture, which together with the CAP's protection
system is described in Needham [1977(c¢)], supports an hierarchic
process structure (Figure 3.3). The root process is known as the
Master Coordinator and controls the processes immediately sub-
ordinate to it. However, the structure is completely general and
these processes may, if they wish, act as coordinators for their
own sub-processes. A process knows of its superior and its direct
subordinates for which it acts as coordinator. It knows that its
superior is its coordinator but does not know if any 6f its
Juniors is acting as a coordinator in its own right with its own
set of sub-processes. Although in theory the hierarchy can be
taken to an arbitrary depth, in practice a depth of two or three
is likely to be sufficient. The CAP Operating System uses only a

two level hierarchy of processes.
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Level 0

Level 1

Level 2

master
Coord-
inator

Figure 3.3 : CAP hierarchic process structure
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Associated with each process is a Process Resource List (PRL),
a Process Base (PB) and, if required, a C-Stack. The last is used
in connection with domain switching (see Section 3.4) and the PB
is used to hold information about the process and machine state
on the process becoming dormant. The PRL contains a set of
capabilities which define all the objects which that process po-
tentially has the right to access. At any given time only a subset
of these, as specified by a set of up to 16 capability segments,
1s actually available to the process. Only the PRL at level zero,
the Master Coordinator's PRL which is alternatively known as the
Master Resource List (MRL), holds absolute core addresses. All
other PRLs hold capabilities which refer to the address space of
the superior process. A process may set itself up as a coordinator
and pass some or all of its rights to its juniors-by placing the
appropriate capabilities in the juniors' PRLs. However, for pro-
tection reasons a process is not allowed to pass down ENTER
capabilities (see Section 3.4). This and other aspects of the CAP
process structure are discussed in Walker [1973] and in Needham
(1974(a),(b)]. Machine instructions are provided to enable a pro-
cess to enter one of its juniors, ESP (enter sub-process), and for
a sub-process to return to its coordinator, EC (enter co-
ordinator).

An address presented by a process is interpreted relative to the
address space of that process's superior. Such an address, called
a general address, consists of three fields which indicate

(a) which capability segment is to be used, the capability
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segment field
(b) which capability in that capability segment indicates the
required segment, the capability segment offset field
(e) whiéh word in that segment is wanted, the segment offset
field.
The first two fields together make up the segment specifier and

the format of a general address is

The calculation of the absolute address corresponding to a general
address presented by a process involves evaluating the segment
Specifier, by chaining back up through the capabilities in the
capabiiity segments and the entries in the PRLs of the process
hierarchy until the MRL is reached, to obtain the absolute address
of the segment's base and then adding the segment offset to obtain
the absolute address of the required word (Figure 3.4). At each
stage checks are made by the hardware to ensure that there is no
violation of the bounds of the segment or of the access rights
permitted to it by the capability or the PRL entry in use at that
stage of the address mapping. An associative capability store (see
Section 3.5) is used to short circuit this lengthy procedure for
evaluating addresses. Since any address presented by a process is
evaluated relative to the address space of its superior there is

no need to constrain the addresses a process can formulate.
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Figure 3.4 : CAP address evaluation (Level 2 process)
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The protection supported by the CAP hardware is memory protec-
tion with the unit of protection being a segment, a set of contig-
uous words of memory. Segments contain either data or
capabilities, where data includes executable code. A consequence
of the use of capability segments for resolving addresses is that
addressing is closely bound up with the implementation of protec-
tion. The protection domain in which a process is runningvat any
time is specified by the set of capability segments in use at that
time. The PRL for the process defines what Wyeth [1976] calls the
protection environment of the process and its current protection
domain is a subset of that environment. In the CAP a domain change
is implemented by'changinglthe contents of the capability segments
and a domain switch by replacing the current set of capability
segments by a new set. Typical of the kind of Situation where it
Seems more natural to change a process's domain rather than switeh
to a new one is when theaprocess needs additional resources, a new
segment, say. The process can request a suitable segment from its
coordinator which can make the Segment available by placing an ap-
propriate store capabilitv in one of the process's capability Seg-
ments. It should be noted that a Segment that is a capability seg-
ment or a PRL to a process is just a data segment to that pro-
cess's coordinator. In a situation where it is not that new reso-
urces are to be provided but rather that there is to be a change
in the accessibility of resources already given to the process a

domain switch is more appropriate.

-27-




3.4 Protected procedures

One of the most important features of the CAP architecture is
the provision of hardware support for switching protection do=-
mains. The particular type of capability involved is the ENTER
capabllity which is recognised by the hardware and can only be
used to enable the process holding it to enter and run in a pro-
tected procedure. The process is not able to obtain access to
information belonging to the protected procedure without entering
it. Thus, if a process has in its PRL an ENTER capability for a
protected procedure and is able'pq‘select that capability via its
capability segments, it can switcﬁ to operate in a different pro-
tection domain by exercising that ENTER capability by means of the
ENTER machine instruction. The new protection domain is that of
the protected procedure which is entered, the appropriate
capability segments being brought into service by the ENTER
instruction. The C-Stack is used to keep linkage information so
that the old protection domain can be re-established, perhaps
slightly changed since capabilities may be returned as results
from the called procedure, by the RETURN instruction.

Only five of the possible sixteen capability segments are act-
ually replaced during a domain switch, the remainder being global
to all procedures which the process executes and thus contributing
to all the protection domains in which the process runs. Of these
five new capability segments which must be set up three are

specified in the ENTER capability itself. These are capability

segments 4, 5 and 6, known as the P, I and R capability segments
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respectively, which by convention are used for the following purp-
oses:=~

P - to hold capabilities common to all instances of the pfo-
tected procedure in any process; for example,
capabilities for the code segments of the procedure. A
special mechanism, the Procedure Capability Segment
[Herbert 1978(a)], is provided to enable P capability
Segments to be shared.

I - to hold capabilities specific to this instance of the
protected procedure. It is, therefore,.not intended
that I capability segments be Shared though there is
no technical reason to pre%ént'this.

R - to hold capabilities common to allligstances of the pro-
tected procedure in this process only. The sharing of
R capability segments can be arranged by Specifying
the same R capability segment in Several ENTER
capabilities. |

The other two capability segments replaced are capability segment

2, the A capability segment, which holds capabilities passed from

the old protection domain to the new one as arguments of the pro-
cedure call, and capability segment 3, the_ﬂ_ggggbi;i&y segment,
into which will be pPlaced capabilities intended as arguments of

a call to another protected procedure. The N capability segment
of the old domain becomes the A capability segment of the new do-
main after execution.of the ENTER instruction. The A and N

capability segments are implemented as areas on the C-Stack. The
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expansion and contraction of the C-Stack on executing an ENTER
instruction and its matching RETURN are shown in Figure 3.5.

The hardware supported switching of protection domains by
entering protected procedures provides the very flexible non-
hierarchic protection mechanism which is an important feature of
the CAP and complements the hierarchic protection inherent in the

CAP's process structure.
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T c bilj U
The Capability Unit, which is interposed between the micropro-
cessor and the store logic and whose operation is transparent to
the macro-programmer, provides the hardware support for
capabilities and also serves as an associétive store to speed up
the mapping of a general address into an absolute address. Its
functions are :=-
(a) translating a general address into a form internal to the
Capability Unit.
(b) checking that an access request does not violate the size
bounds permitted to the addressed segmentf
(¢) checking that the access requested is in accordance with
the rights permitted to the segment.
(d) computing for an access request the absolute address
suitable for presentation to the store logic.
Some of these functions may be suppressed according to the current
mode (absolute, last, direct or normal) of operation of the

Capability Unit. Mode selection is under microprogram control.
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The Capability Unit (Figure 3.6) may be considered as consisting

of:=

(a)
(b)
(e)

(d)
(e)

a capability store of 64 capability registers of 80 bits
(including 9 parity bits).

a tag memory store (TGM) of 16 registers of 8 bits (inecl-
uding 1 parity).

a register P into which the general address presented is
written by the microprogranm.

a register PAR in which the access requested is placed.
auxiliary registers and condition digits which may be read

through the V-store.

Eéch'capability register is made up of six fields which can be ac-

cesséd independently by the microprogram and which collectively

describe the location, length and access status of a segment in

store. The fields are:-

i(a)

(b)

(e)
(d)

(e)

a tag field of 14 bits (+ 2 parity) used as an unique
identifier within the Capability Unit for matching with a
general address. This identifier is constructed so as to
remain unique across any procedure or process change.

a base field of 20 bits (+ 3 parity) giving the absolute
address of the first word of the segment.

a limit field of 16 bits (+ 2 parity).

an access field of 7 bits (+ 1 parity). The least
significant 6 bits represent the access rights permitted

to the segment.

count and spare fields of 7 bits (+ 1 parity) each for use
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at the microprogrammer's discretion. These fields are not
consulted by ﬁhe hardware (apart from parity checking)
during a store cyqle. The normal mode interpreter uses
the count field to keep track of the number of references
to an entry in a capability register and the spare field
of a given capability register to point to that
capability's master.
During a store cycle the Capability Unit performs some autonomous
computation. Subject to certain restrictions the microprogram may
execute instructions in parallel with this and with the actual
reading or writing of store. If the Capability Unit detects a
5achine error or an error in the access request presénﬁed to it
the data transfer is aborted and control diverted to a‘trap locg-
tion in the microprogram.
Whenever the microprogram generates a store request (by loading
a general address into register P), 8 access bits are simultaneo-
usly loaded into register PAR. Two bits control special options
in the Capability Unit and the other 6 are used by the Unit to
check the legality of the request and by the store logic to
generate the correct sequence of reading and/or writing. If the
store request is to fetch an instruction, the access bits are
derived from the 2 FMR bits of the appropriate Function Memory
entry. The 6 bits are allocated the following meanings (d31 being
the least significant of the six):-
d31 Execute

d30 Read data
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d29 Write daté

d28 Not used

d27 Read capability

d26 Write capability.
A one in the appropriate bit position indicates that the miofopro—
gram is attempting an access of the specified type. The access
will be faulted by the Capability Unit if the access bits loaded
into PAR have a one in some position and the corresponding bit in
the access field of the currentiy selected capability register is
a nought.

Before proceeding to check the store request one of the
capability registers must be selected as current. The way this is
done dépends on the mode of operation of the Capability Unit at
the time. In absolute mode no selection is made and all capability
checks are bypéssed. In last mode also no selection is made and
the current register is the one most recently selected in direct
or normal mode, the selection in direct mode being derived
directly from six bits of register P. In pormal mode - as the name
implies this is the standard mode of operation - an associative
search is made of the capability registers to find one where
digits 26-31 of the tag field match digits 26-31 of the current
TGM register (which has alfeady been selected by digits 0-3 of
register P, i.e. by the capability segment field of the general
address) and digits 18-25 of the tag field match digits 8-15 of
P, i.e. the capability segment offset field of thé general ad~

dress.  (Note that the bit numbering here follows the hardware
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convention that the least significant bit of a field is digit 31.)
The associative search does not, in fact, take place on all 64
capability registers at once. Instead, the search is made on suc-
cessive banks of U4 registers at a time. The bank selected as the
start point for the search 1is derived from the value of the
currently selected TGM. The TGM registers thus have two uses in
normal mode operation:-

(a) as an indexed translation table to expand the top four
pits of register P, the capability segment field of the
general address, into the six bits used in the search
cyecle |

(b) to determine the start point for the search.

If the Cépability Unit search fails to find a match a "not
found" trap is generated when the microprogram next attempts a
STORE order. Note that reading from and writing to store needs two
micro-instructions, a read or write request and a STORE instruc-
tion. The Capability Unit carries out its autonomous checking as
a result of the read/write request, the store operation being held
up until the Unit has completed its work. After a "not found" trap
the microprogram performs the so-called reset cycle to calculate
the required absolute address (or indicate an error if the req-
uested address was ill-formed5 and set up a capability register
accordingly. Tﬁe request is then repeated with a successful match
now guaranteed. The reset cycle is relatively expensive in store
cycles as it involves chaining up through the capability segments

and PRLs of the process hierarchy until the MRL is reached. The
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caoability‘store'is relied on to slavevall the most recently used
capabilities so that the reset cycle is only initiated when there
is a request referring to a segment which has been dormant for
some time or has not yet been used. It is quite possible for the
reset cycle to trigger another reset cycle within itself, for
example if it tries to read a capability from a capability segment
for which there is no evaluated capability present in a capability
register. In this case the first reset cycle is abandoned and will
be repeated if the second reset cycle is successful. The micropro-
gram endeavours to avoid overwriting capability registers which
contain data necessary for another itération but with a process
hierarchy of more than two levels this is very difficult.anq the
possibility exists of the machine looping in the microprogram;
Present work on the CAP uses a two-level process hierarchy only.

The reset cycle makes use of the information stored in the
master (spare) field of capability registers for capability seg-
ments in Qrder to determine the addressing environment which is
master to the current one. The master field of a capability seg-
ment points to the capability register of the appropriate PRL,
whose master field in turn points to the capability register
containing the capability for the Process Base of its superior.

In the CAP a general address at a given level of the process
hierarchy is interpreted relative to the address space of the next
higher level. Only in the MRL, the PRL of the topmost level, do
capabilities contain absolute store addresses. The Capability Unit

is used as a slaving device to avold every general address having
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to be evéluated by repeated indirection up to the MRL. Clearly,
the capability for the MRL must be permanently allocated to one

of the capability registers otherwise the machine cannot run in
normal‘mode. By means of the tag fields in the capability
registers a tree structure is maintained in the capability store
reflecting the process structure relative to which the
capabilities were evaluated. It is essential that the contents of
the capability store continue to be a true description of the
capabilities it holds, even after alterations to capability seg-
ments %n main store have amended some of the capabiiities
currently in the capability store. The tree structure enables the
micropfogram to find those entries affected by a change %to a
eapabilify represented by an entry higher up the tree. The
mainte&énce of the tree means that, at any given moment, a number
of the capability registers are reserved since they are non-
terminal nodes in the tree. The capability store is also used for
the reiatively long-term retention of capabilities required by the
protection mechanisms to identify the current Process Base,
C—Staok and PRL. This results in additional capability registers
being reserved.

When there is a switch of protection domain by entering a pro=-
técted procedure a number of capability registers will be poten-
tially reusable for new capabilities. However, if the protected
procedﬁre is returned from before the scavenging of invalid
gapabildty,registers is complete then the protection mechanism

will fihd‘thaf many of the capabilities now required are still in
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the capability store. In the case of r#pid protected procedure
calls it is possible that the entire set of capabilities for the
data and capability segments of two or three procedures may exist
concurrently in the capability store leading to very rapid proteg-
tion domain switches.

A comprehensive discussion of the Capability Unit, Tag Memory
and reset cycle is given in Walker's thesis [Walker 1973]; the
actual implementation differs slightly from the scheme he

describes.

3.6 Peripl 1 devi

As mentioned earlier (Section 3.2), peripherals are driven b;,
a Modular One to which the CAP is connected by a hardware link.
Peripherals are protected via the memory protection mechanism by
allowing access to a peripheral device only on presentation of,g
capability for a word of store corresponding to that device, each
device having been allocated a word in the part of store known‘as
the_ﬁ;ﬁ&gﬁg. Where this makes sense devices are allocated twé
P-Store words, one corresponding to reading from the device and

the other corresponding to writing to it.

3.7 The CAP Operating System

The operating system is not dealt with in detail here: the
current state is described in the CAP Operating System Manual
[Herbert 1978(c)]. A brief description of the various processes
and protected procedures which make up the operating system 154

given in the Glossary. The design and structure qf the:cperating”.
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system are, naturally, intended to make extensive use of the
capability-based protection mechanisms of the CAP. The design is
thus centred around the use of capabilities and a prihary design
objective is that the principle of minimum privilege (see Section
2.1) should be applied. The building blocks from which the
operating system is constructed are protected procedures providing
services which may be roughly classified under the four headings
of gate-keeping, operating system intervention, protected objects
and trivial services [Needham 1977(c)]. This classification ref-
lects differences in emphasis and purpose of the four types of
protected procedure: the mechanism for their use is the same in
‘éll cases. The basic design features of the CAP Operating System
afe:-‘

- (a) The use of capabilities to provide protection [Needham
1977(a),(e)]. 1In addition to the store capabilities,
which are dealt with by the hardware, and ENTER
capabilities, which are presented to the microprogram for
interpretation, there are capabilities which are checked
by software: these are known as gsoftware c¢apabilities.
Software capabilities are protected in just the same way
as store or ENTER capabilities and are kept in capability
segments. They are used, for example, by the Master Co-
ordinator to check whether one of its sub-processes which
is requesting a particular service is entitled to that
service. The process indicates its entitlement to the

service by presenting the Master Coordinator with an ap-
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(b)

(e)

(d)

(e)

propriate software capability. For instance, to stop the
system a system-stop-permission capability must be
presented. The capability management services of the
Master Coordinator, for which the requesting process must
have a capability-permission capability, provide examples
of the use of domain changing as opposed to the switching
of protection domains (sée Section 3.1).

The principle of minimum privilege is a fundamental design
principle. Privilege here refers not only to the rights
of access ﬁo store but also to the use of privileged
services provided by the Master Coordinator and the right
to enter protected procedures or to activate oberating
system processes to carry out certain services.

A message system is provided by the Maste? Coordinator to
enable its juniors to communicate with each other. The use
of the message system is controlled by means of software
capabilities.

The virtual memory system is unusual in being handled
entirely by software without hardware support. Memory is
segmented, not paged, with segments of arbitrary size
(from 0 to 32767 words). The segment is therefore the unit
of swapping as well as the unit of prbtection. Segmenta~
tion is under user control.

The explicit concept of a file does not exist. Rather
there is the concept of a Virtual Memory Object (VMO)

which may be in core (an inform segment) or swapped out
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(an outform segment). Special facilities are provided for
dealing with VMOs larger than 32K-1 words: these can only
exist on disc since such large segments cannot be handled
in core. There is a mechanism for retaining capabilities
for VMOs between runs and a retained VMO corresponds to
most people's intuitive idea of a file. The structure of
the filing system is unusual in being a directed graph
rather than the more normal hierarchic tree structure
[Needham 1977(b)].

(f) Input and output are implemented as character streams and
facilities for manipulating these streams are provided via
protected procedures created in the process which wishes
to indulge in input or output.

(g) Facilities are provided to enable a procedure to be ad-
vised of and given an opportunity to recover from any
faults that may occur while a process is running in that
procedure [Needham 1971]. Steps are taken to avoid looping
if a procedure faults again while dealing with a fault.

(h) Most of the operating system has been writte& in Algol 68C
[Bourne 1975] with a few small procedures written in
machine language either for reasons of efficiency or
because the computation must be done entirely in the
registers.

The above description has implied that all coordinator services
are provided by the Master Coordinator. In practice, some of the

work is done in a protected procedure, ECPROC, in the process req-
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uesting the service. The handling of féults is done by a proced~
ure, FAULTPROC, which runs in the same protection domain as EC-
PROC. The main advantages of putting as much work as possible in
ECPROC are that this avoids unnecessary serialisation, that
because it runs in-process much argument checking can be done by
the hardware and microprogram, and that the amount of code in the
Master Coordinator is reduced. Thus, a domain change may be ef-
feéted by means of a domain switch to enter the ECPROC protected

procedure.
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4, Performance evaluation

4.1 Review of relevant work

The CAP computer was commissioned towards the end of 1974. Alth-
ough various ad hoc monitoring experiments have been done since
then there has been no organised performance evaluation work. The
CAP architecture was simulated [Walker 1973] prior to the building
of the actual hardware and some measurements (e.g. instruction
counts) were made with this simulatbr;

The literature on performance evaluation and monitoring falls
into three categories. Firstly there are general survey papers
[Bell 1973,Calingaert 1967,Lucas 1971,Lynch 1972,Williams 1972]
whose main body is usually a discussion of the comparative merits
of different monitoring techniques, the techniques covered being
the use of personal inspection, accounting systems, hardware
monitoring, software monitoring, benchmark programs, simulation
models and analytical models [Bell 1973]. Secondly there are
papers dealing with’particular aspects of performance evaluation
or with particular techniques. Examples of such papers are [Bard
1973,Boi 1973,Boyse 1975,Kimbleton 1972,Knuth 1973,MacEwan
1974,8ketler 19741, Thirdly there are presentations of the results
of individual case studiesL The volume of material in this categ-
ory is overwhelming, especially if one includes papers published

elsewhere than in the major computingvjqprnals. A sample of the
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work in this category is provided by papers about Multics [Saltzer
1970,Schroeder 1971], TOPS-10 [Jaliecs 1974], UNIVAC 1108 [Bordsen
1971] and the Michigan Timesharing System [Pinkerton 1969].

Essentially the message that comes over from papers on perf-
ormance evaluation is that one should use the tools and techniques
most appropriate to the task in hand! "Each analyst must feel his
way to a solution for each problem with only helpful hints for
guidance" [Bell 1973]. "Ordinary common sense is here, as
elsewhere, to be desired" [Calingaert 1967].

One technique which has been very little used and whose merits
and demerits are not discussed in the general review papers is the
use of a mioroprogramﬁedjmeasurement system. A survey paper on
microprogramming [Rosin 1974] and an earlier review paper by the
same author [Rosin 1969] likewise make no reference to the use of
microprograms for performance evaluation. The author is aware of
only three reported applications of microprogrammed performance
measurement, one on the Burroughs B1700 [Denny 1975,Wilner 19721,
one on the extension of this work to the Burroughs B1800 [Denny
1977] and the other on a Standard Computer Corporation ICT7000
computer system [Saal 1972,1975]. Saal [1972] contends that "given
an existing system with a writable control store, a microprogram
measurement system may be the most flexible, inexpensive,
reliable, and high-speed means of monitoring the performance of

a computer system".

4,2 P : AP m

As far as possible monitoring tools should be designed with
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flexibility and generality in mind so that they may be used for

a variety of experiments. The research described in this thesis
included only a limited amount of performance evaluation work done
in connection with measuring the cost of protection on the CAP
(see Chapter T7), but even so this design aim was applied. The
monitoring tool used in the experiments proved to be easy to adapt
to the particular requirements of each experiment; it should also
be a simple matter to use it to carry out some of the investiga-
tions suggested for further research (see Section 8.2).

There are no magnetic tape units attached to the CAP. There is
disc storage but data stored on disc is not‘as secure as data
stored on magnetic tape. There is a strong incentive, therefore,
for any monitﬁring experiments done on the CAP to be designed to
produce small volumes of data or else to make use of data compres-
sioﬁ techniques [Batson 1970,Denning 1971]. The author was able
to adopt the former approach for his experiments.

The CAP computer has store modules with different speed charac-
teristics. Because of this, the presence of slave stores for
reading and writing, and the slafing function of the Capability
Unit (all of which are described in Chapter 3) the results of
timing experiments must be interpreted with care. A number of such
experiments were done and in all of these a stop-watch was used
for measuring time. The Modular One computer used as a peripheral
processor has a real time clock which could have been used
instead. To the CAP this looks like a serial input device and,

although the clock's "tick" can be set down to one centisecond,
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too short an interval imposes high loads on the microprogram and
the Master Coordinator to handle the interrupts generated. The
author decided that a stop-watch would be sufficiently accurate,
would perturb the system less than using the Modular One's
hardware clock and would be simpler to use.

The CAP incorporates various hardware monitoring facilities, in
particular a counter. By appropriate setting of the manual
switches this counter can be used to count occurrences of a wide
variety of events. As it is possible to count the number of times
a specified microprogram instruction is obeyed the hardware co-
unter is a very flexible monitoring tool. It is simple to use but
has the disadvantage that occurrenceé of only one type of évent
can be counted at a time. Details of the CAP's monitoring
facilities are given in the CAP Hardware Manual [Herbert 1978(b)].

The use of the microprogram for monitoring introduces certain
problems. Microprogram store is limited so compactness of code
is essential, even if it is at the expense of clarity. Another
constraiht is that subroutine calls can only be nested to a depth
of two (i.e. the limit is a subroutine call from within a subrou-
tine). These constraints together with the disadvantages inherent
in the use of a low-level language, in this case an assembler
which sometimes has side éffects which are not obvious from the
written code, make it difficult to understand and modify the
microprogram. In addition, great care must be taken to ensure that
an unexpected interrupt will not lead to disaster.

To conduct the experiments described in this thesis (see Chapter
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7) the author used a combination of modifications to the micropro-
gram, monitoring code inserted in the Master Coordinator program
and event counting using the hardware counter. This provided a
very flexible and powerful approach to monitoring the performance

of the CAP.
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5. Measuring Protection

A general expression of the need for protection measurement is
given in Weissman [1972]: "For the future the (computer security)
field must confront what I believe to be the two major problem
areas - metrics and certification. As in most engineering endeav-
ours, we cannot improve performance, lower costs, or even identify
significant variables until we ean quantify, measure, and estab-
lish numerical scales of values".. In a 1976 editorial Waite
[1976] made a plea that efforts to improve software reliability
should include cost/benefit analyses. Protection has a contribu-
tion to make in improving the ﬁeliability of software but, as
Waite pointed out, although "it seems possible to estimate costs
rather accubately, there is almost no way to estimate benefits".
Randell [1977], too, mentions the lack of quantitative design
tools. "Ideally, all ... design issues would be decided upon
by mainly quantitative methods. ... However iﬁ would seem that
many of the design tools involved in achieving high levels of
overall reliability from large and complex hardware/software
systems will continue for a long time to require large measures
of creative skill and experience on the part of the designers."

A method of measuring the benefits and costs of protection would
enable the designers of computer systems, especially operating
systems, to quantify in part the besults>of their endeavours.

There seems to be a need for a measure suitable for the ordinary
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user too. Experience with Multics has shown that users have dif=-
ficulty in making use of sophisticated protection mechanisms
[Schroeder 1972(b)]. Protection measurement would contribute to
the éomprehensibility of protection mechanisms [Redell 1974] by

giving the user a means of quantifying the results of his actions.

5.1 Protection costs

Measuring the costs of the protection provided by a system is,
in prineciple, relatively straightforward. However, the protection
may be closely pbound up with other aspects of the system, for
example protection and anressing are inextricably intertwined in
the CAP, and in practice it may well prove difficult to apportion
certain cost elements. it would be hard, for example; to.allocate
the total hardware cost of the CAP's Capability Unit between the
addressing and protection operations in which it participates.

The cost model proposed by Wyeth [19761 is used as the basis for
measurements of the costs associated with the provision of protec-
tion. Cost figures are of interest principally when comparing dif-
ferent strategies on the same system. Provided the cost elements
which are hard to apportion are fixed (as opposed to variable)
costs then the apportionment problem is not a significant one.

Wyeth identifies six cost components: -

(a) Cost of creation of a protection domain

(b) Cost of deletion of a domain

(¢) Cost of maintenance of a domain

’(d) Cost of switching from one domain to another

(e) Cost of changing a domain
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(f) Cost of protection enforcement;
Each cost component involves the invocation of a set of primitive
actions and the actual form of Wyeth's cost measure for a particu-
lar protection mechanism is obtained by determining the primitive
actions |

P , P ,....P
i1 12 ik

involved in the i-th cost component (i=1,2,...,6) and the costs

C ,C ,....C
i1 12 ik

of each péimitive. The total cost is calculated by summation.

5.2 Protection benefits
In trying to formuiaté a suitable protection measure the author
attempted to determine the objectiveskthat such a measure could
be used to‘attain. Two approaches correspond to meeting the foll-
owing two objectives:=
(a) to provide a user with a measure of how well (or badly)
protected are the various objects (e.g. data files, pro-
grams) which he owns in the system
(b) to establish how closely the principle of minimum
privilege (see Section 2.1) is adhered to in a computer
system.
The first objective requires a measure (an _exposure measure) that
considers the degree of protection which has been provided for an
individual object; the second requires a measure (a privilege
measure) that considers the privileges which have been allowed to

a subject (using object and subject in the sense of Graham and
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Denning's model [Graham 19721).

5.2,1 Exposure measures

An exposure measure would enable the user of a computer system
to do cost/benefit analyses of the different degrees of protection
ne could request for an object. This would help him to decide how
much protection he was prepared to pay for. Ellis's [1974] degree
of protection of a system is an exposure measure.

The components of El1lis's model of a protection system are!-

(a) Finite set, A, of active elements called subjects;
A = {A1,A2,...Au}.
(b) Finite set, B, of passive elements called objects;
B = {B1,B2;...Bv}. An element may be both active and pas-
sive. Therefore, in general, A nB "= 0.
(c) Set C = A UB |
(d) An access code, ¢ , a binary n-digit number, is associated
i
with each C ¢ C. ‘

1

Call an access code a for a subject A , b for an object B .
i i 3 j

Let ¢ be the k-th binary digit of access code ¢ .
ik i

(e) An access mechanism, g(a ,b ), is defined as a total boolean
i

function of an ordered set of two access codes, and takes the

value 1 if an access from A to B is allowed,
i J

0 if such'an access is not allowed.

In his paper Ellis studies the family of access mechanisms
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consisting of boolean functions applied bitwise to the two access
codes aﬁd summed. This family is expressed formally as

{ n :

{g=1 if £ f(a ,b ) >= m,

{ k=1 ik Jjk

Eg:O otherwise
where f is an arbitrary boolean function of two binary digits,

n is the number of bits in each access code,
m is the access threshold and satisfies 0 <= m <= n.
An example of such a mechanism is the IBM 360 hardware key system
[IBM 1970]. Ellis considers the situatioﬂhwhere the protection
méohanism is unable to provide access codes such that the assign-
ment of these codes to subjects and objects is possible in a way
that will give each subject exclusive access to one or more
objects. In other words, he is concerned with systems in which the
access mechanism is not able to prevent unauthorised accesses from
taking place: one or more subjects may be assigned access codes
which allow access to objects to which the subjects should not
have access. His measures of the absolute and relative degrees of
protection of a system indicate the extent to which the system is
susceptible to such unauthorised accesses. These measures are
defined as:-
(a) absolute degree of protection of a system,
-1
d = (1 +y)
- abs

(b) relative degree of protection of a systenm,
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where |A| is the cardinality of the set A,
X is the average, over B, of the number of subjects which

have authorised access to any particular B ¢ B,
J

y is the equivalent average for unauthorised access.
The first measure is absolute in the sense of not varying acc-
ording to the size of the system but only according to the
number of unauthorised accesses. The second measure is rela-
tive to the size and structure of the system.

If no unauthorised accesses are allowed, d = d = 1.
abs rel

Whereas Ellis is interested in systems where unauthorised access
is unavoidable, the author's concern ié with systems where the
protection mechanism has the aﬁiiity~to prevent all undesired ac-
cess. Ellis's measure is, therefore, inadequate. (In practice,
the full power of the mechanism may not be used, either because
of the cost of doing so or for other reasons.)

There are two major problems with exposure measures. Firstly,
the notion of ownership 1s not sufficiently clear-cut: it is dif-
ficult to see how it could be applied in the CAP system where, for
example, an object created by Jim, who initially retained a
capability for it, might remain in existence long after Jim had
disposed of his capability, the object's continued existence being
caused by Bill also having retained a capability for it. The
second, and more important problem is that the degree of exposure
of an object or set of objects tells you nothing about whether

that degree of exposure is essential to enable the object to be
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used as was intended. On the other hand, a privilege measure ad-
dresses just this problem. In terms of the access matrix model
of a protection system [Graham 1972], an exposure measure sum-
marises the access matrix column by column (object by object)
whereas a privilege measure summarises it row by row (subject by
subject). It is fairly easy by looking at a subject's algorithms
to find out what that subject should be able to access so a
privilege measure is helpful in assessing whether the subject has
more privileges than it needs. An exposure measure is of little
help in assessing overbrivilege because it is difficult to
determine which subjects should have access to an object by lo-

oking at the object itself.

2.2 P il
As mentioned earlier (Section 2.1) the objeétive of Jones's

[1973] model of a protection system is the attainment of the
principle of minimum privilege. This need-to-know principle is the
basis from which stem her accuracy and suitability measures. She
postulates demands defined as constraints on the contents of pro-
tection domains and on the new protection domains which a process
may enter and proposes that her measures be used to compare pro-
tection systems. The _agcuracy measure indicates how accurately
a protection domain suits the execution performed within it. It
is defined for an execution environment as

"the ratio of the number of rights exercised in the environ-

ment compared to the total number of rights which could be

exercised within the environment during the performance of one
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task",
As Jones points out, the accuracy measure does not reflect the
understocking which occurs if an unnecessarily fine decomposition
of a problem solution generates multiple tasks each to be perf-
ormed in almost identical protection domains. The accuracy measure
has a maximum value of 1, when the domain is exactly tailored to
its use, and a lower bound of 0 approached as the number of unused
rights in a domain increases. As a measure of how well a particu-
lar system satisfies a given demand Jones introduces the
suitability measure which is defined as follows:

"The suitability measure of a system with respect to a given
demand is the average of the accuracy heasures of the imp-
lementations of all domains required by the demand specifica-
tion",

Thus, provided the demand specification reflects the minimum
privileges required, Jones's suitability measure supplies a means
of determining how closely the principle of minimum privilege is
approached. Jones does not go into the details of how numerical
suitability factors would be calculated in practice and therefore
does not encounter the problems which are discussed later in this
section and in the ensuing one (5.2.3). As an example of the use
of her measures, Jones presents a qualitative comparison of
several representative systems which results in a partial ordering
of them by their ability to satisfy a specific demand. In com-
paring protection systems Jones takes no account of the costs inv-

olved in the provision of protection in each case.
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Wyeth [1976] sets out a methodology for comparing protection
systems which covers both costs and benefits. His work, which is
strongly influenced by the accuracy and suitability measures of
Jones, is, as far as the author is aware, the only previous at-
tempt to make quantitative comparisons of the costs and benefits
of protection systems. |

Wyeth defines the environment of a process as

"the set of existing objects potentially accessible by the

process",
and the domain of a process at time t (measured in process time)
as’

: "thé set: of access permissions which the process is able to

éxercise at time t". |
Thus, in the CAP system, a process's environment is specified by
the entries in its PRL and its domain at a given time is defined
by the capabilities in the get of capability segments in use at
that time. Wyeth uses a simple protection model which consists of
the identification of five sets of objects pertaining to a pro-
cess: the totality of objects in the System, T; the environment
of a process, E; the theoretically accessible set of objects, 4;
the accessible set as defined by an implementation, A'; the
referenced set, R. The sets A, A' and R are defined as follows:-

(a) "The :ngggegicglly_ggggggiglg_ﬁgj, A, is a subset of the

environment, E, A contains those objects within E which the
process may access at time ty «.. (the specific objects incl-

uded in A being) ... defined by some external specification.™

-58-




(b) "The accessible set as defined by a particular imp-
lementation, A', is the set of objects ... (which tﬁe process
can address) ... at time t."

(¢) "The referenced set, R, (initially empty) corresponding to
domain D, is composed of those objects referenced by the pro-
cess up to time t since the process switched execution to do-
main D."

The set A corresponds to what should be accessible to a process
at a given time, whereas the set A' corresponds to the objects
which the process can actually address at that time.

An example may help to make the distinction between A and A!
clear. Consider a program written in Algol 60. The scoée rules of
the language lay down the specific subset of all the variables
declared in the program which is validly accessible during the
execution of a block or procedure in the program. This'subset
includes the local variables declared in the given block or pro-
cedure, the variables in the scope of the enclosing block but not
re-declared as local variables, and any parameters passed to encl-
osing procedures. The environment, E, corresponds to ail the
variables declared in the program. The theoretically abcessible
set, A, at some time during the execution of the given‘block or
procedure corresponds to the subset defined by the scope rules,
which are the external specification in this example. (The number
of instructions executed will suffice as a measure of tiﬁe.) The
set of objects actually accessible in the given block or procedure
when the program is run is determined not by the §cope,rules but
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by the way the:compiler writer has chosen to implement those
rules. This set corresponds to A', the accessible set as defined
by a particular implementation. The compiler writef may adhere
strictly to the scope rules, in which case A = A', or he may cho-
ose to ignore some of the restrictions imposed by them, in which
case A c A",

The relationship between the sets of Wyeth's model are shown by
means of a Venn diagram in Figure 5.1 which is taken from Wyeth

[1976].
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T totality of obijects

E environment

A theoretically accessible set

Al accessible set defined by an implementation
R set of objects actually referenced

Figure 5;1 : Relationship between the sets of Wyeth's model.
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The protection mechanism is presumed to detect attempts to ac-
cess objects not contained in A'. An undetected protection viola-
tion will occur when an objeet X € A' is referenced and X ¢ A,
Wyeth, like Ellis [1974], is concenned with measuring the poten-
tial for unauthorised access. He defines his measure as follows:

"The value on_pengﬁix_gf_g_ggg&ggguu;1mmngniﬁm is defined to

be |Al/|A'] (where !A| denotes the cardinality of the set A)

averaged over the domains of execution of a sample set of pro-

grams",.
Wyeth claims that, since his measure is independent of the
referenced set R, it is independent of the detailed behaviour of
thé actual programs and asserts that this independence is
necessary to avoid measuring aspects of processes rather than of
protection mechanisms. However, the sets A and A may change
dynamically, the precise changes depending on the detailed
behaviour of the actual program, so that Wyeth's measure does not
achieve the independence he claims for it.

In terms of Wyeth's model, Jones's accuracy measure for a given
domain is the ratio |R|/!A!. Averaged over a number of domains
this becomes Jones's suitability measure. These measures are
dependent on the detailed dynamic behaviour of processes and are
intended to be so. This concern with process behaviour dependence
is related to the pronlem of whether one should attempt to measure
a protection mechanism or an application of that mechanism. In
other words, is it more useful to measure what a particular pro-

tection mechanism can do or how it is used? As the author's
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research was concerned with evaluating the CAP computer system he
concentrated on measuring how effectively the CAP's protection
mechanisms were applied in practice rather than assessing the
power of the mechanisms themselves. He did not, therefore, insist
on a measure of the benefit of protection being independent of the
actual behaviour of the processes contributing to the measurement.

Wyeth applied his methodology in two practical experiments, one
comparing various implementations of Algol W, and the other com-
paring the IBM System 360 DOS/VS operating system with a modified
version. These experiments are not gone into in detail here alth-
ough they demonstrate some of the shortcomings that are discussed
‘next,

Wyeth glosses over the difficulties involved in applying weights
tovthe objects in the system according to their importance. To
illustrate the need for such weighting, consider two processes P1
and P2 with theoretically accessible sets A1 and A2, and imp-
lementation defined accessible sets A1' and A2' respectively.
Suppose |A1]| = JA2| and [A1'} = [A2'| = 2%[/A1]|. Consider the three
possible situations illustrated below, where the boxes represent
portions of memory. In each case Wyeth's protection benefit
measure for the two'processes = 1/2. But the protection implica=-

tions in the three cases are very different.
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(a) (b) (c)

Qualitatively, p(a) > p(b) > p(e) , where p(x) is a measure of the
degree of protection of the pair of processes in case (x). As
another example, in the CAP project we would consider access to

a segment which i1s a PRL to be much more important from the pro-
tection point of view than access to an ordinary segment of.the
same size. Wyeth's experiment with DOS/VS demonstrates how
ignoring value-weighting renders his approach less‘éffective. The
main difficulty is in deciding what weights to apply: value judge-‘
ments are subjective and are, therefore, incompatible with an
objective measure. Ellis and Jones do not consider the value-
weighting problem at all.

Wyeth limits himself to dealing with the accessibility of data.
He does not consider how to incorporate a process's rights to ask
for services to be performd by the modules in the system. In the
CAP, limiting the distribution of ENTER capabilities for protected
procedures controls access to the services provided by those pro-
cedures. Controlling the availability of sérvices is very much
part of the CAP's protection and should be included in protection
measurement. However, there are non-protection reasons for
deciding how to split the software of a computer system into mod-

ules. At present system designers have 5o take such decisions on

-64-




i

the basis of intuition and experience: a suitable protection

measure would aid them in this decision making.
Another problem associated with privilege measures of protection

is deciding what to use as the basic unit when specifying the

‘things to which a process needs to have access in order to perform

its current task. Taken to its limit in relation to memory protec-
tion the principle of minimum privilege would restrict a process
to accessing a single bit at a time. In practice a coarser grain
is appropriate: for memory protection on the CAP a 32-bit word
seems the natural choice as the basic unit. The unit for the
services provided by modules is less easy to select. A possible

1 4
choice is to use as a unit each individual service described in

the specification of the module. In practical studies of protéc—
‘tion using a privilege measure, basic units would have to be

' chosen which were appropriate for that particular experiment.

2 Protecti nefits: pragmatic nsider
This section on protection benefits is terminated by a brief
discussion of two further points.
Protection domains will, in general, be subject to change and

the particular set of domains in which a process runs during its

lifetime will depend on the the detailed execution of the process.

For a given domain at a given time it is possible, by inspecting

the specification of the domain, to determine all the data seg-

- ments which the process is allowed to access and all the proced-

ures it has the right to enter at that time. The extension of the

' search to discover all the objects in the system for which the
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process could potentially acquire rights, although theoretically
possible, is likely to be impractical in a real system especially
if, as in the CAP Operating System, certain processes are able to
manufacture arbitrary capabilities. The author did not attempt
measurement of the potential protection situation but restricted
his attention to the actual domains in which processes run.

It is inevitable that the protection mechanisms available on a
computer system will influence the design of software for that
system, just as the facilities available in a particular pro-
gramming language will affect the way programs are written in that
language. Measuring protection in the context of a particular app-
lication of a protection system implies that one is not trying to
assess separately the influence the protection system has had on
its environment, that is on the structure of the operating system,
the writing of users' programs, etc. The effectiveness of a pro-
tection mechanism depends on the power of the facilities provided
by the mechanism{ however, this latent power cannot make any im-
pact unless it is effectively utilised in an application of the
basic protection mechanism. The author believes, therefore, that
it is appropriate to develop a protection measure that reflects
the power of the application of the protection mechanism. Given
that the purpose of providing protection in computer systems is
to ensure adherence to the principle of minimum privilege, an
objective that is widely accepted by those working on computer
protection, a privilege measure is more appropriate than an exp-

osure measure. A suitable measure would be of value both to
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ordinary users of a computer system and to system designers.

5.3 A protection system model

The protection model used by the author is.an extension of the
one proposed by Wyeth[1976]:the extended model is referred to as
the minimum privilege model of a protection system. A process has
a repertoire of services* it can perform and the code executed and
the domains in which it runs depend on which service it has in
hand. There is not necessarily a one-to-one relationship between
services and domains: a process may well perform several services
in the same domain. The services of a process are made available
to other processes as functions*. Wyeth's theoretically ac-
cessible set, A, and accessible set as defined by an implementa=-
tion, A', are extended to refer to the period of time a process
is running in a given domain whilst performing a particular
service and are renamed the specification set, S, and the imp-
lementation set, I, respectively, with the following definitions.

The specification set, S, corresponding to domain D and
service C is made up of those objects which, according to some
external specification, need to be accessible to the process
while it is running in domain D during the performance of
service C.

The implementation set, I, as defined by a particular imp-~
lementation, is the set of objects which the process can ad-
dress while it is running in domain D during the performance

of service C.

TR T D i N R G T S S M S e - . - - - - - - —— —— o= o . - . - -

* This terminology is derived from Wulf [1975].
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An additional set, M, the minimum privilege set, is introduced and
is defined as follows.

The mipnipum privilege set, M, corresponding to domain D and
service C contains only those objects which must be accessible
to the process while it is running in domain D to enable it to
perform service C.

Unless the external specification which defines the specification
vset, S, is wrong (i.e. is insufficient to enable the process to

do its job), the sets S and M obey the relationship M ¢ S.
Similarly, M ¢ I. The implementation is based on the specification
and will ensure that S ¢ I.

As an example consider a simple program which runs in one domain
only and has only a single task in its repertoire, namely doing
some calculation the details of which need not concern us. To keep
the illustration simple we deal only with access to words of mem-
ory used as workspace and select one word of mémory as our basic

object. The specification of the program states that 200 words of

H

workspace are required. Thus, S| 200. The program is to be run
on a computer where workspace can only be allocated in multiples
of 128 words. The person implementing the program, therefore, all-
ocates 256 words as workspace making |I] = 256. Inspection of the
program's code reveals that in fact only 100 words of workspace
are needed: M} = 100. Perhaps the programmer made a late improve-
ment to the program and forgot to amend the specification or

perhaps he simply miscalculated the workspace requirements. In

summary, then, the members of the specification, implementation

-68-




and minimum privilege sets are words of workspace memory and the
sizes of the sets are |S] = 200, |I! = 256 and !M! = 100 which can

be represented pictorially as follows:-

0 100 200 256
P

! | | t

| | | |

| i I |
S —— Y (R >

. Semm e >

e e e ) >

Wyethlmentions that his model can be extended to refer to
(object,access right) pairs rather than simply to objects and the
minimum privilege model is based on this extended version of
Wyeth's.

As already mentioned the services of a process are made
available to other processes as functions. However, the modules
into which the system is decomposed may not all be processes so
the notion of function is made more general:

the services provided by a module are m;de available to other

modules as functions.
Thus, a function is a (module,service) pair. The module providing
a service need not be a software module, as has been implied so
far. The notion of a function as Just defined is equally app-
licable to the services, such as peripheral operations, provided
by hardware modules. It is interesting to note the distinction
that for access to a segment (i.e. to virtual memory) the object

is the segment with the access right being some combination of
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read, write and execute, whereas for access to physical store the
object is a function, for example (store logic,read word),
corresponding to one of the services provided by a hardware module

and the access right is the right to invoke the function.

5.3.1 A protection measure

The protection model is intended to provide a framework for the
formulatioﬁ of protection measures which are of practical value.
" To measure the potential for unauthorised access the equivalent
of Wyeth's benefit of protection measure (|S!/!I!) is appropriate
(see Section 5.2.2). However, systems can be deéigned_fof whibh
S = I and the benefit measure has the ideal Value.of unity. For
example, the protection mechanisms of the CAP are ﬁoWerful enough
to enable the ideal benefit measure to be reached as far as access
to data in memory is concerned, unless the unit used for the
specification of S is smaller than the CAP's unit of protection
(one word of store). This does not mean that these systems pro-
vide perfect protection because the specification set, and thus
the implementation set, may contain more rights than are strictly
necessary for the process to do the job it has in hand.

A measure which indicates how much the implementation deviates
from minimum privilege is the degree of overprivilege which is

defined as follows.

The degree of overprivilege, d, of a process running in do-
main D during the performance of service C is 1 - IM|/|I!

The degree of overprivilege has the value 0 if there is no

overprivilege, and an upper bound of 1 as the privilege excess
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increases. For the example given in Section 5.3 the degree of
overprivilege is 1 - 100/256 = 0.61.

The degree of overprivilege is defined in terms of the ac-
cessibility of objects to a process and really measures the lack
of minimisation of access not of privilege. Overprivilege implies
too much access but excessive access does not necessarily imply
overprivilege: it depends to which objects the unnecessary access
is allowed. If a process has, quite legally, acquired the right
to call a cosine routine, say, it is not very important if the
process is also (unnecessarily) given the right to call a sine ro-
utine. The process has méfe access than it needs but it is arg-
uable that this extra access does not carry with it any additional
privilége: the sine could in any case be calculated from the
cosine. However, if the process's legal possession of the right
to suspend itself pending the receipt of a message also carries
with it the right to stop the entire system then the situation is
rather different. The simplification of basing the degree of
overprivilege on the accessibility of objects is adopted because
the number of objects accessible to a process is something that
can be counted. Determining how much privilege, if any, is asso-
ciated with the accessibility of a particular object is a dif-
ficult problem which is considered later in this thesis (see Sec-
tion 6.1.1).

The ratio |M|/}I| is similar to Jones's accuracy measure [Jones
1973] (see Section 5.2.2). It differs in the definition of the nu-

merator being in terms of the objects which must be accessible
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rather thén the rights actually exercised. The degree of
overprivilege varies with the size and structure of the domain in
which the process is executing. Analysis of the set differenge

I - M may provide insight into ways of restructuring the system
and modifying the implementation which will lower the degree of
overprivilege. The value of |I| provides an indication of how

trusted is the domain in whieh the process is running.

5.3.2 Protection measurement applied to functions

The protection model and the degree of overprivilege protection
measure are defined in terms of the objects accessible to a pro-
cess. It is important to note that functions are considered to be
objects, the only access right applicable being the right to call
the function. An original feature of the work described in this
thesis is the attention paid to functions in the context of pro-
tection in computer systems. 'The author believes that it is imp-
ortant for software designers to pay heed to functions as well as
data when considering the protection implications of their
designs. The following example illustrates how the protection
measure can be applied to functions.

Consider a simple system in which jobs are read from a card
reader and written to a disc file, and results are read from a
dise file and printed on a line printer. The time of output is
also printed. To simplify the example we disregard the processing
of the jobs to produce the results and only look at the
overprivilege of the process(es) which provide the input and

output services. We also assume that the implementation exactly
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matches the'design specification and that each process runs in one
domain which is distinct from the domain of any other process.
Three designs are considered and the example shows that a process
may be overprivileged if it performs more than one service from
the samé domain or if it has access to all the functions provided
by another process but need only have access to some of them. In
the first design there are five processes:

CLOCK - interface to the hardware clock,

DISC =~ interface to the disc drive,

PRINTER - interface to the line printer,

READER = interfage to the card reader,

SPOOL - input and output.
The functions made available by these processes are (CLOCK, read
time), (DISC,read from disc), (DISC,write to disc), (PRINTER,print
character), (READER,read card), (SPOOL, input) and (SPOOL,output).
To perform its input service the SPOOL process needs to call the
functions (DISC,write to disec) and (READER,read card). For its
output service it needs the functions (CLOCK,read time),
(DISC,read from disc) and (PRINTER,print character). The SPOOL
process runs in the same domain for both of its services. Thus the
implementation sets for the two services are identical: each
contains all five functions made available by the other processes.

The protection state is as follows:
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(a) SPOQL process, input service.

(CLOCK,read time) (DISC,write to disec)
(DISC,read from disc) (READER,read card)

(DISC,write to dise)
(PRINTER,print character)

(READER,read card)

Degree of overprivilege = 1 - IM|/|I| = 1 - 2/5 = 0.60

(b) SPOOL process, output service.

Implementation set Minimum privilege gset
as for input (CLOCK,read time)

(DISC,read from disc)

(PRINTER, print character)
Degree of overprivilege = 1 - 3/5 = 0.40

In the second design the SPOOL process is split into two pro-
cesses, SPOOLIN and SPOOLOUT, which perform the input and output
services respectively. SPOOLIN has access to the services of the
DISC and READER processes, and SPOOLOUT to those of the CLOCK,

DISC and PRINTER processes. The protection state for this design
is:
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(a) SPOOLIN process, input service.

Implementation set Minimum privilege set
(DISC,read from disc) (DISC,write to disc)
(DISC,write to disc) (READER, read card)

(READER, read card)

Degree of overprivilege 1 -2/3 = 0,33

(b) SPOOLOUT process, output service,

Implementation set -Minimum privilege set
(CLOCK,read time) (CLOCK,read time)
(DISC,read from disc) (DISC,read from disc)
(DISC,write to disec) (ERINTER,print character)

(PRINTER,print character)
Degree of overprivilege = 1 - 3/4 = 0.25

The second design is clearly better than the first from the pro-
tection point of vieQ. The third design requires a mechanism which
only allows a process access to a subset of the functions provided
by another process. SPOOLIN would then have access to the
(DISC,write to disc) function but not to (DISC,read from disc),
and vice versa for SPOOLOUT. With this mechanism the degree of
overprivilege is zero for both SPOOLIN and SPOOLOUT.

The designer now has quantitative information about the protec-
tion implicatidns of his three designs: this should help him to

choose between them.
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Chapter 6

6, Measuring protection: the CAP Operating System

6.1 Audit experiment

To demonstrate that the protection model described in Chapter
5 provides a basis for the measurement of protection in practice
the use of protection in the CAP Operating System [Herbert
1978(c)] was investigated. A static analysis was done in which,
rather than consider all the objects in the system, only functions
were dealt with., It seems likely that, for practical purposes, it
will be more convenient and useful to consider subsets of the pro-
tection model than to deal with all objects at once, a subset
being selected on the basis of some categorisation of the objects
in the system. The results of the analysis, which will be referred
to subseduently as the audif, showed how, by making changes in the
protection mechanisms provided and in the way they are used in the
CAP Operating System, a minimum privilege situation could be ap-
proached more closely.

Each CAP Operating System process has a number of services in
its repertoire and a request to activate a process specifies which
of 1its services the process i1s being asked to perform. The
service of initialisation (setting up data structures and message
channels, ete.) is implicitly requested when a process is created.
In the course of performing a given service the process will run
in a number of protection domains and in each domain a different

set of objects will be accessible to the process. The process
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will, in general, run in a particular domain during the perf-
ormance of several different services. The set of objects ac-
cessible in a given domain to the process performing the specified
gservice is the implementation set for that (pro-
cess,service,domain) triple. The minimum privilege set for a (pro-
cess,service,domain) triple is derived similarly.

In the audit each process in the CAP Operating System was
considered in turn. By listing the functions accessible in each
domain in which a process ran while performing a given service the
implementation sets for all the (process,service,domain) triples
were obtained. The corresponding minimum privilege sets were ob~-
tained in a similar way. It should be noted that the process may
switech to a particular domain more than once in performing a given
service and that the implementation (or minimum privilege) set is
the union of the sets for each time the process is running in that
domain.

An object is accessible in a given domain if the process has a
capability which gives it the right to access the object. As
mentioned earlier, the only objects considered in the audit were
functions. 1In the CAP Operating System services are provided by
processes, protected procedures and peripheral devices. The func-
tions corresponding to a process's repertoire of services are ac-
cessible to another process provided the latter has a capability
(a message~channel capability) which enables it to send a message
to the former. The functions corresponding to a protected proced-

ure's repertoire of services are made accessible by the possession
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of a capability (an ENTER capability) enabling the process to call
that procedure. The functions corresponding to the services a
peripheral device can be called upon to perform are made ac-
cessible by the possession of a P-store capability for that
device.

In the CAP system a process often switches to a privileged do-
main (by entering a protected procedure) to manufacture rights for
use in the domain to which it subsequently returns. The called
protected procedure.will have rights which it will, in general,
not exercise.‘The definitions of the sets I and M are such that
the objects made accessible by the possession of these tights,
which the called protected procedure must have in order to do its
Job, are included in M as well as in I.

The audit took the author about six months to complete; details
of what was done are g€iven in Appendix A. Almost the entire
operating system is written in Algol 68C [Bourne 1975]. If a
readable high-level language had not been used, doing the audit
would have been an Herculean task indeed!

The audit involved detailed stddy of the structure and programs
of the operating system and had the valuable side effect of exp-
osing a number of weaknesses in the design and implementation,
some of which had not been fully appreciated previously. These are

detailed in Appendix B.

6.1,1 Audit: Part 1

Initially the audit results were processed on the basis of all

functions being of equal importance. As mentioned earlier the
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problem of attempting to reflect realistically the relative val-
ues/importance of the objects in a system has received very little
attention in previous work concerned with measuring protection
[Jones 1973, Ellis 1974, Wyeth 1976]. It is not an easy problem
to resolve. In general the value of an object is based on subjec-
tive judgement and it would probably be impossible to justify any
particular set of weights applied in an endeavour to take account
of the relative importance of the objects contributing to a
measure of protection. Besides, the application of weights implies
the calculation of a single number to indicate how good or bad is
the protection provided in the system under investigation: such
“a number would not be of any practical value to the designers or
users of the system. On the other hand, to ignore the value
weighting problem completely will also render ones results of
little use in practice. The solution adopted was to divide the
functions into a limited number of categories and to look at the
degree of overprivilege within each category. In this way the
differences in importance of the objects in the system could be
handled without attempting to associate an individual weighting
factor with each object. The prime motivation was to isolate
those functions whose invocation has protection implications.
Each function was allocated to category P, U, V, or W on the basis
of the following criteria.

P: functions whose invalid use has breach of protection implica-

tions (i.e. has an effect outside the calling protection do-

main; creates, modifies or deletes capabilities).
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U: functions whose invalid use consumes system resources.

V: functions whose invalid use has security implications in the
sense of allowing the caller to get hold of information to
which he is not entitled.

W: functions which do not fall into category P, U or V; the
prevention of their invalid use helps to speed .up the locating
of bugs.

Invalid use of a function means invocation of the function when

it need not even be accessible. The categorisation of the func-
tions is given in Appendix C. It should be noted that thé‘way the
CAP Operating Syétem has been designed means that there is no
clear boundary between functions that are considered part of the
operating system and those which are‘not [Needham 1977(a)]. When
a user logs in he is allocated a USER process which, after doing
some initialisation work, enters the command program's protected
procedure. The user can then communicate direct with this program.
For the purpose of the audit a line had to be drawn somewhere and
it was decided to take entry into the command program as defining
exit from the operating system. The USER process service run-user-
process was, therefore, the outermost service included in the au-
dit.

A special protected procedure called TESTER exists to enable
repair work to be carried out on the operating system if required.
As its name implies it was originally used for testing the
operating system during the earlier stages of its development.

TESTER is all-powerful but can only be entered during system(‘
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start-up. It has the rights to invoke any of the functioﬂs in the
system and can be given commands to make it do so. The value of
{I| for TESTER and for all domains entered as a result of running
TESTER is, therefore, very large although the degree of
overprivilege is 0. Because of TESTER's special nature the RESTART
process's run-TESTER service was excluded from the audit.

The audit results were re;processed for each category of func-
tion separately. Having calculated the implementation and minimum
privilege sets, I and M, for all functions as described earlier,
these sets were then divided into separate implementation and
minimum privilege sets for P, U, V and W category functions.

These subsets of I and M are designated I , and so on. The degree
p

of overprivilege calculated from I and M is designated d , and
p p p

similarly for d , d and d . These degrees of overprivilege were
u v W

computedi the complete results of the audit are given in Appendix
E. Since the use of protected procedures is central to the design
of the CAP Operating System [Needham 1377(a),(c)], the degree of
overprivilege for each of the domains corresponding to the pro-
tected procedures which make up the operating system is of special
interest. To present the results in a compact way the average val-
ues of d were computed for these domains, the average being over
the process services in the performance of which that domain is
enfered, In Algol 68-like language the algorithm is:=-

FOR each domain

DO INT n:=0,REAL sum:=0;
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FOR each process
DO FOR each service
Do
sum +:= degree of overprivilege[process,service,domain];
n +:= 1 | |
oD
0D;
average degree of overprivilege[domain] := sum/n
0D

Averages were also computed for d and |I | on the same basis. It

p p
should be noted that the number of results from which the average
was computed varied considerably, the range being from 1 to 68,
and that the average w;s computed from all the results which had
been collected (see Appendix E).
It may be instructive to illustrate the procedure by working

through in detail how the averages for d and |I | were calculated

p p
for the MAKEENTER* domain. The MAKEENTER protected procedure,
which manufactﬁres ENTER capabilities and capability segments, is
called only during the performance of the initialise services of
the USER, LPRDESPOOL and PTPDESPOOL processes and the USER pro-
cess's run-user-process service. (The LPRDESPOOL and PTPDESPOOL
processes are used for spooling output to the line printer and

paper tape punch respectively: USER processes run users' computa-

* A brief description of the processes and protected procedures
of the CAP Operating System can be found in the Glossary. Full
details are given in the CAP Operating System Manual [Herbert
1978(e) 1. »
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tions.) The first step is to identify the members of the imp-
lementation and minimum privilege sets for the four (process,
service, domain) triples (USER, initialise, MAKEENTER), (USER,
run-user-process, MAKEENTER), (LPRDESPOOL, initialise, MAKEENTER)
and (PTPDESPOOL, initialise, MAKEENTER). During the initialisation
of the USER process an ENTER capability for the MFD (Master File
Directory) is added to the MAIN domain, the domain in which the
process runs first of all, by the following sequence of protected

procedure ENTERs and RETURNs: -

Current domain Domain switched to 3 i r g
MAIN SINMAN sin-of-MFD
SINMAN MAIN . (RETURN)

MAIN SINMAN cap~from-sin
SINMAN MAKEENTER make~-enter
MAKEENTER SINMAN (RETURN)
SINMAN MAIN (RETURN)

The MAKEENTER domain here contains ENTER capabilities for the
SETUP, ECPROC, STOREMAN, MAKEENTER, IOC and FAULT protected pro-
cedures in its G capability segment®, put there at system genera-
tion, and an ENTER capability for the MFD, which it has just manu-
factured, in its A capability segment. It also has three software
capabilities for presentation to the ECPROC protected procedure:
system-stop-permission, capability-permission and info-permission.
The only P category functions made accessible by the bossession

of these ENTER and software capabilities are those corresponding

T . T - o bt i Gt e WA G e W e S R S W G W A e D S e e e e

% Capability segment 0, one of those which contributes to all do~
mains in which the process runs (see Section 3.U4), is known as the
G (global) capability segment.
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to ECPROC'S'handle-blunders, resolve—Vﬁ-faults, stop-systen,
create-PRL-entry, create-capability, update-capability and delete-
capability services. These functions, therefore, make up the imp-
lementation set for the (USER, initialise, MAKEENTER) triple.
Examination of the code of the MAKEENTER program shows that, when
performing its make-enter Service, it needs to be able to access
the funections corresponding to ECPROC's handle-blundérs (in case

of a programming error), resolve-VM-faults (in case a virtual mem-
ory fault occurs), stop-system (in case a blunder causes its run
time error procedure to be called) and create-PRL-entry services.
These functions make up the minimum privilege set.

The implementation and minimum privilege sets for the other
trlples are derived in a similar way. Note that for the LPRDESPOOL
and PTPDESPOOL processes' initialise services the MAKEENTER domain
is entered thrice, once to make up an ENTER capability for the
MFD, as described above, once as a consequence of the MFD being
entered to retrieve an ENTER capability for the Sspool directory,
and once as a consequence of IOC being entered with a request for
an interactive stream protected procedure (ISPP). In the latter

two cases the Sequence of ENTERs and RETURNs is:
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Current domain Domain switched to Service requested

MAIN DIRMAN (MFD) retrieve (spool directory)
DIRMAN (MFD) SINMAN cap-from-sin

SINMAN MAKEENTER make-enter

MAKEENTER SINMAN (RETURN)

SINMAN DIRMAN (MFD) (RETURN)

DIRMAN (MFD) MAIN (RETURN)

MAIN I0C request-interactive~streanm
IocC MAKEENTER make-enter

MAKEENTER I0C (RETURN)

I0C MAIN (RETURN)

The implementation and minimum privilege setsgare the unions of
the sets for the three entries. |

It is worth noting that following the reque;t to IOC for an
interactive stream, MAKEENTER manufactures an ENTER capability for
the stream.The possession of this ENTER capabiiity, which is put
in MAKEENTER's A capability segment, makes th'ree P category func-
tions accessible in the MAKEENTER domain. These functions are,
therefore, included in the implementation set. The ISPP ENTER
capability is not actually exercised in the MAXEENTER domain but,
as 1ts creation is an essential part of the méke—enter service
(indeed, it is the very purpose of the serviée), the functions
corresponding to the three ISPP services are included in the
minimum privilege set too,

The degree of overprivilege can now be calculated for each
triple. The position is summarised in Table 6.1 (the sets for

PTPDESPOOL are identical to those for LPRDESPOOL ).




Process

USER

LPRDESPOOL

The averages for d

Service

I
-

initialise ECPROC:

handle~blunders

- .resolve-~VM~faults

run-user-
process

stop-system
create-PRL-entry
create-~capability
update-capability
delete-capability

ECPROC:
handle~blunders
resolve-~VM~faults

. stop-system
" create~PRL-entry

initialise

create-capability
update-capability
delete-capability

o/p ISPP(tty):

write-buffer

¢close
‘regset-state

..1/p ISPP(tty):

read=-buffer
¢close
reset-state

ECPROC:
handle~blunders

. resolve-VM=-faults

p

‘and

stop-systen
create-PRL-entry
create~capability
update-capability
delete-capability

o/p ISPP(printer):
-Write-buffer

close
reset~state

Table 6,1

iz
p

can now be

MAKEENTER domain (see Table 6.2).
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M
-

ECPROC:
handle-blunders
resolve-VM-faults
stop-system
create-PRL-entry

ECPROC:
handle~blunders
resolve-VM-faults
stop-system
create~-PRL-entry

ECPROC:
handle-blunders
resolve~VM-faults
stop-system
create-PRL-entry

o/p ISPP(printer):
write-buffer
close

reset-atate

calculated for the

.43

.69

.30




Process- Service d [

— —P —D.

USER initialise .43 7

run-user-process .69 13

LPRDESPOOL initialise .30 10

PTPDESPOOL initialise .30 10

average LU3 10.0
Table 6,2

The results for all the domains are given in Table 6.3,

DOMAIN S d . d ‘T

_— ' -2 —D
DIRMAN .81 E .59 - 15.8
ECPROC .51 .37 ' 15.9
I0C LT7 .59 15. 4
ISPP .84 17 4.0
LINKER .84 .69 16.0
LOGON .83 .13 8.0
MAIN e .56 12.3
MAKEENTER .67 .43 10.0
PRLGARB .79 4o 8.4
SETUP U5 .29 15.0
SINMAN .79 .72 26.5
STOREMAN .80 e 25.5

Table 6.3

The figures in Table 6.3 show that more care was taken to control

the accessibility of P functions than for the functions as a whole

(for all domains d > d ). Overall the degree of overprivilege figures
p

show that even for the P functions, the CAP Operating System as
it was at the time of the audit fell far short of a state of

minimum privilege as far as the accessibility of functions is
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concerned. In addition to computing the average degrees of

overprivilege the set difference I - M was analysed. The number of
p p

(process,service,domain) triples for which each P category func-
tion was accessible was counted and the percentage of these for
which the function need not have been accessible was calculated.
These frequency counts are given in Appendix D. From this anal-
ysis it was clear that a number of steps could be taken to improve
the degree of overprivilege figures. The actions which would have
most impact were:-

1. By the use of software capabilities or access bits in ENTER
capabilities restrict the functions made accessible by the
possession of an ENTER capability for a protected procedure to
the subset of that proéedure's repertoire which needs to be
accessible in the calling domain. This was already done with
ECPROC by insisting that requests for most of ECPROC's
services be accompanied by the presentation of a software
capability proving that the caller was authorised to request
that service. An alternative mechanism would make use of ac-
cess bits in the ENTER capability itself. This mechanism had
not yet been implemented when the audit was done. The called
protected procedure is able to examine the software capability
or the access bits presented before deciding whether or not to
perform the service asked for.

2. Restrict the functions made accessible by the possession of a
message-channel capability for a process to the subset of that

prdcess's repertoire which needs to be accessible in the
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calling domain. There is enough space in channel-access and
message-channel capabilities to enable function access bits to
be implemented quite easily in a manner analagous to the imp-
lementation of access bits in ENTER capabilities. Alterna-
tively, a mechanism could be provided based on the use of sof-
tware capabilities, but this seems likely to be more cum-
bersome to implement.

3. When a process no longer needs to have access to a given
function in a given domain then the right which makes that
function accessible in that domain should be destroyed. For
example, the‘prooesses which drive the peripheral devices
claim the appropriate device du}ing their initialisation:
thereafter the ability to reserve a device, by calling the
(ECPROC, claim-device) function, is no longer required and the
right whose possession makes it accessible, the peripheral-
permission software capability, can be destroyed. This can be
done by using the MOVECAP instruction to_overwrite the
capability with an invalid one. Where the function is made ac-
cessible by the appropriate access bit being set in an ENTER
or message~-channel capability that bit can be unset by means

of the REFINE instruction.

6.1,2 Audit: Papt 2

To demonstrate the effect of making these changes the audit
results were reworked on the assumption that the above actions had
been taken. Only the P category functions were considered, these

being the most important as far as the integrity of the system is
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concerned; the revised figures for d and |I | are given in

p p
Table 6.4,

DOMAIN d T |

D —
DIRMAN .36 10.0
ECPROC .37 15.9
I0C .25 8.4
ISPP B 4,0
LINKER .55 11.0
LOGON .00 7.0
MAIN .15 5.5
MAKEENTER .28 8.0
PRLGARB .03 5.4
.SETUP .01 12.0
SINMAN .39 12.1
STOREMAN .33 9.8

Table 6.4

They show that for all domains except ECPROC and ISPP there has
been a large reduction in the average degree of overprivilege and
that the specification sets are smaller on average, markedly so
in several cases. The reason for no change in the case of ISPP is
that the privilege excess is entirely accounted for by the ENTER
capabilities for the USER process's input and output streams being
held in the G capability segment in order to make them globally
accessible in the USER process. This point is discussed again
later (see Section 6.1.5).

The other exception, ECPROC, shows no change beéause its
overprivilege is the result of its unique authority to enter the
Master Coordinator requesting services (other than wait-event

which éan be called from any domain). The Master Coordinator could
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have insisted that ECPROC present a software capability when req-
uesting a service and steps could then have been taken to reduce
the degree of overprivilege figures for ECPROC. However, one of
the reasons for having ECPROC is to avoid the overheads wﬁich
would be incurred by the Master Coordinator checking software
capabilities: ECPROC has the responsibility of carrying out checks
on behalf of the Master Coordinator and may be treated as if it
were part of the Master Coordinator.

The frequency counts for the P category functions were also
recalculated (see Appendix D) and these too showed a marked im-

provement,

6,1 Audig: P

The figures in Table 6.4 were based on each protected procedure
having the rights it needed to be able to perform all of the
services in its repertoire. Thus the capability segments referred
to in the ENTER capability for the protected procedure held the
same capabilities irrespective of the domain in which that ENTER
capability would be used. But, in general, a process running in
a given domain will only request a protected procedure called from
that domain to perform a subset of its full repertoire. The rights
built into that ENTER capability for the called protected proced-
ure can, therefore, be pruned to exclude those rights only used
in the performance of services which will never be requested from
that domain.

An example may help to clarify the point. The MAKEENTER pro-

tected procedure has two services in its repertoire, make-enter
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and make-cap-seg. The former constructs an ENTER capability and
the latter makes up a capability segment. To perform make-enter
the (ECPROC, create-PRL-entry) function is called but the (ECPBOC,
update-capability) function is not used, whereas to perform make-
cap-seg the update-capability service is needed but the
create-PRL-entry service is not. For a domain from which only the
make-cap-seg service will be requested the ENTER capability for
~the MAKEENTER protected procedure can be such that the (ECPROC,
update-capability) function is accessible in the MAKEENTER domain
but the (ECPROC,create-PRL-entry) function is not.

The effect of restricting the rights built into ENTER
capabilities is shown by the figures in Table 6.5 and by the

corresponding frequency count figures in Appendix D.

DOMAIN d 1T
‘ ) —D
DIRMAN .07 7.0
ECPROC . .37 15.9
10C .02 6.6
ISPP AT 4.0
LINKER .55 11.0
LOGON .00 7.0
MAIN .15 5.5
MAKEENTER .15 7.0
PRLGARB .03 5.4
SETUP .01 12.0
SINMAN .03 8.1
STOREMAN .05 7.2
Table 6.5

There are further reductions from the figures in Table 6.4 in the

average degree of overprivilege and in |I | for the SINMAN, STOREMAN,
P
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I0OC, MAKEENTER and DIRMAN domains. Overall the results in Table
6.5 show that the system is now getting quite close to a state of

minimum privilege.

6.,1.4 Audit: Part U

The remaining overprivilege is mostly accounted for by the
default input and output streams for user programs being globally
available in the ﬁSER process by having their stream ENTER
capabilities in the G capability segment. ‘If this had not been

done the figures would have been as given in Table 6.6 with all

domains except ECPROC, IOC and MAIN having d = 0.

D
DOMAIN d T

D —D
DIRMAN .00 6.3
ECPROC .36 15.8
10C .02 6.6
ISPP .00 3.0
LINKER .00 5.0
LOGON .00 7.0
MAIN L14 5.4
MAKEENTER .00 5.5
PRLGARB .00 5.0
SETUP .00 11.8
SINMAN .00 7.7
STOREMAN .00 6.6

Table 6.6

The special nature of ECPROC has already been discussed (see Sec-
tion 6.1.2). The reason for IOC's average degree of overprivilege

being non-zero 1s that the message channels to the device
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interface processes and to the despoolers are not set up until
they are needed. This is to avoid setting up message channels
which will not be used. For most processes and protected proced-
ures that require message channels these are set up as part of the
process's or procedure's initialisation and the right to set up
message channels can then be destroyed. For IOC the right to set
up send-type message channels cannot be disposed of in this way
‘as it is needed for IOC to be able to perform its despool service.
When I0C is entered from a given doma;n with a despool request on
one call and a request for one of its other services on another
call, the right to set up send-type message channels is accessible
in the IOC domain for bbth calls but is only needed for the desp-
00l request. This situation arises in the MAIN domain of the USER
process.,

All the domains except MAIN included in Tables 6.3 to 6.6
correspond to protected procedures of the same name. For each pro-
cess the MAIN domain is the domain in which the process runs ini-
tially when it is created. A process running in its MAIN domain
will, in general, switch to another domain by executing an ENTER
instruction and will switch back to its MAIN domain by executing
the matching RETURN instruction. A cautionary note is in order
regarding the interpretation of the averaged figures for MAIN do-
mains. These figures demonstrate the protection implications of
the program structure adopted for the CAP Operating System pro-
cesses, but it must be remembered that the individual domains

contributing to the average range from that of a process such as
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Real Store Manager (RSM) which is responsible for the integrity
of vital system data structures to one like CLOCK which provides
a simple service. The program structure used for processes is
[(Needham 1977(a)l:-
BEGIN
initialisation code #setting up message channels, claiming
peripheral devices, ete.#
END
DO #to infinity#
WHILE messages(input) = 0 DO wait event OD;
receive message with reply(a,b,c,d);
CASE a IN
services offered
ESAC;
return reply(p,q,r,s)
0D
The average degree of overprivilege for the MAIN domains could be
reduced by encapsulating each of the services in a proceszss's
repertoire in its own protected pr;oedure.* However, this would
mean sSeparating into different programs servi~zs which are lo-~
gically connected (and may use common subroutines) and, as the
average degree of overprivilege of .14 is already reasonably low,
it is probably not worth the candle. It is worth noting that if
it weﬁ? possible to restrict a process's rights according to the

domain from which it is called, as was done for protected proced-
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* If this were done the average degree of overprivilege for the
IOC domain would be reduced to .00 in Table 6.6,
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ures in calculating the figures for Table 6.5, there would be no
need to modify the processes' internal structure. However, this

cannot be done with the current CAP system.

6,1 A : P 5

The reason the default input and output streams were made glo-
bally available in the USER process was that it was considered
essential to be able to guarantee that any user program would be.
able to output a message without its having to rely on being
passed an output stream ENTER capability as an argument. To do
this it is only necessary to make the function corresponding to -
the output stream's write-buffer service globally avaiiablé{ for
example by the appropriate setting of access bits in an ENTEéq
capability for an butput stream. Any additional input and output
facilities required by the user program could be made available
by passing it appropriately restricted ENTER capabilities for
input and output streams. (There is no reason why there should not
be in a domain more than one ENTER capability for a particular
protected procedure.) As already mentioned, access bits in ENTER
capabilities had not been implemented when the audit was done. Had
only the function corresponding to the output stream's
write-buffer service been made globally accessible in the USER
process the figures would have been as in Table 6.7. This
represents probably the closest the CAP Operating System could
come to minimum privileée as far as functions are concerned with-~
out thg minimisation of privilege being at the expense of other

design considerations such as the grouping together of logically
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related services in the same program. It is noteworthy that this
considerable improvement in protection would be obtained without
any modification of the operating system's structure and would

incur very little run-time overhead, although the system programs

would be slightly larger.

DOMAIN d T

) —D
DIRMAN .02 6.4
ECPROC .36 15.8
10C .02 6.6
ISPP .ol 3.2
LINKER A7 6.0
LOGON .00 7.0
MAIN 14 5.4
MAKEENTER .05 5.8
PRLGARB .01 5.1
SETUP .00 11.8
SINMAN .01 7.8
STOREMAN .02 6.7

Table 6.7
6.1 A : P 6

So far protection.measurement has been used to study the app-
lication of the CAP's protection mechanisms in the CAP Operating
System as a whole. A major use of protected procedures in the
operating system is in the role of gate-keeper [Needham 1977(c)].
The protection measures enable a comparison to be made, from the
protection point of view, of the system with and without gate-

"keeping. For example, in the PRINTER process the STOREMAN pro-
tected procedure acts as a gate-keeper to the SINMAN protected

procedure and to‘phé'ﬁéal Store Manager (RSM) and Virtual Store
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Manager (VSM) processes. The results used to produce Table 6.6
were reworked for the PRINTER process on the assumption that
STOREMAN was not used: the effect is shown in Table 6.8. The

results clearly demonstrate the advantage of using a gate~keeper,

with without
STOREMAN STOREMAN
Service d 1T d I
—D P D —0D
initialise PRINTER 0.17 6.0 0.57 14,0
print line 0.00 4.0 0.64 11.0
print document 0.00 4.0 0.09 11.0
average 0.06 b7 0.43 12.0
Table 6.8

There is an additional consideration which is not reflected in
these figures. The SINMAN protected procedure trusts its callers
to pass it sensible arguments and it is only reasonable to do this

if there are very few domains from which SINMAN can be entered.

6.2 Protection measures and operating system structure

The experiments done with the CAP Operating System have dem-
onstrated that protection measurement is a useful tool for
operating system design work. However, an operating system
designer has to take into account not only protection considera-
tions, which can now be quantified, but also suech things as the
complexity of the system,its modularity, the logical relationships
between different items in it, and its efficiency aﬂd effective-

ness. When analysing the protection aspects of an operating system
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we can draw a distinction between; on the one hand, the protection
mechanisms being inadequate and, on the other, a failure to make
full use of them. The CAP protection mechanisms have been shown
~to be sufficiently powerful, with a few relatively minor modifica-
tions, to enable an operating system to be written in which a
minimum privilege position is approached very closely. The results
presented earlier in this chapter show that these mechanisms were
not being fully utilised in the CAP Operating System at the time
of the audit.

The basic design objective to be met by the CAP Operating System
was that the principle of minimum privilege should be applied rig-
orously in relation to access to memory [Needham 1977(a)]. In
determining the structure of the operating system the principle
that was applied in practice was that each system data structure
should be accessible to only one protected procedure which would,
therefore, have the exclusive responsibility for managing that
data structure. This requirement is unnecessarily restrictive and
it is sufficient'to ensure that the responsibility for managing
a system data structure rests solely with a single program, the
distinction being that the protected procedure defines the protec-
tion domain which may be entered by a process and the program is
that component of the protection domain in which the process will
run. Relaxing the one-protected-procedure-per-data-structure
constraint and tailoring the rights bound into the ENTER
capability for a protected procedure to match the requirements of

the domain in which that capability will be used helps to minimise
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privilege, as has been shown in Section 6.1. Ideally the ENTER
capability should be Specific not just to the domain but to the
performance of one partipular service in the domain. However, the
grouping into one domain of logically related services is
Justified on structural grounds and it is then convenient and
sensible to unite the ENTER capabilities required by the various
Services.

This idea of domain-specific ENTER capabilities can be extended
to apply to process activation. Each activation of a process would
then cause the same program to be executed but the capability seg-
ments accessible to the process, and the rights contained in them,
would not necessarily be the Ssame for each activation. It would
not be possible to implement these domain~-specific process activa-
tion capabilities with the Normal Mode Interpreter CAP micropro-
gram, but the alternative being developed by Herbeprt [1978(d)]
would be able to Ssupport such a facility,

The experiments described in Section 6.1 used as a protection
measure the degree of overprivilege, d, evaluated for funciions
only; Complete containment (d = 0) could be achieved by mOdlfV‘“Q
the structure of the CAP Operating System processes and by appl=-
ying three different techniques, or a combination of them, te
restrict the functions made accessible by the bossession of an
ENTER capability. In the CAP Operating System a receive-message
capability plays a dual role: it is used (a) to check whetherp
there are any messages ready to be received, and (b) as a software

capability authorising the receipt of messages on that channel,
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If two separate (say, poll-channel and receive-message)
eapabilitiés were used instead then processes could be restruct-
ured with a separate channel for each service provided by thé pro-
cess and the main program simply polling these channels. On
detecting a message on a channel the main program would enter the
appropriate protected procedure to receive the message and provide
the service requested. The two main objections to this restruct-
uring are (a) that it runs contrary to the structural argument for
the grouping of logically related services in the same program,
and (b) that it is likely to make the operating system structure
more complex.* If domain-specific process activation capabilities
were available such restructuring would not be needed.

The three techniques which can be applied to minimise the
privilege associated with the possession of an ENTER capability
are:-

1. providing a separate protected procedure for each service so
that each ENTER capability only imparts the right to request a
single gervice. It is worth noting that this would not result
in any increase in the number of domain switches which take
place during the running of the system. However, the hardware
was not designed to cope with so many protected procedures and
a run-time penalty would be paid in degraded hardware perf-

ormance. The other objections to this technique are those

® The author feels that, just as a monolithic operating systenm
structure is likely to be beyond the limitations.of human
understanding, excessive fragmentation can lead to a system bec-
oming too complex to understand. Up to a point dividing the system
into modules reduces its complexity but eventually a diminishing
returns position is reached.
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which apply to the restructuring of processes into several
protected procedures.

2. setting access bits in the ENTER capability to authorise the
use of only a subset of the protected procedure's repertoire
of services.

3. issuing software capabilities covering the individual
services in a protected procedure's repertoire. A software
capability can have additional information built into it. For
example, the peripheral-permission software capability could
incorporate the identity of the device(s) for which it was
valid.

Any one of these techniques would be sufficient for total contain-
ment but there are advantages in allowing the operating system

designer some flexibility of choice [Needham 1977(a)].
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1 _Intr

The audit experiments described in Chapter 6 have demonstrated
that the CAP computer's protection mechanisms are sufficiently
powerful to enable the CAP Operating System to come very close to
a state of minimum privilege. The present chapter is concerned
with trying to establish what it costs to provide this protection.
The cpst model used has already been described in Section 5.1.
Because much use is made of protected procedures in the CAP
Operating System the cost componeﬁt for switching from one protec-
tion domain to another is of particular interest.

It is common for commercially available computers to be 2-state
machines, operating in one state when running ordinary programs
and in the other when running so-called privileged programs. In
IBM terminology the two states are problem state and supervisor
State respectively [IBM 1970]. When the computer is in supervisor
state it runs without protection. Typically, when an ordinary pro-
gram calls for one of the services provided by the operating
system, the computer switches to supervisor state, executes the
code to perform the desired service, and then reverts to problem
state. Thus, the operating system runs in the same protection do-
main irrespective of which service it is performing. There is no
proteqtion while the computer is in supervisor state so the

operating system's privilege is maximised rather than minimised:
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this is in marked contrast to the situation with the CAP Operating
System. The techniques for measuring protection presented in this
thesis could be applied to provide a quantitative basis for com-
paring protection in the operating system of the CAP with that of
a 2-state computer.

In the 2-state computer only a single protection barrier is pro-
vided whereas on the CAP computer there are many. As a rough
‘indication of the cost of the extra protection provided, experi-
ments were done to count the number of protection barriers act-
ually encountered during the running of programs on the CAP comp=-
uter.

In the CAP Operating System a user requests an operating system
service by entering the appropriate protected procedure. This pro-
tected procedure may, in turn,~eall another, and so on. Although
a protection domain switch is more complicated than the switech to
supervisor state in a 2-state machine, the first domain switch in
response to a call for an operating system service is comparable
to the change to supervisor state because each represents the
first protection barrier encountered in providing the servicé. The
differences between the protection provided in the operating
systems of the CAP and a 2-state computer are that in the CAP
Operating System (a) the first domain switch is not always to the
same protected procedure, and (b) more than one domain switch may
take place during the performance of an operating system service.
In the experiments, each time an operating system service was

called a count was made of the number of domain switches which
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took place during the performance of that service. Results were
collected from the running of two programs, the Algol 68C compiler
[Bourne 1975] and the system generation program, Genesis. The CAP
Operating System has been available for too short a time for any
pattern of normal use to be established. Indeed, much of the work
done on the CAP is still concerned with developing the operating
system. These two programs were selected because (a) they are much
used, (b) they are substantial programs, and (c¢) one, the com-
piler, is compute-heavy whereas the other handles very large vol-
umes of data.

In addition to counting domain switches, the time taken to exec-
’ute the instructions to enter and return from a protected proced-
ure was determined experimentally. The length of time it takes in
practice to effect the switch from one domain to another, or from
one process to another, is considerably influenced by the slaving
effectiveness of the Capability Unit (see Section 3.5). Experi-
ments were done to assess how well the Capability Unit performed
in this respect.

The details of the experiments are given in subsequent sections.
Two features of the CAP computer facilitated the carrying out of
these experiments. Firstly, the CAP has a built-in hardware co-
unter. As already mentioned in Chapter 4, this can be set to count
a wide variety of events such as the number of times a word is
read from the slave stores or the number of times a selected
microprogram instruction is obeyed. Further details of the

hardware counter can be found in the CAP Hardware Manual [Herbert
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1978(b)]. Secondly, the CAP has a proérammable microprogram which
can be modified for monitoring purposes. The use of hardware co-
unters is a well-established technique for monitoring a computer's
performance. As provided on the CAP it is simple and convenient

to use since the selection of what is to be counted is by means

of manual switches and does not involve any detailed knowledge of
circuit diagrams or the like. However, it has the disadvantage
that occurrences of only one event can be counted at a time. As
has been mentioned before (Chapter 4) it is more unusual to use
microprogramming as a monitoring tool. Nevertheless, this profides

a very flexible method of studying a computer's performance.
1.2 Details of experiments )

7.2,1C b | . {tol . b .
As in the case of the audit (Chapter 6) a more-or-less arbitrary
decision had to be made as to which protected procedures were
considered to be part of the operating system. When a user logs
in he is allocated one of a stock of USER processes. All the pro-
tected procedures for which that USER process had an ENTER
capability as soon as the process was allocated were considered
to be in‘the operating system. This was in line with the criterion
applied in the audit. Some of the services provided by these pro-
tected procedures require the caller to present a software permis-
sion capability (see Section 3.7). Such services were excluded
from what were considered to be operating system services for the

burposes of this experiment. To avoid confusion, the services
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classed as operating system services available ih‘a USER process
will be referred to as primary services. A list of the primary
services is given in Appendix F.

The microprogram was modified to force the Master Coordinator
to be entered on the successful completion of every ENTER and
RETURN instruction. Code was inserted into the Master Coordinator
to detect when a USER process requested a primary service and to
count the number of ENTER instructions obeyed until that service
had been completed, referred to as the consequential ENTERs for
that primary service. The mechanism for handling faults, which may
be virtual memory. faults, outform ENTER faults or genuine blunders
(see Appendix‘A);_in the CAP Operating System is for the Master
Coordinator to simulate the execution of an ENTER instruction to
énter the FAULTPROC protected procedure. These simulated ENTERs
were counted separately but were treated as if they were genuine
ENTER instructions. The Master Coordinator's facilities for
printing system trace information were extended to enable the
monitoring results to be printed.

The CAP Operating System is a multiprogramming system and
normally several USER processes would be active at the same time.
Some of the modules which make up the operating system are pro-
cesses not protected procedures and, in general, the operating
system may be multiprogramming between several USER processes and
several operating system processes. The primary services are all
provided by protected procedures but the performance of a primary

service may involve the sending of a message to activate an
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operating system process. The sending of such messages and any do-
main switches which take place in the process activated by the
message are clearly just as direct consequences of the request for
the primary service as are the consequential domain switches wit-
hin the USER process where the request originated. However, if
more than one USER process is running it is extremely hard to sort
out whether a particular operating system process has been ac-

‘ tivated as a result of a primary service call in, say, USER pro-
céss A or USER process B. The difficulty was overcome by making
sure that only one USER process was running during the experi-
ments. This was achieved by the simple expedient of disconnecting
all but one of the terminals. Multiprogramming during the experi-
mehts was, therefore, between a single USER process and any active
operating system processes. In the experiments, if an operating
system process was running it would, in most cases, have been ac-
tivated as a direct consequence of a primary service call in the
single USER process whiech would have suspended itself waiting for
the operating system process to complete its work. Sometimes the
activation of the operatihg system process may have been caused
indirectly during the performance of a primary service, perhaps
because a virtual memory fault had to be dealt with or because
garbage had to be removed from a Process Resource List (PRL) which
had become full. No distinection was made in the experiments
between the direct and indirect activation of operating system
processes. In order to minimise the incidence of garbage collec-

tion df the USER process's PRL during the experiments the garbage
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collector was run immediately before each monitored run. The CLOCK
process ran periodically to read the hardware clock. However,
this independent running of the CLOCK process did not involve any
domain switching or message sending and so could be disregarded.
Thus, all domain switching and message sending which took place
in any process during the performance of a primary service reg-
uested by the USER process were regarded as consequences of the
call for that primary service. Not all domain switching and
message sending occurred during the performance of a primary
service so the total numbers of messages sent and of ENTER
instructions obeyed during each run were recorded.

As already mentioned results were collected from runs of the
Algol 68C compiler and the system generation program. The compila-
tion was of the CAP Operating System Master Coordinator, whose so-
urce was 1750 lines long and produced an objecﬁ code segment of
3772 words. The Genesis runs were to generate the complete CAP
Operating System, the total size of the generated system being
over 200000 words. With the monitoring system the running time for
these programs was about one third longer than with the normal
system: this was mainly because of the forced entering of the
Master Coordinator on every ENTER and RETURN instruction. Under
the conditions of the experiments the slowerlrunning of the system
would not affect the number of domain switches nor the number of

messages sent.

2.2 nti m s

A slight modification to the monitoring code inserted in the
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Master Coordinator enabled a count to be made of the messages sent
as a consequence of the USER process requesting a primary service.
The normal mechanism for sending a message to a process is to call
the appropriate service of the ECPROC protected procedure., When
dealing with a virtual memory fault the FAULTPROC protected pro-
cedure sends a message to the RSM (Real Store Manager) process.
Because FAULTPROC runs in the same protection domain as ECPRbC it

_is able to shortcut the normal message sending mechanism. Code had
already been added to the Master Coordinator to count virtual mem-
ory faults so all that was necessary to obtain the number of

<ongequential messages was to adjust the number of messages co-

unted by adding one message for each virtual memory fault.

T7.2,3 Instruction timing

To complement the counting of domain switches, the time takén
to switch from one domain to another and then to revert to the
first domain was measured. In the CAP Operating System all pro-
cesses except the Master Coordinator are at the second level in
the process hierarchy (see Section 3.3). Accordingly, a simple
system was generated to enable instructions to be timed by running
a process at that level. The method used was to time a program
which repeated the appropriate instruction or set of instructions
a certain number of times and then %o repeat the timing for a dif-
ferent number of iterations. The time taken to obey the instruc-
tion or set of instructions once was obtained by subtraction and
divisipn. A stop-watch was used to measure the time taken. The

test programs forced the CAP to enter wait state on completion of
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the instruction repetitions. Thisfcondition is indicated by a
characteristic note on the CAP's loudspeaker and an easily reco=-
gnisable pattern of lights on the computer's front panel, both of
which made clear when the watch should be stopped. By making the
number of iterations large enough the use of a stop-watch is suf-
ficiently accurate for instructién timing. The hardware countér
was used to check that the appropriate instruction was being
repeated the expected number of times.

The oscillator speed can be chgnged on the CAP by setting manual
switches. In normal use the CAP runs at speed 4 and this speed
was selected for all the experiménts.

In Section 3.2 it was noted that the core store of the CAP has
modules with very different timing characteristics and that
connected between the CAP processdr and the store bus there are
slave stores for reading and wri%ing. The hardware counter was
used to count the number of store reads and writes which involved
a read from or write to core during the running of the timing ex~-
periments. It was found that, fdr the instructions being timed,
all store reads were from the slave store and, except for one test
program, all store writes were 66 the slave store. The exception
was the test program for measuring the time taken to enter a pro-
tected procedure with a capability passed as an argument and then
to return with a capability' as a result. In this case 13% of the
store writes involved a write to c§re store. The system generation
program allocates core store in. the faster Plessey modules first
80 the core writes in this case Yere‘to the Plessey stores.
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Domain switching without passingﬁany arguments was studied
first. This was done by measuring the time taken to execute an
ENTER instruction plus a RETURN instruction. Starting from scratch
the microprogram interpreter enters the top level process,
conventionally known as the Mastéh Coordinator. In the timing
system the Master Coordinator was a very simple program which im-
mediately entered its only sub-process. For timing the ENTER and
'RETURN pair of instructions this sub-process repeatedly entered
a protected procedure whose program was a single instruction,
namely RETURN. Having completed tﬁe specified.number of repeti-
tions the sub-process entered the?Master Coordinator which im-
mediately went into wait state. The CAP has facilities to enable
capabilities to be passed from one protection domain to another.
The mechanism has already been described in Section 3.4, Verj
briefly, what happens is that, on'execution of an ENTER instruc-
tion, the N capability segment of the calling domain becomes the
A capability segment of the entered domain. On RETURN this change
is reversed. In the CAP Operating‘System many protected procedure
calls involve the passing of a capébility argument and/or the ret-
urning of a capability result. A further timing experiment was
done to measure the time taken to’switch protection domains with

one capability argument and one capability result. The Sequence
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of actions timed was:-
Calling domain : Entered domain
1. Copy argument capability
into N capability segment

2. Enter protected procedure

3. ~ Copy argument capability
from A capability segment

i, Copy result capability
into A capability segment

5. Return

6. Copy result capability

from N capability segment

Numerical arguments and results are passed from one protection
domain to another in the B registersiof which there are 15 (see
Section 3.2). The instruction to load a register from a store lo-
cation (BS) and its converse (SB) wg%e timed. The instruction
timings all had to be corrected for the inclusion of the test and
count instruction (TCS) in the repeaﬁed loop. This instruction
was, therefore, timed separately. The final results were expressed
as multiples of the time for the loaa from store instruction to

provide a rough yardstick for comparison with other computers.

7.2.4 Slaving effectiveness of the Capability Unit

When a protection domain or process switch takes place a number
of entries in the Capability Unit become invalid and are marked

as such (see Section 3.5). The;éapabflity régisters occupied by
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these entries are available for re-use. The microprogram endeay-
ours to allocate capability registers in such a way that the
invalidated entries may still be in the Capability Unit when they
are next required. If a required entry is not found in the Unit

a reset cycle is triggered to set it up (see Section 3.5). To pro-
vide an indication of the Capability Unit's effectiveness as a
slaving device for domain and process switching, experiments were
‘ done to count the number of reset cycles saved because the "appro-
priate invalidated entry was still in the Capability Unit. As in
the experiments to count domain switches (see Section 7.2.1) the
results were obtained from running the Algol 68C compiler and the
system generator. Three expeqiments were done to measure the
slaving effectiveness for domain switching alone, process
switching alone, and for both together.

By means of the hardware counter the number of successful reset
cycles was recorded for a run using the normal mieroprogram and
then for a run using a modified version of the microprogram. For
the first experiment the microprogram was changed to ensure that
on every switch from one protection domain to another, either by
an ENTER or a RETURN instruction, the entries for the P,I and R
capability segments and all entries dependent on them were removed
from the Capability Unit instead of Just being marked as invalid.
These were the only entries which might have survived, as invalid
entries, in the Unit until the next time they were needed. Details
of the action of the ENTER and RETURN instructions are given in

Sectidp 3.4,
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For the second experiment the modification ensured that every
time a process was suspended and the Master Coordinator resumed,
either because the process executed an Enter Coordinator (EC)
instruction or was involuntarily suspended as a result of an
interrupt, all the Capability Unit entries for that process were
deleted. All the CAP Operating System processes except the Master
Coordinator are at level 1 in the process hierarchy and switching
from one level~1 process to another always takes place via the
Master Coordinator. The number of switches between level-1 pro-
cesses was megsured by counting the number of times the Enter Sub-
process (ESP) instruction was successfully executed by the Master
Coordinator during runs of.the Algol 68C compiler and the system
generation program. .

The time taken to complete a reset cycle depends on the level
in the process hierarchy of the process whose capability is being
evaluated. This was not measured experimentally but the cost can
be readily calculated in terms of store cycles [Walker 1973]. To
evaluate a capability for a data segment of the Master Coordinator
requires a total of four store cycles, two to read a capability
segment entry (a capability occupies two machine words) and two
to read an entry in the Master Resource List. To evaluate a
capability for a data segment of a level-1 process an additional
five store cycles are needed, four to read an entry from a level-1
capability segment and an entry from a level-1 Process Resource
List plus one cycle to extract a capability segment identity from

the Process Base of the Master Coordinator, making nine store
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cycles altogether. Most of the reset cycles saved under the
conditions of the experiments would have been for data segments
of level=-1 processes.

Counting the reset cycles saved by the Capability Unit's slaving
across process and domain switches does not give a complete pic-
ture of the benefits which accrue from this optimisation in the
management of the Capability Unit. If the Unit were not managed
~in this way the microprogram would have to delete entries which
became invalid because of a process or domain switeh. This is in
fact what the modifications to the microprogram achieved and an
indication of the time éhat was saved by the optimisation was ob-
tainedAby measuring the elaﬁ;;d time for runs using the various
microprogramég It was found that the ratio of the time saving to
the number of reset cycles saved was reagonably constant. It
should be noted that this time is not a measure of the time taken
to perform a reset cycle because a large part, probably most, of
the time would have been taken up in the removal of entries from
the Capability Unit. Also, there would have been more activations
of the CLOCK process during the runs using the modified micropro-
grams as these took longer than the runs with the normal micropro-

gram.

Resu
The full results of the experiments and listings of the programs
used for timing instructions are given in Appendix G. In the ex-
periments to count domain switches and messages and to investigate

slaving in the Capability Unit the results are the avérages over
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five repetitions of each experiment. This number of repetitions
was chosen because little variation was observed in the five
readings and because the results did not need to be obtained to

a high degree of accuracy. Each instruction timing experiment was
repeated ten times because greater precision was desirable. In
these experiments the variation in the ten readings was extremely

small.

7.3.1 Qountinz domain switches and messages sent

The results of these experiments are summarised in Table 7.1.

Algol 68C Genesis

Number of primary service calls 25896 4540
Number of consequential ENTERSs 2810 6135
Consequential ENTERs/primary service call 0.1 1.35
Number of consequential messages 380 891
Consequential messages/primary service call 0.01 0.20

Table 7.1

For Algol 68C thirteen primary services were called from five dif-
ferent protected procedures. In running Genesis nineteen primary
services were called from six protected procedures.

The interactive stream and spooled stream protected procedures
provide a service called endof which can be called to test whether
the end of a stream has been reached. As can be seen from the full

results the experiments showed that the Algol 68C library
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input/output routines were calling endéf twice for all but the
final request to read a buffer. These calls of endof accounted for
the majority of the primary service calls. However, a call of
read-buffer will return -1 if the end of the stream has been
reached. The library was subsequently changed to use this
mechanism and not to call endof at all. Table 7.2 shows the effect

on the results of removing all calls of endof.

Algol 68C Genesis

Number of primary service calls 11786 1733

Number of consequential ENTERs 2810 6135

Consequential ENTERs/primary service call 0.24 3.54

Number of consequential messages 380 891

Consequential messages/primary service call 0.03 0.51
Jable 7.2 |

7.3.2 Instpuction timing
The results of the timing experiments are given in Table 7.3.

The use of the slave stores during these experiments has already

been commented on in Section 7.2.3.
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Instruction(s) Lime multiple of
BS instruction

BS 2.14us 1.0

SB 1.85us 0.9
TCS 2.80us 1.3
ENTER + RETURN 0.24ms 114.6

ENTER + RETURN + capability

argument + capability result 0.47Tms 222.3
Iable 7.3

Each numerical argument passed to, or numerical result returned
by, a protected procedure requires one BS and one SB instruction
taking a total of 3.98us (1.9%BS). From the above results it can
be estimated that passing a capability from one protected proced-
ure to another, either as an argument or a result, takes 0.12ms

(54#%BS).

Slavin ffectivene f the C 113 U
The results of the experiments to determine how successful the
microprogram was at retaining entries in the Capability Unit over
protection domain and process switches are given in Table 7.4,
Table 7.5 gives the results of the experiments to count level-1
process switches and also includes the number of domain switches:
this is twice the total number of ENTERs recorded during the ex-

periments to count consequential ENTERs (see Section T7.2.1).
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Algol 68C Genesis

reset % saved reset

$ saved

cyecles Dby slaving coveles by slaving

No slaving across process

or domain switches 460662 - 235865
Slaving across domain

switches only 127480 72 151078
Slaving across process

switches only 426322 8 195399
Slaving across process

and domain switches 84911 82’ 85351

Table 7.4

Algol 68¢C
Number of level-1 process
switches 5979
Number of domain switches 59560
Domain switches.: level-1

process switches 10:1

Table 7.5

36

17

64

7237

21412

(U]
Y

Switching from one process to another takes place less often than

switching from one domain to another. It is not surprising,

therefore, to find that the Capability Unit is less effective for

slaving entries across process switches than across domain

switches. The greater effectiveness for domain switching and the
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less effective slaving for process switching during runs of Algol
68C compared with Genesis runs reflects the higher ratio of domain
switches to process switches for Algol 68C.

The results of the experiments to measure the time saved by the
Capability Unit's slaving across process and domain switches are

given in Table 7.6.

Algol 68C Genesis
time % extra time % extra
Sec¢s. ys slaving secs. ys slaving
No slaving across process
or domain switches - 324.4 43 179.6 27
Slaving across domain
switches only 235.9 b 155.9 10
Slaving across process
switches only 306.9 36 170.0 20
Slaving across process
and domain switches 226.4 - 141.6 -
Table 7,6

On average over all the Algol 68C and Genesis runs, for every
reset cycle saved by slaving the time taken to run the program was

reduced by about 0.24ms (113%BS).

7.4 Discussion of results
Counting the consequential ENTERs for a primary service provides

an indication of the extra cost of the protection provided in the
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CAP Operating System over and above that provided in a 2-state
machine. However, caution must be exercised in interpreting these
results because, although the first domain switch which takes
place in response to a request for a primary service is treated

as being in a sense equivalent to the sﬁitch to supervisor state
in a 2=-state computer, it is a much more costly operation. For
example, on an IBM 370/165 to switch to Shpervisor state and then
_return to problem state requires the execution of a supervisor
call (SVC) instruction (2.08us) and a load program status word
(LOAD PSW) instruction (0.98us) taking a total of 3.06us [IBM
1975]. This is equivalent to 19.1 times the load from store (LOAD)
instruction (0.16us), very much less than the 114.6 times the BSl'
instruction for ENTER + RETURN on the CAP. Of course, switching
protection domains on the CAP is a much more complex operation
than switching states on the IBM 370. Also, a consequence of
using capabilities is that much less checking needs to be done in
the called procedure (or its equivalent) to validate passed argu-
ments and this goes some way towards redressing the balance.

The objective of the experiments described in this part of the
thesis was to compare the cost of using the powerful protection
mechanisms of the CAP with that of using the very simple protec-
tion provided on a 2-state machine. Any comparison of two things
which differ so much can only be coarse. It would be more
reasonable to compare the CAP with a computer system whose protec~
tion mechanisms are of similar sophistication, for example Hydra

thlf‘1974] or the Plessey System 250 [England 1972]. No details
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have been published of the performance of either system although,
as noted in Section 2.2, Cohen [1975] describes the costs involved
in switching protection domains on Hydra as "considerable". This
is because Hydra does not have hardware support‘for the use of
capabilities.

All the experiments were done with only one USER process
running. Under normal conditions several USER processes would be
active and process switching would be between more level-1 pro-
cesses than in the experiments. The slaving effectiveness of the
Capability Unit for process switching would, therefore, be lower
than was measured.

The instruction to write the contents of a register to store
(SB) on the CAP takes less time than the reverse operation (BS).
Two factors contribute to this difference. Firstly, although the
number of microinstructions obeyed is the same in each case, those
for the SB instruction require 25 microprocessor steps whereas
those for the BS instruction take 28 steps. The microinstructions
obeyed in executing the two instructions and the number of micro-
processor steps they take are given in Figure 7.1. Details of the
format and interpretation of machine instructions are given in
Section 3.2. The second factor is that for SB one microinstruc-
tion intervenes between starting the operand access
(BM+AR->P.FETCH) and actually accessing store (AD->STORE). There
is thus an opportunity for the execution of this instruction
(BA->D) to overlap with the autonomous operation of the Capability

Unit and the store logic (see Section 3.5). The ratio of the
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number of microprocessor steps taken for the BS instruction to the
number taken for SB is 1.12:1. The measured times for the instruc-
tions are in the ratio 1.16:1 indicating that both factors have

an effect.

microinstructions _comment Steps

(a) BS instructiop
B15+1->I ,FETCH //start instruction fetch,increment B15 6
STORE->D, AD //instruction from store 5
BM+AR->P.FETCH //compute 'n', start operand access 6
STORE->D, A0 //operand from store 5
BA=D:RESTART //bai=s . ‘ ‘ 6
total steps | 28

(b) SB instruction
B15+1->I .FETCH //start instruction feteh, increment B15 6
STORE->D,AD //instruction from store 5
BM+AR->P .FETCH //compute 'n', start operand access 6
BA->D . //operand to register D h
AD->STORE:RESTART //operand to store,s:zba Yy
total steps 25

Figure 7.1 - BS and SB instructions
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Chapter 8

8, Conclusions

The audit experiments described in Chapter 6 show that the
technique for measuring protection presented in this thesis is
capable of being applied to make actual measurements of a real
proﬁection system. Several of the suggestions put forward for im-
proving the protection state of the CAP Operating System have su-
bsequently been acted upon and others are under consideration thus
providing further evidence of the value of this techqique. These
changes wéuld probably not have been thought of without a
systematic analysis of the protection aspects of the operating
system. The measurement technique could be applied to other pro-
tection systems although it is particularly suitable for those
which use capabilities.

The experiments to determine the costs of the protection pro-
vided on the CAP demonstrate that, at least for the programs run
during the experiments, the number of domain switches which take
place as the result of a request for one of the operating system's
services is not unreasonably high. The time taken to switeh from
one domain to another, although not as low as had originally been
hoped, was also not unduly high.

8.1 General guidelines

On the basis of the protection measurement experiments described

in Section 6.1 the following are put forward as guidelines for

designers and ‘implementers of software, particularly operating
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systems, on computers which provide sophisticated protection
mechanisms. They are intended to help the designer or implementer
to apply the principle of minimum privilege.

1. Restrict the objects accessible in a given domain at a
particular time to those that need to be accessible for the
process executing in that domain to be able to perform the
service it has in hand at that time. For data the restrictions
shouid limit the part of the segment which is accessible and
the manner in which it may be accessed.

2. Ensure}that any excessive rights which are incorporated
during development work (e.g. for testing purposes or because
certain facilities are not yet implemented) are removed as
soon as they are no longer needed.®

3. Ensure that a process or protected procedure which receives a
request for one of its services checks, for example by
inspecting the software capabiliﬁy or access bits presented to
it, that the caller is entitled to request that service.

4. Ensure that rights are destroyed as soon as they are no
longer needed.+

5. If there is a mechanism for transferring rights between do-
mains, ensure that these rights cannot be transferred
unintentionally on a subsequent domain call. For example, in
the CAP system ensure that on returning from a protected pro-

® It seems possible that failure to follow this advice may be a
common source of errors in operating systems.

+ The CAP's REFINE instruction enables some of the rights built
into a capability to be removed without destroying the whole
capability. =~ . ‘
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cedure any capabilities present in the N capability segment,
either arguments passed to the protected procedure or results
returned by it, are destroyed after use. Otherwise, they will
still be present in the N capability segment on the next call
to a protected procedure.

6. Be wary of making rights accessible in all domains of a pro-
cess. In particular, note that putting ENTER capabilities in
global capability segments makes it possible for the cdrresp-
onding protected procedures to be entered recursively.

A computer's protection mechanisms, however sophisticated, are of
no benefit unless the designers and implementers of software for
that computer make good use of those mechanisms. Adherence to the
above gulidelines would help in the minimisation of privilege;
carrying out an audit, as was done for the CAP Operating System,

is an effective way of checking that they are being followed.

8.2 Suggestions for further research

The detailed audit of the protection aspects of the CAP
Operating System was done manually. If the process could be auto-
mated the time taken to apply protection measurement to an
operating (or other large) system would be greatly reduced making
the technique more attractive as a desigﬁ tool. Investigating how
to automate protection measurement could provide a fruitful area
for further research.

In this thesis the protection state of an operating system has
been investigated. Another possible éxtension of the research

would be to apply the technique to a data base management system.
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Some monitoring experiments were done on the CAP but there

remains a lot more work to be done in this area.
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Glossary

The first part of the glossary lists terms used in'the thesis.
The number in parentheses indicates the section in which the
defining occurrence of that term is found. The second part lists
the CAP Operating System processes and protected procedures: full
details of these are given in the CAP Operating System Manual

[Herbert 1978(c)].

1, Terms and abbreviations

A capability segment (3.4): capability segment 2, the 'argument;
capability segment. .

access matrix model (2.1): protection system model used by Lampsdn‘
[1971], modified version used by Graham [1972].

accuracy measure (5.2.2): Jones's [1973] measure of how well a do-
main suits the task performed in it.

audit (6.1): the systematic analysis of the protection aspects of
the CAP Operating System.

BS (7.2.3): instruction to load a register from store.

C-stack (3.3): stack used in implementing protected procedure
calls.

CAP (2.2): capability research pomputer built at Cambridge
University.

capability (2.1): unforgeable incorruptible ticket of permission.

capability segment (3.3): segment which lolds capabilities.

Capabi;ity Unit (3.5): CAP computer's hardware which supports the

use of capabilities.
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CAP Operating System (3.7): operating system for the CAP.
consequential ENTERs (7.2.1): d§main switches which take place as
a consequence of a call for a primary service.
consequential messages (7.2.2): messages sent as a consequence of

a call for a primary service,.

degree of oyerprivilege (5.3.1): 1 - |M}/711},

domain change (3.1): modification to a domain.

~domain switch (3.1): leaving one domain and entering another

EC (3.3): enter coordinator instruction.

ENTER (3.4): instruction to enter a protected procedure.

ENTER capability (3.“):~capability which must be presented when
entering a protected procedure; interpreted by micropro-
gram.

ESP (3.3): enter sub-process instruction.

exposure measure (5.2): measures how well protected the objects
in a system are.

function (5.3): the services provided by a module are made
available to other modules as functions.

Function Memory (3.2): hardware used to speed up instrction
interpretation.

FM (3.2): Function Memory.

gate-keeper (6.1.6): protected procedure used to validate a call
for an operating system service.

G capability segment (6.1.1): capability segment 1, the 'global'
capabillity segment.

generél address (3.3): virtual address presented by a process:
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interpreted relative to the address space of that pro=-
cess's coordinator.

Genesis (7.1): program for generating the CAP Operating System.

I (5.3): implementation set.

I capability segment (3.4): capability segment 5, the 'interface!'
capability segment.

implementation set (5.3): the set of objects which the process can
address.

inform (3.7): in main memory.

M (5.3): minimum privilege set.

Master Coordinator (3.3): root process in hierarchy.

Master File Directory (6.&.1): directory in which are preserved
capabilities for User File Directories (UFDs) and
operating system directories (e.g. spool directories).
It has nothing to do with the Master Coordinator but
provides root access to the general naming structure of
the filing systemn.

Master Resource List (3.3): PRL of Master Coordinator.

message-channel capability (6.1): software capability which must
be presented when sending a message to a process.

MFD (6.1.1): Master File Directory.

minimum privilege model (5.3): the protection system model used
in this thesis,

minimum privilege set (5.3): the set of objects which must be ac-
cessible to the process in order that the desired

service be performed.
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MRL (3.3): Master Resource List,

N capability segment (3.4): capability segment 3, the 'new argu-
ment' capability segment,

object (2.1): an entity to which access must be controlled.

outform (3.7): not in main memory.

PB (3.3): Process Base.

P capability segment (3.4): capability segment 4, the 'program’
capability segment.

P category function (6.1.1): function whose invalid use has breach
of protection implications.

P-store (3.6): a set of absolute locations in main memory used to
control access to peripherals. |

P-store capability (6.1): capability which must be presented with
a request to operate a peripheral,

primary service (7.2.1): publicly available operating system
service,.

principle of minimum privilege (2.1): every program and every user
of a system should operate using the least set of
privileges necessary to complete the Job.

privilege measure (5.2): measure to determine how closely a system
adheres to the principle of minimum privilege,

PRL (3.3): Process Resource List.

problem state (7.1): state of a 2-state machine in which user pro-
grams run.

Process Base (3.3): Segment used for preservation of machine and

process state on a process becoming dormant.
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Process Resource List (3.3): specifies which objects are poten-
tially accessible to the process.

protected procedure (3.4): procedure with its own fully encapsu-
lated address space.

protection (2.1): control, by logical and physical mechanisms, of
access to objects inside a computer system.

prdtection domain (3.1): the set of objects accessible to the pro-
cess.

protection environment (3.3): all objects potentially accessible
to the process.

R capability segment (3.4): capability segment 6, the 'resource'’
capability segment.

RETURN (3.4):instruction to return from a protected procedure.

reset cycle (3.5): microprogram code executed to evaluate a store
capability to give an absolute address.

S (5.3): specification set.

SB (7.2.3): instruction to copy register's contents to store.

segment (3.3): set of contiguousAwords of memory.

service (5.3): each module in the system has a repertoire of
services i1t can perform.

software capability (3.7): capability which, although protected
in the same way as store and ENTER capabilities, is
interpreted by software.

specification set (5.3): set of objects which, according to some
external specification, need to be accessible to the

process.
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stage one (3.2): microprogram code executed as the initial stage
in the interpretation of all instructions.

store capability (3.3): capability for segment of main memory;
interpreted by hardware.

subject (2.1): an active entity whose access to objects must be
controlled.

suitability measure (5.2.2): Jones's [1973] measure of how well
a particular system satisfies a given demand.

supervisof state (7.1): state of a 2-state machine in which the
operating system runs.

Tag Memory (3,5): part of Capability Unit; used as indexed
translation table to convert general address into
internal form used in the Capability Unit.

TGM (3.5): Tag Memory.

U category function (6.1.1): function whose invalid use consumes
system resources.

V category function (6.1.1): function whose invalid use has sec-
urity implications.

Virtual Memory Object (3.7): unit of swapping in the virtual mem-
ory system.

VMO (3.7): Virtual Memory Object.

W category function (6.1.1): function not in category P, U or V.
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2, CAP Operating System

2,1 Processes

BRSDISC: drives Burroughs disc unit.

CDCDISC: drives CDC disc unit.

CLOCK: interface to hardware clock.

ENSURER: ensures that file directories etc. are up to date on

disq.

LPRDESPOOL: spools oﬁtput to line printer.

MC; Master Coordinator; schedules processor, handles interfupts,
_ete.

MODULE:'manages map of CDC disc allocation.

PRINTER: drives line printer.

PTPDESPOOL: spools output to paper tape punch.

PUNCH: drives paper tape punch.

READER: drives paper tape reader.

RESTART: starts up operating systemn.

RSM: real store manager.

TELETYPE: drives teletypes and VDUs.

USER: runs a user's computation.

VSM: virtual store manager.

2.2 Protected Procedures

DIRMAN: file directory manager,
ECPROC: gate-keeper for calls to Master Coordinator; provides some

coordinator services directly.
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FAULTPROC: handles faults; runs in same protection domain as EC-
PROC.

IOC: input output controller; manages allocation of peripherals.

ISPP: manages interactive input and output streams.

LINKER: links outform ENTER capabilities so that they can be used
to enter protected procedures.

LOGON: checks and manages passwords for logging in.

MAKEENTER: manufactures capability segments and ENTER
capabilities.

PRLGARB: recovers garbage from PRL.

SETUP: sets up meséage channels.

SINMAN: manages directory of system interpal names of VMOs.

STOREMAN: gate-keeper pfoviding user interface to SINMAN, RSM and

VSM.
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Appendix A

This appendix details the assumptions made in carrying out the
audit. It provides information supplementary to that given in
Chapter 6.

1. The minimum privilege set, M, was taken to be composed of the
functions actually calleﬁ (including those called via library
procedures) plus the functions made accessible (but not wsed)
in a domain by the creation of rights to be returned to the
caller of the protected procedure,

2. Possession of an ENTER capability for a protected procedure
other than ECPROC or SETUP made accessible all the functions
in its repertoire. For ECPROC and SETUP certain functions were
only accessible if the appropriate software capability was
held as well as the ENTER capaBility.

3. Possession of a send-message capabilityAfoﬁ a channel to a
process made accessible all the functionslin the process's
repertoire for that channel.

4, Possession of a P-store capability for a peripheral device
made accessible the functions corresponding to the services
(i.e. peripheral device operations) provided by that
peripheral. 1In some cases a single P-store capability made
more than one function accessible. The normal mechanism for
acquiring a P-store capability was to call ECPROC's claim-
device function. During the early development of the operating

svstem this mechanism was not implemented and some processes
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were given a P-store capability in capability segment 0 at
system generation. The audit assumed that these P-store
capabilities, which made the peripheral device functions ac-
cessible in all domains of the procesé, were not included at
system generation but that a suitably restricted P-store
capability was obtained instead by the normal mechanism and
kept in a non-global capability segment.,

5. The audit took account of functions made accessible in a do-
main by capabilities passed to it as the arguments for, or
returned to it as the results from, a call.

6. Capabilities in the N capability segment of a domain;’put
there as the arguments for or results from a call to a pro-
tected procedure, will, unless explicit action is taken to
destroy them, survive until another protected procedure is
called from the first domain (see Section 8.1). The domain of
the second protected procedure called could, therefore, have
rights which it was not intended to have. This possibility was
ignored in the audit.

7. Fault handling in the CAP Operating System gives the faulted
procedure a chance to sort things out. In Algol 68C this was
done by automatically calling the run time error procedure.
Any functions called from the run time error procedure were
included in the minimum privilege set. In other words, it was

assumed that blunders could occur at any time.
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8. ECPROC's* code for handling faults was logically divided into
three parts to deal with blunders, virtual memory faults and
the linking of outform ENTER capabilities. These were treated
as three ECPROC services handle-blunders, resolve-VM-faults
and link-outform-ENTER called implicitly. The (ECPROC, hand-
le-blunders) function was assumed to be always accessible and
always needed. It was, therefore, always included in both sets
I and M. The (ECPROC, resolve-VM-faults) function was assumed
to be both accessible and required unless the core residence
constraints imposed made virtual memory faults impossible. The
(RSM,, segment-outform-at-mc-level) function was similarly
assumed to be both accessible and'needed in the ECPROC domain
unless virtual memory faults were ruled out. The (ECPROC,
link-outform-ENTER) function was assumed to be both accessible
and required only when there was a call to a protected proced-
ure whose (outform) ENTER capability had been retrieved from
the filing system [Needham 1977(b)].

9. The PRLGARB protected procedure was assumed to be entered
(with a request for its sole service garbage-collect-PRL)
whenever the (ECPROC, create-PRL-entry) function was called
and the ECPROC domain had an ENTER capability for PRLGARB.

10. The CAP Operating System was still under development while
the audit was in progress. Until near the end of the audit the
data was adjusted to take account of changes: the system was

®* The fault handling code is in the FAULTPROC procedure. As the
ECPROC and FAULTPROC procedures are in the same domain they are
referred to jointly as ECPROC for simplicity.
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then frozen as far as the audit was concerned. The audit
relates to the operating system as it was at the beginning of
December 1976.

11. The message-channel-access capabilities for presentation to
the SETUP protected procedure were designed to incorporate
bits indicating what access (i.e. send, receive, or send and
receive) the caller is entitled to have for that channel.
These bits were assumed to be set as appropriate although at
the time of the audit the system generation program did not
deal with them.

12, All CAP Operating System processes have a number of ENTER
capabilities (e.g. those for ECPROC and SETUP) in their G
capability segments. These ENTER capabilities are, therefore,
present in all domains in which that process runs, including
the domains which they are used to enter. Thus there is the
opportunity for some protected procedures to enter themselves
recursively. Such a recursive call would not change the
privileges which the protected procedure and its caller have
but would almost certainly cause the protected procedure to
behave incorrectly. The ability of a protected procedure to
enter itself recursively was counted as making a single ad-
ditional function (not the procedure's full repertoire) ac-
cessible in the domain corresponding to that protected proced-
ure. When the functions were divided into categories this
function was counted as in category W.

13. The programs of typical protected procedures and processes
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in the CAP Operating System start with initialisation code
which, because a kind of coroutine mechanism has been imp-
lemented, is executed once only [(Needham 1977(a)]. Conseq-
uently, the function corresponding to the initialise service
of procedures and processes was assumed to be accessible only
until it had been used. In some cases the first call of the
STOREMAN or SINMAN protected procedure, and thus the invoca-
tion of the function corresponding to that procedure's
initialise service, could have been in the course of perf-
orming one of a number of services in the calling domain. In
this situation the (STOREMAN, initialise) or (SINMAN,
initialise) function was assumed to be invoked for each of the
services in the calling domain which could make the first
call.

Specific checks in the programs made certain that some other
functions (e.g. (DIRMAN, initialise-directory)) too are ac-
cessible for a single use only and the audit took account of
this.

The initialisation code of the SINMAN protected procedure
ineluded code which was only executed if a zero argument was
passed by the caller. This was treated as a distinct SINMAN
service, which was called start-up, only accessible at the
same time as the (SINMAN, initialise) function.

14. The services of the DIRMAN protected procedure are protected
by access matrices kept in the filing system [Needham

1977(b)]1: the functions corresponding to these services were
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‘all, therefore, counted as being in category W.

15. The functions corresponding to the ECPROC send-....-message
and send-....-message-wait-event pairs of services were
treated as being the same function. The functions corresp=-
onding to the return-....-message and
return-....~-message-wait~event pairs of services were treated
likewise,

16. No attempt was made to determine the objects potentially ac-
cessible in a given domain (see Section 5.2.3). In particular,
objects which could be made accessible by retrieving a
capability from the filing system were only included in the

audit if the appropriate capability was in fact retrieved.
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As mentioned in Chapter 6, in the process of doing the audit a
number of points were noted about the CAP Operating System. They
aré detailed in this appendix.

1. Certain services (e.g. RSM's initialise-2nd-part, SINMAN's
start-up and MODULE's restart) are only used for system
initialisation. The code which is executed in the perforiance
of these services should‘ensure that the services can only be
performed once for each run of the operating system. A subseq-
uent attempt to request these services should be rejected, and
probably faulted. Also, the rights to request these sefvices
should only be in the domain in which they are required and
should be destroyed as soon as they have been used. This
belt-and-braces strategy is justified because of the havoe
that would be caused by these services being performed after
the system has been initialised. At the time of the audit the
position was that:-

(a) RSM had c§de to ensure that its initialise-2nd-part
service was performed once only: subsequent requests for
the service would not cause the service to be performed
but a success code would, nevertheless, be returned.

(b) a reaquest for MODULE's restart service caused MODULE to
poll its second message channel via which it was passed
a segment. The only capability for this second channel

was acquired by the SINMAN protected procedure while it
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was performing its start-up service and was disposed of
after it had been used (by calling the freeslot library
procedure: but see 6 below). If there had been a subseg-
uent request for MODULE to perform its restart service
MODULE would have looped waiting for a message which
could never be sent because no send-message capability
for the second message channel to MODULE existed.

(c) the code for SINMAN's start-up service was part of the
SINMAN program's initialisation code but was only exec=-
uted if a zero argument was passed on the first entry to
an instance of the SINMAN protected procedure. Thus the
(SINMAN, start-up) function, which dealt with the
initialisation of global system data structures, was ac-
cessible as often as the (SINMAN, initialise) function,
which only did the initialisation work for a particular
instance of SINMAN. The program did not check for at-
tempts to initialise the system data structures more
than once.

2. As mentioned in Appendix A item 4, until ECPROC's claim-
device service was implemented processes were given P-store
capabilities at system generation. The code of two processes,
CDCDISC and RESTART, still referenced these capabilities
rather than the ones obtained by their calls of (EC-
PROC,claim~device). The system generation P-store
capabilities were held in capability segment 0 and were thus

accessible in all domains which the process entered: in the
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case. of RESTART this globally accessible P-store capability
was for the whole P-store! It 1s easy to forget to remove
shopt-cuts such as these taken during the development of a
svstem. |

Another left-over was that the TESTER program included a
request for DIRMAN's update service although that service had
been withdrawn;

3. The initmap and restore-map gervices were still includea in
MODULE's repertoire although any use of them would have had
disastrous consequences for the filing system! They were su-
bsequently withdrawn.

4. The Master Coordinator did not check to ensure that a given
‘process was only created once. Such a check could have been
incorporated but, as the create-process service was only
available in two highly trusted domains, it would probably not
have been worth while.

5. The peripheral permission software capability, presented to
ECPROC when requesting a P-store capability for a particular
device, could be used.to support a request for any P-store
capability. It need not have been so general and could have
had built into it the device(s) for which it was valid.

6. The Algol 68C libraries included procedures getslot and
freeslot which were used to manage the allocation of slots in
the I capability segment. The freeslot procedure made a slot
available for re-allocation but did not destroy the capability

in the slot that had been freed. (A comment in the SINMAN pro-
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gram implied that the capability was destroyed.) The freeslot
procedure has since been modified to invalidate the capability
in the released slot.

7. The services provided by certain protected procedures were
made generally available in a process by putting the ENTER
capablilities for these procedures in the G capability segment.
This mechanism was used to provide public facilities. However,
it had the side effect of making it possible for these pro-
tected procedures to be entered recursively (see Appendix A

item 12),.
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This appendix lists the CAP Operating System primary services

(see Section 7.2.1). Further information about these services can

~be found in the CAP Operating System Manual [Herbert 1978(ec)].

Protected procedure
DIRMAN
ECPROC

file examine f

Primary service

retrieve
remove
preserve

alter access

"examine

file details

i
walt event

send ﬁessage without segment
send message with segment
receive message without segment
receive message with segment
receive message with reply
return message

reserve segment

release segment

clear fault

cause fault

return fault

process information
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FAULT

I0C

ISPP

MAKEENTER

SETUP

SSPP

fault message

stream request
despool request

send document

write buffer
read buffer
close
endof
state

reset state

make capability segment

make enter capability

set up receive

set up send

set up send with reply
set up reply

set up reply with store

write buffer
read buffer

close

endof

state

reset state

backspace buffer
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STOREMAN

ensure ok

"outform

lchange size

new segment

capability information
get size amd access
open window

move window

close window

details
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Appendix G

The full results of the experiments described in Chapter 7 are given
in this appendix. The brograms used for the instruction timing experi-

ments are also included.

MMMME@_&&M@MQQ_M

The results given below are the averages over five runs,

G,1.1 Results from runs of the Algol 68C compiler
Lroteoted procedure Erimary service Times called

DIRMAN retrieve 6
preserve 1
IoC stream request )
ISPP write buffer 7
read buffer 1
endof 2
reset state é
SSPP write buffer U697
read buffer 7055
close 6
endof 14109
STOREMAN change size 2
new segment 2
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Total primary service calls 25896

1]

Consequential ENTERs 2810 (includes 53
simulated ENTERs)

Consequential ENTERs/primary service call 0.11

Total ENTERs = 29780
Source program size = 1750 lines
Object code segment size = 3772 words
Virtual memory faults = 73
Messages sent = 307
Consequential mes$ages =z 380
Consequential messages/primary service call = 0.01
G 2 Res s m G
Protected procedure Primary service Times called
DIRMAN retrieve 48
preserve 1
ECPROC process information 1
I0C stream request 2
despool request 1
ISPP write buffer 1
read buffer 1
endof 2
reset state 2
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SSPP write buffer Uy

read buffer 1403

close 2

endof 2805

STOREMAN change size 3
new segment 19

get size and access by

open window 58

move window 45

close window 58

Total primary service calls 4540

6135 (includes

Consequential ENTERs

127 simulated ENTERs)

Consequential ENTERs/primary service call = 1.35
Total ENTERs = 10706
Virtual memory faults = M7
Messages sent = T74
Consequential messages = 891
Consequential messages/primary service call = 0.20

2 Ins

G.2.1 System used for experiments

The timing experiments were run using a simple system the programs
of which were written in the CAP's assembly language. The Master Co=-

ordinator of the system is listed in Figure G.1.
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i Master Coordinator for timing experiments

BS R1 M15 GO=-.=1
ESP R2 M1 jenter level=-1 process
JNLT R2 M15 -2 {loop if fault detected
EC 0 lgo into wait state
GO:  #X1 lgeneral address of GO word 0
Figure G,1

G.2.2 Load from store (BS), register to store (SB) and test and count
(TCS) instructions

The programs for the level-1 process for timing‘the BS,SB and TCS

instructions are given in Figures G.2, G.3 and G.4 respectively.

i Program for timing BS instruction

MODNS M15 COUNT=-. -1

BN R1 {load count

BS R2 M15 GO~. -1
LOOP: BS R2 M15 GO=-. -1

TCS R1 M15 LOOP-.-1 |repeat count times

EC lenter Master Coordinator
GO: #X1 |

COUNT:9999999

Figure G,2
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Program for timing SB instruction

MODNS M15 COUNT~. =1

BN R1 {load count

BS R2 M15 GO~, =1
LOOP: SB R2 M15 GO=, =1

TCS R1 M15 LOOP-.-1 |repeat count times

EC lenter Master Coordinator
GO: #X1

COUNT:9999999
Figure G,3

i Program for timing balance of BS and SB programs

MODNS M15 COUNT~. =1

BN R1 {load count

BS R2 M15 GO-. -1
LOOP: TCS R1 M15 LOOP-.-1 |repeat count times

EC lenter Master Coordinator
GO: #X1
COUNT:9999999 iset to 999999 and 1999999

|for timing TCS |
Figure G.4

The results of these timing experiments, averaged over ten runs, are

given below:
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10 million BS SB balance BS - SB -
dterations oprogram _program program _balance balarnce

time secs. 52.80 49,92 31.44 21.36 18.148

core reads 1 1 1 0 0
core writes 61 62 61 0 1
Time for 1*BS instruction = 2.136 = 2,1bus
Time for 1%SB instruction = 1,848 = 1.85us

The single core write during 10 million iterations of the SB instruc-
tion could have been removed by a simple modification to the SB and
balance programs. However, as it was insignificant compared to the 10

million writes to the slave stores it was ignored.

Time for 1 million * balance program 6.96 seconds

Time for 2 million * balance program = 9.76 seconds

Time for 1 % TCS inatruction = us

H N

.8

n o

G,2.3 ENTER + RETURN

For measuring the time taken to.enter and return from a protected
procedure the program of the level-1 process was as given in Figure
G.5. The program of the protected procedure which was repeatedly

entered consisted of the single instruction, RETURN.
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] Program for timing ENTER + RETURN

MODNS M15 COUNT=-. -1

BN R1 iload count

BS R2 M15  GO-.-1
LOOP: ENTER M2 lenter protected procedure

TCS R1 M15 LOOP-.-1 |repeat count times

EC lenter Master Coordinator
GO:  #X1
COUNT:99999 fand 199999

Figure G,5

To measure the time taken to enter a protected procedure with one
capability argument and to return from it with one capability result
the main domain program was as in Figure G.6 and that of the protected

procedure was as given in Figure G.T.
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i Program for timing ENTER + RETURN with capability argument

i and result
MAKEIND R3 1 lereate N capability segment
MODNS ~  M15  COUNT-.-1 |
BN R1 iload count
BS R2 M15 GO-., -1
BS R3 M15 I0-.-1
BS R4 M15 NO=-. -1
BS R5 M15 I0-.-1
BS R6 M15 AO-.;1
BS R7 M15 RO=. -1
BS R8 M15 RO-. -1
LOOP: MOVECAP R3 M4 icapability argument to NO
ENTER M2 lenter protected procedure
MOVECAP RY M8 lcapability result from NO
TCS R1 M15 LOOP-.-1 |repeat count times
EC ienter Master Coordinator
GO: #X1
AQ: #X2
NO: #X3
IO: #X5
RO: #X6
COUNT:99999 iand 199999
Figure G.6
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i Program;for protected procedure of level~-1 process

MOVECAP RB M5 icapability argument from AO
MOVECAP R7 M6 icapability result to AO
RETURN

Figure G,7

The results, averaged over ten runs, of these experiments are given

below.
(a) ENTER + RETUR

’ time secs _core reads core writes
200000 iterations 53.58 0 84

100000 iterations  28.82 0 8l
200000 - 100000 - 24.76 0 0

b
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(b) ENTER + RETURN + capability argument + capability result

time secs _core reads core writes Store writes

200000 iterations 99.52 0 800289 6000575
100000 iterations 51.76 0 400319 3000434
200000 - 100000 47.76 - "0 399970 3000141
Time for ENTER+RETURN+TCS = 247.6us

Time for TCS = 2.8us

Time for ENTER+RETURN = 244,8ys = 0.24ms
Time for ENTER+RETURN+cap. arg.+cap. result+TCS = 477.6yus

Time for ENTER+RETURN+cap. arg.+cap. result = U74,8ys = 0.U4Tms
Percentage of writes to core = 399970%100/3000141 = 13.3% = 13%

G.3 Slaving effecti ess C i1i Uni

The full results of these experiments are given in Section 7.3.3 ex-
cept for the calculation of the ratio of the saving in elapsed time to
the number of reset cycles saved. The full results of these calcula-

tions are given below: the figures are averages over five runs.
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(a) Algol 68C
time extra time extra resets extra time/
Secs. vs slaving _vs slaving _extra resets
No slaving across process |
or domain switches 324.4 98.0secs. 375751 260.8us
Slaving across domain
switches only 235.9  9.5secs. 42569 | 223.2yus
Slaving across process
switches only 306.9 80.5secs. 341411 235.8us
Slaving across process |

and domain switches 226.4 - - -

(b) Genesis
time extra time extra resets extra time/
Secs. vs slaving _vs slaving _extra resets
No slaving across process
or domain switches 179.6 38.0secs. 150514 252.5us
Slaving across domain
switches only 155.9 14, 3secs. 65727 217.6u$
Slaving across process
switches only 170.0 28, l4secs. 110048 258. 1us
Slaving across process

and domain switches 141,6 - - -

Average over Algol 68C and Genesis runs 241.3us

= 112.8#%BS
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