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Access control for network management

Dongting Yu

Summary

Network management inherently involves human input. From expressing business logic

and network policy to the low level commands to networking devices, at least some tasks

are done manually by operators. These tasks are a source of error whose consequences can

be severe, since operators have high levels of access, and can bring down a whole network

if they configure it improperly.

Software-Defined Networking (SDN) is a new network technology that brings even

more flexibility (and risk) to network operations. Operators can now easily get third-party

apps to run in their networks, or even host tenants and give them some control over their

portion of the network. However security has not caught up, and it is easy for these third

parties to access network resources without permission.

Access control is a mature concept; it has been studied for decades. In this dissertation

I examine how access control can be used to solve the above network management problems.

I look at the Border Gateway Protocol (BGP) from an operations perspective and propose

a mandatory access control model using role-based policies to separate long-term invariants

from day-to-day configurations. As a result the former would not be accidentally violated

when configuring the latter, as this is a significant source of BGP misconfigurations

today. Then, for SDN, I propose to add access control to controllers so that virtual

controllers and applications that run within them cannot have unlimited access to the

network infrastructure, as they do currently. Adding attribute-based access control makes

the system much less fragile while it still retains the essential flexibility provided by

SDN. Lastly, I propose a hierarchical architecture which, with SDN, can isolate security

compromises even when some devices are physically compromised. This is achieved by

using access control to both enable network access and deny unexpected connections.
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Chapter 1

Introduction

Networks connect machines together by carrying data from one node to another. To

achieve this, each forwarding device in a network needs to have a sense of direction, or a

map of the virtual world, in order to know where a piece of data should go. Generically,

this process is called routing.

Today’s networks use packet switching, a technology that supports large, dynamic and

resilient networks. Each individual packet is a unit of data transmission; the routing and

switching devices between the sender and the receiver make decisions on where to pass

each packet. If a route is disrupted, packets can still arrive at their destination so long as

it is reachable by a different path.

The part of a routing system that deals with packet forwarding is termed the data

plane. It usually involves optimised hardware that can move packets at high speed from

one interface to another. It looks up where a packet should go, either with an internal

table or through other methods, and performs the low-level operations to send the packet

out on the appropriate wire or fibre. But it is not involved in the process of building the

internal table.

The logical plane above the data plane is the control plane. The control plane’s role is

to build, update, and maintain an internal lookup table which the data plane can consult,

or to respond to the data plane if a packet does not match existing rules. In other words,

the control plane determines data plane behaviour.

Networks need to be managed. New devices that join a network need to be set up,

configured, and attached. The rest of the network may need to be updated to reflect

changes. Devices or parts of a network are taken offline regularly for maintenance, or for

updates to their software or hardware. For both technical and business reasons, network

policies are updated regularly to direct traffic through a network on different routes. These

management tasks can be automated with management software, or manual with direct

human input. Monitoring tools also run within the network at this layer to provide

real-time feedback. This part of the network is sometimes called the management plane.
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8 CHAPTER 1. INTRODUCTION

Network protocols reside in the control plane, and are the focus of much security

research. An update to a protocol, for example to patch a vulnerability, is a change in the

control plane. The data plane is sometimes used, for example to observe the actual path

that packets take, and whether this is consistent with the version presented by the control

plane.

However, security researchers have not studied network management to the same depth.

Protocols and networking devices can be made secure, but this is of limited use if operators

cannot use them correctly. As operators define the network both directly (through manual

input) and indirectly (through running scripts), we need to support secure behaviour on

their part, too, by providing an environment in which serious errors are harder to make. If

not, the management of a network can be the weakest link, subject to exploits and attacks.

As humans are involved in network operations, mistakes happen. Non-malicious

accidents only differ from attacks in intent; both can easily put a network in the same

undesirable state. The operators can be affected by a lack of experience, habit, working

under a false impression, not receiving updates due to team miscommunication, and so on.

As operators have full access to the network, mistakes can, and occasionally do, lead to

catastrophic failures.

In the history of security research, many ideas and tools have been devised to help

computer systems be resilient in the face or error and well as malice. One such is access

control, where actions performed by subjects are checked for permission before execution.

Access control policies are abstractions to make management easier and have be generalised

from a variety of specific protection requirements. A typical problem is analysing a specific

use case, working out which access control abstractions might help achieve the protection

goal, and using it correctly (e.g., making sure it is not just relevant but also cannot be

circumvented).

In this dissertation we show how access control can be used in novel ways for network

management. We take two technologies, the Border Gateway Protocol (BGP) and Software-

Defined Networking (SDN), and show how access control can help solve real problems

when used in new ways.

In the BGP scenario, the biggest threat comes from operators themselves, as it is

currently too easy to make mistakes and existing tools fail to limit their effect. Access

control can be deployed as a helper, making sure operators cannot configure BGP into a

state that violates a higher-priority invariant. This can help ensure that critical operational

procedures are not affected by minor configuration changes, thus making the system less

fragile.

With SDN, operators can allow tenants to be allocated some resource within the

network, creating a virtual network over which they have some management authority.

This brings added security risks as incentives may be misaligned among tenants and

between tenants and the network owner. Access control can be deployed to enforce security
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policies and make sure each tenant stays within its allotted boundaries. We develop the

SDN scenario further by proposing a new network topology for a cyber-physical use case

and show how access control can be used within it.

1.1 Network routing

1.1.1 Inter-domain routing

The Internet evolved as a way to interconnect existing networks. Companies, universities,

and other organisations built networks, took them online, and generally became domains.

Hence the goal of inter-domain routing is to forward a packet to the larger domain to

which it is destined, without worrying about the final few hops within the organisation. If

we were to use the postal mail system as an analogy, inter-domain routing concerns how

mail is forwarded to the correct country, passing through other countries in between.

The most straightforward, but naive, way to establish relationships among domains

for inter-domain routing is to have pairwise connections between every two domains in

the network. Of course this method does not scale; it does poorly at accommodating new

domains and other changes. Better ways are taught in courses on distributed systems.

Where we have decentralised domains with no unified command, desire not just connectivity

but resilience (which means redundancy), a standard approach is to model the connections

among domains as a graph, and develop algorithms for the routing logic to forward packets

from the source to the destination.

Although in the past other inter-domain routing protocols have been discussed, such

as Policy Routing by Clark [36], today’s Internet uses BGP as its de facto inter-domain

routing protocol. In BGP, domain entities are called Autonomous Systems (ASes), each

having an Autonomous System Number (ASN) as its identifier. BGP specifies the logic to

be used, along with sufficient freedom in defining a routing policy between two connecting

ASes. The rest of this section describes ASes and BGP in their current form.

Autonomous system (AS)

An AS is generally a single administrative organisation with a consistent routing policy

existing as a member in the BGP ecosystem. Each AS has an alphabetical name and,

more importantly, an assigned AS Number which is its unique identifier within BGP. It

is a logical unit independent of organisation size or location. In fact, it is possible for

an AS to span a vast geographical area. It is also not necessary for each organisation

to have only one ASN. It is not uncommon to see multiple ASNs existing in parallel

for the same company, say after a corporate acquisition or a merger. Many different

types of organisations have their own ASNs, including large corporations (IBM, Google),
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universities and groups of them (JANET, University of Oregon), Internet Service Providers

(BT, AT&T), and traffic-related companies (Akamai, Level 3 Communications). It is also

possible to get an Internet connection without one’s own ASN; many small and medium

companies do not run their own BGP networks but buy connectivity from one or more

ISPs.

ASes connect to whomever they need to. Usually, they connect with their local

counterparts (peers), umbrella organisations to which they belong, specialised network

carrier companies, and others that they feel make performance or business sense. Larger

ASes that are ISPs also connect with their clients, including those that participate in the

BGP system with their own ASN [58].

The interconnection graph is clustered around a few core ASes, and spreads to the

edge to stub ASes. The most connected ASes are tier-1 networks; followed by tier-2 and

tier-3 networks, and finally the edge networks. However, the graph is not a tree. For cost,

performance, and resilience reasons, many middle-tier and edge networks also connect

with peers of similar size or pay to be clients of multiple upstream providers.

The BGP graph topology is constantly changing. Established links disconnect and

recover all the time, new ASes join and leave on a regular basis, and new connections

are made among ASes as business relationships are formed. It is impossible to present

a topology graph of the Internet, but only an estimate at some particular time. The

difficulty is exacerbated by secret business agreements that result in hidden links that are

only activated when needed or when certain, undisclosed, conditions are met.

Border Gateway Protocol (BGP)

BGP is a protocol among ASes to help each establish a local view of the Internet. Briefly,

BGP allows each AS to keep its own version of a IP-prefix to next-hop-AS table, along with

the full AS-path for each IP prefix. If an AS receives a message from a neighbour, indicating

a path through this neighbour, and if this new path is ‘better’ than the previously-selected

path for this particular IP prefix, then the local AS selects this path as the new best, and

announces this decision to all of its neighbours, who can then go through the same process,

each comparing with its previous version to decide on its own optimal path.

The notion of ‘better’ in path comparison is up to each individual AS. BGP provides a

guide and BGP software provides the commonly needed rules, but the ultimate decision

lies in the AS. Different attributes that can be compared include AS hop length, local

preference, multiple exit discriminator, AS-path, and next hop. The order in which these

attributes are compared is the AS’s decision, and usually the local preference is the most

influential.

BGP constructs and works within the control plane; it does not care about the data

plane. The separation of the control and data planes keeps network maintenance simpler
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and allows the control plane to take its time to calculate new routes without affecting

data forwarding. Similarly, because BGP works in the control plane, it is unaware of

data plane attributes, such as latency and bandwidth capacity, unless manually converted

into a weight and reflected in the local preference values of the BGP route decision

process. However these two planes sometimes share the same wire, as BGP packets are

communicated in-band.

1.1.2 Intra-domain routing

The complement of inter-domain routing is intra-domain routing, which deals with the

delivery of packets within an organisation. In the postal example above, the equivalent of

intra-domain routing would be the movement of mail from customs to its final address.

One advantage in intra-domain routing is the availability of link information. Within a

domain, there can be a lot of sensitive information, and firms want to reduce the information

available to others. Between domains this can lead to suboptimal routing decisions,

but intra-domain, routing everyone falls under one organisation, so this disadvantage

is minimised. Another advantage is that intra-domain routing does not need to make

scalability a main requirement.

Popular intra-domain routing algorithms include Open Shortest Path First (OSPF),

Intermediate System to Intermediate System (IS-IS), and Interior Border Gateway Protocol

(iBGP). These fall into two categories: link state routing algorithms and vector distance

routing algorithms. The details of these algorithms and their differences are not discussed

here, as they are irrelevant to the rest of this dissertation.

1.1.3 Software-Defined Networking

Software-Defined Networking (SDN) is a recent innovation in networking and grew out of

earlier research into active networks [50, 133]. It is more a concept and approach rather

than a single set of protocols. SDN is not just about routing, but is also about network

management. Eventually it may blur the lines dividing network layers, enable different

protocols to work together, and even shift or erase the boundary between inter-domain

and intra-domain networking.

The essence of SDN is that forwarding is done by simple but fast hardware, while

the control logic is offloaded to commodity PCs [115]. Traditionally, router vendors

such as Cisco and Juniper provide both the hardware and software implementations of

needed protocols to the end user, without much room for customisation other than by

scripting languages. SDN-enabled hardware is much simpler: it does not come with a set

of implemented protocols but rather a set of primitive interfaces that allow an external

computing unit, the SDN controller, to control the routing behaviour and gather hardware
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statistics. As a result, SDN can be made much cheaper with simple hardware and a

commodity PC as the controller. It can also be much more flexible. An AS can implement

a custom intra-domain protocol all by itself, or use a custom protocol for inter-domain

communication with networks with-which it peers [23, 123]. It is currently gaining traction

in data centres and Internet exchange points due to the freedom it offers and the capital

cost it saves [89].

1.1.4 Network management

Human operators currently manage networks. Often they are generalists: the same

operator works on all aspects of a network, including inter- and intra-domain routing. It

is also not uncommon to use the same set of tools and management interface to manage

both. Sometimes the same devices are used for traffic of both types, and running multiple

protocols at the same time, especially for devices at the edge of a network.

As networking moves from vendor-supplied software embedded in routers to SDN, it

will facilitate innovation, hopefully leading to more and better tools for operators. Ideally,

humans would do what we do best by laying out high-level intentions, whose descriptions

are transformed into lower-level commands and fed into network devices. The legacy

router architectures have prevented the last step being fully automated; and sometimes it

is still a pure manual process, leaving lots of room for error.

1.2 Principles of routing security

Routing security is under increasing scrutiny. There are many potentially severe conse-

quences of errors and attacks, including packet misdirections, interception, or even making

oneself disappear from the Internet altogether. The stakes are both financial and strategic,

so many players from black-hat hackers to national intelligence agencies have an active

interest in this area.

In this section we do not attempt to discuss security solutions or their effectiveness,

but rather lay out an analysis of what is possible and how much has been studied. The

importance of such an analysis is that many different protocols and systems share very

similar routing security threats, but defences may need to be adapted to each particular

case. It is also important because with a better understanding of the problems, many

threats can be eliminated at the initial design stage rather than patched afterwards.

Because routing is such a vast topic and not everything can be covered, we try to present

the commonalities and stay protocol-agnostic where possible.

We divide the analysis into three parts, each trying to answer one question, in order:

1. Where are the vulnerabilities? (in Section 1.2.1)
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2. What is being attacked? (in Section 1.2.2)

3. What is at stake? (in Section 1.2.3)

1.2.1 Threat model

We first take a look at the various threats to routing. Through this analysis we can

systematically identify where the vulnerabilities are. We identify five categories: hardware,

software, protocol, operator, and tenant.

Hardware threats

Hardware threats are those due to the behaviour of networking equipment and vendor-

supplied code that is not modifiable by the user. There are several attack vectors. Most

commonly, the hardware vendor includes buggy code in its products. When discovered,

it is expensive to upgrade a piece of hardware as many operators need to ensure correct

working. Often, hardware or firmware upgrades are delayed or skipped altogether.

The hardware is thus open to external attacks, either because of unpatched vulnerabil-

ities or because it is out of date. The variety of brands and models is limited so any single

vulnerability can often be used in a large number of devices. Shared (and pirated) code

means that an attack discovered on one router may work against its competitors too.

The recent disclosures by Edward Snowden reveal that the NSA conducts supply-chain

attacks, opening router hardware in transit from the factory to customers and adding

trojan devices. No doubt other agencies do the same.

Software threats

Next there are software threats, which arise from code running on general purpose

computers. The individual consequences of each vulnerability may not be as serious as

in the case of infrastructure hardware, but the user base and the attack surface may be

greater.

One major recent example is that of the Heartbleed Bug1, where, despite urgent security

warnings and a strong push for everyone to update, servers were still attacked in the period

after public disclosure. In addition, Privacy International has documented the widespread

sale to repressive regimes of systems that can install malware on thousands of citizens’

PCs for the purpose of building a covert infrastructure for monitoring network traffic.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
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Protocol threats

We see various threats from the protocol: bad protocol design, faulty implementation,

inappropriate usage, and key-related issues.

Protocol design has always been hard. Even very small design decisions can lead to

unexpected results under rare but plausible conditions. Protocols can also be used for a

different purpose than originally intended. DNS, for example, started as a lightweight

protocol mapping domain names to IP addresses. It has been upgraded to DNSSEC while

much of the original intent remains. However there are now proposals to tie DNSSEC

with TLS certificates in web browsing2, which may require a new analysis of DNSSEC,

simply because it was not designed with this ‘leverage’ in mind.

Even with a good initial protocol design, specifications get longer as the complexity of

the protocol increases with time; and since the specification is often done in plain English

(for example in IETF, IEEE, and ISO standards), inconsistencies creep in due to human

errors, lack of formal rigour, and indeed the ambiguities in human language. Specifications

are incomplete, and implementation details result in incompatibilities or insecure behaviour.

Getting memory management and timing issues correct while threading the underlying

protocol together is no easy task.

Next we have the user of the protocol. As we have seen from the classic experiment [178]

on using PGP, security usability is hard. So it should surprise no-one that another source

of vulnerabilities is key management. It is not straightforward to get key material to

routers in remote locations, particularly if they are supplied by, maintained by, and hosted

by foreign companies that are not entirely trusted, and that may be subject to coercion

by local law enforcement.

Operator threats

Operators of a network also pose interesting threats — to their own and neighbouring

networks. Being a conservative crowd, many network operators are reluctant to change

a part of the network if it is believed to work correctly. We have discussed delaying or

foregoing firmware updates as a possible security threat, and this is partly due to operator

practices. Others include improper use of network devices and careless configurations.

A good practice, followed by larger networks, is to automate the device and network

configuration process as much as possible, including plans for rollback should something go

wrong. Unfortunately, in many networks operators use the command line interface (CLI)

to issue commands directly into the live network. This is slow and prone to inconsistencies

and errors such as ‘fat fingering’ typos. Using the CLI also leaves a poor record of work

2https://datatracker.ietf.org/wg/dane/charter/
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carried out, if any record is kept at all. Too much network state knowledge is in the hands

(and heads) of too few operators.

Another way operators can pose a threat to the network is through improper knowledge

of the hardware and its included software. For example, competing hardware may have

different CLI commands and arguments. When more than one brand exists in the same

network, operators may get confused and issue the wrong command. There are also default

services that run on many network devices, such as FTP servers, of which the operator

may not be aware. Leaving them on by default can create major vulnerabilities.

Tenant and user threats

Every network serves one or more tenants, or users. At one extreme, a data centre network

may have only one tenant, and the tenant and the owner may be the same firm. At

the other, an Internet service provider (ISP) sells connectivity to millions of clients, all

of which are users to the its network. There are also different levels of participation by

tenants. If a downstream client simply wants Internet connectivity, as with domestic

customers, then the tenant does not require much more from the ISP than reachability.

In a data centre, the tenant may want to be more involved. Network optimisation can

be done both within the data centre and with links connecting to the outside. The tenant

may also want to do load balancing or monitoring within the network. These actions all

place some level of control in the hands of the tenant.

Threats are particularly likely to develop where there are misaligned incentives. If

tenants and the owner are separate entities, or even different departments within a larger

company, their incentives may be different. Tenants’ attitudes towards other tenants may

also be hostile, and competition for resources can occur if the owner operator is not careful.

For example, a tenant may want multiple redundancy within the network at the cost

of other tenants, or it may want to cheat on traffic volume to cut its bills. If a tenant

discovers that another tenant within the same network is a competitor, it may even try to

discreetly launch an attack.

So while the introduction of SDN makes networking more flexible, it also makes it

more hazardous. Tenants will be offered more freedom to do both good and ill. It will

therefore be necessary to improve protection. What might this consist of?

1.2.2 Attack surfaces

A second part of routing security is the logical surface that an attack affects — technically,

what can be attacked. In network routing, there are two main attack surfaces: the control

plane and the data plane. The control plane calculates where a particular packet should

be forwarded. The data plane does the actual packet handling by extracting the necessary
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information and then performing the forwarding. These two planes are sometimes tightly

coupled and sometimes reside on physically separate machines, but a distinction remains.

Control plane

The control plane, being the brain of a network, is the target for many attacks. In BGP,

the protocol provides the necessary framework for information hiding as well as information

sharing. ASes share just enough information to achieve connectivity and fulfil business

contracts, but no more. As a result, it is possible to lie in BGP. Sometimes such lies are

needed for operational purposes, but it is also possible for false information to be believed

and passed on either intentionally or by mistake.

In April 1997, AS7007 claimed to be the source of all Internet prefixes, then proceeded

to deaggregate the table into /24 prefixes — more than 73 000 of them — and announced

them to the core Internet. The hours that ensued were filled with non-reachability,

disconnections, and confusion in America and the rest of the world. The problem even

persisted past a total shutdown of AS7007’s routers, as caches in other ASes were not

cleared soon enough. Even though this was an accident, a great part of the Internet was

disrupted by one single AS. The carrier and target of this disruption was the BGP control

plane.

More generally, an AS can attack the BGP control plane by announcing that it has

a more preferred path than those known by its neighbours. The preference can come in

the form of a shorter AS-path length, more specific prefix, or better business relationships

(revenue generating neighbours are preferred). The specifics of who can launch such an

attack and how are discussed in Section 1.2.1.

Many similar incidents have taken place since 1997, most accidental, some suspicious,

and a few even without the true identity of the originator being known. Until we have a

secure BGP, or at least a wide adoption of better operational practices, such attacks on

BGP will continue to be easy.

Intra-domain routing suffers from control plane attacks, too. A single compromised

router is often sufficient to fool the rest of the network. The lack of malicious cases in real

life is probably due to staff discipline and well aligned incentives generally. Of course, any

accidental cases will be seen as simple errors and will probably not be publicised.

Data plane

The data plane deals with the actual forwarding of the packets. With more hardware and

less code, it is probably harder to attack.

Yet a successful data plane attack could be hard to detect. Control plane logic leaves

a trail that other devices can record for later auditing; the data plane, on the other hand,
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does instantaneous action and can be changed at a moment’s notice. An analogy is highway

traffic: it is easy to install speed limit signs and check that they are installed correctly, but

much harder to make sure that every car respects the limit. The usual method is to check

for data plane misbehaviour through inserting check packets into the live network. Even

this method cannot cover all cases, such as if only specific types of packets are targeted.

Apart from persistent attacks, a data plane device can be triggered into malicious

behaviour by a sequence of pre-determined packets. One example is ‘port knocking’, where

the device sees (likely failed) connections made into a sequence of specific ports. It is

difficult for the network operator to detect such signatures without prior knowledge, since

the traffic can come from anywhere, and the attack signature can take any form.

Once in malicious mode, a switch can do lots of things: mirror traffic to a different

interface, silently insert or drop particular packets, or misreport statistics. Because

statistics are reported from the device itself, malicious behaviours can be stealthy. A better

way would be for devices to report each other’s statistics, and it is even more effective if

they come from different vendors; but this can be more computationally expensive and

harder to coordinate.

With the development of SDN we are seeing the data plane device moving in two

different directions: in some setups the data plane becomes even more separated from the

control plane, adhering to the SDN mentality and offloading computations to separate

controllers; another direction is to have a lightweight controller next to the forwarding device

for performance and resilience reasons, which in effect makes the data plane even smarter.

In the latter case, the data plane can be better protected against malicious behaviour by

a custom detection module, but also opened up to easier attacks via vulnerabilities in the

controller.

1.2.3 Security principles

The third part of routing security is security principles. In this part we can analyse each

component that can fail as a result of an attack, and answer what the consequences are.

Four components are at stake: confidentiality, integrity, availability, and accountability.

Confidentiality

Confidentiality in routing mostly refers to control messages. Protecting the data plane is

possible, but it is generally done in thigher layers. In the intra-domain case, operators may

feel the need to protect the specifics of routins, especiallywhere the control plane extends

into uncontrolled areas such as shared sites. Then control plane data could potentially

reveal sensitive business relationships. For example, a backup path may exist which does

not normally carry traffic and is thus not normally observable to competitors.
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In inter-domain routing it is much harder to achieve confidentiality. Once a path is

announced to a neighbour, it becomes the neighbour’s decision to announce it further.

Special filters can prevent private peerings from being propagated, but this is only realisti-

cally effective within a one-hop distance. As for BGP packets between two neighbouring

ASes, there is less incentive to protect confidentiality because the packets only travel on

the wire between them. The adversary for physical wiretapping is usually government

agencies, who are not normally intersted in private commercial agreements.

Integrity

Compared to confidentiality, integrity receives much more attention, especially in inter-

domain routing. Ity refers to the correctness of control plane packets upon arrival and

further distribution. In intra-domain routing, the assumed (and most of time achievable)

physical security and ownership of network devices ensures integrity of the content, origin

and routing of the packets.

The main concern, then, is integrity of control plane information in inter-domain

routing. In BGP, the main piece of information in an announcement is essentially the

AS-path. BGP as it is currently used affords some optional checks to verify the integrity

of BGP TCP packets over the wire (which we will discuss later), but no integrity at all on

the content origin: the neighbouring AS can make up a completely fake AS-path and send

it as if from a valid source. This type of attack is the main reason that BGP needs to

be secured. It is also arguably one of the weakest links in the Internet infrastructure. It

has been known for decades but it is only recently that we have seen work on realistic

solutions.

Availability

At the heart of routing lies availability, as the exchange of routing information is precisely

to assure availability. Service disruptions can occur in both inter-domain and intra-domain

routing, but, as is the case with other security principles, it is less of a problem in the

intra-domain case due to the protected environment and stronger local trust. However,

there is still little room for error. For example, a single well-placed misbehaving switch

can still bring down an MPLS network.

In inter-domain routing, the issue becomes more complex. Every AS wants to be

reachable by others and wants to reach as many as possible. Multi-homing is common to

reduce the possible points of failure. Yet it is still common to hear of routing incidents

where one AS causes the temporary disappearance of another. The offending AS can

accidentally (through a software bug or operator error) leak a list of deaggregated, more

specific prefixes that it does not own. The decoupled control and data planes and the lack
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of active cross-referencing between the two means that such errors are not easy to spot

locally; operators may remain unaware until others report an anomaly.

Accountability

Acountability is a further property of interest to self-regulating inter-domain routing.

Suppose it is possible to find out the originator of a routing incident; then it is possible to

assign a lower priority to that AS in future route selections. This idea is the foundation for

reputation-based routing proposals [30, 185] which can incentivise ASes to be more careful

in what they announce and thus make the control plane less error-prone. A negative

reputation can mean an AS having fewer ASes that want to peer, forcing it to pay more

for transit.

However, it is not so easy. We have seen bad updates from a third-party while passing

a route that is not its own. Without proper bookkeeping of all intermediate BGP updates

(and the few looking glasses and route view servers are not sufficient), it is hard to know

which AS introduced an anomaly. Post-mortem analysis is not always possible and neither

is a reproduction of the error. Often ASes do not cooperate even if they are not to

blame. The design of BGP makes accountability hard, and the social dynamic of the AS

community prevents collaborative debugging.

1.3 Access control policies

Access control became necessary in the 1960s with the advent of time-sharing computer

systems where multiple users shared the same system concurrently, rather than sequentially.

Even in cooperative environments this led to a need for separation and confinement so

that users (and the bugs in the software they wrote) would not inadvertently interfere with

each other; classic papers include those of Lampson [106] and Saltzer and Schroeder [149].

Early stateless access control systems typically had an access control matrix of which user’s

processes could access which resource; this could be stored in columns as access control

lists (ACLs), or in rows as capabilities. To begin with, users could generally choose which

files they wished to share, but this discretionary access control (DAC) philosophy was

supplanted in government systems with mandatory access control (MAC), based initially

on the work of Bell and LaPadula, to characterise systems that prevent information leaking

down from higher to lower levels of classification — and do so independently of user

actions [12]. The history and early evolution of mandatory access control systems are

described in [4].

The Bell–LaPadula model is not the only approach to MAC, although it led to the

Orange Book and the Trusted Network Interpretation [85] — the first attempt to impose

MAC on networks. This seeks to ensure that data can flow from a network to other networks
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at a similar or higher level of classification. Where the control objective is integrity rather

than confidentiality, the relevant policy may be Biba [19], which is designed so that subjects

at a given integrity level may not corrupt objects at a higher level. Such models are used

in industrial control systems where the highest ‘safety integrity level’ is the safety system

whose job is to shut down the plant if its operating parameters are exceeded. This can

report to, but must not be corrupted by, the primary control system, which in turn feeds

information to management systems but must resist any tamper attempts from these

systems. Industrial control systems are another potential application area of SDN and the

protection goal is often robust reperimeterisation.

More general models appeared starting in 1990s, with the role-based access control

(RBAC) model adding a layer of abstraction by assigning users to roles. This reflected

real-world practice in organisations where the great majority of individuals occupied one

of a small number of clearly defined roles such as (to take banking as an example) ‘teller’,

‘assistant accountant’ or ‘branch manager’. Each of these roles has clearly defined powers

and responsibilities so it is natural to separate user-role management from role-object

management. This eventually became a NIST standard [150]. While FreeBSD ships with

support for the two standard multilevel MAC systems, Bell–LaPadula and Biba, SELinux

supports both of these and RBAC too.

Recently, RBAC was extended to include arbitrary attributes that are then evaluated to

sets of permissions, unlike RBAC roles which directly represent such sets. The new model

is attribute-based access control (ABAC) [81]. ABAC lets us incorporate environmental

information such as time; thus a bank teller may be given access to the building only from

7am to 6pm. We noted that time-dependent network access may be a requirement in

multi-tenanted networks.

1.4 BGP security

Two important works identify BGP vulnerabilities and possible attacks [128, 22]. From

these, the consensus is that BGP offers little protection in guaranteeing several important

security properties such as the confidentiality, integrity, and authenticity of announcements

and paths, and availability of BGP routers. This lack of protection can lead to various

exploits including replay, man-in-the-middle, cut-off (exclusion), and denial of service [132].

It can also result in the most serious form of attack, prefix hijack [59]. A prefix hijack,

interchangeably referred to as a route leak in this dissertation, occurs when an AS announces

to its peers either that it owns a certain prefix or that it knows a very short path to that

prefix (the latter case is sometimes also referred to as prefix interception). The neighbours

of this AS, without the ability to check the validity of these claims, can only believe the

announcing AS, and spread the information even further, by passing it on to their peers.

As a result, those ASes who believe these path announcements, and use these paths to
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route packets, will route packets to an unintended destination, with the actual owner

not receiving any traffic. It is even possible for an AS to hijack all traffic destined to a

particular AS, leaving the hijacked AS unreachable from the rest of the Internet, including

emails that try to warn this AS of the hijack.

On the more practical side, there has been work measuring and analysing BGP updates

during normal activities [51, 113, 148, 175, 181]. Many more works focus on BGP behaviour

during special periods, usually abnormal events, such as prefix hijacks [9, 76, 188, 189],

multiple origin AS conflicts [190], unallocated prefix blocks [48], natural disasters [180],

and observing from just one vantage point [134]. Due to the distributed nature of the

Internet and the limited visibility which any BGP study can get, it is important not to

infer too much into the unknown. In this aspect, Roughan et al. offer some practical

suggestions on measuring BGP properly [147], and Bush et al. on how to design better

experiments [21]. Others have also offered observations and explanations of specific BGP

phenomena, for example IP block deaggregation [35] and BGP table transfers [31]. A

few works try to understand AS policies and their goals, as they play a direct role in the

topology of the Internet, and is a prime source for error [24, 61, 104, 174]. Mahajan et al.

try to understand policies with a focus on misconfiguration [120]. With BGP incidents

being a real threat, detecting such incidents has been a major focus in the history of

BGP research. Several proposals detect general routing instability [52, 57, 68, 82, 179],

and others are designed specifically for detecting prefix hijack events [99, 105, 118, 158].

Nagaraja et al. propose a way for ISPs to safely share their data for anomaly detection

while preserving privacy [129]. At a higher level, other empirical works in this area include

explanations for multi-homing and consequences [37], examining the routing market [170],

and IPv6 adoption in the Internet [40], which can potentially generate many more prefix

blocks for BGP to handle.

1.4.1 Replacing or securing BGP

Proposed replacements for BGP have seen a long but unfruitful history [131, 62, 83].

Proposals to secure BGP in the past decade include Secure BGP (S-BGP) [95, 96],

Secure Origin BGP (soBGP) [177], and Interdomain Route Validation (IRV) [63]. Other

approaches [2, 87, 88, 91, 92] have also been proposed to improve or modify these major

proposals based on criteria such as complexity or overhead, highlighting the tension between

security versus deployability. Partial deployment scenarios have also been analysed, since

that is a practical requirement [29, 60, 119].

Growing recent concern about the resilience and security of BGP [45, 69] led to the

IETF’s SIDR working group, which has been working on making BGPSEC a standard.

BGPSEC secures the AS-path attribute by including signatures at each AS with each hop

layering everything before it. RPKI, a prerequisite public key infrastructure that provides

AS-number and prefix block ownership mappings along with cryptography attestations,



22 CHAPTER 1. INTRODUCTION

is already a standard [108] as a result of the SIDR effort. BGPSEC is still in its draft

stage [109, 110], but will be finalised shortly. While operational issues are considered to

some extent in its threat modelling [97] and security requirements [14], it is out of the drafts’

scope to consider existing operational issues, particularly usability. Already, BGPSEC

and its related components are under scrutiny [73, 137]. RPKI has been examined in

the presence of malicious parties [20, 41], as well as in an Internet exchange point (IXP)

scenario [7]. Osterweil et al. have provided a scaling estimate for RPKI [135], while

Wählisch et al. share their experience on using RPKI [173].

1.5 SDN security

SDN moves us from the problem of coordinating multiple policy holders to a single policy

holder driving multiple policy implementations. It emerged and evolved from earlier work

on active networks [168], in response to demand for complexity management, and to meet

the need for cost reduction [50]. A significant enabler was OpenFlow [123], an openly-

available standard control-plane data-plane protocol that facilitated wide adoption by being

independent of any particular vendor. SDN’s flexibility has led to wide adoption in data

centres [89] and IXPs [65]. Applying ideas from earlier control-data plane separation [171],

FlowVisor [157] supports the slicing of a physical network and presentation of a subset of the

network to each controller at switch-port and switch granularity. A further virtualisation

approach is to consider the networking logic of such a subset as a single big switch;

subordinate (tenant) users may then describe policy based on the overall input and output

of the network, rather than at the level of individual physical switches.

However, many challenges remain in SDN, such as scalability [27, 154] and security [103,

153]. We group previous research into three components (data plane, control plane, and

management), depending on where security takes place.

Securing SDN from the data plane has revolved around monitoring and policy enforce-

ment at the packet level. We see an effort to dynamically analyse OpenFlow application

code and to identify bugs using symbolic execution in [25], with an earlier work that

applies model-checking on the state space of the SDN system [26]. VeriFlow sits between

controllers and forwarding engines to check for violations in network-wide invariants, as

the rules are inserted [100]. FlowSense takes a different approach, and lets switches push

network performance numbers upwards to the controller, in order to monitor and measure

the network [183]. Scaling horizontally, Yu et al. propose collaborative monitoring across

the network [186]. Middleboxes are also considered, allowing them to join the policy

decision process [47, 142]. Some networking-focused research tackles particular issues, such

as scalability [166], reachability failures [94, 6], and performing a traceroute through an

SDN [1]. From the outside, Shin has proposed a scanner that can identify if a network is

using SDN, allowing further SDN-specific attacks to be launched [159].
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Control-plane security research has mostly focused on the controller, since that is where

novel ideas can flourish. A few controller implementations have been engineered [18, 101],

including specialised controllers such as for inter-cloud connections [124], for interacting

with BGP networks [102, 145], for detecting and resolving security policies [140], and

for IXPs [167]. In fact, the concept of a software-defined exchange [66, 65] and has

even seen a real-world trial deployment at the Wellington Internet Exchange in New

Zealand [49]. Other works discuss specific issues of controllers, such as their placement in

a network [74, 112, 169], addressing them as resources in the network [8, 10], enforcing

policies [53, 172], abstracting the routing platform as one logical unit [90], and security

permissions for applications [176]. Outside of the controller, FRESCO makes it simple to

develop a security application to detect and mitigate threats within the network [160].

Some researchers are working on applying language-based abstractions to achieve

stronger guarantees in security and policy enforcement. There is FSL [75], a policy

language that lets operators write policies in a enforceable way. Another work uses a

programming abstraction to define and isolate network slices [67]. Frenetic is also an

ongoing project that aims to bring an abstraction to network programming, especially

in querying for state, defining policies, and updating network configurations [55]. In

updating network configurations, we have also seen a work that abstracts away potential

inconsistencies during a network-wide configuration update [143].

Managing an SDN, however, has not received the attention it deserves. Panopticon

discusses potential issues in a partially deployed SDN, a scenario that will be met for

any traditional networks wishing to upgrade [111]. Zhu et al. propose a service-oriented

architecture to enable network applications scale horizontally [191]. Galis et al. discuss the

evolution of network applications within an SDN and how to perform them smoothly [56].

One particularly interesting proposed controller, Fleet, specifically sets out to limit the

damage that can be done by malicious network administrators [121]. My own research

has also been about security needs that arise from managing the network: we propose a

hierarchical network architecture to minimise the attack surface in a cyber-physical envi-

ronment such as Heathrow airport [184], and bridging SDN into inter-domain networking

by modifying Quagga so it can collaborate with the BGP side [70].

Network virtualisation in SDNs are cross-plane technologies and have also been a topic

of research. Perhaps the most important software that results is Open vSwitch [138]. A

different direction is taken by Network Function Virtualisation (NFV) paradigm, which is

less powerful in flexibility but more compatible with existing hardware [11]. Programming

the network in the presence of virtualisation has also been discussed [3, 39]. Tools using

virtualisation to support networking research have also been developed [71], with Mininet

being the most mature and widely used [5, 107].
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1.5.1 OpenFlow

OpenFlow (OF) is a protocol used in SDN and, being the first, is the most mature. The

original paper [123] describes the concept and now the design and improvement of the OF

specification was absorbed by the Open Networking Foundation as its mandate3. Since

then, much of the research in OF and SDN is general enough to be categorised as SDN

research, and is reviewed below, but some is specific to OF and will be discussed here. The

first attempt at using OF for a novel technology is FlowVisor [156, 157], which partitions

the network into slices with each application only able to see their own virtual slice. Others

have also focused on specific aspects of using OF, as seen in FleXam [162], which enables

better sampling, and research by Liu et al. [116], which improves on prefix caching. Lu

et al. [117] and Shelly et al. [155] have proposed ways to improve cache flows in an OF

network. In terms of security, we have seen Flover, which checks for security invariants in

a system [165]. Closer to the topic of this dissertation, OFLOPS provides a framework to

evaluate how well a switch handles OF messages [146], and Fernandez compares reactive

and proactive OF rules and particularly how well they can scale [54].

1.6 Structure of this dissertation

In this dissertation we explore a number of networking scenarios and how access control

can help. These scenarios range from operators that can easily make errors during regular

network management, to competing tenants with incentives to do more than it is permitted,

and how access control can be used to provide security in new deployment scenarios.

In summary, the scenarios and security focus increase in complexity. At the same

time, the protection offered by our contribution also increases. We start by addressing

accidental errors as the main security problem, and exclude intentional malicious attacks.

This first scenario is an operational one that can affect a network’s resilience. We explore

how access control can be used to help, rather than restrict, its users. In the second

scenario we introduce a more general software environment where participants can cause

or allow malicious attacks to occur. Here the security focus is on the architecture and

implementation of SDN controllers, and access control is used to enforce information

flow to and from participants and isolate unauthorised access. The focus and scope is

within one instance of the physical controller. We take the complexity further in the third

scenario, by constructing a ‘system of systems’ built upon and scaled from the second

scenario. Here we discuss how a set of controllers can interact among each other and

stay secure in a real-life cyber-physical environment. Further, we include an additional

security assumption of possible physical compromise. As protection, access control plays a

more involved role in this system: it is no longer a feature in the software, but becomes

3https://www.opennetworking.org
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a fundamental part of the communication channel, by acting as an ignition key that is

always required.

However, there are some similarities among these scenarios as well. Access control

as a security policy is the major common theme in each scenario. While the first uses

role-based access control and the second uses an attribute-based one, ABAC actually

evolved from RBAC and is a superset of RBAC. The same ABAC core mechanism is again

used in the third scenario, with capability tokens to help performance.

Traditionally the control and management planes are administered from within one

single logical space. Separating them into smaller units is another commonality throughout

this dissertation. Instead of providing full network access each time networks are configured,

we allow only a subset of the privileges according to contextual information. By imposing

this limitation we can reduce careless errors and block unauthorised use.

More specifically, we first discuss BGP’s operational security as observed in the real

world in Chapter 2. We discuss many ad hoc security measures that operators use actively,

but highlight the core problem, which is that long-term invariants are being managed

within the same space as day-to-day tasks, and errors within the latter can affect the former.

Operators are under-supported in their tools and so have to rely on 1970s technologies while

working with networks some of whose downtimes can be visible nationwide. We propose

to add mandatory access control into BGP management software and show through our

implementation that it can complement operators to prevent accidents. This chapter

was based in large-part on discussions with various network engineers enabled during an

internship at an ISP. Ross Anderson also provided input in the research of this work.

Then, we shift our focus to SDN in Chapter 3, where we present AXE, an attribute-

based access control system for SDN controllers and virtual controllers to manage tenants

and apps. We realise that having stateless access control as a reference monitor in SDN

controllers and virtual controllers has the same effect as stateless firewalls. This observation

allows us to combine the vast existing research literature on access control and firewalls so

we can draw parallels. The work in this chapter is done in collaboration with Andrew W.

Moore and Ross Anderson.

We scale out in Chapter 4 and look at the bigger picture of networking including

flexibility and management. As new networking environments take advantage of SDN’s

added flexibility, we examine how to secure them. We take cyber-physical systems as our

use case and propose a hierarchical architecture that can cope with physical compromise.

We improve on AXE to secure this topology so that a networking device has less chance

of being affected (and therefore propagating bad states) even when its neighbours are

compromised. Here, access control mechanisms give a clear added benefit. The work in

this chapter is done as part of a DARPA seedling project, in collaboration with Andrew

W. Moore, Chris Hall, and Ross Anderson, and based on our publication [184].

Finally, we conclude with Chapter 5 by summarising contributions of this dissertation
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and discussing future work.



Chapter 2

BGP operations security

The Border Gateway Protocol contains little in the way of security mechanisms, relying

on ASes to trust each other. This was sufficient in the early days of the Internet, when

there were merely a handful of networks. Today, with over 53 000 ASes worldwide, and

with ASes owned by governments and companies in countries that are unfriendly towards

each other, the trust assumptions of the initial design no longer hold.

BGP attacks were first studied in 1989 [15]. There has been intermittent effort

invested in adding security mechanisms to BGP since then. The IETF now has a secure

interdomain routing group working on BGPSEC, a protocol enhancement that will enable

route announcements to be signed, and which we will discuss in more detail later. It

enables relying parties to check that claims made about specific IP addresses are made

by principals who control signing keys registered to the organisations to whom those IP

addresses have been allocated. While improved BGP proposals are certainly welcome,

there is room for doubt about the incentives that ASes will have to deploy and operate

BGPSEC, and about the proportion of the currently experienced problems that it will solve.

For these reasons, the current version of BGP deserves to be studied for the incidence of

anomalies, malicious or accidental.

We decided to look at what goes wrong in a real BGP network, and how incidents

are initiated, propagated, and resolved. We are also interested in what can be done to

fix these problems in a realistic way considering current practices, which can complement

long-term security improvements such as BGPSEC.

In Section 2.1 we first describe an example BGP network to set the context for the

rest of the chapter. We then describe how operational anomalies occur in Section 2.2,

and note other features of BGP that are found in real life rather than protocol in

Section 2.3. In Section 2.4 we present some observations from operating a medium-sized

AS and discussions on operators mailing lists, including current ways operators deal with

potential anomalies. To tackle shortcomings of BGP control software, we implemented

and evaluated a mandatory access control in Quagga in Section 2.5. Finally, we discuss

27
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the likely upgrade of BGP, BGPSEC, and how it impacts operations in Section 2.6, and

conclude in Section 2.7.

2.1 An example BGP network

We first briefly illustrate how BGP works using the simple example network shown in

Figure 2.1. There are four ASes in this network, labelled A,B,C,D, each announcing one

prefix to the world, as shown. The links are labelled a, b, c, d, e. We assume a vanilla BGP

with no local preference or special policies, which leaves us with the number AS hops as

the first metric to determine precedence.

A B

DC

a

bc d

e

1.0.0.0/8 2.0.0.0/8

3.0.0.0/8 4.0.0.0/8

Figure 2.1: A simple Internet with ASes A,B,C,D and links a, b, c, d, e. The prefixes that

each AS announces to the world are labelled beside each AS.

At equilibrium, each AS should see all prefixes with each seeing a different path.

There are three logical tables that each AS keeps, the Adjacent Routing Information Base,

Incoming and Outgoing (Adj-RIB-In and Adj-RIB-Out), and a Local RIB (Loc-RIB). Each

AS keeps all routes that have been received from its neighbours in the Adj-RIB-In, chooses

one best route for each prefix and keeps it in the Loc-RIB, sends out prefix reachability

information to its neighbours if necessary and keeps the outfacing view in the Adj-RIB-out.

For example, AS C would have its Adj-RIB-In, Loc-RIB, and Adj-RIB-Out tables as

shown in Tables 2.1 in their respective orders.

Suppose now that the link c is broken, AS C would need to find a new best route from

its Adj-RIB-In, which is B A. Its new tables are shown in Table 2.2 in the same order,

note the changes relating to 1.0.0.0/8.

In reality, many other factors influence the route selection process. Instead of AS-hop

distance as the metric to determine preference, ASes more often use the financial cost
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Prefix AS path

1.0.0.0/8 A

1.0.0.0/8 B A

1.0.0.0/8 D B A

2.0.0.0/8 A B

2.0.0.0/8 B

2.0.0.0/8 D B

4.0.0.0/8 A B D

4.0.0.0/8 B D

4.0.0.0/8 D

Prefix AS path

1.0.0.0/8 A

2.0.0.0/8 B

4.0.0.0/8 D

Prefix AS path

1.0.0.0/8 C A

2.0.0.0/8 C B

4.0.0.0/8 C D

Table 2.1: Adj-RIB-In, Loc-RIB, and Adj-RIB-Out tables for AS C at equilibrium.

Prefix AS path

1.0.0.0/8 B A

1.0.0.0/8 D B A

2.0.0.0/8 A B

2.0.0.0/8 B

2.0.0.0/8 D B

4.0.0.0/8 A B D

4.0.0.0/8 B D

4.0.0.0/8 D

Prefix AS path

1.0.0.0/8 B A

2.0.0.0/8 B

4.0.0.0/8 D

Prefix AS path

1.0.0.0/8 C B A

2.0.0.0/8 C B

4.0.0.0/8 C D

Table 2.2: Adj-RIB-In, Loc-RIB, and Adj-RIB-Out tables for AS C at equilibrium after

link c is cut.

of each outgoing link and thus the business relationship with each neighbour as route

selection criteria, and use AS-hop only in the event of a tie. Sometimes the Adj-RIB-Out

is also filtered so private links used in Loc-RIB are not exposed to others.

2.2 Prefix hijacks and route leaks

Prefix hijacks, or route leaks as they are also known, are one of the most commonly seen

operational incidents in ASes. Many anomalies and incidents are a form of prefix hijack

and can take from minutes to hours to fix; occasionally days if they are noticed late.

A prefix hijack occurs when an offending AS inserts itself in the AS path of a certain

prefix against the wish of the victim AS (the real originator). The offending AS can pose

as the originator of the prefix or an AS close to the origin. It is not hard for the offender

to deceive its neighbours to unknowingly propagate the false routes. If any traffic flows

in as a result of this attack, the offending AS may drop packets destined to the hijacked

prefix, creating a black hole, pose as the real destination with an impersonation attack, or
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forward to the real originator of the prefix, performing an interception attack [22].

As far as we can see, a route leak has not been formally defined in the academic

literature. It is a conventional term from the network operator community describing a

prefix hijack but usually implying non-malicious intent by the offending AS (i.e., operator

error). Recently, in a draft RFC, Dickson defines it as a route announcement to a BGP

link that violates its link classification, where a classification is one of ‘customer’, ‘transit’,

‘peer’, or ‘special’ [43]. In other words, a route leak is defined as a violation of link role.

From the viewpoint of either an attack or a compromised resource, a route leak and a

prefix hijack are the same; they differ in intention. Many operators also imply large scale

when referring to a route leak, since smaller ones usually do not require attention from

operators. Operators care about reachability; a large-scale route leak can change traffic

patterns enough to cause routers to malfunction and require manual intervention. In many

large-scale route leaks, reachability is also affected for prefixes that are not being hijacked

until the router is restarted. In the rest of this dissertation we treat prefix hijacks and

route leaks as the same and use the terms interchangeably.

Operationally, a route leak usually occurs when an offending AS announces a large

number of prefixes that it has received from one or more neighbours. Other neighbours

select this new announcement as their best route because of contractual relationships

(which make an AS prefer customers) or modified AS-path values (making them shorter or

ending in the offending AS). Then, depending on the error configuration and capacity, the

offending AS may forward all new traffic to the proper next-hop (which is inefficient), or

blackhole it (which is bad), or fail under the volume of new traffic (which can make the

offending AS go offline or be temporarily blacklisted by others).

Let us illustrate a prefix hijack using Figure 2.1 as an example topology. Suppose that

all links are functional, and that AS C and AS D have a business agreement to prefer link

e over others whenever possible. One way that AS D can cause a prefix hijack is to make

a mistake on the link e side, erroneously advertise its whole table to AS C, and further

erroneously indicate that it owns all of these prefixes (so the AS path is just D). From AS

C’s perspective, its Adj-RIB-In, Loc-RIB, and Adj-RIB-Out tables are listed in Table 2.3.

Because of a very short AS path, as well as the preferred link e, AS C now forwards all

of its outgoing traffic to AS D (who may or may not forward to the correct destinations

depending on the error configuration). AS C would also advertise these new best routes

onwards to its neighbours, possibly influencing other ASes as well.

There are some famous route leaks that are often mentioned in academic literature.

We offer a brief description of each below.

• AS7007 (Apr 25, 1997)1: the first major route leak incident, in which AS7007

received a full view from its downstream and deaggregated these 23 000 routes into

1http://www.merit.edu/mail.archives/nanog/1997-04/msg00444.html
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Prefix AS path

1.0.0.0/8 A

1.0.0.0/8 B A

1.0.0.0/8 D

2.0.0.0/8 A B

2.0.0.0/8 B

2.0.0.0/8 D

4.0.0.0/8 D

4.0.0.0/8 B D

Prefix AS path

1.0.0.0/8 D

2.0.0.0/8 D

4.0.0.0/8 D

Prefix AS path

1.0.0.0/8 C D

2.0.0.0/8 C D

4.0.0.0/8 C D

Table 2.3: Adj-RIB-In, Loc-RIB, and Adj-RIB-Out tables for AS C at equilibrium after

AS D falsely announce its whole table to C and claiming the prefixes as its own. Note in

this case we assume link e to be preferred.

around 73 000 routes as well as rewriting the AS path advertising AS7007 as the

best. Likely due to a router software bug.

• TTnet (Dec 24, 2004)2: in this incident, Turkish ISP TTnet (AS9121) advertised over

100 000 routes with itself as the destination. Its upstream took the advertisements

and propagated on, eventually affecting the whole Internet.

• Con Edison (Jan 22, 2006)3: Con Edison (AS27506) advertised many prefixes as its

own (thereby hijacking them), some of which belong to its customers, while others

are unaffiliated.

• Pakistan Telecom and YouTube (Feb 24, 2008)4: while implementing a govern-

mental censorship policy, Pakistan Telecom (AS17557) accidentally advertised as

its own a more-specific prefix in a range owned by YouTube (AS36561), which was

propagated to the world by its upstream. YouTube responded by first advertising

the same prefix, and later two more-specific prefixes.

• China Telecom (Apr 8, 2010)5: in this incident China Telecom (using one of its

AS numbers, AS23724) originated 37 000 prefixes for 18 minutes, including some

that serve websites of the US governments and military.

In the above description we can see that there are three roles in a route leak: offending

AS, victim AS, and other ASes, without any assumption of direct connectivity on any

pair of roles. Below we describe in detail a route leak for each of these three vantage

points from an operational point of view. Apart from a description of what would happen,

2http://research.dyn.com/2005/12/internetwide-nearcatastrophela/
3http://research.dyn.com/2006/01/coned-steals-the-net/
4http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-

ncc-ris-case-study
5http://www.bgpmon.net/chinese-isp-hijacked-10-of-the-internet/
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we also discuss how to detect and mitigate a route leak from each perspective. For this

discussion we use the above example prefix hijack and let AS D be the offending AS, AS

C be the victim AS, and AS A to represent any of the other ASes.

2.2.1 AS D, the offending AS

From the perspective of the offending AS, local traffic is not in immediate danger as the

prefixes being hijacked belong to others. From the control plane, it is hard to notice that

anything has gone wrong because hardly anyone monitors what prefixes are announced in

the egress direction, and if the route leak is triggered by a bug in the router software it

may not even be detectable. If the data plane is being monitored, there may be a spike in

the traffic load going through the local network if the hijacked prefixes are usually busy.

Otherwise, the offending AS may not notice that it has caused a route leak until contacted

by other affected ASes.

Assuming the attracted traffic is not beyond the capacity of the offending AS, causing

it to fail or creating the need to restart BGP routers, an outside AS (most likely the

victim or AS D’s upstream) will raise the issue. Surprisingly, this social method involving

human operators is the most effective (if not the only) way of communicating about such

incidents. The lack of any automation makes problem discovery and resolution a slow,

manual process.

We are not aware of any ASes that actively monitor or keep a history of their BGP

control plane data, or BGP updates in either direction. The current tools allow operators

to monitor if an AS’s prefixes are hijacked, but not if the AS is hijacking others’ prefixes

(an order of magnitude more prefixes would have to be monitored, which is harder to set

up). There are also other technical difficulties such as the fact that each BGP neighbour

may be seeing a customised version according to local configurations and contracts, making

it hard to track multi-dimensional history. The time it takes to set up and maintain such a

history may be hard to justify for the occasional route leak that directly affects them; the

ASes that have the motivation to keep track of their control plane are also less likely to

make mistakes that cause route leaks. The incentives exist, however, in the forms of social

pressure, threats of upstream provider disconnection, customer dissatisfaction, unrealised

service level agreements, and bad reputation.

To fix an existing route leak, AS D’s operator needs to identify the changes made by

BGP speakers that caused the leak. A common cause is the removal of a filter which lets

a group of prefixes through. A network with good change procedures should keep a log

for review of incidents. Once an offending action is identified, operators can revert the

change, and, if needed, restart relevant routers. BGP will then take over and AS D will

withdraw the hijacked routes.

Operational challenges can make mitigation hard: smaller ASes may not keep a proper
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change log, and thus take much longer to track down the offending filter. In this case, the

upstream or AS D itself could disconnect the relevant router before the problem is solved.

Another challenge is the possible excessive traffic affecting routers to the extent that they

need to be fully restarted (as opposed to a soft restart which incurs little downtime),

taking minutes before they are able to start forwarding packets. In this situation, all

traffic passing through the affected routers in AS D will be affected, not just the hijacked

prefixes.

So it is prudent to follow best practice and formulate well-defined procedures for working

on the network. By doing so, much of the risk can be mitigated. Even if something does

happen, a properly maintained network can recover much quicker and avoid downtime.

2.2.2 AS C, the victim AS

From the point of view of AS C, the victim AS, the effect of a prefix hijack is very obvious

if it starves the victim of traffic. Even though BGP is asymmetrical in that the egress

route may not be the same as the ingress route, a functional outwards link does little work

if no response packets can be received. It is even possible that the phone lines, if they are

IP-based, will suffer outage, further complicating recovery efforts.

More specifically, it is possible to detect this type of attack from both the control

plane and the data plane. From the control plane, there are online services, such as

BGPmon [182], which let operators specify a set of prefixes to monitor. A simple anomaly

check is done on those prefixes and email alerts are raised for suspicious updates (nothing

is certain because BGP does not convey intent). From the data plane, we can set up

monitors either inside the local AS or externally, to ping or traceroute to or from set

vantage points of the Internet. Many commercial services already provide this, but mostly

for application-level reachability (which would also fail if the prefixes are unreachable).

RIPE Atlas is a recent project that monitors reachability for ASes. It remains to be seen

if this service can get operators to start monitoring at scale.

In the YouTube/Pakistan Telecom incident, YouTube reacted by first advertising the

same /24 prefix, and later two /25 prefixes that make up the hijacked /24. The recovery

was also helped by the fact that the victim was prominent, so the event became widely

known quickly, and Pakistan Telecom’s upstream AS dropped their BGP session. Indeed,

apart from advertising more specifics, another effective mitigation method is by asking

the hijacker’s upstream to stop the bogus announcements at source. However validation

of ownership can be hard without a reliable resource allocation registry. The upstream

of the remote AS may also be reluctant to work with a third party against its customer,

or fear legal liability. In more obvious cases or with ASes with a known bad reputation,

upstream coordination is generally possible. However, hijacks (intentional or otherwise)

by smaller players may be self-resolving. If too much traffic is attracted, the AS that
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causes the incident may DDoS itself and its routers will be forced to shut down. When the

control plane reacts to this data plane black hole, BGP will work the way it is supposed

to, and the next best route — likely the original correct route — is selected by affected

neighbours.

2.2.3 AS A, and any of the other ASes

For an outside observing AS that is affected by a prefix hijack, the experience is not as

catastrophic as for the offender or the victim . Depending on the number of hops from AS

A to AS D, and the scale of the route leak, AS A’s border router may see a few or many

BGP announcement updates in a very short time period, up to the whole table (500 000+

prefixes currently). Most likely, the border router will process the updates without any

problem both in terms of processing speed and local routing selection updates. The speed

of incoming updates is no faster than that of a newly booted router which re-announces

its local table. The size of the overall table usually does not change. However, if an

incident similar to the AS7007 one occurred today, where a large number of prefixes are

deaggregated by the router, routers at AS A may experience memory shortage and behave

abnormally.

After the control plane changes, some new traffic may flow in since AS A’s neighbours

now pick this route as their best one. The traffic increase depends on the network topology

around AS A and its AS-hop distance from AS D. There might be little new traffic, or a

lot if AS A is very close to AS D or if AS D usually handles a lot of traffic.

Route leaks are hard for an outsider to detect. There are many legitimate reasons for

route changes, as discussed earlier, and BGP does not reflect intent. Given the lack of a

log of control plane changes, AS A may be unable to recognise the issue; and it does not

have a direct incentive because its own prefixes and customers are not affected.

Once the problem and its cause become clearer — from community mailing lists for

example — AS A may manually revert the erroneous updates by blacklisting an AS or

prefixes. Another option is to wait for AS D and AS C to sort out the issue and let

the corrected BGP updates propagate over. If the latter option is chosen, there may

be another surge of control plane traffic as AS D withdraws many of the routes it has

previously announced. The performance issue of this mass withdrawal is comparable to

that of the mass announcement phase. Many smaller route leaks probably go unnoticed,

especially if AS D corrects them in time or if AS C and AS D successfully communicate

privately without escalating to a public forum.
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2.3 Real-world BGP

The way BGP works in the real world is rather different from how its design looks on

paper. Apart from the basic reachability information that the protocol exchanges, AS-side

logic has grown more complex. The need for more than just vanilla BGP comes from the

commercial incentives faced by networks that run BGP: incoming routes need to be in

order and sorted by preference, and the outgoing routes need to be exposed for reachability

while following a reasonable traffic balance. Equipment vendors have so far provided many

filtering and traffic engineering tools in their routers.

One important feature that is recommended as best practice is prefix filters [44].

BGP design says that ASes should accept what is advertised to them but select the best

route according to local selection and preference criteria. Prefix filters allow operators to

group prefixes or sources of prefixes and assign priorities to each group, or deny specific

groups altogether. As a result, commercial relationships, such as preference for one’s own

customers, are easily expressed and reflected in the routing decision process.

Another feature that has seen some use is the maximum-prefix counter. It is a simple

idea: watch for the number of prefixes that this neighbour advertises to me. But it helps

in catching the most likely mistake in AS interconnections: a large-scale route leak. In

such an event, a neighbour would advertise many more prefixes than it normally does,

and without a threshold setting it is very easy for the local router to accept them and

propagate them as truth. Of course, a malicious AS can evade this counter if an attack is

launched on purpose.

On the egress side, AS path padding and deaggregation are two common tools provided

in routers. Traffic engineering of incoming traffic is performed when an AS wishes to

load-balance traffic across multiple connection points to the Internet. AS path padding is

used to manually create a route that will probably be treated as less preferred by others

(because it has many AS hops and thus interpreted as being farther away), by repeating

the final AS number multiple times. Deaggregation gives the owner finer control of the

traffic-load origin by splitting a larger prefix block into several more-specific blocks. These

methods are usually backup routes or accompanied by other backup routes, and create

unnecessary load on the full routing table size of other networks. APNIC, the Asia Pacific

counterpart of NANOG, runs a weekly report whose last update shows a total of 590 116

table entries that can be aggregated to 217 220 prefixes, a deaggregation factor of 2.726.

2.3.1 Running an AS

The maintenance of an AS’s connection to the outside is a continuous task; it requires

constant monitoring to ensure no downtime occurs. Although BGP is a relatively simple

6http://thyme.rand.apnic.net/current/data-summary
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protocol, its permissive attitude to many behaviours, such as its allowing one AS to modify

data received from others before forwarding, means the ecosystem can break in many

ways. Operators also add many local policies which together result in BGP getting more

complex [24]. There are many procedural tasks (such as adding a customer, or taking a

router offline to be serviced) that, if not done carefully, can lead to catastrophic failures

of the local AS and possibly its neighbours. Many ASes therefore have set processes and

procedures for changing the network; but these processes tend to be homegrown, because

of the lack of good tools to support BGP operations. Examples of potentially hazardous

common procedures include adding/removing a new customer or a peer, updating a filter,

and the provisioning of a new network device.

2.3.2 Peering

AS peering is the fundamental building block of the Internet. It allows the exchange

of reachability data with a physically reachable neighbouring AS. In practice, business

relationships come into play to make peering more complicated.

An exchange of data and traffic is a business transaction and incentives need to be

considered. Peerings can comprise of an equal one without money changing hands, or

one with an unequal level of traffic, possibly with financial compensation in the opposite

direction. Both sides also need to agree on a measurement method to determine the

volume of traffic. Service level agreements, too, can be a factor of negotiation, as different

ASes may have different levels of performance and reachability. These are just some of the

factors to be discussed in negotiating a peering contract, which is typically confidential.

Then there is the implementation of a peering contract. Network engineers need to

make sure that the configuration reflects the business intentions behind contract clauses.

As it is ultimately the actual configuration that provides the negotiated services with the

right levels of service, such configurations (and especially special cases) need to be tested

ahead of time to make sure contracts are followed.

Some ASes provide a ‘looking glass’ service to others. These are BGP tables as

seen from the vantage points of these ASes, and show potentially valuable reachability

information for network troubleshooting. Alternatively, two public repositories exist to

collect such information as well: Oregon’s Route Views7 and RIPE RIS8. Apart from a

live view, these two repositories also make all historical data available.

Even with the existence of looking glasses and public repositories of routing data, many

peerings are not reported. For example, a backup link may not have any routes advertised

on it until they are needed. Companies exporting a looking glass view to the public can

filter out routes they do not want to disclose. Public repositories do not always get the full

7http://www.routeviews.org
8https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data



2.3. REAL-WORLD BGP 37

picture either. The tree-like nature of routes that span out from one particular vantage

point also inherently miss connections between two branches further away. Larger content

providers, such as Google and Yahoo, usually peer with anyone at an exchange point, in

order to minimise transit traffic charges, and these routes do not generally show up in

public databases either.

2.3.3 Internet governance

Even though the Internet is a distributed confederation of networks, there are still a few

recognised governance bodies. One of the main responsibilities in the BGP world is the

centralised allocation of AS numbers and IP address prefixes. This falls under the care of

Internet Assigned Numbers Authority (IANA), which in turn delegates some relevant work

to Regional Internet Registries (RIR), each with the power to delegate further. Apart

from special private or reserved blocks, IP address prefixes are unique across the Internet,

and each has an assigned owner who may or may not actively use the whole assigned

range. Similarly, AS numbers are also unique across the Internet. Although prefixes and

ASes were not digitally signed or otherwise protected by cryptography until now (as we

will discuss in the context of RPKI and BGPSEC), neighbourhood watch and the honour

system ensure that nost people are honest and only use what they are assigned most of

the time.

The assignment of AS numbers is permanent, as the same number will not be re-

assigned to another entity, and the assignment of a prefix to a specific AS is generally

permanent; we have not heard of a prefix block being reclaimed into the global available

pool. Naturally, we would want a registry of AS-prefix associations for record keeping

and for other operators to know what to accept from their neighbours. It turns out that

this task is very hard. On the AS end, although AS numbers are permanent, companies

can merge, go bankrupt or change hands, all of which can lead to a change in AS number

ownership. On the prefix end, some companies have downstream customers to whom they

sell or lend prefix blocks, which can be reclaimed by the owner if needed. We have even

seen a major sale of prefix blocks, from Nortel to Microsoft, essentially treating these as

assets (but as they were assigned before ARIN, more lenient rules applied). Some registries

exist, and include voluntary registrations such as RADb and more official ones such as the

one maintained by RIPE. In both cases, the transient nature of businesses and the failure

of proper handover in case of ownership change makes ground truth very hard to obtain.

The problem will become more important as RPKI, an infrastructure needed by BGPSEC,

gains more traction. It will become worse still when cryptography is added by BGPSEC

deployment, as this will create s a very much stronger requirement for data to be correct

and up to date.

From a day-to-day perspective, network operators rely not only on the registry data

mentioned above to sniff out anomalies, but also on instinct and self governance. For
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example, a common way to coordinate and avoid possible misunderstandings is through

network operators’ mailing lists, of which the one by NANOG is the biggest. It is an open

forum where affected operators can quickly share and seek data points from others to

assess a problem. Where an offender does not cooperate, victims can also complain to

their upstream provider — usually a bigger AS who can provide additional assistance or

clarification. In this way, daily operations benefit from self-governance of the crowd, and

social pressure can often secure compliance.

2.4 Observations in practice

Following a month of internship at a medium-sized ISP, we were able to observe day-to-day

operations within an AS. The ISP has a few hundred BGP peers; it has a presence in

many countries and at a few major exchange points. Its upstream and transit providers

are tier-1 ASes, so it is very close to the core of the Internet. While different networks have

different standard modes of operation, and a procedure forbidden in one network may be

completely acceptable in another, what we have observed is not far from the mainstream

mode of operations according to informal discussions with operators from other ASes.

We also monitored the operations mailing list of a large Internet exchange point (IXP)

for 13 months. Operators would use this channel to communicate with other ASes when

actions from many others are required. In total, we observed 23 cases involving 20 ASes

reaching out to the community (three were involved in two cases each) to confirm an

anomaly or to clarify honest intent. We find two very common failure cases: tripping a

maximum-prefix due to business growth, which had 11 reported cases, and configuration

errors causing a route leak, which had 11 cases, all of which also tripped some maximum-

prefixes (according to self-reported emails). The cost of manual operator intervention

averages to almost three per month just to peer at this particular IXP. We note that the

maximum-prefix setting is always tripped in large enough mishaps, as well as causing more

chaos; while manually configuring routers is often the root cause.

2.4.1 Maximum-prefix settings

The maximum-prefix setting is a software feature found in many routers. When set, it

indicates the maximum number of prefixes a router accepts from a remote router via

a specified link. Either side of the link can set a maximum-prefix before the session is

established. It is not part of BGP itself but rather an add-on to help ASes avoid being

affected by a misbehaving neighbour. It limits damage from a neighbour who suddenly

announces many more prefixes than it normally does — a classic symptom of a route leak.

But this feature has its downside too: it is too coarse, and often punishes the innocent.

Such failures have immediate consequences, such as session termination, and cannot be
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fixed unilaterally. Sometimes it takes days before the disconnection is realised and correct

connections are re-established.

Maximum-prefix value

The maximum-prefix value is set unilaterally by one end of a BGP connection to limit

the other. Usually this value is set at around two times the current number of prefixes

received from the link. However, one cannot see the value the other end has chosen or if

this setting is even used at all (unless communicated out of band).

The maximum-prefix setting is usually used by a provider on its customers, and

sometimes between two peers. What then may happen is that one AS (the downstream

one in the first case) slowly grows over time and acquires more customers or prefixes,

eventually triggering the remote maximum-prefix value. Operationally these values are

not always reviewed to account for business growth.

What some ASes do, especially when they acquire a large customer or number of

prefixes, is to email neighbours and request an adjustment of the maximum-prefix value

(which can be done unilaterally). However, this method requires manual work and not all

mailing list recipients act on such requests. In at least one case we have observed an AS

being automatically dropped by many neighbours as a result of reaching the max-prefix,

even with an advanced email warning.

Dealing with a reached prefix

Different actions can be executed automatically by the router when the maximum-prefix

count is reached. In all three major router implementations — Cisco, Juniper, and Quagga

— we can set a warning threshold before the actual limit. When the number of prefixes

eventually reaches the hard upper limit, Cisco and Quagga allow session drop or log only,

while Juniper can either reject new routes or log only.

All three options can potentially cause problems. Session drop is the most severe, as it

cuts the neighbour off completely, including previously received routes. Re-establishing the

connection after a session drop can be done manually or automatically after a preset time

interval, sacrificing either timeliness or flexibility (and there may be other issues since the

maximum-prefix value cannot increase by itself even with automatic retries). Rejecting

only new routes but keeping the old ones is more reasonable, but legitimate routes may

be rejected silently and unilaterally, affecting the local view of the global routing table.

Finally, a logging-only reaction can be of little operational value, as human intervention

will probably not arrive in time.
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2.4.2 Filtering and registries

Maximum-prefix settings are the most coarse example of prefix management. In reality,

more fine-grained methods exist. They are done at the router or AS level to optimise or

ensure the sanity of routing data received from or sent outside. In the general case, any

part of the BGP update attributes can be matched or manipulated. In reality, most filters

relate to prefixes or AS-paths.

Filters are used extensively by operators. While simpler setups mostly use filters to

ignore paths to RFC-specified private prefix blocks, others may have one or more filters

for each BGP link, filtering either egress or ingress advertisements, or both. As a result,

filters have a direct impact on local policy, and therefore on routing decisions.

Filter management

Even with just a couple of filters per customer, the total number of filters can quickly

grow out of hand, and managing them effectively becomes a real problem. Unfortunately,

the usual way to manage filters is through the command line interface (CLI) of the router,

which suffers from many usability issues. For example, manual entry of AS numbers or

prefix addresses (especially in IPv6) is vulnerable to typos, the CLI commands require

experience to drive well, and their outputs are not informative.

Many better-managed ASes have a private collection of scripts that they use to work

with their networks. Though a slight improvement, these scripts also suffer from many of

the drawbacks of direct CLI: usability can be poor with uninformative outputs, manual

entry of some data (i.e., filter name, prefix addresses) is still required and can be error-

prone; and the robustness of these scripts are uncertain. They may be good at what

they are designed to do, but become complex and fragile over time. The usual software

development pitfalls apply to custom scripts as to everything else.

While filters are an effective tool to stop route leaks, we learned that they are also the

cause of route leaks. It is not uncommon for operators to remove filters for maintenance

or replace them. Since BGP does not support atomic operations and router support for

filtering is primitive, human errors are common to encounter. If a wrong filter is removed

or if something unexpected occurs, routes that are previously blocked by a filter can

propagate to an undesired neighbour. For example, there are some routes that are only

meant for downstream customers or the local network; mistakes in filter management can

leak them to upstream providers and peers. Worse, the CLI does not provide contextual

information such as the number of routes ‘in effect’, or affected, by each filter, which can

warn the network engineer to be more cautious when working with a large filter. The

CLI also does not provide the number of routes that are unblocked after the removal or

modification of a filter. As ingress filtering becomes too complicated to manage towards the

core of the Internet, ASes are expected to self-filter their egress updates. A well-positioned
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AS near the core of the Internet can seriously affect the Internet as a whole, all from a

single mistyped filtering command.

Registries and ground truth

Registering a prefix block at a registry demonstrates ownership and responsibility, facilitates

filter construction as owners can indicate some preferred policy in the database, and

provides a way for others to reach the operator in time of need. In reality many factors

hinder the reliability and accuracy of registries. Registries not in the hierarchical chain of

Internet governance such as RADb have no means of verifying the legitimacy of a claim

of ownership. Legacy address blocks that were assigned before IANA, which is now in

charge, do not fall into the hierarchy. Operators may not keep their prefix lists up to date.

Companies are merged, bought, or dissolved without removing their registered prefixes,

leaving the later owners of the same prefixes unable to register without going through

lengthy bureaucratic processes. A recent study has found varying quality of registry data,

showing a mix of acceptance among operators [98].

Despite these issues, registration is still considered good practice. Some ASes even

require, as part of their peering policies, that their neighbours register. In part, it is because

filters can be generated automatically with a consistent online database, thus reducing

human errors when working with filters; registration also allows timely propagation of

updated information without the need for human intervention in each neighbour.

2.4.3 General observations

Our general observation is that current management software is inadequate in supporting

what operators wish to accomplish. From the mistakes we have observed, operators cannot

easily express their intentions in terms of a set of router commands. As a result, day-to-day

management of filters and routes can cause advertisements to unintended BGP neighbours,

even if the triggering task is only concerned with internal routes or specific neighbours.

Filters are often the only mechanism stopping such mistakes, yet they are also rapidly

changing, thus leaving room for error.

We believe a top-down mandatory access control mechanism can help operators by

creating a new class of long-term route advertising and filtering policies, and making them

harder to modify to prevent accidental changes.

2.5 Adding Mandatory Access Control (MAC)

Our goal is to separate day-to-day operational procedures from long-term invariants. The

need for this separation was suggested by our observations in Section 2.4. Even though
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filters and routes are often changed, some general invariants hold. For example, routes

from one upstream provider should not be advertised to a different upstream provider,

and deaggregated routes of customers should not be advertised to the rest of the Internet

without being aggregated first except for special routes. In other words, the neighbour

from which a route is accepted dictates where the same route can be advertised.

The relationship of which egress neighbour can receive routes from which ingress

neighbour does not easily change, and is the long-term invariant we want to enforce. When

these long-term invariants are violated it generates BGP updates that are announced to

other neighbours, affecting others and potentially requiring their cooperation to restore to

a previous sane state. In general, day-to-day procedures, such as changing internal paths

through which routes are received and distributed, tend not to involve other ASes. When

internal paths are changed, few outside neighbours are affected.

It is natural to group neighbours into roles depending on business relationships. Three

most common roles are provider, customer, and peer. Other groups can exist for ASes

with more complex business relationships, and special arrangements can be in their own

roles. Thus, Role-Based Access Control (RBAC) appears the natural security policy to

use. Top-down enforcement makes the policy a kind of mandatory access control, or MAC.

Strictly speaking, the operator has full power over the network, and is not limited by this

‘MAC’: but we propose to make it harder to change what our MAC enforces; and while

the operator can still modify or override existing invariants, it takes deliberate effort, and

cannot be done accidentally. So we feel justified in using the term ‘MAC’ for it.

2.5.1 Design and implementation

We designed RBAC as a MAC mechanism and implemented it by modifying Quagga,

an open-source BGP speaker9. The design consists of two parts: classifying incoming

routes into their respective roles, and enforcing outgoing announcements based on these

roles and the relevant egress neighbour. When a route is first received, it is processed

through filtering functions before being added to the main Loc-RIB table for selection.

Just before it is added into Loc-RIB, we add an extra attribute to each route — its ‘role’

according to the policy’s neighbour-role assignment. All routes from the same neighbour

are tagged with the same role, but the values are repeated for each role as they are stored

on a per-route basis.

Enforcement comes at announcement time: when a route is identified as the best, it is

advertised to neighbours. For each neighbour to which Quagga is about to advertise, we

insert a check on the role of this particular route, and verify whether it is permitted to

be announced to this neighbour. If, due to a filter error, routes to one upstream provider

are advertised to another upstream provider, a very large amount (up to the full table) of

9http://www.nongnu.org/quagga/
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routes will undergo this process within a short window. As these routes may have different

role attributes, they are processed independently.

A high-level overview of the Quagga update logic is shown below. In our prototype,

we add steps 5 and 8.

1. Receive from BGP neighbour

2. Store in Adj-RIB-In

3. Parse route and attributes

4. Basic checks, apply incoming filter and modifier

5. RBAC role assignment

6. Insert or update into Loc-RIB

7. Route selection

8. Check newly selected route against RBAC permissions

9. Store in Adj-RIB-Out

10. Send to BGP neighbour

One advantage of our mechanism is that it is deployable by an AS unilaterally. Unlike

protocol upgrades such as BGPSEC, we improve on the network management workflow,

and do not require outside collaboration. This gives a strong economic incentive for

deployment to ASes because they are direct beneficiaries by adopting our software and do

not need to wait for the network effects to catch on.

Within the current Quagga design, it is not possible for our access control mechanism

to defend against exploits against the Quagga software itself. We cannot minimise our

code into a reference monitor and depend on it alone to restrict what Quagga can and

cannot do. Consequently, our threat model does not include software bugs within Quagga.

It is also not possible to guard against intentional attacks from the same operators

we are trying to help. As we just make it harder, but not impossible, to announce

updates beyond RBAC policy, there are still many legitimate needs for special updates

that require operators to override RBAC checks. In the end, we focus on careless errors

rather than targeted attacks. A complementary class of attack is intentionally misleading

(and therefore malicious) BGP updates from other ASes. While we do not guard against it

either, BGPSEC considers it in its scope. We discuss the extent of its success in Section 2.6.

Another shortcoming is the action we can take after a route is blocked from being

announced by RBAC checks: currently we drop the route with an alarm, but because a

route is prevented from being announced after the BGP decision process, the neighbour on

the other end of the BGP link would be deprived of this announcement and thus become

inconsistent with our view for this particular prefix.

This shortcoming is actually inherent in BGP design. In the route selection process, a

best route for a given prefix is selected for all neighbours instead of on a per-neighbour basis,
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BGP link (incoming) Role

d provider

e peer

local self

BGP link (outgoing) Role Decision

d customer permit

d self permit

e customer permit

e self permit

Table 2.4: RBAC assignment table (left) and permission table (right) of AS D. In the

assignment table, roles are assigned based on BGP link; in the permission table, decisions

are made based on the BGP link and the role. Only the permit entries are present in the

permission table as the default decision is deny.

which is where our RBAC operates. Without a way to automatically force the routing

selection again, we can only rely on operators to correct the issue manually. However, it

should be noted that the inconsistent state only affects relevant neighbours and does not

affect the local AS. It also only affects these neighbours by announcement starvation, and

all their existing routes will still function meanwhile. Also, this inconsistent state can only

be generated by a local configuration change, an external AS cannot cause it. Therefore it

cannot be used as an attack vector against users of our mechanism.

2.5.2 Evaluation

Let us illustrate how our RBAC extension stops an accidental prefix hijack as discussed in

Section 2.2 (see Figure 2.1). The misconfiguration leads to undesired behaviour because

link e is preferred by business agreement between AS C and AS D. Suppose D unilaterally

deploys our RBAC version of Quagga, and labels each (incoming) link with roles as in

the left part of Table 2.4. Note that these roles are directional: should B also deploy our

Quagga it would label link d as customer. We also add a self role for routes of prefixes

owned by D itself. Here D is a typical AS receiving a full BGP table from B, its upstream,

and it has a peering with C. It is likely that neither C nor D wishes the advertisement of

a full table from D to C, as C has its own upstream provider which is faster and more

reliable. Therefore link e should only carry routes to C and D’s own prefixes and those of

their (possibly non-BGP) customers. When link e is first set up, D configures the RBAC

permission table as shown in the right part of Table 2.4.

Now suppose an operator of D makes a mistake in filter management, and removes a

filter which in turn causes it to advertise its own full table to C via link e. In Section 2.2

we see this is how a route leak occurs. However with our RBAC addition, step 8 stops the

advertisement because link e and role provider evaluates to deny (as the default decision).

The operator is then notified and can reverse the relevant operations. The advantage of

our version of Quagga lies in the fact that it is impossible for an operator in D to overcome

this permission check accidentally, unless the RBAC assignment table or permission table
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Mean Std. dev. Median

Stock Quagga 2.25 s 0.119 s 2.21 s

RBAC-Quagga 2.30 s 0.145 s 2.24 s

Overhead 2.54% 21.8% 1.13%

Table 2.5: Performance of stock Quagga versus RBAC-Quagga in loading 579 155 routes

from a BGP neighbour. Units are in seconds except for overhead ratio.

is modified. The extra steps required to perform such modifications makes accidents less

likely.

With the introduction of steps 5 and 8, we add a small penalty in Quagga performance.

So we wish to measure the performance overhead during large updates such as a full

table. We take the BGP snapshot RIB as seen by RIPE RIS at London Internet Exchange

(LINX) at start-of-day of 2016-03-01, and load it into a stock Quagga to simulate an

upstream provider. In all 579 155 prefixes are present, and each prefix has one route

to it (post-selection). We configure an RBAC-Quagga to peer with it and bring up the

connection, forcing it to receive with role assignment all routes as fast as possible. This

process is repeated 10 times, and is then repeated 10 times with a stock Quagga in place

of RBAC-Quagga. The results are shown in Table 2.5.

In terms of memory overhead, with stock Quagga 40 bytes are used for each route.

Additionally, each prefix has additional pointers to structured objects that may be shared

among different routes. For example, if an AS path is the same for multiple prefix routes,

then it is shared in the same memory (called interning in Quagga code). Our current

modification allocates an additional one byte into each route, allowing for 256 possible

roles. The same full-table snapshot from LINX, including selected and all unselected but

eligible candidate routes, contains 5 299 916 routes in total. With one additional byte for

each route we require approximately an extra 5.3 MB of memory. If we were to modify

the code further to take advantage of interning, there would be only one extra byte for

each role present, a minimal impact on memory.

We noted above the difficulties caused by simple mandatory rules such as max-prefix

and filtering, in that rejected updates can require manual intervention and even lead to

inconsistency. Our view is that will have to be some hard rules, but they had better

be designed properly and tested thoroughly in real environments. Using more general

mandatory access control mechanisms such as RBAC creates the design space in which

this can be done; we do not claim that the design task itself will be trivial. (Indeed,

the deployment of mandatory access control systems such as SELinux in Android and

elsewhere has required serious engineering effort). However there is one reason why this

task cannot be avoided much longer, and that is the forthcoming introduction of BGPSEC.
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2.6 RPKI and BGPSEC operational challenges

Recently, there has been much work on a proposal to secure the semantics of BGP, in

particular the AS-path attribute. As noted above, there is an active Secure Inter-Domain

Routing (SIDR) group working on specifications as part of the IETF10. The proposal comes

in three steps: first, a Resource Public Key Infrastructure (RPKI) is to be designed to

enable the storage of signed AS to prefix block mappings, and this is already an RFC [108];

then, prefix origins (the last AS number in the AS-path) will be checked against this RPKI;

finally, with BGPSEC11 the whole AS-path will be checked for validity, and each AS will

sign the paths they announce, wrapping AS-path in an onion-type signature scheme. In

contrast with the mandatory access control mechanism proposed above, where we make

sure an AS cannot make mistakes within its own domain, BGPSEC ensures the integrity

of routes after they are announced by an AS.

The main class of benefits that BGPSEC brings is to vastly reduce the number of ASes

that can manipulate a given prefix. Whereas any AS could do this previously, routing will

now only be vulnerable to ASes that are legitimately in the path of route propagation.

Because signed updates also protect the order of ASes on a path, fewer ASes can now

claim to be close by the origin of a prefix, and the farther they are the less influence they

will have should they do a prefix hijack. The prefix originator can now know that its prefix

is harder to manipulate, and an AS receiving a route can now be more confident that the

announcement is genuine.

However BGPSEC does not fix where an AS sends a route after it legitimately receives

it. A route leak is still possible even with full RPKI and BGPSEC. The MAC mechanism

we proposed above fixes this exact problem for the case of accidental configuration errors.

It is complementary to BGPSEC in that it protects what happens inside an AS. However,

because deployment of our MAC is voluntary, a malicious or compromised AS can still fail

to use it and mount an attack.

With the introduction of cryptography in RPKI and BGPSEC, new sources of error also

arise. It has been shown that a regular computer user cannot work with PGP encryption

competently [178], and most network operators are not much better trained cryptography.

BGPSEC management software need to be sufficiently usable to ensure that the already

fragile BGP may not be subject to a new class of mistakes. Our MAC mechanism can

help ensure that those thing that should not go out do not go out, but cannot monitor

for the opposite and ensure that everything that should go out will. For example, if a

signatures are not done properly, for any one of a number of technical reasons, then novel

failure modes can arise that lead to denial of service and black holes.

Similarly, RPKI is a cryptographically-strong source of AS-prefix ownership, and will

10http://datatracker.ietf.org/wg/sidr/charter/
11Draft RFC: https://www.ietf.org/id/draft-ietf-sidr-bgpsec-protocol-15.txt
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be relied on to generate and check routes within BGPSEC. Whereas various current routing

registry databases are optional, and therefore not maintained by ASes to be up-to-date, an

outdated RPKI will seriously disrupt route generation and propagation. It is a new task

for network operators to keep up, and a new source of potential error; the introduction of

cryptography will require a step change in the quality of AS administration. RBAC goes

with the grain of this.

The road to BGPSEC, or any other improved protocol, is long and difficult. New

technology will likely propagate across the Internet slowly. Smart operators will recognise

the potential benefit but many will be reluctant to be the first to adopt, due to the lack of

incentives that these protocols give to first movers and the difficulty of doing a proper

implementation without mature tools. Luckily, we have seen some technology-motivated

ASes allocating some engineers to give RPKI and BGPSEC a try, while sharing their

experiences among other ASes12.

2.7 Conclusion

In this chapter we take a practical view of BGP operations. Through performing fieldwork

at a medium-sized ISP and hanging out on operators’ mailing lists, we discovered the

major BGP failure cases faced by operators. We found that current tools are inadequate

for supporting BGP operations; many erroneous configurations can easily be made that

affect both the local AS and others nearby.

We propose a mandatory access control extension to BGP management software using

RBAC. By assigning different BGP links into roles, and by requiring operators to denote

neighbour-role relationships at setup time, we can ensure this information is enforced in

a way that is unaffected by transient local changes. A policy can thus be set to limit

accidental announcement of routes into non-permitted neighbours. We prototyped this

using Quagga and tested it; we found minimal overhead.

While BGP is migrated to BGPSEC over the coming years, it will be insufficient to

protect only the protocol. A lot of work will have to go into how operators actually use

BGPSEC. If accidents are just as easy to make, then the BGPSEC infrastructure will not

add much value, and ASes may be reluctant to invest in it, as it does not give much in the

way of incremental local benefit. Fortunately, our RBAC extension does offer such benefits

and works with BGPSEC as well, complementing it in ways that may make BGPSEC

more usable and more attractive. It can also mitigate the increased workload and fragility

that BGPSEC may introduce.

12https://www.nanog.org/sites/default/files/wednesday_george_adventuresinrpki_62.9.

pdf

https://www.nanog.org/sites/default/files/wednesday_george_adventuresinrpki_62.9.pdf
https://www.nanog.org/sites/default/files/wednesday_george_adventuresinrpki_62.9.pdf


Chapter 3

Access control for SDN

Software Defined Networking (SDN) has enabled significant network innovation and cost

reduction, but network control in the face of competing uses remains a major challenge.

Where competing tenants share a data centre network, network control must reconcile

conflicting policies and enforce activity access controls in a complex virtualised environment.

In this chapter we introduce AXE, a prototype attribute-based access control system that

enables SDN controllers at both the tenant and fabric levels to manage SDN applications

(apps) in a clean and consistent way. Experiments show that our prototype introduces

modest overhead for a scalable design that is demonstrated to support a range of different

SDN applications. Clean virtualisation enables our access control system to support

hierarchical virtual networks with separation of policy and mechanism, policy conflict

resolution, and separation of the stateless and stateful aspects of access control. We

discover that stateless access controls for virtual SDN controllers map canonically to

stateless firewalls, which enables us to draw interesting and more general lessons about

both access control and firewall design. Not only can the stateless aspects of firewalls

migrate to the SDN infrastructure, giving greater flexibility, manageability and assurance,

but we can manage security state better by breaking it out into apps where its logic,

dependencies and possible conflicts become much clearer.

3.1 Introduction

Software-defined networks replace specialist network devices such as routers and load

balancers with combinations of commodity network switches based on low-cost merchant

silicon. These switches provide a set of common, well-defined interfaces (e.g., the OpenFlow

protocol [123]) for their control. Control-plane processing can in turn be implemented on

any general-purpose computer; although rarely a commodity beige box, SDN controllers

operate on a range of systems from the built-in low-power CPU chips common in switches

themselves, through speciality network-control hosts with various levels of redundancy and

48
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reliability, and even to virtual machines in a data-centre environment. The success of SDN

is largely due to flexibility and the ability to operate across a range of equipment from a

variety of vendors. The flexibility of SDN and its inherent reduction of complexity [192]

have been a significant attraction for environments where network functionality was a side

effect of combining routers, switches, and middleboxes from a range of different vendors. In

an SDN, the complexity becomes software within a controller, cutting the cost of network

equipment, while providing more efficient utilisation of network capacity and more effective

delivery of network functions.

By replacing proprietary network hardware with white box switches supporting an

open standard, SDN enables developers to compete by offering network functions as SDN

apps. The vision is that SDN apps can be developed, distributed, downloaded, installed,

and used in much the same way as mobile phone apps. An example SDN app is a load

balancer, distributing incoming web traffic among a number of servers on a tenant network.

In a large multi-tenanted data centre, this might be provided as a service by the centre

operator; but tenants might also buy such an app from their vendor of choice and run it

on the controllers of their tenant network. This is good for competition and innovation,

but quickly raises the question of access control. We need to prevent a range of attacks, as

Alice’s load balancer can interfere with Bob’s, or with some other functionality in Bob’s

tenant network, or even with the underlying data-centre fabric itself.

Current SDN systems are designed to support multiple concurrent apps. However,

when a controller runs multiple apps within a single network it assumes orthogonality or

failing that, a strict (pre-declared) ordering [125]. The sharing of stateful information,

resource and control among different apps within the same SDN fabric, or indeed instances

of the same app operating on different (virtual) networks within the same SDN fabric,

remains an unsolved problem, and is the problem that motivated the work reported in

this chapter. It has been ignored until now because early SDN deployments have been

commonly in the data centres of the big service firms where everything is under the control

of the same network administrators, the deployment environment is relatively homogeneous

and any conflicts that do arise can largely be resolved by ad hoc mechanisms, such as

reference to the lowest common manager. Additionally, within such deployments there are

relatively few apps and those tend to have been written by highly-skilled engineers.

However, we imagine this industry taking a similar path to mobile phones, with app

stores offering a multitude of products. The many tenants of a large data centre might

each be provided with their own dedicated tenant networks and expect to run all sorts

of apps for monitoring, load balancing, intrusion detection and new functions yet to be

invented. We need only look to Android and iOS for some guidance on what we could

expect from such policy enforcement mechanisms. Each app might have a manifest stating

what kind of paths it expected to be allowed to set up, tear down, manipulate, or monitor;

any policy conflicts might be resolved either when the app is first authorised (as in older
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Androids) or when a capability is first used (as with iOS and the latest Androids). And

just as a phone app needs to be explicit about what resources it needs to access (e.g.,

the phone, the contacts list, GPS location or the camera), an SDN app may only require

access to a certain subnet, a limited tuple of ports and hosts or only to certain middleboxes

and end hosts. However, it is no longer enough to assume that one app will not interfere

with another whether maliciously or accidentally. The evolution seen in mobile app access

control over the past ten years appears inevitable for SDN apps too.

In the remainder of this chapter we will articulate aspects of our vision for policy

and control in such an environment, and what our experiments teach us. The rest of

this chapter is organised as follows. In Section 3.2 we present a use case, of an airport

network with several thousand tenants including airlines, service companies and government

agencies. We develop from this a threat model for large multi-tenanted SDN networks.

We assume that such networks are implemented using a hierarchy of controllers, each

of which contains a number of virtual controllers that each controls a tenant network,

and which issue commands through the hypervisor to the relevant switches. We then

describe the separation requirements of three SDN apps currently available in the SDN app

store. In Section 3.3 we describe AXE, our network access control engine. Our prototype

is coded in Python to run with the Ryu open-source controller1. We then evaluate its

effectiveness for several use cases. In Section 3.4, we observe that the rules our access

control engine must enforce map canonically to the rules implemented in stateless firewalls

since the 1990s. We discuss the implications; rather than controlling flows by filtering

already-generated packets, it is faster, cheaper, and more flexible to prevent unauthorised

flows being created in the first place. In Section 3.5 we discuss the extra functionality

needed to resolve policy conflicts. In our discussion of related work (Section 3.6) we draw

out many interesting parallels between the access controls and firewalls; their convergence

in the SDN case brings together 50 years’ worth of access control research with 25 years’

worth of research on firewalls, which we believe will be a very fertile source of new research

directions. Finally, Section 3.7 draws our conclusions.

3.2 Access control in SDN

Almost all the deployment of SDN to date has been in large corporate data centres

(e.g., [89].) These are the easy use case: environments with uniform network function

requirements, relatively homogeneous network equipment, a high level of operational skill

and unified administrative control. There are also some islands of use in government, at

Internet Exchange Points, and in local parts of corporate networks. The next challenge

is to provide SDN advantages to more complex networks, particularly those with serious

separation requirements. Examples include different government departments, or between

1https://osrg.github.io/ryu/

https://osrg.github.io/ryu/
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an investment bank and its retail banking arm, where regulators may require a Chinese

wall. We must provide the necessary isolation.

In a complex network, the power to arbitrarily change connectivity will no longer be

under the complete control of all or even most operators. As different departments or

different tenants start sharing the same physical network, controllers will run external

code whose goals represent different and possibly conflicting user interests. For a host of

regulatory and dependability reasons, different users, departments, and tenants within the

same network will need to be isolated.

As a worked example of a network requiring such isolation, consider a large international

airport such as JFK, SFO or Heathrow. There, physical, business and regulatory constraints

mean that multiple tenants must share the same physical network. For example, Heathrow

airport has some 3000 firms sharing its network, with about 180 000 badged staff; in

addition, millions of members of the public use WiFi access points. We will discuss this

environment in much more detail in Chapter 4, but for now the salient points are that

the tenants include airlines who compete with each other, some (such as El Al and Iran

Air) being associated with states that are at war with each other. There are emergency

communication services with which no tenant may be allowed to interfere, and shared

services such as ACARS which are almost as important (ACARS enables airlines to

communicate with aircraft and file flight plans). There are common broadcast services,

giving information such as which aircraft is at which gate. Finally, there are government

bodies such as the UK Borders Agency which inspects the passports of arriving passengers

and needs access to classified systems.

The mechanisms currently available to provide isolation and indirection in an SDN

are insufficient. At present, there are principally two tools: slicing and abstraction. With

slicing, the host creates a partial view of the network and allows a user to work within it.

With abstraction, the user does not know the underlying topology but can create logical

switches which are then interpreted and mapped on to the actual physical network. We

review each type in greater detail in Section 3.6. However, neither model can tackle the

need for shared services and resources such as ACARS, a service which needs to interface

with every airline. The complexity of control is not simply limited to a physical port; or a

network tuple, we might also need to make access a function of time, as check-in desks

may change allocation from one airline in the morning and another in the afternoon.

3.2.1 An SDN network threat model

In a pre-SDN network device the code that provides the control plane comes principally

from the hardware vendor, and is customised by the host network operator using router

scripts. These install or uninstall specific paths and operate at the level of an assembly

language. With a complete understanding of the network, the network operator may
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exercise perfect control. However the usability is poor and maintenance is hard. It is

difficult in practice to get the flexibility that customers want, and dependability is also an

issue. The lure of SDN is not just escaping the lock-in of proprietary hardware, but the

promise of using proper computer science abstractions to manage networks flexibly. But

with this Eden comes the serpent. The network is potentially exposed to all the many

things that can go wrong with software.

In particular, SDN potentially brings external software. Network operators set up

a fabric of SDN controllers which in turn set up virtual networks for tenants, and the

tenants start, run, and manage SDN apps. These apps may be written by third-party

developers and are developed to be deliver a wide range of different network functions,

including (with luck) many new ones we have not thought of yet. The operator wants

their tenants to manage their own network resources and apps, and wants the fabric to

provide suitable isolation so that they can do this without getting in each others’ way.

Figure 3.1 illustrates a typical SDN setup, while Figure 3.2 is a multi-tenant version.

SDN 
App1

SDN Controller

SDN 
Switch1

SDN 
Switch2

SDN 
Switch3

SDN 
App2

Figure 3.1: A typical SDN setup: a single network with two apps operating across multiple

switches.

The switch from vendor code to third-party code is the key in our threat model. A
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SDN Controller (fabric)

SDN 
Switch1

SDN 
Switch2

SDN 
Switch3

SDN Controller
(virtual)

SDN 
App3

SDN 
App4

SDN 
App1

SDN 
App2

SDN Controller
(virtual)

Client1 Client2

Figure 3.2: An SDN setup illustrating multiple tenants, each tenant similar to Figure 3.1.

traditional network permits any command entered into a router to have full access to the

control plane. With SDN apps, we can no longer assume network control software to be

rigorously tested, as it is no longer written by either the router vendor or the host network

operator. As with mobile apps, developers will range in quality and trustworthiness. Even

in the absence of malice, SDN apps may be harder to test rigorously because of the different

ways tenants set up their networks, which will not generally be known in advance to the

app author. They may contend for control of the same resources or generate conflicts in

subtle ways; and as different developers have different incentives, they may be assumed to

behave strategically rather than altruistically.

Current SDN controller implementations essentially assume trustworthy app code.

They provide common helper functions and OpenFlow protocol translation, and will

perform any operation the app requests. In a multi-tenant environment this is no longer

appropriate, and code must be assumed to be malicious. In Needham’s words, ‘Going all

the way back to the early time-sharing systems, we systems people regarded the users, and

any code they wrote, as the mortal enemies of us and each other. We were like the police
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force in a violent slum.’ [4]

Apps, and tenants, need to be isolated robustly from each other, and from the network

fabric. The host infrastructure will have to provide the appropriate isolation and sandboxing

mechanism, like any other computer system shared by mutually hostile users. Our threat

model follows from the use case of an airport network whose tenants include El Al and

Iran Air.

3.2.2 Virtual controllers

We illustrate an SDN architecture where a physical controller may host multiple virtual

controllers (VCs): one for each tenants network. The virtual controllers interface to

the physical controller manipulating the pre-agreed tenant ports across the appropriate

switches. Utilising the classical hypervisor definition, we extend it beyond a single machine

and out to the network in its entirety [139]. In this way the VCs are managed by a network

hypervisor; thus the controllers in each tenant network are virtual entities that can be

spawned, replicated, and killed.

The network hypervisor enforces a reference monitor in the form of a shim between

each VC and the physical network. This checks that the VC is abiding by the relevant

access control rules and enforce them if required by blocking any forbidden OpenFlow

commands issued by an app on that VC. This means that the virtual controller software

does not have to be fully trusted; and because the hypervisor has a dedicated role, we can

try to make its code small and simple so as to minimise its attack surface and to make it

verifiable.

In a future large SDN network, we expect a hierarchy of virtualised controllers. At

the top, the network owner and operator sets its policy. The rules are then propagated

downwards to the lower-level hypervisors and virtual controllers. As a further conceptual

model, imagine a network service provider whose customers are banks in a financial centre.

On signing up a new bank, the operator will want to add new nodes to a number of the

bank-controlled internally-administered VPNs (Virtual Private Networks) within its tenant

network, to support access to a number of different stock markets, news wires and other

services that may have special quality-of-service requirements or separation policies, such

as between retail and investment banking. Similarly, if a bank signs up to a new market or

service, the operator will want to extend it to the bank’s relevant VPN within the tenant

network, perhaps to multiple bank branches. Managing such complexity in a manner

that is straightforward, transparent and (especially) auditable is one of the attractions

of SDN compared to manipulating long batches of router commands, or making network

configuration change requests of a centralised hosting facility.

In addition to providing security properties such as class of service and separation,

our approach maintains the flexibility of the SDN approach. We can enable customers



3.2. ACCESS CONTROL IN SDN 55

to ‘bring-your-own-controller’, and configure and use it entirely orthogonally of any other

tenant, by choosing whatever VC software will best support their choice of apps. This

freedom of choice makes it easier to attract and onboard new customers; the network

operator’s trust does not reside in the VC but in the hypervisor. In the event that a

user’s VC starts behaving abnormally or even maliciously, the network operator can kill

or restart it with minimal impact on other users.

A capable controller hypervisor can therefore add real business value by providing SDN

access control independently of tenants’ choice of VC. How can we go about building one?

3.2.3 Current apps in an SDN app store

We investigated the one currently functioning SDN app store, which is run by HP2. We

surveyed the apps on offer and identified three distinct types: optimisation (e.g., a load

balancer), monitoring/visualisation (e.g., a network visualiser), and host management

(e.g., a honeypot or host isolator). We investigated what sort of access control each of

these might require.

An optimisation app uses existing knowledge and real-time updates to provide high

availability given existing network and host resources. There may be additional require-

ments such as affinity, so that an individual flow or host will see consistent behaviour.

An example is a load balancer for web servers. Here, incoming requests are diverted to

one of N web servers to share the load. The load balancer app receives TCP connections

destined for a web server and forwards it to the server with the least load at the time, or

perhaps to the server that that user most recently used, in the case that the tenant wants

to use affinity to boost performance.

In the monitoring and visualisation case, apps gather traffic data from the network,

run analytics of various kinds and report the results. What they monitor may be a specific

service, traffic-breakdown by user or application, or more general indicators of network

or system health. An example is a network topology visualisation tool that displays the

traffic volume on each link in near real time.

Our third class is host management tools, which identify and deal with hosts that

need some kind of special treatment within the network. For example, in a network with

WiFi access points, an app may require a new host to log in via a web page and then be

allocated to a specific VLAN, so that VLANs get reconfigured as machines move about.

Another example is a malware containment tool that looks for hosts sending email other

than through a designated mail server and responds by quarantining suspected cases of

infection into a walled garden subnetwork.

Not one of these apps needs to be omnipotent. A load balancer needs to distribute

incoming web traffic among a fixed set of devices; a network visualiser needs real-time

2https://saas.hpe.com/marketplace/sdn

https://saas.hpe.com/marketplace/sdn
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read-only access to each relevant switch; and a WiFi manager needs to be able to set up

and tear down specific VCs at relevant network nodes. If the load balancer has the ability

to insert, modify, or delete arbitrary flow rules, it can easily issue commands to intercept

or modify non-web traffic, such as SSH. An evil app could coordinate with a malicious

intranet host to exfiltrate sensitive data. In a topology visualisation tool, even a single

write or modify operation on topology is quite unnecessary. A host management app

can put insecure hosts into a top secret network by giving it a corresponding VLAN tag;

restricting an app to its own clearance level is necessary. The hardest case is the malware

containment tool, but this merely needs to be able to move hosts to a specific subnet.

The common theme is that while apps make it easier to manage the network, there

are currently no real bounds on what they can do. Current SDN security is at the same

place mobile phones were ten years ago in the days of Symbian UIQ2, or where PC

operating systems were with Windows 95. In these environments apps had to be trusted

and the accidental or intentional malice of co-resident applications had to be accepted as

an operational hazard. Such systems cannot cope well with malicious or even strategic

users. Moving SDN to a modern world of app stores will take significant engineering,

comparable to the work done on both PC and phone operating systems over the past

decade.

3.3 An access control engine for SDN

3.3.1 Security model

Our concept of operations is basically a reference monitor that sits between the hypervisor

and a virtual controller, able to look at the commands it issues and check if they comply

with the policy set by the relevant authority, which is the network operator in the case of

the underlying SDN fabric and the tenant in the case of the tenant’s VC.

Initially we conceive of access control policy in terms of tuples of subject, object, action

and context, a notion we will refine later. The subjects are individual apps; the objects

are switches, subnets, individual IP addresses and port/protocol tuples; and the actions

are reads and writes. We deal with higher-level objects such as OpenFlow messages by

forming a mapping from a higher-level object to a pre-determined set of lower-level objects.

Read-only access means only allowing commands to move data from the switch to the app

without accepting a reply, while write access allows flows in both directions.

A classic way of defining policy is using an access control list (ACL) stating for each

resource whether it may be read or written by its owner, a relevant group, or by all. A

more general mechanism is Role Based Access Control (RBAC), where most users can

be assigned to one of a small number of roles (e.g., bank clerk, branch accountant) and

each role has a set of permissions. RBAC is more suitable for managing large complex
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installations but suffers in its original form from several drawbacks. First, there is not

any mechanism to restrict access by a context such as time of day (e.g. ‘El Al may run

its VPN to checkin desks 64–70 from 6pm until 11pm each day’); it also does not offer

the ability to separate instances of an app (e.g. ‘The airline El Al can run its network to

checkin desks 64–70 and the airline Iran Air can run its network to desks 17–22’). For this

we need a more recent and more general model of RBAC, namely Attribute Based Access

Control (ABAC).

ABAC provides a framework in which we can assign attributes to each subject (apps),

object (network devices), action (read, modify, etc.), and context attribute (time of day,

traffic load, etc.) to generate a permission decision. When roles are mutually exclusive,

this essentially becomes RBAC. Where ABAC is more powerful is its ability to assign

multiple possibly overlapping attributes to subjects, objects and actions. This extra power

must of course be used with care. For example, a classical separation-of-duty policy subject

might insist that all large money transfers be authorised by a branch accountant and a

branch manager; if someone can assume both attributes, then the desired separation is

lost.

We may also benefit from a separation of security policy from mechanism. In terms of

mechanism, we believe it may be convenient to store policy as ABAC rules but implement

it at runtime as capabilities, a typical one being ‘app A is allowed to set up flows reading

traffic from nodes in set X’. We will typically want to set up permissions in one or more

central systems that manage the ecosystem of virtual networks; access policies then have to

be transmitted to remote locations where we will typically have a set of virtual controllers

running on a single hypervisor and managing a set of switches. At that level, it is convenient

to give a set of capabilities to each VC and have the supervisor monitor their use.

Using capabilities has an added advantage: we can provide tenants and other network

users with a way to manage their own app permissions or to delegate them to another

user. A user running an app she does not fully trust can delegate a subset of her own

capabilities to it, so as to limit the damage it can do to her own tenant network should it

turn out to be buggy or malicious. For example, she might set up a subnetwork with its

own VC to test new apps, or test them on one of the branches of her business.

There are a few vectors that are out of scope of the threat model. Similar to other

access control and firewall implementations, the policy itself needs to be managed. A

detailed policy language may grow to be very large and difficult to manage by a human.

A good change procedure and user interface is needed to make sure no subtle conflicts

occur within one policy. Another vector is bugs within the reference monitor. Although

this can be addressed by keeping the code base of the reference monitor sufficiently small

and thus easy to verify for correctness. A small code base is also easy to update without

possible side effects once a bug is found.

Another class of attacks that we do not cover is malicious apps. Even though we can
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stop malicious apps from affecting others, they can still do damage within resources they

can legitimately access. For example, a CDN app can insert malware to serve to users

without needing to acquire extra access permissions. A more proper place to address this

attack is perhaps at a higher layer, such as the application layer, where monitors and

defence mechanisms are more effective in catching these activities. Once misuse of trust is

discovered, removing the offending app is simple.

3.3.2 Design

To explore the design space for such an access control engine, we implemented AXE. Our

AXE prototype runs as a shim between a virtual controller and its switches. The engine

interacts directly with the underlying switches and forwards, in either direction, only

those command messages the policy allows. The advantages of implementing the access

engine separately instead of modifying an existing implementation of an SDN controller

are first so that it is compatible with all controllers, whether open source or proprietary;

and second, that the access control code is small enough to be closely scrutinised. The

shim, running as a separate OS process, thus acts as a classic reference monitor.

We put each controller and any apps that it runs into a virtual environment. In our

implementation we use Linux namespaces so that each controller has a separate set of

tenant network interfaces, disconnected from the underlying network and monitored by

the access control engine. For stronger separation (including for example of the memory

and file system), we would put them in different virtual machines. In the terminology of

RFC 2904 [46], the access control engine is both the Policy Decision Point (PDP) and the

Policy Enforcement Point (PEP). In what follows we will describe the PDP as the ‘policy

component’ and the PEP as the ‘capabilities component’.

There are three main subsystems in our prototype: a policy parser which works with a

simple policy language that understands OpenFlow, a decision component that loads a

policy and handles incoming requests, and a capabilities part that issues and validates

capability tokens along with any necessary cryptographic operations. Requests are routed

either through the policy component (for requests without capability tokens) or through

the capabilities component (for requests with capability tokens). In order to ensure a

consistent response, there should only be one policy decision point in a network (or part

of a network with a single jurisdiction). This policy component consists of the parser and

the decision logic. The capability component is replicated as needed as the network scales,

and derives its decisions from the policy component via capability tokens. A diagram of

the access control engine is presented as Figure 3.3.

The policy component is where the network operator interfaces with the access control

engine. We devised a simple policy language based on a combination of keyword and

value mappings. For now we work within the keyword space of OpenFlow protocol, but
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Figure 3.3: The three main components of the access control engine. The parser interacts

with network operators through policy files. The decision component and the capabilities

component handle incoming requests depending on whether a capability token is present.

the policy language is protocol-neutral and can accept other protocols as well. A policy

is composed of rules, where each rule is a series of matches with a decision of permit

or deny. If (and only if) all of the matches in one rule are satisfied is the decision used.

Policies default to deny if no matches are found, resulting in a white-list approach..

Apart from OpenFlow keywords, the policy language also supports some overloaded

keywords that have an expanded meaning. For example, ip addr can be expanded into

matching either nw src or nw dst in the transport layer. Similarly, TCP or UDP ports

can match either the source or the destination as needed. This part is extensible to be

application-specific, too. Suppose a network runs a service that relies on a specific set

of traffic signature patterns; it can add its own overloaded keyword to expand into the

more primitive keywords, to make the policy easier to understand with this customised

shorthand.

The decision component is the main driver of the program. Upon startup, this

component parses and loads the policy, and stores rules into a lookup table. For each

app-to-switch or switch-to-app access request it receives, the decision component searches

the relevant policy for matches and works out the decision, and if permitted forwards the

command onwards. We can cache at the switch level (by installing a flow rule) or at the
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shim to improve performance for subsequent packets that match the same signature.

Requests with capability tokens are not handled by the policy component but instead

by the capabilities component. The capabilities component is responsible for managing

capability tokens available to apps on virtual controllers so that the policy component

need not be consulted again until after a predefined expiration time. This is essential to

give adequate performance and scalability; without it the policy component would be a

bottleneck. The capability token can also be transferable by the app (or the VC operator,

each of which has his own policy component). When the token expires, the request goes

to the relevant policy component, and a new capability token can be issued if relevant,

authorised and needful.

3.3.3 Evaluation

There are two areas of focus in evaluating our implementation of the access control engine:

effectiveness and efficiency. First, it needs to be effective at what we set out to do and to

make correct decisions. We seek to show that our prototype implementation can work in

the use cases already discussed (Section 3.2.3) Second, we assess the performance overhead

of our prototype.

The experimental setup was as follows. An instance of an unmodified Ryu SDN

controller (v3.21) was run in a PC, in a separate Linux namespace, running a minimal

app for basic switching functions. In a separate process, the access control engine was run

and connected to both the controller and switch via separate network interfaces. Flow

rules were not issued so every packet that the switch received was forwarded to the access

control engine. An instance of Open vSwitch (OVS) (v2.3.1) was set up in the same PC.

We used Mininet (v2.2.1) to drive the experiment, by providing and managing lightweight

virtual hosts to connect to OVS. The network topology can be found in Figure 3.4.

Effectiveness

Let us start with a simple scenario and consider the following policy:

[id=1,name=policy1]

subject.app=p1,resource.OFPPacketIn.tp_src=80,decision=permit

subject.app=p1,resource.OFPPacketIn.tp_dst=80,decision=permit

subject.app=p1,resource.OFPPacketOut.buffer_id,decision=permit

This policy denies all traffic unless a packet has either a source port number or a

destination port number of 80 in the transport layer (this implies the network layer is an

IP packet). The OFPPacketOut command is permitted only when there is a buffer id,
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Figure 3.4: Topology diagram of the experimental setup. Mininet is used to setup the

virtual topology and drive the experiment.

indicating the app is responding to a previous OFPPacketIn request. If the app crafts a

new packet and pushes it out independently, it will be denied. Using Mininet, we generate

two hosts, h1 with IP address 10.0.0.1 and h2 with 10.0.0.2. From h1 we run nmap, a

network scanner, on h2. Specifically, we probe ten ports around 80 using UDP packets.

The results are as follows:

Nmap scan report for 10.0.0.2

Host is up (0.015s latency).

PORT STATE SERVICE

75/udp open|filtered priv-dial

76/udp open|filtered deos
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77/udp open|filtered priv-rje

78/udp open|filtered vettcp

79/udp open|filtered finger

80/udp closed http

81/udp open|filtered hosts2-ns

82/udp open|filtered xfer

83/udp open|filtered mit-ml-dev

84/udp open|filtered ctf

85/udp open|filtered mit-ml-dev

Column 1 of the results shows the transport layer port number and protocol. Column

3 indicates the most likely service that is running in each respective port. The interesting

result is in Column 2, where we see two types of states: ‘open|filtered’ and ‘closed’. In

nmap’s terminology, ‘open|filtered’ means no responses are received, in our experiment

this is due to packets being dropped; the latter means a response from the remote host is

received, and the port is accessible, but no applications are listening on it. This output

shows that the controller and access control engine together successfully stopped all packets

except for those that relate to port 80.

Let us now revisit the three use cases that are currently present in HP’s SDN app store:

optimisation, monitoring/visualisation, and host management. Since an optimisation app

might focus on one service only, it is not very different from the example above. In fact, a

complete policy for a web traffic load balancer (for both HTTP and HTTPS traffic) is

fairly short:

[id=1,name=web_balancer]

subject.app=web,resource.OFPPacketIn.tp_src=80,decision=permit

subject.app=web,resource.OFPPacketIn.tp_dst=80,decision=permit

subject.app=web,resource.OFPFlowMod.match.OFPMatch.tp_src=80,decision=permit

subject.app=web,resource.OFPFlowMod.match.OFPMatch.tp_dst=80,decision=permit

subject.app=web,resource.OFPPacketIn.tp_src=443,decision=permit

subject.app=web,resource.OFPPacketIn.tp_dst=443,decision=permit

subject.app=web,resource.OFPFlowMod.match.OFPMatch.tp_src=443,decision=permit

subject.app=web,resource.OFPFlowMod.match.OFPMatch.tp_dst=443,decision=permit

subject.app=web,resource.OFPPacketOut.buffer_id,decision=permit

The second type, monitoring and visualisation, is not hugely different. In addition to

identifying the resources it needs to access, these type of apps needs only read access. In

OpenFlow, read access is reflected in the OFPPacketIn type of messages, where it indicates

the arrival of a new packet. Previously we allowed OFPPacketOut messages to pass if and

only if it contains a reference to a buffer within the switch, removing this rule will make

sure that the app cannot reply at all to any packets. Continuing the example above, if we
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were to run a web traffic deep packet inspector app to comply with a police warrant, a

policy might simply be the following:

[id=1,name=web_inspector]

subject.app=web,resource.OFPPacketIn.tp_src=80,decision=permit

subject.app=web,resource.OFPPacketIn.tp_dst=80,decision=permit

The third use case, host management, can vary in scope and the types of functions it

needs to perform. An active malware scanner will need a dynamic corpus of signatures

to match, so might have a DPI component that copies traffic to a host running suitable

analytics, while an app that forces new hosts to log in via a web page needs to match

specific MAC addresses and VLAN tags. The app in each case might have a small trusted

component that is permitted to move individual hosts on to a specific VPN within the

tenant network, such as one with rate limiting. A developer can also suggest a set of

policy to be reviewed by the network operator at install time. This would be similar to

the process of a user reviewing permissions on an Android app prior to installation.

Efficiency

A key performance metric is the extra overhead that the access control engine imposes

on the controller. We break down this overhead into four aspects: initialisation, lookup,

capability token generation, and capability token validation. In each experiment run we

compare the time taken for running the Ryu controller alone to the time running Ryu

with AXE in each of the four cases. We further vary the number of rules in the policy

(from 10 to 100 000) to study the impact of rule-base size on performance.

The time it takes to initialise the controller and load the policy into the access control

engine is presented in Table 3.1. Each scenario is repeated 10 times and the mean and

standard deviation measured.

After initialisation, we measure the per-request overheads. A trivial app runs on top of

the Ryu controller and tries to issue network access requests. There is no application-level

caching in the app, the controller, or the access control engine. As we are only interested

in the overhead introduced by the access control engine, the cost of executing app logic

is not included in the measurements, nor is any network roundtrip should the switch

respond after each command. In effect, we take our measurements at the controller-shim

interface and the shim-switch interface. For capabilities, we use SHA256 to first hash the

message then sign with PKCS1 PSS. Again, we repeat each request 10 times for the mean

and standard deviation measurements. The measurements can be found in Table 3.2.

There is a small but noticeable increase in the time it takes to process an access request.

Fortunately, this increase does not seem to depend on the number of rules in the policy.

This gives a worst-case latency of around one millisecond when establishing a new flow.
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Mean (µ) Std. dev. (σ)

Ryu controller 16.88 3.05

AXE with 10 rules 1.25 0.16

AXE with 100 rules 2.49 0.22

AXE with 1000 rules 14.88 1.10

AXE with 10 000 rules 145.87 4.62

AXE with 100 000 rules 2561.87 431.58

Table 3.1: Initialisation times under various scenarios. The cases with AXE denote only

the time it takes to start and load policy and do not include the time taken for the

controllers themselves to start, as the initialisation stage for the controller remains the

same whether or not AXE is present. All time units are in milliseconds.

(1) µ (1) σ (2) µ (2) σ (3) µ (3) σ (4) µ (4) σ

Ryu controller 0.10 0.03

AXE with 10 rules — — 0.62 0.07 0.95 0.10 0.70 0.09

AXE with 100 rules — — 0.70 0.12 0.91 0.21 0.75 0.15

AXE with 1000 rules — — 0.57 0.06 0.80 0.09 1.09 0.16

AXE with 10 000 rules — — 0.65 0.12 0.88 0.17 0.96 0.18

AXE with 100 000 rules — — 0.65 0.10 0.84 0.17 0.99 0.18

Table 3.2: Packet processing times under various scenarios. All time units in milliseconds.

Column cases: (1) is Ryu controller without access control, (2) is rule table lookup only,

(3) is rule table lookup and generation of capability token, (4) is capability token decision

only.

3.4 Access control and firewalls

After implementing AXE, the access control engine, we observed that in SDN an access

control mechanism interposed between users and the underlying network equates to a

firewall in the data plane. Rather than filtering packets in a separate box, one can just

as well prevent undesired flows being generated in the first place. The same effects can

be achieved by both approaches and operations can be mapped across them. This opens

up a number of possible gains. At the level of engineering, we might hope to save money,

improve performance, increase flexibility, coordinate management better and obtain higher

levels of assurance by moving from a fleet of discrete appliances to a reference monitor in

a network hypervisor. At the scientific level, we might hope to understand both firewalls

and access controls better now that we have a concrete example of a system in which they

are doing the same job. We will discuss the scientific aspects further in Section 3.6.

Let us review the three types of firewalls [17, 33]. The simplest form is a packet-
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filtering firewall, which drops packets based on source or destination address or service,

without maintaining track of context from one packet to the next. For example, a packet

filter might allow a host to browse the web but not be a web server itself. The slightly

more complicated circuit-level firewall tracks connection state (such as that of TCP) and

distinguishes inbound connections from outbound ones; usually, unsolicited inbound TCP

connects are denied unless an inside host has recently initiated a request. The most

complex type is an application-level firewall, which understands packets in the context of

one or more applications.

Historically, the application-level firewall was the first type to be built: in 1989 Mogul

described, and in 1991 Vixie and Ranum delivered, the DEC Gatekeeper system which

ran proxies for email, usenet, telnet, ftp, WHOIS and X windows, among other services;

this was followed by Presotto and Cheswick’s much more lightweight AT&T firewall which

worked at the transport layer and finally work by Mogul, Carbridge, Chapman and others

brought the benefits of packet filtering to wide attention in the early 1990s [84]. The

tradeoffs between filtering at different levels are now fairly well understood and extend

from firewalls to other middlebox applications from intrusion detection to surveillance.

Below we outline how access control can arrive at the same outcome.

Packet-filtering firewall. Rather then choosing to drop or forward each packet as

a firewall does, AXE can simply decide whether or not to forward each packet to the

appropriate app according to the access policy. This decision can be taken at two levels:

by the policy engine in the guest network, which enforces access control between a tenant’s

apps, and by the policy engine in the host network whose task is to separate guest networks

from each other. If permitted, the flow may be set up using OpenFlow rules and the

affected packets are forwarded onwards from and through the relevant switches.

Circuit-level firewall. The same mechanisms will support a circuit-level firewall but

we need to provide some extra mechanism. For example, we allow a flow from an internal

host A to an external host B and copy packets to an app C that then raises a request

to allow a response flow from B to A. The implicit assumption of state being tracked is

made explicit by vesting this state in an app, which must be trusted to the extent that it

can change security state. Making this trust explicit is beneficial as it makes the trust

dependencies more transparent.

Application-level firewall. In this case, the access control mechanism in the shim

can parse traffic by port and forward it to the appropriate service proxy. This privileged

app can perform deep packet inspection and may also be stateful. It is likely to function

much like a conventional application firewall in that it will either drop or output packets

(whether unmodified or modified) back into the data plane to be forwarded.

We observe that the main benefits to be obtained in assurance and performance terms

are likely to be realised in the packet forwarding case, as this is the cleanest of the three

and the one that can move completely from a network middlebox to an access control
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mechanism in a network hypervisor. In this case, we can capitalise on decades of access

control research and experience, and we have a direct economic incentive to replace

middleboxes with SDN access control. In addition to capital expenditure savings we might

reasonably hope to make operational savings too; the ability to manage thousands of

firewalls from a single control point, and to upgrade and reconfigure then at will, is an

important objective of security managers with whom we spoke.

Once these savings have been banked, the SDN approach we sketch here can bring the

further benefit that circuit-level and application-level devices can be reimplemented as SDN

apps rather than requiring physical middleboxes. This should also bring improvements in

capital cost, maintainability and flexibility, and permit different guest networks to make

quite different arrangements, increasing both competition and flexibility. As a result,

tenants could now consider deploying firewalls everywhere in the network [80], supporting

a strategy of deperimeterisation for tenants who prefer this, while allowing other tenants

to opt for reperimeterisation instead. However, delivering this sort of flexibility at scale

raises some new problems — or, rather, an old problem which access control researchers

have largely ignored up till now.

3.5 Policy conflicts

We have known for decades that policies can conflict; dealing with these conflicts is variously

known as the multipolicy problem or the metapolicy problem [78, 79]. Sloman and Lupu

discussed policy specification and conflict resolution in the context of programmable

networks, which predate SDN [163, 164]. This has been discussed in the literature for a

quarter of a century but so far there has been little incentive to work on a systematic

solution. SDN may change that.

As a motivating example, consider two mobile phone apps: one for an emergency medical

communications such as paging hospital staff, and one for banking. The emergency app

requires access to GPS, voice and movement sensors, while the banking app forbids any

other app accessing the microphone, accelerometer, gyro or GPS while it is running (for

fear of side-channel attacks). This leads to a clear conflict. Suppose a doctor is doing his

online banking when an emergency call arrives; what happens then? The desirable outcome

is that the banking app is immediately terminated. But how is this to be managed in

practice? With older versions of Android, permissions are requested in the app’s manifest

and granted on installation, so presumably a doctor trying to install this banking app

would be warned that it would be terminated whenever his pager went off. That is quite

hard to engineer, so a more likely outcome would be a warning that the pager and the bank

were making incompatible demands, so the user either had to prioritise one of them or

reject one of them outright. (As every philosopher knows, you cannot have an unstoppable

cannon ball and an immoveable post in the same universe at the same time.) In the case
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of the iPhone and of later Androids, where capabilities are authorised on first use, things

could get more messy still.

In short, policy conflict detection is not straightforward, and conflict resolution can be

even harder. Both have usually ignored in systems built up till now, on the assumption

that they can be handled using ad hoc means, such as by the user shooting one of the

apps. For example, the NIST standards document on ABAC [81] mentions metapolicy

briefly but offers no ideas about how actual conflicts are to be detected or resolved.

One obvious detection (and resolution) approach is through assigning priority levels to

each app. But this is not always possible. For example, during the Cold War, a UK subject

could either get a Top Secret clearance, or travel to a Warsaw Pact country such as the

USSR or East Germany. People were not permitted to do both; a student trip to Moscow

could exclude someone from subsequent employment in the defence or security parts of

government (on the theory that the student might have been recruited by the KGB, or at

least exposed to blackmail), while people with high-level clearances were forbidden from

crossing the Iron Curtain. This is a stateful access control policy: you can go to Moscow

or Cheltenham but not both.

This case is interesting for network access control as it is an instance of the Cascade

problem [77]. If an EAL4 evaluated mail guard is sufficient to bridge a Secret system

to either a Top Secret system or an Unclassified one, then whether a Secret system is

allowed to connect to systems of the former type or the latter depends entirely on which

type of system it connected to first. Such path-dependent security policies are not in

general reducible to an ordering [4]. Cascade conflicts are also interesting because the

state changes they entail are global and permanent rather than local and transient, unlike

most reactive flow control mechanisms. We will discuss this in more detail in the following

section.

It follows that a policy conflict resolution mechanism must in general keep track of

which host has talked with whom. If it does not do so, then it can at most manage conflicts

that are detected at install time and that can be resolved by an ordering. If the basic

capability mechanism is going to be stateless for performance reasons, then the state will

have to be managed at the appropriate policy control point, whether the guest network’s

or the hypervisor’s.

3.6 Related work and new directions

Firewalls appeared in the late 1980s, with one of the spurs being the 1987 Internet worm

which suddenly made network security salient [84]. As noted above, Mogul described

the first implementation of a firewall in 1989 [126]. This firewall is an application-level

proxy that allows an explicit set of services and denies the rest. Its drawbacks included
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needing to update the firewall for each new application and requiring client programs to

be configured to use it. Cheswick the described a simpler firewall design for AT&T that

worked at the transport layer [32]. However it still needed clients to be configured to use

it and the performance penalty was still notable. IP-level packet filtering also existed but

with various configuration difficulties; these were alleviated with the arrival of the socks

proxy. Other early work described in increasing detail what firewalls could do and how to

implement them [13, 127, 17]. Since then, research has focused on policy and deployment,

such as constructing [72], analysing [122], and verifying [187] policies, or scaling firewall

functions into a distributed system [16].

A particularly influential paper by Ioannidis and others described a distributed firewall

designed by UPenn and AT&T [86]. As firewalls became mainstream, a security manager

could struggle to maintain consistent state across hundreds or thousands of devices with

complex and changing policies. Ioannidis et al set out to separate policy from mechanism,

with the Keynote policy engine creating security contexts that are signed and distributed

to policy daemons that implement them. They noted that such mechanisms might be

extended to application level firewalls as well. Their system was stateless, and best

described packet filtering, although commercially available firewall systems increasingly

supported state, most notably to ensure that if Alice the insider sent a packet to Bob

outside on the Internet, then Bob would be able to send reply packets to the appropriate

port.

Firewall mechanisms developed in parallel with other ‘middlebox’ services such as

intrusion detection, of which early and notable examples were Snort [144] and Bro [136].

While firewalls exclude activities that are known to be unnecessary and believed to be

possibly malicious, intrusion detection systems police the greyer areas of activities that we

do not want to exclude a priori but which bear monitoring and reporting. The technologies

range from signature-based systems that look for ‘known bad’ patterns, to behaviour-based

systems that look for the unusual [28, 114]. Regardless of the internal logic, intrusion-

detection systems look to the network like stateful firewalls; they accumulate information

about network state and may then make a decision to terminate a flow, with or without

human intervention. And then there are complex systems such as the Great Firewall

of China; Clayton reports it to consist of a packet filter that blocks known subverse IP

addresses, coupled with an intrusion detection system that uses deep packet inspection to

look for forbidden substrings and then tears down the offending TCP connections [38].

We noted that stateless access control and firewalls perform the same functions: access

control specifies who can access what file, and firewalls do the same to flows in networks.

Academic papers on both access controls and firewalls tend to disregard state, but

real-world systems usually cannot. In banking it is common for large transactions to be

authorised by two or more people; this was formalised in the Clark-Wilson model, but

without much discussion of the mechanics. In practice, the security state may consist of a
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file of transactions authorised by Alice, and awaiting confirmation by either Bob or Charlie.

This state is local, and transient; we do not want to carelessly replicate the file lest the

same transaction is authorised by both Bob and Charlie and mistakenly paid twice.

Similarly, if Alice is an analyst at an intelligence agency and sends an http request to a

subversive website maintained by Bob, she wants the firewall to permit return packets to

come from Bob to her machine only, along that path only, and for a short period of time

only. The great majority of other uses of state in both access controls and network flow

controls are also local and transient, from commands such as sudo to affinity requirements

in web traffic load balancers. Keeping access controls stateless and putting security state

into apps is more or less what existing systems do anyway; we implement dual controls in

the real world by having an app that inputs unauthenticated transactions and outputs

payment instructions that have been authenticated by both Alice and Bob. The SDN case

may help by forcing us to think about such mechanisms carefully, and to reason about

them more generally.

There are however a few cases where security state must persist and propagate globally,

such as the Cascade problem discussed earlier. If a Secret network has been connected

to the Internet via an EAL4 mail guard, even once, then it might be forever forbidden

from being similarly connected to a Top Secret network. This might seem a contrived

and specialised example, but persistent security state changes are likely to become more

common with the adoption of SDN.

SDN app security and access control has already attracted some interest, but in a

flat role-based model. FortNOX [140] introduced a security-oriented controller that puts

apps into one of three roles (administrator, security, and other) and assigns permissions

accordingly. The rationale is that apps should receive access privileges according to

their functions. It also uses these roles to help resolve conflicts when conflicting flow

rules are detected, and an app with a role of a higher privilege overrides another with a

lower privilege. However the conflict resolution process does not address two apps within

the same role. Many of these ideas were developed further into SE-Floodlight [141], a

modification of the Floodlight controller incorporating app authentication, role-based

access control, conflict resolution, and auditing. Role-based access control, however, is

single-dimensioned and does not offer the flexibility of matching on packet fields. It also

does not consider environmental variables such as time of day, or a combination of packet

fields and these external factors. While a new conflict detection algorithm is presented, the

resolution process is still the same as its predecessor. PermOF [176] provides 18 different

permissions for apps to interact with the underlying network, which are then checked

and enforced. It also calls for a shim between apps and the OS, but is more restrictive

by requiring apps to be reactive-only. The fixed set of permissions also does not allow

for an easy upgrade when OpenFlow is expanded or if another protocol is to replace

OpenFlow. AXE is further different in allowing a network to be divided into subnets and
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managed separately. OperationCheckPoint [152] builds upon PermOF including using

its permission set, but provides an implementation to also allow permission checking to

be scalable. FlowGuard [80] is an SDN firewall framework that detects rule violations

and offers a graceful way to resolve conflicts by keeping the non-conflicting parts in place.

The detection method works by converting firewall rules into two disjoint partition spaces,

each containing all packets that should be allowed or denied under the current rule. This

approach does not address the lower level details of how policies are enforced, but can

potentially be complementary to our AXE design.

From a different angle, VeriFlow [100] performs access control checks with network

invariants as its policy framework. VeriFlow checks control plane update messages before

they arrive at the forwarding plane, and intercepts them if network invariants are violated,

thus having similar powers and control as AXE’s shim. It provides efficient lookup

algorithms to make sure that near real-time checking can be achieved, minimising extra

overhead. Through checking for network invariants, we no longer need to give privilege

levels or prioritise among flow rules with this approach. Similarly, Flover [165] can formally

check if OpenFlow rules abide a network policy using an SMT solver, and can guard

against bypassing of security properties even in the presence of goto actions, which are

trickier to handle.

The need for consistent updates was discussed by Reitblatt et al [143]. They point out

that SDN networks need to propagate state consistently when network upgrades occur,

and describe a prototype system to support powerful multi-switch updates with strong

semantic guarantees. This is in the context of a research programme to get away from

low-level install/uninstall operations towards a higher-level language. (OpenFlow is more

a macroassembler than a high-level network-function language.) They therefore provide

two-phase commit as a primitive. Their policy mechanisms are flat, but they do mention

as extensions the possibility of doing pure extensions, retractions or subset operations,

which can be used to scale their update strategy to large systems, for example when we

want to isolate a host that is infected or that is being attacked [130, 151]. And network

upgrade is not the only new case where SDN will require access control coordination across

controllers and switches; another example is when implementing multipath TCP. However

upgrade can serve as our test case for security state propagation.

This is important, because as SDN moves out of the data centre, SDN controllers

reacting to rules on a network flow-by-flow basis will be particularly attractive. At present

a typical data-centre SDN system may preassign all flows — routes within and among

data centres. Assigning local and transient new flows can often be left to local controllers

and apps, implementing a simple circuit-level firewall as discussed above; another possible

mechanism is out-of-band, as where VMWare supports an instrumented API to generate

connection data for guest operating systems. However in the long term we need robust

mechanisms that work with virtualisation so that, to the greatest extent possible, the
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same controllers and the same access policy mechanisms can be used on tenant SDN

controllers as on the underlying fabric controllers. And we also need to consider whether

apps themselves will run in virtual machines; Shin et al. report doing this to prevent apps

crashing to bring down the controller on which they run [161]. Such issues have been

studied extensively in the world of operating system access controls and it is natural to

expect that the robust sandboxing mechanisms already being deployed in phones and

elsewhere will in time see adoption for SDN as well.

In passing, we note that Network Functions Virtualisation (NFV), launched in 2012 [34],

provides an alternative approach to tenant networks that can be based on legacy network

technologies and virtualised hosts but can provide a migration path to SDN. As this

overlaps with SDN, it raises many of the same issues; there, too, middlebox functions are

likely to be implemented as apps.

Finally we note that many of the problems with which access control researchers

have wrestled over the past fifty years are potentially applicable to SDN, ranging from

tranquillity principles through non-interference to covert channels. In some respects the

problems may be simpler; if the TCB can be made stateless, or nearly so, and security

state located in apps with defined permissions, then hopefully the TCB can be made much

smaller. In other respects it may be harder, if (as we argue) we have to deal systematically

with policy conflicts for the first time.

3.7 Conclusion

In this chapter we presented AXE, an access control approach for SDN that provides an

attribute-based access control model for SDN controllers to manage apps. We assume apps

cannot be trusted, either as they may be designed to behave in a strategic or potentially

malicious way, or that they may one day be compromised. From this threat model it follows

that the controller must be ready and able to stop apps when they start misbehaving. Our

model is sufficiently flexible to allow policy control to be imposed on SDN network tenants

by treating their control requirements as apps, and we outline an approach that permits a

hierarchy of such virtual controllers to also deploy policy control for SDN apps operating

within their tenant-networks. In contrast to past work modifying existing controllers, AXE

is a new approach, implementing the access control engine as a reference monitor. This

permits a low complexity of implementation and opens the door for operational correctness

to be validated. In our evaluation we demonstrate an unoptimised prototype that has

modest fixed per-packet overheads; these overheads are independent of the complexity of

policy. Our prototype also implements a mechanism of capability tokens permitting higher

performance through more sophisticated rule handling and rule caching.

Finally, in the course of this research we realised that access controls in SDN virtual

controllers map canonically to stateless firewall rules. This allows us to lay fifty years’



72 CHAPTER 3. ACCESS CONTROL FOR SDN

worth of access control research alongside twenty five years’ worth of firewall research, look

for the gaps, and work out directions for future research. We believe that this confluence

between two related research fields may prove very fertile soil for future research, as well

as helping us to solve a real engineering problem that is holding up the spread of SDN

from the data centres of the large service firms to multi-tenanted networks and to more

general use.



Chapter 4

Scaling SDN and access control in

real cyber-physical systems

As we already noted, SDN is already deployed in data centres, where it offers advantages

of cost and flexibility over traditional routers, within a single controlling organisation with

unified administration. For SDN to fulfil its potential, it needs access control mechanisms

to accommodate mutually mistrustful principals. If this is done right, there could be

a third class of potential benefits, namely security. In the last chapter we described a

prototype access control system, AXE, which implements attribute-based access control in

virtual controllers (and/or the hypervisors on which they run) so as to provide essentially

the same separation properties as stateless packet-filtering firewalls. However the next

question that arises is whether a lab prototype can reasonably be expected to scale to a

major operational system. In order to do so, we will return to our use case, of a major

international airport, and examine it in more detail, so as to get a more realistic and

detailed threat model. We will then investigate how an access control system such as AXE

could scale to such an environment.

4.1 SDN deployment: cyber-physical systems

As part of the work for a DARPA seedling project [70], we identified five possible deployment

scenarios that can benefit from SDN. They are data centres, large ISPs, Internet exchange

points (IXPs), cyber-physical systems, and battlefields. In this chapter we analyse the

security aspect of cyber-physical systems and how an SDN deployment can better secure

them.

A cyber-physical system is an interacting network of devices and the physical envi-

ronment where they exist. These are often found in infrastructures where there is more

than networking, such as electricity control systems, smart factories and warehouses, or

airports.

73
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A large international airport is a complex physical environment that relies on robust

networking for many of its daily operations, and is so constrained that the tenants cannot

be allowed to do their own networking. Thus a single network has to support and interact

with with a large number of diverse users. We could discuss this in the context of any

large airport (JFK, O’Hare, LAX, Hong Kong) but for simplicity and concreteness will

refer to this setting as Heathrow.

4.1.1 Operators and stakeholders

Heathrow’s infrastructure serves many organisations ranging from its operator BAA

through the major contractors and airlines to small franchise operators. Some organisations

are arms of the British state and deal with classified information, such as the Borders

Agency and HM Revenue and Customs; others are arms of other states, such as El Al and

Iran Air. The only common background check performed on UK staff is that they are not

on various blacklists of terrorist suspects or convicted of serious crimes; in the event of the

foreign employees of foreign organisations, real checks are not possible.

All of these organisations must use a single network; it would not be acceptable for

3000 firms to have their own cabling and other infrastructure. The network must also serve

the general public, via WiFi hotspots where passengers can pay for service via dozens of

providers and roaming agreements; it also serves emergency services by supporting mobile

radio of various kinds. There are more specialised shared services, such as a broadcast

data channel which announces which plane is at which gate, and an ACARS system that

relays data to aircraft. Many of these shared services are critical; without ACARS, for

example, airlines would take an extra 15–45 minutes to turn round aircraft as flight plans

would have to be filed manually.

These numerous users and stakeholders need the network for different purposes and thus

have different requirements. We identify four main groups of users: infrastructure-owner,

main customers, auxiliary customers, and general public.

The owner, or its lead contractor, lays out the network infrastructure. Many things

must be got right to give users the dependability guarantees they need. The owner is

the key decision-maker on network requirements, design, installation, and maintenance.

Without proper planning, a failure at this layer will affect the whole operation. In the

case of Heathrow, the government also has a vested interest as continued operations

are of national importance. An attack that significantly disrupted airplane or passenger

movement could have macroeconomic effects even if it did not lead to casualties.

The second group is the ‘anchor’ tenants such as the major airlines, and the police,

border and customers services. These customers may have similar needs, but the airlines

(for example) are in competition with each other. In more extreme cases two state-owned

airlines may represent two countries at war — so the case for secure separation between
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users is strong. These customers not only need to connect their machines and devices

together at the location and to servers offsite, but also to take over shared facilities on a

temporary basis (as when an airline uses a dozen check-in desks for a few hours before

one of its planes departs). They may want the network to roll out special technologies to

support their operations. Both airlines and law-enforcement agencies need the network to

run their core business: if an airline cannot get through to its booking system (typically

run by a third-party contractor such as Amadeus) then it does not know which passengers

may board which plane and its operations cease (or at best continue in highly-degraded

form, relying on paper documents that more and more customers simply do not carry).

Auxiliary customers such as restaurants, shops and third-party wireless Internet

providers are not critical to the airport’s operations, in the sense that passengers could

board and planes could fly without them. However the rent they pay is a substantial part

of the airport’s operating income, and if their network service were interrupted for long,

there would be consequences. For example, high-value stores could not operate profitably

without the ability to do online payment card transactions. Furthermore, as auxiliary

networks are used by many staff who have had only cursory background checks, they can

be an entry point for malicious actions.

The general population is the largest group of users by headcount.They interact with

the network as passengers, hotel guests, shoppers, and even as criminals — from baggage

thieves to people who set up bogus WiFi connections to conduct phishing and pharming

attacks. So we have to consider general public network access as a possible entry point for

tactical or strategic attacks.

4.1.2 Technical operations

The applications and services in a cyber-physical network demand several properties: low

latency, high bandwidth, resilience, virtualisation, and flexibility. Each application and

service may require one or more of these properties to function.

Latency is most important in infrastructure-type functions. Timely feedback of individ-

ual sensors throughout the building, such as CCTV cameras and fire alarms, is essential

to continue operations. Emergency radio equipment is also critical. Latency is achieved

by good network design and the ability to prioritise critical traffic.

The many staff, firms and passengers also use a lot of bandwidth. Advertising,

CCTV, flight information and business transactions occupy a large portion of the available

bandwidth.

Resilience, too, is important as an airport depends on a large number of applications,

from obvious ones such as checkin and baggage handling to the less visible such as the

RFID locks on thousands of doors, the ACARS systems used to send and receive data
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from aircraft and the classified government systems that connect border agency staff with

visa and blacklist systems.

Virtualisation is important for individual airlines, shops and other airport tenants as

they need to connect to their corporate networks over the network operated by BAA.

Virtualisation must also support separation, to prevent virtual networks interfering with

each other and denying service. It is not desirable for any of the airport’s tenants to be

able to deny service to critical flight-operations or national-security systems, or to any

other tenant.

Lastly, the network needs to accommodate the many new devices and protocols that

will emerge over the lifespan of a business such as an airport (which has been in operation

for over 60 years). The deployment of new networks and services must be possible without

interfering with legacy communications and applications.

In order to give some idea of the scale, one single terminal at Heathrow has [42]

• 1000 fixed and 500 mobile video cameras (10 Gb/s)

• 500 displays (10 Gb/s)

• Biometric scanners (10 Gb/s)

• Private and Public Fixed and Wireless LAN (20 Gb/s)

• Cellular services (10 Gb/s)

• TETRA and private radio (0.5 Gb/s)

• Passive RFID (0.2 Gb/s)

• Active locatable RFID (5 Gb/s)

The assumed aggregate peak rate is in the tens of Gb/s.

4.2 Security analysis

4.2.1 Vulnerabilities

At a high level, we are concerned with both strategic and tactical attacks. Strategic attacks

involve an attempt to close down or cripple the airport, perhaps as a service-denial move

in wartime. In the Heathrow case, apart from the most obvious case of cutting electrical

power for a complete network outage, a targeted attack on the Amadeus passenger booking

system can result in total chaos as airline employees need to fall back to paper passenger
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lists, while a takedown of the ACARS system can delay plane turnaround time by forcing

flight plans to be filed manually.

Tactical attacks have smaller goals. Mutually mistrusting parties such as Iran Air and

El Al may try to sabotage each other’s operations from within the same network. In fact,

we find this mistrust everywhere: not only do participants of the same function not trust

each other (as with airlines); different applications within the same network also distrust

each other. The network delivers traffic for safety critical systems (e.g., emergency radio),

operational critical systems (e.g., ACARS), and public WiFi, all with the same physical

infrastructure. In fact, a simple attack would be to use as much bandwidth as possible,

hoping critical services are degraded or denied.

Gaining physical access to devices can potentially allow an adversary to replace

a device with one of his own. In this attack, the attacker can do much more than

eavesdropping and can actively participate in the network. By taking over a device, such

as a switch, it is possible to cause havoc, such as by repeatedly advertising and tearing

down bad routes, leading to a network collapse. More subtle attacks can involve altering

network configuration so that a competitor’s traffic passes a machine controlled by the

attacker, to facilitate eavesdropping, traffic analysis or targeted service denial. If carried

out competently, such an attack may be hard to detect. SDN can create many new

vulnerabilities, if deployed thoughtlessly, but it also has the potential to support robust

virtualisation that would make such attacks harder.

Similarly, a software vulnerability exploitable over the network can potentially allow an

attacker to take over one or more routers or other devices. Such exploits can potentially

allow access to the device to be escalated into an attack on the network. Standard software

vulnerability classes and attack surfaces apply here, as routers and switches are based

increasingly on commodity software and standard attacks may be used in the time window

between a vulnerability being disclosed in Linux or FreeBSD and its being patched in

network hardware based on this software.

What we do not cover in scope are the parts of the network that do get compromised.

The goal is to ensure the overall resilience of the infrastructure, and making sure attacks

cannot easily propagate sideways within the network. However, hardware, subnet, app,

and other components that are successfully attacked will become compromised, along with

any information and access permissions they own. Therefore, we accept partial outages or

degradation of service levels, but aim to keep it small and separated from the rest of the

network. In a more extreme scenario, it is possible for a sophisticated attack to take over

a large portion of the network piece by piece and reconnecting them together, rendering

the surviving (small) part effectively handicapped and succeeding in controlling a major

part of the network despite our security controls.
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4.2.2 Requirements for a resilience architecture

The required resilience of the network is to ensure network connectivity as well as the

quality of service for a number of critical services in decreasing priority order, starting

with safety and emergency communications, down through flight operations, through

airline systems to the services offered to the general public. Further virtual network

separation is desirable to protect airlines against interfering with each others’ service,

whether accidentally or otherwise. The network managers must be able to measure and

monitor changes and faults and modify network topology and behaviour in response as

appropriate.

4.2.3 Organisational requirements

Apart from technical and operational requirements, there are three linked business require-

ments from the network operator: the need for abstractions, the need for automation, and

the need to reduce costs.

As already noted, current network management tools are inadequate, being based on

router command lines that differ from one vendor to another and which do not support the

atomic, consistent, isolated and durable transactions which network operators really need.

The lack of appropriate abstractions entails a pervasive lack of contextual information

which is not just inconvenient but can easily result in operator errors. Abstractions can

hide the parts of the network that are not relevant to the task in hand; this is just basic

computer science, and applying it to networking is one of the big promises of SDN.

Abstraction will also support better automation. Current network technologies leave

too much room for human error. Some tasks, such as adding a new airline or shop, may be

repeated many times and should become routine; dependencies with local implementation

detail must be better hidden to make this simple and dependable.

The main driver in day-to-day operations is cost. The air transport industry operates

on tight margins; in Heathrow’s case the operator is heavily indebted following a takeover

and was forced to divest other London airports by the competition authorities. Investments

in new technologies will only happen if there is an unavoidable regulatory mandate, or to

save money.

4.3 Hierarchical design

Our detailed threat model therefore assumes physical compromise of devices, along with

associated attacks that can be done by having physical access. It follows that some

devices (the ones ‘in the field’) are unsafe. Once an attacker gains physical access to a
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device, he can open, modify, remove, or replace it. It is reasonable to say a number of

switches are compromised at a given time, and sometimes controllers at the bottom of the

hierarchy are compromised too (since they are deployed near switches). We also assume

the communication channels connecting an unsecured switch to be insecure. If an attacker

can get access to a device, he also has access to its cabling.

Imagine an ISP needing to change a switch at a customer’s site by ordering the

equipment from a contractor. There is no guarantee of security at any of the steps from

factory and shipping company to contractors and subcontractors and eventually to the

customer. Even the customer may modify the equipment if there is incentive to do so.

It is not just a matter of occasional access by secret policemen at points of presence in

less well-governed countries; recent Edward Snowden files reveal that NSA tampered with

Cisco supply chain of hardware exported to other countries1.

In a time of conflict, the opportunity would exist for an opponent who had taken

over one of the routers to use it to cause havoc, by inserting false rules, or removing and

replacing legitimate ones, and thus generally disrupting the switching fabric. If a network

has a thousand routers and any one of them can disrupt it, as is the case today, then an

attacker need compromise a few routers for the whole network to become vulnerable.

4.3.1 Topology

We argue that a move from peer routers and switches, any of which can cause equal havoc

if compromised, to a tiered system of switches and controllers with appropriate access

control, can result in a more secure and scalable architecture for SDN. The lower-level

controllers and switches cannot all be protected; they are involved in running the local

nodes but have a limited view of the whole network. The upper-level controllers are

responsible for infrastructure tasks, only interact with lower controllers, and can be better

protected physically. Overall, the topology looks like a tree with central controllers at the

top, and local controllers and switches as leaves on the bottom (the topology may actually

be a multitree once redundancy is added; as we show below).

A classical network setup [64] adapted to SDN, as illustrated in Figure 4.1 and currently

deployed in data centres, might have a bottom layer of 1000 switches, with each ten switches

driven by a level 2 controller, every ten level 2 controllers driven by a level 1 device, and

the ten level 1 devices coordinated by a master controller. Thus if we can arrange things

so that only controllers can cause widespread outages if compromised, the number of

critical components is reduced by a factor of ten. If we can further arrange things so

1http://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-

routers-snowden and

http://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-

getting-implant/
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C0,0 C0,1

C1,0 C1,1 C1,2 C1,3

C2,1 C2,2 C2,3 C2,4 C2,5
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C2,0 C2,6

VC3VC1 VC2

VApp1 VApp2 VApp3 VApp4 VApp5

Figure 4.1: An SDN setup with hierarchical controllers and switches. Solid lines denote

connections, and dotted lines backup connections. Virtual controllers and virtual apps are

denoted by VC and VApp.

that the compromise of a level 2 controller does little damage outside of its immediate

neighbourhood, then we have reduced the number of points of serious failure by another

order of magnitude.

Although Figure 4.1 illustrates an SDN hierarchy informed by data centre practices,

without much imagination it is plausible to map the components to those of an ISP

(Network Operation Centre, Regional Offices, PoPs, etc.) and to the components of

our airport example (where there are some central facilities, some in separate terminal

buildings and some on different floors of those buildings, connected in a hierarchy).

The virtual controllers and virtual apps as discussed in Chapter 3 apply here as well.

Cyber-physical systems often require tenants to share a common set of physical resources.

The security and isolation properties from virtualising tenants complement those provided

by hierarchy. We propose to host virtual controllers and virtual apps right down to

the bottom layer of controllers, allowing rapid interaction with switches. This assumes

stateless virtual apps or at least virtual apps that can share state outside of the SDN

architecture, for example using shared servers. While stateful virtual apps are possible if
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the infrastructure provides memory as a service, the potential implications to performance,

placement, and security warrant some thought.

The physical controllers will also host (physical) apps, but for infrastructure tasks.

Apart from native functions necessary for running cyber-physical systems, infrastructure

apps also contain management functions such as setting up and tearing down tenants,

managing the topology, and capability token distribution.

4.3.2 Architectural security

We use AXE from Chapter 3 for access control using capability tokens. AXE provides a

clean and consistent way to enforce access control between apps and switches. Virtual

apps need access control permissions to interact with the underlying network. In AXE,

there are two ways to obtain such permission: AXE-unaware apps can issue OpenFlow

commands as normal and requests are first captured and decided by the shim in the

physical controller, or AXE-aware apps can first request a capability token and use it

for future requests. For scalability we take only the capability portion of AXE into our

hierarchical setup. Apps need first request their access tokens at initialisation time, then

present the token to the controller to be granted the necessary permissions.

In keeping with our isolation principles, the capability token generated at initialisation

time does not include all of the permissions the app has. Rather, it is the subset of

permissions bounded by the traffic that each instance of the app can see at that particular

location. For example, if an app can see traffic of all of a /24 network, but there are four

bottom controllers each with a non-overlapping /26 subnet (the four /26 subnets compose

the original /24), then four capability tokens are generated. Each token is for one instance

of the app, and grants permission for access traffic in that particular /26. In essence, the

capability tokens are both enabling access as well as confining access. This part provides

mandatory access control for tenants (tenant-MAC ).

We also allow apps to declare, at initialisation time, a set of permissions which they

declare they will use. This could be a smaller subset than the full permissions that the

mandatory access control would give them. This self-limiting feature can be helpful for apps

that may themselves be vulnerable. For example, a DPI app that parses incoming packets

can be targeted for exploits (just as Wireshark is often the first target in capture-the-flag

hacking competitions). Therefore it is prudent to self-limit the scope of its permission,

and tell the system to alarm if it uses more. The infrastructure then monitors the app for

undesired behaviour, such as a command that it declared it would not issue. Should an

event occur, the infrastructure can mark the app as compromised and restart it with a

clean copy. This part gives discretionary access control to tenants (tenant-DAC ).

Finally, the infrastructure itself imposes access control on all controllers, virtual or phys-

ical. This is the mandatory access control mechanism of the infrastructure (infrastructure-
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MAC ). This step provides isolation within the hierarchy and ensures that parts can fail

without affecting others. For each controller, the root issues a capability token that is

tailored to its location within the network, similar to MAC for tenants. Because the root

is responsible, through the hierarchy, for directing traffic through the SDN, it knows what

each controller and their neighbours should be able to send and receive. Through AXE

shims present at each node, each controller uses capability tokens to receive and send

OpenFlow commands. If a controller is misbehaving, it cannot do more than it is allowed

by the shim. If the controller and shim are both compromised (e.g., through physical

attack), it will still be fairly powerless because its immediate neighbours will not have

the tokens to accept anything outside of the existing defined permissions. By requiring

capability tokens at both ends for a connection to be set up, network compromises can be

strongly localised.

In summary, the infrastructure uses a set of three capability tokens to ensure isolation

and security. The result is the least privilege of the three. The order in which the tokens

are checked should be infrastructure-MAC, tenant-MAC, and then tenant-DAC. The set

of all three accepts authorised traffic and denies everything else.

We note that many of the lower level security constructs come from AXE, which is

described in greater detail in Chapter 3. There are also two previous work in particular that

are relevant in this section, as we scale up in deployment size. Header Space Analysis [94]

is a framework to statically check for errors in a large network. Its novelty lies in its

treatment of packet headers as a set of bits, as opposed to pre-specified protocol meanings.

In this way it is able to generalise packet headers and perform algebraic operations on

them. An improved version is NetPlumber [93], which can incrementally check for changes

online as they are issued, allowing rules to be checked for errors and policy violations as

they are issued.

4.4 Implementation and evaluation

We implemented the above design as a proof of concept. While AXE already supplies

the necessary access control and capability functions (and we evaluated it above), there

are two main additions here: generating tokens for infrastructure-MAC and tenant-DAC.

We also apply these performance measurements back to Heathrow’s network to see what

effects they would bring to a network of such size.

4.4.1 Capability token generation

The whole network has a set of IP address prefixes that it uses, whether in public or

private ranges. The most obvious way to generate capability tokens from more powerful

ones is by dividing capabilities by prefixes, and ensuring isolation at the address level.
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For this method, we replicate all other attributes, such as port numbers, into each

subdivided prefix for which the original has permission. For example, a permission for

ip addr=10.0.0.0/24, port=80 across two controllers would divide into two tokens of

ip addr=10.0.0.0/25, port=80 and ip addr=10.0.1.0/25, port=80.

Other fancy methods also exist, and an optimisation can be made in minimising the

number of tokens while still achieving the required set of permissions. Because root

controllers are context-aware and can be made specific to a network, we can implement

a more specific instance of capability token generation algorithm than simply using IP

prefixes. After generating smaller capability tokens from an original one, it is desirable to

check if the original set and the resulting set are equivalent in terms of covering space.

For each controller, the IP addresses of the traffic it sees is composed of the traffic sent

to it by its neighbours. Within an SDN, this set depends on the flow rules and can be

calculated in advance, since the central controllers know and issue these flow rules in the

first place. For controllers interacting with external routers, this can be agreed out-of-band

or learned from recent history. For a given controller, once the capabilities of all of its

neighbours are known, its local capability is simply the union of the set.

Incremental update can however be made more difficult by a cold boot. Power cuts,

for example, force the whole network to restart from scratch. The temptation may be

to temporarily disable all AXE shims and allow unlimited access, so that the network

can achieve a consistent state quickly, then calculate the capabilities for each controller

one-by-one. We can also temporarily sign capabilities covering the whole local network and

revoke them later. This just invites attacks involving disruptive service denial, though. A

secure reboot takes longer. We generate capabilities starting from edge controllers, where

external incoming IP addresses are known, and then propagate inwards. Once we have a

working infrastructure, we start to create the tenant virtual networks according to network

policy; tenant capabilities can now be generated and propagated across the network. The

slow part may be in getting the infrastructure into a consistent state.

4.4.2 Tenant-DAC

The tenant-DAC is implemented in AXE, with an additional step that a virtual app can

present its own policy file for AXE to monitor, co-existing with any MAC permissions

that AXE already imposes. Because tenant-MAC already filters all disallowed connections

from the switch to the virtual app, tenant-DAC only protects commands issued by the

virtual app to the switch. At runtime, any violation to the DAC policy, for example a

disallowed flow rule issued by the virtual app, will be denied but also trigger a restart of

the app from a clean copy. The performance to watch out for here is how fast a virtual

app can be restarted.

In AXE, we use Linux network namespaces to contain a virtual controllers and virtual
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Setup Mean Std. dev. Median

Real (wall clock) 122 ms 17 ms 125 ms

CPU (sys + user) 31 ms 5 ms 32 ms

Delete Mean Std. dev. Median

Real (wall clock) 39 ms 42 ms 20 ms

CPU (sys + user) 6 ms 3 ms 4 ms

Setup + delete Mean Std. dev. Median

Real (wall clock) 353 ms 8 ms 353 ms

CPU (sys + user) 30 ms 3 ms 28 ms

Table 4.1: Measured time for single Linux namespace setup, deletion, and cycle of setup

and deletion. Measured over 100 times, units in milliseconds. The high standard deviation

of Delete’s wall clock time is due to a few outliers; we have not been able to find a root

cause for them.

apps within their own networking scope. Starting a virtual app thus consists of setting up

a new network namespace, starting a virtual controller, and starting the virtual app. While

the time it takes to perform second and third steps vary depending on the implementation

and on the complexity of the software, we can measure the first step for overhead it

introduces.

Using a 32-bit Ubuntu 12.04 LTS with Linux kernel 3.2.0-23-generic-pae VM with 1GB

of memory running inside a 2.4GHz MacBook Pro with OS X, we performed three sets of

operations: setting up a namespace, deleting a namespace, and setting up then deleting

immediately after. Each operation is repeated 100 times within each set to obtain mean,

standard deviation, and median, and are measured by the time command each time. The

resulting real and CPU (kernel space plus user space) times are taken, and presented in

Table 4.1.

Even though the computer is not doing any other CPU-intensive tasks during the

experiment, the ‘real’ time is much more than CPU time. It seems that Linux namespace

is mostly non-CPU operations (waiting for virtual interfaces to be ready, for example). In

the worst case we see a cycle of setup and delete taking over 300 milliseconds to complete.

However, some optimisations can be performed. For example, a new instance of the virtual

app can be instantiated first, and the old one shut down only after the new one is ready

to receive commands. Security is not compromised because the shim is still blocking

commands for which it has no capabilities.

4.4.3 Reality check

Given the above performance numbers, we can now apply them to realistic requirements

to see the extent that security affects performance. In Section 4.1.2 we present the scale
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Restart frequency Bandwidth (Gb/s) Bandwidth (percentage)

1 day ∼50 Gb/s 100%

1 hour ∼50 Gb/s 100%

1 minute 49 Gb/s 98%

1 second 21 Gb/s 41%

Table 4.2: Effective bandwidth degradation from 50 Gb/s with 4 of 8 services needing

their virtual controllers restarted for each time period.

of current bandwidth supporting the technical operations of one terminal. In this section

we estimate how this bandwidth would be affected under different scenarios with varying

malicious packet presence.

The goal is to calculate how much Heathrow’s bandwidth capacity is reduced with

our security mechanisms deployed, assuming no modification to existing infrastructure

hardware. In other words, we want to get a general idea of how much 353 milliseconds

of mean wall clock time (per cycle of setting up and deleting virtual controllers) affect

Heathrow operations in terms of bandwidth. Even though here we calculate the amount of

reduction in bandwidth using the same infrastructure but with security added in, it is not

difficult to calculate the extra hardware needed in order to maintain the same bandwidth

capacity upon deployment of security mechanisms.

From Section 4.1.2 we can reasonably assume an aggregate peak rate of 50 Gb/s across

8 different services. We assume half of them to need their virtual controllers restarted,

either proactively or reactively, during a varying range of time period from 1 day to 1

second. We assume that the restarting process is unoptimised and will stop forwarding

traffic until it is back online. The resulting effective bandwidth is summarised in Table 4.2.

Alternatively we can also estimate based on packet-level volume. Packets-per-second,

as opposed to bits-per-second, is often used for measuring hardware performance. The two

measurements differ by a multiple of average packet size. Looking at Heathrow’s 8 services,

we estimate the first 4 services to use 1000-byte packets as they are more data-oriented,

and the other 4 to use 100-byte packets as they are more time-sensitive. Weighted by the

bandwidth of each service, the combined network has a bandwidth of 207 Megapackets per

second (Mp/s). The effective bandwidth with security in place is summarised in Table 4.3.

We note that the ratios here are the same as Table 4.2, this is because we assume equal

likelihood of both packet-size profiles to be restarted. If some services are more likely to

be attacked, the resulting effective bandwidth and percentages may be different.
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Restart frequency Bandwidth (Mp/s) Bandwidth (percentage)

1 day ∼207 Mp/s 100%

1 hour ∼207 Mp/s 100%

1 minute 202 Mp/s 98%

1 second 86 Mp/s 41%

Table 4.3: Effective bandwidth degradation from 207 Mp/s with 4 of 8 services needing

their virtual controllers restarted for each time period.

4.5 Conclusion

Large multi-tenanted networks, and cyber-physical systems in general, are likely to be

more complex than traditional data centres and have larger attack surfaces. In order to be

deployed in these environments, SDN needs an architecture that can support separation

between mutually mistrustful tenants, and preferably support virtualisation too. In

this chapter we propose a hierarchical architecture for SDN which uses the mandatory

access controls we developed in AXE to accommodate mandatory access controls for both

infrastructure and apps, and discretionary access control for apps as well.

We also implemented key components of this new architecture to illustrate how it

can work and how much overhead it imposes. The biggest overhead we measured was

from Linux namespace management; the rest of the work done by components such as

virtual controllers, capabilities and apps is localised, so we do not foresee performance to

be unduly affected by the size of the network.

As attacks and compromises become the norm rather than the exception, we need to

design new systems that inherently isolate parts that do not need to influence each other.

In our hierarchical design, not only do we isolate tenants by virtualisation, we also isolate

the physical infrastructure so that parts of it can fail without affecting others. Capability

tokens are used to enable allowed traffic and deny everything else, ensuring continued

operation even if an immediate neighbour is compromised and malicious.
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Conclusions

Networking is not trivial. BGP misconfigurations are common and failures may be

unreported, especially when they are contained within a network. Often, it is not the

network management logic that is at fault, but rather how human operators use and abuse

the software. Network management software needs to be more usable and less fragile, and

we have argued here for mechanisms that enable operators to tie down certain low-level

invariants, in order to support more robust high-level management.

This is intimately tied to network security management, and will become more so.

Traditionally networks have one owner operator who has full access and control; proper

configuration and management depend on operator experience and local knowledge. High-

level intentions, from business contracts or network policies, have to be translated into

low level commands; and although both the translation is done by automated scripts,

their maintenance is a highly-skilled task, and human errors here are a significant cause

of network outages. This traditional approach simply does not scale well, particularly as

networks become more complex and virtualised.

The management of BGP is our initial example of this scalability problem, and was the

focus of Chapter 2. Router management is still stuck in 1970s command line technology.

As multiple protocols coexist, misconfigurations can easily have serious consequences.

Current BGP management software simply does not provide adequate support to operators.

We introduce access control into BGP management software as an error containment

mechanism — as a way of making sure operators’ strategic intentions are not as easily

violated by tactical routing decisions. We present an implementation of a mandatory

access control mechanism where role-based policy labels and enforces the direction of

BGP announcements depending on link roles. Operators still have the final say, so these

enforcement mechanisms can be overridden if need be — just not by accident.

We then move on to the new technology of software-defined networks, SDN. This

saves money by moving from proprietary routers to open software running on commodity

PC and switch hardware; it brings flexibility to operators; and it can even allow them

87
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to delegate some management authority to tenants within a virtual network. Tenants

welcome this as it provides more options for traffic engineering.

However, current software does not adequately restrict what tenants can do. If tenants

could run arbitrary third-party apps, they could interfere with other tenants’ traffic,

whether by accident or on purpose, and use resources without proper accounting. In

Chapter 3, we investigate how to provide access controls for tenants and their apps within

one physical SDN. We present AXE, an attribute-based access control mechanism for

virtual controllers, which acts as a shim between each untrusted component and the trusted

network. We discovered that by doing stateless access control within virtual controllers,

we were essentially implementing stateless firewalls. This enables us to compare 50 years

of research in access control with 25 years of research in firewalls. This gives us a number

of insights, such as into the role of state in access control, and ways of managing it. We

hope the insights will help SDN be deployed in more complex environments, bringing both

cost savings and flexibility.

In Chapter 4, we look in more detail at cyber-physical systems to get some insight into

a possible large-scale deployment scenario for SDN. One characteristic that is different is

that we also need to consider physical compromises. With a traditional networking device,

a physical attack can easily compromise the whole network. With SDN, we can do better.

We propose a hierarchical architecture of SDN with AXE. A combination of mandatory

access control in the host network, and mandatory and discretionary access control in each

virtual network, can limit what each device and tenant can access, effectively limiting the

damage that a compromised device can cause.

The goal of this dissertation has been to explore what access control can bring to

network management. By integrating the two where they fit, network operators can draw

on decades of experience elsewhere in access control (so there is some chance of doing it

right) and provide the protection mechanisms needed for SDN to realise its potential in

the complex multi-tenanted networks of the future. In this dissertation we have discussed

the serious and pervasive threats that will have to be mitigated for that to happen.

As future work, one relevant direction is what the combination of BGP and SDN will

look like, and what security issues will arise. We are starting to see BGP speakers that are

directly coupled with SDN, so that routes can be processed and pushed to the forwarding

plane directly. An instance of the BGP software can be bundled as an SDN app, and a

future IXP or ISP may provide a central SDN platform upon which tenant BGP instances,

along with their policies and customisations, are hosted. Within SDN, BGP software will

receive more freedom in route and attribute handling, or even a completely different policy

framework from what we have today. The added flexibility may expose security issues

that are not possible within current rigid implementations. The interface between BGP

and SDN also needs research: the security assumptions and realisations are different on

each side, and vulnerabilities can arise because of their differences.
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So we have shown we can use access control to block attacks, and to increase robustness.

But can the access control mechanisms we propose actually be deployed in practice? This

will come down to incentives; and our mechanisms give local incremental benefit — which

may be just what is needed to drive adoption, further development and progress.
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