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Abstract

Compartmentalisation is a technique to reduce the impact of security bugs by enforcing
the ‘principle of least privilege’ within applications. Splitting programs into separate com-
ponents that each operate with minimal access to resources means that a vulnerability
in one part is prevented from affecting the whole. However, the performance costs and
development effort of doing this have so far prevented widespread deployment of com-
partmentalisation, despite the increasingly apparent need for better computer security. A
major obstacle to deployment is that existing compartmentalisation techniques rely either
on virtual memory hardware or pure software to enforce separation, both of which have
severe performance implications and complicate the task of developing compartmentalised
applications.

CHERI (Capability Hardware Enhanced RISC Instructions) is a research project which
aims to improve computer security by allowing software to precisely express its memory
access requirements using hardware support for bounded, unforgeable pointers known as
capabilities. One consequence of this approach is that a single virtual address space can
be divided into many independent compartments, with very efficient transitions and data
sharing between them.

This dissertation analyses the compartmentalisation features of the CHERI Instruc-
tion Set Architecture (ISA). It includes: a summary of the CHERI ISA, particularly
its compartmentalisation features; a description of a multithreaded CHERI CPU which
runs the FreeBSD Operating System; the results of benchmarks that compare the char-
acteristics of hardware supported compartmentalisation with traditional techniques; and
an evaluation of proposed optimisations to the CHERI ISA to further improve domain
crossing efficiency.

I find that the CHERI ISA provides extremely efficient, practical support for com-
partmentalisation and that there are opportunities for further optimisation if even lower
overhead is required in the future.
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CHAPTER 1

Introduction

1.1 The need for computer security

Computer systems have become integral to peoples’ daily lives and a critical part of
modern infrastructure, so computer security is more crucial than ever. Numerous high
profile attacks and vulnerabilities demonstrate that current techniques are inadequate to
protect against the threats of the modern digital world. For example the Stuxnet worm
targeted and compromised Iranian nuclear facilities [1], and the Heartbleed bug exposed
millions of systems to remote exploitation [2]. Even the fear of cyber attack is sufficient to
intimidate large corporations, as in the case of Sony Pictures’ decision to edit scenes and
cancel the New York premiere of its production ‘The Interview’ in response to hackers’
threats [3]. Meanwhile millions of personal and business computers are compromised
daily, resulting in privacy concerns and financial losses [4].

1.2 Part of the solution: compartmentalisation

Many tools and strategies exist for reducing the incidence of vulnerabilities in software,
but, as evidenced by common vulnerability exposure (CVE) statistics, exploitable bugs
inevitably remain [6]. Szekeres et al. [7] make it clear in their systematisation of knowledge
paper ‘Eternal War in Memory’ that many real world exploits are caused by the lack of
memory safety in low-level languages such as C and C++. They also show that attack
prevention techniques, such as stack cookies and address space randomisation, are never
100% effective. Therefore we need mitigation techniques to restrict the consequences of
any compromise.

Compartmentalisation is one approach: applications are divided into subcomponents
(often called a sandbox, compartment or security domain) following the principle of least
privilege, where each part has access to the minimum set of resources required to accom-
plish its task. If one part of an application is compromised then only a limited part of
the system is affected. This is often sufficient to prevent an attacker from exploiting a
vulnerability or escalating a minor compromise into a more wide reaching one. Karger [8]
observed that it can even be used to defeat Trojan horse attacks, where malicious software
is introduced into the supply chain.

A useful analogy is that of large ocean liners, such as the RMS Titanic (Figure 1.1),
which for over a hundred years have been built with multiple internal compartments to
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Figure 1.1: Large ocean vessels use compartmentalisation to reduce the risk that a hull breach
or fire will destroy the entire vessel, as shown in this side plan of the RMS Titanic from the early
20th century [5]. 16 watertight compartments were contained in the lower deck of the vessel,
including some dedicated to the boilers and machinery.

contain flooding and fire. Although this might seem like an ill-chosen example given the
tragic sinking of that ship on her maiden voyage on 31st May 1911, it actually serves to
emphasise the importance of well-designed compartmentalisation.

The Titanic struck an iceberg which breached five of her sixteen compartments due
to the failure of rivets along the starboard side in the bow. She was designed to survive
up to four flooded compartments but more than this caused her to tilt, allowing water to
flood over the top of the compartment walls and leading to her demise. Had the Titanic
been designed with more compartments, for example with longitudinal divisions as well
as lateral ones, or had the compartments been fully watertight she may not have sunk
and over 1500 lives may have been saved.

Nevertheless compartmentalisation certainly slowed her sinking, allowing some pas-
sengers to escape, and the principle is still the mainstay of safety practice in marine
engineering, such that the configuration and integrity of the compartments is one of the
primary concerns when designing and maintaining ships [9].

Applying these lessons in the field of computers means dividing programs into many
logical compartments and paying careful attention to the divisions between them. Achiev-
ing this requires the support of hardware to provide efficient isolation and communication
between the parts.

1.2.1 The current state of the world

The value of compartmentalisation and least privilege in computer systems have been
recognised since early days. The Honeywell 6180 computer used by Multics in late 60s
supported a hierarchy of eight security ‘rings’ in hardware [10, 11]. This allowed the core
part of the operating system to be isolated from less privileged parts such as drivers and
applications, but left little scope for horizontal separation of parts within a ring. However,
as Maurice Wilkes observed, just two rings are sufficient to isolate applications from each
other when used in conjunction with memory protection hardware (e.g. segments or
virtual memory):

However, it eventually became clear that the hierarchical protection that
rings provided did not closely match the requirements of the system program-
mer and gave little or no improvement on the simple system of having two
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modes only. Rings of protection lent themselves to efficient implementation
in hardware, but there was little else to be said for them [12].

This two- or three-level model has persisted to this day in the form of user, kernel and
hypervisor modes of modern CPUs.

With the eventual consensus on paged virtual memory systems, which combine address
space virtualisation with access control, application processes became the de facto unit of
protection. This has been the situation for decades as these mechanisms are considered
‘good enough’ and there is a considerable body of research, experience and infrastructure
built around them. OpenSSH was the first use of process based compartmentalisation
in wide deployment [13] and now major web browsers, including Microsoft’s Internet
Explorer, Apple’s Safari and Google’s Chrome [14] all use processes to sandbox (isolate)
high risk operations such as web page rendering and third-party plugins. However, as
explored later in this dissertation, this is a relatively crude form of compartmentalisation
that has major disadvantages in terms of performance and usability.

Software Fault Isolation (SFI) [15] as used by Google Native Client (NaCl) [16] and
managed virtual machines (e.g. Microsoft’s Common Language Runtime) are software-
only techniques that attempt to work around the limitations of commodity hardware.
Unfortunately these come with performance costs or limitations which make them unsuit-
able for use in many security critical contexts: OS kernels, web browsers and language
runtimes themselves are routinely written in unmanaged languages, notably C and C++.

1.2.2 Research directions – where can we go from here?

To address this need for efficient compartmentalisation researchers have proposed novel
processor architectures including Mondrian [17, 18], M-Machine [19], Iso-X [20], CODOMS [21]
and CHERI [22–24]. These introduce new memory protection features that have support
for fine-grained security domains. The suitability of these solutions for compartmentali-
sation depends greatly on the performance of security domain switching and, crucially, on
the level of backwards compatibility for existing code bases. In this dissertation I consider
each of these architectures, particularly focussing on CHERI and its practical support for
compartmentalisation in hardware.

1.3 Contributions

This dissertations presents a number of contributions which I made to advance hardware
support for compartmentalisation through the CHERI project:

• I conducted a survey of historical, currently used and proposed techniques for com-
partmentalisation (Chapter 2)

• I designed a multithreaded processor, CHERI2, implementing the CHERI ISA [25]
and running on an FPGA. This processor supports the entire CHERI software stack,
including CheriBSD, a port of the FreeBSD operating system, and supports cycle-
accurate instruction tracing and user-space accessible counters for non-disruptive
performance analysis at architectural and microarchitectural levels (Chapter 3).

• I designed a domain crossing micro-benchmark, cheri bench, to compare the perfor-
mance of process-based and CHERI supported compartmentalisation. (Section 4.1)
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• I performed detailed, root-cause analysis of domain crossing performance using
cheri bench and CHERI2, looking at such features as the effect of the CHERI
register set size on cache footprint during system calls (Section 4.3), the effect of
TLB usage on the scalability of data transfer during domain crossing (Section 4.5),
and the effect of hardware multithreading (Section 4.5).

• I designed, implemented and evaluated simple, practical hardware support to in-
crease the efficiency of security domain crossing on the CHERI ISA through a new
register clearing instruction (Section 4.6).

• I analysed the performance of cheri tcpdump, an example of a real application
adapted to use CHERI compartmentalisation, and demonstrated the scalability and
practicality of the CHERI compartmentalisation features (Section 5.2).

• I contributed more generally to the engineering efforts of the project, including
ISA-level testing, adapting the OS to support the hardware optimisations and im-
plementing a tool to analyse instruction traces.

1.4 Publications

During the research period for this dissertation I contributed to two peer-reviewed papers
with other members of the CHERI project.

• Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W Moore, Jonathan
Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton, and
Michael Roe. The CHERI capability model: Revisiting RISC in an age of risk. In
Proceedings of the 41st annual international symposium on computer architecuture,
pages 457–468. IEEE Press, 2014

• Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
J. Anderson, D. Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie,
Stephen J. Murdoch, Robert Norton, Mike Roe, Stacey Son, and Munraj Vadera.
CHERI: A hybrid capability-system architecture for scalable software compartmen-
talization. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 20–37,
May 2015

Our ISCA 2014 paper [22] introduced the CHERI architecture and its support for fine-
grained memory protection in the form of bounded, unforgeable pointers (capabilities),
but did not focus on compartmentalisation features. It established that the runtime
overheads of capabilities are acceptable and that efficient implementation in hardware is
feasible.

Our IEEE S&P 2015 [23] paper elaborated on the compartmentalisation features of
CHERI. Some of the results presented in Chapters 4 and 5 of this dissertation are in-
cluded in this paper, but I present extended results, with more domain crossing mecha-
nisms, more detailed analysis using hardware performance counters and new results from
multithreaded hardware.

I also contributed to the following other papers and technical reports relating to the
CHERI project:
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• Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan
Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W.
Moore, Steven J. Murdoch, Robert Norton, and Stacey Son. Capability Hardware
Enhanced RISC Instructions: CHERI Instruction-Set Architecture. Technical Re-
port UCAM-CL-TR-876, University of Cambridge, Computer Laboratory, Septem-
ber 2015

• Robert N. M. Watson, Jonathan Woodruff, David Chisnall, Brooks Davis, Woj-
ciech Koszek, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Pe-
ter G. Neumann, Robert Norton, and Michael Roe. Bluespec Extensible RISC
Implementation: BERI Hardware reference. Technical Report UCAM-CL-TR-868,
University of Cambridge, Computer Laboratory, April 2015

• Brooks Davis, Robert Norton, Jonathan Woodruff, and Robert NM Watson. How
FreeBSD Boots: a soft-core MIPS perspective. In Proceedings of AsiaBSDCon 2014,
March 2014

1.5 Dissertation overview

This dissertation is constructed as follows:

• Chapter 2 presents background material and previous work on compartmentalisation
for security.

• Chapter 3 contains a description of the CHERI instruction set architecture and its
support for compartmentalisation, as well as some details about the implementa-
tion of the CHERI2 processor and how compartmentalisation is supported by the
llvm/clang compiler and FreeBSD operating system.

• Chapters 4 and 5 evaluate the implementation of compartmentalisation on CHERI
at micro and macro levels respectively.

• Chapter 6 concludes the work and describes future research opportunities.
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CHAPTER 2

Compartmentalisation for security

Compartmentalisation is the technique of separating computer applications into distinct
parts to enhance security and reliability. This ensures that a failure or security compromise
of one piece can be contained such that the system as a whole may continue. In this
chapter I examine different approaches to compartmentalisation in hardware and software
to understand how they meet the requirements for compartmentalisation and where there
is room for improvement.

2.1 Compartmentalisation requirements

There are many methods of compartmentalisation, but they all have the following basic
requirements:

Isolation This usually refers to memory protection and encompasses two considerations:
confidentiality and integrity. These refer to whether a compartment may read and
write another’s data respectively. Depending on the trust relationship these prop-
erties may be needed in only one direction or in both. In situations where there
is asymmetric distrust it is common to refer to the less trusted component as run-
ning in a sandbox (by analogy to a safe play area where no harm can be done).
This dissertation deals mainly with mutual distrust between compartments or se-
curity domains which has stricter requirements, although the results are applicable
to sandboxing too.

Resource arbitration On systems which multiplex hardware between multiple domains
one must not be allowed to monopolise a resource preventing others from making
progress. For example there needs to be a way to ensure that each domain gets a
fair share of the CPU even in the presence of a misbehaving process. A corollary of
this is that it must be possible for the application to detect and recover from the
failure or misbehaviour of a compartment.

Access control In addition to arbitration there should be a means to control which
resources a security domain can access. Policies vary but will commonly cover
system services such as the file system and networking. The idea is to restrict
a compartment to the minimum set of resources it needs to complete its task in
accordance with the principle of least privilege.
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Inter-domain communication Compartments need a way to communicate with each
other so that, working together, they have all the resources they require. Where
multiple security domains are time-multiplexed on the same hardware (e.g. with pro-
cess based isolation on a single core) permitting controlled communication whilst
maintaining isolation requires a domain crossing mechanism that allows transition-
ing from one security domain into another without granting all the permissions of
one domain to the other. This typically involves a trusted component (e.g. an OS
kernel) which is exempt from the usual isolation mechanisms so that it can save
the state of one domain and restore another, and a controlled way of invoking this
component, such as a system call. System calls are an example of a call gate, where
privilege escalation occurs at the same time as execution passes to a known, trusted
piece of code which is responsible for securely performing privileged actions (such
as modifying virtual address mappings).

An example of communication in a compartmentalised system would be the privilege
separated sshd [13], where inter-process communication (IPC) occurs over a UNIX
socket between a privileged monitor process and a less privileged or slave process
acting on behalf of the remote user. Each interaction requires marshalling data to
a custom protocol and sending it over the socket, resulting in a system call into the
OS to effect the domain transition.

In multicore systems several security domains may be executing simultaneously and
communication between them can occur directly through shared memory, removing
the need for a domain transitions to pass through a trusted authority. For example,
the Chromium browser [14] uses shared memory to pass rendered webpages between
the sandboxed renderer and main browser process. However, such communication
between mutually distrustful parties requires special considerations to maintain se-
curity: all incoming messages must be validated and care must be taken to ensure
that the sender cannot modify the data during or after validation and, as in all con-
current systems, careful synchronisation is required to ensure thread-safe, race-free
behaviour.

2.2 Desirable compartmentalisation features

In addition to the necessary features detailed above compartmentalisation systems will
be more widely adoptable if they provide the following:

Ease of use Restructuring applications for compartmentalisation can impose a signifi-
cant burden on the programmer. In particular if the application needs to be split into
multiple communicating processes this introduces all the well-documented problems
associated with parallel programming, with the added complication that security in-
variants must be maintained. Excessive difficulty will deter adopters or reduce the
level of compartmentalisation achieved. A good system will minimise the amount
of restructuring required and provide tools and libraries to assist with refactoring
and communication.

Incremental adoption Given the need to restructure applications it should ideally be
possible to compartmentalise only high risk parts of an application initially and gain
some benefit immediately. The level of compartmentalisation can then be increased
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over time. It should not be necessary to completely rewrite large codebases in order
to take advantage of the system.

Fine granularity Technical constraints can place a limit on the minimum amount of
functionality which can be placed in a compartment. This can lead to undesirable
sharing between logically separate security domains. For example in systems where
memory is protected at page granularity (e.g. 4 kiB) it is not possible to protect
small objects without suffering unacceptable memory and performance overheads
due to alignment requirements.

Performance Compartmentalisation almost always introduces some performance cost.
As Skeres et al. have observed [7] programmers will not adopt methods with ex-
cessive overhead or it may limit the degree of compartmentalisation achievable. In
addition to the overhead incurred by the isolation mechanism itself, the costs of
compartment management, domain switching and communication are all impor-
tant factors. Any mechanism which requires frequent kernel intervention to manage
trusted data structures is unlikely to perform well due to system call overhead,
therefore user-space delegation of some responsibility is a highly desirable feature.

Scalability The desire for fine granularity leads to an increase in the number of compart-
ments, which implies more switching and communication between domains. It is
therefore crucial that performance scales well, potentially making use of the modern
trend towards multicore hardware.

Small TCB The Trusted Computing Base (TCB) of a system is all of the hardware and
software which must be correct for the desired security properties to be maintained.
Given that most computer software contains bugs, a system with a large, complex
TCB is more likely to contain flaws resulting in vulnerabilities than one with a
minimal TCB. A vulnerability in the TCB is typically more serious than a flaw
in any one application as it compromises the whole system and not just a single
application. Furthermore correcting the TCB bug will likely be more disruptive as
it often requires upgrading, rebooting or even replacing (in the case of hardware
TCB components) the system. Therefore a small, simple, easily verifiable TCB is
highly desirable.

Flexibility Many compartmentalisation techniques are optimised for a particular use
case. For example, it is common to assume a single controlling process instantiating
a number of distrusted sandboxes. Whilst it is important to support this scenario
a general purpose compartmentalisation system should also allow more complex,
non-hierarchical relationships.

2.3 Existing compartmentalisation techniques

2.3.1 Virtual memory

The most widespread compartmentalisation systems in use today make use of the su-
pervisor rings and virtual memory hardware available on contemporary CPUs. Each OS
process constitutes a unit of isolation contained within its own virtual address space, with
access to hardware and system resources mediated by the kernel.
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Applications can be compartmentalised manually using standard discretionary access
controls (e.g. users, groups and file permissions), and OS primitives such as pipes for
communication, but this requires significant programmer effort and is error prone. Many
security extensions have been developed to address this issue by simplifying the process of
creating and managing sandboxes, some of which are described in the following sections.

2.3.2 OS Virtualisation

OS virtualisation is the processes of running multiple independent operating systems
instances on the same hardware. It has grown in prominence recently as a low cost means
of consolidating many previously separate servers onto increasingly powerful hardware,
but can be used for compartmentalisation by creating pared-down OS instances dedicated
to running a single application, reducing the chance that other applications running on
the same hardware will be affected by any compromise without requiring the expense
of multiple physical machines. Originally developed by IBM in the 1960s as a way to
partition the resources of large mainframe computers, virtualised systems use a control
program or hypervisor to supervise execution of multiple guest operating systems [28].

Then, in 1979, UNIX version 7 introduced the chroot system call allowing a process
to change its view of the file system so that it appears to be rooted in a subdirectory,
potentially limiting it to a minimal set of required files. Although this was originally in-
tended to aid development and testing, not for security, by 1992 Bill Cheswick described
its use to make a ‘jail’ to track the actions of a computer hacker [29]. Pure chroot only
limits file system access and as such it is not a complete isolation mechanism on its own.
Further developments such as Solaris ‘containers’ [30], Linux Containers (LXC), OpenVZ
and FreeBSD ‘jails’ [31] extend the concept to include networking and other system func-
tions necessary for full compartmentalisation, effectively virtualising the system at the
OS/kernel level. This form of virtualisation can run on commodity hardware and has
moderate overhead, but requires pervasive support throughout the OS kernel, resulting
in a large attack surface.

Recently para-virtualisation as used in Xen [32] and hardware-assisted virtualisation
such as Intel VT (Virtualisation Technology), AMD-V have returned to running an entire
OS on a virtual machine under the control of a hypervisor. This has the advantage of a
smaller and simpler TCB but has higher overhead than kernel-level virtualisation.

With OS virtualisation the compartments themselves are extremely heavyweight, re-
quiring an entire system image, although copy-on-write or other file-system tricks such as
overlays can mitigate this. As such, OS virtualisation can only be used for compartmen-
talisation at a very coarse granularity.

2.3.3 Sandbox Modes

A lighter-weight alternative to full OS virtualisation is a special sandbox mode where a
process can voluntarily give up all but a very narrow set of rights. For example, on Linux,
a process in seccomp (secure computing) mode can only invoke the exit, sigreturn, read and
write, and only on file handles it already had before entering seccomp mode. Applications
can be sandboxed using this by dividing them into multiple processes, usually with a
single main process with full privileges and subordinate sandbox processes to do ‘risky’
computation in seccomp mode. Communication is via pipes or files opened before forking
/ entering seccomp mode.

18



This model has much smaller impact on the kernel than OS-kernel level virtualisation
and a drastically reduced attack surface, but requires significant modification to the design
of the application. Unlike virtualisation, it is only suitable for sandboxing functions which
can be modified to work in the restricted environment, so may not be usable for 3rd-party
plugins supplied without source code, or for things other than pure computation, such as
network access.

seccomp-bpf extends seccomp with programmable in-kernel syscall filtering using Berke-
ley Packet Filters (BPF), a simple virtual machine instruction set originally designed for
filtering network packets. This allows sandbox designers to define rules to determine al-
lowable kernel invocations instead of the fixed set of four permitted syscalls, considerably
increasing flexibility. OpenSSH [13] and Chromium [14] use this for sandboxing on Linux.

2.3.4 Capsicum

Capsicum [33] is a sandboxing framework present in FreeBSD 9 and later which focuses
on simplifying the creation of sandboxed applications (or sandboxing existing applica-
tions) on contemporary OSes. It attempts to ease the task of programming sandboxed
applications by introducing a restricted sandbox mode and a new primitive, capabilities,
which extend standard UNIX file descriptors to provide fine-grained privilege delegation.
Processes which enter capability mode are denied direct access to global namespaces such
as the file system and process IDs. Instead they may only access resources through the
capabilities they possess. Capabilities can be inherited from the parent process or passed
between sandboxes via inter-process communication channels such as UNIX domain sock-
ets. Capsicum also features a user space library, libcapscium, which aids developing and
running sandboxed code by providing support for loading sandboxes and a run-time envi-
ronment which emulates much of the traditional UNIX API inside the sandbox, potentially
using remote procedure calls (RPC) to proxy some operations (such as DNS lookups) via
a more privileged process.

Watson et al. evaluate the framework using microbenchmarks and by porting a number
of applications including gzip, tcpdump and the chromium browser. They found that the
overhead of the extra capability checks in system calls was minimal, but that the cost of
creating sandboxes by using fork and execve was significant, a problem in common with
other sandbox modes relying on process isolation. Porting applications required relatively
few source code changes, especially in applications already written to support sandboxing
such as chromium.

2.3.5 Mandatory Access Control Frameworks

The term mandatory access control (MAC) was originally used to describe non-discretionary
access controls such as Bell LaPadula [34] used in multilevel secure (MLS) systems, where
discretionary access control is augmented with a system-wide policy which restricts what
users can do with data they can access. Such systems are principally used in military con-
texts, but the concept of a separate security policy has recently been applied more widely
in MAC frameworks for commodity OSes such as AppArmor [35] and SELinux [36]. Like
seccomp BPF filters, these frameworks allow application sandboxing by defining a set of
rules, however the ‘policy’ is specified declaratively by referring to higher level concepts
such as users, binaries and files (either via paths names or file system supported ‘labels’).
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Policies can be defined and distributed separately from the program, allowing sandboxing
of arbitrary, unmodified applications much like OS/kernel virtualisation.

Unfortunately these frameworks are complex, with a large attack surface, and deter-
mining the correct policy for a particular application is an expert task. It is not uncommon
to see applications fail due to incorrect security policies, and sadly the most frequent ‘fix’
is to disable the security framework altogether.

2.3.6 Microkernels

The original development of the Mach [37] kernel was motivated principally by the need
to support multicore architectures, but over time it developed into a microkernel system
consisting of a minimal kernel supporting a system of processes communicating via inter-
process communication (IPC) in order to perform all the work of a UNIX operating
system. This effectively produced a compartmentalised system with a heavy dependence
on efficient IPC for domain crossing, but Mach’s performance was soon found to be a
limiting factor, largely due to increased cache usage [38, 39].

Later microkernels such as EROS [40] and L4 [41] aimed to address this with highly
optimised methods of crossing between domains, principally by dropping portability and
optimising for particular hardware platforms. Liedtke achieved impressive results [42]
with latencies as low as 45 cycles for ‘simple IPC’ on a DEC Alpha, rising to 86 and 121
cycles on MIPS R4600 and Intel Pentium processors respectively in the best case, with
further ‘indirect costs’ incurred due to cache usage bringing the typical IPC to around 200
cycles. However, this ‘simple IPC’ is limited to data which can be transferred in registers:
transferring larger data would require expensive TLB manipulation, with the cost of a
page fault being given at 600 or more cycles per page.

Shapiro [43] measured 4.9 microseconds (over 500 cycles) on a Pentium processor for a
minimal EROS IPC round-trip with no data transfer and this overhead quickly escalates
(relative to a within address-space bcopy) for larger data transfers due to data copying,
cache and TLB misses. Shapiro argues that the high fixed cost is acceptable providing
appropriate domain-crossing boundaries are chosen to amortise them:

Appropriate decomposition points are those places where a significant data
payload must be copied across a functional boundary within the application,
or where the routine invoked is long-running relative to the IPC cost (e.g.
sorting).

However this fails to address the fact that copying large amounts of data (even using
TLB re-mapping tricks) via shared memory will lead to significant overhead because each
shared page requires two entries in the TLB (one in the sender and one in the receiver).
The effect of this is even worse on modern multicore architectures where TLB modification
of shared pages requires a TLB-shootdown operation, sending an inter-processor interrupt
(IPI) to all CPUs to flush invalid entries from the TLB. It also places a burden on the
programmer to identify such appropriate decomposition points which may not even exist
in any given application!

2.3.7 Limitations of virtual memory based techniques

As each of the preceding virtual memory based techniques relies on address translation
to provide isolation they share some fundamental limitations:
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Page Granularity CPUs support pages of some fixed size, typically four kilobytes or
more. This limits compartmentalisation to be rather coarse, at the level of whole
programs or libraries rather than individual objects. In fact, as processors adopt
larger page sizes of 4 MiB or even 1 GiB to improve TLB efficiency this problem will
become worse.

TLB Performance A hardware Translation Lookaside Buffer (TLB) is used to cache
the address mappings for each domain. On some architectures this must be flushed
on every context switch resulting in many TLB misses each of which may take tens
to hundreds of cycles to fill from memory using a hardware table walker or software
trap handler. This makes domain switching a costly operation, even more so on
ubiquitous multicore systems where it is necessary to inform the other cores using
an inter-processor interrupt (a so called TLB shootdown).

More modern TLBs tag each entry with an address space identifier which allows
entries from multiple processes to co-exist in the TLB. This can reduce misses
when returning to a previously executed process after a switch but many misses
will still occur, especially since TLB capacity is severely limited by the expense
of implementing the content addressable structure in hardware. As the number of
active processes increases and the time between transitions decreases the pressure
on the TLB causes serious performance degradation as noted by McCurdy, Cox and
Vetter [44].

System calls Control of the TLB must be a privileged operation, which means the kernel
is involved in all compartment manipulation and domain transitions. This mandates
the use of system calls which come with many associated costs: e.g. pipeline flushes,
save and restore of register context and TLB, cache and branch predictor footprint
.

To work around these limitations of TLB-based compartmentalisation, programmers
have devised software-only techniques to enforce isolation and improve security.

2.3.8 Safe programming languages

Some languages embed compartmentalisation in the language model. For example in the
object oriented languages Java and C# each class, method or field can specify its acces-
sibility by other classes and packages. This makes each class into a security domain with
method calls functioning as domain transitions. Java and C# also have security frame-
works which can restrict access to system resources according to administrator provided
policy. These features are implemented using software techniques such as compilers which
insert dynamic checks or virtual machines (sometimes supporting just in time compila-
tion) however, such managed runtime environments incur performance costs including
garbage collection, permissions and bounds checks which make them unsuitable for some
applications. As a result much code is written wholly or partly in low-level languages
like C which compile directly to native machine instructions. Such native code cannot
be the contained by the language runtime and can therefore subvert the security model,
meaning it can only be used if trusted or contained using a technique such as software
fault isolation (see Section 2.3.9).

The TCB of a safe programming environment is typically large, sometimes including
the compiler or the entire language runtime comprising the virtual machine, code verifier,
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libraries and security framework implementation. Historical vulnerabilities in Java and
the Microsoft .NET framework have shown that such a large, complex TCB inevitably
contains many opportunities for security critical bugs: a search for “Java SE” on the
National Vulnerabilities Database website of the National Institute of Standards and
Technology found 394 vulnerabilities posted in the past three years (as of September
2015), many of them with severity listed as ‘high’ and affecting the sandboxing features.
Such bugs have seen large scale exploitation in recent years, for example the Flashback
Trojan infected over 650,000 OS X computers by exploiting an unpatched vulnerability
in the Java runtime [45]. Furthermore large bodies of existing code written in unsafe
languages would need to be rewritten to take advantage of language safety, a barrier
which has proved prohibitive to the universal adoption of safe languages despite high-
profile attempts such as JavaOS [46, 47] or Microsoft Research’s Singularity OS [48].

2.3.9 Software fault isolation

Wahbe [15] introduced a software-only mechanism for isolating native code within a single
address space. This relies on static code analysis and inserted address checks to enforce
separation of fault domains (sandboxes), working around the lack of hardware support
for within address space isolation on MIPS and Alpha hardware. The proposed software
fault isolation (SFI) technique uses the upper bits of addresses to divide the address space
into segments and inserted runtime checks before each memory or control flow instruction
to ensure that sandboxes only write data or jump to addresses within and their own
segments. The inserted checks use dedicated registers to maintain the invariants even if a
jump occurs directly to the memory access or branch instruction, bypassing the preceding
check. Domain transitions are achieved by jumping via trusted trampolines, that can
contain code which does not adhere to the normal SFI restrictions in order to achieve
their work.

This version of SFI has a number of limitations, including that only memory writes are
checked as reads are more common and not considered security critical. This facilitates
read-only sharing of data between domains but means that there is no confidentiality
between them, only integrity. Read-write data sharing between domains can be achieved
by mapping physical memory at multiple locations in the address space so that it can
appear in segments belonging to different domains, but this requires duplicate TLB entries
and limits granularity. Another limitation is that only one code and one data segment
are accessible in each domain.

Whabe’s original SFI inspired a wide variety of successors including works focusing
on x86 [16, 49–52], driver isolation [53–55] or native code executing in a Java virtual
machine [56].

Implementations of SFI on commodity x86 are complicated by the fact that instruc-
tions are variable in size and can be unaligned, unlike the fixed 32-bit RISC instructions
of the MIPS and Alpha machines used by Whabe. This makes static verification difficult
as the verifier must ensure that even branches into the middle of an instruction do not
violate the safety requirements. This can be worked around by replacing each indirect
control flow operation with a lookup in a hash table of valid function entries as in MiS-
FIT [49], artificially aligning instructions with nops and masking the lower bits of indirect
jumps as in PittSFIeld [51] or using unique labels embedded in the code as in control flow
integrity [52, 57]. However each of these comes with additional runtime overhead and
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requires a specialised toolchain to generate conforming code.
XFI [52] is an example of pure software fault isolation taken to an extreme. It uses a

verifier to check that untrusted binary modules will maintain a range of restrictions on the
dynamic execution state and that software guards are present where constraints cannot
be checked statically (for example on computed branches). A binary translator is used
to generate such modules from existing binaries but does not form part of the trusted
computing base. XFI uses control flow integrity (CFI) [57] based on guards at computed
call sites which check for valid identifiers stored just before valid branch targets. Two
separate stacks are used to ensure that critical variables, such as the stack pointer and
return address cannot be corrupted: the scoped stack has a known constant frame size at
all points in a function and is only accessed statically, whilst the allocation stack is used
for variables whose address is taken. Guards for those memory accesses which cannot be
verified statically have a fast-path for when the access lies within an expected region and
a slow-path for more complex cases. The checks can be shared between multiple accesses
where CFI ensures that the check will always be performed before any of them takes place.

The XFI binary translator is, by the authors’ own admission, both complex and slow
and lacks support for commonly used extensions such as the MMX and SSE vector in-
structions. They claim that the verifier, on the other hand, is conservative, simple, and
fast, partly because it relies on (untrusted) hints generated by the translator.

Vx32 [50] and Google’s native client [16] (NaCl), which encapsulates untrusted native
code downloaded from websites, employ a hybrid technique which combine static vali-
dation with use of the segment registers available on x86 processors. The use of extra
hardware support allows them to remove the need for dedicated registers (critical on the
register poor x86 architecture) and add support for confidentiality, but restricts NaCl
applications to 32-bit compatibility mode on modern 64-bit processors because the little-
used segment registers were removed from 64-bit x86. This later proved to be a problem
for Google as performance of this legacy feature on Intel’s low power Atom processors
was so poor that the developers had to seek an alternative approach.

Software fault isolation (SFI) has performance advantages over TLB and virtual ma-
chine based methods but it can introduce onerous restrictions on sandboxed code and
often has considerable performance overhead. Implementations differ but common lim-
itations include: protection for memory writes only; a single data region per sandbox
necessitating copying of argument data during domain crossing; or the assumption of a
trusted parent/untrusted sandbox model with no support for inter-sandbox calls. The
case of NaCl in particular indicates a frustrated need for hardware support for compart-
mentalisation.

2.3.10 Hardware compartmentalisation support – address
based

The need for fine-grained memory protection and compartmentalisation has long been
recognised by hardware designers, but as yet none of the proposed technologies have
gained widespread adoption, probably due to the difficulty of maintaining backwards com-
patibility and an incremental adoption path, along with the perception that page-level
protection is ‘good enough’. Hardware compartmentalisation schemes can be broadly
categorised as address based or pointer based, depending on whether protection informa-
tion is stored on a per virtual address or per pointer basis. Address-based approaches
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typically augment or replace traditional page table structures with similar, potentially
fine-grained, permissions tables and provide a means for security domain switches within
a single address space.

Protection Lookaside Buffers

Koldinger et al. [58] consider two table-based protection architectures in the context of a
single address space operating system, hypothesising that security domain switching will
become increasingly common on such systems. Firstly they suggest decoupling virtual
address translation from protection using a Protection Lookaside Buffer (PLB) that oper-
ates similarly to a TLB except that entries do not contain translation information. When
coupled with a virtually-indexed, virtually-tagged cache this has the advantage that the
TLB can be removed from the critical path for memory access, and also allows the page
size of the PLB and TLB to be independently optimised for protection granularity and
virtualisation efficiency respectively. Sharing between security domains still requires one
entry per process in the PLB, but TLB entries are shared due to the single-address space
design. In theory this allows the PLB to have a greater capacity than the equivalent
TLB because the entries are smaller, however the space savings are minimal since only
the physical address is saved and physical addresses are typically smaller than virtual
addresses [59]. Moreover these advantages only apply to single address space operating
systems, which have not been widely deployed despite the widespread availability of 64-
bit hardware. A major reason for this is backwards compatibility: existing software often
makes assumptions about address space layout and would need significant alteration to
run in single address space systems.

Page groups

Koldinger also discusses the use of page groups as implemented on the Hewlett-Packard
PA-RISC, where TLB entries are tagged with an access ID instead of a process ID. The
access ID is then checked against the set of allowed page groups for the current process
to determine whether access is permitted (only four active page group registers were
available on the PA-RISC rising to eight on later versions, whereas Koldinger consider a
hypothetical larger, hardware-managed LRU cache). This arrangement means that sets of
pages can be shared between processes without duplicate entries in the TLB, but requires
an extra hardware stage after TLB lookup to check the access permissions and a limited,
associative resource – the page group registers – which must be flushed on every security
domain switch. Although PA-RISC allows page groups to be set read-only per process,
permissions are otherwise the same for all processes accessing the page group limiting the
range of possible sharing arrangements.

Mondrian Memory Protection

Mondrian Memory Protection [17] [18] (MMP) adopts the idea of a protection table
distinct from the translation table to provide fine-grained memory (word level) protection
and multiple domains within a single address space. The permissions are stored in memory
in a complex, multilevel, compressed format which is cached in a PLB structure and in
side-cars attached to each general purpose register. The proposals also extend to a fine-
grained memory translation mechanism, which the authors use to implement a zero-copy
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networking stack. Domain transitions are achieved using specially tagged protection table
entries which indicate that an address contains a call gate to a given protection domain
ID. On branching to such a location the processor automatically pushes some minimal
context to a special cross domain call stack and switches to the called domain. A later
call to a return gate results in the reverse procedure, popping the stack and returning
to the caller’s domain. Witchel and Asanović ran a range of benchmarks and made a
version of Linux modified to use MMP to separate modules within the kernel address
space. The benchmarks showed moderate memory usage overhead (11%) and about 12%
performance overhead based on simulation, but there is no attempt to build a hardware
implementation or evaluate hardware complexity.

One limitation of MMP is that elevated privileges are required when modifying permis-
sion tables, leading to a domain transition or supervisor call for every memory allocation
or permissions change. For very fine-grained memory protection this could be a signifi-
cant overhead, limiting the granularity achievable. Furthermore on multicore hardware
the PLB and side-cars of all cores will need to be flushed on every permission table mod-
ification, potentially leading to heavy performance penalties similar to that incurred by
TLB shootdowns. Alternatively a coherence mechanism could be provided to keep the
cached permissions synchronised, at the cost of some additional hardware complexity.

Pointer-based memory protection schemes as explored in the following sections can
avoid both of these problems inherent in table based protection, but may suffer from
other problems such as greater difficulty revoking privileges which have been delegated.

2.3.11 Hardware compartmentalisation support – pointer
based

Whilst address based compartmentalisation techniques seem like a natural extension of
existing TLB structures they require supervisor intervention for the creation and mainte-
nance of compartment protection information, limiting their performance and scalability.
Secondly, associating protection information with addresses risks permitting access when
a pointer moves outside of the intended object but still falls within another valid object
(as with a buffer overflow).

As an alternative, protection information can be associated with the pointers (refer-
ences) rather than with memory regions. Storing protection information once per reference
rather than per object is potentially costly in terms of memory usage, but affords extra
flexibility in that different pointers to the same object can have different permissions, and
is stricter in that a pointer to one object cannot be used to inadvertently access another
object in the same address space. Pointer protection information can either be stored
inline with each reference (also known as fat-pointers) or in an indirect pointer table in-
dexed by a pointer ID. Inline bounds storage has the disadvantage of inflating the size
of pointers, which has a potentially large impact on cache and memory usage especially
in pointer heavy code, but the latter requires an extra translation stage on each memory
access which might increase latency.

Pointer based schemes mean that objects can be shared in a natural fashion by passing
pointers without the need to copy data or adjust permissions tables to set up sharing,
leading to greater performance and ease of use.

25



Capability systems

The Burroughs B5000 [60, 61] from the early 1960s was the first machine to add hardware
support for bounded pointers with with its descriptor table, which held 1024 entries con-
taining either values or descriptors pointing to segments (bounded, contiguous memory
regions). Each entry had a type tag to prevent accidental dereferencing of data values or
execution of data segments, and all memory accesses were checked against the segment
bounds. This proved a very influential design and later machines adopted many of its
features.

The term capability was first used by Dennis and Horn in their seminal 1966 paper [62]
which describes a series of abstract operations for use in a ‘multiprogrammed’ system (i.e.
any system capable of running more than one program simultaneously, either through
time slicing or multiple CPUs). Central to this was protecting programs from each other
by placing them within their own spheres of protection, for which they envisaged the use
of a per process capability list (C-list) containing an array of capabilities. Each capabil-
ity grants access to some object (such as a file or region of memory) with given access
indicators (permissions such as read, write or execute), and access to every object is via
an index into the capability list, allowing the permissions to be checked. The owner of
a capability can grant use of it to another process by adding it to its C-list, specifying
the permissions to be delegated and later ungrant by removing it from the list. Crucially,
they also describe protected entry points which allow secure transitions between processes
using entry capabilities, which are special capabilities granting permission to branch to a
specified entry point in another process whilst simultaneously loading the corresponding
C-list and copying a single argument capability.

The provably secure operating system (PSOS) [63–67] developed at the Stanford Re-
search Institute went on to provide a formally proven basis for the security of capability
systems, and the ideas were adopted by a number of research and commercial computer
systems, each differing in their interpretation and implementation [60]. Notably the Plessy
System 250 [68], designed to operate a highly reliable telephone switching system, was
the first practical system to use capabilities and the Cambridge CAP Computer [69] was
the first developed successfully in an academic context. Both of these used capability
registers to store capabilities for immediate manipulation and allowed them to be stored
in memory in dedicated capability segments (separate from the data segments to prevent
unauthorised modification of capabilities). They also featured protected procedure calls
with arguments being passed via capability registers.

Hydra [70], developed at Carnegie-Mellon University, was an experimental operating
system which used a software implementation of capabilities to provide abstract objects
to the programmer. Objects had a name, which served to uniquely identify them, a type,
which defined the permitted operations and a representation, which contained the data
associated with the object, including a list of capabilities to other objects. A type manager
was responsible for the creation and manipulation of objects of a given type. To support
this Hydra allowed the creation of restricted capabilities which identified an object but
did not permit direct access to data. These could be used by the holder of an object as a
token and later passed back to the type manager, which could then amplify the capability
to gain access to the data. However, since the Hydra was implemented in software on
top of generic PDP-11 minicomputers it had some limitations, such as that all object
manipulation had to occur via the kernel and involved copying of data to and from local
memory.
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The IBM System/38 [71] was a major commercial capability system which added hard-
ware support for objects, but aimed to separate the programmer from the implementation
through the use of microcode to implement high level capability operations in terms of
more efficient low-level machine instructions. This proved an effective strategy and Sys-
tem/38 programs are still being supported on current IBM Power systems via emulation.
An interesting feature is the use of tagged memory which allows capabilities and ordinary
data to be mixed in the same memory regions: each memory word is associated with an
extra tag bit indicating whether it contains a capability or not. These bits, which are not
accessible to the programmer, are set when capabilities are stored and cleared when data
is stored, ensuring that capabilities cannot be modified in memory to grant unauthorised
access.

The Intel iAPX 432 [72] (Advanced Programming arCHItecture) was another major
commercial deployment of capabilities which featured sophisticated support for objects
where all data could be treated as an object. Some types had hardware support and others
were handled transparently via software, making for a very consistent programming model.
It even had hardware support for garbage collection in the form of bits in the capability
descriptor to support the mark-and-sweep algorithm. To address the problem of protecting
capabilities in memory the Intel 432 allowed memory segments to be split into two, with
one exclusively for capabilities and the other for data. This means that only one data
segment was required per object but does not provide such a natural data layout as tagged
memory. Despite its relative sophistication the Intel 432 was a commercial failure. This
was due to the poor performance of the initial implementation owing to ambitiousness of
the project and an unoptimised compiler offering, which meant that it was outperformed
by other, cheaper processors available at the time.

With the RISC movement [73], which focused on simplifying instruction sets to reduce
hardware cost and complexity whilst providing an efficient compiler target, interest in
capability systems waned. The capability model was seen as too complex to implement
in these simplified machines, which adopted the much simpler paged virtual memory
approach used today.

Nevertheless capability systems continue to hold an attraction due to their support for
fine-grained memory protection, clean mapping to object-oriented programming models
and effective support for compartmentalisation with efficient data sharing and domain
transitions. The increasingly apparent need for better computer security and the massive
decrease in the cost of transistors due to improved fabrication technology has led to
renewed interest in the field, and a number of research projects have sought to create
modern capability systems without violating the principles of RISC design.

M-Machine

The experimental M-Machine architecture [19] supported guarded pointers, which include
protection information in the unused upper bits of a 64-bit pointer (only 54-bits of virtual
address space were supported). It used a simple scheme where segments must be power-of-
two sized and aligned, meaning that the bounds can be specified using just the 54-bit offset
and a 6-bit exponent that gives the length of the segment as a base-2 logarithm. There is
also a four-bit permissions field which includes read, write, execute, ‘enter’ privileges and
a single tag bit that indicates the presence of a pointer in a register. M-machine enforces
restrictions on pointer manipulation: special instructions for pointer arithmetic throw an
exception if the result is out-of-bounds; normal arithmetic instructions clear the tag in the
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result; loads, stores and jumps require a valid pointer operand for the address. Pointer
manipulation does not require special privileges creating a safe, efficient way for user-mode
code to restrict pointers for its own use and for passing between security domains.

M-machine also supports ‘key’ pointers, where the permissions indicate that a pointer
cannot be modified or used for memory access. Such ‘sealed’ pointers can be ‘unsealed’
by privileged software, making them useful as unforgeable tokens or identifiers. Similarly,
‘enter’ pointers act as minimal primitive for transitioning to a new domain via a call
gate: they cannot be used or modified except by jumping to them, at which point control
transfers to the fixed entry point specified by the pointer, which is simultaneously unsealed
and made available via the program counter. Any data pointers required by the new
domain must be stored inline with the code or in a thunk, so that they may be accessed
via the instruction pointer after the call.

M-machine uses tagged memory to preserve the tag bit when pointers are loaded
and stored requiring one extra bit of storage per 64-bit word but ensuring that pointers
are unforgeable, meaning that guarded pointers are capabilities. Privileged code has the
ability to fabricate arbitrary pointers via the SETPTR instruction so the M-machine cannot
be used to compartmentalise privileged code, however the amount of code which needs to
execute in privileged mode can be greatly reduced through the use of guarded pointers
and protected subsystems.

The M-machine achieves memory efficiency using a compressed capability format
which fits in the same space as a standard 64-bit pointer, but this comes with two signifi-
cant costs: firstly, objects can only be allocated in power-of-two sized and aligned blocks
which could lead to inefficient memory use due to fragmentation (nearly 100% for objects
just over a power of two). Secondly, all valid pointers are implicitly within bounds,
with code which causes the pointer to move out-of-bounds triggering an exception. This
makes it impossible to implement a compatible C-compiler with support for common C
idioms such as the invalid intermediate pattern identified by Chisnall et al. [74]. The
exception cannot be delayed until dereferencing because there is no way to represent an
out-of-bounds pointer if it has to be stored in memory, such as to spill a local variable to
the stack.

SAFE Processor / Low-fat pointers

More recently Kwon et al. [75] describe an interesting scheme using compressed, fat-
pointers which are tagged with a type for unforgeability, similar in many ways to M-
Machine’s guarded pointers. The compression scheme allows fat-pointers into a 46-bit
virtual address space to fit in a 64-bit word, and is designed to be efficient to implement
in hardware whilst minimising memory fragmentation needed for padding (3% worst case).
There is limited support for out-of-bounds pointers by allocating inexact regions and filling
with poison words tagged with out-of-bounds-memory-location, but no support for many
of the other C-idioms identified by Chisnall et al. such as Mask. In the extended SAFE
processor [76], domain transitions are achieved through call gates which consist of sealed
code, data and authority triples, where the authority is a typed-pointer to a structure
which describes the privileges of the currently running process.
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PICA

PICA [77, 78] is a capability machine which extends a MIPS32 processor with a set of
dedicated capability registers that refer to a memory-resident capability mapping table.
All memory references occur via capabilities, which act as a level of indirection replacing
the traditional page table with one indexed by capability ID instead of virtual address.
Translation caches are used to accelerate this. Tagged memory protects capabilities when
they are stored in memory. Sealed entry capabilities that only allow branching to a
given fixed entry point are used for domain crossing purposes. Domain crossing involves
a sequence of several instructions but to ensure that they occur in the correct order
a hardware sequence tracker throws an exception if they are used incorrectly. PICA
provides two modes for managing sandbox contexts (stacks): in the ‘independent contexts’
case a separate context object is used for each new cross-domain call, but to avoid the
overhead of allocating a new context for each call the hardware supports managing a
pool of previously allocated contexts. Special instructions manage lists of free and used
contexts so that they can cleared in the background asynchronously, but in addition there
is an instruction for efficiently clearing contexts using a high water mark which records
the maximum extent of stack used. The unified context mode is implemented by enforcing
an additional lower bound on the current context, preventing a callee from accessing the
caller’s stack. The stack bounds and stack pointers are pushed and popped to a secure,
hardware-managed stack during domain crossing. Finally a mask instruction allows for
clearing multiple registers efficiently during domain transitions.

The authors found that the overheads of domain crossing were moderate at 15-20%
based on simulation results, and that using independent contexts was considerably more
expensive than a single unified context though little explanation is given for this. No
hardware was actually built so it is difficult to know whether the authors’ assertions about
modest hardware implementation costs are realistic, in particular the PCALL instruction
requires updates to many bits of CPU state including every register in the capability
register file. Moreover the abandonment of paged virtual memory would pose a challenge
when porting existing operating systems.

CHERI

CHERI is a capability extension to the MIPS ISA, but rather than using capabilities
containing a unique ID referencing an in-memory translation table as did PICA, the
bounds are stored directly in the capability data type in the form of fat-pointers. This
makes it possible to retain the existing TLB for virtual address translation, improving
backwards compatibility with existing operating systems. As it is the main subject of this
dissertation, CHERI is described in more detail in Chapter 3.

CODOMS

CODOMS [21] (Code-centric memory domains) is another take on address space compart-
mentalisation based on the observation that there is a strong relation between a domain’s
code and the data it can access. Vilanova et al. propose associating a protection domain
ID with each page in the existing TLB and describe access protection lists APLs which
specify the access rights (read, write and call) of each domain to the pages of others.
The domain ID of the page corresponding to the program counter is used as the current
domain ID (hence code-centric domains). This results in a similar protection to page
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groups except that the current set of page groups is determined by the current PC. Do-
main switches are a achieved by tagging certain pages with ‘call’ permissions which allow
branching from one domain into another via a fixed entry point in the page.

To aid with passing arguments between domains CODOMS layers a capability scheme
on top of the page based protection. Domains can create capabilities to arbitrary byte-
granularity subsets of their address space and pass them via special registers to callees.
The creator of a capability’s APL is copied into the capability such that users of the
capability are delegated the same rights, though the permissions granted can be further
restricted by user level instructions. CODOMS also distinguishes ‘synchronous’ from
‘asynchronous’ capabilities with the former having the restriction that they cannot be
stored to memory and are thus suitable for delegating rights just for the duration of a
synchronous call and return (provision is made for spilling them to hardware controlled
‘domain control stack’ which ensures that they are revoked on return). Asynchronous
capabilities are intended to be longer lived and include a pointer to a counter in memory
which can be used by the originator of the capability to revoke all capabilities which
reference that counter.

CODOMS is a hybrid of address-based and pointer-based protection which attempts
to provide the advantages of both methods. Unfortunately the use of the PC to determine
the current domain restricts each sandbox to a single instance, limiting the granularity of
sandboxing. This is further compounded by the use of TLB pages as the basic unit of com-
partmentalisation, although byte-granularity capabilities for argument passing mitigates
this somewhat.

Special purpose hardware compartmentalisation

Recent efforts to provide a degree of compartmentalisation in hardware such as ARM’s
TrustZone [79, 80], Iso-X [20] and Intel Security Guard Extensions (SGX) [81] are sig-
nificant, but limited in flexibility and scope. Specifically, TrustZone virtualises a mobile
processor and introduces a reference monitor in order to allow a small, trusted operating
system (the secure OS ) to share a CPU with an untrusted, commodity operating system,
but this only benefits the applications running on the secure OS and is inherently limited
to a single secure zone. Similarly Iso-X and SGX aim to provide protection for critical ap-
plications against malicious system software or even physical attacks by providing special
hardware enforced encrypted compartments. They use cryptographic hashing to attest
to the integrity of the compartment and encryption of memory to preserve the confiden-
tiality of computation inside. However, they rely on the page table for isolation, limiting
compartment granularity, and can only be used to compartmentalise trusted applications
(such as Digital Rights Management or authentication protocols). They are useful, but
have a fundamentally different threat model to compartmentalisation solutions which aim
to protect applications from parts of themselves (in the form of untrusted extensions or
programmer errors leading to vulnerabilities). They are, therefore, not directly compara-
ble to CHERI.

Memory safety without compartmentalisation

Some proposals such as Hardbound [82] and Intel’s new Memory Protection Extensions
(iMPX) [83, 84] provide fine-grained bounds checking of memory accesses but are not suit-
able for compartmentalisation. Hardbound and iMPX place bounds information about
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each pointer into a separate table in memory and include hardware support for bounds
checking on access (either enforced or, in the case of iMPX voluntarily using extra in-
structions). However because the bounds table is modifiable without restriction, pointers
can be easily forged making these unsuitable for containing sandboxed code.

2.4 Summary of Compartmentalisation Methods

Memory protection and compartmentalisation in computer systems has a long history and
a wide variety of different schemes have been proposed and implemented. In the early
days sophisticated architectures based around capabilities and objects were developed, but
with the advent of RISC computing these were discarded in favour of simpler and cheaper
paged virtual memory. This left the essential task of compartmentalising up to software,
either in the form of process based isolation or high-level languages. Unfortunately process
based isolation suffers from high performance overhead due to TLB constraints and high-
level languages have large TCBs and are unable to support the significant bodies of
legacy code. They proved adequate for some time, but as awareness of the need for better
security became more apparent programmers were forced to improvise ever more elaborate
schemes, such as SFI and its derivatives, to work around the inadequate hardware support.

Mondrian was one hardware response, but found it difficult conceptually to move be-
yond the notion of the page table structure and its associated disadvantages in terms of
pointer-safety and scalability to multicore architectures. Re-inventions of capability mech-
anisms along RISC principles such as M-Machine, SAFE, PICA and CHERI show greater
promise, providing an attractive combination of pointer-safety and a clean mapping to
object-oriented programming styles for fine-grained, within address-space compartmen-
talisation. However, they have not all paid enough attention to legacy support, with
CHERI being the only one of these with proven support for a large existing C-language
operating system and an incremental path for adoption of protection features.
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CHAPTER 3

CHERI

3.1 The CHERI ISA

CHERI (Capability Hardware Enhanced RISC Instructions) is an experimental extension
to the 64-bit MIPS ISA designed to add memory safety features using capabilities [24,
25]. In this chapter I describe these features and how they can be used to efficiently
compartmentalise applications within a single virtual address space.

3.1.1 Memory Capabilities

In the context of computer security a capability is defined as a communicable, unforgeable
token of authority [62]. On CHERI these take the form of 256-bit fat pointers whose
format is shown in Figure 3.1. These are traditional memory pointers augmented with a
base address, length and permissions that specify, with byte level granularity, the limits
within which the pointer (offset) is valid. Capabilities in the CHERI ISA are a first
class pointer datatype, on a par with integers or floating point numbers in traditional
MIPS. They are stored in 32 special registers, and can be loaded and stored to memory
just like ordinary values, except that when in memory they are identified by a tag bit
which prevents unauthorised modification (see Section 3.1.3). CHERI defines a set of
unprivileged instructions for safely manipulating capabilities such that the access granted
can only be decreased. Load and store instructions are provided to access memory via
capabilities and for loading and storing capabilities themselves . The offset field in the
capability plays the role of a pointer that is added to the immediate from the load or store
instruction to form an effective address. This offset is allowed to stray out-of-bounds so as
to permit behaviour exhibited in real world C programs [74], but permissions and bounds
checks are performed on memory accesses – the effective address must be within bounds
or an exception will be raised by the hardware. Capabilities use virtual addresses: after
bounds checks the effective address is translated via the TLB to compute the physical
address to use.

CHERI capabilities have all the memory safety benefits of the guarded pointers used
on the M-Machine [19], but are also a practical compiler target, allowing pointers to stray
out-of-bounds when required and supporting the idioms used by real C programs [74].
Their main disadvantage is their size and consequent memory footprint, but previous
work has shown that the overhead is acceptable in benchmarks [22] and ongoing work
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Figure 3.1: Fields of a 256-bit CHERI capability
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to compress capabilities could reduce them to 128-bits whilst maintaining their benefits.
In Section 4.4 I evaluate the effect of saving and restoring the capability register file on
kernel syscall performance.

3.1.2 Backwards Compatibility

For backwards compatibility with legacy MIPS load and store instructions, which do not
specify a capability register to use, CHERI uses the default data capability, $c0 also known
as $ddc. By default this encompasses the entire address space but it can be restricted in
order to form a compartment (see Section 3.1.4). Similarly, the program counter (PC)
is indirected via the special program counter capability, $pcc, which can only be modified
using a capability jump instruction (cjal), or when entering and leaving the exception
handler.

3.1.3 Tagged Memory

To protect the integrity of capabilities when they are in memory and maintain their
unforgeability CHERI uses tagged memory. For every 256-bit aligned memory location
CHERI maintains a single tag bit that indicates whether that location holds a valid
capability. The bit is set when a valid capability is stored and cleared on any write of
non-capability data to that location. A tag controller stores these bits in a dedicated
portion of memory that is not accessible via normal memory operations, requiring a
memory overhead of 1/256 ≈ 0.4%. To reduce the number of off-chip memory requests
the tag bits are propagated and cached at each level of the memory subsystem, including
the L1 and L2 caches and a dedicated tag cache in the tag controller.

3.1.4 Capabilities for compartmentalisation

Since all memory accesses on CHERI are constrained by unforgeable capabilities, the set
of capabilities available to a thread determines its accessible address space. This set is
formed of the contents of the capability register file (including the default capability, $c0),
the program counter capability $pcc, and any capabilities stored in memory accessible via
these capabilities (including recursively by indirection). Thus threads can be isolated from
each other by restricting their capability contexts, allowing for fine-grained compartments
within the same address space as shown in Figure 3.2. Performing a domain transition
then means simply switching between threads, with no need to manipulate the TLB and
hence no call into the privileged kernel to do so. However, for true isolation there must
still be some mechanism to securely restore the new thread’s context without giving the
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Figure 3.2: CHERI allows a single virtual address space to be divided into multiple parts using
capabilities. Here two compartment threads are shown sharing a code segment and some data,
but have separate stacks. Figure courtesy R. Watson [23].
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caller direct access to it. In the absence of multiple hardware threads this requires some
form of privilege escalation or call gateway (such as a system call). FreeBSD’s lightweight
processes (threads) are sufficient for this, however as shown in Section 4.5 the overhead
of thread switching is significant, and requiring each compartment to be its own thread
introduces unnecessary parallelism which complicates the job of the programmer.

3.1.5 Sealed capabilities

CHERI supplements its memory protection features with sealed capabilities, which can
be used as transferable tokens of authority that do not grant memory access, serving as
a foundation for the implementation of protected entry points described in Section 3.1.6.
They are similar to M-Machine’s ‘key’ pointers but unlike on M-Machine unprivileged
code can perform the unsealing provided it has an appropriate capability granting it the
authority to do so. This is implemented using a 24-bit otype (object type) field and a
sealed bit in the capability format and two instructions, CSeal and CUnseal, as shown in
Figure 3.3.

The CSeal instruction takes two capability operands: a source, $cs, and a type, $ct,
which must have the Permit Seal permission. It seals the source capability by setting
$cs.sealed to one and $cs.otype to $ct.base+$ct.offset (note that the otype must be
within the address range of the type capability, meaning that capabilities with Permit Seal

grant the right to seal with a limited range of types, and that these rights can be delegated
just like other capabilities). A sealed capability cannot be modified or used for memory
access, but can be passed in registers or stored and loaded in memory. Sealed capabilities
can then be unsealed using the CUnseal instruction and a matching type capability. Thus,
sealed capabilities can be used as tokens which can be passed to an untrusted entity and
later retrieved and unsealed. For example this mechanism can be used to enforce the
idiom of opaque pointer types commonly found in C programs, ensuring that only the
code which creates an object can manipulate the data contained within it, but allowing
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Figure 3.3: Capability sealing: Green rectangles represent capabilities, red parallelograms are
instructions. Capabilities can be sealed using another capability as a key. Sealed capabilities
do not grant memory access privileges and cannot by modified, but can be passed as tokens
which can be unsealed later using the key. This can be used to enforce the opaque pointer
idiom common in C programs, and also acts as the foundation for the CCall object invocation
instruction.
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references to be passed outside and later returned for processing.

3.1.6 Domain crossing: CCall

For sealed capabilities to be effective the ‘type’ capability used as a key must be stored in
a separate security domain to prevent users of sealed capabilities from gaining access to
it, unsealing their capabilities and performing arbitrary manipulation of the data. Using
Hydra terminology this domain would be known as a type manager and would have sole
responsibility for creating and manipulating object instances of a given type; using more
familiar object-oriented terminology the domain might be called a class and individual
operations methods.

Under this paradigm every operation on a sealed object requires a transition into
another security domain and back which, as shown in Section 4.3, would incur significant
overhead using standard asynchronous inter-process communication techniques for domain
crossing. To address this CHERI includes the CCall instruction which can be used to
accelerate domain crossing by providing a form of direct, synchronous invocation on sealed
‘objects’ consisting of a pair of capabilities pointing to the object code and data. CCall uses
a sealed executable capability to implement a call gate in a similar way to M-Machine’s
‘enter’ pointers, or ‘entry’ capabilities of SAFE and PICA: it permits branching to a
safe entry point whilst simultaneously elevating privilege by unsealing capabilities. This
direct, synchronous transfer of control operates more like a function or method call than
traditional asynchronous domain crossing techniques, simplifying the programming model
and reducing overhead.

Unlike on M-Machine the capabilities that represent the code and data for an object
are bound together by the otype field. This removes the need to store data or key
capabilities inline with the code, allowing multiple instances of a class to share code
without the use of per-object thunks. It also ensures that the class code can only be
invoked with a data capability of the correct type, which helps to address the ‘confused
deputy’ problem (where privileged code is tricked into abusing its authority, for example
by passing it an argument of the wrong type).

In detail, the CCall instruction requires two sealed capabilities with matching types as
operands: the code and data capabilities, $cc and $cd (the former having the Permit Execute

permission and the latter lacking it). Figure 3.4 shows how CSeal and CCall can be used
to construct object capabilities and invoke a sandbox. Invoking CCall atomically checks
the otype fields of $cc and $cd match, unseals them and branches to $cc, creating a call
gate which can be used to perform secure domain transitions. It also pushes the current
$pcc and invoked data capability ($idc) to a special trusted system stack and overwrites
them with the unsealed contents of $cc and $cd.

The trusted stack is a special per-thread stack only accessible within the trusted
handler, and acts as secure place to store a pointer to the caller’s context to restore on
CReturn (Figure 3.5). The use of a stack structure for this enforces strict call-and-return
semantics, meaning that other calling behaviours such as tail calls or continuation passing
are not supported. This has the advantage that it is possible to recover from a failed CCall

(for example if a sandbox enters an infinite loop) by unwinding the stack, but does not
exclude implementing more exotic control flow in the future. In principle CCall could
be implemented purely in hardware or using microcode, but for flexibility and ease of
experimentation the current CHERI prototype uses a trap instruction which branches to
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Figure 3.4: CCall diagram. Green rectangles represent capabilities, red parallelograms are
instructions. We start with code, data and type capabilities then seal the code and data capa-
bilities using the type capability. The sealed capabilities cannot be modified or used to access
memory so can be safely passed to untrusted code, which can then use them to make a CCall.
After the CCall the code capability is installed in $pcc, the unsealed data capability is placed
in $idc, and the $pc is set to the value of the offset field from the code capability. This means
that control passes to the trusted call gate when the data capability is unsealed, enforcing only
legitimate access to the object.
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Figure 3.5: The trusted stack resides in per-thread kernel allocated memory and acts as a secure
location to store a pointer to the caller’s frame to be restored on CReturn. Figure courtesy R.
Watson [23].
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a small handler running in kernel mode. This is analogous to the way MIPS features
a software TLB miss handler instead of a hardware page table walker. CReturn is the
converse instruction to CCall, which simply pops $pcc and $idc from the trusted stack,
returning control to the caller. Like CCall, CReturn is implemented as a trap on CHERI.

CCall and CReturn provide the foundations for capability-based domain transitions,
but are not sufficient on their own; rather a complete capability invoke requires the co-
operation of the compiler, a user-space library and a kernel trap handler. First, the caller
must save its own state such that it can be restored on return and clear all registers (both
general purpose and capability) whose contents it does not wish the caller to have access
to (i.e. all registers that do not contain arguments for the call). The caller saves most of
its state to its own stack and prepares a minimal data frame containing the stack pointer,
stack capability and the default data capability, pointed to by $idc which will be saved
to the trusted stack by the CCall. Each compartment has its own stack which must be
installed before calling the compartment’s code. Before calling CReturn the compartment
must clear its register state to avoid leaking it to the caller. 1 On return $idc is popped
from the secure stack, allowing the caller to restore its stack and register state from the
previously constructed call frame.

These tasks are divided between the compiler, a user-space handler (libcheri) and
the trap handler according to practical, performance and security considerations as sum-
marised in Table 3.1. The compiler is responsible for clearing unused argument registers
and saving the caller-save registers because only it knows which of these registers are in
use. The caller must save all callee-save state and prepare the $idc pointer on every call,
so this code can be can be shared between all call points by placing it into an unprivi-
leged library, called libcheri, which also restores state on return. The trap handler must
perform the trusted stack manipulation as only it executes with the required privilege.
It also performs checks on the capability argument and return registers to ensure that
local capabilities do not cross security domain boundaries (see Section 3.1.7). Finally,

1 The current sandboxing model used by CheriBSD assumes mutual distrust between security domains
– if one side of the transition trusts the other then some register clearing can be avoided.
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Table 3.1: CCall and CReturn stages. Some parts of the CCall are performed by the compiler at
the call point, others by the user space libcheri library and others by the CCall trap handler.
Those parts which are needed in order to provide the desired function call semantics but are not
security critical are marked ABI (Application Binary Interface).

Action For Responsibility Reasoning

Save caller-save state ABI compiler Has info.
Clear unused arguments Security compiler Has info.
Save callee-save state ABI libcheri Code reuse, no priv.
Bundle sp/IDC ABI libcheri Code reuse, no priv.
Validate CCall args Security CCall handler Privileged
Push trusted stack Security CCall handler Privileged
Clear non-arg state Security CCall handler Code reuse

invoked code

Clear unused return state Security compiler Has info.
Clear non-arg state Security CCall handler Code reuse
pop trusted stack Security CCall handler Privileged
validate return value Security CCall handler Privileged
Unbundle sp/IDC ABI libcheri Code reuse, no priv.
restore callee save state ABI libcheri Code reuse, no priv.
restore caller save state ABI compiler Has info.

the kernel handler clears all non-argument registers to ensure no accidental leakage of
information or capabilities between domains. This clearing could take place in user space
but doing it in the kernel handler gives the most code re-use and ensures that it occurs
on every domain transition. If it were left to user code there is the possibility that it may
accidentally be omitted and it also removes the need to defensively clear registers on the
receiving end of a transition since both sides trust the trap handler.

3.1.7 Local Capabilities

In common with other capability systems, CHERI has the problem that once a capability
has been granted it is difficult to later revoke that privilege, for example in order to reuse
a region of memory for an object which is no longer needed. The problem is that all
references to the object must be located and invalidated, a process which might involve
searching through all memory where a reference might have been stored (e.g. using a
garbage collector). This is known as temporal safety as opposed to the spatial safety
naturally enforced by CHERI capabilities. On CHERI it is possible to avoid searching by
unmapping the TLB pages where the object is located, but that may be unsatisfactory as
it does not allow deallocation of regions smaller than one page, eliminating the benefits
of fine-grained memory protection, and also prevents reallocation of that virtual address
space which is undesirable even though virtual address space is less precious than physical
memory.

CHERI attempts to address this with local capabilities, which are simply capabilities
with the global permission bit unset. Local capabilities cannot be stored to memory
except through capabilities which have the store-local permission.
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This feature allows software to restrict the places where local capabilities can be stored,
and hence which regions need to be searched to revoke a capability (in effect, creating
a single bit information flow control policy). Local capabilities have been used in two
different ways during the evolution of the CHERI ecosystem:

1. In the initial implementation of sandboxing in CheriBSD only local capabilities
were passed across domain boundaries, and only the stack had the store-local
permission required to store them in memory. This would allow references to be
passed to a sandbox for the duration of a call and spilled to the stack if necessary.
On return from a CCall the caller would only have to clear the sandbox stack to
ensure there was no possibility of capability re-use. This initial policy proved too
restrictive, however, because it was found that sandboxes sometimes wanted to store
copies of passed capabilities in global data-structures (for example when creating
the compartmentalised version of tcpdump described in Chapter 5).

2. To resolve this difficulty the policy was changed such that the stack (and hence all
capabilities derived from it) are marked as local, and only global, heap-allocated,
capabilities can be passed between sandboxes. This prevents sandboxes from ac-
cidentally passing capabilities which could lead to vulnerabilities due to frequent
stack re-use, but means that the only way to revoke a capability is through garbage
collection or resetting entire sandboxes.

Note that the transition between these two policies did not require any changes to
the hardware, illustrating the flexibility of the CHERI primitives. The exact treatment
of memory allocation and re-use is a matter of software policy, and hence open to change
in the future. Once a reliable model is established there may be opportunities for further
optimisation in hardware, such as registers and instructions to support stack clearing as
featured on PICA [77], but so far the existing CHERI primitives provide a simple and
useful model.

3.2 CHERI Implementation

Jonathan Woodruff [24] implemented the CHERI ISA in a CPU written in Bluespec
System Verilog [85–87]. Bluespec is a high-level synthesis language which allows rapid
development of hardware designs which can be compiled to cycle accurate C++ simulation
or Verilog for hardware synthesis. The implementation is a six-stage, in-order core which
can be synthesised to run at 100 MHz on an Terasic DE4 board, with an Altera Stratix IV
FPGA and 1GB of DDR2 RAM. It features 16 kiB, direct-mapped L1 data and instruction
caches; a 64 kiB, 4-way associative shared L2 cache and a TLB with 144 entries, each of
which maps two 4 kiB pages. The TLB consists of 128 entries stored in a direct-mapped
table indexed by virtual address and a 16-entry fully-associative part which is used as a
victim buffer for the direct-mapped table and to implement features of the MIPS ISA not
compatible with the direct mapped TLB such as the immovable wired entries (used by
the FreeBSD kernel to map the kernel stack). The CHERI extensions to the MIPS ISA
are implemented as a separate co-processor which contains the capability register file and
implements capability instructions and bounds checks.
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Table 3.2: Summary of the features of the CHERI2 version used during benchmarking. Some
parameters are configurable subject to timing and area constraints.

ISA 64-bit MIPS + CHERI extensions
Frequency 50 MHz on Altera Stratix IV FPGA
Pipeline 6-stage classic RISC, register forwarding
L1 caches 4-way (configurable), 16kB, write-through, 1 cycle latency
L2 cache 64kB, write-back, 3 cycle latency (L1 miss)
SDRAM 1GB DDR2@200 MHz, approx. 35 cycle latency (L2 miss)
TLB 64 entries, pairs of 4kB-256MB pages
Tag cache 4kB, 2-way associative (tags for 1MB memory)
HW Threads Dual fine-grained multithreaded (configurable)

3.3 CHERI2

The original CHERI implementation was effective but had evolved over several iterations
of the ISA and become unwieldy and hard to understand. There was also a focus on
efficiency, sometimes at the expense of correctness, which made it difficult to modify for
research purposes. Lastly, I found that aspects of the design were not ideal for experimen-
tation, particularly the use of direct-mapped caches (for simplicity and increased clock
frequency) which led to unpredictable effects during benchmarking.

CHERI2 is a second implementation of the CHERI ISA, written in Bluespec. It was
started by Nirav Dave with the intention of creating a processor that could be formally
verified via architectural extraction and automated theorem proving. It uses a single
Bluespec rule (guarded atomic action) per pipeline stage and has a classic RISC microar-
chitecture with register forwarding paths to facilitate formal analysis. It is compatible
with the original CHERI but does not share code except for supporting infrastructure
such as the L2 cache, tagged memory controller, external memory bus and peripherals.
CHERI2’s main features are summarised in Table 3.2.

When beginning my research I decided to adopt CHERI2 because of its cleaner and
simpler design, which made it easier to add the novel features I wanted to investigate,
however I first had to bring it to feature parity with the original CHERI. I extended
CHERI2 with all features necessary for it to boot the FreeBSD operating system, includ-
ing much of the MIPS ISA, L1 caches and a memory management unit. I also added
full support for the CHERI capability extensions and facilities to allow instruction level
cycle-accurate tracing for debugging and performance analysis. Finally, I implemented
fine-grained multithreading where the register files (both general purpose and capability)
are replicated once per hardware thread and each thread has its own set of TLB entries
and control registers such that threads can be treated by the OS as separate virtual proces-
sors. I also specified and implemented a programmable interrupt controller (PIC) which
can be configured to direct external interrupts to given hardware threads and send inter-
rupts between threads. These features allowed Brooks Davis to adapt FreeBSD’s support
for symmetric multiprocessing (SMP) to CHERI2, enabling me to evaluate the effect of
hardware thread-level parallelism on domain crossing benchmarks, with relatively modest
hardware and development-time overheads. Chapter 4 presents the results benchmarks
running on single-threaded vs. multithreaded hardware.

Unlike the original CHERI, CHERI2 has 4-way associative L1 caches and a fully-
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associative TLB. This configuration is better for running benchmarks because the asso-
ciativity reduces the chances of encountering cache conflicts which can artificially skew
the results, for example when running two versions of a function at different addresses
one version might happen to conflict in the instruction cache with some other part of the
benchmark, unfairly disadvantaging it. It is also more representative of real commercial
processors which typically have at least two-way associativity in L1 caches.

A striking example of this was found during benchmarking on CHERI when I noticed
that TLB misses were occurring in a simple microbenchmark with a small working set.
After investigating using tracing I found that this is because forked processes share a
large number of pages which differ only by their address space identifier, causing an
unexpectedly high number of conflicts in the direct-mapped TLB. In one benchmark
there were 16 conflicts out of a working set of 40 virtual pages – far more than expected
and enough to overflow the large 16-entry victim buffer (2 entries in the buffer are reserved
for fixed kernel pages). The problem is that forked processes necessarily share many TLB
entries which differ only in their address space identifier (ASID) and CHERI’s TLB used
a very simple hash function which did not include the ASID, resulting in many conflicts.
One solution would be to implement a more appropriate hashing function for the TLB,
but I found that this caused compatibility issues with the MIPS ISA so on CHERI2 I
chose to implement a fully-associative TLB.

Unfortunately, a disadvantage of associative structures is that they are relatively re-
source intensive to implement on an FPGA, especially given that direct-mapped struc-
tures can take advantage of fast block RAMs available on the Stratix IV. To mitigate
this I implemented a two-level structure with 16 entry, fully-associative, single-cycle L1
TLB caches shared between the threads, backed by a multi-cycle TLB with 64-entries per
thread. Even so CHERI2 currently runs at 50 MHz unlike the original CHERI’s 100 MHz.
This is because I prioritised correctness and usefulness as a benchmarking platform over
absolute performance during implementation. I believe further optimisation of the imple-
mentation is possible, but so far this has not been an overriding goal.

3.4 Debugging, Tracing and Performance Counters

CHERI2 also has features designed to assist with debugging and benchmarking, specifi-
cally a debug unit, instruction tracing and user-space accessible performance counters.

The debug unit is separate from the main pipeline and accepts commands over a byte
stream connected via JTAG. Commands are available for inspecting and updating reg-
isters, memory and capabilities and for controlling execution using pause, resume and
breakpoints. These features are helpful for debugging but are also used for loading soft-
ware images (e.g. kernels) in memory and controlling the embedded boot loader, which
can be configured to wait for a particular register to be written before attempting to boot.

Additionally, the debug unit contains a circular trace buffer which logs an entry for the
last 1000 completed instructions. Each entry contains the PC of the executed instruction,
its encoding, a cycle counter and the result, such as any exception, register writes and
the computed address for memory operations. This can be used to view a trace of the
instructions leading up to a breakpoint or the processor can enter streaming mode, where
the pipeline is paused when the buffer is full and resumed again when it is empty. I used
this mode to obtain traces of micro-benchmark execution and analysed them (Section 4.3).
The processor executes at full speed between trace batches and is paused whilst the trace
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entries are downloaded, so the cycle numbers obtained from the traces are the same as
those without tracing even though traces can only be downloaded at a fraction of full
execution speed over the slow JTAG link.

Finally I added hardware counters to record a variety of events pertinent to perfor-
mance analysis, namely elapsed cycles, committed instructions, TLB misses (data and
instruction) and cache misses (L1 data and instruction). These counters can be read by
software using the rdhwr (read hardware register) instruction, which is part of the MIPS
instruction set. If enabled by the kernel these counters are directly readable by user-space
programs, allowing them to be used for minimally disruptive measurement of benchmark
performance (i.e. without resorting to costly system calls).

As well as being useful for debugging the combination of these features allowed me to
analyse CHERI2’s performance in benchmarks in detail, as shown in Chapters 4 and 5.

3.5 Multithreading on CHERI2

CHERI2 supports fine-grained multithreading, where instructions from multiple hard-
ware threads can be in the pipeline simultaneously. This requires each control token to be
tagged with a thread identifier and the register forwarding logic to be updated to only for-
ward registers between instructions from the same thread, both relatively straightforward
changes. The main cost of supporting multithreading is the additional storage required
for all per-thread state, including general purpose, capability and control registers (such
as those used by the kernel for manipulating the TLB). To minimise these costs I struc-
tured CHERI2 to make extensive use of block memory elements (BRAMs) available on
the Stratix IV FPGA. For example, the architectural registers are stored in a BRAM
which is indexed by register number and thread ID. This not only reduces the number
of dedicated hardware registers used vs. an array of FPGA registers, but also eliminates
logic because indexing into the BRAM replaces multiplexing between registers. However,
not all per-thread state can be stored in this way because BRAMs have a one cycle delay
between requesting an index and the data becoming available. To accommodate this I
split the per-thread control state into two parts: a small part that is used early in the
pipeline is stored in quickly accessible registers, and the remainder is placed in a BRAM
which is fetched, processed and written back in the last three pipeline stages.

Multithreaded TLB

Another requirement to support multithreading is a separate set of TLB entries per thread.
2 This poses two problems: the additional storage requirements, and the need for a large
content addressable memory (CAM). CAMs do not scale well at all, especially on an
FPGAso I decided to split the TLB into two levels. The first level TLBs are 16-entry
fully-associative caches that are shared between threads, and accessed in parallel with the

2 Although it is interesting to consider a processor with a single logical TLB shared between threads
this would not be so useful for supporting commodity operating systems such as FreeBSD, as they are
written to run on processors with multiple independent cores or heavyweight threads such as Intel’s
Hyperthreads. There would also be difficulty resolving this with the software managed TLB misses of
the MIPS ISA: races could occur if another thread were to take a TLB miss whilst the first is still being
handled.
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L1 cache lookups in the instruction and data fetch stages. The second level has 64-entries
per thread and implements the ISA visible TLB as described in the MIPS specification.

Load linked/store conditional support

MIPS provides the load linked and store conditional (ll/sc) instructions for atomic mem-
ory operations in user space code. This is a form of optimistic concurrency which is essen-
tially a hardware transactional memory for operating on a single word at a time. The load
linked is an ordinary load which begins a transaction and the store conditional completes
it by writing the data only if there was no conflict and returning a value indicating success
or failure.

On a single-threaded processor these are easily implemented by recording the address
of the last load linked operation and invalidating it if an exception (e.g. a timer interrupt)
occurs or there is a non-conditional store operation to the address. The store conditional
then checks against the recorded address to see if the operation should succeed.

On a multithreaded processor this is more complicated because each thread must
have its own load linked address slot, and a write by any other thread could potentially
invalidate it, causing the store conditional to fail. One way to implement this would be
to store one load linked address per thread in a content addressable memory which is
consulted and updated on every store by any thread.

Initially I thought that I could increase scalability by making an addition to the level
one data cache tag to record the ID of the last thread to load link a given address. The
store conditional instruction then checks in the cache to confirm that the thread was the
last one to load link the address before proceeding. Unfortunately this scheme can lead to
live lock as two threads competing to perform an atomic operation can repeatedly ‘steal’
the cache line by performing the load link without ever successfully completing a store
conditional. Software must also be careful not to invalidate the cache line between the ll

and sc which effectively means that no memory accesses can be performed in the interim
(the MIPS specification explicitly says this will result in undefined behaviour).

In practice I found these restrictions were too onerous to meet in software, so I reverted
to the simple per-thread register which scaled acceptably and did not form part of the
critical path.

Thread scheduling

An important factor of multithreaded processors is the scheduling of threads into processor
cycles. For simplicity I adopted a round-robin scheme where the IDs of all running threads
are placed in a queue from which the head is dequeued on each instruction fetch and
returned to the tail of the queue. When an instruction executes the WAIT instruction it
is removed from the queue and resumed when it receives an interrupt, meaning that idle
threads do not consume CPU cycles polling.

Overall adding multithreading support to CHERI2 required a modest number of code
changes and was affordable in terms of hardware resources. It allowed me to evaluate
the effect of hardware parallelism on compartmentalisation without the complexity of
implementing a multicore processor capable of fitting on the FPGA. The results of this
are presented in Section 4.5.
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3.6 Hardware overheads of CHERI support

Hardware support for capabilities comes at some cost in terms of silicon area and, poten-
tially, clock frequency. The additional hardware required is:

1. The capability register file, containing 32 capabilities, each 257 bits (256 bits plus
one tag bit) and a separate program counter capability register

2. The capability co-processor implementing the capability manipulation instructions

3. Bounds checking logic in the instruction fetch and memory access stages to compare
fetched addresses against capability bounds

4. One additional bit per 256-bit cache line in the L1 and L2 caches to store the
capability tags

5. A tag cache/controller which emulates tagged memory by storing tag bits in a
dedicated portion of SDRAM

The first two of these are the most significant costs in terms of area and frequency,
owing to the wide data paths associated with capabilities. CHERI2 supports conditional
compilation of the capability support so I compared the FPGA resource utilisation as
reported by Quartus with and without CHERI extensions and found that there was an
approximately 20% increase in ALMs (Adaptive Logic Modules [88]) and 5% in block
memory bits for the CPU core and memory hierarchy (this excludes peripherals such as
the soft SDRAM controller and the system bus). The estimated maximum clock frequency
reported by the timing analyser dropped from 55MHz to 53MHz owing to a lengthening
of the critical path, which was in resolving the branch condition in the execute stage
and computing the next PC to fetch (CHERI includes a ‘branch if tag set’ instruction to
allow efficient compilation of null-pointer checks). Note that I did not focus on optimising
the design for area or frequency because I was more concerned with correctness, so these
numbers are only a rough indication of the overhead that might occur in a more optimised
design.

The space overhead of tagged memory is small as only approximately 0.4% area/mem-
ory overhead is required to store one extra tag bit per 256-bit location. A naive tag
controller could result in a doubling of the required memory bandwidth because an extra
memory access would be required for every read or write in order to fetch the tag data
separately, however a small tag cache significantly reduces this because a single 32-byte
memory operation can read/write the tags for 256 32-byte cache lines. Furthermore, tags
only need to be accessed in memory if there is both an L2 and tag cache miss. An al-
ternative to the separate tag controller would be an SDRAM controller which directly
supports tag bits in a manner similar to the ECC (error-correcting code) bits on some
modern systems.

Overall I think the additional costs of capabilities are acceptable considering the many
benefits of memory safety and compartmentalisation. I would expect a commercial de-
ployment to be more optimised in terms of the implementation and elements of the ISA,
which is currently designed to facilitate research and design space exploration at some
cost to efficiency (viz. the unused reserved space in the capability format). In particular,
compressed 128-bit capabilities would reduce the cache footprint and memory bandwidth
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costs associated with the larger pointer size, and could potentially save some silicon area
owing to smaller data paths, but might increase the amount of logic used for capability
manipulation and bounds checking, depending on the representation used.

3.7 Limitations of CHERI2 as a research platform

I chose to target an FPGA implementation because I lacked the manpower and resources
required for a custom ASIC and believe FPGAs can provide more realistic experimental
results than software simulators for two reasons. Firstly, because FPGAs are subject
to similar timing and resource constraints to ASICs anything implemented on FPGA
necessarily has a feasible silicon implementation, although the details and trade-offs may
differ. This does not apply to simulation, where careful consideration is needed to ensure
that any simulated architecture could be realistically implemented in silicon. Secondly,
because FPGAs run significantly faster than simulators it is possible to run much more
extensive, and hence realistic, benchmarks. In Chapter 5 I use this to perform long-
running macro-benchmarks under a full commodity OS, a feat which would be much
more difficult on a slow running simulator.

That said, CHERI2 is not an ideal model for a real commercial processor in several
respects: due to development time and FPGA resource constraints it has a relatively
simple pipeline compared to a modern out-of-order, superscalar processor and also a small
L2 and very fast SDRAM in relation to the core frequency. I consider these acceptable
limitations because during benchmarking I use CHERI2 itself as a baseline and in some
experiments (e.g. Sections 4.3 and 4.5) I observe orders of magnitude differences in relevant
variables, therefore the results are unlikely to be so wildly affected by micro-architectural
choices as to invalidate the conclusion that domain crossing using CCall is much more
efficient than IPC-based methods. In other experiments, such as Section 4.6, I analyse
the current implementation and make incremental improvements, the details of which may
differ on other implementations but the principles of which are still likely to be applicable.
To reinforce this I ran the same benchmarks on the original CHERI implementation,
which has a rather different micro-architecture, and obtained very similar results. Finally
some metrics I use, such as instruction count, cache footprint and system call count are
independent of the micro-architecture, being more dependent on the ISA and benchmarks
themselves, both of which I chose to be representative of real processors and applications
(MIPS being fairly typical of RISC architectures).

To obtain an absolute measure of performance I ran the popular Dhrystone 2.1 integer
benchmark [89] compiled with gcc 4.2.1 at the default optimisation level (-O). Although
Dhrystone is not an especially realistic benchmark owing to its small size and behaviour
unrepresentative of real applications I chose it because of its ease of compilation and
the wide availability of reported results. CHERI2 executes around 43.3 × 103 Dhrystone
iterations per second, or 0.49 DMIPS/MHz3. For comparison the MIPS Technologies
5Kc, a single-issue, 6-stage, synthesisable MIPS64 processor, performs about 92.9 × 103

Dhrystones per second running at 40MHz, or 1.32 DMIPS/MHz [90]. This indicates that
CHERI2 is not as efficient as a comparable commercial processor, which is unsurprising
given the research timescale and resources available. Based on observing traces I conclude

3DMIPS means Dhrystone interactions per second normalised to the VAX 11/780 which achieved 1757
Dhrystones per second. This can be further normalised by the clock frequency to give DMIPS/MHz.
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that the gap in performance is due to cycles per instruction: CHERI2’s CPI in the
benchmark was 1.92 owing to a significant proportion of memory operations taking more
than one cycle and a single divide instruction taking 66. Nevertheless I believe experiments
using CHERI2 can be used to draw conclusions about the CHERI ISA features as they
might be implemented in a heavily optimised commercial processor, providing the results
are significant enough and consideration is given as to how they may be affected by
alternative micro-architectures.

3.8 FreeBSD and CHERI

Robert Watson, Brooks Davis and others ported the FreeBSD operating system to the
CHERI prototype, creating a variant called CheriBSD. Few changes to the existing MIPS
port were required to support the capability features (in fact unmodified kernels will run
successfully providing applications do not use the capability extensions). The minimal
changes necessary to support CHERI include:

1. Additions to the context save/restore code to preserve the capability register file on
entering and leaving the kernel.

2. Handlers for the new capability exceptions generated when applications violate ca-
pability restrictions (for example by performing an out of bounds memory access).
The default action is to print debugging information and terminate the process,
although it is also possible to configure a signal handler to deal with exception, such
as by resetting the CHERI object responsible.

3. Routines to correctly save and restore tag bits when swapping memory to disk.

On top of this CheriBSD implements some features to enable sandboxing of applica-
tions using the CHERI ISA. This requires handlers for the traps generated by the CCall

and CReturn instructions which implement the additional checks and semantics required
for secure transitions between domains, as detailed in Table 3.1. CheriBSD also adds a
check in the system call path to allow sandboxes to be prevented from invoking system
calls directly. This check consults the program counter capability ($pcc) of the caller to
see if it has the SYSCALL permission and prohibits the system call if it is not set. This
means that sandboxed code may only make system calls indirectly via a system proxy
class invoked via CCall, allowing the application to perform extra checks according to
its own policy before permitting the system call. This affords great flexibility without
embedding a large MAC framework into the kernel, but at the cost of additional domain
transitions on each system invocation. This price is acceptable because many sandboxes
perform pure computation and do not need to invoke system calls, whilst the cost of CCall

transitions is modest for those that do, as shown by the benchmarks in Chapter 4.

3.8.1 Sandbox implementation

CheriBSD implements sandbox objects which consist of the traditional three segments:
code, data and stack referred to by $pcc, $ddc and $scc respectively. Processes begin with
ambient authority, an entirely backwards compatible environment where all privilege is
granted, and can load sandbox classes using a special loader which reads statically linked

48



ELF (Executable Linkable Format) files. Once loaded, instances of the class can be
created which each have their own stack and data sections. The data section is initialised
from the global data section of the sandbox ELF file and also contains space for a small
local heap.

Sandbox instances can then be invoked using the cheri invoke function which is part
of the cherilib library. This function prepares for and performs the CCall, entering the
sandbox via its invoke function, which sets up the sandbox environment and branches to
appropriate method based on the CCall arguments.

Inside the sandbox memory access is restricted to the sandboxes memory segments
and system calls are prohibited according to the User Syscall permission bit in $pcc. To
permit limited access to system resources a specialised libc implementation in the sandbox
proxies system calls via the system object, which is a more trusted sandbox object which
executes with the User Syscall permission. This design minimises exposure of the large
system call ABI to untrusted sandbox code.

3.8.2 Library compartmentalisation

The sandbox libc and system object is a special example of library compartmentalisation,
where an existing C-language API has its functionality moved into a sandbox transpar-
ently using a thin, backwards-compatible wrapper which translates between the legacy
API and a sandboxed version.

Library compartmentalisation is a very powerful strategy which allows all code using a
compartmentalised library to gain the benefits of compartmentalisation without requiring
any code changes in the applications. CHERI supports library compartmentalisation well
because it allows pointers in the library API to be passed using capabilities, avoiding the
need to copy data into and out of the sandbox. Section 5.3 demonstrates this using the
example of zlib.

3.9 clang/LLVM and CHERI

David Chisnall extended the MIPS port of the LLVM compiler framework and clang C-
compiler with features to support the CHERI ISA. The compiler can function in either
hybrid mode, for greater backwards compatibility, or pure capability mode, for maximum
use of CHERI features.

In hybrid mode pointer types can be annotated in the source code with a capability

modifier which causes the compiler to emit capability instructions for manipulating and
dereferencing those pointers, instead of standard MIPS instructions. The application
binary interface (ABI) for function calls is extended to accommodate passing capability
arguments via capabilities registers, and the compiler attempts to determine appropriate
bounds when capability pointers are initialised, for example when taking the address of
an object whose size is known at compile time, or when casting the pointer returned by
a call to malloc . These features allow existing C programs to gradually adopt CHERI
features and gain the memory safety benefits without being faced with major compatibility
problems.

In pure-capability mode (also called sandbox mode), all pointers are implemented with
capabilities including the stack pointer and (optionally) function return addresses. This
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provides a very high level of memory safety which includes integrity guarantees capable
of thwarting powerful attack techniques such as return-oriented programming.

Finally, clang implements support for CCall via a special ABI and calling semantics.
If a function is annotated with the cheri ccall attribute clang uses a different calling
convention: the code and data capabilities for the invoked object are passed in $c3 and $c4
and a method number is passed in $v0 (which normally holds the function return value).
This convention avoids using existing argument registers for the extra method invocation
parameters as this would reduce the number of arguments registers available and would
also require extensive shuffling of arguments when a ordinary function call is used to wrap
a capability invoke with identical arguments (as might occur in a backwards compatible
interface to a compartmentalised library). The attribute also causes the compiler to emit
code to clear all unused argument registers so as to avoid leaking capabilities or data to
the callee. Rather than using the CCall instruction directly the compiler emits a call to
the cheri invoke library function. This routine is shared by all invoke points and performs
actions that do not need to occur in the trusted kernel context, specifically saving all
callee-save state and clearing non-argument registers.

In the receiving sandbox an invoke handler function uses the passed method number to
select the target function, which must be tagged with cheri ccallee so that the compiler
can clear any unused return value registers on returning. The return path is the reverse
of the calling path, but is slightly less costly because fewer checks are needed on the
argument registers.
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CHAPTER 4

CHERI Bench: domain crossing
microbenchmark

This chapter contains an analysis of security domain crossing under FreeBSD, comparing
traditional techniques with the CHERI extensions. I created a microbenchmark that
performs transitions between security domains using different isolation mechanisms and
used this to measure the performance cost. Specifically, I measured the overhead of
supporting the CHERI extensions in the FreeBSD kernel, compared the various domain
crossing techniques with a method invocation using a CHERI CCall, and made a detailed
analysis of the costs of a CHERI invoke.

4.1 The Benchmark: cheri bench

I wrote a C program, called cheri bench, that performs domain transitions into a sandbox
using seven different mechanisms. In each case the sandbox simply copies data from an
input to an output buffer, thus measuring the cost of entering and leaving the sandbox
as well as transferring data in and out, including cache and TLB overheads.

The mechanisms were as follows:

func A normal call to a function that performs a memcpy and returns. This provides no
isolation, but gives a baseline against which to compare other mechanisms.

invoke A method invocation on a libcheri object that copies data between two buffers
passed via capabilities. libcheri uses CCall to transition between protection do-
mains; the compiler also generates code to clear unused argument and return-value
registers.

pipe A forked sandboxed process connected via a UNIX pipe. Data is sent and echoed
back again via the pipe. This IPC model is used in most privilege-separated appli-
cations, such as OpenSSH.

socket Similar to the pipe case but using a UNIX socket instead of a pipe. Pipes perform
better than sockets on FreeBSD due to optimisations using virtual memory to avoid
copying data.
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shmem+pipe A forked process communicated with via a pipe and shared memory. The
pipe is used to synchronise by sending a length argument, while the memcpy occurs
via shared memory. This IPC model is used in larger-scale compartmentalised
applications (such as between Chromium’s browser process and renderer sandboxes)
where bulk data is shared by compartments.

shmem+sem Processes using shared memory can use POSIX semaphores for commu-
nication rather than pipes. This is potentially more efficient as the semaphore can
be implemented entirely in user space using atomic memory operations. If multi-
ple hardware threads are available (i.e. on multicore or multithreaded CPU) then
this can be achieved without a context switch, although achieving this depends on
careful scheduling of threads and requires some polling.

pthread+sem This is similar to shmem+sem except using POSIX threads instead
of a forked process. Threads share an address space and therefore do not provide
security isolation, however this case provides an interesting way to assess the cost
of shared memory using virtual memory.

cheri bench uses a cycle counter (accessed via the user space rdhwr instruction) to
measure the number of cycles per iteration for each benchmark. I also augmented the
CHERI processor with hardware TLB miss counters to provide a low overhead method of
accurately observing the TLB behaviour. An iteration comprises entering the sandbox,
copying data from input to output, and returning to the caller. The caller reads the
output buffer between each iteration .

4.2 Experimental setup

The experiments in this chapter were run on CHERI2 as described in Section 3.3, syn-
thesised to run on a Terasic DE4 FPGA development board at 50 MHz. I used a quiesced
version of CheriBSD with a reduced set of peripherals (console UART only) and a memory
root filesystem to minimise noise due to interrupts and I/O. For detailed analysis of short
experiments (such as those in Section 4.3) I used CHERI2’s cycle-accurate instruction
tracing features, but for longer running ones I used the user-space performance counters
because tracing longer running benchmarks can take a long time.

4.3 Experiment 0: Benchmark characteristics

I characterised the cheri bench benchmark by tracing 16 iterations of each domain cross-
ing method using CHERI2’s cycle-accurate tracing, then analysed the traces to extract
information about the runtime behaviour. I used a payload of 32 bytes since this is the
smallest payload which does not cause degenerate behaviour (this is the size of the word
copied by memcpy using the capability registers). I discarded the three initial iterations of
each benchmark to ensure the caches and TLB were warm. Figure 4.1 shows the resulting
boxplots for four metrics: cycles per iteration (round trip), number of system calls per
iteration, instruction cache footprint (#PCs ×4 bytes) and data cache footprint (#lines
touched ×32 bytes). The benchmarks are very deterministic so there is no variation be-
tween iterations for any metric except cycles, where there is some due to the random

52



Figure 4.1: Benchmark characteristics per iteration
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cache replacement policy. The benchmarks are short enough that I was able to obtain 16
consecutive iterations during which no timer interrupts fired.

Note that there is a close correlation between the number of system calls used by
each domain crossing method and the number of cycles taken, reinforcing that system
calls are an expensive privilege escalation mechanism. Examination of the trace reveals
that this is not due to the hardware cost of the system call (which is about 10-15 cycles
per syscall), but because of the kernel overhead of handling the call, namely saving the
thread context, setting up the kernel’s runtime state (stack etc.), locating the appropriate
handler, copying arguments to and from kernel buffers and invoking the scheduler to
resume the appropriate thread. The socket and pipe methods are the most expensive
and require 5 system calls as follows:

1. A writev in the caller to write the payload length and data to the socket

2. A read in the sandbox to receive the length

3. Another read in the sandbox to receive the data (these cannot be combined into a
single call as for the write because the length of the data is not known in advance)

4. A write in the sandbox to echo the data back

5. A read in the caller to receive the returned data

The shmem+pipe case takes one fewer system call since the data is copied via shared
memory instead of being read from the socket, but still requires four system calls to
read and write the length argument and for synchronisation on return. The semaphore
based cases only use one system call in each direction to suspend the current thread when
waiting on the semaphore, but their I-cache footprint is still around 20 kiB, exceeding the
size of the 16 kiB L1 cache.

The CHERI invoke, on the other hand, uses no system calls. Although it does enter
the kernel via the CCall and CReturn traps, these are handled by dedicated kernel handlers,
avoiding much of the overhead of system calls due to their synchronous, single-purpose
nature. As a result invoke has cycle costs and cache footprints an order of magnitude
lower than the traditional domain crossing methods. However, invoke still has significant
overhead relative to an unprotected function call. These costs are investigated further in
Section 4.6.

4.4 Experiment 1: BERI vs. CHERI kernels

Before further analysing the cost of domain crossing using the CHERI extensions I wanted
to establish how they affected the performance of the system when they are not being used.
The FreeBSD kernel must save and restore the capability register file on every context
switch. This is potentially a significant cost given the size of the CHERI capability register
file (32×256 bits = 1 kiB), in particular the impact this could have on the L1 data cache.
To test this I compiled a version of cheri bench that only uses the traditional isolation
techniques (socket, pipe, shmem+pipe, shmem+sem and pthread+sem) . Since
this benchmark does not use capabilities it is safe to partially disable the kernel’s context
save/restore routine to estimate the costs for smaller capability register files. Note that
the backwards compatible design of the CHERI ISA means that capability oblivious code,
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Figure 4.2: CHERI kernel overhead
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even the kernel, can run on the same CHERI processor without modification (with the
obvious caveat that disabling the capability save/restore removes the isolation between
processes, meaning this is only useful for benchmarking purposes).

Figure 4.2 gives box plots for the cycles per round trip domain transition for each
IPC method and a variety of different kernels. The ‘beri’ kernel is FreeBSD compiled
for standard MIPS64, whilst cheri00 – cheri32 target CHERI with different numbers of
capability registers being saved. The ‘nocheck00’ kernel is the same as cheri00 except
that it also has the system call authorisation check on $pcc disabled (see Section 3.8),
meaning that it has no kernel overhead as a result of supporting the CHERI extensions.
Note that this version actually outperforms the beri kernel because the CHERI kernels
use a modified memcpy routine that copies data via the capability registers instead of one
double word at a time. This is necessary to preserve the capability tags, but also results
in a more efficient memory copy since each loop iteration transfers 32 bytes instead of 8.
Therefore the fairest assessment of kernel overhead is obtained by comparing nocheck00
with cheri32. Within the CHERI kernels the costs increase as the size of the capability
register file grows, as expected. In the worst case (socket) there is a difference of 3900
cycles between the median of the nocheck00 and cheri32 kernels, about 780 cycles per
system call, or 7.5%.

This experiment shows that the cost of saving the CHERI context can be significant
but that there is scope for reducing this cost by limiting the size and number of the
capability registers. Since CHERI was designed as a research platform the configuration
of 32, 256-bit capability registers was chosen to maximise flexibility, however this may
represent an unrealistically large context. Ongoing research indicates that a smaller num-
ber of capability registers would suffice and that the in-memory capability representation
can be compressed to further reduce memory footprint. Also, other large registers sets
exist in modern processors, for example recent AVX-512 vector extensions now shipping
in Intel x86 processors have 32, 512-bit registers. With this in mind I believe that CHERI
has acceptable kernel overhead, especially given the memory safety benefits and potential
accelerated domain crossing as shown in the next experiment. .

4.5 Experiment 2: Comparison of domain crossing

mechanisms

I performed an experiment to compare the cost of the different sandboxing mechanisms
and explore the way they scale with the amount of data transferred across the security
boundary. I varied the payload from 32 bytes to eight megabytes in powers of two and
computed a trimmed mean after discarding outliers caused by start-up costs and timer
interrupts.

Figure 4.3a shows the absolute cycle costs for each method and Figure 4.3b shows
the same data after subtracting the function call baseline. Error bars show the sample
error in the absolute case, and the square root of the sum of the variances of the sample
and base cases for the overhead graph . We see that all methods scale approximately
linearly with the size of the memcpy but have different fixed costs due to the domain
crossing/synchronisation mechanism used. The CCall has a minimum overhead of around
700 cycles and remains low, whilst the other cases have much higher overhead (20,000
cycles or more) due to the OS system calls used for synchronisation. Slight changes of
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gradient, most visible in the func case, indicate cache and TLB size boundaries. The
limit occurs when the data exceeds the capacity of both caches and the TLB which, due
to the linear access pattern, means every access is a miss even on repeated invocations.
Note that the pipe and socket cases perform extra data copies and so remain five to ten
times more expensive for the larger data sizes, whilst all other cases have fixed overhead
and converge with the func baseline when the fixed costs are amortised against the large
memcpy costs.

The overhead graph (Figure 4.3b) shows this in more detail. The pipe and socket
rapidly leave the top of the graph due to linear overhead. The other cases have some
initial fixed overhead which increases slightly as the extra code and data used for do-
main crossing begin to conflict with the payload. For pthread+sem this peaks at 32kB
(when the source and destination arrays completely fill the 64kB L2 cache), but for the
shmem+pipe and shmem+sem cases the overhead continues to grow due to conflicts
in the TLB – twice as many TLB entries are required to share memory between two
processes as to map it in a single address space. This can also be seen in Figure 4.4,
where the process based isolation causes TLB misses with half the payload size of the
within-address-space methods.

To evaluate the effect of multithreading on the benchmark I ran two versions of the
experiment. In the first version already discussed both parent and any child processes
were pinned to a single thread using FreeBSD’s cpuset setaffinity function, effectively
treating the hardware as single threaded; in the second version, the parent processes
was pinned to hardware thread 0 and the children to thread 1 ensuring use of multiple
hardware threads. Figures 4.5 and 4.6 show the results for the dual threaded case which
resemble the original graphs except for some notable differences. Figure 4.7 shows the
relative performance of the multithreaded version over the single thread version. The
func and invoke cases are inherently single-threaded so remain roughly the same , but
in general the multithreaded cases are slower because the OS must perform an inter-
thread interrupt to resume the waiting hardware thread, incurring extra fixed overhead.
This is true because the benchmark is essentially synchronous meaning that there is no
parallelism for the multithreaded hardware to exploit. The significant exception to this is
the cases using semaphore based synchronisation, where the overhead for small payloads
is greatly reduced to a minimum of around 1000 cycles. This is because synchronisation
in this case is achieved simply by writing into memory and polling for the update in the
receiving thread, so the communication can occur with very low latency and without any
system calls or interrupts. Polling is inefficient, however, as the polling thread consumes
resources without achieving useful work. This explains why the overhead increases as
the payload increases – the polling thread slows down the thread performing the memcpy,
making it about 50 percent slower and meaning that the performance saving is quickly
eroded until the relative performance plateaus at about two times slower than the single
threaded case. FreeBSD’s semaphore implementation features adaptive mutexes which
attempt to mitigate this problem by imposing a limit on the length of polling after which
the thread invokes the OS scheduler to put the thread to sleep1. This is why the relative
overhead decreases after a point when the semaphore cases effectively revert to their

1 I obtained unexpected results during initial runs of this experiment until I discovered that it takes
up to 50 iterations for the adaptive mutex to discover the optimal behaviour. The results shown use
an increased number of iterations with the first 50 discarded. This emphasises the difficulty and unpre-
dictability of using asynchronous mechanisms for compartmentalisation.
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Figure 4.3: Comparison of domain crossing methods – cycle costs, single thread

(a) Absolute cycle cost (log-log)
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(b) Cycle overhead vs. function call (log-linear)
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Figure 4.4: Comparison of domain crossing methods – TLB costs, single thread

(a) Absolute TLB misses (log-log)
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(b) TLB miss overhead vs. function call (log-linear)
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Figure 4.5: Comparison of domain crossing methods – cycle costs, dual thread

(a) Absolute cycle cost (log-log)
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(b) Cycle overhead vs. function call (log-linear)
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Figure 4.6: Comparison of domain crossing methods – TLB costs, dual thread

(a) Absolute TLB misses (log-log)
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(b) TLB miss overhead vs. function call (log-linear)
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Figure 4.7: Comparison of domain crossing methods – single vs. dual thread

(a) Relative cycle costs
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single-threaded operation but with extra fixed overhead which is amortised for the larger
payloads .

Note that the number of TLB misses is actually smaller for all multithreaded cases
because each hardware thread has a separate 64-entry TLB, meaning that the TLB is
effectively doubled in size when using two threads. However performance still decreases
overall because the threads share a fixed size L1 TLB-cache as described in Section 3.3
. The trade-off (especially for polling) is different for multicore hardware where threads
share fewer hardware resources, but power is still a major consideration . Hardware
support for polling, such as MONITOR/MWAIT or polling detection, may also help but do
not address the problem that hardware parallelism and synchronous communication are
inherently a bad fit.

I conclude that CHERI provides a much more efficient domain crossing mechanism
than process based sandboxing, especially for fine-grained sandboxing where the fixed
overheads of IPC are prohibitive. Hardware multithreading can help with shared memory
communication for small payloads but the cost and unpredictability in general outweigh
the benefits for synchronous workloads, and the performance still does not match a CCall.
For workloads of over about 2000 cycles CHERI method invocation provides compart-
mentalisation with efficiency and ease-of-use on a par with a function call.

4.6 Experiment 3: Invoke cost analysis and

optimisation

To better understand the costs of a method invocation with libcheri, I ran the bench-
mark with instruction-level tracing on the CHERI prototype, and analysed the traces
with respect to a variety of metrics, including cycle and instruction counts . I took mul-
tiple samples, discarding runs in which timer interrupts fired, to obtain values for a best
case domain transition. Table 4.1 shows the instruction count and average cycle costs for
different phases of the CCall and CReturn.

I observed a large cost in clearing registers (including capabilities) that are not used as
arguments or return values. This is necessary to prevent leaked data or capabilities that
might allow attacks across the interface. I hypothesised that hardware support for clearing
registers could reduce this cost with little hardware complexity so I designed a ClearRegs

instruction for efficiently clearing a given subset of registers. The ClearRegs instruction
contains a field which specifies a set of 16 target registers ($r0-$r15, $r16-$r31, $c0-$c15 or
$c16-$c31) and a 16-bit immediate mask indicating which of the 16 target registers should
be cleared. This is implemented in hardware using a register to record a ‘valid’ bit for each
architectural register. During register read this bit is consulted and, if clear, then zero is
returned instead of the value from the register file; when a value is written to the register
the valid bit is set. The valid bits can be written efficiently in parallel on ClearRegs,
making it a single-cycle instruction despite having multiple destinations. CHERI2 does
not attempt to forward the value of registers which are cleared, but does detect reads
from a register which might be cleared by preceding ClearRegs so that the pipeline can be
stalled until the ClearRegs has been written back. Real code is very unlikely to read from a
register which has just been cleared so stalling the pipeline does not cause a performance
problem.On a processor with register renaming, such as the original CHERI, ClearRegs

can be implemented at the renaming stage
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Table 4.1: CHERI object-capability invocation costs

Invocation Phase Software HW support

Inst. Cyc. Inst. Cyc.

caller: setup call, clear unused arg. regs. 29 37 18b 28b

libcheri: save callee-save regs, push call frame 31 78 31 81

kernel: receive trap, setup kernel 13 26a 13 26a

kernel: validate ccall args 94 96 79c 83c

kernel: push trusted stack, unseal CCall args. 31 59 31 59
kernel: clear non-arg. regs. 38 38 6b 6b

kernel: exit handler 7 11 7 11

sandbox: setup sandbox, locate method 31 49a 31 51a

sandbox: memcpy (payload) 27 78 27 76
sandbox: exit sandbox 3 12 3 12

kernel: receive trap, setup kernel 13 31a 13 25a

kernel: validate return capability 7 7 7 8
kernel: pop trusted stack 26 60 26 60
kernel: clear non-return registers 54 54 6b 6b

kernel: exit kernel 7 11 7 11

libcheri: pop call frame, restore registers 29 83a 29 81a

caller: function return 7 13 7 13

Total 447 743 341 637

a Includes overhead of hardware exception (10-15 cycles)
b Savings due to hardware ClearRegs instruction
c Savings due to hardware CCall validation
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Once implemented in hardware and I modified the kernel to use the instruction and
David Chisnall also modified the compiler to use it when preparing for a CCall. I found
that this saved about 90 instructions and 90 cycles, over 10% of the unoptimised method
invoke cost.

Another large cost revealed by tracing is validating that the capability arguments and
return values conform with the CCall semantics and information-flow policy. Specifically,
the policy requires:

1. that the code and data capability arguments to the CCall are valid, have matching
type fields, appropriate permissions (executable and non-executable respectively)
and that the offset field of the code capability is within bounds.

2. that the capability argument registers ($c3-$c10) are either untagged (i.e. invalid)
or have the global bit set. This is necessary to ensure that ‘local’ capabilities do not
cross sandbox boundaries as described in Section 3.1.7.

The first set of checks can be easily incorporated into the CCall instruction in hardware,
so I did this and modified the kernel according. This achieved a modest saving of about
15 cycles. The saving would have been larger but the kernel must manually decode the
CCall instruction to check that the ABI specified argument registers ($c1 and $c2) were
used. To simplify the check CHERI has a special register that contains the encoding of
the last instruction that caused an exception, avoiding the necessity of loading it from the
user space PC with the associated risk of a TLB miss, but the requirement still eliminates
some of the saving. Embedding the check into the CCall instruction would solve this but
would tie the ISA to the ABI, reducing its flexibility.

The check for local capability arguments is costly to perform because it takes a se-
quence of seven instructions for each of the ten argument registers . Again, an ISA
extension could reduce this cost but would be of limited general utility. Other optimi-
sation opportunities exist, but as the validation is specific to CheriBSD’s compartment
memory model there is a tradeoff between generality and performance.

Other significant costs include saving and restoring callee-save registers (12 general
purpose, 11 capability), manipulating the trusted stack, trap overhead (four times for the
call and return sequence), and cache and TLB usage.

4.7 Conclusions

These experiments demonstrate that:

1. kernel support for the CHERI extensions adds minimal syscall overhead, and that
this overhead is largely dependent on the size of the capability context.

2. the cost of a security domain transition using CCall is much less than using pro-
cess+IPC based sandboxing, being more on a par with a function call in terms of
instruction, memory and TLB overhead.

3. simple and cheap hardware support for register clearing can reduce CCall overhead,
and that further opportunities exist for optimisation should this be necessary given
future uses of the CHERI ISA.
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CHAPTER 5

Macrobenchmarks

To show that the microbenchmark results in Chapter 4 are reflected in real applications I
present the results of running macrobenchmarks: tcpdump, and gzip and gif2png with
a compartmentalised zlib.

Brooks Davis created a compartmentalised version of the network analysis tool, tcpdump,
and I present an analysis of the performance of this version using the performance mon-
itoring features of CHERI2. Munraj Vadera’s compartmentalised zlib is an example of
the use of library compartmentalisation.

Similar results were published in our paper at IEEE S&P 2015 [23], but in this chapter
I give more extensive results for cheri tcpdump, including analysis of TLB and memory
usage which were not available at the time of publication of that paper.

5.1 tcpdump compartmentalisation

tcpdump contains complex packet dissection code written in C, processes untrusted, po-
tentially malicious network traffic and, due to its need for privileged access to network
devices, is frequently run with high privileges such as the root user on UNIX systems. It
has historically been found to contain many security critical bugs so best-practice dictates
that packet capture should be run separately from packet analysis, with analysis being
run later as a less privileged user. However, this is unsatisfactory as it not only inconve-
niences the user, but does not protect the user’s account from compromise in the event
of an exploitable arbitrary code execution vulnerability.

FreeBSD ships with a version a version of tcpdump compartmentalised using Cap-
sicum [33]. This mitigates many problems by dropping the rights to access all resources
except the input and output streams during packet processing, but leaves the user vulner-
able to attacks which might seek to disable tcpdump, for example by crashing or entering
an infinite loop (i.e. denial of service), or cause misleading output in order to confuse
the user. Such attacks have been used in capture-the-flag competitions to prevent de-
tection or diagnosis of more serious attacks deployed at the same time. In the current
implementation Capsicum sandboxing of tcpdump is limited to a single sandbox.

The CHERI version of tcpdump, cheri tcpdump uses fine-grained compartmentalisa-
tion to provide much better protection for the user. It supports several different modes of
sandboxing to demonstrate the flexibility and scalability of the sandboxing mechanism.
In single sandbox mode cheri tcpdump separates packet processing into a sandbox which
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is invoked using the CCall mechanism, and resets the sandbox if it causes a protection
violation or packet processing takes an excessively long time. This contains any attack
to the sandbox, which has no access to outside resources, and prevents denial of service
attacks from completely disabling cheri tcpdump. It also supports temporal sandboxing
by resetting the sandbox after a configurable number of packets have been processed, en-
suring that compromised sandboxes are limited in the amount of data they process before
being reset. Finally, cheri tcpdump supports separating packets from different flows by
taking a hash of the source and destination IP addresses and using this to select from a
configurable number of sandboxes. Non-IP traffic is directed to a default ‘catchall’ sand-
box. This means that a compromise of one sandbox is less likely to have access to data
from other flows, with this likelihood decreasing as the number of sandboxes increases.

Note that the CHERI sandboxing of cheri tcpdump is in addition to the memory
safety benefits afforded by capabilities and also to Capsicum sandboxing, making for an
extremely robust application (a security analysis using past vulnerabilities is contained
in the IEEE S&P paper).

5.2 cheri tcpdump results

I ran cheri tcpdump on the same quiesced FreeBSD/CHERI2 system as used for the
cheri bench benchmarks and measured the initialisation and packet processing costs
using CHERI2’s user-space performance counters.

The initialisation phase consists of loading the sandbox class from an ELF file using
libcheri and creating a number of instances. Each instance requires allocation of local
data and stack memory, and initialisation of local variables using constructor functions,
therefore there is an expected cycle and memory cost proportional to the number of in-
stances. After initialising the sandboxes cheri tcpdump processes the packets by sending
each packet to a sandbox selected based on a hash of the source IP address. For a given
number of packets, the time take for the packet processing phase will depend on the
overhead associated with sandbox switching, which is determined by the scalability of
sandboxing as the number of sandboxes increases.

To measure the scaling properties of CHERI sandboxing I ran cheri tcpdump in its
IP sandboxing mode on a trace of 2500 packets and varied the number of sandboxes from
one to 128 IP sandboxes in steps of four. There is also an additional non-IP sandbox in
each case, although since there was no non-IP traffic in the trace this was not used after
initialisation. The trace consisted of a series of short HTTP conversations between varied
hosts such that packets were evenly distributed across the IP sandboxes. Packets from
different flows were intermixed causing regular switching between sandboxes. I ran the
benchmark five times at each point and found the variation between samples to be very
low (error bars in the graphs show the standard error in the mean but are too small to
be visible in most cases). Textual output was suppressed, leaving just the dissection code
running in the sandbox, as otherwise the cost of printing the formatted packet output
dwarfed the cost of domain crossing. This allows the scaling behaviour to be observed,
and means that in reality sandboxing overhead would be a smaller proportion of the total
execution time.

Figure 5.1a shows that the initialisation costs increase as the number of sandboxes
increases in a strongly linear fashion. An ordinary least squares (OLS) regression gives
an initialisation cost of 4.30 million cycles per sandbox with a y-intercept of 15.2 million
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Figure 5.1: cheri tcpdump initialisation costs

(a) cheri tcpdump initialisation costs vs. number of sandboxes
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Figure 5.2: cheri tcpdump packet processing costs vs. number of sandboxes with fitted model

(a) cycles
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(b) TLB misses
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cycles corresponding to the cost of initialising cheri tcpdump with just a single sandbox
– the ‘catchall’ for non-IP traffic. The statistical significance of the fit is extremely
high (R2 > 0.9999). The other metrics I measured, such as TLB and cache misses,
show identical linear initialisation costs. Each sandbox instance requires memory to be
allocated for sandbox local data and initialised so this linear dependence is not surprising.

I also measured the maximum resident memory as reported by getrusage at the end
of each cheri tcpdump execution. Figure 5.1b shows that each sandbox consumes a fixed
amount of additional memory, with an OLS regression revealing this to be about 2.4 MiB
per sandbox on top of the initial 6.2 MiB used by the single sandbox version.

Figures 5.2a and 5.2b show the number of cycles and TLB misses taken to process all
2500 packets after initialisation. There is a sharp initial rise in both metrics followed by a
gradual linear increase (I took extra samples in the initial region to show the curve). This
can be explained by the fact that the probability that a packet will use the same sandbox
as the previous packet is roughly 1/N where N is the number of sandboxes (assuming
uniformly randomly distributed packets). Each sandbox has local data which must be
faulted in when the sandbox is called if it is not already present in the caches and TLB,
leading to greater costs for high numbers of sandboxes due to reduced temporal locality.
Therefore I attempted to fit a model y = β0 + β1x + β2/x where the linear β1x term
accounts for the first invocation of a sandbox which will lead to compulsory misses and
the β2/x term is expected to be negative to account for cost savings when there is some
sandbox locality. Fitting this model using OLS regression explains much of the variation
with adjusted R2 of 0.976 (cycles) and 0.995 (TLB misses), but analysis of the residuals
using the Jarque-Bera statistic shows that they are not normally distributed, indicating
that the model is not perfect. This is probably because the locality is not modelled
precisely by the β2/x term – the real curve will depend on the amount of locality in the
trace and the cache and TLB footprint of the sandbox as there is probably data from more
than just the most recently used sandbox in the caches. Nevertheless this simple model
describes the data to some extent and tells us one important thing: for large numbers of
sandboxes the cost is dominated by the linear term which has a very shallow gradient,
meaning CHERI can scale to large numbers of sandboxes efficiently.

5.3 gzip/zlib compartmentalisation

The widely used zlib compression library has a history of security vulnerabilities and,
since it is common to decompress untrusted data downloaded over the internet, this makes
it a good candidate for compartmentalisation. By taking the library compartmentalisa-
tion approach described in Section 3.8.2 all applications that use zlib can benefit from
compartmentalisation whilst only making the required code changes once.

To test this approach Munraj Vadera compartmentalised the gzip compression tool,
which uses zlib, using four different approaches: the product of two compartmentali-
sation technologies (Capsicum and CHERI) and two strategies which place the security
boundary in different locations. In the first strategy the application is divided into two
parts where the privileged part is responsible for parsing arguments and opening input
and output files and the second part performs compression using delegated file descriptors.
The second strategy is library compartmentalisation where a zlib compatible wrapper
forwards library calls to a sandbox implemented either using Capsicum or CHERI.

Capsicum provides an example of using traditional process based isolation techniques.
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Figure 5.3: Compression time for gzip with various sandboxing mechanisms
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Figure 5.4: Sandbox creation overhead: time taken to compress varying numbers of files of
size 500,000 bytes with different zlib implementations
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It is well suited to the application compartmentalisation strategy because gzip has a
simple program structure which can be divided into two phases: after opening input and
output file descriptors gzip calls the cap enter system call to drop ambient privileges,
retaining access to only the open input and output files for the risky compression phase.
This incurs a small fixed overhead vs. uncompartmentalised gzip as shown in Figure 5.3,
which shows results from running on the original CHERI as used in the IEEE S&P paper.

However, the zlib API is difficult to compartmentalise at the library level because it
passes buffers via pointers (a common approach in performance sensitive data process-
ing libraries). With Capsicum this requires data to be copied across the compartment
boundary using IPC, incurring linear overhead in the size of the data. This leaves devel-
opers using Capsicum with a choice between modifying each application on an individual
basis, with varying degrees of difficulty, and the powerful library compartmentalisation
approach which suffers from significant performance overhead.

CHERI, on the other hand, is well-suited to both compartmentalisation strategies ow-
ing to its ability to delegate memory regions via capabilities. Thus we see in Figure 5.3
that both CHERI strategies achieve performance close to the baseline, albeit with some
overhead due to the CCall on each call to deflate and due to using capabilities for all point-
ers within the sandbox. Nevertheless the CHERI overhead is low in both cases considering
the security benefits afforded by both compartmentalisation and pointer safety.

5.4 gzip per sandbox costs

The cost of sandboxing is not limited to communication overheads, but must also take
into account the cost of sandbox creation and initialisation. In the case of process based
compartmentalisation this can be high as each sandbox requires and expensive UNIX
fork. To demonstrate this the compartmentalised zlib versions were modified to use a
new sandbox for each compression context (i.e. file in the case of gzip). This is desirable
to prevent the possibility of information leakage caused by reusing the same sandbox to
compress multiple files from different sources.

Figure 5.4 shows the results for compressing varying numbers of files using either
single-sandbox or per-file library compartmentalisation with Capsicum and CHERI. Both
Capsicum and CHERI incur some per sandbox overhead, but the Capsicum overhead is
much more significant, with CHERI remaining within 5% of the baseline . This confirms
the scalability of CHERI sandboxing in contrast to process-based methods.

5.5 zlib/gif2png library compartmentalisation

example

The major advantage of library compartmentalisation is that all users of a library can ben-
efit without even needing to be re-compiled. The gif2png image conversion utility uses
zlib via the libpng image compression library. Figure 5.5 shows that the performance
of gif2png when linked to the CHERI compartmentalised zlib is indistinguishable from
the uncompartmentalised version for three different sizes of input, being within the exper-
imental margin of error . This is because gif2png is a heavily compute bound application
and therefore the overhead of CHERI compartmentalisation is very small relative to the
overall execution time.
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Figure 5.5: gif2png with unmodified and CHERI zlib implementations

5.6 Conclusions

The benchmarks in this chapter show that CHERI compartmentalisation can be prac-
tically applied to real applications and that it is possible to scale to large numbers of
sandboxes efficiently. The main obstacle to scalability in cheri tcpdump is the memory
footprint of the sandboxes, which is inflated by the large number of global variables which
need to be copied for each new sandbox instance, increasing the initialisation and memory
usage costs. This could be optimised as many of the global variables are not needed, but
the important thing to note is that even with large numbers of sandboxes the performance
is acceptable and appears to scale well.

The zlib example demonstrates the ability of CHERI to efficiently compartmentalise
library code even in the presence of a buffer-oriented API which is a significant obstacle
to using state-of-the-art virtual memory based Capsicum compartmentalisation.
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CHAPTER 6

Conclusions and Future Work

This dissertation has provided a thorough performance evaluation of the compartmental-
isation features of the CHERI ISA. I have demonstrated that these features are efficient
and can be used to compartmentalise existing applications with reasonable programming
effort and acceptable performance costs. Furthermore, I have shown that domain crossing
can be optimised with hardware support for clearing capability and integer registers.

6.1 Conclusions

I have demonstrated that hardware support for compartmentalisation can enable fine-
grained and efficient application compartmentalisation, an extremely desirable feature in
the modern, security conscious computing environment. I have described existing ap-
proaches to this problem and why they fail to meet requirements in terms of performance,
security and ease of use, either because of the requirement to use new, incompatible lan-
guages and programming environments, or due to reliance on coarse-grained and slow
memory protection hardware available in current commodity hardware.

The cheri bench microbenchmark I created simultaneously illustrates the deficiency
of virtual memory based domain crossing techniques and highlights the efficiency of the
CHERI CCall mechanism, both in terms of domain crossing latency and data transfer costs.
By obviating the need to use virtual memory for isolation CHERI creates the possibility
for fine-grained compartmentalisation with efficient and flexible data sharing. It reduces
the pressure on the Translation Lookaside Buffer by ensuring a one-to-one relation between
data pages and TLB entries, rather than the one-to-many relation required to implement
shared memory.

By analysing the performance of cheri tcpdump, a compartmentalised version of the
popular tcpdump network packet analyser, I have shown that CHERI compartmentalisa-
tion has acceptable overhead when applied to real applications, and that it can scale to a
large number of sandboxes for increased security. This also demonstrates the feasibility of
porting existing C-language applications to CHERI using the advanced compiler support
for capabilities and security domain crossing calls.

I conclude that hardware support for compartmentalisation is a compelling feature
of the CHERI architecture, perfectly complementing its already excellent memory safety
benefits. I therefore encourage future computer architects to consider fine-grained memory
protection and compartmentalisation as essential to any modern CPU design.
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6.2 Engineering Contributions

The CHERI project is a complete research platform from top to bottom, comprising the
hardware (FPGA prototype), compiler (clang/llvm + CHERI extensions), operating sys-
tem (CheriBSD), libraries and applications as well as a range of supporting infrastructure
such as tests, debugging, tracing and binary tools. As such it is necessarily the collabo-
rative work of many people, but I personally have made some important contributions:

• I implemented most of the CHERI2 multithreaded CPU prototype, an alternative
to the original CHERI with a number of advantages in terms of coding style and
features for benchmarking. In particular it is coded in a way to make it amenable to
formal analysis, avoiding Bluespec features such as RWires (raw wires) which would
hamper such research. Nirav Dave is undertaking this analysis but it is not the
focus of my efforts or this dissertation.

• In common with all large projects CHERI requires a lot of testing infrastructure
to ensure everything works together. During development I added assembly level
tests to verify various features of the ISA implementation, including a simple test
generator to produce large numbers of tests comparing CHERI and CHERI2 to an
existing MIPS simulator, gxemul.

• I added features to CHERI2 to aid with performance analysis, such as performance
counters and cycle-accurate instruction tracing. I also wrote a program to print
and analyse traces, which I used to produce some of the graphs in this dissertation.
(Section 3.4)

• In the process of running and analysing benchmarks I added many features to
CHERI2 to make it a more realistic and powerful platform. I discovered that a
disadvantage of the original CHERI for benchmarking is its use of direct-mapped
caches for the instruction, data and TLB caches, which introduced undesirable per-
formance artefacts due to conflicts. Therefore I implemented set-associative level
one caches and a fully-associative TLB in CHERI2 making it more realistic and
repeatable for benchmarking. (Section 3.3)

• I implemented cheri bench, a microbenchmark to study different ways of creating
and communicating between sandboxes, including commonly used process based
isolation and CHERI’s innovative CCall mechanism. (Section 4.1)

• After analysing the complete CCall sequence using tracing I observed that register
clearing represented a significant part of the total cost. Therefore I designed and
implemented the ClearRegs instruction and modified CheriBSD to use it, demon-
strating that CHERI domain crossing is amenable to further optimisation using
simple hardware support. (Section 4.6)

• I also used CHERI2 to analyse the performance of a compartmentalised version of
tcpdump. I found that there is a significant initial performance overhead explained
by reduced locality as a result of rapid sandbox switching, but that for large numbers
of sandboxes the cost scales linearly with a low incremental cost. (Chapter 5)
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• I was concerned that the lack of thread-level parallelism in CHERI2 would un-
fairly disadvantage the process-based compartmentalisation benchmarks, so I imple-
mented a simple form of hardware multithreading to emulate multicore behaviour.
In the end I found that multithreading did not help most benchmarks due to their
synchronous nature and the software overhead (in the form of inter-thread inter-
rupts) required for TLB synchronisation between the threads. I did discover that
multithreading helped when communicating via shared memory using polling, but
only under certain circumstances (very small payloads), leading me to conclude
that multithreading is not a reliable way to accelerate sandboxing using traditional
methods. (Section 4.5)

• To support the multithreading work I designed and implemented a programmable
interrupt control (PIC), which was necessary to perform inter-thread interrupts
for use by CheriBSD. The same PIC is currently being used in efforts to develop
a multicore CHERI processor and the existence of the multithreaded version was
helpful when developing FreeBSD support for symmetric multiprocessing on CHERI.

6.3 Future Work

The wide-reaching implications of fine-grained memory protection and compartmentali-
sation are only just beginning to be explored, and there is a great deal of work which
can still be done, particularly if these features are to be adopted by existing commercial
processors.

6.3.1 Domain crossing optimisations

CHERI’s CCall instruction provides an efficient means of crossing security domain bound-
aries, but the cost is still non-trivial when compared to a standard function call, slightly
restricting the uses to which it can be put. For example replacing every method invocation
in a object-oriented language implementation such as C++ or Objective-C is probably
not feasible with the current costs.

My evaluation revealed some opportunities to optimise the existing domain crossing
code. In particular, I demonstrated savings through the use of simple hardware checks in
the CCall instruction and added a ClearRegs instruction for efficient register invalidation,
but there are other opportunities which have yet to be evaluated.

For example, validating that each of the capability arguments is either global or tagged
invalid requires a sequence of seven instructions using the current ISA and this could
easily be simplified through the addition of a new instruction. I did not implement this,
however, due to its limited generality and my concern that the use of local capabilities
might change under different sandboxing schemes (as noted this in Section 3.1.7 this has
already happened once during development).

Another potential optimisation would be to eliminate the trap handler altogether by
replacing the CCall trap with a microcoded instruction or even a form of PALCode as used
on the DEC Alpha [91]. This would perform the necessary trusted operations, such as
argument validation and trusted stack manipulation, without entering the kernel, avoiding
the overhead of taking a trap and the instruction cache footprint of the trap handler.
However, this would risk premature ossification of the CCall semantics and would be of
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uncertain benefit so it makes more sense to retain the flexibility of a software trap for
now.

More generally, it should be observed that CHERI is an experimental platform and is
thus biased more towards flexibility and generality than it is optimised for a specific usage
scenario. This is particularly reflected in the large number of capability registers and their
large size. Ongoing work is investigating the possibility of compressed 128-bit capabilities,
with the potential to reduce both hardware and runtime costs. Further to this, any
commercial adoption of CHERI-like features would have to consider the optimal number of
capability registers to balance the hardware costs and context switching overhead against
the need to prevent excessive spilling of capability registers to the stack and for passing
arguments. Both of these optimisations would shrink the size of the capability context,
reducing the overhead of domain crossing further.

Given the synergy between threads, capabilities and security domains, another possible
avenue for exploration would be to add support for efficient, synchronous communication
between hardware threads. For example, a synchronous call instruction could suspend the
current hardware thread and resume a waiting one, effecting a domain transition without
the need to load or store any capability state. Such mechanisms have been proposed
before to enable efficient parallelism, such as in the XMOS XS1 architecture [92] and
the Mamba processor [93], but could be particularly attractive in the context of security
domain crossing.

However, until the consequences of fine-grained compartmentalisation are further stud-
ied, it is not clear how much optimisation of domain crossing is necessary. There are many
potential uses for the CHERI compartmentalisation features and these will have different
requirements depending on the nature of the sandboxes, their size and the relationships
between them.

6.3.2 Alternative uses for compartmentalisation features

More work is required to investigate other potential applications of the CHERI compart-
mentalisation features. For example, the current sandboxing model used in FreeBSD is
limited to user-space applications, but capabilities could also be used in the kernel to
separate different modules from each other, perhaps returning to the microkernel ideas
that were largely abandoned due to the performance issues which CHERI addresses.

Research is already ongoing on the possibility of using capabilities for the system
call interface between user-space and the kernel. This would remove the need to proxy
system calls from sandboxes via a more privileged ‘system’ sandbox, allowing sandboxes to
directly invoke system calls, passing buffers via capabilities as arguments and potentially
using capabilities as tokens to authorise use of a particular system calls.

Another use would be in adapting a high-level language, such as C++ or Objective-C
to enforce language-level compartments, i.e. objects, using the CHERI hardware primi-
tives, potentially simplifying and strengthening the implementation.
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