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Abstract

This dissertation presents two pieces of work, one building on the other, that
advance the state of the art of formal verification. The focus, in both cases,
is on proving end-to-end correctness for realistic implementations of computer
software. The first piece is a verified compiler for a stateful higher-order functional
programming language, CakeML, which is packaged into a verified read-eval-print
loop (REPL). The second piece is a verified theorem-prover kernel for higher-order
logic (HOL), designed to run in the verified REPL.

Self-compilation is the key idea behind the verification of the CakeML REPL,
in particular, the new technique of proof-grounded bootstrapping of a verified com-
piler. The verified compiler is bootstrapped within the theorem prover used for
its verification, and then packaged into a REPL. The result is an implementa-
tion of the REPL in machine code, verified against machine-code semantics. All
the end-to-end correctness theorems linking this low-level implementation to its
desired semantics are proved within the logic of the theorem prover. Therefore
the trusted computing base (TCB) of the final implementation is smaller than
for any previously verified compiler.

Just as self-compilation is a benchmark by which to judge a compiler, I propose
self-verification as a benchmark for theorem provers, and present a method by
which a theorem prover could verify its own implementation. By applying proof-
grounded compilation (i.e., proof-grounded bootstrapping applied to something
other than a compiler) to an implementation of a theorem prover, we obtain
a theorem prover whose machine-code implementation is verified. To connect
this result back to the semantics of the logic of the theorem prover, we need
to formalise that semantics and prove a refinement theorem. I present some
advances in the techniques that can be used to formalise HOL within itself, as
well as demonstrating that the theorem prover, and its correctness proof, can be
pushed through the verified compiler.

My thesis is that verification of a realistic implementation can be produced
mostly automatically from a verified high-level implementation, via the use of
verified compilation. I present a verified compiler and explain how it was boot-
strapped to achieve a small TCB, and then explain how verified compilation can
be used on a larger application, in particular, a theorem prover for higher-order
logic. The application has two parts, one domain-specific and the other generic.
For the domain-specific part, I formalise the semantics of higher-order logic and
prove its inference system sound. For the generic part, I apply proof-grounded
compilation to produce the verified implementation.
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Chapter 1

Introduction

How can we know that a computer system will behave correctly? One method

is to produce a mathematical proof of correctness. Then the question of system

correctness divides in two: is the proof valid? and did we prove the right thing?

This dissertation describes progress on both fronts.

Did we prove the right thing? Often, the proof is about a high-level abstract

model of an algorithm, but the running system contains a concrete implementa-

tion that was written in a programming language and compiled to machine code.

Does the proof apply to the machine code that actually runs? That depends on

both whether the compiler preserved the semantics of the input program, and

whether the program was accurately modelled by the proof.

I present a new verified compiler for a realistic ML-like language called CakeML,

as well as a new technique, proof-grounded compilation, which enables us specifi-

cally to bootstrap the compiler and, more generally, to push proofs about high-

level algorithms down to the level of real implementations.

There is always a gap between a mathematical model, about which things can

be proved, and the physical system to which the model is supposed to correspond.

One has to look at the statement of the proved theorem, and assess whether its

assumptions are reasonable and its conclusion is strong enough. But we can make

the assumptions simpler and smaller by applying proof-grounded compilation, so

that the final correctness result is about a more concrete model of the system.

The guiding principle here is establishing end-to-end correctness. By replac-

ing trust (in the form of assumptions) with proofs, and then connecting all the
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theorems up, we push the boundary of what is guaranteed by formal verification.

Is the proof valid? For proofs about realistic software, the only practical

option is to use a theorem prover to produce and to check the proofs. Using a

theorem prover, one is more likely to produce valid proofs than if unaided. But a

theorem prover is a piece of software that is compiled to machine code before it is

run, and sometimes the size and complexity of its inference kernel is comparable

to the software that is being verified. Why should the theorem prover be trusted

to produce valid proofs? Even if the theorem prover is trustworthy, how do we

know the proof system is sound? There is a risk of infinite regress here, and a

line must be drawn somewhere. But to placate the tireless sceptic, we can push

it back.

I present a proof of consistency of higher-order logic (HOL), in particular for

the entire inference system implemented by the kernel of the HOL Light theorem

prover [24]. The main lemma is a proof of soundness against a new specification of

the semantics of HOL. This formalisation extends work by Harrison [23] towards

self-verification of HOL Light. Using the proof-grounded compilation technique,

I show how to produce a concrete implementation of a proof checker for HOL

based on the verified inference system. The result is a theorem prover with very

strong guarantees of correctness, and, as I will sketch, the rare potential to verify

its own concrete implementation in machine code.

Outlook Our goal is practical methodology for producing verified software with

fewer of the usual caveats associated with “verified”. The usual caveats come in

three kinds of things one needs to trust:

• the pathway to execution (compiler, linker) and the execution environment

(operating system, hardware),

• the verification methodology (soundness of the theorem prover’s logic and

implementation), and,

• that the properties you verified mean what you think they do.

The code comprising the first two items is known as the trusted computing base

(TCB). My work on verified compilers and verified theorem provers is aimed at

significantly reducing the TCB for verified software.
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1.1 Trusted computing base

The term “trusted computing base” originates in the field of computer security.

The idea is simple: what components of the system do we need to trust for the

system to be secure? The point is that it may not be the whole system: we can

sometimes make an argument for the whole system’s security depending only on

the behaviour of a trusted kernel. By reducing the size of this trusted component,

we reduce opportunities for security breaches.

In the context of verified software, we can extend the trusted computing base

idea by switching focus from security to correct behaviour. What do we need to

trust for the system to behave correctly? Those things, for us, form the trusted

computing base. In general, the TCB divides into the following categories:

• Formal models of parts of the system. We trust these to correspond to

the things that are being modeled. For example, we might have a formal

model of an x86 processor, and then trust that it is an accurate enough

representation of real processors.

• Parts of the system about which we have no detailed models, but about

which our verification makes assumptions. Strictly speaking, these could

be considered under the previous category, but it is clearer to separate

detailed formal models from bare or implicit assumptions. Examples in

this category include: the compiler, linker, runtime, and operating system

that are used to run a verified algorithm, when the verification covers the

algorithm but not the concrete implementation.

• The tools we use to formally prove theorems (more precisely to check the

proofs). This item represents philosophical questions about knowledge and

proof, but also emerges as a practical concern about the soundness of the

toolchain used to create a formal development.

My strategy for making the TCB smaller concentrates on reducing the second

item. In particular, I strive to include more within the boundary of what is

formally verified, so as to satisfy assumptions with proofs. In the end ideally

only assumptions of the first kind are left, together with the same amount of

trust in the theorem proving tools. When the software I apply the strategy to is

itself a theorem prover, the third item is also reduced.

13



1.2 Verified theorem proving

What is the point of verifying a theorem prover and formalising the semantics

of the logic it implements? One answer is that it raises our confidence in its

correctness. A theorem prover implementation usually sits at the centre of the

trusted code base for verification work, so effort spent verifying the theorem

prover multiplies outwards. Secondly, it helps us understand our systems (logical

and software), to the level of precision possible only via formalisation. Finally, a

theorem prover is a non-trivial piece of software that admits a high-level specifi-

cation and whose correctness is important: it is a catalyst for tools and methods

aimed at developing complete verified systems, readying them for larger systems

with less obvious specifications.

1.3 Verified compilation

Work on verifying a compiler also has the potential to reduce the trusted com-

puting base for many applications. All those applications that will be compiled

by the verified compiler and run on the verified runtime system stand to benefit.

Because a compiler both deals with a programming language and is written

in a programming language, it can serve as a particularly good illustration of the

issues involved when considering the scope of verification and what remains in

the trusted computing base. Let us look now at three dimensions on which a

compiler verification effort might be assessed.

The first dimension is how far the compiler and its verification go (Figure 1.1).

Does the verification cover the entire compilation function that takes in source

code (that is, text files) and produces executable binaries as output? Or does

the verified function take and produce processed data, and therefore need to be

wrapped by unverified tools for parsing, linking, assembly, or even some compi-

lation phases? The verified compiler described in this dissertation goes further

on this dimension than typical, by including a verified parser and producing ma-

chine code; however, it produces raw machine code to be run on “bare metal”,

and requires an unverified wrapper to create a loadable object file suitable for a

traditional operating system.

The second dimension is how concrete the verified implementation is, that is,

how far is it from what is actually run (Figure 1.2). Is the verification just about
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Source Code

Abstract Syntax

Intermediate Language 1

...

Intermediate Language n

Assembly Code

Machine Code

scope of compilation

Figure 1.1: One dimension of compiler verification: the size of the gap between
the source and target languages.

Specification of a Compiler

Compilation Algorithm

Implementation in Programming Language

Implementation in Machine Code

Implementation in Hardware

scope of verification

Figure 1.2: Another dimension of compiler verification: how concrete an imple-
mentation of the compiler is verified?
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the compilation algorithm, or does it also cover the concrete implementation

of that algorithm in hardware? Verifying a compiler only reduces trusted code

if we do not need to introduce trust for the platform upon which the verified

compiler runs. The compiler verification described in this dissertation is about

the implementation of the compiler in machine code, which is the lowest level of

abstraction we consider; I achieve this level of concreteness without a significant

increase in proof effort by using the new technique of proof-grounded bootstrapping.

The final dimension by which to assess a verified compiler are the features

supported in (and realism of) its source language. Is the compiler useful, because

it accepts and produces programs in well-known existing languages, or does it only

work with severely simplified or toy languages? The compiler in this dissertation

accepts a large subset of an established programming language, Standard ML,

and generates code for an established microprocessor architecture (x86-64). And,

as we shall see, it has been tested on two reasonably large example programs: a

compiler (itself in fact), and the kernel of a theorem prover.

1.4 ML for verified compilation

The choice of an ML-like language as the source language of a verified compiler,

and for implementing verified algorithms including a verified theorem prover,

is apt for several reasons. Theorem-prover implementation was the motivating

application for the original ML [20], which stands for “meta-language” to be con-

trasted with the “object-language” that is the logic of the theorem prover. Stan-

dard ML is unique amongst programming languages (at least those not purely

academic) in being defined by formal semantics [53, 54], and is one of few pro-

gramming languages to have been given formal semantics at all (although the

trend is changing, e.g., [29, 49]). (The Definition is formal, but not mechanised

like the semantics used in this dissertation. However, mechanised work on ML

semantics is not without precedent [30, 77, 45].) Although ML was designed for

theorem provers, it is now used for a variety of general-purpose applications (in-

cluding an operating system [48]), and is therefore a good target for verification.

As a higher-order, functional language, ML is close enough to higher-order logic

to be a good vehicle for expressing algorithms and to allow a connection between

ML and HOL to be formally established (as described in Chapter 2).
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1.5 Dissertation overview

This dissertation is a distillation of many of the important ideas from an ongoing

substantial research project, the CakeML project, hosted at https://cakeml.org.

The basic aim of the project is to push the boundaries of formal verification. In

particular, to push in these three directions: the quality (size, scope, speed) of

the artefacts that we can verify, the ease with which we can do it, and the quality

(reducing trust, increasing guarantees) of the verification.

We focus on two of the results of the project: a verified read-eval-print loop

(REPL), which packages a verified compiler for CakeML, and a verified theorem

prover designed to run on this verified REPL. The key ideas include verified com-

pilation of a functional language, proof-grounded compilation to push correctness

claims down to the implementation level, and self-formalisation of higher-order

logic. These ideas culminate in the following claim.

1.5.1 Thesis

Verification of a realistic model of a computer system does not require significantly

more trust or effort than verification of a high-level abstract model. I propose

the use of proof-grounded compilation from a language suitable for high-level

verification to automatically produce verified implementations without increasing

the trusted computing base.

1.5.2 Contributions

The specific contributions of this dissertation are as follows.

1. A verified compiler for CakeML that can bootstrap itself. The input lan-

guage is a substantial subset of an established programming language (Stan-

dard ML), and the compiler produces real machine code (that is, num-

bers encoding instructions) for an established instruction set architecture

(x86-64).

2. A new technique, proof-grounded compilation, for using a verified compiler

to push correctness results about algorithms down to the level of the con-

crete implementation. We apply this technique to the CakeML compiler

itself, where it becomes proof-grounded bootstrapping. We also explain how
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a bootstrapped verified compiler can be packaged into a larger verified pro-

gram (in particular a read-eval-print loop) with strong guarantees of cor-

rectness.

3. Formal semantics and a proof of soundness for an inference system for

higher-order logic (HOL) against a new specification of set theory. Then,

verification of a theorem-prover kernel for HOL, showing that it implements

the semantics of the logic. Finally, a description of how proof-grounded

compilation can be applied to this verified theorem-prover kernel.

All of the theorems mentioned in this dissertation have been machine-checked

using the HOL4 theorem prover. At the time of writing, the CakeML repository

contains roughly 100, 000 lines of Standard ML including definitions, proof scripts,

and proof automation, but not including the standard theories and libraries of

HOL4 on which they depend.

1.5.3 Publications

Much of the work presented in this dissertation has, in earlier forms, been pub-

lished in peer-reviewed conference proceedings and journals. A list of relevant

publications follows.

• Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.

CakeML: a verified implementation of ML. In Suresh Jagannathan and

Peter Sewell, editors, POPL, pages 179–192. ACM, 2014

• Magnus O. Myreen, Scott Owens, and Ramana Kumar. Steps towards ver-

ified implementations of HOL Light. In Sandrine Blazy, Christine Paulin-

Mohring, and David Pichardie, editors, Interactive Theorem Proving - 4th

International Conference, ITP 2013, Rennes, France, July 22-26, 2013.

Proceedings, volume 7998 of Lecture Notes in Computer Science, pages 490–

495. Springer, 2013

• Ramana Kumar. Challenges in using OpenTheory to transport Harrison’s

HOL model from HOL Light to HOL4. In Jasmin Christian Blanchette and

Josef Urban, editors, Third International Workshop on Proof Exchange for

Theorem Proving, PxTP 2013, Lake Placid, NY, USA, June 9-10, 2013,

volume 14 of EPiC Series, pages 110–116. EasyChair, 2013
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• Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. HOL

with definitions: Semantics, soundness, and a verified implementation. In

Klein and Gamboa [37], pages 308–324

Additionally, an article based on selections of Part I (especially Chapter 4),

and another based on Part II, have been submitted for review. These as-yet-

unpublished papers are:

• Ramana Kumar, Magnus O. Myreen, Scott Owens, and Yong Kiam Tan.

Proof-grounded bootstrapping of a verified compiler: Producing a verified

read-eval-print loop for CakeML. Journal of Automated Reasoning, 2015.

Submitted

• Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. Self-

formalisation of higher-order logic. Journal of Automated Reasoning, 2015.

Submitted

The papers above, and the work they describe, is the result of collaboration

with the listed co-authors in the context of the CakeML project. Since this

dissertation describes results in the CakeML project, it builds upon work done

in collaboration. The dissertation itself, and the bulk of the research described

within, is my own work.

Broadly speaking, work on CakeML was originally divided as follows: Scott

Owens worked on the semantics of the language and the type system, Magnus

Myreen worked on proof-producing translation into CakeML and machine-code

verification of the implementation of the bytecode, Michael Norrish worked on

verified parsing, and I worked on verified compilation from abstract syntax to

bytecode, and the top-level compiler correctness results required for bootstrap-

ping. For the verified HOL Light example, my focus was the semantics and

soundness of HOL, while Magnus’s focus was verification of the monadic ker-

nel functions. Over the course of the project, these divisions were not held up

strictly, and everyone has worked in some way on most aspects of the project. A

detailed record can be found in the commit history of the code base, available

via https://github.com/CakeML/cakeml.
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1.5.4 Terminology and notation

I sometimes refer to “the logic”, by which I usually mean higher-order logic

(HOL) as implemented by the HOL4 theorem prover. Theorem provers are com-

puter programs that aid in the construction of formal proofs (i.e., derivations

of syntactically valid sentences) in some logic. The (programming) language in

which a theorem prover itself is written is typically called the metalanguage. For

the HOL4 theorem prover, the logic is HOL and the metalanguage is Standard

ML.

As my work involves both refinement proofs (linking implementations to spec-

ifications) and soundness proofs (linking an inference system to the semantics of

a logic), and for the latter both the meta-logic and object-logic are HOL, I often

need to refer to similar but different things and some care must be paid for clar-

ity. By “HOL” I refer to higher-order logic itself. Particular inference systems for

HOL are implemented by interactive theorem-proving systems. The two theorem

provers of interest are HOL Light, because I formalise its inference system and

use its implementation as inspiration for the implementation in CakeML; and

HOL4, because I use it to mechanise the proofs. I use “HOL4” and “HOL Light”

unqualified to refer to the theorem provers, and clarify explicitly when I mean

the inference system instead. HOL4 implements a different inference system from

HOL Light’s, but the two are inter-translatable.

The dissertation includes extracts, generated by HOL4, from the formal proofs.

These include definitions. For example, here is the standard library function for

checking a predicate holds for all elements of a list:

every P [ ] ⇐⇒ T

every P (h::t) ⇐⇒ P h ∧ every P t

Since the result of every P ls is Boolean, we use (⇐⇒ ) in the defining equations;

at other types we simply use (=). As well as definitions we have theorems, which

are shown with a turnstile, for example:

⊢ ¬every P ls ⇐⇒ exists ((¬) ◦ P) ls

Free variables may appear in theorems; semantically, they behave as if universally

quantified. Datatype definitions are shown as in the following example of the
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polymorphic option type with two constructors:

α option = None | Some α

Terms are sometimes annotated with their types, for example: (Some : bool →

bool option) F. Quantifiers are printed as binders, as in ∀ x . ∃ y . x 6= Some y ,

although in HOL the quantifiers are ordinary constants (that operate on pred-

icates, that is, functions with codomain bool). The existential quantifier in

the previous sentence might more pedantically be printed as an application of

(∃ ) to λ y . x 6= Some y . Finally, we show the rules of inductive relations us-

ing a horizontal line to separate premises from the conclusion. Thus the rule,

⊢ R x y ∧ R∗ y z ⇒ R∗ x z , about the reflexive transitive closure of a relation

can also be written as follows:

R x y

R∗ y z

R∗ x z

21
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Self-compilation
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Chapter 2

From verified algorithms to

implementations in CakeML

I make a distinction between algorithms and implementations, which is not always

emphasised in other work on verification. An algorithm is a formally specified

procedure whose semantics is implicit and mathematical. Using terminology in-

troduced by Boulton et. al. [12, Section 4], an algorithm is a shallow embedding,

which might be modelled by a function that is defined in the logic of a theorem

prover and inherits the semantics of the logic. Implementations, on the other

hand, are deeply embedded : they are syntax with an explicit formal semantics,

for example the operational semantics of a programming language or the next-

state relation of a processor model. I make this distinction because a key theme

of my work is moving from verified algorithms to verified implementations, which

I see as finishing the task intended by the algorithm verification in the first place.

In this chapter, we look at two techniques that can be applied to verified

algorithms that will play key roles in the proof-grounded compilation idea intro-

duced in Chapter 4. The first technique, evaluation by rewriting in the logic [6],

operates solely on shallow embeddings. The second technique, proof-producing

translation from shallow to deep embeddings [66], is fundamentally concerned

with deep embeddings. The programming language we use for deep embeddings

is CakeML [42], which is described briefly at the end of this chapter.

Evaluation in the logic (henceforth “evaluation”) and proof-producing transla-

tion to a deep embedding (henceforth “translation”1) are both examples of proof

1Although compilation is a kind of translation (from a high- to a low-level language), we
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automation that can be implemented in the context of a general-purpose theo-

rem prover such as HOL4 [74] (which I use), Isabelle [82], or Coq [10]. Theorem

provers (like those three) written in the LCF style [52] produce theorems only

by checking the proof steps in a small “kernel” that implements the primitive

inference rules of the logic. Sophisticated proof automation, like evaluation or

translation, does not demand additional trust since any theorems produced by

the automation have been pushed through the theorem prover’s kernel.2

2.1 Evaluation in the logic

Let us begin with an example of the kind of proof task I mean to be solved

by evaluation. Given input map length [[1; 1]; [2]; [ ]], we wish to produce the

theorem

⊢ map length [[1; 1]; [2]; [ ]] = [2; 1; 0]

by evaluation using the definitions of map and length. The key characteristic is

that the right-hand side of the theorem contains no more reducible expressions: it

is a normal form in the rewriting system consisting of the function definitions and

beta-conversion. The theorem should be produced automatically and efficiently.

The solution, introduced to HOL4 by Barras [6], is to interpret the equations

characterising functions likemap (shown below) as they would be by an interpreter

for a functional programming language.

map f [ ] = [ ]

map f (h::t) = f h::map f t

Each reduction step performed by such an interpreter can be justified by a (de-

rived) rule of inference and replayed in the inference kernel, thanks to the kernel’s

semantics of equality and support for beta-conversion. Logically speaking, evalu-

ation is no more sophisticated than rewriting (or simplification) as described, for

example, by Paulson [69]. The difference is in the order in which rewrite rules are

applied (bottom-up versus top-down) and in the book-keeping done to make the

reserve the term “translation” for moving from a shallow to a deep embedding.
2The kernels of these systems vary, however, in size. Coq, for example, includes some

facilities for evaluation within the kernel that would need to be implemented outside in other
systems.
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process more efficient. Although Barras’s evaluation supports variables, for our

purposes we need only consider evaluation problems, like the one above, where

the input term has no free variables.

The equations characterising map above have the same status (proven theo-

rems) as the theorem produced by evaluation. The fact that they can be viewed

as defining equations does not distinguish them, in HOL, from any other equa-

tions. Indeed, any suitable rewrites that have been proved about a function can

be used in the evaluation of that function. The resulting theorems, produced by

evaluation, are proved using only the normal rules of the inference kernel, with-

out any recourse to evaluation or compilation outside the logic, or purpose-built3

inference rules for normalisation.

2.2 Translation from shallow to deep embed-

dings

The defining equations for map in the previous section are an example of a shallow

embedding of a functional program in logic. The constant map is a function in

HOL with type (α → β) → α list → β list. Despite the evaluation machinery

just described, the semantics of map is not operational; map is a mathematical

function and has semantics according to the semantics of HOL. Indeed, there are

HOL functions4 that do not have any operational characterisation.

For functions like map which do have equations suitable for evaluation, in

the sense of functional programming, there is an alternative way to model the

function in logic. That alternative is to use a deep embedding : to model the

function as a piece of syntax, animated by an explicit evaluation relation describ-

ing the operational semantics of a programming language. In our examples, the

programming language for deep embeddings is always CakeML [42].

Consider the following definition of the syntax for the map function (this is

3One feature was added to the kernel, when evaluation was implemented, to improve the
performance: the kernel datatype implementing HOL terms supports lazy substitution.

4For example, the existential quantifier over an uncountable type.
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CakeML abstract syntax; it is pretty-printed underneath):

map dec =

Letrec

[("map","v3",

Fun "v4"

(Mat (Var "v4")

[(Pcon "nil" [ ],Con "nil" [ ]);

(Pcon "::" [Pvar "v2"; Pvar "v1"],

Con "::"

[App [Var "v3"; Var "v2"]; App [App [Var "map"; Var "v3"]; Var "v1"]])]))]

The syntax is more readable as pretty-printed concrete syntax:

fun map v3 =

Fun "v4"

(case v4

of [] => []

| (v2::v1) => (v3 v2::(map v3 v1)));

The type of map dec in HOL is dec (a CakeML declaration). Thus, it is not a

HOL function and does not get its functional semantics that way. Rather, the

semantics is given explicitly by an evaluation relation EvalDec env1 dec env2 that

relates a declaration dec and an initial environment env1 (e.g., containing the

datatype declaration for lists) to a resulting environment env2. The resulting

environment for the map dec declaration will include a binding of a new variable,

called "map", to a function value (i.e., a closure).

If we want to prove something about map, working directly with the syntax

and evaluation relation (operational semantics) is much more cumbersome than

using the defining equations of the shallow embedding directly. However the extra

machinery of the deep embedding (e.g., the environment and the explicit evalua-

tion steps) make it a more realistic formalisation of map as a functional program.

Fortunately, we can do our reasoning on the shallow embedding and carry any

results over to the more realistic deep embedding automatically using a technique

developed by Myreen and Owens [66], called (proof-producing) translation.

Translation synthesises a deep embedding following the structure of the shal-

low embedding’s equations and simultaneously proves a certificate theorem about
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the synthesised implementation. Synthesis happens in a bottom-up manner, using

the certificate theorems for previously translated code as required. The certifi-

cate theorem is proved automatically, using the shallow embedding’s induction

theorem (typically proved automatically when the shallow embedding is defined)

and relates the behaviour of the synthesised implementation to its shallow coun-

terpart.

To explain certificate theorems, let us work through understanding the fol-

lowing one for map by taking it apart.

Example 1 (Certificate theorem for map).

⊢ ∃ env c.

EvalDec InitEnv map dec env ∧ Lookup "map" env = Some c ∧

((a −→ b) −→ ListTy a −→ ListTy b) map c

There are two important concepts contained in such a certificate theorem:

refinement invariants (e.g., ListTy a) and the operational semantics (EvalDec).

A refinement invariant specifies the relationship between between a shallowly-

embedded value (a HOL term) and a deeply-embedded one (a CakeML value). For

example, ListTy BoolTy [F] v holds when v is a CakeML value implementing the

singleton list containing the HOL constant F (falsity) according to the refinement

invariant ListTy BoolTy. Expanding out what this means explicitly, we have:

⊢ ListTy BoolTy [F] v ⇐⇒

v =

ConV ("::",TypeId "list")

[ConV ("false",TypeId "bool") [ ]; ConV ("nil",TypeId "list") [ ]]

Here, ConV name args represents a deeply-embedded constructor value.

Since lists are polymorphic, ListTy takes as an argument a refinement invariant

to govern the type of the list elements. In the certificate theorem for map above

(Example 1), there are free variables a and b standing for refinement invariants for

the input and output list elements. The free variables show us that the certificate

theorem applies to every instance of the polymorphic map function.

The full refinement invariant for map includes several instances of the re-

finement invariant, x −→ y , for functions (there are several instances because
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map is both higher-order and curried). Given a HOL function f and refinement

invariants x and y intended to describe the input and output types of f , the

(x −→ y) f c invariant holds when c is a CakeML closure that implements f .

More specifically, whenever x v1 holds, then application of the closure c to v1 will,

according to the CakeML operational semantics, terminate with a value v2 that

satisfies y (f x ) v2. Looking back at the refinement invariant for map in its cer-

tificate theorem, we see that map is implemented as a closure which, when given

CakeML values satisfying (a −→ b) f and ListTy a l as inputs will terminate and

produce a CakeML value satisfying ListTy b (map f l).

The certificate theorem for map is written in terms of the operational seman-

tics, namely EvalDec. In general EvalDec env1 dec env2 is the assertion that the

CakeML declaration dec evaluates in environment env1 successfully and with-

out side-effects5 to produce the extended environment env2. Thus for map, we

see that in initial environment InitEnv, the map dec declaration will succeed and

the resulting environment, env , will bind the variable "map" to a closure, c, im-

plementing map. It is not particularly important that we start in the InitEnv

environment, which contains only CakeML primitives: a more general form of

the certificate theorem (not shown) allows us to derive a similar result for any

starting environment.

The proof-producing translation technique includes support for user-defined

datatypes as well as the primitive datatypes of CakeML (Booleans, lists, etc.).

The result of defining an algebraic data type in HOL provides enough informa-

tion to synthesise refinement invariants (like ListTy a) for new types. There is

also some support (mainly namespace management) for translation into a named

CakeML module. Details on the workings of the proof automation behind trans-

lation can be found in Myreen and Owens [66]. Proof-producing translation plays

a key role in bootstrapping the CakeML compiler, which is itself written in HOL

but whose input language is CakeML.

2.3 CakeML

In the previous section we saw examples of CakeML being used as the target

language for proof-producing translation. CakeML is a formally defined pro-

5Certificate theorems for programs with side-effects are more complicated, but will not
concern us until Section 4.5.
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Type System

Abstract SyntaxConcrete Syntax (CFG) Small-step Op. Sem.

Big-step Op. Sem.

Loosely-defined Subset of HOL

Translator certificate theorems

equivalence proof

type soundness proof

Figure 2.1: Semantics and translator for CakeML. In the centre is the abstract
syntax of CakeML around which is defined concrete syntax (left), a static seman-
tics (top) and dynamic semantics (right). At the bottom is the proof-producing
translator that generates CakeML implementations of functions in HOL together
with a proof of correctness (in terms of the CakeML semantics).

gramming language modelled after Standard ML. The CakeML semantics was

originally formalised by Owens [65] in a style similar to his semantics for OCaml

Light [68]. The pieces making up the semantics and (shallow-to-deep) translator

for CakeML are illustrated in Figure 2.1.

The semantics of CakeML is an interface. It is used by two different clients:

the proof-producing translator from HOL to CakeML (described in the previous

section), and the verified compiler from CakeML to bytecode (described in Chap-

ter 3). The central notion in the operational semantics is evaluation of a CakeML

program to a result or an error. The translator produces certificates describing

how the CakeML code it produces evaluates, whereas the compiler verification

proves that the bytecode it generates evaluates the same way as the CakeML

program given as input.

Apart from its role as an interface, the semantics of CakeML is an interesting

artefact in its own right, since it aims to be a formal, mechanised, and useful

semantics for a realistic programming language. Various metatheoretic results

have been proved about the semantics. As shown in Figure 2.1, the semantics

includes a type system and the operational semantics has been proved sound with

respect to the type system. In other words, the language is safe: a well-typed

terminating program always evaluates to a result of the same type or raises an

exception.
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The CakeML semantics detects type errors explicitly. The operational seman-

tics of a program that would be ruled out by the type system is to raise a type

error. Therefore, the language also has an untyped safety theorem: the semantics

of a program never gets stuck. It either diverges, terminates with a result or an

exception, or terminates with a type error.

Explicit type errors combine well with another property of the semantics,

which together enable our strategy for proving compiler correctness for non-

terminating programs as well as terminating ones (Section 3.4). The property

is determinism: there is exactly one result for every terminating program. The

programs with no big-step semantics, therefore, are exactly the programs that

diverge. This fact has been proved using the more straightforward definition of

divergence in terms of infinite traces in the small-step semantics.

A final design decision worth a small mention is to do with bound variables and

function application. CakeML abstract syntax uses a first-order representation

of binding with variables represented by strings. CakeML values include closures

and the semantics uses environments as opposed to doing substitution for func-

tion application. This approach fits well with the goal of compiler verification,

since the compiler produces closures. And making sure the abstract syntax for

CakeML is straightforwardly represented as a datatype within CakeML is crucial

for bootstrapping the compiler.

CakeML is a language intended for real use, not merely an academic proof-

of-concept. At the time of writing, the major missing feature is support for

input/output (I/O), beyond the top-level I/O of a read-eval-print loop. It is

expected that I/O will be added to CakeML in the near future. The features

already present include

• higher-order, polymorphic, recursive functions,

• user-defined algebraic datatypes and nested pattern matching,

• a module system with support for signatures,

• references,

• exceptions, and

• primitive types including: arbitrary precision integers, strings, characters,

vectors, and arrays.
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While all these features have received attention in research on programming lan-

guages, the combination within a single language with a formal, mechanised se-

mantics is unusually ambitious.

2.3.1 Semantics of the REPL

The top-level semantics of the CakeML read-eval-print loop (REPL) is defined in

terms of the specification of the syntax of the language as a context-free grammar,

the type system specified as an inductive relation, and the operational semantics

also specified as an inductive relation. The pieces making up the semantics are

all specified using conventional techniques.

Recall the semantics of CakeML declarations: EvalDec env1 dec env2 holds

when the semantics of processing the declaration dec in environment env1 is

to produce a new environment env2. The semantics for a read-eval-print loop

(REPL) is to read and evaluate declarations in a loop, printing the additional

bindings in the new environment after each one. Since we only care about the

output printed by the REPL after processing a declaration, I leave out the details

of the semantics for stateful and failing declarations that are present in the full

CakeML semantics.

We must, however, properly model divergence. As mentioned previously, the

semantics is careful to cover all non-diverging declarations, marking failures with

explicit errors, hence if a declaration has no semantics it must diverge. Addition-

ally, this equivalence between failure to relate and divergence has been proved in

terms of the CakeML small-step operational semantics, where divergence can be

specified in the normal way (as an infinite trace).

To specify the output of the REPL, we use the following type which encodes

a list of result strings ending in either termination or divergence.

repl result = Terminate | Diverge | Result string repl result

Each result is the output from a declaration: it could indicate a parse error, a

type error, an exception, or some new bindings. If some declaration diverges, the

REPL result ends there with Diverge; otherwise it continues until there are no

more declarations and ends with Terminate.

The input of the REPL is specified as a string containing all user input. In
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reality, later parts of the user input are likely to depend on the REPL’s output

for earlier parts. But since we do not model the user at all, apart from the input

they actually produce, it is convenient to assume we have all the input up front,

akin to an oracle.

The concrete syntax for CakeML requires that every declaration end with a

semicolon. Consequently, the input string can be split, after lexing, into lists of

tokens each representing a declaration. To specify the semantics of lexing, we have

executable specifications (Lex and SplitSemicolons) of the conversion to tokens

and splitting at semicolons. For the semantics of parsing, the (non-executable)

function Parse checks whether there exists a parse tree for a declaration in the

CakeML grammar whose fringe is the given list of tokens, and returns Some dec

if so, otherwise None. The semantics of the entire REPL, shown below, can thus

be factored through a semantics (AstReplSem) that operates on abstract syntax.

ReplSem state input = AstReplSem state (map Parse (SplitSemicolons (Lex input)))

Let us look now at the AstReplSem relation, of which the signature is shown

below.

AstReplSem state dec_options repl_result

The first argument is the state of the REPL semantics, in particular that means

the state of the type system (the types declared so far) and of the operational

semantics (the current environment and store). As we saw above, ReplSem is

parameterised by an initial state thereby allowing a basis program before user

input.

With our model of what a REPL result looks like, the definition of AstReplSem

is a straightforward loop down the list of input declarations. For each declaration

in the list dec_options :

1. if it is None accumulate a parse-error result, otherwise

2. if the declaration is not well-typed according to the type system, accumulate

a type-error result, otherwise

3. if the operational semantics of the declaration is to diverge, end with the

Diverge result, otherwise
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4. accumulate the (exceptional or normal) result of the operational seman-

tics of the declaration, update the state (with the new results from the

operational semantics and type system), and continue.

We will return to this specification of the REPL semantics in Chapter 4,

where it corresponds to the top layer of Figure 4.1. Before looking at the REPL

implementation, however, we look at one of its primary components: a verified

compiler for individual declarations, which is the topic of the next chapter.
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Chapter 3

A verified compiler for CakeML

In this chapter, I describe a verified compilation algorithm for CakeML. I focus on

the function in the logic, but not the promised verified implementation in machine

code; for that, see the next chapter. The purpose of splitting the material into two

parts is to highlight the distinction between different levels of implementation,

and to encourage the habit of asking, about verified software, what exactly is

verified. Also, proof techniques by which the compilation algorithm is verified

(essentially: refinement proofs by induction on the semantics) have a different

flavour from the bootstrapping process described in the next chapter.

3.1 Compiler verification

A compiler is a program for translating code from a high-level language to a

low-level language, and the property usually considered to constitute its correct-

ness is semantics-preservation. We define the CakeML compiler as a function in

the logic, since that is the natural place for carrying out verification; the com-

pilation algorithm is defined as a shallow embedding (like map in the previous

chapter). Such a shallow embedding, together with a correctness theorem, is

what is typically meant by a “verified compiler”, for example the CompCert ver-

ified compiler [46] is a verified algorithm in our terminology. CompCert is run

by being extracted to OCaml (which is unverified). In the next chapter, we show

how bootstrapping enables us to verify a much more concrete implementation of

the CakeML compiler.

To verify the compiler, we need semantics for both the high-level and low-
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env1 env2

bs1 bs2

dec

Inv

bc

Inv

Figure 3.1: Compiler correctness (Lemma 1) illustrated as a commuting diagram.
On the top is evaluation of dec in the CakeML operational semantics. On the
bottom is evaluation of bytecode, bc, resulting from compiling dec. Lemma 1
states that the dashed lines exist whenever the solid ones do.

level languages. We have seen examples of (a simplified version of) the semantics

for CakeML in the previous chapter, in particular EvalDec env1 dec env2 which

specifies the evaluation of a declaration. In this chapter, our target language is

CakeML bytecode (Section 3.3), which a low-level language serving as the final

step before the machine-code verification in the next chapter. The semantics of

CakeML bytecode is given as a state-transition system, bs1 →
∗ bs2, which means

bytecode-machine state bs1 transitions to state bs2 in zero or more steps. The

bytecode-machine states (explained more thoroughly in Section 3.3) contain code

and a program counter, as well as the current state of the memory.

A call to the compiler looks like this: CompileDec cs1 dec = (cs2,bc), where

cs1 and cs2 are the compiler’s internal state and bc is the generated bytecode.

Because we eventually want to call the compiler multiple times in succession (for

the REPL), we prove preservation not just of semantics of the input program

but of an invariant, Inv env cs bs , between the environment env in the CakeML

semantics, the compiler’s state cs , and the bytecode-machine state bs . This is an

example of forward simulation [16].

The compiler correctness theorem states that if the invariant holds for an

environment env1, and the semantics of dec in that environment produces env2,

then the compiled code for dec will run to completion and the invariant will hold

again in env2. The statement is illustrated in Figure 3.1, and printed formally

below.
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Lemma 1 (Correctness of CompileDec for successful declarations).

⊢ Inv env1 cs1 bs1 ∧ EvalDec env1 dec env2 ∧ CompileDec cs1 dec = (cs2,bc)⇒

∃ bs2. (AddCode bs1 bc)→
∗ bs2 ∧ Halted bs2 ∧ Inv env2 cs2 bs2

This form of compiler correctness theorem is only suitable for source programs

that terminate successfully (as implied by the EvalDec assumption). For boot-

strapping, that is the important case, since we know compilation of the compiler

will terminate successfully. The CakeML compiler is, however, also verified for

the cases of diverging and failing input programs. We will need the full correct-

ness theorems (Theorems 2 and 3 in Section 3.5) when we want to verify the

read-eval-print loop (Section 4.3) which runs the verified compiler on user input.

The principal method for producing our compiler correctness theorem is in-

duction on the big-step semantics of the input program. Compilation proceeds

through a series of intermediate languages, as does its verification. For each inter-

mediate language, there are three items required to state the correctness theorem:

a big-step operational semantics, a compiler into the language, and a data refine-

ment relation. In the proceeding sections, I will explain the key design decisions

made for these items, then how the theorems for all the compiler phases come

together as a single comprehensive correctness theorem.

3.2 Data refinement

Each of the features of CakeML which make it a convenient language to program

in but which do not have a direct implementation in bytecode need to be compiled

away. The sequence of intermediate languages, each of which is aimed at removing

one or more such features, is illustrated in Figure 3.2.

The shape of the correctness theorem for the compiler into each intermediate

language is that of a forwards simulation theorem for the generated code. A

template for the correctness theorem for compilation from intermediate language

k to intermediate language k + 1 is shown below.

EvalExp
k
envk expk resk ∧ Invk envk csk envk+1 ∧

CompileExp
k
csk expk = (csk+1 ,expk+1 )⇒

∃ resk+1 . EvalExpk+1 envk+1 expk+1 resk+1 ∧ ResRelk+1 resk resk+1
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CakeML Concrete Syntax

CakeML Abstract Syntax

ModLang

ConLang

DecLang

ExhLang

PatLang

Intermediate Language

CakeML Bytecode

x86-64 Machine Code

remove concrete syntax

remove modules, add global variables

remove constructor names

remove declarations

remove non-exhaustive pattern-matches

remove pattern-matching

simplify functions, add free-variable analysis

implement closures, tail calls, exceptions, and primitives

remove structured data, add garbage collection

Figure 3.2: Compiler phases
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Both the big-step operational semantics for language k (EvalExp
k
) and the com-

piler for language k (CompileExpk) are defined inductively over the syntax of

language k , so it is natural to perform the proofs of these theorems by rule induc-

tion on the operational semantics. The part requiring ingenuity that is specific

to the features in languages k and k + 1 is the data refinement relation between

values of both languages, which appears in the form of Invk relating semantic

environments and ResRelk+1 relating semantic results.

CakeML is a functional programming language: its values include higher-order

functions. The presence of closures in the source language make data refinement

significantly more involved than for first-order languages, because closure values

include code: data refinement in this setting necessarily involves program refine-

ment too. From the semantic perspective, the best refinement relation would be

something like contextual equivalence generalised to work across different lan-

guages. But establishing contextual equivalence, as would be required to use the

inductive hypotheses in a compiler correctness proof, is notoriously difficult.

Fortunately, for compiler verification, semantics-laden approaches to program

refinement are unnecessary. I instead take the opposite approach of a completely

syntax-based relation for program refinement, typically using the compiler itself

to do the syntax transformation. For data refinement of closures, this means a

closure in language k + 1 refines a closure in language k if its body is simply

the result of compiling the body in language k . This kind of relation is much

less permissive than contextual equivalence, but more convenient for compiler

verification.

Once closures are compiled away, data refinement relations become much sim-

pler. We turn attention next to the last intermediate language that still retains

structured data.

3.3 CakeML bytecode

The purpose of CakeML bytecode1 is to abstract over the details of data rep-

resentation as machine words, and to hide the garbage collector, while being

sufficiently low level for most of its instructions to map directly to small snippets

of x86-64 machine code.

1The original bytecode instruction set was designed by Magnus Myreen, and evolved as the
CakeML compiler was developed.
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bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop | . . .
bc stack op ::= PushInt int | Pop | Pops n

| Load n | Store n
| Cons n | El | TagEq n | IsBlock | LengthBlock
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

Figure 3.3: CakeML bytecode instructions.

In support of data abstraction, bytecode values do not explicitly model point-

ers into the heap but instead provide structured data (Cons packs multiple byte-

code values vs into Block tag vs) on the stack. Similarly, the bytecode provides

mathematical integers (Number i) as values on the stack, abstracting over the

representation as either small integers (that fit in a machine word) or pointers

to heap-allocated big integers. Apart from blocks and integers, the only other

bytecode values are special-purpose pointers into the heap (RefPtr p, for imple-

menting references), into the code heap (CodePtr p, for closures and dynamic

jumps), and into the stack (StackPtr p, for implementing exceptions).

The bytecode semantics is a deterministic state machine, operating over byte-

code machine states, bs , that contain code (bs .code), a program counter (bs .pc),

and a list of bytecode values (bs .stack). The state transition relation, bs1 → bs2,

fetches the instruction in the program counter and updates the state according

to its semantics. A selection2 of bytecode instructions are shown in Figure 3.3,

and a selection of their semantics in Figure 3.4.

Since bs1 → bs2 (and hence bs1 →
∗ bs2) is deterministic, we can define a func-

tion in the logic, EvalBC bs1, that returns the result of repeatedly stepping the

semantics until no further step is possible, which occurs when there is no appli-

cable rule for the next instruction either because the machine was mis-configured

or the next instruction is Stop. If bytecode evaluation of bs1 eventually stops,

then EvalBC bs1 = Some bs2 for the unique final state bs2. If, however, there is

2Not shown, for simplicity, are instructions supporting additional primitive types (characters
and byte arrays) and global variables.
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fetch bs = Stack (Cons t) bs .stack = Number n::vs @ xs length vs = n

bs → (bump bs){stack = Block t (reverse vs)::xs}

fetch bs = Return bs .stack = x ::CodePtr ptr ::xs

bs → bs{stack = x ::xs ; pc = ptr}

fetch bs = CallPtr bs .stack = x ::CodePtr ptr ::xs

bs → bs{stack = x ::CodePtr (bump bs).pc::xs ; pc = ptr}

fetch bs = PushExc bs .stack = xs

bs → (bump bs){stack = StackPtr bs .handler::xs ; handler = length xs}

fetch bs = PopExc bs .handler = length ys bs .stack = x ::xs @ StackPtr h::ys

bs → (bump bs){stack = x ::ys ; handler = h}

Figure 3.4: Examples of semantics of CakeML bytecode instructions. The helper
function fetch bs fetches the next instruction according to the program counter
bs .pc, and bump bs updates the program counter to the next instruction.

no final state and evaluation of bs1 diverges, then EvalBC bs1 = None.

Data refinement from CakeML source-level values to bytecode values must en-

code all CakeML values as bytecode Blocks and Numbers. The overall refinement

relation decomposes into a series of relations that mirror each phase of compi-

lation. The most complicated part of data refinement is for closures; at a high

level, our strategy encodes each closure as Block closure tag (CodePtr ptr ::env),

where the code pointer ptr points to the result of compiling the body of the clo-

sure, which must exist in the bytecode machine state’s code field. For first-order

values, since bytecode blocks are structured and bytecode integers are mathemat-

ical integers, data refinement is not much more complicated than assigning tags

to blocks to distinguish different types of value and following a straightforward

encoding scheme. Data refinement to bytecode is part of the Inv env cs bs invari-

ant seen previously asserting that the semantics, the compiler, and the bytecode

machine state are in correspondence.
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3.4 Divergence preservation

Proof by induction on the big-step operational semantics of the source language

is a natural approach for proving compiler correctness, because it means reason-

ing in the direction of compilation. However, such a proof structure only covers

programs that are included in the big-step operational semantics; in particular,

it does not cover diverging programs. We would like to also prove that the com-

piler maps diverging source expressions to diverging bytecode programs. Since

the bytecode semantics is deterministic, this is sufficient for knowing that the

compiler’s output always relates to the semantics of its input whether that be

divergence or termination.

Since proofs in the direction of compilation by induction on the big-step se-

mantics are more natural, we would like to handle diverging programs in the same

way. In particular, we would like to avoid resorting to an alternative semantics

around which to structure the proof, such as co-inductive big-step semantics [47]

or small-step traces. The solution used in CakeML is the lightweight technique

of adding an optional, logical clock to the big-step semantics which enables it to

talk about non-termination. Clock-preservation can be done in the same proof of

semantics-preservation, and facilitates the proof of divergence-preservation.

The first step for divergence-preservation is clock-preservation. In the big-step

semantics, the clock is decremented by 1 on each function call, and a timeout

exception is raised if a function is called when the clock is 0. In the bytecode, the

Tick instruction decrements the clock, and the semantics gets stuck if the clock

is 0. The compiler emits a Tick instruction for each source function call, and we

prove that if a program times out in the semantics with a certain clock, then the

compiled version times out in the bytecode with the same clock.

With clock-preservation proved, it remains to show the main divergence-

preservation result, which applies when the source semantics ignores the clock

and the Tick instruction is implemented as a no-op (and thus produces no x86-64

instructions). I sketch the proof here with a simplified notation, omitting many of

the arguments from the real semantic relations. We use c ⊢ e ⇓ v for convergence

in the source language with clock c to a value (or non-timeout exception), and

c ⊢ e ⇓ ∅ for a timeout exception. We use a clock of ∞ to indicate the version

that ignores the clock.

Lemma (Big-step clocked totality). For all clocks c and expressions e, either
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c ⊢ e ⇓ ∅ or ∃v. c ⊢ e ⇓ v.

Proof sketch. By well-founded induction on the lexicographic ordering of the

clock and size of the expression. In all but one case, the applicable big-step rules

have inductive premises that have the same or smaller clocks (because the clock is

monotonically non-increasing) and smaller sub-expressions. Thus, by induction

the results for the sub-expressions combine to give a result for the expression. (It

is important here that all mis-applied primitives evaluate to an exceptional re-

sult.) The only case where the expression might be bigger is function application,

but it decrements the clock first.

Lemma (Big-step clock/unclock). c ⊢ e ⇓ v implies ∞ ⊢ e ⇓ v and, ∞ ⊢ e ⇓ v

implies ∃c. c ⊢ e ⇓ v.

Proof sketch. Straightforward induction.

The bytecode’s operational semantics is small-step, so we define an evaluation

relation in the standard way:

c ⊢ bs ⇓bc bs
′ ≡ bs{clock = c} →∗ bs ′ ∧ ∀bs ′′. ¬(bs ′ → bs ′′)

We say the machine has timed out if it evaluates to a state with clock = 0 and

next instruction Tick. A bytecode machine state diverges if it can always take

another step.

Lemma (Bytecode clock/unclock). c ⊢ bs ⇓bc bs ′ implies bs{clock = ∞} →∗

bs ′{clock =∞}, and ∞ ⊢ bs ⇓bc bs
′ implies ∃c. c ⊢ bs ⇓bc bs

′{clock = 0}.

Proof sketch. Straightforward induction.

Lemma (Clocked bytecode determinism). c ⊢ bs ⇓bc bs ′ and c ⊢ bs ⇓bc bs ′′

implies bs ′ = bs ′′.

Proof sketch. The small-step relation is deterministic by inspection of the rules;

the main result follows by induction on →∗.

Theorem 1 (Divergence preservation (sketch)). Evaluation of e diverges in the

un-clocked semantics iff the compilation of e (loaded into a bytecode state bs)

diverges in the un-clocked bytecode semantics.
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Proof. For the “only if” part, we have c ⊢ e ⇓ ∅, for all clocks c, by the source

language’s determinism, and the totality and clock/unclock lemmas. Therefore

by the compiler correctness result, we know for all clocks c there is a bs ′ such

that c ⊢ bs ⇓bc bs
′ and bs ′ is timed out. Now we must show that bs{clock =∞}

diverges. Suppose, for a contradiction, there is some bs ′′ with ∞ ⊢ bs ⇓bc bs ′′.

Let c be one more than the number of Tick instructions on the trace from bs

to bs ′′, which is unique by determinism. This contradicts the existence of a bs ′

above: if evaluation stops before reaching bs ′′, it will not have passed enough

Ticks to deplete the clock, and if it reaches bs ′′ it stops without timing out.

The “if” part is easier, and follows directly from the clock-preservation part

of compiler correctness. We prove the contrapositive: we assume evaluation of

e converges and must show that bytecode evaluation of bs also converges. By

compiler correctness there is a bs ′ such that c ⊢ bs ⇓bc bs
′ and bs ′ has terminated

successfully. The bytecode unclock lemma says we can unclock this evaluation

to obtain bs{clock = ∞} →∗ bs ′{clock = ∞}. Since bs ′ terminated success-

fully, this is the same as ∞ ⊢ bs ⇓bc bs
′{clock = ∞}, which means un-clocked

evaluation of bs converges as required.

3.5 Connecting the pieces

By composing the correctness theorems for the compiler of each intermediate

language, and similarly composing the data refinement relations, we obtain a

top-level correctness theorem for the whole compiler that executes each of compi-

lation phases in sequence. To avoid going into too many details of the semantics

of CakeML, I split this result across two theorems below, one for terminating

programs and one for diverging programs.3 The operational semantics in these

theorems is represented by EvalDecTerminate and EvalDecDiverge; these extend

the EvalDec semantics from Lemma 1 by taking into account stateful computa-

tions (the store is represented by s1 and s2) and failing computations (res includes

a Boolean success indicating success and the printed output msg can include an

error message).

The first theorem, for terminating programs, states that if the semantics of a

declaration dec is to terminate with a result res = (success,env2,s2,msg), which

3 These theorems are combined again in the proof of correctness for the REPL, Theorem 4
in the next chapter.
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includes the message to print and the new environment and store, and the invari-

ant between semantics, compiler, and bytecode machine holds, then the code bc

generated by the compiler will run to completion and print msg , and the invari-

ant will continue to hold for the resulting bytecdode machine state. The compiler

produces two compiler states, cs2s and cs2f , because a different compiler state

will satisfy the invariant depending on whether the computation succeeded or

not, since bindings introduced by a failed declaration are not kept.

Theorem 2 (Compiler correctness for terminating programs).

⊢ EvalDecTerminate env1 s1 dec res ∧ InvFull env1 s1 cs1 bs1 ∧

CompileDecFull cs1 dec = (cs2s,cs2f ,bc)⇒

case res of

(success,env2,s2,msg) ⇒

∃ bs2.

(AddCode bs1 bc)→
∗ bs2 ∧

bc fetch bs2 = Some (Stop success) ∧

bs2.output = msg ∧

InvFull env2 s2 (if success then cs2s else cs2f ) bs2

The second theorem, for diverging programs, is stated using a clocked byte-

code machine; the reasoning used to remove the clock for Theorem 1 is deferred

until we verify the REPL. The theorem below states that if the semantics of a

declaration dec is to diverge, and the invariant holds, then execution of the code

produced by the compiler exhausts the bytecode machine’s clock, and no output

has been produced when the machine times out.

Theorem 3 (Compiler correctness for diverging programs).

⊢ EvalDecDiverge env1 s1 dec ∧ InvFull env1 s1 cs1 bs1 ∧

CompileDecFull cs1 dec = (cs2s,cs2f ,bc)⇒

∃ bs2.

(AddCode bs1 bc)→
∗ bs2 ∧ bc fetch bs2 = Some Tick ∧

bs2.clock = Some 0 ∧ bs2.output = ""

Together, these correctness theorems for the compiler show us that the com-

pilation of a declaration behaves the same way, according to bytecode semantics,
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as the declaration itself according to CakeML’s source semantics. As a result, we

can execute this bytecode wherever we would otherwise appeal to the CakeML

semantics; in particular, this will be our strategy for implementing the REPL.

The theorems above cover compilation of abstract syntax only, but there are sim-

ilar correctness theorems relating the result of parsing to CakeML’s context-free

grammar and the result of type inference to CakeML’s type system.
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Chapter 4

Bootstrapping the verified

compiler

In this chapter, I describe proof-grounded bootstrapping, in particular how to boot-

strap the verified compilation algorithm from the previous chapter by applying

the techniques from Chapter 2. I also introduce the idea of a packaged compiler,

and show how the bootstrapped compiler can be packaged into a verified run-

time to produce a verified machine-code implementation of a read-eval-print loop

(REPL) for CakeML.

In a nutshell, the idea of proof-grounded bootstrapping is to (automatically)

derive a bootstrapping theorem, which states the result of applying the verified

compilation algorithm to itself. This bootstrapping theorem includes a low-level

implementation of the compiler—the output of running the compiler—in its theo-

rem statement. Composing the bootstrapping theorem with the theorem asserting

the algorithm is verified, we conclude that the low-level implementation of the

compiler is also verified. Thus the TCB no longer needs to include unverified tools

to compile the verified compiler: we can use the verified low-level implementation

directly.

To apply proof-grounded bootstrapping, one needs a compiler that satisfies

three requirements:

• the compilation algorithm is verified;

• as with ordinary compiler bootstrapping, the compiler is written in its own

source language, or, more generally, something that can be translated to its

source language; and,
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• the compilation algorithm can be evaluated by rewriting in the logic used for

its verification, which simply means that its definition can be characterised

using rewrite rules.

Our focus in this chapter is on how to achieve proof-grounded bootstrapping once

these requirements are satisfied, as is the case for CakeML.

4.1 Compilation as a verified algorithm

In Chapter 2 we saw two techniques, evaluation in the logic and translation to

a deep embedding, which can be applied to verified algorithms. In Chapter 3

we saw a verified compilation algorithm for CakeML, in particular, CompileDec.

Now, in this section, let us try some examples of applying our verified algorithm

techniques to the compiler. Doing so will lead us naturally to bootstrapping.

Firstly, we can evaluate applications of the compiler to CakeML programs

in the logic, for example to map dec. Applying evaluation to the input term

CompileDec InitCS map dec, we obtain the following theorem, where MapCS

stands for the concrete compiler state that results.

Example 2 (Evaluating the compilation of map).

⊢ CompileDec InitCS map dec =

(MapCS,

[Jump (Lab 12); Label 10; Stack (PushInt 0); Stack (PushInt 1); Ref;

PushPtr (Lab 11); Stack (Load 0); Stack (Load 5); Stack (PushInt 1);

Stack (Cons 0); Stack (... ... ); ... ... ; ... ; ... ])

Thus we can see that evaluation results in a theorem that produces a concrete

list of bytecode for map dec, to which the conclusion of the correctness theorem

for CompileDec (Lemma 1) applies.

In addition to evaluating the compiler as a function in the logic, we can also

use translation to produce an implementation of the compiler as a deep embed-

ding. In other words, just as we produced map dec plus its certificate theorem

from the map algorithm, we can produce syntax and a certificate theorem from the

compilation algorithm (the shallow embedding CompileDec). Since compilation

is a rather more involved algorithm than map, it is split into 247 declarations of
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auxiliary functions and datatypes. We use translation to produce a CakeML mod-

ule (called "C" below) containing all these declarations (called CompileDec decs

below). Just as for map, the certificate theorem for CompileDec shows that the

generated CakeML code runs successfully in the initial environment to produce

an environment, abbreviated as CompEnv, containing a closure that implements

CompileDec.

Lemma 2 (Certificate theorem for CompileDec).

⊢ ∃ c.

EvalDec InitEnv (Struct "C" CompileDec decs) CompEnv ∧

LookupMod "C" "compiledec" CompEnv = Some c ∧

(CompStateTy −→ DecTy −→ PairTy CompStateTy (ListTy BCInstTy))

CompileDec c

The result of translating CompileDec includes CakeML syntax for the compiler,

namely CompileDec decs. A natural question is what happens if we use evaluation

of CompileDec on the syntax for CompileDec produced by translation. What can

we conclude about the resulting bytecode? This question is the idea behind

proof-grounded bootstrapping, to which we now turn.

4.2 Proof-grounded bootstrapping

The aim of bootstrapping is to obtain a verified low-level implementation of a

compiler directly from the verified compilation algorithm, and to thereby re-

move the need to trust the process by which the verified compilation algorithm

gets compiled. Let us see how we obtain this verified low-level implementa-

tion automatically through a combination of the proof-producing-translation and

evaluation-by-rewriting proof automation techniques.

Via translation we have obtained CakeML syntax for the compiler, namely,

CompileDec decs. Now, we use evaluation to calculate the application of the

compiler to its syntax. This is analogous to Example 2 but instead of using

map dec as input, we use the module declaring the compiler. The result of this

evaluation is what I call the bootstrapping theorem.
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Lemma 3 (Bootstrapping theorem for CompileDec).

⊢ CompileDec InitCS (Struct "C" CompileDec decs) =

(CompCS,CompileDec bytecode)

The bootstrapping theorem contains a concrete list of bytecode instructions

that is the code generated by the compiler for the CompileDec decs module, which

I have abbreviated as CompileDec bytecode.

Three theorems come together to create proof-grounded bootstrapping. Each

corresponds to a different level of concreteness for the compiler, namely, the

algorithm, the high-level implementation in CakeML, and the low-level imple-

mentation in bytecode. They can be described as follows:

• Correctness theorem: the output of the compiler implements the input,

for all inputs. This theorem is about the compilation algorithm (shallow

embedding), and corresponds to Lemma 1.

• Certificate theorem: the syntax for the compiler (CompileDec decs) imple-

ments the compiler. This theorem is about the high-level implementation

of the compiler produced by translation, and corresponds to Lemma 2.

• Bootstrapping theorem: the output of the compiler when given its syntax

as input is low-level code for the compiler (CompileDec bytecode). This

theorem contains the low-level implementation of the compiler produced by

evaluation, and corresponds to Lemma 3.

Instantiating the correctness theorem with the bootstrapping theorem, then com-

posing it with the certificate theorem, we obtain the desired result that the low-

level code for the compiler implements the compiler. That is the method behind

proof-grounded bootstrapping.

The essence of proof-grounded bootstrapping is a consideration for the three

levels of concreteness: algorithm (CompileDec), syntax (CompileDec decs), and

low-level code (CompileDec bytecode). It is bootstrapping because the syntax

happens to be syntax for the compiler. The approach can be generalised by using

any other certified syntax instead. I call the general approach proof-grounded

compilation. The generalisation of the bootstrapping theorem is a compilation

theorem since it captures the result of a particular compilation. For the CakeML
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REPL (Section 4.3), we apply proof-grounded compilation to a certificate theorem

covering not just CompileDec decs but also syntax for a verified parser and type

inferencer.

In the sketch above, I used the word “implements” loosely. Let us look now

at precisely what we obtain by following the bootstrapping method, and what

assumptions remain undischarged. The compiler correctness theorem, repeated

below, has three antecedents: the invariant, evaluation of the semantics, and an

application of the compiler.

Lemma 1 (Correctness of CompileDec for successful declarations).

⊢ Inv env1 cs1 bs1 ∧ EvalDec env1 dec env2 ∧ CompileDec cs1 dec = (cs2,bc)⇒

∃ bs2. (AddCode bs1 bc)→
∗ bs2 ∧ Halted bs2 ∧ Inv env2 cs2 bs2

Following the bootstrapping method, we instantiate Lemma 1 so that the applica-

tion of the compiler matches the bootstrapping theorem (Lemma 3). Evaluation

of the semantics come from the certificate theorem (Lemma 2). To establish the

initial invariant we can easily construct a bytecode machine state, InitBS, that

only contains the primitives and satisfies the invariant:

Lemma 4 (Initial invariant).

⊢ Inv InitEnv InitCS InitBS

After instantiating the correctness theorem and proving its hypotheses as just

described, we are left with a conclusion that states that CompileDec bytecode runs

to completion and the resulting bytecode state satisfies the invariant at CompEnv,

the environment containing the compiler:

Lemma 5 (Result of bootstrapping).

⊢ ∃ bs2.

(AddCode InitBS CompileDec bytecode)→∗ bs2 ∧ Halted bs2 ∧

Inv CompEnv CompCS bs2

In other words, according to the semantics of bytecode execution, we can

produce a bytecode machine state, bs2 above, that implements CompEnv. The

certificate theorem (Lemma 2) tells us that CompEnv contains a closure (bound by
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the variable "compiledec" in the "C" structure) that implements the CompileDec

function according to the refinement invariants of translation. Thus, the bytecode

machine state asserted to exist above (bs2) contains a low-level implementation

of the compiler, CompileDec, as promised.

The usefulness of Lemma 5 depends on the strength of the refinement invariant

of translation (CompStateTy −→ DecTy −→ ... ...) connecting the implementa-

tion in CakeML to the shallow embedding, and the invariant (Inv) connecting the

implementation in bytecode to the implementation in CakeML. What Lemma 5

provides is a closure implementing the compiler according to the refinement in-

variants. In fact, the invariants are strong enough for any use of the closure that

depends only on its functional (i.e., input/output) behaviour, and in particular

enable verification of a REPL that contains this closure and uses it for compila-

tion. In the next section, I introduce the idea of packaging a verified compiler

and then proceed to describe the implementation and verification of the CakeML

REPL.

4.3 Packaging a bootstrapped compiler as a REPL

A compiler can be used as a standalone application, which does no more than take

high-level code as input and produce low-level code as output. I call this kind

of application a standalone compiler. If the compiler is verified, there will be a

correctness theorem about running the low-level code under particular conditions.

The correctness theorem is vacuous unless its assumptions are met. For example,

Lemma 1 states that the low-level code bc output by CompileDec preserves the Inv

invariant, which assumes the invariant holds in the first place. Lemma 4 states

that InitBS satisfies the invariant, so it is sufficient to load the output of the

compiler into InitBS before it is run. For a standalone compiler, it is up to the

user to run the output of the compiler in such a way that satisfies the conditions

of the correctness theorem if they want to leverage the verification.

With a view to reducing the trusted computing base (TCB), there is an exten-

sion to a standalone compiler that I call a packaged compiler, where the compiler

is included within a larger verified program that always runs the compiler’s out-

put in a way that satisfies the assumptions of the compiler’s correctness theorem.

A packaged compiler does more than compilation: it compiles, loads, and runs
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code. And because it is self-contained, a verified package has a simpler correct-

ness theorem than a verified standalone compiler. It allows us to focus our trust

in the operating system and hardware on a single point: correct execution of the

machine-code implementation of the whole package.

One way to package a compiler is as a one-shot package, which always uses

the initial compiler state (for CompileDec that is InitCS) and loads the result

of compilation into a fresh initial machine state (for bytecode that is InitBS) for

execution. For a one-shot package, the wrapper (i.e., non-compiler) code reads the

input (high-level program), feeds it to the compiler, loads the output (low-level

program) into an appropriate runtime environment, then jumps to the loaded

program. A one-shot package is not interactive: the entire program and its input

is prepared before compilation, and any further interaction is via input/output

(I/O) primitives called from within the program.

By putting the wrapper into a loop, however, we obtain a read-eval-print

loop (REPL), which is inherently interactive. A REPL intersperses execution of

the compiler with execution of its output and retains state between calls to the

compiler, thus later input code can depend on the results of previously input

code. Since CakeML does not presently have I/O primitives, a REPL is essential

for interaction; it is also a more interesting example of a packaged compiler since

the compiler can be called multiple times.

To verify a machine-code implementation of a packaged compiler, it is neces-

sary to have a machine-code implementation of the compiler itself whose correct-

ness theorem is strong enough to support execution of the compiler at (package)

runtime. A verified compilation algorithm on its own is not enough to produce a

verified REPL in machine code. It is the push from verified algorithms down to a

verified implementation that enables production of such machine-code programs

that contain the verified compiler.

My goal now is to explain how, using proof-grounded bootstrapping, I have

produced machine code that is verified to implement a REPL for CakeML. Each

piece of verified machine code comprising the REPL is obtained by one of two

methods. The first method is bootstrapping, which provides code for most of the

compiler. The second method is decompilation into logic (henceforth “decompila-

tion”, as in Myreen et. al. [58, 63, 64]), which is used for the rest of the compiler

and the wrapper code.

Decompilation is a tool-assisted but manual procedure for verifying programs
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REPL semantics (ReplSem)

REPL function in logic (ReplFun)

REPL in x86-64

implements

implements

interactive proof

bootstrapping and decompilation

Figure 4.1: Overview of verified REPL construction.

written either directly in assembly code or as functions in the logic in a partic-

ular tail-recursive style. Because of the effort required—compared to the fully

automated bootstrapping method—we use it only for those parts of the REPL

that must be implemented at a low level, such as the garbage collector and the

(simple) compiler from CakeML bytecode to x86-64 machine code.

The REPL and its verification comprise three layers as shown in Figure 4.1. At

the top of the figure is the semantics of the REPL (ReplSem), which builds on the

semantics for CakeML programs (EvalDec), and was described in Section 2.3.1.

In the middle of the figure is a description of the REPL as a function in the logic

(ReplFun), which replaces the CakeML operational semantics with the semantics

for CakeML bytecode by packaging a verified compiler, called ParseInferCompile

(Section 4.4), from concrete syntax to bytecode. This middle layer is almost

an algorithm for the REPL, but deals with divergence non-algorithmically in

terms of traces in the bytecode semantics. At the bottom of the figure is the

implementation of the REPL package in machine code, which is produced and

verified by a combination of the bootstrapping and decompilation techniques.

The REPL function in the logic acts as an intermediary between the semantics

of the REPL and the machine code that is ultimately produced. It is treated like

an implementation of the REPL semantics, but acts as a specification for the

machine-code implementation. The specification is of the entire REPL package,

that is, both the compiler and the wrapper. The compiler, ParseInferCompile,

used inside ReplFun extends the CompileDec compiler we have already seen with

the addition of a verified parser from concrete syntax and verified type checking.

We describe the definition and verification of ReplFun in Section 4.4.

To produce the final machine-code implementation, most of ReplFun is boot-

strapped and the remaining code is produced more manually using decompilation
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into logic. In connecting the bootstrapped and non-bootstrapped code, we face

the issue of using the bootstrapped function—in particular, giving input and re-

trieving output—touched on at the end of the previous section. We need to be

able to call the closure asserted to exist after bootstrapping, and know that it

will behave correctly. For this purpose, I bootstrap not just the definition of the

compiler but also a declaration of a call to the compiler. I explain this small

extension to the bootstrapping idea in Section 4.5.

The non-bootstrapped code comes in two categories: firstly, there is the lexer

and the loop that calls the compiler on the result of lexing and jumps to its

output; secondly, there is the runtime that implements a CakeML bytecode ma-

chine, which includes additional (previously verified) machine-code libraries for

garbage collection [59] and arbitrary-precision integer arithmetic [60]. The main

subtlety in producing a packaged compiler by bootstrapping in this way is that

there are logically two distinct bytecode machine states to consider: one for run-

ning bootstrapped code, and another simulating the bytecode machine that is

explicitly mentioned in ReplFun and runs user code. I describe the construction

and verification of this final layer in Section 4.6.

4.4 REPL implementation specified as a func-

tion in logic

When we looked at the example of bootstrapping CompileDec, we evaluated

CompileDec on syntax implementing CompileDec itself. When bootstrapping for

the REPL we will still evaluate CompileDec but on syntax implementing a larger

function. I combine parsing, type inference, and compilation to bytecode together

as:

ParseInferCompile tokens s

which is called on a list of tokens, tokens, produced by the lexer and the state, s , of

the REPL implementation1. This function returns either Failure (msg ,sf ) if there

is a parse- or type-error, or Success (code,ss ,sf ) with bytecode code that executes

the declaration represented by tokens and new REPL states to be installed if

1The state includes the compiler’s and type inferencer’s memory of previous declarations,
whose results may be referred to in later declarations.
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running code terminates normally (ss) or raises an exception (sf )2. In addition

to the parser and type inferencer, there is also an initial program—the CakeML

Basis Library—to be loaded in the REPL when it starts. The combined function

representing almost3 all the code to be bootstrapped is ReplStep, and is defined

at the top of Figure 4.2. Bootstrapping affords us the ability to produce low-level

implementations of the parser and type inferencer automatically after verifying

their shallow embeddings: we simply include them (via ParseInferCompile) in this

function to be bootstrapped.

The remainder of the REPL (the lexer, the main loop, and the runtime that

executes the compiler-generated code) is not generated by bootstrapping, so re-

quires a more manual treatment. However, we specify the entire REPL imple-

mentation, including the non-bootstrapped parts, as a function in the logic. That

function is ReplFun, and its definition is shown in Figure 4.2. The majority of

the code in the REPL implementation is hidden inside the ParseInferCompile al-

gorithm inside ReplStep, but since this part is produced by bootstrapping we

only need to know that the algorithm is correct and not how it is implemented.

By comparison, the details of the implementation of MainLoop are important for

constructing the final machine-code implementation, but there are only a handful

of them.

The correctness theorem for ReplFun states that it produces exactly the same

repl result, output , for a given input as is specified by the semantics ReplSem

(modulo an additional empty result at the front corresponding to the basis li-

brary).

Theorem 4 (Correctness of ReplFun).

⊢ ∀ input .

∃ output . ReplFun input = Result "" output ∧ ReplSem Basis input output

Theorem 4 is proved by complete induction on the length of the input string

(which corresponds to the number of declarations made by the user), and follows

the model of invariant preservation. The invariant used for the REPL extends the

Inv invariant from Section 4.1 with information about type inference. It connects

2Different states are required since not all bindings might persist if an exception is raised,
and exceptions are not statically predictable.

3All that is missing is an extra interface function used to make a call to ReplStep, described
in Section 4.5.
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ReplStep None = Success BasisCodeAndStates

ReplStep (Some (tokens ,s)) = ParseInferCompile tokens s

MainLoop prev bs input =
case ReplStep prev of

Success (code,ss,sf ) ⇒
(let bs1 = AddCode bs code
in

case EvalBC bs1 of
None ⇒ Diverge

| Some bs2 ⇒
Result bs2.output
(case LexUntilSemicolon input of
None ⇒ Terminate

| Some (tokens ,input2) ⇒
(let s2 = TestException bs2 (ss ,sf )
in

MainLoop (Some (tokens ,s2)) bs2 input2)))
| Failure (msg ,sf ) ⇒

Result msg
(case LexUntilSemicolon input of
None ⇒ Terminate

| Some (tokens ,input2) ⇒ MainLoop (Some (tokens ,sf )) bs input2)

ReplFun input = MainLoop None EmptyBS input

Figure 4.2: REPL implementation specified as a function in the logic, ReplFun,
which is partitioned into a part to be bootstrapped (ReplStep) that includes the
parser, type inferencer, compiler, and initial program, and a part to be verified
using decompilation (the rest of MainLoop).
The particular functions that need the manual decompilation treatment can be
seen in the definition of MainLoop, they are: AddCode to install new code in
the code heap, EvalBC that simulates bytecode execution, LexUntilSemicolon that
reads and lexes new input, and TestException that checks whether bytecode sim-
ulation ended with success or failure and returns the corresponding new REPL
state.
The main loop takes the last read declaration (tokens) and current state (s) as
an argument, prev , so that the first thing it does is call the ReplStep function:
this way of structuring the loop makes it easier to include the bootstrapped code
in the final machine-code implementation.
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the semantics, the compiler, and the bytecode, ensuring that: the state of the

type system in the semantics is consistent with itself and with the state of the

inferencer, and the state of the operational semantics is consistent with the state

of both the compiler and the values in the bytecode machine. In each iteration of

MainLoop, we combine the correctness theorems for the parser, type inferencer,

and compiler to conclude that either the correct error message is produced or

the generated bytecode, when evaluated, correctly diverges or correctly stops in

a bytecode machine state that again satisfies the invariant.

ReplFun implements ReplSem, so we have reduced our task to implementing

ReplFun in machine code. The function divides neatly into two parts, the part

called ReplStep, and the part calledMainLoop that does case-analysis on the result

of ReplStep. To produce machine code for ReplStep, we put it through the proof-

grounded bootstrapping process described in Section 4.2. In the next section, we

look at bootstrapping ReplStep more carefully and address the question of using

the bootstrapped compiler at runtime, that is, providing it input and retrieving

its output. Then, in Section 4.6 we turn to verifying machine code for the rest of

ReplFun and putting the two together.

4.5 Bootstrapping a function call

To bootstrap ReplStep, we follow the strategy described in Section 4.2, where we

bootstrapped CompileDec by evaluating compilation of CompileDec decs. Which

declarations should we use in place of CompileDec decs? To answer this, consider

how we will use the result of bootstrapping which, analogous to Lemma 5, pro-

duces a bytecode machine state containing the declared values. Since our main

loop makes a call to ReplStep, we want those values to include ReplStep, but we

also want to be able to call ReplStep on input and obtain its output. To make

the interface between the bootstrapped and non-bootstrapped code as simple as

possible, we define one extra function, CallReplStep, that calls ReplStep and does

I/O via CakeML references. Thus, the declarations we want to bootstrap, called

REPL decs, are:
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...; fun replstep x = ...;

val input = ref NONE;

val output = ref NONE;

fun callreplstep _ = output := (replstep (!input));

The first line represents 428 declarations (for the parser, type inferencer, compiler,

and all dependencies) generated automatically by proof-producing translation of

ReplStep, and the last three declarations are added by hand.

The important feature of CallReplStep is that its type in CakeML is unit →

unit, which means it can be called multiple times uniformly. The certificate

theorem for CallReplStep will be used in the same way each time around the

loop of the REPL. We use references for I/O so we do not have to reason about

an endless sequence of calls to CallReplStep, but instead prove a single theorem

(Theorem 5 below) that is strong enough to apply to each call.

To call ReplStep, the non-bootstrapped machine code need only do three

things: update the "input" reference, run the following declaration, called call dec:

val () = REPL.callreplstep ();

and read the "output" reference. We now have two declarations serving different

roles. The first is REPL decs, which is used to declare CallReplStep and all its

dependencies (including the compiler). The second is call dec which does not

declare anything (it returns unit), but has the side-effect of calling CallReplStep

and updating the I/O references. We apply bootstrapping to both declarations,

because we need verified low-level implementations of both. The first step is to

produce certificate theorems.

Most of the syntax for REPL decs is generated by proof-producing translation

of ReplStep, which generates certificate theorems automatically. We use them to

prove some extended certificate theorems that mention the I/O-related declara-

tions we added. Our extended certificate theorems, shown below, say that the

semantics of REPL decs is to produce an environment, called ReplEnv, and when-

ever the call dec declaration is made in ReplEnv, it has the sole effect of updating

the "output" reference with the result of applying ReplStep to the contents of

the "input" reference.

61



Theorem 5 (Certificate theorems for REPL decs and call dec).

⊢ EvalDec InitEnv (Struct "REPL" REPL decs) ReplEnv

⊢ ∀ x inp out1.

InpTy x inp ⇒

∃ out2.

OutTy (ReplStep x ) out2 ∧

EvalDec (UpdRefs inp out1 ReplEnv) call dec (UpdRefs inp out2 ReplEnv)

As usual, there are refinement invariants (in this case InpTy and OutTy) medi-

ating the connection between HOL values (x and ReplStep x ) and CakeML values

(inp and out2). The helper function above, UpdRefs inp out ReplEnv, denotes an

instance of ReplEnv where nothing has changed except for the contents of the two

references which are now inp and out .

Now for the bootstrapping theorems. We use the same compiler as before

(CompileDec), and apply evaluation in the logic to our two declarations to obtain

bytecode (REPL bytecode and Call bytecode) that implements them. The compiler

needs to know how to compile the variable lookup for "REPL.callreplstep"

when compiling call dec, so we use the compiler state (ReplCS) that resulted from

compiling the REPL declarations when compiling call dec.

Theorem 6 (Bootstrapping theorems for the REPL).

⊢ CompileDec InitCS (Struct "REPL" REPL decs) = (ReplCS,REPL bytecode)

⊢ CompileDec ReplCS call dec = (CallCS,Call bytecode)

Let us review the three theorems used for bootstrapping, and what results

from following the method.

• Correctness theorem: since we are still using CompileDec as our compilation

algorithm, we continue to use its correctness theorem, Lemma 1.

• Certificate theorem: Theorem 5 states that the semantics of call dec is to

make a call to ReplStep via I/O references.

• Bootstrapping theorem: Theorem 6 contains the bootstrapped bytecode,

REPL bytecode and Call bytecode, that comes from evaluating the compiler.
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Instantiate the correctness theorem with the bootstrapping theorem, then

apply the certificate theorem. For REPL decs, we get a result stating that we can

produce a bytecode machine state, ReplBS, implementing ReplEnv.

Theorem 7 (Result of bootstrapping REPL decs).

⊢ (AddCode InitBS REPL bytecode)→∗ ReplBS ∧ Halted ReplBS ∧

Inv ReplEnv ReplCS ReplBS

The first thing the non-bootstrapped machine code for the REPL does is

load REPL bytecode into InitBS and run it. By Theorem 7, this produces the

ReplBS bytecode machine state, which will be used for all subsequent calls to

ReplStep. The invariant governing these calls to ReplStep is a specialised version

of the Inv invariant, which fixes everything except the I/O references, so that

it can be re-established after each call. Specifically, the specialised invariant is

InvIO inp out bs . This invariant means that bs is AddCode ReplBS Call bytecode

modulo I/O references, and Inv (UpdRefs inp out ReplEnv) ReplCS holds for bs

before Call bytecode is added.

If we write the result of bootstrapping the call using this InvIO invariant, it

is clear that if the non-bootstrapped code sets the input reference correctly, it

can run Call bytecode after which the output reference will be set to the result of

calling ReplStep. The function ResetPC bs sets the program counter back to the

beginning of Call bytecode, in preparation for the next iteration of the REPL.4

Theorem 8 (Result of bootstrapping call dec).

⊢ InvIO inp out1 bs1 ∧ InpTy x inp ⇒

∃ out2 bs2.

OutTy (ReplStep x ) out2 ∧ bs1 →
∗ bs2 ∧ Halted bs2 ∧

InvIO inp out2 (ResetPC bs2)

Theorem 8 lets the non-bootstrapped part of the REPL implementation call

the bootstrapped compiler. This result is simply the bytecode-level version of

Theorem 5 (the certificate theorem describing this process at the level of the

operational semantics). Together, Theorems 7 and 8 represent the results of

4The conclusion of Theorem 8 is not used immediately again as its hypothesis. First the inp
parameter is changed by the non-bootstrapped code.
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read and lex

run call dec

jump to generated
code

write output

run compiler on
ReplBS

make declaration
on user bytecode
machine

compilation

execution

simulates

simulates

Figure 4.3: The two bytecode machines simulated by the final REPL implemen-
tation. The left half of the figure is specified by MainLoop (Figure 4.2). The call
to EvalBC within MainLoop happens via simulation of the main bytecode machine
(for user code). The call to ReplStep within MainLoop happens via simulation of
another bytecode machine, which stays in ReplBS (modulo references), and runs
the bootstrapped compiler.

bootstrapping for the REPL. We turn now to the non-bootstrapped parts of the

REPL, and putting the whole package together.

4.6 Producing verified machine code

The machine-code implementation of the REPL for CakeML does the following

steps in a loop: read and lex the next declaration (LexUntilSemicolon), compile

the declaration to bytecode (ReplStep), evaluate the compiled bytecode (EvalBC)

by first compiling to x86-64 then jumping to the new code, print the result and

continue. These steps can be seen in the specification of the REPL main loop in

Figure 4.2. The most involved part of each iteration is compilation to bytecode,

but we have verified bootstrapped code for ReplStep to do that part. The next

most complicated part is compilation and evaluation of bytecode (EvalBC).

Because it includes bootstrapped code, the final REPL implementation de-

pends on the two separate sessions of the REPL semantics, and simulates two

bytecode machines. The first session, for the compiler, is the one that is initialised

with REPL decs and thereafter stays in ReplBS (with input/output references up-

dated each iteration). The second session, for the user, is the one that runs the
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user’s input on the bytecode machine state bs passed around in the definition of

MainLoop. Figure 4.3 illustrates how these fit together.

To simulate each bytecode machine, we write a simple compiler from bytecode

instructions (Section 3.3) to snippets of x86-64 machine code. For the semantics

of x86-64 machine code, we use the model developed by Sarkar et. al. [73] and

updated for the verified Lisp runtime, Jitawa [61]. We verify the compiler using

the technique of decompilation into logic [64]. The most difficult part of this

verification is devising the invariant that holds between a bytecode machine state

and an x86-64 machine state, which also includes data refinement from bytecode

values to immediate values or pointers into the x86-64 heap. I do not delve

into the details of this invariant here, since they are not especially relevant to

packaging bootstrapped code.

There are a handful of bytecode instructions (e.g., structural equality) and

helpers (e.g., lexing) that are implemented by machine-code routines that are

larger than the snippets used for most instructions. Also, instructions which do

allocation or arithmetic make use of separately verified machine-code routines

for garbage collection [59] and arbitrary-precision integer arithmetic [60]. In each

case, the larger routine is verified using decompilation and plugged into the overall

correctness proof. Producing the non-bootstrapped parts of MainLoop, including

the runtime for simulating bytecode execution, is an example of machine-code

verification as used in previous work [61] verifying the Jitawa runtime for Lisp.

To use the bootstrapped code, it is sufficient to establish the InvIO invariant,

since we can then apply Theorem 8. We prove that the InvIO invariant holds after

REPL bytecode runs when the REPL starts, and then continues to hold when the

input reference is updated with the result of lexing. Theorem 8 lets us preserve

the invariant across calls to the compiler, and therefore throughout execution of

the main loop.

Our interface to the x86-64 machine semantics is via predicates that apply to

sequences of steps (traces) made by the x86-64 state machine. The kinds of pred-

icates we use are inspired by temporal logic. The assertion TemporalX64 code A

states that if code is loaded in memory then the temporal predicate A is satisfied

by all runs of the machine. Satisfaction of a temporal predicate by a run, s , is

defined as follows:

• Now P is satisfied by s if P (s 0).
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• Holds p is satisfied by s if p is true. (p does not depend on the machine

state).

• ♦ A is satisfied by s if A is satisfied by λ n. s (n + k) for some k .

• � A is satisfied by s if A is satisfied by λ n. s (n + k) for all k .

• A ∧ B is satisfied by s if A is satisfied by s and B is satisfied by s . Similarly

for A ∨ B , A⇒ B , and ∃ x . A x .

The final correctness theorem we obtain is about a single machine-code pro-

gram (a list of bytes), which I abbreviate as ReplX64, and is phrased as a temporal

assertion about running that program. It states that: if at some time the machine

state is appropriately initialised, then either it will eventually run out of memory,

or it will eventually diverge or terminate with output according to the CakeML

REPL semantics.

Theorem 9 (Correctness of REPL implementation in x86-64).

⊢ TemporalX64 ReplX64

(Now (InitialisedX64 ms)⇒

♦ Now (OutOfMemX64 ms) ∨

∃ output .

Holds (ReplSem Basis ms .input output) ∧

if Diverges output then � ♦ Now (RunningX64 output ms)

else ♦ Now (TerminatedX64 output ms))

The helper function Diverges repl_result tests whether repl_result ends in ter-

mination or divergence (the repl result type is described in Section 2.3.1). There

are four predicates on machine states ms that encode our invariants and conven-

tions concerning the x86-64 machine as it simulates a bytecode machine.

• InitialisedX64 ms states that the machine is initialised. The heap invariant

is satisfied, there is a return pointer on the stack, and the machine’s output

stream is empty.

• OutOfMemX64 ms states that the machine has aborted execution and is

out of memory.
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• RunningX64 output ms states that the heap invariant is satisfied and the

output stream is equal to the concatenation of results in output .

• TerminatedX64 output ms states that the machine is about to jump to the

return pointer and the output stream is equal to the concatenation of results

in output .

Theorem 9 thus connects execution of an x86-64 machine loaded with the verified

code produced by bootstrapping and decompilation back to the CakeML REPL

semantics, completing the picture shown in Figure 4.1.
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Part II

Self-verification
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Chapter 5

Formal semantics of HOL

In this part, we shift attention away from CakeML and delve instead into the

syntax and semantics of the logical system we have been using to conduct our

proofs. We look at the semantics of HOL and a formalisation of that semantics

in HOL itself (this chapter), including a proof of its soundness (next chapter). In

Chapter 7 we return to CakeML, producing a verified implementation in CakeML

of a proof checker for HOL.

5.1 Approach

The steps I have taken to formalise HOL within itself and produce a verified

implementation of a theorem prover are as follows:

1. Specify the set-theoretic notions needed. (§5.2)

2. Define the syntax of HOL types, terms, and sequents. (§5.3)

3. Define semantic functions assigning appropriate sets to HOL types and

terms, and use these to specify validity of a sequent. (§5.4)

4. Define the inference system: how to construct sequents-in-context (the rules

of inference), how to extend a context (the rules of definition) (§6.1). Also,

define the initial context (§6.2).

5. Verify the inference system: prove that every derivable sequent is valid

(§6.3). Deduce that the inference system is consistent: it does not derive a

contradiction. (§6.4)
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6. Write an implementation of the inference system as recursive functions in

HOL, and verify it against the relational specification of the inference rules.

(§7.1)

7. Use the proof-grounded compilation technique from Chapter 4 to synthesise

a verified implementation of the inference rules in CakeML. (§7.2)

All the specifications, definitions, and proofs mentioned above are constructed

in HOL itself (using the HOL4 theorem prover), in the style of Harrison’s work [23]

towards self-verification of HOL Light. Compared to Harrison’s work, items 6–7

are new, items 2–5 are extended and reworked to support a context of definitions,

and item 1 uses an improved specification.

The bulk of the work is concerned with soundness: an inference rule is sound

if whenever its antecedents hold in all models1 then so does its succedent — a

statement which does not depend on the existence of models. To validate our

formalisation of the semantics it is useful to also carry out some proofs that give

evidence of consistency. Assuming HOL is consistent, Gödel’s second incomplete-

ness theorem [18] prevents us from proving HOL’s consistency in HOL. However,

we can prove two relative consistency results: consistency, in HOL, of HOL with

its axiom of infinity removed, and consistency, in HOL with a large-cardinal

assumption added, of HOL. This gives good evidence that we have correctly cap-

tured the semantics.

My approach to the semantics, which is largely inspired by Arthan [4], avoids

making any axiomatic extensions to HOL. I isolate results that are dependent on

the set-theoretic axiom of infinity, so that as much as possible is proved without

any undischarged assumptions. It is possible to use assumptions on theorems

rather than asserting new axioms in the logic because I formalise a specifica-

tion of set theory rather than defining a particular instance of a set theory as

Harrison [23] did.

The results of following the plan above fit together as shown in Figure 5.1.

The overall theorems we obtain are about evaluating the CakeML implementa-

tions of the HOL Light kernel functions in CakeML’s operational semantics. For

each kernel function, I prove that if the function is run in a good state on good

1 We are concerned only with standard models of HOL, that is, where the Boolean and
function types and the equality constant are interpreted in the standard way, and function
spaces are full (unlike in Henkin semantics [25]). See the paragraph on standard interpretations
in Section 5.4.
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Set Theory Specification

HOL Inference Rules

Monadic Kernel Functions

Implementation in CakeML

HOL semantics soundness proof

refinement proof

automatic refinement proofsynthesis

Figure 5.1: Producing a Sound Implementation by Refinement

arguments, it terminates in a good state and produces good results. Here “good”

refers to refinement invariants. In particular, a good value of type thm must be

a HOL sequent that is valid according to the set-theoretic semantics.

I prove these results by composing the three proof layers in the diagram. The

top layer is the result of steps 1–5. The HOL semantics gives meaning to HOL

sequents, from which we obtain definitions of validity and consistency. Validity

concerns the truth of a sequent within a fixed context of definitions, whereas

consistency is about whether the context itself has a model. The soundness proof

says that each of the HOL inference rules preserves validity of sequents, and each

of the HOL principles of definition preserves consistency of the context.

The middle layer corresponds to step 6. I define shallowly-embedded HOL

functions, using a state-exception monad, for each of the HOL Light kernel func-

tions (a version of this method was described in previous work [67, 40]). These

“monadic kernel functions” are a hand-crafted implementation, but are written

following the original OCaml code for HOL Light closely, and I prove that they

implement the inference rules. Specifically, if one of these functions is applied to

good arguments, it terminates with a good result; any theorem result must refine

a sequent that is provable in the inference system.

Finally, for step 7 I use proof-grounded compilation (as in Chapter 4), start-

ing with the proof-producing translation technique described in Chapter 2 that

generates CakeML code for the inference kernel. The certificate theorems for the

generated kernel complete the refinement proof that links theorem values pro-

duced by the implementation to sequents that are semantically valid. We can

give the generated code to the CakeML compiler to produce a verified low-level

implementation of the inference kernel.
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The next steps of future work (i.e., not covered in this dissertation) include:

a) proving, against CakeML’s semantics, that the kernel implementation can be

wrapped in a module to protect the key property, provability, of values of type

thm; and b) embedding the compiled kernel in an interactive read-eval-print loop

that is verified to never print a false theorem.

5.2 Set-theory specification

Axiomatic set theory can be specified in terms of a single binary relation, the

membership relation. In HOL, we can give a quite straightforward development

of the basic concepts of set theory as may be found in any standard text (e.g.,

Vaught [79]) thus achieving clarity through familiarity and making it easy to com-

pare our formalisation with Pitts’ informal account [70]. Since our specification

is in HOL, we can write the membership relation and its axioms within the logic

without resorting to the metavariables and schemata required in the first-order

setting2.

The most common set theory in textbook accounts is Zermelo-Fraenkel set

theory ZF. However, ZF’s axiom of replacement plays no rôle in giving semantics

to HOL, so all we need are the axioms of Zermelo’s original system: extension-

ality, separation (a.k.a. comprehension or specification), power set, union, (un-

ordered) pairing, and infinity. It will be convenient to deal with the axiom of

infinity separately. So we begin by defining a predicate on membership relations,

is set theory (mem : U → U → bool), that asserts that the membership re-

lation satisfies each of the Zermelo axioms apart from the axiom of infinity. By

formalising the set-theoretic universe as a type variable, U , we can specify what

it means to be a model of Zermelo set theory, while deferring the problem of

whether such a model can be constructed.

2 In our statement of the separation axiom, if the set x is infinite then P ranges over an
uncountable set corresponding to all subsets of x. Technically, this is a significant strengthening
of the axiom of separation, since it is not restricted to the countably many subsets of x that can
be specified in the language of first-order set theory. However, this is irrelevant to our purposes:
it would simply complicate the description of the semantics to impose this restriction (although
our proofs in fact do not need instances of the axiom that could not be expressed in first-order
set theory). Similarly, we find it convenient to use the metalanguage choice function and the
metalanguage notion of finiteness rather than trying to give a first-order description of these
notions in a model.
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The specification of the set-theoretic axioms is as follows:

is set theory mem ⇐⇒

extensional mem ∧ (∃ sub. is separation mem sub) ∧

(∃ power . is power mem power) ∧ (∃ union. is union mem union) ∧

∃ upair . is upair mem upair

extensional mem ⇐⇒

∀ x y . x = y ⇐⇒ ∀ a. mem a x ⇐⇒ mem a y

is separation mem sub ⇐⇒

∀ x P a. mem a (sub x P) ⇐⇒ mem a x ∧ P a

is power mem power ⇐⇒

∀ x a. mem a (power x ) ⇐⇒ ∀ b. mem b a ⇒ mem b x

is union mem union ⇐⇒

∀ x a. mem a (union x ) ⇐⇒ ∃ b. mem a b ∧ mem b x

is upair mem upair ⇐⇒

∀ x y a. mem a (upair x y) ⇐⇒ a = x ∨ a = y

To state the (set-theoretic) axiom of infinity, we define what it means for an

element of U to be infinite: is infinite mem s ⇐⇒ ¬FINITE { a | mem a s } .

Here FINITE is inductively defined (in HOL) for sets-as-predicates, so we are

saying a set is infinite if it does not have finitely many members. The (set-

theoretic) axiom of infinity asserts that such a set exists.

5.2.1 Derived operations

Using the axioms above, it is straightforward to define standard set-theoretic

constructions that will support our specification of the semantics of HOL. In this

subsection, I introduce some notation for such derived operations. Since all the

semantic functions are parametrised by the membership relation, (mem : U →

U → bool), I often elide this argument with a pretty-printing abbreviation,
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for example writing Funspace x y instead of funspace mem x y .3 When mem is

used as a binary operator, I will from now on write it infix as x ⋖ y instead of

mem x y . Also, most of the theorems require the assumption is set theory mem,

and I usually elide this assumption in the theorem statement. These notational

ellipses are akin to working in an Isabelle [82] locale in which mem is fixed and

is set theory mem is assumed.

Using the axiom of separation we define the empty set and prove it has no

elements, then using pairing we define sets containing exactly one and exactly

two elements. The latter serves as our representation of the set of Booleans. We

have the following, shown with and without abbreviations for clarity:

(full notation)

⊢ is set theory mem ⇒

∀ x . mem x (two mem) ⇐⇒ x = true mem ∨ x = false mem

(abbreviated notation)

⊢ x ⋖ Boolset ⇐⇒ x = True ∨ x = False

We define Kuratowski pairs (defn. V in [44]) as well as the cross product of

two sets so that the following properties hold.

⊢ (a,b) = (c,d) ⇐⇒ a = c ∧ b = d

⊢ a ⋖ x × y ⇐⇒ ∃ b c. a = (b,c) ∧ b ⋖ x ∧ c ⋖ y

From cross products, we can define relations, and then functions (graphs) as

functional relations. Abstract s t f is our notation for the subset of s × t that is

the graph of (f : U → U), and a ′ x denotes application of such a set-theoretic

function a to an argument x . The main theorem about application in set theory

is that it acts like application in HOL:

⊢ x ⋖ s ∧ f x ⋖ t ⇒ Abstract s t f ′ x = f x

3I follow a loose convention that capitalised functions have the hidden mem argument. Be
aware that datatype constructors, which are also capitalised, are amongst the exceptions.
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Furthermore, we know functions obey extensional equality:

⊢ (∀ x . x ⋖ s ⇒ f1 x ⋖ t1 ∧ f2 x ⋖ t2 ∧ f1 x = f2 x )⇒

Abstract s t1 f1 = Abstract s t2 f2

We define the set of functions between two sets, and prove that its elements are

precisely those made using Abstract:

⊢ (∀ x . x ⋖ s ⇒ f x ⋖ t)⇒ Abstract s t f ⋖ Funspace s t

⊢ a ⋖ Funspace s t ⇒

∃ f . a = Abstract s t f ∧ ∀ x . x ⋖ s ⇒ f x ⋖ t

The derived operations in our formalisation (a selection of which were shown

in this subsection) may be considered as an alternative description (compared to

the Zermelo axioms) of the interface required for giving semantics to HOL. In

other words, any structure supporting such constructions as pairs and functions

is suitable.

It is worth noting that a relation (mem : U → U → bool) satisfy-

ing is set theory mem will automatically satisfy the set-theoretic axiom of choice

(AC), that is, we can prove the following:

⊢ ∀ x . (∀ a. a ⋖ x ⇒ inhabited a)⇒ ∃ f . ∀ a. a ⋖ x ⇒ f ′ a ⋖ a

We prove this by using the axiom of choice in HOL (i.e., the language we are

using to formalise set theory) to provide a HOL function (g : U → U) such

that for every non-empty (a : U), we have g a ⋖ a. Then, given a set (x : U)

whose members are all non-empty, we use Abstract (ultimately depending on our

strong form of the axiom of separation) to define the graph of g restricted to the

members of x (as a member of the set-theoretic universe U) and hence conclude

that AC holds in our set theory.

5.2.2 Consistency of the specification

So far we have specified a predicate on a membership relation asserting that it

represents a set theory with our desired structure (without the axiom of infinity).

As a sanity check to convince us that this part of the specification is consistent,
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we can construct a membership relation that satisfies the predicate.

The hereditarily finite sets provide a simple model of set theory without the

axiom of infinity. This model can be represented concretely by taking U to be

the type num of natural numbers and defining mem n m to hold whenever the

nth bit in the binary representation of m is not zero. Of course, the axiom of

infinity fails in this model since every set in the model is finite. Nevertheless, we

can prove that it satisfies the other axioms (V mem is essentially the membership

relation just described):

⊢ is set theory V mem

This shows that the notion of a set theory that we have formalised is not vac-

uous. One might argue that we could just use the monomorphic type num in

place of the type variable U . Or a little more abstractly, we could introduce

a new type witnessed by the above construction on num. However, we wish to

state some properties that are conditional on the set-theoretic axiom of infinity.

Unfortunately, the axiom of infinity is provably false in a model subtyped from

the countable set num and so results that assumed the axiom of infinity would

be trivially true.

Instead, if we identify the universe of the hereditarily finite sets construction

with the right-hand summand of the polymorphic type α + num, we can define a

subtype α V of α + num whose defining property is the existence of a membership

relation satisfying the Zermelo axioms other than infinity. Hence we can introduce

a constant V mem of type α V → α V → bool with ⊢ is set theory V mem

as its defining property. Thus if we work with V mem the axiom of infinity is

not provably false and we can meaningfully take it is as an assumption when

necessary.

In the remainder of our development, we leave mem as a free variable and add

one or both of the assumptions, is set theory mem and ∃ inf . is infinite mem inf ,

whenever they are required. We provide V mem in this section as a possible

non-contradictory instantiation for the free variable mem in our theorems. Any

instantiation that satisfies both assumptions would do, but we know we cannot

exhibit one within HOL itself, so we prefer to leave the theorems uninstantiated.

The decision to leave mem loosely specified (i.e., as a free variable) throughout

the development is made easier by HOL4’s parsing/printing support for hiding

the free variable. In a theorem prover without such syntactic abbreviations, the
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notational clutter might lend some encouragement to picking an instantiation up

front.

With the specification of set theory in place, we now turn to the task of spec-

ifying the syntax and semantics of HOL. At the level of terms and types, my

specification of the syntax is almost the same as Harrison’s [23]. My terms are

simplified by not needing to bake in any primitive constants since we support a

general mechanism for introducing new constants, and my approach to substi-

tution and instantiation of bound variables is improved. Also, my abstraction

terms match the implementation better by using a term (rather than just a name

and type) for the bound variable.

At the level of sequents, I introduce the notion of a theory describing the

defined constants, which is implemented in the inference system as a context of

theory-extending updates. An earlier version of this work [40] used the Stateless

HOL [83] approach, where information about defined constants is carried on the

terms and types themselves. Using a separate context of definitions makes the

inference system clearer and allows us to easily quantify over all interpretations

of the constants.

I present the HOL specification concisely, but give the important definitions

in full so that it might serve as a reference.

5.3 Sequents: the judgements of the logic

Formally, derivations in HOL produce judgements of the following form4:

(thy ,h) |- c

This judgement is known as a sequent. It has a conclusion, c, a set of hypotheses

(represented by a list of terms), h, and is interpreted in a theory, thy consisting

of axioms and a signature. The meaning of a sequent is that the conclusion is

true whenever all the hypotheses are true, all the axioms are true, and all the

terms are well-formed with respect to the signature. We begin the specification

at the bottom of this structure, starting with terms and types.

4I use the symbol (|-) for the sequents defined in our specification of HOL, reserving (⊢)
for theorems proved in the meta-logic (that of HOL4).

79



5.3.1 Terms and types

The syntax of HOL is the syntax of the (polymorphic) simply-typed lambda-

calculus. Types are either variables or applied type operators.

type = Tyvar string | Tyapp string (type list)

Primitive type operators include Booleans and function spaces. I abbreviate

Tyapp "bool" [ ] by Bool and Tyapp "fun" [x ; y ] by Fun x y .

A term is either a variable, a constant, a combination (application), or an

abstraction.

term =

Var string type

| Const string type

| Comb term term

| Abs term term

Variables carry their types: two variables with the same name but different types

are distinct. We expect the first argument to Abs to be a variable, but use a

term so the implementation can avoid destructing and reconstructing variables

whenever it manipulates an abstraction.

Constants also carry a type, but are identified by their name: the type is there

only to indicate the instantiation of polymorphic constants. (Different constants

with the same name are disallowed, as we will see when we describe the signature

of a theory and how it is updated.) The sole primitive constant is equality; I

abbreviate Const "=" (Fun ty (Fun ty Bool)) by Equal ty .

Well-typed terms The datatype above might better be called “pre-terms”,

because the only terms of interest are those that are well-typed. Every well-

typed term has a unique type, which is specified by the following relation.

(Var n ty) has type ty (Const n ty) has type ty

s has type (Fun dty rty)

t has type dty

(Comb s t) has type rty

t has type rty

(Abs (Var n dty) t) has type (Fun dty rty)
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Well-typed terms differ from pre-terms only in that the first argument of every

combination has a function type, where the domain matches the second argu-

ment’s type, and the first argument of every abstraction is a variable. I define

welltyped tm ⇐⇒ ∃ ty . tm has type ty and also define a function, typeof, to

calculate the type of a term if it exists, thereby obtaining this characterisation:

welltyped tm ⇐⇒ tm has type (typeof tm).

Two operations over terms and types remain to be described, namely alpha-

equivalence and substitution. Both are complicated by the need to correctly

implement the concept of variable binding.

5.3.2 Alpha-equivalence

Terms are alpha-equivalent when they are equal up to a renaming of bound

variables. The key idea of Harrison’s original approach to alpha-equivalence is

to formalise when two variables are equivalent in a context of pairs of equivalent

bound variables.

avars [ ] (v1,v2) ⇐⇒ v1 = v2

avars ((b1,b2)::bvs) (v1,v2) ⇐⇒

v1 = b1 ∧ v2 = b2 ∨ v1 6= b1 ∧ v2 6= b2 ∧ avars bvs (v1,v2)

The variables must be equal to some pair of bound variables (or to themselves)

without either of them being equal to (captured by) any of the bound variables

above. I lift this relation up to terms, for example:

avars bvs (Var x1 ty1,Var x2 ty2)

aterms bvs (Var x1 ty1,Var x2 ty2)

typeof v1 = typeof v2

aterms ((v1,v2)::bvs) (t1,t2)

aterms bvs (Abs v1 t1,Abs v2 t2)

Finally, I define aconv t1 t2 ⇐⇒ aterms [ ] (t1,t2) It is straightforward to show

that this is an equivalence relation.
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5.3.3 Substitution and instantiation

Now on substitution, let us first deal with types. Since there are no type variable

binders, type variables can simply be replaced uniformly throughout a type, given

a type substitution mapping variable names to types. I define tysubst i ty as the

type obtained by instantiating ty according to the type substitution i . I say

is instance ty0 ty if ∃ i . ty = tysubst i ty0.

Substitution of terms for variables and of types for type variables in terms are

the most complex operations we need to deal with. Näıve substitution for vari-

ables in a term may introduce unwanted binding, for example when substituting

Comb v1 t1 for v2 in Abs v1 v2 the variable v1 ought to remain free. The algorithm

for term substitution (subst) therefore renames bound variables as required to

avoid unintended capture.

The algorithm for type instantiation (inst) in terms is also complicated by this

kind of problem. Consider, with x1 = Var "x" (Tyvar "A") and x2 = Var "x" Bool,

substitution of Bool for Tyvar "A" in Abs x1 (Abs x2 x1). The inner x1 refers to

the outer binder, but after a näıve substitution (which makes x1 = x2) it would

incorrectly refer to the inner binder. The solution is for the type instantiation

algorithm to keep track of potential shadowing as it traverses the term, and if

any occurs to backtrack and rename the shadowing bound variable.

In Harrison’s original formulation of HOL in HOL, the main lemma about

type instantiation takes 377 lines of proof script and mixes reasoning about name

clashes with the semantics of instantiation itself. To clarify our formalisation, I

formalise a small theory of nameless terms using de Bruijn indices, where sub-

stitution and instantiation are relatively straightforward, and shift the required

effort to the task of translating to and from de Bruijn terms, which is some-

what easier than tackling capture-avoiding substitution directly. The analogous

lemma about type instantiation in my formalisation is only 47 lines: the bulk of

the work about name clashes appears in two lemmas totalling 166 lines about

how instantiation can just as well be done on de Bruijn terms.5

I have proved that two terms are alpha-equivalent if and only if their de Bruijn

representations are equal. Using this fact, the main theorems we obtain about

5Harrison’s lemma is called SEMANTICS_INST_CORE, and mine are INST_CORE_dbINST,
INST_CORE_simple_inst, and termsem_simple_inst.
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substitution and instantiation are that they both respect alpha-equivalence:

⊢ welltyped t1 ∧ welltyped t2 ∧ subst ok ilist ∧ aconv t1 t2 ⇒

aconv (subst ilist t1) (subst ilist t2)

⊢ welltyped t1 ∧ welltyped t2 ∧ aconv t1 t2 ⇒

aconv (inst tyin t1) (inst tyin t2)

Here subst ok ilist means ilist is a substitution mapping variables to well-typed

terms of the same type. Since I also prove that alpha-equivalent terms have the

same semantics, these theorems allow us to prove soundness of the inference rules

that do substitution and instantiation.

5.3.4 Theories

In my specification of HOL, every sequent carries a theory, which embodies in-

formation about constants and type operators and thereby allows us to support

principles of definition. Formally, a theory (thy) consists of a signature (sigof thy)

together with a set of axioms (axsof thy). The signature restricts the constants

and type operators that may appear in a sequent, and the axioms provide se-

quents that may be derived immediately. The principles of definition introduce

axioms to characterise the things that are defined.

A signature is specified as a pair of maps, (tysof sig ,tmsof sig), assigning the

defined type operator names to their arities and the defined term constant names

to their types. Well-formed types obey the type signature:

type ok tysig (Tyvar x )

lookup tysig name = Some (length args)

every (type ok tysig) args

type ok tysig (Tyapp name args)
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And well-formed terms obey both signatures:

type ok (tysof sig) ty

term ok sig (Var x ty)

type ok (tysof sig) ty

lookup (tmsof sig) name = Some ty0

is instance ty0 ty

term ok sig (Const name ty)

term ok sig tm1

term ok sig tm2

welltyped (Comb tm1 tm2)

term ok sig (Comb tm1 tm2)

type ok (tysof sig) ty

term ok sig tm

term ok sig (Abs (Var x ty) tm)

Thanks to the conditions above that combinations are well-typed and abstractions

must be of variables, we have ⊢ term ok sig t ⇒ welltyped t .

A signature is standard if it maps the primitive type operators—function

spaces and Booleans—and the primitive constant—equality—in the standard

way:

is std sig sig ⇐⇒

lookup (tysof sig) "fun" = Some 2 ∧

lookup (tysof sig) "bool" = Some 0 ∧

lookup (tmsof sig) "=" = Some (Fun (Tyvar "A") (Fun (Tyvar "A") Bool))

We have a straightforward condition for a theory to be well-formed: all its

components are well-formed and the axioms are Boolean terms.

theory ok thy ⇐⇒

(∀ ty . ty ∈ range (tmsof thy)⇒ type ok (tysof thy) ty) ∧

(∀ p. p ∈ axsof thy ⇒ term ok (sigof thy) p ∧ p has type Bool) ∧

is std sig (sigof thy)

(Here tmsof thy is shorthand for tmsof (sigof thy), and similarly for the types.)

5.4 Semantics

The idea behind the standard (e.g., Pitts [70]) semantics for HOL is to interpret

types as non-empty sets and terms as their elements. Equality and function
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application and abstraction are interpreted as in set theory, and a sequent is

considered true if its interpretation is the true element of the set of Booleans.

Semantics for HOL in this style are a mostly straightforward example of model

theory.

The most fiddly parts of the semantics arise when dealing with polymorphic

constants and type operators with arguments, followed closely by issues arising

from substitution and type instantiation (which we covered in Section 5.3.3).

Polymorphism is especially relevant to being able to support defined constants.

The approach I have taken is to keep the treatment of constants and type opera-

tors separate from the semantics of the lambda-calculus terms, by parameterising

the semantics by an interpretation, so that both pieces remain simple.

My goal is to show how to give semantics to sequents (and their component

parts) in a theory. The ultimate notion we are aiming for is validity, (thy ,h) |= c,

which says that the semantics of c is true whenever the semantics of all the h

are true and the axioms of thy are satisfied. Validity quantifies over, and hence

does not need to mention the semantic parameters that give meaning to constants

and variables. But these parameters, called interpretations and valuations, are

required for building the definition of validity out of the semantics for the com-

ponent parts of a sequent.

The details of the semantic apparatus are new, compared to Harrison’s work [23]

on HOL semantics in a fixed context without definitions, and are inspired by

Arthan’s specification [4] of ProofPower HOL’s logic.

Semantics of types The meaning of a HOL type is a non-empty set. Thus,

we require type valuations (τ) to assign type variables to non-empty sets.

is type valuation τ ⇐⇒ ∀ x . inhabited (τ x )

The type signature (tysig below) says what the type operators are and how many

arguments they each expect. A type assignment (δ) gives semantics to type

operators; we require it to assign correct applications of type operators to non-
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empty sets.

is type assignment tysig δ ⇐⇒

every

(λ (name,arity).

∀ ls . length ls = arity ∧ every inhabited ls ⇒ inhabited (δ name ls))

tysig

The semantics of types simply maps the type valuation and type assignment

through the type, as follows:

typesem δ τ (Tyvar s) = τ s

typesem δ τ (Tyapp name args) = δ name (map (typesem δ τ) args)

Observe that since the type assignment (δ) is a function in HOL, there are not

necessarily any set-theoretic functions involved in the semantics of type operators.

Semantics of terms The meaning of a HOL term is an element of the meaning

of its type. Thus, a term valuation (σ) must assign each variable to an element

of the meaning of its type. To speak of valid types and their meanings requires

a type signature and type assignment, so the notion of a term valuation depends

on them.

is term valuation tysig δ τ σ ⇐⇒

∀ v ty . type ok tysig ty ⇒ σ (v ,ty) ⋖ typesem δ τ ty

The constant signature (tmsig below) gives the names and types of the constants,

and a term assignment (γ) must assign each constant to an element of the meaning

of the appropriate type. This picture is complicated by the fact that constants

may be polymorphic (that is, their types may contain type variables), so a term

assignment takes not only the name of the constant but a list of meanings for the

type variables, and the condition it must satisfy quantifies over type valuations.

For any type valuation, the term assignment must assign the constant under that
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type valuation to an element of the meaning of the constant’s type.

is term assignment tmsig δ γ ⇐⇒

every

(λ (name,ty).

∀ τ.

is type valuation τ ⇒

γ name (map τ (sorted tyvars ty)) ⋖ typesem δ τ ty) tmsig

The semantics of terms is defined recursively as follows. For variables, we

simply apply the valuation.

termsem tmsig (δ,γ) (τ ,σ) (Var x ty) = σ (x ,ty)

For constants, we apply the interpretation but need to match the instantiated

type of the constant against its generic type, that is, the type given for the

constant in the signature. This is done using the instance function, explained in

the next paragraph.

termsem tmsig (δ,γ) (τ ,σ) (Const name ty) =

instance tmsig (δ,γ) name ty τ

Assuming6 the given type is an instance of the generic type under some type

substitution i , instance applies the term assignment for the constant passing the

meanings of the types to which the type variables are bound under i .

lookup tmsig name = Some ty0 ⇒

instance tmsig (δ,γ) name (tysubst i ty0) τ =

γ name (map (typesem δ τ ◦ tysubst i ◦ Tyvar) (sorted tyvars ty0))

For applications, we simply use function application at the set-theoretic level.

termsem tmsig (δ,γ) (τ ,σ) (Comb t1 t2) =

termsem tmsig (δ,γ) (τ ,σ) t1 ′ (termsem tmsig (δ,γ) (τ ,σ) t2)

6We leave unspecified the semantics of constants that are not in the signature or whose types
do not match the type in the signature.
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Similarly, for abstractions we create a set-theoretic function that takes an element,

m, of the meaning of the type of the abstracted variable to the meaning of the

body under the appropriately extended valuation.

termsem tmsig (δ,γ) (τ ,σ) (Abs (Var x ty) b) =

Abstract (typesem δ τ ty) (typesem δ τ (typeof b))

(λm. termsem tmsig (δ,γ) (τ ,((x ,ty) 7→ m) σ) b)

Above, ((x ,ty) 7→ m) σ means the valuation that returns m when applied to

(x ,ty) but otherwise acts like σ.

Standard interpretations The semantics so far makes no special treatment of

HOL’s primitive types and constants; indeed, we can neatly factor out the special

treatment as a condition on interpretations. First, we collect the parameters for

terms and types together. A pair of a type valuation and a term valuation is

called a valuation. Similarly, a pair of a type assignment and a term assignment

is called an interpretation.

is valuation tysig δ (τ ,σ) ⇐⇒

is type valuation τ ∧ is term valuation tysig δ τ σ

is interpretation (tysig ,tmsig) (δ,γ) ⇐⇒

is type assignment tysig δ ∧ is term assignment tmsig δ γ

An interpretation is standard if it interprets the primitive constants in the

standard way; namely, function types as set-theoretic function spaces, Booleans

as the set of Booleans, and equality as set-theoretic equality (which is inherited

from the meta-logic).

is std type assignment δ ⇐⇒

(∀ dom rng . δ "fun" [dom; rng ] = Funspace dom rng) ∧

δ "bool" [ ] = Boolset
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is std interpretation (δ,γ) ⇐⇒

is std type assignment δ ∧

γ interprets "=" on ["A"] as

(λ l .

Abstract (head l) (Funspace (head l) Boolset)

(λ x . Abstract (head l) Boolset (λ y . Boolean (x = y))))

The notation used above is defined as follows:

γ interprets name on args as f ⇐⇒

∀ τ. is type valuation τ ⇒ γ name (map τ args) = f (map τ args)

We will only be concerned with standard interpretations.

Satisfaction We now turn to packaging the basic semantics of types and terms

up and lifting it to the level of sequents. A sequent, containing both hypothe-

ses and a conclusion, represents an implication. An interpretation satisfies a

sequent if the conclusion of the sequent is true whenever the hypotheses are (for

all valuations). Precisely,

(δ,γ) satisfies ((tysig ,tmsig),h,c) ⇐⇒

∀ v .

is valuation tysig δ v ∧ every (λ t . termsem tmsig (δ,γ) v t = True) h ⇒

termsem tmsig (δ,γ) v c = True

We defer checking syntactic well-formedness of the sequent (for example, that c

has type Bool) until the definition of validity below.

Modeling An interpretation models a theory if it is standard and satisfies the

theory’s axioms.

i models thy ⇐⇒

is interpretation (sigof thy) i ∧ is std interpretation i ∧

∀ p. p ∈ axsof thy ⇒ i satisfies (sigof thy ,[ ],p)
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Validity Finally, a sequent is valid if every model of the sequent’s theory also

satisfies the sequent itself.

(thy ,h) |= c ⇐⇒

theory ok thy ∧ every (term ok (sigof thy)) (c::h) ∧

every (λ p. p has type Bool) (c::h) ∧ hypset ok h ∧

∀ i . i models thy ⇒ i satisfies (sigof thy ,h,c)
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Chapter 6

A sound inference system for

HOL

In the previous chapter, we saw what HOL sequents look like and how they are

to be interpreted in set theory. In this chapter, we turn to the inference system

used to construct derivations of sequents, and the initial axioms of HOL. After

specifying the inference system, I prove that it is sound (that it preserves truth

according to the semantics, and that the axioms are true), and therefore that

HOL is consistent. For this consistency result to include all of HOL’s axioms

(including the axiom of infinity), I need to assume that the set theory used for

the semantics also supports infinity.

6.1 Inference system

Whereas the notion of a derivable sequent in a particular theory depends only

on the abstract formulation (signature plus axioms) of theories, when it comes

to extending the theory with new definitions (and other extensions) I introduce

the more concrete notion of a context. A context is a linear sequence of theory-

extending1 updates. This formulation corresponds nicely to the actual behaviour

of an implementation of the inference system (that is, a theorem prover).

We first look at the (within-theory) inference rules, then turn to the rules for

theory extension (definitions and non-definitional updates).

1Our updates have a finer granularity than HOL4 theory segments or Isabelle/HOL theories,
which usually include multiple updates in our sense.
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6.1.1 Inference rules

Recall that a sequent has the form (thy ,h) |- c where thy is a theory, h is a set

of hypotheses (Boolean terms) and c is the conclusion (another Boolean term).

For simplicity, I represent the hypothesis set as a list but endeavour to ensure its

elements are distinct (up to alpha-equivalence); we write the union of two such

lists as h1 ⊎ h2, removal of an element c from h as h \ c, and the image of h

under f as map set f h.

In the HOL Light kernel, there are ten inference rules. Like Harrison, I define

an abbreviation for equations since they appear frequently:

s == t = Comb (Comb (Equal (typeof s)) s) t

I also use the following helper functions: vfree in v tm means v occurs free in tm ,

and subst ok sig ilist ensures only well-formed terms are substituted and only for

variables of the same type. The rules are as follows:

theory ok thy

term ok (sigof thy) t

(thy ,[ ]) |- t == t
REFL

(thy ,h1) |- l == m1

(thy ,h2) |- m2 == r

aconv m1 m2

(thy ,h1 ⊎ h2) |- l == r
TRANS

theory ok thy

p has type Bool

term ok (sigof thy) p

(thy ,[p]) |- p
ASSUME

(thy ,h1) |- p == q

(thy ,h2) |- p ′

aconv p p ′

(thy ,h1 ⊎ h2) |- q
EQ MP

(thy ,h1) |- c1

(thy ,h2) |- c2

(thy ,h1 \ c2 ⊎ h2 \ c1) |- c1 == c2
DEDUCT ANTISYM
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(thy ,h1) |- l1 == r1

(thy ,h2) |- l2 == r2

welltyped (Comb l1 l2)

(thy ,h1 ⊎ h2) |- Comb l1 l2 == Comb r1 r2
MK COMB

¬exists (vfree in (Var x ty)) h

type ok (tysof thy) ty

(thy ,h) |- l == r

(thy ,h) |- Abs (Var x ty) l == Abs (Var x ty) r
ABS

theory ok thy

type ok (tysof thy) ty

term ok (sigof thy) t

(thy ,[ ]) |- Comb (Abs (Var x ty) t) (Var x ty) == t
BETA

subst ok (sigof thy) ilist

(thy ,h) |- c

(thy ,map set (subst ilist) h) |- subst ilist c
INST

every (type ok (tysof thy)) (map fst tyin)

(thy ,h) |- c

(thy ,map set (inst tyin) h) |- inst tyin c
INST TYPE

There is one additional way for a sequent to be provable, namely, if it is an axiom

of the theory:

theory ok thy

c ∈ axsof thy

(thy ,[ ]) |- c

Thus the new piece of the sequent syntax, the theory, interacts with the inference

system (which remains essentially as formalised by Harrison) only via the axioms
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of the theory and the checks that all types and terms respect the signature of the

theory.

6.1.2 Theory extension

In the previous section, I defined provability within a fixed theory. To complete

the inference system, we also need mechanisms for changing the theory. At this

point, we take a more concrete view of theories, called contexts, by considering the

specific changes that can be made. For simplicity, we restrict ourselves to a linear

sequence of extensions and do not allow redefinition or branching or merging of

theories. This linear view is sufficient for HOL Light; a more complicated model

might be necessary for theorem provers like HOL4, which supports redefinition,

or Isabelle/HOL [82], which supports both redefinition and context merging.

In the linear view, each change is an update and updates come in two kinds:

definitional extensions (the first two) and postulates (a.k.a. axiomatic extensions,

the last three).

update =

ConstSpec ((string × term) list) term

| TypeDefn string term string string

| NewType string num

| NewConst string type

| NewAxiom term

I call a list of such updates a context. From a context (ctxt) we can recover a

theory (thyof ctxt) by calculating the constants and axioms introduced by each

kind of update. Postulates simply add new constants or axioms to the theory. I

will specify exactly how the definitional updates extend a theory shortly.

Some basic well-formedness conditions are required. To specify the conditions

under which an update is allowed to be made, I define a relation upd updates ctxt

specifying when upd is a valid extension of ctxt . For example, the conditions for

the postulates, which simply ensure names remain distinct and the each piece of

the postulate is well-formed, are shown below.

name /∈ domain (tysof ctxt)

NewType name arity updates ctxt

name /∈ domain (tmsof ctxt)

type ok (tysof ctxt) ty

NewConst name ty updates ctxt
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prop has type Bool

term ok (sigof ctxt) prop

NewAxiom prop updates ctxt

A context extends another if it is a series of valid updates applied to the other.

The initial context, supporting only equality, can be specified as an extension of

the empty context:

init ctxt =

[NewConst "=" (Fun (Tyvar "A") (Fun (Tyvar "A") Bool));

NewType "bool" 0; NewType "fun" 2]

We turn now to the changes introduced by definitional extensions and the

conditions on making them. Let us start with the definition of new types, rep-

resented by the update TypeDefn name pred abs rep. Here name is the name of

the new type and pred is a predicate on an existing type called the representing

type. The intuition behind the principle of type definition is to make the new type

isomorphic to the subset of the representing type carved out by pred , which is

required to be inhabited. A type definition introduces the new type and also two

constants between the new type and the representing type, asserting a bijection

via the following two axioms.

axioms of upd (TypeDefn name pred abs_name rep_name) =

(let abs_type = Tyapp name (sorted tyvars pred) in

let rep_type = domain (typeof pred) in

let abs = Const abs_name (Fun rep_type abs_type) in

let rep = Const rep_name (Fun abs_type rep_type) in

let a = Var "a" abs_type in

let r = Var "r" rep_type

in

[Comb abs (Comb rep a) == a;

Comb pred r == (Comb rep (Comb abs r) == r)])

As can be seen in the construction of abs_type above, the new type has a type

argument for each of the type variables appearing in pred . The type variables are

sorted (according to their name) to ensure a canonical order for the new type’s
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arguments. The two introduced axioms assert that the introduced constants, abs

and rep, are inverses (when restricted to elements of the representing type that

satisfy pred).

The main condition on making a type definition is that the new type is non-

empty. This is ensured by requiring a sequent asserting that the predicate holds

of some witness. Additionally the predicate itself must not contain free variables,

and the new names must not already appear in the context.

(thyof ctxt ,[ ]) |- Comb pred witness

closed pred

name /∈ domain (tysof ctxt)

abs /∈ domain (tmsof ctxt)

rep /∈ domain (tmsof ctxt)

abs 6= rep

TypeDefn name pred abs rep updates ctxt

I will prove that context extension by type definition is sound, that is, the axioms

it introduces are not contradictory, in Section 6.3.2.

Finally, let us look at the definition of new term constants via our new gener-

alised rule for constant specification. The update ConstSpec eqs prop, where eqs

are equations with variables (varsof eqs) on the left, signifies introduction of a new

constant for each of the variables which together share the defining specification

prop. Thus prop (after substituting the new constants for the variables) is the

sole new axiom:

axioms of upd (ConstSpec eqs prop) =

(let ilist = consts for vars eqs in [subst ilist prop])

The purpose of the equations is to provide witnesses that prop is satisfiable, so

the rule takes as input a theorem concluding prop assuming the equations. The
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complete list of conditions can be seen below:

(thyof ctxt ,map (λ (s ,t). Var s (typeof t) == t) eqs) |- prop

every (λ t . closed t ∧ closed tyvars t) (map snd eqs)

∀ x ty . vfree in (Var x ty) prop ⇒ member (x ,ty) (varsof eqs)

∀ s . member s (map fst eqs)⇒ s /∈ domain (tmsof ctxt)

all distinct (map fst eqs)

ConstSpec eqs prop updates ctxt

Here closed tyvars t means that type variables appearing in t also appear in

typeof t . The design of this principle of constant specification is explained in

detail by Arthan [5]. I prove its soundness in Section 6.3.2. The rule of constant

definition, which defines a new constant x to be equal to a term t, can be recovered

as an instance of constant specification:

ConstDef x t = ConstSpec [(x ,t)] (Var x (typeof t) == t).

6.2 Axioms

We need some logical connectives and quantifiers to state two of the axioms

asserted in HOL Light. Since they are generally useful, it is convenient to define

them first before asserting the axioms.

6.2.1 Embedding logical operators

The connectives of propositional logic and universal and existential quantifiers

(ranging over HOL types) can be defined as constants2 in HOL. I define a list

of updates each of which defines a connective or quantifier as it is defined in

HOL Light, and show, by calculating out the semantics, that they all behave as

intended.

Each of the connectives and quantifiers can be defined by an equation, so we

use the simple ConstDef name term version of the rule for constant specifica-

tion. The following function extends a context with definitions of the Boolean

2In HOL theorem prover parlance these are sometimes collectively known as the theory of
Booleans.
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constants3.

mk bool ctxt ctxt =

ConstDef "~" NotDef::ConstDef "F" FalseDef::

ConstDef "\\/" OrDef::ConstDef "?" ExistsDef::

ConstDef "!" ForallDef::ConstDef "==>" ImpliesDef::

ConstDef "/\\" AndDef::ConstDef "T" TrueDef::ctxt

Here the definition terms are as in HOL Light, for example,

ForallDef =

Abs (Var "P" (Fun (Tyvar "A") Bool))

(Var "P" (Fun (Tyvar "A") Bool) ==

Abs (Var "x" (Tyvar "A")) (Const "T" Bool))

FalseDef =

Comb (Const "!" (Fun (Fun Bool Bool) Bool))

(Abs (Var "p" Bool) (Var "p" Bool))

I also specify the expected signature for constants with these names, for example,

is forall sig tmsig ⇐⇒

lookup tmsig "!" = Some (Fun (Fun (Tyvar "A") Bool) Bool)

and show, by simple calculation, that sigof (mk bool ctxt ctxt) has the right

signatures.

For the desired semantics of the Boolean constants, we refer to the connectives

and quantifiers in the meta-logic (that is, for us, the logic of HOL4). For example,

3 The names, "\\/" and "/\\", associated with OrDef and AndDef may appear to include
extra backslashes, because backslashes must be escaped in strings in HOL4. The names are
intended to be textual representations of ∨ and ∧.
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for implication and universal quantification, we have

is implies interpretation γ ⇐⇒ γ interprets "==>" on [ ] as (λ y . Boolrel (⇒))

is forall interpretation γ ⇐⇒

γ interprets "!" on ["A"] as

(λ l .

Abstract (Funspace (head l) Boolset) Boolset

(λP . Boolean (∀ x . x ⋖ head l ⇒ P ′ x = True)))

where the following helper functions interpret meta-level Booleans and relations

on Booleans in our set theory:

Boolean b = if b then True else False

Boolrel R =

Abstract Boolset (Funspace Boolset Boolset)

(λ p. Abstract Boolset Boolset (λ q . Boolean (R (p = True) (q = True))))

The desired interpretations for all the Boolean constants are collected together

as follows.

is bool interpretation (δ,γ) ⇐⇒

is std interpretation (δ,γ) ∧ is true interpretation γ ∧

is and interpretation γ ∧ is implies interpretation γ ∧

is forall interpretation γ ∧ is exists interpretation γ ∧

is or interpretation γ ∧ is false interpretation γ ∧

is not interpretation γ

The theorem I prove about the definitions of the Boolean constants says they

have the desired semantics, that is, any interpretation that models a theory con-

taining the definitions interprets the constants as specified by is bool interpretation.

⊢ theory ok (thyof (mk bool ctxt ctxt)) ∧

i models (thyof (mk bool ctxt ctxt))⇒

is bool interpretation i

The semantics of a constant defined by an equation is uniquely specified, since

that equation must be satisfied by any model of the definition. So, proving the
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theorem above is simply a matter of calculating out the semantics of the defini-

tions of each of the constants and observing that they match the specification.

6.2.2 Statement of the axioms

The standard library of HOL Light appeals to NewAxiom exactly three times,

to assert the basic axioms of HOL that make it a classical logic and allow it to

define the natural numbers. The axioms are: functional extensionality, choice,

and infinity. Since the deeply-embedded syntax for the statements of the axioms

is somewhat verbose, let us first look at their statements at the meta level:

• extensionality: (λ x . f x ) = f

• choice: P x ⇒ P ((ε) P)

• infinity: ∃ (f : ind → ind). ONE ONE f ∧ ONTO f

While extensionality can be asserted in the initial context, the other two need

additional constants to be added to the signature. For choice, we need to define

implication, and to introduce the choice operator (ǫ above, but named "@" in the

deep embedding.) For infinity, we need to introduce the type ind of individuals,

and to define the existential quantifier4, conjunction, and the ONE ONE and

ONTO functions.

I define context-updating functions for each of the axioms, asserting the ax-

iom with NewAxiom after introducing new constants if necessary. These are de-

fined below, with some of the deeply-embedded syntax abbreviated (SelectAx,

4Axioms do not need to universally quantify their variables: free variables act as if universally
quantified because of the INST rule of inference.
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InfinityAx, OntoDef, and OneOneDef).

mk eta ctxt ctxt =

NewAxiom

(Abs (Var "x" (Tyvar "A"))

(Comb (Var "f" (Fun (Tyvar "A") (Tyvar "B"))) (Var "x" (Tyvar "A"))) ==

Var "f" (Fun (Tyvar "A") (Tyvar "B")))::ctxt

mk select ctxt ctxt =

NewAxiom SelectAx::NewConst "@" (Fun (Fun (Tyvar "A") Bool) (Tyvar "A"))::ctxt

mk infinity ctxt ctxt =

NewAxiom InfinityAx::NewType "ind" 0::ConstDef "ONTO" OntoDef::

ConstDef "ONE_ONE" OneOneDef::ctxt

6.3 Soundness

We have now seen HOL’s inference system, which provides rules for proving se-

quents within a theory and updating that theory, and we have seen a specification

of the meaning of such sequents: in particular, when they are considered valid.

The main results of this chapter next are that every sequent proved by the infer-

ence system is valid (soundness), and its corollary that some sequents cannot be

proved (consistency).

Soundness holds for both the inference rules and the rules for theory extension,

with the exception of NewAxiom. For an extension rule to be sound, it must

put the inference system in a state whereby it continues to produce only valid

sequents. I ground this idea by proving the continued existence of a model of the

theory. Since one cannot prove NewAxiom sound in general, I also need to prove

the three axioms used in HOL Light to set up the initial HOL context sound on

a case-by-case basis.

I prove consistency for any non-axiomatic extensions of the following contexts:

fhol ctxt = mk select ctxt (mk eta ctxt (mk bool ctxt init ctxt))

hol ctxt = mk infinity ctxt fhol ctxt

The name of the first context above stands for “finitary HOL” since it omits the
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axiom of infinity. I name it separately because the consistency theorem we can

prove of it has no assumptions apart from is set theory mem, which we saw in

Section 5.2.2 can be discharged. The consistency theorem for the full hol ctxt

requires the set-theoretic axiom of infinity as an additional assumption.

6.3.1 Inference rules

The main soundness result for a fixed theory context is that every provable se-

quent is valid:

⊢ (thy ,h) |- c ⇒ (thy ,h) |= c

My proof of this does not differ substantially from Harrison’s, apart from my indi-

rect treatment of substitution and instantiation via de Bruijn terms. Recall that

by convention we elide on the theorem above the assumption is set theory mem

and the mem argument passed to the validity relation (|=).

The result above is proved by induction on the provability relation (|-). Thus

we have a case for each of HOL’s inference rules, for example for EQ MP:

⊢ (thy ,h1) |= p == q ∧ (thy ,h2) |= p ′ ∧ aconv p p ′ ⇒ (thy ,h1 ⊎ h2) |= q

The proof for each case typically expands out the semantics of the sequents in-

volved then invokes properties of the set theory. The case for the rule allowing

an axiom to be proved is trivial by the definition of validity which assumes the

theory is modeled.

The main work in proving soundness of the inference rules is establishing prop-

erties of the semantics of the operations used by the inference rules in constructing

their conclusions. For example, for instantiation of type variables in terms, I show

that instead of instantiating the term we can instantiate the valuations:

⊢ term ok (tysig ,tmsig) tm ⇒

termsem tmsig (δ,γ) (τ ,σ) (inst tyin tm) =

termsem tmsig (δ,γ)

((λ x . typesem δ τ (tysubst tyin (Tyvar x ))),

(λ (x ,ty). σ (x ,tysubst tyin ty))) tm
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This lemma is the main support for the INST TYPE case of the soundness theorem

⊢ every (type ok (tysof thy)) (map fst tyin) ∧ (thy ,h) |= c ⇒

(thy ,map set (inst tyin) h) |= inst tyin c

since we need to establish conclusions about instantiations of terms from hypothe-

ses about the terms themselves.

6.3.2 Theory extension

The definition of new types and constants extends the context in which sequents

may be proved, in particular it changes the signature of the theory and introduces

new axioms depending on the kind of definition. Intuitively, we do not want such

extensions to invalidate previously proved sequents, nor do we want the definitions

to introduce an inconsistency.

The first property, preserving existing sequents, is easy to prove because the

only dependence of a term’s semantics on the theory is via the signature of con-

stants and type operators that appear in the term. Thus, as shown below, satis-

faction is preserved as long as the context grows monotonically, that is, without

changing the signature of existing constants and type operators (the syntax f ⊑ f ′

means that f ′ agrees with f on everything in domain f ).

⊢ tmsig ⊑ tmsig ′ ∧ tysig ⊑ tysig ′ ∧ every (term ok (tysig ,tmsig)) (c::h) ∧

i satisfies ((tysig ,tmsig),h,c)⇒

i satisfies ((tysig ′,tmsig ′),h,c)

All of the context-updating rules are monotonic, since we do not allow redefini-

tion.

The second desired property of an update, not introducing an inconsistency,

is what we shall designate as making the update sound. To be precise, I call an

update sound if any model of a theory before the update can be extended to a

103



model of the theory with the update:

sound update ctxt upd ⇐⇒

∀ i .

i models (thyof ctxt)⇒

∃ i ′. equal on (sigof ctxt) i i ′ ∧ i ′ models (thyof (upd ::ctxt))

The constant equal on helps formalise what we mean by one interpretation being

an extension of another: they must be equal on terms and types in the previous

context.

equal on sig i i ′ ⇐⇒

(∀ name. name ∈ domain (tysof sig)⇒ tyaof i ′ name = tyaof i name) ∧

∀ name. name ∈ domain (tmsof sig)⇒ tmaof i ′ name = tmaof i name

It is now simply a matter of showing that each of our rules for updating the

context are sound when their side conditions are met.

It is straightforward to show that NewType and NewConst are sound, be-

cause they do not introduce any new axioms. We simply need to extend the

interpretation with some plausible interpretation of the data. The extended in-

terpretation cannot be completely arbitrary, because to be a model of a theory an

interpretation must be well-formed (that is, must satisfy is interpretation). But a

well-formed extension is always possible: for example mapping each new type to

the set of Booleans and each new constant to an arbitrary member of the inter-

pretation of its type (which is non-empty since the original theory is modelled).

I thereby prove the following theorems.

⊢ theory ok (thyof ctxt) ∧ name /∈ domain (tysof ctxt)⇒

sound update ctxt (NewType name arity)

⊢ theory ok (thyof ctxt) ∧ name /∈ domain (tmsof ctxt) ∧ type ok (tysof ctxt) ty ⇒

sound update ctxt (NewConst name ty)

Soundness of type definition A type definition, TypeDefn name pred abs rep,

is sound if the two axioms it introduces (asserting the abs and rep constants form

a bijection between the new type and the range of pred) can be made true by

extending the original model with well-formed interpretations for the new type

104



and two new constants. Such an extension is always possible, thus we can prove

the following:

⊢ (thyof ctxt ,[ ]) |- Comb pred witness ∧ closed pred ∧

name /∈ domain (tysof ctxt) ∧ abs /∈ domain (tmsof ctxt) ∧

rep /∈ domain (tmsof ctxt) ∧ abs 6= rep ⇒

sound update ctxt (TypeDefn name pred abs rep)

The idea behind the proof is to interpret the new type as the subset of the

representing type delineated by the semantics of pred , and to interpret the new

constants as inclusion maps. When the abs constant is applied to a member of

the representing type that is not in the new type, it simply picks an arbitrary

element of the new type. The new type is guaranteed not to be empty by the

theorem saying pred holds for some witness, which is required to make the type

definition.

The proof of soundness of type definitions is the longest of the proofs about the

rules for extension, taking around 400 lines of proof script compared to around 200

for constant specifications below and 40 for each of the other (non-definitional)

updates. The reason is not that the soundness argument is significantly more

complicated; rather, it is because the rule introduces many things (two axioms,

two constants, and a type operator), where by contrast constant specification

only introduces one axiom and introduces its constants uniformly; some work is

required to calculate out the semantics of the equations in the axioms introduced

by a type definition, and to ensure that each piece of the extension is well-formed.

Soundness of constant specification Specification of new constants, via

ConstSpec eqs prop, introduces a single axiom, namely prop with its term vari-

ables replaced by the new constants, and is sound if the new constants are inter-

preted so as to make this axiom true. Such an interpretation is always possible
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when the side-conditions of the rule are met, thus we have the following:

⊢ theory ok (thyof ctxt) ∧

(thyof ctxt ,map (λ (s ,t). Var s (typeof t) == t) eqs) |- prop ∧

every (λ t . closed t ∧ closed tyvars t) (map snd eqs) ∧

(∀ x ty . vfree in (Var x ty) prop ⇒ member (x ,ty) (varsof eqs)) ∧

(∀ s . member s (map fst eqs)⇒ s /∈ domain (tmsof ctxt)) ∧

all distinct (map fst eqs)⇒

sound update ctxt (ConstSpec eqs prop)

The idea behind the proof is to interpret the new constants as the semantics of

the witness terms (that is, map snd eqs) given in the input theorem that concludes

prop. This works because then substitution of the new constants for the variables

in prop has the same effect, semantically, as discharging the hypotheses of the

input theorem.

The key lemmas required are about how the term semantics interacts with the

interpretation and valuation. In particular, term substitution can be moved into

the valuation; and, we can ignore extensions made to the interpretation when

considering the semantics of a term that does not mention the new constants,

since the semantics only cares about the interpretation of things in the signature.

⊢ welltyped tm ∧ subst ok ilist ⇒

termsem tmsig (δ,γ) (τ ,σ) (subst ilist tm) =

termsem tmsig (δ,γ) (τ ,σ ⊎ map subst (termsem tmsig (δ,γ) (τ ,σ)) ilist) tm

⊢ is std sig (tysig ,tmsig) ∧ term ok (tysig ,tmsig) tm ∧ equal on (tysig ,tmsig) i i ′ ⇒

termsem tmsig i ′ v tm = termsem tmsig i v tm

Above, f ⊎ ls means the function that maps according to a binding in ls if it

exists else defaults to applying f ; and map subst g ilist modifies the substitution

ilist , which binds variables to terms, by applying g to all the terms.

Using these lemmas, we can reduce showing that the new axiom is satisfied

to showing that prop is true under a valuation assigning the variables to the

interpretations of the new constants. Since we interpreted the new constants as

the witness terms corresponding to each variable, this then follows directly from

the input theorem.
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Sequences of definitions Combining the results in this subsection, which

cover soundness of all the update types except for NewAxiom, I prove that well-

formed updates are sound.

⊢ upd updates ctxt ∧ theory ok (thyof ctxt) ∧ (∀ p. upd 6= NewAxiom p)⇒

sound update ctxt upd

It is then a straightforward induction to show that a sequence of updates that do

not introduce any axioms except via definitions preserve the existence of a model.

⊢ ctxt2 extends ctxt1 ∧ theory ok (thyof ctxt1) ∧ i models (thyof ctxt1) ∧

(∀ p. member (NewAxiom p) ctxt2 ⇒ member (NewAxiom p) ctxt1)⇒

∃ i ′. equal on (sigof ctxt1) i i
′ ∧ i ′ models (thyof ctxt2)

6.4 Consistency

We have seen that the inference system for HOL is sound in that every sequent

it derives is semantically valid (provided all appeals to NewAxiom assert consis-

tent axioms). As a corollary, we can show that there are some sequents which

cannot be derived (since some sequents are not valid). My strategy for proving

this syntactic notion of consistency is to use the fact, sometimes called semantic

consistency, that every theory produced by the inference system has a model (as

proved in the previous section).

I define a consistent theory as one for which there are sequents one of which

can be derived and the other which cannot. In fact, I choose particular sequents

for this purpose, an equation of equal variables and an equation of potentially

different variables:

consistent theory thy ⇐⇒

(thy ,[ ]) |- Var "x" Bool == Var "x" Bool ∧

¬((thy ,[ ]) |- Var "x" Bool == Var "y" Bool)

Any theory with a model is consistent, as the following lemma demonstrates.

⊢ is set theory mem ⇒

∀ thy . theory ok thy ∧ (∃ i . i models thy)⇒ consistent theory thy
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We can prove the lemma by appeal to soundness: if the sequent equating two

different variables were derivable, it would be valid (by soundness), and since the

theory has a model it would be true in that model under every valuation. But it

is not true under the valuation that sends Var "x" Bool to True and Var "y" Bool

to False, so it cannot be derivable. As for the sequent equating equal variables,

it is derivable as an instance of the REFL rule.

Now to show that hol ctxt and all its non-axiomatic extensions are consistent

theories, we have only to prove that the axioms asserted in hol ctxt have a model.

I show that each of the axioms is consistent by proving: if the axiom is asserted

in a theory that has a model, there is an extended interpretation that models the

resulting theory. (This is the same idea as was formalised for sound update, which

I do not reuse since it only applies to a single update).

At this point, let us drop the convention of eliding the is set theory mem

assumption from our theorems, to make clear which of the axioms depend on

which facts about the set theory.

The semantics of the axiom of extensionality is true because set-theoretic

functions are extensional, and HOL functions are interpreted as set-theoretic

functions. No constants are introduced, so the interpretation does not need ex-

tending.

⊢ is set theory mem ⇒

is std sig (sigof ctxt)⇒

∀ i . i models (thyof ctxt)⇒ i models (thyof (mk eta ctxt ctxt))

For the axiom of choice, the soundness theorem asserts existence of a model of

the context extension produced by mk select ctxt, presuming the original context

has a model, does not already define "@", and correctly interprets implication.
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The theorem is as follows

⊢ is set theory mem ⇒

"@" /∈ domain (tmsof ctxt) ∧ is implies sig (tmsof ctxt) ∧

theory ok (thyof ctxt)⇒

∀ i .

i models (thyof ctxt) ∧ is implies interpretation (tmaof i)⇒

∃ i ′.

equal on (sigof ctxt) i i ′ ∧

i ′ models (thyof (mk select ctxt ctxt))

To prove this theorem, we need to provide an interpretation of the Hilbert choice

constant, "@", that satisfies the axiom: given a predicate on some type it should

return an element of the type satisfying the predicate if one exists, or else an

arbitrary element of the type. A suitable interpretation can be constructed using

the choice operator in the meta-logic, that is, the logic of HOL4 (whose properties

imply the set-theoretic axiom of choice, as shown at the end of Section 5.2.1).

For the axiom of infinity, the statement of the soundness theorem follows essen-

tially the same structure as for the axiom of choice, except it uses mk infinity ctxt

instead of mk select ctxt and assumes the set-theoretic axiom of infinity. Addi-

tionally, there are more assumptions about the context—that it contains certain

constants, and does not already contain others—so we can define ONE ONE and
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ONTO correctly. The theorem is as follows:

⊢ is set theory mem ∧ (∃ inf . is infinite mem inf )⇒

theory ok (thyof ctxt) ∧ "ONTO" /∈ domain (tmsof ctxt) ∧

"ONE_ONE" /∈ domain (tmsof ctxt) ∧ "ind" /∈ domain (tysof ctxt) ∧

is implies sig (tmsof ctxt) ∧ is and sig (tmsof ctxt) ∧

is forall sig (tmsof ctxt) ∧ is exists sig (tmsof ctxt) ∧

is not sig (tmsof ctxt)⇒

∀ i .

i models (thyof ctxt) ∧ i models (thyof ctxt) ∧

is implies interpretation (tmaof i) ∧ is and interpretation (tmaof i) ∧

is forall interpretation (tmaof i) ∧

is exists interpretation (tmaof i) ∧ is not interpretation (tmaof i)⇒

∃ i ′.

equal on (sigof ctxt) i i ′ ∧

i ′ models (thyof (mk infinity ctxt ctxt))

To prove this theorem, we need to provide an interpretation of the type of in-

dividuals in such a way that the axiom of infinity is satisfied. We can pick the

infinite set inf whose existence is assumed. Then proving the theorem is simply

a matter of calculating out the semantics and observing that the axiom holds

because the set is infinite.

Having proved the soundness of each axiom separately, we can put them

together within a single context and prove soundness for it and all its extensions

(as long as they do not introduce further axioms). Recall the definitions of the

contexts that assert the axioms:

fhol ctxt = mk select ctxt (mk eta ctxt (mk bool ctxt init ctxt))

hol ctxt = mk infinity ctxt fhol ctxt

We obtain the following results by combining the soundness theorems for the

three axioms presented in this section with the result from Section 6.3.2 about
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theory extensions that do not add any further new axioms.

⊢ is set theory mem ⇒

∀ ctxt .

ctxt extends fhol ctxt ∧

(∀ p. member (NewAxiom p) ctxt ⇒ member (NewAxiom p) fhol ctxt)⇒

theory ok (thyof ctxt) ∧ ∃ i . i models (thyof ctxt)

⊢ is set theory mem ∧ (∃ inf . is infinite mem inf )⇒

∀ ctxt .

ctxt extends hol ctxt ∧

(∀ p. member (NewAxiom p) ctxt ⇒ member (NewAxiom p) hol ctxt)⇒

theory ok (thyof ctxt) ∧ ∃ i . i models (thyof ctxt)

The order in which the extensions are made ensure that the signature and in-

terpretation assumptions of each of the soundness theorems for the axioms is

satisfied.

Combining the lemma above with the results from the beginning of this sec-

tion, the desired consistency theorems follow immediately.

⊢ is set theory mem ⇒

∀ ctxt .

ctxt extends fhol ctxt ∧

(∀ p. member (NewAxiom p) ctxt ⇒ member (NewAxiom p) fhol ctxt)⇒

consistent theory (thyof ctxt)

⊢ is set theory mem ∧ (∃ inf . is infinite mem inf )⇒

∀ ctxt .

ctxt extends hol ctxt ∧

(∀ p. member (NewAxiom p) ctxt ⇒ member (NewAxiom p) hol ctxt)⇒

consistent theory (thyof ctxt)

The free variable mem in these theorems only appears in the assumptions, but

those assumptions are of course necessary since we appealed to soundness, which

depends on mem via the i models thy relation (and ultimately the semantics of

terms and types).
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Chapter 7

A verified implementation of the

inference kernel

We have now seen that the HOL inference system, as specified by the provability

relation (|-) and the rules for updating the context, is sound and consistent.

Next, we turn our attention to producing a verified theorem prover implementing

this sound inference system. Recall that our strategy is to produce the implemen-

tation in two steps: first, we define a theorem-prover kernel as recursive functions

in a state-exception monad within the logic of HOL4, then we use an automated

proof-producing technique to translate these recursive functions into code in the

CakeML programming language.

7.1 The monadic functions

In implementations of HOL theorem provers, including the original OCaml im-

plementation of HOL Light, the kernel module defines a datatype of theorems

whose values correspond to the provable sequents of the HOL inference system.

Our theorem datatype is defined with a single constructor as follows.

thm = Sequent (term list) term

In the implementation, the theory part of a sequent is not included on the theorem

values, being instead embodied by the state of the theorem prover and the history

of computations that led it into that state. The state of the theorem prover
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consists of the following four values, which will be implemented as references in

CakeML.

state =

<| the type constants : ((string × num) list);

the term constants : ((string × type) list);

the axioms : (thm list);

the context : (update list) |>

The first three fields of the state correspond to references found in the original

OCaml implementation of HOL Light. The fourth field represents the current

context. As we saw when describing the inference system, the type constants,

term constants, and axioms can all be calculated from the context, so it is re-

dundant to include them all in the state. For efficiency, and faithfulness to the

original, we do not discard the other three references in favour of the context;

rather, we think of the context as a “ghost” variable, which we will prove is al-

ways consistent with the rest of the state but which is not actually required for

the implementation. For clarity, we leave it in the implementation rather than as

an existentially quantified variable on the correctness theorems.

The monadic functions only raise two kinds of exceptions: failure with an error

message, and, in the implementation of instantiation of type variables within a

term, a “clash” exception for backtracking when unintended variable capture is

detected.

exn = Fail string | Clash term

With the models of state and exceptions in place, we define the state-exception

monad (α M) as follows.

α result = HolRes α | HolErr exn

α M = state → α result × state

We define monadic bind as would be expected (that is, either compute with

the result or propagate the exception, and propagate the state in both cases),

and make use of HOL4’s support for do notation (as found also in Haskell) for

composition of monadic binds.

Let us look now at how the monadic functions are defined. For example, here
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is the function implementing the ASSUME rule of inference.

ASSUME tm =

do

ty ← type of tm ;

bty ← mk type ("bool",[ ]);

if ty = bty then return (Sequent [tm ] tm)

else failwith "ASSUME: not a proposition"

od

This definition uses auxiliary functions: type of tm computes the type of tm (fail-

ing on ill-typed terms), mk type (name,args) constructs a type operator (failing

if the number of arguments does not match the current signature in the state’s

type-constants reference), and failwith msg raises the Fail msg exception. We

define a function like the one above for each of the rules of inference and of def-

inition, as well as for all the auxiliary functions, following the original OCaml

implementation closely.

The monadic functions operate over the thm datatype, and re-use the under-

lying terms and types from the inference system. What we prove about them is

that every computation preserves invariants on the values being computed. Im-

portantly, the invariant on theorem values states that they are provable within

the HOL inference system. The full list of invariants used, each of which is

parametrised by the current context, is given below.

TYPE ctxt ty ⇐⇒ type ok (tysof ctxt) ty

TERM ctxt tm ⇐⇒ term ok (sigof ctxt) tm

THM ctxt (Sequent h c) ⇐⇒ (thyof ctxt ,h) |- c

STATE ctxt state ⇐⇒

ctxt = state.the context ∧ ctxt extends init ctxt ∧

state .the type constants = type list ctxt ∧

state .the term constants = const list ctxt

The STATE invariant requires the current context to be a valid extension (of

init ctxt). Thus preserving the STATE invariant entails only making valid updates
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to the context.

For each monadic function, we prove that good inputs produce good output.

For example, for the ASSUME function, we prove that, if the input is a good term

and the state is good, then the state will be unchanged on exit and if the function

returned successfully, the return value is a good theorem:

⊢ TERM ctxt tm ∧ STATE ctxt s ∧ ASSUME tm s = (res ,s ′)⇒

s ′ = s ∧ ∀ th. res = HolRes th ⇒ THM ctxt th

This theorem is proved by stepping through the definition of ASSUME, and, at

the crucial point where a Sequent value is created, observing that the assumptions

for the ASSUME clause of the provability (|-) relation are satisfied, so the THM

invariant holds.

We prove a similar theorem for each function in the kernel, showing that they

implement the HOL inference system correctly. As another example, consider the

rule for constant specification, which may update the state. We prove that the

new state still satisfies our invariants, as does the returned theorem.

⊢ THM ctxt th ∧ STATE ctxt s ⇒

case new specification th s of

(HolRes th ,s ′) ⇒ ∃ upd . THM (upd ::ctxt) th ∧ STATE (upd ::ctxt) s ′

| (HolErr exn,s ′) ⇒ s ′ = s

7.2 Producing CakeML

The monadic functions constitute a shallow embedding of a theorem-prover-kernel

implementation, because they are functions whose semantics is given implicitly

by HOL (as implemented by HOL4): consider the fact that the ASSUME function

has type term → thm M. In this section, we turn to production of a deep em-

bedding of the same functions, with semantics given explicitly as the operational

semantics of the CakeML programming language. In the deep embedding, the

ASSUME function is a piece of syntax; its type is dec, that is, a CakeML decla-

ration. Furthermore, since CakeML supports references and exceptions directly,

the functions no longer need to be monadic.

We produce the deep embeddings from our shallow embeddings automatically,

using the proof-producing translation technique described in Chapter 2. The
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result of translation is syntax and a certificate theorem. For example, for the

monadic ASSUME function, we obtain the following syntax (shown as abbreviated

CakeML abstract syntax):

⊢ nth element 99 ml hol kernel decls =

Dlet (Pvar "assume")

(Fun "v3"

(Let (Some "v2") (App [Var "type_of"; Var "v3"])

(Let (Some "v1") (App [Var "mk_type"; Con None [... ... ; ... ]])

(If (App Equality [Var "v2"; ... ... ])

(Con "Sequent" [Con "::" [... ... ; ... ]; Var "v3"])

(Raise

(Con "Fail"

[Lit (StrLit "ASSUME: not a proposition")]))))))

The same code pretty-printed in CakeML concrete syntax:

fun assume v3 =

let val v2 = type_of v3

val v1 = mk_type ("bool",[])

in

if (v2 = v1)

then (Sequent([v3],v3))

else (raise Fail("ASSUME: not a proposition"))

end;

The meaning of the declaration above is specified by the operational semantics

of CakeML. The certificate theorem produced by translation connects evaluation

of the declaration to the monadic function ASSUME:

⊢ DeclAssum (Some "Kernel") ml hol kernel decls env tys ⇒

EvalM env (Var "assume")

((PURE TERM TYPE −→M HOL MONAD THM TYPE) ASSUME)

Here, DeclAssum mn decls env tys means that (env ,tys) is the environment (of
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declared values and types) obtained by evaluating the list decls of declarations

within a module mn; and, EvalM env exp P means that evaluation of the ex-

pression exp in environment env terminates and produces a result satisfying the

refinement invariant P . In the theorem above, the refinement invariant takes

the form (A −→M B) f , which specifies a closure that, when applied to an input

value satisfying A, terminates and produces an output value, which will satisfy

B , according to the monadic function f .

To understand the guarantee provided by the certificate theorem, let us un-

pack the refinement invariant a little further (as we did in Chapter 2). The thing

to remember is that the refinement invariants specify the relationship between cer-

tain HOL terms (values in the shallow embedding) and deeply-embedded CakeML

values. For example, the following fact demonstrates how the THM TYPE invari-

ant relates values of type thm to CakeML values (ConV name args denotes a

CakeML value made from application of a CakeML constructor):

⊢ ListTy TERM TYPE [ ] v1 ∧ TERM TYPE tm v2 ⇒

THM TYPE (Sequent [ ] tm)

(ConV ("Sequent",TypeId (Long "Kernel" "thm")) [v1; v2])

Here, we have CakeML values, v1 and v2, that are related by the refinement

invariants for terms (and lists of terms) to the empty list and a term tm, and

they are used to put together a CakeML value that is related to the theorem

Sequent [ ] tm. The operators PURE and HOL MONAD extend these refinement

invariants to also relate the CakeML store (that is, the contents of references)

and result (normal termination or raised exception) to the corresponding parts

of the state-exception monad. (PURE lifts non-monadic values into the monad

while HOL MONAD works directly on a monadic value.)

Finally, (A −→M B) f is the refinement invariant for monadic functions as ex-

plained earlier. Thus using the certificate theorem for ASSUME we can prove in

CakeML’s operational semantics that the return value of any successful applica-

tion of the deeply-embedded assume function will be related by the THM TYPE

invariant to the corresponding application of the monadic ASSUME function.

And, as we saw in the previous section, the result of applying the monadic

ASSUME function is related by the THM invariant to a sequent in the sound

inference system (|-).
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There are certificate theorems like this for every function in the CakeML

implementation of the HOL Light kernel. It is on that basis that I make the claim

that the kernel only produces theorem values that correspond to true sequents

according to the semantics of HOL.

7.3 Compiling and packaging the kernel

By producing certificate theorems for the kernel functions, we have applied the

first step of proof-grounded compilation to the kernel. The result of the first step

is an implementation of the kernel in CakeML. The remaining two steps are to

use evaluation in the logic to produce a compilation theorem, and then to use the

compiler correctness theorem to verify the result of compilation. The result will

be a verified implementation of the kernel in machine code.

The story for the kernel is slightly complicated by the fact that we only have

certificate theorems for each kernel function, but ultimately want to package and

compile the whole kernel as a single CakeML module. The correctness theorem

for this module will need to capture the idea that any user code that runs after

the kernel has been declared cannot produce a false theorem value, since the only

way to produce theorem values is via the kernel. The precise formulation, and

proof, of this correctness theorem is not complete, but is on the roadmap for the

CakeML project over the next year.

Finally, to achieve self-verification, we need to replay the final overall proof

of correctness for the machine-code implementation of the theorem prover in the

verified theorem prover itself. Doing so is also future work, but the strategy is to

extract the proof from HOL4 using OpenTheory and write a simple OpenTheory

reader above the verified kernel. Although the technology to follow this strategy

exists, the challenge will be scaling it up to the task. I anticipate that the

OpenTheory proof of the implementation’s correctness will be several hundreds

of gigabytes large, and very slow both to extract and to replay.

119



120



Chapter 8

Related work

This dissertation describes work in two parts. The first concerns a verified com-

piler that can bootstrap, and the second concerns formalising a logic and, using

the verified compiler, producing a verified theorem prover. In this chapter, I give

an overview of the related work first to verification of compilers and bootstrapping

and second to verification of theorem provers.

Our focus has been on end-to-end correctness, and, taking the two parts

together, the aim is end-to-end verification of a complete application (the theorem

prover). End-to-end correctness is a longstanding target in the area of formal

verification. A substantial effort, with a similar focus, was made in the late

1980’s by Computational Logic, Incorporated [11, 56], to produce a verified stack

from applications down to hardware (i.e., below the machine code that has been

our lowest level so far). Moore [57] writes that this project was very ambitious

for its time, and the results fall short on realism and usefulness; however, he

also notes that “the CLI stack was a technology driver”, and indeed the now

industrial-strength theorem prover, ACL2 [34], was one of its products. I hope

that CakeML will form the basis of a more satisfying verified stack, and that it

continues to also be a technology driver for the HOL theorem proving community.

Hales [22] gives a nice overview, from the perspective of trusting a theorem prover,

of the verified stack provided by CakeML.
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8.1 Formalising compilation

In this section I review work relevant to Part I of this dissertation. I start with

verified compilation, especially with a view to end-to-end correctness, and then

look at related work on bootstrapping in this context.

8.1.1 Verified compilers

CompCert [46] is foremost amongst verified realistic compilers, being a compiler

for C that includes verified optimisations and is deployed in the real world. Recent

improvements to CompCert include validated parsing [32] and there are versions

with the ability to do (verified) separate compilation [75]. CompCert is an algo-

rithm that is verified in Coq, and the implementation of the compiler is extracted

from Coq as an OCaml program before it is compiled and run. The correctness

theorem covers the compilation algorithm for compiling whole programs down to

assembly code. The trusted computing base for running the compiler includes

the OCaml compiler and runtime and other build tools.

Unfortunately, it is not possible to immediately apply proof-grounded boot-

strapping to CompCert to obtain a correctness theorem about its implementation.

The reason is that the source and implementation languages of the compiler are

very different, so it does not satisfy the second prerequisite for bootstrapping:

that the compiler is written in its own source language. It may be possible to

create a kind of proof-producing translation from Coq to C to fill this gap and en-

able proof-grounded bootstrapping of CompCert, but such a tool would be bridg-

ing a much larger gap (from Coq to C) than is bridged by the proof-producing

translator from HOL to CakeML.

Considering verified compilers now for higher-order functional languages, the

Lambda Tamer project [13] precedes our work on CakeML. Lambda Tamer in-

cludes a compilation algorithm, verified in Coq, from an ML-like language to an

idealised assembly language. The emphasis is on clever choices of representations

for formalisation that lead to highly automatic proofs: additional language fea-

tures were added to the core proof of correctness with little manual intervention.

The definition of the compiler uses dependent types, which are not present in its

source language. To bootstrap this compiler one would need a more sophisticated

proof-producing translator that can translate away dependent types.
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Another example of verified compilation for a high-level language came out

of the VerifiCard project [9], aimed at formalising a subset of Java as used on

smartcards. This work predates CompCert, and highlighted the approach of gen-

erating executable code from a verified algorithm by using the “code extraction”

facility of the theorem prover (in their case, Isabelle/HOL). While it provides a

convenient route for producing executable code, which can further be integrated

with code developed separately, this approach requires trust in the code extrac-

tion facility and in the compiler used on the extracted output. By contrast,

with proof-grounded bootstrapping one need only trust “extraction” (really just

printing) of machine code, where preservation of semantics is a simpler claim.

Returning to the theme of end-to-end verification, there have been several

impressive projects developed recently with broadly similar goals to the original

CLI stack endeavour. Chlipala’s Bedrock [14] framework emphasises building

end-to-end proofs from high level languages down to assembly code using mod-

ular interfaces, and comes with a great deal of proof automation. The specifi-

cations, proofs, and automation are all implemented in the Coq theorem prover.

A recent example of the use of Bedrock covers end-to-end verification of web

applications [15]. Gu et. al. [21] describe another modularity-focused approach

to end-to-end correctness, also in Coq; their main application example is an

operating-system kernel.

The Verified Software Toolchain [2, 3] is also geared towards end-to-end cor-

rectness. The particular approach is to build a program logic, in Coq, above

the subset of C accepted by CompCert, enabling verification of source-level C

programs that can then be compiled by CompCert. Since the program logic,

Verifiable C, is proved sound with respect to CompCert C’s semantics, properties

proved about the source programs carry down to the generated assembly code.

Turning now to techniques for compiler verification, I mentioned in Chapter 3

that in verifying the CakeML compiler a choice was made to stick to highly syn-

tactic relations to encode the invariants and correctness theorems for compilation

between intermediate languages. In other words, I use a different relation for

each compiler phase and it generally uses the specific translation made by the

compiler in its definition without resorting to a more semantic correspondence.

On the other end of the spectrum, there has been some substantial work on devel-

oping logical relations for compiler verification based on semantics, often highly

type-directed, which promise a more compositional approach to compiler verifi-
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cation and better support for things like separate compilation, linking, and the

inclusion of manually verified code. Examples include work [8, 26, 27] by Benton,

Hur, Dreyer, and others.

The closest work to the CakeML compiler and theorem prover is the veri-

fied Milawa theorem prover that runs on a verified Lisp compiler on the verified

Jitawa runtime [61]. As with CakeML, the correctness theorems for Milawa and

Jitawa are about implementations in machine code. However, the Lisp compiler

used in Jitawa is not bootstrapped; rather, the whole compiler is verified using

the decompilation techniques that in CakeML were used only for smaller libraries

(garbage collector, lexer, etc.). The machine-code verification techniques (decom-

pilation in particular) used in verifying the implementation of CakeML bytecode

were also used recently in binary validation of the seL4 verified operating system

microkernel [36]. Other work on machine code verification includes Jensen, Ben-

ton, and Kennedy’s [31, 35] work that makes heavy use of dependent types for

modelling machine code, and develops a higher-order separation logic above the

model which is in some ways similar to Myreen’s machine-code Hoare logic [58]

used in decompilation.

8.1.2 Verified bootstrapping

Bootstrapping of verified compilers is less common in the literature than verified

compilation in general. However, it is not without precedent.

An early reference can be found in work on the Verifix project (e.g., Goerigk

and Hoffman [19]), which describes a bootstrapping process that is closer to tra-

ditional compiler bootstrapping than the proof-grounded bootstrapping method

described in this thesis: the bootstrapping is used to introduce implementations

of new language features into the compiler and thus there are many phases of

bootstrapping. Goerigk and Hoffman’s approach includes manual review of the

output of bootstrapping, and considers trusting execution inside the theorem

prover risky. I take the opposite view, and consider execution of the compiler in-

side the logic a much more trustworthy process than execution outside the logic

followed by manual review. The Verifix view may have been influenced by the

state of the art of theorem provers at the time, which may not have supported

efficient execution that nevertheless produces theorems checked by a small kernel.

More recently, Strub et. al. [76] have proposed self-certification of type check-
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ers, and demonstrated it with a bootstrapping type checker for F* (itself imple-

mented in Coq). The idea is to write a type checker in the type system whose

specifications it checks, and to give the type checker the specification that it

correctly implements the type system. Then, run the type checker on itself to

produce a certificate and check that certificate in the theorem prover. The point

is to only check a single application of the type checker (application to itself)

in the theorem prover and thereafter use the verified typechecker without need

of the theorem prover. This is analogous to proof-grounded bootstrapping (of a

compiler): we execute the compiler once (on itself) in the logic and thereafter

can run the verified machine-code implementation outside of the theorem prover.

8.2 Formalising logic

The themes of the work described in Part II of this disseration are formalising

(and mechanising) the syntax and semantics of logic, and verifying (or producing

verified) theorem-prover implementations. In this section, I review prior work in

these areas, factored by the particular logic under consideration.

8.2.1 Higher-order logic

There has been prior work on producing a formal (mechanised) specification of the

semantics of HOL. The documentation for HOL4 includes a description, originally

due to Pitts [70], of the semantics of HOL. However, this description is given in

the traditional semiformal style of the mathematical logic literature. In the early

1990s, the development of the ProofPower logical kernel was informed by a formal

specification in ProofPower-HOL of the proof development system, including a

formalisation of the HOL language, logic and semantics. However, no formal

proofs were carried out. The present work found several errors in the ProofPower

formalisation of the semantics (all now corrected [4]). Pioneering work by von

Wright [80] includes a mechanised formalisation of the syntax of HOL and its

inference system (though no semantics). As mentioned in Section 5.1, Harrison’s

work [23] on a proof in HOL Light of the consistency of the HOL logical kernel

without definitions formed the starting point for the present work (initially, [67,

40]).

Rather than formalising a specification of axiomatic set theory (which can
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then be instantiated), Harrison [23] constructs his model of HOL in HOL at the

same time as proving its requisite properties. In fact, his proof scripts allow one

to choose (by rearranging comments) between an axiomatic formalisation of the

set theory with an axiom of infinity or a conservative definition of the set theory

without that axiom. More specifically, with the first option, he declares a new

type, intended to be the universe of sets and asserts an axiom about its size,

while in the second option he defines the type to be countably infinite. He then

(in both options) uses what amounts to a type system (Harrison calls the types

“levels”) to define a coherent notion of membership in terms of injections into

the universe. As a result, his sets are not extensional since there are empty sets

at every level; because of this technicality his construction does not satisfy our

is set theory.

Under the conservative option, Harrison still achieves a model without ax-

iomatic extensions for HOL without the axiom of infinity, since he can prove his

size axiom on a construction similar to our V mem above. The disadvantage is

that the set-theoretic axiom of infinity is provably false when one chooses the

conservative option. In our approach, the polymorphism means that the set-

theoretic axiom of infinity is unprovable rather than false, and so it is meaningful

to prove theorems with that axiom as an assumption.

Harrison’s use of levels is motivated by the desire to assert just one axiom: the

cardinality property of the universe. With only this property, levels are required

to distinguish different embeddings into the universe (e.g., to distinguish power-

sets from cross products). Our approach with an explicit membership relation

gives us a specification where these distinctions are explicit. We do not need to

appeal to a theory of cardinalities in the meta-logic, since the assumptions we

make (is set theory mem ∧ ∃ inf . is infinite mem inf ) mirror the standard axioms

of Zermelo set theory.

Krauss and Schropp [38] have formalised a translation from HOL to set the-

ory, automatically producing proofs in Isabelle/ZF [82]. Their motivation was to

revive Isabelle/ZF by importing Isabelle/HOL proofs into it, but this task ne-

cessitates formalising an interpretation of HOL in set theory for which they use

the standard approach (as we did) sending types to non-empty sets and terms to

elements of their types. Although the Isabelle/HOL logic is slightly more com-

plicated than the HOL we described, due to type classes and overloading, they

remove the extra features in a preprocessing phase. They handle type defini-
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tions and (equational) constant definitions by making equivalent definitions in

Isabelle/ZF, which supports Isabelle’s general facility for definitions.

8.2.2 Dependent type theory

Barras [7] has formalised a reduced version of the calculus of inductive construc-

tions, the logic used by the Coq proof assistant [10], giving it a semantics in set

theory and formalising a soundness proof in Coq itself. The approach is modular,

and Wang and Barras [81] have extended the framework and applied it to the

calculus of constructions plus an abstract equational theory.

Anand and Rahli [1] have formalised the semantics of NuPRL’s type theory

and proved soundness for its sequent calculus. The mechanisation is carried out

within Coq. The semantics of NuPRL is rather more complex than of HOL,

so its formalisation is impressive; on the other hand, they do not yet go so far

as producing a verified implementation, but allude to the interesting possibility

of producing it directly from the proof term for the soundness of the inference

system.

8.2.3 First-order logic

Myreen and Davis [62] formalised Milawa’s ACL2-like first-order logic and proved

it sound using HOL4. This soundness proof for Milawa produced a top-level the-

orem which states that the machine-code which runs the prover will only print

theorems that are true according to the semantics of the Milawa logic. Since

Milawa’s logic is weaker than HOL, it fits naturally inside HOL without encoun-

tering of the delicate foundational territory necessitating our is set theory mem

and ∃ inf . is infinite mem inf assumptions.

Other noteworthy prover verifications include a simple first-order tableau

prover by Ridge and Margetson [72] and a SAT solver algorithm with many

modern optimizations by Marić [50].

8.2.4 Comparison to Stateless HOL

The semantics (and inference system) described in Chapters 5 and 6 cleanly

separates the semantics of types from the semantics of terms. It also uses an

explicit theory, with an interpretation, to track which constants are defined, what
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their semantics are, and the axioms. By contrast, Stateless HOL [83] puts types

and terms in mutual recursion and has no separate theory parameter. Stateless

HOL constants carry their definitions as syntactic tags (rather than in a separate

signature), and the semantics interprets those tags directly (instead of using a

separate interpretation parameter). My initial work (with others) on formalising

HOL started with Stateless HOL, and is described in an ITP paper [40]. By

keeping the theory and its interpretation separate in the present work, we gain

the following advantages:

• The semantics of types and terms are no longer in mutual recursion, and

are simpler to understand individually.

• We can more naturally use functions (typesem and termsem) for the seman-

tics, instead of mutually recursive relations.

• Specific parameters to support the axioms of choice and infinity are no

longer required within the semantics. Instead, they are handled generically

by the type and term interpretations, applied to "ind" and "@".

• We can support new axioms, beyond the initial three axioms asserted in

HOL Light, in the same manner as the initial ones; the initial axioms are

not baked into the semantics.

• The semantics of constants defined by new specification now properly cap-

tures the abstraction intended to be provided by that rule. The semantics

are not tied to the specific witnesses given when the definition is made.

In the Stateless HOL semantics, the semantics of a defined constant needs

to be given in terms of the tag on the constant which provides the witnesses.

By contrast in the current setup, the witnesses are only used in proving that

the rule is sound (see Section 6.3.2). Since we now have an explicit inter-

pretation of the constants, it can vary over many possible interpretations,

constrained only by the axiom produced by the definition.

The primary motivation for Stateless HOL is the ability to “undo” defini-

tions (this is achieved by soundly allowing simultaneous distinct definitions of

constants with the same name). We did not take advantage of this ability in

the verified implementation built under a Stateless HOL semantics [40], since we
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first translated to a stateful implementation. If one wanted to support undoing

definitions, Stateless HOL is still an option worth consideration, but based on

the experience formalising it, I would first consider adding undo support to the

context-based approach.

Additional advantages of Stateless HOL are that its kernel is purely functional,

and therefore, one might think, would be easier to understand theoretically. After

formalising Stateless HOL, I would now claim that the difficulty of verifying a

stateful implementation (as in Section 7.2) is smaller than the difficulty of giving

semantics to the mutually recursive datatypes of Stateless HOL especially when

the rules of definition are included.

As an alternative approach to purely functional kernels, the OpenTheory [28]

kernel achieves purity by a careful redesign of the interface to the kernel while

maintaining the traditional idea of a context-extending mechanism for making

definitions. The semantics of an OpenTheory article is specified via a stateful

virtual machine, but the higher-level operations on the resulting OpenTheory

packages are pure, and names are carefully managed, so definitions never acci-

dentally collide or go out of date. I expect to be able to verify an OpenTheory

proof checker against the HOL semantics of Chapter 5.
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Chapter 9

Conclusion

In this chapter, we return to the notion of trusted computing base (TCB) and I

examine how well the verified compiler for CakeML from Part I does from this

perspective. Then, I summarise the results of Part II on the verified theorem

prover for HOL implemented using CakeML. Finally, I describe planned future

work for the CakeML project.

Unverified compilers usually contain bugs [84]. To reduce dependence on

unverified tools, I suggest bootstrapping a verified compiler—compiling it with

itself—in a proof-grounded way so that the correctness theorem applies to the

final implementation that runs without further compilation. The proof-grounded

bootstrapping method is mostly automatic. It uses proof automation techniques

(proof-producing translation from shallow to deep embeddings, and evaluation

in the logic) to push hard-won results about the correctness of compilation algo-

rithms down to the level of real implementations.

The theorems that result from proof-grounded bootstrapping let us package a

verified compiler implementation inside a larger machine-code program and prove

a correctness theorem about the combined system. We used bootstrapping to

eliminate compilation from the trusted computing base (TCB) of a read-eval-print

loop (REPL) for CakeML, a machine-code program that contains the verified

compiler for CakeML and calls it repeatedly at runtime.

131



9.1 Trusted computing base

What is in the trusted computing base for the CakeML REPL? The correctness

theorem for the final implementation, Theorem 9, is written in terms of the

semantics of x86-64. It has an assumption that the x86-64 machine starts in

a correctly initialised state, and concludes that its behaviour implements the

semantics of the CakeML REPL. To run the REPL implementation, we need to

create the initial state, then we simply run the verified machine code. The TCB,

therefore, consists of three things:

1. Verification: the software that checked the proof of Theorem 9, and our

method for extracting the verified code, ReplX64, from the theorem state-

ment.

2. Initialisation: the code used to create an initial machine state that satisfies

the assumption of Theorem 9.

3. Execution: the hardware and operating system that runs the verified im-

plementation. Our x86-64 semantics needs to capture the execution envi-

ronment accurately.

What have we removed from the TCB by bootstrapping and packaging the com-

piler? Without bootstrapping, there would have been an additional item, after

initialisation, about compilation from a verified algorithm to an executable, and

the execution item would additionally include the language runtime. Without

packaging, if we had merely verified a standalone compiler, there would have

been additional initialisation and execution steps for running the output of the

compiler. Thus, we have succeeded in removing trust in the compiler and runtime

for running CakeML applications.

Now let us look more closely at what is left in the TCB, starting at the

bottom with the execution environment. The x86-64 semantics we use is naive

in two ways:

1. The semantics only covers user-mode instructions, and only a subset of

them. This is particularly important for I/O: we simply assume it is possible

to make system calls to read and write characters.

2. The semantics has a flat view of memory. We do not model virtual memory.
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Trust in hardware is unavoidable, but it can be reduced with more accurate

models. The hardware model can be made more accurate independently of the

bootstrapping technique, which sits above it.

What we require of the operating system (if any) and memory subsystem

is transparency: we leave them out of formal assumptions and thereby trust

them to keep up the illusion of running on the hardware directly and without

virtual memory. These items, together with initialisation code, represent realistic

opportunities for more accurate modelling.

The initialisation code represents work traditionally done by a boot loader,

or by a linker and loader. In theory, we could produce a boot loader to initialise

a machine with the CakeML REPL implementation, which would then run “on

bare metal”. In practice, we write our initialisation code in a small (30 SLOC)

C wrapper program, which includes the CakeML REPL machine code as inline

assembly. We compile this C program with standard (unverified) tools. In this

setup, the initialisation part of the TCB includes the C compiler and linker, and

the operating system’s loader. While we have theoretically avoided trusting a C

compiler, we would need to formalise and verify linking and loading to produce

a practical alternative to using a C compiler for initialisation.

Finally, we trust the theorem prover, and its execution environment (compiler,

runtime, etc.), that we use to produce our verified implementation and to check

its correctness theorem. Trust in the theorem prover is a methodological hazard

of formal verification. However, it is not as bad as it sounds, because the real

products of verification are proofs that can be checked independently. We must

trust a theorem prover, but we are not constrained to a single one.

The question is again of practicality. In theory, we can export our proofs

from HOL4 using OpenTheory [28] or similar technology, to be checked indepen-

dently by OpenTheory itself or another theorem prover such as HOL Light, or

indeed the verified theorem prover described in Part II. Such proofs are the se-

quences of primitive inferences that pass through the LCF-style kernel of HOL4.

In practice, the proofs generated by automation like evaluation in the logic and

translation from shallow to deep are extremely large and would require improved

infrastructure to export. Possible directions for making independent checking

more practical include compressing proofs as or after they are exported, or ex-

porting proofs at intermediate levels rather than expanding everything out as

primitive inferences. The latter demands greater sophistication from the inde-
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pendent checker.

Proofs about realistic software are too large to be checked by hand. But, as we

have seen in Part II, the required machine assistance can itself be verified. Specif-

ically, we have considered verifying an implementation of a theorem prover and

proving that it only produces theorems that are true according to the semantics

of the logic. We have also considered self-verification, that is, a theorem prover

that can verify its own implementation. Although such a self-verifying prover is

an interesting and impressive achievement it does not eliminate our need to trust

something altogether. There always remains the possibility that a self-verifying

theorem prover is unsound in a way that causes it to incorrectly verify itself.

Ken Thompson, in his Turing award lecture, Reflections on Trusting Trust [78],

describes a method by which a Trojan horse—deliberate mis-compilation of cer-

tain programs—can be inserted into a bootstrapped compiler while leaving no

trace in the compiler’s source code. The trick is to make the compiler introduce

the Trojan horse, and code for introducing the Trojan horse, whenever it recog-

nises that it has been given its own source code as input. Can a similar trick

be used to introduce a Trojan horse into a compiler produced by proof-grounded

bootstrapping? The crux of Thompson’s example is that the compiler executable

used to re-compile the compiler is already contaminated; in proof-grounded boot-

strapping we do not use a compiler executable to compile the compiler, rather,

we use evaluation in the logic of the theorem prover. Thus, to insert a Trojan

horse we would need to contaminate the theorem prover to recognise when it is

being asked to evaluate our compiler in the logic, or, perhaps simpler, when it is

being asked to export the result of bootstrapping at which point it could substi-

tute malicious machine code instead. Thompson’s example simply reinforces the

need to trust the verification tools we use, and is mitigated as explained above

by independent checking of proofs.

9.2 Verified theorem prover

A theorem prover is a computer program whose correctness can be understood

at many levels. At the highest level, we focus on the logic and its semantics, and

on the particular inference system, which should be sound with respect to the

semantics and therefore consistent. At the next level down, we consider whether
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the inference system is implemented correctly, that is, whether the (abstract)

computations performed by the theorem prover correspond to construction of

derivations in the inference system. The remaining levels all concern correct im-

plementation of those computations at more concrete levels of abstraction, from

a high-level programming language down to hardware. In Part II we have dealt

with correctness of a theorem prover for higher-order logic (HOL) spanning all the

levels between consistency of the logic itself and implementation in a high-level

programming language (CakeML), within a single mechanically-checked formali-

sation.

Part II goes further than previous work in this vein in two directions: the

coverage of the logic formalised and the concreteness of the theorem-prover im-

plementation verified. My formalisation, with full support for making extensions

to the context, now covers all of HOL as it is implemented by real theorem

provers. My implementation is a deeply-embedded program verified against the

operational semantics of a realistic programming language. On both fronts, how-

ever, the end of the line has not been reached: one might like to verify a more

sophisticated approach to contexts (such as the one implemented by Isabelle [82]),

and a more concrete implementation (for example, covering more of the execution

environment). Additionally, I have so far only verified the kernel of a theorem

prover, and would like to extend the result to a complete theorem prover, which

means formally validating the LCF design [52] by reasoning about the guarantees

provided by a protected (abstract) type in CakeML.

In constructing a formal specification of the semantics of HOL that is suitable

both for proofs about the logic and inference system, and for proofs about imple-

menting that inference system, I faced several design decisions. The main theme

of the lessons learned is to value explicitness and separation of concerns. Using an

explicit theory context gives a simpler semantics than that of Stateless HOL, as

was discussed in Section 8.2.4. Similarly, specifying the axioms of set theory with

an explicit membership relation yields a development that is easier to work with

than the theoretically equivalent approach based solely on a cardinality assump-

tion. And by specifying the set theory separately from defining an instance of

it, we obtain a conservative approach using isolated assumptions about free vari-

ables rather than global axiomatic extensions. On a smaller scale, the choice to

factor reasoning about substitution and instantiation, which is complicated with

name-carrying terms, through a separate small theory about de Bruijn terms led
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to simplifications.

Continuing the self-verification project initiated by Harrison [23] for HOL

Light, my formalisation of HOL is conducted within HOL itself. It is common to

cite Gödel’s incompleteness theorems as making it meaningless or impossible for

a logical system to be used to prove its own properties. The risk with such proofs

is that they degenerate into an uninteresting tautology. In the present work,

however, what we have done is analogous to proving the soundness of first-order

logic within a first-order formalisation of ZF set theory, which as standard logic

textbooks (e.g., Mendelson [51]) show is well-known and uncontroversial.

The theorem prover I use (HOL4) is distinct from the verified implementation

produced (in CakeML, of a kernel based on HOL Light’s kernel). The implemen-

tation of HOL4 is not itself verified; one might wonder whether we gain anything

by trusting one theorem prover to verify another of a similar (in fact lesser) com-

plexity. While I acknowledge this objection, my reply is that HOL4 can be seen

merely as a tool to help us organise the development if we consider the fact that

the proofs can be exported from HOL4 (for example, via OpenTheory [28]) for

independent checking. Thus although something ultimately needs to be trusted,

I do not require it to be HOL4. A second reply is that the exercise of developing

the formalisation leads us to clarify our thinking about the systems under con-

sideration, and, on the implementation side, uncovers the kinds of bugs that are

likely to occur in theorem provers in practice [23].

9.3 Future work

As mentioned in Section 9.1, a promising line for future work is to integrate the

correctness theorem for a packaged compiler implementation with verified tools

for linking and loading. Such an integration would let us replace the initialisation

code in the trusted computing base with a formal semantic model of linking and

loading, and our compiler would produce an executable (e.g., an ELF) verified

against this semantics rather than raw machine code. Similarly, we are consider-

ing what it would take to run the CakeML REPL as a verified user application on

the seL4 verified operating system [36] and thereby remove the operating system

from the execution part of the TCB.

Because CakeML does not support I/O primitives directly, we had to resort
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in Section 4.5 to tricks using references to give the REPL I/O at the top level.

More seriously, to mix bootstrapped and non-bootstrapped code we had to use

the subtle method of simulating two different bytecode machine states. We are

currently investigating a more straightforward approach to producing a packaged

compiler that adds both I/O and dynamic installation of new code as primitives

to the source language, thereby allowing a REPL implementation to be written

entirely in the source language.

Finally, I would like to follow through on the plan to create a self-verifying

theorem prover. Concretely, one would export the theorem asserting that the

kernel is verified and replay that proof in the verified kernel itself. Checking a

correctness proof about its own concrete implementation would be closer to self-

verification than any theorem prover has yet achieved. Of course, such a check

does not rule out the possibility that the theorem prover is not sound, because

it might be broken in such a way that it fails to detect an incorrect correctness

proof. But we would have high confidence in a theorem prover with such an ability

(alongside other evidence for soundness, like a readable, concise implementation)

and would expect the practical facility required for self-verification to be useful

for tackling more ambitious software verification challenges.
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