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Abstract

Interactive and automatic theorem proving are the two most widely used computer-
assisted theorem proving methods. Interactive proof tools such as HOL, Isabelle and
PVS have been highly successful. They support expressive formalisms and have been
used for verifying hardware, software, protocols, and so forth. Unfortunately interactive
proof requires much effort from a skilled user. Many other tools are completely automatic,
such as Vampire, SPASS and Otter. However, they cannot be used to verify large systems
because their logic is inexpressive. This dissertation focuses on how to combine these
two types of theorem proving to obtain the advantages of each of them. This research is
carried out by investigating the integration of Isabelle with Vampire and SPASS.

Isabelle is an interactive theorem prover and it supports a multiplicity of logics, such
as ZF and HOL. Vampire and SPASS are first order untyped resolution provers. The
objective of this research is to design an effective method to support higher order interac-
tive proof with any first order resolution prover. This integration can simplify the formal
verification procedure by reducing the user interaction required during interactive proofs:
many goals will be proved by automatic provers.

For such an integration to be effective, we must bridge the many differences between
a typical interactive theorem prover and a resolution theorem prover. Examples of the
differences are higher order versus first order; typed versus untyped.

Through experiments, we have designed and implemented a practical method to con-
vert Isabelle’s formalisms (ZF and HOL) into untyped first-order clauses. Isabelle/ZF’s
formulae that are not first-order need to be reformulated to first-order formulae before
clause normal form transformation. For Isabelle/HOL, a sound modelling of its type sys-
tem is designed first before translating its formulae into first-order clauses with its type
information encoded. This method of formalization makes it possible to have Isabelle
integrated with resolutions.

A large set of axioms is usually required to support interactive proofs but can easily
overwhelm an automatic prover. We have experimented with various methods to solve
this problem, including using different settings of an automatic prover and automatically
eliminating irrelevant axioms.

The invocation of background automatic provers should be invisible to users, hence
we have also designed and implemented an automatic calling procedure, which extracts
all necessary information and sends it to an automatic prover at an appropriate point
during an Isabelle proof.

Finally, the results and knowledge gained from this research are generally applicable
and can be applied to future integration of any other interactive and automatic theorem
provers.
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Chapter 1

Introduction

It has been a long time since the importance of formal verification, which uses rigorous
mathematics to formally prove properties of software and hardware, was first observed.
Since then there has been much active research going on in this field. In particular, people
have recognized the important role of computers in the process of formal verification.
Consequently, the development of automated reasoning has flourished. This dissertation
describes our research that aims to further improve the performance of computer-assisted
theorem proving. In this chapter, we demonstrate the motivation of our research. We
also give an overview of formal verification and computer-assisted theorem proving.

1.1 Formal Specification and Verification

With the rapid development of digital computers, people increasingly reply upon comput-
erized systems. These systems can be found everywhere in our daily lives: we communicate
with our friends and families sitting anywhere in the world via emails and net conferences;
we carry out online banking transactions; all households are full of electronic equipments;
aircrafts, factories and power stations are all using computer systems to control their
electronic instruments. In a bigger scale, we have seen computer systems being used as a
major component in national defence systems, on which our safety lies.

However, the reliability and trustworthiness of these computer systems cannot be
taken for granted. The computer systems (both software and hardware) are enormously
complicated, since they are built to meet real world requirements, which are themselves
complex. For instance, an application software such as OpenOffice suite has around nine
million lines of code (LOC), whereas a Linux kernel has about thirty million LOC. An
Intel P4 chip is made up of fifty five million transistors.

On the other hand, we — the designers and implementors of these systems — are not
perfect and we can easily introduce mistakes when building these large scale systems. It
is not surprising if any of these systems contains errors regardless how much effort has
been spent in the process of design and implementation.

However, the potential consequences of computer systems’ errors must not be under-
estimated. At the very least, a malfunctioning system could incur a huge financial cost.
When Intel discovered a flaw in their Floating Point Unit [57], they lost $475 million to
cost of sales and to cover replacement costs, etc. In many safety critical systems, errors
in computerized systems could even lead to lost of lives. A terrifying incident happened
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12 CHAPTER 1. INTRODUCTION

in 1996, where a mistake in the design of a radar system used by the North American Air
Defence headquarters nearly brought several countries into a war [31].

There are several approaches that aim to ensure correct designs and implementations
of complex systems, especially those safety critical systems. Among them, system testing
and formal proofs using mathematics are most widely used. However, exhaustive testing is
infeasible and thus testing alone is not adequate for safety critical systems. In comparison,
formal specification and verification is the most rigorous way to guarantee the correctness
of a system. Although a formally verified system may still contain faults, for example, if
the design is not appropriate, most of the errors can be eliminated as users are obliged to
write down all the fine details, and nothing can be swept under the carpet.

The idea of using formal methods on program design and implementation was first
proposed by computer scientists such as John McCarthy in the 1960s. Formal specification
and verification requires one to first model a system (a program or a piece of hardware)
mathematically and then write down the properties that the system should meet in terms
of mathematical assertions. Moreover, one also needs to represent the actual implemen-
tation of the system in mathematical expressions. Subsequently, the correctness of the
system is verified by proving (using mathematical deductions) the mathematical expres-
sions, which represent the implementation, satisfy the mathematical assertions, which
represent the system properties. Early work on this included the Floyd-Hoare logic in-
vented by Robert Floyd and Tony Hoare, which was specifically designed to reason about
the properties of software programs. Although formal verification was originally designed
to prove the correctness of software, it has been used widely for hardware verifications
and protocol verifications. Over the years, there has been much progress in the field of
formal methods.

1.2 Motivation of Mechanized Theorem Proving

In the early years when formal verification was advocated, all proofs were carried out
by hand. It was soon realized that proofs, especially those for large scale systems, were
lengthy and tedious. Consequently, handwritten proofs were very much error prone.

Many scientists then envisaged the use of computers to assist human proofs. In their
vision, it would be desirable if computers could provide two functions: constructing proofs
automatically and verifying the proofs carried out by human experts. There are many
problems whose proofs are tedious and complex. However, they may not require creativity
or deep thinking to be solved. These problems are particularly suitable for computers to
solve automatically. Moreover, for those problems that require insight of human experts
and thus have to be solved by humans, their proofs will be more reliable after they are
checked by computers, since any errors such as typos can be eliminated from the proof
process. More importantly, compared with human beings, computer systems are more
objective and thus less likely to be affected by wishful thinking.

The two objectives of using computers to assist human proofs led to the inventions of
two types of provers, namely automatic theorem provers and interactive theorem provers.
Since their inventions, these two types of provers have been developed continually and have
been used in many large scale verification projects. In addition to formal verifications,
theorem provers have been applied to prove mathematical problems. One of the recent
examples is the POPLmark Challenge [4], which uses theorem provers to assist the formal
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reasoning about programming languages.

1.3 Automatic Theorem Provers

Automatic provers implement various logics, among them, first-order logic is the most
widely used. Furthermore, many inference rules, which are complete for first-order logic,
have been invented to perform automatic proof search. Examples of the inference rules
are resolution and paramodulation, and tableau calculi. However, within the realm of
first-order logic, resolution is the most powerful technique and is therefore implemented
by most automatic provers.

Input to automatic provers usually has to conform to some standard format, such as
clause normal form. This means that any arbitrary formula has to be converted to this
format before they can be accepted by an automatic prover.

Examples of the automatic provers are Otter [33], Vampire [52] and SPASS [65]. Most
of these automatic provers have much in common. For instance, they are all designed to
prove one-shot problems. They all require little human guidance in a proof search: most
of the time, a user is only required to submit a goal with a collection of relevant axioms
and then hit the button to start the proof process. Once a proof starts, usually nothing
can be done to influence the proof search. However, depending on the techniques used,
there may be certain amount of work that may be carried out before the proof process
starts. For instance, most of the provers provide numerous settings that can be specified
by users. The settings are usually essential for the proof search performance. Most of
the automatic provers suffer from a same problem — combinatorial explosion, which has
been a major limitation for them.

1.4 Interactive Theorem Provers

Compared with automatic theorem provers, a very different approach to assist human
constructing proofs is to use interactive provers. With an interactive prover, a user usu-
ally carries out a proof by giving directions to a prover on how to proceed with a proof.
Although interactive provers are not automatic, and are not expected to find proofs of
goals automatically, they can significantly contribute to the formal verification procedure
by checking the proofs carried out by human experts and by storing and managing those
already proved lemmas. Some interactive provers also provide certain amount of automa-
tion, therefore they are frequently called semi-automatic provers. Examples of interactive
provers are HOL [23], Isabelle [38], Nuprl [16], PVS [40], the ΩMEGA system [58], Coq [26]
and KIV [49].

Interactive provers usually base their specification languages on very expressive logics,
such as higher-order logic. Unlike first-order logic, which is untyped, higher-order logic
introduces types such as boolean types, function types and more complicated compound
types. Moreover, unlike first-order logic, higher-order logic allows quantification over
boolean and function values. The rich formalism of higher-order logic makes it easier and
more natural to model software and hardware and to express the desired properties.

Moreover, the inference rules implemented by interactive provers include the natural
deduction calculus and the sequent calculus, which are significantly different from the
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inference rules, such as resolution, implemented by automatic provers. As a result, inter-
active provers do not impose any constraint on the format of their input: a formula can
have any arbitrary form.

1.5 Using Automatic Provers to Support Interactive

Proofs

Performing rigorous mathematical proofs on the correctness of a system design and im-
plementation can increase one’s confidence in the system. Proofs may be even more
important for safety-critical systems. Moreover, computer-assisted proofs give significant
advantages over hand-written proofs since they can help reduce possible errors in proofs
and relieve humans of tedious proof steps. When carrying out mechanized formal specifi-
cation and verification, one essentially faces two options, he can use either an interactive
prover or an automatic prover.

1.5.1 Automatic Provers or Interactive Provers?

Compared with interactive provers, automatic provers are completely automatic and ask
for little user attention in guiding the proof search. However, formal verification, especially
of those large scale systems, has several major requirements on theorem provers, which
are not met by automatic provers. In comparison, interactive provers can easily satisfy
those requirements.

First, formal verification usually requires the logics of theorem provers to be expressive
and rich. However, many automatic provers, including resolution provers, are based
on first-order logic, whose expressiveness is inadequate. A central technique used in
verification is induction, either simple mathematical induction or general induction on
a data structure, which is not offered by automatic provers. In contrast, the logics of
interactive provers (such as higher-order logic) are much more expressive: we can easily
define complex data structures and prove properties that have to be satisfied by a system
using induction principles. There is always a trade-off between expressiveness of a logic
and its automation power.

Second, a system verification typically involves proofs of hundreds of theorems, which
need to be stored after being proved, so that they can be retrieved to support a later
part of a proof. Moreover, a verification may run over several sessions: reloading libraries
and adding more lemmas to existing libraries is a common task. This is in fact one of
the major reasons behind the use of computers to assist human proofs: human beings are
more likely to forget about what lemmas have been proved or make errors when using
already proved lemmas. Unfortunately, most automatic provers are designed for one-shot
problems, and thus they do not provide facilities to store previously proved theorems or
organize related theorems into libraries for reuse. In comparison, most interactive provers
provide facilities such that once we finish proving a theorem, it can be added automatically
to a background library and can be loaded when necessary or when a new session starts.

Third, having large numbers of already proved lemmas should mean that a prover
should be able to solve problems in the presence of these lemmas, where many of them
may be irrelevant to a given problem. Either the prover should be able to distinguish
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the relevant lemmas from irrelevant ones or a user should be able to give some hint to
the prover about the relevance of lemmas. However, as automatic provers are designed
to be fully automatic, they do not provide an adequate facility to allow users to guide
the proof search. If we simply send all the proved lemmas to them without any hint, it is
very likely that these automatic provers will not be able to filter out the irrelevant ones
and thus may not be able to prove the submitted problem. On the other hand, a user can
easily advise an interactive prover on how to use a proved lemma or which lemmas might
be relevant to a particular goal. This information makes it much easier for an interactive
prover to prove a goal.

Based on the considerations above, we may conclude that interactive provers are better
suited to carry out formal verification directly. However, interactive provers are still not
perfect. The ability for us to directly give instructions on how to prove a goal can be
seen as both an advantage and a drawback. The advantage is that human beings have
clearer insight into how to solve a problem than machines, thus their guidance is valuable
to find a proof. However, the guidance also requires much human interaction, and from a
skilled user. Although many interactive provers are semi-automatic, by providing certain
amount of automation to their users, there are still many tedious proofs that require
detailed instructions from users. Some people even suspect that formal verification is too
expensive and time consuming and is thus only suitable to verify safety critical systems.
This is probably one main reason why computer-assisted verification has not been adopted
everywhere in the industry. Therefore, improving the automation of interactive provers
seems a key to simplify the formal verification procedure and thus to encourage the use
of formal methods in more verifications.

1.5.2 Combining Automatic and Interactive Provers

It is important to improve interactive provers’ automation so that users’ interaction can
be reduced. Although automatic provers are not suitable to be used directly for for-
mal verification, they are good candidates to assist interactive provers by automatically
proving some goals.

An interactive prover that is assisted by an automatic prover should work as follows.
While an interactive prover user performs normal work, the interactive prover will delegate
a proof goal to an automatic prover to prove. If a proof is found by the automatic
prover then no more direction will be needed from the user. However, if the goal is too
complicated, then the user will still have an option to prove it himself or to simplify the
goal a little and let the automatic prover try again. The existing advantages of interactive
provers, such as the theorem management and the rich formalism, are still available to
the user, but the amount of human interaction, especially those detailed instructions on
how to prove a goal, will be significantly reduced.

Moreover, as the aim of using automatic provers is to reduce interaction, it would be
ideal if users would not be asked to explicitly call an automatic prover and specify what
goals should be sent to them. The invocation of automatic provers should be invisible from
users’ point of view, and the automatic prover should run in the background. Furthermore,
users should not be expected to manually decide what lemmas are relevant for a particular
proof goal: all the previously proved lemmas should be sent to the target automatic
prover. Finally, a proof found from the automatic prover should not be taken for granted:
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mistakes can occur even if the automatic prover is sound. For instance, errors can be made
when goals and results are sent between interactive and automatic provers. Therefore,
the proofs found should be checked by the interactive prover before being accepted.

1.5.3 Our Contribution

We have investigated how to effectively combine interactive and automatic theorem prov-
ing by integrating Isabelle and two resolution-based theorem provers: Vampire and SPASS.
We chose Isabelle as the target interactive prover as it is widely used. We integrate
Isabelle with resolution-based provers as they are by far the most powerful automatic
provers. Vampire and SPASS are both leading resolution provers that have done well in
recent CASCs (the CADE ATP System Competition)1.

We now summarize our research as follows.

• We have identified the major obstacles in integrating interactive provers and auto-
matic provers. The finding is generally applicable and is not specific to our target
provers — Isabelle and Vampire or SPASS.

• We have designed a practical method to translate Isabelle/ZF and Isabelle/HOL for-
malisms to first-order logic. In particular, we encoded Isabelle/HOL’s type system
and order-sorted polymorphism in first-order logic.

• We have examined the feasibility of using resolution to support Isabelle verifications,
by running a large number of experiments on Vampire and SPASS. We come to a
conclusion that resolution can indeed improve Isabelle’s automation. Through the
experiments, we also found several settings of these provers that are suitable for
verification problems.

• We have designed and implemented a procedure that calls background automatic
provers at an appropriate point in an Isabelle proof so that the invocation is invis-
ible to users. This procedure extracts all necessary information and automatically
translates them to clause form and sends them to automatic provers. This transfor-
mation is carried out inside Isabelle logic, since the proofs returned from Vampire
and SPASS should be reconstructed to Isabelle proofs to be verified.

• We have also carried out many experiments in order to improve the performance of
our integration. We focused on how to deal with large numbers of axioms present
in Isabelle proofs.

1.6 Thesis Overview

In this thesis, we start by giving some background technical knowledge of resolution-
based automatic provers and Isabelle (Chapter 2). We then illustrate our investigation
into using resolution to support Isabelle proofs (Chapter 3). Subsequently, we describe
an implementation of a procedure that automatically calls our target automatic provers
(Chapter 4). In order to improve the performance of our integration, we carried out two

1See http://www.cs.miami.edu/tptp/CASC/
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other researches. The work and its results are shown afterwards (Chapter 5 and Chapter
6). After we describe our research work, we give a brief description of some related work
that has been done and compare our approaches to theirs (Chapter 7). Finally, we present
conclusions (Chapter 8).
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Chapter 2

Isabelle and Resolution-Based
Provers

Our research investigates integrating interactive and automatic theorem proving by link-
ing Isabelle with Vampire and SPASS. In this chapter, we briefly describe the technical
background of these two types of provers and some features specific to them. We start by
giving a brief historical outline of automated reasoning.

2.1 The History of Automated Reasoning

It has been several decades since theorem provers were first invented. Rapid developments
have been observed in both automatic provers and interactive provers. For a more detailed
account of the development of theorem provers, please refer to the book written by Donald
MacKenzie [31].

2.1.1 Automatic Theorem Provers

The invention and development of automatic provers began in the 1950s, with the objec-
tive of using computers to prove theorems automatically.

The first generation of automatic provers worked on propositional logic. Examples
include the Logic Theory Machine, invented by Herbert Simon and Allen Newell and
Geometry Machine, developed by Herbert Gelernter, J. R. Hansen and Donald Loveland
in the 1950s.

Since these early attempts on constructing automatic provers, many techniques have
been invented to deal with various logics. Examples are resolution, tableau calculi and
the inverse method. A host of provers have been created that implement these techniques.

Resolution and Its Predecessors

Soon after the invention of the first generation of automatic provers that worked on propo-
sitional logic, computer scientists started working on automatic proof procedures that
worked on first-order logic. First-order logic is much more expressive than propositional
logic. Consequently an automatic proof procedure that can prove first-order problems is

19
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very useful. However, there is no general procedure for first-order logic. Much attention
has been attracted to its development.

One common problem suffered by all the early first-order provers was the combi-
natorial explosion. A proof of a first-order formula involving variables usually requires
instantiations of those variables and thus generating propositional formulae. However,
in the early-day provers, such instantiation was unguided, which led to huge numbers of
useless propositional formulae being generated. Another cause of poor performance of
these provers was the difficulty of checking the satisfiability of formulae.

Dag Prawitz designed a method that restricted random instantiations of variables via
unification so that only those that could lead to proofs were carried out.

Meanwhile, Hilary Putnam and Martin Davis invented a method known as Davis-
Putnum procedure that efficiently checks the satisfiability of a formula in the propositional
logic by first converting the formula into conjunctive normal form, which represents a
formula as a conjunction of clauses, where each clause is a disjunction of atomic formulae
or negated atomic formulae.

Prawitz’s unification and Davis-Putnum procedure addressed the two problems of the
then first-order provers. Based on their findings and motivated by combining the two
steps into one, Alan Robinson invented a new powerful decision procedure known as
resolution [5]. Resolution proves by refutation: it proves a formula to be valid by proving
the negation of the formula to be unsatisfiable. It effectively combines unification and
satisfiability checking into one step by resolving two clauses. Robinson also proved that
resolution was refutationally complete, which means a proof can be found eventually if
there exists one. Since resolution contains several inference rules only and no axiom, it
can easily be implemented as a computer program. Therefore resolution has become a
standard technique implemented in most of the modern day automatic provers.

After resolution was invented, some of its drawbacks were discovered. For instance,
unguided resolution can quickly generate huge numbers of clauses, many of them are
useless for a proof search. Although resolution is complete in theory, the huge search
space may result in a failed proof attempt in practice.

Many improvements have been made to the initial resolution procedure, in both the-
oretical and practical aspects. For instance, several variant versions of resolution, such
as hyper-resolution [5], ordered resolution and semantic resolution (such as set of sup-
port strategy [13]) have been invented, which attempt to reduce the number of generated
clauses by restricting the possible resolution that could take place. In addition, infer-
ence rules such as demodulation [68], paramodulation [37] have been introduced to deal
with equality reasoning. On the practical side, techniques such as advanced indexing
and efficient storage of clauses have been introduced and implemented in many provers.
As a result, a range of very successful resolution-based provers have emerged. We have
given a list of examples in the previous chapter. Their development is still ongoing and
they have been used to solve many real world problems. A famous example was the
proof of Robbins problem by William McCune of Argonne National Laboratory, using
the equational logic theorem prover EQP [34]. Nowadays, within the realm of first-order
logic, resolution-based provers are probably more powerful than provers based on other
techniques.
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Other Proof Procedures

In addition to resolution-based provers, there are many provers that are based on other
proof calculi. Although resolution provers have remained dominant in the community
of automated reasoning for a long time, the other provers have their own strengthes in
various fields.

The tableau calculi were invented before the resolution method. The earliest tableau
methods could date back to the cut-free version of Gentzen’s sequent calculus. Subse-
quently, many improvements have been made to it. An example of tableau-based provers

is 3T
AP [8].

Unlike resolution, the tableau calculi prove theorems directly, without conversion into
clauses. It tries to prove a goal to be a theorem by reducing it to one or more subgoals
until all the subgoals are proved, possibly via unification.

The tableau methods have flourished in recent years; they have even been compet-
ing against many resolution provers. Although they are not as powerful as resolution
provers when proving first-order logic problems, tableau provers can find proofs of non-
classical logic problems. In addition, some tableau-based provers have been integrated
with interactive provers. Isabelle’s tableau-based classical reasoner is an example and the

integration of KIV with 3T
AP [1] is another example. There are several variants of the

tableau methods, such as connection tableaux, model elimination and mating.
TPS [3] is a theorem proving system for classical type theory, also known as higher-

order logic. It is based on the typed λ-calculus and it supports automatic proofs, inter-
active proofs and a mixture of both.

TPS performs both the natural deduction calculus and the so-called expansion proofs
and it provides facilities to convert from one form to the other. Its automatic proof
mode operates on expansion trees and uses mating search [2]. Mating search is similar
to resolution proof in that they both prove a theorem by refutation using unification of
literals. However, the difference between them is that resolution proofs require formulae
to be converted to conjunctive normal form, whereas mating search only requires formulae
in negation normal form.

2.1.2 Interactive Theorem Provers

There are several successful families of interactive provers, and one of them is the LCF-
family.

LCF Provers

The first generation of LCF provers was a proof checker for Scott’s Logic for Computable
Functions developed in Stanford University by Robin Milner and his colleagues in the
early 1970s. This version is also known as Stanford LCF.

Using Stanford LCF, users constructed proofs in a backward goal-oriented style inter-
actively. Users could give detailed instruction on how to reduce a proof goal to several
subgoals and how to prove the goals directly. In addition, theorems that had been proved
could be stored and managed into theorem libraries. Libraries could be retrieved when a
new proof session started and users could add more theorems back to the library when a
session finished.
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Following Stanford LCF, the second generation of LCF, called Edinburgh LCF [22]
was invented by Milner and other colleagues in Edinburgh. This new version created a
new high-level functional language called the “metalanguage” (ML), which allowed users
to write proofs and proof procedures within it. ML is a strongly typed language. Many
abstract types can be defined in it, and among them, one particular type is thm, which
represents valid theorems. A set of inference rules represented by ML’s functions are
defined in the LCF kernel and only those functions are allowed to derive a new thm object
from existing thm objects. In addition, ML’s compiler type checks all objects have the
correct types and thus a thm object is either an axiom of type thm or is derived from
existing axioms via some inference rules.

In addition, a great amount of automation was provided via the use of high level
tactics and tacticals. Users can construct backward proofs to a goal and once all subgoals
are proved, tactics can construct the corresponding forward proofs to derive the theorem.
In addition to built-in tactics, users can define their own tactics for later reuse.

After the success of Edinburgh LCF, several descendants of it have emerged, which are
all written in ML and rely on ML’s type checking to ensure soundness of proofs. Examples
of widely used LCF style provers are HOL [23], Cambridge LCF [41], Isabelle [38] and
Nuprl [16].

The HOL system was invented by Mike Gordon. Since it was originally built to
verify hardware properties, and higher-order logic is particularly suitable for hardware
verification, Gordon decided to implement higher-order logic. Since its invention, HOL
has been used widely. For example, it has been used for hardware verifications such as
verifying the correctness of the Viper microprocessor [15], the formal verification of the
ARM6 micro-architecture [19] and also in network protocol specifications, such as the
Netsem project [59, 60].

Isabelle was invented by Larry Paulson. In contrast to HOL, it does not have any
logic hardwired into the system. Instead, a meta-logic was implemented in Isabelle that
could represent a variety of object-logics, including higher-order logic (Isabelle/HOL) and
Zermelo-Fraenkel set theory (Isabelle/ZF). Isabelle has been used widely to verify many
protocols and to formalize mathematical theories. For instance, Isabelle/HOL has been
used to verify the SET protocol suite [10] and Java bytecode [28].

Other Interactive Provers

In addition to the LCF style provers, there are many other successful interactive provers,
which all aim to verify the proofs conducted by humans and at the same time providing
a certain amount of automation.

PVS (Prototype Verification System) [40] was invented by the SRI verification group.
PVS implements classical higher-order logic as its specification language. Similar to
HOL and Isabelle, specifications and verifications developments are arranged into the-
ories, which consist of definitions, proofs of lemmas etc.

PVS is typed and its type system supports predicate subtyping and dependent types,
which can be used to serve as constraints on types. This fine-grained type system is more
expressive and thus the verification can be formalized more naturally. Unfortunately,
type checking is undecidable. It becomes the users’ responsibility to prove that terms are
well-typed.
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PVS is based on a sequent calculus. PVS proofs are interactive, and users use the
provided inference rules to instruct the prover how to prove a goal. In addition to in-
teractive proofs, PVS provides many automatic decision procedures. It has been used to
accomplish many proofs, such as the proof of Lamport’s clock convergence algorithm [53].

Another interactive proof assistant is the ΩMEGA system [58]. It is mainly designed to
support the working mathematicians, rather than formal verification of computer systems.
Unlike many other interactive provers, which are stand alone systems, the ΩMEGA system
is made up of multiple modules, distributed in the MathWeb network.

ΩMEGA supports both interactive proofs that can be carried out by its users, and
also automatic proof procedures. The automation is mainly provided by the external
reasoning systems that have been integrated with ΩMEGA.

2.2 Resolution-Based Automatic Provers

Resolution-based automatic provers are impressive in their power, and they can prove
exceptionally complex theorems. For our research, we have experimented integrating
Isabelle with Vampire and SPASS, which are leading resolution provers that have done
well in recent CASCs. In addition, we have tried some examples on E [54, 55].

Most of these automatic theorem provers are untyped and work in first-order logic.
They also usually require inputs to be in clause form.

We describe resolution theorem proving in general in this section. Subsequently, we
introduce some specific features of the provers that we have tried.

2.2.1 First-Order Logic

First-order logic is built up from terms that stand for individuals and formulae that stand
for truth values.

Definition 1. The terms of first-order logic are defined recursively as follows:

• A variable is a term.

• A constant symbol is a term. A constant symbol is also known as a zero-place
function symbol.

• A function application f(t1, . . . , tn) is a term, if t1, . . . , tn are terms and f is an
n-place function symbol.

Definition 2. The formulae of first-order logic are defined recursively as follows:

• If t1, . . . , tn are terms and P is an n-place predicate symbol, then P (t1, . . . , tn) is a
formula, known as atomic formula.

• If P and Q are formulae, then ¬P , P ∧Q, P ∨Q, P → Q and P ↔ Q are formulae.

• If x is a variable and P is a formula, then ∀xP and ∃xP are formulae, which mean
P is true for all x and P is true for some x respectively.
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2.2.2 Clause Normal Form

Resolution theorem provers require input formulae to be in clause normal form (also
known as conjunctive normal form), which is a conjunction of clauses: a clause is a
disjunction of literals and a literal is either an atomic formula or a negated atomic formula.
A formula in clause form is usually written as

(A1 ∨ · · · ∨ An) ∧ . . . ∧ (D1 ∨ . . . ∨Dm)

where A1, . . . , An and D1, . . . , Dm are all literals. An empty clause is a clause without
any literal. This represents logical falsity and is written as ⊥.

Any first-order formula may be translated to clause form using a standard clause
normal form transformation.

Definition 3. The standard clause normal form transformation consists of the following
steps:

1. Given a first-order logic formula, eliminate all boolean equalities “↔” and implica-
tions “→” by repeatedly applying the equalities

A↔ B ≃ (A→ B) ∧ (B → A)

A→ B ≃ ¬A ∨B

2. Convert the formula into negation normal form by pushing in negations “¬” until
they apply only to atomic formulae, using the following equalities

¬(A ∨ B) ≃ (¬A ∧ ¬B)

¬(A ∧ B) ≃ (¬A ∨ ¬B)

¬(∃xA) ≃ (∀x¬A)

¬(∀xA) ≃ (∃x¬A)

¬¬A ≃ A

3. Pull out all quantifiers to the front of the formula, and variable renaming may be
required to avoid name clashes. The result formula is in prenex normal form.

4. Remove all existentially quantified variables using Skolemization. Start from the
leftmost existential variable y, replace all occurrences of y in the formula by a
Skolem term f(x1, . . . , xn), where f is a new function symbol and x1, . . . , xn are
those universally quantified variables standing on the left of ∃y. If there is no
universal variable on the left of ∃y, then f is simply a constant symbol. Finally,
drop ∃y from the formula and repeat the procedure from the next leftmost existential
variable until none is left.

5. Push in disjunctions “∨” until they apply only to literals, by repeatedly applying
the distributive law

(A ∧B) ∨ C ≃ (A ∨ C) ∧ (B ∨ C)
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6. Drop all universal quantifiers and all free variables are now implicitly universally
quantified.

In practice, there are many optimizations to the standard clause normal form trans-
formation. For example, it is not necessary to pull out universal quantifiers; doing so
may increase their scopes, which may lead to bigger Skolem terms. Instead of pulling out
quantifiers, one can try to push them in. This is a procedure called miniscoping. For
Skolemization to work, it is sufficient to identify those universal variables that cover the
scope of the occurrences of existential variables.

2.2.3 Resolution Theorem Proving

Resolution-based theorem proving [5] proves theorems by refutation. It is sound and
complete. This is a powerful theorem proving method and can be mechanized relatively
easily.

The resolution calculus has a collection of inference rules and no axioms. Each in-
ference rule operates on clauses. A basic resolution system is made up of two inference
rules:

Binary Resolution resolves two clauses, using the inference rule

A ∨B ¬C ∨D
(A ∨D)σ

where Bσ = Cσ and σ is the most general unifier of B and C (a unifier is a
substitution of variables). Literal B is the resolved literal and the conclusion (A ∨
D)σ is the resolvent. Moreover, ¬C ∨D is usually called the main premise whereas
A∨B is called the side premise. A refutation is found if an empty clause is derived,
which happens when an inference such as

A ¬B
⊥

is performed, where there exists a unifier σ such that Aσ = Bσ.

Factoring unifies literals in a same clause using the inference rule

A1 ∨ . . . ∨Am ∨ B1 ∨ . . . ∨Bn

(A1 ∨ . . . ∨Am ∨ B1)σ

where B1σ = . . . = Bnσ. In first-order resolution, factoring is essential for com-
pleteness.

A resolution proof procedure starts with a set of clauses. Subsequently, the prover
repeatedly applies the resolution rule to resolve each clause with each other clause and
hence generates new clauses and adds them to the existing clause set. A proof search
stops either when an empty clause ⊥ is derived or when the set of clauses is saturated,
meaning no more new clauses (or clauses that are logical consequences of existing clauses)
can be generated.
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A naive implementation of resolution can quickly generate large numbers of clauses,
many of which are useless. This will lead to both slow progress and running out of memory.
Several refinements to the standard resolution have been designed and implemented in
automatic provers. Earlier systems such as Otter rely on hyper-resolution, while more
recent ones such as Vampire and SPASS use ordered resolution, which essentially restricts
possible clauses that can be generated by considering an ordering among literals and
clauses.

Ordered resolution aims to derive resolvent clauses that are smaller than their parent
clauses so that the empty clause, which is the “smallest” clause, can be generated. There-
fore an ordering should be imposed on literals and clauses. When a resolution is to be
performed, a prover always tries to select heavier literals to resolve. However, in first-order
logic, an implemented ordering is usually not total. In practice, most resolution-based
provers use a literal selection function or strategy that selects the most promising literals
to participate in resolution. For instance, a literal selection function may decide that only
maximal positive literals in a side premise can be resolved with either the maximal neg-
ative literal in the main premise or all the selected negative literals in the main premise.
In addition, factoring may only be allowed on positive literals.

Resolution has been proved to be refutationally complete in theory. In practice, when
there are thousands of clauses waiting to be resolved, not all clauses can be selected and
perform resolution. Therefore completeness requires the clause selection to be fair. This
means that any non-redundant clause must be eventually selected for resolution. Most
provers implement some version of a clause selection function, which attempts to select a
suitable clause, out of possibly thousands of clauses, to take part in a resolution step.

Simplifying the current clauses set is another technique that can improve resolution
provers’ performance. The idea is to delete redundant clauses, according to some redun-
dancy criteria. Tautology clauses are redundant and can be discarded safely. Several
other criteria have been designed. For example, if a clause C subsumes another clause
D, meaning the list of literals in C is a subset of the list of literals in D (possibly after
applying some substitution σ to C), then clause D is redundant and can be removed.
Removing a subsumed clause D does not compromise completeness because it can be
inferred by C. Demodulation is another commonly used technique. It rewrites a clause
by substituting a term s with an equal term t that is “simpler” than s (again possibly
after applying some substitution σ to t and s). It has been proved that the deletion of
redundant clauses based on these criteria will not make resolution incomplete.

The set of support heuristic is another key feature in many automatic provers. This
strategy is a type of semantic resolution, which according to Chang and Lee [13] dates
from 1965, forbids resolution steps that take all their clauses from a part of the clause set
known to be satisfiable. This feature is useful for problems where large numbers of axioms
are included, since it prevents deductions purely involving the axioms. However, since it
is incomplete in the presence of modern ordering heuristics, it is normally switched off.

Related to set of support is the distinction between axiom and (negated) conjecture
clauses. The former arise from the axioms describing the problem domain, which we
expect to be consistent. The latter arise from the negated conjecture, which must be
inconsistent with the axiom clauses if the conjecture is provable. Some automatic provers
make use of the distinction between the two types of clauses. In our integration, we
translate Isabelle theorems to axiom clauses and negated goals to negated conjecture
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clauses. When preparing clauses for resolution theorem provers, we must label them
appropriately.

Paramodulation

Following the development of resolution, paramodulation [37] was invented to deal with
equalities. Instead of specifying equalities as a predicate with usual axioms such as re-
flexivity, symmetry, transitivity and congruence rules, paramodulation treats equality as
part of the logic. Equality reasoning is regarded as an inference rule

A ∨ s ≃ t B
(A ∨ B[t]p)σ

where if B|p is the subterm at position p in B, then B[t]p is the result of substituting that
subterm for t and σ is the most general unifier of B|p and s.

Similar to the problem of the standard resolution, the standard paramodulation with-
out any control can easily blow up the search space by generating a large number of
useless clauses. A solution to this problem is ordered paramodulation (superposition),
where a term can only be replaced by a smaller one, with respect to some term ordering.
Nowadays, most of the resolution-based automatic provers have built-in paramodulation
as part of the inference mechanism.

2.3 Vampire

Vampire [52] is a resolution- and paramodulation-based automatic theorem prover for
first-order logic with and without equality. It consists of two major components, namely
the resolution and paramodulation inference system and a preprocessor that converts any
first-order formula into clause form. Although it supports input in an arbitrary first-order
format, we only send clauses to it as we perform clause normal form transformation inside
Isabelle.

2.3.1 Vampire’s Inference Mechanism

Vampire implements several versions of resolution, such as ordered resolution and hyper-
resolution. However, hyper-resolution is only applicable to logics that have no equality.
Vampire also implements ordered paramodulation (superposition).

Term Ordering

The term ordering is a parameter for ordered resolution, superposition and simplification.
During an ordered resolution, a literal is resolved if it has a higher weight relative to other
literals in the same clause. This difference in weights gives an ordering on literals. In
addition, a term ordering also determines a reduction order, which is used when clauses
are simplified via rewriting.

Vampire uses the Knuth-Bendix Ordering (KBO) [51] to compute this ordering on
literals. KBO is parameterized by weights and precedences of functions and predicates,
which can be assigned explicitly by users. However the resulting KBO is a partial ordering
on terms with variables.
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Clause Selection and Literal Selection

Vampire implements both clause selection function and literal selection function. For the
former, clauses are selected in an order according to their age-weight ratio. The clause
selection function prefers older clauses to younger clauses and smaller clauses to bigger
clauses.

Vampire implements several versions of literal selection function, which select literals
based on their polarity and weight. For instance, Vampire provides both negative and pos-
itive selection, which are complete. It also defines several other incomplete literal selection
functions. In some situations, these incomplete literal selection functions can produce a
very quick proof result. Our experimental results showed that the literal selection function
was one of the most important settings that influenced the proof performance.

Simplification

Like many other resolution-based theorem provers, Vampire implements a set of simpli-
fication procedures to simplify clauses and to remove redundant ones. Examples include
removing tautology clauses and removing clauses that are subsumed by others. Other
simplification rules of Vampire are demodulation, branch demodulation and subsump-
tion.

Simplification takes place at various places, and is usually interleaved with resolutions.
For instance, after new clauses are generated by resolution, they are first simplified or
removed before being added to the existing clause set. This is called forward simplification.
After these new clauses are simplified, they are subsequently used to simplify clauses in
the existing clause set. This is called backward simplification.

Other Features

Vampire provides a limited resource strategy (LRS), which is used when users impose a
time limit on a proof search. According to the time limit, this strategy discards those
clauses that are too big to be processed before the time limit expires. Although LRS may
render the proof incomplete, it is useful for our integration, since we always impose a time
limit on an automatic prover when sending goals to it.

Another key feature of Vampire is its set of support strategy (it is called axioms for
support only in Vampire). As it may be incomplete, Vampire’s set of support is switched
off by default.

2.3.2 A New Version

In the public release of Vampire, the supported clause format is TPTP1 clause format.
In the new version of Vampire (v6.03), a special syntax is used to specify which literal in
a clause should be selected for resolution. This syntax is an extension of TPTP syntax.
Any positive literal that should be resolved first will be tagged with +++, and similarly a
negative literal should be tagged with ---. This feature turns out very important for our
integration as it simulates Isabelle’s treatment to previously proved lemmas and supports

1Thousands of Problems for Theorem Provers [62]
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Isabelle’s notions of forward and backward chaining. Many lemmas could only be proved
with this facility.

2.4 SPASS

SPASS [65] is another powerful resolution-based theorem prover for first-order logic with
equality.

SPASS provides many user settings. Some of these settings are similar to Vampire’s,
such as the set of support strategy, the time limit on which SPASS can run, the literal
selection strategy, weight-depth ratio for the clause selection strategy, simplification pro-
cedure, ordered resolution and hyper-resolution. It also allows users to set weights to
functions and variables.

SPASS implements two reduction orderings. In addition to KBO, which is imple-
mented by Vampire, SPASS implements the recursive path ordering with status (RPOS) [18].
Users can specify which ordering is appropriate for a proof.

In addition to the settings above, SPASS provides some other special features. One
such example is auto mode. When auto mode is switched on, SPASS can automatically
configure itself, in terms of the choice of inference rules, ordering on literals and literal,
clause selection strategy. By default, it is switched on and it makes proof search complete.

2.5 E

Although Vampire and SPASS are the main provers we have used for experiments, we
also briefly tried several experiments on E 0.82 Lung Ching [54, 55].

E is an equational theorem prover and proves by refutation. Its inference mechanism
consists of superposition and rewriting only. Unlike other resolution-based provers, reso-
lution is not built into E but is simulated by paramodulation and equational resolution.

One of the major emphasis of E is the clause selection heuristics. When there are huge
numbers of clauses, it is important for a prover to select a promising clause to participate
in resolution, so that the resolvent is useful to find a shorter proof, or at least, to find a
proof. Therefore a good design of clause selection heuristics is essential. In addition to
the age-weight ratio, which is provided by E as a standard clause selection heuristic, E
also implements many other heuristics. These heuristics essentially let users decide the
number of priority queues, which the clauses should be inserted into. Subsequently E
selects clauses from their queues according to their ordering, and each queue is considered
in a round-robin manner. The clause selection heuristics can be set by users or by the
automatic mode of E. The power to select proper clause to resolve using these heuristics
is one of the major strengths of E.

In addition, E defines several versions of literal selection functions. The term orderings
implemented in E include both KBO and Lexicographic Path Ordering (LPO), which can
be selected by users.

Finally, in order to make it easier to use E by its users, E provides an automatic mode.
It not only selects a clause selection heuristic, but also selects a literal selection strategy
and term ordering, by analyzing the characteristics of submitted problems.
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2.6 Isabelle

Isabelle [38] is a powerful interactive theorem prover based on the typed λ-calculus. It is
generic and supports a multiplicity of logics.

Isabelle is written in ML and is an LCF style theorem prover. Like other provers that
are based on the LCF architecture, it allows proofs to be constructed only within a small
kernel, which defines the basic inference rules. All decision procedures and other proof
mechanisms must ultimately reduce their deductions to basic inference rules and axioms.
Such an architecture makes proof procedures more difficult to implement, but it greatly
improves their reliability.

A proof goal in Isabelle is a statement expressed in some logic. A rule is a previously
proved lemma or theorem. Users need to specify what tactics and rules to use in order to
prove a goal or decompose it into several smaller subgoals. A tactic tells Isabelle how the
rules should be applied. Isabelle provides substantial automation by classical reasoning
tactics and equality reasoning tactics.

2.6.1 The History of Isabelle

It has been nearly 20 years since the first public release of Isabelle. Since then, many
changes have been made to Isabelle in each successive version. Isabelle has become wide
spread and has been used by both researchers and industrial users for formal verifications.
It is still being developed and will continue to grow. We briefly outline the development
history of Isabelle and several key changes made to it.

Isabelle was made publicly available for the first time in 1986. This version, also
called Isabelle-86, implemented many object-logics, such as Zermelo-Fraenkel set theory
and Constructive Type Theory. The rule calculus employed was sequent calculus. Fur-
thermore, higher-order unification was also supported. Significant amount of automation
was already provided in the form of tactics and tacticals.

In the subsequent releases, a meta-logic was introduced into Isabelle and the nat-
ural deduction calculus replaced the original sequent calculus. Moreover, order-sorted
polymorphism was implemented in order to support higher-order logic.

In addition to the technical changes, support for Isabelle users has increased. One of
the most important changes made to Isabelle was the introduction of Isar proof language
in a recent release. It allows users to write proofs in a way similar to human reasoning
and thus makes proofs more readable.

2.6.2 Isabelle’s Logical Framework

Isabelle’s logical framework works in a natural deduction style. It supports elimination
rules and introduction rules, which are used by forward and backward chaining respec-
tively.

In a natural deduction calculus, each logical operator has both an elimination rule and
an introduction rule. An elimination rule describes what we can deduce from a formula
containing the operator, whereas an introduction rule tells us how we can deduce a formula
containing the operator. For instance, the elimination rule for implication (→) says if we
know P → Q and we know P then we can deduce Q. This is usually written as
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P → Q P
Q

(→ I)

On the other hand, the introduction rule of implication says that if by assuming P we
can prove Q then we can deduce P → Q, which is written as

[P ]
....
Q

P → Q
(→ E)

where the P in the bracket indicates a discharge of assumption.
Frequently, elimination rules are used for forward chaining, where we derive new lem-

mas or theorems from existing theorems. Introduction rules are usually used in a backward
chaining style, where a proof goal is decomposed into several smaller subgoals.

A major difference between Isabelle and other LCF style provers is that Isabelle’s
built-in logic, the meta-logic, is intended only for the formalization of other logics — the
object-logics. The design philosophy of Isabelle [42] is that by making a built-in meta-
logic that can represent any object-logic, many difficulties shared by those object-logics
can be dealt with altogether. One typical example is the proof search strategy, such as
depth-first search or depth-first iterative deepening search. These search strategies may
be applicable to any proof goal, regardless which object-logic is being used to formalize
the goal.

Isabelle’s Meta-Logic

Isabelle’s meta-logic is a fragment of higher-order logic. It defines the following constants.

• Implication (=⇒) for logical entailment and discharge of assumptions.

• Universal quantifier (
∧
) for generality of variables.

• λ-abstractions.

• Meta-equality (≡) for meta-level definitions and equivalence.

The meta-logic employs a natural deduction calculus and defines a set of primitive
inference rules. They include the introduction and elimination rules for =⇒,

∧
and ≡

between truth values. Reflexivity, symmetry and transitivity rules are defined for ≡ as
well. Furthermore, α-conversion, β-conversion, extensionality and abstraction, combina-
tion rules are defined for λ-terms.

Isabelle’s meta-logic defines many abstract types, which should be distinguished from
the types in ML. For instance, all Isabelle well-formed terms have type term. Moreover,
type thm represents object-level theorems or axioms. A thm object can be converted to a
term object that represents the term structure of the theorem.

Like other LCF style theorem provers, Isabelle uses ML’s secure type-checking to
enforce soundness. The definition of thm constitutes the inference kernel. A theorem —
which is a value of type thm — can only be constructed by applying some inference rules,
which are defined in the kernel and have type such as thm -> thm, ultimately to axioms
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(typically constants of type thm). Because ML’s type-checker prevents arbitrary formulae
from being assigned type thm, any expression having this type represents a correct proof.

Isabelle users seldom interact with the primitive inference rules during proofs. Instead,
proofs are usually constructed using Isabelle’s tactics and tacticals (§2.6.3). Isabelle’s
tactics are functions that represent derived meta-level inference rules; they are built on
top of the primitive inference rules.

Representing Object-Logics in Isabelle

When object-logics are formalized in Isabelle, they are represented inside the meta-logic
by extending the existing meta-logic. This is achieved by adding new types, constants
and meta-level axioms as follows.

• For each operator of an object-logic, define a new operator in the meta-logic to
represent it. Similarly for the types of the object-logic.

• For each inference rule of the object-logic, a meta-level axiom of type thm is defined
to represent it.

The representation of object-logic rules in the meta-logic may require some elaboration.
First, each object-logic proposition is “lifted” to a proposition in the meta-level by a
special predicate Trueprop: Trueprop(P ) means proposition P is true in the object-logic.
Trueprop(P ) is usually abbreviated by [[P ]]. Subsequently, object-logic entailment and
discharge of assumptions are represented by meta-implications =⇒. Moreover, the meta-
quantifier

∧
is used to state any generality requirement on variables occurring in object-

logic rules. Consider formalizing first-order logic as an example. First, we define new
constants such as → for first-order implication, ∀ for universal quantification, and ∧ for
conjunction. We also define type bool for first-order propositions. Finally, we represent
the first-order inference rules by meta-theorems. For example, the introduction rule for
implication (→ I) is expressed by the meta-level theorem

∧

P Q. ([[P ]] =⇒ [[Q]]) =⇒ [[P → Q]].

In addition, for the elimination rule of universal quantifier

P (x)

∀xP (x)
(∀I)

where the proviso for ∀I is that variable x must not be free in P , we use the following
meta-level theorem to formalize it.

∧

P. (
∧

x. [[P (x)]]) =⇒ [[∀xP (x)]]

Usually the outer-most meta-quantifiers
∧

are dropped, leaving those bound variables
implicitly universally quantified. These variables are called schematic variables. They are
usually identified by having a “?” in front. Therefore the above two rules are written in
Isabelle as

([[?P ]] =⇒ [[?Q]]) =⇒ [[?P →?Q]]

(
∧

x. [[?P (x)]]) =⇒ [[∀x ?P (x)]]



2.6. ISABELLE 33

In general, an object-logic inference rule

φ1 . . . φn

θ

is formalized by an Isabelle meta-theorem

[[φ1; . . . φn]] =⇒ θ

with implicit universal quantification over its free variables. Furthermore, [[φ1; . . . φn]] =⇒
θ is an abbreviation for the nested implications φ1 =⇒ . . . =⇒ φn =⇒ θ.

For the sake of readability, from now on, we will represent all Isabelle
rules in its equivalent higher-order logic form, and we will replace

∧
by

∀ and replace =⇒ by →.

Finally, Isabelle represents all object-logic elimination rules in a special format:

∀P [A→ ∀x1 (B1 → P )→ . . .→ ∀xn (Bn → P )→ P ].

Here, A is a formula that contains an operator to be eliminated. Each xi is a list of
universally quantified variables. B1, . . . ,Bn are lists of formulae, where each of them is
regarded as conjunctions. In addition, each xi and Bj may be empty. Furthermore, P is
a predicate variable. For example, the elimination rule for set intersection is represented
as

∀cAB P [c ∈ A ∩B → (c ∈ A ∧ c ∈ B → P )→ P ].

This representation is a higher-order theorem because of the universally quantified pred-
icate P . In order to use such elimination rules in first-order automatic theorem provers,
we need to preprocess them so that P can be eliminated, before translating them into
first-order clauses.

2.6.3 Proofs in Isabelle

Proofs in Isabelle are performed by a set of functions defined in an LCF style kernel.
Each function takes one or more theorems of type thm as inputs and returns another
theorem (or a sequence of theorems) as a result. Both input and output theorems may
be object-logic rules or a proof state.

One basic mechanism of Isabelle proofs is a form of Horn clause resolution, which is
different to the resolution performed by automatic provers. A Horn resolution resolves a
premise of a theorem with a conclusion of another theorem through unification. It can be
described by the following inference rule

φ→ θ θ → ψ

φ→ ψ

In Isabelle, the Horn resolution step is a derived meta-level inference rule. It is used in
both backward and forward theorem proving.
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Isabelle’s Proof State

As we know, LCF style proof construction works better with forward theorem proving:
deriving new theorems from existing ones. However, forward proofs are difficult to reason
about for human beings since it is difficult to predict what theorems should be derived
for later part of a proof. In contrast, backward proofs, where a goal is decomposed to
several smaller subgoals, are goal-oriented and are therefore more intuitive.

In order to allow Isabelle to work with backward proofs, the status of each proof
development of a goal is represented by a proof state. A proof state describes the main
proof goal and the current subgoals. It is formalized by a meta-level theorem (of type
thm): the conclusion is the main goal and its premises are the current subgoals. For
instance, a proof state in which the theorem to be proved is C and currently having n
subgoals (ψ1, . . . , ψn) is represented by the theorem

[[ψ1; . . . ψn]] =⇒ [[C]].

More importantly, when a user starts a new proof of a goal C, the initial proof state is
represented by

[[C]] =⇒ [[C]]

where the premise is the same as the conclusion. This is a trivial theorem, and it auto-
matically has type thm.

Subsequently, an Isabelle proof development is a refinement procedure on the entire
proof state. The set of kernel-defined functions (typically tactics (§2.6.3)) transforms the
proof state (a thm) to a sequence of next proof states. Meanwhile, the current subgoals
are reduced to zero or more new subgoals. The theorem is finally proved when the proof
state [[C]] is reached, at which point no more subgoal is left. Theorem [[C]] now represents
the object-logic theorem C. Before C is declared a theorem, all free variables in it are
automatically generalized to be universally quantified.

As we can see, only functions defined in the kernel are allowed to transform the proof
state. These functions take the initial proof state of type thm to the final state, still
of type thm, via a sequence of intermediate states, each having type thm. ML’s secure
type checking can therefore guarantee the final proof state is indeed a theorem. Thus
soundness is ensured.

Although Isabelle represents both proof states and rules in a uniform
way, in this dissertation, proof states will be written in meta-theorem
form, rather than its equivalent higher-order logic form. Meta-theorem
form makes it easier to pick out a particular subgoal of a proof state. The
distinction may also help the readers to distinguish a proof state from an
Isabelle rule.

Tactics and Tacticals

During an Isabelle proof, the most important tools available to users are tactics. Users
usually use these tactics to continuously refine a proof state until a final proof state is
reached.
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A tactic is a function from a theorem (the current proof state) to a sequence of
theorems and it describes how to refine a proof state. Many tactics are parameterized:
each parameterized tactic is supplied with a list of rules and the tactic then applies the
rules to the current proof state. Depending on the nature of the tactic, one or more
subgoals may be proved or reduced. Since a tactic may perform higher-order resolution
on the proof state, there may be more than one resolvent. As a result, the return result
is a sequence of all possible next states. These states are recorded and may be used later
if backtracking occurs.

One of those most frequently used tactics is resolve tac. Users give it a set of rules
ths, which are normally introduction rules. Subsequently resolve tac ths i resolves
the conclusion of each rule in ths with the i-th subgoal of the proof state. Another example
tactic is rewrite tac. When given a list of definitions defs as theorems, rewrite tac

defs unfolds all definitions throughout all the subgoals in the proof state.
In addition to tactics, Isabelle provides tacticals. A tactical defines how to combine

one or more tactics and apply them to a proof state. For example, using the tactical
REPEAT, we can build a new tactic REPEAT tac, which repeatedly applies a tactic tac to
a proof state and only returns when the final application of tac fails. The return result
is thus a sequence of states that make tac fail. Moreover, with the tactical THEN, tactic
tac1 THEN tac2 sequentially applies tac1 and tac2 to a proof state. As it shows, tacticals
are convenient mechanisms to build new tactics from existing tactics.

Tactics and tacticals are available as ML functions and can be used for direct pro-
gramming.

Backward and Forward Theorem Proving

Isabelle supports backward and forward proofs. Both of them are indispensable during a
proof construction, but they are used rather differently.

In general, forward proof is used to derive new theorem (of type thm) from existing
theorems using kernel-defined inference rules. There are many occasions when forward
proof is applicable in Isabelle. For instance, Isabelle users may derive a new object-
logic rule from another previously proved rule, by instantiating variables occurring in
it. Alternatively, several rules may be joined together by resolving the conclusion of one
rule with a premise of another rule (using function RSN). In our research, we are using
forward proofs for the automatic translation of Isabelle formulae to first-order clauses.
The translation function is a derived inference rule of type thm -> thm.

In contrast to forward proof, backward proof is more goal-oriented and is usually
carried out by tactics. As we have seen these tactics require a set of rules when applied
to a proof state. In theory, any rule may be given to any tactic. In practice, every rule
should be used by only some appropriate tactics to produce meaningful results. Moreover,
the restriction on the application of rules to tactics is often determined by the nature of
the rules. Applying a rule to an improper tactic may result in a blow up on the number
of subgoals or introducing too many unknown variables.

For instance, introduction rules are suitable for the tactic resolve tac, which resolves
the conclusion of an introduction rule with one subgoal. This is exactly what a backward
chaining will do. In comparison, elimination rules are better suited for eresolve tac,
which unifies the premise of an elimination rule with a premise of one subgoal and thus
replaces the premise of the subgoal by the conclusion of the rule. Since resolving an
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elimination rule with a subgoal is effectively a forward chaining operation on the subgoal’s
premises, the application of an elimination rule represents forward reasoning in a backward
proof.

Although forward and backward proofs are different ways of constructing proofs, they
both rely on functions (inference rules or tactics) that derive new theorems (of type thm)
from existing ones (recall a proof state is also represented by a theorem of type thm).
These functions are all defined in the kernel so that soundness is guaranteed.

2.6.4 Isabelle’s Automatic Proof Tools

Isabelle provides substantial automation to users so that many goals can be proved au-
tomatically, without users having to specify the detailed proof steps. This automation is
achieved by using Isabelle’s classical reasoner and equality reasoner.

The classical reasoner takes a set of rules stored in a classical set. The classical set
contains a collection of introduction rules and elimination rules, which should be used
in a backward chaining style and a forward chaining style respectively. After a lemma
is proved, a user may decide it is suitable for forward chaining, and then can declare
it as such, and similarly for backward chaining. Afterwards, these rules can be added
to the classical set permanently or temporarily during a specific proof. Users can also
remove rules from a classical set if necessary. Moreover, some of these rules are safe while
others are unsafe. They affect the behaviour of backtracking in an automatic proof search.
When a safe rule is applied to a goal, no information is lost. However, when an unsafe
rule is applied, some information is lost: it may reduce the goal to subgoals that are not
provable. As a result, if a proof search fails along a path, the classical reasoner needs
to backtrack to the most recent unsafe rule applied and continue the proof search on a
different path.

The equality reasoner takes a simplifier set as input, which has several components: a
collection of rewrite rules, simplification procedures, congruence rules and the subgoaler,
solver and looper tactics.

A rewrite rule (also known as simplification rule) is usually expressed as a meta-
equality theorem: LHS ≡ RHS, which means LHS should be replaced by RHS via
rewriting. A rewrite rule can also be conditional, in which case it is usually represented
by P =⇒ LHS ≡ RHS, meaning the rewriting can take place if condition P is satis-
fied. Similar to classical rules, after an equality is proved, a user can declare it to be a
simplification rule and add it to a simplifier set. If the rule added is not an equality, then
an Isabelle function translates it into an equivalent equality: it translates any positive
atomic formula P into P ≡ ⊤ and translates a negative atomic formula ¬P to P ≡ ⊥,
where ⊤ and ⊥ represent logical truth and falsity respectively. For instance, a rule

∀n [0 < n+ 1]

which says 0 is less than n+ 1 for any n, is translated into the simplification rule

∀n [0 < n+ 1 ≡ ⊤].

Another rule

¬even 1
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meaning number 1 is not even is translated into the rewrite rule

even 1 ≡ ⊥.

As we shall see, these boolean equalities should be converted back to their original form,
which does not contain ⊤ or ⊥, before we can translate them to clause form for automatic
provers to use.

In contrast to rewrite rules, simplification procedures are more flexible since they can
create any valid rewrite rules. A simplification procedure can dynamically create a rewrite
rule according to a pattern of an expression, where the pattern can be very general. The
created rewrite rules are usually not stored and are used once only. In addition, one
simplification procedure can create many rewrite rules that share some pattern. Therefore
simplification procedures can save much effort in defining many rewrite rules.

Congruence rules generate contextual information during simplification. They are
meta-equalities of the form

. . . =⇒ f(x1 . . . xn) ≡ f(y1 . . . yn)

where the assumptions represented by the “. . .” on the left hand side of implication =⇒
provide information about how to simplify each x argument of f to y argument and all
x’s and y’s are universally quantified. An example of a congruence rule is imp cong:

∀P P ′QQ′ [(P = P ′) ∧ (P ′ =⇒ Q = Q′) =⇒ (P → Q) = (P ′ → Q′)]

This rule says that P → Q can be simplified to P ′ → Q′, if P can be simplified to P ′ and
also if by assuming P ′, we can simplify Q to Q′.

However, these congruence rules are usually not required by first-order resolution-
based automatic provers since such contextual congruence rules are implicit with paramod-
ulation.

The subgoaler, solver and looper are all tactics that attempt to solve subgoals after
being simplified by, say, rewrite rules or congruence rules. Users usually do not interact
with them directly.

For the classical reasoner and the equality reasoner, Isabelle defines several automatic
reasoning tactics that attempt to prove a goal or several subgoals using the rules stored
in the classical set and the simplifier set. Examples of these tactics are:

• simp is the simplifier and uses the rules stored in a simplifier set. It performs
conditional rewriting augmented by other code, including a decision procedure for
linear arithmetic.

• blast [46] is a sort of generic tableaux theorem prover. It uses any supplied col-
lection of lemmas in the classical set to perform forward or backward chaining,
governed by depth-first iterative deepening.

• auto is a naive combination of the previous two tactics. It interleaves rewriting
and chaining. However, this treatment of equality is primitive compared with that
provided by a good resolution prover.
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In addition to these, there are many variants of classical reasoning and equality reasoning
tactics such as clarify, force and fast.

One advantage of Isabelle’s classical reasoner is that it is not restricted to first-order
logic. It can prove theorems that cannot easily be expressed in first-order logic at all,
such as

(
⋃

i∈I∪J

Ai) = (
⋃

i∈I

Ai) ∪ (
⋃

i∈J

Ai).

The classical reasoner can also prove many theorems that are difficult for most automatic
provers, such as

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

The classical reasoner’s and the equality reasoner’s other great advantage is that they
let the user declare lemmas for them to use, and they easily cope with hundreds of such
lemmas without suffering combinatorial explosion. When an interactive prover is used for
formal verification, it is typical that users have to prove many intermediate lemmas for
later use. The accumulation of many such declarations, which constitutes the knowledge
base and pragmatic information, greatly improves the automation available to the user.
Therefore, the ability to handle a large lemma library is very important in order to provide
automation to users. As we will see, resolution provers usually find it difficult to handle
large numbers of axioms.

Although Isabelle’s classical reasoner and equality reasoner are powerful and can prove
many hard problems automatically, the user has to choose which one is appropriate and
invoke it manually. In contrast, resolution and paramodulation based theorem provers
can effectively combine classical reasoning and equality reasoning. By integrating with
these automatic provers, we can provide Isabelle with greater automation.

2.6.5 Isabelle User Interfaces

Isabelle users carry out theory and proof development in one of the two interfaces provided:
the ML interface and the Isar interface. Both of the two interfaces support incremental
proof development. Under either of these two interfaces, a user starts a session from
some existing theory and then will start interacting with Isabelle by making definitions
and carrying out proofs of lemmas. During a proof, the user issues proof commands to
Isabelle to prove the goal and Isabelle reads commands line by line and responds to each
command. Every time a definition is read by Isabelle or when a lemma is proved, the
information is stored in the background context. Both the ML and the Isar interfaces
provide the above interaction. However, the major difference between the ML and the
Isar interfaces is the way proofs are conducted. Since ML is designed for programming, its
proofs are linear. In contrast, Isar is designed for proving, thus its proofs are structured,
although it also supports linear proofs.

ML Interface

Working with the ML [43] interface is similar to working with the ML interpreter directly,
with extra commands for theory and proof development. In the ML interface, proofs are
linear and they resemble the tactic scripts of the HOL system [23] and PVS [40]. A proof
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script consists of a sequence of commands that directly manipulate the proof state by
applying tactics.

For example, when a user states a proof goal using the Goal command, Isabelle echoes
the current goal. Subsequently, the proof is carried out by a sequence of tactics. If the
user wishes to apply a resolution tactic using the rule th on the first subgoal, he may type

by(resolve_tac [th] 1)

After a tactic is applied, the new subgoals are displayed as a response. However, if the
application of the tactic fails then a warning shows up and the proof state is unchanged.
During a proof a user needs to specify which tactic should be used and which subgoal
the tactic should be applied to. Alternatively, the user can decide to use an automatic
reasoning tactic that attempts to refine all of the subgoals. The proof goes on until no
more subgoal exists, at which point the proof succeeds.

In addition to commands like by, there are many other proof commands. For instance,
command undo undoes the previous tactic.

Finally, as with tactical scripts, linear proofs are goal oriented but may be hard for
human to read.

Isar Interface

The Isar (Intelligible semi-automated reasoning) [67] interface is built on top of Isabelle
system by adding a high level proof language as a layer. This high level proof language is
called the Isar formal proof language, which consists of declarative proof texts. The proof
language is interpreted and executed by the Isar/VM Interpreter.

In the Isar interface, users can write proofs in a structured way, which resemble the
proofs carried out by human beings. Proof texts may consist of typical keywords such
as “from ...”, “have ...” and “thus ...”. Therefore the proofs are more human-
readable. Many Isabelle users are now working under the Isar interface.

The Isar proof language is made up of a set of commands. To ensure the proof texts are
well structured, a transition semantics of the commands is defined, which then induces a
typing of commands. Subsequently, the typing imposes the correctness of the proof text’s
structure.

The semantics of the Isar proof language commands is defined by a transition of con-
figurations. Isar defines three basic configurations, namely library, theory and proof,
which respectively represent a collection of theories, an individual theory context and a
configuration where a proof is being performed. Any command that triggers a transition
between these configurations is given a type accordingly. For example, command theorem

starts in configuration theory and ends in proof. Therefore its type is theory → proof.
Most of the Isar language commands are proof commands that take place in the proof

configuration. In addition, a proof state is always in one of the three modes

• prove mode allows direct modifications to the current goals, which are usually
carried out by the apply or by command. Proofs are typically linear in this mode.

• state mode allows users to state any new claims or assumptions. The current goal
cannot be changed in this mode.
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• chain mode allows users to state any new claims while carrying over the previously
proved facts for later proof.

Each proof command can only be executed in a certain mode, which is checked by the
Isar/VM Interpreter before execution. For instance, command show, which states a propo-
sition to prove, can only be executed in the statemode. An execution of a proof command
may cause the proof state to enter a different mode. The transition of a proof state gives a
finer-grained typing to proof commands. In the example of show command, its execution
leads a proof state to the prove mode; therefore it is given a type state → prove.

In addition to the three proof modes, each proof state also consists of a proof context
and a proof goal. A proof context describes the proof environment of a goal. It contains
the current declarations such as assumptions, facts and finished claims. A proof goal
contains information about subgoals waiting to be proved. While proof commands are
executed, proof context and proof goal are modified.

In addition to writing structured proofs using the Isar proof language, users can also
write proofs in a linear style. Isar supports a simulation of traditional linear proofs, which
operate in the prove mode only. Usually after a linear proof command is executed, the
proof state remains in the prove mode.

Isabelle/Isar is integrated with, and must work with, Proof General, which provides
a graphical user interface. A user types commands and proofs in an editor window to
carry out theory and proof developments. When Isabelle reads a command, it displays
its response in another window. Proof General also supports ML mode, but Isar mode is
more popular.

2.6.6 Object-Logics Supported in Isabelle

Isabelle supports many object-logics. Among them, the most widely used is higher-order
logic (Isabelle/HOL [38]), which is also the basis of the HOL system and PVS. It is cur-
rently the best developed object-logic and provides an extensive library and packages.
It also provides substantial support for formal verification by including large theory de-
velopments, such as security protocols and communication protocols. Isabelle/HOL has
also been used for mathematical proofs. We will describe Isabelle/HOL in more detail in
section §2.7.

Isabelle/ZF [47] (Zermelo-Fraenkel set theory) is untyped and is based on first-order
logic. We will explain its syntax in section §2.8.

Some other object-logics supported include FOL (first-order logic), LCF (a version of
Scott’s Logic for Computable Functions. It is built on top of FOL.), CTT (a version of
Martin-Löf’s Constructive Type Theory with extensional equality).

2.7 Isabelle/HOL

Isabelle/HOL [38] supports higher-order logic. It is typed and provides axiomatic type
classes. However, unlike PVS, it does not provide predicate subtyping. Formalizing
Isabelle/HOL in first-order logic is a key component of our integration between Isabelle
and Vampire/SPASS.
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Higher-order logic is also called simple type theory. It extends first-order logic with
λ-abstractions and variables over functions and predicates. A type system is integral to
higher-order logic: every term should be well-typed. Moreover, in higher-order logic there
is no distinction between terms and formulae: a formula is simply a term with type bool.

2.7.1 Higher-Order Logic Terms

There are four kinds of terms in higher-order logic, namely Variables, Constants, λ-
abstractions and Function Applications.

• Variables in Isabelle may be fixed or schematic. A schematic variable can be in-
stantiated to any other term with the same type.

• Constants include any previously defined values, functions or predicates. For in-
stance, the truth values ⊤ and ⊥ are constants. The successor function and oper-
ations such as +, −, × and / for natural numbers are constants. Other commonly
used constants include the logical operators such as ∧ (and), ∨ (or), ¬ (negation),
≡ (equivalence), → (implication), = (equal) and Hilbert’s ǫ operator.

• λ-abstractions, also called λ-terms, represent functions. They are written as λx. t(x),
where x is the binding variable and term t(x) is the body. It represents a function,
which when given x, returns t(x). A λ-term can be nested as λx. λy. t, which is
usually abbreviated as λx y. t. A convention is followed, where the “.” of the λ-
term covers the scope that goes to as far right as possible. Sometimes the “.” is
omitted as the scope of a quantifier can be indicated by brackets.

• Function Applications have the form of t1 t2, where both t1 and t2 are terms and t1
is the function and t2 is the argument. A sequence of function applications, such as
t1 t2 . . . tn is allowed, where function application associates to the left.

Universal quantifier ∀ and existential quantifier ∃ are constants and are regarded
as binders. Formulae ∀x. P (x) and ∃x. P (x) are syntactic sugar of ∀(λx. P (x)) and
∃(λx. P (x)) respectively.

2.7.2 Higher-Order Logic’s Type System

Higher-order logic is very powerful, thus a type system is required to avoid any unsound-
ness, such as the Russell’s paradox. A type system has a collection of types, where each
type represents a set of values. For instance type nat represents all natural numbers,
whereas type bool denotes a set with two values {⊤, ⊥}.

A type can be an atomic type (such as nat and bool) or a compound type, which is
built up from atomic types using type constructors. A compound type is usually written
as (τ1, . . . , τn)op, where op is a type constructor. It constructs the compound type from
the types τ1, . . . , τn, which may be either atomic or compound types. An example of a
compound type is a function type τ1 → τ2, where the function type constructor → is
written infix.

To allow greater flexibility and function reuse, polymorphism has been introduced into
higher-order logic, by Isabelle and the HOL system. A type is polymorphic if it has a
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type variable, which can be instantiated to a specific type. With the introduction of
polymorphism, a higher-order term can now have a polymorphic type. A simple example
is the identity function λx. x, which when given an argument, returns that argument as
the result. Its type is polymorphic α → α and can be instantiated to instances such as
bool → bool or nat→ nat.

Similar to the concept of fixed and schematic variables, Isabelle distinguishes fixed
and schematic type variables. Only schematic type variables may be instantiated to some
other types.

2.7.3 Well-Typed Higher-Order Logic Terms

For soundness reason, higher-order logic requires each of its terms to be well-typed based
on a given type system. A term is well-typed if we can assign a type to it and each of its
subterms in a consistent way (meaning no conflict) as follows

• A variable is assigned a type τ , which can be polymorphic.

• A constant is assigned a type τ when it is defined. This type can be polymorphic.
Occurrences of the constant can have different instances of τ .

• λx. t is well-typed if there are some types τ1 and τ2, such that λx. t is assigned
τ1 → τ2, and x, t are assigned τ1 and τ2 respectively.

• A function application t1 t2 is well-typed if there are some types τ1 and τ2, such that
t1 t2 is assigned τ2, and t1 and t2 are assigned τ1 → τ2 and τ1 respectively.

A higher-order logic term t with type τ is written as t : τ . However, such type
information is usually omitted from an expression as a type inference algorithm can be
used to infer the type of a given higher-order logic term.

2.7.4 Axiomatic Type Classes in Isabelle/HOL

Isabelle/HOL’s type system supports axiomatic type classes [66]. Axiomatic type classes
generalize polymorphism. Before looking at how it has been formally defined in Isabelle,
we look at the benefits of using it.

First, axiomatic type classes allow meaningful overloading of polymorphic operators
and theorems. For example, the 6 relation is polymorphic and can be applied to types
such as natural numbers or real numbers. Moreover, a requirement on the application of 6
is that these types must satisfy a property: they must be partially ordered. To implement
this restriction on the overloading of 6, we can define a type class called partial order with
the partial ordering property as an associated axiom. Any type that satisfies this axiom
is an instance of class partial order and hence belongs to it. Subsequently, whenever we
need to overload the 6 operator on some type, we only need to check if the type is an
instance of type class partial order. This also simplifies the procedure of adding a newly
defined type, since it is sufficient to prove the type satisfies the axioms of the class in
order to show it is indeed an instance of the class.

Second, we can use an already defined type class to derive a new class by adding
additional axioms that have to be satisfied. Taking the partial order type class as an
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example, if we add an axiom about linear ordering, then we will have a new type class
linear order. The newly derived type class is a subclass of the original type class (the
superclass). Therefore any axiom that holds in the superclass also holds in the subclass.
Moreover, any instance of a subclass automatically belongs to the superclass. This allows
convenient construction of type class hierarchies.

Third, we can use axiomatic type classes to prove theorems. Instead of proving a
theorem for a particular type, we can now prove a theorem holds for a type class. Once
this is proved, it holds for all instances of that class automatically, including any types
defined in future Isabelle sessions.

Having seen the benefits of axiomatic type classes, we now look at how Isabelle/HOL
defines them [66].

Definition 4. Isabelle’s axiomatic type classes are defined as follows:

• A type class is a set of types for which certain operations are defined. An axiomatic
type class has a set of axioms that must be satisfied by its instances. If a type τ
belongs to a class C then it is written as τ :: C.

• A type class C is a subclass of another type class D, if all axioms of D can be proved
in C. If a type τ is an instance of C then it is an instance of D as well. Furthermore,
a type class may have more than one direct superclass.

• A sort is an intersection of type classes. If C is a subclass of both D1 and D2 then
C is subset of the intersection of D1 and D2, and thus has sort D1 and D2.

• Each type constructor has one or more arities, which describe the type class con-
straints on the type constructor’s arguments and its result. For a compound type
(τ1, . . . , τn)op, an arity of type constructor op is written as op :: (C1, . . . , Cn)C, where
C1, . . . , Cn and C are type classes: C1, . . . , Cn are type classes of op’s arguments and
C is the type class of op’s result.

In addition, type classes are open-ended, which means any new type that satisfies the
axioms can be admitted to the class.

In order to make the idea more concrete, let us look at an example. Isabelle/HOL
defines the type class of linear orders (linorder) to be a subclass of the type class of
partial orders (order). This is written in Isabelle as

axclass linorder < order

linorder linear: "x6 y ∨ y6 x"

where linorder linear is the axiom — in addition to axioms of order — that has to be
satisfied by instances of linorder. Now, to assert that type real is an instance of class
linorder, we must show that the corresponding instance of the axiom linorder linear

holds for that type. This is written in Isabelle as

instance real :: linorder

proof ... qed

where proof ... qed is the proof of the axiom linorder linear, which is not shown
here.
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Axiomatic type classes not only ensure meaningful overloading, but also save efforts
in theorem proving. We can prove a theorem such as (−a) × (−b) = a × b in type class
ring and declare it as a simplification rule, where it will govern numeric types such as
int, rat, real and complex, which are all instances of ring. Type checking remains
decidable, for it is the user’s responsibility to notice that a type belongs to a certain class
and to declare it as such, providing the necessary proofs. Of course, full type checking
must be performed, including checking of sorts, since a theorem about linear orderings
cannot be assumed to hold for arbitrary orderings.

Isabelle provides compound types through the use of type constructors. As we have
seen, the arities of type constructors describe the type class information of the arguments
and the result of this type constructor. Take the Isabelle’s list type constructor list as
an example. A list can be linearly ordered (by the usual lexicographic ordering) if we have
a linear ordering of the list element types. This type constructor declaration is written in
Isabelle as an arity

instance list :: (linorder) linorder

proof ... qed

In addition, each type constructor may have multiple arities. For instance, list has
another arity

instance list :: (order) order

proof ... qed

Finally, polymorphic functions and predicates can be instantiated as usual, with extra
type class constraints: a type variable must be instantiated to a type belonging to the
same type class. In our type class example, the relation 6 is polymorphic. Its type is
α → α → bool, where α is a type variable of class ord. The effect is to allow 6 to be
applied only if its arguments belong to type class ord. This polymorphic type can be
specialized when 6 is applied to different arguments. When applied to sets, its type will
be α set→ α set→ bool, whereas for natural numbers its type will be nat→ nat→ bool.

2.8 Isabelle/ZF

Isabelle/ZF [47] implements Zermelo-Fraenkel set theory. It is based on Isabelle’s classical
first-order logic Isabelle/FOL and is untyped.

2.8.1 Zermelo-Fraenkel Set Theory

In set theory every mathematical concept is defined by sets, which are the only funda-
mental objects. A fundamental relation in set theory is the membership relation, which
determines a set by its elements. For example, when examining whether two sets are
equal, we check if they have exactly the same elements. Based on this membership re-
lation, other operations can be defined, such as set unions, intersections and unordered
pairs.

There are several axiomatic approaches to set theory. In an axiomatic approach,
axioms are required to assert that the above set operations are possible. One of the most
influential axiomatic approaches to set theory is the Zermelo-Fraenkel (ZF) set theory,
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which is expressed in first-order logic. The existence of the set operations are asserted by
several axioms and axiom schemes, namely axiom of extensionality, axiom of the unordered
pair, axiom of union, axiom of power set, axiom of empty set, axiom of infinity, axiom of
foundation, axiom scheme of separation and axiom scheme of replacement.

Because of the axiom schemes, ZF set theory defines an infinite number of axioms.
Based on the axioms and set construction operations, we can define integers, real numbers,
functions and other more complex mathematical concepts.

2.8.2 ZF Set Theory in Isabelle

ZF set theory is formalized in Isabelle as Isabelle/ZF. It is well developed with a significant
number of theories for proof developments. Moreover Isabelle/ZF also provides packages
for handling inductive and co-inductive definitions.

Every ZF object is defined in terms of sets and set construction operations. This is
not practical in real proofs. Therefore Isabelle/ZF defines a collection of constants for
primitive sets. For instance, Isabelle defines constant Collect that constructs a set based
on the axiom scheme of separation. An infinite set Inf is defined in correspondence to
the axiom of infinity. Other primitive constants defined include Pow for power set, Union
for union of sets, Upair for unordered pairs and succ for successor of sets.

Isabelle/ZF also defines terms that are outside the scope of first-order logic. Examples
are general unions

⋃

x∈AB[x], general intersections
⋂

x∈AB[x], general sums
∑

x∈AB[x],
general products

∏

x∈AB[x] and λ-terms.
Since it is usually hard to prove any theorem using definitions only, Isabelle/ZF pro-

vides many derived rules, used in a natural deduction style. Furthermore, these rules can
be used by the classical reasoner for an automatic proof search. As a result, Isabelle users
usually carry out proofs using the derived rules rather than the constants’ definitions.

Finally, unlike Isabelle/HOL, Isabelle/ZF does not employ polymorphism. It has a
simple type system, where ZF terms are typed i (for individuals) and formulae are typed
o. For example, the constant succ has type i→ i while the membership constant ∈ has
type i → i → o. Furthermore, a function in Isabelle/ZF is represented as a set of pairs
and thus its type is i rather than i→ i.

2.9 An Example Proof in Isabelle

Before we leave this section, we look at an Isabelle proof example. Our goal is to prove
that for any two lists xs and ys, the sum of their lengths is equal to the length of the
concatenation of those lists. The goal is written in Isabelle/HOL as

length (xs @ ys) = length xs + length ys

where length returns the length of an input list and @ is the list concatenation operator.
We show the proofs in both the ML interface and the Isar interface. As with many

recursively defined datatypes, we first apply induction on list xs, which reduces the goal
to two subgoals. Afterwards, we call Isabelle’s classical reasoner and simplifier to prove
each subgoal. As we will see, both interfaces support linear proofs. In the ML interface,
linear proofs are carried out by tactics directly, whereas in the Isar interface linear proofs
are carried out by the simulations of tactics. For instance, the tactic that uses induction
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is called induct tac in the ML interface but its simulation in the Isar interface is called
induct.

2.9.1 ML Interface

In the ML interface, a goal is declared using the Goal command. A sequence of tactics is
carried out using the by command. The proof is interactive and the response from Isabelle
is also shown. Please note: Isabelle only displays the current subgoals, rather than the
entire proof state.

> Goal "length (xs @ ys) = length xs + length ys"; ←−state a goal

Level 0 (1 subgoal)

length (xs @ ys) = length xs + length ys

1. length (xs @ ys) = length xs + length ys

val it = [] : Thm.thm list ←−original problem

> by(induct tac "xs" 1);

Level 1 (2 subgoals)

length (xs @ ys) = length xs + length ys

1. length ([] @ ys) = length [] + length ys

2. !!a list.

length (list @ ys) = length list + length ys

=⇒length ((a # list) @ ys) = length (a # list) + length ys

val it = () : unit ←−base case and induction step

> by(Auto tac);

Level 2

length (xs @ ys) = length xs + length ys

No subgoals! ←−proved by Auto tac

2.9.2 Isar Interface

In the Isar interface, this goal is declared using the lemma command, which initializes
a proof state in the prove mode. Command proof(induct xs) refines the proof goal
using induction and takes Isabelle proof into the state mode. A case analysis on each
subgoal is performed afterwards: first with the base case when xs is an empty list (Nil),
then with the inductive step.

lemma length append [simp]: "length (xs @ ys) = length xs + length ys"

proof(induct xs) ←−apply induction on xs

case Nil thus ?case by auto ←−prove base case by auto

next

case(Cons a list) thus ?case by auto ←−prove inductive step by auto

qed

These are the proof texts that we type in the Isar editor window. The Isar response
window is not shown here.



Chapter 3

Using Resolution to Prove Isabelle
Problems

Our integration aims to improve the automation of Isabelle by using resolution-based
automatic theorem provers to automatically find proofs of Isabelle’s goals. One important
task involved is to design a method that can efficiently bridge the many differences between
these two types of provers, which is a prerequisite of the integration. In this chapter, we
carry out an investigation on the major obstacles that need to be tackled and then describe
how we have solved the problems and our approach of linking Isabelle with our target
automatic provers. In particular, we put emphasis on the translation of Isabelle formalism
to first-order clause form, which is the major component of the integration.

We have carried out a series of experiments in order to examine whether our integration
approach is practical: it should not only work in theory but also enable an automatic
prover to find a proof within a reasonable amount of time. We also used the experiments
to determine the feasibility of using resolution to support Isabelle proofs. We list the
experimental results and offer some discussion at the end of this chapter.

3.1 Initial Investigation

Integrating any two existing systems with significant differences is hard: we cannot expect
any of the systems to undergo major change to suit the other one. Instead we need to
design an intermediate program that runs between them and acts like a translator to
bridge any differences involved, so that neither the developers of the provers, nor the
users will be affected.

Isabelle is very different from any of the automatic provers that we intend to use
in our integration. The first task that we need to carry out before we can design and
implement any intermediate system is to investigate the obstacles brought by those dif-
ferences. Subsequently we need to tackle each problem in turn and design a suitable
method to act between Isabelle and automatic theorem provers. We also need to evaluate
the effectiveness of our method.

47
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3.1.1 Identifying the Major Obstacles

Our research mainly concerns integrating Isabelle with Vampire and SPASS, because they
are leading resolution provers that have done well in recent CASCs (the CADE ATP Sys-
tem Competition)1. We have given some background information about these two provers
in a previous chapter (Chapter 2). In order to best present the major problems that
our integration faces, we list some of the differences between Isabelle and the resolution
provers. We also describe the associated problems that we need to tackle. Furthermore,
the research on linking these two automatic provers with Isabelle is only a starting point
to achieving the ultimate goal, which is to use any resolution-based automatic prover to
support Isabelle proofs. Therefore, many of the differences and problems described be-
low are not specific to Vampire and SPASS, but are generally applicable to many other
automatic provers.

Isabelle Logic and First-Order Logic

Isabelle’s meta-logic is a fragment of higher-order logic and it supports a variety of object-
logics. In contrast, most resolution automatic provers, such as Vampire and SPASS, only
work for first-order logic. Therefore, one task of our integration is to translate Isabelle
formalisms to first-order logic.

There are two possible approaches to this translation. The first option is to separately
translate each object-logic supported by Isabelle to first-order logic. The other alternative
is to treat each object-logic as embedded inside the meta-logic and instead of translating
each object-logic, we translate the meta-logic to first-order logic. The latter approach
seems more systematic and scalable than the first one as all object-logics can be dealt
with in a uniform way. This may all work very well in theory, but when it comes to reality,
we also need to consider an efficiency issue.

The second approach does not exploit any object-logic-specific information: it regards
all object-logic operators as purely constants defined in the meta-logic. Therefore the
translation of an object-logic rule or goal is literal. As we know, Isabelle’s meta-logic
is higher-order. It is very likely that an object-logic represented by this meta-logic may
contain terms that are outside the scope of first-order logic. As a result, if we translate
such non-first-order terms, we will have to translate higher-order expressions to first-order
form. Nonetheless, if we have a closer look at some of the object-logic expressions, we
may find many of them can be reformulated to an equivalent first-order formula. This
optimized translation requires some object-logic-specific knowledge, which is lost if we
treat all object-logic as part of the meta-logic. Although we can translate the entire
higher-order logic to first-order logic with a bit more effort, the resulting first-order terms
may be too complicated for an automatic prover to handle efficiently. This may result
in either a slow and lengthy proof or a failed proof attempt. In any case, the second
approach is likely to hinder automatic provers’ performance.

Based on the consideration above, we have decided to formalize each Isabelle object-
logic in first-order logic separately. We also take into account of the specific knowledge
available to the object-logics. For many object-level formulae that are not originally in
first-order form, we convert them to equivalent first-order logic formulae.

1See http://www.cs.miami.edu/tptp/CASC/
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Typed and Untyped Systems

Isabelle is a typed interactive prover and provides a sophisticated type system. In com-
parison, most first-order automatic provers are untyped. A question that we need to
consider is whether we should keep Isabelle’s type information when translating Isabelle’s
typed formulae to first-order input of automatic provers.

A quick answer to this question may be that it is not necessary. When we send an
Isabelle goal and some theorems to an automatic prover, types do not have to participate
in the proof search. Adding types in first-order formulae will inevitably result in bigger
terms. This may slow down the proof search as bigger terms take longer time to process.
Although proving higher-order problems without considering type constraints may yield
an incorrect proof, which is the reason why a type system is required for higher-order
logic, the proof found by an automatic prover is always checked by Isabelle before being
accepted. These arguments all seem to suggest we can completely ignore types in our
translation and treat Isabelle formulae as untyped. However, a careful analysis reveals an
opposite argument.

Many goals and theorems in Isabelle contain polymorphic predicates and functions.
For instance, the 6 relation is a polymorphic predicate that can be overloaded on integers
or sets, etc. When an automatic prover tries to prove a goal containing i 6 j for two
variables i and j, the type of 6 will help the prover to decide which theorem is applicable.
Without this type information, it is likely that the automatic prover will apply an incorrect
theorem. This will significantly slow down the proof search. Furthermore, although
Isabelle can always check a proof found by an automatic prover and reject it if necessary,
such several-rounded communications between them may also affect the performance of
our integration. This strongly suggests that we should convey the type information to
automatic provers.

Finally, since our integration design should be flexible enough so that we can add any
automatic provers to assist Isabelle proofs, we cannot assume any special support from
them for Isabelle’s type system. Consequently, we have to formalize Isabelle’s type system
and typed formulae purely inside first-order logic.

Natural Deduction Calculus and Resolution Theorem Proving

Isabelle’s logical framework works in the natural deduction style. It provides both equality
and classical reasoning. Theorems are distinguished by whether they should be used for
forward chaining (for elimination rules) or backward chaining (for introduction rules).
This information about how theorems should be used is essential when Isabelle’s classical
reasoner performs automatic proof search: using a theorem incorrectly will result in a
failed proof attempt.

On the other hand, resolution provers work by refutation of a problem expressed in
clause normal form, although arbitrary formulae are now accepted by most of the provers
as well. The inference system is based on resolution and paramodulation. Performance of
a proof search is largely affected by the clause selection function and the literal selection
function. However, there is no direct support of Isabelle’s notion of backward chaining or
forward chaining.

These differences in their proof calculi lead to the following questions:

• Can resolution and paramodulation effectively combine the functions provided by
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Isabelle’s classical and equality reasoners? In theory, the answer is yes. However,
we still need to examine whether it is feasible.

• Do we need to convey the information about the forward and backward use of
Isabelle theorems to an automatic prover? Without such information, the search
space of an automatic prover may easily explode if wrong literals are selected for
resolution. Subsequently, we need to consider how we can encode this information
in the input sent to the prover.

• How can we translate a resolution proof found by an automatic prover to an Isabelle
proof so that it can be verified? This requires us to perform clause normal form
transformation inside Isabelle logic using inference rules, which is certainly harder
than sending Isabelle formulae directly to the automatic prover.

Number of Lemmas

Isabelle’s classical reasoner can utilize a large set of lemmas without suffering a combi-
natorial explosion. Although certain proofs do require the user to name crucial lemmas,
hundreds of other lemmas are available to the classical reasoner at all times. These are
lemmas that were previously designated as being useful for classical reasoning, and they
constitute a knowledge base for the user’s application domain. Typically omitted from
this knowledge base are transitivity laws and similar lemmas that would blow up the
search space. As our aim of integrating Isabelle with automatic provers is to reduce in-
teraction, we should preserve this advantage: the user should only have to identify a few
crucial lemmas, while the resolution search automatically finds other needed facts from
the knowledge base.

Resolution- and paramodulation- based automatic provers are very powerful and have
been able to solve very complex problems. However, they mainly work in a problem
domain where not many axioms are involved. Therefore it is important to assess their
performance of proof search in the presence of large numbers of axioms.

Interactive and Automatic Modes

Isabelle is an interactive prover: most of the time, a user is responsible to guide the prover
on proof search. A resolution prover is completely automatic: it is difficult to influence
the direction of its proof search once it starts running. Its behaviour is only affected by
its numerous settings, which can be specified manually.

The settings of automatic provers can dramatically affect their performance, in the
form of the proof speed and the proof script’s length. Therefore, correct settings or
combinations of settings are keys to the success of our integration. Moreover, we need to
study those settings in advance and hardwire them in our integrated system rather than
asking Isabelle users to specify the values of those settings. From users’ point of view,
the prover process should be invisible and we should not ask users to decide what settings
are suitable for their problem. Isabelle users do not possess the technical knowledge of
resolution provers.

A quick response from an automatic prover is important. Recall that an automatic
prover should be called to prove a goal in the background while a user is trying to find
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a proof himself. A quick proof found by the automatic prover can help the user tremen-
dously. However, a slow proof search on the goal is not useful: if an automatic prover
spends an excessive amount of time on a goal, then by the time the result is found and
returned to the user, the user may have already accomplished the proof himself. The
requirement that the background automatic prover should find a proof quickly is, in fact,
consistent with the situation in which it is used: it is used to support interactive prover
with near-real-time response requirement.

However, as we know, most resolution provers are designed to run for minutes or hours
on batch jobs. Therefore a question we need to ask is how fast can these provers find
proofs. We need to use experiments to measure their performance.

3.1.2 Research Outline

After the initial investigation on our research, we decided to answer the questions above
and solve the problems by experimenting on formalizing Isabelle/ZF and Isabelle/HOL
in first-order logic. We also performed a series of experiments on both Vampire and
SPASS to assess our method of formalization and to evaluate how feasible it is to use
resolution-based provers to assist Isabelle proofs. Since we received greater support from
the Vampire team at the time of experiments, we carried out most of the experiments on
Vampire.

Isabelle/ZF is untyped and is an extension of first-order logic. It is simpler than many
other object-logics and is a good starting point of our formalization. The primary objective
of experiments on ZF was to examine the performance of Vampire and in particular, to
find those Vampire settings that were suitable for us to use.

Isabelle/HOL implements higher-order logic. While formalizing it in first-order logic,
our major emphasis was on HOL’s type system. Experiments on HOL were mainly used
to determine whether our type encoding was practical and whether it was useful to keep
type information in first-order clauses generated from Isabelle’s formulae.

We describe our formalization and experiments in the following sections.

3.2 Formalizing Isabelle/ZF in First-Order Logic

Isabelle/ZF [47] implements Zermelo-Fraenkel set theory and is based on first-order logic.
Its type system does not employ polymorphism and is very simple: ZF terms are typed
i (for individuals) and formulae are typed o. Therefore we can simply treat it as an
untyped logic. As a result, the main concern of our research on formalizing Isabelle/ZF in
first-order logic is to find an effective way to translate its formulae and terms to first-order
clauses.

For those ZF formulae (theorems and goals) that are already in first-order logic form,
we translate them directly to clauses via clause normal form transformation. However,
set theory contains some other terms and some special ways of expressing formulae, which
are outside the scope of first-order logic. As remarked above, we should use logic-specific
knowledge to reformulate those formulae and terms before translating them to clause
form.
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3.2.1 Elimination Rules

The first problem that we encountered during our translation research was brought about
by the way Isabelle/ZF (and also Isabelle in general) formulates its elimination rules: they
are represented in higher-order form.

Recall Isabelle represents all elimination rules with the following format (§2.6.2)

∀P [A→ ∀x1 (B1 → P )→ . . .→ ∀xn (Bn → P )→ P ].

Clearly, this is not a first-order formula at all due to the predicate variable P . We cannot
simply translate a formula like this to clauses. It might work if we design a method that
translates higher-order logic to first-order logic and use it for our translation. However,
many elimination rules do not involve any other higher-order function or predicate, except
the predicate variable P . In fact, these elimination rules encode first-order logic inference
rules. We have found a simple reformulation of an elimination rule, which should be
applied before clause normal transformation.

Definition 5. For an Isabelle elimination rule

∀P [A→ ∀x1 (B1 → P )→ . . .→ ∀xn (Bn → P )→ P ],

we transform it into the following equivalent first-order formula

A→ (∃x1B1 ∨ . . . ∨ ∃xnBn).

In the case when n = 0, the elimination rule is simply ¬A.

As we can see, this reformulation of elimination rules has successfully removed the
predicate variable P . For example, the set intersection elimination rule (IntE) is repre-
sented in Isabelle as

∀cAB P [c ∈ A ∩B → (c ∈ A ∧ c ∈ B → P )→ P ].

This says if c ∈ A ∩ B then c is in both A and B. Using our method, we transform it to
an equivalent first-order formula (∩E)

∀cAB [c ∈ A ∩ B → (c ∈ A ∧ c ∈ B)].

We now give a brief justification of our translation, using the example of IntE. The
first formula (IntE) is the elimination rule written in the natural deduction form and we
need to unfold it in order to eliminate the predicate variable P . Although the predicate P
disappears, we are not losing information during a proof. Suppose we are going to prove
a goal

(i ∈ S1 ∩ S2)→ R1 → R2 . . .→ Rn → Q (3.1)

where R1 . . .Rn andQ are formulae. In addition, (i ∈ S1∩S2) and each Ri are assumptions
of the goal and Q is the conclusion.

In Isabelle, this goal is proved by applying the set intersection elimination rule IntE.
First, c ∈ A ∩ B is instantiated to i ∈ S1 ∩ S2, and P to Q (c, A, B, P are universally
quantified variables). Then the goal (3.1) is replaced by a new goal

R1 → R2 . . .→ Rn → (i ∈ S1 ∧ i ∈ S2)→ Q. (3.2)
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Now, if we use resolution to prove the new goal (3.2), then we will have to negate it
and convert it to clauses — suppose this set of clauses is called C. On the other hand,
if we use resolution to prove the original goal (3.1) directly, with the use of transformed
elimination rule ∩E, then we need to convert the negated goal to clauses as C1. We also
need to convert ∩E to clauses as C2. It can be shown easily that by resolving clauses from
C1 and clauses from C2, we will get the same set of clauses as C. As far as resolution is
concerned, there is no difference in terms of the clauses generated (here clauses C in both
cases), regardless whether we use an original Isabelle elimination rule or its equivalent first-
order formula that we have described above. Therefore, our transformation on Isabelle
elimination rules is correct.

We have used this method to reformulate all Isabelle elimination rules. For instance,
we translate the elimination rule domainE

∀a r P [a ∈ domain(r)→ ∀y (〈a, y〉 ∈ r → P )→ P ]

to
∀a r [a ∈ domain(r)→ ∃y (〈a, y〉 ∈ r)].

3.2.2 Transforming Other Isabelle/ZF Terms

Isabelle/ZF contains many other operations expressed in the special set theory syntax,
which are not present in first-order logic. Examples include general union

⋃

x∈AB(x) and
general intersection

⋂

x∈AB(x). Isabelle’s meta-logic represents these terms using higher-
order terms such as the λ-abstractions. A straightforward approach to formalize these
non-first-order ZF terms would be to translate higher-order constructs (§3.1.1). However,
these terms serve as typical examples where the semantics of a logic can help to optimize
logic formalization.

In Zermelo-Fraenkel set theory, any formula φ(Z), which contains a free occurrence of
a term Z, is equivalent to

∃v [φ(v) ∧ ∀u (u ∈ v ↔ u ∈ Z)]

where v is a fresh variable and φ(v) is the result of replacing Z by v. The interpretation
of this equivalence is that φ(Z) is true if and only if there is some term v, which satisfies φ
and v contains exactly the same elements as Z does. Hence, by the axiom of extensionality,
Z and v are equal.

This transformation allows any occurrence of the term Z to be forced into a context of
the form u ∈ Z. Consequently, if we let

⋂

x∈AB(x) be Z, then by substitution, a formula
φ(
⋂

x∈AB(x)) is equivalent to

∃v [φ(v) ∧ ∀u (u ∈ v ↔ u ∈
⋂

x∈A

B(x))].

Such transformation is helpful as we can further translate u ∈
⋂

x∈AB(x) into

∀x [x ∈ A→ u ∈ B(x)] ∧ ∃a [a ∈ A]

which completes the translation of any formula φ(
⋂

x∈AB(x)) into first-order logic.
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We translate a term with general union
⋃

x∈AB(x) into first-order logic in a same way,
except that we replace u ∈

⋃

x∈AB(x) using the following equivalence

u ∈
⋃

x∈A

B(x) ≃ ∃x [x ∈ A ∧ u ∈ B(x)]

Finally, Isabelle/ZF contains bounded quantification on variables. For instance, a
formula

∃x ∈ A [P (x)]

says there is some x in the set A, such that x satisfies P . We reformulate this bounded
quantification to normal first-order quantification using the equivalence

∃x ∈ A [P (x)] ≃ ∃x [x ∈ A ∧ P (x)].

In addition, a formula
∀x ∈ A [P (x)]

means for any x that is in set A, P (x) is true. We reformulate this formula using the
equivalence

∀x ∈ A [P (x)] ≃ ∀x [x ∈ A→ P (x)].

These transformation of terms and formulae require some logic-specific knowledge (in
this case, their interpretations). We find such knowledge can help improve the formaliza-
tion of the logic in first-order form.

3.2.3 Efficiency Issues of Translation

In addition to correctly translating Isabelle/ZF formulae into first-order form, we also need
to consider whether the translation is practical, which is measured by the performance of
an automatic prover when it tries to prove goals using our translation.

There may be more than one way to translate a ZF formula into first-order form. Even
for those ZF formulae that are already in first-order logic form, we may have a choice in
whether to convert it to clause form directly or to transform the formula into another
equivalent first-order formula first and then perform the clause normal transformation.
These representations are all correct, but one may take much more time than another for
an automatic prover to prove. We should aim to find a most suitable translation so that
first-order clauses generated from that translation can be proved by automatic provers
within a reasonable amount of time. We have carried out many experiments in order to
measure performances among several representations of ZF formulae. Several interesting
problems have emerged from the experiments.

One example is the subset relation R ⊆ S between two sets. Since it is already
in first-order logic, we can translate it to first-order clauses directly. Alternatively, we
can translate it to its equivalent membership relation ∀x (x ∈ R → x ∈ S). From the
experiments (§3.3) that I have carried out on Vampire, it is clear that Vampire can find
a proof much more quickly if the subset relation is replaced by its equivalent membership
relation. This is probably because during most of the complex proofs in set theory, subset
relations have to be reduced to equivalent membership relations anyway.

Set equality A = B is another example. During many proofs, set equality predicates
should be reduced to two subset predicates by resolution: A ⊆ B and B ⊆ A. However,
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Vampire usually gives the positive equality literal a low priority relative to other literals
in the same clause. Therefore the positive equality literal is likely to be selected and
resolved last during resolution. As a result, the positive equality in the clause

¬(A ⊆ B) ∨ ¬(B ⊆ A) ∨ (A = B)

is not selected to participate in a resolution step. This makes the reduction of set equality
to subset relations via resolution impossible. Our experiments show that better perfor-
mance can be achieved when we replace set equality predicates by the subset predicates,
which will be further reduced to formulae involving membership predicates as shown
above.

3.3 Experiments on Formalizing Isabelle/ZF

After having formalized Isbelle/ZF in first-order logic, we decided to run some experiments
with the following objectives:

• Determine whether it is feasible to use resolution and paramodulation methods to
assist Isabelle proofs by improving its automation.

• Evaluate the effectiveness of our translation from Isabelle/ZF to first-order logic.
Although the translation is correct, we need to ensure it is practical.

• Study the use of automatic provers and identify suitable settings for our problems.

• Examine the performance of automatic provers in the presence of large numbers of
axioms.

Since automatic provers will be used to prove Isabelle goals, the experimental results
will be more convincing if we run those provers on proof goals taken from Isabelle theory
files, rather than problems in some other domain (such as those stored in the TPTP
library). Therefore, for our experiments, we took proof goals from the following Isabelle
theories:

• equalities.thy: proofs of many simple set equalities.

• Comb.thy: a development of combinatory logic similar to the Isabelle/HOL version
described by Paulson [44].

• PropLog.thy: a development of propositional logic.

In order to test whether resolution provers are suitable candidates for our integration,
with improved automation as the ultimate goal, we need to look at the performance of
automatic provers from two aspects.

First, we need to examine whether automatic provers can prove goals that were orig-
inally proved by Isabelle’s automatic tactics or a combination of tactics. Resolution and
paramodulation-based provers should in theory combine Isabelle’s equational and classical
reasoning, which need to be performed separately in Isabelle. For this purpose, we carried
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out experiments, which consisted of taking blast, fast, clarify, auto and simp invoca-
tions from existing proofs taken from the three theory files and attempting to reproduce
proofs using several automatic provers, including Vampire and SPASS (§3.3.1).

Moreover, it is not good enough if an automatic prover can only prove those goals that
were proved by Isabelle’s built-in tools, since our aim of integration is to use automatic
provers to prove many more goals that are too complicated to be proved by any Isabelle
tactic. Therefore, running experiments to test the potential improvement in automation
is even more important. As a result, we carried out another set of experiments, using
some goals that were not proved by blast or auto, etc. (§3.3.2).

We included large numbers of axiom clauses in some parts of the experiments to
investigate how well automatic provers can handle them. In addition, we carried out
experiments on two particular issues concerning subset relations and the performance of
proving equalities by Vampire.

As we ran most of our experiments on Vampire, we describe experimental results
received from Vampire in the rest of this section. Moreover, as our integration will only
let automatic provers run for a limited duration of time, we set the time limit for each
proof attempt to 60 seconds, which is roughly the amount of time a user may spend on
considering how to construct the rest of a proof manually.

While we ran the experiments, for each proof, a set of classical rules (backward and
forward chaining rules) and equality rewriting rules (simplification rules) in the current
Isabelle context were translated to first-order axiom clauses. The goals were negated,
converted to conjecture clauses and sent to Vampire. Moreover, each Isabelle goal usually
presented more than one proof goal to Vampire. In some of the examples, we also per-
formed formula renaming [39] before the clause normal form transformation in order to
minimize the number of clauses. We tried several Vampire settings on these experiments
and the findings we received are valuable for future use.

3.3.1 Experiments on Combining Isabelle’s Tactics

We carried out two runs of experiments in order to examine whether Vampire can prove
goals that were proved by Isabelle’s built-in tactics: one with moderate number of axiom
clauses, the other with many more axioms.

In the first set of experiments, we have attempted to prove around 250 lemmas using
Vampire. These lemmas were taken from Isabelle theories equalities.thy and Comb.thy.
Around 70 axiom clauses were included in the axiom set. Most of the goals were proved
with this axiom set. This is a promising finding as it indicates Vampire (and probably
many other good resolution-based provers) can combine Isabelle’s equality and classical
reasoning.

Moreover, by running large numbers of sample problems, we have also identified those
settings of Vampire, which are suitable for our problems. The experiments show that
the default setting of Vampire is usually good. This means that we can send Vampire
Isabelle’s goals and let it run without further instruction, and there is a good chance that
a proof will be found.

Moreover, the literal selection mode is the most important factor in determining the
speed of proofs. Four selection modes — selection4, selection5, selection6 and selection7
— are better than the others.
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Setting File No. of Goals
Proved from
Comb.thy

No. of Goals
Proved from
equalities.thy

Total No. of
Goals Proved

defaultSetting 21 28 49
setting1 22 28 50
setting2 21 27 48
setting3 21 28 49
setting4 18 27 45
combined settings 24 28 52

Table 3.1: Number of Goals Proved with the Large Axiom Set

• selection4 selects maximal literals. One negative literal with maximal weight is also
selected to improve selection.

• selection5 selects maximal literals. One negative literal is also selected that can
minimize the expected number of possible inferences.

• selection6 performs positive hyper-resolution selection, where negative literals are
always selected before positive literals. Among the negative literals, the maximally
non-ground ones are selected. From these literals, the ones with greater size are
selected. Moreover, in a positive clause, maximal literals are selected.

• selection7 selects maximal literals. One negative literal with maximal number of
different variables, smaller depths of variable occurrences and bigger size, is also
selected.

Vampire also supports the set of support strategy (SOS). Most of the goals require
us to use this heuristic in order to find proofs: if we turned it off, then either the proofs
were found very slowly or Vampire failed to find proofs within 60 seconds. Based on the
experiments, we have found five combinations of settings which perform better. They were
written to five separate setting files so that we can conveniently use them for later part
of experiments. These settings can also be used to run five Vampire processes in parallel
when Vampire helps Isabelle users to automatically find proofs after our integration is
complete.

As the ultimate aim of our integration is to give Vampire or other automatic provers
all of the default classical and simplification rules as axioms, tests with a larger axiom set
were necessary. During this second run of tests, around 129 to 160 axiom clauses were
used. Vampire tried to prove 37 lemmas (63 separate goals), which were drawn from the
previous 250 lemmas. Each lemma was attempted five times using the five combinations
of settings: defaultSetting uses default settings; setting1 to setting3 use Vampire’s
literal selection mode selection5 to selection7 respectively; setting4 turns on dynamic
splitting. The lemmas from equalities.thy were mainly proved by the blast tactic
(with other tactics such as clarify and simp as well), while lemmas from Comb.thy are
more complicated and many of them also required the auto tactic. Among the 63 goals,
fifty-two of them were proved by the combination of all five settings within the time limit.
The results are shown in Table 3.1.
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The findings from the two sets of experiments suggest that for most of the prob-
lems, resolution and paramodulation can indeed replace Isabelle automatic tactics such
as blast, auto. Moreover, for those goals where Vampire failed to prove, it is mainly due
to the presence of large numbers of axioms, since they were provable in the first run of
the test where we gave only 70 axioms to Vampire.

The experimental results also indicate a potential that more goals can be proved by
running several Vampire processes with different settings in parallel, although the results
so far are not dramatic. In addition, there are eight relatively complex goals where the
amount of time taken by each setting to find proofs varies significantly. It shows that
parallelism could prove goals more quickly. Performance variance in different settings
is more significant when proving more complicated lemmas (here lemmas drawn from
Comb.thy).

3.3.2 Experiments on Greater Automation

A more important aim of this integration is to prove goals that cannot be proved by
Isabelle’s built-in tools and hence improve automation. The second set of experiments
examined whether the integration can prove goals that were not proved by blast, auto,
or simp. Isabelle proofs of these goals consist of short sequences of proof commands
specified by users. If these goals can be proved automatically with our integration, then
Isabelle users will not have to specify the proof steps. This set of experiments took 15
lemmas from Isabelle/ZF theory files Comb.thy and PropLog.thy. The combination of
the five Vampire settings was used during the tests.

An issue that we need to consider is at which stage of a proof, we should send the
current goal or subgoals to Vampire for an automatic proof. Induction is sometimes
necessary to prove a goal and we are not aiming to automate this induction step. Therefore
for those lemmas that were proved by induction in Isabelle, we sent to Vampire those
subgoals we were left with after induction was performed.

The results are shown in Table 3.2. Some lemmas present more than one subgoal to
Vampire. Eight lemmas have their lemma IDs marked with asterisks, which means that
we have attempted to eliminate all Isabelle proof steps for these lemmas.

Ten lemmas out of fifteen were proved by Vampire. What is more encouraging is
that when Vampire proved lemma 10, it completely eliminated six Isabelle proof steps.
In addition, among the eight lemmas that we tried to let Vampire completely replace
Isabelle’s proof steps, six succeeded. These experimental results indicate that we can
improve Isabelle’s automation by letting external resolution prover, such as Vampire, to
prove many goals too complicated for any Isabelle’s automatic tactics.

For the five lemmas that could not be proved by Vampire automatically, one or more
subgoals’ proofs were not found. Lemma 2, 11 and 14 all present more than one subgoal
to Vampire and each has one of the subgoals proved. These subgoals were generated after
induction was applied to the original single goal. The subgoals that were failed to be
proved represent cases in the inductive steps. Perhaps they are too difficult for Vampire
to prove automatically.
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Lemma ID No. of Isabelle
Proof Steps
Eliminated

No. of Subgoals
Sent to Vampire

No. of Subgoals
Proved by Vampire

1 4 2 2
2 2 2 1
3 3 2 2
4 2 1 1
5* 2 1 1
6* 4 1 1
7* 2 1 1
8* 3 1 1
9* 4 1 1
10* 6 1 1
11 3 3 1
12* 3 1 0
13* 2 1 0
14 10 2 1
15 4 2 2

Table 3.2: Number of More Complex Goals Proved by Vampire

3.3.3 Performance on Large Axiom Sets

An issue that arose from our Isabelle/ZF experiments is that many problems could only
be proved for a minimal set of axioms and not with the full set of default axioms. Recall
that one of our objectives is to preserve Isabelle’s policy of not usually requiring the user
to identify which previous lemmas should be used.

We took fifteen problems that seemed difficult in the presence of the full axiom set.
We offered them to Geoff Sutcliffe for inclusion in the TPTP Library [62] (COL088-1
to COL100-2 and SET787-1, SET787-2). He kindly ran experiments using three provers
(E, SPASS and Vampire) together with a tool he was developing for the very purpose
of eliminating redundant axioms. Gernot Stenz ran the same problems on E-SETHEO,
because that system is not available for downloading. Finally, I attempted the problems
using both Vampire and SPASS. Thus, we made 15 × 6 = 90 trials altogether. These
trials were not uniform, as they involved different hardware and different resource limits,
but they are still illustrative of our difficulty.

Of the fifteen problems, only five could be proved. Only seven of the ninety proof
attempts succeeded. We give a more detailed result later (§5.1).

Unfortunately, the hardest problems arose from proofs using the technique of rule
inversion, which is important for reasoning about operational semantics. Rule inversion
is a form of case analysis that involves identifying which of the many rules of an operational
semantics definition may have caused a given event. Isabelle’s blast method handles such
proofs easily, but converting the case analysis rule to clause form yields an explosion: 135
clauses in one simple case. We have been able to reduce this number by various means,
but the proofs remain difficult.
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Pos. Subset Neg. Subset Both
No. of Goals Involving 14 31 13
No. of Goals Proved if only
Keeping

11 18 6

No. of Goals Proved if
Removing Both Pos. and
Neg. Subset

13 30 13

Table 3.3: Number of Goals Proved with and without Subset Relations

3.3.4 Some Other Findings

While we performed the previous runs of experiments, we discovered some limitations of
Vampire. We found many problems involving subset relations or equalities were hard for
Vampire to prove. In order to investigate the reason behind the behaviour and to find
a feasible solution, we performed more specific experiments on the subset relations and
equalities.

Subset and Membership Relations

For many problems concerning subset relations, Vampire either spent an excessive amount
of time in the proof search or failed altogether. One solution we envisaged was to replace
the subset relation by its equivalent membership relation. In order to investigate whether
this solution could help, we carried out proofs of 32 goals. These goals involve either
positive subset predicates or negative subset predicates, or both. Without replacing any
subset predicate, only 17 goals were proved. However, after we removed all subset predi-
cates, 30 goals were proved. A more detailed comparison is shown in Table 3.3.

Some explanation of Table 3.3 may be useful. The intersection of row No. of Goals
Involving with column Pos. Subset indicates the total number of goals where positive
subset predicates exist. These goals may involve negative subset predicates as well. The
intersection of row No. of Goals Proved if Removing Both Pos. and Neg. Subset with Pos.
Subset indicates that 13 goals were proved (out of 14 goals that involve positive predicates)
once all subset predicates (both positive and negative) were removed. Similarly for other
columns and rows.

The experimental results showed that many goals were not proved in the presence of
subset relations. However, once we replaced subset relations by membership relations,
almost all goals were proved. This seems to suggest that the proofs of these goals did
require Vampire to reduce the subset relation to the membership relation via resolution
and Vampire did not successfully resolve the desired literals.

Moreover, if we look at the results more closely, we can see the effect of a positive subset
is not quite the same as that of a negative subset: Vampire’s performance improvement
(in terms of numbers of goals proved) was seen greater when we replaced negative subset
than we replaced positive subset. This should be explained by the fact that the literal
selection function of Vampire does not treat the same literal with different polarities in
the same way.

The findings above seem to indicate we should always replace the subset relation by
the membership relation. One possible explanation is that in set theory (and thus also in
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ZF set theory), the fundamental relationship is the membership relation, which is used to
define all other functions and therefore the membership relation participates in most of
the proofs. This finding may be useful for Isabelle/ZF. However, such replacement may
be unnecessary when we formalize another object-logic in first-order logic.

Tests on Equality Literals

We tried to prove twelve goals involving equality literals. Eleven of these goals have
negative equalities and one has a unit clause with a positive equality literal. Vampire
quickly found a proof for the goal containing the positive equality. In comparison, only
one goal involving a negative equality was proved. Once we removed all negative equalities
using subset and then membership literals, ten goals were proved.

The results above showed that the equalities in our experiments had to be resolved
and reduced to subset relations for a proof to be found. When Vampire found a proof
containing positive equality, this is explained by the fact that in a unit clause, a positive
equality is definitely selected and resolved with some negative equality literal (a negative
equality literal receives a higher weight than other literals occurring in the same clause).
However, in the case when negative equality had to be resolved, Vampire’s literal selection
function did not select a positive equality in another clause.

The finding also suggests that we should replace equalities by subset relations when-
ever possible. However, if we replace positive equalities, then we would prevent the use of
paramodulation. There may be many problems whose proofs merely require substituting
equals by equals. Such problems may not be proved (at least not as quickly) if we replace
positive equalities by subset relations. On the other hand, we can replace negative equal-
ities by the subset relations since negative equalities do not take part in paramodulation.
Such replacement provides an option of an alternative formalization.

3.4 Formalizing Isabelle/HOL in First-Order Logic

Isabelle/HOL [38] implements classical higher-order logic. In contrast to untyped Isa-
belle/ZF, Isabelle/HOL has a complex type system (§2.7.4), which is usually not sup-
ported by standard first-order automatic provers. From our analysis presented earlier in
this chapter, we have seen the potential benefits of sending type information to an auto-
matic prover for a proof search. As a result, we now need to design a sound and efficient
encoding of Isabelle/HOL’s types.

We must encode types in first-order logic. We take two steps for this encoding. First,
we represent Isabelle’s type system in first-order logic. Afterwards, we embed the types
of polymorphic operators in first-order formulae.

Representing types in first-order logic is a major task of formalizing Isabelle/HOL.
However, before that, we need to briefly look at the boolean equalities that are present
in Isabelle/HOL.

3.4.1 Boolean Equalities

Isabelle has equalities between boolean terms, which are not in first-order logic. For these
boolean equalities, we translate them to two-way implication. For instance, set union
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satisfies the equality (Un iff)

∀cAB [(c ∈ A ∪ B) = (c ∈ A ∨ c ∈ B)].

We translate this equality to the boolean equivalence

∀cAB [c ∈ A ∪ B ↔ (c ∈ A ∨ c ∈ B)],

which can then be replaced by a conjunction of two implications

∀cAB [(c ∈ A ∪ B → c ∈ A ∨ c ∈ B) ∧ (c ∈ A ∨ c ∈ B → c ∈ A ∪ B)].

Boolean equalities usually occur in Isabelle’s simplification rules. Therefore any sim-
plification rule that is a boolean equality should be transformed to the format above.

3.4.2 Formalizing Isabelle/HOL’s Type System

Isabelle/HOL’s type system consists of types, axiomatic type classes, sorts, subclass rela-
tions and type constructors. Formalizing the type system requires us to represent each of
these components in first-order form. We should start by encoding types and type classes,
since their representations directly determine the others’.

The relationship between types and type classes is a set membership relation. A naive
representation of this may define a membership predicate mem, which is similar to the
true set membership predicate ∈ used in Isabelle logics. For instance, if a type τ is an
instance of type class C then we may represent this as mem(τ, C). However, this is not
the best way to represent types.

A better solution is to describe sets using the most basic forms of first-order logic. In
this approach,

• the set membership is described by a predicate: if x belongs to set A then A(x) will
be true.

• the set intersection is described by predicate conjunction: if x belongs to sets A and
B then both A(x) and B(x) are true, hence A(x) ∧ B(x) is true.

• the subset relation is described by predicate implication, by first reducing the subset
relation to the membership relation.

A restriction of this formalization of set is that one cannot quantify over sets, but Isabelle
does not allow quantification over its type classes.

As a result, we represent type classes by predicates, and types by terms. Subclass
relations resemble subset relations and are represented by predicate implications. A sort,
which is an intersection of type classes, is treated as an intersection of sets, hence can
be expressed by a predicate conjunction. Finally, type constructors are simply functions
from types to types; we use first-order functions to represent them.

We can now formally define the first-order representation of Isabelle/HOL’s type sys-
tem.

Definition 6. We formalize Isabelle/HOL’s type system as follows:
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• We represent each type class by a unary predicate, and represent a type by a term.
If a type τ is an instance of a class C, then C(τ) will be true.

• We represent subclass relation by universal implication. Therefore, if C is a subclass
of D, then

∀τ [C(τ)→ D(τ)]

will be true.

• We handle sorts by predicate conjunctions. Therefore, if τ :: C1, . . . , Cn (type τ
belongs to classes C1, . . . , Cn ) then

C1(τ) ∧ . . . ∧ Cn(τ)

will be true.

• We represent type constructors by first-order functions. Furthermore, each type
constructor can have multiple arities. Therefore, for each type constructor op, we
translate each of its arities with the form

op :: (C1, . . . , Cn)C

into a first-order Horn clause

∀τ1 . . . τn [C1(τ1) ∧ . . . ∧ Cn(τn)→ C(op(τ1, . . . , τn))].

For example, the function type constructor fun has an arity fun :: (type, type)type,
which means if both arguments of fun are instances of class type, then the result of
this function type also belongs to class type. We formalize this in first-order logic
as

∀τ1 τ2 [type(τ1) ∧ type(τ2)→ type(fun(τ1, τ2))].

3.4.3 Embedding Type Information in First-Order Clauses

Isabelle’s predicates and functions are typed and many of them are polymorphic. This
information must be conveyed to automatic provers. After we encode the type system in
first-order logic using the method described in the previous section, we include polymor-
phic types in clauses.

Please note: we consider polymorphic types for each clause, rather than for each
formula in an arbitrary first-order format: formulating polymorphic types on a per clause
basis is more efficient. This is made possible because we perform clause normal form
transformation to a polymorphic formula first, with the result as typed first-order clauses.

Definition 7. We include types of polymorphic operators and type constraints from type
classes in the following way:

• For predicates (other than equality) and functions, we include their types as ad-
ditional arguments: for an n-place (n > 0) function or predicate op, we translate
op(t1, . . . , tn) to

op(τ, t1, . . . , tn)
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where τ is the type of op. If op is polymorphic then τ is the instance of the polymor-
phic type when op is applied to terms t1, . . . , tn. Constants do not need to carry type
information: their types should be inferred automatically. Removing unnecessary
type information can help to reduce the size of the terms and hence may reduce the
processing time of automatic provers.

• Equality is discussed below. However, equalities between boolean values — which
are legal in higher-order logic — are simply replaced by two implications.

• Any type class constraints on type variables occurring in a clause are included
either as additional literals or additional clauses, depending on whether the clause
concerned is an axiom clause or a negated conjecture clause. Type variables are
schematic in axiom clauses but are fixed in negated conjecture clauses.

– If the clause is an axiom clause, then we include type class constraints on
type variables as preconditions, in the form of additional negative literals: one
for each type variable. For instance, if the clause is L1 ∨ . . . ∨ Ln — where
L1, . . . , Ln are literals in the clause — and it contains the type variable τ ,
which is an instance of class C, then we include this constraint in the clause
as ¬C(τ). Therefore, the first-order axiom clause representing the formalized
axiom clause above is

¬C(τ) ∨ L1 ∨ . . . ∨ Ln,

and τ is a universally quantified variable.

– If the clause is a negated conjecture clause, then we represent the type class
constraints as additional unit clauses: one for each type variable. In the ex-
ample above, if L1 ∨ . . . ∨Ln is a negated conjecture clause, then we represent
the type constraint as an additional unit clause C(τ). Therefore, we use two
clauses

C(τ)

and
L1 ∨ . . . ∨ Ln

to represent the formalized negated clause above and τ is a fixed variable.

In order to see the effect of this type embedding, let us consider the polymorphic
relation 6. When it is applied to two linearly ordered arguments its type becomes
α → α → bool, where α is a type variable of class linorder. Therefore Isabelle axiom
linorder linear

∀x y [x 6 y ∨ y 6 x]

which says any two terms x and y are linearly ordered, provided they both have some
type τ that belongs to class linorder, will be translated to

∀τ x y [¬linorder(τ) ∨ (le(F (τ, F (τ, bool)), x, y) ∨ le(F (τ, F (τ, bool)), y, x))]

where le is the predicate 6 in prefix form and F is the function type constructor. In this
case, the type class constraint is that τ — the type of x and y — must belong to class
linorder, which is represented by a negative literal.
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The type class precondition restricts the instantiation of the type variable and hence
the application of the axiom: the axiom can be applied by instantiating the type variable
τ to any instance of class linorder. For example, since the natural number type nat is an
instance of linorder, the formula linorder(nat) is true. Therefore we can instantiate the
τ to nat. However, we cannot derive linorder(α set) for any α, thus we cannot instantiate
τ to α set.

Types for Equalities

Isabelle/HOL’s polymorphic equality requires special treatment because equality is built
into most automatic provers — it can only take two arguments as in A = B. Therefore
we cannot insert types of equalities as additional arguments.

We have attempted several approaches to solve the problem. First, we defined a new
equality predicate that took three arguments: two equal terms and the type of the equality.
Moreover, we also included necessary equality axioms, such as reflexivity, symmetry and
transitivity. We then ran a series of experiments in order to examine whether this approach
could work in reality. Unfortunately our experimental results showed that Vampire spent
an excessive amount of time in trying to find proofs involving this new equality predicate.
Even for some trivial examples, Vampire spent tens of seconds in the proof search. The
reason for this behaviour is that resolution- and paramodulation-based provers treat their
built-in equality as part of the logic. The proof search involving equalities are carried out
by inference rules such as superposition rather than simple equality reasoning. Therefore
using built-in equalities, automatic provers will be able to give much better performance
than could be achieved with any user defined equality literal. As a result, we will have to
use the built-in equality.

In order to use the built-in equality of an automatic prover, we should insert type
information at a different place. Instead of bounding the type of equality with equality
predicate, we embed the type information in its arguments: the formula A = B with type
information included becomes

equal(typeinfo(A, τ), typeinfo(B, τ))

where equal is the built-in equality of the prover and τ is the type of A and B. In addition,
we include the axiom

equal(typeinfo(A, τ), typeinfo(B, τ))→ equal(A,B)

to allow an automatic prover’s equality reasoning (such as paramodulation) to work. Its
effect is to strip the types away, so that an occurrence of A may be replaced by B, or vice
versa. Furthermore, equalities in previously proved lemmas and conjectures are translated
into equal in this format with all type information included.

This approach of including types in equalities is useful when the application of inference
rules depends on the type of equality’s arguments. For instance, when we prove set
equality A = B, we may need to prove A ⊆ B and B ⊆ A using the inference rule
A ⊆ B ∧ B ⊆ A→ A = B; when we prove integer equality i = j, we may need to prove
i 6 j and j 6 i using the rule i 6 j ∧ j 6 i→ i = j. The inclusion of types prevents an
untyped automatic prover from attempting to prove absurdities like A 6 B or i ⊆ j.
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However, further experiments showed that this approach sometimes harms an auto-
matic prover’s performance, when equalities are only meant to substitute equal by equal.
In this case, types embedded in equalities have to be removed using the axiom above
before an automatic prover’s equality reasoning can take any effect. Therefore we decide
to regard equality as untyped. When we translate an equality between A and B, we
translate it to equal(A,B), where A and B are themselves typed. We may only switch
to typed equalities in the form that we have described above, if untyped equalities make
a proof fail in the circumstances such as a wrong inference rule has been used to find an
absurd proof.

In conclusion, Isabelle’s type information exists in various places and needs to be
extracted and converted to first-order format. The type class information for type vari-
ables in Isabelle goals is translated into additional clauses. Subclass relationships and
type constructors’ arities are global facts, and hence are converted to axiom clauses. The
type class information for type variables from Isabelle theorems are translated into extra
literals of the axiom clauses.

3.5 Experiments on Formalizing Isabelle/HOL

We used the same general approach as we did in our earlier experiments on untyped ZF
formulae. Isabelle/HOL lemmas were chosen, each of them usually presenting more than
one goal to Vampire. The combination of the five setting files was used. The time limit
for each proof attempt was 60 seconds. We used formula renaming [39] before the clause
normal form transformation in order to minimize the number of clauses.

The experiments on formalizing Isabelle/HOL in first-order logic were intended to
demonstrate whether the type encoding is practical for resolution (§3.5.1). Furthermore,
we also aimed to use this set of experiments to examine whether the performance of an
automatic prover can indeed benefit from the inclusion of types; the type information
should help an automatic prover to decide which inference rule is applicable and hence
reduce the search space (§3.5.2). For instance, if we want to prove the subset relation
between two sets: X 6 Y , its typed formula will be

le(F (set(τ), F (set(τ), bool)), X, Y )

Clearly inference rules such as

le(F (nat, F (nat, bool)), A, B)

which concerns the 6 relation (le) on natural numbers, is not applicable. We expect an
automatic prover to ignore this rule since the types of le do not match.

3.5.1 Examination on Type Formulation

This set of experiments took 56 lemmas (108 goals) from the Isabelle/HOL theory files
and tried to reproduce the proofs. We used the following theories:

• Multiset.thy: a development of multisets.

• Comb.thy: combinatory logic formalized in higher-order logic.
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Theory No. of Lemmas No. of Goals No. of Goals Proved
Multiset 3 3 3
Comb 18 29 24
List Prefix 7 8 8
Message 28 68 62

Table 3.4: Number of Goals Proved for Typed Lemmas

• List Prefix.thy: a prefixing relation on lists.

• Message.thy: a theory of messages for security protocol verification [45].

During the experiments, around 70 to 130 axiom clauses were used. Ninety-seven goals
were proved using this typed formalism, as shown in Table 3.4.

Eleven lemmas from Message.thy cannot be proved by Isabelle’s classical reasoners
directly. Either they consist of more than one proof command or they explicitly indicate
how existing theorems should be used. Vampire proved seven of these lemmas and three
more once some irrelevant axioms were removed. Only one lemma could not be proved
at all, and we came close: only one of its seven subgoals could not be proved. Although
this is a small sample, it suggests that Vampire indeed surpasses Isabelle’s built-in tools
in many situations.

Moreover, we carried out further experiments on those failed proof attempts. Among
the six failed proof attempts on goals from Message.thy, three were made provable by
removing some irrelevant axiom clauses. This again indicates that automatic provers are
not good at handling large numbers of axioms.

There were also some goals from Multiset.thy and Message.thy that were proved
by applying results from several axiomatic type classes. This finding suggests that our
formalisation of types and sorts is practical, while preventing the application of lemmas
when the type in question does not belong to the necessary type class.

3.5.2 Using Type Information to Reduce Search Space

We performed more specific experiments in order to examine whether the use of type
information on overloaded operators can indeed reduce the search space. For this inves-
tigation, we need to prove a goal that contains some polymorphic operator. While we
give an automatic prover those relevant theorems containing the polymorphic operator,
we also send the prover many irrelevant theorems that share the polymorphic opera-
tor. Although this could potentially complicate the search space of the prover, the type
information should help it to distinguish the useful theorems from irrelevant ones.

For this purpose, we carried out some experiments that involved proving lemmas about
the subset relations taken from the Isabelle/HOL’s theory file Set.thy. In addition to the
relevant axioms about subset properties, many irrelevant axioms about natural numbers
were also included in the axiom set as they share the overloaded operator 6. We first
ran the experiments by not including the axioms of natural numbers and then ran the
experiments again while adding those natural number axioms. Vampire spent the same
amount of time in proofs regardless whether the natural number axioms were added or
not. Clearly, the presence of irrelevant axioms did not make proofs harder for Vampire
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when types were included. This demonstrates the benefits of including type information
of overloaded operators, since without these information, Vampire may pick up irrelevant
natural number axioms in the proof search, which would slow down the proof procedure.

During the experiments with Isabelle/HOL’s Comb.thy, we also tried to translate HOL
conjectures into first-order clauses without the inclusion of type information in order to
compare the performance between the typed proofs and untyped proofs. These untyped
experiments took the same set of goals (29 goals) from Comb.thy. Among these 29 goals,
there were three Isabelle goals where Vampire found proofs more quickly when given
untyped input and four goals where Vampire proved faster when given typed inputs. In
particular, there was a case where Vampire proved a lot faster when given typed input (0.4
seconds compared with 36 seconds for untyped input). However, for those goals where
untyped input required less time to be proved, the difference in time taken for typed and
untyped input was not very significant. When typed input gave better performance, it
could be explained by the restriction of the search space. For the cases where untyped
input outperformed typed input, it could be caused by the large literals in typed input
due to the inclusion of types. Large literals may slow down proof search to some extent.

We have noticed that more proofs were found for Isabelle/HOL’s lemmas than for
Isabelle/ZF’s lemmas. We believe that type information deserves the credit for this im-
provement: it reduces the search space.

3.5.3 Some Other Findings

During the experiments, we also investigated the formalization of polymorphic equalities.
Among the goals from Message.thy, eight goals required the use of equality clauses (on
sets), in either lemmas or conjectures. Five of them were proved by switching SOS off and
were not proved otherwise. One of them was proved by turning SOS off and removing
some irrelevant axioms. The other two could only be proved if the equality literals were
replaced by two directional subset relations.

Recall that SOS is incomplete in modern ordered resolution. The experimental re-
sults showed that SOS’ incompleteness became evident only when proving equalities. It
could not prove some trivial examples, and reported unprovable immediately after getting
started. However, SOS is better at ignoring irrelevant axioms and should be turned on
for our integration. We can always turn if off when it reports unprovable, which usually
happens within one or two seconds after a proof is started.

Although we set 60 seconds for each proof attempt, we also allowed a longer time for
Vampire to re-try those failed proof attempts. We were hoping to see whether increasing
the time for Vampire could make more goals proved. We found that if a goal could not be
proved within a minute or two then it would not be proved at all, regardless how long we
let the prover run. This finding consolidates our decision to have 60 seconds as the time
limit, and if a proof cannot be found by a Vampire process within 60 seconds, we should
run another process with a different setting.

3.6 Obtaining Forward and Backward Chaining

Isabelle theorems usually have information indicating whether they should be used for
forward chaining (as elimination rules) or backward chaining (as introduction rules). For
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instance, the introduction rule of set intersection (IntI)

∀cAB [c ∈ A→ c ∈ B → c ∈ A ∩B]

should be used in a backward chaining style: in order to prove c ∈ A∩B, it is enough to
prove c ∈ A and c ∈ B. When proving any goal of the form x ∈ Y ∩ Z, Isabelle resolves
c ∈ A∩B with the goal during resolution, leaving the new subgoals x ∈ Y and x ∈ Z. In
contrast, the elimination rule of set intersection (IntE)

∀cAB P [c ∈ A ∩ B → (c ∈ A ∧ c ∈ B → P )→ P ]

should be used in a forward chaining style: given c ∈ A ∩ B, we can derive c ∈ A and
c ∈ B. Therefore c ∈ A ∩ B can be resolved with an assumption of the form x ∈ Y ∩ Z,
deriving new assumption x ∈ Y ∧ x ∈ Z. As we can see, these information essentially
says which literal in a theorem should be eliminated first. This information corresponds
to which literal should be resolved first in resolution provers.

Such information about how theorems should be used is lost after they are translated
to clauses. When IntI is converted to clause form, it generates a clause

c /∈ A ∨ c /∈ B ∨ c ∈ A ∩ B.

Given this clause, an automatic prover may select any literal to resolve during resolution.
However, an automatic prover should only select c ∈ A ∩ B to resolve as this exactly
corresponds to the way IntI is used in Isabelle. As it shows, it is desirable if we can tell
automatic provers which literal should be resolved: resolving on a wrong literal will be
wasteful and could significantly hamper the performance of automatic provers.

In the modern ordered resolution, many automatic provers base their literal selection
on literals’ weights: they usually select a literal with a higher weight relative to other
literals in the same clause. This difference in weights gives an ordering on literals. There-
fore getting a proper ordering on literals is a possible solution to our problem. We have
used Vampire for our experiments.

The public release of Vampire does not allow explicit weight assignment to literals,
but uses Knuth-Bendix Ordering (KBO) [51] to compute an ordering on literals. Recall
that KBO is parameterized by weights and precedences of functions and predicates, which
can be assigned explicitly by users. Therefore we have attempted to assign weights and
precedences to functions and predicates. However, there are two problems with this
approach.

• First, the information on Isabelle theorems only says which operator should be
resolved first in that theorem. A same operator may have this priority in one theorem
but not in another. As a result, when translating these theorems to first-order
clauses, the ordering on literals should be local to their enclosing clauses. However,
the weight and precedence assignments have global effect on all clauses.

• Second, the resulting KBO is a partial ordering on terms with variables, thus we
may not have a desired ordering on literals regardless how we assign weights and
precedences.
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These limitations of KBO mean this approach does not solve our problem exactly.
The new version of Vampire (v6.03) has a special syntax which is an extension of the

TPTP syntax (§2.3.2). Recall that any positive literal that should be resolved first will
be tagged with +++, and similarly a negative literal should be tagged with ---. Moreover,
the tagging only has effect within every clause. Using this new syntax, we can label
c ∈ A ∩ B in the clause generated from IntI with +++. This special syntax simulates
Isabelle’s notions of forward and backward chaining. Experiments showed that many
lemmas could only be proved with this facility.

3.7 Concluding Remarks

In this chapter, we have discussed how to use resolution-based provers to assist Isabelle.
In the initial investigation into our research, we identified some major problems we

need to solve in order for the integration to work. We tried to solve these problems by
formalizing Isabelle/ZF and Isabelle/HOL in first-order logic. We have also carried out
many experiments in order to examine the quality of our translation method. Based on
the experimental results, we have been able to answer many questions and solve many
problems. The findings are now summarized below.

• Each Isabelle object-logic contains some logic-specific information (such as the se-
mantics of a logic), which may be useful when we translate it into first-order form.
Therefore we should translate each object-logic separately.

• Resolution- and paramodulation-based provers are indeed suitable candidates for
our integration by providing extra automation. Their power is more evident if they
provide mechanism to simulate Isabelle treatment to theorems, which is specific to
the natural deduction calculus only.

• The type information of Isabelle/HOL is useful. It not only ensures soundness but
also reduces the search space of automatic provers. This suggests that when we
formalize other typed object-logics in first-order clauses, we should also preserve
their types.

• The settings of an automatic prover determine its proof search strategy and are
essential to our problems. Among them, some are more significant. We have found
some settings good for our problems, which can be used in the future integration.

• However, both Isabelle/ZF and Isabelle/HOL experiments indicate the major prob-
lem of resolution-based provers, which is their inability to cope with large numbers
of axioms.

Although we did most of the experiments on Vampire, the results should be generally
applicable to many other resolution-based provers. The findings should give some insight
into the possible behaviour of other automatic provers, such as SPASS and Otter.

Our research has mainly been focused on formalizing the first-order logic part of Isa-
belle/ZF and Isabelle/HOL, except for some non-first-order ZF terms. We decided to use
the formalization of ZF as the pilot study. Although having been well developed, it is not
the most widely used object-logic among Isabelle users. Therefore it is sufficient to try
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out some examples with the primary objective on examining the efficiency of resolution
provers.

When we formalized Isabelle/HOL, we have largely left out higher-order logic con-
structs, such as the λ-terms. There was a major reason for this: many Isabelle proof
goals are, in fact, expressed in first-order logic. Higher-order logic constructs are more
frequently used in initial formalization of theories rather than being used in actual proofs.
In contrast, its type system is more important in our formalization. Therefore, formalizing
first-order aspect of Isabelle/HOL is already good enough to prove many goals automat-
ically.
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Chapter 4

Calling Automatic Theorem Provers

In the previous chapter, we have described the obstacles in integrating Isabelle with any
resolution-based theorem prover. We have put emphasis on translating Isabelle formalisms
into first-order logic. In particular, we have designed a method to translate Isabelle/ZF
and Isabelle/HOL including Isabelle/HOL’s type system into first-order logic. Our ex-
perimental results indicate the method is indeed practical.

In this chapter, we explain the general techniques that we have used to automatically
translate Isabelle formulae into clause normal form inside Isabelle logic. We also describe
the application of these techniques to the translation of formulae of Isabelle/HOL.

The automatic translation must be integrated with Isabelle, so that goals and all
essential Isabelle data are extracted and converted to clauses automatically during a proof,
without users’ interaction or awareness. We describe a design and an implementation in
this chapter.

4.1 Design Considerations

The objective of integrating Isabelle with automatic provers is to free users from doing
tedious proof steps. In addition, the process of delegating jobs to automatic provers should
be automatic as well — the invocation of the target automatic provers should not require
users to do any extra work. Therefore, we need a delegation program, which links Isabelle
and one or more automatic provers and carries out the automatic communication. After
Isabelle is integrated with automatic provers via the delegation program, a scenario of a
proof session can be described as follows.

• An Isabelle user works normally: making definitions and carrying out proofs of
theorems.

• While the user is engaged in a proof and is refining goals to subgoals, if there is
any open subgoal, then the delegation program — and not the user — will collect
the subgoals and all the necessary information and send them to a background
automatic prover. The automatic prover will then start searching for proofs of the
subgoals.

• While the user is still trying to solve the goal, the automatic prover may find a
proof. The delegation program will translate this proof to an Isabelle proof and will

73



74 CHAPTER 4. CALLING AUTOMATIC THEOREM PROVERS

notify the user of the success. The user will no longer be required to find the rest of
the proof steps himself. He can cut and paste the constructed Isabelle proof steps,
and then re-run these Isabelle proof steps in order to complete the proof of the goal.

This delegation program directs the two-way communications between Isabelle and the
background automatic provers. In my research, I have investigated the communication
from Isabelle to automatic provers and have implemented a program that performs the
communication in this direction. This program should follow the progress of a user’s proof
development and whenever there is an opportunity for an automatic prover to help prove
a goal, it should send the goal with other relevant data to the automatic prover.

In order to achieve the effect described above, the first task for our research is to
identify an appropriate point during an Isabelle proof when a proof goal should be sent
to a background automatic prover. In addition, our program must be able to locate and
extract all the necessary information, without a user’s instruction, convert this informa-
tion into first-order clause form, and finally send the clauses to designated places ready
for the automatic prover to read. Furthermore, although my research does not concern
reconstructing the automatic provers’ proofs into Isabelle proofs, which is the communi-
cation from the automatic provers to Isabelle, the implementation of my program must
ensure that proof reconstruction is possible. We now start to design a program, which
can solve all these questions.

4.1.1 When to Call An Automatic Prover

It might seem obvious that our program should call an automatic prover when an Isabelle
user is carrying out a proof and when a new goal is declared. However, a closer analysis
reveals that not all such points during a proof are suitable for our program to call an
automatic prover. When a new goal is declared, it may be in one of the two conditions:
either it can be changed immediately or it is not allowed to be changed immediately. If
a goal can be changed immediately, a user can apply a tactic to decompose it to several
simpler subgoals or prove the goal altogether. If a goal is not allowed to be changed
immediately, then the user typically continue with the proof by stating local assumptions,
etc. Among these two types of goals, only those goals that are not subject to immediate
changes are suitable to be sent to an automatic prover by our program.

There are two major reasons for our choice. First, if the new goal is subject to
immediate changes, then the proof response from an automatic prover may not keep up
with the speed at which the proof goal is being modified. In this case, a goal may be
changed by a sequence of tactics that are applied by the user, which means that by the
time an automatic prover finds a proof, the original goal sent to the prover is already
obsolete. Second and more importantly, if a goal may be changed by a tactic, then the
result of applying the tactic is another new goal, which is again subject to immediate
changes by tactics. This can easily lead to a sequence of tactics on a proof goal, which in
turn will result in a sequence of intermediate goals. If all of these intermediate goals are
sent to an automatic prover, the prover will be overwhelmed by the vast volume of proof
requests. Consequently, our program should only send those goals that are not allowed
to be modified immediately.

Recall that in the Isar interface, a proof is always in one of the three proof modes
(§2.6.5): prove, state and chain. In prove mode, goals are subject to immediate
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changes, whereas once a proof enters state mode, goals remain unchanged. Therefore,
our program should send all open subgoals to an automatic prover once the proof enters
state mode. In fact, this is a good position to delegate jobs to a background prover for
another reason. Typically when a proof enters state mode, a user is expected to consider
what assumptions etc. should be stated, which is the preparation work before the goal
is actually proved. The actual proof of a goal is usually carried out by the application
of appropriate tactics or structuring methods. Compared with the actual proof steps,
the preparation work requires less human effort. For instance, the proper assumptions
that should be made are usually indicated by the structure of the proof goal. On the
other hand, the actual proof steps would require the user to decide what rules should be
applied and how to apply these rules — this is exactly the kind of work that the user
should be freed from doing, by having automatic provers to do it for the user. We are
hoping that the automatic prover can find a proof while the user is only carrying out the
preparation work, thus no huge amount of effort has been spent on the actual proof steps.
This is a strong justification for calling the automatic provers when a proof enters state
mode. Finally, although a proof may enter chain mode at some point during a proof, and
goals are not subject to immediate changes in this mode, our program does not need to
send any goal to an automatic prover at this point. This is because when a proof enters
chain mode, no new goal is declared. chain mode merely allows previously claimed local
assumptions to be carried over and be aggregated with any new claim to be made.

Based on these considerations, we need to define a function that watches for the
changes of proof modes. Whenever a proof is about to enter state mode, this function
should start the process of sending goals and other necessary information to the back-
ground automatic provers. After this is done, the proof enters state mode. In addition,
this invocation of automatic provers should be invisible to Isabelle users: our function
should not present any effect observable by the rest of Isabelle program.

In contrast to the Isar interface, the ML interface does not provide the three proof
modes. In the ML interface, goals are proved by tactics directly, and are thus always
subject to immediate changes. As a result, we cannot implement a program that calls
the automatic provers at appropriate points automatically. We have to define a tactic,
which when applied by a user, delegates proof jobs to the background automatic provers.
Therefore it is a user’s responsibility to decide when to call an automatic prover.

Since most of the Isabelle users are now working in the Isar interface, we concentrate
on describing the program we have implemented for the Isar interface in this chapter. We
also briefly describe the tactic version that we have experimented and implemented for
use by the ML interface at the end of this chapter (§4.8).

4.1.2 What to Send to An Automatic Prover

After the automatic prover calling procedure starts, it is important to identify and locate
all essential information that must be sent to the prover. The automatic prover must
receive the following items, which are involved in an Isabelle proof.

• Assumptions local to the current proof.

• The subgoals to be proved.

• Existing Isabelle lemmas or theorems.
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• Isabelle’s type information.

As we have seen in the previous chapter (§2.6.5), the local assumptions are part of
the current proof environment, and are stored with the proof context. Therefore, it is
sufficient to inspect a proof context to extract local assumptions. Moreover, since local
assumptions may be modified when a proof goal is being refined, we must send all the
current local assumptions to the automatic provers when we send unsolved subgoals to
the provers.

On the other hand, the subgoals represent dynamic information and are stored sep-
arately from the proof context: they are part of the proof state. Consequently, we need
to inspect a proof state to retrieve all the open subgoals. Moreover, it is possible that
several subgoals are waiting to be proved. This may happen when a proof is carried out
by induction or case analysis. We must send all of these subgoals to an automatic prover.

In Isabelle, existing theorems are used by automatic reasoning tools during the proof
search. These theorems represent a knowledge base and must be sent to our automatic
provers. Our integration aims to reduce user interaction by not asking users to name
the theorems that should be used for a proof. Consequently, we need to send all existing
theorems available under the current proof context to an automatic prover. These theo-
rems include the classical reasoning rules, which are stored in a classical set that is used
by the classical reasoner. They also include simplification rules, which are stored in a
simplifier set that is used by the equality reasoner. Although there are other components
in a simplifier set, such as the congruence rules, which are essential for the proof search
carried out by Isabelle’s equality reasoner, we do not need to deliver them to our target
automatic provers. This is because equivalent mechanisms are built into resolution- and
paramodulation-based provers.

Isabelle theorems are stored at different places, depending on whether they are global
theorems or local theorems. Global theorems are already proved top level goals. After
being proved, they can be declared as either elimination rules or introduction rules and
then be included in the Isabelle’s classical set, or, they can be declared as simplification
rules and then added into the simplifier set. Global theorems are not associated with any
individual proof goal. Instead, they are stored within the background theory context.
Consequently, we can extract the global theorems from a theory context and translate
them to clauses once and for all. Subsequently, we can store the generated clauses at a
proper place (such as on the machine where an automatic prover runs) before the prover
is called. When a proof goal is sent to the automatic prover, the clauses generated from
the global theorems can be used by the automatic prover directly.

Similar to global theorems, local theorems can be declared as simplification rules or
classical reasoning rules. However, in Isabelle, local theorems are temporary theorems
proved during a structured proof. Their only role is to assist the proof of the current
main goal. After the main goal is proved, these local theorems become inaccessible and
are discarded. As a result, Isabelle stores local theorems separately from global theorems.
However, as we can see, local theorems are closely associated with a proof context. Since
a proof context stores local assumptions, it makes sense to store local theorems in a proof
context as well, so that we can retrieve both local assumptions and local theorems by
inspecting a proof context alone. As a result, we should modify Isabelle’s existing proof
context data structure and add in local theorems when they are declared. Similar to
local assumptions, the collection of local theorems may be different at different points
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of a proof. Therefore, when we send Isabelle subgoals to an automatic prover, we must
extract all the currently available local theorems from the proof context, convert them to
clauses and then send the clauses to the automatic prover.

In addition to local assumptions, open subgoals and Isabelle theorems, Isabelle’s type
information should be conveyed to automatic provers if the provers must perform typed
proofs. Some of the type information is embedded in the polymorphic formulae, such as
the types of the polymorphic operators and the type classes of the type variables occurring
in the formulae. For this sort of type information, we translate them into appropriate
first-order form at the same time when we convert their enclosing Isabelle formulae into
clause form. In addition, this type information should be sent to an automatic prover
along with the enclosing Isabelle clauses: if the types occur in local assumptions, local
theorems or subgoals then they are sent to an automatic prover every time the prover is
called; if the types occur in global theorems then they can be written to files in advance,
so that they can be read directly by the automatic prover when the automatic prover
starts a proof search.

Moreover, Isabelle’s type system provides type class relations and arities of type con-
structors. They are regarded as facts and are stored with the background theory context,
rather than with goals or theorems. This type information should be extracted from the
current theory context and then be converted to first-order clauses once and for all, which
can happen before an automatic prover is called. Similar to clauses generated from global
theorems, these clauses can be used directly by an automatic prover when the prover
starts a proof search.

In summary, we need to send all existing theorems, local assumptions and all the sub-
goals, plus some other facts concerning Isabelle types, to our target automatic provers.
In addition, some of these data — global theorems, type class relations and type con-
structors’ arities — do not change while an Isabelle goal is refined. In order to improve
efficiency, this information can be converted to first-order clause form and stored at loca-
tions convenient to our automatic provers, so that the automatic provers can use them as
a knowledge base. On the other hand, we must find the current values of all other data
— which may be changed constantly when an Isabelle goal is refined — and convert them
to clauses and then send them to the background automatic provers when a proof job is
to be delegated to the provers.

4.1.3 How to Convert to Clause Normal Form

All Isabelle goals and theorems that should be sent to an automatic prover must be
translated into first-order clause normal form. The easiest approach to this is direct
programming, where we can explicitly manipulate the term structures of Isabelle formulae.
However, the operations on term structures cannot be carried out inside Isabelle logic: to
ensure soundness, ML’s type checker does not allow such operations to be functions of
type thm -> thm. Consequently, if we directly manipulate the term structures of Isabelle
formulae, the clauses will not have type thm. Proof reconstruction is impossible unless
each clause has type thm.

As a result, we have to translate Isabelle formulae inside Isabelle logic, by applying
Isabelle inference rules. We build up these inference rules from the primitive inference
rules, which are kernel defined functions. Consequently, the inference rules we use for
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translating Isabelle formulae have type thm -> thm. Therefore, when we transform Isa-
belle theorems (of type thm) into their equivalent clause form using these inference rules,
the resulting clauses will still have type thm, which are valid Isabelle theorems.

Our translation function mainly consists of the use of three techniques, namely forward
proof, simplification by rewriting and application of tactics. The first method has been
used in meson tac, implemented by Larry Paulson.

Recall, Isabelle’s Horn resolution is the inference rule

φ→ θ θ → ψ

φ→ ψ

Therefore, if we wish to convert a formula A to B, then we can first prove an auxiliary
lemma P → Q, where P and Q match the patterns of A and B respectively, but generalize
over some of the variables in A and B. Subsequently, we transform A to B by performing
the resolution

A P → Q
Qσ

where A is resolved with P by applying the unifier σ, which also makes Qσ = B. For
instance, to transform the formula ¬(A ∧B) into ¬A ∨ ¬B, we carry out the resolution

¬(A ∧ B) ∀P Q [¬(P ∧Q)→ (¬P ∨ ¬Q)]

¬A ∨ ¬B

Using this form of Horn resolution, we can effectively change the structure of a top
level formula (in the example above, we have pushed in the top level negation inwards).
However, sometimes a transformation of a top level formula may require us to transform
its sub-formulae to a desired form first and then the updated top level formula can be
transformed, i.e. the transformation may have to work in a bottom-up approach. In order
to solve this problem, we have used a similar forward resolution technique. This technique
can be applied to a proof state. It essentially allows an assumption of a subgoal of a proof
state to undergo some sort of transformation, and then resolves the resulting assumption
with the conclusion of the subgoal concerned. The resolution between the transformed
assumption and the conclusion will update the entire proof state by instantiating some
of the free variables. Although forward resolution is usually applied to proof states, we
can use it on transforming Isabelle theorems, since proof states and Isabelle theorems are
represented in the same way in Isabelle’s meta-logic (§2.6.3).

For instance, if we wish to transform any formula A ⊗ B, where ⊗ represents any
relational operator, such as disjunction ∨, into some format, such as clause normal form,
by first transforming A and B into the desired form A′ and B′ respectively, and then
transform A′ ⊗ B′, then we can first apply the inference rule

∀P1 P2Q1Q2 [P1 ⊗ Q1 → (P1 → P2)→ (Q1 → Q2)→ (P2 ⊗ Q2)]

to A ⊗ B and get

∀P2Q2 [(A→ P2)→ (B → Q2)→ (P2 ⊗Q2)].

This effectively breaks A⊗B into two parts. The resulting formula can be seen as a proof
state, where A → P2 and B → Q2 are subgoals. Subsequently, we apply the forward
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resolution technique, so that we first transform the two subgoals’ assumptions A and B
to A′ and B′, and then resolve A′ and B′ with the two subgoals’ conclusions P2 and Q2.
The final result is the new proof state A′⊗B′ — this proof state is the form of the formula
we are looking for.

We have mainly used the resolution technique above for translating Isabelle theorems
to clauses. Since both the Isabelle theorems and the auxiliary lemmas that we use to
transform the theorems are theorems with type thm, and the Horn resolution and the
forward resolution are kernel defined inference rules, the resulting formulae are valid
Isabelle theorems, of type thm.

Another method that we have used for transforming Isabelle formulae is rewriting. If
we wish to convert a formula with pattern P to another formula with pattern Q, then we
first prove P ≡ Q to be a theorem. Subsequently, we add this theorem as a rewrite rule
to a simplifier set. Finally, we translate the formula into the desired form by calling the
simplifier to simplify the formula. This procedure ensures an instance of the left hand
side of a rewrite rule is replaced by the corresponding instance of the right hand side
of the rule. Since the rewrite rules have type thm and rewriting is also a kernel defined
function, the resulting formula is an Isabelle theorem of type thm. Although we have
used both resolution and rewriting to translate Isabelle theorems to clauses, resolution is
more efficient than rewriting. Therefore, most of the Isabelle theorems are transformed
by resolution inference.

The third method we have used for transforming Isabelle formulae is by applying
tactics. This is used when we need to negate a goal and convert it to clause normal form.
We cannot use the two methods above to transform a goal directly. Recall that Isabelle
stores all current subgoals inside a proof state and Isabelle represents a proof state as a
theorem of type thm. However, since the unproved subgoals are not yet theorems, they do
not have type thm. If we wish to transform a negated goal to clauses inside Isabelle logic,
then we cannot simply take a subgoal out of a proof state and perform clause normal
form transformation. As a result, our goal transformation process has to take the entire
proof state into account. When a task concerns the entire proof state, Isabelle’s tactics
are the best candidates for this job. Tactics are functions that are best suited to refine a
proof state and the effect can be limited to a particular subgoal, by giving the number of
the subgoal to the tactic. In order to negate open subgoals and convert them to clauses,
we have defined tactics both by combining existing tactics through tacticals and also by
coding new tactics. In addition, some of the transformation functions that we have used
for translating Isabelle theorems have been used in our tactics. We give more explanation
on the use of tactics to negate goals and convert the results to clauses later (§4.6).

The techniques described above can be used to translate formulae expressed in many
Isabelle logics. We have implemented a translation function using these techniques to
convert Isabelle/HOL’s formulae to clause form. We will describe the clause normal form
transformation function in more detail in the rest of this chapter.

The transformation mechanism above converts Isabelle formulae into clauses. How-
ever, the types of polymorphic operators and type class information on type variables
are still embedded in the clauses, in the same way as in the original Isabelle formulae.
These clauses are still not suitable to be used by automatic provers directly. We need to
perform a further transformation on these Isabelle clauses so that the type information
is extracted and expressed in first-order clauses, and we must ensure both the Isabelle
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clauses and the type clauses are expressed in formats suitable for our target automatic
provers.

Our research mainly concerns integrating Isabelle with Vampire or SPASS, but it is
desirable if we can easily add more automatic theorem provers and integrate them with
Isabelle. These automatic provers may have complementary strengths. For instance, we
may add many different resolution provers. Alternatively, we may use both resolution
provers and SAT solvers. They may help prove or disprove Isabelle goals, in different
domains. They may also run in parallel, trying to prove a same problem and thus can
reduce the amount of time spent on the proof search.

These automatic theorem provers may require their inputs to be in different formats,
but they all accept first-order clauses, though written in different ways, which is sufficient
for our integration. Consequently, we need to define an internal clause representation so
that when an Isabelle goal or theorem is converted to clause form, the clauses generated
will be converted to this internal format and then stored (along with its type information).
When an automatic prover is called, the clauses in this internal format will be translated
to some format specific to that automatic prover and the stored type information will
be translated to appropriate format as well. Crucial to the efficient performance, this
internal clause data structure must contain all essential information for all automatic
theorem provers and must be able to be converted to any automatic prover’s specific
format quickly.

So far, we have analyzed how to convert Isabelle theorems and goals to clause normal
form. We also need to convert other Isabelle’s type information, such as type constructors’
arities and type class relations, to first-order clauses. This translation can be carried out
by straightforward programming. Furthermore, for the same reason above, we should
define internal formats for these clauses as well.

4.2 Overview of Automatic Calling Procedure

Based on the design issues and analysis described above, I carried out the implementation
of the program that automatically extracts all subgoals and other proof data at an ap-
propriate point during a proof, converts these data to clause normal form and writes the
clauses in a suitable format for an automatic prover to read. This automatic procedure
works as follows.

• During a proof session, when Isabelle receives a command that causes a proof to
enter state mode, the function enter forward is called.

• enter forward passes the current proof context and the proof state to the function
isar atp, which extracts all local assumptions and local theorems and converts
them to clauses in a format suitable to a target automatic prover. isar atp also
negates all of the open subgoals and converts them to clauses. All the clauses above
are then written to designated files, waiting to be read by the automatic prover.

• Finally, enter forward lets Isabelle enter state mode. Calling the external prover
is invisible to the user.

Function isar atp retrieves theorems and goals and translates them into clause normal
form. It is made up of three sub-components.
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• isar local thms extracts all local theorems available to the current proof context,
converts them to clause normal form as axiom clauses and writes the clauses to a
designated file axiom file.

• isar atp h finds all local assumptions, converts them to clause normal form as
negated conjecture clauses and writes the clauses to file hyps file.

• isar atp goal negates all open subgoals and converts each of the negated subgoals
to negated conjecture clauses. It writes clauses generated from different subgoals to
different problem files, where the names are generated dynamically.

Moreover, the destination files axiom file, hyps file and files for subgoals are gener-
ated only for temporary use — they can be discarded once an automatic prover is finished
with them. Therefore, we use dynamic generation of files’ names, where the actual lo-
cation of the files depends on the Isabelle session in which the action above takes place.
After the procedure above, the files containing clauses will be read by an automatic prover
for the proof search.

We consider the three functions — isar local thms, isar atp h and isar atp goal

— in more detail in the following sections.
Global theorems and other facts, such as types, can be stored in their clause form

permanently with our target automatic provers. Therefore, their translation to clause
form does not have to be part of the automatic calling procedure we have described
above. We explain their translation later (§4.7).

Furthermore, as we have remarked above, we need internal clause formats to store
all clauses generated from Isabelle formulae and type information. We define the data
structures of the internal clause formats first.

4.3 Generic Clause Data Types

Recall that when we formalize Isabelle formalisms in first-order logic, clauses are generated
from four sources and represent four kinds of Isabelle information. These are theorems,
goals, type constructors’ arities and subclass relationships between type classes. We define
three ML abstract data types to be the internal formats of their clauses.

4.3.1 Type clause

After Isabelle formulae (both goals and theorems) are converted to clause form, each clause
still has type information embedded. Predicates and functions have their types contained
in the clause, and each type variable has a type class requirement on it. Therefore, we
need to define a data structure that not only contains a list of literals, but also the type
information.

For this, we define the abstract data type clause to represent first-order clauses
derived from Isabelle theorems and goals. A clause object contains the following fields.

• A unique identifier. If the clause is derived from an Isabelle theorem, then the
theorem’s name is recorded as well. This information is useful for later proof recon-
struction.
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• An indication of whether the clause should be labelled as an axiom or a negated
conjecture clause. Many automatic provers make use of the distinction between
them. For instance, the set of support strategy forbids resolutions that involve
purely axiom clauses. Moreover, SPASS’s PrefCon option allows one to set the
ratio to compute the weight for conjecture clauses so that those conjecture clauses
are preferred over others.

• A list of literals in this clause. Since our encoding formalizes Isabelle types, we also
define abstract data types for typed literals and functions.

• Additional type information. This includes type classes of type variables (both fixed
and schematic) that occur in the clause.

After an Isabelle theorem or a negated goal is converted to clause normal form inside
Isabelle logic, a list of clauses (of type thm) is generated. These clauses are converted to
the clauses of clause type by two functions.

• make axiom clause converts each clause derived from an Isabelle theorem to an
axiom clause of type clause.

• make conjecture clause converts each clause generated from a negated goal or a
(non-negated) local assumption to a negated conjecture clause of type clause.

Please note, since we define type clause to encode first-order clauses, any attempt
to convert a higher-order Isabelle clause to this internal format will cause an exception
to be raised by make axiom clause and make conjecture clause. As a result, these
higher-order clauses are omitted when our delegation program sends Isabelle theorems to
automatic provers.

4.3.2 Type arityClause

Unlike type variables’ class requirements, which are contained within each Isabelle clause,
type constructors’ arities come from a different source: they are usually stored with each
theory file as facts. Recall that each arity of a type constructor op

op :: (C1, . . . , Cn)C

is formalized as the first-order Horn clause

∀τ1 . . . τn [C1(τ1) ∧ . . . ∧ Cn(τn)→ C(op(τ1, . . . , τn))].

This clause format is significantly simpler than an ordinary Isabelle clause. Therefore,
we define a new abstract data type arityClause to be the internal format for clauses
generated from arities. Each arity is translated into a clause of type arityClause. Fields
included in an arityClause object are

• A unique identifier.

• A positive literal, which represents the type class of the type constructor’s result.
In the example above, this field is C.
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• A list of negative literals, which represent the type classes of the type constructor’s
arguments. In the example above, this field is C1, . . . , Cn.

Arities describe type class information about type constructors and thus they should
be used as facts by automatic provers. As a result, all clauses of type arityClause are
labelled as axiom clauses.

Finally, the function make axiom arity clause converts each arity of a type construc-
tor into a clause of type arityClause.

4.3.3 Type classrelClause

In addition to the type constructors’ arities, we need to convert subclass relationships to
clauses. Each type class relation

C < D,

which means type class C is a subclass of type class D, becomes the Horn clause

∀τ [C(τ)→ D(τ)].

We define a data type classrelClause to represent this Horn clause. The fields contained
in classrelClause are

• A unique identifier.

• A positive literal, representing the superclass.

• A negative literal, representing the subclass, if there is one. Otherwise the field is
empty.

Like arities, class relations are facts: we convert each type class relation to an axiom
clause. Function make axiom classrelClause converts each subclass relationship into a
clause with type classrelClause.

4.3.4 Conversion to TPTP Format

The clause data types defined above can be easily translated to any textual format specific
to any automatic theorem prover. In addition, these clauses contain sufficient information
for all the automatic provers.

We have implemented the conversion to the widely-used TPTP format. This conver-
sion is carried out by three functions:

• tptp clause translates a clause with type clause into one or more TPTP clauses
as strings.

• tptp arity clause translates a clause of type arityClause into one TPTP clause
as a string.

• tptp classrelClause translates a clause of type classrelClause into one TPTP
clause as a string.
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Please note, when the function tptp clause converts a clause object into TPTP
format, more than one TPTP clause may be produced. This happens if we are translat-
ing a negated conjecture clause, and the negated conjecture clause contains some type
variables. Recall that we formalize type class constraints on type variables that occur in
negated conjecture clauses as additional unit clauses (§3.4.3). For instance, if a negated
conjecture clause is

a ∈ A

which contains type information such that a has type τ , which is a type variable, and τ
belongs to type class C, then when tptp clause translates this clause to TPTP format,
two TPTP negated conjecture clauses will be generated: the additional one is C(τ).

All clauses of type clause contain full Isabelle type information. However, when
we translate clause objects to TPTP format, we can choose to include or exclude the
type information in the output TPTP strings. By default, the output TPTP clauses
include type information, except that the equalities are untyped, as described in the
previous section (§3.4). Users can modify this behaviour (for instance, on including type
information for equalities) by setting boolean flags.

4.4 Isabelle Local Theorems

As remarked above, local theorems should be associated with a proof context. A proof
context is implemented as a data structure in Isabelle, which is initialized at the start of
a proof and is emptied as soon as the main goal is proved. In order to make it easier for
our program to extract local theorems, we add a delta field in the proof context data
structure. The delta field is initialized to empty when a proof starts. Each time a local
theorem is proved and declared, this theorem is added to the delta field. Subsequently,
we implement a function isar local thms, which inspects the current value of the delta
field in the proof context and finds all local theorems, when an automatic prover is about
to be called.

After isar local thms extracts all the local theorems from the proof context, it con-
verts the local theorems to clauses using Isabelle’s inference rules, by calling other func-
tions that we describe next.

4.4.1 Translating Existing Theorems to Clause Form

Isabelle theorems must be converted to clause normal form. In addition, this transforma-
tion must be performed inside Isabelle logic, which means that our clause normal form
transformation function must have type thm -> thm.

We have defined function cnf axiom to convert each Isabelle theorem to clauses. This
function calls primitive inference rules, such as rewriting and resolution with other proved
theorems. Therefore, cnf axiom is a function of type thm -> thm, which in LCF style
provers is the type of derived inference rules.

Function cnf axiom mainly consists of the following functions, each of them has type
thm -> thm.

• skolem axiom converts an Isabelle theorem into negation normal form, and then
performs Skolemization.
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• isa cls performs the same steps, then converts the resulting formula into clause
normal form, which is represented by a list of clauses. Each clause has type thm,
and is therefore an Isabelle theorem. In addition, all free variables are schematic
and are implicitly universally quantified.

Skolemization takes several steps, with existing lemmas treated differently from the
negated conjecture. The first step is to move every existentially quantified variable to the
front of the theorem, and is performed by simplification using the rewrite rule1

∀P [(∀x ∃y P (x, y)) ≡ (∃f ∀xP (x, f(x)))].

This equivalence expresses the axiom of choice, which appears to be necessary when per-
forming Skolemization by inference. A single application of this equivalence to an Isabelle
theorem yields a function of one variable. Repeated application — to move an existential
variable past several universal variables — results in a function of all of those variables.
Rewriting with this equivalence, along with others to extract existential quantifiers from
conjunctions, disjunctions, etc., yields a formula in which all existential quantifiers are
lined up at the front. Please note: during our implementation, all outermost universal
variables have to be turned into free variables that are implicitly universally quantified.
Consequently, they do not have ∀ in front.

These existential quantifiers must now be removed altogether. The procedure depends
upon whether the clauses have been produced from the negated conjecture or from existing
lemmas. Skolemization of the negated conjecture is easy: it is treated just like any subgoal
that has existentially quantified assumptions. Skolemization of lemmas requires a further
use of the axiom of choice, in the form of Hilbert’s ǫ-operator. The term ǫx P (x) denotes
some value x such that P (x) is true, if such exists; otherwise, it denotes any value of the
appropriate type. If we have transformed a lemma into the form ∃xP (x), then we may
conclude P (ǫx P (x)). This inference is trivial in Isabelle, using the basic properties of
Hilbert’s ǫ-operator, in the form of the theorem someI ex

∀P [∃xP (x)→ P (ǫx P (x))].

Resolving any formula, which contains an existentially quantified variable at the front,
with someI ex once will remove the outermost existential variable. As a result, after we
perform Skolemization in the previous stage, we repeatedly resolve the resulting formula
with someI ex to remove all existential quantifiers.

For instance, the Isabelle lemma subsetI expresses the natural deduction rule for
introducing the subset relation: to show A ⊆ B, it suffices to show that for arbitrary x,
if x ∈ A then x ∈ B. This lemma is equivalent to the first-order formula

∀x (x ∈ A→ x ∈ B)→ A ⊆ B,

where A and B are implicitly universally quantified. After it is transformed to negation
normal form and Skolemized, it becomes

∃x [(x ∈ A ∧ x /∈ B) ∨ A ⊆ B].

1See meson.ML written by Larry Paulson
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To replace the existential variable ∃x by a ǫ-term, we resolve the formula above with
someI ex. The result is the large formula

(ǫx. x ∈ A ∧ x /∈ B ∨A ⊆ B)
︸ ︷︷ ︸

ǫ−term

∈ A ∧ (ǫx. x ∈ A ∧ x /∈ B ∨A ⊆ B)
︸ ︷︷ ︸

ǫ−term

/∈ B ∨ A ⊆ B

The two ǫ-terms are identical, representing the eliminated ∃x.
Obviously, the ǫ-terms must be replaced by proper Skolem terms before the clauses

are delivered to an automatic prover. For each ǫ-term, we generate a unique Skolem term
for it. The universally quantified variables that cover the scope of a Skolem term are
exactly those free variables that appear inside the corresponding ǫ-term. Therefore, it is
sufficient to inspect each ǫ-term separately in generating a Skolem term. This step, which
is performed outside Isabelle, yields a list of clauses of type clause, which are ready to
be converted to TPTP format.

Please note that our clause normal form transformation function can convert not only
all first-order formulae but also many higher-order formulae. If an input theorem is a
higher-order formula, then the result of transforming it will be a list of higher-order
clauses, which may contain terms such as function or predicate variables. However, when
a generated higher-order clause is converted to internal clause format, an exception will
be raised since type clause is designed for first-order clauses only.

Quantifier Miniscoping

The Skolemization procedure that we have described above pulls out all existentially
quantified variables and replaces these variables by Skolem terms through the use of the
axiom of choice. However, when an existentially quantified variable is pulled across a
universally quantified variable, the axiom of choice does not check whether the universal
variable really occurs in the sub-formula of P (x, y) (in the axiom of choice formula) where
y occurs. Therefore, the resulting formula may be unnecessarily large. For instance, if we
Skolemize the formula

∀x ∃y [P (x) ∧Q(y)]

using the axiom of choice, we will get

∃f ∀x [P (x) ∧Q(f(x))]

although we should be able to get a simpler formula

∃a ∀x [P (x) ∧Q(a)]

because the scope of x does not cover the scope of y.
The problem above can be solved by the technique called quantifier miniscoping, which

tries to reduce the scope of both universal and existential quantifiers by pushing in the
quantifiers as much as possible.

We have briefly experimented with performing quantifier miniscoping before Skolem-
ization.

In the first approach, we push in quantifiers as far inwards as possible, by resolving
our input formula with the following inference rules

∀P Q [∀x (P (x) ∧Q)→ (∀xP (x)) ∧Q]
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∀P Q [∀x (P ∧Q(x))→ P ∧ (∀xQ(x))]

∀P Q [∀x (P (x) ∨Q)→ (∀xP (x)) ∨Q]

∀P Q [∀x (P ∨Q(x))→ P ∨ (∀xQ(x))]

∀P Q [∃x (P (x) ∧Q)→ (∃xP (x)) ∧Q]

∀P Q [∃x (P ∧Q(x))→ P ∧ (∃xQ(x))]

∀P Q [∃x (P (x) ∨Q)→ (∃xP (x)) ∨Q]

∀P Q [∃x (P ∨Q(x))→ P ∨ (∃xQ(x))]

where P (x) is any formula with some occurrence of x and Q is any formula that does not
contain x. This approach recursively pushes in all quantifiers inwards.

In addition, we deliberately leave out the two extra inference rules

∀P Q [∀x (P (x) ∧Q(x))→ (∀xP (x) ∧ ∀xQ(x))]

∀P Q [∃x (P (x) ∨Q(x))→ (∃xP (x) ∨ ∃xQ(x))]

where both P and Q have occurrences of x. If we push in the quantifiers in these two
situations, we may potentially duplicate the quantified variables, and thus may generate
too many different Skolem terms, although some of these Skolem terms should actually
be the same.

We tried this approach on several Isabelle problems and found out that some quanti-
fiers were not pushed in as a result: if any inner quantifier cannot be fully pushed inwards
then none of the outer quantifiers has a chance to be moved inwards. Therefore, we de-
cided to implement a second version of miniscoping, where we also used the previously
left out rules plus the rules we have used in the first approach.

However, even this approach leaves out some opportunities of moving quantifiers in-
wards. For instance, it is not sound to replace

∀x [P (x) ∨Q(x)]

by
∀xP (x) ∨ ∀xQ(x)

in general. Similarly we cannot replace

∃x [P (x) ∧Q(x)]

by
∃xP (x) ∧ ∃xQ(x)

However, we may have a formula

∀x [P (x) ∨ (Q(x) ∨R)]

where R does not contain x, but still ∀x cannot be eliminated from the scope of R using
either the first or the second method. The reason is that Q(x)∨R as a whole contains an
occurrence of x, which makes it not applicable to apply the inference rules defined above.
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We have investigated a solution to this problem. We decided to normalize a series
of disjunctions directly under a universal quantifier, such that all disjuncts that did not
contain the universally quantified variable could line up at the end. We can then per-
form quantifier miniscoping to this normalized formula. In the example above, after we
normalize the formula to

∀x [(P (x) ∨Q(x)) ∨R]

we can push in ∀x inwards and get

∀x [P (x) ∨Q(x)] ∨ R.

In a similarly way, we can normalize a series of conjunctions directly under an existential
quantifier.

We have briefly carried out some implementations in order to normalize formulae.
We perform this normalization inside Isabelle logic by forward resolution and rewriting.
We have normalized most of the formulae except some deeply nested conjunctions and
disjunctions. For instance, the formula

∃x [(A(x) ∧B ∧ C(x)) ∧D ∧ E(x)]

can be normalized, then have ∃x pushed in and become

∃x [A(x) ∧ C(x) ∧ E(x)] ∧D ∧ B

Moreover, the formula
∀x [(A(x) ∨ B(x)) ∨ C ∨D(x)]

is normalized and then transformed to

∀x [(A(x) ∨ B(x)) ∨D(x)] ∨ C

by quantifier miniscoping.
Although quantifier miniscoping can improve the performance of Skolemization and

hence later clause normal form transformation, we decided we should move on to the rest
of the integration tasks rather than concentrating on further improving the quality of
quantifier miniscoping. The miniscoping we have done so far should be enough for the
quality of our Isabelle formulae transformation.

After quantifier miniscoping is performed, we conduct Skolemization by pulling out
existential quantifiers and applying the axiom of choice, as we have described in the first
part of this section.

4.4.2 Preprocessing of Elimination Rules

Recall (§3.2.1) that we need to transform an elimination rule

∀P [A→ ∀x1 (B1 → P )→ . . .→ ∀xn (Bn → P )→ P ]

into an equivalent form
A→ (∃x1B1 ∨ . . . ∨ ∃xn Bn)

in order to remove the predicate variable P .
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This transformation must take place before the elimination rules can be converted to
clause normal form by the functions that we have described in the previous section.

I have attempted to use both rewrite rules and forward proof to transform the elimi-
nation rules into their equivalent format. It turns out to be complicated to define a few
inference rules that can deal with the transformation of all elimination rules automatically.

As a result, we adopt an alternative method that still ensures correctness, which means
the result of this transformation on an elimination rule is still a valid Isabelle theorem, of
type thm. We have defined a function transform elim of type thm -> thm to transform
any elimination rule into its equivalent form. It performs two major steps.

1. From a given elimination rule, it constructs an Isabelle term (of type term) that
represents the structure of the first-order formula equivalent to the rule. This is
straightforward programming.

2. It then invokes an Isabelle function prove goalw cterm. This function takes a term
and a tactic and then proves the given term to be an Isabelle theorem using the
supplied tactic. Here, prove goalw cterm receives the constructed term from the
previous step and a proof, which begins by applying the elimination rule under
consideration. The remaining proof steps involve elementary first-order reasoning.

As an example, consider the elimination rule UnionE. Intuitively, it says that if A ∈
⋃
C, then there is some x such that A ∈ x and x ∈ C. It can be expressed in higher-order

logic as

∀P AC [A ∈
⋃

C → ∀x (A ∈ x ∧ x ∈ C → P )→ P ].

Apply function transform elim to it and the result of our transformation is a first-order
theorem:

∀AC [A ∈
⋃

C → ∃x (A ∈ x ∧ x ∈ C)]

This theorem is finally converted to clause normal form by isa cls as two clauses

A /∈
⋃

C ∨ (ǫx. A /∈
⋃

C ∨ x ∈ C ∧A ∈ x) ∈ C

and
A /∈

⋃

C ∨A ∈ (ǫx. A /∈
⋃

C ∨ x ∈ C ∧A ∈ x)

where A and C are implicitly universally quantified. Since the procedure above is carried
out inside Isabelle logic, each clause has the type thm, which means it is an Isabelle
theorem.

When we convert an Isabelle rule to first-order clauses, we must check whether it is
an elimination rule first. This is achieved easily by inspecting the term structure of the
rule. If it is an elimination rule, then it must go through the preprocessing phase before
it can be converted to clauses by clause normal form transformation function isa cls.

4.4.3 Isabelle Simplification Rules

The functions defined above can be used directly to convert almost all Isabelle theo-
rems to clause normal form. However, Isabelle’s simplification rules require some special
considerations.

There are three types of simplification rules: boolean equalities, non-boolean equalities
and simplification rules generated from non-equalities.
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• For boolean equalities of the form P ≡ Q, we simply transform it to the equivalent
(P → Q)∧(Q→ P ) and then convert the resulting formula into clause normal form
using the transformation procedure defined in the previous section.

• Non-boolean equalities are regarded as simple equalities and are converted to clauses
accordingly.

• Simplification rules generated from non-equality theorems usually have a form P ≡
⊥ or P ≡ ⊤. We must convert them to their original non-equality theorem format
and thus remove the ⊤ and ⊥ in them before transforming them to clauses. In
the first approach, I implemented a transformation inside Isabelle, by first proving
auxiliary lemmas such as

∀P [P ≡ ⊥ → ¬P ]

and
∀P [P ≡ ⊤ → P ].

Afterwards, we can resolve the simplification rules with these lemmas, so that P ≡ ⊥
and P ≡ ⊤ are replaced by ¬P and P respectively.

At the time of writing this dissertation, Larry Paulson has implemented another
method, which simplifies these simplification rules so that ⊥ and ⊤ are erased
during transformation to clauses. With this simplification, P ≡ ⊥ is replaced by
¬P and P ≡ ⊤ is replaced by P .

4.5 Isabelle Local Assumptions

Isabelle users may make assumptions during a proof by command, such as assume. These
assumptions should be treated as part of the negated conjecture. If an assumption is φ
and a conjecture is θ, then converting the negated goal ¬(φ→ θ) into clauses is equivalent
to converting φ and ¬θ to clauses separately. We have defined the function isar atp h

to convert Isabelle local assumptions — taken from a current proof context — to clauses.
In Isabelle, local assumptions are stored as theorems, with type thm. Therefore, we

use similar techniques to convert them to clause normal form as we do for existing Isabelle
theorems. However, when we convert the generated Isabelle clauses to our internal clause
format of type clause, we label them as negated conjecture clauses.

4.6 Isabelle Subgoals

When it is time to send goals to automatic provers, function isar atp goal negates all
current subgoals and converts each of the negated subgoals to clauses.

Recall that Isabelle represents its proof state (§2.6.3) as a meta-theorem of type thm

[[ψ1; . . . ψn]] =⇒ [[C]]

where C is the main goal (i.e. the theorem to be proved) and ψ1, . . . , ψn are the current
subgoals. In order to use Isabelle inference rules to perform negation and then clause
normal form transformation to all the current subgoals, we have to operate on the entire
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proof state. As we have to operate on a proof state, a backward reasoning style is more
suitable, which means we need a tactic to perform negation normal form and clause normal
form transformation on subgoals.

We define a tactic atp tac tfrees such that “atp tac tfrees k” negates the k-th
subgoal and converts the negated subgoal to clauses. This operation consists of the
following steps.

• Resolve the subgoal with a contrapositive inference rule

∀P [(¬P → ⊥)→ P ]

This transforms the k-th subgoal ψk to an equivalent formula

¬ψk → ⊥

where the assumption is the negated subgoal.

• Apply skolemize tac to perform Skolemization on the new k-th subgoal ¬ψk → ⊥.
In contrast to Skolemization on theorems, which requires a further use of the axiom
of choice, this tactic simply drops the existential quantifiers after having pulled all
of them to the front, using the axioms of choice. The result of this step is a new
k-th subgoal ψ′

k → ⊥.

• Apply a tactic to convert ψ′

k to clauses.

• Finally, convert the clauses to TPTP format and write to a designated file.

As there may be more than one subgoal when an automatic prover is called, function
isar atp goal repeatedly applies atp tac tfrees on all of the subgoals. Since we do
not wish to leave an observable effect to the other parts of Isabelle program, and in par-
ticular we do not wish the Isabelle user to notice what has taken place, when function
isar atp goal returns, the proof state sent to function isar atp goal is returned un-
changed. This also ensures the Isabelle user can continue solving the original goal (with
the proof state unchanged) if necessary.

4.7 Global Theorems and Other Facts

In the previous sections, we have described how to locate and convert Isabelle local as-
sumptions, local theorems and negated goals to clause normal form. The only remaining
items are the global theorems and Isabelle’s type constructors’ arities and type class
relations. They should be converted to clauses as well.

Global theorems are usually stored with each Isabelle theory file. Therefore, we define
the following functions.

• cnf classical rules thy extracts all classical rules from a named theory and con-
verts them to clauses of type thm.

• clausify classical rules thy is similar to cnf classical rules thy but also
converts the Isabelle clauses to axiom clauses of type clause.
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• cnf simpset rules thy extracts all simplification rules from a named theory and
converts them to clauses of type thm.

• clausify simpset rules thy is similar to cnf simpset rules thy but also con-
verts the Isabelle clauses to axiom clauses of type clause.

In addition, Isabelle stores type class relations and type constructors’ arities with
theory files. Therefore, we define the following functions.

• arity clause converts the multiple arities of a type constructor into a list of clauses
of type arityClause.

• arity clause thy retrieves all the arities of all the type constructors from a named
theory and converts them into a list of clauses of type arityClause.

• classrel clause converts each (subclass, superclasses) pair into a list of clauses
of type classrelClause: each type class may have more than one direct superclass.

• classrel clauses thy converts each type class relation defined in a theory to a
clause of type classrelClause.

The clauses generated from global theorems, type class relations and type constructors’
arities can be permanently written to designated axiom files so that an automatic prover
can read them whenever the prover attempts to prove a goal.

4.8 Calling Automatic Provers from ML Proofs

We have described our implementation approach to integrating Isar with any automatic
prover. The functions that we have defined are mainly used for the Isar interface as well.
We have put emphasis on the Isar interface largely because many more Isabelle users are
now working under it than under the ML interface. However, we still experimented an
integration of the ML interface with an automatic prover. In fact, we carried out our
experiment on the ML interface even before we integrated Isar with automatic provers.

Integrating the ML interface with automatic provers is easier than integrating the Isar
interface with automatic provers: for the ML interface, we only have to consider how to
negate a named subgoal and convert it to clauses and finally write the clauses to files.
However, this single task was also crucial for the Isar interface: the operation on goals is
essentially the same regardless whether we are under the ML or the Isar interface.

As remarked above, we have to use tactics to negate a goal and transform it into
clauses. Therefore, we defined a tactic atp tac, which could be applied using the by

command of the ML interface to perform the required operation to the named subgoal,
and to write the negated conjecture clauses to a file.

Having briefly experimented with the ML interface, we used most of the functions,
which we defined for atp tac, as building blocks of isar atp goal. It performs a similar
function in the Isar interface, but with more functionalities such as converting all subgoals,
rather than a named one, to clauses. We later integrated isar atp goal with the rest of
our program — such as extracting and converting local assumptions and local theorems
at an appropriate point during a proof — to make the prover calling procedure completely
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transparent, without users’ interaction. The effect of this prover calling procedure running
under the Isar interface is entirely different to the effect achieved from atp tac in the ML
interface.

However, we did not continue integrating the ML interface with automatic provers
any further for two reasons.

First, unlike the Isar interface, the ML interface does not have a notion of proof modes.
All proofs are linear and proofs are constructed by tactics. As a result, a goal is always
subject to immediate changes. According to the analysis we have given previously, it
is not feasible to let Isabelle call an automatic prover without a user’s instruction if a
goal may be changed instantly. This means that we cannot fully automate the automatic
prover calling procedure with the ML interface, but this is one of the objectives of our
integration. Therefore, the ML interface does not seem to be the most suitable Isabelle
interface for our integration.

Second, the ML interface does not support structured proofs, and hence does not
support local theorems. Consequently, it seems difficult to allow users to declare some
local theorems, which are then sent to automatic provers. We have attempted to simulate
the use of local theorems by defining a variant of the tactic atp tac as atp ax tac. This
new tactic can be supplied with a list of Isabelle theorems, which the user may wish
to send to an automatic provers as local theorems. Tactic atp ax tac not only negates
the goal and converts it negated conjecture clauses, but also transforms the supplied list
of theorems to axiom clauses. All of these clauses are written to some designated files.
However, this method is not consistent with our initial objective of not asking users to
specify which theorems to use.

Although we are not going to integrate the ML interface with automatic provers any
further, the tactics atp tac and atp ax tac may still be useful for people who wish to
work under the ML interface, perhaps for a quick proof of a goal. They may also be useful
for our program debugging in the future if some more functions are added.

4.9 Concluding Remarks

In this chapter, we have described our approach to implement a program that runs be-
tween Isabelle and any background automatic prover and directs the communication from
Isabelle to the automatic prover.

This program is closely integrated with Isabelle’s Isar interface and extracts proof
goals and all necessary Isabelle theorems and facts at an appropriate point during a proof.
After getting these items, our program translates them to clauses and writes the clauses
to designated files, which can be read by an automatic prover running in the background.
Crucially, this process happens without any user’s interaction and is invisible from the
user’s point of view.

A major task of this program is to automatically translate Isabelle formulae into clause
normal form, which has to be performed inside Isabelle logic in order to ensure correctness
and also to ensure the later proof construction is possible. We have implemented a clause
normal form transformation function that converts Isabelle/HOL goals or theorems to
clauses, including both first-order formulae and many higher-order formulae. Although
the higher-order clauses generated from higher-order formulae will not be passed to an
automatic prover based on first-order logic, these higher-order clauses may be useful if we



94 CHAPTER 4. CALLING AUTOMATIC THEOREM PROVERS

integrate other automatic provers, which are based on higher-order logic, with Isabelle in
the future.

Furthermore, the clause normal form transformation function preserves type informa-
tion, which can be used by any first-order automatic prover.

In order to make our integration more scalable, we have defined three internal clause
formats, to which we translate all Isabelle formulae and type information. Since our
target automatic provers work for first-order logic, the internal clause formats encode
first-order clauses only. If a higher-order clause is generated from an Isabelle formula,
then an exception will be raised. These internal clause formats can be converted to any
automatic prover-specific format easily. We have also implemented a conversion to TPTP
format.

In addition to integrating the Isar interface with automatic provers, we have also
experimented an integration of the ML interface with automatic provers. We have defined
two tactics for this. A user can use these tactics to send proof goals and named theorems
to an automatic prover for proofs.

Our program finishes its job after it writes all the generated clauses to the designated
files. This almost completes the entire automatic prover calling procedure. The only
remaining task is to use interprocess communication mechanism to inform a process of a
background automatic prover about the problem files being ready to be read. This task
can be achieved by system programming. This process communication work has been
done by Claire Quigley.



Chapter 5

Reducing The Number of Clauses

In the previous chapters, we have described our approach to accomplishing all the essen-
tial tasks that need to be done for calling automatic provers from Isabelle proofs. We
have designed a practical method to translate Isabelle/HOL and Isabelle/ZF problems to
first-order clauses. We have also implemented this translation. We have integrated this
translation into a program that automatically extracts all proof data from Isabelle at an
appropriate point of a proof, converts the data to clauses and sends them to background
automatic provers. The work we have done so far has achieved a working link that directs
communication from Isabelle to any first-order resolution prover.

From the previous experiments, we found having a large number of clauses harmed the
performance of many automatic provers. In this chapter, we describe our investigation to
this problem and the attempts we have made to solve it. This research work is intended
to improve the performance of the integration.

5.1 Problems of Large Numbers of Clauses

The size of the search space — in terms of the number of clauses — plays a significant
role in determining the performance of a resolution-based automatic prover. In order for
a proof to be found, the prover must be able to pick up relevant clauses to participate in
resolution steps. However, in the presence of a large number of clauses, it is difficult for
the prover to decide which clauses should be selected. What makes the task even more
difficult is that if some inappropriate clauses are selected to resolve, then the generated
clauses will be useless for the proof as well. These newly generated irrelevant clauses can
only enlarge the search space further.

The problem caused by the large search space first revealed itself during our previous
experiments on formalizing Isabelle/ZF. We found that many resolution-based automatic
provers were incapable of proving goals when we gave them a large set of axiom clauses,
where many of these axiom clauses may have been irrelevant. Having found the problem,
we carried out another set of experiments with a specific aim: to examine how well can
some of the best-known automatic provers cope with a large set of axioms (§3.3.3).

During this set of experiments, we found fifteen Isabelle goals that were particularly
difficult to be proved in the presence of the full axiom set (around 129 to 160 axiom
clauses). I provided these problems to the TPTP library. The problems are COL088-1 to
COL100-2 and SET787-1, SET787-2. Other researchers and I made ninety attempts on
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these goals, using various provers. The results are summarized below.

• I tried to prove the fifteen problems using both Vampire (v6.03) and SPASS, with
time limit set to 60 seconds. For the experiments on Vampire, I used the combination
of five settings described in §3.3.1. Two problems were proved by Vampire v6.03
(which supports literal annotations; version 5.6 could not prove them) within the
time limit.

– COL088-2: 17.1 seconds.

– COL089-2: 14.2 seconds.

• Geoff Sutcliffe tried them on three automatic provers — E, SPASS and Vampire
— with his tool that is specifically designed to eliminate redundant clauses. Three
problems were proved by SPASS within 300 seconds.

– SET787-2: 154 seconds.

– COL091-2: 75 seconds.

– COL099-2: 43 seconds.

• Gernot Stenz ran the same problems on E-SETHEO. Two problems were proved.

– COL091-2: 1 second.

– COL099-2: 2 seconds.

Among the fifteen problems, five were proved. Moreover, out of the 15× 6 = 90 proof
attempts, seven succeeded.

Since we have used a wide variety of automatic provers to prove the goals, and many of
them are leading provers, the experimental results above indicate that the large numbers
of clauses may be a problem to most resolution provers.

5.1.1 The Cause of Large Numbers of Axiom Clauses

Clearly, the large number of axiom clauses has a negative impact on the proof performance
of resolution provers. Furthermore, these axiom clauses are generated from Isabelle theo-
rems. We need to identify the cause of the large number of axiom clauses that are present
to an automatic prover in order to solve the problem. We have found that there are two
major reasons.

First, interactive provers are usually used to formally specify and verify the correctness
of complex systems. Therefore the verification usually starts by proving hundreds of
lemmas to support the ultimate proofs of system properties. There is no exception with
the use of Isabelle. Take the Isabelle/HOL theory Main.thy as an example. Main.thy is
usually the starting specification theory, upon which other specifications are built. This
theory contains numerous already proved lemmas: 427 classical reasoning rules and 1499
simplification rules. If we define a theory to be a descendant of Main.thy, then during a
proof development in this descendant theory, there could be many more theorems proved
and stored in the classical reasoner and equality reasoner. In addition, each of the Isabelle
theorems is capable of generating multiple clauses. The total number of axiom clauses
could be overwhelming.
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On the other hand, if we look at Isabelle proof goals more closely, we will see that
nearly each goal is proved by a small number of theorems — usually fewer than ten
theorems. The great majority of theorems available during a proof are irrelevant. If the
clauses generated from these irrelevant theorems are allowed to participate in resolution
steps, the search space would explode. Consequently, we should try to help an automatic
prover ignore the irrelevant axiom clauses or become less sensitive to them. Alternatively,
we could also try to reduce the irrelevant theorems presented to an automatic prover.

In addition to the large number of theorems that are always present at any one time
during a proof, some of the particularly complex theorems are making the situation worse.
These theorems are used for rule inversion, which is a case analysis on an inductive
definition. In Isabelle, many constants are defined by inductive definitions, which specify
inductively defined sets. These inductive definitions are made up of introduction rules.
When an inductive definition is made, Isabelle generates a set of elimination rules, which
are used for case analysis based on the patterns of expressions belonging to that set. These
elimination rules are subsequently used for rule inversion. Rule inversion is important for
reasoning about operational semantics. It helps to identify which of the many rules of
an operational semantics definition may have caused a given event. However, such a rule
may generate a large number of clauses, if the inductive definition concerned is made up
from many introduction rules. An example of such an elimination rule is Ap contractE,
which is defined in Isabelle/ZF theory file Comb.thy. Since it is an elimination rule, we
need to convert it to an equivalent first-order formula, which is expressed as

∀p q r [(app(p, q)։ r)→

[r ∈ comb ∧ q ∈ comb ∧ p = app(K, r)]∨

∃pa qa [pa ∈ comb ∧ qa ∈ comb ∧ q ∈ comb∧

r = app(app(pa, q), app(qa, q)) ∧ p = app(app(S, pa), qa)]∨

∃qa [p։ qa ∧ q ∈ comb ∧ r = app(qa, q)]∨

∃qa [q ։ qa ∧ p ∈ comb ∧ r = app(p, qa)]].

In this theorem, ։ represents an inductively defined reduction relation between com-
binators, and is written as an infix operator. The inductively defined set of combinators
comb, is constructed from basic combinators K, S and the application of combinators
through the function app. Moreover, since Isabelle/ZF is untyped, r ∈ comb represents
a kind of type constraint: r is a variable of type comb.

Theorem Ap contractE represents a case analysis on the inductive definition of ։,
which consists of four introduction rules. It says that if app(p, q)։ r, then from the four
cases of the inductive definition of ։ we can deduce the forms of and relations between
variables p, q and r. The four cases are represented in this formula as four disjuncts.

The disjuncts above can generate three, five, three and three clauses respectively.
Therefore, using the standard clause normal form (CNF) transformation, Ap contractE

will generate 3×5×3×3 = 135 clauses. We have tried to prove four goals, which required
the use of Ap contractE. Unfortunately, none of the goals were proved, when given 135
clauses. Clearly, we should try to reduce the number of clauses generated from these
elimination rules.
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5.1.2 Possible Solutions

Having found the cause of the generation of large numbers of clauses, we look at possible
solutions to the two major problems mentioned above.

Minimizing Generated Clauses

As we have seen, some Isabelle theorems can generate huge numbers of clauses during
transformation into CNF. This suggests that we should try to minimize the number of
clauses generated via a technique called formula renaming [39].

Formula renaming involves defining new predicates in order to minimize the number
of clauses being generated from the transformed formula. It preserves consistency and
thus inconsistency. Therefore this technique is suitable for resolution theorem proving.
We describe how we have used it and implemented it in sections §5.2 and §5.3.

Removing Irrelevant Theorems and Axiom Clauses

We should not only reduce the number of clauses generated during CNF transformation
but also prevent irrelevant axiom clauses from being considered by resolution provers.

Obviously, we should not ask Isabelle users to select the theorems that are relevant
to a proof goal, because the objective of integrating Isabelle and automatic provers is to
improve Isabelle automation and reduce users’ interaction. Therefore we need to have
those irrelevant clauses to be removed automatically.

Automatically filtering out irrelevant lemmas from relevant ones is difficult. One
attempt that has been made to perform automatic removal of irrelevant lemmas was

carried out in the KIV-3T
AP integration. However, so far no satisfactory solution has

been found. Nevertheless, we felt this was a useful research and therefore we carried
out some preliminary investigations into the problem. The objective was to find some
promising research directions.

The theorems are generated and sent from Isabelle. Subsequently, they are received
as axiom clauses and used by an automatic prover. Therefore we could approach the
problem from two directions:

• We send all the available theorems to an automatic prover using prover settings so
that the irrelevant axiom clauses can be tolerated by the prover.

• We may be able to design an algorithm or heuristic to remove irrelevant theorems
from a set of theorems available in a current context. Afterwards, we shall send the
remaining theorems to an automatic prover.

The responsibility of removing irrelevant information could lie on either sides of our
integration — Isabelle and our target automatic provers. We have experimented with
both of these approaches, which are summarized below.

• We have carried out experiments on Vampire in order to find some suitable settings,
which can deal with large numbers of axiom clauses more effectively.

• We have used another automatic prover, E, which has particular strength in distin-
guishing useful clauses from useless clauses, in order to see whether it can handle
large numbers of axiom clauses.
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• We have designed a heuristic to discard some irrelevant Isabelle theorems from the
existing classical set and simplifier set, and then only give those possibly relevant
theorems to an automatic prover.

We describe our attempts in sections §5.4 and §5.5.

5.2 Using Formula Renaming

During the transformation into clauses, the distributive law

(A ∧B) ∨ C ≃ (A ∨ C) ∧ (B ∨ C)

has to be applied repeatedly so that disjunction is pushed in until it applies directly to
literals. The exhaustive application of the law can duplicate formulae and hence generate
a vast number of clauses. In this case, all clauses generated from formula C are being
duplicated.

In a more general case, consider a formula

φ1 ∨ ∀xφ2

and for simplicity, let us assume x is the only free variable in φ2. Suppose during the CNF
transformation, φ1 generates m clauses and φ2 generates n clauses. Then by applying the
distributive law, φ1 ∨ ∀xφ2 will generate m× n clauses.

Formula renaming [39] is designed to solve this duplication of clauses by introducing
new predicates to replace sub-formulae that may be duplicated. In the example above,
we can introduce a new one-place predicate P to replace φ2: x is free in φ2 thus P should
depend on x as well. With this replacement, the original formula becomes

φ1 ∨ ∀xP (x).

Moreover, to ensure the consistency is preserved after we rename φ2 to P (x), we need a
definition of P , which serves as a constraint and is therefore added as a conjunction to the
new formula φ1∨∀xP (x). In this case, the definition of P is the formula ∀x [P (x)→ φ2].
Consequently, the result of applying formula renaming to the original formula is

[φ1 ∨ ∀xP (x)] ∧ ∀x [P (x)→ φ2].

The new formula will generate m+n clauses. Therefore formula renaming will reduce
the number of clauses generated as long as there is

m+ n < m× n.

Formula renaming should be applied before CNF transformation, and it can be applied
to any arbitrary formula. For instance, the replaced formula does not have to be a disjunct
— it can be in any position such as an antecedent or a consequent of an implication, or
it can be a branch of a conjunction. In addition, formula renaming can also be applied to
replace a sub-formula of any form. Furthermore, the definition of each newly introduced
predicate depends on the polarity of the replaced sub-formula in the top level formula and
the new predicate must depend on all the free variables occurring in that sub-formula.
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Definition 8. Formula renaming on formula P , replacing the sub-formula Q, consists of
the following steps.

• Pick a new n-place predicate symbol R and use the atomic formula R(x1, . . . , xn)
to replace Q, where x1, . . . , xn are all the free variables in Q. Suppose with this
replacement P becomes P ′.

• Put an additional formula D to be in conjunction with P ′. The additional formula
is seen as the definition of R and is defined as follows.

– If Q has positive polarity in P , i.e. it occurs positively in P , then

D ≡ ∀x1, . . . , xn [R(x1, . . . , xn)→ Q] (5.1)

– If Q has negative polarity in P , i.e. it occurs negatively in P , then

D ≡ ∀x1, . . . , xn [Q→ R(x1, . . . , xn)] (5.2)

– If Q occurs on one side of an equality and thus has neither purely negative nor
purely positive polarity in P , then

D ≡ ∀x1, . . . , xn [R(x1, . . . , xn)↔ Q] (5.3)

• The result of the formula renaming transformation on P is

P ′ ∧D

Moreover, for the application of formula renaming to be effective, the resulting formula
P ′∧D must generate fewer clauses than P does during the subsequent clause form trans-
formation. Therefore the condition for formula renaming to replace Q is

ϕ(P ′ ∧D) < ϕ(P ) (5.4)

where ϕ(X) represents the number of clauses generated by formula X .

For our problems, we have decided to apply formula renaming to theorems after they
are converted to negation normal form, before the distributive law is applied. Since we
never need to rename a literal (an atomic formula or a negated atomic formula), each
replaced sub-formula has positive polarity in the top-level formula. As a result, each
definition formula follows equation 5.1.

5.2.1 The Specialized Version of Formula Renaming

Our previous experiments show that most of the Isabelle theorems that generate large
numbers of clauses are elimination rules used for case analysis. Therefore, we decided
to apply formula renaming to those elimination rules first, in order to examine whether
formula renaming could be helpful to improve the performance of automatic provers.

In this version of formula renaming, I designed a method that targets the cause of
the generation of large numbers of clauses — the disjuncts representing the cases. This
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specialized version does not require much computation and is easy to apply by hand.
Therefore, I have used it in the experiments.

Recall that elimination rules in Isabelle are represented as

∀P [A→ ∀x1 (B1 → P )→ . . .→ ∀xn (Bn → P )→ P ]

where all free variables are implicitly universally quantified. Before CNF transformation,
we need to transform an elimination rule to an equivalent formula

A→ (∃x1B1 ∨ . . . ∨ ∃xnBn).

After it is converted to negation normal form, it becomes

¬A ∨ (∃x1B1 ∨ . . . ∨ ∃xnBn).

The standard step to do next is conversion to clauses. For an elimination rule, A is
usually an atomic formula so it generates one clause. Moreover, suppose each Bi generates
ki clauses, then after this elimination rule is fully converted to clauses, we will have
k1 × . . . × kn clauses generated. Typical to most theorems used for case analysis, n is
quite large (usually more than three cases) and each ki may be big too. As a result,
k1 × . . .× kn is likely to be a large number.

In order to prevent the duplication of disjunctions, I replace a disjunct ∃xi Bi by a
new atomic formula Si provided Bi is not a literal. Moreover, for formula renaming to
replace those non-literal disjuncts, we need to check that for each k1, . . . , km from each
non-literal disjunct

1 + k1 + . . .+ km < k1 × . . .× km. (5.5)

Definition 9. For an elimination rule that is in negation normal form

¬A ∨ (∃x1B1 ∨ . . . ∨ ∃xnBn), (5.6)

if the condition (5.5) is satisfied, then we perform formula renaming as follows.

• For each ∃xi Bi such that Bi is not a literal, we introduce a new predicate symbol
Ri and use the atomic formula Ri(y1, . . . , yli) to replace it, where y1, . . . , yli are the
free variables in ∃xi Bi.

• The definition formula of Ri is

∀y1 . . . yli[¬Ri(y1, . . . , yli) ∨ ∃xi Bi].

As we can see, this specialized formula renaming renames each case represented by a
disjunct that contains more than one literal. A closer look at the formula above reveals
that our formula renaming has transformed a case analysis theorem into a desirable format
such that the output theorem preserves the information about how the input theorem is
used in Isabelle for case analysis. This information will be useful for an automatic prover
to find a proof. From A we can deduce n possibilities — ∃x1B1, . . . , ∃xnBn. These
cases do not overlap and thus should be considered separately during a proof. In order
to prevent these cases from being intertwined in a resolution proof, we should forbid
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the literals generated from different cases to get into a same clause. Clearly, this has
been achieved by using new atomic formulae S1 . . . Sn to abbreviate the n cases and then
separate the cases by conjunctions.

Although this version of formula renaming may not generate the minimum number of
clauses, it is sufficiently good to significantly reduce the number of clauses and can be
used for our experiments.

Formula renaming on elimination rules has been shown very effective. Take theorem
Ap contractE as an example. Using our specialized formula renaming to rename it, we
get

∀p q r [(¬(app(p, q)։ r) ∨ (R1 ∨ R2 ∨ R3 ∨R4))∧

(¬R1 ∨ (r ∈ comb ∧ q ∈ comb ∧ p = app(K, r)))∧

(¬R2 ∨ ∃pa qa [pa ∈ comb ∧ qa ∈ comb ∧ q ∈ comb∧

r = app(app(pa, q), app(qa, q)) ∧ p = app(app(S, pa), qa)])∧

(¬R3 ∨ ∃qa [q ։ qa ∧ p ∈ comb])∧

(¬R4 ∨ ∃qa [q ։ qa ∧ p ∈ comb ∧ r = app(p, qa)])] (5.7)

where each Ri abbreviates a new atomic formula Qi(p, q, r). This formula will generate
1 + 3 + 3 + 5 + 3 = 15 clauses during CNF transformation. In comparison, the original
formula generates 135 clauses. We have achieved a huge reduction.

In addition, the experimental results showed that formula renaming gave positive effect
on the proof search of automatic provers. Among the four previously failed proof goals
that required the use of Ap contractE, three goals were proved after we used formula
renaming.

5.2.2 A Harder Example of Formula Renaming

Although we have been able to use formula renaming to reduce the number of clauses
generated from some elimination rules, problems involving case analysis are still hard for
most resolution provers. An example is the Isabelle problem S2 parcontractD from the
Isabelle/ZF theory file Comb.thy. This problem requires a theorem Ap parcontractE,
which generates 90 clauses without formula renaming and 14 clauses with formula renam-
ing. This problem was particularly difficult for most resolution provers, and has been
put into the TPTP library as COL094-1 and COL094-2: COL094-1 contains a small
set of necessary axiom clauses whereas COL094-2 contains a large set of axiom clauses,
many of them irrelevant. Both COL094-1 and COL094-2 have clauses generated from
Ap parcontractE with formula renaming.

The problem S2 parcontractD proves a property about parallel contraction  be-
tween combinators. We define the relation first.

Definition 10. The parallel contraction relation  (written as infix) between combina-
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tors is inductively defined, using four introduction rules, as follows:

p ∈ comb =⇒ p p (5.8)

p ∈ comb ∧ q ∈ comb =⇒ app(app(K, p), q) p (5.9)

p ∈ comb ∧ q ∈ comb ∧ r ∈ comb =⇒ app(app(app(S, p), q), r) app(app(p, r), app(q, r))
(5.10)

p q ∧ r  s =⇒ app(p, r) app(q, s) (5.11)

where comb, S, K and app have the same meanings as in Ap contractE above. Moreover,
variables p, q, r and s are all universally quantified.

The problem S2 parcontractD is stated as

(app(app(S, p), q) r) =⇒ ∃p′ q′ [r = app(app(S, p′), q′) ∧ p p′ ∧ q  q′].

Its proof requires the use of the elimination rule Ap parcontractE, which after converted
to an equivalent first-order form becomes

∀p q r [(app(p, q) r)→

[app(p, q) ∈ comb ∧ r = app(p, q)]∨

[r ∈ comb ∧ q ∈ comb ∧ p = app(K, r)]∨

∃pa qa [pa ∈ comb ∧ qa ∈ comb ∧ q ∈ comb∧

r = app(app(pa, q), app(qa, q)) ∧ p = app(app(S, pa), qa)]∨

∃qa s [p qa ∧ q  s ∧ r = app(qa, s)]]. (5.12)

Ap parcontractE says what one can deduce from a parallel contraction app(p, q)  r:
there are four possibilities based on the four cases of the inductive definition of  . Each
case is represented by a disjunct.

In order to prove S2 parcontractD, we first need to deduce the forms of and the
relations between r, p, q and S, from the assumption app(app(S, p), q)  r. This is
achieved by case analysis using the theorem Ap parcontractE. Subsequently, assuming
each possible case that can be deduced from app(app(S, p), q) r, we need to show the
conclusion of S2 parcontractD,

∃p′ q′ [r = app(app(S, p′), q′) ∧ p p′ ∧ q  q′]. (5.13)

We now give a brief proof.

Proof. From the theorem Ap parcontractE, there are four possible cases that we can
deduce from app(app(S, p), q) r, we need to prove that each case implies the conclusion
(5.13).

case 1.

app(app(S, p), q) ∈ comb ∧ r = app(app(S, p), q)

This case implies the conclusion (5.13), since we can assign p′ = p and q′ = q. By
the first rule (5.8) of the inductive definition of  , we have p p and q  q.
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case 2.
r ∈ comb ∧ q ∈ comb ∧ app(S, p) = app(K, r)

By the freeness properties of comb, app(S, p) is not equal to app(K, r). Therefore
this case is false, which trivially implies the conclusion (5.13).

case 3.

∃pa qa [pa ∈ comb ∧ qa ∈ comb ∧ q ∈ comb∧

r = app(app(pa, q), app(qa, q)) ∧ app(S, p) = app(app(S, pa), qa)]

Similar to the reasoning in case 2. above, since

app(S, p) 6= app(app(S, pa), qa)

regardless the values of pa and qa.

case 4.
∃qa s [app(S, p) qa ∧ q  s ∧ r = app(qa, s)]

By further case analysis on app(S, p) qa, using Ap parcontractE, we can derive

qa = app(S, p).

Therefore, we have
∃s [q  s ∧ r = app(app(S, p), s)]

This implies the conclusion (5.13) as we can assign p′ = p and q′ = q = s.

Isabelle’s auto proves S2 parcontractD automatically, and instantaneously. However,
this problem is difficult for the 35 resolution provers listed on the TSTP1 web site [63].
Without formula renaming, the theorem Ap parcontractE (5.12) will generate 1 × 2 ×
3 × 5 × 3 = 90 clauses. It was obvious that with 90 clauses, resolution would be unable
to prove it. Therefore, we applied formula renaming to it, so that the theorem became

∀p q r [(¬(app(p, q) r) ∨ (R1 ∨ R2 ∨ R3 ∨R4))∧

(¬R1 ∨ (app(p, q) ∈ comb ∧ r = app(p, q)))∧

(¬R2 ∨ (r ∈ comb ∧ q ∈ comb ∧ p = app(K, r)))∧

(¬R3 ∨ ∃pa qa [pa ∈ comb ∧ qa ∈ comb ∧ q ∈ comb∧

r = app(app(pa, q), app(qa, q)) ∧ p = app(app(S, pa), qa)])∧

(¬R4 ∨ ∃qa s [p qa ∧ q  s ∧ r = app(qa, s)])] (5.14)

where each Ri abbreviates an atomic formula Qi(p, q, r) and Qi is a new predicate symbol.
The resulting theorem (5.14) generates 14 clauses.

We gave the problem with formula renaming applied to TPTP, but none of the 35
provers could prove it.

1The TSTP (Thousands of Solutions from Theorem Provers) Solution Library is a library of solutions
to test problems for automated theorem proving systems. It also contains solutions to TPTP problems.
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Recall from the previous section that our formula renaming procedure has already
transformed the original Ap parcontractE into the format (5.14), whose structure gives
a clear indication about how it should be used during a proof by an automatic prover.
In order to help a resolution prover use Ap parcontractE (5.14) correctly, we only need
to force the prover to select correct literals to resolve. We can see that during a proof, a
resolution prover should reduce the assumption of a goal (in this case app(app(S, p), q) 
r) to the possible cases, by resolving the assumption with (app(p, q) r) of the theorem
(5.14). This means that (app(p, q) r) should be resolved first in the clause

¬(app(p, q) r) ∨ (R1 ∨R2 ∨ R3 ∨ R4).

The result of this resolution is

R′

1 ∨R
′

2 ∨ R
′

3 ∨ R
′

4

where each R′

i is an instantiation of Ri. Subsequently, each R′

i should be resolved with
each corresponding ¬Ri in each clause, generated from the conjunct ¬Ri ∨ . . . in (5.14).
This means that for each clause generated from

¬Ri ∨ . . .

¬Ri should be selected for resolution.
Recall that Vampire’s new version v6.03 supports explicit literal tagging so that we

can indicate which literal should be selected in a clause. Based on the analysis above, we
have used Vampire v6.03 to label literals generated from the theorem (5.14) as follows:

{---(app(p, q) r), ++R1, ++R2, ++R3, ++R4}

{---R1, ++(app(p, q) ∈ comb)}

{---R1, ++(r = app(p, q))}

{---R2, ++(r ∈ comb)}

{---R2, ++(q ∈ comb)}

{---R2, ++(p = app(K, r))}

{---R3, ++(pa
′ ∈ comb)}

{---R3, ++(qa
′ ∈ comb)}

{---R3, ++(q ∈ comb)}

{---R3, ++(r = app(app(pa′, q), app(qa′, q)))}

{---R3, ++(p = app(app(S, pa′), qa′))}

{---R4, ++(p qa′′)}

{---R4, ++(q  s′′)}

{---R4, ++(r = app(qa′′, s′′))}

where p, q and r are universally quantified variables; pa′, qa′, qa′′ and s′′ abbreviate fresh
Skolem terms, which depend on variables p, q and r.

With this notation, Vampire proves problem S2 parcontractD. However, since other
provers do not provide this literal selection facility, they cannot prove this theorem.
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This example suggests that case analysis, which is a frequently used technique in
Isabelle proofs, is hard to handle by resolution provers. There are two major reasons
for this. First, the case analysis theorems can generate huge numbers of clauses without
formula renaming and can still generate a large number of clauses with formula renaming.
Second, most resolution provers do not seem to know how to use the generated clauses to
perform case analysis.

Based on the analysis above, it seems that when we need to have a resolution prover
prove a goal involving case analysis, we should first reduce the number of clauses using
formula renaming. Subsequently, for each renamed elimination rule

[¬A ∨ (S1 ∨ . . . ∨ Sn)] ∧ (¬S1 ∨ ∃x1B1) ∧ . . . ∧ (¬Sn ∨ ∃xnBn),

we should help a resolution prover (perhaps by choosing a suitable ordering) to select the
following literals:

• ¬A

• ¬Si in each clause generated from ¬Si ∨ ∃xi Bi.

5.2.3 A Top-Down Approach

Our initial experiments on formula renaming demonstrated the benefit of using it. During
the experiments, we have applied the specialized version by hand. Therefore, we decided
to design and then implement a more general formula renaming method that can be
applied to any Isabelle theorem.

I have devised two formula renaming procedures: one works in a top-down fashion and
the other one works in a bottom-up fashion. I have found that the top-down approach
generates fewer clauses than the bottom-up approach does. Therefore, I have decided
to adopt the top-down approach in the general formula renaming method. Like the
specialized version, the top-down approach is applied to theorems in negation normal
form.

Definition 11. We apply formula renaming to an input formula P in a top-down manner
by processing each sub-formula Q (starting from P ) as follows:

• If Q is a literal, then nothing needs to be done.

• If Q has the form A⊗ B, where ⊗ is either ∧ or ∨, then we first examine whether
it is desirable to rename Q using the method given in Definition 8, by checking the
condition (5.4):

– if the condition (5.4) is satisfied, perform formula renaming on Q and update
P . Then repeat the procedure on A and then B.

– otherwise, leave Q unchanged but repeat the procedure on A and then B.

• If Q is ∀xA or ∃xA then check if Q should be renamed and rename if necessary.
Subsequently, repeat the procedure on A.
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We have applied this technique to case analysis theorems that can generate large
numbers of clauses with the standard CNF transformation.

Recall that after an elimination rule is converted to negation normal form, it becomes

¬A ∨ (∃x1B1 ∨ . . . ∨ ∃xnBn).

It can be seen that the top-down formula renaming on elimination rules may only introduce
new atomic formulae to replace the cases represented by disjuncts ∃xi Bi. Furthermore,
for each ∃xiBi that is not replaced, we have found that it generates either one or only
a few clauses. We have also found that the last disjunct ∃xn Bn is usually not renamed
because doing so will not reduce the total number of clauses generated. Consequently, for
those elimination rules where each ki is large, we are likely to obtain

[¬A∨ (S1 ∨ . . .∨ Sn−1 ∨ ∃xnBn)]∧ (¬S1 ∨ ∃x1B1)∧ . . .∧ (¬Sn−1 ∨ ∃xn−1Bn−1), (5.15)

where each Si abbreviates a new atomic formula Ri(y1, . . . , yli) and y1, . . . , yli are free
variables in ∃xiBi. In addition, all free variables in (5.15) are implicitly universally
quantified. Moreover, if there is some ∃xi Bi that does not need to be renamed, it is left
unchanged.

As we can see, the top-down formula renaming transforms an elimination rule into a
similar structure as the specialized version does and hence preserves the usage information
of the theorem as well. The top-down version also generates fewer clauses than the
specialized version does by not renaming some unnecessary disjuncts.

5.3 Implementing Formula Renaming

Since Isabelle/HOL is the most widely used logic among Isabelle users and it has been our
focus in the previous implementation, we have decided to implement formula renaming
for Isabelle/HOL. Moreover, to ensure later proof reconstruction is possible, we have
implemented it inside Isabelle.

Since the top-down approach is more general than the specialized version and can
generate fewer clauses, it was the one we decided to implement.

A sub-formula should only be renamed if doing so can reduce the number of clauses
generated, i.e. if the condition (5.4) is satisfied. A straightforward calculation on the
number of generated clauses involves a lot of computation. A more efficient method
— calculation of coefficients [39] — can calculate the difference between the number of
clauses generated with and without formula renaming in polynomial time. Therefore, in
our implementation, I used this method with some modification in order to check if any
sub-formula should be renamed.

I have implemented a function FR td ax, with type thm -> theory -> string ->

thm list. This function takes an Isabelle theorem, a theory and a string representing
the name of the theorem. The return result is a list of Isabelle clauses, each with type thm,
which are generated from the input theorem after formula renaming is applied. Function
FR td ax performs the following steps:

• Convert the input theorem into negation normal form.
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• Apply the top-down method to examine each sub-formula. If a sub-formula P should
be renamed then a new predicate symbol R, derived from the input name string, is
introduced. Find all free variables x in P and add the equation

R ≡ λxP

as the definition of the new constant R into the input theory. Finally, update the
top-level formula to reflect the change of the formula structure and continue with
the top-down formula renaming procedure.

• After all sub-formulae are examined, for each definition R ≡ λxP (of type thm)
stored in the modified theory, prove two implications as Isabelle theorems:

P (x)→ R(x) (5.16)

R(x)→ P (x) (5.17)

• Replace all sub-formulae that should be renamed by the introduced atomic formulae
by resolving the original input theorem (of type thm) with all the implications in
the direction of (5.16), derived from the previous stage. The result of the resolution
is another theorem th1 of type thm. The implications imps1 in the other direction
(5.17) are used as the definition formulae of the new predicates (Definition 8).

• Convert both th1 and imps1 into clauses using the function that we have imple-
mented before.

As an example, consider an Isabelle elimination rule Ap contractE from the Isa-
belle/HOL theory file Comb.thy. After we convert it into an equivalent first-order form
and then convert it to negation normal form, it becomes:

∀p q r [¬(p##q ։ r)∨

p = K##r∨

∃xxa [p = S##x##xa ∧ r = x##q##(xa##q)]∨

∃x [r = x##q ∧ p։ x]∨

∃x [r = p##x ∧ q ։ x]]. (5.18)

Here, K, S and ։ are combinators and their reduction relation defined in Isabelle/HOL.
The symbol ## is the combinator application function written as an infix operator.

As we can see this theorem can generate eight clauses using the standard CNF trans-
formation. We apply the function FR td ax to it as:

val ap_contractE = FR_td_ax Ap_contractE Comb ‘‘apcE’’;

and obtain the result ap contractE as six clauses:

¬(p##q ։ r) ∨ p = K##r ∨ R ∨ r = sk3##q ∨ r = p##sk3

¬(p##q ։ r) ∨ p = K##r ∨ R ∨ r = sk3##q ∨ q ։ sk3

¬(p##q ։ r) ∨ p = K##r ∨ R ∨ p։ sk3 ∨ r = p##sk3

¬(p##q ։ r) ∨ p = K##r ∨ R ∨ p։ sk3 ∨ q ։ sk3

¬R ∨ p = S##sk1##sk2

¬R ∨ r = sk1##q##sk2
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where R abbreviates the new atomic formula apcE1(p, q, r). sk1, sk2 and sk3 are Skolem
terms abbreviating the following ǫ-terms:

sk1 ≡ ǫx. ∃xa [¬R ∨ p = S##x##xa ∧ r = x##q##(xa##q)]

sk2 ≡ ǫx.¬R ∨ p = S##sk1##x ∧ sk1##q##(x##q)

sk3 ≡ ǫx.¬(p##q ։ r) ∨ p = K##r ∨R ∨ r = x##q ∧ p։ x ∨ r = p##x ∧ q ։ x

Finally, p, q and r are implicitly universally quantified.
As we can see, Ap contractE of Isabelle/HOL generates fewer clauses then its counter

part in Isabelle/ZF. This is because Isabelle/ZF is untyped and the extra clauses such as
r ∈ comb are used as type constraints. Nevertheless, formula renaming can still reduce
the number of clauses generated and should be applied when necessary.

5.4 Having Automatic Provers Find Relevant Clauses

Having an automatic prover distinguish relevant from irrelevant clauses during a proof
search is a possible solution to the large number of axioms problem. Most resolution
provers implement numerous search strategies with the aim to quickly find a proof by
choosing promising clauses to resolve. These provers aim to make their strategies fair to
ensure the resolution proof is complete, not only in theory but also in practice. Therefore,
we decided to try this solution first, with the aim to identify the settings most suitable
to handle large numbers of clauses.

We have run a series of experiments on Vampire in order to find which settings can
handle a large number of axiom clauses. We have found set of support strategy is useful,
but may be incomplete.

While we carried out experiments on formalizing Isabelle/ZF and Isabelle/HOL, our
experimental results showed that the literal selection strategy was one of the most impor-
tant factors in determining the performance of the proof search. We also realized that the
literal selection function may be able to improve or worsen the performance of an auto-
matic prover when facing a large number of axiom clauses. Although the literal selection
function may not be able to help a prover to ignore irrelevant axiom clauses, it can restrict
the growth of the search space. A literal selection function determines which literals and
how many literals may be selected from a clause to participate in a resolution step. Each
selected literal from a clause can resolve with another literal from some other clause and
then generates a new resolvent clause. Consequently, the more literals are selected, the
more clauses are generated. As a result, a good literal selection function that selects only
“proper” literals can help to prevent unwanted clauses from being generated.

When using automatic provers to prove Isabelle goals, which literal in an axiom clause
should be selected often depends on from what kind of theorem that axiom clause is
generated (§3.6). Therefore, for each axiom clause, we have a rather good idea on which
literal should be selected. As a result, we need to convey this information to the literal
selection function of an automatic prover.

We have used the literal tagging annotation provided by Vampire v6.03 to express
which literals in axiom clauses should be selected, in accordance with how the corre-
sponding Isabelle theorems are used in Isabelle. We have also carried out experiments to
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prove goals with a large set of axioms using this version of Vampire. This new version
indeed proved two goals that were not proved by the old version (§5.1). The finding sug-
gests that the literal selection function may be an important factor that affects the proof
search in the presence of large numbers of clauses.

We have briefly looked at other provers, such as SPASS. However, most of these provers
do not support explicit indication on which literals should be selected. Instead, they base
their literal selection criteria on some term ordering. For instance, they may pick maximal
literals. These literal selection heuristics may be very effective to most problems in general.
However, these term orderings usually do not match our requirement on literal selection.
Furthermore, they do not explore Isabelle-specific information and thus cannot solve our
problem exactly.

As we have discussed in the background chapter, clause selection is a factor that
directly affects the performance of the proof search when there are huge numbers of
clauses. If a clause selection heuristic can successfully ignore irrelevant axiom clauses
by not selecting them to resolve with other clauses, then the presence of these irrelevant
clauses will not cause any harm.

As a result, we turned to another prover, E, and ran some experiments on it. E
has a particular strength in clause selection strategy. In addition to the standard clause
selection heuristic — the age-weight ratio — E also implements many other heuristics.
The other heuristics are flexible because they allow users to define flexible clause selection
criteria by inserting clauses into any number of priority queues, from which a clause is
selected.

I tried to use E to prove three of the hardest problems we found from previous experi-
ments, which are also stored in the TPTP library as COL088-2, COL089-2 and SET787-2.
I tried several settings as well as an auto mode, which allows E to find a suitable clause
selection heuristic based on the characteristic of the goals. However, none of these prob-
lems were proved. Finally, I gave these problems to Stephan Schulz. He kindly ran the
problems on E. Nevertheless, our problems were too difficult to be proved.

5.5 Automatic Removal of Irrelevant Theorems

Formula renaming generates a minimal number of clauses from a formula. However, it
cannot decide whether a given theorem is relevant to any particular proof goal. We
have investigated how to remove irrelevant axiom clauses from the consideration of an
automatic prover by adjusting the prover’s settings. However, that could only partly
solve the problem. We have briefly looked at an alternative approach, which tries to
remove irrelevant theorems before submitting the relevant ones to an automatic prover.

From a set of theorems, it is virtually impossible to decide exactly which theorems
are relevant to any given goal. Therefore, we should try to have a safest approach,
which removes as many irrelevant theorems as possible, but never removing any relevant
ones. Moreover, for a particular goal, its relevant theorems must be at least syntactically
relevant, i.e. they must share some constants.

I have considered an algorithm to solve the problem. When given a set of theorems
from a theory context and a goal to be proved, this algorithm constructs an inductively
defined set of theorems that is a subset of all the given theorems. The base case of the set
is all the theorems that contain some constants occurring in the goal and the inductive
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step is that a theorem is added into the set if it shares some constant with another theorem
already in the set. Therefore the resulting set of theorems contain all relevant theorems.
In addition to the goal, this algorithm takes a theory context as another input because
Isabelle’s global classical and equality reasoning rules are stored with a background theory
context.

The algorithm works as follows.

1. Retrieve all the theorems from the input theory and construct a table Tab, which is
indexed by constants. The value associated with each constant is a list of theorems,
in which the constant occurs.

2. Let C be the set of all constants in the goal.

3. From Tab, find L — a list of theorems that contain some constants in C.

4. Let CL be the set of all constants that occur in L.

5. Let C ′ = C ∪ CL. If C = C ′ then stop, else update C := C ′ and goto 3.

We have tried this algorithm on Isabelle/HOL problems. Unfortunately, we have found
that this algorithm is not strong enough: many irrelevant theorems are not filtered out.
There are two reasons behind it.

First, Isabelle/HOL is typed and many operators (constant functions and predicates)
are polymorphic. Therefore it is very likely that these polymorphic operators are used
in multiple theorems, possibly with different type instances. Therefore, many completely
irrelevant theorems are considered relevant by the algorithm above because they share
the polymorphic operators with the goal or with other theorems that have been added to
the retained set of theorems.

Second, this algorithm decides which theorem may be relevant, based on the syntactic
structures of goals and lemmas. However, syntactic structural information alone is not
sufficient to determine whether a theorem may be used: it is possible that an irrelevant
theorem may seem relevant to a goal as they contain the same constants. This problem
is more prominent in the presence of multiple occurrences of polymorphic operators in
different theorems.

For the first problem, I have considered a modified version of the algorithm, which
decides whether to add a theorem to the retained set of theorems not only by considering
whether they share any constants, but also by considering whether they share constants
with the same types, or types that can be unified. This modified algorithm should be
able to remove many irrelevant theorems due to different types. However, we have already
achieved this effect by formalizing Isabelle/HOL’s type system and polymorphic types in
first-order logic and sending goals with type information included to automatic provers.
In the future, it may be worth implementing this modified algorithm and carrying out
some experiments to examine whether it can help improve the performance of automatic
provers in reality.

The findings above suggest that an effective automatic theorem removal algorithm
should not depend purely on syntactic structures of theorems and goals but also some
more complex information. For instance, a system verification project is usually divided
into structured theory files. A proof of a goal in one theory file may be more likely
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to depend on the lemmas proved in the same theory file or an immediate predecessor
theory than a more ancient theory. It may be useful to exploit the structural relationship
between theories when deciding which theorems are relevant to a goal. Moreover, instead
of having a safe approach to remove irrelevant theorems, which guarantees no relevant
ones are removed, it may be worth trying a heuristic, which removes most of irrelevant
theorems but possibly some relevant ones. If a proof attempt fails then more theorems can
be added in. However, due to the time constraint, we did not pursue this topic further.

5.6 Concluding Remarks

The large number of irrelevant axioms turned out to be a problem while we did exper-
iments on formalizing Isabelle/ZF and Isabelle/HOL in first-order logic. Although cur-
rently the problem is not our research’s major concern, we have made several preliminary
investigations.

We have found two major factors that lead to large numbers of axiom clauses being
sent to an automatic prover: irrelevant Isabelle theorems and the generation of large
numbers of clauses during CNF transformation by some elimination rules. We have made
several attempts to tackle the two problems.

We have successfully used formula renaming to reduce the number of clauses generated
from Isabelle formulae during CNF transformation. We have designed a specialized version
that targets directly those elimination rules that are used for case analysis. We have
also designed and implemented a more general version that applies formula renaming
to any input theorem in a top-down manner. Our experimental results showed that
Vampire indeed benefited from the reduction of generated clauses and formula renaming
is a practical method.

However, our experimental results on some particularly hard problems involving case
analysis also showed that resolution provers were not good at handling case analysis, which
is common to Isabelle proofs. Therefore, for those hard problems, formula renaming alone
is sometimes not sufficient. The performance of resolution provers can be improved if we
can give them more explicit information about how those elimination rules should be
used.

How to remove irrelevant theorems or axiom clauses is the hardest problem to solve,
as we have expected. We have tried to solve the problem from both automatic provers’
side and interactive prover’s side.

We have first studied various settings of a resolution prover, which can influence the
proof performance in the presence of a large set of axioms. We also carried out experiments
on Vampire and E. We have found set of support strategy is useful for this problem. In
addition, the literal selection function can help to exploit Isabelle-specific information.
However, most of the provers are facing the general public and do not provide facilities
that match our requirement. The clause selection function directly affects which clauses
are selected for resolution. However, our experimental results showed that they were not
particularly effective for our problem. This might be because that most provers aim to
have a fair clause selection strategy, which means all clauses should be selected eventually.
Perhaps, this is not really what we want: we want irrelevant axiom clauses never to be
selected, or as infrequently as possible. On the other hand, if a selection is guaranteed to
be fair then an Isabelle goal should definitely be proved if it has one, but possibly taking
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a long time. This may be useful if we run proofs in a batch mode.
In addition, we have tried to remove irrelevant theorems before sending them to au-

tomatic provers by designing an algorithm that automatically filters out the irrelevant
theorems, based on the syntactic structures of goals and theorems. This algorithm guar-
antees that none of the relevant theorems will be discarded, but is not strong enough
so that many irrelevant theorems are still considered relevant. A more effective method,
possibly a heuristic, may require more detailed knowledge on the structure of Isabelle
theory files.

The findings above seem to suggest that the problem caused by large numbers of
irrelevant axiom clauses or theorems may not be completely dealt with if we work on one
side of the integration only. Currently, most of Isabelle specific information such as how
theorems are used and the structural relationship between theories are not exploited by
automatic provers. If an automatic prover can be supplied with more knowledge about
Isabelle, then perhaps the problem can be handled more effectively. Although we have
only partly resolved the problem, the findings should be useful for later research in this
area.
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Chapter 6

Higher-Order Reasoning

Our formalization of Isabelle/HOL leaves out some of its higher-order constructs. In this
chapter, we discuss how to extend the existing integration by having automatic provers
prove Isabelle/HOL’s higher-order goals automatically.

6.1 Proving Higher-Order Logic Problems

Our integration between Isabelle/HOL and first-order resolution provers still leaves out
some aspects of higher-order logic. They include constructs like λ-terms, predicate vari-
ables and function variables.

Currently, higher-order logic goals and lemmas are not sent to our target automatic
prover. In order to have these goals proved automatically, there are several approaches
that we could take.

One possible solution that we have considered is to formalize the higher-order con-
structs in first-order logic. Function and predicate variables can be dealt with relatively
easily if we define a first-order function app to represent explicit function application and
then represent functions and predicates as zero-place first-order terms. Therefore, quan-
tifications over functions and predicates are simply quantifications over term variables.

The only remaining task is to represent λ-terms in first-order logic so that the bound
variables can be eliminated. This can be solved by using combinators to represent them.
In a basic form of translation, we will only need primitive combinator constants K and
S, where K and S satisfy the following combinator reduction relations

KP Q։ P (6.1)

SP QR։ P R (QR) (6.2)

There is a standard mapping from a λ-term to a combinator expression. The mapping
function M between λ-terms and combinator expressions is defined as follows.

M [λxx] ≡ S K K (6.3)

M [λxP ] ≡ KP (6.4)

M [λx (P Q)] ≡ S (M [P ]) (M [Q]) (6.5)

where the proviso of equation (6.4) is that x must not be free in P .

115
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As it shows, the result of applying this transformation on a higher-order formula will
be a first-order formula, which consists of the combinator constants, the function app,
first-order constants and free variables. Furthermore, in addition to the existing equality
between terms, we can also map combinator reductions to equalities. This is a possible
approach to formalize Isabelle/HOL’s higher-order constructs in first-order logic.

Joe Hurd has implemented a conversion from λ-terms to combinators when he inte-
grated an automatic prover Metis with HOL [27]. However, he has observed that it is too
weak to use combinators to prove higher-order problems, mainly due to two problems.

First, the S reduction (6.2) duplicates the expression R, which may be very large.
Therefore, if a sequence of β-conversions in the original λ-representations has to be carried
out via a sequence of S reductions, then a blow up on the size of combinator terms will
result. Although one can introduce combinators B and C to handle special cases of S
reduction, without S, the system will not be Turing complete.

Second, it is difficult to simulate the direction of combinator reductions using the
built-in equality literals of most automatic provers. For instance, in order to perform
the S reduction, an automatic prover should replace the left hand side of (6.2) by the
corresponding right hand side via equality rewriting. Recall that for a resolution prover,
the term ordering determines ordered resolution, superposition and simplification. Most
automatic provers implement reduction ordering, such as KBO, so that bigger terms can
be replaced by smaller terms. It is not difficult to see that the right hand side of (6.2)
is actually bigger than the left hand side. Consequently, combinator reduction may not
take place in the correct direction.

Hurd has found that the method above would work if combinators are only used to
statically represent λ-terms without having to perform any λ-reductions via combinator
reductions. Alternatively, the proofs that only require the K reductions can also be found.
It is best to ignore the S reductions in most of the cases. Nevertheless, many higher-order
problems still require the use of combinator S.

Because of the problems above, we have decided to explore another solution. We have
considered whether it would be possible to use an automatic prover based on higher-order
logic to prove those higher-order goals of Isabelle/HOL. In order to assess this possibility,
we have used TPS [3] in its automatic proof mode. TPS has been used as an external
automatic proof tool for the ΩMEGA system. We were interested in discovering if TPS
could also be used to prove Isabelle’s goals. Another reason for choosing TPS is that its
automatic proof mode is relatively easy to use: we can simply submit a goal to TPS and
wait for a proof result. Moreover, TPS is probably the best higher-order prover that is
completely automatic.

We have investigated problems such as in what format we should send Isabelle proof
goals and already proved lemmas to TPS and also whether Isabelle/HOL’s types can be
translated directly to TPS’s types.

We have also carried out a set of preliminary experiments in order to examine whether
it is feasible to use TPS to prove Isabelle’s goals automatically, using our method of
translating Isabelle/HOL’s formulae to TPS format.
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6.2 The TPS System

TPS [3] is a theorem proving system for classical type theory, which is higher-order logic
in its original form. It is based on the typed λ-calculus and it supports automatic proofs,
interactive proofs and a mixture of both. Since the objective of our integration is to use
TPS as an automatic proof tool to assist Isabelle’s interactive proofs, the automatic proof
mode is obviously our choice.

TPS accepts an input formula in any arbitrary format. However, unlike resolution
provers whose input can be easily split into clauses, TPS requires all goal information to
be expressed as one single formula. Subsequently, the goal may be proved by a natural
deduction calculus, expansion proofs or proof steps that interleave the two proof styles.
TPS provides facilities to convert one proof to another.

The natural deduction calculus is more human-readable and is normally used in in-
teractive proofs. Users can carry out proofs in this style by applying inference rules.
These may be standard built-in rules, such as conjunction introduction, modus ponens
for first-order logic and λ-conversion rules for higher-order logic. In addition, users can
define their own inference rules by first proving the rules and then adding them to some
user-defined library.

In order to assist interactive proof search, TPS also provides some support for auto-
matic application of inference rules. This is achieved by tactics and tacticals. A tactic
can be used to reduce a current goal to several subgoals in a backward proof. It can also
be used to derive new assumptions from existing ones in a forward proof. Moreover, a
tactical can be used to build a tactic by combining several other tactics. However, tactics
have mainly been designed to facilitate interactive proofs but are not required to prove a
goal. Therefore, a tactic will stop applying inference rules to a goal when a decision point
is reached, where there may be more than one applicable inference rule. At this point,
TPS will ask for the user’s decision. After the decision is made, tactics can be called
again to continue with the rest of a proof, until a next decision point is reached.

In contrast to the natural deduction proofs, the expansion proofs are less human-
readable, but are suitable for TPS to conduct the automatic proof search. A key technique
used in TPS’s expansion proofs is the mating search procedure [2], which is essentially
proving by refutation. Using mating search, TPS tries to find an expansion proof of a
goal automatically. Usually, after a goal is proved, its expansion proof is translated to a
natural deduction proof so that the proof can be more readable.

As with many other automatic provers, the behaviour of TPS proof search is controlled
by various flags, which can be set by users. Examples of these flags are MAX-MATES, which
determines the maximum number of times a literal can occur in a mating, DEFAULT-MS,
which determines which mating search strategy should be used and REWRITE-EQUALITIES,
which defines how equality rewriting should take place. Since there are more than 300
flags available, users can group a collection of flag settings into a mode. In addition, TPS
uses search lists. A search list is a list of search items, where each item contains a flag,
the default value of the flag and the valid range of values, which can be assigned to the
flag.

TPS provides several top levels. Each top level represents an environment, in which
certain proof development actions can take place. Therefore, each top level has its own
set of commands. For instance, a user usually works in the main top level to carry out
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natural deduction proofs. However, if he wishes to carry out mating search by hand, then
he can enter MATE top level. Another useful top level is REVIEW, in which a user can set
values to various flags or review the existing flags’ settings.

6.2.1 TPS Type System

TPS is typed and each atomic type is represented by a single character string. For
instance, string “O” represents the proposition type, and string “OI” represents the
function type I → O. For complex compound types, type abbreviation is allowed. For
example, string “S”abbreviates “(O(OI))”, which stands for natural numbers. Users can
explicitly indicate types of terms. For example, f(OI) represents a function f whose
type is I → O1. Alternatively, TPS can automatically infer types with a type inference
mechanism based on the algorithm proposed by Milner [36].

TPS also supports some polymorphism, which is used for polymorphic abbreviations
or library constants. For example, the 6 operator is a library constant and is polymorphic.
Moreover, a subset relation SUBSET is defined to abbreviate a big λ-term. Therefore, if
SUBSET has multiple occurrences in a term, then each occurrence may have a different
type. However, in other cases, type variables are treated as fixed and thus cannot be
instantiated.

In order to use TPS as an automatic proof tool for Isabelle, we would like to directly
send Isabelle formulae to TPS without having to define any Isabelle operator as a TPS
constant. Therefore, the restriction of TPS polymorphism means that we cannot make
use of its polymorphic type system. As a result, we will have to treat TPS’s type system
as if it were monomorphic.

6.2.2 TPS Automatic Proof Mode

As we have mentioned before, TPS’s automatic proof search relies on mating to find
an expansion proof. Mating search is similar to the resolution procedure in that they
both prove a theorem by refutation using unification of literals. However, the difference
between them is that resolution requires formulae to be in clause normal form, whereas
mating avoids the exponential blow-up in the clause form by only converting formulae to
negation normal form, with existential variables removed using Skolemization.

Subsequently the formula is displayed in a two dimensional graph, where disjunc-
tions and conjunctions are placed horizontally and vertically respectively. Finally, mating
search starts, which aims to find suitable pairs of literals occurring in the graph that are
complementary to each other via unification, which lead to a contradiction of the formula.
Once an acceptable mating is found, an expansion proof is returned.

Mating search can be conducted by hand, as well as by TPS automatically using its
automatic proof mode. One of the simplest ways to carry out an automatic proof search
is by using the command DIY: a user can state a goal to be proved and wait for DIY to find
a proof. The behaviour of DIY is highly influenced by the value of DEFAULT-MS. Currently,
there are eight possible settings for this flag.

1In order to avoid confusion between types of terms and function applications, TPS uses square
brackets to represent function applications.
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TPS provides another more useful command, namely UNIFORM-SEARCH. Essentially,
this command asks TPS to find correct settings of flags for a goal so that the goal can
be proved using those settings. Recall that a collection of TPS’s flags’ values are usually
put into a mode. UNIFORM-SEARCH begins by taking a mode (by default, its value is
UNIFORM-SEARCH-MODE) and a search list; with these, it starts the proof search. It first
sets the flags with the values taken from the given mode. Subsequently, it tries to modify
the values of the flags according to the search list, until a proof is found. Once a proof
is found, the flags’ settings — possibly different to the original ones listed in the input
mode — are grouped into another mode. The output mode is then stored so that it can
be used again for another problem with possibly similar characteristics.

6.3 Formalizing Isabelle/HOL in TPS Format

If we use TPS to assist Isabelle proofs, we must send it all the previously proved lemmas
and the goals to be proved.

TPS provides many facilities for users to define their own inference rules, library
constants and modules. One apparently easy approach to formalize Isabelle theorems is
to translate each theorem to a TPS inference rule, so that Isabelle’s forward and backward
chaining rules can be simulated directly by TPS’s natural deduction rules. However, at
the moment, inference rules in TPS can only be used in natural deduction proofs but
cannot participate in the automatic proof search. This means that if we want Isabelle
theorems to be used by TPS in the automatic proof search, then we cannot translate them
to TPS’s inference rules.

On the other hand, even if TPS’s inference rules could participate in the automatic
proof search, there would be other difficulties involved in formalizing Isabelle theorems
as TPS’s inference rules. TPS’s inference rules have to be proved first before being used.
However, this is not feasible for our integration problem: an Isabelle proof goal may
require the use of a local lemma that is not yet translated to a TPS’s inference rule.
Therefore, in order to use this local lemma as an inference rule, we will have to re-prove
it first in TPS — a waste a time. Therefore, we have decided to translate each Isabelle
theorem to an ordinary TPS formula, which can be used as an assumption of the goal to
be proved.

Since TPS accepts its input to be one single formula, we must encode all Isabelle
theorems and the goal into one big formula. Although mating search works by refutation,
the procedure of negating the goal is performed by TPS, rather than a user. Therefore we
can send our goal, un-negated, to TPS. This suggests that we could send a list of Isabelle
theorems L1, . . . , Ln and a goal G to TPS as

L1 ∧ . . . ∧ Ln → G.

Mating search requires a negated goal to be in negation normal form. Therefore, we
thought performing certain amount of negation normal form transformation to the input
formula may be helpful in order to improve the performance of TPS. Therefore we decided
to translate each Isabelle rule Li to negation normal form as Ai. Moreover, TPS will have
to negate our input before carrying out proof search, therefore goal G will have to be
negated. As a result, we decided to leave G unchanged in the input formula.



120 CHAPTER 6. HIGHER-ORDER REASONING

Next, we need to consider how to deal with Isabelle/HOL’s types and polymorphic
operators. Since we are using TPS as monomorphically typed, we may have to translate
an Isabelle polymorphic operator into several different TPS operators: one for each type
instantiation. This is because that if a TPS input formula contains multiple occurrences
of a polymorphic operator, each having different types, then TPS’s type checker will raise
a type error. For instance, the relation 6 may have types as nat → nat → bool and
α set → α set → bool. When we translate two lemmas involving these two instances of
the 6 relation with these two different types, we must translate each of them into a unique
TPS predicate. Since we rely on TPS’s type inference algorithm to infer the terms’ types,
we do not have to include types in our input formula.

Finally, we translate each Isabelle/HOL higher-order construct directly to a higher-
order construct written in TPS format. For instance, we translate an Isabelle function
variable to a TPS function variable, an Isabelle λ-term to a TPS λ-term. Since TPS
contains some already-defined library constants, we must ensure our translated formula
will not contain any predicates or functions that share the names with those library
constants. Therefore, we need to generate a unique name for each predicate and function
occurring in an input formula.

Based on the considerations above, we have translated Isabelle goals and lemmas in
the following way:

• For each Isabelle lemma Li, we translate it into negation normal form Ai, written
in a format suitable for TPS.

• Translate the Isabelle goal G to a formula G′ in TPS format.

• Send the formula A1 ∧ . . . ∧ An → G′ as the theorem to be proved to TPS.

This seems to be the only way to formulate Isabelle proof goals and the necessary
lemmas in TPS format. However, a disadvantage of this formalization is that if there are
hundreds of Isabelle lemmas, the input to TPS will be huge.

6.4 Experimental Results

I have carried out some experiments on using TPS to prove Isabelle goals. The primary
objective of our experiments was to investigate whether TPS can automatically prove
Isabelle goals and if so, how well it can cope with large numbers of already proved Isabelle
lemmas.

We have formalized the first-order aspect of Isabelle/HOL so that Isabelle/HOL’s
first-order problems can be efficiently proved by first-order resolution provers. Therefore,
our aim of linking Isabelle with TPS is to let TPS prove only Isabelle/HOL’s higher-
order goals or goals that require the use of higher-order lemmas. Consequently, during
the experiments, I took existing higher-order proof goals from the Isabelle/HOL theory
file Set.thy. I formalized the required theorems and the goals in TPS format using the
method that we have described in the previous section. I then tried to reproduce the
proofs using TPS.

Since it was not clear what settings were most suitable for problems like ours, I have
used TPS’s UNIFORM-SEARCH, so that several suitable proof modes may be found and can
be reused later.
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Goal 1st Attempt 2nd Attempt 3rd Attempt
1 2: 0.11 secs 6: 462 secs 11: ∞
2 2: 0.02 secs 3: 0.12 secs 5: ∞
3 2: 30.42 secs 11: 882 secs 17: ∞
4 4: 186 secs 8: ∞
5 1: 60 secs 5: 66 secs 8: ∞
6 4: 186 secs 5: ∞

Table 6.1: TPS Proofs Results

During the first run of the tests, I only gave TPS those necessary Isabelle lemmas
for the proofs of the goals, which were around two to four lemmas. I gave TPS fourteen
goals, and TPS proved eleven of them. This indicates that TPS can indeed prove Isabelle’s
higher-order goals automatically.

Subsequently, I tried to increase the number of irrelevant Isabelle lemmas to examine
how well TPS can cope with large numbers of lemmas. Unfortunately, a few extra lemmas
quickly made many goals unprovable or significantly slowed down the proof search. I
looked at six goals — out of the eleven proved goals from the first run of the experiments
— in more detail. For each of them, I made several attempts in order to determine what
was the maximum number of lemmas TPS could handle. The results are shown in Table
6.1. On average, TPS could only prove goals within a reasonable amount of time when
facing no more than six lemmas and in the best case it could prove a goal in the presence
of eleven lemmas.

In each cell of the table, the number before the colon is the total number of Isabelle
lemmas that I gave TPS and the number after it is the amount of time spent by TPS on
mating search — measured in terms of the internal run time minus the garbage collection
time — to find a proof. The “∞” indicates no proof was found for that goal with that
set of lemmas within 25 minutes. In the first attempt (1st Attempt) for each goal, I gave
only necessary lemmas to TPS. For instance, during the first attempt on the first goal,
TPS spent 0.11 seconds on mating search to prove it in the presence of two (necessary)
lemmas. Furthermore, for the same problem, I gave TPS eleven lemmas, nine of them
irrelevant, in the third attempt. Unfortunately, TPS could not prove it within 25 minutes.

Among the goals that were proved by TPS, most of them were proved by mating
search procedures MS88, MS91-6 and MS91-7.

6.5 Concluding Remarks

In this chapter, we have discussed some possible approaches to use an automatic prover to
prove higher-order problems of Isabelle/HOL. We have looked at the possibilities of using
a first-order resolution automatic prover and a higher-order automatic prover. In order to
use first-order provers, one approach is to formalize higher-order logic in first-order logic
using combinators. Since this approach has some practical limitations, we decided to try
the other method first.

We used TPS as our target higher-order prover and carried out investigation on how
to formalize Isabelle/HOL’s higher-order theorems and goals in TPS format. We also
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conducted a series of experiments in order to assess whether it would be practical to
use a higher-order automatic prover like TPS to assist Isabelle proofs. Since it was a
pilot study on TPS, we carried out a relatively small amount of experiments only — if
these preliminary experiments indicated TPS could be used for our integration then more
experiments would be carried out.

Our experimental results show that TPS finds it difficult to handle even small numbers
of lemmas. Moreover, TPS takes more time than first-order resolution provers to find a
proof. Although TPS has been used to assist the proofs of the ΩMEGA system, it is
not suitable to run as a background automatic prover for Isabelle to give quick proofs to
Isabelle’s goals.

These findings suggest that if we want to use automatic provers to prove higher-order
problems of Isabelle/HOL, then we may still have to use first-order resolution provers, by
finding an effective translation from higher-order formalism to first-order clause form.

Nevertheless, the experimental results also show that given enough time and having
many irrelevant theorems removed, TPS should be able to find proofs for Isabelle/HOL’s
higher-order goals. Therefore, if we could later design an effective algorithm to filter out
most of the irrelevant rules, then perhaps the performance of TPS in proving Isabelle’s
problems would be improved. In addition, when a batch job involving higher-order prob-
lems is to be conducted, it may be useful to run the job on TPS, with a sufficient amount
of time given to TPS to run.



Chapter 7

Related Work

In the previous chapters, we have described our approach to integrating higher-order in-
teractive proof with first-order automatic theorem proving, by linking Isabelle with several
resolution-based automatic provers. My research concerns the part of the integration that
directs the communication from Isabelle to automatic provers.

In this chapter, we discuss some related research work carried out by various re-
searchers, which represents other attempts in combining interactive and automatic proofs,
with the objective of improving the automation of interactive proofs. In addition to de-
scribing their work, we also compare our system with theirs.

7.1 MESON Procedure

Model elimination based theorem proving, and in particular its variant, the MESON
procedure was introduced by Loveland [30]. It is a Prolog-like resolution proof procedure
and is complete for first-order logic. Its usage became more widespread following Stickel’s
Prolog Technology Theorem Prover (PTTP) [61]. Its development is also the basis for
some other theorem provers, such as SETHEO [29].

MESON proves a goal by refutation. A goal is first negated, Skolemized and converted
to a set of clauses. However, unlike resolution-based theorem proving, each n-literal clause
then generates n contrapositives, which are Prolog-like clauses. Suppose an n-literal clause
is

L1 ∨ . . . ∨ Ln

then each of its contrapositives has the form

Li ← ¬L1 ∧ . . . ∧ ¬Li−1 ∧ ¬Li+1 ∧ . . . ∧ ¬Ln.

For an n-literal clause, there are n such contrapositives, one for each i.
In addition, for each negative clause, where all literals are negative, there is an extra

contrapositive clause
⊥ ← ¬L1 ∧ . . . ∧ ¬Ln

where ⊥ is falsity. These negative clauses are usually called goal clauses, where each ¬Li

is a goal. Given this set of contrapositives, a backward Prolog style resolution proof (with
unification) is carried out, starting from goal clauses to prove ⊥. During this process,
a reduction rule may be applied to eliminate a current goal, if this current goal is the

123
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complement of some ancestor goal (that occurred in a previously derived goal clause),
possibly through unification. Resolution and reduction rules are repeatedly applied until
a proof is found when all goals are finally eliminated.

John Harrison has described several refinements that other people have made to the
Prolog implementation [24], which aimed to improve the performance of the MESON
procedure. They include different search strategies such as depth-first search, breadth-
first search and depth-first iterative deepening search. Among them, depth-first iterative
deepening search is probably most effective. This search strategy also has some other
variants, such as inference-bound search.

7.1.1 MESON in Isabelle and HOL

The MESON procedure has been implemented in Isabelle/HOL by Larry Paulson as an
automatic proof tactic meson tac.

A feature unique to this implementation of MESON is that meson tac has been imple-
mented inside Isabelle’s logic using Isabelle’s native inference rules. As a result, a proof
found by meson tac — which consists of a sequence of Isabelle inference rules — does not
have to be translated to an Isabelle proof: it is an Isabelle proof already. This was made
possible for several reasons.

First, Isabelle’s inference system bears a strong resemblance with Prolog resolution:
Isabelle’s inference rules are represented as generalized Horn clauses. Furthermore, Isa-
belle’s resolution mechanism, which is one of the key components of a proof search, is
higher-order Prolog resolution. Therefore, the MESON procedure calls Isabelle’s reso-
lution engine. Moreover, the clause normal form transformation is implemented using
recursive inference rules. Since both the goal transformation and the proof search are
carried out using Isabelle’s inference rules, no proof translation is necessary.

In addition, Isabelle’s logical framework provides many generic search strategies as
proof tacticals. Examples are depth-first, best-first and depth-first iterative deepening
search. These generic search strategies can work for the MESON procedure.

Isabelle’s meson tac can prove many higher-order goals, and is very suitable for goals
that involve many quantifiers. However, meson tac does not refer to any previously proved
lemma during a proof search.

After the MESON procedure was implemented in Isabelle, John Harrison also imple-
mented it as a tactic MESON TAC in the HOL system. Although it has been improved so
that existing lemmas can be used to participate in an automatic proof search, users still
have to manually name the relevant lemmas to MESON TAC.

7.1.2 Comparison to Our Approach

In comparison to Isabelle’s meson tac, our integration combines two stand-alone systems
into one. Therefore the translation between different logic formalisms and later proof
reconstruction make our integration more complicated. However, the benefit we receive
from this more complex integration is more automation. One reason is that modern
resolution provers are more efficient than meson tac. Resolution provers can also deal
with equality much better then MESON can. Because resolution provers can handle
more lemmas compared with the MESON procedure, our integration utilizes all previously
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proved lemmas by sending all of them to our target automatic prover, so that the prover
can use the lemmas as axioms during a proof search.

In contrast to HOL’s MESON TAC, our integration aims to free users from having to
decide what lemmas are relevant by sending all available lemmas to an automatic prover.
More importantly, we invoke automatic provers automatically, without a user’s interac-
tion.

7.2 Isabelle’s Generic Tableau Prover

One of the most powerful automatic tactics of Isabelle is blast [46], which is a generic
tableau theorem prover. It performs forward and backward chaining using any lemmas
supplied by the user. Unlike Isabelle’s meson tac, blast is implemented as an indepen-
dent tableau prover and is integrated with Isabelle. Therefore, translation of formulae
from Isabelle formalism to tableau format is necessary. In addition, proofs found by the
tableau prover are translated back to Isabelle for verification.

7.2.1 The Generic Tableau Prover

Isabelle is generic so that it can easily embed a multiplicity of object-logics. In order to
fully support Isabelle proofs, the tableau prover was made generic as well.

Like other tableau provers, blast operates on branches. It attempts to expand
branches using a given set of rules. However, since blast is generic, it does not im-
plement any built-in rule: blast is supplied with a collection of rules and information
about how to use them. The supplied rules include the four standard rules that are also
implemented by other conventional tableau provers: α-rules for replacing a conjunction
by two conjuncts on the same branch; β-rules for splitting a branch with a disjunction
into two branches, each having one disjunct; γ-rules for instantiating universal variables
and δ-rules for Skolemizing existential variables. In addition to these four rules, Isabelle’s
generic tableau prover allows any formalized theory to add its own rules as special tableau
branch expansion rules. This significantly improves efficiency as the tableau prover can
now directly work in any application-specific domain.

A standard tableau calculus usually attempts to expand branches repeatedly using
the four standard rules until nothing more can be done: at this point, a list of literals are
left on each branch. It then tries to close a branch: a branch is closed if a literal and its
negation (possibly via instantiation and unification) are found on it. A proof is found if all
branches are closed. In contrast, blast always tries to close a branch before expanding it.
Moreover, unlike other standard tableau provers, such as Leantap [9], blast tries to close
a branch as soon as a formula and its complementary are found in the same branch, even
if the formula is compound. This significantly speeds up the proof search. Furthermore,
as blast is generic, there are other situations under which a branch can be closed. This
may happen when a rule representing a contradiction is found on a branch.

Backtracking may happen at several places during a proof search. For example, blast
may be given some tableau rules that involve variable instantiations. When blast applies
such rules, it will have to instantiate variables, even though it is not the time yet to try
closing a branch for a standard tableau prover. Furthermore, an expansion rule may
correspond to an Isabelle’s unsafe rule, which when applied causes lost of information.
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Both these cases may require backtracking. The implementation of blast ensures a rule
can be undone if other rules are applicable.

Depth-first iterative deepening has been implemented as the search strategy of the
prover. The bound concerned is the number of γ-rule applications: a γ-rule instantiates
universal variables, and it can easily blow up the search space unless it is limited. In
fact, the problem caused by variable instantiation of γ-rule is so problematic that the
application of γ-rule is deferred to as late as possible. It is hoped that by having formulae
of other types expanded first, the number of possible instantiations of variables in a γ-
formula can be reduced.

7.2.2 Integrating the Generic Tableau Prover with Isabelle

Two major tasks were involved in the integration of the tableau prover and Isabelle:
translating Isabelle goals and theorems to initial tableau and tableau rules respectively;
and translating proofs found by blast to Isabelle proofs for verification.

The blast tableau calculus is sort of sequent calculus. Moreover, Isabelle’s introduc-
tion rules and elimination rules resemble sequent calculus’ right and left rules respectively.
As a result, Isabelle’s rules can be directly translated to tableau rules. Moreover, an Isa-
belle goal is negated and translated to a tableau.

In order to verify and reconstruct a proof found by blast, all tactics that correspond
to inferences performed by blast are recorded, in the order they are used. An Isabelle
proof is then reconstructed based on this sequence of tactics. Finally, the constructed
proof steps are applied to the original Isabelle goal and the whole process finishes.

Since the implementation of blast, it has been one of the most frequently used Isabelle
tactics.

7.2.3 Comparison to Our Approach

Isabelle’s blast does not require users to decide which previously proved lemmas are
relevant: all lemmas in the classical reasoner are taken into account when it searches for
a proof. This significantly reduces user interaction compared with other tactics such as
HOL’s MESON TAC. Our approach to integrating Isabelle and automatic provers preserves
this policy. However, there are many differences between our approach and blast.

First, we use resolution provers to prove goals automatically. Within the realm of first-
order logic, resolution is much more powerful than tableau method. Although blast can
prove goals expressed in logics other than first-order logic, we have found that most of the
Isabelle goals that are suitable for automatic proof tools to prove are in fact first-order.
Therefore, using resolution provers as automatic proof tools should be able to provide
faster and shorter proofs.

Second, blast is usually used to prove goals using classical reasoning. It does not prove
goals involving equality very well. Equality reasoning is performed by Isabelle’s other
tactics such as auto. Moreover, these different tactics have to be applied separately and a
user has to decide which tactic is applicable and invoke it explicitly. In contrast, resolution
and paramodulation provers can effectively combine classical and equality reasoning. A
goal that requires both of these reasonings can be directly sent to a resolution prover
and we can then wait for a proof to be found. In addition, our integration does not ask
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users to invoke background resolution provers: our target resolution provers are called
automatically and this invocation is invisible to users.

7.3 HOL and Metis

Joe Hurd has integrated his automatic prover Metis with the HOL system [27]. This
prover is called from HOL by invoking a tactic called METIS TAC. Since its implementation,
METIS TAC has been used heavily.

Metis is a first-order resolution prover and is written in Standard ML. During a proof
development in HOL, if a user wishes to let Metis prove a goal, then he needs to specify
which lemmas are relevant to the goal and then invoke METIS TAC. Subsequently, the set
of lemmas and the negated goal are converted to clause normal form and then sent to
Metis for a proof. When a proof is found, it is translated back to a HOL proof so that
the proof can be verified.

During the conversion from higher-order logic to first-order logic, one particular prob-
lem is the translation of λ-terms. For METIS TAC, the combinators S, K, C and o are
used: a λ-term at or beneath the literal level is replaced by a combinator expression.

In higher-order logic, there is no difference between terms and formulae, which means
different treatments are required for translating boolean and non-boolean higher-order
terms. For METIS TAC, non-boolean higher-order applications are mapped to first-order
terms using the operator @, which represents explicit first-order function application.
Boolean higher-order terms require additional lifting: after mapping a boolean higher-
order term to a first-order term using @, it is lifted to a first-order formula by the predicate
B. For instance, the higher-order termm 6 n is converted to first-order formula B(@(@(6
, m), n)). However, equality is translated differently: it is mapped to first-order equality
directly.

METIS TAC also translates HOL types and embeds the types in first-order clauses. First,
each HOL type is mapped to a first-order term. Subsequently, the terms representing types
are embedded in the first-order formulae such that each function or predicate is bound
with its type. Moreover, each constant or variable is also bound with its type if necessary.

A proof found by Metis is translated back to a HOL proof for verification. In order
to facilitate the proof translation, METIS TAC utilizes a logical kernel. This logical kernel
contains five ML functions, which correspond to the essential resolution inference rules
that operate on clauses. Furthermore, the results of these functions have ML type thm,
which represents valid theorems.

Metis uses this logical kernel to derive theorems. Every time a deduction is performed,
the corresponding primitive rule and the theorems used are recorded in a proof log so that
when a proof is found, the complete sequence of deduction steps can be found. In order
to translate the sequence of deduction steps(expressed in the logical kernel’s primitive
rules) into a sequence of HOL proof steps, for each primitive rule of the kernel, a HOL
inference rule is defined. The two inference rules perform the same logical inference, except
that the HOL version works on HOL terms, substitutions and theorems. Moreover, the
axioms and assumptions in the proof expressed in the logical kernel are translated to HOL
theorems that correspond to the clauses when clause normal form procedure is applied to
the user-specified lemmas and the negated goal.
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7.3.1 Comparison to Our Approach

Our system is similar to the HOL-Metis integration in that we both use first-order reso-
lution provers to assist interactive proofs. In addition, we both need to translate higher-
order logic to first-order logic formalism. On the other hand, there are many differences
between our system and theirs.

First, Isabelle/HOL’s type system supports order-sorted polymorphism. In addition
to formalizing types in first-order logic, which was also performed in the HOL-Metis
integration, we have also formalized axiomatic type classes, subclass relations and type
constructors’ arities.

Second, unlike METIS TAC, our system does not ask users to pick up relevant theorems
or to carry out explicit invocations to automatic provers.

METIS TAC uses combinators and explicit function applications to formalize higher-
order logic constructs. Although we have not fully formalized Isabelle/HOL in first-
order logic, we have investigated other alternatives to prove Isabelle/HOL’s higher-order
problems, which we have discussed in the previous chapter.

7.4 The ΩMEGA System

ΩMEGA [58] is an interactive prover designed mainly for proof developments in the math-
ematical domain. It employs the idea of knowledge-based proof planning at an appropriate
level of abstraction for proof construction. Some external reasoning systems have been
integrated with ΩMEGA in order to improve automation.

The ΩMEGA system is built up from several independent modules, which are con-
nected via the mathematical software bus MATHWEB-SB so that these modules can be
running at several severs over the Internet and can be accessed by many different research
institutions.

ΩMEGA’s inference mechanism provides various levels of abstraction. At the lowest
level is an interactive prover based on a higher-order natural deduction (ND) variant of a
soft-sorted version of Church’s simply typed λ-calculus. Users can interactively carry out
proofs at this calculus level. Alternatively, users can also construct proofs at a higher level
of abstraction using tactics or methods. The system also attempts to conduct automatic
proof search at an abstract level, which is called proof planning.

The central data structure of the ΩMEGA system is the Proof plan Data Structure
(PDS), which stores the current proofs and proof plans at various levels of abstraction.

Once a proof development starts, a proof construction is carried out either by direct
user interaction or through the supports from several subcomponents of the system. These
subcomponents include

• A proof planner MULTI, which attempts to find a proof plan automatically.

• A suggestion mechanism Ω-ANTS.

• Several external reasoning systems. They include

– Computer Algebra Systems including MAPLE [14] and GAP [21]. They are
mainly used to guide the proof search and to carry out some complex algebraic
computation.
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– Automated Theorem Proving Systems including Bliksem [17], EQP [34], Ot-
ter [33], Protein [7], SPASS [65], WaldMeister [25], TPS [3] and LEO [11].These
ATPs are used for solving subgoals.

– Model Generation Systems including SATCHMA [32] and SEM [69]. Their use
is to guide the proof search by finding counter examples and hence showing
some subgoal is not a theorem.

– Constraint Solvers including CoSIE [35]. It helps to construct mathematical
objects and to reduce the proof search by checking constraints inconsistencies.

When an external prover finds a proof of a subgoal, the result will be converted
to a format suitable to be stored in PDS and will be inserted into PDS. Several
interface modules between ΩMEGA and these provers are used to perform proof
transformation and to translate and send goals from ΩMEGA to these provers.

Very importantly, these subcomponents run in the background without any explicit
user invocation. Both a user and all of these subcomponents can contribute to the proof
development by modifying the PDS until a complete proof plan is found. Since a complete
proof plan is usually expressed at an abstract level, it must be expanded to the level of
ND calculus which is then verified by ΩMEGA’s proof checker.

7.4.1 Comparison to Our Approach

ΩMEGA is probably the system closest to our integration because we share a key idea
that assistants should run as background processes. The interactive prover user should
not have to notice that a certain tool may prove a certain subgoal: it should be attempted
automatically.

On the other hand, ΩMEGA and Isabelle are designed for different purposes, which
result in differences between their system and our integration system. ΩMEGA is designed
to support working mathematicians, and it has been combined with a large number of
other reasoning tools. Our aim is to support formal verification, and we are trying to
achieve the best possible integration with one or two other reasoning tools. Creative
mathematics and verification are different applications: the mathematician’s main concern
is to arrive at the right definitions, while the verifier’s main concern is to cope with fixed
but enormous definitions.

Another major difference between our integration and theirs is largely due to the
difference between Isabelle and ΩMEGA. All formula transformation in Isabelle has to be
carried out using kernel defined functions and thus is more restricted. However, ΩMEGA
is not an LCF prover and reasoning at an abstract level can be performed with greater
flexibility, which is only expanded to the natural deduction calculus when a proof is
verified.

7.5 KIV and 3T
AP

KIV (Karlsruhe Interactive Verifier) [49] is an interactive prover designed mainly for
software specification and verification. It is an LCF style tactic theorem prover and proofs
are carried out by reducing goals to subgoals using tactics. Users can either interactively
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tell the system how to use the available tactics or let the system choose the appropriate
tactics using built-in heuristics. In addition, KIV has been integrated with an automatic

prover 3T
AP [8] so that many simple subgoals can be proved automatically.

3T
AP is an automatic tableau-based theorem prover for many-valued first-order logic

with sorts. It handles full first-order logic with any finite number of truth values. Formulae

for 3T
AP do not have to be in any normal form. Some particular connectives such as

if-then are used to enforce ordering on branch expansion.

The integration between KIV and 3T
AP allows 3T

AP to be used as a tactic to prove
KIV’s first-order goals or subgoals. It can be invoked either by users or by KIV’s heuristics.

In either case, a user will require a response from 3T
AP in a reasonable amount of time;

this is ensured by setting a time limit on each run of 3T
AP .

Since KIV’s logic is an extension of many-sorted first-order logic, which is supported

by 3T
AP , the translation from KIV formulae to 3T

AP inputs can be dealt with relatively
easily.

When 3T
AP finds a proof, the tableau proof is translated back into a sequent proof in

KIV format, which can then be verified by KIV. Although there is no direct mapping from

rules used in 3T
AP to the ones used in KIV (due to the rules such as the cut-rule), the

proof translation is not too difficult, because the tableau calculus is a graph representation

of the sequent calculus. This proof translation from 3T
AP to KIV is mainly carried out

by using KIV’s sequent rules to simulate 3T
AP rules.

A major problem encountered for their integration is the huge search space faced by

3T
AP , which is partly caused by the large number of lemmas used by KIV. In addition,

some problem specific information, such as how a KIV lemma should be used for a proof,

is by default, not exploited by 3T
AP .

KIV has attempted to remove many irrelevant lemmas and only send those possibly

relevant ones to 3T
AP . Their technique relies on the fact that formal specifications are

usually well structured theories. KIV’s specifications are built up from elementary first-
order theories with structuring operations such as union, enrichment, parameterization,
actualization and renaming. As long as these operations satisfy certain properties1, such
as hierarchy persistency, axioms can be safely reduced in the sense that if a theorem holds
in the reduced axiom set, it also holds in the original axiom set.

KIV implements an algorithm based on four reduction criteria [50] in order to remove
irrelevant axioms. The first criterion minimality criterion allows the algorithm to take
on a set of specifications and the goal to be proved and then, with the knowledge about
structuring relation between specifications, find a minimal specification that covers the
signature of the goal. It is then safe to retain only those axioms and lemmas in the minimal
specification. Among the retained axioms and lemmas, some will never be used to prove
the goal as the operators do not appear in the goal or any specification outside their
definition specification. The second criterion structure criterion allows these axioms or
lemmas to be removed. The other two criteria improve the performance of the algorithm
by splitting specifications and performing the algorithm recursively until the retained set
of axioms or lemmas is stable.

The algorithm based on the four reduction criteria have been proved safe for modular

1specifications built up in this way are called modular.



7.6. COQ AND BLIKSEM 131

specifications but is only a heuristic otherwise. Moreover, although some axioms or lem-
mas can be safely removed, it may not be wise to do so as it could take longer to find a
proof. For example, a lemma may be considered redundant as it can be inferred by the
retained set of lemmas. However, it may be an important intermediate lemma for the
final proof goal and will have to be derived again after being removed.

KIV has also attempted to convey some problem specific information to 3T
AP , such

as how rules are used in KIV. For instance, KIV tried to simulate the rewrite rules using

equalities of 3T
AP , by defining an ordering between related function symbols. However,

the problem was not solved completely as the ordering is partial when variables are in-
volved.

7.5.1 Comparison to Our Approach

Both KIV and Isabelle are used for software verification, which means proof developments
in the two systems involve a large number of previously proved lemmas. The large num-

ber of lemmas is a problem for both our integration and the KIV-3T
AP integration. We

approached the problem from different directions. KIV attempted to design a technique
that automatically removes irrelevant lemmas. We have also tried an algorithm to auto-
matically remove irrelevant lemmas. Whereas ours is not strong enough, theirs may be a
bit too strong. In addition, we have tried other methods to reduce the number of clauses
generated. We feel the problem of a large number of lemmas cannot be solved from one
side of an integration system alone: a practical solution may involve both automatic and
interactive provers concerned.

In addition, we have both tried to convey interactive prover-specific information to
our target automatic provers. For instance, they have tried to define new connectives in

3T
AP and to assign weights to function symbols. We have tried to solve the problem by

running experiments on our target resolution provers in order to find the best settings to
solve Isabelle goals.

On the other hand, this two integration approaches differ in many aspects, which is
mainly due to the different interactive and automatic provers involved in the integrations.
First, the difference between Isabelle’s logic and first-order logic is greater than the dif-

ference between KIV’s logic and 3T
AP ’s logic. Therefore, we need to spend more effort

in formula translation. Although we could have used a tableau prover as the automatic
proof tool, we feel resolution provers are more powerful. Second, Isabelle supports a more
complex type system, which must be formalized in addition to translating formulae.

7.6 Coq and Bliksem

The Coq [6] system is an LCF style interactive theorem prover. It is based on an axiom-free
type theory called the Calculus of Inductive Constructions. Coq supports intuitionistic
higher-order logic. It can also support classical logic by adding the axiom of excluded
middle.

All Coq terms are typed. In addition, there are two basic sorts, namely Set and Prop.
The sort Prop denotes a class of propositions: if a term M belongs to Prop, written
as M : Prop, then M is a proposition. As with other type-theoretical systems, a term
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t of type M (written as t : M) is a proof of M . Therefore, to check if t is a proof
of M amounts to check whether t has type M . The sort Set represents the type of
specifications. An object of type Set is a usual set. Since Coq is based on type theory, it
offers an expressive formalism. However, this expressiveness also means that the system
is difficult to automate.

In order to improve the automation of Coq, Bezem, Hendriks and Nivelle [12] inte-
grated it with Bliksem [17], so that Bliksem can be called via a Coq tactic. Bliksem is
an automatic theorem prover, which implements resolution and paramodulation. Since
Bliksem’s inputs have to be in clause normal form, it is necessary to convert any out-
put from Coq to clauses. Instead of carrying out clause normal form transformation on
propositions of type Prop directly, a two level approach was adopted in the integration.

First, an inductive set o of type Set is defined, where each element of o denotes a
first-order proposition. Then an interpretation function [[ ]] is defined so that it maps
each element of o to a proposition in Prop. The idea is that for each formula ϕ in
Prop, there is an object ϕ′ in o, such that ϕ and [[ϕ′]] are convertible. Objects in set
o are called object-level propositions whereas propositions of type Prop are called meta-
level propositions. One of the major reasons behind this two-level approach is to apply
powerful symbolic transformations, such as clause normal form transformation, to object-
level propositions. In comparison, meta-level propositions do not lend themselves to easy
syntactical manipulations.

A clausification procedure is then defined for objects in set o. This procedure consists
of a sequence of functions, such as negation normal form transformation, Skolemization,
and finally transformation to clause form. The clausification procedure has been proved to
be sound. After an object of set o is converted to clauses by the clausification procedure,
Bliksem attempts to find a proof from these input clauses.

When Bliksem finds a proof, the resolution proof is converted to a type theory proof
term. This is achieved by first translating each resolution inference rule to a λ-term. Sub-
sequently, a sequence of λ-terms are generated that correspond to all inferences involved
in a resolution proof. By assembling these λ-terms in a correct order, the final λ-term
π is produced that is the representation of the resolution proof in type-theoretic format.
Finally, Coq verifies the validity of the resolution proof by proving that the type of the
proof term π matches the original goal. In other words, to check if a proof term π is
indeed a proof of a propositionM that belongs to set Prop, it is sufficient to verify π :M .
Together with the proof that the clausification procedure is sound, the proof verification
completes.

7.6.1 Comparison to Our Approach

Although both Coq-Bliksem integration and ours use resolution provers as automatic proof
tools and both Coq and Isabelle are LCF provers, there are many differences between our
work. We list three major differences below.

First, we apply clause normal form transformation directly to Isabelle formulae. In
comparison, Coq does not transform their propositions directly, but transform terms that
belong to an inductively defined set.

Second, the methods used for formula transformation are different. We carry out
clause normal form transformation inside Isabelle logic by applying kernel-defined infer-
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ence rules to an Isabelle formula. Therefore, the result of this transformation is guaranteed
a theorem. Coq defines a function that performs clause normal form transformation and
then generates a proof term to show the transformation is sound.

Third, like many of the other systems that we have mentioned, Coq-Bliksem integra-
tion requires a user to apply a tactic to invoke Bliksem and also requires the user to name
lemmas that should be used to prove the goal. In comparison, our system lets this process
happen automatically.

7.7 Concluding Remarks

In this chapter, we have discussed seven other attempts on linking interactive provers
with various automatic provers. Each of these integrations has its own strength.

Compared with their work, we feel our contribution has made certain improvements,
which we summarize below.

• We do not require a user to decide which previously proved lemmas are relevant
to a proof goal. We have tried several methods to reduce the effect of irrelevant
theorems with some successful results.

• We do not ask a user to invoke any target automatic prover: the whole procedure
happens automatically.

• We translate Isabelle formulae inside Isabelle logic, which ensures the correctness of
the translation.

• We have been using external resolution provers, which are by far the most powerful
provers, especially when proving problems in first-order logic. Although resolution
provers are significantly different to Isabelle and thus the translation between differ-
ent logical formalisms is more technically involved, the pay-off we receive is greater
automation.
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Chapter 8

Conclusion

In the previous chapters, we have discussed our approach to the integration between
Isabelle and resolution provers and other related work in this field. In this chapter, we
summarize the work we have achieved and point out future research directions.

8.1 Summary

Our research concerns the integration of higher-order interactive theorem proving with
first-order automatic proofs. The aim of the research is to investigate how to effectively
use automatic provers to prove interactive provers’ goals so that the overall automation
of interactive provers can be improved. We carried out this research by investigating how
to link Isabelle with several resolution provers, including Vampire, SPASS and E.

We started by identifying the major questions that needed to be answered and the
problems that needed to be solved for an integration between two completely different
systems — Isabelle and resolution provers — to be effective. All the subsequent research
was conducted in order to solve all the identified problems.

One of the most important tasks for our integration is to formalize Isabelle’s object-
logics in first-order logic. Therefore, we carried out this research first. We have formalized
first-order aspects and some non-first-order constructs of Isabelle/ZF and Isabelle/HOL
including Isabelle/HOL’s order-sorted polymorphic type system in first-order clauses. We
have fine-tuned our translation so that it is not only correct but also helps resolution
provers improve the proof search performance. We also carried out a series of experiments
on Vampire and some on SPASS and let them prove Isabelle goals using our translation
method. The results show our translation is practical and resolution can indeed support
Isabelle proofs. From our experimental results, we have also found those settings of Vam-
pire, which are most essential for proofs of Isabelle problems. They have been recorded so
that they can be useful for future proof tasks. We have also investigated how to make a
tighter integration between Isabelle and resolution provers, so that more Isabelle-specific
information can be conveyed to resolution provers — this can further improve the proof
performance. We have achieved this by using a new version of Vampire (v6.03). How-
ever, through experiments, we have also found a major obstacle: large numbers of axiom
clauses are difficult for most resolution provers to handle.

Having formalized Isabelle’s logics in first-order logic, we implemented a program that
automatically translated Isabelle/HOL’s formulae into clause normal form inside Isabelle
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logic. Translating formulae inside Isabelle’s logic not only ensures translation is correct
but also makes later proof reconstruction possible.

Finally, we have implemented a program that runs between Isabelle and any back-
ground automatic prover. When an automatic prover should be called to prove some
Isabelle goals, this program automatically extracts all goals and available lemmas without
a user’s interaction. After getting these items, our program translates them to first-order
clauses, using the automatic clause normal form translation we have implemented, and
writes the clauses to designated files, which can be read by an automatic prover running
in the background. This whole procedure is invisible from users’ point of view.

The work above completes our research on integrating Isabelle and a resolution prover.
In addition to this, we have also conducted some additional research in two areas, which
aims to find ways to improve the performance of using automatic provers to assist Isabelle’s
proofs.

We first investigated the problem caused by large numbers of axiom clauses. Our
investigation showed that two major factors were responsible for the generation of large
numbers of clauses: some elimination rules can generate a vast number of clauses using
the standard clause normal form transformation, and there are many irrelevant theorems
being sent to an automatic prover as axiom clauses. We have successfully used formula
renaming to solve the first problem. However, the problem caused by the large number
of irrelevant theorems is harder. We have approached this problem from two directions:
both the automatic provers’ side and Isabelle’s side. We have found some settings of a
resolution prover that are useful to ignore the presence of irrelevant axioms. We have also
found some settings that, in theory, should help solve the problem. For these settings, we
have made some suggestions on possible improvements an automatic prover can make. In
addition, we briefly tried an algorithm that could help remove as many irrelevant lemmas
as possible. Although the research was only preliminary, and so complete solution has not
been found, we feel the findings could give us some hints into future research direction.

Moreover, we have tried to use a higher-order automatic prover, TPS, as an alternative
to first-order resolution provers, to prove Isabelle/HOL’s higher-order goals. However, we
have found the performance of higher-order provers is much worse than first-order reso-
lution provers. Therefore, we may still have to use first-order automatic provers to prove
Isabelle/HOL’s higher-order goals. This would require us to formalize Isabelle/HOL’s
higher-order constructs in first-order logic.

Since Isabelle is a representative interactive prover and many other resolution-based
provers employ similar techniques as Vampire and SPASS do, the knowledge and results
gained from our research can be applied to the integration of other interactive and auto-
matic provers.

For those people who feel formal verification using interactive provers is too costly due
to the amount of human experts’ skills and interaction required, we feel our research should
be able to ease their verification task. We hope our research will boost the application
of formal verification in both research and industry. We also hope our findings may be
of interest to people who are also keen in developing theorem provers and give some
inspiration to their future research.

We feel our research can show the developers of automatic provers that there is a
promising field in which automatic provers can be applied. We hope our experimental
results on their performance when proving verification problems can be useful to them.
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8.2 Future Work

Our part of the integration is largely complete. However, several problems emerged during
our research and we have conducted preliminary investigations on them. Further research
on them based on our findings will be beneficial. In addition, other extension tasks could
also be added to our current integration. We now list them blow.

• Using automatic provers to prove Isabelle/HOL’s higher-order problems. As we
have discussed in §6.5, Isabelle/HOL’s higher-order goals may have to be proved by
first-order provers, by formalizing higher-order constructs in first-order logic. The
new translation mechanism may be applied to higher-order goals and lemmas only,
while the method we have designed in chapter 3 can still be applied to translate
Isabelle/HOL’s first-order formulae if the goal concerned is purely first-order. Since
most of Isabelle’s goals are first-order and can be proved by first-order theorems,
the new formalization used for higher-order constructs can be called only when
necessary.

• Solve the problem caused by the large number of irrelevant Isabelle theorems. Our
findings (§5.5) suggest it may be useful to exploit more structural relationship be-
tween Isabelle theories in order to determine which already proved lemmas may be
more relevant to a proof goal, and possibly pass on this information to our tar-
get automatic provers. In addition, some settings of resolution provers seem to be
more relevant to the solution of the problem. A successful solution may require the
co-operation between Isabelle and our background automatic provers.

Several other attempts at this problem have been made by various people. Apart

from the attempt carried out by the KIV-3T
AP integration (§7.5), most of the other

methods are used by automatic provers to remove irrelevant data. In addition,
the approaches depend on the proof calculi and search strategies employed by the
provers. We list a few examples below.

– Marc Fuchs and Dirk Fuchs designed a method [20] that uses abstractions
to delete irrelevant clauses for the connection tableau calculus and iterative
deepening search methods. Their technique has been evaluated by the prover
SETHEO [29].

– Robert Veroff has developed a hints strategy [64], which is based on subsump-
tion, to determine the values of generated clauses so that appropriate clauses
can be selected to participate in the proof search. Their method targets on the
resolution procedure and has been implemented in Otter [33].

– Stephan Schulz and Felix Brandt have designed a learning inference control
heuristic for an equational theorem prover [56], which guides a proof search for
a goal based on the previously proved problems that have similar characteristics
with the current goal.

– David Plaisted and Adnan Yahya designed a method [48] that calculated a set
of relevant clauses for resolution procedure. Their method utilizes existing set
of support and the relevance of each clause is parameterized by a distance func-
tion that calculates the number of intermediate clauses necessary to connect
the clause to support set.
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• Carry out an implementation that formalizes Isabelle/ZF in first-order logic, based
on our experiments on Isabelle/ZF. Although Isabelle/HOL is the most widely used
logic by Isabelle users, it is worth translating other logics into first-order logic so
that their goals can be proved automatically. Moreover, the task should be simpler
than that for Isabelle/HOL.

• Implement automatic tagging of literals with Vampire’s special syntax +++ and
---. Our experiments show the use of this tagging facility allows us to convey
Isabelle-specific information to Vampire and proof performance has been improved.
Currently, our automatic clause normal form transformation does not automatically
label literals with this tagging; it should be useful to include automatic tagging
as part of the translation procedure on Isabelle theorems. However, apart from
Vampire, no other prover supports this syntax or equivalent facility at the moment.
Therefore it would be helpful if automatic provers’ developers can include this as
an option.
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