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Abstract

Ever since the UNCOL efforts in the 1960s, compilers have sought to use both source-
language-neutral and architecture-neutral intermediate representations.
The advent of web applets led to the JVM where such a representation was also used
for distribution. This trend has continued and now many mainstream applications are
distributed using the JVM or .NET formats. These languages can be efficiently run on
a target architecture (e.g. using JIT techniques). However, such intermediate languages
have been predominantly sequential, supporting only rudimentary concurrency primitives
such as threads. This thesis proposes a parallel intermediate representation with analo-
gous goals. The specific contributions made in this work are based around a join calculus
abstract machine (JCAM). These can be broadly categorised into three sections.

The first contribution is the definition of the abstract machine itself. The standard
join calculus is modified to prevent implicit sharing of data as this is undesirable in non-
shared memory architectures. It is then condensed into three primitive operations that
can be targeted by optimisations and analyses. I claim that these three simple operations
capture all the common styles of concurrency and parallelism used in current programming
languages.

The work goes on to show how the JCAM intermediate representation can be imple-
mented on shared-memory multi-core machines with acceptable overheads. This process
illustrates some key program properties that can be exploited to give significant benefits
in certain scenarios.

Finally, conventional control-flow analyses are adapted to the join calculus to allow
the properties required for optimising compilation to be inferred. Along with the proto-
type compiler, this illustrates the JCAM’s capabilities as a universal representation for
parallelism.
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Chapter 1

Introduction

The shift in processor design from ever-increasing clock speeds to multi- and many-core
parallelism has been well-documented [109]. Shared-memory multicore systems are now
ubiquitous; clusters of these common place; general purpose GPUs mainstream; and
the range of esoteric research designs ever-expanding. Indeed, techniques to exploit such
architectures have been an especially hot research topic over the last decade. However, for
the most part, these have considered a restricted set of problem domains or architectures.
It has even been argued that building specialised compilers from each form of parallelism
to each target is the only viable approach [27, 86].

Such a conclusion does not sit well in computer science, a discipline almost defined
by the view that “all problems . . . can be solved by another level of indirection” (David
Wheeler). Nowhere is this more true than in the compiler community which has used
abstractions so effectively for sequential architectures. The Java Virtual Machine (JVM)
[69], .NET’s Common Language Runtime (CLR) [36] and the LLVM project [1], cur-
rently three of the most popular compiler frameworks, are all based around intermediate
representations (IRs) that support both multiple languages and targets. The portability
that these provide is arguably the main reason for their success—programmers want their
programs to be agnostic of target architecture. However, IRs also allow analyses and
optimisations to be shared between compilers. Along with this, new language frontends
can make use of existing backends and vice-versa, vastly reducing the human effort re-
quired in developing new compilers. This benefit was first noticed during research into
UNCOL [107]. Indeed, the total effort becomes proportional to M +N for M languages
and N targets, rather than to M × N . However, it is not sufficient to simply take the
union of the different primitives as this would imply that the IR needs expanding for each
new language. Instead, we need a simplifying abstraction to which these can not only be
compiled, but also extracted so that features of different architectures can be exploited.

Such frameworks also remove many of the barriers to research in specific parts of the
compilation process—as has been shown by the flurry of papers related to the JVM, and
more recently centred around LLVM.

As suggested by the popularity of managed languages, introducing the correct IR
abstractions also tends to make life easier for application developers. It can be argued
that this is because offering the right abstractions allows the crude ones to be removed—
for instance the replacement of manual memory management by garbage collection and
references.

Current managed VMs provide little more than threading for concurrency, and even
this is provided through libraries rather than machine instructions. Synchronisation is
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then coordinated manually through shared memory or perhaps simple locks. Compiling
other primitives to such IRs loses information and therefore restricts optimisation. My
research has focussed on replacing these with the right primitives in order to bring the
aforementioned benefits of a common IR to a parallel setting. This dissertation presents
the results of my efforts in support of the following thesis:

Using the join calculus at the intermediate representation level allows compila-
tion from a variety of parallel source languages to a range of parallel hardware,
without the need for specialised compilers, and whilst maintaining a high level
of performance.

In particular, I propose a new abstract machine1, justify its suitability for purpose,
and detail how it can be efficiently implemented to give a feasible solution.

Of course, this is not a silver bullet for parallel programming: programmers must
still make the parallelism explicit in the IR via a language frontend—there is no magical
auto-parallelisation; and while there are significant benefits to a universal IR, there are
inevitably trade-offs. David Wheeler famously completed the earlier quotation by stating
that abstraction “usually will create another problem”—namely overheads. The prototype
implementation presented is competitive but, as one would expect, slower than the direct
production compilers. However, just as the performance of Java Virtual Machines has
improved over time [68], further research can only close the gap.

1.1 Research Context

The research contained in this thesis sits at the junction between hardware and program-
ming languages. There is also a significant theoretical influence. It is therefore important
to set the scene for why this research is relevant. Here I first describe its practical ben-
efits to developers and researchers, before commenting on it from a more pure computer
science sense.

1.1.1 Increased Development Productivity

It is becoming clear that modern systems are not only increasingly parallel but also
heterogeneous. Common examples include IBM’s Cell Broadband Engine and also CPU-
GPU combinations. As well as different processing capabilities, the different cores have
access to separate memories, with data transfers needing to be managed explicitly. As
these become more popular, how can we continue to offer developers the performance
portability that they have come to expect from the JVM on sequential architectures?
That is, enable a single program to achieve good (if not optimal) performance on any
system. For example, with NUMA multi-core processors and CPU-GPU combinations,
placement, scheduling and indeed algorithm choices affect the overall execution time and,
for portable programs, must adapt to the target machine at either load-time or run-time.

Being able to achieve this portability is crucial to allowing developers to continue to
produce higher performance code. Without a single common representation for programs,

1 In this work, I treat the terms abstract machine and virtual machine as more or less interchangeable.
In general, I will use the former when talking about the design of the machine itself, and the latter when
considering its implementation.
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developers will be forced to hand-optimise their software for each platform in order to get
the best results.

Despite large amounts of research, auto-parallelisation is still restricted to specific
scenarios (e.g. vectorisation). As a result, it is important that any common representation
can express any parallelism in a source-language so that it need not be redetected via
analysis when generating code for a target.

1.1.2 Reduced Barrier to Research

As well as helping end-users, a common representation serves three research communities.
A common problem when evaluating new architectures or languages is that of comparing
prototype compilers with established compilers for the status quo. In a sequential setting
this problem has been mitigated by tools such as the JVM and LLVM. A standard
intermediate representation for parallelism would therefore be a significant aid to the
development of parallel languages and architectures.

It also serves as a testing harness for those working on the analysis of parallel programs.
By implementing new techniques in terms of the universal IR, it becomes possible to
test its effectiveness across a wider variety of scenarios. Indeed, further work on auto-
parallelisation could try to convert sequential parts of programs in this IR into equivalents
that run in parallel.

In each of these cases, the researcher would reuse the majority of an established
toolchain, replacing just the parts corresponding to their work.

1.1.3 Elegance

Whilst the changes in parallel hardware are relatively well understood, it is currently
much less clear what the corresponding changes in programming languages and compilers
should be. Even aside from the motivations above, computer science is a discipline that
prides itself on abstractions, and not enough attention has been given to the abstraction
of parallelism. Macrakis’ summary of early developments in intermediate representations
demonstrates that such elegance has always been a goal—“a universal intermediate lan-
guage has been a dream for many years” [70]. This has been repeated more recently, with
authors feeling that [122]:

The multicore trend . . . behooves us as a community to study the fundamen-
tal requirements in parallel execution models and explore how they can be
supported by first-class abstractions at the IL [intermediate language] level.

And others conveying the key requirement that [64]:

One needs to be able to represent as many of the existing (and, hopefully,
future) parallel constructs while minimizing the number of new concepts in-
troduced in the parallel IR.

Another key point made by Macrakis is as follows:

ANDF [Architecture-Neutral Distribution Format] is not a tool for making
non-portable software into portable software, but a tool for distributing portable
software, which must thus provide mechanisms needed by portable software.
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That is to say, a two-threaded program should be expressible in our IR, but it is not
expected that our IR will magically allow it to run with better performance on a quad-
core processor.

An apt comparison is to foreign language translation. Our approach is akin to using
two expert translators to translate from, say, Norwegian to Chinese, where both are fluent
in English and use this as an intermediary step. Of course, some nuances will be ‘lost in
translation’, and a fluent speaker of both languages will produce a better result. However,
in the absence of such a person, the results of the two translators are almost certainly
better and easier to obtain, than one would attain from attempting to teach Chinese to
the Norwegian or vice-versa.

1.2 Outline and Contributions

This dissertation’s contributions are structured as follows:

Chapter 2 provides an overview of the current state of affairs. This includes the trends
in hardware, compiler representations and programming models, and attempts to
group them into broad categories. I also provide introductions to the join calculus
upon which this work is based, and to the analysis techniques that will be employed
in Chapter 5.

Chapter 3 introduces and justifies the Join Calculus Abstract Machine (JCAM) which
forms the basis of this entire thesis. It is argued that this representation captures
the quintessential features of parallel computation. The introduction develops the
model from more familiar starting points in a series of distinct steps—each intended
to address a key design criterion. Formal semantics for the final abstract machine
are then given in a small-step style. I show that it can elegantly and efficiently
encode the features of other IRs and language paradigms without simply offering
the union of all other primitives.

Chapter 4 demonstrates that it is possible to build high-performance implementations
of the JCAM primitives. As well as drawing on existing approaches, it is shown that
specialised techniques based on program annotations can offer significant benefits.
In particular, these exploit two common cases: (i) where hardware parallelism has
been exhausted and we wish to execute the program with minimal overheads sequen-
tially; and (ii) where message queues obey predetermined constraints on their size.
The advantages of these optimisations are demonstrated with microbenchmarks and
my prototype compiler Dovetail.

Chapter 5 presents analysis techniques derived from traditional control flow analyses
(CFAs) that allow inference of the properties required by Chapter 4. The combi-
nation of message sends and join patterns forces a novel approach to k-CFA, with
standard call-string histories not being applicable. The importance of join calcu-
lus definition instances in the semantics of the abstract machine also forces other
changes to the analysis. Using the results of the control flow analysis, I demonstrate
how to infer both some message queue bounds and also definition closedness (a key
property for achieving fast sequential performance). As well as serving the needs
of Chapter 4, this shows the JCAM to be a feasible focus of analysis. This chapter
includes a formal proof of k-LCFA correctness.
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Chapter 6 finally provides a holistic evaluation of the work using a range of larger
benchmarks. This assesses both the final performance, and also the effect of the
analyses and optimisations. I also investigate cases that the techniques used do not
cover, and suggest areas where this work could be improved in the future.

1.3 General Notation

The topics introduced throughout this thesis frequently make use of certain concepts. The
notation for these is therefore introduced here.

Both the Petri-net and join calculus models will be defined by multisets. I will use
mX to denote the set of all multisets over the set X. This is equivalent to X 7→ N0. The
operators + and − on these multisets are simply the lifting of operators onto the function
form. To reduce clutter, I abuse the notation slightly by writing X+x instead of X+{x}
when adding a single element to the multiset.

The set of all possible sequences over X is written X∗, and those bounded by length
k as X≤k. A sequence is written v̄ and has elements vi. Fixed-length sequences are also
referred to as tuples. Concatenation is denoted by · and ε gives the empty sequence.

Diagrams depicting program graphs generally follow the convention that boxes (2)
represent computation while circles (©) represent data.

When referring to program execution,→ (or other varieties of arrow) always indicates
a single program step, while→∗ any number of steps. The semantics of Chapter 3 attempt
to follow other formalisations of LLVM IR [121].

Especially in Chapter 5, common use is made of abstract values. These are represented
by hatted symbols—for example, X̂ corresponds to the abstract version of the concrete
value X. The presentation of constraints takes most inspiration from Faxén’s work [38].

1.4 Publications

Some of the work associated with this thesis has already been published. More specifically:

• Some early ideas concerning an intermediate representation based on Petri-nets, and
a construction similar to Section 3.4.6 were presented at the Euro-Par conference in
August 2011 [22]. These ideas also appeared on a poster at the ACACES summer
school in 2011.

• The flattened join calculus and an updated version of the EuroPar work to use
the join calculus was then published at the Programming Language Approaches to
Concurrency and Communication-cEntric Software (PLACES) workshop in March
2012 [24].

• The majority of the theoretical work in Chapter 5 on analyses and transformations
has been published at the Static Analysis Symposium (SAS) in September 2012
[23]. This paper also made use of the JCAM with its simple instruction set for
representing the join calculus—although it was presented in a stack-based form
similar to the JVM.

The Dovetail compiler developed in Chapter 4 is available from the author’s GitHub
account [21]. It consists of the compiler itself, written in 2000 lines of ML, along with
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a runtime library written in a combination of C and LLVM assembly. To build these
requires OCaml and the LLVM bindings for OCaml, along with the Boehm garbage col-
lector [18]. The repository also includes all the benchmarks used in Chapter 6, comprising
approximately 1500 lines of JCAM assembly, and the corresponding C, Wool and Java
versions.
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Chapter 2

Technical Background

By its very nature, designing a suitable IR requires a strong understanding of the styles
of parallelism present in languages and those supported by hardware. This chapter gives
an overview of the most significant varieties in Sections 2.1 and 2.3 respectively. A survey
of existing compiler representations that link between these, and their support for paral-
lelism, is provided in Section 2.2. I also introduce the join calculus (Section 2.4) which is
used extensively in this dissertation, and the work that has previously been done on its
implementation. Finally in Section 2.5, I examine several analysis techniques that provide
relevant background for Chapter 5, where I use program analysis to enable optimisations.

2.1 Computer Architecture

Given that the requirement for parallelisation has been driven by limitations in the se-
quential scaling of hardware, it is important to understand these factors. This section
explores the limits of sequential speed as well as looking at the new techniques used to
circumvent these limitations. Section 2.1.7 also touches on dataflow architectures. Whilst
these were a more active area of research in the 1970s, their ideas are relevant to the
approach taken in this thesis.

2.1.1 Moore’s Law

Moore’s Law is well known: that the number of transistors that can be squeezed into a
given area doubles every two years [77]. With signals therefore having to travel smaller
distances, clock frequencies initially tended to increase at a similar rate.1 Through the
later decades of the twentieth century, this was the basis of the huge performance improve-
ments. For a software developer, the massive attraction of this period was that everything
stayed sequential. Therefore, all software could benefit immediately from improvements
in hardware, and get easy performance gains.

1Due to other improvements in design, clock frequencies in fact doubled every 18 months, and this is
often (incorrectly) quoted as Moore’s Law.
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2.1.2 The Power Wall

Unfortunately, an exponential trend such as doubling of clock frequencies is always going
to struggle to last indefinitely. While Moore’s Law has continued to the current day,2

clock frequencies plateaued early in the 2000s. This is due to power usage of a transistor
increasing linearly with frequency.3 Providing this power is not problematic, but it must
also be dissipated by the chip. Keeping chips with such high power density cool is simply
not feasible in the vast majority of cases.

Sequential processors have circumvented this power wall to a certain extent with super-
scalar techniques. These allow instruction-level parallelism (ILP) by executing multiple
instructions at once using multiple functional units, and allowing instructions to be re-
ordered by examining data dependencies. The result is faster execution for the same
clock rate. Implementing instruction reordering is not dissimilar to the dataflow style of
processors examined in Section 2.1.7.

For the purposes of this thesis, the benefits of ILP can be regarded simply as part of
a sequential core’s performance.

2.1.3 Multi-Core

As a consequence of the power wall, and also because it becomes increasingly difficult to
find further parallelism through ILP, multi-core processors were developed. These have
become widespread over the past decade, and the number of cores available on a chip
is continuing to rise. While symmetric multiprocessing had been popular long before
the plateau in clock frequencies, the introduction of multi-core processors has certainly
encouraged parallel research. These architectures can be described as multiple instruction
multiple data (MIMD). Unlike improvements due to clock speed and ILP, taking advantage
of multiple cores requires significant alterations to programs.

2.1.4 Vector Processors

Vector processors were originally introduced into supercomputers as a way of achieving
higher performance [100]. By performing the same operation on multiple items of data
(single instruction multiple data or SIMD), the instruction fetch and decode steps only
need to be performed once. It is also possible, and common, to add extra functional units
that allow the different data to be processed in parallel. For data-parallel computations,
this is more efficient than a multi- or many-core MIMD approach.

SIMD-style instructions have been commonplace amongst mainstream CPUs for a
number of years (e.g. the MMX, SSE and AVX extensions). Graphics processors are
another prevalent instance of vector processing. While these were originally intended
for graphics rendering, use for general-purpose computation (i.e. GPGPU) is now fairly
standard, as described in Section 2.3.2. The architecture of a typical graphics processor
is shown in Figure 2.1. Each of the processors within a GPU’s multiprocessor executes
the same instructions, and in turn each of these supports multiple hardware threads.

As is a common theme in parallelism, it is clear that the development of vector pro-
cessors was very much driven by the hardware, rather than the appeal of it as a software

2Opinion varies on how much longer it is likely to last.
3More specifically, the power usage of a single transistor is proportional to CV 2f where C is the

capacitance of the load, V the voltage and f the frequency.
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Figure 2.1: NVIDIA Hardware Architecture (taken from [20]).
(Based on a figure used in various NVIDIA presentations.)
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model. An example of where they can be difficult to work with is when the operations
being performed on data points require the use of if statements. If any threads tied to
the same instruction by hardware need to take different paths through code, then the
different paths must be executed sequentially after each other, with the irrelevant threads
being masked off in each case.

2.1.5 Heterogeneous Architectures

Given the variety in processor designs now available, there is considerable interest in
producing systems of heterogeneous cores. The most common example of this is the
standard pairing of a graphics processor with a multi-core CPU. However, there are many
other cases too, such as the IBM Cell Broadband Engine used in the Playstation 3 which
has a main Power Processing Element (PPE) and eight4 smaller Synergistic Processing
Elements (SPEs) [30]. The motivation is that in a program there may be some tasks
better suited to one variety and others to another. Even when all cores share the same
instruction set, there are benefits to having a powerful core that can execute chunks of
sequential code, along with many less powerful cores that are suited to parallel regions.

Although this offers the opportunity for better performance, it also presents a schedul-
ing challenge—adding a spacial dimension to the existing temporal problem. While we
will see some work later (Sections 2.3.1.3 and 2.3.5) that addresses this automatically, to
date the majority of programs are written specifically for a certain architecture and the
placement of computation is managed manually by the developer.

There has also been work on architectures that allow homogeneous tiles within a pro-
cessor to be reconfigured depending on the exact needs of an application [110]. However,
this thesis focuses on software adapting to hardware. It is unclear how one would ap-
proach a situation where both hardware and software are trying to adapt, as there are
potentially too many degrees of freedom for a scheduler to consider.

2.1.6 Moving away from Uniform Memory

The CPU-GPU combination that we have already seen is clearly an example where there
is not a single shared memory across the whole architecture. However, even within a
homogeneous multi- or many-core scenario it is unlikely that architectures will always be
able to offer cache-coherent shared memory. Unfortunately, as the number of cores grows,
the overheads involved in maintaining cache-coherence between the grid of cores on a chip
become prohibitive. Indeed, Intel’s research into scalable many-core chips has abandoned
cache-coherence, emulating it in software if required by a program [115].

These non-uniform memory architectures (NUMA) require management from software
to ensure that data is in the right place for a computation. This data movement is
performed using messages, which of course have a cost. It is managing these costs that
make these architectures so challenging. A lot of work focuses on the CPU-GPU scenario,
but the partitioned global address space (PGAS) model [32] has become relatively popular
and is used within the X10 language. X10’s other features can be categorised as fine-
grained task parallelism and are discussed in Section 2.3.1.2. Under a PGAS model,
the language exposes the reality that not all memory references are local to the current

4Note that in the Playstation 3 only seven of the SPEs are operational. This allowed the manufacturing
yield of the processor to be increased.
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computation, and therefore cannot be accessed as cheaply. Typically languages will insert
the necessary data transfers for non-local dereferences, and also provide constructs that
move computation to the local location of data.

2.1.7 Dataflow Architectures

Dataflow machines were an especially hot topic of research during the 1970s, with work
being conducted in research departments across the world, including Manchester and
MIT. The underlying idea in these is that rather than expressing programs as an ordered
list of instructions, the dependencies between instructions are described. This allows
the instructions to be executed in parallel. There were two distinct types of dataflow
architecture.

Static Dataflow was the earlier approach and allows the use of standard memories. De-
pendencies are described using the memory addresses of the predecessor instructions.
Unfortunately this only allows a single instance of an instruction to be executed at
once.

Dynamic Dataflow tries to overcome this by using content-addressable memory (CAM).
This allows multiple instances of the same instruction to be executed at once. How-
ever, it is worth noting that CAMs are very expensive to implement.

Ultimately, it became clear that dataflow architectures were too fine-grained to be
effective. The synchronisation and coordination required to execute a single instruction
often eclipsed the time taken to perform the instruction itself. Despite this, as already
mentioned, many ideas from this research do live on. Modern superscalar processors
use dataflow techniques to implement instruction reordering. Typical reordering windows
contain between 100 and 200 micro-operation (µop) entries [53, slide 24]. This allows them
to be stored in dedicated hardware, overcoming the issues encountered with fully-fledged
dataflow architectures.

2.2 Virtual Machines and Intermediate Representa-

tions

It could certainly be argued that intermediate representations, and architecture-neutral
distribution formats, for sequential architectures are a solved problem. Whilst there are
differences between the representations used in the main compilers, the core principles are
the same. This can be attributed to some extent to the fact that sequential architectures
in themselves have converged on fairly similar, RISC-like instruction sets.

It is unsurprising that the mainstream representations are all varieties of control-flow
graphs, since there are no commonly available processors with anything but functions and
branching in their instruction sets to describe program flow—even if they use dataflow
techniques internally to reorder instructions (Section 2.1.7). Since performance improve-
ments on a sequential architecture result in instructions being executed faster, this trans-
lates to a faster passage through the control-flow graph, without any need for the program
to be rewritten. Section 2.2.1 reviews several control-flow-based representations and their
adaptation to the advent of parallelism. Sections 2.2.2 and 2.2.3 look at less mainstream
work that expresses dependencies within the IR.
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2.2.1 Conventional Approaches

As mentioned in the introduction (Chapter 1), efforts to produce uniform intermediate
representations [107] and architecture-neutral distribution formats [70] date back to the
early 1960s. The first of these to receive widespread use was BCPL’s OCODE [97]. More
recently, the JVM [69], .NET’s CLR [36] and LLVM [1] have all become popular. Despite
some differences in design decisions between these, I argue in this section that they are
all very similar in nature.

The first key difference is that the JVM and .NET are very obviously slanted towards
the implementation of object-oriented languages, while LLVM offers a more traditional
RISC set of operations. Secondly, the JVM and LLVM are at opposite ends of the
spectrum with regards to offering runtime support. The JVM is very much a managed
environment with garbage collection and restrictions that prevent uncaught runtime er-
rors. On the other hand, LLVM makes no effort to prevent program crashes, simply
offering a universal language that can be compiled to a number of targets. Microsoft’s
.NET lies somewhere in the middle, supporting both managed and unmanaged opera-
tions. I view the choice between stack (JVM and .NET) and register (LLVM) machines
as insignificant—converting between the two is relatively trivial. The register machine
adopted by LLVM uses a single static assignment style where each register is only assigned
to once. In order to support loops and other convergent control-flow structures, φ-nodes
are used, which allow assignment based on the path taken into a basic block by specifying
the value to use for each predecessor.

All three intermediate representations are effectively control-flow graphs within an
overall structure of functions. One can view the object-oriented nature of the JVM and
.NET simply as one way of providing indirect function calls. The choice between manual
and automatic memory management is not relevant to this dissertation.

These representations have all been popular as targets for a number of other languages
(e.g. Scala). However, this is not necessarily because they are a natural fit. Indeed,
compiling functional and dynamic languages to the JVM is relatively difficult to do well,
and the subject of a number of research papers [10, 98]. Despite this, frontend developers
are drawn to these by the desire to reuse the mature optimisations that they provide and
achieve portability. This is confirmed by the presence of other VMs, such as Parrot [89]
which is far better suited to dynamic languages, that have received comparatively little
attention.

Unfortunately, there is very little support for parallelism in any of these VMs. All three
do define memory models to allow reasoning about threaded programs. Beyond that, they
expect threads to be provided by libraries.5 A slight exception to this is that the JVM
does provide instructions to enter and leave mutex locks. Compiling other primitives to
threads does not truly express the parallel nature of the high-level language, with most
information about the original constructs thrown away and difficult to reconstruct. These
virtual machines therefore struggle to perform any optimisation of parallel or concurrent
constructs within programs.

It is worth noting that there has been some success in compilation of these sequential
IRs to graphics processors. This was first done as an extension to the Jikes implementation
of the JVM [67], however, subsequent efforts in the context of the JVM both by myself [20]
and others [88] have preferred to perform a transformation on bytecode ahead-of-time.

5Java and .NET both provide threading in their standard libraries, even though under the hood their
implementations are heavily tied into the virtual machine. LLVM is less tied to a single implementation.
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There has also been work to produce NVIDIA’s PTX assembly code from LLVM bitcode
[96], and an (albeit different) PTX backend is now part of the mainline LLVM source
tree. However, in all cases these simply produce bodies of GPU kernels, relying on other
annotations or code to express the grid across which this should be run.

There has also been more theoretical work to produce parallel bridging models from
a sequential base. The best-known of these is Valiant’s bulk synchronous parallel (BSP)
model [114]. In BSP, execution is a sequence of supersteps. Within a step, computation
occurs on multiple threads, with disjoint local memories. These synchronise at the end of
each superstep. The threads can also get or put values from remote memory, and these
accesses also synchronise at the end of the superstep.

2.2.2 Dataflow Approaches

While control-flow graphs have been more common, there has also been a significant
amount of work on data-flow graph representations. These tend to have to find some
way of supporting control constructs, such as conditional branching and loops. Perhaps
the most elegant approach is that of the value state dependency graph (VSDG) [60]. It
takes inspiration from single static assignment form and uses a combination of state edges
and φ-nodes to encode all control flow. These state edges can only describe one thread
of execution through the graph, so there is no control parallelism (i.e. multiple tasks or
threads). It is of course preferable to minimise the number of nodes that are involved
in the state edges. Allowing such freedom in the ordering of instructions is beneficial
for both the original aim of the VSDG, register allocation and code motion, and also for
parallelism.

2.2.3 Alternative Techniques

Other work [122] has acknowledged some of the same issues that this work is trying to
address—namely, that compiling parallel constructs to a sequential IR loses information
and therefore might restrict optimisation. However, the majority of other work is intended
to be specific to a single source-language. Some very recent work aims for generality
[64], balancing this with a high-degree of pragmatism in an attempt to ensure it can be
integrated with existing compiler technology. This subsection describes these approaches
so that my IR (Chapter 3) can be seen in context.

X10. There has been a large amount of research surrounding X10 [102] and its descen-
dent languages [28]—largely led by Vivek Sarkar. They propose using multiple levels of
parallel intermediate representation (PIR) for the compilation of task parallel languages
[122]. The ‘highest’ of these, the High Level PIR (HPIR), is effectively a slightly simplified
abstract syntax tree. It is based around a region structure graph (RSG). The most signif-
icant part of this is the region structure tree (RST). This encodes the program as a tree
where leaf nodes correspond to IR instructions, and internal nodes (regions) to control
constructs—for example, async, finish, and both sequential and parallel loops. Each
of these regions is then backed up by a region control flow graph (RCFG) that describes
how the immediate children of the region relate to each other. The next level down of IR
replaces parallel loops with a sequential loop of asyncs, before the lowest reduces parallel
constructs to runtime calls.
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VCODE. Another approach tied closely to a single programming paradigm is VCODE

[13]. This develops a conventional stack-based IR to use only vector datatypes, and
support nested parallelism. It does this indirectly using segment descriptors. These
partition another vector into segments. Scan and permutation instructions then act within
the segments. For example, the + scan instruction computes the (exclusive) prefix sum
within each segment:

Vector = [1 3 5 7 11 13 15]

Segment Descriptor = [4 3]

+ scan

Result = [0 1 4 9 0 11 24]

The process of compiling nested parallelism into this representation is described in Sec-
tion 2.3.3.

SPIRE. The most recent work in this field [64] describes a transformation process
(SPIRE) for generating PIRs from an existing sequential language. It does this through
three alterations6 that allow control and data parallelism, but fail to offer dataflow or
event-driven support:

Execution Style. Whenever groups of statements are introduced by the IR (e.g. blocks
and loops), an annotation, that specifies whether the statements should be executed
sequentially or in parallel, is added.

Synchronisation. The authors propose that synchronisation of language constructs is
specified in two ways.

1. Each statement is given a synchronisation attribute. This indicates, for ex-
ample, whether the statement should be executed asynchronously by another
thread, whether the statement needs to execute atomically, whether all children
spawned by the instruction must complete before the statement concludes, etc.

2. To perform more coarse-grained synchronisation, events are used. These oper-
ate as a counter with the following operations:

• newEvent(int i) creates a new event with an initial value of i.

• signal(event e) increments the value of the event by one.

• wait(event e) waits until the value of the event is strictly greater than
0. It then decrements the event before allowing the thread to continue.

An event with a positive initial i will allow i threads to call wait and continue,
before the next blocks awaiting a signal. Events with an initial value that
is negative are useful, for example in the pseudo-code of Figure 2.2 which
implements a barrier. Without the second signal call, only one thread would
move past the barrier. With it, the threads resume, as the authors put it, in a
“chain-like fashion”.

Data Distribution. SPIRE assumes that the existing sequential representation sup-
ports shared memory. To this, it adds simple send and receive message passing
operations.

6The SPIRE work specifically modifies the PIPS intermediate language, which they describe as “a
comprehensive source-to-source compilation platform”, as well as LLVM.
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ph = newEvent(-(n-1));

for(int j = 1; j <= n; j++) {
spawn {

S;

signal(ph);

wait(ph);

signal(ph);

S’;

}
}

Figure 2.2: Implementing a barrier (between S and S’) with SPIRE’s events.

2.3 Programming Language Models of Parallelism

This section presents the models, languages and primitives that are currently available
for developers to use. I think it would be fair to say that, in the vast majority of cases,7

performance portability was not a primary concern, with the focus instead being on per-
formance in a specific scenario, or ease of use. The lack of intermediate representation
support for parallelism also means that a large amount of the work covered in this section
is implemented as non-transparent libraries. To allow analysis and optimisation of these
approaches, we need either direct compiler support for the primitives, or a common sub-
strate in which parallel constructs can be expressed transparently. All concepts covered
by other recent survey work [63] are included here, offering reassurance that my work has
not neglected to consider any key styles of concurrency.

2.3.1 Threads and Tasks

Software threads are very much the de-facto language construct for both parallelism and
concurrency. It can be argued that they came about in two distinct ways: as a reflection
of how hardware operates; and as an obvious way of achieving concurrency. However,
they were never designed as a sensible high-level programming model for parallelism.
The key difference between concurrency and parallelism in the context of this thesis is
who chooses the number of threads. For the purposes of concurrency, a programmer can
freely pick a number of threads based purely on the number of things that need to occur
without blocking each other. However, to achieve good parallel performance the number
of heavyweight software threads needs to be closely matched to the number of threads the
architecture can execute at once. Unfortunately, with varying numbers of cores between
different processors it becomes very difficult for a program expressed with multiple threads
to be truly agnostic of the target architecture.

7StarPU and OpenCL spring to mind as exceptions.
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2.3.1.1 Coordination

In general, coordination between threads is performed using shared memory along with
a combination of synchronisation primitives. By far the most popular primitives are
mutexes (mutual exclusion locks), condition variables, monitors and barriers—which are
all discussed in this section.

Mutexes. Whilst probably being the best known primitive, mutexes are arguably one
of the hardest to use correctly. If separate threads attempt to acquire locks in
differing orders, then a program will deadlock. Managing a strict order within one’s
own code is certainly possible, but this becomes much more difficult when composing
different libraries. Despite these failings, any universal representation of parallelism
will either need locks as a first-class primitive, or a way of encoding them.

Condition Variables. These allow threads to place themselves (via the wait operation)
on a queue of threads corresponding to some kind of condition or event. Another
thread can then indicate that this condition has been met, waking up either one
(notify) or all (notifyAll) of the threads waiting on it. A common pitfall is if a
notify occurs between another thread checking a condition and calling wait. In
this scenario (the lost wakeup problem), the waiting thread may never be woken
up. A second issue is that some implementations may result in spurious wakeups,
it is therefore typical to call the wait operation from within a loop that checks the
condition.

Monitors. First proposed by Hoare [57], monitors are simply the pairing of mutexes
with condition variables. In addition, a thread that waits on a condition variable
temporarily releases the mutex. Whilst originally proposed for managing operating
system resources, monitors are ubiquitous across concurrent programming.

Barriers. Perhaps the easiest to use of the conventional synchronisation techniques, bar-
riers ensure that a certain number of threads have reached a certain point before
allowing any of them to proceed.

These are all provided by POSIX threads (commonly known as pthreads) which is
the standard library used within the C programming language. OpenMP [34] is a stan-
dardised API that provides many of the primitives in this section for the C, C++ and
Fortran languages, as well as other patterns—for example, to help with data copying be-
tween threads, and performing reductions. The JVM provides monitors, with the mutex
operations forming part of the instruction set as noted earlier, and the condition variable
operations part of the in-built Object class. Thread Building Blocks [91] from Intel is also
a commonly used toolkit of such coordination primitives, along with implementations of
some standard concurrent containers. It also provides support for performing some data
parallel operations such as parallel for loops.

Atomic Blocks. A final paradigm to consider is that of transactions with atomic

blocks. Whilst the implementation of these using software transactional memory (STM)
is relatively complex, they do offer a far easier programming interface in a multi-threaded
environment than those above, and competitive performance. In particular, they compose
naturally without introducing the risk of deadlock. Implementations have been produced
across a range of languages from Haskell, to Java, to C++.
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An interesting development of the STM work is to attempt eliding more conventional
locks [99]. Whilst this does not improve the programming interface, it allows developers to
use more coarse-grained locking schemes without worrying that they will affect scalability.
It also allows the performance of existing code to be improved without rewriting it.

2.3.1.2 Fine Grained

The move towards finer-grained tasks began in the 1990s with the Cilk programming
language [16]. Since then, X10 [102], the Wool work-stealing library [39], and others have
taken similar approaches. In these languages, function calls can be spawned, allowing
them to be executed by a different worker. Primitives are then provided to wait for
spawned children to complete, although the exact semantics of these varies slightly be-
tween languages. In Cilk, sync waits for all children to finish. On the other hand, Wool’s
SYNC simply waits for the most recent spawn in a stack-like manner.

In all these languages, program tasks are separated from hardware threads by workers.
There is typically one such worker per hardware core, and their sole purpose is to work
through a list of (user-space) tasks that have not yet been completed. Work stealing [15]
has emerged as the de-facto scheduling technique amongst implementations of fine-grained
tasks. While implementations of the work queues and stealing operation can be complex,
the basic concept is very straightforward. Each worker maintains a separate queue of
tasks, and works through this. Once a worker’s own queue is exhausted, it attempts to
steal tasks from another worker.

Both Cilk and Wool focus on delivering high performance in spite of this fine-grained
approach, yet do so in very different ways. The research focus of X10 is more on its
primitives and approach to non-uniform memory architectures—although we have already
discussed its descendants’ intermediate representation in Section 2.2.3. X10 also integrates
barrier synchronisation with the task spawning model through its phaser primitives [104].

In Cilk-5, one of the key techniques is to compile two versions of each function: a
fast clone and a slow clone [49, 90]. The fast clone takes advantage of a key property
of Cilk programs—that removing the Cilk keywords results in a sequential C program of
identical semantics. The fast clone is executed in the majority of cases, and only converted
to the slow clone if it is stolen. This follows the authors’ work-first principle whereby
they try to ensure that any overheads associated with the model are only incurred when
parallel coordination occurs. This ensures that sequential execution of a Cilk program,
or program-part, is only a little slower than the sequential C equivalent. To understand
the mechanics of how this works, we must first describe the order in which Cilk places
items on its work queue. Whenever a spawn is encountered, it is the continuation of the
parent that is placed on the work queue, not the function being spawned. In the fast
clone (see Figure 2.3), after the spawned procedure has completed, the generated code
simply checks whether the continuation has been stolen—if so, then it can simply return.
However, the optimisation is cleverer than just that. Parents are always pushed onto the
work stack before children and steals are performed from the opposite end of the work
queue. Therefore, we know that a task can only ever be stolen if its parent has already
been stolen and switched to the slow clone. Hence in the fast clone, when it returns early
due to the continuation having been stolen, it can simply return a dummy value which is
always ignored by the slow clone. When the fast code executes to completion, it can make
use of the return value as in a normal C program, eliminating any coordination overhead.
A consequence of this approach is that the slow clone needs to be able to execute starting
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int fib(int n) {
fib_frame *f = alloc(sizeof(*f)); Continuation frame
f->sig = fib_sig; Includes slow clone’s code pointer

if(n < 2) {
free(f, sizeof(*f));

return n;

} else {
int x, y;

f->entry = 1; Continuation is after first spawn
f->n = n; Save live variables
push(f); Push frame
x = fib (n-1); Call spawned function

if(pop(x) == FAILURE) { Try to pop continuation frame
return 0; If stolen, return dummy value

(note x was passed to pop so that it is available to the thief later)

}

... Second spawn

; sync is free

free(f, sizeof(*f));

return (x+y);

}
}

Figure 2.3: Example of fast clone for fib in Cilk (based on Figure 3–2 of [90]).
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from any possible continuation in the task (as indicated by f->entry). However, since
this code is only executed after a steal, its overheads affect the overall performance much
less.

On the other hand, as a library approach, Wool cannot compile tasks twice. It therefore
seeks to minimise the overheads associated with SPAWN and SYNC operations. It does this in
a number of ways. Whilst some of the optimisations are very specific to the SPAWN/SYNC
model, there are a number of insights that are relevant to the implementation of any
concurrency primitives [40]. Firstly, Wool attempts to reduce indirection by keeping the
task descriptors in the work queue itself rather than storing pointers to them. It also
attempts to reduce contention on the work queue by dividing it into a private area and a
shared area. A worker can operate on its own private area without fear of contending with
other workers. This eliminates the need for expensive memory barriers and compare-and-
swap operations. The success achieved through these is encouraging for any implementor
of fine-grained concurrency primitives. A later paper [41] discusses strategies for choosing
a victim worker during a steal. This could be relevant to future work based on this
dissertation but is not discussed here. Actual performance figures for Wool are available
in Chapter 6, where it is used as one of several baselines against which my work is
evaluated.

Finally, I wish to mention the Chase-Lev work-queue [29]. The algorithm itself is
shown in Figure 2.4. While Cilk and Wool have focussed on improving the performance
of coordination, this approach is still the standard approach for a simple work-queue
without coordination (i.e. where tasks do not produce results, and do not wait on the
completion of other tasks directly). The goals of the implementation are similar to Cilk’s
work-first principle, in that they attempt to minimise the cost of operations by the owner
worker on the queue. It ensures that push operations by the owner do not require any
compare-and-swap (CAS) operations. Similarly, the owner can pop items without a CAS
provided that this does not leave the queue empty. The continuation-passing style of my
work means that this approach is particularly relevant, and used in my implementation
(Chapter 4).

2.3.1.3 StarPU

StarPU [8] is an attempt, by Augonnet and others, to provide a task scheduling library
in the context of heterogeneous systems. This extends the authors’ earlier work which
automates transfers between CPU and GPU memories [7] with a task execution engine.
They provide standardised interfaces to both program developers and scheduling policy
researchers. Each task can be defined with dependencies, and must specify what data are
required by the task and how they are accessed (i.e. read-only, write-only or read-write).
A number of implementations can then be provided for each task—for example, a GPU
version as well as standard CPU code. StarPU manages the dependencies between tasks,
automates data transfers, and uses the specified scheduler to choose between versions of a
task. All this is done with the aim of optimising performance. The authors argue that this
is the only feasible approach for heterogeneous architectures, and that “it is very unlikely
that writing portable code which efficiently maps tasks statically is either possible or even
productive”.

All schedulers in StarPU conform to a very simple interface. They provide two meth-
ods, push and pop, for each computation unit (or worker). This accommodates a range
of scheduling policies (e.g. work stealing and list scheduling) whilst still being straight-
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void pushBottom(q, T value) { T popBottom(q) {
long b = q.bottom; long b = q.bottom - 1;

long t = q.top; q.bottom = b;

long t = q.top;

if((b - t) >= q.capacity - 1) {
Grow array long size = b - t;

}
if(size < 0) {

q.array[b] = value; bottom = t;

q.bottom = b + 1; return Empty;

} }

T steal(q) { T value = q.array[b];

long t = q.top;

long b = q.bottom; if(size > 0) {
return value;

if(t >= b) return Empty; }

T value = q.array[t]; if(!cas(&q.top, t, t + 1)) {
value = Empty;

if(!cas(&q.top, t, t + 1)) { }
return Abort;

} q.bottom = t + 1;

return value; return value;

} }

Figure 2.4: The Chase-Lev Work-Stealing Deque Algorithm [29]
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forward enough to implement efficiently. StarPU allows priority and performance model
annotations to be placed on tasks and implementations respectively. If no performance
models are specified, it attempts to infer these automatically with either a pre-calibration
run, or dynamically at runtime.

Of the greedy policies that they investigate, heterogeneous earliest finish time (HEFT)
[112] achieves the best results. It considers a directed-acyclic graph (DAG) of tasks,
where each task can be given an expected time on each processor—i.e. exactly the StarPU
scenario. An initial ranking phase gives each task a priority based on its distance from
the last task in the DAG. Tasks are then allocated to the worker on which they will be
able to complete first, given that tasks assigned to that worker will execute in priority
order.

This work has also been extended to allow for a distributed cluster of heterogeneous
machines [6]. This is done by allowing the HEFT scheduling policy to consider an estimate
of the time taken to transfer data to the relevant worker. A variant that allows data to
be pre-fetched while a task is waiting to execute is also considered.

2.3.2 CUDA and OpenCL

Before CUDA [83] was released in 2007, general purpose use of graphics processing units
(GPUs) had to be formulated as graphics operations [54]. CUDA was one of the first
frameworks that made programming GPUs more manageable, as in most cases the un-
derlying instruction set is a trade secret. It is therefore inevitable that its features were,
and continue to be, very much driven by those available in the underlying hardware.
The subsequent OpenCL Specification [78], whilst attempting to be vendor-agnostic and
portable, provides an almost identical programming model8. Both frameworks are based
on C++ with additional keywords for specifying whether functions should be compiled for
the host or GPU amongst other things. Whilst the language choice is mostly due to the
market share of C/C++, it is a useful indication of the level at which these frameworks
operate—i.e. quite close to the hardware.

The OpenCL framework turns out to be a very good example of how basing a portable
framework around a specific architecture’s features can lead to extremely poor perfor-
mance portability [65]. The difficulty is that although AMD and NVIDIA GPUs appear
to offer similar abstractions, their performance characteristics are quite different (e.g.
memory access patterns that fit the hardware best). To counteract this, there has been
work on parameterised programs that can be auto-tuned to a specific GPU by changing
loop nesting orders etc.

The programming model for both CUDA and OpenCL is as shown in Figure 2.5. All
threads (or work items) operate in a data parallel way, however, the level of synchronisa-
tion allowed between them depends on whether they are part of the same block (or work
group). Within a block, both frameworks support extra barriers and atomic operations
that are not available across the complete grid. There is also memory that is shared
between threads within a block, but not outside.

8For consistency, I use CUDA terminology where there is a discrepancy between the two.
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Block/Work Group

Thread/Work Item

Grid/NDRange

Figure 2.5: Software model of threads under CUDA/OpenCL (adapted from [20]).

function qsort(a) =

if(#a < 2) then a

else

let pivot = [#a/2];

lesser = {e in a | e < pivot};
equal = {e in a | e == pivot};
greater = {e in a | e > pivot};
result = { qsort(v) : v in [lesser,greater]}

in result[0] ++ equal ++ result[1];

(where # gives the length of a sequence, and ++ represents concatenation)

Figure 2.6: Example NESL quicksort function (taken from [12]).

2.3.3 Nested Data Parallelism

The seminal work on nested data parallelism is Blelloch’s NESL language [12]. This is
a strongly-typed strict first-order functional language, with support for sequences whose
elements are themselves sequences. Sequences can be nested to an arbitrary depth. Par-
allelism over these sequences is then offered in two ways:

List Comprehensions. These allow any function in a program to be applied concur-
rently to each element of a sequence. It is also possible to subselect elements of the
sequence. For example (directly from [12]):

{negate(a) : a in [3, -4, -9, 5] | a < 4} ⇒ [-3, 4, 9]

In-Built Parallel Operations. e.g. sum and permute. These can be thought of as build-
ing blocks for the rest of an algorithm.

As an example, a parallel version of quicksort is shown in Figure 2.6.
NESL is compiled to the VCODE intermediate language introduced in Section 2.2.3. This

is done by a process known as flattening nested parallelism [14] due to Blelloch and Sabot.
All values in NESL are logically encoded as instances of the pfield pair-datatype where
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the first element (segdes) is a segment descriptor, and the second (value) either another
pfield or a sequence of integers. This can of course be compiled trivially into multiple
values on the stack and multiple arguments to functions.9 For a primitive vector, the
segment descriptor is a single element sequence containing the vector’s length, and the
value is the vector itself. For a vector of vectors, the segment descriptor is again the
length, but the value is another pfield. This second pfield is the field-wise concatenation
of the pfield representations of each sub-vector. For example, the encoding of [[a00 a01]
[a10 a11 a12] [a20]] is:

segdes : [3]

value :

{
segdes : [2 3 1]

value : [a00 a01 a10 a11 a12 a20]

Each list comprehension in NESL removes one level from this structure.

2.3.4 Embedded Domain Specific Languages

Another popular approach is to provide a restricted language embedded within another
mainstream language—the idea being that the computations expressed are suitable for
compilation to a range of platforms, including GPUs and FPGAs. These are typically
implemented either with a quoting mechanism (for example within Haskell [71]) or with
operator overloading (for example in C# [106], or Python [26]). The Array Building
Blocks library [80] from Intel also falls into this category, amalgamating earlier work on
Intel Ct and Rapidmind. This code is then compiled for the target architecture in a
just-in-time fashion, with the results of this compilation often being cached.

A key advantage of this approach is that it allows new ideas and techniques to be
integrated into more mainstream and established languages. However, it is important
to remember that this is not a “silver bullet”. There is no reason why the embedded
language will be any better than the other parallel languages, it might just receive more
attention. Indeed, it has been shown that, while they offer code portability, it is very
difficult, at least in the case of Rapidmind, to achieve performance portability “without a
deep understanding of the hardware and RapidMind’s internal mode of operation” [31].

2.3.5 Dataflow and Streaming Languages

Around the same time that dataflow architectures were receiving attention, there was also
research into dataflow programming languages. The first of these was Lucid [117], which
introduced the idea of a variable representing a stream of values. A few simple examples
of this style of programming are shown in Figure 2.7. More recently, streaming languages,
some distributed computing frameworks and, to a lesser extent, co-ordination languages
have continued efforts into data-centric programming.

Streaming languages are particularly applicable to signal processing and media ap-
plications. A lot of the work on them has been based around StreaMIT [111]. The key
construct in StreaMIT programs is a filter. These can be combined into a stream pro-
gram. A filter takes a source channel, performs operations using peek and pop operations,
and then places results onto an output channel. There are also constructs for supporting

9Wherever a pfield is expected, it will be known how deep the nesting of the value field is.
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fac where

n = 1 fby (n + 1);

fac = 1 fby (fac * n);

end

fib where

fib = 0 fby (1 fby (fib + next fib));

end

(where fby means ‘followed by’, and next advances the stream one element.)

Figure 2.7: Simple Examples of LUCID Programs.

feedback loops and splitting a channel into multiple channels (or joining multiple channels
into one). As an example, consider the Fibonacci program in Figure 2.8. Work on stream-
ing languages has included consideration of their mapping to heterogeneous architectures
through various forms of scheduling. These are discussed further in Section 6.6.2.

The first large-scale distributed computing model to be based on dataflow ideas was
Google’s map-reduce [35]. In this framework, there is an initial data-parallel step (map)
before these values are reduced to a result. Further research has resulted in more general
dynamic dataflow graphs such as CIEL [79]. Under such models, a task can spawn a child
dataflow graph and delegate its result to this new graph. CIEL forbids cyclic graphs, but
it is perfectly valid for a graph to recursively create copies of itself as children. These
approaches are in a similar vein to coordination languages, where sequential functions are
linked together as dependencies.

2.3.6 Message Passing

Message passing has always been a popular approach, both in practice and amongst
process calculi. Popular implementations of message passing were driven by the need for
a way of communicating between nodes of a cluster. However, the appeal in the theoretical
arena was the cleaner behaviour they offer compared to shared memory communication.

The most common standard for message passing is MPI [44]. As well as this library-
based approach, there are a number of languages with message passing as a central prim-
itive. A language that I will explore in some detail is Concurrent ML (CML) [95], since
it provides a good overview of the concepts incorporated in the other languages.

Built on top of standard ML, CML provides threads with blocking and non-blocking
operations on channels for synchronous communication. It does this using events, which
were first explored in the PML research language [94]. A selection of the standard primi-
tives in CML is shown in Figure 2.9. All operations on channels (or I/O, timeouts etc.)
produce an event, but return immediately without the operation actually taking place.
Composing any of the channel operations with sync then results in the blocking version.
Conversely combining it with poll gives a non-blocking equivalent. The other two op-
erations on events are wrap which acts like a typical map primitive, and choose which
produces a composite event that occurs once one of the sub-events can (and does) occur.

Erlang [5] is heavily used within the telecomms industry, and offers similar constructs
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class Fibonacci extends FeedbackLoop {
void init() {

setDelay(2);

setJoiner(WEIGHTED_ROUND_ROBIN(0,1));

setBody(new Filter() {
Channel input = new IntChannel();

Channel output = new IntChannel();

void work() {
output.push(input.peek(0) + input.peek(1));

input.pop();

}
});
setSplitter(DUPLICATE);

}

int initPath(int index) {
return index;

}
}

Figure 2.8: StreaMIT program for computing the Fibonacci stream (taken from [111]).

val spawn : (unit -> unit) -> thread_id

val choose : ’a event list -> ’a event

val wrap : (’a event * (’a -> ’b)) -> ’b event

val sync : ’a event -> ’a

val poll : ’a event -> ’a option

val channel : unit -> ’a chan

val receive : ’a chan -> ’a event

val transmit : (’a chan * ’a) -> unit event

val waitUntil : time -> unit event

val timeout : time -> unit event

val accept : ’a chan -> ’a = sync o receive

val send : (’a chan * ’a) -> unit = sync o transmit

Figure 2.9: A Selection of Primitives in Concurrent ML.
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Name Based On Distinguishing Features
JoCaml OCaml Compiled—recent
Polyphonic C# / Cω C#
Joins Library C# Lock-free implementation—recent
Boost Library C++
Join Java Java
Hardware Join Java Matching done in hardware
JErlang Erlang
Funnel Compiled to JVM

Table 2.1: Selection of join calculus implementations.

to CML except with asynchronous channels. XMOS use a channel-based version of C (XC
[119]) to program their multicore microcontrollers10. The Manticore research language [43]
combines these CML primitives with the nested data parallelism from Section 2.3.3.

As stated above, many process calculi are also based around messages. Communi-
cating Sequential Processes (CSP) [58] is normally seen as the ancestor of the CML and
XMOS work. However, it does not support higher-order programs where channel names
themselves are communicated. The π-calculus [76] does support this, along with dynamic
creation of new names. Rather than describing the π-calculus, I will describe the join
calculus, a closely related model, in Section 2.4.

Actors [56] is another formal model that has been adapted for use in programming. It is
based around the idea that no state is shared between actors, which instead communicate
via messages. Upon receiving a message, an actor may alter local state, create new
actors, and send messages. It is not dissimilar to the join calculus introduced in the next
section—however, it has no equivalent of join patterns.

2.4 The Join Calculus

The join calculus was introduced as a model of concurrent and distributed computation
[45]. Its elegant primitives have since formed the basis of many concurrency extensions to
existing languages—both functional [33, 84] and imperative [116, 9]—and also of libraries
[101], as researchers have looked for paradigms that allow developers to express parallelism
naturally, without introducing the intermittent “data race” bugs often associated with
concurrency. A complete list of implementations known to the author is given in Table
2.1.

The basis of the join calculus is to declare computations as reactions to certain mes-
sages being available. By doing so, it offers a strong language for coordination and makes
dependencies between computations very explicit.

The variant of the join calculus syntax that I will use is shown in Figure 2.10. This
is very similar to the original used by Fournet [45], however, I use & rather than | to
represent joined messages as has become more standard. In this core calculus, terms can
either be definitions, asynchronous emissions of messages to a channel, or a composition
M &N of other terms. This composition can be thought of as parallel. When a definition

10XMOS, their microcontrollers and XC can be seen as descendants of INMOS, the transputer and
occam respectively.
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Channels x, y, z

Terms M,N = def D in M | x(ȳ) |M &N

Definitions D,E = J �M | D,E | ε
Patterns I, J = x(ȳ) | I & J

Figure 2.10: Syntax of the Core Join Calculus.

term is encountered, it introduces new transition rules of the form J�M into the program.
Any channels defined within J are freshly instantiated, and distinct from other occurrences
of the same definition. Each channel is associated with an unordered message queue. Once
messages emitted to channels match the join pattern of a transition rule, the right-hand-
side of the rule can be executed. The formal semantics of this are given in Section 2.4.1
below. Other work on the join calculus sometimes refers to channels as names and signals.

Many presentations and implementations of the calculus also allow for synchronous
channels. As the name suggests, these allow calls to block awaiting a return value. Whilst
very useful as a programming concept, these can easily be encoded with standard, asyn-
chronous channels in a continuation-passing style. The transformation is straightforward
and similar to that for the λ-calculus.

Another restriction commonly made is to forbid non-linear join-patterns. A linear
pattern is one in which each channel can appear at most once. Not dealing with these
tends to simplify implementations slightly, although they can be useful in implementing
barriers and reductions.

2.4.1 Origins, Semantics and Related Models

Fournet’s original paper on the join calculus [45] introduced it as a reflexive chemical
abstract machine (ChAM), since the instantiation of definitions allows reaction rules to
be added to the program by the program. Its semantics were therefore described in a
similar way to the original ChAM, with messages meeting to form molecules, and then
reactions occurring when those molecules matched a join pattern. These semantics operate
on a solution R ` M, where R is a multiset of active transition rules (i.e. J �M) in
the program andM is a multiset of current messages and molecules (i.e. terms M). The
rules of this approach are shown in Figure 2.11. The first two (join and def) are structural
equivalences, while the third is a reduction step. Whilst the first rule may need to be
used in both directions, there is never a need to move transition rules back from R toM
with def. Note that only the members of the multisets involved in the rule are shown. I
also do not include Fournet’s “str-and” rule11 since I consider the def rule to introduce
the transition rules separately to the R multiset.

However, this is not the only presentation that has been offered. The original paper,
and Odersky’s work [85, 84], give a rewriting style of semantics. Instead of using multisets
of terms and transition rules, these instead operate on the syntax of the calculus. In order
to do this, a larger number of structural equivalences are defined, along with reduction
contexts. These effectively emulate the properties that are gained for free from multisets.
I do not make use of this style of semantics, so will not introduce them formally.

11With the notation of Figure 2.11, it would read: (D,E) `M 
 D,E `M .
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`M &N 
 `M,N (join)

` def D in M 
 Dσdv `Mσdv (def)

J �M ` Jσrv → J �M `Mσrv (reduce)

where σdv and σrv are substitutions such that:

σdv instantiates the defined channels of D to fresh names that do not appear elsewhere
in R.

σrv substitutes the values transmitted on the right-hand side with the named param-
eters in the join pattern J .

Figure 2.11: Chemical Abstract Machine Semantics for the Join Calculus.

A

B

A

B

Figure 2.12: Firing Step for a Simple Petri-net.

Odersky’s papers also highlight the connection between the join calculus and Petri-
nets. Petri-nets are a far older model for formalising concurrent systems. Much like a join
calculus transition requires all of the queues in its join pattern to contain a message, a
Petri-net transition (drawn 2) requires all of its pre-places (drawn ©) to contain a token
(drawn •). After the transition fires, these tokens are removed, and a token placed at
each of the transition’s post-places. Figure 2.12 shows a firing occurring of transition B in
a simple Petri-net. Another example is a simple merge-sort of a 4-element list as shown
in Figure 2.13 (the ‘2’s in the diagram show multiplicities where multiple tokens are taken
from, or given to, a single place in a firing). However, unlike the join calculus, which
allows for dynamic creation of message queues, the structure of a Petri-net is entirely
static. Note that the multiplicities used in Figure 2.13 on pre-places correspond directly
to non-linear patterns in the join calculus.

More formally an (uncoloured, place-transition) Petri-net can be defined as a tuple
consisting of:

int[4]

split

int[2]
2

split

int[1]
2 merge2

int[2]

merge2
int[4]

Figure 2.13: Petri-net for merge-sort of a 4-element list.
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• A set of places P .

• A set of transitions T .

• A pre-place function • : T →mP . These are the places which must contain tokens
in order for a transition to fire. Note that • gives a multiset, allowing multiplicities
on arcs to be specified.

• A post-place function • : T →mP .

The state of a Petri-net is then given by a marking M ∈ mP . These are sometimes also
referred to as token distributions. This allows us to define the firing rule M →M ′ of the
Petri-net as follows:

M
t→M ′ ⇐⇒ •t ≤M and M ′ = M − •t+ t•

Vector addition systems are an equivalent model where each vector has an element per
place. Both markings and transitions can then be represented by such vectors (markings
are not allowed negative values).

A standard extension to Petri-nets is coloured Petri-nets (CP-nets) [59] which allows
tokens to take values. These associate a type, or set of colours, with each place. Tokens
at a place must then be of one of these colours. Transitions can also be guarded by
expressions that check the values of incoming tokens.

2.4.2 JoCaml

JoCaml [33] was the first mainstream implementation of the calculus. Prior to my own
work, Le Fessant and Maranget’s work [66] on it was also the only attempt to use compiler
analysis and transformations on the calculus to improve performance. Their work was
based on a compiler for the join language as well as JoCaml. This section will summarise
the key techniques in both.

In both implementations, a channel can be in one of several states depending on the
length of its message queue. Initially, there are just two states, {0, N}. Their approach uses
a finite state machine (FSM) for each definition to determine when matching is possible.
Each combination of the definition channel states corresponds to a state in this machine.

For JoCaml, the state is stored as a bit vector. If a new message arrives on a channel
of state N then no new checks need to be made (assuming only linear patterns). If the
status is changed, then a list of bit vectors corresponding to transitions is traversed to
see if a match has occurred. The performance is therefore very dependent on the speed
of these bit vector comparisons.

In the case of join, the state of a definition is maintained by a vector of function
pointers for each channel in the definition. On updating the state of an instance, these
are also updated. The code referred to is therefore specialised to a specific definition state,
and does not need to check any channels explicitly. This makes message sends very cheap
since they simply advance the FSM, and check whether the new state allows a match
(which is known statically). After performing a match, the implementation must perform
a few more checks to calculate the new state. More specifically, consuming a message on
a channel marked N could either leave it in the N state, or move it to 0.

To optimise the common case where only a single message is waiting in a channel’s
queue, they add a 1 state to the join compiler. The reasoning for the addition of the
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1 status is that 0 and 1 can be implemented efficiently with a single memory location,
whereas N requires an actual queue for the channel. The 1 state also improves the post-
matching overhead, since a 1 channel will always move to 0 after a message is consumed.
Unfortunately as the JoCaml implementation requires channel statuses to be stored in a
single bit, the 1 state is not applicable.

The join compiler goes further and tries to eliminate the possibility of the N state
using a “rudimentary name usage analyzer” that suffices for certain cases (although the
analyser itself is not described). This allows the code pointer for such channels (called
state channels) to remain unchanged, since messages will only be sent when it lies in the
0 state. This approach is not dissimilar to the queue bounding efforts that will be made
later in Chapters 4 and 5.

A final observation made is that the state space of a definition can grow very rapidly,
and in an implementation where each overall state gives new code pointers for a channel’s
message send function, this can cause problems. For instance, in a definition that looks
like:12

def create(x_0,k) �
def S(x) & f_1() � P_1(x),

S(x) & f_2() � P_2(x),

...

S(x) & f_n() � P_n(x)

in

S(x_0) & k(f_1, f_2, ..., f_n)

Since we have O(n) channels, the state space grows with 2n even though there are only
O(n) transitions. The cost of doing a dynamic search of transitions (as in JoCaml) is
therefore more appealing than the state space explosion. They therefore suggest using a
dynamic state (written as ‘?’) for channels which their name usage analyser cannot track.
This allows many of the states of the FSM to be collapsed.

2.4.3 The Joins Library

Claudio Russo’s “Joins Library” [101] implementation of the calculus makes use of generic
types and delegates in C# to offer join calculus coordination primitives. As an illustration
of the library’s API, a simple example of a single-item buffer is given below (taken from
the second paper [113]). With this library, each definition instance is defined when it is
created. Join.Create therefore represents creating an instance of an empty definition to
which channels and transitions are then added by Init and When.

class Buffer<T> {

public readonly Asynchronous.Channel<T> Put;

public readonly Synchronous<T>.Channel Get;

public Buffer() {

Join j = Join.Create();

j.Init(out Put);

j.Init(out Get);

12I have used syntax similar to that introduced in this section, rather than JoCaml/join’s actual
syntax.
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Pending

send

Claimed

try commit

fail

Consumed

success

Figure 2.14: State Machine for Joins Library Message Implementation

j.When(Get).And(Put).Do(t => { return t; });

}

}

One side-effect of this library approach is that it allows the dynamic creation of joins.
Therefore it is possible to create specific size barriers using non-linear join patterns as
shown below (again taken from the original papers). This can only be supported in
a compiler approach (such as my own work, or JoCaml) through the introduction of
dynamic code generation.

class SymmetricBarrier {

public readonly Synchronous.Channel Arrive;

public SymmetricBarrier(int n) {

Join j = Join.Create();

j.Init(out Arrive);

var pat = j.When(Arrive);

for (int i = 1; i < n; i++) pat = pat.And(Arrive);

pat.Do(() => { });

}

}

Early versions of the library focussed on offering an easy-to-use API for programmers, and
paid little attention to performance. Indeed it was implemented with coarse-grained locks
on each message queue, restricting the scalability to large numbers of cores. However,
more recently Aaron Turon, together with Russo, has developed a second implementation
[113], based on lock-free queues, with careful consideration being given to the overheads
of matching join patterns. The results that they achieved demonstrated that using the
join calculus to implement primitives can match, and even exceed, the performance of
more conventional approaches in some cases.

The main difficulty in implementing the join calculus is performing the atomic check
and removal of messages from each message queue named in the join pattern. The original
implementation attempts to overcome this difficulty with coarse-grained locking and by
minimising the length of the critical sections. It is also beneficial to minimise the number
of patterns that are checked. For this reason, the Joins Library implementation forms
and maintains a list of all transitions affected by a given channel, unlike the JoCaml
implementation which simply keeps a single list for the whole definition.

Turon’s fine-grained approach uses lock-free queues (based on [72]) where each message
is in one of three states: pending, claimed or consumed. The state machine between these
is shown in Figure 2.14. The states are used in the following ways:
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Pending. Messages are initially placed onto the queue in this state and it indicates that
they are available for matching.

Claimed. When a message has been reserved for a match, it is placed in this state.
However, if the runtime fails to claim messages for the other channels specified in
the join pattern, then the state can be rolled back to pending.

Consumed. Once the content of the message has been used, the status is switched to
consumed. This indicates that the message has been logically deleted, even though
it still exists in the queue. By doing this, it allows a message to be ‘deleted’ from the
queue with an atomic operation. The standard Michael-Scott queue (as is typical)
only allows removal of nodes from one end, so this technique is necessary to allow
messages mid-way to be deleted.

Matching against join patterns is therefore done in a two-phase commit manner. First the
matching code examines each channel in the pattern trying to find a pending message.
If such a message is found for each channel, then it will try to ‘commit’ the match by
switching these messages to claimed using a compare-and-swap operation. This will fail
for any messages that have since been matched by another worker. In this case, any
claimed messages are reverted to pending. Only once the values have been extracted
from all these messages are their statuses changed to consumed.

Given this implementation, it is clear that the unordered nature of join calculus mes-
sage queues offers significant performance benefits. Were the queues to be ordered, then
any rollback of a claimed message would force any matches using subsequent messages to
also be rolled back.

To ensure that no matches are missed, it is necessary to retry matching if, when
searching for a pending message, a claimed message is seen. This is because the claimed
message could later be reverted to pending if the competing match fails to complete. A
full proof of correctness of this approach is given in Turon and Russo’s paper. However,
the general idea is that the addition of a message to a queue has a linearisation point.
That is to say that there is a notion of a global ordering of messages in the system. By
retrying when a claimed message is seen, we ensure that if a match is possible using the
message and messages that arrived before it, then the matching procedure will either
succeed or terminate due to the message being consumed by another worker.

Their evaluation of this work demonstrates that despite the effort put into shorten-
ing the critical sections of the original implementation, the fine-grained approach almost
always performs better. Furthermore, the performance of concurrency primitives im-
plemented via the join calculus and their new implementation is competitive with, and
sometimes even beats, the standard implementations found in the .NET libraries. Whilst
unexpected, since one would expect the .NET library to be highly optimised and it can
utilise exactly the same primitives that underlie the Joins Library, it does offer encour-
agement to this thesis’ overall aim—i.e. that a universal simplifying representation need
not introduce prohibitive overheads.

This implementation technique can also support non-linear patterns relatively easily.
When traversing the message queue looking for pending messages, one simply keeps going
until the correct number have been found. In this case, matches must be retried if the
sum of pending and claimed messages seen during this traversal is equal to, or greater
than, the number of messages required from the channel for the join pattern.
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ρ ` x→ ρ(x)
(var)

ρ ` c→ c
(cons)

ρ ` λx.e→ (ρ, λx.e)
(lam)

ρ(x1) = (ρ′, λx.e) ρ′[x 7→ ρ(x2)] ` e→ v

ρ ` x1x2 → v
(app)

ρ ` e1 → v1 ρ[x 7→ v1] ` e2 → v2

ρ ` let x = e1 in e2 → v2
(let)

Figure 2.15: Semantics for the Flattened λ-Calculus.

2.5 Control-Flow Analysis

Control-flow analysis (CFA) has been a central technique for implementing higher-order
languages. Without it, it is impossible to perform optimisations such as inlining except
in trivial (i.e. first-order) cases. As is shown in Chapter 4, this is also the case for some
optimisations of the join calculus. Whilst ignored by the Joins Library implementation,
JoCaml did explore the use of simple analysis and it is this that I build on in this thesis.

In the literature, there are two main styles of control-flow analysis: the constraint-
based approach originally developed by Heintze [55] and popularised by the Nielsons [82];
and the abstract interpretation method by Shivers [105] and more recently revisited by
Might and others (e.g. [74, 73, 75]). This section will explore these two techniques, before
talking about call-strings as a way of abstracting program histories and improving accu-
racy in the λ-calculus. Finally, I look at existing work on using escape-based techniques
to analyse parts of programs. This happens to have been adapted to Concurrent ML [93].

2.5.1 Constraint-based

The style and notation of constraint-based analysis presented here, and used throughout
Chapter 5, is based on that presented by Faxén [38]. Here I introduce his polymorphic
technique in the context of the flattened λ-calculus with the semantics of Figure 2.15.
This forbids anonymous sub-expressions in function applications.

e ::= x | c | x1 x2 | λx.e | let x = e1 in e2

Each program expression and variable is associated with a flow variable α. The analysis
will then first construct constraints over these flow variables, and flow values—i.e. con-
stants and flow closures (also referred to as type schemes in Faxén’s work). It then needs
to solve these constraints by assigning a set of flow values to each flow variable. This
assignment Φ is called a model of the constraint set. The complete analysis is shown in
Figure 2.16.

The constraints are generated using inference rules for a judgement S, ρ̂ ` e : α. The
flow environment ρ̂ is an abstract version of the environment ρ in Figure 2.15, mapping
program variables to flow variables. In this judgement, S is a constraint set and α a flow
variable corresponding to the expression e. Constraint sets and flow environments also
appear in flow closures.
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Constraint Syntax:

S ⊆ Constraint ::= α1 ⊇ α2 | α ⊇ {c} | α ⊇ {w} | α1 7→ α2 ⊇ α3

w ∈ FlowClosure ::= (S, ρ | λx.e : α1 7→ α2)

Constraint Generation Rules: (with judgement form S, ρ̂ ` e : α)

{α ⊇ ρ̂(x)}, ρ̂ ` x : α
(var)

{α ⊇ c}, ρ̂ ` c : α
(cons)

S, ρ̂[x 7→ α1] ` e : α2

{α ⊇ (S, ρ̂ | λx.e : α1 7→ α2)}, ρ̂ ` λx.e : α
(lam)

{ρ̂(x2) 7→ α ⊇ ρ̂(x1)}, ρ̂ ` x1x2 : α
(app)

S1, ρ̂ ` e1 : α1 S2, ρ̂[x 7→ α1] ` e2 : α2

S1 ∪ S2, ρ̂ ` let x = e1 in e2 : α2

(let)

Model of Constraints: (Φ |= S iff Φ |= s for all s ∈ S)

Φ |= α1 ⊇ α2 ⇐⇒ Φ(α1) ⊇ Φ(α2)

Φ |= α ⊇ {w} ⇐⇒ w ∈ Φ(α)

Φ |= α ⊇ {c} ⇐⇒ c ∈ Φ(α)

Φ |= α1 7→ α2 ⇐⇒ w ∈ Φ(α) =⇒ Φ |= I(w, α1 7→ α2)

Closure of Constraint Sets: S+ ⊇ S

{α1 ⊇ α2, α2 ⊇ {w}} ⊆ S+ =⇒ {α1 ⊇ {w}} ⊆ S+

{α1 ⊇ α2, α2 ⊇ {c}} ⊆ S+ =⇒ {α1 ⊇ {c}} ⊆ S+

{α1 7→ α2 ⊇ α3, α3 ⊇ {w}} ⊆ S+ =⇒ I(w, α1 7→ α2) ⊆ S+

Instantiation of Flow Closures:

I((S, ρ̂ | e : α′1 7→ α′2), α1 7→ α2) = ∃α′′1, α′′2.S[α′′1/α
′
1, α

′′
2/α

′
2] ∪ {α′′1 ⊇ α1, α2 ⊇ α′′2}

Figure 2.16: Faxén’s Polymorphic Control-Flow Analysis for the λ-calculus.
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There are four forms of constraint. The first two are straightforward. The syntax
α1 ⊇ α2 is used to indicate that all values represented by α2 could flow to α1, while
α ⊇ {c} indicates that c flows to α.

When encountering a λ-abstraction λx.e, constraints are generated for the body e.
However, to allow analyses more precise than a simple monovariant approach, these are
saved in the flow closure w = (S, ρ̂ | λx.e : α1 7→ α2). A flow closure states the the
constraints S describe the function λx.e when it is passed an argument from α1 in an
environment ρ̂, with the result represented by α2. This allows the constraints to be
instantiated using I for different call-sites by performing substitutions on α1 and α2.

Finally, there are application constraints α1 7→ α2 ⊇ α3. These represent a call-site
making use of a function from α3, with argument from α1, and with the result flowing
to α2. The model of this constraint instantiates the constraints in each flow closure
represented by α3, substituting possibly fresh flow variables for the argument and result.
Note that the specification of this analysis is independent of the level of precision—this
is discussed further in Section 2.5.3. Not performing the substitution at all results in a
monovariant, or zeroth-order (0-CFA), analysis.

Forming a solution Φ is done via a closure operation (again in Figure 2.16) on the
constraints. This follows naturally from the specification of a model for each constraint.
The final solution can be read off from the α ⊇ {w} and α ⊇ {c} constraints in the closed
set.

2.5.2 Abstract Interpretation

In constraint methods, we first describe the flow of data through the program using
constraints, and then solve for these. Abstract interpretation techniques tend to merge
the two steps, constructing a mathematical formula representing the solution as it walks
through the program. This section introduces abstract-interpretation-based CFA for the
pure continuation-passing λ-calculus. The style used follows the generic technique pre-
sented by Might for abstracting arbitrary semantics mechanically [73]. The syntax and
semantics of the calculus he uses are shown in Figure 2.17.

The obvious first step in attempting to produce a CFA for this language is to replace
each domain with an abstract version (or as Might puts it “throw hats on everything”).
We would also expect a CFA to deal with sets of values rather than single ones, so we try
an abstract domain of Ênv = Var ⇀ P(Ĉlo). However, this results in an infinite abstract
domain since a closure could contain an environment which in turn contains the closure
in an infinite cycle—i.e.

ĉ∞ = (λx. . . . , [x 7→ {ĉ∞}])

To ensure the abstraction remains finite, we need a way to ensure that at some point
closures are reused.13 This can be done by “snipping” (sic), the link from Env to Clo and
introducing a store. This change to the semantics of Figure 2.17 is shown in Figure 2.18
(figure taken from [73]). Now the environment associates variables with abstract addresses

Âddr, which in turn are associated with a set of closures by the store that is part of the
abstract state Σ̂. This results in the abstract analysis shown in Figure 2.19.

In this analysis, note that ; offers multiple successor states. It is therefore necessary
to consider all reachable states and then take results from all resultant stores. Since each

13Might points out an alternative would be to reuse environments, but this is not an approach which
has been used for the λ-calculus.
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Syntax:

f, e ∈ Exp = Var ∪ Lam

lam ∈ Lam ::= (λ (x1 . . . xn) call)

x ∈ Var = a set of identifiers

call ∈ Call ::= (f e1 . . . en)

State-Space:

Σ = Call× Env

ρ ∈ Env = Var ⇀ Clo

Clo = Lam× Env

Semantics:
J(f e1 . . . en)K, ρ −→ call , ρ′[xi 7→ ε(ei, ρ)]

where:
(J(λ (x1 . . . xn) call)K, ρ′) = ε(f, ρ)

and the argument evaluator ε : Exp× Env ⇀ Clo is defined as:

ε(e, ρ) =

{
ρ(e) if e ∈ Var

(e, ρ) if e ∈ Lam

Figure 2.17: Pure Continuation-Passing λ-Calculus.

Call

Σ

Clo Env

Lam Var

Call

Σ

AddrClo Env

Store

Lam Var

Figure 2.18: Removing cycles in the CPS λ-calculus state-space (taken from [73]).
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Abstract State-Space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(Ĉlo)

Clo = Lam× Ênv

â ∈ Âddr = a finite set of addresses

Abstract Semantics:

ς︷ ︸︸ ︷
J(f e1 . . . en)K, ρ̂, σ̂ ; call , ρ̂′[vi 7→ âi], σ̂ t [σ̂i 7→ ε̂(ei, ρ̂, σ̂)]

where:

(J(λ (v1 . . . vn) call)K, ρ̂′) = ε̂(f, ρ̂, σ̂)

âi = âlloc(vi, ς)

and the abstract argument evaluator ε̂ : Exp× Ênv × Ŝtore ⇀ P(Ĉlo) is:

ε̂(e, ρ̂, σ̂) =

{
σ̂(ρ̂(e)) if e ∈ Var

{(e, ρ̂)} if e ∈ Lam

Figure 2.19: CFA for CPS λ-Calculus using Abstract Interpretation.
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step is monotonic with respect to σ̂, it is possible to use a single store for this exploration
[105].

As yet the abstract allocation function âlloc : Var× Σ̂→ Âddr has not been defined.
The exact definition of this will alter the accuracy of the analysis. For instance, we can
recover a zeroth-order analysis (0-CFA) as follows:

Âddr = Var

âlloc(v, ς) = v

I will discuss other allocation functions in Section 2.5.3.
Comparing this to the constraint-based approach introduced above, it is clear that

the abstract addresses (Âddr) serve a similar purpose to flow variables, in that it is the
extent to which the size of this domain is restricted that affects the precision. The store
that is added for abstract interpretation also provides a level of indirection that is similar
in spirit to that provided by the constraints themselves.

2.5.3 Call Strings

The analyses in Figures 2.16 and 2.19 have been presented in a manner independent of
precision. In the constraint-based approach, the precision depends on the exact imple-
mentation when choosing substitutions for the argument and return flow variables of a
function prior to flow closure instantiation. For abstract interpretation, it depends on the

âlloc function definition. Whilst there are other approaches, the most common approach
is to implement these choices using call-strings.

In the concrete semantics, the current point in the program is accurately described by
the call-stack. This is especially true in continuation-passing style since call-sites are never
removed from the call-stack.14 It is therefore reasonable to attempt to improve accuracy
of 0-CFA by making use of an abstract version of the call-stack. As a sequence, the call-
stack is also particularly easy to abstract. We form a kth order CFA (traditionally called
k-CFA) simply by considering the most recent k items on the call-stack as our call-string.

To support call-strings in Figure 2.19, we can add a time component to the abstract
state Σ̂. Each transition then maintains this time as the k most recent call-sites. More
specifically:

T̂ime = Callk

Âddr = Var× T̂ime

Σ̂ = Call× Ênv × Ŝtore× T̂ime

etc.

For the constraint based approach, the ∃ operator can be viewed as mimicking a call

to âlloc. It will therefore pick the flow variables based on the k most recent call sites.
Note that since the constraint-based analysis above works on a λ-calculus with only a
single argument per function (unlike the CPS version used for the abstract interpretation

approach), the Var argument to âlloc is not applicable.

14Of course, CPS languages are not actually implemented with a call-stack unless specific techniques
are employed to avoid stack overflow.
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The join calculus does not offer a ready alternative to call-stacks. An alternative
approach is discussed in Section 5.3.

2.5.4 Escape-based Techniques

One attempt to analyse the communication patterns of Concurrent ML [93] is based on
Reppy’s type-sensitive improvements [92] of Serrano’s 0-CFA [103]. The key difference
between this approach and those already described is that it is modular—i.e. can analyse
part of a program (for example, an ML module). It does this by introducing an unknown
abstract value >, alongside finite sets of (flow) closures. A call to an unknown value could
correspond to a call of any function that escapes. Reppy describes the notion of escaping
particularly well:

A function is said to escape if it can be called at unknown [call-]sites. There
are several ways that a function might escape: it may be exported by the
module, it may be passed as an argument to an unknown function, or it may
be returned as the result of an escaping function. If a function f escapes, then
[the solution] A [of the analysis] must be defined to map f ’s parameters to >,
since we have no way of approximating them.

In using this technique for CML, Reppy uses type information to partition the set of
escaping values based on their type. This is particularly useful for abstract types where
we know that only values which escape could be passed back as arguments (since code
external to the module has no way of generating new values of such types).

2.6 Summary

This chapter has introduced the wide range of previous work that is required to understand
the context of this thesis.

Section 2.1 explained why modern hardware has been forced to become parallel rather
than offering the more conventional speed ups. It also served to describe the types
of hardware that an architecture-neutral representation of parallel needs to target.

Section 2.2 described the current state of compiler intermediate representations and
architecture-neutral formats. This makes it clear that none of the mainstream VMs
provide adequate support for parallelism, and that existing research tends to be
focussed on a single source-language.

Section 2.3 went through the paradigms currently on offer to software developers. My
work has deliberately steered clear of the crowded field of parallel programming
language design, however, this gives an overview of the primitives that should be
encodable in a parallel intermediate representation.

The final two sections are less general and provide the prerequisite background for the
specific approach taken in this thesis.

Section 2.4 introduced the Join Calculus, along with its concepts, semantics, origins
and current implementations. This model forms the basis of the intermediate rep-
resentation introduced in this thesis.
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Section 2.5 gave two styles of approach to doing control-flow analysis on the λ-calculus
as a way of introduction. CFA will be formulated for the join calculus in Chapter
5.

The remainder of this dissertation discusses how to use these to address the shortcomings
of existing IRs, and provide a common substrate for parallelism and concurrency.
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Being abstract is something
profoundly different from being
vague. . . The purpose of abstraction
is not to be vague, but to create a
new semantic level in which one
can be absolutely precise.

E. W. Dijkstra

Chapter 3

The Join Calculus Abstract Machine

Chapter 2 observed that mainstream compiler representations are all based around the
general principle of control-flow graphs—fundamentally a sequential concept. They almost
universally then retrofit parallelism through some form of threading (be they raw kernel
ones, lightweight user threads, or some form of data-parallel construct as in CUDA and
OpenCL) and rely on shared memory for coordination. However, threads are very much
a hardware implementation of parallelism rather than a core principle. Whilst other
primitives can of course be built on top of this foundation, doing so hides the true nature
of the computation and hinders any attempts made by the compiler to adapt to parallel
architectures. In much the same way, the operand stack in .NET and the JVM, or virtual
registers in LLVM, provide a simple model that can be implemented by either memory
or hardware registers. None of these expose hardware registers and, in the case of .NET
and the JVM, even the view of memory is very restricted.

From the survey of existing languages and architectures in Chapter 2, three features
stand out as being essential to a modern parallel intermediate representation: explicit
fine-grained parallelism with flexible coordination, choice, and support for non-uniform
memory models. This chapter starts (Sections 3.1 and 3.2) by demonstrating how key
features of existing models that fare well in each of these areas can be merged, result-
ing first in Petri-nets and then in the join calculus. In Section 3.3, I condense the key
operations of the calculus into three main primitives that allow an abstract machine to
be defined. The remainder of the chapter then offers examples of this abstract machine’s
usage to confirm its universality, both allowing compilation to a variety of architectures
and also being language-neutral.

3.1 Arriving at the Join Calculus

With the exception of the dataflow architectures explored in the 1970s (Section 2.1.7), all
parallel hardware is built as an extension to a sequential base. It is therefore reasonable
to use control-flow graphs (CFGs) as the starting point for the development of my model.

3.1.1 Supporting Non-Deterministic Choice

Whilst explicit non-deterministic choice is relatively rare in real-world programming lan-
guages, it is in fact a common interpretation of certain features in CFGs. This is most
commonly encountered in static analysis, where conditional branching is often treated as
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Figure 3.1: Dataflow Graph for (a < 1) ? (1 / (a * a)) : (a * a). Green high-
lighting indicates nodes executed for a = 3.

such. Indeed, any fork1 in a standard CFG represents a choice—even if it is deterministic
under the usual language semantics. I start by allowing forks that are actually non-
deterministic. This allows implementation choices that may depend on the final target to
be expressed in the IR and left for a load-time or runtime scheduler to decide.

At this point it is worth clarifying the type of choice that I wish to support. Systems
such as StarPU [8] (Section 2.3.1.3) allow multiple implementations of program parts,
allowing the runtime to pick whichever it expects to execute most quickly. For programs to
have portable performance, choices such as this must be made automatically and separately
from compilation. This is an example of performance non-determinism, where run-time
or load-time decisions affect the overall execution time. This can be distinguished from
I/O non-determinism, where run-time decisions might alter the result of the program.

At the IR level, I choose not to explicitly forbid I/O non-determinism, with its be-
haviour simply treated as undefined. This is in much the same spirit that it is possible to
attempt dereferencing null references or invalid pointers in other representations. Com-
piler transformations are therefore able to assume that all choices lead to the same result
being calculated—just as a C compiler assumes non-null pointers for the purposes of
optimisation (since the result of a null-dereference is undefined anyway).

Until parallelism is added, the expressive power of arbitrary non-deterministic forks is
very similar to the StarPU approach of allowing multiple implementations of each CFG
node. However, StarPU is unable to encode scenarios such as either perform operation
A once or perform operation B ten times (possibly in parallel) each, since every task is a
single unit that must be completed. I wish, and will be able, to encode these possibilities
which are important when the amount of parallelism available is unknown.

3.1.2 Exposing Fine-Grained Parallelism

In direct contrast to control-flow graphs, dataflow graphs allow very explicit parallelism,
but no branching or non-determinism. In a näıve implementation, every computation
node in the graph will be performed at some point, and the edges give the dependencies
between them. In a pure side-effect-free language, conditionals can still be expressed (for
example, Figure 3.1), and demand-driven execution used to minimise excess computation.

1This ignores extensions to CFGs that allow parallel forks or spawns.
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Figure 3.2: Petri-net for a critical region using a mutual exclusion lock.

However, this dataflow model does not meet the requirements of a general-purpose IR,
which needs to support state (or at least a natural encoding of it). Furthermore, I have
already stated non-determinism as one of my key requirements.

In many ways, control-flow and dataflow graphs can be seen as duals of each other—
in a CFG, the data implicitly travels between the computations as controlled by the
program counter, whereas in a DFG it is the control-flow that is absent. One can make
the data in a control-flow graph more explicit by imagining that each edge of the graph
consists of a single-item buffer, even though in reality data is passed using registers or
memory. Similarly, in a dataflow graph one can imagine that each node consists first of a
computation step, that waits for data to be available at all predecessors before computing
the result, followed by a persistent single-item buffer into which the result is placed. The
need for this buffer to be persistent stems from the fact a result can be used multiple times
in a dataflow graph. It is possible to remove the need for this by incorporating some form
of duplication primitive—these would come ‘for-free’ if nodes producing multiple results
were allowed.

Combining these two models results in a form of (coloured) Petri-net [59] (as intro-
duced in Section 2.4.1) supporting both parallelism and non-determinism. Recall that
execution proceeds by the firing of transitions. When a transition fires, it removes tokens
from its pre-places, applies a function to them, and adds the results to its post-places.

The atomic nature of token consumption from pre-places allows Petri-nets to express
concurrency primitives well—for example, mutual exclusion (Figure 3.2). This example
makes use of a cycle within the net which is a common pattern in Petri-nets for encoding
state. The beauty of this pattern is that it allows the model to express imperative,
mutable-state programming without the need for any extra primitives, such as references.
It is not dissimilar to threading state through a program as might be done with monads,
however, Petri-nets allow different components of state to be brought in as and when they
are needed rather than being threaded through every step.

Attempting to merge control-flow and data-flow graph features is not a new idea.
The VSDG [60] (mentioned in Section 2.2.2) takes a similar approach but maintains
a distinction between the two types of edges. Petri-nets can therefore be viewed as a
generalisation of the VSDG.

The computation that a transition performs could be defined using most existing
representations for sequential programs (e.g. functions in LLVM’s IR [1]). However, as
I will only deal with pure transitions,2 transition bodies may not access or modify any
global state. Since Petri-nets are not my final model I will not polish this definition too
much. However, a flavour for Petri-net semantics, including the firing rule, was given in
Section 2.4.1.

2As previously noted, in this work all state is encoded through cycles in the net.
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Figure 3.3: Petri-net without confluence (x := x+ 1 ‖ x := x+ 1).
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Figure 3.4: Non-deterministic Choice between Alternatives in Petri-nets

The firing of Petri-nets is non-deterministic, as intended. However, this allows all
forms of non-determinism to be expressed, not just performance non-determinism (e.g.
Figure 3.3). The assumption that I stated earlier (Section 3.1.1) of I/O determinism can
be expressed by assuming confluent nets—i.e. for all markings M1,M2,M3 ∈M:

(M1 →∗ M2) ∧ (M1 →∗ M3) =⇒ ∃M4 ∈M.((M2 →∗ M4) ∧ (M3 →∗ M4))

However, while supporting non-deterministic choice between alternatives (Figure 3.4),
the simple definition of Petri-nets does not support deterministic conditional branching.
Jensen’s work on coloured Petri-nets [59] addresses this by restricting the domain of values
accepted by a transition with guards. Although this was the approach that I followed in
my earlier work [22], this issue can be addressed more elegantly as shown in the following
section.

3.1.3 Reintroducing Functions and Dynamic Behaviour

Moving to Petri-nets enables support for parallelism and non-determinism in a natural
way, but it does force some more traditional features of programming to be reconsidered.
I have already mentioned that conditional branching becomes more difficult to support.
However, this alone would be easy to work around. Of more concern is the difficulty in
allowing abstraction and dynamic allocation.

In both dataflow and control-flow graphs, functions are easy to support and allow reuse
of program parts. With control-flow graphs, functions are defined in terms of control-flow.
In particular, execution transfers from the call-site to the function, before returning when
the function completes. This can be viewed as allowing a node of the CFG to be defined
as referencing another graph (Figure 3.5). Inlining therefore simply replaces the node
with the referenced graph, and trivially offers identical behaviour in a sequential context.
We can apply a similar idea to dataflow graphs, allowing a node of the graph to be defined
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Figure 3.5: Functions as sub-graphs in a control-flow graph.
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Figure 3.6: A Petri-net sub-graph.
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def @memcell(i,k) �
def get(k) & val(x) � val(x) & k(x),

set(x,k) & val(y) � val(x) & k()

in val(i) & k(get,set)

Figure 3.7: Memory cell encoding in the join calculus.

by a separate dataflow graph. Even though dataflow graphs allow parallelism, inlining
still preserves behaviour since there is no mutable state.

However, if we apply a similar approach to Petri-nets, then we run into problems when
attempting to represent functions. Consider the example in Figure 3.6: before inlining, the
subgraph would be expected to execute atomically (i.e. it always consumes both tokens or
neither). If it did not, then any use of a subgraph would need to understand at what point
within that graph tokens would be taken from places. Once inlined this restriction does
not apply (i.e. it might consume just one token, possibly resulting in deadlock if there are
two such functions). As a programming model, this therefore fails to provide satisfactory
abstraction. Furthermore, programmers expect to have access to some variety of indirect
function call. This is easy to support in control-flow graphs where each function has a
single predecessor, but it is unclear how this adapts to the dataflow and Petri-net cases
where there may be multiple predecessors to a function use. In the case of the VSDG
mentioned earlier, this is not a problem as the model has only a single control-flow token.

It is worth pointing out that such a notion of substitution in Petri-nets is not without
use. When nets are instead being used to model hardware, or interacting systems, then
hierarchical nets [59] provide an effective way of composing separate components, and
instantiating the same sub-net (or page) multiple times.

The second problem is that by encoding mutable state in the Petri-net structure itself,
one needs to be able to dynamically enlarge the net at runtime in order to support dynamic
allocation of state. Again, the straightforward subgraph notion of functions does not allow
this.

Whilst the join calculus was not originally introduced as an extension of the Petri-net
model, the similarities between the two models have been discussed previously by Odersky
[84]. Just as a Petri-net transition has a fixed multi-set of pre-places, each transition in
the join calculus has a fixed join pattern defining its input channels. The key difference
is that the join calculus is higher-order, allowing channels to be passed as values, and for
the output channels to depend on its inputs—unlike Petri-nets where the post-places of a
transition are fixed. This simple modification allows use of continuations to support func-
tions. Moreover, while nets are static at runtime, a join calculus program can create new
instances of definitions (containing channels and transition rules) at runtime. Although
these cannot match on existing channels, existing transitions can send messages to the
new channels. This allows dynamic state through definitions such as that in Figure 3.7.
Note however that the join calculus does not introduce dynamically changing pre-places,
and this key restriction allows compilation without unmanageable overheads. Referring
back to the dataflow architectures mentioned in Section 2.1.7, it is worth observing that
the join calculus is not dissimilar to the concept of dynamic dataflow machines. In such
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a comparison, Petri-nets are rather like static dataflow.
As mentioned in Section 2.4, much as the λ-calculus can be defined in both continuation-

passing (CPS) and direct styles, so can the join calculus. CPS is advantageous for my
use case—indeed it is commonly used in compiler representations for functional languages
[4]. This is because it makes all control-flow explicit. It also reduces the number of prim-
itives that need to be handled by a compiler. During his work on control-flow analysis of
the λ-calculus [74], Might notes that in functional languages, λ-abstraction “represents,
in one construct, the fundamental data, control, and environment structure of these lan-
guages”, and that “by using CPS, our principal concern—function call—becomes our only
concern”. In the CPS form of the join calculus, channels become the only concern, with
the benefit that they also represent coordination in a parallel setting.

3.1.4 Granularity

As with most compiler problems, parallelism can be considered at a number of different
levels, and the join calculus could arguably be applied at each of these:

Instruction Level Mostly dealt with by hardware, although compiler instruction schedul-
ing does have an effect. I could arguably use the join calculus as the basis of new
hardware architectures in a similar vein to the dataflow machines of the 1970s. How-
ever, it is doubtful that the high-level of overheads would ever be overcome, and
the large amount of research and development that has led to modern superscalar
processors means that pragmatically any other designs will struggle to catch up.

Blocks3 As fine-grained implementations have improved, it is not uncommon for lan-
guages to allow code blocks to be spawned. Indeed, this is quite common in
the case of parallel ‘for’ loops (e.g. in OpenMP). This is the level at which auto-
parallelisation techniques have attempted to operate. The join calculus, especially in
a continuation-passing style, is particularly well suited to expressing this—assuming
an efficient implementation.

Functions This is the level that Wool and Cilk (Section 2.3.1.2) have demonstrated as
being feasible. From a compiler perspective this is not dissimilar to basic blocks,
although Wool in particular shows that this level can be implemented without the
compiler removing, or ‘inlining’, excess parallelism (i.e. without coarsening the gran-
ularity).

Large Scale Distributed computing was one of the original stated goals of the join cal-
culus [45], although it is perhaps better introduced in a later tutorial [46]. This
space has also seen many more models tried (e.g. map-reduce and CIEL—see Sec-
tion 2.3.5) than for compiler IRs. I believe this is because less concern needs to be
paid to overheads. Whilst distributed scenarios introduce extra problems that are
beyond the scope of this thesis (such as fault tolerance), any model that can expose
finer parallelism is arguably a good basis for future work in large scale situations.
Indeed, there are many common features between the dynamic data-flow graphs of
CIEL, and the join calculus.

3Code blocks and basic blocks do not correspond directly (especially in CPS), but are similar enough
to not be distinguished in this discussion.
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Years of research indicate that discovering parallelism at a finer granularity than originally
expressed in a program is incredibly difficult. Any representation should therefore operate
at the finest level at which one might wish to express parallelism—i.e. basic blocks. As
stated above, other recent work (e.g. Wool [39, 40]) has shown that even without com-
piler optimisations, careful implementation of function granularity primitives can give
good performance. Whilst not within the scope of this thesis, I also believe that the
results of the analysis in Chapter 5 could be used to coarsen the level of parallelism when
appropriate, and this is discussed in Section 6.6.3.

It is true that the shortcoming of dataflow machines was that the instruction-level
dataflow was too fine-grained. However, even a basic block is significantly more coarse
than an instruction. Using the join calculus at this level is similar in spirit to coordination
languages. Techniques described in Chapter 4 will ensure that coordination overheads are
minimised in common cases. The approach of my abstract machine is therefore to com-
pile everything to join calculus definitions, rather than maintaining support for standard
functions in the representation. Chapters 4 and 5 show how this can be implemented
without incurring prohibitive overheads.

3.2 Making Data Dependencies Explicit

One of the stated requirements for my representation is support for non-uniform memory
architectures (NUMA). The most established programming model for such systems is
message passing (e.g. MPI and Erlang). The basic premise of this model is that all
data must be explicitly received, with no data being implicitly shared. Although the
join calculus is already a message-passing approach of similar granularity to Erlang,4

its standard formulation does not satisfy this requirement, since the nested nature of
definitions allows values to be captured in free variables. For example, observe that N and
k are both implicitly used by the program5 in Figure 3.8. Allowing this in the final IR
would mean that some data transfers have to be inserted automatically. Whilst this may
be possible, it introduces costs that are hidden from any scheduling system.

My final formulation of the join calculus therefore forbids the nesting of definitions.
Along with the lack of mutable state,6 this ensures all data dependencies are explicit. In
my flattened version of the join calculus, programs consist of a list of definitions. This
necessitates a special type of channel, constructors, that are used to create and instantiate
a join definition.

Standard channels have definition-local scope and instances of them are first-class
values. By contrast constructor channel names, marked by @f , are exported from defi-
nitions, but do not give first-class values. Invoking a constructor creates an instance of
the definition which consists of a channel instance (conceptually a message queue) for
each of the definition’s channel names. Messages are placed on the queues by emission
calls as before, and when sufficient messages are available on these queues, one of the
transitions can be fired. Channel values are first-class values and resemble closures in the
λ-calculus—semantically being pairs consisting of the channel name and instance identi-
fier. A constructor would normally pass out some of its definition’s channel instances as

4MPI tends to be much coarser with messages only used where communication is intended, rather
than as a general programming concept.

5The syntax of this program adds some basic pseudo-code on top of the core join calculus.
6Recall that state is encoded with recursive transition rules (equivalent to cyclic Petri-nets).
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def sort(numbers, k) �
let N = numbers.length in

def split(a) �
let n = a.length in

if n = 1 then merge(a)

else split(a[0→n
2
-1]) & split(a[n

2
→n-1]),

merge(a) & merge(b) �
if a.length + b.length = N then do_merge(a, b, k)

else do_merge(a, b, merge)

in split(numbers)

do merge is a functional-style procedure that merges the sorted arrays a and b into a new sorted

array that is passed to its continuation (k or merge).

Figure 3.8: Implicit use of data in the join calculus.

Channels x, y, z

Program P = def D;P | ε
Definitions D,E = J �M | @x(ȳ)�M | D,E | ε
Terms M,N = @x(ȳ) | x(ȳ) |M &N

Patterns I, J = x(ȳ) | I & J

Figure 3.9: Syntax of the Flattened Join Calculus.

these are not otherwise exported. Note that if rules are restricted to have a single channel
in the left-hand-side pattern, the calculus becomes a traditional functional language and
definition instances play no interesting role.

The syntax of my flattened join calculus is given in Figure 3.9. Its semantics can
be expressed in a similar manner to the original reflexive ChAM style (Section 2.4.1).
However, since the top-level definitions are no longer part of terms in the calculus I lift
them out. I assume that channel names are globally unique, and this can trivially be
achieved with renaming. Rather than replicating definitions on every instantiation (as
was done in Figure 2.11 with the σdv substitution), these semantics use identifiers on
channel names, written with a superscript—for example, xid(ȳ). Rules now take the form
P ` M
M′ and P ` M→M′, and are given in Figure 3.10.

It is worth noting that the grouping of transition rules into definitions, while useful
for legibility, is actually semantically redundant. A program with a single definition
containing all the transition rules would behave identically.

However, despite forbidding nested definitions, they can easily be encoded by a process
similar to both lambda-lifting and Java’s inner-classes. In particular, any program similar
to:

def ...,

a(x,k) �
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P ` M &N 
M,N (join)

P ` @x(ȳ)
 @xnew id(ȳ) (construct)

def J �M,D;P ` Jσ →Mσ (reduce)

where new id is an unused identifier and σ is a substitution that operates on:

Parameters. Replacing the formal parameters in the join pattern J with the actual
parameters transmitted.

Channels. Replacing unidentified channel names in J with identified equivalents (i.e.
x 7→ xid). The same identifier is used for all channels.

Figure 3.10: Chemical Abstract Machine Semantics for the Flattened Join Calculus.

def f(m) � m(x * 2)

in k(f)

can be rewritten using extra channels for values that would have been implicitly shared.
In this case:

def @unnested(x,k) � temp(x) & k(f),

temp(x) � temp(x) & temp(x),

f(m) & temp(x) � temp(x) & m(x * 2);

def ...,

a(x,k) � @unnested(x,k);

It is worth noting that, unlike λ-lifting which cannot support first-class function values
without adding explicit environments, this encoding does not impose any restrictions on
the use of values. This is because I store the extra values in fresh channels so that existing
channels do not change type. Conventional lifting would alter f to take x as an extra
argument and pass it at all call-sites—hence preventing any use of f outside of a (e.g. by
the continuation k).

Unfortunately, the extra channel could cause serialisation of many transition firings
within the definition if each transition were simply to match on the new channel and then
re-emit a message with a same value. There are two possible solutions to this. The first
is with duplication transitions (as shown above) that allow as many copies of the temp

message to be created as required. This relies on the scheduler not to perform excessive
duplications. The second is to rely on the compiler to elide the serialisation in a similar
way to software transactional memory, or previous work on optimistic lock removal [99].
A flattened version of the mergesort example is shown in Figure 3.11. As I will show in
Section 3.4.6, my approach will be to model all transfers explicitly as transitions in the
IR at runtime.

60



def @sort(numbers, k) � split(numbers) & info(numbers.length, k),

info(N, k) � info(N, k) & info(N, k),

split(a) �
let n = a.length in

if n = 1 then merge(a)

else split(a[0→n
2
-1]) & split(a[n

2
→n-1]),

merge(a) & merge(b) & info(N, k) �
info(N, k) &

if a.length + b.length = N then do_merge(a, b, k)

else do_merge(a, b, merge)

Figure 3.11: Flattened version of merge sort.

3.3 The Join Calculus Abstract Machine

For the purposes of an intermediate representation, my flattened version of the join cal-
culus can be supported by just three key operations: instance construction, message
emission, and local channel introduction. These, along with the pattern matching, or
firing rule semantics, take the place of method or function calls in a traditional IR. The
other operations of the IR can be left unchanged, except function return values and in-
structions affecting global state which must be encoded using CPS and cyclic messages
as previously mentioned. Indeed, the flattening alteration itself already went a long way
towards making the join calculus look more like conventional representations (e.g. the
JVM or LLVM).

Instance Construction (construct): Creates a new instance of the definition contain-
ing the named constructor, and places the arguments in a message on the queue for
that constructor’s channel within the newly created definition.

Message Emission (emit): Places the arguments in a message on the given channel’s
message queue.

Local Channel Introduction (load.channel): Gives the channel value for the named
channel in the current instance.

In the interests of generality, this section will aim to describe the semantics of the
key JCAM operations in a way that allows them to be combined with a variety of other
instructions. To do this, I will assume that the complete IR will take a single-static
assignment form in a similar style to LLVM. The non-JCAM instructions within this IR
will be referred to as local instructions (e.g. add). As interaction with global state is
forbidden, these will act on state that is restricted to being within a transition firing. If
an IR wanted to support in-place mutable structures or arrays, this would be possible,
however, they would have to respect a memory-isolation property by only allowing writes
when a transition firing held the sole reference.7

7Wool and Cilk make similar assumptions on use of shared memory by spawned functions.
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Programs p ::= def

Definitions def ::= definition {prod}
prod ::= channel id(typ) | transition note{b̄}

Pattern Notes note ::= id(arg)

Types typ ::= isz | (typ) | . . .
Arguments arg ::= typ id

Values v ::= id | const

Blocks b ::= l φ̄ c̄

φ nodes φ ::= id = phi typ[val, l]

Commands c ::= emit val(param)

| construct @id(param)

| id = load.channel id

| term

| . . . (local instructions—e.g. id = add typ id, id)

Terminators term ::= br val l1 l2 | br l | finish

Figure 3.12: Syntax of a JCAM IR.

The basis of the syntax for such an IR is shown in Figure 3.12.8 As in the flattened
calculus, each program consists of a list of definitions. In turn, each definition consists
of channel declarations and transitions. Indeed, compiling from the flattened calculus
into the abstract machine is a straightforward conversion. The only command that is not
explicit in the calculus is load.channel, which forces programs to be explicit when an
identifier is being used to refer to a channel in the current instance rather than a local
variable.

Like in LLVM, each identifier id begins with either @ which is used for constructors,
or % which represents local variables. It is convenient in examples to elide load.channel
commands, with %id implicitly performing %id = load.channel id if the local variable id
is not already defined. The Dovetail implementation [21] presented in Chapter 4 supports
this abbreviation. However, for the purposes of semantics and the analysis in Chapter 5,
it is convenient to keep it explicit.

The types shown correspond to arbitrary bit-width integers isz (e.g. i32 or i64) and
channel types (typ). Whilst it is possible to perform type inference on the join calculus
[48], this is not a focus of my work, so the IR is explicitly typed in a very similar vein to
LLVM.

Each transition definition is made up of a number of labelled blocks b = (l, φ̄, c̄).
The φ-nodes allow use of previous values at merge-points in the control-flow graph, as is
standard in an SSA representation. Commands in the IR make use of values which are
either local variables or constants. The basic syntax shown only includes the three join
calculus primitives discussed above. The list of commands c̄ must conclude with a single

8This is the only place where I need a name for the occurrence of a channel in a pattern. The term
note is taken from Polyphonic C#, where patterns are referred to as chords.
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terminator instruction that either branches to another block, or finishes the transition.
Terminators may not appear any earlier in this list.

This gives transition bodies the same expressiveness as a conventional IR function
body, with the exception of access to mutable state. I show in Chapters 4 and 5 that the
requirement of encoding state need not be particularly costly in terms of performance. It is
true, however, that the lack of mutable state is a disruptive change from the point-of-view
of frontend compilers. The join calculus primitives themselves are backwards-compatible
with functions, so do not cause more disruption than any other continuation-passing style
representation.

3.3.1 Semantics

Rather than the Chemical Abstract Machine [45] or the rewriting-style [84] semantics
previously used for the join calculus, the operation of the key primitives will be described
with more traditional small-step semantics that can also be used for the local instructions.
This style is very similar to Petri-net semantics, in particular markings and the firing rule,
and corresponds more closely to actual implementations of the calculus (although these
would typically use per-channel queues instead of a single multiset). It also provides a
more natural fit for typical analysis techniques, and the control-flow analysis of Chapter
5. As far as possible, the notation that I will use follows the recent Vellvm work on
formalising the LLVM intermediate language [121].

The execution of a JCAM program p is specified by rules as shown in Figure 3.13,
with the form p ` S � S ′. These are transitions between machine states S of the
form Γ,Σ, where Γ provides a global environment and Σ is the state of the transition
currently firing. This treatment therefore runs the right-hand-side of a rule to completion
(finish) before firing another rule. Although this results in transition-level interleaving, it
describes the same observable behaviour as more fine-grained interleavings, or even truly
parallel semantics.

The global environment Γ = M, θ, consists of a Petri-net style marking M and a global
timestamp θ. Within the semantics, every definition instance will be distinguished by a
timestamp, and θ simply acts as a global counter used to allocate these. Note that θ could
easily be split into worker-local counters, so an implementation does not necessarily need
a global lock on such a counter.

The current firing’s state Σ = (t, l, c̄, ρ, b̄) is more complex. It starts with the identifier
t of the current executing instance, which is used for producing channel values whenever
load.channel is executed. This is followed by the label l of the current block, which is
necessary for evaluating the successor block’s φ-nodes after the end of the block. The list
of commands c̄ is referred to as the continuation sequence by Vellvm. This is the list of
commands that are yet to be executed in the block. Local variables are assigned values
in the local environment ρ. Finally, b̄ is the list of blocks in the currently firing transition
and used after branch instructions (since the branch instruction only specifies a label and
not other details of the block).

The rules also rely on the semantics of the local instructions. These are defined by
the c ` ρ→ ρ′ relation. I assume this is already defined, and will not use any instructions
in examples that do not have intuitive semantics. Chapter 5 will assume that these local

9In the semantics, p corresponds to the complete program being executed. The usage of it,
(fi(xi){b̄}) ∈ p, is simply requiring that we select a transition rule that appears in the program.
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Domains:

α, θ, t ∈ Time = N0

(f, t), (f, θ) ∈ ChannelValue = Channel× Time

v ∈ Value ⊇ ChannelValue

M,∆ ∈ Marking = m(ChannelValue× Value∗)

Γ ∈ GlobalEnv = Marking × Time

ρ ∈ LocalEnv = Identifier→ Value

b ∈ Block = Label× Phi∗ × Command∗

Σ = (t, l, c̄, term, ρ, b̄) ∈ LocalState = Time× Label× Command∗

× LocalEnv × Block∗

(Γ,Σ) ∈ State = GlobalEnv × LocalState

Global Semantics9: p ` Γ,Σ� Γ′,Σ′

∆ = {((fi, α), v̄i) | 1 ≤ i ≤ n}
(fi(xi){b̄}) ∈ p b0 = (l0, [], c̄) ρ = [x̄i 7→ v̄i | 1 ≤ i ≤ n]

p ` (M + ∆, θ), ( , , [finish], , )� (M, θ), (α, l0, c̄, ρ, b̄)
(fire)

c0 = (emit x(ȳ)) v̄ = ρ(ȳ) (f, α) = ρ(x)

p ` (M, θ), (t, l, c0 · c̄, ρ, b̄)� (M + ((f, α), v̄), θ), (t, l, c̄, ρ, b̄)
(emit)

c0 = (construct f(x̄)) v̄ = ρ(x̄)

p ` (M, θ), (t, l, c0 · c̄, ρ, b̄)� (M + ((f, θ), v̄), θ + 1), (t, l, c̄, ρ, b̄)
(construct)

c0 = (x = load.channel f)

p ` Γ, (t, l, c0 · c̄, ρ, b̄)� Γ, (t, l, c̄, ρ[x 7→ (f, t)], b̄)
(load.channel)

c0 ` ρ→ ρ′

p ` Γ, (t, l, c0 · c̄, ρ, b̄)� Γ, (t, l, c̄, ρ′, b̄)
(local)

(l1, φ̄, c̄) ∈ b̄ ρ′ = ρ[x 7→ ρ(y) | (y, l0) ∈ v̄ ∧ (x = phi v̄) ∈ φ̄]

p ` Γ, (t, l0, [br l1], ρ, b̄)� Γ, (t, l1, c̄, ρ
′, b̄)

(br)

Figure 3.13: Generic operational semantics of a Join Calculus Abstract Machine (JCAM)
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instructions all operate on primitive values (i.e. no structures or arrays), as this simplifies
the presentation of my control-flow analysis.

The firing rule of the semantics defines the characteristic join calculus behaviour in a
similar way to how the Petri-net semantics were described in Section 2.4.1. It requires
that the current marking M contains messages ∆ that match the join pattern of a rule
(fi(xi){b̄}) These messages must also all be associated with the same instance α. I will
refer to the set of all transition rules as T, and all channels as C. The complete program
is p. The JCAM starts with a marking placing a single message at a main constructor as
follows:

Γ = ({((@main, 0), v̄)}, 1)

Σ = ( , , [finish], , )

I require that the program provides a main constructor typed in accordance with the input
v̄. This input must only contain primitive values, or channel values (e.g. giving access
to system calls) that cannot conflict with any program definition instances—present or
future. This can be achieved by drawing their instance identifiers from a disjoint set—e.g.
the negative integers.

3.3.2 Paths and Traces

With any representation, it is useful to be able to describe possible paths through the
program, and actual execution traces. In standard functional languages and imperative
languages, this is done through use of call-strings as discussed in Section 2.5.3. The obvi-
ous equivalent for the join calculus and JCAM would be to only consider firing transitions
in the semantics, producing a record of which transitions have fired. However, unlike in
the λ-calculus where the relationship between function calls can be described accurately
by a list, the relationship between join calculus transition firings is much more complex.

Each firing of a transition is referred to as an occurrence v. I will also make use of a big-
step semantics, with ⇓r representing the sequence of steps from a firing of transition rule
r until the next firing. These ⇓ relations act between markings M . When the transition
is not given, I am considering all possible firings—i.e. ⇓ is shorthand for

⋃
r ⇓r. From

this, I can make use of work on paths in Petri-nets. There are two main approaches in
the literature: causal nets [81] and pomsets [87]. Pomsets correspond to directed-acyclic
graphs and are therefore a more useful representation when discussing execution costs
and scheduling later (Sections 3.4.6 and 6.6.2). An example of a JCAM program path is
given in Figure 3.14 where each node represents a transition rule firing.

Definition 1 A (pomset) path is a triple (V,≤, µ) where V is a set of occurrences
labelled with a transition and instance identifier by µ : V → T×Time. ≤ defines a partial
order on V . Two pomset paths are considered equivalent if there is an isomorphism between
them.

I will use P to give the set of all such paths. Note that for two transition occurrences
v1, v2 ∈ V , if neither v1 ≤ v2 nor v2 ≤ v1 then the occurrences can occur in parallel,
whereas otherwise they must fire sequentially.

Of course, not all these paths are actually feasible, and this is determined by the ⇓
relation. In the same way that not every destination of function calls in the λ-calculus
can be determined statically, ⇓ also depends on runtime values.

65



R1 R2

R1

R1 R2
R1

R1

@fib1(3, k) temp1(k) k(2)

@fib2(1, a1) a
1 (1)@

f
i
b

3
(2
,
b

1
)

temp3(b1) b
1
(1
)

@fib4(0, a3)

@fib 5
(1, b 3

)
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instance time

R1. def @fib(x, k) �
if x < 2 then k(x)

else temp(k) & @fib(x-2,a) & @fib(x-1,b),

R2. temp(k) & a(x) & b(y) � k(x + y)

Figure 3.14: Call DAG for @fib(3,k)

A final observation is that the ⇓r relation is ripe for annotation with expected time
costs. This is of particular importance to the encoding on NUMA and heterogeneous
architectures explored in Section 3.4.6. Where the time cost of a transition is referred to,
I use a duration function 〈 〉 : T → R+ to give an estimate of how long it takes to fire.
Assuming such durations are associated with each transition, it is reasonable to ask how
long a path will take to execute. Given a pomset path p = (V,≤, µ) ∈ P, this is given by
〈p〉 = maxv∈V (f(v)) where the finish time f(v) of an occurrence is given by:

f(v) =

{
max{w∈V |w≤v}(f(w)) + 〈µ(v)〉 if ∃w ∈ V : w ≤ v

〈µ(v)〉 otherwise

In executing a JCAM program, the aim is to choose a trace with minimum duration.

There has been some other work on incorporating the notion of time with the join
calculus [19]. However, this was used to specify timings rather than measure them. For
example, the program in Figure 3.15 executes the process P every t time steps, until the
stop message which occurs after 3t steps. It does this both by allowing transitions to

take a certain amount of time to fire (e.g.
t
�) and by delayed emission of messages (e.g.

3t: stop()). It is therefore non-deterministic whether P is executed a 4th time.

3.4 Relation to Other Models

This section gives a more detailed explanation of the compilation from a few styles of lan-
guage, and of an assortment of synchronisation primitives. In doing so, I will demonstrate
the suitability of the JCAM for both imperative and functional languages.
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def start()
0
� P & trigger(),

stop() & trigger()
0
� null process,

trigger()
t
� P & trigger()

in start() & 3t:stop()

Figure 3.15: A Timed Join Calculus Program (taken from [19])

3.4.1 Coordination Zoo

Section 2.3.1.1 introduced a range of common primitives used for coordination in the
context of multi-threaded programs. Here I show that all of these can easily be encoded
in the JCAM. I also give an encoding of futures, synchronous channels, and a reader-writer
lock.

Mutexes

A very basic mutex can be encoded as follows.

def @mutex(k) � free() & k({lock,unlock}),
lock(k) & free() � k(),

unlock(k) � free() & k()

This is not reentrant, but this is because the join calculus does not have any notion of a
thread, so cannot determine whether it is already held. A more advanced lock could be
produced by requiring programming language threads to pass an identifier, t, to the lock

and unlock channels (and assuming that there will not be two concurrent operations on
the lock with the same thread identifier):

def @reentrant mutex(k) � free() & k({lock,unlock}),
lock(t,k) & free() � used(t,1) & k(),

lock(t1,k) & used(t2,i) � if t1 = t2 then used(t1,i+1) & k()

else wait(t1,k),

wait(t,k) & free() � used(t,1) & k(),

unlock(t1,k) & used(t2,i) � (assert that t1 = t2)
if i = 1 then free()

else used(t1,i-1);

k()

Condition Variables

Now I present an encoding of condition variables in the JCAM. This construct was
the most difficult to encode of those I have considered. Despite this, the final result is
elegant if a little difficult to read at first. A simpler version could be achieved if recursive
structure types were supported, however, there is merit in offering this primitive in the
bare flattened join calculus.
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The fork definition provides a linked list of continuations that should be woken by
a notification. The head node of this list is stored in the condvar instance in the next

channel. Each wait operation adds to the head of this list, while notify operations
remove the head. A full traversal of the list is done when notifyAll is encountered.

def @fork(f,n,nA,next) � data(f,n,nA) & next(notify,notifyAll),

notify(next,k) & data(f,n,nA) � f() & next(n,nA) & k(),

notifyAll(k) & data(f,n,nA) � f() & nA(k)

def @condvar(k) � next(n_finish,nA_finish)

& k({wait,notify,notifyAll}),
n_finish(next,k) � next(n_finish,nA_finish) & k(),

nA_finish(k) � k(),

wait(f) & next(n,nA) � @fork(f,n,nA,next),

notify(k) & next(n,nA) � n(next,k),

notifyAll(k) & next(n,nA) � nA(k) & next(n_finish,nA_finish)

Barriers

The encodings of barriers in the latest Joins Library paper [113] effectively make use of
dynamic code generation. On creation of an n-way barrier they produce: n channels;
and either a single rule that matches on all of these, or a tree of rules with intermediate
channels. If n is not known at compile time, this is not directly possible in the JCAM.

However, it is of course possible to implement a barrier more simply using a count,
along with a queue of threads that need to be released. The code for this is given below.
The second state definition is required to allow the barrier to be reused. It prevents
continuations yet to be released from one occurrence of the barrier being confused with
early arrivals for the next iteration.

def @barrier(n,k) � @new_state(n, state) & k(done),

done(k) & state(r,n,enq,rel) � enq(k) &

if r>1 then state(r-1,n,enq,rel)

else n×rel()
& @new_state(n,state)

def @new_state(n,k) � k(n,n,enqueue,release),

enqueue(k) & release() � k()

A tree-based approach is also possible, but unfortunately requires each thread entering
the barrier to know how many other threads it will synchronise with. This method is
demonstrated with the reduction below.10 Each computation produces a result that is
then combined using the ⊕ operator.

def @reduction(k) � k(done, get),

done(a, i, M) & done(b, j, N) � (assert that M = N)
let x = a ⊕ b in

let count = i + j in

10Note that this requires non-linear join patterns—my Dovetail implementation does not currently
support these.
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if count=M then result(x)

else done(x,count,M),

result(x) & get(k) � k(x)

Each message on the done queue contains:

• A value.

• The number of computations it represents—initially 1 for each computation’s im-
mediate result.

• The total number of computations expected—which should be constant across all
messages.

Futures

This encoding creates a future that evaluates the function f with argument x, and provides
a channel get that can be used to access the result. Making a call to get blocks until the
result is ready.

def @future(f,x,k) � f(x,result) & k(get),

result(y) & get(k) � k(y)

Reader-Writer Lock

As with the other encodings in this section, a reader-writer lock encodes elegantly into
the JCAM. This example is translated from that given in the initial Joins Library work
[101].

def @readerwriter(k) � idle() & k(

getRead, releaseRead,

getWrite,releaseWrite

),

getWrite(k) & idle() � k(),

releaseWrite(k) � idle() & k(),

getRead(k) & idle() � sharing(1) & k(),

getRead(k) & sharing(n) � sharing(n + 1) & k(),

releaseRead(k) & sharing(n) � (if n = 1 then idle()

else sharing(n - 1)

) & k()

3.4.2 Streaming Computations

Since the join calculus is a close relative of dataflow graphs, one would hope that it offers
a straightforward encoding of streaming and pipelined languages. The key primitive that
these languages offer which the join calculus does not immediately provide is that of
ordered queues. Channel message queues in the join calculus do not have any order
guarantees. Here I give two approaches to encoding ordering.

69



One-Place Buffer. The easiest way to keep ordering is to prevent the producer from
getting ahead of the consumer. This can be done by a one-place buffer as follows:

def @queue(k) � k(take, put),

take(m) & put(v, n) � m(v) & n()

This of course constrains the computation significantly. A common idea in streaming
runtimes is that a node in the graph can be duplicated to keep up with demand, with
results of the node still appearing in order. Whilst it would be easy to write a queue
that alternates a producer between one of N consumers (with a corresponding queue that
mergesN producers back into a single consumer), this would be for a fixedN and not allow
dynamic adaptation. In order to allow this adaptation, the values being communicated
between nodes should be futures. This way a varying number of computations at each
node can be performed at once. There is no need to allow more than one future to
be in-flight between each node as no real computation is performed until the future is
evaluated.

Arbitrary-sized Queue. Of course, arbitrary-sized ordered queues are still a useful
primitive. These are relatively easy to provide with coarse-grained locking, just as Java’s
simple Collections.synchronizedList(...) wrapper. Here I describe an approach
that instead performs locking in a much finer manner on each node of the list.

def @queue(k) � tail(head) & k(take, put),

take(k) & head(v, next) � k(v) & next(head),

put(v, k) & tail(set) � k() & @node(v, set, tail)

def @node(v, m, n) � m(v, get) & n(set)

get(k) & set(v, next) � k(v, next)

This describes a complex data structure that is similar to Java’s
LinkedBlockingQueue, whilst capturing its communication characteristics more accu-
rately than a Java implementation ever could.

3.4.3 Task-based Parallelism

Fine-grained task-based parallelism is probably the most popular of parallel programming
languages. It is therefore important that it encodes neatly in the JCAM. Fernandez
studied this encoding in his master’s thesis [42]. This section presents his solutions,
specifically considering the Cilk language.

The key primitives to support are, of course, spawn and sync. There are, however, two
other11 more obscure keywords in Cilk that I also consider as an exercise in compilation of
a complete language—abort and inlet. They were specifically mentioned by Fernandez
as problematic. I seek to counter that argument.

11Cilk does also have a cilk keyword that specifies a function as being spawnable. I will only consider
such functions so do not need to consider the keyword any further.
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Basic Case

Fernandez starts by considering the simple case where all spawn and sync constructs are
outside control-flow structures such as if and loops. For example, a simple Fibonacci
program as in Figure 3.16. This figure shows not only the Cilk program but also its
translation into the JCAM.

As with compilation of any function to the JCAM, each Cilk function must form
its own definition, with each call creating a new instance. This is required to prevent
messages from different call frames interfering in the case of recursive (i.e. where two
instances of a function would be on the conventional call stack at once) or parallel calls.
After a normal function call, all live variables are passed to one continuation channel,
and the function is given a second continuation channel. The code of the continuation is
then defined in a transition rule that matches on both of these. In the event of spawn

operations, further continuation channels are simply added for the function call. However,
rather than matching on these in the transition rule of the code immediately following
the spawn, it is necessary to wait until the sync operation to require a message.

Within Control Structures

Encoding spawn and sync operations that occur within conditionals and loops is more dif-
ficult as the exact number of child tasks is not known at compile-time. In Cilk specifically,
each sync acts as a barrier on all outstanding children (unlike Wool which synchronises on
the next child). It is therefore only necessary to maintain a count of outstanding children
(%c below). For each spawn-site, we then introduce a continuation channel kspawnf . We
then require multiple rules as follows for a sync-site i:

transition %synci(i32 %c, ... local vars ...) %kspawnf(T %x) {
Update local variables with result %x

%done = cmp eq i32 %c, 1

br %done, label %end, label %wait

done:

emit %postsynci(... local vars ...)

finish

wait:

%c_m1 = sub i32 %c, 1

emit %synci(i32 %c_m1, ... local vars ...)

finish

}

A further complication occurs when the result of a spawn is assigned to a location
dependent on other variables—i.e. an array element (or multiple levels of array elements).
In this case it is necessary to use a wrapper that can pass these extra parameters to the
result—for example a[i] = spawn f(x) might be compiled as in Figure 3.17.

Speculative Computation

Cilk’s inlet keyword allows functions to be defined that are used to handle the results
of spawned children. For example, if we were looking for a solution with the minimum
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int fib(int n) {
if(n <= 1)

return n;

int x = spawn fib(n - 1);

int y = spawn fib(n - 2);

sync;

return x + y;

}

⇓

definition {
channel @fib(i32, (i32))

channel %a(i32)

channel %b(i32)

channel %temp((i32))

transition @fib(i32 %x, (i32) %k) {
%base = cmp ult i32 %x, 2

br %base, label %base_case, label %recurse

base_case:

emit %k(i32 %x)

finish

recurse:

emit %temp((i32) %k)

%x1 = add i32 %x, -1

construct @fib(i32 %x1, (i32) %a)

%x2 = add i32 %x, -2

construct @fib(i32 %x2, (i32) %b)

finish

}

transition %a(i32 %x) %b(i32 %y) %temp((i32) %k) {
%result = add i32 %x, %y

emit %k(i32 %result)

finish

}
}

Figure 3.16: Compilation of fib in Cilk to the JCAM.
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definition {
...

construct @fwrap(i32 %i, S %x, (S, (T)) %f, (i32, T) %kspawn)

transition %synci(i32 %c, ..., [T] %a) %kspawnf(i32 %i, T %res) {
store [T] %a, i32 %i, T %res

As before
}

}

definition {
Channel declarations omitted

transition @fwrap(i32 %i, S %x, (S, (T)) %f, (i32, T) %k) {
emit %f(S %x, (T) %result)

emit %temp(i32 i, (i32, T) %k)

finish

}

transition %result(T %r) %temp(i32 %i, (i32, T) %k) {
emit %k(i32 %i, T %r)

finish

}
}

Figure 3.17: Compilation of spawn/sync within more complex control-flow.
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cilk solution_t evaluate(param_t p);

cilk solution_t search() {
solution_t best = NULL;

inlet void check(solution_t s) {
if((best == NULL) || (s.cost < best.cost)) {

best = s;

}

if(best.cost == 0) {
abort;

}
}

for(int i = 0; i < N; i++) {
check(spawn evaluate(PARAMS[i]));

}

sync;

return best;

}

Figure 3.18: Example of Cilk’s inlet and abort keywords.

cost over a search space, this could be written as in Figure 3.18. The abort keyword is
used to cancel remaining evaluations once we find a zero-cost solution (assuming negative
costs are impossible). In the JCAM this would be written as shown in Figure 3.19. Note
that the encoding does not necessarily cancel the remaining evaluations, but it will allow
the search itself to terminate. As with other scenarios, it is hoped that a scheduler will be
able to see that further firings of evaluate are wasteful. This is not dissimilar to garbage
collecting unused objects in a language such as Java.

3.4.4 Transactions

A more difficult paradigm to consider is that of transactions. This typically provides the
programmer with atomic blocks and possibly also the opportunity to abort or retry

a transaction. A lot of the issues involved here have been highlighted by Boehm in a
discussion paper [17].

He points out that the abort primitive, which rolls back the program state to the start
of the block, is a feature independent of the concurrency or parallel aspects. Furthermore,
he argues that the retry statement can only be of use in a scenario where some aspects of
coordination are being performed outside of the transactional framework. I will therefore
focus solely on the atomic blocks themselves.

Boehm concludes that the most intuitive semantics for such blocks is that of a global
mutual exclusion lock. This is of course easy to encode in the join calculus. However,
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def @evaluate(p, k) � k(...)

def @search(k) � state(None, N, k)

& for(p in PARAMS) @evaluate(p, check),

state(best, n, k) & check(s) �
let next = match best with

| None -> s

| Some b -> if s.cost < b.cost then s else b

in

if (next.score == 0) or (n == 1) then k(next)

else state(Some(next), n-1, k)

Figure 3.19: Encoding of Figure 3.18 in the JCAM.

class Foo { def @Foo(k) � S(...) & k({f_1, ...}),
public f_1(...) { S(this) & f_1(..., k) �

... ⇒ let new_this = ... in

} S(new_this) & ... & k(...),

... ...

}

Figure 3.20: Compilation of Objects to the JCAM.

the performance of such a näıve implementation is poor. Transactional memory (TM) is
therefore the de-facto way of implementing these blocks. The key point though is that,
as Boehm’s title states, “transactional memory should be an implementation technique,
not a programming interface”.12 Applying this to my situation, TM should be seen as
a way of improving JCAM performance, much as others [99] have used it to improve
conventional lock-based programs. This is not something explored in this thesis, but is a
promising area for future work.

3.4.5 Objects and Actors

Immutable structures could easily be added to a JCAM without any adverse interaction
with the join calculus.13 From these it would be possible to implement objects using
a single this channel S that maintains the state between calls to methods, as shown in
Figure 3.20. The behaviour of such objects in a parallel context would be exactly as per
the actor model [56], with only one method of the object executing at any one time.

Supporting inheritance is a little more complex. I do not believe that supporting
inheritance directly within the abstract machine is the right approach. This is because

12This is further backed up by recent work to implement atomic sections with lock-inference techniques,
which “infers a set of locks for each atomic section, while attempting to balance the requirements of
maximal concurrency, minimal locking overhead and freedom from deadlock” [52].

13Although, of course, the control flow-analysis presented in Chapter 5 would need to be altered to
incorporate compound values.
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there are a number of ways that the join calculus and the notion of inheritance can
interact [47]. Tying the abstract machine to a specific behaviour would be unnecessarily
restrictive. Instead, I would suggest supporting subtyping of structures within the JCAM.
All inheritance could then be resolved in the frontend, with constructor transitions in the
JCAM simply returning structures that contain public methods and fields.14 Supporting
interfaces and multiple inheritance of course requires that the subtyping relation between
structure types ignores the order of fields (i.e. does not check whether one structure is
a prefix of another), but there has been plenty of research looking at how this can be
effectively implemented in the context of the JVM [3].

3.4.6 Complex Memories

One of the original motivations for this work was the difficulty in dealing with placement
and scheduling on heterogeneous architectures. These two problems are tightly linked
and, as argued in Section 1.1, allowing them to be considered as a single problem would
be a big advantage. The original join calculus paper [45] did intend the model to be used
for distributed as well as concurrent computation, and JoCaml supported this through a
registry type setup [33]. However, it is fair to say that this aspect of the language has not
received the same attention as the join patterns, and most of the later work has considered
the model in the context of shared-memory multi-core systems. I would argue that the join
calculus is in fact better suited to an automatic approach to this mapping than the registry.
The placement choices in a heterogeneous system can be accurately modelled with the
non-determinism of the calculus, allowing them to be seen as standard scheduling choices.
Data movement between cores, as well as local computation, is expressed as transition
rules. Thus I argue that the JCAM can form a universal intermediate representation,
that not only models existing concurrency primitives, but could also adapt to different
architectures at load-time or run-time.

The remainder of this section demonstrates how to perform this construction. The
work for this section has been presented in two publications: one using Petri-nets [22],
and a later one on the join calculus [24].

Hardware Model

I restrict myself to a very simple model of heterogeneous architectures which ignores fine
details of the memory system such as caches. I consider a system to consist of processors,
each with a local memory, and interconnects between them. The cost of accessing this
local memory is low and considered part of the computation cost of a transition. Non-local
data must be transferred via interconnects before use, at a cost modelled by latency and
bandwidth. This is not dissimilar to the partitioned global address space model (PGAS)
that is used elsewhere (e.g. X10). I ignore capacity constraints of memories.15 Formally,
a hardware architecture is defined as follows:

Definition 2 A simple heterogeneous hardware model H is a 3-tuple (P, i, c) con-
sisting of:

14Public fields will of course correspond to structures containing getter and setter channels for a memory
cell encoding.

15In situations where not all program data can fit in a single memory, one could imagine data transfer
costs varying to prevent a scheduler choosing to transfer more data to a near-full memory.
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Core 1 Core 2
ε

GPU 1GPU 2

Here ε is typically small, and the other costs are based on actual measurements.

Figure 3.21: Example model for dual-core CPU with 2 general-purpose GPUs.

• A finite set of processors P .

• An interconnect descriptor function i : (P × P )→ (R+ ×R+)∞. For a pair (p1, p2)
of distinct processors, i(p1, p2) = (l, b) gives the latency l and per-byte cost b (=

1
bandwidth

) of the interconnect from p1 to p2. I will refer to the cost of transferring n

bytes of data with the notation 〈p1
n→ p2〉 = l+ n · b. When there is no interconnect

from p1 to p2, i(p1, p2) =∞.

• A computation cost function c : (T×P )→ R∞+ , where∞ indicates that the processor
cannot perform the transition (e.g. no floating-point support). The set T represents
the set of all possible transition rules.

In practice, the interconnect descriptions and computation costs, which will only ever be
approximate, would be given by profiling information. An example model of a multi-core
plus GPU architecture is given in Figure 3.21. The inclusion of small costs, such as ε in
the example, approximates the effect of cache invalidations, when cores share a memory
but have separate caches. Memories not associated with a processor can be modelled as
a ‘null’ processor p⊥ with c(t, p⊥) =∞ for all t ∈ T.

I assume two sanity constraints: that the memory interconnect is strongly connected,16

and also that all transitions can be executed somewhere (i.e. ∀t ∈ T : ∃p ∈ P : c(t, p) 6=
∞). These properties ensure that the mapping of software onto hardware is also confluent,
given a confluent program.

Mapping a Program to a Target Architecture

Given the hardware model above and the JCAM defined earlier, the goal is to model all
possible executions of a program on an architecture with a new JCAM program. Each
feasible path through this will give a possible execution trace.

I introduce this construction by considering the flattened join calculus program pre-
sented earlier that sorts an array of integers using a merge-sort-like algorithm (Fig-
ure 3.11). There is clearly scope for parallelising both the split and merge steps—
although this may require moving data to another memory. For this example, I take
P = {x, y}, and assume both a fully-connected memory interconnect and that all rules
can execute on either x or y. However, the encoding would also work for more complex
scenarios.

16A graph is strongly connected if for every pair of vertices a and b, there is a path both from a to b,
and b to a.
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def

@sort_x(numbers, k) � @sort_y(numbers, k) �
split_x(numbers) split_y(numbers)

& info_x(numbers.length, k), & info_y(numbers.length, k),

info_x(N, k) � info_x(N, k) info_y(N, k) � info_y(N, k)

& info_x(N, k), & info_y(N, k),

split_x(a) � split_y(a) �
let n = length(a) in let n = length(a) in

if n = 1 then if n = 1 then

merge_x(a) merge_y(a)

else else

split_x(a[0..(n/2)-1]) split_y(a[0..(n/2)-1])

& split_x(a[(n/2)..(n-1)]), & split_y(a[(n/2)..(n-1)]),

merge_x(a) & merge_x(b) merge_y(a) & merge_y(b)

& info_x(N, k) � & info_y(N, k) �
info_x(N, k) & info_y(N, k) &

if a.length + b.length = N then if a.length + b.length = N then

do_merge(a, b, k) do_merge(a, b, k)

else else

do_merge(a, b, merge_x), do_merge(a, b, merge_y),

info_x(N, k) � info_y(N, "k on y"), info_y(N, k) � info_x(N, "k on x")

split_x(a) � split_y(a), split_y(a) � split_x(a),

merge_x(a) � merge_y(a), merge_y(a) � merge_x(a),

A B

C

Figure 3.22: Mapped version of merge-sort for a dual-processor system
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The intuition behind my construction comes from considering a message value x. In
a program marking M ∈ m(ChannelValue × Value∗), x must be associated with some
channel f ∈ C. However, the architecture H = (P,m, c), on which the software is run,
must store x in some memory p ∈ P . Therefore, the location of a data token in a running
program is described by a pair from the set C× P .

If one now considers what might happen to the message containing x, there are two
options. Either:

• (r, p): The message is used by transition rule r ∈ T executing on processor p (where
possible), or

• (f, p, p′, n): The message is transferred to another processor p′ ∈ P via an intercon-
nect (p, p′) as part of an n-token transfer.

The first option corresponds to producing a copy of the program for each p ∈ P ,
omitting any transition rules r for which c(r, p) =∞, giving box “B” of Figure 3.22.

Secondly, I add transitions that correspond to possible data transfers (box “C”). This
requires one rule per channel and interconnect pair. However, the higher-order nature of
the join calculus means these need to be carefully defined to preserve locality. Specifically,
when a channel value such as k is transferred it needs to be modified so that it becomes
local to the destination processor. This maintains the invariant that the ‘computation
transitions’ introduced by the first part of the construction can only call channels on the
same processor.

This results in a new program that is a subset of the following (depending on the
interconnect and computability functions). The construction is equivalent to the Cartesian
product of hypergraphs, where each transition rule corresponds to a hyperedge.

Channels = (C× P ) Transitions = (T× P ) ∪ (C× P 2 × N)

Data Places

Computation Transitions

Memory Transfers

Additionally, when the complete system is considered, resource constraints are required
so that a processor executes only a single transition at any moment, and similarly so that
each interconnect is only used for one transfer at a time. Considering the problem in the
context of Petri-nets (e.g. Figure 2.13), it would be possible to use mutual exclusion locks
similar to Figure 3.2. This would result in a net such as Figure 3.23 for the merge-sort
example on a dual-core CPU, where red places correspond to processor constraints and
green places to interconnect constraints. However, using such resource constraint places
is not possible in the join calculus, as they need to be matched on by transition rules in
different definition instances (since processor time is shared between these). Changing
the calculus to allow this would make it harder to generate an efficient implementation.
Instead, I introduce the notion of workers to the semantics.

Rather than allowing any number of transition firings to be mid-execution at a given
time, each worker can only perform zero or one firing at a time. I also tag each transition
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Figure 3.23: Merge-sort mapped onto a dual core CPU (types are omitted for clarity, and
memory transfers are only shown for n = 1).

with the worker that may fire it. In the present example, there would be four workers:
x, y, xy and yx. The x and y copies of the original program (in boxes “A” and “B”
of Figure 3.22) are tagged with the x and y CPU workers respectively, while the data
transfer transitions are tagged with the relevant interconnect worker, xy or yx.

Modifying the formal semantics of the JCAM to accommodate these changes is rela-
tively straightforward. Previously the overall machine state was described by a pair:

(Γ,Σ) ∈ State = (GlobalEnv × LocalState)

with Γ giving the state of each channel’s message queue, and Σ the state of the currently
firing transition. To introduce workers, I replace the single firing state with a map of each
worker’s state as follows:

(Γ,Ω) ∈WState = (GlobalEnv × (Worker→ LocalState ∪ {IDLE}))

The behaviour of each non-idle worker is described by projecting from WState into State
(i.e. (Γ,Ω) 7→ (Γ,Ω(w)) for w ∈ Worker). The firing rule must be defined on the overall
machine, and requires an idle worker.

∆ = {((fi, α), v̄i) | 1 ≤ i ≤ n}
(fi(xi){b̄}) ∈ p b0 = (l0, [], c̄) ρ = [x̄i 7→ v̄i | 1 ≤ i ≤ n]

p ` (M + ∆, θ),Ω[w 7→ IDLE]� (M, θ),Ω[w 7→ (α, l0, c̄, ρ, b̄)]
(wfire)

p ` Γ,Ω[w 7→ ( , , [finish], , )]� Γ,Ω[w 7→ IDLE]
(finish)

It is also necessary to make the timestamps worker-local. I do this by drawing them from
(Worker,N0) rather than just N0. The initial state is for all workers to be IDLE, and some
messages corresponding to program arguments to be available in Γ as before. Unmapped
programs can be considered to have just a single worker, as this collapses down to the
previous semantics.

When defining the hardware model, I required that the memory be strongly connected.
This ensures that data transfers can always be ‘undone’. Similarly, since each transition
in T can be performed on some p ∈ P , the mapped version of a confluent program will also
be confluent. Therefore, the choice of which transition to fire can only affect performance,
not correctness.

80



Since the hardware model gives costs, the converted program can be supplemented
with durations, using the 〈 〉 notation introduced in Section 3.3.2. It can be defined as
follows:

〈(t, p)〉 = c(t, p)

〈(f, p1, p2, n)〉 = 〈p1
n·sizeoftype(f)→ p2〉

To accommodate vector processors such as GPUs, it is necessary to consider the fusing
of multiple copies of a single transition. The merged transition will take significantly less
time than performing the n transitions individually. Obviously, a real implementation
will not enumerate these fusings, but one can view it this way in the abstract. A similar
argument also applies to data transfers which can benefit from bulk operations. Further
discussion of fusing and inlining is given in Section 6.6.3.

Dealing with Explicit Placement in Programs

The above encoding enlarges a JCAM program to consider placement choices not specified
in the original program. However, it will often still be necessary in languages that have
some notion of data transfers, or different memories. Typically these will only constrain
some choices, and these constraints could be presented as annotations on the IR. Ignoring
such annotations would not affect program correctness, so they should be seen as scheduler
hints.

For example, in X10 [102] the language simply distinguishes between the current mem-
ory and other places. The programmer is therefore aware of points at which computation
or data is introduced at a previously unspecified place (i.e. the points at which data trans-
fers may occur). Expressing this equates to annotating channels for which data transfer
transitions should not be introduced.

Similarly languages that expose heterogeneity between processors can be expressed by
hinting that JCAM transitions should only execute in certain locations.

3.5 Summary

This chapter has detailed the rationale for the join calculus abstract machine (JCAM),
and also introduced its behaviour more formally. Section 3.4 provided high-level descrip-
tions of how certain paradigms map to the JCAM. In doing so, I have demonstrated
that the JCAM is a suitable representation for encoding concurrent programs without
throwing away information about their communication patterns. The following chapters
take a more concrete view, addressing the challenges of implementing the JCAM with
competitive performance.
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dovetail, n. (woodworking) A type
of joint where adjoining boards are
fastened by interlocking fan-shaped
cutouts.

Chapter 4

Efficient Implementation

This chapter introduces an implementation of the JCAM (named Dovetail) based on exist-
ing state-of-the-art techniques and LLVM. Since the implementation is a compiler rather
than a library, there are also opportunities to introduce (user- or analysis-generated) an-
notations that allow for specialised and higher performance implementations of channels
and instance instantiation. Making use of these opportunities is particularly important
since, unlike previous join calculus implementations, the JCAM does not offer functions,
methods, or even mutable state.1 This is accentuated by CPS rather than direct style.
The primitives of the JCAM are therefore very heavily used and must not incur sig-
nificant overheads. However, whilst the traditional primitives are not available within
the JCAM, any implementation can of course make use of any operations offered by the
target-architecture—for example shared-global-memory operations to represent optimised
channel queues. This work was also encouraged by the performance achieved by Turon and
Russo [113] which demonstrated that other concurrency primitives can be implemented
competitively in a relatively fine-grained manner with the join calculus.

Section 4.1 starts by describing a compiler based on the techniques used in the latest
library implementation of the calculus [113], along with optimisations that a compiler
approach enables. I then provide a breakdown of the overheads associated with this
implementation (Section 4.2). It is this investigation that guides the remainder of the
chapter, with the largest area for improvement shown to be memory allocation. Much of
this is associated with heap allocation of definition instances, and Section 4.3 develops
a novel technique to improve this. The second improvement is in bounding the size of
the channel message queues. This is investigated in Section 4.4. Throughout, a simple
Fibonacci micro-benchmark is used. A wider range of programs is considered in Chapter 6,
but for the purposes of optimising the raw cost of JCAM operations, this simple case is
sufficient.

4.1 A Baseline Implementation

In Section 2.4, I reviewed the two predominant join calculus implementations: JoCaml
[33] and the Joins Library [101, 113]. It is clear that Turon and Russo’s recent work is
the more sophisticated approach, with the better performance, and it therefore forms the
basis of my prototype with the exact data structures described in Section 4.1.2. I make

1Recall that this is due to a desire to support non-shared memory and also test whether the purity of
the join calculus can be offered with acceptable overheads.
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some obvious improvements on their approach that I can perform due to taking a compiler
rather than library approach (Section 4.1.1). Another influence is Wool’s implementation
of fine-grained task parallelism [39]. The simple scheduling used in this implementation
is also based on work-stealing (Section 4.1.3), although more complex approaches are
discussed later in Section 6.6.2.

In order to achieve results that can be compared to more mature compilers, I make use
of LLVM [1] and the wide range of optimisations that it can provide. The implementation
performs the compilation ahead-of-time rather than just-in-time. This was done to reduce
the effort required to produce a prototype, but in the long run a JIT may be better suited
if complex scheduling choices are to be made.

Within transition rule bodies (i.e. intra-procedural), classical techniques, such as var-
ious dataflow analyses, are applicable without modification. In fact, by using LLVM
as the basis of my implementation, most common optimisations are already performed.
However, switching from conventional IRs to the JCAM significantly alters the scenario
for inter-procedural analyses and transformations. JoCaml scratched the surface of what
could be done, and I take this further later in this chapter and in Chapter 5.

4.1.1 Specialised Emission Functions

For each channel, the Joins Library maintains a list of transitions that match on it. In
turn, each transition is associated with a list of channels that make up its join pattern.
These are required in order that a single emission function2 can be used to check for new
matches after a message send. The emission function is what is called by code that wishes
to send a message to a channel. However, this approach incurs several costs:

• Each message send must traverse these lists. These memory reads go through mul-
tiple levels of indirection and will therefore be relatively expensive, even with the
aid of caching.

• A single emission function, such as in the Joins Library, will adversely affect branch
prediction. It is common in join calculus programs that certain channels in a pat-
tern always receive their messages before others. Ideally a branch predictor would
therefore be able to predict the route through the emission function fairly accu-
rately, even if the behaviour is not obvious statically. A single function conflates all
conditional branches, causing the behaviours of different channels to be confused.

Since the data contained in these lists is entirely constant, the lists can be completely
avoided by compiling specialised emission functions for each channel that unroll the traver-
sal of the list. This is the approach taken by Dovetail. A channel value is therefore not
just a pointer to instance specific data, but also a code pointer to this specialised emission
function which is shared with other instances of the same channel.

Furthermore, I can optimise these functions for special scenarios where simpler checks
can be made. As a simple example, consider channels that always appear as the sole
channel in a join pattern—i.e. functional channels. Since no coordination is taking place
and a match will always occur, I simplify the emission function to immediately enqueue
a match. This effectively reduces the overhead of the message send-and-firing to a spawn
operation. Wool showed that this need take little more than a standard function call.
This very simple optimisation gives the performance gains shown in Figure 4.1.

2AsyncSend<A>(Chan<A> chan, A a) in the Joins Library[113].
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Figure 4.1: Benefit of specialising functional channels.

The remainder of the optimisations made in this chapter all rely on this emission
function specialisation. While they offer significant benefits, I have no doubt future work
could identify other specialisation scenarios ripe for optimisation.

4.1.2 Join Calculus Data Structures

Each join calculus instance is represented by a structure containing a queue for each
channel. Later these queue structures may differ depending on the characteristics of the
channel, but initially each represents a Michael-Scott queue—probably the best known
lock-free queue algorithm and as used by Turon (see Section 2.4.3 and [113]). The nodes
in these queues consist of the message value and its status3—again as in Turon’s Joins
Library work. Channel values are represented very simply as a pair consisting of the
specialised emission function and a pointer to the instance. An example of the data
structures for fib is given in Figure 4.2. This corresponds to the state of the program in
Figure 3.14 before @fib4 and @fib5 are created, and once @fib2 has already passed its
result to a1.

Since a traditional function call is replaced by a message send, possibly a matching
operation and finally the enqueuing of a match in the JCAM, it is crucial to minimise
the overheads in this sequence as much as possible. All calls to the Dovetail runtime (for
instance, to enqueue a match) are therefore inlined.4 The only calls made by an emission
function after inlining has been performed are to allocate memory.

The higher-order nature of channel values makes it impossible to inline calls to the

3Recall that the two-phase commit of the matching algorithm requires pending, claimed and consumed
states.

4Dovetail also performs an extra optimisation beyond those performed by LLVM to remove a commonly
occurring pattern, whereby switch statements followed by a conditional branch on the same (or negated)
condition are pushed down into the destination blocks of the branch.
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@fib3(2, b1)
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pending k

pending 1

Figure 4.2: Data structure snapshot for fib.

emission functions themselves in many cases—although they are marked with LLVM’s
inlinehint attribute. Since these emission functions are only ever called by code that
Dovetail generates, the calling convention can be modified to maximise use of registers
for arguments, and minimise the cost associated with the call. LLVM provides a number
of calling conventions that can be considered for this, including fastcc, and several x86
conventions. Unfortunately, the conventions used by the LLVM-based Haskell and Erlang
compilers were not applicable. In the case of Haskell (referred to in LLVM as cc10),
there seemed to be compatibility issues with the Boehm garbage collector I use. Erlang’s
calling convention makes calls into the Erlang runtime, so is more difficult to use with
other languages. Table 4.1 illustrates the performance of the possible alternatives, relative
to the default C convention. These measurements are taken with all other optimisations
developed in this chapter turned on, in a multi-threaded execution. This is intended to be
most representative of a normal scenario—but as with other measurements in this chapter,
the micro-benchmark nature means that the effect of the calling convention is not masked
by computation unrelated to the JCAM coordination. Although no significant difference
was observed between the standard C convention and fastcc, Dovetail uses fastcc as it
passes more arguments via registers. This calling convention is also used when a worker
calls a match (i.e. a transition rule’s body).

The calls to the emission functions also often don’t make use of data allocated on
the stack of the compiled transition making the call. This allows them all to be anno-
tated as candidates for tail call optimisation. Since transitions can only have any effect
through messages they send, every transition will have at least one EMIT instruction that
is a genuine tail emit.5 Adding these annotations therefore has a worthwhile effect on
performance, as shown in the second column of Table 4.1.

A final noteworthy implementation detail is the treatment of dead instances. These
are instances in which no more transitions will ever fire (i.e. no matches are possible and

5Note that unlike in the CPS λ-calculus, where each function will make a single (tail) call, join
transitions can perform multiple message emits even in CPS form.
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Calling Convention Without Tail Calls With Tail Calls
LLVM fastcc 0.99 0.90
Standard C 1.00 0.90
Fast x86 1.22 1.22
Standard x86 1.22 1.22

Table 4.1: Execution time of calling conventions relative to standard C without tail call
optimisation.

no more messages will ever be sent to the instance’s channels). One might expect that
collecting such instances would be a significant part of the implementation. However,
since Dovetail only checks an instance for possible firings after a message is sent to one of
its channels, it only need maintain references to an instance in channel values. As a result,
only the instances which are reachable via a channel value can ever fire again. Dovetail
therefore relies on standard garbage collection to ensure that dead instances are removed
from memory.

The garbage collector used in Dovetail is the Boehm-Demers-Weiser Garbarge Col-
lector [18]. Just as Section 3.3.1 commented that θ need not be a global counter but
worker-specific, the thread-local feature of the garbage collector is enabled to reduce con-
tention between workers when allocating instances.

4.1.3 Work Stealing for the Join Calculus

The work queues in Dovetail are standard Chase-Lev deques [29]. The tasks described in
these queues correspond to matches of join calculus transitions. As in Wool, the complete
task descriptors are stored in the work queue rather than having extra indirection. The
individual messages of the match are also copied into the descriptor. This is motivated
by considering the cachelines present in the cache at various points.

When a match is first created, all message queues in its join pattern have just been
checked for messages. Assuming no false-sharing, all these messages will therefore be in
the cache, and accessing the message values should be relatively inexpensive. In many
cases, the size of the message value will not be dissimilar to the size of a pointer. The
overheads associated with writing the value, rather than a pointer, into the match should
therefore be minimal. When the match is executed, the cacheline of the match itself will
be present in the cache, so accessing these values should again be inexpensive.

If we instead were to store indirect pointers to the messages, the cost of creating the
match would be much the same for the above reasons. However, when executing the
match we would need to follow these pointers to the locations where the messages were
originally stored. Especially in the case that the match was stolen, this will often result
in cache misses.

Of course, using work-stealing as the scheduler for the JCAM is a very simple approach.
It is only applicable within a single shared memory (e.g. x86), since any implementation
involving data transfers needs to consider the cost of these, as described in Section 3.4.6.
There is also no real consideration of non-determinism—although I could feasibly control
this by altering the order that transitions are checked in the matching sequence.
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Total6 MM Other
Work Queues (i.e. popping/stealing matches) 2.3% - 2.3%
Instantiating Definitions 40.6% 35.7% 4.9%
Emission of Messages (including matching) 54.3% 31.5% 22.8%
Actual Work 2.9% - 2.9%

Table 4.2: Breakdown of fib execution (by instruction count).

4.2 Profiling Bottlenecks

If we examine the performance of our fib benchmark on a single core using the basic
implementation described so far, it becomes clear that memory management is a key
bottleneck. A breakdown that separates out this aspect of the execution is shown in
Table 4.2. Furthermore it shows the split between the different primitives used. These
results were obtained using the callgrind tool that forms part of Valgrind [120]. “MM”
corresponds to any time spent within the Boehm GC GC malloc function.

Unfortunately, the large amount of inlining performed by LLVM on Dovetail’s output
makes it very difficult to separate out the cost of enqueuing matches on the work queue
from the instantiation and emission costs. However, these are not believed to be significant
and the low percentage for “Other” within instantiation backs up this hypothesis. Aside
from the memory management costs, join calculus matching also stands out. The cost
here is due to the way that channel message queues are implemented. Each message is a
distinct node in a linked list, and even an empty list includes a sentinel node. Therefore,
checking whether a message is available always requires one or more pointer dereferences.
This is a cost that should be avoidable, as Section 4.4 shows.

The figure given for “Actual Work” still represents more time than our C baseline
takes to execute. This can be explained by the indirect function calls that are required
for each fib definition to return its result to the continuation, which can be either a or
b (see Figure 3.16). Removing these indirections requires some form of inlining. Dovetail
does not do inlining itself, but I give hand-optimised values for the benefit of this in
Section 4.5. Even without this inlining, Table 4.2 suggests that removing the memory
and queue overheads could result in performance improving by a factor of about 40 on a
single core. This is almost exactly the benefit that Dovetail achieves for fib (Figure 4.3).

4.3 Closed Definitions

The profiling of the previous section shows that memory management is the main overhead
that prevents the baseline implementation from being competitive. Clearly improving the
performance of the memory allocator and garbage collector may be possible through a
number of techniques. However, a better approach would be to decrease the number of
allocations that must be done on the heap. Producing a garbage collector with better
performance than the Boehm-Demers-Weiser collector is also beyond the remit of this
work. This section presents an entirely new approach to optimisation of the join calculus
that aims to do this based on knowledge about characteristics of a definition.

Since the JCAM does not offer mutable state or function calls, instances must regularly
be created in cases where a traditional representation would have used space in the current

6As a result of rounding for presentation, the percentages given do not sum to exactly 100%.
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function’s stack frame (or activation record). One key feature of a stack frame is that
it can be allocated and deallocated simply by incrementing and decrementing a pointer.
Unfortunately, once compiled to join calculus definitions, this can no longer be done in
the general case, since the lifetime of an instance is far more loosely defined than for a
function, which can never outlive its parent. As mentioned already, memory for instances
is therefore allocated on the heap and garbage collected once the instance is dead—far
more costly than stack allocation. This is confirmed by the profiling data in Section 4.2.
Given that such examples occur often, it is important to optimise these back to stack-
allocated instances. Here I show how stack allocation can be used in any case where an
instance does not require subsequent messages after its construction. Such instances will
be called closed.

These are extremely common and result from the compilation of conventional func-
tions, and any other program parts that are self-contained (i.e. do not synchronise or
coordinate with other parts). Indeed the encoding of fork-join parallelism (e.g. Cilk)
shown in Section 3.4.3 exhibits this property. Closed definitions may even instantiate
other definitions, which need not be closed themselves, so long as all these instances are
encapsulated by the closed instance.

A precise interpretation of the semantics in Figure 3.13 never executes a transition
enabled by a construct or emit until after the completion of the current transition.
This would never allow stack allocation of the instance since the instantiating transition’s
own stack frame would be deallocated before the new instance ever executed. Even in my
implementation, matched transitions will only run before the end of the current transition
if they are stolen by another worker. However, if the new instance is instead executed to
completion immediately following the construct, then it can be allocated on the stack.7

Note that this is only possible for closed definitions where performing as many firings as
possible on the new instance and then deallocating it does not risk missing future firings
within the instance.

This is simple to implement in a single-threaded scenario—I simply modify the emis-
sion functions within the closed definition to immediately execute matches rather than
enqueuing them. It is also possible in the presence of concurrency, but this is more dif-
ficult since the worker on which the instance is created must wait for any transitions on
other cores to complete. This is not straightforward due to the complex synchronisation
and coordination patterns that one can specify in the JCAM. Dovetail therefore only
optimises closed definitions on a single-core.

This approach is quite similar to Cilk’s fast and slow clones (Section 2.3.1.2). The
more common single-core case is optimised in line with the work-first principle. A key
difference is that in Cilk it is possible to switch from fast to slow. Unfortunately, once
Dovetail decides to execute the ‘fast’ version of a JCAM instance on a single-core, it is
not possible to switch back to ‘slow’ instances that can be shared between workers until
the fast instance terminates.

However, there are advantages to this. It means that queue implementations within
fast instances can assume non-concurrent execution and avoid expensive memory barriers.
These are required in slow mode to ensure that at least one of two concurrent message-
sends, which can match together, sees the other in the matching algorithm. It also fits
with the idea that the program is first split into enough separate parts to occupy all

7This stack allocation does force tail-call annotations to be removed, but this cost is insignificant
compared to the benefit of stack allocation.
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Figure 4.3: Effect of using closedness on performance.

available cores, but that after that each core’s part should execute at as close to the speed
of a sequential version as possible. This prevents the fine-grained nature of the JCAM
hindering its performance too much. The decision to switch to fast mode is based on the
number of matches present on the worker’s queue.

We saw in the previous section the high proportion of runtime spent performing mem-
ory allocation. It is therefore unsurprising that this optimisation has a large effect on
performance. As shown in Figure 4.3, for cases where closedness is applicable, execution
can be sped up by several orders of magnitude.

4.4 Bounded Queues

Another particular case where specialisation of emission functions can offer significant
benefits is when the size of a message queue can be bounded statically. As mentioned in
Section 2.4.2, this is a scenario that was also considered in earlier work [33]. Given that
mutable state is not a first-class primitive in my abstract machine, this is a particularly
common pattern. Consider the memory cell encoding:

def @memcell(i,k) � val(i) & k(get, set),

get(m) & val(x) � val(x) & m(x),

set(x,m) & val(y) � val(x) & m()

It is clear that val never escapes from this definition, and also that it will always have
exactly one message available. Therefore in a shared-memory scenario, one might hope
to optimise this to:

def @memcell(i,k) � (loc := i); k(get, set),

get(m) � m(!x),

set(x,m) � (loc := x); m()
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where loc now refers to an (instance-local) ML-style memory location corresponding to
the single val message. This offers two direct benefits:

• When matching, the value is simply read and there is no need to check for an
available message.

• When sending a message, a write is performed which is far simpler than enqueuing
a value on a lock-free queue.

Unfortunately, this optimisation is not as straightforward as it first seems. There are two
problems:

1. The semantics imply that transitions appear atomic to other transitions. If a
compare-and-swap operation is added to the memory cell the problem becomes
evident.

def @memcell(i,k) � val(i) & k(get, set),

get(m) & val(x) � val(x) & m(x),

set(x,m) & val(y) � val(x) & m(),

cas(x,y,m) & val(z) � (if x = z then val(y)

else val(x))

& m(z)

The above approach would convert this to:

def @memcell(i,k) � (loc := i); k(get, set),

get(m) � m(!x),

set(x,m) � (loc := x); m()

cas(x,y,m) � (if x = !loc then (loc := y)

else ());

m(!loc)

It is clear that a worker executing the set rule is now in a data-race with another
worker performing cas. This optimisation is therefore only applicable in fast mode
instance implementations, where concurrency is not an issue.

2. According to the original calculus semantics, it would be expected that the optimised
version is equivalent to (note the altered order of message emits):

def @memcell(i,k) � k(get, set); (loc := i),

get(m) � m(!x),

set(x,m) � m(); (loc := x)

Unfortunately, this is not the case. With the reordering, there is no guarantee
that the continuations will see the updates to loc—this is even true in fast mode.
Therefore in addition to knowing that the queue is bound as exactly one item long,
it is also necessary to know that all emits to it are in a head-position. An emit
instruction is said to be in a head-position if it occurs before any new matches could
have been produced.
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Fortunately, it is often possible to hoist emits to potential ‘memory location’ style channels
so that they do occur in the head position, although this transformation is not provided
by the Dovetail prototype.

Theoretically, it is always possible for a compiler to ensure that this property holds.
This is a consequence of transition bodies not having any effect on global state. The code
for the body of a transition can therefore be generated twice. The first version would only
contain emits to these memory channels, and the second to everything else. In cases where
it cannot be statically determined whether the channel value will be a memory channel
or not, extra runtime checks would be necessary. One would expect the duplication to
produce large amounts of dead code that can be deleted. If this were not the case and
actual computation (for example, a loop) remained in duplicate, or if many runtime checks
were necessary, then the costs of this transformation would quickly outweigh the benefit
of replacing a cell channel with a memory channel.

4.4.1 Annotations

To support this scenario and ones like it, Dovetail supports five annotations on channels:

• lower bound(i) specifying that the queue always contains at least i messages.

• upper bound(i) specifying that the queue never contains more than i messages.

• head indicates that all emits to the channel are in a head-position.

• cell is equivalent to lower bound(0) upper bound(1).

• mem is equivalent to lower bound(1) upper bound(1) head.

4.4.2 Implementation

Based on these annotations, different queue implementations are picked for each of the
slow and fast modes of a channel. These are in turn called by the specialised emission
functions. I force LLVM to inline these calls, so after optimisation the channel emission
functions will simply contain the raw code intended with no calls. This often corresponds
to the code that would have been written by hand. The actual interface that these queue
implementations conform to (Figure 4.4) is much like that of a standard queue, however
in the case of ‘slow’ queues there are extra methods to allow for the two-phase commit
style of matching.

Cells

These can be implemented as a memory location along with a status field. To support
the two-phase matching algorithm (used in ‘slow’ mode), this can take the same three
statuses as messages in Turon and Russo’s work [113]—i.e. pending, claimed or consumed.
Furthermore, any update of the status field from pending to claimed must be performed
with an atomic compare-and-swap. In fast mode, this is simplified to a simple flag in-
dicating whether the cell is full or empty, and operations on this no longer need to be
atomic.
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Slow Mode

void init (chan*, sizeof(T))

msg* allocate (chan*, sizeof(T))

T* data (chan*, msg*)

void enqueue (chan*, msg*)

msg* find (chan*, bool* retry)

bool try claim (chan*, msg*)

void revert (chan*, msg*)

void consume (chan*, msg*)

void is consumed(chan*, msg*)

Fast Mode

void init (chan*, sizeof(T))

msg* enqueue(chan*, sizeof(T))

T* data (chan*, msg*)

msg* find (chan*, sizeof(T))

void consume(chan*, msg*, sizeof(T))

Figure 4.4: Queue implementation interfaces.

Memory Locations in Fast Mode

Rather than actually removing the channel, I provide an implementation of the standard
queue interface that often does not need to do anything (e.g. it never has to check whether
the queue is empty). Visual inspection has confirmed that, after running LLVM’s opti-
misations, this approach does collapse down to the raw reads and writes without extra
instructions.

Results

Figure 4.5 shows the effect of these bounded queue implementations on performance. It
is clear that both of these optimisations are worth making. The main benefit in both
cases is in preventing memory allocation for each message send. Memory locations offer
a smaller further benefit over cells since they apply to a limited selection of channels, and
also only make any difference in fast mode.

4.5 Inlining

Something that has not been discussed at all thus far is inlining at the JCAM level. This
is a key technique in the compilation of most programming languages, especially those
making use of CPS or which are particularly fine-grained.
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Figure 4.5: Performance of bounded queue implementations.
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Figure 4.6: Fusing of Transition Rules.

4.5.1 Transition Inlining

The most direct equivalent in the JCAM to conventional function inlining is transition
inlining. This involves fusing transitions together8 (e.g. Figure 4.6), and can give multiple
results for the same set of transitions (e.g. Figure 4.7). Performing such fusing may cause
some of the explicit parallelism to be lost, so this optimisation would ideally be done at
load-time or runtime when the target architecture is known.

It is also necessary to retain the original transitions in case the fused transition does
not support all the behaviours—for example in Figure 4.6, if only t1 ever fires, then
replacing t1 and t2 with just t1 ‖ t2 alters program behaviour. With the originals retained,

8t1; t2 and t1 ‖ t2 give sequential and parallel compositions of t1 and t2 respectively.
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Figure 4.7: Multiple Fusings of Transitions
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one must rely on a scheduler to pick the more efficient fused version in the hope that
〈t1; t2〉 < 〈t1〉 + 〈t2〉 or 〈t1 ‖ t2〉 < 〈t1〉 + 〈t2〉. For example, with the use of SIMD
instructions it might be that 〈t ‖ t〉 = 〈t〉. The simple work stealing scheduler in Dovetail
is unable to make such choices, and therefore forbids the application of transition inlining.
This concept is discussed further in Section 6.6.3.

4.5.2 Definition Inlining

A simpler technique that can be employed is definition inlining. This moves whole ‘child’
instances within a ‘parent’. Assuming that channels are α-renamed to avoid conflicts,
this clearly preserves semantics—just as two Petri-nets placed next to each other do not
interact, the channels of the child do not affect the existing transition rules in the parent,
or vice-versa. This transformation is another way to reduce the number of memory alloca-
tions that are required, and does not reduce the parallelism available. The transformation
also allows transition inlining, which can only occur within a definition, to have a more
global effect.

However, since inlining is a static optimisation, it is necessary to know statically that
a given construct instruction is called at most once. Hence, one approach would be to
only inline definitions instantiated within a constructor and outside a loop.9

The exact process is to copy non-constructor transitions into the parent definition (α-
renaming to preserve globally unique channel names), and then to replace the construct
instruction with the body of the child’s constructor transition rule. Any finishes are
replaced by branches to the successor of the original construct. For example, in the
following code:

def @main() � @mutex(s)

s(p,v) � ...

def @mutex(k) � free() & k(lock,unlock)

lock(k) & free() � k()

unlock(k) � k() & free()

inlining @mutex gives:

def @main() � free() & s(lock, unlock)

s(p,v) � ...

lock(k) & free() � k()

unlock(k) � k() & free()

Applying this approach once to the fib benchmark by hand offers a small benefit (Fig-
ure 4.8). It also enables transition inlining which increases the performance improvement
further.10

Whilst not relevant to this implementation, one issue with this approach is that it
does enlarge the possible state space of the parent definition. With some implementation
techniques (e.g. the join language in Section 2.4.2), the states considered grow exponen-
tially with the number of channels. Ideally, the total state space would remain constant,

9It may therefore be beneficial to unroll loops before this optimisation.
10In the case of fib, some transition inlining can be done without risk of deadlock or reduced paral-

lelism.
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Figure 4.8: Performance benefit of inlining for fib.

with part of it simply being transferred from the child definition instance to the parent.
This could be achieved by considering disjoint sets of channels. Initially, all channels are
considered disjoint, but whenever two channels appear in a join pattern together, their
respective sets must be unioned. The state spaces of the disjoint sets can then be con-
sidered separately avoiding the state explosion (since the inlined channels will clearly be
disjoint from all others).

4.6 Summary

In this chapter, I have shown how the performance of the join calculus primitives can be
improved. This is done using a mix of existing techniques, and also by taking advantage of
opportunities given by the compilation approach. I have highlighted two types of annota-
tion that enable significantly better performance in some common cases. Specifically, the
annotations are closedness (Section 4.3) and queue bounds (Section 4.4). For some of the
benchmarks in Chapter 6, I even found that these were required to prevent uncontrollable
runtimes and memory usage (in a similar way to functional languages that rely heavily on
tail-call optimisation). The next chapter shows how these can be inferred automatically.
Chapter 6 will provide a more in-depth evaluation of the implementation’s performance
over a range of larger benchmarks, rather than the micro-benchmarking used in this chap-
ter. This will show that the overheads of using the join calculus to represent all parts of
a program, rather than just coordination as in previous work, are not prohibitive.
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Chapter 5

Control Flow Analysis

The previous chapter demonstrated how, with suitable annotations, JCAM programs
can be executed with competitive performance. However, in reality these annotations are
unlikely to be present, and in any case it would be preferable if programmers and language-
frontends need not provide them. Inferring these properties requires inter-procedural
analysis to understand the message interaction characteristics of the programs. This
chapter will show how classical control flow analysis (CFA) can be adapted to the join
calculus, and how its results can detect both closed definitions and bounds on queue
lengths.

CFA is traditionally used for inlining of indirect function calls. However, inlining
becomes more complex in the join calculus and is beyond the scope of this work. An
overview of the issues involved in transition inlining is given in Section 6.6.3.

I start with a straightforward translation (Section 5.1) of constraint-based 0-CFA for
functional languages, and discuss its shortcomings, before moving onto two more sophis-
ticated analyses. The first of these, 0-LCFA (Section 5.2), introduces the notion of an
instance-local analysis which can deal with the richer way channels interact in the join cal-
culus compared to call-return in imperative languages. The second, k-LCFA (Section 5.3),
tries to improve accuracy in a similar way to higher-order approaches for functional lan-
guages by considering the program history. As discussed in Section 3.3.2, join calculus
histories are more complex than the linear call-strings applicable to sequential languages,
and best thought of as DAGs. My approach therefore requires a novel abstraction of
these. Its correctness is shown in Section 5.4.

Finally, Sections 5.5 and 5.6 show how the queue bound and closedness annotations
required by Chapter 4 can be inferred from the results of control-flow analysis.

5.1 Translating 0-CFA to the Join Calculus

Abstract interpretation (see Section 2.5) has been successfully used for concurrent ver-
sions of the λ-calculus [75]. However, in the presence of non-deterministic join-pattern
matching, ensuring that a direct abstraction of the concrete semantics considers all cases
is rather more difficult. In particular, the idea of an abstract machine state does not fit
easily with the fact that both future and past message sends can interact with the one
being analysed.

Constraints, on the other hand, seem a natural choice, since they can describe all
possible executions, before being solved to give an actual solution. As far as possible, I
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Figure 5.1: Illustration of 0-CFA abstraction for fib.

adopt the notation used by Faxén’s polymorphic analysis [38], combined with the lexical
convention that hatted names represent abstract domains and values. By starting with a
zeroth-order analysis of the JCAM, I hope to provide a gentle introduction to analysis of
the join calculus in the context of a well-known approach.

Recall that each channel value in the concrete semantics (Figure 3.13) is taken from the
set C×Time, where the time component is used as an identifier. For this straightforward
abstraction, I discard the instance identifier. This effectively conflates all join calculus
definition instances, as is done for the different environments that a closure might receive
in a λ-calculus 0-CFA—i.e. when the same flow variables are used for a function at every
call-site. For a simple Fibonacci example such as in Figure 3.16, this simplification can be
viewed as shown in Figure 5.1. As normal, values for variables in the local environment of
the concrete semantics are abstracted to sets of 0-CFA flow values, although I flip between
this and the isomorphic function-form that I can refine later. My usages of CFA are only
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interested in channel values, so all primitives1 are abstracted to PRIM.

f̂ ∈ ̂ChannelValue = C

v̂ ∈ V̂alue = P( ̂ChannelValue ∪ {PRIM})
∼= ( ̂ChannelValue ∪ {PRIM})→ {⊥,>}

I use c to range over ̂ChannelValue ∪ {PRIM}, while f only ranges over channel values.

V̂alue inherits the order ⊥ v >, which in the set view corresponds to ⊆. However,
rather than using these values directly, I use flow variables as is typical in a constraint-
based approach, along with a constraint set S over these. The local environment that
represents intermediate values within a firing is abstracted to ρ̂. A constant mapping
Γ̂ : C → FlowVar∗ associates a tuple of flow variables with each channel (i.e. one per
argument to the channel), and is equivalent to the global environment Γ. These represent
all possible values that might be sent in messages to the channel.

The possible constraints are the same as in Faxén’s CFA (Section 2.5), except the
application constraint α1 7→ α2 ⊆ α3 is replaced by an emission constraint ᾱ 7→ β.

α1 � α2 | α � {c} | ᾱ 7→ β

Constraints are built using the rules in Figure 5.2. The emission constraints generated
for emit and construct instructions can be read as saying that any tuple of values
represented by the flow variables ᾱ could be used to send a message to any of the channel
values in β. New flow variables are allocated by ∃α, and since there may be cycles in the
control-flow graph of rule bodies, an implementation will need to reuse flow variables to
ensure termination. Typically, 0-CFA allocates one per program point (i.e. ∃α is treated
as αl at program point l, along with splitting for different variables). However, within
a transition body it is trivial to use call strings to make use of different flow variables
depending on the path through loops and conditionals. The BR rule is shown as an example
of considering intra-transition control flow, but is omitted from the later analyses to save
space as it does not change. The constraint set S is then defined as the least set that
satisfies the following for each rule fi(xi){b̄} in the program.

S, Γ̂ ` l0, c̄, [xi 7→ Γ̂(fi) | 1 ≤ i ≤ n], b̄ where b0 = (l0, [], c̄)

Solutions to the analysis are of the form Φ : FlowVar→ V̂alue. Figure 5.2 also defines
what it means for such a Φ to be a valid model of the constraints, and gives a dynamic
transitive closure algorithm for computing S+. Given S+, the (least) solution can be read
off as:

Φ(α) = {c | (α � {c}) ∈ S+}

5.2 Dealing with Message Interaction: 0-LCFA

Whilst 0-CFA is useful for functional languages, it is often insufficient for the join calculus
as it cannot differentiate between different channel instances. In particular, the firing
semantics only allows two messages to interact when they belong to the same instance—
for example, P never fires in the following code but might be thought to by 0-CFA:

1This analysis is based on a JCAM that does not support structures or arrays. Adding these would
not be difficult but would cloud the presentation.
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Constraint Syntax:

S ⊆ Constraint ::= α1 � α2 | α � {c} | ᾱ 7→ β where c ∈ ̂ChannelValue

∪ {PRIM}

Constraint Generation Rules: (with judgement form S, Γ̂ ` l, σ̂)

{}, Γ̂ ` l, [finish], ,
(finish)

S, Γ̂ ` l, c̄, ρ̂, b̄
{ρ̂(ȳ) 7→ ρ̂(x)} ∪ S, Γ̂ ` l, (emit x(ȳ)) · c̄, ρ̂, b̄

(emit)

∃α S, Γ̂ ` l, c̄, ρ̂, b̄
{ρ̂(ȳ) 7→ α, α � {f}} ∪ S, Γ̂ ` l, (construct f(ȳ)) · c̄, ρ̂, b̄

(construct)

∃α S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄

{α � {f}} ∪ S, Γ̂ ` l, (x = load.channel f) · c̄, ρ̂, b̄
(load.channel)

(l1, φ̄, c̄) ∈ b̄ ρ̂′ = ρ̂[x 7→ ρ̂(y) | (x = phi v̄) ∈ φ̄ ∧ (y, l0) ∈ v̄] S, Γ̂ ` l1, c̄, ρ̂′, b̄
S, Γ̂ ` l0, [br l1], ρ̂, b̄

(br)

Model of Constraints: (Φ, Γ̂ |= S iff Φ, Γ̂ |= s for all s ∈ S)

Φ, Γ̂ |= α1 � α2 ⇐⇒ Φ(α1) w Φ(α2)

Φ, Γ̂ |= α � {c} ⇐⇒ c ∈ Φ(α)

Φ, Γ̂ |= ᾱ 7→ β ⇐⇒ f ∈ Φ(β) =⇒ Φ, Γ̂ |= I(Γ̂ | f, ᾱ)

Closure of Constraint Sets: S+ ⊇ S

{α1 � α2, α2 � {c}} ⊆ S+ =⇒ {α1 � {c}} ⊆ S+

{ᾱ 7→ β, β � {f}} ⊆ S+ =⇒ I(Γ̂ | f, ᾱ) ⊆ S+

Instantiation of Abstract Channel Values:

I(Γ̂ | f, ᾱ) = ∀i.{Γ̂(f)i � αi}

Figure 5.2: Definition of 0-CFA
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Figure 5.3: Illustration of 0-LCFA for fib.

def @test(k) � k(a,b),

a() & b() � P

def @main() � @test(m) & @test(n),

m(a1,b1) & n(a2,b2) � a1() & b2()

There is no need for such discrimination in functional languages (i.e. predicting whether
two closures share the same environment, rather than two environments that bind the
same values to variables). This is because a functional language’s environment is never
mutated, unlike the join calculus where messages will be added to and removed from
channels.

To do so, it is necessary to abstract the timestamps allocated by construct. In past
techniques, it is typical to use a call-site history of depth k, in place of the unbounded
concrete call string to give instance identifiers.2 However, in the join calculus, call strings
are replaced by more complex traces based on pomsets, or DAGs, as introduced in Sec-
tion 3.3.2. Forming an abstract version of these call-DAGs is further complicated by the
non-deterministic choice of messages that is made when a transition fires.

In Section 5.3, I show how to abstract call-DAGs for the purposes of accuracy. How-
ever, that technique is not suitable for comparing abstract instances (i.e. it cannot imply
either equality or inequality of concrete instances). Instead, I use a näıve refinement that
considers two abstract times: definitely ‘this’ instance (i.e. local); and possibly another
instance. I call the resultant analysis zeroth-order local CFA (0-LCFA), which is similar
in many ways to the technique used by Reppy and Xiao [93] for Concurrent ML, although
it does not make use of type-sensitivity. It can be seen pictorially in Figure 5.3.

2Call strings can also improve accuracy (k-CFA, see Section 5.3). However, this and identifying
instances are two distinct problems, and for the join calculus I solve them separately.
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Channel values are abstracted as follows: a local channel value is abstracted as its
channel name,3 ranged over by f as before (discarding the time component); other channel
values (either from other definitions or another instance of this definition) are abstracted
to a wildcard *. This wildcard also represents local channels that have escaped the
instance and might then be passed back in. It is therefore very similar to the unknown
abstract value > used in Serrano’s technique [103], and also the concept of a ‘most general
attacker’ in security. However, it does not represent local channels that do not escape.
Clearly determining whether a channel escapes is undecidable, but simply requiring that
the solution to the analysis is self-consistent results in a safe approximation. Primitive
values are not of interest, so for simplicity I represent these by * too—this conveniently
captures the fact that other definition instances are able to fabricate any primitive value
they wish. The abstract value set therefore changes to:

ŝ ∈ ̂ChannelValue = C

v̂ ∈ V̂alue = P( ̂ChannelValue ∪ {*})
∼= ( ̂ChannelValue ∪ {*})→ {⊥,>}

The updated analysis (Figure 5.4) requires a new constraint generation rule for construct
as well as changes to the model and closure algorithm for emission constraints. These
simply ensure that whenever a local channel value may escape to another instance, its Γ̂
flow variables are updated to include * for each of its arguments. The initial conditions of
the analysis must also include the following constraints, which specify that constructors
may receive any external value:

∀f ∈ Constructor.{Γ̂(f)i � {∗} | 1 ≤ i ≤ arity(f)} ⊆ S

Unlike 0-CFA, this new analysis can be used for queue bounding (Section 5.5), will assist
in detecting closed definitions (Section 5.6), and would also be applicable to inlining.

5.3 Abstracting Call-DAGs: k-LCFA

The limitations of my approach so far are the same as those of other zeroth-order and
monovariant approaches for the λ-calculus. For example, in the following λ-calculus
program, 0-CFA cannot determine that x equals f and y equals g—instead thinking
that both calls to id could return either f or g.

let id = λ k . k in

let x = id f in

let y = id g in ...

In the join calculus, this is illustrated by two small examples (‘handshake’ and ‘handshake-
with-swap’ respectively):

A: a(x,m) & b(y,n) � m(x) & n(y)

B: a(x,m) & b(y,n) � m(y) & n(x)

3The abstract value f in 0-LCFA corresponds to a single concrete value (f, this) whereas it previously
gave (f, θ) for all θ in 0-CFA.
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Constraint Syntax:

S ⊆ Constraint ::= α1 � α2 | α � {c} | ᾱ 7→ β where c ∈ ̂ChannelValue ∪ {*}

Constraint Generation Rules: (with judgement form S, Γ̂ ` l, σ̂)

{}, Γ̂ ` l, [finish], ,
(finish)

S, Γ̂ ` l, c̄, ρ̂, b̄
{ρ̂(ȳ) 7→ ρ̂(x)} ∪ S, Γ̂ ` l, (emit x(ȳ)) · c̄, ρ̂, b̄

(emit)

∃α S, Γ̂ ` l, c̄, ρ̂, b̄

{ρ̂(ȳ) 7→ α, α � {*} } ∪ S, Γ̂ ` l, (construct f(ȳ)) · c̄, ρ̂, b̄
(construct)

∃α S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄

{α � {f}} ∪ S, Γ̂ ` l, (x = load.channel f) · c̄, ρ̂, b̄
(load.channel)

Model of Constraints: (Φ, Γ̂ |= S iff Φ, Γ̂ |= s for all s ∈ S)

Φ, Γ̂ |= α1 � α2 ⇐⇒ Φ(α1) w Φ(α2)

Φ, Γ̂ |= α � {c} ⇐⇒ c ∈ Φ(α)

Φ, Γ̂ |= ᾱ 7→ β ⇐⇒
(
f ∈ Φ(β) =⇒ Φ, Γ̂ |= I(Γ̂ | f, ᾱ)

)
∧

(
* ∈ Φ(β) =⇒ ∀f ∈

⋃
i Φ(αi).Φ, Γ̂ |= E(Γ̂ | f)

)
Closure of Constraint Sets: S+ ⊇ S

{α1 � α2, α2 � {c}} ⊆ S+ =⇒ {α1 � {c}} ⊆ S+

{ᾱ 7→ β, β � {f}} ⊆ S+ =⇒ I(Γ̂ | f, ᾱ) ⊆ S+

{αi � {f}, ᾱ 7→ β, β � {*}} ⊆ S+ =⇒ E(Γ̂ | f) ⊆ S+

Instantiation of Abstract Channel Values:

I(Γ̂ | f, ᾱ) = ∀i.{Γ̂(f)i � αi}

E(Γ̂ | f) = ∀i.{Γ̂(f)i � {*}}

Figure 5.4: Definition of 0-LCFA (changes highlighted)
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Consider the calls a(i,p), a(j,q), b(k,r) and b(l,s). The table below indicates the
results of 0-LCFA, compared to the optimum—i.e. what could actually occur on a real
execution:

Example A Example B
0-LCFA Optimum 0-LCFA Optimum

p {i, j} {i} {k, l} {k, l}
q {i, j} {j} {k, l} {k, l}
r {k, l} {k} {i, j} {i, j}
s {k, l} {l} {i, j} {i, j}

The case where the optimum solution is not attained is A. However, in some non-trivial
situations the simple approach does as well as possible. As expected, the inaccuracy is
due to arguments passed from different call-sites being conflated. It is this issue that I
now address, while still allowing for the non-deterministic combination of call-sites (as
exemplified by case B above).

In zeroth-order approaches, the problem is our simple approximation of a single flow
variable per channel argument, as given by Γ̂. More accurate k-CFA approaches for the
λ-calculus refine this ‘global’ variable into a set of variables, indexed by the last k call-
sites as introduced in Section 2.5.3. However, as already discussed, the join calculus, and
therefore the JCAM, gives call-DAGs rather than call strings. Furthermore, they include
non-deterministic choices wherever different messages could have been combined.

My approach is to continue to calculate zeroth-order results for the flow variables
in Γ̂, and then use these as background information while following each possible (fore-
ground) path of the DAG. Along these foreground paths, it is possible to use the standard
call-string abstraction to improve accuracy. The trick is to ensure that the inaccurate
background information is overridden by the more accurate constraints generated by the
foreground path. I arrange that the union of the analyses for each path gives a suitable
result for the whole DAG. In order to do this, the abstract value domain is further refined
to tag each value:

v̂ ∈ V̂alue = ( ̂ChannelValue ∪ {*})→ {⊥,B,F}

The ordering ⊥ v B v F ensures the F tag takes priority, since I want the analysis to take
more notice of foreground values. Therefore, at a merge point with both foreground and
background versions of a value, only the foreground tag will propagate. For convenience,
I continue to use set-style notation, with the tag given by annotations—for example:

{F(c)} ≡ λx.

{
F if x = c

⊥ otherwise

Note {B(c)} v {F(c)} and, less obviously, that x ranges over both a and b in:

∀B(x) ∈ {F(a),B(b)}. . . .

Figure 5.6 presents the new analysis. Values always start off as being tagged F , and it
is only the emission constraint, where values are added to Γ̂, that later lowers them to B.
Much as Faxén’s polymorphic analysis of λ-abstractions constructed constraints for the

function’s body, the load.channel instruction now saves constraints for rules matching on
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(S, Γ̂ | f• : γ̄ 7→ �) ∈ W ⇐⇒ ∀(fi(xi){b̄}) ∈ T. ∀i. fi = f• =⇒
S, Γ̂ ` l0, c̄, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄], b̄

where b0 = (l0, [], c̄)

(S, Γ̂ | f• : γ̄ 7→ �) ∈ Wf ⇐⇒ (S, Γ̂ | f• : γ̄ 7→ �) ∈ W ∧ f• = f

Figure 5.5: Sets of valid k-LCFA flow closures.

the channel. This corresponds with a change to the abstract channel values ̂ChannelValue
to make them more like Faxén’s flow closures:4

w ∈ ̂ChannelValue ::= (S, Γ̂ | f : γ̄ 7→ �)

Of course, not all such values are valid in the context of a specific program as the con-
straints S must correspond to the rules that match on f . The set of valid channel values
is denoted W , and the valid values for a specific channel f as Wf . Membership of these
sets is defined in Figure 5.5.

Examining the model of the emission constraints, note first that it only has any effect
for destination values tagged with F . This prevents the background B values causing
inaccuracy. The background part of the instantiation of abstract channels I and treat-
ment of escaping E state similar requirements to my 0-LCFA. The Γ̂ flow variables are
predominantly made up of B values, since these are used to give values to channel argu-
ments not in the current foreground path. The exception is when a channel f escapes the
instance, then F(*) is added to each Γ̂(f)j since the * values are not attributable to any
particular call-site, so will not be considered on a foreground path. For this reason, it is
still required that the following holds for each rule fi(xi){b̄}, even though this typically
generates very few constraints directly:

S, Γ̂ ` l0, c̄, [xi 7→ Γ̂(fi) | 1 ≤ i ≤ n], b̄ where b0 = (l0, [], c̄)

As before, I pass ∗ (actually F(∗)) to the entry points of each definition:

∀f ∈ Constructor. ∀i. {Γ̂(f)i � {F(∗)}} ⊆ S

The foreground instantiation half of I for the emission constraints is new, and performs
the analysis along the foreground path. The ∃σ, which is used in both the model and
closure algorithm, is responsible for choosing a substitution with new flow variables, and
it is here that the choice of k affects an implementation, as it reuses flow variables for
emissions with common foreground history h ∈ Label≤k. Although not shown, each
emission constraint is implicitly associated with such a foreground call-string. Note that
σ may not perform substitutions on flow variables returned by Γ̂.

The dynamic transitive closure algorithm also changes to accommodate the alterations.
In particular, it may introduce a new form of constraint that corresponds to raising tags
from B to F , and lowering them the other way.

As already seen, my 0-LCFA and this k-LCFA essentially perform a form of escape-
analysis. However, if the results of the k-LCFA for the memcell example are calculated,

4The γ̄ 7→ � syntax is used to make it clear that γ̂ corresponds to arguments to the channel.
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Constraint Syntax:

S ⊆ Constraint ::= α1 � F (α2) | α1 � B (α2) | α � { F (c)} | α � { B (c)} | ᾱ 7→ β

Constraint Generation Rules: (with judgement form S, Γ̂ ` l, σ̂)

{}, Γ̂ ` l, [finish], ,
(finish)

S, Γ̂ ` l, c̄, ρ̂, b̄
{ρ̂(ȳ) 7→ ρ̂(x)} ∪ S, Γ̂ ` l, (emit x(ȳ)) · c̄, ρ̂, b̄

(emit)

∃α S, Γ̂ ` l, c̄, ρ̂, b̄
{ρ̂(ȳ) 7→ α, α � { F (*)}} ∪ S, Γ̂ ` l, (construct f(ȳ)) · c̄, ρ̂, b̄

(construct)

∃α, w S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄ w ∈ Wf

{α � { F(w) }} ∪ S, Γ̂ ` l, (x = load.channel f) · c̄, ρ̂, b̄
(load.channel)

Model of Constraints: (Φ, Γ̂ |= S iff Φ, Γ̂ |= s for all s ∈ S)

Φ, Γ̂ |= α1 � F (α2) ⇐⇒ Φ(α1) w {F(x) | B(x) ∈ Φ(α2)}

Φ, Γ̂ |= α1 � B (α2) ⇐⇒ Φ(α1) w {B(x) | B(x) ∈ Φ(α2)}

Φ, Γ̂ |= α � { F (c)} ⇐⇒ F (c) ∈ Φ(α)

Φ, Γ̂ |= α � { B (c)} ⇐⇒ B (c) ∈ Φ(α)

Φ, Γ̂ |= ᾱ 7→ β ⇐⇒
(
F (w) ∈ Φ(β) =⇒ Φ, Γ̂ |= I(w, ᾱ)

)
∧

(
F (*) ∈ Φ(β) =⇒ ∀ B (w) ∈

⋃
i

Φ(αi).Φ, Γ̂ |= E(w)
)

Closure of Constraint Sets: S+ ⊇ S

{α1 � F (α2), α2 � { F (c)}} ⊆ S+ =⇒ {α1 � { F (c)}} ⊆ S+

{α1 � F (α2), α2 � { B (c)}} ⊆ S+ =⇒ {α1 � { F (c)}} ⊆ S+

{α1 � B (α2), α2 � { F (c)}} ⊆ S+ =⇒ {α1 � { B (c)}} ⊆ S+

{α1 � B (α2), α2 � { B (c)}} ⊆ S+ =⇒ {α1 � { B (c)}} ⊆ S+

{ᾱ 7→ β, β � { F (w)}} ⊆ S+ =⇒ I(w, ᾱ) ⊆ S+

{αi � { B (w)}, ᾱ 7→ β, β � { F (*)}} ⊆ S+ =⇒ E(w) ⊆ S+

{αi � { F (w)}, ᾱ 7→ β, β � { F (*)}} ⊆ S+ =⇒ E(w) ⊆ S+

Instantiation of Abstract Channel Values:

I( (S, Γ̂ | f : γ̄ 7→ �) , ᾱ) = ∃σ.Sσ ∪ ∀i.{ σ(γi) � F(αi) , Γ̂(f)i � B (αi)}

E( (S, Γ̂ | f : γ̄ 7→ �) ) = ∀i.{Γ̂(f)i � { F (*)}}

Figure 5.6: Definition of k-LCFA (main changes highlighted)
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it is found that all three channels (get, set and val) receive * (i.e. external values) for
each of their arguments. Whilst this is correct, I would like to distinguish between get

(or set), which could be called any number of times from outside the definition, and val,
which is only called internally, despite receiving foreign values via set. I achieve this by
also constructing an escape set E ⊇ Constructor, which is the minimal set satisfying:

(ᾱ 7→ β) ∈ S ∧ F(*) ∈ Φ(β) =⇒ ∀B(S, Γ̂ | f : γ̄ 7→ �) ∈
⋃
i

Φ(αi). f ∈ E

This is computed by initialising E to Constructor and closing under:

{αi � {B(S, Γ̂ | f : γ̄ 7→ �)}, ᾱ 7→ β, β � {F(*)}} ⊆ S+ =⇒ f ∈ E
{αi � {F(S, Γ̂ | f : γ̄ 7→ �)}, ᾱ 7→ β, β � {F(*)}} ⊆ S+ =⇒ f ∈ E

The escape set E is useful for queue bounding, closedness detection and proving the k-
LCFA technique to be sound with respect to the concrete semantics. The proof itself is
given in the next section.

Returning to the examples presented earlier, this novel approach overcomes the inaccu-
racy of conflating call-sites while still allowing for the firing semantics. For the functional
subset of the join calculus,5 my approach collapses to conventional k-CFA for a CPS
lambda-lifted λ-calculus. In particular, * represents only primitives when there is just a
single instance, and if all rules are functional then it never makes use of Γ̂ and always
deals with F values. Indeed, the load.channel rule collapses as follows to a rule very
similar to Faxén’s (see Section 2.5). The remaining differences are due to the imperative
nature of the JCAM rather than the join calculus itself.

∃α, S ′, γ̄
S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄ S ′, Γ̂ ` l0, c̄, [x̄ 7→ γ̄], b̄ where b0 = (l0, [], c̄) and (f•(x̄){b̄}) ∈ T

{α � {F(S ′, Γ̂ | f• : γ̄ 7→ �)}} ∪ S, Γ̂ ` l, (x = load.channel f•) · c̄, ρ̂, b̄

5.4 Correctness of k-LCFA

I now present a proof that the k-LCFA analysis just described produces a sound approx-
imation to the values that might occur in a concrete execution. Soundness is defined
by the abstraction function (abstractd,E) and the valid-approximation relations given in
Figure 5.7—Φ, α �d,E v along with � (both of which I will implicitly lift to vectors and

environments), Φ, Γ̂�d,E Γ and Φ, Γ̂�d,E Γ,Σ. I introduce d to specify the definition that
the analysis is considering. Sub-domains corresponding to d are given using a subscript
(e.g. Cd). Note that since * can overlap with an abstract channel value f , the abstraction
function gives a set of possible abstract values for a given concrete value.

This is similar to preservation proofs for type systems. However, this proof relies on
doing extra work after each emit or construct in order to approximate the firing rule,
which is not present as an explicit feature in the k-LCFA analysis. This ‘work’ is inductive
and therefore it is only possible to prove soundness when the machine is started at an
expected start state.

5This was referred to during Section 3.2 (see page 59) and equates to programs where join patterns
only ever include one channel. Here I also consider it to mean there is no non-determinism due to multiple
rules on one channel.
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Abstraction Function: abstractd,E : Value→ P(V̂alue)

abstractd,E(v) =


{*} (v = (f, t) ∧ f 6∈ Cd) ∨ (v is primitive)

{*} ∪Wf v = (f, t) ∧ f ∈ Cd ∧ f ∈ E
Wf v = (f, t) ∧ f ∈ Cd ∧ f 6∈ E

Valid Approximation Relations:

Φ, α�d,E v ⇐⇒ ∃c ∈ abstractd,E(v).B(c) ∈ Φ(α)

Φ, α�d,E v ⇐⇒ ∃c ∈ abstractd,E(v).F(c) ∈ Φ(α)

Φ, Γ̂�d,E (M, θ) ⇐⇒ ∀((f, t), v̄) ∈M.

{
Φ, Γ̂(f)�d,E v̄ f ∈ Cd

∀i.∗ ∈ abstractd,E(vi) f 6∈ Cd

Φ, Γ̂�d,E Γ,Σ ⇐⇒ ∀(Γ′,Σ′).
(

Γ,Σ�∗ Γ′,Σ′ =⇒ Φ, Γ̂�d,E Γ′
)

Figure 5.7: Valid Approximation Relations

5.4.1 Constraint Generation

I start by proving that the generated constraints are sound, given the meaning defined by
their model.

Theorem 1 For any mapping Φ and constraint set S, analysis of the definition d is
sound—i.e. whenever the initial analysis conditions hold and the mapping Φ satisfies the
model of constraints:

∀(fi(xi){b̄}) ∈ T. S, Γ̂ ` l0, c̄, [xi 7→ Γ̂(fi) | 1 ≤ i ≤ n], b̄ where b0 = (l0, [], c̄)

∧ ∀f ∈ Constructor.∀i.{Γ̂(f)i � {F(∗)}} ⊆ S

∧ (Φ, Γ̂ |= S)

we have:
Φ, Γ̂�d,E ({((@main, 0), v̄)}, 1), ( , , [finish], , )

where v̄ is correctly typed (so contains either primitives or channel values in definitions
disjoint to those in the program)—i.e.

∀i. ∗ ∈ abstractd,E(vi)

and E satisfies the criteria previously stated (in Section 5.3) given Φ and S.

The proof proceeds by structural induction over the reachable states (Γ,Σ) of the concrete
machine. The base case is the starting state, and I then show that any step made by the
concrete semantics � preserves my induction hypothesis. This splits into four cases
(fire, emit, construct and load) that correspond to the rules in Figure 3.13. As already
mentioned, this proof does extra work after emit and construct instructions, since in
order to be able to prove that the abstraction covers firing steps, I need to ‘save’ some
properties. My induction hypothesis is therefore much stronger than the property I am
trying to prove. It consists of three parts:
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• The first is that the global environment is always correctly abstracted:

Φ, Γ̂�d,E Γ (1)

• Secondly, it must be the case that the state Σ = (t, l, c̄, ρ, b̄) is covered by the
constraint set whenever l and b̄ are from the definition d. Specifically, every value
in the concrete environment ρ must be in the foreground (F) somewhere in the
analysis, and that point of the analysis must also abstract the remainder of the
environment, although not necessarily in the foreground:

l ∈ Labeld =⇒ ∀x. ∃ρ̂. (Φ, ρ̂(x)�d,E ρ(x)) ∧ (Φ, ρ̂�d,E ρ) (2)

∧ (S, Γ̂ ` l, c̄, ρ̂, b̄)
l 6∈ Labeld =⇒ ∀x.∗ ∈ abstractd,E(ρ(x))

• Finally, I require that any messages in the concrete environment Γ = (M, θ) have
been considered in the foreground (F) by some part of our analysis. So for each
channel f• ∈ Cd and rule fi(xi){b̄} such that ∃i. fi = f• with b0 = (l0, [], c̄):

∀((f•, t), v̄) ∈M =⇒ ∃γ̄. (Φ, γ̄ �d,E v̄) (3)

∧ S, Γ̂ ` l0, c̄, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄], b̄

The base case and induction steps for each of the four cases are then as follows.

Base Case

(2) holds trivially since the JCAM starts off with an empty concrete local environment ρ.

@main ∈ Cd: For all rules @main(x̄){b̄} with b0 = (l0, [], c̄):

∀i.∗ ∈ abstractd,E(vi) ∧ {Γ̂(@main)i � {F(∗)}} ⊆ S

∧ S, Γ̂ ` l0, c̄, [x̄ 7→ Γ̂(@main)], b̄ ∧ Φ, Γ̂ |= S

=⇒ ∀i.∗ ∈ abstractd,E(vi) ∧ F(∗) ∈ Φ(Γ̂(@main)i)

∧ S, Γ̂ ` l0, c̄, [x̄ 7→ Γ̂(@main)], b̄

This implies both (1) and (3).

@main 6∈ Cd: (3) holds trivially and ∀i.∗ ∈ abstractd,E(vi) gives (1).

Load Channel

The environment Γ of the concrete machine is unchanged, so I need only consider (2).
The concrete step for the machine is:

c0 = (x = load.channel f)

p ` Γ, (t, l, c0 · c̄, ρ, b̄)� Γ, (t, l, c̄, ρ[x 7→ (f, t)], b̄)

Note that l ∈ Labeld ⇐⇒ f ∈ Cd. I case split on this:
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l ∈ Labeld: Assuming (2) for the initial state:

∀y. ∃ρ̂. (Φ, ρ̂�d,E ρ) ∧ (Φ, ρ̂(y)�d,E ρ(y))

∧ (S, Γ̂ ` l, c0 · c̄, ρ̂, b̄)
=⇒ ∀y. ∃ρ̂, α. (Φ, ρ̂�d,E ρ) ∧ (Φ, ρ̂(y)�d,E ρ(y))

∧ (S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄)

∧ ∃w ∈ Wf ∧ (α � {F(w)}) ∈ S

By our assumptions, we have Φ, Γ̂ |= S.

=⇒ ∀y. ∃ρ̂, α. (Φ, ρ̂�d,E ρ) ∧ (Φ, ρ̂(y)�d,E ρ(y))

∧ (S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄)

∧ ∃w ∈ Wf ∧ F(w) ∈ Φ(α)

Note that f ∈ Cd =⇒ w ∈ abstractd,E((f, t)).

=⇒ ∀y. ∃ρ̂, α. (Φ, ρ̂[x 7→ α]�d,E ρ[x 7→ (f, t)])

∧(Φ, ρ̂[x 7→ α](y)�d,E ρ[x 7→ (f, t)](y))

∧(S, Γ̂ ` l, c̄, ρ̂[x 7→ α], b̄)

l /∈ Labeld: Since f 6∈ Cd =⇒ ∗ ∈ abstractd,E((f, t)).

∀y. ∗ ∈ abstractd,E(ρ(y)) ∧ ∗ ∈ abstractd,E((f, t))

=⇒ ∀y. ∗ ∈ abstractd,E(ρ[x 7→ (f, t)](y))

This gives both cases of (2).

Emit

This concrete step transfers values from the local environment ρ to the global environment
Γ, specifically the marking M :

c0 = (emit x(ȳ)) v̄ = ρ(ȳ) (f•, t
′) = ρ(x)

p ` (M, θ), (t, l, c0 · c̄, ρ, b̄)� (M + ((f•, t
′), v̄), θ), (t, l, c̄, ρ, b̄)

First I will prove a small corollary, that for any f :

f ∈ E =⇒ ∀i. F(∗) ∈ Φ(Γ̂(f)i)

f could have been placed in E in two ways:

f ∈ Constructor: The initial assumptions include:

(Φ, Γ̂ |= S) ∧ ∀f ∈ Constructor.∀i.{Γ̂(f)i � {F(∗)}} ⊆ S

Which immediately gives what is required.

∃i, ᾱ, β. (ᾱ 7→ β) ∈ S ∧ F(∗) ∈ Φ(β) ∧ B(w) ∈ Φ(αi): By assumption, Φ, Γ̂ |= ᾱ 7→ β
holds, so we have that F(∗) ∈ Φ(Γ̂(f)i) as required.
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I can now case split on l ∈ Labeld.

l /∈ Labeld: By (2) it holds that:

∗ ∈ abstractd,E((f•, t
′)) ∧ ∀i. ∗ ∈ abstractd,E(vi)

It is therefore either the case that f• 6∈ Cd or f• ∈ E:

f• 6∈ Cd: Since ∀i. ∗ ∈ abstractd,E(vi) and it can assumed (1) holds for (M, θ), it
must also be that (1) holds for the new environment (M + (f•, t

′), v̄), θ). In
this case, (3) is unaffected.

f• ∈ E: I have already shown that this implies:

∀i. F(∗) ∈ Φ(Γ̂(f•)i)

With our knowledge of v̄, it is therefore clear that both (1) and (3) hold.

(2) trivially holds for this first case.

l ∈ Labeld: First I will show that (2) continues to hold:

∀x. ∃ρ̂. (Φ, ρ̂(x)�d,E ρ(x)) ∧ (Φ, ρ̂�d,E ρ)

∧ (S, Γ̂ ` l, c0 · c̄, ρ̂, b̄)
=⇒ ∀x. ∃ρ̂. (Φ, ρ̂(x)�d,E ρ(x)) ∧ (Φ, ρ̂�d,E ρ)

∧ (S, Γ̂ ` l, c̄, ρ̂, b̄) ∧ (ρ̂(ȳ) 7→ ρ̂(x)) ∈ S

This gives (2) and I now split into two more cases:

w ∈ abstractd,E((f•, t
′)) ∧ F(w) ∈ Φ(ρ̂(x)): For all rules (fi(xi){b̄}) with b0 = (l0, [], c̄)

and ∃i. fi = f•:

=⇒ ∀x. ∃ρ̂. (Φ, ρ̂(x)�d,E ρ(x)) ∧ (Φ, ρ̂�d,E ρ)

∧Φ, Γ̂ |= I(w, ρ̂(ȳ))

=⇒ ∀x. ∃ρ̂. (Φ, ρ̂(x)�d,E ρ(x)) ∧ (Φ, ρ̂�d,E ρ)

∧Φ, Γ̂(f•)�d,E v̄

∧∃S ′, γ̄. (Φ, γ̄ �d,E v̄)

∧ S ′, Γ̂ ` l0, c̄, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄], b̄

This satisfies both (1) and (3).

∗ ∈ abstractd,E((f•, t
′)) ∧ F(∗) ∈ Φ(α): This implies that:

∀B(S ′, Γ̂ | f• : γ̄ 7→ �) ∈
⋃
i

Φ(βi). f• ∈ E

And therefore that:
∀i. ∗ ∈ abstractd,E(vi)

I can therefore reuse the proof from above for l 6∈ Labeld.
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Construct

Again this step transfers values to the environment Γ:

c0 = (construct f(x̄)) v̄ = ρ(x̄)

p ` (M, θ), (t, l, c0 · c̄, ρ, b̄)� (M + ((f, θ), v̄), θ + 1), (t, l, c̄, ρ, b̄)

Since f ∈ E, I can reuse variants of the relevant parts of the emit proof above.

Fire

A firing causes values to be transferred from the marking M to a local environment ρ:

∆ = {((fi, α), v̄i) | 1 ≤ i ≤ n}
(fi(xi){b̄}) ∈ p b0 = (l0, [], c̄) ρ = [xi 7→ vi | 1 ≤ i ≤ n]

p ` (M + ∆, θ), ( , , [finish], , )� (M, θ), (α, l0, c̄, ρ, b̄)

Since this makes M smaller, I only need to show that (2) still holds. I again case split on
whether l0 ∈ Labeld.

l0 ∈ Labeld: By (1) and (3), I have:

∀i. ∃γ̄. S, Γ̂ ` l0, c̄, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄], b̄

∧(Φ, γ̄ �d,E vi ∧ (Φ, Γ̂(fi)�d,E vi)

=⇒ ∀i. ∃γ̄. (Φ, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄]�e,D ρ)

∧S, Γ̂ ` l0, c̄, [xj 7→ Γ̂(fj) | j 6= i] + [xi 7→ γ̄], b̄

∧(Φ, γ̄ �d,E vi ∧ (Φ, Γ̂(fi)�d,E vi)

=⇒ ∀x. ∃ρ̂. (Φ, ρ̂(x)�e,D ρ(x)) ∧ (Φ, ρ̂�e,D ρ)

∧S, Γ̂ ` l0, c̄, ρ̂, b̄

l0 6∈ Labeld: This also means that ∀i. fi 6∈ Cd. Combining this with (1), I have:

∀i, j. ∗ ∈ abstractd,E(vi,j)

It is therefore the case that (2) holds in both cases.
It follows by structural induction that Φ, Γ̂�d,EΓ holds for all reachable states whenever

the constraint set has been properly constructed and Φ is a valid solution to it.

5.4.2 Closure Algorithm

Although I have shown the constraint generation rules and the model of constraints to
be sound, I still need to show that the closure algorithm produces a Φ that satisfies the
model.

Theorem 2 The transitive closure algorithm for computing a solution to a constraint set
S produces a valid solution Φ. Specifically:(

Φ(α) = {F(c) | (α � {F(c)}) ∈ S+} t {B(c) | (α � {B(c)}) ∈ S+}
)

=⇒ Φ, Γ̂ |= S
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I again proceed using structural induction—this time on the set of constraints S. The
induction step is split into five cases, representing the five variants of constraints.

Base Case. Φ, Γ̂ |= S trivially holds when S = {}.

Case 1. (α � {F(c)}) ∈ S.

=⇒ (α � {F(c)}) ∈ S+

=⇒ F(c) ∈ Φ(α)

=⇒ Φ, Γ̂ |= α � {F(c)}

Case 2. (α � {B(c)}) ∈ S. Holds by a similar argument to Case 1.

Case 3. (α1 � F(α2)) ∈ S.

∀c. (α1 � F(α2)) ∈ S ∧ F(c) ∈ Φ(α2)

=⇒ {α1 � F(α2), α2 � {F(c)}} ⊆ S+

=⇒ (α1 � {F(c)}) ∈ S+

=⇒ F(c) ∈ Φ(α1)

And one can show that a similar result holds for B(c) ∈ Φ(α2), which gives us that
Φ, Γ̂ |= α1 � F(α2).

Case 4. (α1 � B(α2)) ∈ S. Holds by a similar argument to Case 3.

Case 5. (ᾱ 7→ β) ∈ S. Firstly, I deal with if F(*) ∈ Φ(β):

(ᾱ 7→ β) ∈ S ∧ F(*) ∈ Φ(β) ∧ B(w) ∈ Φ(αi)

=⇒ {ᾱ 7→ β, β � {F(*)}, αi � {B(w)}} ⊆ S+

∨{ᾱ 7→ β, β � {F(*)}, αi � {F(w)}} ⊆ S+

=⇒ E(w) ⊆ S+

Secondly, I consider F(w) ∈ Φ(β).

(ᾱ 7→ β) ∈ S ∧ F(w) ∈ Φ(β)

=⇒ {ᾱ 7→ β, β � {F(w)}} ⊆ S+

=⇒ I(w, ᾱ) ⊆ S+

The nature of I(w, ᾱ) means that it may generate further emission constraints.
However, since the domain of flow variables is finite, there are also a finite number
of constraints so the closure algorithm will terminate. The above combine to give a
logical expression identical to the definition of |= itself:

Φ, Γ̂ |= ᾱ 7→ β ⇐⇒
(
F(w) ∈ Φ(β) =⇒ Φ, Γ̂ |= I(w, ᾱ)

)
∧
(
F(*) ∈ Φ(β) =⇒ ∀B(w) ∈

⋃
i

Φ(αi).Φ, Γ̂ |= E(w)
)

By cases 1–4, one can assume that Φ, Γ̂ |= S ′ for any S ′ that does not include
emission constraints. Provided that we take the maximal fixed point for |= (i.e.
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Initialisation:

bfc = min
r∈Tconstruct

{br•(f)c}

dfe =

{
∞ if f ∈ (E \ Constructor)

maxr∈Tconstruct{dr•(f)e} otherwise

Computation: ∀r ∈ (T \ Tconstruct)

•r(f) > br•(f)c =⇒ bfc = 0
•r(f) < dr•(f)e =⇒ dfe =∞

Figure 5.8: Simple algorithm for computing queue bound of f

allow as many solutions as possible to be considered valid), then it is the case that
Φ, Γ̂ |= ᾱ 7→ β. This is desirable as it allows solutions that are less conservative.
Such solutions assign fewer possible values to each flow variable, and are therefore
more precise.

Therefore, by induction the closure algorithm gives a valid solution for all constraint sets.

5.5 Queue Bounding

The potential benefits of queue bounding were shown in Section 4.4. Recall that the
motivating example was the memory cell encoding. I showed that the val channel in
this could be replaced by a memory location and status flag. Indeed, in fast mode, it
could even be removed from patterns. To do this automatically, an analysis is needed
to bound the possible queue lengths for each channel f . The result of this is a pair
(bfc, dfe) ∈ (N0 × N∞0 ) giving the minimum and maximum queue size. I use helper
functions inspired by Petri-net notation:6

• : T→ (C→ N0) (input count)
• : T→ (C→ (N0 × N∞0 )) (output range)

The first is defined by the number of occurrences of a channel in the left-hand-side pattern
of a transition rule. The second requires analysis of the transition rule body’s control-flow
graph using the LCFA results and range arithmetic—incorporating dominator analysis to
detect loops and prevent counting to ∞.

The queue bounds of a channel f can then be approximated by the simple algorithm
in Figure 5.8. This starts by initialising each queue’s range by the possible effect of
constructor transitions. If any transitions use up messages on a channel without replacing
them, the lower limit is reduced to zero, and similarly transitions causing a net increase
raise the upper limit to infinity. A more accurate solution would consider the interaction
between channels in a similar manner to boundness checking, or invariants for Petri-nets,
but I leave this for future work. My approach accurately (with respect to •) finds channels

6Remember that T gives the set of transition rules, while the set of channels is C.
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with a constant queue length, so can still replace queues with memory locations in many
situations. However, it will rarely detect cell-style channels—i.e. (bfc, dfe) = (0, 1).

Enabling the queue bounding optimisations presented in Section 4.4 is then relatively
straightforward. The cell scenario is achieved simply by adding the results as annotations.
The memory optimisation in fast mode also requires a head annotation to indicate that
a channel is only emitted to by head emits. This can be inferred by a dataflow analysis.
Initially, all channels with equal upper and lower bounds are assumed to be head. I
then iterate, relegating any channel that with emissions that might follow emissions to a
non-head channel.

5.6 Closedness of Definitions

In Section 4.3, I discussed how instances of closed definitions could be stack-allocated
to improve performance. The stated requirement for a definition to be closed is that its
instances do not require subsequent messages after construction. This can be checked
by considering whether any channels escape to instances that are not ‘internal’ to the
instance—i.e. whether the definition fully encapsulates part of the program. For exam-
ple, consider fib: both a and b escape according to my LCFA. However, they escape
to instances created by fib—no channels escape to the k channel value passed into the
constructor from outside. The LCFA approaches can be refined to consider this by split-
ting the ‘non-this’ instances (along with the wildcard *) in two: outer instances that
constructed the ‘this’ instance; and inner instances that ‘this’ itself constructs. Corre-
spondingly, I can also distinguish between the escape sets Eouter and Einner of channels
escaping to these distinct sets of instances.

This amounts to a lot of duplication to provide identical analyses of ∗inner and ∗outer.
The only new case introduced is when these wildcards interact (i.e. one is emitted to
another). Whenever this occurs, it implies that the inner and outer instances may com-
municate directly. In this case, it is no longer possible to distinguish between the two
sets, so I conflate ∗inner and ∗outer back to a single wildcard.

For my purposes, primitive values are not interesting, so need not be tracked at all,
but if they were required in the results they would have to form their own abstract value
as they fit into neither the inner nor the outer set.

With this change made, closed definitions are simply equivalent to those for which:

Eouter \ Constructor = {}

Results indicating how often this technique detects closed definitions are given in Sec-
tion 6.5.

5.7 Worked Examples

I will now illustrate the techniques from this chapter with two worked examples. The first
is a combination of the motivating ‘handshake’ examples from Section 5.3 which demon-
strates the application of foreground call-strings and the increased accuracy provided by
k-LCFA. The second is the detection of closedness in the fib benchmark. This uses the
slightly finer grained wildcards, ∗inner and ∗outer, and is detectable with 0-LCFA.
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transition @start() {
%a = load.channel %a

%b = load.channel %b

... also for: i, j, k, l, p, q, r and s
emit %a(() %i, (()) %p)

emit %a(() %j, (()) %q)

emit %b(() %k, (()) %r)

emit %b(() %l, (()) %s)

finish

}

transition %a(() %x, (()) %m) %b(() %y, (()) %n) {
emit %m(() %x)

emit %n(() %y)

finish

}

transition %a(() %x, (()) %m) %b(() %y, (()) %n) {
emit %m(() %y)

emit %n(() %x)

finish

}

Figure 5.9: Handshake JCAM source code

5.7.1 Foreground call-strings example (‘handshake’)

The handshake examples showed that 0-LCFA is not always able to get the best results.
The full JCAM source that I will work through is shown in Figure 5.9. Channels i to l

take no arguments (i.e. void-channels), while p to s take a single void-channel argument
each. Using void-channels causes the values to be tracked, whereas a primitive value
would be abstracted to PRIM. Unlike most examples in this thesis, I have included explicit
load.channel commands. I will initially use αx to indicate the flow variable associated
with a local variable x. However, more than one flow variable is required per variable
during the closure stage of the analysis, and these will be written α1, α2, etc. The first
constraint generated from @start will be of the form αa � F(· · · | a : αx, αm 7→ �). Filling
in the remainder of the flow closure for channel a requires both transitions involving a

to be analysed, with a in the foreground. The first transition generates the following
constraint:

[αx] 7→ αm

[Γ̂(b)y] 7→ Γ̂(b)n

In turn, the second transition gives:

[Γ̂(b)y] 7→ αm

[αx] 7→ Γ̂(b)n
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Producing the equivalent for b, and the other emission constraints in @start, gives the
following set of constraints for the complete definition:

αa � F({[αx] 7→ αm, [Γ̂(b)y] 7→ Γ̂(b)n, [Γ̂(b)y] 7→ αm, [αx] 7→ Γ̂(b)n}, Γ̂ | a : αx, αm 7→ �)
αb � F({[Γ̂(a)x] 7→ Γ̂(a)m, [αy] 7→ αn, [αy] 7→ Γ̂(a)m, [Γ̂(a)x] 7→ αn}, Γ̂ | b : αy, αn 7→ �)

αi � F({}, Γ̂ | i) αp � F({}, Γ̂ | p : α? 7→ �)
. . . . . .

αl � F({}, Γ̂ | l) αs � F({}, Γ̂ | s : α? 7→ �)

[αi, αp] 7→ αa

[αj, αq] 7→ αa

[αk, αr] 7→ αb

[αl, αs] 7→ αb

Since no transitions match on the channels p, q, r or s, the flow variable within the
flow closure for them is never used. I therefore use a shared placeholder α? rather than
introducing distinct flow variables for each. Expanding the four emission constraints, using
fresh flow variables for the arguments to a and b, gives the following extra constraints:

α1 � F(αi) α3 � F(αj)

α2 � F(αp) α4 � F(αq)

Γ̂(a)x � B(αi) Γ̂(a)x � B(αj)

Γ̂(a)m � B(αp) Γ̂(a)m � B(αq)

[α1] 7→ α2 [α3] 7→ α4

[Γ̂(b)y] 7→ α2 [Γ̂(b)y] 7→ α4

[α1] 7→ Γ̂(b)n [α3] 7→ Γ̂(b)n

α5 � F(αk) α7 � F(αl)

α6 � F(αr) α8 � F(αs)

Γ̂(b)y � B(αk) Γ̂(b)y � B(αl)

Γ̂(b)n � B(αr) Γ̂(b)n � B(αs)

[α5] 7→ α6 [α7] 7→ α8

[α5] 7→ Γ̂(a)m [α7] 7→ Γ̂(a)m

[Γ̂(a)x] 7→ α6 [Γ̂(a)x] 7→ α8

[Γ̂(a)x] 7→ Γ̂(a)m

[Γ̂(b)y] 7→ Γ̂(b)n
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Note that solving these for Γ̂(a) and Γ̂(b) gives only background (B) values as shown
below, and therefore the constraints that emit to either Γ̂(a)m or Γ̂(b)n have no effect.

Φ(Γ̂(a)x) = {B({}, Γ̂ | i),B({}, Γ̂ | j)}
Φ(Γ̂(a)m) = {B({}, Γ̂ | p : α? 7→ �),B({}, Γ̂ | q : α? 7→ �)}
Φ(Γ̂(b)y) = {B({}, Γ̂ | k),B({}, Γ̂ | l)}
Φ(Γ̂(b)n) = {B({}, Γ̂ | r : α? 7→ �),B({}, Γ̂ | s : α? 7→ �)}

Solving the other constraints to reach the final solution is straightforward, with the fol-
lowing values for the remaining global Γ̂ flow variables:

Φ(Γ̂(p)) = {B({}, Γ̂ | i),B({}, Γ̂ | k),B({}, Γ̂ | l)}
Φ(Γ̂(q)) = {B({}, Γ̂ | j),B({}, Γ̂ | k),B({}, Γ̂ | l)}
Φ(Γ̂(r)) = {B({}, Γ̂ | i),B({}, Γ̂ | j),B({}, Γ̂ | k)}
Φ(Γ̂(s)) = {B({}, Γ̂ | i),B({}, Γ̂ | j),B({}, Γ̂ | l)}

5.7.2 Closedness example (fib)

In this example, closedness can be detected without the increased accuracy of k-LCFA.
I can therefore stick to a single flow variable per local variable. I also use a single flow
variable αprim for all primitive-typed variables, to avoid cluttering the presentation. The
source code under analysis is shown in Figure 5.10.

The constraints generated for this are as follows:

Γ̂(fib)x � F(PRIM)

Γ̂(fib)k � F(*outer)

[Γ̂(fib)x] 7→ Γ̂(fib)k

αtemp � F({αprim 7→ αm}, Γ̂ | temp : αm 7→ �)
[Γ̂(fib)k] 7→ αtemp

αfib1 � F(*inner)

αa � F({αprim 7→ Γ̂(temp)m}, Γ̂ | a : αres1 7→ �)
[αprim, αa] 7→ αfib1

αfib2 � F(*inner)

αb � F({αprim 7→ Γ̂(temp)m}, Γ̂ | b : αres2 7→ �)
[αprim, αb] 7→ αfib2

There is only one occurrence of the *outer flow value in these constraints, and it is clear that
it never interacts with other non-primitive flow values. As a result of this, no channels are
ever added to the outer escape set—this is what allows us to deduce that the definition
is closed. The inner escape set for these constraints consists of the channels a and b,
which are passed into the two construct commands in order to collect results from the
recursive invocations of fib.
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transition @fib(i32 %x, (i32) %k) {
%base = cmp ult i32 %x, 2

br %base, label %base_case, label %recurse

base_case:

emit %k(i32 %x)

finish

recurse:

%temp = load.channel %temp

emit %temp((i32) %k)

%x1 = add i32 %x, -1

%a = load.channel %a

construct @fib(i32 %x1, (i32) %a)

%x2 = add i32 %x, -2

%b = load.channel %b

construct @fib(i32 %x2, (i32) %b)

finish

}

transition %a(i32 %res1) %b(i32 %res2) %temp((i32) %m) {
%sum = add i32 %res1, %res2

emit %m(i32 %sum)

finish

}

Figure 5.10: fib benchmark under analysis.
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5.8 Summary

This chapter has presented a novel and accurate k-LCFA approach (Section 5.3) for the
join calculus, along with a simpler 0-LCFA (Section 5.2). In addition, I have given two
dependent analyses (Sections 5.5 and 5.6) that make use of this information to enable
optimisations and faster implementations of the join calculus primitives to be used in
common cases as described in Chapter 4. The LCFA techniques and also closedness
analysis were illustrated by worked examples in Section 5.7.
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Chapter 6

Evaluation and Discussion

This chapter provides a general assessment of the techniques developed by my research.
Chapter 4 has already given some indication of the quantitative performance benefits that
my optimisations produce. However, I now supplement those measurements with compar-
isons to other languages and compilers, over a wider range of benchmarks (Sections 6.2
to 6.4). I also discuss areas that my research does not cover, and the difficulties associated
with these. These predominantly focus on scheduling and inlining issues (Sections 6.6.2
and 6.6.3), but also the accuracy of Chapter 5’s control flow analysis (Section 6.5).

The introduction (Chapter 1) detailed the original goals of the research, and these
offer guidance on success criteria. It is important to remember that Dovetail is an early
prototype, and that the evaluation is therefore aiming to determine whether the JCAM
approach might be viable in the future, rather than whether Dovetail itself offers ade-
quate performance. As well as the performance aspect, a key goal was to offer a universal
representation of parallelism. Although my Dovetail implementation of the JCAM only
supports multi-core architectures, the mapping of other architectures was discussed in
Section 3.4. Further investigation of compilation to other targets is left as future work
and suitable next steps are discussed briefly in my conclusion (Chapter 7). Section 3.4
also detailed how language concepts can be expressed in the JCAM, and while that is not
repeated here, Section 6.2 does validate some of those arguments with concrete bench-
marks.

6.1 Test Environments

All the benchmark measurements presented in the next three sections, as well as those in
Chapter 4, were taken on a machine with two 8-core processors.1 With hyperthreading
this gives 32 logical cores. For the Dovetail measurements, the worker threads were tied
to separate physical cores and therefore only ever used 16 threads. Each execution was
repeated 10 times in order to reduce the effect of variation between runs. In order to
ensure that the results were not affected by CPUs being in power-saving states, the first
set of benchmarks was run again after all others had completed and timings checked to
ensure they did not differ.

The compiler and library versions used are shown in Table 6.1.

1The actual processors were AMD Operton 6376s.
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Compiler Version
GCC 4.6.3
Java 1.6.0 32
LLVM 3.4
Wool 0.1.5alpha
Boehm GC 7.4.0

Table 6.1: Compiler and library versions used for benchmarking.

Benchmark C Wool Java
Fork-Join
fib n = 40 Sequential X Sequential
nqueens n = 13 Sequential X Sequential
quicksort n = 30000000 Sequential X Sequential
Coordination
locks n = 16 Parallel Parallel
barrier n = 16 Parallel Parallel
rwlock n = 16 Parallel Parallel
queue n = 1000 Parallel Parallel
Data Parallel
blackscholes n = 10000, 5000 repeats Parallel X Parallel

Table 6.2: Summary of non-JCAM benchmark variants.

6.2 Benchmarks

The next three sections evaluate Dovetail and my analysis based on the benchmarks I
describe here. The range selected comes from the type of programs used to measure
the performance of related work [101, 113, 39, 33]. In each case, as well as the JCAM
implementation, there are also versions in each of the following existing languages where
appropriate—as summarised in Table 6.2.

C compiled with GCC. It should not be possible for any system to beat sequential C code
on single-thread performance. In many cases, such a simple implementation allows
optimisations that cannot be considered in a parallel setting—for instance, in-place
modification (see nqueens). For the coordination benchmarks, the pthreads library
was used which offers a fair, but beatable, baseline.

Wool [38] adaptations of the C version. For benchmarks that fit the fork-join paradigm,
this offers a good indication of the best performance that can be hoped for.

Java. These versions offer an indication of the performance currently considered accept-
able by developers, and are useful in showing the costs of a managed language. In
the fork-join cases below, the Java version is single-threaded in order to focus on the
cost of the pure JVM. For the coordination cases and blackscholes, implemen-
tations from java.util.concurrent are used to compare Dovetail with standard
approaches.
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6.2.1 fib

Calculating the Fibonacci sequence is a popular and widely used micro-benchmark, and
has already been used throughout Chapter 4. It is also one of the main benchmarks used
in the original evaluations of Wool. It is useful as an example of fork-join parallelism
where the amount of actual work done between synchronisations is minimal. This allows
true comparison of the coordination overhead of different approaches.

6.2.2 nqueens

This is another fork-join benchmark that has been used for the evaluation of both Wool
and Cilk. It performs more work in between synchronisations and requires arrays to store
possible solutions. In a sequential program, allocation is not necessary as modification
can be made in-place. Under the fork-join model, the arrays can be allocated on the
stack. However, this is not possible in general with a join-calculus encoding, which would
therefore typically use heap allocation. For comparison to the Dovetail version, my JVM
version (although single-threaded) also allocates a new array on the heap.

6.2.3 quicksort

A final fork-join case is the Quicksort algorithm. This differs from nqueens as most of the
work is done when ‘joining’ the spawned threads, rather than in those threads themselves.
The partitioning at each level is also not necessarily even, so the speedup is unlikely to
be linear with the number of cores. Similar sorting benchmarks have been used in the
evaluation of many other systems, including Wool, Cilk and JoCaml.

6.2.4 locks

This evaluates the encoding of the simplest coordination primitive: the mutex. The bench-
mark launches n threads, each of which acquire and release a common mutex 1,000,000
times. As with fib, this offers an evaluation of the overheads without the effect of actual
computation. This approach was used in the evaluation of the Joins Library, and a similar
example of incrementing a shared counter was used for evaluating JoCaml.

6.2.5 barrier

The barrier benchmark is of a similar style to locks. All n threads block on a barrier
1,000,000 times. Again there is no computation between the synchronisations. The nature
of the barrier means that the JCAM operations are even more closely synchronised than
with the other coordination benchmarks. Indeed, this code picked up a number of subtle
concurrency bugs in the Dovetail implementation which all other benchmarks missed. It
is also worth remembering that this was a benchmark where the lock-free Joins Library
implementation performed particularly well [113].

6.2.6 rwlock

The next type of coordination formulated as a specific benchmark is a reader-writer lock.
This is again taken from the list of benchmarks used to evaluate the Joins Library. Each
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thread behaves in a similar manner to the locks benchmark, except that 25% of the
time they acquire the write lock, and 75% of the time a read lock. This asymmetry and
randomness in the benchmark is not present in the other benchmarks and tests a slightly
different aspect of the implementation. It is also a characteristic that many real programs
will exhibit.

6.2.7 queue

The final coordination benchmark is the “arbitrary-sized” queue data structure introduced
in Section 3.4.2. This is a very pure encoding of a complex structure into the JCAM—no
structures or arrays are used, simply join calculus definitions. The benchmark creates
such a queue, along with n producing ‘threads’ and n consuming ‘threads’. 1000 pieces
of data are then sent (or received) by each over the queue. In my measurements, I use a
value of 1000 for n. I compare this to Java’s concurrent queue implementation, and also
a standard C++ queue wrapped with a mutex.

6.2.8 blackscholes

My final benchmark is Black Scholes. This is an ‘embarrassingly parallel’ problem, with
data parallelism available between all the threads. It is included as a single example of
a program with a true real-world workload that has also been used in the evaluation of
a number of other research efforts—for example, as part of the PARSEC suite of parallel
benchmarks [11] (upon which my variants of the benchmark are based). This allows
consideration of whether the overheads associated with the JCAM inhibit performance
for normal programs. There is practically no coordination in this benchmark, apart from
the final collection of results. However, the body of the computation is of course encoded
into the JCAM and its continuation-passing style. The efficiency of Dovetail for sequential
sections of code is therefore tested.

6.3 Sequential Performance

The baseline for the sequential performance of each benchmark is of course the C version.
Alongside this, Java and Wool give an indication of acceptable overheads. The single-
core results for each of the benchmarks are shown in Figure 6.1. For each case, two
bars are shown for Dovetail—one making use of the fast mode optimisations presented
in Section 4.3 and one not. For the coordination benchmarks without closed definitions,
the results are essentially identical, with variations only due to experimental error. In
the other cases, the significant benefits of this optimisation are apparent. The locks,
barrier, rwlock and queue benchmarks are not supported by Wool, so no results are
shown for Wool in those cases.

In the non-coordination benchmarks, where some real computation is being done,
Dovetail does not impose prohibitive overheads. For all these cases, the runtime is within
a factor of 3 of a standard C implementation. By using the optimisations in Chapter 4,
most importantly fast-mode, the majority of the costs of the join calculus message queues
are avoided. However, the pattern matching logic is still required as the compiler does not
understand when messages might be produced, and a transition therefore enabled. Wool
scores better in these cases, and I believe that this is because the fork-join model simplifies
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Figure 6.1: Sequential performance of Dovetail.
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down to a sequential scenario better than the message matching primitives. Transition
inlining is referred to throughout this thesis as a key area for future work, and I think
that being able to use it to remove matching overheads in the sequential case will remove
the remainder of the performance difference compared to C. It is reassuring that in the
benchmark with the most realistic work load (blackscholes), the overhead is very low.

The results for the coordination benchmarks are harder to explain. Using Valgrind’s
callgrind tool [120] on locks shows that the matching operation is the main overhead.
The form of each ‘thread’ in the JCAM version of the benchmark is as follows (rwlock
and queue are of a similar form):

def @worker(acq,rel,k) � values(1000000,acq,rel,k) & step1(),

values(i,acq,rel,k) & step1() �
if i=0 then k()

else values(i,acq,rel,k) & acq(step2),

values(i,acq,rel,k) & step2() �
values(i-1,acq,rel,k) & rel(step1)

Dovetail has no way of knowing that every emission to values will fail to match. Un-
fortunately, analysis to determine that the matching logic is unnecessary on emissions to
values is beyond that presented in Chapter 5.

One feature developed by Turon and Russo in their work [113], which Dovetail has
not yet implemented, is tentative counters. These allow message queues where a message
does not contain any data (i.e. channels simply used as signals, such as step1 and step2

above) to be implemented more cheaply. They saw significant performance improvements
when using these for the coordination-style of benchmarks where Dovetail struggles. The
performance improvement if this were added to Dovetail would be less pronounced, as for
the benchmarks concerned my ‘cell’ optimisation already removes many of the memory ac-
cess overheads that the counters are designed to avoid. The challenge in integrating these
counters with Dovetail is an engineering one, as they need to fit in with the specialised
emission function approach that allows many of my other optimisations.

Although Figure 6.1 makes the performance of barrier on the JCAM look remark-
ably good, the explanation is actually that the performance of C and Java has changed
significantly for the worse. The wall clock time for the JCAM is consistent between locks,
rwlock and barrier, as one would expect since in each case 16 threads are looping and
performing coordination 1,000,000 times, whereas the times for C and Java increase by
about two orders of magnitude.

6.4 Scaling to Multiple Cores

The results in Figure 6.2 show that Dovetail performs very competitively in a benchmark
exhibiting closedness that does not require memory allocation (i.e. fib). In the case of
nqueens, the performance is still reasonable—however, each recursion requires allocation
to represent the new state of the chessboard. Both C and Wool can make this allocation on
the stack, while in the JCAM case it is made on the heap. The trailing off in performance
scaling can therefore at least partially be attributed to the memory allocation cost.2

However, in fast-mode, arrays that are passed to a closed definition and otherwise do not

2Although the Java version also allocates on each recursion, this becomes more costly when multiple
threads are doing allocation.
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escape the transition (such as in nqueens) could be stack-allocated. Detecting this in a
future compiler is achievable by incorporating standard pointer escape analysis with the
closedness detection from my work.

The performance of quicksort is affected by cache locality. This is confirmed by
running it with two threads on the same physical core (i.e. using hyperthreading), which
results in a speed up compared to one thread. The array operations in Dovetail allow this
benchmark to be written without allocating new arrays on each recursion, in the same
way as the Wool version. However, my simple scheduler does not manage to allocate
transition firings to workers in a way that maintains locality over the single shared array.

Moving on to the coordination benchmarks which have more complex communication
(Figure 6.3), it is clear that, as in the Joins Library work [113], the barrier benchmark
performs extremely well. The locks and rwlock cases struggle as they did in the sequen-
tial case. I believe that this is due to the lack of a tentative counter implementation and
also the unnecessary match checking as discussed in the previous section, which also affects
queue. In a multi-threaded case, these combine to cause high contention over the message
channel queues, and therefore poor cache performance. However, it is encouraging that
the performance of these benchmarks remains constant relative to the parallel C version
as the number of threads increases. This suggests that the JCAM can be implemented
such that it scales as well as other languages, whilst also offering better opportunities for
heterogeneous implementations as discussed in Section 3.4.6.

It is worth noting that all four coordination benchmarks are programs that inherently
scale badly. In each case, all n logical threads (2n for queue) are competing for a single
resource. Runtime is therefore improved when they are constrained to one hardware
thread. As soon as multiple threads are used, cache locality becomes a significant problem.
It is for this reason that I have presented these results as speed ups relative to the parallel C
version, rather than to the single-threaded C execution time as for the other benchmarks.

The continuation-passing style of the JCAM makes it very easy for logical ‘threads’
within programs (e.g. the producers and consumers in queue) to be switched between
workers, and therefore hardware cores, when they are matched upon. As mentioned
in Section 2.4.3, the Joins Library distinguishes between synchronous and asynchronous
channels, with normally exactly one synchronous channel appearing in a join pattern.
It then ensures that a worker follows the synchronous message sends, preventing the
unnecessary switches.

Finally, the performance for the blackscholes benchmark is given in Figure 6.4. It is
unsurprising that this scales well, as it is an embarrassingly parallel benchmark. However,
recall that it is entirely implemented with JCAM primitives. Therefore, even the sequen-
tial parts of the benchmark make use of message sends and pattern matching. The strong
results therefore show that the emission function specialisation is having the desired ef-
fect. Enabling fast-mode in this benchmark allows the use of memory channels, avoids the
enqueuing and dequeuing of transition matches, and also reduces memory allocation when
calling a maths subroutine (for calculating the cumulative normal distribution function).

Overall, whilst there is room for improvement in a number of cases, I feel that the
general trend of the results in this section is encouraging for the JCAM, and supports my
claims that its implementation need not be prohibitively burdened by overheads. As well
as evaluating the analysis in Chapter 5, the remainder of this chapter also discusses how
further improvements in performance might actually be achieved.
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6.5 Accuracy of Analysis

The performance figures in the previous two sections were attained for JCAM programs
with queue bounds and closedness properties manually specified. In this section, I show
that many of these are accurately determined by the techniques of Chapter 5. First, I
consider closedness, since it gives rise to the most dramatic performance improvements,
before considering queue bounds. I also give synthetic examples that highlight specific
scenarios where the analysis might be improved.

With 1-LCFA, closedness is detected in the fib, nqueens and quicksort benchmarks.
In the case of blackscholes, the use of library functions (e.g. sqrt) means that the
analysis needs more understanding of their behaviour. I do not consider this a fault of
the CFA itself, but rather the prototype implementation that I have built.

The CFA is equally proficient at detecting memory channels of the form used in numer-
ous benchmarks to encode state internal to an instance. The queue bounding approach
from Section 5.5 is poor at detecting cell channels that are emitted to outside a construc-
tor. However, even if the queue bounding itself were more sophisticated, both fib and
quicksort expose such channels to other instances of the definition in order to receive
their results. The instance-local CFA approach that I have developed therefore considers
them to have escaped and would never permit bounding. Inlining the child definitions
(e.g. as in Section 4.5.2) allows these to be analysed correctly. Of course, in a recursive
scenario such as fib, an infinite number of inlinings would be required to analyse all
channels correctly.

At the moment, the domain of abstract instance identifiers is {this, other}. Definition
inlining highlights that it is possible to give true call-strings to any instances created
only in the constructor, or its descendent constructors. This would allow better accuracy
without actually doing the inlining mentioned above. I also believe that it would allow
recursive definitions to be understood in a way that simple inlining never could.

It is worth considering a few cases where my k-LCFA produces inaccurate results (for
any k). Firstly, it is unaware of any ordering of calls that might be enforced by the
program. Consider the example (compare is assumed to be a system call which prints
“Yes” or “No” depending on whether its arguments are equal):

def @main() � i(a) & a(),

a() & i(x) � i(b) & b() & compare(a, x),

b() & i(x) � compare(b, x)

Clearly the printed message should always be “Yes”. However, the analysis cannot tell
that specific calls to i are forced to join with each of the channels, and therefore concludes
that either a or b could be passed as the second argument to compare on each occasion—a
refinement of my approach that allows the flow variables in Γ̂ to change over time might
address this.

The second source of imprecision is more expected (and reminiscent of how tuples are
analysed in an independent-attribute approach [61]). Consider:

a(k) & b(m,x) � k(m,x)

c(m,x) � m(x)

with calls of a(c), b(p,q) and b(r,s). The call to c is considered while a is on the
foreground path. It therefore receives the argument sets {p, r} and {q, s} for b, and
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cannot determine whether p receives argument q or s. A relational method would address
this, but at some cost in algorithmic complexity.

6.6 Better Scheduling

For the shared-memory multi-core implementation presented in Chapter 4, I opted for
a simple work-stealing scheduler. This resolved non-determinism simply based on the
order that transitions are written in the program, rather than by considering any time
estimations. Section 4.5 also conceded that transition inlining in the JCAM was not
possible without some consideration of scheduling due to the need to keep the original
transitions to avoid any risk of deadlock. I use this section to discuss the scheduling and
inlining topics in more depth.

6.6.1 The Scheduling Problem

The notion of a JCAM program path was defined in Section 3.3.2 using pomsets along
with a duration function. The problem of finding an optimal3 execution trace allows
one to consider all performance non-determinism choices together. This is not limited to
placement and scheduling, but also programming model specific choices, such as which
thread should get access to the lock first and how many times should divide and conquer
be performed for the algorithm to best match the available parallelism.

I consider the problem in two stages. Firstly, it must be possible to find traces of min-
imum duration assuming ⇓ is completely defined, and therefore checking path feasibility
is trivial. This corresponds to analysis of programs without conditionals. Once solved,
extending this to the complete problem requires runtime analysis, since input values will
affect which paths can occur. Fortunately, the assumption of confluence means that there
are not any wrong choices (just slow ones). One can imagine using profiling data to pro-
duce probability distributions on the output channels of a transition, in a similar manner
to branch predictors.

Unfortunately, even the first part is an NP-hard problem. The proof uses a reduction
from the exact cover problem, which is very similar to the reduction from 3-dimensional
matching for AND/OR network scheduling [50]. These problems are both known to be
NP-complete [62].

Theorem 3 Checking whether a path exists between two markings is NP-hard.

Given a set X, and a set Y ⊆ P(X) of subsets, an exact cover is a set Y ∗ ⊆ Y such that
for each element of X it appears in exactly one element of Y ∗. Determining whether an
exact cover exists for a given X and Y is known to be NP-complete [62].

I will encode this in a single join calculus definition as follows. For each x ∈ X, I
include a channel fx ∈ C. I also introduce a constructor channel start. Now for each
subset y = {x1, . . . , xn} ∈ Y , a transition ty ∈ T is added such that:

•ty = [start]

t•y = [start, fx1 , . . . , fxn ]

3Optimal would most frequently refer to minimum duration, but could also be based on other metrics
such as energy consumption.

132



It can then be determined whether an exact matching Y ∗ exists by checking whether there
is a path from {start} to {start} ∪ X. This proves that the problem of finding a path
between markings is also NP-hard. �

6.6.2 Improvements on Basic Work Stealing

At various points in this thesis, my arguments have relied on a scheduler being able to
make non-deterministic choices corresponding to the fastest execution—and clearly these
need to be made quickly. This section discusses how this might be achieved in practice.

The simplest improvement to my current scheduler would be to use a static heuristic
to reorder the transitions within the matching process, and possibly even remove some
transitions from consideration. A major advantage of this is that it allows all the existing
work on minimising overheads to be used without modification. Such a static scheduler
need not be particularly fast itself and could be run on installation of the program. There
are several further steps that would allow this approach to become more sophisticated.

1. Use different transition orderings on different types of processor.

2. Compile multiple copies of a definition with different orderings, and choose between
these on instance construction. This would allow basic load balancing between
different implementations.

3. Use garbage collection on work queues to support aborting computations (see the
end of Section 3.4.3).

With just-in-time compilation, the second of these could even allow adaptation based on
runtime measurements.

However, unlike in standard work stealing, there is also a second form of stealing that
I have not yet considered—as well as taking a matched transition, individual messages
could be taken by first decomposing some of the existing matches. This moves away from
the greedy and list scheduling approaches advocated by StarPU (and most other work)
and may not offer many benefits since work stealing is based on the premise that most
matches are executed by the worker that created the match.

I will now consider some similar scheduling problems and how they can be related to
the JCAM.

Task Graphs. Scheduling of these is a similar problem, and despite being NP-complete,
effective heuristics do exist for it. StarPU is the closest to the scenario in this thesis
since it considers choices between implementations of a task. They find HEFT [112]
(a list scheduler) to be the most effective technique. However, this can only resolve
intra-task choices, not inter-task. That is to say, there is never a choice between
routes through the graph. They have also shown how this can be extended to
consider memory communication costs [6].

AND/OR Graphs. These share the non-deterministic choice characteristic that ap-
pears in the join calculus, and is generally uncommon elsewhere. Typical solutions
again make use of list scheduling [37].

Dataflow and Streaming. In typical task-graph scheduling problems, precedence con-
straints do not allow the concept of a completed task being ‘used up’ in the way
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Figure 6.5: A hypergraph flow that is not a valid path (A must fire twice for B or C to
fire).

that messages are in the join calculus, and cycles therefore behave differently. This
dataflow-like situation is seen with streaming models (e.g. [111]), where the input and
output rates of pipeline stages need to be matched. Adaptive runtime approaches
have been shown to produce good results [108] for such pipelines, as have machine
learning techniques [118].

Graph Flows. Whilst not typically associated with scheduling, flows through graphs
share many similarities, with the flow into and out of each node needing to match
much like producers and consumers of a channel. It would be necessary to use
hypergraphs4 since transitions match on multiple channels, and produce multiple
messages. The minimum cost flow problem is most relevant since, for a given pro-
gram, it should be known how much data will be input and expected as output.
However, this minimises total cost rather than the critical path.

In the standard graph case, there are efficient cost-scaling algorithms [51] for this
which could be implemented without a single ‘master’ scheduler. However, work on
hypergraphs [25] appears to be restricted to ‘B-hypergraphs’ where each edge has
only a single head.

Unfortunately, the standard definition of ‘hyperflows’ fails to describe execution
paths exactly (for example, Figure 6.5). A flow would also need to be supplemented
by an actual schedule for execution.

Note that since a flow will not necessarily use every edge, graph flows naturally
allow non-determinism.

However, it is unclear how the above approaches can be combined. Rather than attempt-
ing to solve the problem in general, an easier first step might be to attempt extending the
scheduler to a more complex situation such as GPU architectures. Even doing this with
work stealing is non-trivial for the join calculus (Section 7.1).

Many of the approaches are also specific to static graphs and dependency relations.
The higher-order nature of the join calculus means that any solution will require the
results of the CFA as well as an estimation of which channels are more likely to be chosen
as message destinations. This suggests that machine learning approaches may be the most
appropriate, with the program viewed as a variety of stochastic game.

6.6.3 Transition Inlining

Whenever a λ-calculus CFA resolves the destination of a call-site to a single function, a
compiler can consider inlining. Similarly, wherever my CFA resolves the destination of an

4A (directed) hypergraph is here a digraph where each hyperedge e has multiple heads and multiple
tails—i.e. e ∈ P(V )× P(V ).
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emit to a single channel, one might hope to inline transitions to reduce firing overheads,
as mentioned in Section 4.5. However, although inlining should reduce overheads, it may
also reduce the available parallelism.

Consider the following example for expressions P and Q, having free variables x and y

respectively:

def @f(x,y,k) � p(x,m) & q(y,n) & s(k),

p(x,k) � k(P),

q(y,k) � k(Q),

m(a) & n(b) & s(k) � k(a * b)

The behaviour of a call @f(x,y,k) is to invoke k on P * Q. If there is insufficient paral-
lelism to fire p and q concurrently, it is preferable to inline these, together with the final
multiplication a * b, to eliminate the overheads associated with passing messages and
firing transitions—resulting in the optimised code of:

def @f(x,y,k) � k(P * Q)

However, since channels and join patterns are in a many-to-many relation, it may be
necessary to resolve multiple emits before being able to inline (as in this example). There
may also be a choice between multiple transition matchings (i.e. ‘static’ scheduling to
resolve non-determinism).

The inlinings that are possible become clearest by constructing a Petri-net version
of the LCFA results for the definition. In this net, places correspond to channels, and
the pre-places of a transition are given by its join pattern. The post-places are given by
emit instructions with a resolved destination, which are statically known to be executed a
fixed number of times. Valid inlinings then correspond to valid transition mergings in this
Petri-net—these can be represented as pomset paths [87] which might include repetitions
of a single transition.

The pomset paths restrict the ordering of the original transition bodies within the
merged transition’s body. Any emit or finish instructions, which become internal due to
inlining, should be removed, and local variables used to thread values between the original
transition bodies.

The deadlock complications involved in join calculus inlining were briefly discussed
in Chapter 4. A more subtle case of this occurs when the new transition matches on a
channel that it might also emit. For example, inlining just the channel b in:

a() � b() & c()

b() & c() � ...

gives:

a() & c() � c() & ...

Assuming c does not appear elsewhere, then the former allows a() to cause a firing
but not the latter, potentially causing deadlock. This therefore relies on using a more
sophisticated scheduler as just discussed, and retaining the original transitions.

Note that because my CFA only considers message interaction within a single instance,
transition inlining alone cannot support whole-program inlining (e.g. if p or q above were
in a different definition). It therefore needs to be combined with definition inlining as
discussed in Section 4.5.
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6.7 Summary

This chapter has shown that Dovetail and the JCAM concept are viable in terms of
performance on multi-core architectures. In Sections 6.3 and 6.4, it was demonstrated
that speed ups across multiple cores could scale as well as any approach, even though there
were inevitably costs compared to more established compilers.5 For programs with ‘real’
computation, I do not believe that these costs would be significant, as the vast majority
of the program would be made up of bounded channels and closed definitions. Section 6.5
then discussed my control-flow analysis and concluded that, while it is an encouraging
first step in analysis of the JCAM, there is still plenty of scope for further analysis that
would enable better performance to be achieved entirely automatically. The area that
presents the greatest remaining challenges is scheduling, and implicitly inlining. While
the JCAM is successful in allowing a wide range of execution choices to be expressed,
it is not clear how these choices can be best resolved. Section 6.6.2 discussed possible
approaches for this, but further research is needed.

5The benchmarks utilising arrays, nqueens and quicksort, did not scale as well and require further
work on reducing memory allocation and improving locality when stealing work.
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Chapter 7

Conclusion

Motivated by the widely acknowledged shift towards parallelism, and the lack of stan-
dardised compiler techniques to support this change, this dissertation has attempted to
find a common higher-level view of parallel languages and architectures. Doing so has
necessitated a broad sweep through different areas of compiler research. The result is an
approach based on the join calculus, through which I have made the following contribu-
tions:

• Chapter 3 developed a novel intermediate representation, the Join Calculus Ab-
stract Machine, appropriate for representing the forms of parallelism present in
modern languages and architectures, without losing information. Whilst the join
calculus itself has existed for nearly two decades and inspired much programming
language research, this is the first work to test its suitability for an intermediate
representation. The flattening of the calculus and its condensation into just a few
key primitives are also both novel.

• Chapter 4 built an implementation (available online [21]) for this abstract machine
based on recent work [113] before proceeding to look at how performance could be
further improved. This isolated two key program properties that could be used to
significantly decrease overheads. Whilst queue bounding had been touched on by
previous work [66], the closedness of definitions offered an entirely new approach
that gives huge benefits to execution speed once hardware parallelism is exhausted.

• Chapter 5 produced two new control-flow analyses appropriate for the join calculus,
and demonstrated how these could be used to infer the annotations required by the
implementation.

• Finally, Chapter 6 evaluated the overall performance of the machine and its suit-
ability for various benchmarks. It also gave detailed discussions of several areas
where I believe the current implementation and analyses fall down.

Using these techniques, I have argued that the JCAM is a sensible solution as a universal
and fundamental representation of parallelism. As a novel model, one would also expect
that the results in this work are only the beginning of what could be achieved with such
a representation. This casts significant doubt on the Berkeley ‘stovepipe‘ view (i.e. that a
new compiler should be written for each language-target combination), and suggests that
it may be possible to pair up frontends and backends arbitrarily. Of course, any compiler
targeted at a specific combination can outperform a universal approach, but the hope is
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that with further research the JCAM can be competitive enough that the development
effort saved outweighs the performance costs.

There are three key areas for future work on the JCAM: compilation to other archi-
tectures, more accurate analysis, and better scheduling and inlining. Some of these have
already been discussed in Chapter 6. However, they are summarised in the following
sections, before I offer some final remarks on this work.

7.1 Compilation to Other Architectures

Whilst the design of the JCAM was made with compilation to non-uniform memory, het-
erogeneous architectures in mind, the prototype compiler introduced in this dissertation
is restricted to shared memory multi-core targets. There are two obvious routes to sup-
porting a wider range of hardware which I describe here. These descriptions should be
treated as sketches of a solution rather than a tested or fully developed approach.

The first would be to attempt to target GPUs. The difficulty in doing this is discovering
data parallel workloads—i.e. extracting SIMD from MIMD. This equates to detecting
when multiple matches of the same transition rule will occur, and offloading these to a
GPU. I envisage this being possible through a combination of static analysis and runtime
monitoring. The static analysis would highlight points in the code where data parallel
execution might be applicable. For instance, if messages are sent to a channel from within
a loop, an annotation might be inserted before and after the loop. The annotation before
would prevent (or perhaps just discourage) any matches generated during the loop from
being immediately stolen by another worker. The annotation after the loop would then
check for multiple matches of the same transition on the work queue, offloading them all
to a GPU.

The other development would be to make use of the ideas in Section 3.4.6 to support
distributed memory architectures, or clusters. This could be done whilst initially keeping
the processing nodes themselves homogeneous. Of course, doing this also requires a more
complex scheduler than my prototype. This has been discussed in Section 6.6.2 and will
be recapped below.

7.2 Further Analysis

This dissertation developed the first control-flow analysis techniques for the join calculus,
and made use of their results to infer several key properties (Chapter 5). However, as
discussed in Section 6.5, there are areas where this CFA could be improved—for instance,
inter-transition flow-sensitivity. Since this CFA has been used to drive the majority of the
optimisations within my compiler, small improvements in accuracy could have a relatively
large impact on overall program performance.

There are no doubt also other analyses that have not even been touched on here.
One avenue that should be explored would be how existing analyses on parallel languages
translate into the JCAM. For instance, work has been done with X10 on may-happen-in-
parallel (MHP) analysis [2]. As a common substrate for parallelism, it should be possible
to perform this on the JCAM. Not only will this further test the universality claim of
the JCAM, but applying the MHP-equivalent to other paradigms not found in X10 may
provide useful new insights into those languages.
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7.3 Better Scheduling and Inlining

Inlining, which in the presence of non-determinism is effectively static scheduling, and
runtime scheduling are areas that this dissertation has not explored in depth. Given
the importance of inlining in the optimisation of traditional languages and intermediate
representations, it is reasonable to expect that research in this area could lead to signif-
icant performance improvements. The hand-optimised inlining results given at the end
of Section 4.5.2 were encouraging, and it would be valuable to be able to perform this
automatically on a larger range of benchmarks. However, resolving non-determinism suf-
ficiently is difficult and will require significant further research. A detailed discussion of
the issues involved was given in Section 6.6.2.

7.4 Final Remarks

In closing, I want to offer a more pragmatic view of the next steps for the JCAM. It
would be näıve not to realise that adopting an IR with such a pure application of the join
calculus model is an incredibly disruptive change. However, there is of course a middle
ground. Supporting the JCAM primitives alongside existing instruction sets would enable
different styles of concurrency to be expressed in a common way that the compiler could
optimise. Even without the analysis and optimisation described in the later parts of
Chapter 4 and 5, performance would exceed that of library implementations. This would
offer a far richer way of describing concurrency in managed languages. Improvement in
this area is needed by both mainstream virtual machines (i.e. the JVM and .NET). It will
therefore be interesting to see how progress is made over the coming years, and whether
the ideas presented here offer any inspiration.
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