Technical Report R

Number 87

Computer Laboratory

Computer-aided type face design

Kathleen Anne Carter

May 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1986 Kathleen Anne Carter

This technical report is based on a dissertation submitted
November 1985 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, King’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

This thesis tackles the problems encountered when trying to carry out a creative and
intuitive task, such as type face design, on a computer. A brief history of printing
and type design sets the scene for a discussion of digital type. Existing methods for
generating and handling digital type are presented and their relative merits are
discussed. Consideration is also given to the nature of designing, independent of the
tools used. The importance of intuition and experience in such a task is brought out.
Any new tools must allow the designer to exercise his skills of hand and eye and to
judge the results visually. The different abstractions that can be used o represent a
typeface in a computer are discussed with respect to the manner of working that
they force upon the designer.

In the light of this discussion some proposals are made for a new system for
computer-aided type face design. This system must be highly interactive, providing
rapid visual feedback in response to the designer’s actions. Designing is a very
unstructured task, frequently with a number of activities being pursued at once.
Hence, the system must also be able to support multiple activities, with the user free
to move between them at any time.

The characteristics of various types of interactive graphical environmen{ are then
considered. This discussion leads on to proposals for an environment suitable for
supporting type face design. The proposed environment is based on the provision of
a number of windows on the screen, each supporting a different activity. A mouse,
graphics tablet and keyboard are all continuously available for interaction with the
system. The rest of the thesis discusses the implementation of this interactive
graphical environment and the type face design system that makes use of it. The
final chapter evaluates the success of both the underlying software and of the type
face design system itself.

ii

Contents

Foreword

1.

Type Face Degign
1.1 A Brief History of Printing
1.2 The Process of Type Face Design

. Producing Digital Type

2.1 Handling digital type
2.2 Existing Systems
2.3 Proposals for a new type face design system

. Interactive computing environments

3.1 Interactive graphics systems

3.2 User Interface Management Systems
3.3 Windows, icons and mice

3.4 The Rainbow workstation

. The environment for Imp

4.1 A specification
4.2 Some building blocks for an interactive environment
4.3 The window manager

. Imp

5.1 Overview
5.2 Imp and the window manager

. The Fount Database

6.1 Fount Data

6.2 File Formats

6.3 Organisation in the workstation
6.4 Master and Raster Fount Windows

. Master Founts

7.1 Approaches to outline manipulation
7.2 Master Editor Window
7.3 Compare Masters Window

. Raster Founts

8.1 Creating raster founts
8.2 Raster Editor
8.3 Text Display Window

. Evaluation and Conclusions

9.1 Imp in Action

9.2 The User Interface
9.3 The Window Manager
9.4 Future directions

In Conclusion ...

References
Appendix 1
Appendix 2

iii

11
13
13
18
23
27
27
32
34
39
48
48
51
54
72
72
74
78
78
83
89
93
97
97
103
113
119
119
121
124
129
129
133
137
139

141
142

Index of figures

Figure Page Number

1.1 Example of hand-written manuscript & Gutenburg’s printing
1.2 Example of Jenson’s Roman type of 1470

1.3 Spacing of curved and straight strokes

1.4 Kerning

1.5 Design differences between large and small type

1.6 Italic and Roman type cast on the same bodies

1.7 A simple digital letter

2.1 An optically scanned letter

2.2 Grid alignment problems in scan conversion

2.3 Interpolation between different letter outlines
2.4 Spline and line chain representations of outlines
2.5 A B-spline curve

2.6 Problems with a meta-font

2.7 An outline marked up for the Ikarus system

2.8 Structure of an outline in Elf

2.9 A Mctafont letter definition

3.1 A simple dialogue represented by a finite state machine

3.2 A typical screen on the Star workstation

3.3 The Cambridge ring

3.4 Screen layout and data structures for the Rainbow workstation

4.1 Typical menus

4.2 A typical form

4.3 Structure of a program using the window manager
4.4 Creating a new window with the window manager
4.5 Window management

4.6 A example of a client coroutine

4.7 The display structure for a window

6.1 The scan conversion algorithm

6.2 Encodings of rasters

6.3 Letters spacing using “metal” spacing
6.4 Letters spacing using “optical” spacing
6.5 Data structure for an outline

6.6 Some fount windows

iv

© © =3 =3 =3 T

30
30
41
44

52
52
55
57
59
62
70

79
79
82
82
91
94

Figure

7.1 Constructing an Overhauser curve

7.2 Filtering a line chain

7.3 Data structure for editing an outline

7.4 The master editor window

7.5 Sketching in paint mode

7.6 Measuring in grids mode

7.7 “Compare masters” window

7.8 Canonical character for calculating spacing

8.1 Basic scan conversion algorithm

8.2 Problems at vertices

8.3 A solution to the problems

8.4 The raster editor window

8.5 The text display window

8.6 Text displayed on screen and printed on paper
8.7 Super-sampling algorithm

Page Number

99

99
101
104
106
106
114
114

120
120
120
122
122
125
128

Foreword

Intuition and Automation in Type Design

The design of type faces has a long tradition going back some five hundred years.
Many of the problems and questions faced today have been encountered in some
form in the past. Printing is a technological process and throughout its history it has
had to assimilate and exploit new techniques. As Hermann Zapf says in his notes on
type design {1970

“The type form must subordinate itself to technical requirements, and
be attentive to the increased demands for legibility from the reader;
and it remains the type designer’s task to be watchful that in modern
mass production the letter’s beauty be not lost.”

It may seem that the computer has finally removed printing from the hands of
skilled craftsmen and reduced it to an automatic process where intuition and
aesthetics have no place. There is frequently tension between the engineer’s pursuit
of automation and speed and the designer’s desire for beauty. Engineers have been
taking decisions that typographers are trained to take and, on the other hand,
typographers assume that the results produced by the engineers are the best that
can be done. In fact the use of computers in printing provides a new freedom which,
if used sensitively, opens up the possibility of mass produced printing of a quality
never seen before. If this potential is to be realised the type designer must get
involved and apply his skills to produce letter forms that best make use of the
opportunities provided by the new technology, trusting the judgement of his own
eyes to produce something beautiful and legible. On the other side, engineers must
accept that intuitive judgements in type design are as valid as automatically
calculated answers. This means producing systems that provide the freedom for
designers to exercise their visual judgement. This potential clash between
mechanisation and traditional skills is not peculiar to computers, to quote Daniel
Berkeley Updike [1937]:

“.. it seems to be the eye and the Hand that determine the excellence
of the product of a machine, and it is only when the machine is as
flexible as the hand that it is as good as the hand.”

He was referring to punch cutting machines where the results were greatly improved
when the opsrators learnt to trust the judgement of their eyes and the experience of
their hands as they worked. Similarly, with computers the best results will be
achieved if the designer’s eyes and hands are allowed to be the final arbiters. Digital
printing is a new medium with its own advantages and disadvantages and it will be
put to best use as designers develop new skills and gain experience with it.

This thesis is about the provision of tools to enable designers to work in the
digital medium and so to produce type faces that are beautiful and appropriate to
this new medium. There are two strands to the thesis, that of type face design and
that of interactive computer graphics. They come together in an interactive system
for computer-aided type face design. The first part of the thesis covers type face

design, both the task in general and the specific questions that arise when computers
are used to help in this task. A brief historical summary of printing techniques
provides the background to modern trends and to a discussion of designing in
general. Existing systems for handling digital type are discussed and then some
proposals made for a new system to handle the whole design process. Any computer
gystem to support a visual and creative process like type face design must make use
of interactive graphics. The second part of the thesis surveys interactive computer
graphics, culminating in proposals for the facilities needed to support the type face
design system. The actual details of the facilities implemented are then presented.
The third part then presents Imp, the proposed system for type face design as it has
actually been implemented by the author. The final chapter evaluates the success of
the work that has been done in the light of the original proposals and also presents
some ideas for future developments. Two appendices are included to further
illustrate the work. The first is a user manual for Imp, written by Lynn Ruggles,
which complements the more technical discussion in the main body of the thesis. The
second appendix is a video tape which shows what Imp is like in action.

1. Type Face Design

This chapter provides the background needed before any attempt can be made to
produce tools for type face design. First a brief history of printing sets the scene and
then the task of type face design itself is discussed. Much of the history has been
taken from “Five Hundred Years of Printing” by Steinberg [1955] and further details
can be found there.

1.1 A Brief History of Printing

The Early Days

The history of printing from movable metal types is generally considered to have
started with Johannes Gutenberg around the year 1455. Although it is probable that
others were using metal types before this time, it was Gutenberg who made it a
practical and profitable proposition. His process consisted of several stages for the
production of each character, and these stages are still in use today for metal type
production. First the character shape was carved on the end of a steel bar, called the
punch. This punch was then pressed into a bar of copper to form a matrix. The
matrix was fitted into a mould and then the type was formed by pouring in molten
metal. Once the type had been cast it could be assembled into lines and then pages
for printing.

The first generation of printers set out to imitate the handwritten manuscripts
familiar to their readers and did not see printing as a new departure. They
attempted to make the shapes of the type as close as possible to the pen written
shapes, in spite of the difficulties of carving such shapes into metal. The scribes used
large numbers of ligatures and abbreviations to speed up the production of
manuscripts and these were taken over wholesale by the early printers (figure 1.1).
Gutenberg used more than 250 ligatures in his work. As Updike [1937] says:

“Intent upon imitating manuscripts, they felt obliged to reproduce the
kind of letters that a reader had been accustomed to in volumes
written by hand ... In other words, to the first type-cutters printing
was merely an evolution, and did not appear a new invention in the
sense that it obliged them to decide what forms of letter were best
adapted to the new medium they had to employ. If these craftsmen
had but thought of the whole subject from a fresh standpoint ...
Instead of a long series of endeavours which have not yet entirely
adjusted type-forms to the medium in which the type-cutter has to
work, we should then have had characters designed with closer relation
to the material from which they were fashioned.”

The next generation of printers were able to break free from the scribes and began to
develop typography as a craft in its own right. The most notable of these was
Nicolas Jenson who, around 1470, designed a roman type face based on humanist
scripts. These scripts were derived from carved Roman inscriptions and the forms
were much better suited for the new technology of punch cutting. The reduction in
the number of ligatures and special types also made the fount more manageable

~Biemdis fmmﬁinﬁ
Hfefacatos fillmo 2

o ualichionr. umdnin j |
Cpraneal nimfupls
wsogan’
1 opeomus
g hicengarcte
e rfanacog
ruees funel.

Do o audillee david:eleeaditin

preiiin Pllitimautan venicntes
uffulli funein vallevaphatm. Freg-
Tuluie Do Diuw Drcens. ot altndd
an philiRgmeee i dabiaeosimanu
weas [Fr dixit Divgad danid. Alcente:
fgateatvns dabo phililtgw in manm

tua, Peoieeego David ad baalphava-
Tuneee peccutTee eom i ee uwie. Diwdie

g innicos nicog ord miesficue di-

Figure 1.1
A sample from a manuscript written in Germany in the 14th or 15th Century
(top) and from Gutenberg's 42-line Bible printed about 1455 (bottom).

4

& arthareedi paucailla quzante g legitimum certamen icohét:emerédi
fauoris gfa canunt:procemium uocauerunt, Oratotes quoque ea quz
priu{q caufam exordiantur ad conaliandos {ibi tudicium animos pra’
loquunt?eadem appellatione fignarunt.Siue qugd _ . 1tdem
grec uiam appellant:id quod ante ingreflum rei ponitur:fic uocare é
inftitutum. Certe procemium eft quod apqd tudicem dict priufq caufid
cognouerit:poflit. Vitiofeg in fchol_ns faqmus: % exordio {ic utimur
quafi caufam fudex fam nouerit:cuius rei licentia ex hoc eft: g dte de-
clamarionem 1lld uelut imago litis exponit,Sed in foro quog; cOtigere
iftud principios: genus fectidis aéﬁpnibus poteft:primis quidem raro:
nung nifi forte apud eum cut res aliunde 1tam nota fit dicimus. Caufa
pricipit nulla aliaeft § ut auditoré quo fit nobis in czreris partibus acs
commodatior preparemus.]d fiert tribus maxime rebus inter auctores
- plurimos conftat:(i beniuolum:attétum:docilé fecerimus:ng quinifta
per totd actioné non f{int cuftodienda:{ed quia tninitils maxie neceflas
ria:pet qua { animi rudicis:ut procedere ultra poflimus:admictamur,
Beniuolentiam autem a petfonis ducimus:aut a caufis accipimus:fed
petfonarum non eft:ut pleriqp credlderint:m'plex ratiotex litigatore: &
aduerfario:& tudice.Nam exordium duct nonnund etid ab actore cau~
(2 fol&:§g enim pauciorade fe ipfo dicit: & parcius:plutimi raméad
ofa momenti eft in hoc pofitii:{i uir bonus creditur:{ic eni contingets
ut né ftudrum aduocari uideatur afferre:fed pene teftis fidem.Quare
in prirnts exiftimetur uenifle ad agendum ductus officio uel cognatio”
nis uel amicitiz:mavimedg {1 freri potef} ret. pu.aut alicuius certe non
mediocris exempli, Quod fine dubio multo magis ipfis litigatoribus
factendum eft: ut ad agendum magna atqp honefta ratione:aut etiam
neceflitate acceflife uideantur.Sed ut pracipua in hoc dicentis ancto-
ritas {it:{1 ojs 1in fubetdo negocto {ufpicio fordium:autodiorum: aut
ambitionis abfuerit . Tra quadam in 1is quoqs commendatio tacita:fi
nos infirmos & impates agentiu e contra ingeniis dixerimus :qualia (Ut
pleracg Meflale procemia. Eft enim naturalis fauor pro laborantibus:
& tudex religiofus libentiflime patronti audit:qué fuftitia fua minime
timet. Inde tlla ueter circa occultandd eloquenttd fimulatio multum
ab hac noftrorum temporii iactatione diuetfa. Vitandii eti ne contu
meliofi:maligni:fupbi:maledici in quéq hominé ordinéue uideamur:
precipue eorii:qui ledi nifi aduerfa rudic uoluntate non poflie. Na
in iudicem nequid dicatur non modo pald: fed quod omnino itelligi
poflit:tultd erat monere nifi fier&, Eteni partis aduer{z patronus da~
bit exordio materid intexi cii honore:fi eloquéntid eius ac gratiam nos

Figure 1.2
An example of Jenson's Roman type of 1471

(figure 1.2). In spite of these advantages it did not seem o be the aesthetic or
practical considerations that first caused the adoption of roman type faces. At this
time much humanist literature was being produced, stimulated by a rediscovery of
clagsical texts. A new type face was desired that would better express this new
learning and make a clean break with the black letter script associated with
theological writings. The roman and the associated italic faces soon spread
throughout Europe along with the new humanist literature. This desire to use a new
type face to spread new ideas has continued throughout the history of printing and
perhaps today it is most clearly seen in advertising typography.

The use of rectangular metal types presented certain difficulties which had to be
overcome. Letters have to be placed on the body of the type in such a way that they
appear evenly spaced when set together. For example, curved shapes have to be
placed closer than straight shapes to appear the same distance apart (figure 1.3).
Some letters, particularly in italic founts, actually need to overlap their neighbours,
a process known as kerning (figure 1.4). An area where punch cutters developed
special skills was in the production of type in a range of sizes. Identical designs
reproduced in different sizes do not actually appear the same because of the way the
human visual system works. Larger sizes need longer ascenders and descenders and
thinner strokes to retain the spirit of the design (figure 1.5). The punch cutter,
trusting the judgement of his eyes would automatically make these changes to a
single original design as he produced the different sizes.

In the early days of printing it was often the same person who designed, cut and
cast the type, chose the books to be published and carried out the setting and
printing. These tasks fairly rapidly differentiated. Claude Garamond, who worked in
the early sixteenth century, could be considered as the first specialist type designer
and cutter. Eventually the production of type was completely separated from
printing and publishing, with the establishment of type foundries specialising in the
design and casting of types for many different printers. Within type production itself
the design of type was increasingly separated from the cutting of punches. The
designer had to work closely with the punch cutter if his designs were to be realised
as he intended. ‘

Until the nineteenth century there was little further change in the industry
beyond a consolidation and refinement of techniques. Better quality paper and more
accurate presses meant that clearer impressions of the type could be obtained. This
encouraged the production of designs with finer details as these were no longer lost
in the printing process. For example delicate serifs and fine hairlineg could be used,
first seen in the types of Baskerville and later in those of Bodoni and Didot. The
design of type faces became more systematic with the production of families of
related faces of different sizes and attempts to produce related roman and italic
fuces. A further systematization was attempted in the reign of Louis XIV in France.
He commissioned a set of type faces, called “Romain du roi”, which were designed by
a committee of the Academy of Sciences. The design was specified to fit to a grid but
in fact Philippe Grandjean, who actually cut the type, produced a much more
mellow and free design. There were various other attempts to reduce type face
designs to mathematical constructions but never with any success. Ultimately the
intuitions and experience of the punch cutters determined the designs.

: i) |
fI L
A

Figure 1.3
This shows the different distance needed between curved and straight strokes
to get the appearance of even spacing.

Figure 1.4
Kerned type.

Hmg
Hmg

Figure 1.5
Monotype Plantin 24 point (top) and 10 point (bottom), both enlarged to the
same size.

Modern Times

The nineteenth century saw the first radical changes in printing technology since
Gutenberg’s day. Until this time all printing was done with hand presses, essentially
unchanged for centuries. The first power-driven cylinder presses were installed in the
early years of the century for the production of newspapers. With the introduction of
various mechanised techniques there was a vast increase in the quantity of material
printed, although unfortunately the quality of design deteriorated. The type faces
themselves were still cut and cast by hand until 1884 when a punch cutting machine
was introduced by Linn Boyd Benton. This made use of a pantograph to transfer a
large scale design to the punches at various sizes and removed the need for highly
skilled punch cutters.

By 1900 the introduction of the Monotype and Linotype systems had
revolutionised the casting and setting of type. The Linotype system has a single
operator who types in the text; as he types the matrices are assembled and when a
line is complete the whole line is cast as a single piece of metal. The resulting “slugs”
are easy to handle but if there are any mistakes the whole line must be reset. The
Monotype system casts and composes individual types similar to those cast by hand.
It is done in two stages, one operator typing in the text and producing paper tape
with the text and spacing information and the other feeding the tape into a casting
machine. It is slower than Linotype but it is typographically superior and corrections
are more easily done. These two systems rapidly became the standard for books,
magazines and newspapers until the advent of filmsetting. The implications for type
face design were serious, In order to make different founts available within one line,
the Linotype matrices each contained two characters, often a roman and an italic. As
a result, the italic designs had to be distorted to fit the same bodies as their
corresponding roman letters (figure 1.6). With the Monotype system characters had
to be designed so that their widths were a multiple of a fixed unit size, with 18 units
to the em. Types were often produced for use on both sorts of machine and so had to
fit the limitations of both.

Filmsetting

The past twenty years or so have seen dramatic changes in printing technology,
starting with the introduction of filmsetting and now digital systems. Printing has
been freed from the physical limitations imposed by the use of metal types. The type
can be arranged in any way, even touching or overlapping, and it can also be
distorted in various ways. In filmsetting the type is stored as black and white
images, for example on a transparent disc. The image can then be projected onto the
photographic film that will be used for producing the actual metal plate for printing.
By using appropriate optics it is possible to produce all sizes of a face from one
master design and also to stretch, shrink or slant the letters.

Many of the type faces used for filmsetting were copied directly from metal faces
with little consideration of the effects of the new methods on the appearance of the
type. A particular problem is the production of different sizes from the same master.
When types were cast in metal each size had to be cut separately and so subtle
adjustments could be made to cope with certain visual effects. By using the same
master for all sizes the results are very different, and usually less attractive, than
equivalent metal setting. Some manufacturers have taken this into account and
produced masters that are not the same as any one metal size but look reasonable at

1y matrices double
1y matrices double

Figure 1.6
Italic and Roman letters fitted to the same bodies for the Linotype machine. The
italic spacing is too wide and the letters do not have a uniform slant.

| |

i

Figure 1.7
A simple digital letter

all sizes—another case of adapting the design to fit the technology. Further
improvements are achieved by providing a number of masters, each one covering a
small range of sizes. The designs also need adjustment for the lack of inkspread
which makes the type appear lighter than its metal equivalent. An interesting
example of a design made specially for this new technology is “Trinité” by Bram
deDoes [1985]. This type face provides versions with three different lengths of
ascenders and descenders, three different weights, and condensed, wide, italic and
small capital founts. The user can then choose the particular combination of features
that best suit the size, type of paper, intended reading conditions and the sort of
text being set.

Now that type is no longer constrained to fit onto rectangular blocks of metal it is
possible to achieve a much higher standard of setting. There is now no physical
reason why letters should not overlap and so there is no need to distort letters to
avoid kerning. With a computer to control the filmsetter it is possible to store
kerning information and produce correctly kerned setting without taking a large
amount of time or effort. Computers can also be used to calculate the kerning
information, for example with the Logos program [Kindersley and Wiseman, 1978],
so helping the type face designer to make best use of the new freedom. Unfortunately
many systems still retain the old metal spacing units and so fail to exploit the
flexibility of filmsetting.

Digital Printing

The use of digital printing introduces a form of type that is totally different from
anything that has been used before. Digital type is stored in the form of a
description of the image rather than as the image itself. A computer must interpret
this description and generate the image on the film. At the lowest level digital type
must define a bitmap, a pattern for the presence or absence of ink on a grid (figure
1.7). Many digital printers take letters defined in this way directly or, more usually,
encoded to save space. Space can also be saved by storing the letters as a higher
level description such as some form of outline encoding and there are some machines
which will interpret such an encoding directly.

The use of a computer, along with abstract descriptions of the letters, opens up a
whole range of new possibilities for manipulating letter shapes. As with optical film
setting the letters can be stretched, shrunk and slanted but over much wider ranges.
In addition, depending on the representation chosen for the shapes, a whole number
of options may be available. The next chapter discusses these in some detail and so
no more need be said here,

Perhaps we now have a situation similar to that when printing was first
introduced. Just as the first printers copied their letter forms from manuscripts, we
now have digital printing systems taking their letter forms from traditional type.
These type faces were developed for cutting into metal with its particular
characteristics and limitations and there is no reason why they should be suitable for
digital reproduction. If the new medium is to realise its full potential there will be a
need for type faces specially designed to exploit the new technology. There is now no
need to stick to the limitations imposed by the use of metal type. Although these
new types could be designed in traditional ways, the use of computers to aid the
design process as well as the printing would provide a valuable step forward. The
designers would gain firsthand experience of the digital medium and so be better

10

able to take advantage of it.

1.2 The Process of Type Face Design

What is designing?

We must understand what the task is before we can begin to provide suitable tools,
computerised or otherwise. In type face design, as in many other areas of designing,
the process leading to a finished design is vitally important. Generally designs do not
appear fully formed in a designer’s mind, waiting only for a suitable medium for
expression. Rather, a design is arrived at by a process of experimentation and
refinement. The designer will probably start with some vague idea which can then be
looked at and played with to give rise to further ideas. Throughout it is his trained
eye that assesses what has been done and his intuitions that suggest what should be
tried next. Anything might happen, and it is this air of the unexpected that gives life
to u design. Although there may be rules and guidelines that can be applied, it is
often as they are broken by an experienced designer that the best designs are
produced. Central to the whole process are the designer’s experience and intuitions
and any aids or tools for designing must allow for this.

The traditional tools of a designer are the drawing board and implements such as
pens, pencils and brushes. His draughting skills allow him to draw any shape he can
visualise. He will probably use rulers and gauges to guide the proportions of letters
and maybe French curves to construct curved portions but it is the skills of hand
and eye that determine the shapes. The important feature of all these tools is that
they can be used directly and visually, with immediate feedback of the results.
Ultimately they can become effectively invisible, with the designer using them
without thinking about it. This invisibility helps establish a direct link between what
is in the designer’s mind and the image he produces, in whatever medium he chooses.
There is no need for him to think about how to produce the image, he just “does” it.
Any new tool, if it is to extend and encourage a designer’s creativity needs fo
provide this immediacy and potential invisibility.

Aspects of type face design

Looking at type face design specifically we see a number of different aspects that
must be considered. Underlying everything is the fact that individual letter shapes
do not exist in isolation; they exist as part of a complete fount of letters which
belong together. Their proportions and shapes are in some way harmonious and
distinguish this type face from any other. Some features can be easily isolated, for
example the shapes of serifs or the relationship between thick and thin strokes in a
letter, but others, such as the overall feel of the type face are much harder to pin
down. When a new type face is being designed decisions must be made about these
various aspects of the design, either at the outset or as the design progresses.

As a designer works he must consider the type face at a number of different
levels, related to the different aspects that characterise the type. At the finest level
there are details of serif shape and subtle curves within a letter to be worked on.
Moving up, we must decide on the relationship between x-height and cap-height and
ascenders and descenders, and also the relative widths and heights of letters.
Individual letters do not generally stand alone and so at the next level we must look
at the interactions between letters in order to set up the spacing. Ultimately we see

11

whole pages of text set using the type—the final product of the design process.
Decisions made at one level affect all the others, and so the designer must bear them
all in mind as he works.

Intuition and automation

When we consider using computers to aid in the design process we find two opposing
forces at work: the technologist’s push towards automation against the designer’s
desire to use his intuitions and experience. The technologist’s tendency is to analyse
the results required and then to specify them in some abstract form. They can

be manipulated, controlled and proved and algorithms constructed for producing the
results. On the other hand, for a graphic designer what matters is whether the
results look right, regardless of theoretical considerations. In its place the analytical
approach is perfectly valid—for example a bridge must be structurally sound and
this can be determined by calculation. It is not enough that the bridge look right,
although even here a person can develop intuitions about what will work, providing
a valuable double check against calculations that might go wrong. On the other
hand, in graphic design the appearance is foremost and any calculation or algorithm
is ultimately subordinate to the designer’s visual judgement. For example, certain
strokes in a fount may be intended to appear vertical, but optical effects can cause
such strokes to appear slanted if they are drawn exactly vertically. The designer
must trust his eyes and adjust the slant until the stroke appears vertical, rather than
believing a calculation that says that the line is vertical. There are many similar
optical illusions that affect type face designs and so it is very important to make
room for intuitive, visual judgements.

Linked with the central role of intuition in designing is the air of the unexpected
that was mentioned above. Perhaps it can best be described as playfulness. It is a
fundamentally human characteristic that cannot be automatically programmed or
planned for. Any computer system intended to support designing should provide the
freedom for unstructured working that allows experimentation. Computers can
provide many facilities that do not exist at a drawing board and playing with these
can be the best way to learn how to exploit them. It may be that such facilities will
be used in ways that could not be anticipated by the builders of the system.

An area where automation can be very valuable is that of organising the whole
design task. A type face consists of a large number of letters and symbols and these
must all be designed to fit together. As has already been mentioned, the designs
must be considered at a number of levels and a computer system can provide the
ideal environment for this. With the letters stored in digital form they can be
displayed magnified to work on details, placed with a few other letters to assess
spacing and also be set to form complete pages, all within one environment. It is
even possible to have all the levels visible simultaneously. Such an environment
could provide a great stimulus to inventive new designing as little investment is
needed before even the wildest of ideags can be seen in print. The computer can
organise the storage and retrieval of large numbers of designs that would be
unwieldy, if not totally unmanageable, if drawn on paper.

12

2. Producing Digital Type

When we consider producing digital type there are two different poinis to be looked
at. The first is how the type is to be stored for use and the second, obviously related,
point is how the digital type is to be generated. These issues are discussed in general
in the first section of this chapter and then the next section presents some existing
systems for producing digital type faces. The final section makes some proposals for
a new digital type face design system, drawing on the discussion of this and the
previous chapter. Imp, the system described later in the thesis, was implemented on

the basis of these proposals.

2.1 Handling digital type

Digital type is always an abstraction in that it is not stored as images but as
instructions for constructing the images. At the lowest level each letter is made up of
ink spots on a grid, with the positions of these spots forming the definition of the
letter shape. For printing, these definitions must be stored compactly so that a large
number of founts can be provided easily. On the other hand, various automatic
manipulations of the letter shapes within the type setter can be very useful and so
the representation chosen may need to take this into account. The generation of
digital type can be seen as two different tasks, either the digitization of existing
designs or the origination of new designs. In the former case the main aims are speed
and accuracy, with adjustment of the shapes once digitized being minimal. In the
latfer case, as was emphasised in the previous chapter, the reworking and
adjustment of the shapes is a central part of the process. Although I have made a
distinction between the two tasks it can really be said that there is no such thing as
straightforward digitization. Any design transferred to a new medium needs
reworking to take account of its different characteristics. Saying that a system is for
digitization only can allow certain simplifications but ultimately the best digitization
systems will also be good design systems. What follows discusses the three main
representations of digital type with respect to these considerations.

Bit maps

The simplest, but most bulky, way of storing a digitized Ietter is as a bit map. An
array of bits represents the grid of ink spots (pixels) with a one represeniing
presence of ink and a zero its absence. Such an array can be generated easily and
directly by taking a large print of the letter and scanning it optically. A television
camera can be used but better results are obtained with specially built scanning
equipment. Unfortunately the results are often very noisy and so need hand editing
to make them usable (figure 2.1). Bit maps can also be produced by using a digital
painting system which allows the user to “paint” into the bit map using an
electronic stylus. This can feel very close to conventional designing at a drawing
board as it only requires draughting skills. There is no need to analyse what is being
done, as is the case with more structured representations. On the other hand the
lack of structure means that it is hard to exploit the power of the computer to carry
out automatic manipulations. The bit maps are fixed for one size and resolution of
device and would need to be either regenerated from scratch or considerably

13

o

seen pemes bee ses.

Figure 2.1
Bitmap for an optically scanned character before and after cleaning.

Figure 2.2
This shows a problem that arises with scan conversion, Pixels are filled in if
half or more of their area falls within the outline. If the outline does not fall
exactly on pixel boundaries we can get a symetrical shape appearing
assymetrical when scan converted.

14

reworked for new sizes or devices.

A straightforward bit map representation wastes a lot of space—for example
space is taken to represent all the blank area surrounding the letter. Various
encodings can be used to save this space, with the encoding used depending on the
capabilities of the decoding device. The storage of founts in the type setter is not a
concern of this thesis and, because it is such a large topic, no more will be said here.
Obviously any design system that uses bit maps may need to compress them but the
problem is less serious than with a type setter as only a few letters need be available
at one time. The more important consideration is that the letter being worked on
can be easily modified, suggesting that if a bit map is to be edited it is best stored in
a straightforward manner.

QOutlines

As has already been mentioned, it is hard to manipulate letters stored as bit maps
and so other, more structured, representations are also used. Even the simple
transformations of scaling, stretching and slanting are not easily done with bit map
representations. It is much easier to transform an outline and then convert it to a bit
map. Unfortunately the process of converting an outline to a bit map (scan
conversion) seldom works perfectly. For example, depending on how the outlines
register with the grid, vertical stems may have different widths (figure 2.2). If the
letter is to be stored as a bit map then these problems can be corrected in the stored
version, whereas if the bit map is generated within the type setter there is nothing
that can be done. With a high-resolution type setter this is not too much of a
problem as the percentage error is very small. The difficulties are most pronounced
for the lower resolution devices that are beginning to become widespread in offices.
Techniques are being developed to get round such problems, for example the
Postscript system produced by Adobe claims to print high-quality bit maps from an
outline encoding. The techniques they use are closely guarded commercial secrets
and so no more can be said here. _

As well as making transformations easier, the use of an outline encoding makes
interpolation between shapes easy. This is a very useful technique, for example to
generate a letter of an intermediate size from two masters at opposite extremes of
the size range rather than using the same outline for all sizes. Interpolation can also
be used to generate new designs that are combinations of two different designs. To
do any interpolation it is most convenient if the two master letters have the same
number of points and corresponding points on the two letters are known. An
intermediate letter is then generated by calculating the position of points some
constant fraction of the distance between the corresponding points on the two
outlines, as in figure 2.3.

The simplest way to store an outline is as a line chain, that is, as a series of
points joined by straight lines. Curves are represented by a sufficiently large number
of short straight segments to prevent the shape appearing polygonal. Unfortunately,
there is still a danger of the letter appearing polygonal at very large sizes unless very
large numbers of points are used. It is possible to overcome this problem and reduce
the number of points needed by joining the points with curves rather than straight
lines. A high order polynomial fitted through a series of points will tend to oscillate
and so does not produce a very attractive result. A better solution is to fit a series of
lower order polynomials through successive groups of points. Various techniques can

15

Figure 2.3
Interpolating between a modern sans serif type (left) and a medieval half-uncial
bookhand (right). Based on drawings by Kris Holmes in [Bigelow, 1982] .

EE ee

Figure 2.4
The same letter, in two different sizes, in a line chain representation (left in
each pair) and spline representation (right).

Figure 2.5
A B-spline cubic through nine points.

16

be employed to ensure continuity of curvature between one segment and the next.
These curves, known as splines, can be used to generate attractive curves from a
small number of control points. The shapes generated will always appear smoothly
curved however much the original shape is enlarged (figure 2.4).

Creating an outline using splines takes some specialised skill as the shape
produced by a particular set of control points is not necessarily what would be
expected intuitively (figure 2.5). This is not so much of a problem where a finished
design is being digitized as a curve need only be fitted once to a static shape. When
a new design is being created the use of a spline representation becomes very
difficult. Not only is the control of a spline frequently counter-intuitive but the
calculations can be so slow that interactive control is not really possible. A variety of
splines with different behaviours are available, some of which do not pass through
their control points and so are not very suitable for defining letter outlines. Splines
which do pass through their control points, known as interpolating splines, have a
much more acceptable behaviour. Barsky and Beatty [1983] describe interpolating
splines that have control parameters that can be understood physically. These Beta
splines with “bias” and “tension” parameters have the potential for intuitive,
interactive control but speed is very much a problem. Hobby [1985] describes a
different system of interpolating splines with the emphasis on producing aesthetically
pleasing curves. Leitch and Smith [1984] specifically tackle the problem of the speed
of calculation needed for interactive control of splines. Once rapid interactive control
is available it will provide designers with the opportunity of developing an intuitive
feel for splines, which can then enhance rather than hinder their work.

Other curves are also used for defining outlines, for example the LIP system
described below uses arcs of circles for curved portions. Purdy and McIntosh [1980]
describe the use of a digital spiral to represent the outlines of scanned characters.
The designer uses different segments of the spiral to fit parts of the outline with
different curvatures. References to these curve segments can be stored and then used
to reconstruct the outline.

Parametric representations

A very different approach from the systems described above is that of defining
letters in some abstract mathematical form. The aim of such abstraction would be to
enable certain parameters to be specified and then have the whole alphabet
generated automatically. Aftempts have been going on for centuries, for example
Durer [1535] attempted to describe the roman alphabet in terms of geometric
constructions on a grid. The size of the grid was the main adjustable parameter and
the sizes, shapes and proportions of the characters were all related to this grid. In
fact the alphabet did not prove amenable to complete description and frequently the
artist using the constructions was instructed to fill in certain parts by eye.

Recent mathematical developments and the use of computers has now made
possible the accurate description of the curves making up letter forms. The outline
representations using splines that have already been mentioned are exploiting these
developments, but just in terms of representing a single fixed outline. A further
possibility with the use of computers is to construct whole alphabeis based on a few
parameters. When different type faces are examined there ig obviously some
relationship between all the A’s, all the B’s and so on. Also, within one type face
there is a set of relationships between the different characters, defining the style of

17

the face. This suggests the production of abstract descriptions of the essence of each
character which can be converted into a particular instance of the character by
providing parameters to the description. A new face could be generated by giving the
same parameters to all the character descriptions, thus producing automatically a set
of related characters. The first attempt to do this by computer was done by Mergler
and Vargo [1968] who produced a very simple parametric fount. The results were not
very beautiful but showed that such a technique might be possible. More recently
Coueignoux [1975] produced a grammar for roman faces, describing them in terms of
parameterised primitives. New roman faces could be generated by providing new sets
of parameters. The Metafont language [Knuth, 1979], described below, is a more
fully developed attempt to implement these ideas.

A parameterised fount has the potential to be a very compact way cf storing
information in a type setting machine. For example, a lot of space could be saved if
shapes that are common to several letters are only stored once. Also the ability to
generate different weights or styles from one set of definitions would save further
space. Unfortunately letter shapes are not proving very amenable to such treatment.
The relationships between letters of the same style are very subtle and the essence of
a style cannot be easily extracted or defined. Descriptions that yield a harmonious
series of letters for one set of values of the parameters may well result in total
disaster for another set. Figure 2.6 shows a simple example taken from Metafont
where different parameters are given to the same definition. With high boldness but
low width rather strange results are produced, even though many of the other curves
produced by the same definition are acceptable. This example is pushing the
parameters to extremes but it does show the problems involved in specifying how
different strokes should relate. '

For designing, a parameterised fount sounds wonderful—changing one letter could
cause all the rest to change, with no need for the tedious process of changing them
all by hand. When one alphabet is complete then all of the different weights and
sizes could be generated automatically. On the other hand there are big problems
with the fact that such founts must be described rather than drawn. The definition
rather than the picture is central, and so the definition must be updated to make
changes rather than tweaking the picture until it looks right. Having to consciously
describe what is to be done tends to get in the way of intuition and may even
endanger the whole creative process.

2.2 Existing Systems

The previous section outlined the main approaches to the generation and
representation of digital type. Various combinations of these approaches are
embodied in the systems described in this section. A discussion of these systems will
illustrate their different strengths and weaknesses.

Ikarus

The first practical system using outline coding for letters was Ikarus [Karow et al,
1979], daeveloped by Peter Karow of URW in Hamburg. It is now quite extensively
used for digitizing libraries of existing faces but it is not intended for designing new
faces from scratch. Large prints of the letters to be digitized are marked up by
artists to indicate points to be linked by straight lines, points on curves and tangent
points where curves turn into straight lines. These points, along with codes

18

11111

Figure 2.6
A strange effect with a meta-font - the width parameter increases from left to
right and the boldness from top to bottom. Note the interaction between high
boldness and low width. (example provided by Neenie Billawala, Stanford.)

Figure 2.7
A letter marked up for digitizing by the Ikarus system (drawing by Kris Holmes
in [Bigelow, 1982]).

19

indicating their type, are then entered into the computer by hand using a digitizing
tablet (figure 2.7). Work is also being done on capturing the outlines automatically
from bit maps produced by a scanning device. Further structure can be apecified to
make explicit the relationships between various letters, for example making all
letters use the same set of standard serifs or indicating vertical stems that should
have the same width. This makes it possible to change all the serifs together, or to
expand or condense the face. Changes such as expanding or condensing require
structure over and above simple outlines because the stroke widths do not change in
the same way as the spaces between them, making simple stretching inadequate.

Proofs are produced of newly digitized outlines and these can be marked up for
correction. It is not an interactive system and points are repositioned by typing
coordinates rather than positioning them visually. This makes the production of the
digital type faces slower and more laborious than it need be. Once a correct outline
has been produced various transformations and interpolations are available. Such
facilities are intended for minor changes such as producing different sizes or weights
of the same face but it is also possible to generate new faces by interpolating
between two different designs.

The completed outlines are device independent and can be used for generating
founts for various sorts of type setters. This might mean simply converiing the
outline to the the format used by a particular machine, if it uses outlines directly.
The outlines might also be scan converted to bit map form for devices that cannot
do the conversion themselves. The structure incorporated into the letter definitions
allows more accurate scan conversion to be done, for example identical serifs can be
ensured and stems can be given the same widths automatically. The resulting bit
maps can also be edited by hand if that is needed.

LIp

A more recent system using outline encoding is the Letter Input Processor (LIP)
[Flowers, 1984] developed by Camex and Bitstream. Like Ikarus it defines letter
outlines in terms of curves and line segments but the major design consideration
from the start was for the system to be highly interactive and visual. As was touched
upon in the previous chapter, designing is an experimental and interactive process
and so any serious design system should support this way of working. In the case of
type face design the results must be assessed visually and so visual feedback is
needed. The user of LIP communicates with the system by way of a menu of
commands on a digitizing tablet which can be selected by moving a puck over them.
A shape is initially entered into the system by digitizing an existing piece of artwork,
using the puck to input points along the outline. The letter being worked on is
displayed on a screen and the user can zoom in on particular areas for detailed work
or zoom out to see the whole letter. Objects on the screen can be selected by moving
the cursor over them and pressing a button. The selected object can then be dragged
around the screen by moving the puck over the tablet. Parts of characters, such as
seriis, can be isolated and then copied, rotated, scaled or mirrored. These parts can
be stored and then incorporated into other letters as an aid to consistency
throughout the face. An electronic ruler is provided to ensure that the relative sizes
of objects is correct. A limited programrming ability is available in that sequences of
actions can be stored and recalled later. This enables the designer himself to extend

the system.

20

The result of the design process is a set of letter outlines in the form of points
joined by straight lines or arcs of circles. As with Ikarus, the outlines are device
independent and can be used in various ways to generate founts for different type
getters. Scan conversion and editing of the resulting bit maps does not form part of
LIP, but is done on other machines.

Although LIP is much closer to a designer’s natural method of working than
Ikarus, it still does not provide for the origination of new type faces entirely within
the digital medium. Its facilities make for rapid and accurate digitization of existing
faces but do not provide the freedom needed for experimenting with new ideas.
Shapes must be presented to the system as a well thought out set of line and curve
sections. There is no facility for freehand drawing.

EIf

Elf [Kindersley and Wiseman, 1979] was an interactive system that addressed
directly the problem of producing and experimenting with new ideas. It ran on a
vector display which is now obsolete and so it is no longer being developed or used.
It made use of a light pen for interaction, with commands being issued either from
the keyboard or by pointing at light buttons on the screen. A letter shape was
generated by drawing directly on the screen, leaving a trail of points. These points
defined the path of a pen with a user-defined width and angle and the filled letter
was generated by building trapesia on the points along the path. Points could be
selected and repositioned and the pen width and angle at any point could be
changed. Several letters could be viewed together to assess the results, with the
spacing being calculated automatically. Facilities were provided for moving parts
from one letter to another and for interpolating between designs. Transformations
such as rotation and scaling could be carried out.

The most important feature of Elf was the provision of freehand drawing and
interactive editing. This made it possible to sketch very rough ideas and then work
on them to produce the finished letter forms. The definition of letters as pen strokes
allowed initial ideas to be roughed out very rapidly but became a hindrance af later
stages. Some type faces are calligraphic in form but very many are not and so a lot
of fiddling was needed in EIf to achieve many commonplace effects. Figure 2.8 shows
the structure of some letters in Elf format.

Metafont

Metafont provides for the description of letters by mathematical formulae using a set
of common parameters. By changing the parameters new faces of related letters can
be produced. The original form of Metafont, like Elf, defined the letter in terms of
the path of a pen of specified dimensions and so encountered the problems already
mentioned. A new version of Metafont is being produced which allows the definition
of the outline of the letter, which can then be filled.

Shapes in Metafont are defined in terms of a small number of points which are
then linked by curves or straight lines. The line produced can be varied by specifying
the directions at the end points as well as changing the pen width and angle. Once
the definition has been written the shape can be displayed. Any changes needed are
made to the written definition and the result can then be redisplayed. Figure 2.9
shows a Metafont definition and the resulting letter.

21

- -~

%:
PE=N /K‘_<' —W] P [] L 1
— i—-————
- S P e —
f— Py a——N
C 1 r] “-c/ — [L]
== = = &=

Figure 2.8
Structure of some letters designed using Elf.

"Cyrillic letter Eprime*;

call charbegin(’037+3codeofrset,11,0,0,phh,0.rbov1);

cpen; top3y2=.3hh;

if bot3y2<.1ihh: new y2; bot3y2=.ihh;

1; ’

1ft3x2=round .75u; w3 draw 2; % lower bulb

hpen; 1ft0x3=round 1.25u; y3=good6 ,Bhh; 1ftOxd=1ft3x2; y4=y2;
x20=x3; rt4x8=rt0xi; yi=y3; topOy20=hh;

15=.6[23,x7]-u; x6=.5[x4,x7]; topOy5=hh+o; botOyé=-o;
rtix7=round(r-u); y7=ys;

if uce$0: w0 ddraw 1..20, 3..20; % upper serif

rpen#; w4 draw 3{0,1}..5{1,0}; % erase spurious part
ti; !
hpen; w0 draw 3{0,1}..5{1,0}; % shoulder }
call "a darc(5,7,%6); ¥ bowl !
y9=y10=.52hh; x9=2u; x10=1£t5x7; i :
w0 draw 9..10; % bar
%0 draw 6{-1,0}..4{0,1}. % tail

Figure 2.9

A Metafont program and the resulting character shape.

22

The Metafont definitions are device-independent and incorporate features that are
intended to adjust the designs for devices of very different resolutions. The bit maps
are produced directly from the definitions and it is assumed that there will be no
need for any hand editing. The shapes are drawn using specially digitized pens that
are claimed to remove the various problems that usually arige in bit map generation.

The main weakness of Metafont is that the letters are described in an abstract
form rather than being interactively constructed. The designer is unable to exploit
the hand-eye coordination that plays such an important role in any graphic
designing. Obviously the use of new tools will involve the learning of new skills but it
can be argued that the skills of abstraction and programming are inappropriate for a
visual and intuitive task.

Another problem with Metafont is that the number of parameters required to
produce adequate results keeps increasing. The nature of letter shapes is still poorly
understood and maybe will never be described in a convenient and manageable
mathematical form. The way that the parameters interact is hard to predict and so
the production of new faces with Metafont can often be a case of accident rather
than design.

Other systems

A number of personal workstations with bit mapped displays provide simple fount
editors. These generally provide a grid on which the design is produced by filling it
in, dot by dot. Such systems are not very suitable for serious fount production
because the process is so tedious. A system running on the Lilith workstation
[Kohen, 1985] provides a more structured environment for fount production. The
characters are entered as outlines which are then edited as necessary. The outlines
can be scan converted to rasters at various sizes and resolutions and the resulfing bit
maps can be edited. The system also provides guidelines for such things as ascenders,
descenders and x-height. The resulting founts are intended for medium resolution
devices in the range of 100 to 500 pixels per inch.

2.3 Proposals for a new type face design system

We have looked at varioug approaches to the task of generating digital type and now
it is time to consider what the way forward may be. The aim is to produce a system
that can support the whole process of type design from the earliest ideas through to
the finished product.

A recurring theme through these first two chapters has been the importance of
intuition and practical experience. Ultimately a good design works because it looks
right, not because it fulfils some theoretical criteria. Designers should be free to
follow the judgement of their hands and eyes rather than having to stand back and
think abstractly about what they are doing. On the other hand we have seen the
advantages that structure and abstraction can bring. It would be sensible to try and
exploit such things as the similarities between letters in the same face while at the
same time not imposing limitations on the designer.

This section introduces the main ideas and design decisions underlying Imp, the
new system. The actual structure of Imp is described in more detail in chapter 5,
after the computing environment it is built on has been presented.

23

Abstractions and interaction

Any type design system that uses a computer must have an abstract representation
of the letter shapes. The decision that must be made is what sort of abstraction is
most suitable and how it will be constructed and modified. Having given the
designer’s visual and manual skills a central place we must provide a system that
works visually and interactively. All of the designer’s actions must evoke an
immediate response so that unconscious links between actions and responses can be
built in his mind. Provided that this immediacy and directness is available it will
probably not matter whether the tools available are exact analogues of traditional
tools. Indeed, we may be able to make much better tools.

Complex abstractions bring a lot of power but they can also be very constraining.
For example, an abstraction that defines everything in terms of pen strokes makes it
hard to produce a non-calligraphic shape. When everything must be explicitly
defined it becomes difficult to simply make something look right. We can go to the
other extreme of treating everything as plain bit maps. By allowing the designer to
paint or erase bits in the bit map any shape can be produced. This gives great
freedom but makes the provision of any automated transformations difficult. It is
also too specific to one resolution and size of type and so makes it hard to re-use
design work.

It seems that the most suitable representation of letter shapes is some form of
outline encoding. The designer can just draw an outline freehand without having to
think about it. This outline can be edited by interacting with it directly on a display
gcreen or various automatic procedures could be applied to it. If the designer is given
the freedom to either work directly or by way of procedures then he need never be
unnecessarily constrained. When the result produced automatically is not quite right
it can then be edited directly until it looks acceptable. This new design system will
not store the outlines in the form of splines. Firstly, storage space is not a problem
and so curves can be represented by as many short line segrnents as are needed.
Secondly, the difficulty of handling splines interactively is a very powerful argument
against using them in the stored outline. Work currently in progress may well
change this but for the moment line chains are the most suitable representation. On
the other hand, splines are available for generating these line chains if the designer
wishes.

Shared parts such as serifs can be designed as part of one letter and then copied
to other letters. By providing measuring gauges and grids it is possible to ensure
that stems are the correct widths. The disadvantage of this method is that the
system has no knowledge of the relationships between the different letters. Hence, if
the serif of one letter is changed none of the others that use this serif will change.
The obvious step on from being able to copy parts from one letter to another is to be
able instead to set up relationships indicating a shared part or equal sizes. Some
form of graphical language is needed for specifying such relationships and setting up
structured definitions.

Although the outlines are the main objects handled by the system, a bit map
editor is also needed. This is to allow for the fact that scan conversion seldom works
perfectly and so there is a need for some editing at this stage. It is assumed that
most work will be done on master designs in the form of outlines and that the bit
map editor will only be used for tidying up completed designs.

24

The structure of the task

The system must take account of the structure of the design task if it is to support it
successfully. A designer will generally work in an unstructured manner, moving from
one thing to another at frequent intervals, perhaps with several different tasks going
on in parallel. This suggests that the system must be able to support a number of
simultaneous tasks, with no particular structure or ordering imposed on the user. A
computer screen can be divided up into a number of areas, each one dealing with a
different task. The user can switch his attention from one area to another at any
time to move to another task. The areas on the screen can be made a bit like sheets
of paper that can be moved around, placed on top of one another or filed away for
later use.

Several different aspects of the type design task were picked out at the end of the
previous chapter and these aspects can be distributed across the different areas on
the screen. One area can be available for the design of letter shapes including setting
up grids, playing with rough ideas and working on fine details. Another can provide
space for placing letters side by side to set up and examine spacing. By having both
areas visible at one time the designer can be working on details of one letter whilst
still keeping in mind its relationship to others. The outlines can be converted to bit
maps and another area can be used to display a page of text using these letters,
providing an even broader view of the role of the letter being worked on. Other areas
can be provided to store letters not currently being worked on. By organising the
system in this way the designer is able to keep track of the effects of any design
decision at any level.

Another feature of designing that has a big influence on the way the system is
implemented is the balance between interaction and automation. If a lot of lengthy
calculations were being done to carry out some task automatically then it would be
useful if the designer could get on with something else in the meantime. On the other
hand, if the emphasis is always on interactive modification then there is no need for
more than one thing to be happening at one time as the designer will only be
working actively on one thing on the screen. The parallelism mentioned above is
within the designer’s head rather than within the program itself. He needs to be kept
aware of the state of all his current tasks but will work on only one at a time. If it
can be done this way then the underlying computer system can be greatly simplified
at the expense of the user occasionally having to wait for a calculation to finish.

The user interface

The proposed system is highly interactive and hence the user interface is vitally
important. For many designers the computer will be an alien machine and so they
must be made to feel safe and confident. When designs are stored in some abstract
internal form it is easy to get worried that they may be lost. After all, they cannot
be seen or touched in the way that designs on paper can. Hence the system must
make things visible as far as is possible. There are a number of commonsense
considerations that can make a system feel safe and controllable, such as making it
very difficult to destroy things accidentally. If the user can undo any action then he
is much more likely to experiment with new and unfamiliar features. Playing around
with the system will teach him much more than theoretical explanations. A
consistent style of interaction and the use of menus or prompts will help the user to
learn about the system and prevent confusion.

25

The user interface makes the abstractions that represent the letter forms in the
computer visible and accessible. As he uses the system, the user builds up a
conceptual model that enables him to understand how the underlying programs work
[Moran, 1981]. This understanding can then provide him with ideas about new ways
of using the system. An appropriate user interface will allow someone to work
effectively and imaginatively.

Because type face design is a visual task a good graphics system is needed to
support the user interface. It must provide for rapid interaction and feedback and
also provide a good interface to the programs that make up Imp. The following two
chapters present graphical computer environments in general and the environment
implemented to support Imp in particular.

26

3. Interactive computing environments

In the previous chapter the design considerations for Imp, an interactive system for
type face design were introduced. Any such interactive system requires special tools
for constructing and running it. This chapter gives an overview of various fypes of
interactive environment described in the literature. It then goes on to discuss the
hardware and software environment available to me in Cambridge. The next chapter
presents the environment that I have implemented to support Imp.

The tools currently available for managing interactive environments can usefully
be divided into three groups, although the divisions are by no means clear or rigid.
The first group is interactive graphics systems which provide facilities for handling
graphical input and output. These systems are usually built around a stored model
of some object with which the user can interact. F'acilities are provided for displaying
and modifying the model in various ways. Secondly we have User Interface
Management Systems (UIMS) which have grown up both in graphical and in non-
graphical areas of computer science. The main emphasis in these systems is on
specification and management of the interactive dialogue. Although there are a
number of non-graphical UIMS the discussion here is restricted to the graphical
systems as these illustrate the main ideas and are of more relevance to the rest of the
discussion. Finally the concept of “windows” is presented, a way of working that
exploits graphical facilities for general computing environments. The systems that
make use of windows usually try to provide a fully integrated programming
environment with consistent techniques being applied across all applications. Many
of the applications are not strictly graphical but the methods employed are of use in
any application area.

3.1 Interactive graphics systems

The physical environment
Any hardware for interactive graphics must provide a display surface that can be
rapidly updated along with tcols that can be used for selecting objects on display
and for specifying coordinates. Most displays currently in use are based round
cathode ray tubes (CRTs), using either vector or raster scan techniques. The
application program, usually by way of a library of graphics routines, furnishes a
description of the image to be displayed. The display processor controlling the CRT
interprets this description and provides suitable control signals to the beam of the
CRT. In a vector display the image is constructed by drawing the line segments that
make up the picture. The stored description of the image is this set of line segments,
possibly with higher level structures allowed for grouping lines into objects and so
on. In a raster scan display the beam draws the image in successive horizontal
sweeps across the screen. The image is stored as an array of intensity values for each
spot (pixel) on the screen. Raster scan displays have become very cheap and are now
more widely used than vector displays.

The user of an interactive graphics system must have tools that enable him to
select and manipulate the objects being displayed. In general the input tools used
yield numeric values which can then be interpreted as the program requires. One

27

device, the light pen, actually interacts directly with the image. The light pen has a
light detector in its tip which signals when the beam of the CRT crosses its field of
view. When used with a vector display with a structured image description it is
possible to determine directly what part of the image the pen is pointing at. This
type of input is known as a “pick” and is found in many graphics input libraries.
The problem with the light pen is that it is tiring to use as it must be held up to the
screen. It also obscures the screen contents beneath it. As it is not so useful with
raster scan displays anyway, it is being replaced by other tools. Any device that can
be made to yield varying numeric values can be used as a graphkics input device.
These include the graphics tablet, which senses the position of a special stylus; the
joystick, which senses the amount and direction of deflection from the vertical; and
the trackerball, which detects the amount and direction of rotation. Another device
that has recently become widely used is the mouse. It is essentially a small box that
can be held in one hand and moved over a surface. This movement is detected,
either by mechanical or optical means, and converted to numerical dzta. It has a
number of buttons on top, usually two or three, which can be used to signal events.
Different devices are suitable for different applications and different users and ideally
one workstation should provide a choice. Further details of these devices can be

found in Foley and Van Dam [1982].

Software

In any interactive graphical application we have a user observing an image on a
screen and using various input tools to manipulate this image. The graphics program
must collect and interpret the user’s input and update the image accordingly. A
classic example of such a program is Sketchpad [Sutherland, 1963] which allowed the
user to construct pictures using a light pen and function buttons to describe shapes
of and relationships between displayed objects. The image on the screen was a visual
representation of a model stored in the computer’s memory that recorded these
shapes and relationships. By interacting with the image the user was updating this
stored model. The maintenance of relationships between objects in the model meant
that the image on the screen behaved as more than a simple sketch. For example, if
a point was moved then all lines that terminated at that point would automatically
be repositioned. This pattern of the image being the visual representation of a highly
structured stored model has provided the basis for many subsequent graphics
systems.

Sketchpad was a specially written, “once off” piece of software but from the
earliest days there have been attempts to simplify the writing of such programs by
providing libraries of routines that are of general use. This can greatly reduce the
amount of code that must be written for a new application. On the output side this
usually means providing routines for drawing and transforming simple shapes and
perhaps for identifying and grouping objects. The particular facilities provided do
not have a great influence on the nature of the interactive programs that can be
written although they do influence the amount of work that must be done in the
application program. The handling of graphical input is a much more difficult area
with a wide variety of very different tools with different dynamics. There are a
number of different models of input tools and of the structure of interactive
programs. The model chosen has a great influence on the way an interactive
application is written and so the correct decision at this level is very important.

28

An early model for the handling of input tools was the Reaction Handler
[Newman, 1068] which used a finite state machine to model the interactive
application. Such a machine is always in one of a finite set of states and it shifts
between states when particular events happen, each state having a fixed set of
events that it recognises. In the context of handling interactive input the events are
the user’s actions and each state has associated with it a response that occurs when
that state is entered. A simple example of a dialogue is shown in figure 3.1. The
Reaction Handler provided a language for defining the states of such a machine and
the movements between them. This definition language just specified the flow of the
dialogue and was quite separate from the language used for writing the procedures
that were the responses of the various states. The separation of dialogue specification
from the actual procedures of the application foreshadows the recent developments
in UIMS which provide special languages for specifying dialogues. This allows the
two different functions of controlling the dialogue and doing application-specific
calculations to be written in languages appropriate to the nature of the tasks.

Another feature of the Reaction Handler was the attempt to keep the programs
device independent. Input was divided up into categories, for example, “pen
movement” may come from the movement of a light pen or from the typing of
coordinates at a keyboard. Again this foreshadows later developments in the use of
“virtual tools”. In particular, attempts at defining graphics input standards have
concentrated on the definition of an appropriate set of virtual tools that will allow
applications to be moved between different sets of hardware.

The idea of device independence was first formalized by Wallace [1976] and
Wiseman and Robinson [1977], who both specified sets of virtual tools sufficient for
any task. The program is implemented in terms of these virtual devices and can then
be moved from one environment to another by binding different physical devices to
the virtual devices. Wiseman and Robinson proposed a keyboard yielding a string of
characters, a locator yielding coordinates and a picking device yielding identifiers of
picture components. One physical tool can feed input to more than one device, for
example a light pen could provide coordinates by moving a tracking symbol, strings
of characters by pointing it at a light button and picture components by pointing at
them. Also, one virtual device can receive input from more than one physical device,
for example the virtual keyboard could receive characters from both the light pen
and the physical keyboard. Wallace also includes a valuator, yielding a single
numeric value, and a button device yielding a button identifier. He suggests that
these cannot be implemented in terms of the other devices, but it can be argued that
a valuator is a one-dimensional locator and that buttons yield characters for the
keyboard stream. Others, for example Rosenthal [1981], suggest that all input should
be unified into a single type. The general idea of virtual devices iz now firmly
established although argument continues on the nature of the primitive devices
needed. GKS (see below), a draft standard, uses five devices similar to those
proposed by Wallace and in addition has a stroke device that yields sequences of
coordinates. The nature of the primitive devices settled for may well reflect the
capabilities of the physical devices that people are used to rather than any genuine
abstract device independence.

Newman’s Reaction Handler, discussed above, used a single finite state machine
to model the interactive dialogue. At each stage a specific set of inputs are valid and
the user is led, step by step, through a highly structured dialogue. This approach is

29

button button

button

2 display
line

store
starting point

pen movement pen movement

Figure 3.1
A state-diagram representing rubber-band line drawing.
(copied from [Newman, 1968])

AT A R

oo
= SESONT P i RS

Frand4 Beandf frnde sredo bindE

[[v, 5 T3
70 2 4
7) T
T 3 §
[E] 10 2
i7 i3 10
[[H

Ling widih

AV shutture

sty

Teabyrd

L wenwy o SN | Ceatraint

Figure 3.2
A view of the screen during a typical session on the Star workstation.

30

actually not very well suited to the way people really work. Someone may be
working on several different things at once, moving between them at intervals. Part
way through one task he may decide that he does not want to complete it or that he
wants to do something else for a while. The approach taken in the Reaction Handler,
although widely used in subsequent systems, makes such unstructured working very
hard to handle. The user is unable to change course or discard a partly completed
dialogue unless such an action has been explicitly provided for. The structure of the
dialogue would soon become very complicated if all possible changes of direction
were catered for. A more appropriate approach is to provide a multi-tasking
environment where several tasks can be active at any time and where all the input
tools are always available for use. This is the approach taken by Wiseman and
Robinson, where tasks handling each of the input tools are running continuously so
that the system never ignores the user’s actions. For example, a separate task can
handle requests for cancellation of activities. The code for each activity does not
then have to include frequent tests for the user cancelling it. Instead, the
cancellation task waits for this event and can kill the activity from outside. This
approach has obvious parallels with the use of multi-tasking to improve
responsiveness in operating systems. A more recent paper [Beach et al, 1982] also
describes the use of multiple processes within a single program to aid in structuring
and controlling an interactive application. Although similar programs can be written
using a single threaded approach they are likely to become very tangled and hard to
understand.

Standardisation

The foregoing discussion has illustrated some different approaches to the handling of
input devices but obviously there is pressure for standardisation. This has
culminated in proposals for various standards including the Siggraph Core proposals
[GSPC, 1977] and later GKS [GKS, 1984] which cover both graphics input and
output. I will confine this discussion to GKS as it has largely superceded the Core
proposals.

GKS provides a library of subroutines for input and output which can be called
from the application program. Input is provided by way of six virtual devices: string,
locator, pick, valuator, button and stroke. These virtual devices can then be mapped
onto whatever physical devices are available. The application can sample these
devices, wait for a user action on a particular device or can have significant events
stored in an event queue. The most appropriate form of input handling can be
selected by the application programmer. GKS handles all echos and prompts for the
input devices itself rather than leaving it to the application program. This has the
advantage of relieving the application programmer of this task but on the other hand
it constrains the variety of feedback that the application can provide. For example, a
valuator could be shown as a straight forward dial or digital display or it could be
shown in some highly esoteric application dependent form. Although GKS provides a
variety of standard echos and prompts it cannot hope to cover all possible
requirements, There does not appear to be room for the application programmer to
provide his own feedback in place of what the library provides. Another problem
area is the control of the physical devices and relating them to the input mode
selected by the application. It is very unclear from the GKS specification how
triggers for various devices are set up—for example, is it possible for a change in

31

coordinates to trigger a locator device or must the user depress some button? What
does it mean to sample a choice device where a choice is a discrete event? There also
seems to be no way to control low level behaviour of devices, such as the sampling
rate of a coordinate device, which can have a significant effect at the application
level.

GKS is implemented as a subroutine library, leaving all flow of control in the
hands of the application program. If the application is to be efficient and responsive
on a variety of equipment it must behave differently when different physical devices
are present. This means that either the application must provide many options
selected on the basis of the devices actually available or else it will settle for
handling some devices inappropriately. An alternative approach to device
independent input is presented by Rosenthal [1981] which effectively turns the idea
of graphics subroutine libraries on its head. He suggests a scheme where all flow of
control is handled in the graphics library and the application is called as subroutines,
rather than vice-versa. The library can contain all the code needed to handle each
type of physical device in an appropriate manner so leaving the application truly
device independent. This approach is also taken by most of the UIMS discussed
below.

Device independent output is more easily handled and the details are not really
relevant to this discussion on interactive dialogues. The main problem area is the
inability of GKS to deal with simultaneous output from multiple processes, whether
within the same machine or distributed over a network. GKS stores a current state
for such things as pen colour and line style that applies to any drawing commands
that are issued. Unpredictable results will occur if changes of state and drawing
commands from two different processes become interleaved. This sort of problem has
arisen because GKS is based on well established techniques and equipment and did
not look to a future where multi-processor distributed systems might become the
norm. Arnold [1981] and Kilgour [1981] provide further discussion of these problems
in relation to future directions for graphics standards.

3.2 User Interface Management Systems

Recently the phrase “user interface management system” (UIMS) has been used of a
variety of systems for interactive work, graphical and otherwise. The philosophy
behind these systems is to reduce the work required to construct a new interactive
application and to provide some sort of consistency in the interfaces to different
programs. It is hard to predict in advance how well a parficular interface is going to
work and so the necessary experimentation will be encouraged if it is quick and easy
to put together a number of different schemes. There is a continuum between the
graphics systems already discussed and the graphical UIMSs described in this
section. Perhaps the most useful distinction to make is that the graphics systems
described above tend not to provide tools specifically for describing the structure of
interactive dialogues whereas a UIMS is geared especially for that task. It should
also be pointed out that not all UIMS provide graphical facilities although I will
limit discussion here to graphical systems.

A UIMS provides facilities for specifying the flow of an interactive dialogue and
for relating the dialogue to the actions of the application program. A run-time
system forms part of the UIMS and is responsible for interpreting or running the

32

dialogue specification and calling the application routines. This run-time system
handles input and output and usually provides similar facilities to the interactive
graphics systems described in the previous section. Usually the language for
specifying the dialogue is quite separate from the language used for writing the
application program. This separation is advantageous because a language most
guitable for describing dialogues may be totally unsuitable for the sorts of functions
that are required in the application. A UIMS that provides total freedom in the
choice of application language is particularly valuable although there are many
problems involved in this approach. Currently the interfaces between dialogue
specifications, application programs and the run-time system are not well enough
defined or understood to enable this complete separation to be maintained.

One widely used way of dealing with interactive dialogues is in terms of a
- grammar specifying the allowable sequences of inputs. An obvious forerunner of this
approach was Newman’s reaction handler, described above, which used a FSM
description. The dialogue consisted of a number of states, with transitions between
the states being controlled by the user’s input. Each state had an associated
procedure that was called on entry to the state. The transitions of such an FSM can
be described by a formal grammar. If an interactive dialogue can be reduced to such
a grammar then it is possible to produce a FSM implementation automatically. In
fact more complex grammars can also be handled in a similar way, using other types
of automata. A recent UIMS following this line is SYNGRAPH [Olsen and Dempsey,
1983] which takes as input a specification of the grammar for the dialogue. It
generates the menus, prompts and echos needed and also deals with device
management, error handling and backtracking. Closely related to this approach are
those systems that use menu trees to define the interaction, for example Tiger
[Kasik, 1982]. Tiger allows the application programmer to write routines in any
language and then specify how the routines are to be assembled into menus and
what arguments must be collected before a given routine is called. Menulay [Buxton
et al, 1983] is also used for creating menu-based systems from a collection of
previously written routines. An important feature of Menulay is its use of an
interactive, graphical system for creating the dialogue specifications. Hence the
dialogue designer is working in the same environment as the ultimate user of the
system. Flair [Wong and Reid, 1982] is similar in its use of interactive graphics for
specifying dialogues, but it would appear not to provide the ability to import
application routines written in other languages.

A problem with this approach is the large number of states needed to define a
realistic dialogue. It is easy for the user to either get completely lost or to want to
move temporarily to another part of the menu tree. This latter problem is sometimes
addressed by the use of independent sub-trees that can be called from a variety of
places. When the user is finished with the dialogue defined by the sub-tree, control
then returns to the menu that the sub-tree was called from. The system described by
Apperley and Spence [1983] tackles the problem of getting lost by providing a
continuous display of the route taken so far and allows backtracking by pointing at
earlier parts of the route. Default routes are remembered to allow the user to move
faster through the menus.

A completely different approach is to describe the dialogue in terms of objects
(“event handlers”) that the user interacts with. An example of such a system is
described by Strubbe [1983] where the application program constructs a display tree

33

describing what is to appear on the screen and in what relationship. The nodes of
the tree have routines attached {o them which are called whenever a user action
occurs with the cursor within the node’s designated area on the screen. It is then up
to the routine to decide what action to take as a result of a particular input event.
The run-time system can support a number of independent display trees associated
with different applications running in parallel. This system is similar in philosophy
to the windowing systems described below. Another interesting example is Anson’s
device model of interaction [Anson, 1982] which provides a notation for describing
devices in terms of the values and events seen outside. These devices can be
interconnected to produce composite devices with complex behaviours. This model
provides one language for specifying the whole system down to the lowest level
device handlers.

Describing a dialogue in terms of a formal grammar encourages a very structured
and constrained environment. The system is in control and the only actions available
to the user at a particular stage are those specified in the grammar. As has already
been mentioned, it is quite possible that someone will want to work on several tasks
in parallel. Various mechanisms can be used to allow diversions from the main
thread of the dialogue, but the underlying idea is of a single dialogue being followed
through from beginning to end. Using event handlers to construct an interactive
system supports a multi-threaded approach in a much more direct manner. The
overall view of the system is of a series of independent dialogues proceeding in
parallel, rather than a single thread with diversions. The difference between the two
approaches is more in terms of the style of dialogue that results rather than in any
actual difference in what can ultimately be done with the resulting system. For a
highly interactive system this difference is very important as the style of dialogue
has a great effect on how efficiently and comfortably a person is able to work.

3.3 Windows, icons and mice

This section describes a paradigm that has developed outside mainstream
computer graphics. It is epitomized by a personal computer with a black and white
bit-mapped display and a mouse and keyboard for input. Typically the user has
several programs running, each using a different region of the screen for input and
output. These regions, known as “windows”, can overlap one another and can be
rearranged on the screen as the user wishes. The programs running in each window
usually have no control over where their window appears on the screen. This style of
working has recently become very familiar in the Xerox Star workstation [Smith et
al, 1982a] and the Apple Lisa and Macintosh personal computers but in fact has a
much longer history.

This approach grew out of work done at Stanford Research Institute (SRI) during
the sixties on using computer systems to extend people’s intellectual abilities.
Engelbart and English [1968] describe the workstations developed at SRI to support
software development and documentation. Considerable research was done to
investigate the suitability of various input tools for text-based applications. As well
as a keyboard, the resulting workstation had a five key handset and a mouse. The
handset allowed one-handed typing, freeing the other hand to manipulate the mouse
for selecting and pointing operations. The workstations were used for browsing and
manipulating structured text or programs. The screen could be split, with the top

34

half being used to display certain selected portions of text and the bottom half
remaining available for further text manipulation.

Displays making use of multiple overlapping regions originated in the FLEX
system [Kay, 1969] and the “Dynabook” [Kay and Goldberg, 1977]. These systems
were envisaged for extending and encouraging people’s creative abilities by providing
a versatile and dynamic new medium applicable to a whole range of tasks.
Availability to all sorts of people, especially children, was an important emphasis
and so the user interface became a major area of research. In particular an “object
oriented”. approach to programming was developed, embodied in the Smalltalk
language [Ingalls, 1981; Tesler, 1981]. The system is made up from objects with
various behaviours which interact with one another and with the user. All objects in
the system have some sort of visible representation so that nothing is hidden away.
An important feature is its use of multiple windows on the screen displaying
information about different objects or contexts. The user can move from one context
to another by moving the cursor into another window, while all contexts remain
active,

Smalltalk has been followed by a variety of different window-based environments,
mainly aimed at providing rich and flexible programming environments. Some of
their important features and the issues that they raise are discussed below. Before
moving onto this general discussion of windowing systems the Xerox Star
workstation is described in some detail as it is a useful illustration of the windows
paradigm. It is of particular interest here as it implements a non-programming
application and so provides some indication of approaches that might be successful
in non-programming graphical applications. This is followed by a brief discussion of
the underlying hardware, to the extent to which it influences the design of
windowing systems. The scene is then set for the discussion of more general issues in
windowing systems that are of relevance to graphical design applications.

The Star Workstation

The Star workstation is a commercial product that arose out of the work on
Smalltalk and windowing systems. It was designed for secretarial tasks and a
considerable amount of time was spent on choosing the conceptual model to underlie
the user interface before any programs were written. An object oriented approach is
used where everything in the system has a visible representation. Communication is
done by way of the mouse, with the keyboard available for typing text if the user
wishes,

As the workstation was intended for use by secretaries, a desk top model was
chosen for the user interface. The screen displays the user’s “desk top” with various
objects such as files, documents, in- and out-trays upon it. The objects are displayed
as “icons”, which are small visual representations of the objects. The user interacts
with objects by pointing at them with a cursor controlled by a mouse. All user
actions have some immediate visual effect to help reinforce the reality of the model
being presented.

The system attempts to build on the user’s intuitions about the world so, for
example, mail is sent to someone by labelling the document with the recipient’s
name and then placing it on the out tray icon. A document is printed by moving it
to the printer icon. Hence, the system is operated by actually manipulating objects
rather than issuing abstract commands. It is possible to move from one activity to

35

another by shifting the cursor from one object to another, without any need to
terminate the first activity. The user may wish to search through a set of files for
information in the middle of editing a piece of text. In many systems this can only
be done by closing down the first activity before going on to the second. On the Star
workstation, as on a real physical desk the document being edited can be put on one
side and the reference file consulted with no problems. y

As far as possible modes have been avoided in the Star system. In other words,
the same key has the same effect in every situation, or if it does not it should be
visibly obvious that the system is in a strange state. This approach, discussed in
[Smith et al, 1982b] is closely related to the Smalltalk environment [Tesler, 1981].
There is a set of special keys for such things as “open”, “move” and “copy” which
act on the currently selected object. They will work whether the object is an icon for
a file, a chunk of text within the file or a single character. There is a “properties”
key which allows the user to examine and update the properties of an object, for
example the type face used to print a paragraph of text. Other commands, which are
gelected from menus, also act on the currently selected object. If a command takes
more than one argument then the user must fill in the fields of a “form” to specify
the arguments. Such a form will contain useful default values, or the values the user
provided last time.

The use of small size icons to represent objects allows everything to remain on the
screen without it filling up too fast. The icons for such objects as documents can be
“opened” and displayed as a large window covering much of the screen. The user can
then interact with whatever is “inside” the object, for example edit the text inside a
textual document. All the other objects remain on the “desk top” but are
temporarily invisible as would be the case if they were covered with paper on a
physical desk. Menus of commands are not visible all the time but appear (“pop-
up”) after certain user actions and disappear once the command has been issued.
Similarly, forms to be filled in only appear when they are needed. Figure 3.2, on
page 30, shows a typical screen during a session with the Star workstation.

The Hardware

Windowing systems are generally based around black and white bit mapped displays,
although simple systems can run on character based displays. A bit mapped display
can support high quality graphics which often forms an important part of a window-
based user interface. As well as a keyboard these systems also tend to use a mouse,
for pointing and selecting on the screen. The Alto personal computer [Thacker et al,
1981] was the first such machine and it has provided the model for many later
systems.

The Alto, and other workstations modelled on it, make use of special functions for
copying rasters around in order to implement windows. The screen image is taken
from a fixed area of memory and new images must be copied in to appear on the
screen. Hence, when one window is obscured by another care must be taken that the
image in the obscured part is not lost when it is overwritten by the other window. If
the obscured part is ever uncovered the original image must be restored. How this is
handled by the software is one important point of difference between windowing
systems. Some systems store all the obscured regions whereas others require the
application to redraw regions that have been obscured. Most workstations in general
use are monochrome because the use of colour means a vast increase in the amount

36

of data to be copied around. This either results in very unsatisfactory screen
dynamics or else the replication of special hardware for copying operations.

An alternative approach is to use dynamic mapping of graphics memory to the
screen, so that the screen image is made up from a mosaic of rasters from different
parts of memory. The Rainbow Workstation [Wilkes et al, 1984] was built to
experiment with this approach by providing special hardware for combining
arbitrary rectangular areas. Every window in the system occupies a separate region
of memory and so there is no problem with saving and restoring obscured regions.
The fact that no data is being copied around means that full colour windows can be
supported with no time penalty, improving the quality of the user interfaces that can
be implemented. The Rainbow workstation provided the hardware substrate for my
own work and is described further in the next section.

Window Managers

A window manager mediates between the application program and the hardware and
there are probably as many approaches to this task as there are window managers.
This section highlights the relevant issues rather than providing an exhaustive
survey. In particular, many window managers support a program development
environment which must provide facilities that are not needed for the more limited
graphical applications that I am tackling in this thesis.

The first point to look at when considering window managers is what task a
particular window manager is intended for. Many systems provide an interface to a
multi-tasking operating system, with the possibility of a number of tasks running
concurrently in different windows. This facility is almost essential in a system where
lengthy compilations or calculations are being carried out, although it brings with it
problems of sharing resources safely. On the other hand, if the applications for the
system are highly interactive there is less need for concurrency as the user will only
be interacting with one task at a time. The tasks in other windows need only save
their state rather than continuing to run in the background. Obviously the user will
be held up if one window starts some lengthy process as he cannot then move to
another window to do something else. On the other hand, sharing of resources is
made much easier.

The window manager provides the interface to the hardware and so is ultimately
in control of the screen layout. Both the application (“client”) programs and the user
of the system have an interest in this layout. How this possible clash of interests is
resolved can have important effects on the user interface to the system. The original
window managers always supported overlapping windows, reflecting the idea of
windows being much like pieces of paper. Windows could be placed anywhere on
screen and frequently the user had to specify the location and size of a window
before it could be created. More recently some managers, for example Viewers
[McGregor, 1983] have adopted “tiling”, in which the windows completely cover the
screen and do not overlap. Here the system plays a much more active role in
arranging the screen layout, making use of information provided by the client
programs about their preferred size and position of window. The shapes of windows
are constrained as they must always completely cover the screen. New windows
cannot overlap existing ones and so various heuristics are automatically employed to
determine where a new window can be placed and what reorganisation is required.
The user is then free to change the layout to suit himself. This approach relieves the

37

user of the necessity of making frequent decisions about window placement while still
leaving him in control of the layout. On the other hand the unpredictabilily of
window placement can be disturbing.

An issue arising out of user confrol of window size and placement is what
information, if any, is passed back to the client program. In some systems, the client
program must redraw its window if its size is changed or an obscuring window is
moved. In these cases the client must obviously be informed of any changes. Such an
approach may seem unsatisfactory as it places an extra load on the client
programmer but it has been claimed not to be a major problem. A different
approach is that of providing a virtual screen to the client in which they can do
what they wish. The window manager handles all placement and obscuring problems
by storing the image on the virtual screen and the client need have no knowledge of
the window’s position or size. The user is responsible for ensuring that the window is
of an appropriate size and shape for displaying its contents. Some systems take the
view that the client should know about the size of its window on screen so that it
can rearrange the window contents. For example, text may be reformatted to fill a
wider window or a picture may be magnified or reduced to fit. The user interface
toolkit described by Gosling [1984] provides the opportunity for client programs to
reformat their windows when the size changes.

The use of icons is a common feature of windowing systems. One use is as
graphical representations of the commands available. Rather than providing a menu
of textual items describing the commands a menu of icons is used. The intention is
that these icons are rapidly and easily understood, for example an icon depicting a
circle means “draw a circle”. Unfortunately there is little consistency between
systems in the use of particular icons. It is also difficult to think up distinctive and
informative icons for more than a small number of commands. Another use of icons
is as a small-size representation of some object that would otherwise take up a lot of
screen space. This is done in the Star system where objects are represented by icons
whose appearance indicates the type of object. The objects can be manipulated by
manipulating their icons. An icon can be opened to reveal its contents, with the
resulting window obscuring a large area of the screen. A very different use of icons is
found in the Sapphire system [Myers, 1984]. Again the icons are related to objects
within the system but they exist in addition to the object rather than being an
alternative representation. The icons are always visible on screen whether the
associated windows are off-screen, obscured or actually visible on screen. These icons
provide various items of status information about their associated window, for
example progress bars show what proportion of the current activity has been
completed. Flags in the icon show whether the task is waiting for user input or
whether an error has occurred. They can also be used to signal that events have
happened, such as the arrival of mail in an icon associated with the mail program.

Any windowing system tends to make use of menus on screen from which
commands can be selected. To save screen space these menus often pop-up when
they are required and then disappear when the user has finished. On the other hand
static menus that are continuously on screen are quicker to use as the user can more
easily memorise where frequently used commands are. Particular movements can
become automatic and the user does not have to waste time scanning the menu.
Some users may even prefer to use the keyboard if single key strokes can be used to
evoke commands. There is always a balance to be maintained here between novice

38

users who need prompting and reassurance and experts who want speed.

In many systems visual feedback is important and the cursor usually has an
important role. The cursor shape can be used to indicate what state the system is in.
Many window systems make provision for changing the cursor shape as the cursor
moves from window to window. It can also indicate if the cursor has entered a
sensitive region, such as a window boundary used for scrolling or changing the
window size.

The final important issue is how the user communicates with the window
manager, both to deal with screen layout and also to select a window to receive
input. A simple and obvious way to select a window is by cursor position. Any event
is automatically passed to the window in which the cursor is positioned. This
generally works well, but when the user is typing text into a window it is the text
input position that is of interest, rather than the cursor position. If the cursor was
accidentally misplaced the text might suddenly start appearing in another window.
As a result, some window managers require an explicit action, such as pressing a
special button or issuing a command, to select a new window for input.
Rearrangement of windows can be achieved in a number of different ways. Some
systems have special menus of window management commands which must be issued
to change the size or position of a window. A more direct approach is to allow the
user to interact directly with the window without having to issue a command. This
can be done by such things as having a special button set aside or having sensitive
regions around the edges of windows that invoke window management. '

Relationship to other graphical systems

This use of the word “window” is quite different from the usage in most graphics
libraries such as GKS. In GKS a window specifies a region of an image that is to be
mapped to a viewport, and thence onto the screen. There is no concept of support
for multiple programs or for organising input through windows. GKS could support a
single program within one window but it would be difficult to implement a complete
window based environment. Lantz and Nowicki [1984] describes a graphics library in
some ways similar to GKS but intended for a window based environment, especially
where multiple distributed processors are being used. The application programs,
possibly running on remote processors, create structured display files describing what
they want displayed and the workstation processor then handles all screen update.
The user specifies the size, position and magnification of the viewports onto the
display files rather than this being left in the hands of the application programs.

3.4 The Rainbow workstation

The Rainbow Workstation was designed and built in the Cambridge University
Computer Laboratory to evaluate the support of windowing by dynamically mapping
graphics memory to video. Its architecture is described in Wilkes et al [1984].
Because windows are supported by dynamic mapping of memory rather than bit
copying operations, full colour windows can be supported with no speed penalty.
This particular workstation and its associated hardware provided the substrate for a
graphical environment to support Imp.

39

The operating environment

The Rainbow workstation is used within the Cambridge distributed system
[Needham and Herbert, 1982]. The core of this distributed system is a processor
bank consisting of a large number of single user machines and a central file server. A
terminal connected to the network can run sessions on one or a number of these
machines. The central file server means that a user is not limited to using just one
particular machine with its own local disc as all files are accessible from all
machines. The Rainbow Workstation is based on a Motorola 68000 system similar to
the standard processor bank machines. Like the processor bank machines it runs the
Tripos operating system [Richards et al, 1979] and can be used from any terminal on
the network. This allowed the workstation to be used before the software to make it
into a terminal in its own right was available. Figure 3.3 shows the basic structure of
this environment.

Tripos is an operating system for mini-computers with support for multi-tasking
and message passing. The messages that are passed between tasks are referred to as
packets and are simply vectors of words in memory containing the information to be
communicated. Tripos is essentially a single-language system, being written in BCPL
[Richards, 1969] and until recently supporting BCPL as the only high level language.
As a result all the display software has been written in either BCPL or assembler
language. BCPL has only a single data type, the machine word. Operations are
provided that treat an item as an integer, a bit-pattern or a memory address and
any item can be treated in any way. Hence there is nothing to stop the programmer
from assigning a machine address to a variable and then doing integer arithmetic on
it. The result can still be used to address memory, whether it is valid or not.
Complex data-structures can be built up by using vectors of words in memory,
although the lack of checking can make it hard to debug structures of the complexity
required by the Rainbow Workstation software. Constant values can be given names
by declaring these names as manifest constants with the required value. Values such
as lengths of vectors and offsets into them can be set up in this way. By changing
the values associated with the names it is possible to change the layout of data-
structures and have the program remain unchanged. It also makes it easier to write
and read code for handling data-structures if mnemonic names rather than numbers
are used.

A BCPL program can be written as any number of separately compiled sections.
Access to routines and variables in different sections is provided by the global
vector, which is simply a vector of BCPL values. At the beginning of each section
names are associated with specific offsets in this vector. These names can be used
anywhere within the section and provide access to the value stored at that offset in
the global vector. If the name is declared as a routine then its entry point is
automatically placed in the global vector. Any number of sections can access the
same location in this vector and so communicate with one another.

One limitation imposed to simplify the run-time environment for BCPL is not to
allow access to dynamic free variables. In other words, variables declared in an outer
block cannot be accessed from within routines declared inside the block, even though
the name is in scope. Any variables to be accessed from within a series of routines
have either to be global variables or else must be declared as static variables. Static
variables are implemented as specific locations associated with the compiled code of
the section and they retain their value even when they are out of scope. All

40

I [[] | |
| Processor Bank: Resource Manager
e -_»YO\:K] [|] | l
-) ' Tripos FM
68000s T
LSI4s Print Server
7Z80s T 1 |
D>] Mi‘meA)l(es | Printer Spooler E
o> L "
Local Jf
Discs
| Name Server
| Ancilla
: The
Ancilla .
I Cambridge
Distributed
Authentication
Server . Syste m
"
Boot Server
EEEEEER
Print Server
= © i
Terminal Terminal
Concentrator Concentrator

The ring environment (courtesy of Dan Craft).

File Server

Gateways

Clock & Logger I

VAX 750

D ()

(B

Figure 3.3

procedure names are automatically declared as static variables. Static variables are
declared with an initial value and this, coupled with the retention of the value means
that they can be used for such things as counting the number of times a particular
piece of code has been called. This feature is used extensively in the window manager
described in the next chapter.

BCPL provides a simple and efficient coroutine mechanism [Moody and Richards,
1080] with coroutines implemented as procedures with their own local stack and
program counter. A coroutine is created by:

coroutine := CreateCo(procedure, stackSize)

All flow of control between coroutines is explicit, by way of the procedures CallCo
and CoWait. The current coroutine is suspended and another one started executing
by the call:

result := CallCo(coroutine, value)

When this second coroutine calls CoWait the call to CallCo returns and the original
coroutine continues executing:

result := CoWalt(value)

The value passed in the call to CoWait appears as the result of the original CallCo.
If the original coroutine then calls the second coroutine again, the call to CoWait
returns and the second coroutine continues. The value passed in CallCo appears as
the result of CoWait. When a coroutine is called for the first time this value appears
as the argument to the procedure that formed the coroutine. If the coroutine’s
procedure returns rather than calling CoWait then the result appears as the result of
CallCo and the next call to the coroutine will start again as if it had never been
called. As well as passing values in this way, coroutines can communicate by way of
the global vector, which is shared between all coroutines in the same task.

At various points in this thesis the text is illustrated by small pieces of program.
These programs are presented in what is essentially BCPL, but with some parts in
straight-forward English where this is clearer and more concise. The symbols $(and
$) serve to begin and end blocks and LET and AND introduce declarations.

Display software

The image that appears on the screen of the Rainbow Workstation is made up of a
mosaic of rectangular images drawn from different areas of the graphics memory.
The video processor interprets a low-level screen description, called the band
structure, which specifies which areas of graphics memory are to appear where on
the screen. The graphics memory is arranged in eight planes and so up to eight bits
of image data can be displayed in one pixel. Each area in the band structure also has
up to eight bits of context information associated with it. These bits are combined
with the bits from graphics memory and the resulting twelve bit value is used to
index a lookup table of 4096 entries. Different lookup tables can be used for different
parts of the screen image by assigning different context values. The bits that make
up a pixel can be taken from different offsets in each plane of graphics memory,
allowing images to be combined and moved freely. For example, an anti-aliased
object can be moved over a multi-coloured background in real time with the correct
shading being produced by the lookup table. Without the specialised hardware a

42

large amount of computation would have to be done and the real time effect would
not be easy to achieve. These and a variety of other combining and recolouring
effects are referred to by the general name of “fransparency”. More details can be
found in Glauert and Wiseman [1985]). A more straight-forward use of the hardware
is to support overlapping windows, where one object obscures, rather than combines
with, another. This is the way the workstation has been used for the system
described in this thesis.

The client is provided with a high-level screen description in the form of a rooted
acyclic directed graph which is compiled into band structure every time something
changes. The root node of this tree represents the whole screen. The leaf nodes of
this structure are actual areas of graphics memory and are referred to as “pads”.
The internal nodes are referred to as “clusters” and these serve to organise the
objects mapped into them. The cluster has a specified size and other clusters or pads
are mapped into it relative to its origin. These objects are clipped to the boundary of
the parent cluster. The arc linking an object to its parent cluster has associated with
it the object’s position in the cluster and its priority. This arc can also be turned on
or off to make the object visible or invisible. There is no limit on the number of arcs
associated with an object, enabling the same object to appear many times on the
screen. If several objects mapped into the same cluster overlap then that with the
highest priority arc will be visible. If two or more arcs have the same priority then
the resulting image is a combination of all the objects involved, giving rise to the
various transparency effects mentioned above. Procedures are provided for setting up
lookup tables, which are associated with individual pads or combinations of
overlapping transparent pads. Figure 3.4 shows a simple screen layout and the graph
structure that the client must set up to achieve it. Styne et al [1985] describes this
software and what follows is a summary of the various procedure calls provided.

A library of procedures is provided for creating and destroying pads and clusters
and for building and manipulating the graph describing the screen. A pad is created
by the call:

pad := CN.create(IsPad, xmax, ymax, planes, allocType, startPlane)

The size of the pad in pixels is defined by xmax and ymax and planes specifies the
number of bits per pixel. AllocType and startPlane can be used to specify where
in graphics memory the planes making up a pad will be located. If this is not
important then both values can be given as 0 and the soffware allocates the planes
in the next available spaces. The specific planes must be given when transparency is
to be used as the interacting pads must be on disjoint planes. If a pad is created
with O planes it takes up no space in graphics memory and can be used to provide an
area of plain colour. Such a pad is called a “virtual” pad. Clusters are also created
by the procedure CN.create:

cluster := CN.create(IsCluster, xmax, ymax)

No graphics memory is associated with a cluster but its boundaries, as defined by
xmax and ymax, serve to clip any object mapped into it. Its size can be changed at
any time:

CN.size(cluster, xmax, ymax)

An arc is created by inserting a padad or cluster into another cluster, specifying the

43

ity 3

iori

Pr

ty 2

Prior

ity 1

iori

Pr

ty 1

A

or

Pr

ty 1

\\\\\\\\\\

ior

Pr

gUre 3.4

i

F
A sample screen and the assoc

ted pad structure

1a

.

44

position and priority:
arc := CN.insert(object, cluster, x, y, priority)
This arc can then be passed to various procedures to modify it:

CN.move(arc, x, y)
CN.priority(arc, priority)
CN.turnOn(arc)
CN.turn0ff(arc)

Befere a pad can be displayed it must be provided with a lookup table. A region of
lookup table is set aside by:

region := LU.getRegion(planes)

planes should be the number of planes in the pad or pads that will use this region.
The region is set up by:

LU.setRegion(region, vector)

vector contains the colour values for the different pixel values. Any number of pads
can make use of the region, through the call:

CN.setLURegion(pad, region)

A procedure is also provided that takes a number of pads, plus colour vectors for
each pad and sets up the tables for all combinations of these pads. The pads must all
be mapped into the same cluster at the same priority. Special transparent and
translucent colour values are provided. When these are included in the colour vectors
the appropriate colour mixes occur when the pads interact. The effecis of any of the
procedures that change the graph structure or lookup tables are not seen until
CN.digplay 1is called. This allows a large number of changes to appear
instantaneously on the screen.

Another library of procedures is provided for drawing images in pads. These do
not build any sort of display file but just set particular pixels in the pad to a
specified value. Single pixels, lines, filled rectangles and arbitrary filled polygons can
be drawn. A state-free interface is provided where there is no notion of such things
as current pen position or current colour. All this information is specified in each
call, for example:

CN.drawLine(pad, x1,yl, x2,y2, value, planeMask)

The two end points are specified by x1,yl and x2,y2 . The combination of value
and planeMask specifies the bit pattern to be written to the pixels. Where a bit in
the plane magk is O, the bits in that plane will remain unchanged. A 1 allows that
bit from the value to be written into the plane. There are a large number of
parameters for each call, but this approach allows calls from different asynchronous
processes to interleave without problems.

These display procedurgs provide good support for windowing. The model of
clusters and pads maps yery directly onto sets of windows overlapping according to
priority. The procedures can be used as subroutines within a single Tripos task
which takes complete control of the display. Alternatively the display procedures can
be provided in a separate task, where they can be called from several different tasks,

45

or even from remote machines on the network. This method of working allows the
Rainbow workstation to support simultaneous sessions on a number of machines and
so can provide the basis for a network terminal.

Tools handling

The Ttainbow workstation is capable of supporting a number of different tools and
currently a keyboard, mouse and graphics tablet are available. At the lowest level
each device is handled by a Tripos device driver which deals with interrupts and
sends data to other Tripos tasks when requested. The high-level interface used to
support my own work has been provided by Bruce Styne and is described further in
[Styne, 1985].

This high-level interface runs as a Tripos task and takes care of communication
with the device drivers. It maintains a queue of events, labelled with the originating
device and whether they are switch or coordinate events. A client program, running
as another task or even on another machine, can set up one or more channels to this

tools task:
channel := OpenChannel()

The types of events and devices to be returned on this channel can now be specified:
SwitchChannel(channel, device, eventType)

The same channel can be quoted in more than one call to this procedure so that, for
example, switch events from several devices can be returned on this channel.
Information about the next event on a channel is obtained by the call:

ReadChannel(channel, packet)

packet is a vector into which information about the event will be copied. If no event
is waiting then fthe client program is suspended until one occurs. Alternatively the
client can poll the channel to see if there are any events before attempting to read
from it:

result := TestChannel(channel)

If the result is TRUE then a call to ReadChannel will reburn immediately. The tools
handler buffers up all switch events but only retains the latest coordinate event. This
means that if the client does not request events for some time then no significant
actions are lost, although the coordinates may jump.

Coordinate events are generated by devices such as the mouse and tablet and
occur either after a specified timeout has elapsed or if the coordinates have changed
by more than a specified increment. In addition special events can be generated to
mark the beginning and end of a continuous movement (a stroke). These occur when
the coordinates first begin to change and then when they have not changed for a
specified period. The mode of the device determines which particular behaviour the
device exhibits. In mode 0 events occur in response to significant changes of
coordinates but not after a timeout. Hence, if the device is stationary no events are
generated. In mode 1 the beginning and end of stroke events are generated as well,
and the timeout value is used to determine the time to elapse before the end of
stroke event is generated. In mode 2 an event is always generated when the timeout
expires and also when the coordinates change significantly, if this is sooner. The

46

behaviour of a device is set up by:
ResetDevice(channel, device, mode, deltaT, xOrigin,yOrigin, deltaXy)

deltaT is the fimeout and deltaXY the change in coordinates that is to be
considered significant. xOrigin and yOrigin give the x and y value corresponding
to the current position of the device.

The packet describing a coordinate event has the following fields:

. Type - coordinates
. Device identifier
. X coordinate

y coordinate
mode-specific

CT s OB =

The mode-specific field has the value 0 if the event is in response to a change in
coordinates, 3 if in response to a timeout, 1 for a start of stroke and 2 for end of
stroke.

Switch events occur whenever a switch, button or key is pressed. Some devices,
such as the mouse or tablet stylus, produce “raw” switch input which consists of the
index number of the switch on the device and an indication of whether the switch is
being depressed or released. Other devices, such as the keyboard, produce ASCII
data which consists of an event giving the ASCII code for each key depression. No
event occurs when an ASCII key is released. A key table is provided which specifies
which ASCII code is returned by a key, what value is to be returned if the shift
and/or control keys are held down simultaneously and whether the key auto-repeats
when held down. The default key table provides standard keyboard behaviour, for
example shift+alphabetic key produces the upper case character, but the client can
provide any other key table he wishes. The fields of a switch event packet are:

Type - switches

Device identifier

Data type - raw or ASCII
Switch number or ASCII code
TRUE if switch is going down

Gl WD

The library can be set up to produce a range of different behaviours. In
particular, it is useful to be able to experiment with the response characteristics of
coordinate devices., Being able to change the mappings of physical keys to numeric
codes is also a very valuable facility.

47

4. The environment for Imp

This chapter describes an interactive graphical environment implemented on the
Rainbow Workstation. It was constructed specifically to support Imp and this is
reflected in a number of the design decisions. The requirements and the resulting
decigions are outlined in the first section of this chapter. The rest of the chapter goes
on to discuss the actual implementation details.

4.1 A specification

The previous chapter introduced various issues in interactive graphics and presented
different approaches to dealing with them. Here we tackle points that are of
particular relevance to a type face design system. The resulting model is also
influenced by the particular abilities of the Rainbow workstation.

Requirements

Any form of graphic design, including type face design, is a highly interactive and
visual process. The results are approached by many small steps guided directly by
the designer rather than by long, automatic calculation. Hence, any program to
support such designing must be interaction-driven and the underlying environment
must provide facilities to make the handling of interaction straightforward. In
graphic design a task may be tackled from a number of directions or at different
levels. The designer may wish to move freely between different aspects of the same
design, pursuing several tasks in parallel. Such a style of working is most easily
supported by adopting an explicitly multi-threaded approach. Each task can be
specified as an independent event handler, with the user free to move between them
at any time. When the designer is working on one task, it can be very important
that the state of other tasks is also visible. This method of working can be supported
directly by the use of windows on the screen, each providing the visual interface to a
particular task.

Different people may use different tools for the same task and almost certainly
different tools will be needed when a different task is tackled. This suggests that the
interactive environment should provide a number of input tools, any of which can be
used at any time. Any devices that give variable numeric values fo be used as
coordinates, along with one or more switches to signal events, can be used.

A problem with the use of computers is the abstract nature of the objects being
manipulated. The user can feel very insecure when objects are not actually visible.
The use of a graphical user interface that makes everything visible goes a long way
towards relieving this anxiety. Objects should be manipulated directly by “touching”
them rather than by issuing a command to the system to do it. This helps to build a
concrete model of what is happening and is much more akin to the way the physical
world behaves. When more complex information must be communicated to the
system it can still be done visually through menus or other devices on the screen.

Another feature that helps to build up the user’s confidence is to make it easy lo
undo the effects of actions. This will encourage him to experiment and so more
rapidly learn to exploit the system’s facilities. Designing is particularly helped by
such an experimental approach. Some actions, such as overwriting a file, cannot be

48

reversed and so in these cases the system must make it difficult to do it by accident.

The view point of the client programs that will be implemented in this
environment must also be considered. Such a program needs information about
significant input events but should not need to deal with low level device handling.
Generally the program needs to know when a switch has been depressed or released
and what the current cursor position is. Usually the client programmer will have no
desire to deal with updating the cursor position on the screen and so will not want
to be continuously informed of cursor movements. IFor such a client, the underlying
system should handle the cursor and merely inform the client about the significant
events. On the other hand the client may wish to provide special feedback as the
cursor moves, for example, to sketch a line. Hence, the sysiem should allow a client
program to override the default cursor feedback. The client may also wish to change
the cursor shape.

The client program resides entirely within its own window and the programmer
should not have to deal with anything to do with positioning the window on the
screen. All window management functions and the interactions with the user to
support them should be handled by the underlying system. Anything that the client
program displays in its window should be automatically clipped to the window
boundaries.

The job of the client programmer can be greatly eased by the provision of a
“toolkit” containing various useful facilities that go beyond basic graphics. This
might include support for constructing and using graphical menus, for handling
messages to the user in a standard way and so on. Not only does this reduce the load
on the programmer, it provides consistency across applications with the same things
being done in the same way. The client is free to use the toolkit or not as he wishes
go that he is not constrained by something that is not quite suitable for the task in
hand.

The implementation

The model adopted, as indicated above, is that of writing an application as a series
of event handlers, each running in its own window. A window manager handles the
input from the tools and also deals with positioning the windows on the screen in
response to the user’s actions. The event handler associated with each window
responds to events that happen within that window.

The event handlers are implemented as coroutines, that is procedures that can
suspend themselves and then be resumed later without loss of local state. The
coroutine for a particular window is called when an event occurs in the window. It
processes this event and then suspends itself ready to receive the next event. There
is no preemption and so control remains with this coroutine until it sugpends itself.
Conceptually the program is multi-threaded, but at any moment only one coroutine
is active, This fits very well with the fact that the programs making up Imp are
largely interaction-driven. At any time the user is only interacting with one task and
all the others will most likely be suspended waiting for further input. By adopting
this approach a multi-threaded model is mapped onto a single thread at run-time.
This allows a considerable simplification of the implementation as there is no need to
synchronise access to data shared between windows. Because the applications tend to
consist of several different windows acting in different ways on the same data this
could have become a major problem.

49

The input from the tools is divided into coordinate changes and switch events.
The cursor position is updated by the window manager whenever a coordinate
change is received from any device. If the activity associated with a window needs to
make use of continuous feedback of the cursor position it can provide the window
manager with a routine to be used in place of the default cursor update routine. This
is then called whenever the coordinates change with the cursor within that window.
When a switch event occurs the window manager finds the window that contains the
cursor position on the screen and passes the event to the handler for that window.
This event handler can then request the current cursor position with respect to its
window origin if it is8 needed for processing the event.

As well as input from tools, events can be generated internally. An event handler
can pass back an event to be sent to a specified handler, including itself. This facility
can be used to provide communication between windows. It can also be used to do
things such as making a menu selection appear like an input event. When the event
handler detects a menu selection, rather than acting upon it directly it can send an
event to itself describing the selection. This makes it easy to change the program
later to use a direct input event to evoke the selected action. It is also possible to
have both input events and menu selection evoke the same action. The cursor update
routine can also give rise to events so, for example, it could signal to an event
handler that a particular boundary within its window had been crossed.

Events are described by packets that contain information about the originating
device, the type of event and the event data. Switch events are described by a switch
identifier and an indication of whether the switch is going up or down. Coordinate
events are described by the current coordinate values of that device. The window
manager scales all coordinates to fall within the same range and converts relative
coordinates to absolute values. Hence, the cursor update routines and the event
handlers always receive coordinates in terms of screen position.

The user’s interface to window management has been provided by reserving a
button on the mouse. Pressing this button evokes various effects depending on where
the cursor is on the screen. If the cursor is near the corner of a window then the size
and shape of the window is changed as the cursor is moved. If it is near the middle
of a window then the whole window is moved. One of the mouse butions was
sacrificed in order to keep window management separate from the other functions of
the system. This approach also gives the user a very direct feel for the windows as
objects because he can move a window by reaching for it with the cursor and then
“grabbing” it by pressing a button. The window is dropped by releasing the button.
Using menus or commands to control window size and position would have been less
direct.

The window manager makes use of the display library, described in the previous
chapter, that represents the screen as a tree structure with raster images as leaves.
The arcs in the tree have a priority and position with respect to the parent node.
Overlapping rasters within the same node obscure one another according to priority.
The windows are top level nodes in the tree and the client is then free to create any
structure within the node for a particular window. The display library automatically
clips rasters to the boundaries of the parent node and so the client program does nof
need to be concerned with straying outside its screen area. The basic library of
procedures for drawing in the rasters does not maintain any structured
representation of the image. The client program must maintain any such structure

50

itself, if it is needed. Procedurss for handling menus and forms have been
implemented to make cerfain standard features easier to program.

4.2 Some building blocks for an interactive environment

There are a variety of widely used techmiques in graphical interfaces and the
provision of standard procedures that implement them can be of great value in
reducing the effort required to develop new applications. The use of standard
procedures also helps to ensure some degree of consistency across applications using
them. I have implemented libraries of routines to support graphical menus and
forms. The menus are used for presenting options to the user and for obtaining a
single response. The forms allow a user to fill in a series of fields to provide a
number of items of information to the client program. These routines can be used in
any program that makes use of the Rainbow workstation. In addition, the window
manager itself provides a number of other facilities for use by its client programs.
These are described in the next section.

Menus
A menu is some sort of array of symbols or text which indicate the choices open to

the user at a given time. Selecting an item will invoke an action dependent on the
item selected. The simplest way to select an item is to type an index number or
letter but this technique is not of great interest in a graphical environment. In this
case a selection can be made by moving a cursor to the item to be selected and then
signifying selection by, for example, pressing a button. The cursor can be moved by
any suitable input tool. Many graphics systems provide facilities for finding objects
near the cursor when a particular event happens. With such facilities menus can be
implemented easily. The Rainbow software does not provide any such facility and so
when a selection event happens the client program must carry out the calculations
needed to locate the item selected. Hence, it was decided to implement a library of
routines for constructing and using menus made up of rectangular iterms of the same
size. This is a considerable simplification of the general “picking” facility of most
graphics systems but provides for the construction of a variety of useful menus.
Some typical menus that can be implemented with these routines are shown in figure
4.1.

Such a menu is created by the call:

menu := Menu.create(rows, columns, planes, region,
itemWidth, itemHeight, itemsVec)

rows and columns gives the number of rows and columns that the menu is to have
and itemWidth and itemHeight give the dimensions of a single item. The pad for
the menu will be created with the given number of planes and region is the lookup
table region to be used. itemsVec is a vector of specifications for the appearance of
each item. The first word contains the number of items, which need not equal rows
multiplied by columns. The menu is filled until either all spaces are filled or there
are no more item descriptions. The specification for a single item contains the
following fields:

51

sketch o o O

lines

O+ | O 12pt | 14pt | 18pt
circles

1 OO

Figure 4.1
Some typical menus supported by the menu package: The heavy box indicates
the current selection.

Fount Name

Family:Century
Style: Rom_

Size:

Letter: lowercase-f

Figure 4.2
A typical form: The fields can be filled in any order with the under-score
showing the current typing position.

52

A procedure to draw this item

The first argument for the procedure

The second argument for the procedure

The value to return when this item is selected

> U3 B ==

When an instance of the menu is created the procedure for each item is called in
turn, passing in the client’s arguments along with the size and pozition of the item in
the menu pad:

procedure(menuPad, x,y, width, height, argl, arg2)

If the client’s procedure takes into account the size when drawing the item it is then
possible to change the size of the menu without rewriting the code for each item.
Unfortunately there are problems with the size of founts and so it is not practical to
create menus of textual items whose size can be changed freely. The menu creation
procedure returns a pointer to a “menu descriptor”, which is a vector containing
various information describing the menu.

Once created the menu can be mapped into clusters like any other pad, using a
special procedure:

arc := Menu.Insert(menu, cluster, x, y, priority)

The resulting arc can be moved around and made visible or invisible using the
standard display procedures.

A menu selection is made by calling the selection procedure and passing in the
menu descriptor and the cursor coordinates relative to the bottom left corner of the
menu:

value := Menu.select(menu, x, y)

The item that the cursor is over is highlighted by drawing a box around it in the
most significant plane of the menu pad. The visual effect of this will depend on the
lookup table that the client provided. If none of the menu items themselves make use
of this plane then we have no problem with items being erased where the box
overlays them. The value returned is the one that the client supplied for the selected
item. If the cursor lies outside the menu, no item is outlined and the value Nil is
returned. This routine can be called repeatedly as the cursor moves over the menu to
give continuous feedback of the item to be selected. The client program would take
the value returned by the final call as the actual selection, ignoring all the previously
returned values.

Forms

Even in a graphical environment it is sometimes necessary to type in text from a
keyboard. This is usually to provide textual names for things but can also be used
for collecting numeric information for which a graphical representation is not
necessary or convenient. A form is an object that appears on the screen with a
number of fields that can be filled by typing. A marker in the form shows where
characters will be put when the user types and this marker can be moved between
fields by using the cursor keys. A form is more flexible than simply prompting for
items sequentially as the user is free to move between the fields in any order. He can
also go back and alter a field he has already filled in before signalling that the
information is ready to be used. The information given in a previous use of the form

53

can be leff there to provide default responses the next time. A fypical form is
illustrated in figure 4.2.
A form is created by the call:

form := Form.create(planes, region, title, itemsVec)

title is a string to be displayed at the top of the form. The form pad is created
with the specified number of planes and makes use of the given lookup table region.
itemsVec is a vector of descriptions for each of the items in the form. The
descriptions have the following fields:

1. The prompt string
2. A vector to contain the response string
3. The maximum number of characters allowed in the response

The prompt string is displayed in the form as a label for that field. Any characters
typed with the marker in that field are placed in the response vector as well as
appearing in the form on the screen. The first byte of the response vector will always
contain the numbher of characters typed so far so that the vector can be treated as a
BCPL string. The procedure returns a pointer to the form descriptor.

The client can display the form, like menus, where and when he wishes. The form
is filled in by calling a special procedure whenever a switch event occurs:

Form.Call(form, packet)

If the packet is for an alphanumeric key then the character is added to the result
vector of the current item if there is space. If the user has typed too many characters
for this item then the cursor is flashed and a message written out. If the key is the
up or down cursor key then the marker is moved to the previous or next field in the
form respectively, wrapping round from top to bottom. The delete key causes the
character before the marker to be deleted and the marker stepped back one position,
unless the marker is already at the beginning of a line. Other switches are not
understood and so just cause the cursor to be flashed.

Strings from elsewhere, for example initial default values, can be copied into the
result vector. By calling:

Form.reset(form, itemNumber)

the new string for this item is displayed and the marker position is reset.

These routines do not impose any interpretation on the information typed into
the result vectors. It is left entirely up to the client program. A small library of
routines for converting between strings and numeric values has been provided to
make interpretation easier. A further extension would be to include such
interpretation in the form-filling routines. The client would merely indicate what
type of value was expected and then the information typed by the user could be
converted and checked automatically. In fact the lack of such a facility has not
caused much inconvenience as most of the information collected by forms has been
textual rather than numeric.

4.3 The window manager

The window manager provides the interface between the user and the clien$
program. It exploits the facilities of the Rainbow Workstation hardware and

54

Y

A4
Tools task
\ 4
window Switch no. 3 A coordinate events move
management cursor
all other events
sent to current
coroutine
client N client
coroutine coroutine

client]
coroutine Windows

task

Figure 4.3
Structure of an application using the window manager.

55

software to support windowing in a direct and simple manner. The input tools are
handled by the software described in the previous chapter, with input from all the
tools being sent along a single channel to the window manager. The window manager
handles cursor movement and also intercepts the third mouse button to provide
window management functions for the user. The client program is written as a series
of coroutines, each associated with a different window, and all other switch events
are passed to the current coroutine. Figure 4.3 shows a summary of the overall
structure of an application program. In what follows the window manager is first
described from the view points of the user and of the client program. The internal
structure of the manager is then described in more detail.

The user’s view

When the system starts up the user is presented with a blank screen with a cursor
that can be moved around the screen using the mouse or stylus on a graphics tablet.
The mouse has three buttons and the tablet stylus is pressure sensitive. When the
middle mouse button is depressed, a pop-up menu appears listing the types of
windows that can be created, for example “Edit rasters” or “display text”. The
menu remaing displayed as long as the button is held down, and as the cursor moves
over the menu different items in it are outlined. When the button is released the
outlined item is considered to have been selected. If the cursor has been moved out
of the menu then nothing is outlined and so releasing the button selects nothing. If
an item has been selected then the window manager creates a window of this type.
The new window is created at the cursor position, or as near as will ensure that the
whole window appears on the screen. All windows have a tag at the top left corner
which gives the type and serial number of the window (the user may create further
windows of the same type, hence the serial number). The tag also contains three
“icons” which will be explained below. The contents of the window itself will depend
on the client program, which is given complete freedom to display what it wishes in
its own pads. If the user moves the cursor over the background and depresses the
middle mouse button again he can create more windows of the same or different
types. A new window always has the highest priority and so obscures any window
that it overlaps (figure 4.4).

In order to communicate with the client routine associated with a particular
window the user must move the cursor into the window. As soon as any action
occurs {a switch being depressed or released) it is passed to the routine associated
with the window. This window is automatically given the highest priority so that it
is not obscured by any other. The effect of any action will depend on the client
program. The user does not need to take any special action before leaving a window
as the routine will just resume from where it left off when the user returns to it. This
gives the user complete freedom to switch his attention from one window to another
without the need for administrative action. The user can investigate the possible
results of an action by depressing the “help” key on the keyboard. This sets the
system into help mode where any action causes messages to be displayed describing
what would happen, but without doing it. The sort of information provided depends
on the client but the system provides a routine for displaying this information in a
standard place to give some consistency across applications. A special cursor is
displayed while the system is in help mode so that the user is aware that the system
is in an unusual state. The system can be set back into the normal state by

56

abecdel g
CmbnE ol

I Rae LU

I R A A T 1

g ¥ WXY L &

ST

' b
Gom

ody
v P

Y

The new window is created when the switch is released. It overlays the existing

windows.

Figure 4.4
Creating a new window with the window manager.

depressing the help key again.

One switch, the right hand mouse button, is reserved for use by the window
manager. Each window can have any side or corner moved in or out and the whole
window can be moved about the screen. Which of these actions occurs depends on
where within the window the cursor is positioned when the right hand mouse button
is depressed. It is as if windows are divided into three sirips vertically and
horizontally and a specific action is associated with each of the nine resulting areas.
If the cursor is in one of the four corner areas, then the corner moves with the cursor
until the button is released (this can adjust height and width simultaneously). In the
four areas in the middle of the sides just the associated side is moved in and out (see
figure 4.5). If the cursor is in the middle area then the whole window moves with the
cursor. The window can also be moved by placing the cursor over the window name
in the tag. The only limitation imposed is that no part of a window may be moved
off the screen and that a window can only be expanded as far as some client-
specified maximum. This gives the user great freedom in arranging for only the parts
of windows currently of interest to be displayed. Windows can be shrunk down so
that only their tags remain and because they can also be stacked on top of one
another a large number of windows can be accommodated. Quite frequent actions
are to expand a window to maximum size and to shrink it to the minimum, and
special actions are provided for this. It was mentioned above that the tags on
windows contained three icons—these are for expanding a window to maximum size,
shrinking it down to the minimum and for flipping it to the bottom in the priority
ordering. The action is carried out if a mouse button is depressed whilst the cursor is
over the icon. All window management actions cause the window to be given the
highest priority, except for the icon for flipping to the bottom.

The user can destroy windows at any time and can then close the system down
when there are no windows left. An individual window is destroyed by the user
communicating this desire to the client program within the window. The actual
action required will depend on the client program but it is generally the selection of
the “Finish” option in a pop-up menu. After destroying a window, if the next thing
the user does is to hit the “cancel” key then the window is restored. This is to
prevent the user from accidentally destroying a window. The whole system is closed
down by selecting “Finish” in the background pop-up menu.

Although the above discussion has been in terms of the user manipulating a
mouse the system works just as well with other input devices. The user can move the
cursor around with either the tablet stylus or the mouse. All the input devices are
active all the time although unpredictable results may be obtained if more than one
device is manipulated simultaneously. Three keys on the keyboard return the same
values as the mouse buttons and the tablet stylus switch returns the same value as
the left mouse button. This flexibility allows the user to switch between tools as he
wishes during the course of a session. It is also possible to add further different input
tools if they are desired.

The client’s view
The client’s program cocasists of a collection of window specifications, which are
handed to the window manager. The core of a client program can be summarised as

follows:

58

window 1 Dﬂ % D_I

3R

medow D 0

window 1 Q:G % D_I

X [G

window 1

window 1

X GE S

window 1

window 1

e o)

3EE

window 1

indows from the corners and edges.

Figure 4.5

ipping w

This shows the effect of ¢l

59

LET Start() BE
$(set up window specifications S1 to Sn
Windows(n, helpVec, Si1 ... Sn)
tidy up
$)
The call to the procedure Windows does not return until the user selects “Finish” in
the window manager’s menu. In the meantime the flow of control is in the handse of
the user who creates and destroys windows and communicates with them as he
wishes. helpVec is a vector of strings providing short descriptions of each window so
that the system is able to provide some help for the user. A window specification is a
vector with the fields:

width

. height
colour
procedure
. stack size
name

S O > W RO =

width and height define the maxirum size that the window needs to be to show
all that the client requires. The largest window allowed is the same size as the
screen. The system provides a virtual background pad for all windows and it is set
up with the given colour. This allows different types of windows to be distinguished
by colour. procedure becomes the coroutine for the window, with a stack of the
specified size. name appears in the window manager’s menu and also in the tag of
any window created to this specification.

When the manager creates a window in response to a user request it sets up a
cluster containing the background pad and creates the client coroutine. This
coroutine is then called with the cluster as argument so that it can carry out any
initialisation needed. This will usually include creating clusters and pads to be
mapped into the cluster it has been passed as argument. These clusters and pads will
form the image that will appear in the window on the screen. It must then suspend
itself by calling CeWait, thus passing control back to the manager. From then on it
will be called whenever an event occurs within its screen area. The argument passed
in 1s a packet describing the event which must be interpreted by the client coroutine.
After dealing with the packet the client must return control to the manager by
calling CoWait so that further input can be handled. A typical structure for such a
coroutine is:

LET Procedure(cluster) BE
$(initialise - create pads and menus etc.
$(packet := CoWait(Nil)
act on data in packet
IF termination conditions
THEN IF CoWait(Window.Kill)
THEN BREAK // jump out of repeat loop
$) REPEAT
terminate - destroy pads and menus etc.

)

When the user asks for the window to be closed down, probably by a menu selection,
the window manager must be informed so that it can tidy up the data structures

60

involved. This is done by passing back the value Window.Kill in the call of CoWait.
A safeguard has been provided, in that the manager can make the window invisible
and then wait for the user’s reaction. Nothing has yet been destroyed and so if the
user hits the cancel key the window is made visible again, the result FALSE is
returned to the client and the coroutine can continue as if nothing had happened.:
Otherwise the coroutine goes ahead and executes its termination code before
returning control to the manager for the last time.

The system provides no restrictions on the structure of a coroutine, although the
most useful form is that given above. A typical extension is to have two or more
loops for the reading and interpretation of data packets. These loops would provide
different interpretations of the same actions to be used at different times. The client
can also put new values in the data packet and pass back a message to the manager
to request that this packet be passed to another window, rather than new data being
read from the tools channel. This allows windows to communicate with one another.
This facility can also be used within a single window to cause menu selections to
appear like switch events. By doing this it is possible to change the interface from
switches to menus very easily, allowing experimentation to find the most suitable
method. Making a switch and a menu selection generate the same value leaves this
choice to the user when the program is running.

The client coroutine is responsible for dealing in an appropriate manner with the
help mode when the user selects it. This mode is indicated by a global flag that is set
by the window manager in response to the user pressing the help key. No particular
behaviour is enforced but it is expected that the coroutine will put out messages
explaining the results of an action, rather than carrying out the action. As will be
described later the window manager provides routines for common activities such as
pop-up menus which automatically handle help information and so relieve the client
of some of this responsibility.

The window manager provides routines for the client coroutine to change the
appearance of the cursor or to turn it off within its window. The procedure call:

Cursor.setShape(pad)

causes the given pad to be used as the cursor within this window. If the argument is
Nil then the default system cursor is used. As well as the default cursor the
manager also makes use of an hour-glass symbol when there is some sort of delay
and input is not being responded to immediately. This symbol is available to the
client as Cursor.WaitIcon and can be used when the client coroutine is carrying
out some lengthy process that holds up input handling. The calls:

Cursor.turn0ff ()
Cursor.turnOn()

have the expected effects. If the cursor has been turned off the client should be
providing some other form of feedback as coordinates change. This can be done by
setting up a routine to be called by the window manager whenever a coordinate
event occurs with this window current. Such a routine can be set up whether the
cursor is turned on or off. The routine is set up by the following calls:

Cursor.setFn(procedure)
Cursor.setArg(argument)

61

// The main procedure ////////1//171111111111117111711111111111171111111
LET trails(cluster) BE

$(

3)

// Initialise the cluster structure for this window
LET pad = CN.Create(IsPad, width, height, 1, 0,0)
LET arc = CN.Insert(pad, cluster, 0,0, 2)

LET region = LU.getRegion({ 1)

LET lookupTable = TABLE white, red

LET packet = ?

LU.setRegion(region, lookupTable) // load lookup region

CN.setLURegion(pad, region) // set pad to use this region
CN.display() // display it
// The central loop for processing switch events ///////////1//11/1///
$(packet := CoWait(Nil) // wait for packet
SWITCHON packet!pkt.switchNo INTO
$(CASE 1: // this is switch number one
TEST packet!pkt.goingDown // is it going down?
THEN // yes - follow the cursor

$(Cursor.setFn(drawTrail)
; Cursor.setArg(pad)
)
ELSE // no - stop following
$(Cursor.setFn(Nil)
Cursor.setArg(Nil)

$)

ENDCASE

CASE 2: // this is switch number two
IF CoWait(Window.Kill) // did she really mean it?
THEN BREAK // yes - close down the window

ENDCASE

DEFAULT: // any other switch

) W.unusedSwitch(packet) // we can't do anything with it
$) REPEAT ////1111711111171111111111111111111111171111111111111111111

// Terminate the cluster structure
CN.remove(arc)

LU.freeRegion(region)
CN.destroy(pad)

CN.display()

// The cursor function ////////11]
AND drawTrail(packet, pad) BE

CN.writePixel(pad, packet!pkt.x, packet!pkt.y, 1, allPlanes)
// set a pixel at cursor position

Figure 4.6
A simple procedure suitable to be used as a coroutine within a window

62

The window manager calls the procedure whenever a coordinate event packet
arrives, passing in the packet and the client’s argument:

procedure(packet, argument)

packet contains the x and y coordinates relative to the origin of this window.
argument can be a vector of values, allowing multiple values to be passed from the
client coroutine, The contents of the packet can be changed by the routine, for
example the type can be changed to switch data and a switch number stored in the
data field. Provided the packet has been marked “internal” by the routine, the
window manager will detect this and use the updated packet instead of reading a
new packet from the channel. Hence particular coordinate changes, for example the
crossing of a boundary within the window, can be made to appear as switch events
to the client coroutine.
The client coroutine can request the cursor coordinates at any time:

Cursor.read(coords)

coords is a two-word vector in which the x and y values relative to the window
origin will be placed. The client never has any knowledge of the window’s actual
position or size on the screen. It is left to the user to set up the screen so that he can
see the things that are important to him.

A simple client coroutine will serve to illustrate the preceding discussion. Its
window contains a single pad and when switch number 1 is pressed down a trail of
dots is drawn in this pad as the cursor moves. The trail finishes when the switch is
released. The window is closed down by pressing switch number 2 and all other
switch events are ignored. The trail is drawn by setting up a cursor function whose
argument is the pad to be drawn in. A dot is drawn in the pad for every coordinate
received. If the cursor moves fast there may be gaps in the trail as coordinates are
not buffered up. The code to achieve this is shown in figure 4.6. A continuous trail
could be produced by keeping a record of the previous coordinates and drawing a
line joining the previous position to the current position. . -

Extra facilities for the client program
A number of procedures are provided by the window manager for the use of the
client coroutines. These implement a variety of common actions to encourage
consistency and to reduce the time needed to implement simple applications. The use
of these procedures also means that the way a particular action is carried out can be
changed easily, for example to produce a different user interface.

The client can add an extra line of text to the system-provided tag on the
window. This can be used to give more information about what is happening in a
particular window:

W.createTag(string)

This is especially useful when the window is closed down to just its tag.
A procedure is provided for displaying messages in a standard form:

W.message(string, argl, arg2, ...)

An arbitrary number of arguments can be provided for substitution into the string,
as in the BCPL formatted write statement (WriteF). Currently these messages are

63

displayed on a VDU communicating with Rainbow round the ring but it is intended
that they should eventually appear on the Rainbow display itself, either in a single
message window or in areas associated with each window. A heading line is
automatically provided to identify the window that originated a particular message.
The use of the VDU meant that existing software could be used to get this facility
working immediately.

Another procedure:

W.unusedSwitch(packet)

can be used as the default action for switch events that do not have any function
associated with them, as in the example program given above. A message is
displayed and the cursor is flashed so that the user knows that the switch has been
received.

A problem that arises with the use of coroutines is that when a long calculation is
in progress all input is held up. Although there is no sensible way to handle general
input while a process like this is running it is useful for the user to be able to stop
the process, especially if it was started by accident. A procedure, W.cancelled, is
provided that can be called from time to time within a lengthy procedure to check
for the user having hit the “cancel” key. If it returns the value TRUE then the
procedure should terminate. This routine reads any packets on the input channel
and calls W.unusedSwitch until there are no more packets, or a packet for the
“cancel” key is found. This has the unfortunate side effect that normally acceptable
key strokes will be thrown away. The client can display Cursor.waitIcon when the
user must wait and this coupled with the feedback of the cursor flashing when a key
stroke is received makes this side effect less confusing. This is not a totally
acceptable way of handling long calculations but the assumption is that this will not
happen very often.

A set of procedures are provided to implement channels between windows fo
enable data to be sent in response to requests from other windows. The client
program can create a channel that is available to a number of windows within the
system:

channel := W.createChannel()

This channel is a list of packets waiting for responses (these packets have no
connection with the packets that are received from the tools handler). The packet
fields are:

pointer to the next packet on this channel
type - either "send" or "receive"

pointer to the coroutine that sent this packet
a flag indicating if the request was satisfied
data to send

result

O BN =

Before making a request the client must set up the type field and provide the data to
be sent. The type does not in fact indicate any directionality but is used for pairing
corresponding packets. When a request is made:

result := W.makeRequest(packet, channel)

the channel handler searches the list of packets on the channel for a packet of the

64

opposite type. If one is found then the data field of both packets is copied to the
result field of the other and the client’s call to the request routine returns. Obviously
the packet found waiting on the channel corresponds to an earlier request where a
packet of the opposite type was not found. The coroutine that made this request will
have been suspended and must now be released. This is done by the coroutine that
made the second request passing back the result of the request to the window
manager. The result is a request to send an internal packet to the suspended
coroutine, thus releasing it. The suspended coroutine’s call to W.makeRequest now
returns with the result Nil. For the channels to function correctly a coroutine must
always pass any non-Nilresult from W.makeRequest back to the manager. A
suspended coroutine can also be released by hitting the cancel key with the cursor
within its window. The client can determine whether the request was cancelled or
satisfied by the value of the flag in the request packet. The cursor is set to fthe
“wait” icon in a window that is suspended waiting for a request.

A common form of menu that the client may make use of is a pop-up menu
consisting of a single column of textual items. The window manager provides a
routine for creating such a menu, based on the menu routines described in the
previous section. The client provides a string of characters to be displayed for each
item and the value to be returned if the item is selected. The client can also provide
text describing the result of picking each item, which is then used for helping the
user.

menu := W.menuCreate(itemsVec, helpVec, priority)

itemsVec contains the information about each item in the menu with word 0 giving
the number of items. helpVec is a vector of strings giving the text for helping the
user. The menu is created with a standard lookup table giving a yellow background,
black text and a red box drawn round the selected item. Because the menu only
appears for a short time these bright, eye-catching colours were chosen in preference
to gentler colours. This use of a standard colour is very important in reinforcing the
user’s (appropriate) feeling that all these pop-up menus behave in the same way.
Once the menu is created it is inserted into the current window’s cluster at the given
priority, with the arc turned off.

These menus are assumed to appear when the middle mouse button (switch
number 2) is depressed. The procedure:

result := W.menuSelect(menu)

should be called by the client coroutine when this event is detected. The menu is
then displayed in the centre of the window and a cursor function is set up which
highlights the item under the cursor whenever it moves. If the cursor is moved out of
the menu then no item is highlighted. The routine returns the value associated with
the item under the cursor and removes the menu from display when the middle
mouse button is released. If the system is in help mode then the text provided by the
client is written out and Nil is returned as the result when the user makes a menu
selection.

Standard routines for handling forms are also provided, again based on the
software described in the previous section. A form is created by the call:

form := W.formCreate(itemsVec, helpVec, title, priority)

65

itemsVec and title are passed straight through to the general form creation
procedure, along with a standard lookup table region. This gives a pale blue
background and dark green text, a combination that gives text that is easy to read
and is gentle on the eyes. helpVec is a vector of strings describing the fields of the
form and is used to provide help to the user. Once created, the form is inserted into
the current window’s cluster at the given priority with the arc turned off.

When the client wishes the form to be filled in the procedure:

result := W.formFill(form, x,y)

is called. The form is then made visible at the given position within the current
window. This procedure handles all input, passing all ASCII switches and cursor
control keys through to Form.call. When either the cancel key or carriage return is
received the form is removed from display and the procedure returns, with the result
being FALSE if cancel was hit and TRUE for carriage return. All other switch events
are passed to W.unusedSwitch. A special cursor is displayed whilst control is within
W.formFill so that the user realises that only form filling can be done. When the
system is in help mode then any attempt to fill the form will instead result in the
help information for the current field being displayed. When the client has finished
with the information in the result vectors the form can be cleared by the call:

W.formClear(form)

This sets all the result vectors back to empty strings.

Ingide the window manager

The window manager provides the interface between the input tools manipulated by
the user and the client coroutines. The tools are handled by the asynchronous tools
task described in the previous chapter., This provides a channel from which
information about input events can be read by the window manager task. The key
table has been set up so that three special keys on the keyboard return the same
code values as the mouse buttons. The tablet stylus switch also returns the same
value as the left mouse button and so the user can choose whichever device is most
suitable at a given time. The tools handler buffers up switch actions but only retains
the latest coordinate information. This means that if the window manager is not able
to read from the channel for a while no switch actions are logt but the cursor
position may jump because intermediate positions will have been lost. The
coordinate devices are set up to return packets whenever the coordinates change,
rather than after a timeout. Packets can also be passed to the manager from the
client coroutines. These packets are referred to as “internal packets” and are passed
on to the window specified by the originating coroutine. This allows different
windows to communicate with one another.

The window manager always maintaing a pointer to the current window and it is
this window which receives switch packets and whose cursor function is called when
a coordinate packet arrives. The current window is essentially the window in which
the cursor is located. In fact a new current window is only found when a switch is
pressed so that the search is not done every time a coordinate packet arrives. Hence,
the cursor shape and procedure associated with a particular window are only used
once a switch has been pressed with the cursor in the window. When a window is
made current it is given the highest priority so that it overlays all the other

66

windows.
After initialisation the manager enters a loop where a packet is read from the

channel and then processed. The following is a summary of the main actions taken
with the packets:

The packet contains coordinate data:
The cursor is moved to the new position. If the manager has provided a
cursor function then this is called, otherwise if the client has provided a
cursor function for the current window then this is called. Similarly the
shape of the cursor is changed if the manager or current window have
provided a new shape.

The packet contains switch data:

If the switch is going down, then the window in which the cursor is
positioned is made current. If the switch is the right hand mouse button
then window management is started, otherwise the coroutine for the current
window is called with the packet as argument.

If the switch is going up a new current window is not found. The right
hand mouse button terminates window management, and all other switches
are passed to the coroutine of the previous current window. The result
returned when the coroutine suspends itself determines what happens next.

The packet is an internal packet:
The window specified by the window that originated the packet is made
current and its coroutine is called with the packet as argument. As above,
the result returned determines what happens next.

In general when the coroutine returns the loop continues with the next packet being
read. Exceptions to this occur when a special result is passed back to the manager
by one of the coroutines. Two cases are dealt with at the moment, a request to kill
the current window and a request to send an internal packet.

When a request is made to kill the current window the window manager makes it
invisible and records that it is ready to be destroyed. The window is not destroyed
immediately so that the user can cancel the request if it was a mistake. If the next
switch event is the cancel key then the value FALSE is passed back to the coroutine
that made the request. The window is redisplayed and the coroutine can continue as
if nothing had happened. If any other switch event occurs then the coroutine is
called with the value TRUE, indicating that it should go ahead and tidy up its
display and data structures. When the coroutine returns the window manager
destroys it and its associated window. The manager than proceeds to process the
switch packet as usual.

If a request is made to send an internal packet then the type field of the packet is
marked “internal”, rather than “switches” or “coordinates”. The window manager
continues, using this internal packet rather than reading a new one from the
channel. A cursor procedure can also cause an internal packet to be sent by
returning the appropriate value. In both cases the global variable W.result2 is
assuimied to contain the identifier of the recipient window.

Window management is carried out by setting up a system cursor function when
the right hand mouse switch goes down. This function adjusts the size or position of
the window as the cursor moves and fixes the window when the switch is released.

67

The function is selected on the basis of what part of the window the cursor was in
when the switch was depressed, for example in the top right corner the top and right
edges move to change the size and in the middle the whole window moves without
changing size.

It should be noted that a new current window is not found when a switch is going
up rather than down. The “up” events are not ignored altogether because it is a
useful interaction technique to have a continuous function carried out for as long as
a switch is depressed, rather than requiring a second switch depression to terminate
it. If a new window was found for switch up events then the up event could be sent
to a different window if the user had moved the cursor out of the original window.
This would mean that the user must move the cursor into the window again with
the switch depressed in order to get sensible behaviour. As a result it was decided
that it would make the system easier to use if switch up events always went to the
same window as the corresponding down events.

A number of special types of data packet are intercepted by the window manager,
rather than being passed down to the client coroutine. The trapping of the third
mouse button for window management has already been mentioned. If the switch
data is for the key labelled “help” on the keyboard, then the value of a global flag is
inverted to swap the system in and out of help mode. The “home” key causes the
cursor to be moved to the middle of the screen and resets the standard appearance.
This is provided because it can be easy to loose sight of the cursor when there is a
lot of detail on the screen. The cancel key is passed through to the client coroutine
unless a window is waiting to be destroyed.

When the window manager starts up, a background window is created that covers
the whole screen. The associated coroutine provides a pop-up menu on the middle
mouse button that lists all the types of windows that the client programmer has
specified. When the user selects an item from this menu the appropriate window is
created. There is a certain amount of delay while the manager creates the window
data structures and also while the client coroutine is carrying out its initialisation. In
order to reassure the user the “wait” cursor icon is digplayed during this pause. In
help mode the selection of an item from this menu causes a piece of text provided by
the client to be displayed. This text is expected to describe the window that would
be created.

Data structures

The state of the window manager is represented by a list of all the windows
currently in existence, with a global variable pointing to the current window. There
are also global variables indicating whether the system is in help state or not, and
pointers to the current window manager cursor state.

Each window that exists has a window descriptor, which is a vector containing
the following information about the window:

i. A pointer to the window's display structures
2. Its position on screen

3. Its size

4. Its priority

b. The client-specified maximum size

6. A pointer to its cursor state

7. A pointer to its coroutine

68

The display structures used for a window are described in the next section. The
cursor state, both for the window manager and for individual windows, is
represented by four items of information:

1. The cursor procedure

2. An argument for the procedure

3. A flag indicating whether the cursor is to be displayed
4. A pointer to the pad to be used as cursor

The window list is the central data structure and consists of a singly-linked list of
window descriptors. This list is maintained in priority order with the highest priority
window first. In order to find the current window it is a simple matter of scanning
down the list comparing the cursor coordinates with each window’s position and size
until a “hit” occurs. The last item on the list is the background window which
covers the whole screen so there is always a hit. The window list is reordered
whenever a new window is given highest priority. This is simply a case of moving
one item in the list to the beginning and so does not take any significant amount of
time. The consequent gain in speed of finding the current window is very important
because the list is searched every time a switch event happens.

Disgplay structures

Each window in the system is represented by two levels of cluster, with the top
cluster mapped into the screen. Two levels are required for arbitrary clipping
because although the size of a cluster can be changed it is not simple to move the
origin with respect to objects mapped into the cluster. These effects are best
explained by the diagrams in figure 4.7. The client coroutine is handed the lower
level cluster and can map any display objects into it. Clipping is handled completely
within the window manager and the client has no need to know what is happening.
The window is moved around by moving the top arc relative to the screen and
clipping is done by moving the two clusters relative to each other. The client
specified maximum size determines the upper limit and the manager prevents the
window shrinking below its tag size, including the client-provided tag if one exists.
The manager also prevents windows moving off the screen although the display
software would allow this. This is to prevent windows getting into a position where
they cannot be retrieved. In fact this effect could also be achieved by preventing just
the tag from moving off screen.

The background of each window is of a fixed colour and so is implemented as a
“virtual pad”. These have an extent and colour but no associated raster so as to save
on graphics memory. All windows of a given type share the same background pad
and lookup table which produces savings in lookup table entries. In fact sharing of
lookup tables occurs extensively throughout the system as lookup table entries have
been found to be a scarce resource. Many things, such as all standard menus and
forins as well as window tags, share lookup tables. This sharing can also be done in
the client coroutines. The lookup table is stored in a static variable, which is a fixed
location in the single instance of the code for each coroutine. A static variable is
defined with an initial value and so the coroutine can test the value of this variable
to see if the initial value has been changed. If not, then this is the first time the
coroutine code has been called and the lookup table can be created and stored in the
static variable. Later, independent calls to the coroutine will see this changed value
and be able to make use of the ready-created lookup table.

69

ing
er

pp
ust

client

O screen

Q4

background pad set up
by window manager

»&.«%

R

} -
@
=
un
.90
£%
o
°3
Yo
T c
C @
T g
oN
C wn
o v
Q&
= @
vV ownv

(=%

U..L

-

28

Lo e —

o o

° >

Q. O
—
Q
+
w
3
(9
(@)]
jas
Q.
Q.
o

e —,————————

1
i
i
1
1
1
1
1
!
H
i
i
1
1
¥
i
]
i
!
I
I
I
I
I
1
I
I
1
I
I
|
i
1
I

————— ey

T

*

client cluster -

note size change

7

Figure 4
Cluster structure of a window

70

The cursor is a small pad mapped into the screen node. Ideally it should have a
transparent background to avoid obscuring the objects it passes over. Unfortunately
with the Rainbow hardware and software this can only be done by allocating a whole
plane of the graphics memory to the cursor so that it is always in a plane disjoint
from every other object on the screen. This would be very wasteful as it would take
one eighth of the total memory available to represent one very small object. Hence, a
transparent cursor is not used and the standard system cursor is a small black
square with a white centre which obscures whatever it pagses over. If a particular
window requires a transparent cursor then it is possible for it to provide its own
cursor pad in a suitable plane. This cursor would only be used within this window
and so there is no need for it to be transparent to the other windows.

71

5. Imp

Proposals for a new interactive system for type face design were made at the end of
chapter two. Now that the environment for Imp has been presented we can expand
on the proposals and describe what has actually been implemented. This chapter
provides a brief overview of Imp as an introduction to the details of the following
chapters. The first section below summarises the types of data and the programs
that make up Imp. The second section contains some general observations about the
way the window manager is used in Iimp. A brief summary of Imp has been
published in [Carter, 1984].

5.1 Overview

Imp is a type face design system that provides a framework for experimenting with
interactive techniques. The emphasis is on unconstrained, non-algorithmic working
which leaves the designer free to follow his imagination. More abstract methods of
working can be introduced in such an environment to gradually extend the methods
the designer is familiar with., Ultimately it is the designer’s visual judgement that
decides whether the results are acceptable and he must not be limited by complex
algorithms that do not quite do what is required.

The final product of Imp is rasterized type faces for use on digital type setting
equipment. In a manner analogous to designing for metal type these raster founts are
derived from master designs rather than being designed directly in their final form.
With metal type, subtle adjustments may be made to the design as it is being cut to
take account of the nature of the metal type. Similarly, fine adjustments can be
made to the characters in a raster fount to cope with problems arising from the
conversion process.

Imp builds on the idea of there being several levels at which a type face design
can be considered. The designer is able to work on fine details of a master character
whilst seeing the details in the context of the whole character, and this character in
association with others. Imp is made up of a series of programs that deal with these
different aspects of the design process. Each program is implemented 23 a coroutine
associated with a window, running under the window manager. Underlying Imp is a
fount database which provides for the storage and retrieval of founts. When Imp is
running, special fount windows provide a graphical interface to this database.

Master Founts

A master fount is the original design from which raster founts can be derived. There
may be a single design for all sizes of the fount with it simply being scaled to {it.
More likely the designer will wish to produce different designs for large and small
sizes to compensate for various optical effects. When a metal type is cui the large
sizes tend to be narrower and lighter than the small sizes to give a similar overall
appearance. Similar results can be achieved with digital type by providing a number
of master designs for different size ranges. There is also the possibility of
interpolating between the different designs to produce genuinely intermediate
designs.

72

The master founts are stored as line chain outlines rather than as filled areas
defined by a large bit map. Outlines are more easily manipulated, for example by
applying transforms such as rotation, and also take less space for storage. The
outlines could have been encoded as splines in order to save further space and to
reduce the risk of characters appearing polygonal at large sizes. As was discussed in
chapter two, it is hard to manipulate a spline representation interactively and so this
was rejected for the storage of outlines. Even so, splines can be used to generate the
line chains if the designer wishes.

No attempt has been made to add further structure to the line chains, for
example to identify serifs and strokes. Instead a variety of tools has been provided to
make it easier to produce a set of related letters, in & manner similar to working at a
drawing board. Grids can be set up to ensure that characters are the correct size and
a measuring gauge is provided so that proportions can be checked. Pieces of line
chain can be copied from one character to another allowing, for example, a standard
serif to be designed and spliced into a series of characters. Each instance of the serif
is independent of the others so that one can be changed without affecting the others.
This allows fine adjustments to be made to fit the serif onto different shapes. On the
other hand we have lost the ability to experiment rapidly with a variety of serifs as
each one must be changed individually. Any point in a line chain can be repositioned
by hand at any time and also groups of points can be moved by scaling or
translation. The particular combination of features for manipulating the master
outlines has been a constant source of experimentation and further details are
provided in a later chapter.

If the whole design process is to be carried out on a computer then the early
stages of playing around with rough ideas must be supported. It is unlikely that the
designer will wish to commit himself to exact outlines from the beginning and so a
rough sketching facility is provided as part of the outline editor program. This
provides an edged pen of variable width and angle which can be used to draw
calligraphic letters or other shapes. These sketches are completely unstructured and
are just used as guides for producing outlines.

The characters being designed do not exist in isolation and so a program is
provided which allows them to be viewed together. The interactions between the
shapes of the characters can be examined and the spacing can be set up. This is as
important ultimately to the appearance of a page as the shapes themselves. The
spacing can be calculated automatically but in line with the overall philosophy it can
be adjusted by hand.

Raster Founts

The raster founts are generated automatically by scan conversion from master
founts. Different raster founts must be generated for devices of different resolutions
and for different output sizes. Hence the fount database may contain many raster
founts derived from one master.

Currently a fully successful scan conversion algorithm does not exist and so the
raster founts need some editing before they can be used. For example, depending on
where on the grid an outline registers a particular stroke may have a different width.
Different characters containing this same stroke may have registered differently and
so the uneveness must be corrected by hand. For a device such as a graphics screen
which supports grey scale the characters may be anti-aliased by super-sampling.

73

These grey scaled characters can also be edited by hand if necessary.

For simplicity no attempt has been made to save space by using any complex
encoding of the rasters. Run-length encoding can be used for raster founts stored on
disc but generally the founts are stored simply as runs of pixel values for each scan
line. In the workstation memory characters are stored as arrays of pixel values as it
is easiest to interact with the data in this form.

A further aid to speed the design of type faces is a program that displays a page
of text on the computer workstation screen. Obviously the final test for a type face is
how it looks when used for a whole page. By using super-sampling techniques,
described later, it is possible to display a page of text on the screen at the same size
as it would appear on paper when printed. This can give a reasonable idea of the
appearance of a page, although the final judgement can only be made when it is
printed on paper.

5.2 Imp and the window manager

The overall organisation of Imp is in the hands of the window manager and this
section discusses points that apply to all the programs making up Imp.

Conventions for interaction

The window management software makes few demands on the client to use
particular actions for particular effects. The use of the third mouse button for
window management, the help key and some uses of the cancel key are the only
times that a particular effect is enforced. There are some procedures which, if used,
enforce consistency in some areas but it is always possible to do things differently.
The best user interfaces stick to certain conventions so that related effects in
different contexts are evoked by suitably similar actions. This section outlines the
conventions adopted in Imp.

One fundamental action is to point at something on the screen, for example to
indicate that a function is to be applied to it. This is initiated by moving the cursor
to the object and then depressing switch number 1. (In fact, switch number 1 is one
of three switches, either the left mouse button, the switch in the tip of the tablet
stylus or the left of three special keys on the keyboard.) The final selection is not
made until the switch is released and moving the cursor around with the switch
depressed causes different objects to be indicated. This makes it easier to select
objects accurately. If some sort of continuous function is to be applied to the object,
for example moving it to a new position, then this function is called whenever the
cursor moves with the switch depressed to give constant feedback of the effect. In
the description of Imp programs any mention of pointing, selecting or dragging refers
to this particular action with continuous feedback.

Switch numnber 2 (the middle mouse button or the middle one of the three special
keyboard keys) is used for pop-up menus. As with the use of switch number 1
depressing it initiates the action and releasing confirms the particular selection, with
continuous feedback in between. In fact the menu routine provided by the window
manager helps to enforce this particular convention as if makes a selection when
switch number 2 is released. The client program would be expected to call this
routine when the switch was depressed.

Another sort of menu used in Imp is one that is displayed continuously in a
window. These menus are used for selecting a command that is then applied by

74

pointing at objects. The command can be applied repeatedly without having to
reselect it in the menu. Selection is done using switch number 1 to point at the
appropriate item in the menu.

Some attempt has been made to use the cancel key consistently within Imp but
the meaning of cancelling some actions is not totally clear. In general pressing the
cancel key sets the system back to the state it was in before the latest menu
selection. Hitting cancel again restores the state that was cancelled so that the user
can switch repeatedly between the current and previous state.

Program stracture
The fact that the different programs making up Imp are implemented as coroutines
has certain consequences for their structure, as does the use of BCPL. Coroutines
running within the same Tripos task share the same vector of global variables and so
communication between them is simple. The piece of code that sets up the window
descriptors and calls the window manager also initialises any shared globals. The two
main global variables used in Imp provide lists of the master founts and raster founts
that are in memory. Another two provide channels for synchronized communication
with the fount windows. The rest of the variables are local to a particular coroutine.
The ideal structure of a coroutine would be to declare all the variables defining
the local state and all the procedures that act on this state at the start of the code
for the coroutine, for example:

LET coroutine(cluster) BE
$(LET vari ?
LET var2 ?

LET proci() BE
$C ...

varl := ...
$
LET proc2() BE
$C ...

$
pkt := CoWait(Nil)

$(SWITCHON pkt!pkt.switchNo INTO
$(CASE 1: proci()

ENDCASE
CASE 2: proc2()
ENDCASE
$)
pkt := CoWait(result)
$) REPEAT

$

The local state may be made up of large numbers of variables, any of which might
be updated from within the local procedures. Unfortunately, these variables are
dynamic free variables with respect to the procedures and BCPL does not support
access to them. A solution for non-reentrant code is to use static variables. These
have a single fixed location with respect to the code and they can be accessed from

75

anywhere within the block, including from within procedures. This is obviously
inappropriate here as there may be several instances of the coroutine active at once
and they would all share the same static locations.

One solution is to pass the addresses of the variables needed as arguments to the
procedure, so that they can then be accessed indirectly. The problem is that this
becomes very cumbersome when large numbers of variables are involved. It can also
be a source of confusion if some variables are passed by address and others by value.
Another solution is to incorporate the code of the procedure into the body of the
coroutine, in place of the procedure call, and thus remove the need for dynamic free
variables, This has been done in some places but the problem is that it begins to
obscure the structure of the program and makes it hard to handle and debug.

The solution that has been most widely used in the Imp programs is to create a
vector to contain all the local variables. Instead of accessing a variable directly, a
manifest constant is used to index the vector. The address of this vector can be
passed as an argument to the procedures, thus giving them access to all the local
variables. This introduces an extra level of indirection in the main body of the
coroutine but the resulting consistency throughout is a great advantage.

Although static variables are not suitable for storing the local state of a particular
instance of a coroutine, they can be used for communication between the different
instances of this coroutine. If the static variable is updated by one instance then all
the other instances will see the change. This fact is exploited to allow the sharing of
lookup table regions between instances of a coroutine. They will all be using the
same lookup table and so it would be a waste of space for each instance to create a
separate lookup table. The first instantiation of the coroutine creates the lookup
table and then places its address in a static variable. Further instantiations of this
coroutine will see the updated static variable and can then make use of the same
lookup table. A static variable ig initialised to a specific value in its declaration. By
using a value that cannot possibly be a lookup table address a particular instance of
the coroutine can tell whether or not the lookup table has yet been created.

The actions of a coroutine are determined by the switch numbers in the packets it
receives. The actions are selected by using a SWITCHON command into a set of CASE
statements labelled with switch numbers. These labels are usually manifest constants
rather than explicit numbers so that by changing the values of the manifests the user
interface can be changed. Switch event packets can either be generated by physical
switch events or they can be generated internally. In the former case the switch
number is that bound to the physical switch, usually a small integer. In the latter
case the switch number field can contain any value that the client program places
there. In Imp this value is usually the result of a menu selection which has been set
up to generaie an internal event. Hence a number of schemes are possible for evoking
a particular action. By giving the manifest constant a value that is not associated
with any switch the action can only be evoked by some internally generated event
such as a menu selection. If the value can be generated by a switch then the action
can be evoked by pressing the appropriate switch. There is no reason why this value
should not also be generated by a menu selection, giving the user a choice. The
actual physical switch used for an action can be changed by changing the value of
the manifest.

Generally menu selections are used to generate internal events rather than
evoking actions directly, in order to maintain a flexible user interface. On the other

76

hand, on a few occasions a different approach has been taken. In these cases the
result of a menu selection is assumed to be the address of a piece of code. This is
called directly to carry out the action. Generally this has been used only when forced
by the difficulties of constructing a large and complex coroutine spreading over
several separately compiled sections.

When data is to be passed from one program to another, for example from a fount
window to an editor, it is sent along one of the channels meniioned earlier. One
channel is used for master fount data and the other for raster founts. Two actions
are always required, one to send data from one end and the other to fetch the data.
These two actions can be done in either order and the program making the first
request is suspended until the second has been made.

Other features
The use of colour is an important feature of Imp which is unfortunately not
conveyed by the monochrome illustrations in this thesis. The different windows
making up Imp are distinguished by different coloured backgrounds. This is a
valuable cue as the window tags themselves are quite small and not rapidly
digbinguished. It does not take much use of the system for the colour, along with the
layout of the window contents, to be adequate to enable the user to find a particular
window. The background colours chosen are all soft pastel colours as these are easier
on the eyes than bright colours. Originally the colours used for drawing lines and
text were chosen to differ from the background colours only in hue, not brightness.
This reduces the perceived flicker of the lines considerably but they can be rather
hard to see. Currently large adjacent areas tend to use colours of similar brightness
but details that must be focussed on are displayed in more distinctive colours. The
colours actually used are a somewhat adhoc choice that seem to work adequately
and there is room for more experimentation here.

Another important feature, resulting from the structure of the window manager,
is the availability of different input tools simultaneously. On many systems there is a
choice of either mouse or tablet, and then a stylus or puck for use on the tablef.
These devices are each suitable for different operations, all of which are found in
Imp. By having both a mouse and tablet available the user can choose which is most
suitable at a given time. This might even be a different tool for the same task at
different times and almost certainly different users will have different preferences.
There is also the possibility of incorporating other input tools later.

77

6. The Fount Database

Any fount design system needs facilities for the storage and retrieval of founts.
When Imp is running a small number of founts can be stored in the workstation
memory for immediate access by the various programs that make up Imp. Other
founts that are not currently being worked on must be stored on disc and when Imp
is closed down the founts stored in the workstation must also be written out to disc.
The term “fount database” is used to describe this collection of fount data although
this is really rather a grandiose name for it. The name is used as it is the most
convenient way of referring to this “base of data”. This chapter discusses the data
that must be stored to describe a fount, the formats used in workstation memory
and on disc, and the graphical interface from within Imp.

6.1 Fount Data

The fount database contains both master founts and the raster founts derived from
the masters, along with the spacetables needed to set the founts. The master founts
consist of high resolution outlines defining the character shapes. They are device-
independent designs from which the resolution-dependent raster founts are derived.
Raster founts from other sources may also be included in the database, in which case
a corresponding master design will not exist. The space tables are kept separately
from the character shapes because the same fount may be spaced in different ways.
Keeping the spacing information separately makes experimentation with different
gpacing easier. When a fount is to be set by some device there must be a way of
relating the character names used in the fount with the character codes used by the
device. This information is provided by code tables, which map names to codes and
vice versa. Any mapping can be set up, allowing the use of founts that do not fit a
standard coding.

Fount names are composed of names describing the family and style, followed by
the size, device resolution and bits per pixel when appropriate. Family and style
names may be set up in any way that the user wishes, although it might be assumed
that founts of the same family can be used together. Typical names might be family
Times, style Roman or family Times, style Italic, with the implication that the italic
fits with that roman. Character names can also be anything that the user chooses,
provided a code table is set up to map the names to numeric codes. For standard
roman alphabets forms such as Uppercase-A or Lowercase-b are generally used.

Master Founts

A letter in a master fount is represented by a set of line chains defining the outline
of the letter. Each line chain (“strand”) is a series of points connected by straight
lines, with the last point connected to the first to give an outline that is always
closed. As was discussed at the end of chapter two, this outline representation was
chosen because it is easy to interact with. The use of splines, for example, could
reduce the amount of data stored but at the expense of unexpected effects when
points are moved. The strands of a letter are collected into “parts”, the parts of a
letter being scan converted separately and then superimposed to give the final form.
This is done because the scan conversion algorithm does not cope correctly with

78

Scan converting two overlaid

rectangles leaves a space where they

overlap.

+»

|
/

Scan converting the two parts
separately and then overlaying the
results gives the desired effect.

Rt =
R
Rt

_>

Figure 6.1
Scan conversion

HNEEEEREN

PITPTEITTT

EN—LNOLOVVYVOVWVVOAN
STONNMANNNNNNNNNW®
EONNANNANNNNNANND

—

TTOOO0OO0O0000O0O0O0O
LT T O00000O000DO0
OCPo 00D —
LCCPOoocooocOOoODOOD —
T~ Cooocoocooooo —
S~ T~ocoococococococo-
n1.011l1111111|11

e T T T T T T T

rrilehiielelelelololooNo o Xy

X1|91111111I1|.1l1|1

EOoONNNANNNNNNNNO

Figure 6.2
This shows a typical bitmap, with below, the two encodings that can be used in

the fount database.

79

overlapping strands such as would occur if a cross symbol was created by overlaying
vertical and horizontal bars. Scan conversion is done by following across a scan line
and changing colour every time a boundary is crossed. As can be seen in figure 6.1,
overlapping areas are not filled in. The algorithm used is described in more detail in
chapter eight. For most designs the use of different parts is unnecessary but it is a
helpful aid when composite symbols are created.

The coordinates of points are stored to a scale which has 10000 units between the
baseline and the cap-height. This allows sufficient resolution for high quality designs
but keeps the numbers small enough to be stored in 16 bits. When letters are being
designed from scratch in Imp the baseline and cap-height line are shown so that the
letter shapes can be correctly related to the scale. If letters from outside sources do
not have a cap-height defined then the letters are scaled so that the height of
uppercase X is 10000 units. Letters are positioned on the coordinate grid so that the
minimum x coordinate is 0. Imp will accept founts with a non-zero minimum x
coordinate but will shift the outline so that the minimum x is 0. The y coordinate is
taken to be 0 on the baseline so that the minimum y coordinate will be less than 0
for many characters. Letters are usually designed to be displayed at some specific
size so this internal coordinate system must be related in some way to the outside
world. Traditionally the size of type was given as the size of the piece of metal that
formed the type and thus determined the minimum inter-line spacing. The size of
the metal type was given in points and these units are still in general use for
specifying the size of type faces. Obviously the master outlines do not of themselves
have any fixed physical size, so the designer must provide the information along with
the design. This is done by specifying the inter-line spacing in internal units and
then quoting the point size of the fount. These two values are actually for the same
measurement and so provide a direct conversion from internal units to the outside
world.

Raster Founts

A letter in a raster fount is represented by an array of pixel values which can be
displayed to give the letter shape. Each pixel value can be up to 8 bits to allow for
anti-aliased founts, although values are unlikely to be more than 2 or 3 bits. A pixel
with a value of zero is white and non-zero values are grey or black. The most
straightforward way to store a raster fount is to store the array of pixel values as a
succession of scan lines but considerable savings of space can be made by encoding
the data in various ways. Two different encodings are used in the fount database,
one which only stores the sequences of non-zero pixels and run-length encoding,
which can reduce the storage needed even further. In both cases the data is
presented as a sequence of scan lines starting from the maximum y value and going
down to the minimum. If the data is presented as pixel sequences the first item for
the scan line is the number of white pixels at the left hand end of the line, counting
from the minimum x value. The next number gives the number of pixel values that
follow and then the pixel values themselves are given. This sequence of pixels must
span all the non-white pixels in that line. For a run-length encoded fount a scan line
consists of a sequence of pairs of numbers, the first one being the number of white
pixels and the second being the number of black. The line is terminated by a pair
whose second value is 0, and a blank line would be represented by the pair 0 0.
Obviously this encoding will not work for anti-aliased founts but for 1 bit deep

80

founts it can compress the data considerably. Examples of these formats are
illustrated in figure 6.2.

Space tables

As well as the shapes of characters a fount definition must provide information
about how to place the characters in relation to one another. When type is cast in
metal the size of the piece of metal determines the spacing in that the pieces are
simply butted up against one another. In the best metal setting individual pairs of
characters may be adjusted by hand to improve the spacing, but this is a time-
consuming process. When a computer is used to control the setting of type these
special cases can be spotted and dealt with automatically to produce high quality
setting without large time penalties. Furthermore, when type is no longer in the
form of physical pieces of metal new methods of spacing can be easily experimented
with.

The spacetables used with both the master and raster founts have been designed
to support any method of spacing without undue overheads in terms of space or
calculations. The most commonly used method of spacing is based directly on metal
setting, where each character has a fixed width. This may be defined in terms of the
position of the character shape on the coordinate grid, along with a width value. In
this case the next character is positioned with its origin of coordinates offset from
the previous character by the width of the previous character. Another, effectively
equivalent, way is to provide an amount of space to be left before the character and
the amount after. These values would be measured from the minimum and
maximum x coordinate in the character. Some letters, for example A and V or T and
o, will not fit very well so special kern values may be provided that correct these
difficult cases. Figure 6.3 illustrates these forms of spacing.

A completely different method of spacing is based on optical letter spacing
[Kindersley and Wiseman, 1978} which attempts to position all pairs of characters so
that they appear balanced to the observer. This is done by finding what may best be
called a centre of gravity for each character and measuring the spacing from this
point. The amount of space to be left on either side of a character is calculated from
the total weight of the character. Parts of the character further from the centre
contribute proportionately more to the weight than parts close to the centre. Hence
a wide character will be given more space than a narrow character that has the same
area of black. A letter such as A has most of its weight at the bottom and so will
have a low centre of gravity whereas a letter like V will have a high centre. Because
the spacing is measured from centre to centre rather than along the baseline, when
this pair of letters is set together they automatically move closer. This effect of
centres with different heights helps to space many difficult pairs correctly without
the need for special kerning values. Figure 6.4 shows how this form of spacing works.
It can be represented in a more conventional manner by providing fixed widths for
each character and large numbers of kern values to reproduce the effect of the
different centre heights.

The format of the files of spacing information stored in the fount database has
been chosen to support optical spacing without large overheads. Optical spacing
could be done by providing large numbers of kerning values along with conventional
widths to be measured along the baseline. On the other hand, by allowing centres as
well as widths to be defined for all characters the amount of space required to store

81

&
v

-
«

width A width B

Figure 6.3
Typical “metal” spacing, showing the default results and the effect of
subtracting a kern

Figure 6.4
“Optical” spacing, with widths measured between the optical centres rather
than along the baseline, giving the same effect as kerning in metal spacing.

82

a spacetable for optical spacing can be very dramatically reduced. Allowing centres
to default to the origin of coordinates if they are not specified means thal exira
space is not required for spacing methods that do not use centres. Provision is also
made for specifying adjustments to the spacing for particular pairs of letters.

Codetables
In the fount database characters are identified by names rather than numeric codes.

Names are used as they are more meaningful to the designer producing the fount.
They also provide more flexibility in that the fount is not limited to those characters
that a specific coding scheme provides. Codetables provide these mappings from
names to codes and vice versa.

6.2 File FFormats

The files making up the fount database are ordinary text files. Although this is not
the most compact representation, it does make the files easily transportable between
machines as non-text files are often corrupted by transmission protocols. It also
means that the files can be read, understood and edited directly. The data is stored
as keyword followed by value so that all items in the file can be easily identified.
This removes the need to maintain a strict ordering of items in the file. It also means
that incorrect files are casily detected by program as they are being read. Comments,
enclosed in square brackets, can be included in the file.

The keywords used all begin with the character % to distinguish them from other
words which might occur in the file. The values can be strings, such as fount names,
or numeric values, which must be integers. The string “NotSet” can be used in place
of certain numeric values if a particular value is not wanted. For example, a master
fount may have been designed to work successfully at any point size, in which case
the size can be given as NotSet. Other founts designed for specific sizes will quote an
actual numeric value for the size. Other values, for example the number of
characters in the fount file, must always be specified exactly. When fractional values
are required they are quoted as numerator and denominator go as to avoid problems
with programming languages that cannot handle real numbers. Full details of the
keywords and values that can occur in the different database files can be found in
the appropriate sections below. The formats of the files and the procedures for
lexical analysis described below are based on work done by John Wilkes [Wilkes,
1082).

Lexical analysis

A library of procedures is provided that can carry out lexical analysis of any text
file. In addition, an initialisation procedure has been written that will set up this
library for the analysis of fount database files.

The library recognises certain symbols by default, including numbers, names
made up of sequences of certain characters and end-of-line and end-of-file characters.
The client program can tailor the library by specifying the characters that make up
names and by providing additional symbols. Also the characters that are ignored
and those used to introduce comments can be changed by the client.

Each symbol that the library recognises has a type and a value associated with it.
These are placed in the global variables Lex.symb and Lex.value respectively when
the symbol is read by the call:

83

Lex.nextSymb()

For example, if the symbol is a number then Lex.symb takes the value Lex.number
and Lex.value contains the actual value of the number. For names, Lex.symb
takes the value Lex.name and Lex.value is a pointer to the string making up the

name.
The client can add a symbol to the library by one of the following:

Lex.add(string, symbolType, value)
Lex.insert(string, symbolType, function, a,b...g)

In both cases, when the given siring is read Lex.symb is set to symbolType. In the
first case Lex.value takes on the given value but in the second case Lex.value
takes the result of calling the given function with the arguments a to g (in BCPL
these need not all be specified). symbolType can be any value the client wishes,
including a built-in type.

Often a particular symbol is expected to be next in the input, for example a
number after a keyword, and two procedures are provided to simplify the checking:

Lex.checkthis(n, symb, value)
Lex.checknext(n, symb, value)

The first checks the current symbol, that is the one defined by Lex.symb and
Lex.value, whereas the second calls Lex.nextSymb before carrying out the check.
If n is greater than O then Lex.symb is compared with symb and if n is greater than
1 then, in addition, Lex.value is compared with value. If n is O or less then no
checking is done. If the symbol and value match as required then the procedure
simply returns but if the match fails then the procedure Lex.Error is called with
the expected and actual symbols as arguments. By default this procedure writes out
a message to the terminal stating what was expected and what was actually found.
It then terminates the program. More usefully, the client can provide a replacement
procedure for Lex.Error which deals with the error in a manner appropriate to the
particular program.

For the fount database files the keywords have been divided up into three
different sorts of symbol: those that introduce sections, those that are attribute
keywords and those that introduce actual data defining a character shape. Each
individual keyword also has a special value associated with it to distinguish it from
the other keywords of the same type. For example, the section keywords in a fount
file are set up by:

Lex.add("%Family", S.Section, V.Family)
Lex.add("%Character", S.Section, V.Character)

Within a section various attribute keywords are found, for example:

Lex.add("%Cap-height", S.Attribute, V.Cap.Height)
Lex.add("%Xmin", S.Attribute, V.Xmin)

and the data keywords include:

Lex.add("%Strand", S.Data, V.Strand)
Lex.add("%Part", S.Data, V.Part)

All of these keywords are then followed by values that are either numbers or names.

84

Full details of these keywords and values can bhs found in the sections on the
different types of file. The sections within a file are terminated by one of two
keywords whose type is §.End:

Lex.add("%End", S.End, V.End)
Lex.add(".", S.End, V.End)

The client can choose whichever of the two keywords he prefers in a particular
situation. In general %End is used to terminate a series of sections of the same type
and . is used between sections of the same type. The decision has no significance in
the lexical analysis of the files and so can be made on personal preference.

Fount keywords

The first section in a master or raster fount file, introduced by the section keyword
%Family, contains various attributes of the fount as a whole. This includes the full
name, the number of characters making up the fount and various details about the
size. The keywords in this section are all of type S.attribute and the section is
terminated by the keyword %End, of type S.End.

%Family <name>
%Style <name>

These first two keywords give the full name of fount, for example family Bembo,
style BoldItalic. The %Family keyword must always be first as it introduces the
section but the %Style keyword and all the other attributes can occur in any order
or not at all. ‘

YCharacters <number>
%Size-num <number>
%Size-den <number>

The %Characters keyword introduces the number of characters in the fount and
%Size-num and %Size-den introduce the point size. The size is given as numerator
and denominator to allow for fractional point sizes. Commonly %Size-num is the size
in decipoints and %Size-den is 10. The size can take the value NotSet for a master
fount if it is being designed for an unspecified size.

%Xmin <number>
%Xmax <number>
%Ymin <number>
%Ymax <number>

These values give the maximum and minimum coordinate values fount in the fount.
These values are given in internal units, which for a master fount is 10000 units to
the cap-height and for a raster fount is in units of pixels.

%Inter-linespacing <number>
%Cap~height <number>
%X-height <number>

%Inter-linespacing gives the distance between lines in internal units and so
gives the number of internal units that equals the point size. This is particularly
important for a master fount as it is the only value that relates internal coordinates
to measurements in the outside world. In a raster fount this value need not be given
as it can be derived from the resolution and the point size. %Cap-height is in fact

85

always 10000 for a master fount by definition but is included for completeness if a
fount is transported elsewhere. For a raster fount this value can be of help in
matching up different founts for setting together. %X-height can take the value
NotSet or be omitted altogether. If it is present it can be used to provide a guideline
for the design of further characters in this fount. Like the cap-height it can also be
used to match up founts for setting together.

Three further values are provided for a raster fount:

%Resolution <number>
%Bitplanes <number>
%Representation "Pixels" or "Runlength"

The resolution must be given in pixels per inch and the fount will only be the correct
point size if it is displayed at this resolution. The bitplanes value gives the number
of bits required per pixel and one of the two representations must be selected for the
whole fount file.

For a raster fount the maximum space that may be required to store the fount
can be calculated from the number of characters and the maximum extent of the
pixel array. For a master fount some further information must be provided for such
calculations: '

%Parts <number>
%Strands <number>
%Points <number>
%Strandsize <number>

The parts, strands and points values are the maximum total for a single character
and strandsize is the maximum number of points found in a single strand. These
values may be used, for example, to allocate a single datastructure big enough to
accommodate any character in the fount.

%TotalParts <number>
%TotalStrands <number>
YTotalPoints <number>

The addition of these values allows the amount of space required for the whole fount
to be estimated.

Character keywords

The rest of the fount file consists of a section for each character in the fount,
introduced by the keyword %Character. The section is terminated by a symbol of
type §.End.

%Character <name>
%Xmin <number>
%Xmax <number>
%Ymin <number>
%Ymax <number>

The %Character keyword introduces the name and the other four attributes give
the bounding box of the character. Four further attributes are provided for a
character in a master fount:

86

YParts <number>
9%Strandes <number>
%Points <number>
%Strandsize <number>

These attributes give the total number of parts, strands and points in this character
and strandsize is the largest number of points found in a single strand in this
character. The data defining the actual outline is then given, introduced by
keywords of type S.data:

%Part <number>
This keyword introduces a new part with the given number of strands.

YStrand <number>

This keyword introduces a new strand with the given number of points. It is
followed by an (x, y) coordinate pair for each point in the strand.

For a raster fount the pixel data is given either as sequences of pixels or as run-
lengths, depending on the format specified in the fount attributes'section. No
keywords are used to introduce this data.

Spacetable keywords

The files for spacing both master and raster founts are very similar, except that the
units used are those of the particular type of fount. In other words master fount
spacetables are given in the internal units of the master fount whereas raster fount
tables are given in units of pixels. A spacetable file starts with the name of the
spacetable followed by a section defining the fount to which this spacetable belongs:

%Spacetable <name>

%Family <name>

%Style <name>

%Characters <number>

%Size-num <number>

%Size-den <number>

%Resolution <number> [for a raster fount only]
%Bitplanes <number> [for a raster fount only]

This information can be used to check that a given spacetable does indeed belong to
the fount which is being set. In addition, for a raster fount the following may be

included:
YFactor <number>

This factor is used for scaling the spacing values down when they are actually used.
When a raster fount is derived from a master it will be scaled down, generally quite
considerably. The spacing information must also be scaled down but the rounding
errors introduced can have a serious cumulative effect. By providing this scaling
factor the spacing information can be stored to a higher resolution and the space
between characters can be calculated at this same high resolution if desired. Scaling
down after calculating the spacing between characters reduces the effect of the
rounding errors. This section is terminated by the keyword %End. The file continues
with a section for each character:

87

%Character <name>
YCentre-x <number>
%Centre-y <number>
YBefore <number>
YAfter <number>
%Between <number>

The before and after values are the distance to be left before and after the centre of
the character. With optical spacing the before and after values are the same, being
half the width but with other spacing methods these values may be different. The
distance to be left between the centres of two letters is the sum of the after value for
the first and the before value of the second. %Between gives the number of special
adjustment values provided for this character. It is followed by that number of items
with the format:

<number> : <name>

The number is the amount of extra space to be added (the space can be negative)
when the current character is followed by the character with the given name. This
extra space is added to the sum of after and before values. These values are referred
to as “betweens” rather than kerns because they may be measured at an angle
between centres, unlike conventional kerns which are measured along the baseline.
As in the other fount database files the information about a character is terminated

by a keyword of type S.End.

Codetable keywords
A codetable files starts with some general information:

%Code <name>
YMinCode <number>
YMaxCode <number>

This gives the name of the codetable and the range of code values that are used. For
example the codetable might be ASCII and the range 0 to 127, ‘i'he fount database
could contain several different ASCII codetables (which must have distinctive
names) if several different naming schemes for characters are used, or if some foreign
fount is to be mapped to ASCII codes. After this introductory information the
following information is provided for each code:

<number> <name>

This gives the name that is to be mapped to the given code. After the last pair of
values the keyword %End is used.

File names

All the fount files have names that indicate what the contents of a file are. The files
of the database are stored in various sub-directories of a directory with the name
founts:. Founts:masterchars contains files of master outlines, founts:masterspace
contains the spacing information for the master founts, founts:rasterchars contains
the raster characters and founts:rasterspace contains the spacing information for the
raster founts. Within each sub-directory the file names are composed of information
that specifies exactly the fount to be found in that file. For a master fount this is:

<family>-<style>-<size>

88

size is a number giving the size in decipoints. If it is O then this fount was designed
to be displayed at any size. family is a name used for grouping a set of related
founts together and style distinguishes between these related founts. Examples of
families are “Times” or “Century” and commonly used styles are “roman”, “italic”,
“light” or “bold”. There is no restriction on the names that can be used, although
founts of the same family may be expected to look correct when used together. For
example, one might use “times-roman-100" and “times-italic-100” together. For
raster founts the number of bits per pixel and the resolution of the device in pixels
per inch must also be specified:

<family>-<style>-<gize>-<bita>-<resolution>
For spacing files the name of the spacetable must also be included:

<family>-<style>-<size>-<spacename>
<family>-<style>-<size>-<spacename>-<bits>-<resolution>

These file names can become very long but the structure of the names makes clear
the relationships between the different founts in the database. It allows for the
possibility of automatic fount selection, for example finding an italic to go with a
particular roman or finding any bold fount of a particular size. Within Imp the file
names are constructed automatically so that the user does not have to worry about
the length of the names.

6.3 Organisation in the workstation

When fount data is stored in the memory of the workstation it is organised to be
compact but rapidly accessible. The type of information stored, and the way that it
is stored, is related very closely to the way that Imp makes use of the information.
Each fount in memory has a fount descriptor giving general information about the
fount as well as information about each character. Spacing tables are not stored
separately but as part of the fount description. Hence the same character shapes
with several different spacing methods are stored as several completely separate
founts. Two lists are maintained, one of master fount descriptors and the other of
raster founts, This enables Imp to determine rapidly which founts are in memory.
Also a symbol table is provided to map character names to ASCII codes for use in
displaying text.

Master founts

A master fount is represented by a vector of words in memory consisting of thirteen
words of general fount information followed by information for each character. The
general information starts with pointers to strings giving the family, style, size in
decipoints and the name of the space table. These strings are the same strings that
appear in the form in the master fount window (discussed in the next section) and so
they can be changed directly by the user of Imp. Next the values of inter-line
spacing, x-height and the minimum and maximum coordinates are given. These
values can also be set up and changed interactively in Imp. If the fount has been
read in from disc these values are initially those found in the fount file. When a
fount is created from scratch within Imp these values are uninitialised until they are
explicitly set up through Imp commands. For a fount in memory the maximum and
minimum coordinates do not necessarily define the exact maximum and minimum

89

values for the current set of outlines. Rather, the values are used to define the size of
workspace for outlines to be created in, using the master outline editor. The size of
the workspace can be changed iu the editor and the new value saved in the fount
vector for use later in the same session. This allows characters larger than the
current bounding box to be created without problems. When the fount is written out
to disc the maximum and minimum coordinates saved in the file are calculated from
the outline data itself so that they define the minimum bounding box for any
character in this fount.

The final two words of fount information are pointers to lists of vertical and
horizontal grid lines for use in the master editor window. These lines have no
particular meaning but serve as guidelines for the user when creating new outlines.
The user sets up these lines using the “Grids” mode of the editor and can then send
them to a fount window to be saved in the fount vector. These lines do not form
part of the master fount data but they are written out to disc by Imp when a master
fount is saved. When the fount is read back in again the grid lines are automatically
retrieved at the same time.

Information about each character follows the general fount information. The fount
vector is created with space for 128 characters corresponding to the 128 slots
available in the fount window. Each character is described by seven words of
information, the first being a pointer to a string giving the character’s name,
followed by four words giving the coordinate range for this character. The final two
words are a pointer to the data structure representing the character’s outline and a
pointer to the spacing information. Any of the pointers may have the value Nil,
indicating that there is no data for that item. A character with an outline but no
name is given the name “Unknown” and if the character has no spacing information
then simple default values are calculated from the character’s width when this
information is needed. The spacing information is given as a four word vector
containing the coordinates of the centre and the space to be left before and after this
centre.

The outline of the character is represented by a hierarchical data structure. Each
level is represented by a vector of values, with the first word of the vector giving the
number of values at that level. The first level is the part list, where each value is a
pointer to a list of strands making up a part of the character. Each strand list is a
vector of pointers to strands and the strands are vectors of points. The x and y
coordinate of each point is packed into a single word as neither value should exceed
16 bits in size. This data structure is illustrated in figure 6.5.

Raster Founts

The vector representing a raster fount is very similar to that of a master fount, with
twelve words of general information, followed by information about each character to
a maximum of 128, The general information is somewhat different from that of a
master fount, reflecting the different type of data being stored. As well as family,
style, size and space table strings there are pointers to strings giving the resolution
this fount is intended to be displayed at and the number of bits needed for a pixel
value. All of these strings appear in the form in the raster fount window, where they
can be updated by the user. One word defines the representation used for the pixel
data, either “run-length” or “pixels”. Currently the various programs making up
Imp use only pixel representation. Another word gives the factor by which the

90

partlist

strandlist

Figure 6.5

strand

23

x1 A

x2 y2

x3 y3
12

x1 v

x2 y2

x3 y3

Representation of an outline in the workstation memory

91

spacing values must be divided to get pixel units. The final four values give the
maximum and minimum coordinates. As in a master fount, these values are used in
the allocation of working areas and they can be updated by the raster editor
program. They are also recalculated when the fount is written out to a file. The
current implementation does not include the x-height or cap-height values because
Imp does not make use of these values. This omission should be corrected in the
future because these values could well be of use outside Imp.

The information about each character is identical to that in a master fount except
that the pointer to the character’s outline is replaced by a pointer to a pixel array.
This array has one byte for each pixel within the character’s bounding box. The
array is organised with the first byte being the pixel value at (xmin, ymin), the
next being (xmin+i, ymin) and so on to (xmax, ymin). This pattern then repeats
from xmin to xmax for ymin+1i up to ymax. This makes quite extravagant use of
space, both in storing all the pixels within the bounding box and in using a byte for
each pixel. The pixel map could be stored in an encoded form so that large numbers
of insignificant pixels were not stored. Also the absolute minirnum amount of space
could be used per pixel. Most founts use just one bit per pixel and few of the others
use even as many as four, so this could result in a very considerable saving. Using
either, or both methods, access to individual pixels would be slow because exira
calculations would be required to translate the encoding and to extract values of less
than a byte. In fact this would only be a problem in an editor window' where rapid
access is required. Here we are discussing formats for storage where speed of access is
not a very significant factor. The reason why no attempt has yet been made to
compress the data is that there has been no shortage of memory space and so there
has been no justification for expending effort in this area.

Code tables

The characters making up a fount are identified by textual names and there are
times when these names must be related to some numeric coding scheme. In Imp a
fount window can contain up to 128 characters and these characters can be mapped
onto the ASCII coding. Text is presented to Imp in ASCII coding and so a table
must be provided with each fount to locate the character definition corresponding to
the code in the text. This table takes the form of a vector indexed by ASCII code
with each entry being a pointer to the character definition corresponding to that
code. The position of a character within a fount window could be made fto
correspond to its code but this would require the designer to be familiar with the
coding. The extra level of indirection allows the designer to organise the characters
in any order. The table of pointers to the character definitions in a fount can then be
set up from the textual names given to the characters.

A symbol table constructed from the information in a code table file is used to
translate names to codes. A hash value is calculated from each name in the code
table file and an entry containing the name and code number is made at that point
in the table. Entries with the same hash value are linked together and are
distinguished by the name stored in the entry. Several names can map to the same
code value but within one fount only one of these names should be used. This allows
the same code table to be used for all of the founts in Imp even if they contain
completely different characters. When a character is added to a fount the hash value
for the name is calculated to locate the appropriate symbol table entry. This entry

92

gives the code and a pointer to the character definition can then be put in the code
table vector at the appropriate point. .

6.4 Master and Raster Fount Windows

These windows provide a visual interface to the fount database. Both provide 128
“glots” to contain character data and a form which displays details of the name and
size of the fount currently stored in the window. The fount data is stored as vector,
as described above. The character stored in a slot is displayed there at a small size
so that the character shapes making up a fount can be seen at a glance. It also
allows the designer to select characters from the fount by shape rather than by
name. One of the slots is always current and the name of the character in this slot is
also displayed in the form. Figure 6.6 shows some fount windows.

The array of slots is implemented as a menu with eight rows and sixteen columns
of items. Each item is displayed as a sixteen by sixteen pixel array. The routine for
drawing an item is given a pointer to the character definition at the corresponding
offset in the fount vector. The character shape is then drawn in the area allocated
for the item. This pointer to the character definition is also the result that is
returned when the item is selected. The character definition is augmented by an
extra item of information, the index number of the character in the menu. This
means that when the character definition is changed the item can be redrawn simply
by calling Menu.redraw with the appropriate index number.

Characters from a master fount can be scaled down easily for drawing in the
menu. Because all master founts are defined with a cap-height of 10000 units all the
coordinates can be shifted right by ten places (ie. divided by 1024) to fall within a
range of about sixteen pixels. The outlines are then drawn using straight forward
line drawing routines. A lot of detail is obviously lost and better results might be
obtained by using anti-aliased lines. The lines would then appear finer and the
outline could be drawn to an apparently higher resolution. This has not in fact been
done because the results of the straight forward method are good enough to allow
different characters in the fount to be distinguished which is all that is really
required. The details of the shapes can be examined in other windows and so the loss
of detail here is not serious. ‘

It is much less straight forward to scale characters from raster founts. This is
done by super-sampling the high resolution pixel array to give a sixteen by sixteen
pixel array of average pixel values which can then be displayed. The resulting pixel
value is compressed into two bits, giving four levels of grey scale. The algorithm
used is the same as that used to display text on screen and is described in detail in
chapter eight. As with the master founts a good deal of detail is lost but the results
are good enough to distinguish the characters. The characters in different raster
founts are very different sizes, depending on the resolution of the intended output
device and the point size of the fount. Hence, a single factor cannot be used to scale
all the founts and so the factor is calculated individually for each fount.

When switch number one is depressed Menu.select is called to highlight items in
the character menu as the cursor moves over them. A slot in the menu is selected
when switch number one is released. The name of the character associated with this
slot is displayed in the form, where it can then be updated, as discussed below. If
there is no character in this slot or it does not yet have a name then the string

93

e

o

T
.

e

"

T

o

Figul‘e 6.6

Master fount and raster fount windows .

94

.

i

-

.

N
a

-

I

.
o
-
-

-

-
m

“Unknown” is displayed in the form.

Any switch packets from the keyboard are passed to the form, allowing the fields
to be updated at any time. The vectors used as the result vectors for the form are
the same vectors as are used to store the strings associated with the fount. Hence, as
the user types a new name it is automatically included in the fount data. It can be
argued that the names of raster founts and their characters should not be changed
because this destroys the relationship with the corresponding master fount. This is
not in fact enforced as sometimes a raster fount may be extensively edited and so
not correspond to any master fount anyway. It is left to the user to use this freedom
if he wishes but generally it is hoped that very little work will be done on raster
founts once they have been derived from the master designs, so making renaming

unnecessary.
Both windows have a pop-up menu containing the following commands:

Read in from file
Copy out to file
Send data

Get data

Clear

Finish

In addition the raster fount window has the command:
Scan convert a master

Any of these commands can be issued at any time.

The command to read in from a file constructs file names for the fount and space
table from the strings in the form. If the files exist their contents are read with the
characters being placed in successive slots in the window. The previous contents of
the window are saved so that if the user hits the cancel key at any time while a file
is being read the reading is stopped and the previous contents restored. The saved
data is discarded once the reading is completed. This gives sufficient time for the
user to cancel the reading as reading a file takes a significant amount of time.
Nothing happens if the files do not exist and the user is free to try another name or
to create a fount of this name from scratch. As the characters are read their names
are looked up in the symbol table and a codetable constructed to map from codes to
the character definitions.

The command to copy out to a file also constructs the file names from the strings
in the form. The data is not written straight out to these files but is written to
temporary files. Once the writing is complete these files are renamed to take the
constructed names. It is only at this point that the previous versions of these files, if
any, are lost. The writing of a file can be cancelled at any time before this. As a
further precaution, if previous versions are found to exist the user is asked if he
really wants to overwrite them. This is done by displaying a form in the fount
window into which he can type his reply. In particular, this picks up the frequent
mistake of creating a new fount window, typing in the fount name and then selecting
“Copy out to file” instead of “Read in from file”. Copying the empty fount window
out to a file happens so rapidly that the user has no chance to cancel it before the
fount on disc is overwritten!

Imp provides two channels for communication between windows, created using
W.createChannel. One is for passing raster data around and the other for master

95

data. The command “Send data” causes a request of type Request.sendData, and
“Get data” a request of type Request.getData, to be made on the appropriate
channel. The data in the request packet is a two word vector with a pointer to the
fount vector and a pointer to the currently selected slot. All activity in this window
is suspended until either the user cancels the request or a request of the
complementary type is made from elsewhere. The fount window program takes no .
action after a request is satisfied, all actions being left to the window that made the
corresponding request. For example, the user may have designed a new master
outline which needs to be stored. The command “Send character” is selected in the
master editor window, which causes a request of type Request.SendData to be
made. This request is satisfied by issuing the command “Get data” in the fount
window. The master editor window then copies the data for this new character into
the current slot of the master fount window. Menu.redraw is called to display this
new character in the menu.

The command to clear the window removes all the fount data leaving the space
clear to create a new fount. The data is not finally destroyed until another command
is received, thus allowing the user to cancel this command if it was a mistake. The
whole window can be closed down when it is no longer needed, and again this can be
cancelled if it was issued by mistake.

A master fount can be created from scratch by designing characters in the master
editor window and then storing them in an empty fount window. The only way to
create a new raster fount is by scan converting a master fount. When the command
is issued the list of master founts in memory is searched for one that matches the
family, style, size and spacetable of the required raster fount. If one of the same size
is not found then a search is made for one with size zero, indicating that the design
is for any size. If none is found then the user is informed so that he can then amend
the names in the form or read in a suitable master from disc. The form in the raster
fount window gives the resolution and the number of bits to use per pixel and the
scan conversion is carried out using the algorithm described in chapter eight. The
scale factor to be applied is calculated from the point size of the fount (giving the
inter-line spacing in fractions of an inch) and the inter-line spacing value given in
internal units. The number of pixels spanning the inter-line space is derived from the
resolution of the device.

More than one bit per pixel cannot be produced automatically from within Imp at
the moment. The user must produce a fount that is one bit deep within Imp and
then apply a super-sampling program on the resulting fount file. This program
halves the linear dimensions of the fount and uses two bits to represent the average
value in each pixel. Some fairly simple modifications would enable the program to be
incorporated into Imp and produce any number of bits per pixel.

96

7. Master Founts

The production of master founts is the most important part of Imp and so extensive
facilities are provided for creating and editing them. The first section of this chapter
discusses some approaches that can be taken to the manipulation of the outlines
defining the master characters. This provides some background to the description of
the master editor window in Imp. It is important to be able to see characters in
relation to one another and the final section describes the window that provides the
facilities for doing this.

7.1 Approaches to outline manipulation

The master fount characters are stored in the form of line chains defining their
outlines. We need to provide interactive tools for creating these line chains and for
editing them once they are created. An initial approach was to try and mimic
traditional ways of working very directly, keeping the nature of the line chain
representation hidden from the designer. The line chaing would be derived
automatically in some way from the designer’s sketches and they would be edited as
the designer changed his sketches.

Keeping directly in line with traditional methods the designer could be provided
with an electronic drawing board where he could sketch and paint in a very familiar
manner. While the designer worked the picture would be stored simply as a bit map
without any structure. Once the design was completed the outline of the shape could
be extracted automatically from the bit map using image processing techuiques. A
disadvantage of this approach is that the design, when it is being worked on, is in a
form that cannot easily be manipulated. It is hard to exploit much of the power of
the computer in preparing the design. Encouraging the designer to work in terms of
outlines from the earliest stages may be preferable.

When someone is skeiching a rough picture they will oftfen draw faintly at first
and then gradually firm up the lines by repeated drawing. The final shape is seen
where the darkest lines are drawn. This could be applied to the production of
outlines, with the outline being defined where the darkest pixels are found. Each
pass of the pen over a pixel would increment its value in imitation of sketching with
‘a pencil. Again some sort of image processing would have to be used to extract the
outline. The outline could be extracted at an early stage and then further sketching
could be used to change the shape of the outline.

A more straight forward approach, avoiding the need for image processing, would
he to create a line chain to exactly follow the path of the pen. The shape could then
be changed by redrawing and moving the line chain onto the path of the pen. The
underlying structure would still be implicit and hidden from the designer.

This last method was chosen but the simplicity of the idea was soon smothered by
the difficulties of implementation. For example, is a particular pen stroke to define a
new line or to change the shape of an existing line? A proximity test was used, so
that if the pen was near an existing line then this line was moved, otherwise a new
line was created. Similarly, the ends of line chains were joined if they were
sufficiently close. This caused problems when lines were intended to be close together
—the system made incorrect assumptions about what was wanted. The way round

97

this is to provide commands to signal the interpretation required, for example
“Create a line chain” or “Move a line chain”. Once this is done, the initial simplicity
of being able to sketch without thinking about structures has been lost. Rather than
implement further algorithms, such as automatically introducing more points along
curves, it was decided to make the structure completely explicit. The designer would
be provided with tools for manipulating this structure directly.

Creating line chains in Imp

It is expected that the designer will work with line chains from a fairly early stage of
the design but it is hard to create such outlines from nothing. Hence, a simple
painting and sketching facility is provided so that rough shapes can be drawn
without any need to worry about structure. Once the basic shape has been roughed
out the designer picks out points around the outline himself rather than it being
done automatically. Two different methods have been tried for this and which would
be preferable has not yet become apparent. When the “Create line chain” command
is selected a new line chain is started. As points are created they are linked onto the
end of this chain until the command is terminated. One method is to create a new
point at the cursor position each time switch number 1 is pressed. The position of
this point is not fixed until the switch is released so that it can be dragged around
into the correct position. This can prove rather laborious around curves where a lot
of points are needed and so another approach is to create new points as the cursor
moves with the switch held down. A point is created each time the cursor moves
more than some specified amount. This is essentially the method described above
where a line chain is created to follow the path of the pen.

The designer is obviously aware that the outline consists of points joined by lines
and this is further emphasised by picking out the points in red as the outline is
drawn. Links between points can be broken or created using another command,
again giving a direct handle onto the data structure. The continuous visual feedback
means that a feel for the structures involved is very rapidly developed.

Editing line chains
Once a line chain has been created it will undergo extensive modification as it is
assumed that the initial version will be very rough. Two different methods for
moving existing points have been tried out and again no decision as to which is
better has been made. The first method is to select a point when the switch is
pressed and then to drag it around as the cursor moves with the swiich held down.
As with creating line chains this can be very laborious and so an alternative was
investigated. In this case a path is drawn as the cursor moves. When the switch is
released the segment of line chain nearest the path is moved onto it. This is done by
finding two points on the same line chain that are closest to the two ends of the
path. Another point is then found that is nearest to the mid-point of the path to
define which section of the line chain is to be moved. The points in this section are
then moved to lie evenly spaced along the path. If the switch is pressed 'and released
without moving the cursor then the effect is to move the nearest point to the cursor
position. This means that the ability to reposition single points eagily has not been
lost but continuous feedback as a point moves is no longer possible.

The initial outlines will probably not contain a large number of points and so as
they are refined more points will need to be introduced, especially for smoothing

98

I |
[

—f—
—

1 parameter t 2

Figure 7.1
Generating the Overhauser curve between points B and C.

tolerance

<

The furthest pointin this section is further from the baseline than the
tolerance and so the section must be subdivided.

The furthest pointsin both sections are now less than the tolerance and so
these sections can be replaced by straight lines.

The filtered line chain.

Figure 7.2
The filtering algorithm

99

curved portions. There are a variety of methods for generating points along curves
defined by a few control points and one method has been implemented in Imp. This
makes use of Overhauser curves [Brewer and Anderson, 1977] which are blended
polynomials that are easy to calculate and produce pleasing, interpolating curves.
Given four points, A, B, C and D, an Overhauser curve can be fitted between points
B and C. Quadratic curves are fitted through points A, B, C and points B, C, D and
the curve between B and C is a weighted average of the two curves. At B it is 100%
the first curve and at C it is 100% the second. In between it takes a proportion of
each curve depending on the relative distance from B and C. This is done separately
for the x and y coordinates, with the curves being expressed in terms of a third
parameter, the distance along the curve. Figure 7.1 illustrates this calculation. Any
number of points can be inserted between B and C but currently in Imp only one
point is added for each application of the smoothing command.

It is also possible that there are too many points in the outline, for example if
smoothing was applied a large number of times points would continue to be added
whether or not they were necessary. A filtering algorithm [Douglas and Peucker,
1973| can be applied that removes all points that are unnecessary to represent the
shape to a given tolerance. This is done by taking a section of line chain and working
out the perpendicular distance of each point from a line joining the two end points.
If the maximum such distance is less than the tolerance given then this section can
be represented by the single line joining the two ends. All the other points can be
discarded. If the maximum distance is greater than this tolerance then the line chain
is subdivided at this maximum point and the process repeated on the two halves.
This continues until we come down to adjacent pairs of points. IMigure 7.2 illustrates
this process.

Data structures
The data structure used for representing an outline in the fount windows is compact
but is not easily edited. With the strands stored as vectors of points, the individual
points can be moved easily but addition of a new point in the middle would involve
moving all the data for the later points along the vector. A less compact, but more
suitable, structure is a linked list of some sort. Points can be easily added or
removed by updating pointers rather than physically moving data around. Each
part, strand and point is represented by a descriptor which can be linked into a list.
The lowest level object in the data structure is the point. The descriptor for a
point has the following fields:

1. A pointer to the next point in the strand
2. A pointer to the previous point

3. Fixed or free?

4. x coordinate

5. y coordinate

These fields are largely self-explanatory except for the third. This is a flag indicating
whether the user has selected this point to be marked as fixed. This information is
used by the editor program to determine which points can be moved by the editing
commands. The user can fix certain points that have been carefully positioned so
that they are not later moved accidentally. These fixed points are also used to
delimit sections of line chain for certain commands. The information about which
points are fixed and which free is specific to just the editor and it is lost once

100

B NIL

//—;m" strand

open or closed? headers

NIL

B 2
\—)

i
i
1
]
t
I
[}
1
1
1
1
1
1
1
1
1
i
1
1
&
i
¥
H
1
1

fixed or free? fixed or free?
x coordinate x coordinate
y coordinate y coordinate

A
A _

N _ points
fixed or free? fixed or free?
x coordinate x coordinate
y coordinate y coordinate
vV \ 4

[
/

fixed or free? fixed or free?

x coordinate x coordinate

y coordinate y coordinate
Figure 7.3

Representation of an outline as used in the outline editor.

101

outlines have been stored in a fount window.

It can be seen that the list of points making up a strand is a doubly-linked list.
This was done to speed up the frequently required operation of finding both
neighbours of a point. With a singly-linked list a search would have to be made of
the list, keeping a pointer to the previous and current points until the required point
was found. By having pointers in both directions both neighbours can be found
immediately. This operation is not just needed when points are inserted or deleted
but also when a point is repositioned. In this case, the lines linking the point to both
its neighbours must be redrawn.

A strand is described by a strand header block, which actually forms part of the
list of points. This was done so that, given a point, it is easy to find which strand it
is in by following round the list of points to the strand header. A more direct, and
possibly tidier, method would be to have a pointer to the strand header in every
point descriptor. This was rejected as being excessively wasteful of space, especially
as it is not a very frequently used operation. The fields of a strand header are:

1. A pointer to the first point

2. A pointer to the last point

3. Open or closed?

4. A pointer to the next strand in this part

The first two fields correspond to the next and previous pointers in the point
descriptor and they serve to close the circle in both directions. The third field can be
used to distinguish a strand header from a point descriptor as the range of values it
can take are different from the third field of the point descriptor. The value of this
field indicates whether the last point of the strand is linked to the first. In the fount
database this is always true by definition but during editing line chains may be
incomplete and hence it would be inappropriate to link the two ends. If two points in
a closed line chain are unlinked then the line chain is reorganised such that these
two points become the first and last points. If a line chain that is already open is
split again by unlinking another pair of points then a new strand is automatically
created. When two separate line chains are linked together care must be taken to
ensure that the pointers continue round in the same direction in the two chains. If
this is not the case then one of the line chains is automatically reversed before they
are linked.

The strands of an outline are collected into parts, each part being a singly-linked
list of strands, The fourth field of the strand header is a pointer to the next strand
in this part. The list is not doubly-linked as it is not modified as frequently or as
rapidly as the lists of points making up strands. No noticeable delays result from this
decision and so no need has been felt to use a more complex structure. A part is
described by:

1. A pointer to the next part
2. A pointer to the first strand of this part

The list of parts making up an outline is also a singly-linked list as updating of this
list is infrequent. Figure 7.3 shows the structure of an outline in this format.

102

7.2 Master Editor Window

This is the window in which the master outlines of letters are created and edited.
The outline to be worked on can be retrieved from a fount database window or
created from scratch. At any time the outline can be stored back into the fount
database, or further outlines retrieved and added to the outline being worked on.
Pieces of outline can be cut out and spliced in elsewhere so, for example, a standard
serif could be designed, stored in the database and then spliced into each letter as it
is created. Each fount has an associated set of grid lines which can be displayed in
this window to ensure that all the letters of the fount are in the correct proportions.
The grid includes x-height and cap-height lines plus any others that the designer
wishes to set up. The distance between the cap-height and baseline is defined to be
10000 units and all coordinates are stored in this unit system. This window also
provides facilities for free-hand sketching. No data is exfracted from the sketching by
the system but the sketches can serve as a guide to the designer for creating outlines
or grids. The design of this window has raised many interesting problems in the area
of the user interface and experimentation is still going on. This is reflected in the
discussion below which includes details of ideas already tried out and rejected as well
as ideas for the future.

Overall organisation

This window is divided into five different areas, as is illustrated in figure 7.4. The
interpretation of switch actions depends on which of these areas within the window
the cursor is in. A list is maintained of the size and position of each area and an
associated function to call when events occur in each area. The layout of the areas
can be changed to be more suitable for a right-handed person by adjusting a single
value at the head of the program. The central data structure in this window is a
character outline in linked-list form along with a set of horizontal and vertical grid
lines. The outline is the final product of this window and everything done in this
window is ultimately geared towards creating and manipulating this outline.

The reference area displays the outline and grid lines in the whole of the available
coordinate range whereas the working area displays some portion of this area. All
editing of the outline is carried out in the working area but the changes are seen
immediately in the reference area, giving an overall context for what is being done.
The particular portion displayed in the working area is selected in the reference area
by manipulating a box that is displayed there to outline the portion. In an attempt
to be consistent a method similar to that used by the window manager is employed
to adjust the box. When switch number one is depressed the whole box is moved if
the cursor is in the middle and corners are dragged in and out if the cursor is in a
corner. Because the working area is square the box in the reference area is
constrained to remain square. Unfortunately this causes the analogy with the
window manager to break down and so makes the use of this technique less useful,
and maybe even confusing, for the user. It might be preferable to change to a very
different technique and not encourage the user to draw parallels with the window
manager. For example, the user could indicate the position of one corner by pressing
switch number one, move the cursor and give the position of the opposite corner by
releasing the switch. The resulting box could be continually updated as the cursor is
moved to provide feedback. On the other hand, being able to move a fixed size box
is useful as it makes it easy to work on a number of areas at the same magnification.

103

-
-

Edit masters 1

Reference
area

Options
menu

Mode menu

Working area

Figure 7.4
The master editor window

It is also the same actioi as is used in the raster editor for selecting a new area. This
is a good illustration of the problems encountered in trying to achieve total
consistency across a number of different programs.

The main work of this window is carried out in the working area. This area is
made up of three layers, the bottom layer for painting, the next for setting up grids
and the top layer for creating and editing the outlines. The top two layers behave
something like tracing paper so that everything underneath can still be seen. Hence
the outlines are seen superimposed on the grids and sketches. These layers
correspond to the three modes displayed in the mode menu. This menu is
permanently displayed and a mode is selected by pointing in the menu. Each mode
has an associated set of commands which are displayed in the mode-specific menu.
This menu is changed each time a new mode is selected. In general, these mode-
specific commands are selected in the menu and then applied to specific objects by
pointing at them. The command remains selected until another replaces it and so it
can be repeatedly applied by pointing at more objects. Details of the actual
commands are given in the sections below on each of the modes. There are a number
of commands concerned with storage and retrieval of outlines and grids and for
changing certain parameters associated with the window. These comimands are
provided by way of a pop-up menu, which is the same in every mode.

Every time a menu selection is made the state of the master editor is saved. If the
user makes a mistake, or the command has an unexpected effect, he can hit the
cancel key and retrieve this previous state. This means that it is safe to experiment
with unfamiliar commands. If the cancel key is hit a second time, the effect of the
previous cancel is reversed and the new state restored. The user can swap repeatedly
between the new and previous states, providing the opportunity to look closely at
the effect of the command just issued.

Painting
When this mode is selected the user can sketch freely in the working area. As long as
switch number one is depressed a trail is drawn as the cursor moves in this area.
Because switch number one corresponds to the switch in the tip of the tablet stylus
as well as to the left mouse button a natural drawing action is possible. The stylus is
pressed down on the tablet to start drawing in a manner similar to pressing a pencil
on paper. It is at times like this that the freedom to move between tools is so
valuable. The mouse is generally more useful for setting up and manipulating
windows and for selecting commands but the much finer and more fluid movements
possible with a stylus make it invaluable for sketching subtle shapes.

The menu specific for this mode contains the following commands:

Paint
Erase

These two commands determine what happens when the user starts sketching. If the
first is selected then a trail of colour is left behind the cursor. With the second a trail
of background colour is left, giving the effect of an eraser.

The trail is drawn as if the cursor was an edged pen with a fixed width and angle.
Originally a command “Change pen” was used to set up a different width and angle.
When this command was selected a small pad appeared in the menu area. The user
then indicated the new pen shape by depressing switch number one in the pad to

105

Figure 7.5
A rough sketch - the current pen is very narrow, for refining the sketch. The
pen shape can be seen in the pen pad, above the options menu.

Figure 7.6
Measuring in grids mode.

indicate one end and then moving to the other end before releasing the switch. A
rubber-band line was drawn as long as the switch was held down to show the pen
that would be formed if the switch was released at that moment. Once the switch
was released the pad was removed from the screen. One problem with this
implementation was that the current pen shape could not be seen until the user
started drawing. This need for some form of feedback led to the introduction of a
special pen pad, showing the current pen, that is displayed whenever this mode is
selected (figure 7.5). Instead of the “Change pen” command the pen shape is
changed by pointing in this pad directly. Another way to provide feedback about the
pen shape would be to make the cursor take on the shape of the pen. This could be
done by a special transparent cursor for this window on which the pen shape was
drawn. A further considerable improvement would be to provide pens of arbitrary
shape, for example circles or ellipses. Although calligraphic forms are important in
type face design they are not the only ones used. The provision of other pen shapes
would make it easier to draw non-calligraphic forms. On the other hand, a fine edged
pen provides a good deal of freedom and so the extra effort has not yet been
expended in this area.

There are currently no fast pixel copying operations on the Rainbow workstation
and so the trail of the pen is formed by repeatedly drawing lines of the appropriate
angle and length. An unexpected and interesting effect of the slowness of this
operation is that the trail is not solid colour but appears faint because of the gaps
between the strokes making it up. If the user then keeps working over one particular
area the colour becomes more dense, as it would in a pencil sketch. The drawing of
other pen shapes would be even slower but until some experiments are tried it is
hard to anticipate the effects.

Grids

This layer provides grids to be used as guidelines in sketching or creating outlines.
Cap-height, baseline and left margins are always provided and the user can add
other horizontal or vertical guidelines to these. In particular the user will almost
certainly provide an x-height line, and this can be stored in a fount database window
for use with other letters of the same fount. The other guidelines can also be stored
if the user wishes.

The mode-specific menu contains the following commands:

Measure

Change x-height
Add vertical
Add horizontal
Move line
Delete line

When “Add vertical” or “Add horizontal” is selected a new line is created every time
switch number one is depressed in the working area. The position of the line is not
fixed until the switch is released, allowing it to be moved around for accurate
positioning. These guidelines are distinguished from the main grid lines by being
drawn with dotted lines.

Initially an x-height line is not provided. The “Change x-height” command is
provided for setting it up so that it can be distinguished from other horizontal
guidelines. If it is not already present, an x-height line is created when switch

107

number one is depressed in the working area. The line is fixed in position when the
switch is released. If the line already exists it is simply moved to the new position.
Within this window this line serves merely as another guideline but the x-height
forms part of the fount data and so must be kept separate from the other grids. It is
drawn with a solid line rather than a dotted line to show this distinction.

The guidelines can be moved or deleted using the appropriate commands from the
menu. When the switch is pressed the nearest line is moved or deleted. If the line is
being moved it is not finally fixed in position until the switch is released.

When “Measure” is selected the distance, in internal units, between where switch
number one was pressed and where it was released is displayed in a special pad. The
value is constantly updated as the cursor moves with the switch held down. A
rubber-band line joining the two points is also displayed. This remains on the screen
when the measuring is finished so that it can be used to guide sketching or creation
of outlines. The line and the display pad are removed when another grid mode
command is selected. The photograph in figure 7.6 shows a typical grid, with
meaguring in progress.

Outlines

This layer provides the facilities for creating and manipulating outlines, the main
product of this window. The outlines making up a letter are stored as linked lists, as
described in the previous section. One part is always current and only strands in this
part can be worked on and any new strands created are added to this part. The non-
current parts are distinguished by being displayed in a less bright colour than the
current part. The description that follows is of the current state bui experimentation
is still going on. When the system has been more extensively used it is quite possible
that a different set of commands may be considered more suitable.

The menu for this mode currently contains the following commands:

Move Points

Add Point

Link / unlink
Create line chain
Delete line chain
TRANSFORMS >
PARTS >

The last two items are in fact pointers to secondary menus as there is not enough
space for all the commands in one menu. The most frequently used commands for
creating and manipulating line chains have been kept in the first menu and the rest
of the commands have been divided into two groups for the secondary menus. These
are commands to carry out simple fransformations:

Fix / free
Filter section
Smooth section
Translate
Scale

< BACK

and commands for reorganising the part structure of the outline:

108

Next part
Create part
Delete part
Float line
Drop line

< BACK

The command BACK in these two menus brings back the initial menu. In order to
give a fairly connected account the commands in the three menus will be described
in the order in which they might be used.

To start a new line chain the command “Create line chain” is selected. When
switch number one is pressed in the working area a new point is created. When the
first point of the line chain is created then the strand header block is created and
linked into the list of strands. If there are not yet any strands or parts in this outline
then a part descriptor is created and the new strand becomes the first strand of this
part. When the switch is held down, as was described earlier, movement of the
cursor can either result in the creation of more points or else in the repositioning of
the point just created. Both methods are provided in Imp and the user swaps
between them by pressing the “c” key on the keyboard. This is a temporary measure
to allow experimentation and eventually either one version will be abandoned, or else
a less cryptic method of selecting the method will be provided. As long as this
command remains selected any new points are added to the same line chain and are
displayed linked together. When all the points have been created another command,
or no commmand, is selected to signal the termination of the line chain.

The first point of a new line chain is not automatically linked to the last. Instead
the command “Link / unlink” is provided which allows points to be explicitly linked
or unlinked as desired. Pairs of points are selected by pressing the switch down with
the cursor near one and releasing it with the cursor near the other. If the first poing
is an end point then as the cursor approaches other end points a line is drawn
linking the two points. If the cursor is released with the linking line present then the
data structure is modified to link the two points. This may be the closing of a line
chain or else the linking of two separate line chains into one. The structure only
allows end points to be linked and so moving the cursor towards other points has no
effect. If the first point is not an end point then the second point can only be a
neighbouring point. In this case the linking line is removed and if the switch is
released then the link is removed in the data structure. If an unlinking operation
results in a line chain containing only a single point then this line chain is deleted as
it is meaningless to have a line chain of only one point. This is the quickest way to
delete single points from the structure. Unlinking points can also result in the
creation of two line chains from one.

When “Delete line chain” is selected the line chain nearest the cursor is deleted
when the switch is pressed. The quickest way to delete a number of adjacent points
from a line chain is to unlink the section and then delete the resulting line chain. If
the last line chain in the current part is deleted then the part descriptor is deleted
and the next part, if one exists, becomes current.

The points making up a line chain will probably need to be mioved around to get
the desired shape. The command “Move points” is selected and then the cursor is
used to select and reposition points. As was discussed in the first section of this
chapter two methods have been used in Imp, and as with creating line chains,

109

neither has proved overwhelmingly superior. The first is to press the switch near a
point and then to drag the point around until the position is correct. The other
method repositions a whole series of points along a path drawn by holding the switch
down and moving the cursor. As with creating line chains, both methods are
provided and the user swaps by pressing the “m” key on the keyboard. Again, a
decision needs to be made to either abandon one method or to integrate them both
into the graphical interface.

The initial version of an outline is usually rather coarse and so extra points must
be added to refine the details. The command “Add point” can be used for adding
single points in specific places. When it is selected, a new point is added between the
nearest pair of points whenever the switch is pressed. This new point is created at
the cursor position. The smoothing command, described below, automatically adds
extra points along a curve fitted through a series of existing points.

The command “Fix / free”, in the TRANSFORMS menu, is provided to mark
points as immovable and to act as delimiters. When this command is current any
points selected are marked as fixed if they were free or free if they were fixed. Fixed
points are shown by a larger marker than free points and are also highlighted in the
reference area. Fixed points cannot be moved by any commands, including
transforms applied to the whole outline. This command can be applied to single
points by placing the cursor near the point and pressing and releasing the switch. A
sequence of adjacent points can be selected in one movement by pressing the switch
with the cursor at one end of the sequence, and with the switch held down moving
the cursor near the second point of the sequence to give the direction. The switch is
then released with the cursor by the final point. The points that would be selected
by releasing the switch at any fime are highlighted to aid in the making of the
correct selection. When a whole sequence of points is selected they all take on the
new property of the first point, regardless of their own current state.

The TRANSFORMS menu provides several commands, not all strictly
transformations, but with more global effects than the commands discussed so far.
The command “Smooth section” can be applied to a section of line chain delimited
by fixed points. A new point is added between each pair of points in this section,
positioned on the Overhauser curve through its two neighbours on either side. For
the end segments the end points are used twice rather than bringing in neighbouring
points outside the section. This is done because the ends of sections will quite often
coincide with discontinuities in the shape and very strange results would be obtained
by using points outside the section. An even better result may well be obtained by
creating end points that lie on a linear extrapolation of the last section, but this has
not yet been tried.

Superfluous points can be removed from a section by applying “Filter section”.
Again the section is delimited by fixed points. The section is filtered to the current
tolerance, which can be changed by the user through the “Change parameters”
command in the general menu (see below).

“Translate” and “Scale” both apply to all the free points of the current part.
Once selected, these commands are applied by drawing a vector in the working area.
For translation, all the points are moved by the amount and in the direction given
by the vector. For scaling, the points are scaled from the origin of coordinates such
that the starting point of the vector is moved to the position of the end point. If the
vector crosses one of the axes of coordinates the effect is to reflect the outline about

110

this axis ag well as scale if.

All of the previous commands only work within the current part but the
commands in the PARTS menu provide for moving between and reorganising the
parts of an outline. The command “Next part” differs from the commands discussed
so far in that it is applied when it is selected rather than waiting for any user action.
The next part in the part list is made current, going back to the first part when the
end of the list is reached. This method of selecting a part for working on should not
be too laborious as there are generally very few parts in an outline. Similarly “Delete
part” is applied immediately, deleting the current part and making the next part
current. A part is also deleted if all its line chains are deleted.

It is possible to extract line chains from the outline data structure, in order to
reorganise the structure. These line chains are referred to as floating line chaing and
they are drawn in red to mark them out. The command “Float line” is applied to
line chains by pointing at them using the cursor. These line chains can be gathered
from more than one part as desired. One way to incorporate these line chains back
into the structure is to use “Drop line”. When this command is current, any floating
line chain that is selected is linked into the current part and is removed from the list
of floating line chains. Hence line chains can be moved freely among existing parts.
Another way to use these floating line chains is to select “Create part”. This is
another cornmand that is applied immediately, creating a new part from the floating
line chains. This becomes the current part.

As is described below, when an outline is fetched from a master fount window its
parts are added to those already in the editor window. This means that the PARTS
commands have an important part to play when a feature is to be extracted from
one outline and incorporated into another. A piece of line chain can be cut out of
one outline, floated and then dropped into another. The unwanted line chains from
the original outline can be removed by deleting the parts containing them. It should
also by pointed out that the general command described below to destroy the outline
does not apply to any floating line chains. Hence, pieces of line chain can be
extracted from an outline and then the rest of the outline can be cleared out of the
way by destroying it rather than explicitly deleting each part. The floating line
chains can then be incorporated into another existing line chain or can be used as
the basis of 4 new outline.

111

General commands
These are provided in a pop-up menu and consist of “once-off” commands rather

than ones for continuous application:

Get outline

Send outline

Fill outline

Destroy outline

Get grid

Send grid

Destroy grid

Copy painting to file

Get painting from file

Clear painting

Copy pen to file

Get pen from file

Change parameters

Finish
The commands to get and send outlines and grids provide communication with
master fount windows. Both commands to get data cause a request of type
Request.getData to be made on the master fount channel. These requests are
satbisfied by data, sent from a master fount window, consisting of a pointer to the
fount vector and a pointer to the current slot in the fount window. If the command
was “Get outline” then the outline from the current slot is added to any outlines
already present in the editor window, after being converted into the linked list
format. The last part to be added becomes the current part. If the command was
“Get grid” then the grids stored in the fount vector replace any currently associated
with the editor. The grid information includes the x-height, total range of x and y
coordinates allowed and vertical and horizontal guidelines.

The commands to send data cause a request of type Request.sendData to be
made on the master fount channel. It is satisfied by a request to get data made in a
master fount window and again, the data from the satisfying request is a pointer to
the fount vector and a pointer to the current slot in the fount window. For “Send
outline” the outline in the editor window is copied into the current slot of the fount
window, replacing the previous contents. The menu item corresponding to this slot is
redrawn to display the new contents. For “Send grid” the grids in the editor window
are copied into the fount vector, replacing any previous grids.

The commands “Destroy outline” and “Destroy grid” have the expected effects,
although the former does not destroy floating line chains, these not being part of the
main outline structure. Both these commands can be cancelled so that important
data is not easily deleted accidentally.

“Fill outline” causes the outline to be scan converted and the resulting filled areas
are displayed in the paint pad. This is very useful for checking a design as ultimately
it will be used as a filled area rather than an outline. The command “Clear painting”
can be used to clear the painting pad, either after filling an outline or after doing
some painting by hand.

Both paintings and pen shapes can be copied to files for use later. These
commands display a form in which the user specifies the name of the painting or
pen. Imp then automatically constructs the file names and either reads or writes the

appropriate file.

112

“Change parameters” causes a form to be displayed with certain parameters
associated with this window. The user can type in this form to change the
parameters and then press the return key to signal that he is satisfied. The
parameters are then applied. Currently the parameters are the minimum and
maximum x and y coordinates that can be accommodated in this window and the
tolerance value. By changing the maximum and minimum coordinates the amount of
space available for ascenders and descenders or for abnormally wide characters can
be changed. Initially these values are set up to accommodate a standard roman
fount, suitable for most purposes. These values form part of the grid data for this
window. The tolerance is a value expressed in internal units that is used to indicate
what is considered to be a significant distance. For example, in the discussion above
the phrase “near a point” was used on a number of occasions. This means being
within the distance given by the tolerance. When the nearest object to the cursor is
to be found it is only selected if it is within the tolerance to prevent funny effects if
the user presses buttons with the cursor apparently in the middle of nowhere. The
other use of the tolerance value is in filtering out excess points from a line chain.
Because the tolerance value is in internal coordinates the actual physical distance on
the screen will vary with the magnification of the object being worked on.

The command “Finish” is issued to close down this window.

7.3 Compare Masters Window

While a letter outline is being worked on it must be considered in combination with
other letters because the space formed around a letter is as important ag the shape of
the letter itself. This window allows up to ten letters to be retrieved from the fount
database and placed side by side, spaced according to the information provided in
the database. The letters are displayed in two lines of five so that the inter-line
spacing can be seen too.

Overall organisation

This window has two main areas, an area for displaying characters at the top and an
area containing two forms at the bottom. The display area shows the visual
appearance of the spacing and the forms give the numeric values of the parameters
as well as the names of the fount and characters. The characters are stored in
numbered slots, with slots one to five forming the top line in the display area and
slots six to ten forming the bottom. One slot is always current and the spacing
information for the character in this slot can be updated.

The left hand form displays the name of the fount, which is obtained from a
master fount window and cannot be changed. The right hand form displays the
current slot number and the information associated with the character in this slot.
The name of the character is fixed but all the other information can be changed. The
spacing information for a character is given in the form of the coordinates of a centre
and the distance to be left before and after this centre. Also kerning values can be
given to be added when this character is followed by other specific characters. This
form also displays the inter-line spacing value and the spacing constant to be added
between all the characters in this window. The spacing constant can be used to
experiment with overall tightening or loosening of the setting.

The original version of this window made extensive use of the special facilities of
the Rainbow Workstation for blending images. Each letter consists of a filled

113

Figure 7.7
«® »” :
Compare masters” window.

Thick stroke

Thin stroke

> Cap-height

~
Width

Figure 7.8
An uppercase canonical letter.

polygon which takes a significant amount of time to draw and so a considerable
delay would occur if the letters were repositioned by redrawing them. Instead the
letters were drawn once, each on a separate transparent pad. These pads were placed
over a white background and letters were repositioned by moving the pads, a
relatively fast operation. The letters must be on transparent pads rather than
ordinary opaque pads because letters are often positioned so that their bounding
boxes overlap and parts of adjacent letters may be obscured. The whole area was
overlaid with a translucent grid showing the baselines, centres and before and affer
distances for each letter. Unfortunately the resulting high number of pad boundaries
along a scan line stretched the Rainbow hardware and microcode to the limit. In
theory the system should degrade elegantly but in practice the behaviour was
unreliable to the extent of making this window unusable. Hence the ideal of rapid,
interactive repositioning was abandoned and the characters are now all drawn in one
ordinary pad and are repositioned by redrawing. The translucent grid is drawn in an
extra plane of the pad containing the characters. The photograph in figure 7.7 shows
this window in use.

Setting up the spacing

The user sets up or changes the spacing by typing in the fields of the right hand
form. The character name fields cannot be changed as these are fixed in the master
fount but all the other fields can be updated at any time. The results of any changes
are not seen until carriage return is hit, when the characters and grid are redrawn.
Once the “current slot” field has been updated no other field can be changed until
carriage return is hit and the information about the character in the new current slot
has been displayed. The “Kern with” field is filled in by the system if there is a
character after that in the current slot. The value to kern by can be changed by the
user and this value (which can be negative) is added to the spacing between the two
characters.

An intention was to try using cursor movement to update the numeric fields,
preferably with continuous feedback of the character positions. The display
structures (see above) were initially set up to allow rapid repositioning of the
characters. Unfortunately the calculation of the positions has turned out to be a
rather slow process and so the feedback would not be very continuous. The current
implementation of the calculation is very little optimised and so there is much room
for improvement here. On the other hand the problems encountered with the display
structures have ruled out interaction with continuous feedback, at least for the time
being. Even without feedback it would still be useful to use the cursor to indicate
distances on the displayed characters rather than typing in numbers. Hitting
carriage return could be retained as the signal to recalculate the positions. This fairly
simple addition may well have been done by the time the thesis is finished.

Calculating the spacing

The spacing can also be calculated automatically using a calculation based on the
Logos system, introduced in section 6.1, which sets up optical letter spacing. This
calculates an “optical” centre and a width for the character by a method analogous
to finding the centre of gravity and weight of an object. The results of using this
calculation are often very good and where the calculation does not work sa well the
uger can override the results.:

115

The outline is scan converted into an array of pixel values, to a resolution of 25
pixels to the cap-height. A higher resolution gives more accurate results but makes
the calculation very slow. This particular resolution seems a suitable compromise,
with the possibility of tweaking values by hand afterwards if the results look bad.
The resulting pixel array is then passed to a procedure Space.calculate:

Space.calculate(pixels, guessWidth, spaceData, height, thick, thin)

All the parameters and results are given in units of pixels in the array passed as the
first argument. guessWidth is an initial value for the character width, used for
starting the iteration. A suitable value would be the width of the pixel array.
spaceData is a pointer to a vector which will contain the results. The final three
arguments give the dimensions of the canonical character, whose role is described
below. The spaceData vector must be created six words long. The values returned
are the coordinates of the centre and the width of the character, in floating point:

1. Two words for x coordinate of centre
2. Two words for y coordinate
3. Two words for the width

A special software floating point package, written by Alan Greggains [1985] is used
as BCPL itself does not support floating point arithmetic. A procedure
Space.normalise is provided that converts a floating point number to an integer,
after multiplying by a specified factor:

integer := Space.normalise(ni, n2, factor)

The arguments n1 and n2 are the values of the two words making up the floating
point value and factor is the multiplication factor. This can be used to convert the
results back into master fount units.

The calculation is based around finding the “moment” of each pixel in the array
with respect to a potential centre. Only pixels that fall between the baseline and the
given height are included in the calculation. The position of the centre is repeatedly
adjusted until the moments side to side and top to bottom balance. For a non-zero
pixel in the array its moment is the sum of its distance in x and its distance in y
from the potential centre, raised to the fourth power. The y distance is multiplied by
a ratio of thirty percent, making the contribution of sideways displacement from the
centre greater than that of vertical. The initial guess for the centre is taken as half
the width and half the height from the origin of the pixel array. On each iteration
the moments to the left and right of the centre are compared and the x coordinate
changed appropriately; the moments to the top and bottom are then calculated and
compared and the y coordinate changed. The amount and direction of the change in
coordinates is calculated by linear interpolation from the current and previous values
of the imbalance. The new potential centre is calculated such that
the imbalance would be zero, given what has happened in this and the previous
iteration.

Once the centre has been calculated the width is found by adjusting a canonical
character until it has the same total moment as the original character. The canonical
character is constructed from two vertical strokes whose thickness is given by the
thick parameter and two horizontal strokes whose thickness is given by the thin
parameter. The bottom edge of one horizontal stroke rests on the baseline and the

116

top edge of the other reaches the height line. The width is measured between the
outer edges of the two thick strokes, as is illustrated in figure 7.8. Because the
canonical character is symmetrical the centre can be derived from its dimensions.
The width is found by calculating the total moment and then adjusting the width in
an appropriate direction to converge on the moment of the original character. This
width is then taken as the width of the character.

General commands
The pop-up menu provides the following commands:

Get character + spacing

Copy character + spacing

Send character spacing

Get inter-line spacing

Send inter-line spacing

Get fount data

Calculate spacing

Clear

Finish
When the command to get a character and its spacing parameters is selected a
request of type Request.getData is made on the master fount channel. This request
can be satisfied by sending data from a master fount window. The character is
placed in the current slot, it is displayed in the appropriate position in the lines of
characters and the numeric values are displayed in the form. When the command to
send the character spacing is given a request of type Request.sendData is made,
which is satisfied by a request to get data made in a master fount window. The
spacing information is copied into the slot in the master fount window. Because
these spacing values have no meaning separate from the character shape, a check is
made that the slot receiving the information is the one from which the character
originally came. If it is not the same then the data is not saved and the user is
informed of the fact. This constraint could easily be removed if it ever appeared that
the users would prefer to be able to store the spacing information in any slot,
regardless of the character it was originally associated with. It would then be in the
user’s hands to make sensible use of this freedom.

As with the characters, the command to get the inter-line spacing sets up a
request of type Request.getData on the the master fount channel. This request is
satisfied by sending data from a master fount window, but this time the fount
information rather than the character information is used. When the inter-line
spacing is sent back to a master fount window, a check is made to see if this is the
fount whose spacing is currently being handled. If not, the user is informed and the
inter-line spacing is not copied into the fount window. As with saving character
spacing, this restriction could easily be removed if users requested it.

If the user is setting up inter-line spacing or intends to calculate the spacing
automatically then some information is needed about which fount is being dealt
with. The command “Get fount data” makes a request on the master fount channel.
This is satisfied by sending data from a master fount window and the fields in the
left hand form are then automatically filled in to show which fount has been
selected.

117

The command to calculate the spacing carries out the calculation described above
on the character in the current slot. The user is first requested to get the fount data
if he has not already done so. This is because values such as the x-height are needed
in the calculation. A form is then displayed in which the parameters required can be
filled in by the user. These values are the height and the widths of the thick and
thin strokes of the canonical character. The user quotes them in the standard
internal units and the system converts them to pixel array units before starting the
calculation. The user must also indicate whether an uppercase or lowercase canonical
letter is to be used. The previous values given are always shown in this form, making
it easy to apply exactly the same calculation to a series of letters. When the correct
values are in the form the calculation is started by hitting the return key. If the user
does not want the calculation to be carried out after all then the cancel key can be
hit. The results are displayed in the character’s form, converted back into internal
units. The character display is also updated.

“Clear” wipes out all the data stored in this window, ready for a fresh start. The
cancel key can be used if the user issues this command by accident. “Finish” closes
the whole window down.

118

8. Raster Founts

The raster founts are derived from master founts rather than being created from
scratch, hence the facilities for manipulating and editing the raster founts are much
less extensive than those for the master founts. Raster founts are created by scan
converting master outlines to a particular resolution of grid. I know of no automatic
algorithm that does this completely correctly and so some editing in usually required
to make the results usable. To help in assessing the founts a window is provided to
display some text using a particular fount.

8.1 Creating raster founts

The algorithm used for scan converting a master outline is based on one written by
John Wilkes. It copes with regions defined by any number of separate strands,
determining the colour of a region by the number of strand crossings taken to reach
it from infinity. Odd numbers of crossings give the foreground colour and even
numbers the background.

Implementing the scan conversion algorithm

The strands making up an outline are each defined by a vector of coordinates. These
coordinates define points to be joined by straight lines to form the required outline.
The last point is always joined back to the first point to ensure that the outline is
closed. For each scan line in the bit map, all the intersections with the lines making
up the outline are found. These intersections are sorted into increasing x coordinate
and then the pixels between each pair of intersections are filled. Figure 8.1 illustrates
this basic algorithm.

A vector is created with one word for each y value in the bit map. Each word
contains a pointer to a sorted list of the crossings of the particular scan line with the
strands making up the outline. The beginning of the list is assumed to be outside the
outline and so the first crossing introduces a transition from background colour to
foreground. The crossings are located by using a simple digital differential analyser
to generate the x coordinate corresponding to each y coordinate that the line passes
through.

The algorithm used is not in fact as simple as implied in the previous paragraph.
Problems arise at the vertices where points are shared between two lines. If both
lines generated a point at the vertex there would be two crossings recorded here and
the resulting parity of crossings would be wrong. Because the strands have direction
it is possible to solve this problem by having each line generate a crossing at its last
point but not at its first. Each vertex then only has one crossing recorded.
Unfortunately this is not a complete solution, as figure 8.2 shows. Where the slope
changes from up to down, or vice versa, a single crossing at the junction gives the
wrong result. To overcome this, a test is done at the start of each line to see if the
direction of slope has changed. If it has, a point is inserted at the beginning of this
line to produce the necessary doubling of crossings (figure 8.3).

119

12—

10 —

8 —

q -]

2 —

0 T T T T T T

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

The list of intersections for this The pixels from 2 to 6 and 10 to
scan lineis (2, 6, 10, 14). 14 are filled.

Figure 8.1
The basic scan conversion algorithm

14 — 14 —
12 — 12 —

10 — 10 —

P

8 — 8 —

4 | 4 -

2 — 2 —

0 T T T T T T 1 0 T T T T T

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
The list of intersections for this The pixels from 2to 8 and 14 to
scanlineis (2, 8, 14). the right border are filled.
Figure 8.2

The result obtained if one intersection is generated at each vertex

14 — 14 —
12 — 12 —
10 — 10 —
‘e .>
8 — 8 —
4 - 4 —
2 — 2]
0 T T T T T 11 0 T T T T T T 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
The list of intersections for this The pixels from 2to 8 and 8 to
scan lineis (2, 8, 8, 14). 14 are filled.
Figure 8.3

The correct result, obtained by doubling the intersection when the slope
changes from one section to the next

120

Problems that arise

The scan conversion algorithm has no understanding built in to it of the structure of
the characters. As has already been mentioned in chapter two, it is possible for
features that are meant to be the same in different characters to come out
differently. For example, vertical and horizontal strokes may differ in width
depending on how they register on the pixel grid. This is particularly noticeable for
lower resolutions and smaller sizes where a single pixel may form a substantial
proportion of the width of a character. Another effect is for symmetrical features to
come out assymmetrical. The raster editor is provided so that these errors can be
corrected easily.

It is possible to get round these problems by such techniques as specifying what
width the vertical and horizontal strokes are to be. The scan conversion algorithm
can then be written so that it detects these strokes and fixes their width. Ideally
such enhancements would be incorporated into the algorithm used in Imp, but lack
of time has prevented this. Instead Imp relies on easy, interactive editing of the
rasters to produce correct results.

8.2 Raster Editor

"This window provides facilities for simple editing of raster characters to put such
problems right. A photograph of this window can be found in figure 8.4.

Overall organisation

As in the master outline editor there iz a small reference area where the whole
character is shown and a working area where a part of the character is selected for
working on. The region shown in the working area is selected by moving a box
around in the reference area using the cursor. The working area displays a region 25
pixels square, with each pixel displayed as a 5mm square. The number of pixels that
can be edited at one time could be increased by decreasing the size of the pixels in
the working area. A 5mm square can be very easily selected with the cursor and so a
smaller size would probably still be usable, although this experiment has not actually
been done. The proportion of the character that the working area represents will
depend on both point size of the fount and the resolution of the destination device.
For a particular character this is obviously fixed and so the size of the box in the
reference area cannot be changed. When the user points in the reference area the box
is moved around centred on the cursor position until the user releases the switch.
The new area is then displayed in the working area and pixels can be selected and
updated.

The character is displayed in the reference area at the maximum size that can be
accommodated so that areas for working can be easily and accurately selected.
Sometimes more than one screen pixel will be used for one pixel in the character and
for others one screen pixel represents several character pixels by using super-
sampling. The algorithm used is the same as that used in the text display window
and is described in section 8.3. An additional area below the reference area displays
the character at a specified (integer) magnification of the size it will appear when
printed on the destination device. By default this magnification is one but larger
magnifications can be useful for small sizes of character. Again the super-sampling
algorithm is used.

121

Figure 8.4
Raster editor window.

i

Figure 8.5
Text display window.

The working pad is two bits deep to allow for grey scaled characters with two bits
per pixel. This could very simply be changed to three or four bits if it was desired
but so far only founts with one or two bits per pixel have been edited. Allocating
only two bits per pixel for the working pad saves a considerable amount of graphics
memory. When a character is fetched for editing, a colour lookup table is set up
depending on the number of bits per pixel for this character. The other two pads are
four bits deep so that when a character is super-sampled to fit it can be displayed
using sixteen levels of grey scale. This prevents the loss of too much information
about the character shape, although two or three bits may prove adequate. If the
character does not require super-sampling then the lookup table is get up to fit the
actual number of bits per pixel. The grid in the working area and the box in the
reference area are drawn in transparent overlay pads.

Editing a character

A character is edited by pointing at pixels in the working area. Every time a pixel is
selected the value of the pixel is increased by 1 with the value wrapping round to 0
when the maximum is reached. For one bit deep pixels this means that the value
simply alternates between black and white. With more than one bit the colour cycles
through a grey scale. If the select button is held down and the cursor is moved the
new colour is then swept into all the pixels that the cursor moves over.

An inconvenience with this method of updating pixels is that it is rather easy to
overshoot the value being aimed at and then have to go through the whole cycle
again. Obviously this is no problem for one bit deep pixels but if founts with three or
four bits were being edited this could be a serious problem. A different interface was
tried in order to address this specific problem. When switch number one was pressed
down in a particular pixel the value of that pixel was changed as the cursor was
moved horizontally across the screen, the value being fixed when the cursor was
released. The value was repeatedly incremented by one as the cursor moved right
and decremented as it moved left. Hence it was easy to move a pixel value
backwards and forwards through the whole range but at the expense of no longer
being able to sweep a colour through a large number of pixels. Each one would have
to be individually adjusted. Because the overwhelming majority of raster founts are
only one bit deep this interface was rejected as it made the editing of one bit deep
founts unnecessarily tedious. The initial interface could be improved if large numbers
of grey scale founts were to be edited by providing a command to reverse the
direction a pixel value is changed on a switch depression.

When a character is fetched for editing its pixels are copied into an array big
enough to accommodate the largest sized character in its fount. Areas for working on
must always fall within this array otherwise there would be nowhere to store the
pixel values. The procedure that repositions the box in the reference area does not
allow the box to move beyond the extent of the array. The size of this array can be
changed if desired by using the “Change parameters” command in the pop-up menu.
Characters cannot be created from scratch and so no editing is allowed until a
character has been fetched and the array set up.

General commands
The pop-up menu provides the following commands:

123

Get character

Send character

Clear

Change parameters

Finish
The command to get a character sets up a request of type Request.getData on the
raster fount channel. This request can be satisfied by sending data from any raster
fount window. A pixel array is created so that it can accommodate the maximum
range of coordinates, as specified in the fount vector. The pixels for the chosen
character are then copied into this array and the character is displayed in the
reference and display areas. Initially an area in the bottom left corner of the pixel
array is selected for display in the working area.

“Send character” is used to store the character back in a raster fount window. A
request of type Request.sendData is made on the raster fount channel. The
command “Get data” issued in a raster fount window will satisfy this request. The
new pixel array replaces that in the slot specified in the reply and the maximum and
minimum coordinates for the fount are updated. The menu item for the updated slot
in the raster fount window is redrawn so that the new character can be seen there.

The pixel array can be discarded by selecting “Clear” and the whole window can
be closed down by selecting “Finish”. Selecting “Change parameters” results in a
form being displayed showing the current maximum and minimum coordinates of the
pixel array and the magnification being used for the display area. Any of these
values can be updated and they are applied when carriage return is hit. If the user
decides he does not wish to use the new values then the cancel key can be hit to
discard the form.

8.3 Text Display Window

The final test for any type face is how it looks when used for setting whole pages of
text. This window gives a preview on the screen of a piece of text using any of the
raster founts stored in the system. The text is displayed at the size it would appear
on the final output device, or some specified multiple of this size. In general the
resolution of the final output device will be much higher than that of the
workstation screen and so super-sampling is employed to display the characters.
Figure 8.5 shows an example of this window. Figure 8.6 shows some text
photographed from the screen (about 60 dots per inch) and the same letters printed
on a laser printer (240 dots per inch).

Overall organisation
The top half of the window contains the pad to display the text and the bottom half
contains a form giving details about the fount, obtained from a raster fount window.
The text is not formatted to fit the space available before being displayed as this
seems somewhat unnecessary. All the space characters in the text file are given a
fixed size and the line breaks are done where they occur in this file. If a line is longer
than the width of the display pad it is simply truncated. The spacing between
characters is calculated from the values given in the raster fount window.

The display pad is four bits deep, giving sixteen levels of grey for representing the
super-sampled text. The super-sampling method used allows characters to be placed
at arbitrary offsets with relation to the pixels of the display so that the spacing can

124

| abedef: g 1

'zl[jﬁ ¢ ([9 e algae alil
ibz]b 6} w//)(zt]?]zj

cadillac cafe ci
decade idl ble dice
~ ffwgfe* adible edifice
f thle jﬂc It d(f

qiq] ¢ {mﬁf lide

abcdefgil
affable agile algae alibi
babble baffle baggage biblical
cadillac cafe cicada
decade dabble dice

~eagle edible edifice

fab ¢ facz e fiddle
giggle gaffe glide

Figure 8.6
Some text set using letters designed by Lida Lopez Cardozo, using Imp.
Top - on screen; bottom - printed on paper.

125

be accurately shown. Because a character can appear at any offset with respect to
the pixel grid it is not possible to super-sample the characters before displaying the
text. All the calculations are done as the text is being displayed, making it slow but
accurafe.

The pop-up menu provides two commands:

Get fount data

Display file

Finish
Before a file can be displayed a fount must be obtained using the command “Get
fount data”. The fount must then be sent from a raster fount window. The
command “Display file” presents the user with a form to be filled in with the name
of a file to display, the magnification to be used and the spacing constant to be
added between all the letters. The text is then written in the display pad. If the text
file cannot be found then the user is informed and he can then take appropriate
action n before trying again. “Finish” closes the whole window down.

The super-sampling algorithm

The basis of the super-sampling algoiithm is shown in figure 8.7. A grey value
corresponding to the percentage that are black of the character pixels falling within
the screen pixel must be calculated. For each screen pixel, the values of the pixels in
the original character that fall within it are summed to give sum. sum includes an
appropriate fraction of the value of those pixels that do not lie entirely within this
screen pixel. Two additional values are required before the value of the screen pixel
can be calculated. The first is the theoretical maximum value for the sum of the
pixels of the original character that fall within the screen pixel, maxSum. This value is
calculated assuming every pixel to be black. The second value is the maximum value
that the screen pixel can take, maxPixel, which is determined by the number of bits
per pixel. The value of the screen pixel is then given by:

pixelValue := (sum / maxSum) * maxPixel

Essentially the range 0 to maxSum has been mapped onto the range 0 to maxPixel.
This process gives rise to a certain amount of inaccuracy from rounding the value
down to the nearest screen pixel value. pixelValue in fact represents a value for sum
of:

displayedSum := (pixelValue / maxPixel) * maxSum
giving rise to an error of:
remainder := sum - displayedSum

This error is referred to as the remainder and a process known as remaindering can
be used to minimise its effects. This involves spreading the remainder in some
pattern over adjacent screen pixels. In this implementation the remainder is simply
added to the sum for the next pixel that is calculated. This is the next one along the
row in horizontal sequence. No attempt is made to spread the remainder over other
adjacent pixels because it complicates the algorithm considerably and the results
obtained are acceptable anyway.

126

The procedure that implements this algorithm takes the scale factor to be used fo
map the given pixel map onto the screen and the screen offset at which o display
the pixel map. Additional x and y offsets in character pixel units specify the offset in
the pixel map to be placed at the screen position given. This allows sub-pixel control
of the positioning of the pixel maps, which is very important for the correct display
of the character spacing.

127

i

Low-resolution grid placed
over high-resolut

character

on

4

Wamm\mx

st

S

)

f4 + 4x1/2 + 1/4 black

Is from the character. The values
the percentage that

actually black. These can then be

maximum o

pixe

Each square in the grid contains a
given are

converted to grey values for display.

0

0

100(100| 56

Pl o
il 5

20 1100| 80

20 |1100(80

80 |100{1001100]100

16 | 96

0

0

Figure 8.7
Basis of the super-sampling algorithm

128

9. Evaluation and Conclusions

We started this thesis with the problem of designers confronted with new technology
in printing. How can we make computers accessible to people who work in a way
that is essentially alien to computer science? This discussion pointed out the need for
computer systems that allow designers to use and extend their traditional skills of
hand and eye. Before such a system could be built, an environment for constructing
and running highly interactive programs was needed. Once this had been built, Imp,
a system for type face designers could be constructed. This chapter secks to evaluate
how well both the interactive environment and Imp itself fulfil the requirements that
were discussed at the beginning of this thesis.

The design of any interactive system needs to be an iterative process. Initial ideas
are tried out in prototype systems to see how they behave in practice and the
experience gained can be used in the design of subsequent systems. Before Imp was
built a number of separate programs were written to experiment with the editing of
letters in the form of outlines or rasters. Experience with these programs influenced
the design of the programs that appear in the master and raster editing windows in
Imp. Even so, further use of these programs in the context of Imp has revealed new
problems and limitations. Often when problems are encountered the overall structure
of Imp is such that changes have been easy to make and iterative design has
continued without the need for a complete rewrite. What has been implemented is
best considered as a framework that can now be extended. Many of the current
limitations arise because of features that are missing rather than fundamental
problems with the framework.

The window manager itself is really a first prototype and many problems with
such systems were not appreciated until it was in use. It has been possible to make a
number of changes with minimal rewriting of the window manager and with no need
to change the application programs. This ease of making changes and extensions
suggests that the approach adopted was a suitable one for the task being tackled.
The simplicity of the window manager made it very usable and reliable, as well as
making it easy to implement. It has lived up to its specification but in the light of
experience it is now possible to envisage much richer environments for this type of
work.

The rest of this chapter deals in more detail with experience so far and presents
ideas for extensions to the existing system and for new approaches in future systems.

9.1 Imp in Action

Imp has been used fairly extensively by Lida Lopez Cardozo, a lettering artist with
no computer science background. She used it to design the letters shown at the end
of the previous chapter. Other designers have used the system for brief periods but
not for long enough to give anything other than first impressions. A very interesting
test would be for a designer who has worked with some other system to use Imp for
an extended period. This would then give some more concrete information about
how Imp compares with existing systems. What can be said is that Imp is the only
currently available system that can support the design of new type faces from the
very earliest stages to the final result within one environment. In what follows, some

129

general observations arising from using Imp are presented and then more details of
various specific aspects of the system are discussed.

Overall Impressions

The first impression of designers when confronted by Imp is that it is a surprisingly
accessible and friendly system. There has been tendency to look for the hidden snag
when it is actually as simple as it looks! The attempt at consistency across the
system would seem to have worked, in that knowledge gained from working in one
window enabled the designer to learn to use other windows much more rapidly. This
expectation of consistency also enabled the users to point out areas where I had
failed to be consistent. It was generally possible to put right such problems as soon
as they were encountered.

One initial design decision was that the system should support all stages of
designing from initial rough sketches through to the finished product. The designs
that Lida produced were done entirely within the system, using calligraphic forms as
the starting point. Once a few letters had been produced, new ones were more
frequently produced by editing an existing letter rather than going back to sketching
from scratch. A major problem that became apparent early on was the difficulty of
drawing accurately with the tools provided. Although in some ways the stylus on the
graphics tablet is similar to a pencil it requires a rather different action to use it. It
must be held very upright and pressed down in a somewhat unnatural manner to
activate the tip switch. As was expected, the mouse was even more awkward to use
as a freehand drawing tool. This problem of being unable to draw exactly what was
wanted induced a strong desire to go back to paper and pencil and then digitise the
result! It seems probable that this is not an inherent problem with Imp but is a
result of the particular hardware available. It is hoped that better quality hardware
would overcome this problem.

A problem that designers anticipate when they come to a system like Imp is that
they will be unable to work with their hand in one place and the result appearing
somewhere else. In fact they rapidly find that they never really watched their hand
anyway but used the result that was appearing on the paper to guide their
movements. As long as the action connects directly with the result visible on screen
most people have the instincts necessary to obtain the desired result. In fact it can
be a positive advantage not to have your hand obscuring part of the image.

Handling master designs

The master designs, in the form of outlines defined by line chains, are the central
items manipulated by Imp. All the major design decisions are made during the
creation of these outlines. An important decision was not to use a spline
representation for curves. A command to use a spline to generate a line chain seemed
to provide all that was needed. The fact that the resulting line chain could then be
edited by hand without mysterious and unexpected effects was a great advantage.
The danger of polygonal letters does not seem to be sufficient reason to abandon the
easily edited line chain representation. If the design is intended to be printed at a
very large size it is left to the designer to insert a sufficient number of points so that
the shape does not appear polygonal. The only factor to change this decision could
be the availability of splines that can be easily manipulated interactively to give the
sorts of shapes that designers need. \

130

It was originally decided that the rough sketches should just provide some
guidance to the designer in producing the master outlines, rather than being finely
crafted in themselves. In practice a lot of work was ofien expended in drawing a
good quality letter, only then to have to spend some time picking out the outline by
hand. This was not only a tedious process but also less accurate than would have
been the case if a drawing on paper had been digitised with appropriate equipment.
What would have been useful is some automatic way of extracting the line chain
defining the outline of a sketched shape. Image processing techniques exist for
carrying out such a procedure and could easily be incorporated into the existing
structure of Imp. In keeping with the overall philosophy this outline could then be
worked on by hand to get the desired result.

It was hoped that the facility for moving a series of points onto a freehand line
would make the editing of outlines as easy and direct as sketching. Unfortunately the
difficulty found in drawing an accurate line means that this facility has not been
much used. There has been demand for some means of working on the master
outlines by sketching but it may well be that this facility, with better hardware,
would fulfil this need. On the other hand it raises the possibility that it would have
been more appropriate from the start to have made the sketch the central object and
simply derive the outline automatically for storage or manipulation. The user would
appear to be painting or erasing areas but internally it would be done by updating
the outline. The problem with doing this, though, is that the structure of the object
being manipulated is hidden and this can limit the user in what she can do with it.

Having decided to make the structure of the outlines explicit many of the
commands were addressed directly to this structure, for example to add points, or
insert or remove links in the line chains. Such a structure is initially unfamiliar to a
designer but after some explanation and experimentation the structure could be
easily manipulated. The immediate visual feedback and the ability to apply and
cancel commands helped considerably in this learning process. The division of the
strands making up an outline into separate parts was originaily introduced to cope
with the limitations of the scan conversion algorithm. As Imp was used to design a
series of letters a new use was found for this facility. The editor window displayed all
the non-current parts in a paler colour than the current part. Existing outlines could
be brought into the window and displayed as separate parts to provide guidance in
the design of a new letter. Their paler colour meant that the shapes could be seen
well enough for guidance but did not intrude on the new design. Pieces of line chain
could be extracted for inclusion in the new design and any unwanted pieces could be
easily deleted. This is a good example of a user playing around and discovering that
what was thought to be an obscure facility actually had a completely different and
very valuable role to play.

The two simple transforms of translation and scaling proved to be very useful,
especially in converting one letter into another. In fact scaling was not much used for
size changes but for reflecting pieces of line chain, a side effect of the way scaling
was implemented. The way reflection was obtained was rather obscure to non-
computer scientists and would be better provided as a separate function. It was
expected that rotation might be required but in practice all the effects needed
seemed to be obtainable by reflections. On the other hand provision of a wide range
of transformations may suggest new ways of working that would not be thought of in
the absence of such facilities. Imp provides a sufficiently flexible framework for

131

experimenting with such new extensions.

The “Compare masters” window was provided for viewing the master designs
together, in particular for setting up the spacing. The possibility of sefting up
spacing by hand was available but in fact all spacing so far has been automatically
calculated. Hence, this window has been used much more for confirming the
appearance of the letters than for any extensive interactions. The original intention
was to use this window as a background reminder of the context of a letter being
worked on in the editor. Unfortunately the limitations of the Rainbow software,
mentioned above, have prevented the window being used in this way. The window
not currently in use could be present as a tag ready to be opened up from time to
time but the immediacy of constant visibility was not available.

Handling rasters

There is less to be said about the handling of raster founts as the only work needed
is to tidy up problems caused by scan conversion rather than any major designing.
In particular, for high resolution printers there should be little work needed at this
stage. Inevitably the task of cleaning up bit maps is somewhat tedious, but rather
than better bit map editors what is needed is a better method of deriving the bit
maps from outlines. It seems that some such procedures have been developed but
they remain commercial secrets.

Currently the raster founts are handled quite separately from the masters. A
raster character can be tidied up without any reference to the original master and it
is easy to loose track of the original shape. An improvement would be to allow the
outline to be displayed in the raster editor window, overlaying the actual raster. It
would then be possible to edit the character to fit closely to the original. A more
drastic change would be to integrate the outline and raster edifors much more
closely rather than treating them as separate facilities.

Text display

The display of text on the screen from within Imp provides a valuable check on the
progress of a design. Although it is only a low-resolution approximation to the texi
as it would appear on paper, the use of anti-aliaging produces a remarkably good
result. It is certainly adequate to give a feel for such things as the rhythm and
density of a page, although further investigation is required to show how accurate
this is in general.

At the moment the process of getting an image onto paper has to be done from
outside Imp. The raster fount must be converted to the format required by the
printer and the size and spacing information must be presented to the pagination
program. It would be much better if the text displayed on screen could be
transferred directly to a printer from within Imp. There is no reason why this should
not be done although the time taken to transfer bit maps to a printer would cause a
considerable delay when nothing else could be done. Even so, this could be preferable
to stepping outside the environment of Imp.

The database

The structure of the database has influenced the structure of Imp and not always
helpfully. The database is really just a set of files, each defining a complete fount.
This limits the user of Imp to retrieving or storing whole founts, even when she is

132

only working on a single character. It is often useful to have a whole fount present in
memory but it gets very tedious if the whole fount must be written out to disc just
to save a single character. In fact, it would be good to get rid of the distinction
between founts on disc and founts in memory ag this is a big source of confusion. It
should be possible to achieve this if Imp were built on top of a proper database that
provided rapid access and update to single characters in a fount. Any character that
was copied into one of the database windows could be automatically saved on disc
without the user taking any action. Currently it is left to the user to decide when to
copy data to disc as it causes such a long delay. A properly structured database
could also provide for the storage and retrieval of previous versions of a single
character. This can only be done at the moment by giving the fount a new name so
that it does not overwrite the previous version. Duplicating a whole fount in order to
save a previous version of a single character is an unavoidable feature of the current
database.

A further problem with the current version of Imp is that founts stored on disc
but not in memory are invisible, thus violating the principle of total visibility. This
could be put right by providing some sort of fount directory on screen from which
founts on disc could be retrieved. A database of the sort described above could have
everything equally visible and would just retrieve data from disc as the user accessed
it.

The separation between master files and raster files has helped to maintain the
distinction between working on master designe and the derived rasters. If the
database explicitly kept the relationship between the derived characters and their
original masters then experiments might have been done on integrating these two
aspects of Imp. As it is now, it would be possible but not easy to locate the masters
associated with particular rasters.

On the positive side, the use of human-readable text files for storing the fount
data means that it is possible to edit the files by hand. Occasionally changes to be
made to a fount are more easily done by editing the files directly rather than
working by way of Imp. It is also easy to transfer the data files to other machines
without corruption or to set up programs to read and manipulate the data. On the
other hand, there is no reason why such text files should not be produced from a
more complex database.

9.2 The User Interface

Imp has been constructed from a number of programs, each supporting different
aspects of the design process. Each program is associated with a window on the
screen through which the user communicates with it. As well as providing a useful
separation of function it was intended that several different windows should be
visible at once. This would enable the user to keep track of the different tasks being
pursued. Unfortunately problems with the Rainbow software meant that it was
unable to support the complex window structure required to have several windows
visible. As a result it was not possible to investigate the utility of, for example,
having groups of letters visible in the compare masters window whilst working on an
outline in the master editor. The only reliable way of working was to have only the
window currently in use fully visible and to have others closed down to just their
tags. Even so, moving between different contexts was fairly rapid and easy and the

133

constant environment for all the programs was very valuable.

The user communicates with the program in a particular window by simply
moving the cursor into the window and pressing a switch. This method of selecting
programs is easy to understand and avoids having special administrative actions that
get in the way of moving between programs. It rapidly becomes a natural and
instinctive action which the user does not have to think about. Because it is
expected that the user will frequently move between programs this is a very
important feature. The only problem encountered was that of a switch being
depressed in one window and released in another. In order to prevent the release of
the switch becoming separated from the intial depression, the switch release event
does not cause a new window fo be selected. After dealing with this problem, no
further problems have arisen with this aspect of the window manager.

Presenting programs to the users as objects to interact with rather than
commands to be issued probably played an important role in making the system
accessible. Obviously this cannot be said conclusively as a version of Imp with a
command rather than object oriented interface has not been tested. On the other
hand it can be said that there appeared to be no problems with the concept of
creating and using tools to carry out particular tasks. The fact that Lida fairly
rapidly learnt to operate the system alone, including access to files stored outside the
system suggests that the user interface has succeeded in making the facilities of the
computer accessible.

Reserving the third button on a three button mouse for window management has
also worked well. It makes for rapid and instinctive window manipulation without
special modes or commands being apparent. The user simply “grabs” the window
and moves it or pulls its edges around. An alternative interface that was not tried
was to provide narrow, sensitive borders for the windows. Selecting these with the
first mouse button or tablet stylus would allow the edge to be dragged in or out. A
number of other systems in fact use this approach. The former approach emphasises
that window management is separate from other functions of the system whereas the
latter emphasises that all functions are of equivalent status. Although the former
approach was perfectly usable, in the absence of extensive comparative testing it is
not possible to say whether it is better than other approaches.

The fact that the window manager has been implemented on the Rainbow
workstation makes the use of wide ranges of colours in windows a practical
possibility. Imp, the main application implemented using this window manager,
makes extensive use of colour even though type face design may be considered
essentially a black and white application. Different colours distinguish different
windows and make it much easier fo see window boundaries. This gives the
appearance of a much less cluttered screen than seems to be the case if all the
windows are the same colour. Using muted colours for backgrounds is very restful on
the eye and careful choice of foreground colour results in a picture that appears solid
and steady. If bright colours are used then the flicker caused by refresh and interlace
on the display becomes much more intrusive. The colours that have been used have
been selected mostly by trial and error. Imp has served to show the utility of colour
rather than to demonstrate the correct use of colour in any measureable way. Murch
[1984] provides some guidelines, derived from psychophysical experiments, that could
be made use of in future systems.

134

Input tools

A valuable feature of the window manager is the provision of multiple input tools in
addition to the keyboard. Thig feature would seem to be absent in all other current
window managers. It allows the user to choose the tool most suited to the current
task, even changing over in mid-session. Other systems allow for a single device,
generally providing a choice between a mouse or graphics tablet. Swapping devices is
achieved by unplugging one and plugging in the other, hence discouraging frequent
swapping. The window manager described in this thesis can support any number of
devices with all of them contributing to a single stream of switch and coordinate
events. The Rainbow workstation provides the necessary hardware support for
arbitrary numbers of devices. The freedom to use any tool at any time means that
the user need not be constrained by decisions made by other people. It should be
pointed out that graphics libraries such as GKS can support any number of physical
devices, but not integrated into a windowing environment.

A number of different ways of working with the tools arose, with different people
favouring different combinations. In general the tablet stylus was used for drawing
and the mouse for pointing and selecting objects. Even so, there were people who
prefered the mouse for drawing or who used only the stylus and keyboard for
everything. An interesting and unanticipated combination that arose was to use the
stylus in one hand for moving the cursor and use the other hand for operating
switches on the mouse. In this situation the mouse was being used simply as a three-
button keyboard. It was interesting to observe the development of this method of
working, which has certain parallels with the now little used mouse and handsetf
mode of working. One hand is used for pointing and selecting objects on screen and
the other is used for issuing commands. These experiences with the use of the
different tools certainly served to confirm the belief that the user should be free to
use any tools at any time.

An alternative use of multiple tools that has not been experimented with is to
distinguish between switches and coordinates from the different devices and use the
choice of physical device to determine the action of the program. For example, using
the tablet stylus could automatically select sketching and using the mouse could
select editing. Then again, different devices could select different coroutines, rather
than using cursor position. In keeping with the general philosophy of giving the user
freedom of choice these relationships between tools and tasks must be easily
changeable.

The help system

The window manager has a help mode where any user action is supposed to evoke a
message explaining what result this action would have. It is hard to assess the
success of this approach as it relies on each application coroutine testing for help
mode and reacting appropriately. A fair amount of effort and discipline on the part
of the application programmer is needed to provide this informiation. Because the
programs using the window manager have been experimental and changing this
information has either been out of date or not provided at all. Provision of help
would be encouraged by providing a way of entering the help text along with the
code that carries out the action. An automatic system for generating the application
code could easily handle this help text and set up appropriate responses in help
mode. Hence even experimental programs could provide such information without an

135

undue expenditure of effort.
Currently the information is displayed on the VDU connected to the workstation

rather than on the graphics screen. A better approach would be to use a special text
window somewhere on the graphics screen so that the user does not have to switch
her attention elsewhere. The user would be free to close this window down to just its
tag if it was not of interest, but it would always be available.

Help information provided within the system is easily accessible to the user but
there are times when it is more convenient to read a printed document. Online help
is perhaps best regarded as a reminder for users who are already fairly familiar with
the system. More extensive information and introductory material is probably bebter
provided in printed documents. For a system such as Imp, which is intended for
people who may never have used a computer before, a manual in familiar printed
form may help in introducing the new and unfamiliar environment.

Cancellation and backtracking

One important feature of any sort of design work is the need to experiment with
different ideas. If the result is not suitable then the ability to move back to a
previous design is extremely useful. Another valuable result of being able to
backtrack is that it makes it much easier to learn how to use a computer system. A
big stumbling block is often the fear of breaking something or losing the work that
has already been done. When the user is confronted with some facility that has no
parallel in her previous working environment the ability to experiment without harm
will speed up her learning about that facility. For example mathematical
transformations to shapes are hard to understand until they are seen in action.

The only provision the window manager itself makes is to wait for cancellation
after the user has destroyed a window. If this happens then the window is restored
unharmed. Any further provision must be made in the application coroutines, where
it can be adapted to the nature of the particular application. In the master editor
coroutine an experiment was carried out in which the total state wus saved every
time a menu selection was made. Only one previous state was stored, allowing the
user to step back to the point where the current menu item was selected. Hitting
cancel again restored the new state so the user could keep swapping between the
current and one previous state. This provided a valuable facility for assessing the
effect of the command just carried out as well as guarding against mistakes.
Providing the ability to back track by just one step makes a big improvement to the
user interface without using up large amounts of memory to store large numbers of
previous states. This covers the most common mistake of either selecting the wrong
command or applying it to the wrong object. Incorporating this facility into the
window manager would require some way of defining the data that constitutes the
state of a coroutine and defining the significant events. For example, in the master
editor window only switch events that cause a menu selection are considered
gignificant with regard to saving the state but under different circumstances other
events might be significant. Beyond this, in Imp, the only back tracking available is
to states which have been explicitly saved by the user.

This combination of the automatic saving of a single previous state with the
explicit saving by the user of other significant states has worked very well. In fact
this may be an ideal compromise in that large amounts of memory are not used up
to store states that may never be of interest. The system merely provides a very

136

valuable safeguard against momentary lapses or mistakes. A great improvement to
the current system would be the provision of explicit support for multiple versions of
objects in the database. At the moment the user must explicitly rename an object if
a subsequent version is not to overwrite it. A simple first step would be for the
system to add an automatically incremented version number to the file name. A
visual interface to all the objects in the database would also be helpful.

9.3 The Window Manager

The window manager was implemented to provide an environment for constructing
and running multi-threaded programs such as Imp. The application program is
viewed as a series of event handlers, which feels very natural and results in a
modular program that is relatively easy to modify and debug. The window manager
deals with communication between the user and these event handlers and also takes
care of cursor update. The user communicates with the window manager rather than
the application program to rearrange windows on the screen. This means that the
application program can be very simple as all the complexities of devices handling
and screen organisation are dealt with elsewhere. The ease with which Imp was
written and extended indicates that the window manager was successful in providing
a suitable environment for a highly interactive program. In what follows a number of
specific points relating to Imp and the window manager are discussed.

Coroutines vs multitasking
An important decision was to use coroutines rather than asynchronous tasks for the

event handlers. This reflects the highly interactive nature of the application being
supported. The resulting system is very responsive and there is no danger of
background tasks affecting the response time. A few tasks, such as writing a fount
out to a file or calculating spacing for a character, take a significant amount of time
but even here the time taken is not enough to make the user want to do something
else.

The use of coroutines rather than asynchronous tasks allowed a considerable
simplification of the code for the application programs. For example, Imp makes
extensive use of data structures that are shared between windows. If asynchronous
tasks were used then special actions would have to be taken to synchronise access to
the shared data. With coroutines the flow of control is explicit and so one coroutine
can complete any manipulations before allowing any other coroutine to run. Some
modern languages have facilities built in to support the definition and use of shared
data, in which case multitasking would be no problem. In BCPL running under
Tripos it is not so easy to handle shared data correctly and so there is a strong
incentive to avoid multitasking if possible. In BCPL another advantage of coroutines
over multiple tasks is that coroutines share the same global vector. This makes
communication and sharing between coroutines very easy as they can access the
same global variables.

Application program structure

As different programs have been written in different windows the need for certain
common features in their structure has become apparent. For example, on many
occasions a special cursor function is required whilst a particular switch is held
down. This produces effects such as holding a switch down to drag an object or to

137

sketch something. Given the identifier of the switch and the cursor function to be
used it would be a simple matter to automate the production of code for such an
interaction. Currently this is done by simply copying a standard piece of code from
one coroutine t¢ another.

At a more global level the code for the coroutine in each window consists of
initialisation, a loop for receiving and processing switches and then termination code
which is entered when certain conditions arise in the central loop. The central loop
consists of a series of separate routines for processing the different switch actions.
This simple structure suggests that each coroutine could be specified in terms of its
initialisation and termination code and a list of the actions to be evoked on
particular switch events. These switch handlers run in the environment defined by
the initialisation code. Given this specification, two possibilities are available. The
code for each coroutine could be generated automatically and then run in the same
way as hand-written coroutines. Alternatively the information describing each
coroutine could be stored in tables for a new table-driven run-time system. Every
time an event occurred the table for the current coroutine would be consulted and
the appropriate response initiated. In fact life is not always so simple and some
coroutines have more than one set of interpretations of the switch events. Each of
these modes is specified by a complete new set of switch interpretations and the
system must be capable of swifching between them on particular events. With the
present software the writing of new coroutines has been greatly simplified by this
standard structure that has emerged even though it was not explicitly enforced.

Rather than using actual switch numbers in the code for the coroutines, manifest
constants were used. The numbers bound to these names were specified in a header
file. By changing these numbers and remaking the program the mapping of switches
to actions could be changed. This provides a good deal of flexibility for
experimenting with the user interface. There is a certain amount of consistency
between coroutines in the use of switch actions. For example pointing and selecting,
with continuous feedback while the switch is held down, are frequently used actions.
An interesting extension of the current set up would be to write all the coroutines in
terms of abstract events. For example, instead of waiting for switch number one to
be pressed the coroutine would wait for the event “start selection”. Tables provided
for the run-time system would specify which physical events trigger which abstract
ones. Different users could provide their own tables in order to tailor the system to
their requirements. This has something in common with the flexibility provided by
the use of virtual devices in graphics libraries.

Menus and forms

The provision of packages of routines for menus and forms has been valuable in
speeding up the writing of application programs. It has been very easy to experiment
with different formats and styles, particularly with menus. Currently the menus and
forms are specified by vectors of information. The production of menus and forms
could be greatly simplified by providing a program that converied a textual
description of the menu or form into these vectors or the code for generating them.
This would make it much easier to set up a new menu or form as well as eliminating
a significant source of errors. On many occasions apparently obscure bugs have been
found to be caused by such mistakes as changing the number of menu items without
changing the length of the vector.

138

An interesting extension to forms would be the provision of support for different
types of data. All of the information input into a form at the moment is treated as
strings of characters. If it is ultimately to be interpreted as numeric data the client
program must carry out the conversion and checking itself. It would be useful to be
able to specify that a particular item was numeric rather than textual and have the
checking and conversion done automatically. Taking this even further, different
visual representations for the data could be used. For example, a numeric item could
be specified by setting a dial or slider. A textual item with a limited number of
options could display all the options for the user to select from by pointing. To make
these facilities easy to use, various standard forms of feedback should be available
but the client should always be able to specify some other.

9.4 Future directions

Imp has used straightforward line chains to represent letter shapes. An interesting
area for future work is that of investigating the use of more structured
representations. At the simplest level this might be fixing the angle or length of a
single line or setting up relationships between letters so that the properties of
particular lines in all of them were the same. A higher level of structure could divide
letters up into parts such as serifs, stems and bowls. Letters could share these parts
and so change their characteristics together when a part was changed. All sorts of
problems start arising, such as how these structures are made visible to the user and
how she interacts with them. These structures should always be built on top of the
basic line chain structure, giving the user the freedom not to use the abstractions
and simply adjust the details of individual letters by hand.

An area where some sort of “meta-ness” might be argued for is where a whole
series of related faces is to be produced. The automatic production of bold, italic and
light faces from one text design would ease what can be a rather tedious task. The
problem with making a face bolder is that it is neither a simple stretching in one
dimension, or just a thickening of the strokes. The strokes must be thickened and
the letter widened. A meta-font could define how the different parts are to change
for bolder or lighter faces but in fact it should be possible o go some way towards
what is wanted without any explicit structuring. Image processing techniques can be
used to extract a skeleton of the letter and find the vertical strokes. It should then
be possible to thicken or thin these strokes automatically. The results would not
necessarily be particularly good but they could then provide the basis for the heavier
or lighter design. Rather than struggling with the definitions of how the different
faces relate, it may be much more profitable to explore techniques that involve little
or no structure but help the designer on her way. This would also avoid the danger
of trapping the designer with structures that prevent her working intuitively
whenever she wants to. .

The discussion so far has been at two different levels—that of tiie user interacting
with a graphical application and that of the environment supporting the application.

Imp consists of two distinct levels—the underlying graphical environment and the
application program built on top. This application program is set up as a series of
objects that will respond to the user’s actions. A lot of effort has been expended in
making sure that the structures provided for the user are appropriate and easy to
manipulate. The user of Imp has no opportunity to create new types of structures

139

with new behaviours. It has already been suggested that an environment that made
it easy to define objects and the interactions with them would be a great help in
constructing programs such as Imp. If the interface to this environment were
suitably graphical, it might make it possible for the user of a program such as Imp
to extend and modify it. There would be no need to provide elaborate facilities in
the initial system. Instead, it would be left to the user to extend the system as needs
arose. A type face design system that is of interest in this connection is described in
Lynn Ruggles’ forthcoming thesis. Like Imp, her system is intended to be highly
interactive and is based on a windowing system. A feature of particular interest is
the ability to set up various structures and relationships describing the letters. The
user will make use of a graphical language for creating structures and also for
extending the system to provide new facilities. It will be interesting to see how a
higher level of abstraction combines with a visual, interactive approach.

140

In Counclusion ...

This thesis has explored ways of using a computer to support the process of type
face design. I have tried to pay particular attention to the importance of intuitive
decisions and visual judgement, with the skills and requirements of the person rather
than the machine being the central preoccupation throughout. The computer has
been treated as a tool that is very much under the constant control of the person
using it. The fact that the design of new type faces has not been completely
automated is not an admission of failure but rather a recognition of the nature of
designing. Something vital would be destroyed if there was no room for the
unexpected, individual touch. The system implemented in response to these ideas has
indeed begun to reconcile intuition and automation. Perhaps in this small area we
have gone some way towards answering the fears expressed by the Dutch economist
and parliamentarian, Bob Goudzwaard:

“In industry humans are adjusted to the machine and its tempo; the
machine is not usually adjusted to human creativity and the rhythms
of human life. Modern men and women feel more that technology
controls them than that they control technology. Are these
coincidences, or signs that technology occupies an exaggerated, perhaps
idolatrous place in modern society?”

[Idols of Our Time, pg 23]

141

References

Anson E.D.
(1082] “A device model of interaction”
Computer Graphics; vol 16 no 3

Apperley M.D. & Spence R.
[1983] “Hierarchical dialogue structures in interactive computer systems”
Software—Practice and Experience, vol 13 pg 777

Arnold D.
[1981] “The requirement for process structured graphics gystems”

Computer Graphics, vol 15 no 2

Barsky B.A. & Beatty J.C.
[1983] “Local control of bias and tension in Beta-splines”
ACM Transactions on Graphics, vol 2 No 2

Beach R., Beatty J., Booth K., Plebon D. & Fiume E.
[1082] “The message is the medium—multiprocess structuring of an interactive

paint program”
Computer Graphics, vol 16 no 3

Bigelow C.

[1982] “Aesthetics vs Technology Pt 2”
Seybold Report, vol 11 no 11

Brewer J.A. & Anderson D.C.
[1977) “Visual interaction with Overhauser curves and surfaces”
Computer Graphics, vol 11 no 2

Buxton W., Lamb M.R., Sherman D. & Smith K.

[1983] “Towards a comprehensive user interface management system”
Computer Graphics, vol 17 no 3
Carter K.A.

[1984] “Imp—a system for computer-aided type face design”
Proceedings of Protextl, Boole Press

Coueignoux P.J.M.
[1975] “Generation of Roman printed fonts”
PhD Thesis, Massachusetts Institute of Technology

deDoes B.
[1985] “Trinité”
to appear in Visible Language, Vol XIX

Douglas DH, Peucker TK

[1078] “Algorithms for the reduction of the number of points required to represent
a digitised line or its caricature”
Canadian Cartographer, vol 10 no 2

142

Durer A.
[15635] “Of the just shaping of letters”
Translated by R.T. Nichol; Dover publications Inc., New York, 1965;

Engelbart D. & English W.
[1068] “A research centre for augmenting human intellect”
Proceedings of AFIPS Fall Joint Computer Conference

Flowers J.
[1984] “Digital type manufacture: an interactive approach”

Computer, vol 17 no 5

Foley J.D. & Van Dam A.
[1982] “Fundamentals of Interactive Computer Graphics”

Addison Wesley

GKS
[1984] “Computer Graphics Special Issue”

Glauvert T.H. & Wiseman N.E.
[1985] “Real-time Image Combination”
Proceedings of MICAD 85, Hermes

Gosling J.A.
(1984] “A User Interface Toolkit”
Proceedings of Protext 1, Boole Press

Goudzwaard B.
[1981] “Idols of Our Time”
InterVarsity Press; English Translation 1984; pg 23

Greggains A.
[1985] “A Structured Computing Environment”
PhD thesis, University of Cambridge

GSPC

[1977] “Status Report of the Graphics Standards Planning Commitiee of ACM-
SIGGRAPH”
Computer Graphics, vol 11 no 3

Hobby J.

[1985] “Smootli, easy to compute interpolating splines”
Stanford University Computer Science Department, STAN-CS-85-1047

Ingalls D.H.H.
[1981] “Design principles behind Smalltalk”
Byte, August 1981

Karow P. et al.
[1979] “Ikarus-system: computer-controlled font production for CRT and

Lasercomp”
URW Unternehmensberatung Karow Rubow Weber GmbIl, Hamburg,

Germany

143

Kasik D.J.
[1982] “A user interface management system”
Computer Graphics, vol 16 no 3

Kay A. & Goldberg A.
[1977) “Personal Dynamic Media”
Computer, vol 10 no 3

Kay A.
[1969] “The reactive engine”
PhD thesis, University of Utah

Kilgour A.C. .
[1981] “A hierarchical model of a graphics system”
Computer Graphics, Vol 15 no 1

Kindersley D.G. & Wiseman N.E.

[1978] “Letter Spacing”
British Patent application number 37544/78; Patent number 2004502

granted 1982

Kindersley D. & Wiseman N.
[1979] “Computer-aided letter design”
Printing World, October 1979

Knuth D.E.
[1979] “Tex and Metafont: new directions in typesetting”
American Mathematical Society and Digital Press

Kohen E.
[1985] “An interactive method for middle resolution font design on personal

workstations” ‘
ETH, Institut fiir Informatik, Ziirich

Lantz K. & Nowicki W.L
[1984] “Structured graphics for distributed systems”
ACM Transactions on Graphics, vol 3 no 1

Leitch S. & Smith F.J.
[1984] “Cubic splines in font design”
Proceedings of Protext 1, Boole Press

McGregor S.
[1083] “The Viewers Window Package”
In “The Cedar System: an Anthology of Documentation”, Xerox PARC

CSL-83-14

Mergler H.W. & Vargo P.M.
[1968] “One approach to computer assisted letter design”
Journal of Typographic Research (now Visible Language), vol 2 pg 299

Moody K. & Richards M.
[1980] “A Coroutine Mechanism for BCPL”
Software—Practice and Experience, vol 10 pg 765

144

Moran T.
[1981] “Guest editor’s introduction: An applied psychology of the user”

Computing Surveys, vol 13 no 1

Murch G.M.
[1984] “Physiological Principles for the Effective Use of Color”

IEEE Computer Graphics and Applications, vol 4 no 11

Myers B.A.
[1984] “The User Interface for Sapphire”
IEEE Computer Graphics and Applications, vol 4 no 12

Needham R.M. & Herbert A.J.
[1982] “The Cambridge Distributed System”

Addison Wesley

Newman W.M.
[1968] “A system for interactive graphical programming”
Proceedings of AFIPS Spring Joint Computer Corference

Olsen D. & Dempsey E. ,
[1983] “SYNGRAPH: a graphical user interface generator”
Computer Graphics, vol 17 no 3

Purdy P. & McIntosh R.
[1980] “Forward Thinking”
British Printer

Richards M., Aylward A.R., Bond P., Evans R.D. & Knight B.J.
[1979] “TRIPOS - a portable operating system for mini-computers”
Software—Practice and Experience, vol 9 pg 513

Richards M.
[1969] “BCPL: a tool for compiler writing and system programming”
Proceedings of AFIPS Spring Joint Conference

Rosenthal D.S.H.
[1981] “Methodology in computer graphics reexamined”
Computer Graphics, vol 15 no 2

Ruggles L.
[1986] “Paragon - an Interactive, Extensible Typeface Design Environment”

Forthcoming PhD thesis, University of Massachusetts

Smith D.C., Harslem E., Irby C. & Kimball R.
[1982] “The Star user interface: an overview”
Proceedings of AFIPS National Computer Conference

Smith D.C., Irby C., Kimball R., Verplank B. & Harslem E.
[1982] “Designing the Star User Interface”
Byte, April 1982

Steinberg S.H.
[1955] “Five Hundred Years of Printing”

145

Penguin Books

Strubbe H.J.

[1983] “Kernel for a responsive and graphical user interface”
Software—Practice and Experience, vol 13 pg 1033
Styne B.A.

[1985] Title unknown
Forthcoming PhD thesis, University of Cambridge

Styne B.A., King T.R. & Wiseman N.E.
[1085] “Pad structures for the Rainbow Workstation”
Computer Journal, vol 28, no 1

Sutherland LE.
[1963] “Sketchpad: a man-machine graphical communication system”
Proceedings of AFIPS Spring joint computer conference

Tesler L.
[1981] “The Smalltalk environment”
Byte, August 1981

Thacker C.P., McCreight E.M., Lampson B.W., Sproull R.F. & Boggs D.R.
[1981] “Alto—a personal computer”
In “Computer Structures—readings and examples”, edited by Siewiorek,
Bell and Newell; McGraw-Hill

Updike D.B.
[1937] “Printing Types—their history, forms and use”
Harvard University Press; pg 6, pg 13

Wallace V.L.
[1976] “The semantics of graphic input devices”
Sigraph/Sigplan symposium on graphic languages

Wilkes A.J., Singer D.W., Gibbons J.J., King T.R., Robinson P. & Wiseman N.E.
[1984] “The Rainbow Workstation”
Computer Journal, Vol 27 no 2

Wilkes A.J.
(1982] “Lexlib—a user-extensible lexical analyser”
Rainbow Group User Guide, April 1982

Wiseman N.E. & Robinson P.
[1977] “An operating system for interactive terminals”
Software—Practice and Experience, vol 7 pg 501

Wong P.C.S. & Reid E.R.
[1982] “Flair—a user interface dialog design tool”
Computer Graphics, vol 16 no 3

Zapf H.
[1870] “About alphabets—some marginal notes on type design”

MIT Press; pg 55

146

Appendix 1

Imp vger manual

Imp User Manual

Lynn Ruggles — August 1985

1. Getting Started

To run the fount editor Imp, you will be using the Rainbow workstation. There are
certain things that must be set up by a Tripos expert before you use Imp for the
first time—Appendix B describes these. The workstation consisis of a black and
white monitor (or black and orange as it happens), a colour monitor, and two
keyboards. The black and white keyboard will be used while you are typing
commands to the black and white monitor and the coloured keyboard will be used to
type information while you are using the colour monitor. The conventica followed in
the manual is that anything that you are supposed to type in will be displayed in
bold face type.

To login to Rainbow, using the black and white monitor and keyboard, press the
Break key (upper right hand corner of the keyboard), then type crainbow. You
will then be asked for your user name and password.

user: gutenberg
password: typo

You will not actually see your password as you type it—this helps you to keep it
gecret. Eventually Rainbow will respond on the black and white screen and you must
now tell it to run Imp.

RAINBOW-1> imp

A lot of information will appear on the screen finishing with a string of dots followed
by the word done at which point a cursor should appear on the colour screen and
you should switch to the coloured keyboard. If you wait a long time for the word
done and nothing appears to be happening, the system has probably crashed; check
the section in this manual on Troubleshooting for information on how to start things
up again.

Note that at any time while you are using Imp, you can generally cancel the effects
of the last command you gave by hitting the cancel key on the right side of the
keyboard. This should return you to your previous state. The system only
remembers the current state and the previous state so this only undoes the last
command. It doesn’t remember any further back than that. If you hit cancel twice,
the first one cancels the command, and the second one cancels the cancel, putting
you back into the state that you just cancelled.

Once Imp is running, switch to the coloured keyboard.

2. Cursor and Window Information

To work with Imp, you will be using either a mouse (a small round device with one
wire coming out its side and three buttons on the front) or a atylus (looks like a pen
but has a wire coming out the top).

Imp User Manual 1 14 May 1986

2.1 Mouse

Movement of the mouse results in movement of the cursor on the screen. The cursor
can be seen ag a small black dot. If it changes to an hourglags and you can’t move it,
the system is processing some information and you will have to wait natil it changes
back into a dot before you can resume fount editing. If you can move the hourglass,
the system is expecting you to do something before fount editing continues. This
happens when you are moving information between windows—there’ll be more about
this later. There are three switch buttons on the mouse numbered 1-2-3, left to right.
In this manual, clicking a button will mean pressing the button and releasing it, and
pressing a button will mean pressing the button and holding it down.

Button 1 is used for pointing at something that is already on the screen. Move the
cursor o that it is positioned over the item or location that is to be selected, then

click or press button 1.

Button 2 is used to get pop-up menus. As long as the button is pressed, the menu
appears on the screen. Movement of the cursor within the menu results in the item
under the cursor being highlighted by a red box. If the button is released while an
item is highlighted, that item is selected. Each window has a different pop-up menu
as does the background screen.

Button 8 is used for window manipulation such as moving a window to a different
position on the screen or changing its size. To move the window, hold the button
down while the cursor is positioned in the centre of the window and move the cursor.
The window will follow the cursor. You can also move the window by placing the
cursor over the name tag at the top left corner of the window. To change the size of
the window, hold the button down while the cursor is on the edge of the window and
move the cursor so that the window grows larger or smaller. Note that each window
has a maximum size beyond which it cannot grow any more.

2.2 Stylus

Instead of using the mouse, you might find it easier to use the stylus. Move the
mouse out of the way and, if it is there, move the red pad off the top of the blue
stylus tablet. The cursor should respond to movements of the stylus in the same way
that it responded to movements of the mouse.

The stylus can be used to select objects in the same way that Button 1 was used on
the mouse. When the cursor is positioned over an item or location that is to be
selected, hold the stylus perpendicular to the tablet and press down on the tip.

Instead of buttons on the stylus as there were on the mouse, there are three buttons
on the upper right corner of the coloured keyboard. To get pop-up menus, you must
use the middle key, and to do window manipulation you must use the rightmost key.
The leftmost key can be used as well as the stylus to select items on the screen.

You may instead chose to use the stylus as a drawing tool, and use the mouse
buttons for selection. If you decide to do this, position the mouse so that it is on the
table next to the tablet, and try not to move it when you press a button. If you try
to move the cursor with the stylus and it seems to jump around, it is probably
because you are also moving the mouse so that Imp is receiving input from both the

Imp User Manual 2 14 May 1986

mouse and the stylus and is trying to follow both of them. Take your hand off the
mouse and hit the Home button on the right edge of the keyboard. The cursor
should return to the center of the screen.

2.3 Windows

When you are running one of the editors, there will be several sub-windows within
each large window on the screen. These sub-windows Liave several functions.

The Master Fount and the Raster Fount windows have two sub-windows. The top
window displays the characters that are in the fount. Different characters can be
selected by moving the red box to the appropriate character. Press Button 1 and
move the cursor until the box is positioned over the character you wish to select. An
empty space indicates that there is no information stored for that slot. The lower
sub-window displays the labels for the various attributes of the fount. These are
entered via the coloured keyboard.

The Edit Masters and the Edit Rasters windows have a large sub-window which will
be referred to as the working area and the small window in the upper corner will be
referred to as the reference area. This window contains a smaller version of what is
displayed in the working area. Other windows will contain menu selections and will
be referred to as selection pads.

There is a red box displayed in the reference area. Changing the dimensions of the
box allows you to select which section of the character you want displayed in the
working area (note that if the box extends to the edges of the reference area, it may
be hard to see. If you aren’t sure about it, try changing its size just to see that it is
really there). If you move the cursor to the reference area, pressing Button 1 when it
is at the edge of the red box and moving the cursor will result in changes in the size
of the box. The box is always square. If you want to see the entire character, you
should change the size of the box so that its edges extend to the edges of the small
window. Pressing Button 1 while it is in the centre of the box will allow you to move
the box until it is positioned over the section of the character that you want to look
at. Note that in the Raster Editor, you can’t change the size of the box but you can
move it around.

Selection of some menu options will result in a small purple form popping up on the
screen. The cursor will change to a miniature version of the form. At this point, the
program waits for you to enter some data in the window. Type in the information, '
using the orange up and down arrow keys to move frcm one field in the form to
another. After you have entered the data, press the Return key on the coloured
keyboard and Imp will continue. If you wish to cancel the command and get rid of
the menu, press the Cancel key.

2.4 Window Icons

Once you have a window on the screen you will notice that at the top of it is a small
tag containing the name of the window and three icons. The leftmost icon is used to
Open the window so that it is redisplayed on the screen (the icon looks like four
arrows pointing out from the centre of a box), the middle icon is used to Close Down
the window, so that only the tag is left on the screen (the icon looks like four arrows
pointing into the centre of a box), and the rightmost icon is used to hide the window

Imp User Manual 3 14 May 1986

if it is obscuring another window. It is a good idea to Close Down one window before
Opening another window as Rainbow seems to crash less often that way.

2.5 Moving data hetween windows

You will often need to move data between windows—for example to edit a character
you must move it from a fount window to an editor window. Data is moved by
sending it along pipes. You must send it from one end and get it from the other to
complete the transfer (you can do these actions in either order). When you have sent
data from one window but not yet got it in another, the cursor will appear as an
hour glass in the first window. You can’t do anything else in this window until the
transfer is either completed elsewhere or cancelled in this window.

3. Files

You will be storing several different kinds of files while using Imp. A master fount
file contains outlines of character shapes. A raster fount file contains raster
characters, or characters shapes that are made up of pixels. Pixels are discrete,
usually square, picture elements. The characters stored in this file are similar to ones
that might have been drawn on a piece of graph paper. A painting is stored in a
painting file, and spacing information for characters are stored in spacing files. You
will be using yellow menu commands to save information in the master fount file,
the raster fount file and the painting file. Spacing information is automatically saved
when you save a master fount file.

Information that has been stored in a file can be retrieved at some future date,
provided you remember the labels that you typed in when you stored the file. The
file names are generated automatically by Imp and are derived from the labels you
fill in when you save the file. It is a good idea to label founts with a name that
represents the typeface so that it will be easier to recall it later. Note, however, that
the name of the file does not convey any information to the program itself. If you
choose to name a file Roman the program will not complain if the fount contains
Italic characters. The name is simply a convenient way for you to remember and
save what you have done; you could choose to name them after your friends or
favourite colours.

The name of the characters within each file is important. The Display Text window
looks for familiar character names in order to map them to real characters. The
convention followed in the program is that characters are named by either
‘Uppercase-’ or ‘lowercase-’ followed by the character, e.g. Uppercase-C, lowercase-
m. Numbers are mapped to the name ‘digit-* followed by the digit, e.g. digit-4, and
punctuation is mapped to a descriptive name of the symbol, e.g. SemiColon,
QuestionMark. Characters which do not map to a printable Ascii code are labeled by
‘> followed by the ascii number, e.g. the character which maps to ascii code 12
would be labeled ‘c12’. A complete list of mappings can be found at the end of this
document.

4. Running Imp

First the workings of the system will be described, then some sample scenarios will
be presented. If you aren’t sure what you are doing, check the back section of this

Imp User Manual 4 14 May 1986

manual to see if there is an example that you can follow. Also, don’t forget about
the cancel key on the right side of the keyboard which will cancel the last
command.

After Imp is started, the screen will be dark grey with a cursor displayed in it.
Movement of the mouse or stylus will result in cursor movement on the screen.
Movement of the cursor corresponds to the movement of the mouse or stylus so if
you consider the top of the tablet to be the edge closest to the screen, and the
bottom to be the edge closest to the edge of the table, and you pull the mouse or
stylus towards you thus moving it toward the bottom of the tablet, the cursor moves
toward the bottom of the screen. If you lose the cursor, press the orange button
labeled home on the right edge of the keyboard. That should bring the cursor back
to the centre of the screen. If it doesn’t, the system has probably jammed and you
will have to start over. Even if things seem to be working alright for the moment it
may be a good idea to look at the section on Troubleshooting at the end of the
manual to get some ideas about how to keep it that way! :

To start working with the system, press the centre bufton to get the background
menu displayed. Once you have some founts to edit, you may want to start with any
of the menu selections, but to start from scratch, you should select Edit Master.

Each of the background menu selections will be discussed in a separate section, so to
find out how to use any of them, consult the relevant section of this manual. The
selections are:

Master Fount: shows what characters exist, allows you to select the name of the
master fount.

Edit Masters: used for sketching or editing outline drawings of characters.
Compare Masters: used to look at characters together and to adjust the spacing.

Raster Fount: shows what raster characters exist, allows you to create a raster
fount or select the name of an existing one.

Edit Rasters: used to edit raster versions of the characters.

Display Text: used to look at text patterns using the characters in a particular
fount.

Finish: Terminate this session of Imp. The system won’t let you do this if you still
have any windows around—make sure you save everything you want to keep before
finishing your windows.

5. Master Fount

The master fount window has labels where you are to fill in the name of your master
fount. If you are starting from scratch, fill in names that seem appropriate. Use the
coloured keyboard to enter text, and use the orange arrow keys on the keypad on
the right side of the keyboard to move up and down in the window. The size can be
0 if you do not intend the design to be for a specific size. Note that the last item,
Letter, will need to be typed in for each character. If you begin to edit a non-
existent character, this field will contain the name Unknown. The rest of the fields
will stay the same.

Imp User Manual 5 14 May 1986

Magter Fount items:

Family: cambridge
Style: roman

Size (decipoints): 100
Space Table: standard
Letter: lowercase-m

6.1 Master Fount Menu

Read in from File: reads in the fount that you have specified. If it exists, each of
the characters in the fount will be displayed in the top half of the window. If it
doesn’t exist, a message to that effect will be displayed on the black and white
monitor. Check your fount name and try again.

Copy out to File: once you have created or edited some characters, use this
command to save them in an external file. Unless you save them in a file before you
finish Imp, they will disappear forever. If you have already saved fount information
using this fount name, a form will pop up asking if you want to overwrite the old
information. Answer Y(es) or N(0). When you save a file, all the current information
for the fount will be saved. If you don’t wish to overwrite your old file, you will have
to change the name of the new fount and then select Copy out to File again.

Send Data: windows in Imp communicate by Sending and Getting data and
characters. Several different kinds of information can be sent including fount data,
grid information, or individual character data to the various windows. If you are
sending general fount or grid data, it does not matter what character is selected by
the red box. If you wish to send character data though, you will have to select the
character by moving the red box before you select Send Data.

Get Data: after you have edited a character, you must Send it from the editing
window, then you must Get Data in the Master Fount window. This will update the
information for that character in the Master Fount. If you have created a new
character, make sure the red box is positioned over an empty space before selecting
Get Data on the menu. After getting the character, type in its name in the Letter
field at the bottom of the window. Use descriptive names if possible. (For naming
conventions used by this program, see the section on Files.)

Clear: clears the information in the Master Fount window.

Finish: terminates the Master Fount window.

6. Edit Masters

This window allows you to paint or sketch new characters, create or edit outline
characters, and set up grids. There are three pads associated with this window: the
paint pad, the grid pad and the outline pad. Each pad is transparent so that items
drawn in one pad can be seen when working in the other pads. You can clear each
pad separately without affecting what is displayed in the other two pads. If, for
example, you first set up some grids using the grid pad, then sketch a character in
the paint pad, then draw an outline around the character in the outline pad, you can
erase the grid, the painting or the outline without erasing the others.

Imp User Manual 6 14 May 1986

There are two selection areas in this window. The lower area allows you to select one
of the pads, and the upper area then displays commands that you can select for that

pad.

8.1 Idit Masters menu:

Get outline: gets the character that has been Sent from the Master Fount window.
Note that Getting and Sending data can be done in any order. You can Send the
data from the Master Fount window and then Get it in the Edit Masters window, or
you can Get it first, then go back to the Master Fount window and Send it.

Send outline: after editing an outline, if you want to save it, you must send it back
to the Master Fount window. You then have to Get it from within the Master Fount

window.

Fill outline: fills in the outline in the window with a solid grey pattern. This colour
is in the painting pad, so to erase it, you will need to select Clear Painting from the
yellow menu. Also note, that since is it in a different pad, if you move the outline,
the fill colour will not move with it.

Clear outline: erases the outline in the window.

Get grid: Gets grid information from the Master Fount window. You must Send
Data from the Master Fount window.

Send grid: Sends grid information to the Master Fount window. You must Get
Data in the Master Fount window.

Clear grid: erages the grid in the window.

Clear painting: erases the painting in the window.

Copy painting to file: copies a painting done with the paint tool to a file.
Get painting from file: gets a painting from a file.

Copy pen to file: copies the current pen to a file.

Get pen from file: gets a pen from a file.

Change parameters: displays a form for you to change the baseline, cap-height,
left or right margin. The baseline to cap-height distance is always 0 to 10000. If you
want a larger space above the cap-height, you must enter a number larger than
10000. If you want a larger space below the baseline, you must enter a value smaller
than 0. You can also set a sensitivity value which says how close the cursor must be
to a point in order for it to be selected. This value also affects the Filter command in
the TRANSFORMS menu, described below.

Finish: terminates this window.

6.2 Outline

If Outline is selected, a menu of outline choices appears. By selecting various choices,
you can edit the outline drawings. To create an outline, you should first select
Create Linechain. Once there is a linechain in the window, you can edit it.

Imp User Manual 7 14 May 1986

The menu selections are:

Move point: allows you to pick up a point and move it. Press Button 1 when you
are on top of the point that you want to move and hold the button down until you
have positioned the cursor to where you want the point. The point will follow the
cursor. Then release the button.

There are currently two forms of Move Point. The first, which is what works when
Imp is first started, allows you to move individual points. You can switch between
the first and second form by pressing the character M on the keyboard. The second
form allows you to select an existing point by pressing Button 1, then to draw a
curve from that point with the button held down, and when the button is released,
the linechain closest to the curve is moved so that the points lie along the curve.
You must start near an existing point. If you are not close enough, nothing will
happen. This form allows for more free-hand sketching of curves, but you must have
an existing line chain for it to work. To get back to the first form, press the
character M again.

Add point: Adds a point on a linechain between two existing points. Position the
mouse over the position on the linechain where you want to add the point and click
Button 1.

Link/Unlink: Links or unlinks two points together. Press Button 1 and position
the cursor over the first point then hold the button down until you are over the
second point. Once you have selected the first point, the points that can be linked to
or unlinked from it will be highlighted with a red box when the cursor passes over
them.

You can use this command to delete a single point. To do this the point has to be at
the end of a linechain (that is, only connected to one other point), and you will have
to push it off the end of the linechain. First select the point that is connected to the
point you want to delete, then select the point you want to delete. The linechain
connecting the two points will be unlinked and the end point will disappear.

Create linechain: creates a line of points connected by straight lines. Press Button
1 down when you want to put down a point and release it when the point is
positioned correctly. Each point in a linechain will be connected. To make two
separate linechains, create the first line chain, then select one of the other menu
options, then select Create linechain again and create the second linechain.

There are currently two forms of Create Linechain. The first, which is what works
when Imp is first started, allows you to position individual points. You can switch
between the first and second form by pressing the character C on the keyboard. The
second form allows you to draw a continuous line. Imp will automatically leave a
trail of points along the line that you drew. This form allows for more free-hand
sketching of curves. To get back to the first form, press the character C again.

Delete linechain: deletes a connected row of points. Position the cursor over one of
the points in the linechain and press Button 1.

TRANSFORMS: switches to the TRANSFORMS menu (see below).

Imp User Manual 8 14 May 1986

PARTS: switches to the PARTS menu (see below).
6.3 TRANSFORMS

Clicking this option results in a menu of transformation operations being displayed.

Fix/Free: either Fixes a point so that it can’t be moved or Frees the point so that
it can be moved. Position the mouse over the point that you want to select and
press Button 1. A fixed point is marked by a larger dot than a free point in the
working area. Fixed points are also marked by red dots in the reference area. If you
want to filter or smooth a section of a linechain and don’t want other points on the
linechain to move, you can fix the begin and end points of the section you want to
process. This provides a boundary to the filtering or smoothing operation.

You can also Fix or Free a series of points by pressing the button down and holding
it while you sweep the cursor along an existing linechain. All the points close to the
path of the cursor will be either Fixed or Freed depending on their prior state.

Filter Section: removes extra points from a curve section. The section can be
delimited by Fixed points. Fix the beginning and end point of the section to be
filtered, then select Filter Selection, then click one of the points in the section. If no
points are Fixed, the entire linechain is filtered. The larger the sensitivity value
given in the Change Parameters form, the more points are removed. Experiment
with different values to get the effect you want.

Smooth Section: Adds extra points between existing points in order to create a
smoother line. The section to be Smoothed can be delimited by Fixed points. Fix the
beginning and end point of the section to be smoothed, then select Smooth Selection,
then click one of the points in the section. If no points are Fixed, the entire linechain
is smoothed. If there are too many points in the resulting section, use Filter Section
to try to get rid of some of them. If you mistakenly smooth a linechain without
fixing points, the cancel button will undo the smoothing.

Translate: moves a part in the direction indicated by a line drawn by clicking
Button 1 twice. Position the cursor in the working area. Press the button and hold it
down until you have positioned the initial mark. This mark becomes the endpoint of
an elastic line. Press the button again and move the cursor until the line is
equivalent to the distance and angle that you want to move the part. Then release
the button.

This command, in conjunction with the Fix/Free command, can be used to stretch a
character in a particular direction. If you fix several points on a character, then
select Translate and move the character, the fixed points do not move, but the rest
of the character does. This could be useful, for example, if you design a short stem
with a serif at the top and bottom, you could then fix the points in the lower serif,
then by translating the rest of the character make it taller, resulting in an ascender
stem whose serifs match the smaller stem.

Scale: scales a part. Position the cursor in the working area and draw a line in the
same way as for the Translate command. Move the cursor so that the line moves up
or to the right to make the part larger, or so that it moves down or to the left to
make the part smaller. The longer the line, the more scaling will be done. When you

Imp User Manual 9 14 May 1986

release the button, the scaling is performed. This is kind of arbitrary, so you will
have to play around with it a little to figure out how it works.

BACK: returns to the main menu.

6.4 PARTS

The Part selection allows you to break up a design into a series of parts. Each part
can be saved separately and then used to create new designs. For example, once you
have designed the lowercase-n, you might want to use the stem or the arch in several
other characters. You can break the n into two parts and save them. When you
design the lowercase-m you might want to use the arch from the n as a model for
the arches in the m. You can overlap outlines in different parts, whereas if they were
in the same part the design would not be coloured in correctly when you filled it or
scan converted it.

One part is always current and its line chains are drawn in black. The other parts
are drawn in pale grey. All the outline and transforms commands only apply to the
current part.

Next Part: makes the next part in the part list current. It automatically moves
back to the first part when it reaches the end of the list.

Create Part: Add a new part to the parts list. You must have Floated some
linechains before selecting this option.

Delete Part: remove the current part.

Float Line: floats a linechain so that it can be extracted from the character and
made into a part. Click Button 1 over any of the points in the line. The entire line
will turn red. More than one line can be floated at a time. Then select Create Part
and all the red lines will be made into a separate part.

Drop Line : un-floats a connected linechain. Position the cursor over one of the
points in the line and click Button 1. The line becomes part of the current pari and
so turns black.

BACK: returns to the main menu.

8.5 Crids

This selection allows you to draw guidelines on the window. You probably want to
set your guidelines before you design any characters. To add a line to the screen,
first select the type of line you want, then move the cursor into the working area
and press Button 1. This will result in a line being drawn on the screen. If you hold
the button down, you can move the line. When you release the button, the line stays
put. The choices are:

Change x-height: draws a solid line. This line is different from the dashed lines as
it has a special meaning for Imp. It is used for such things as calculating the spacing
of lowercase characters in the Compare Masters window.

Add horizontal: draws a dashed horizontal line.

Imp User Manual 10 ’ i4 May 1986

Add vertical: draws a dashed vertical line.

Delete line: move the cursor to the line you want to delete, click Button 1 and the
line will disappear.

Move line: move the cursor to the line you want to move, press Button 1 and hold
the button down. As you move the cursor the line will also move.

Measure: this can be used to measure distances between objects on the screen.
Press Button 1 and hold it down until you have positioned the cursor at the starting
point of your measurement, then release it. Press Button 1 again and hold it down
until you have positioned the cursor at the end of the span you want to measure,
then release the button. The distance between the start and end point will be
displayed in a small white window below the reference area and above the selection
area.

As you move the cursor, the distance is updated continuously, so you can also use
this feature to measure a distance you haven’t really set up yet; you can place one
grid line, then measure a certain distance away from it with the measuring tool, then
place a second grid line at the point indicated by the end of the measurement.

It is a good idea to measure the stem width of your characters and make a note of
the value. When you get to the Compare Masters window where you calculate
spacing for your characters, you will need to know what the width of the stems are
in order to generate the correct spacing.

6.6 Paint

This selection allows you to draw shapes in the working area with an edged pen.
You might prefer to sketch some character shapes rather than drawing outlines
directly, so this pad allows you to do some preliminary drawing. After the shapes are
defined, you can then trace around the outside of them with outlines. To save the
painting in a file, select the command Save Painting from the yellow menu and when
prompted, fill in a name for the file. To retrieve a painting that you have saved, use
the Get Painting command from the yellow menu. You will also have to fill in the
name of the file. There are two similar commands in the yellow menu to save and

restore a pen.
Paint: draws with the selected pen nib. If you are drawing with the stylus, you will

have to move it slowly to get a smooth connected line. The mouse produces a darker
line but is harder to control.

Erase: erases with the selected pen nib. To erase the entire picture, use the Clear
Painting command in the yellow pop-up window.

Pen Angle window: displays the current pen width and angle. You can change the
pen by moving the cursor to this window and pressing Button 1. While holding the
button down, move the cursor so that the line displayed has the width and angle
that you want. Release the button and the pen is fixed.

7. Compare Masters

The Compare Masters window allows you to determine spacing for characters in a
Master Fount. You can display up to 10 characters in two rows of 5 characters each.

Imp User Manual 11 14 May 1986

You must have already created the characters using the Edit Masters window.

7.1 Compare Masters menu

Get character 4 spacing: gets a character with its spacing information from the
Master Fount window. Before you get a character, be sure fo change the current slot
value if there is already a character in the current one. Otherwise the new character
will overwrite the last one. (This may, however, be what you want to do.)

Copy character -- spacing: copys a character to the current slot from the
designated one. A small form will pop up with a space for you to indicate which slot
you want the character copied from.

Save character spacing: save spacing information for this character. You will
need to Get Data in the Master Fount window. If you try to save the spacing with
the wrong character, an error message will be printed on the black and white
monitor.

Get interline spacing: gets interline spacing information from Master Fount. You
must Send Data from the Master Fount window.

Save interline spacing: saves interline spacing information in Master Fount. You
must Get Data in the Master Fount window. If you try and save the interline
spacing with the wrong fount, an error message will be printed on the black and
white monitor.

Get Fount Data: gets the fount data from the Master Fount window. You will
need to Send Data from the Master Fount.

Calculate spacing: calculates the spacing for the character in the current slot. This
takes a while so it is a good idea to save the spacing after it is calculated in case the
system crashes so you won’t have to do it again. Before the calculation can be done
you must fill in the form that appears. You must say whether the character is to be
treated as uppercase or lowercase, and what the thicknesses of the thick and thin
strokes are. Once you have filled in the form you must hit Return on the keyboard.
If you don’t want to do the calculation after all you can hit Cancel instead.

Clear : clears the characters on the screen.

Finish: terminates this window.

7.2 Compare Masters lower left window

This window gets its information from the Master Fount window. There is no way
for you to type any text into this window. It is displayed for information purposes
only. To get information into it, you must select Get Fount Data in this window,
then select Send Data in the Master Fount window.

Family: cambridge
Style: roman

Size (decipoints): 100
Space Table: standard
Interline Space: 16000

Imp User Manual 12 14 May 1986

Spacing Constant: 0

7.3 Compare Masters lower right window

This window displays information calculated by the spacing routine. The top item in
the list is the Current Slot. Change this value to change which slot the window is
either reading, writing, or calculating spacing for. The value must be a number from
1-10 inclusive. The next item, the character’s name, cannot be changed, but is
included in this window since it is associated with the rest of the data for the
character selected by the Current Slot. The other items are values related to the
spacing for the character. They are calculated automatically by the spacing routine,
so you probably don’t want to change them, but you are allowed to if you don’t like
the spacing values calculated by the programme.

Current Slot: 1
Character: lowercase-n
Name: none

Centre: 0

Before: 0

After: O

Kern with : none

by : 0

8. Raster FFount

The Raster Fount window allows you to retrieve a saved raster fount or to create
one by converting a master fount into a raster fount. Note that a raster fount
requires that you specify the resolution of the output device that this design is
meant for. If you don’t have a particular output device in mind, a number in the
range of 200-500 would give you a good idea of what the design will look like as a
raster fount. The number of bits per pixel is set automatically to 1 as this is the
value needed for founts for printers. This value can be changed if the fount is a grey
scale fount with more than 1 bit per pixel.

Raster Fount items:

Family: cambridge

Style: roman

Size (decipoints): 100
Resolution (pixels per inch): 240
Bits per pixel: 1

Space Table: standard

Letter: lowercase-m

8.1 Raster Fount Menu

Read in a file: read in a raster file from disk. The raster file must have already
been created.

Scan convert from master: convert a master fount into a raster fount. Imp will
look for a Master Fount window with a fount of the same name as the one you have
given in the Raster Fount window. The size does not have to be the same and Imp

Imp User Manual 13 14 May 1986

automatically compensates for this. If you don’t have a Master Fount window with a
fount in it, you must create one, and read in the fount data from a fount file. You do
not need to Send Data to the Raster Fount window, nor do you need to Get Data in

the Raster Fount window.

Copy out to files save a raster file on disk. Once you have created a raster fount or
edited some raster characters, use this command to save them in an external file.

Get data: get data sent from the Edit Raster window. The data will need to be
Sent from the Edit Raster window.

Send data: send data to the Edit Raster or Display Text window. If you are editing
a raster, the character which has been selected by the small red box in the upper
window will be sent to the Edit Raster window. You will need to Get Data in the
Edit Raster window. If you are displaying text, all the character information will be
send to the Display Text window (you do not need to send it character by

character).

9, Edit Raster

The Edit Raster window allows you to edit the raster patterns created in a Raster
Fount. Like the master editor window this window has a reference area and a
working area. There is also a special display area at the bottom leit corner which
shows the character at the size it would be when printed on paper, or at a specified
magnification of this size.

9.1 Edit Rasters menu

Get character: gets a character from the Raster Fount window. The character
must be Sent from the Raster Fount window.

Send character: sends a character to the Raster Fount window. You must then
Get the character in the Raster Fount window.

Clear: clears the window.

Change parameters: displays a form for you to change the margins and
magnification. Changing the margins gives more or less space around the character
for you to work in. Changing the Magnification changes the size of the character
displayed in the small lower window. After you have changed the values, hit the
Return key on the keyboard.

Finish: terminates the window.

9.2 Editing pixels

Once you have got a character for editing you can selected the area to work on by
moving the box around in the reference area, using button 1. You can then change
the pixels in the working area by moving the cursor to a pixel and clicking button 1.
This steps the pixel colour to the next possible colour—for founts with one bit per
pixel this means that the colour swaps between black and white each time the
button is clicked. For grey scale founts with more bits per pixel the colour moves
through a series of greys. If you hold the button down you can sweep the new colour
through other pixels as you move the cursor.

Imp User Manual 14 14 May 1986

10. Display Text:

The Display Text window allow you to display text from an external file using the
characters in a raster fount. First, create the file containing the text you want to
display (check with a system guru if you don’t know how to do this, or for a quick
and easy method, see the examples section). You must have a raster fount displayed
in the Raster Fount window. The display text routine reads in the text file and tries
to match up characters in the file with names of characters in the fount. A lowercase
character will be matched with a character having the name ‘lowercase-’ followed by
the character, e.g. ‘lowercase-n’ in the fount will match the character ‘n’ in the text
file. Uppercase characters are specified by ‘Uppercase-’ followed by the character,
e.g. Uppercase-C. Numerals are specified by ‘Digit-’ followed by the digit and
punctuation is specified by a descriptive name for the punctuation sign, e.g.
QuestionMark, Period.

10.1 Display Text lower window
This window gets its data from the Raster Fount window. You can’t type anything

into it—it is just for information.

Family: cambridge

Style: roman

Size (decipoints): 100
Resolution (pixels per inch): 240
Bits per Pixel: 1

Space Table: standard

10.2 Display Text menu

Get Fount Data: gets fount information from Raster Fount window. You must
Send the data from the Raster Fount window. This information is displayed in the
white form at the bottom of the window.

Display file: pops up a form and requests the name of the file to be displayed, the
magnification of the characters, and the spacing constant to be used. The spacing
constant will be added between each of the characters.

Magnification: 2
File name: cambridge-test
Spacing constant: 0

Finish: terminates the window.

11. Finish

When you are done using Imp, you must first Finish each of the windows, then
Finish the program. Each of the windows has a Finish selection in its pop-up yellow
menu. If this is selected while in the window, the window and its icons will disappear
from the screen. When all of the windows have been removed, select Finish in the
background menu and Imp will terminate. If you try to Finish the program while
there are still windows on the screen, an error message will be displayed on the black
and white monitor.

Imp User Manual 15 14 May 1986

12. Saving files

If you are working with the paint command, you can select an ifem from the yellow
menu to save your painting in a file. You will be prompted on the screen for the
name of the file. After you have entered the name, press the Return button on the
keyboard.

If you are working with the Master Editor or the Raster Editor, the process of
saving your files is slightly more complicated. You should, however, make a practice
of doing this fairly often, for if Rainbow crashes, you will lose everything you have
done since the last time you saved everything.

To save a file, select one of the Fount windows (either Master Fount or Raster
Fount), make sure the labels are filled in, then select the menu item on the yellow
menu that says Copy Out to File. This will take all the information that is in the
Fount and save it permanently. If you have edited some characters, be sure to copy
them to the Fount window before you save the file. See the section at the end of this
document for an example on saving a file.

If you select Compare Masters, and calculate spacing values for your characters, you
will have to save the spacing information in a similar manner to the way you saved
the character information if you want it saved permanently. Unless you plan to
make extensive changes to your characters, it is a good idea to save the spacing
information once you have computed it, since it does takes quite a while to compute.
You don’t want to have to repeat the computation every time you want to look at
the character spacing. To save the information, Send the character data from
Compare Masters, then switch to the Master Fount window, Get the character data,
and then Copy Out to File.

To delete a character, you can simply delete all the information for the character,
specifically its name and outline or raster. You delete the outline or raster by
sending a blank character from the editor window.

13. Troubleshooting

Rainbow can be rather grumpy and so this section tells you what to do when things
go wrong. Be forewarned, things are likely to jam up at some point and you will
need to refer to this section to get started again. There are also a few tips here on
how to prevent Rainbow from getting jammed up, so even if you are just beginning,
look them over to save yourself some trouble later on.

13.1 How to Prevent Problems

Rainbow cannot support a lot of windows on the screen at one time. If you are
working in several windows at once, it is best to Close Down one window before
opening another. Also, the system can get jammed if you try to use the Raster
Editor and the Master Editor at the same time. You should Finish one of the
windows before starting up the other one. Note that Finishing a window and Closing
Down a window are not the same thing. To Close Down a window, you click either
Button 1 or Button 3 in the icon in the window tag which has the arrows pointing
inwards. The large part of the window will disappear. To get it back, you can click
the icon which has the arrows pointing outwards. When you Finish a window, the

Imp User Manual 16 14 May 1986

window is completely removed from the display and cannot be retrieved (unless you
hit the cancel key immediately). To start a new window, you must select it from
the background menu.

If you have just edited a character and want to save your changes, there is a quick
way to save what is on the screen without having o write all the character
information out to a file. Press the B button on the keyboard. This will backup the
screen information. If Rainbow crashes, once you have restarted it you can type R
to get the display back to what it was when you last hit the B character. It is
probably a good idea to backup the screen every few minutes if what you are doing
is something you really want to save. If Rainbow crashes and you decide you don’t
want your backup restored to the screen, just don’t hit the R character when Imp
starts up again. Rainbow is also sometimes picky about switching between the
mouse and the stylus. If you prefer to work with one or the other, it is best to start
out using that device than to switch halfway through the session. If you decide to
switch devices, it is best to save what you have done first.

13.2 Restarting Rainbow

If the cursor movement stops and hitting the Return key on the black and white
keyboard doesn’t result in any scrolling of the text on the black and white monitor,
then the system is probably jammed. You will have to start over again. Note that
the procedure for starting over is not the same as starting from scratch.

Using the black and white keyboard, press the Break key. In response to the
prompt, type csm. Then type sys rainbow -m rainbow. You will then be
prompted for your login name and your password. If you get an error message
instead of the login prompt, type R which will repeat the sys rainbow command.
After you have logged in, the system will automatically start up again.

14. Example Scenarios

14.1 Example 1: Editing and Saving files

Assuming you are working with an existing fount, the sequence will be something
like the following with yellow menu commands shown in brackets. You can use a
similar sequence for a raster fount too.

1. [Select Master Fount]

2. enter name of fount

3. [Read in from file]

4. select character to be edited (using Button 1 and moving the red box)
5. [Send Character information)]

6. Close Down Master Fount (use icon in the tag)
7. [select Edit Masters]

8. [Get Character information]

9. edit the character

10. [Save Character information]

11. Close Down Edit Masters (use icon in the tag)
12. Open Master Fount (use icon in the tag)

Imp User Manual 17 14 May 1986

13. [Get Character information]
14. [Copy Out to File]

You can send several characters before you copy them out to a file, but if you have
done extensive editing, it is best to save your changes often.

If you are editing a new character, in step 4 select an empty space and skip steps 5
and 8 (you don’t have to send any information since there isn’t any, and you don’t
have to get any because you didn’t send any).

If you are editing a new fount, you can do steps 7-11 first, then steps 1,2 and 4, then
steps 13-14 (or you can do them in the order shown, either sequence will have the
same result). Either way, you should leave out step 3 as the new fount will not yet
be in a file.

14.2 Example 2: Creating a Text file for use with Display Text

To create a text file, you need to go back to the black and white keyboard. First
press the CTRL key and S at the same time, then type 08 This will result in the
prompt Rainbow-8 on the screen. Then type input test. Then type the test
characters you want to display (not more than 6-8 lines as more than that won’t fit
in the Display Text window), and finish with /® on a separate line. You have now
created a file named test. You can go back to Imp and use this as the name of your
input file.

Imp User Manual 18 14 May 1986

Appendix A

0 cO1cl2c23c34c4d4bcb6cb

7c7T 8c8 9 c9 10 ci10 11 cii 12 ci2

13 c13 14 c14 15 c1b 16 c16 17 c17 18 c18

19 c19 20 c20 21 c21 22 c22 23 ¢23 24 c24

25 c25 26 c26 27 c27 28 c28 29 c29 30 ¢30

31 ¢c31 32 32

33 Exclamation 34 OpenDoubleQuote 36 Hash [CloseDoubleQuote]
36 Dollar 37 Percent 38 Ampersand

39 CloseSingleQuote 40 OpenParenthesis 41 CloseParenthesis
42 Asterisk 43 Plus 44 Comma

45 Minus 46 Fullstop 47 Oblique

48 Digit-0 49 Digit-1 b0 Digit-2

bl Digit-3 b2 Digit-4 b3 Digit-b

b4 Digit-6 b5b Digit-7 56 Digit-8

b7 Digit-9

58 Colon b9 Semicolon 60 OpenAngleBracket

61 Equal 62 CloseAngleBracket 63 QuestionMark

64 At

65 Uppercase-A 66 Uppercase-B 67 Uppercase-C 68 Uppercase-D
69 Uppercase-E 70 Uppercase-F 71 Uppercase-G 72 Uppercase-H
73 Uppercase-I 74 Uppercase-J 75 Uppercase-K 76 Uppercase-L
77 Uppercase-M 78 Uppercase-N 79 Uppercase-0 80 Uppercase-P
81 Uppercase-Q 82 Uppercase-R 83 Uppercase-S 84 Uppercase-T
8b Uppercase-U 86 Uppercase-V 87 Uppercase-W 88 Uppercase-X
89 Uppercase-Y 90 Uppercase-Z '
91 OpenSquareBracket 92 Backslash

93 CloseSquareBracket 94 Circumflex

95 Underline 96 Grave

97 Lowercase-a 98 Lowercase-b 99 Lowercase-c 100 Lowercase-d
101 Lowercase-e 102 Lowercase-f 103 Lowercase-g 104 Lowercase-h
105 Lowercase-i 106 Lowercase-j 107 Lowercase-k 108 Lowercase-1
109 Lowercase-m 110 Lowercase-n 111 Lowercase-o 112 Lowercase-p
113 Lowercase-q 114 Lowercase-r 116 Lowercase-s 116 Lowercase-t
117 Lowercase-u 118 Lowercase-v 119 Lowercase-w 120 Lowercase-x
121 Lowercase-y 122 Lowercase-z
123 OpenCurlyBracket 124 VerticalBar
125 CloseCurlyBracket
126 Tilde
127 c127

Imp User Manual 19 14 May 1986

