Technical Report A

Number 86

Computer Laboratory

The Entity System:
an object based filing system

Stephen Christopher Crawley

April 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1986 Stephen Christopher Crawley

This technical report is based on a dissertation submitted
December 1985 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St John’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Table Of Contents.

Introduction.

1.1 Background.

1.2 How the Entity System Happened.
1.3 Requirements for an Entity System.

1.4 The Structure of the Thesis.

Persistent Storage and Storage Interfaces.
2.1 Abstraction, Data Storage and Data Models.
2.2 Concrete Data Models.
2.2.1 The Unit of Data.
2.2.2 Addresses and Keys.
2.2.3 Files and Explicit File I/O.
2.2.4 Memory Mapped Storage Interfaces.
2.2.5 General Points.
2.3 Storage Interfaces in Programming Languages.
2.3.1 Conventional Interfaces.
2.3.2 Checkpointing as a Storage Interface.
2.3.3 Data Flattening.
2.3.4 Persistent Storage.
2.4 Databases and Database Management Systems.
2.4.1 Database Data Models.

2.4.2 DataDefinition in DBMS's.

10

11

12
13
14
16
17
18
19

2.4.3 Data Manipulation Facilities in DBMS's

2.4.4 DataEvolutionin DBMS's

The Basic Entity System

3.1
3.2
3.3
3.4

What is an Entity?
Entity Operations.
Some Examples of Entities.

Comparison with Other Languages and Systems.

Projections and Perspectives.

4.1

4.2

4.3

Projections and Perspectives.
Mechanisms for Projection.

Projection Ambiguity.

An Experimental Entity System.

5.1
5.2
5.3
5.4
5.5

5.6

The Scope of the Experimental System.
A Standard Storage Interface.

The Basic Entity System.

The Projection Mechanism.

A Model Filing System.

Lessons from the Experimental Entity System.

Implementation Issues.

6.1
6.2

Language Independent Class Definition.

Class Management.

21

22

24
30
34

42

46
48
56

63
65
70
75
78
80

84

92

6.3 Implementation and Resolution

Function Management. 93

6.4 Host Machine and Operating System Problems. 94

6.5 Improving Entity System Efficiency. 97

7 Conclusions. 101
References. 105
Appendix A. Dynamic Modules in Modula-2 112

Appendix B. Glossary. 115

Chapter 1 - Introduction.

1.1 Background.

Developments in programming languages have provided increasingly powerful
facilities for algorithmic and data abstraction. Data abstraction in the form of
record declarations emerged with COBOL, and algorithmic abstraction started
with FORTRAN. Algol 60 marked the start of formal data types and type checking.
Programming languages such as Pascal and Algol 68 developed these concepts,
but still used types merely as a way of defining data representations in an abstract
way. Languages like Simula 67 and later CLU and Smalltalk had object based type
systems, allowing the user to define typed objects in terms of the operations that
they support, combining both representation and algorithm into a single object
abstraction.

Until recently, little work has been done on extending data typing concepts
beyond the bounds of a single program. I/O in strongly typed languages is
typically performed by reading and writing data as an untyped stream of
characters: LISP, Prolog and similar languages dump and restore the program's
entire workspace for long term storage of complex data structures.

By contrast, database systems address the problems of many programs using the
same data, and of coping with changing data descriptions and access require-
ments. Databases have traditionally taken a table and file based approach to
storing complex data.

Attention has recently focused on extending data typing beyond the bounds of an
executing program. The DTL language [Hughes 83] which draws from the Michael
Jackson design methodology, models a program as a data transformer which
converts one typed data stream into another. PS-Algol [Atkinson 84] which arose
out of interest in storing graphics data structures, extends a representational type
system by allowing data in the heap to persist from one run of a program to the
next. The Eden system [Lazowska 81] [Almes 83] addresses the issue of object
based programming with persistent objectsin a distributed environment. None of
these examples really addressed the issues of evolving programs and data
requirements.

1.2 Origins of the Entity System.

In 1979/80 Jim Mitchell, who was at the time a researcher at Xerox PARC, spent 6
months on sabbatical leave at the Cambridge University Computer Laboratory. In
late '79 he organized a series of informal seminars on topics related to
programming languages. One outcome was a general feeling of dissatisfaction
with the programming support environment in use at the time. As a consequence
the Programming Environment Research Group (PERG) was formed to try to
improve things. At the time, most programming in the Laboratory was in BCPL for
the RSX and TRIPOS operating systems. Support for program development was
elementary.

It was soon realized that in order to build the desired sort of programming
environment, the file system needed to provide considerably more functionality
than was available from either RSX or TRIPOS. The file system needed to tie
together the components of a modular program such as the source and object
code, compilation commands, time stamps. Both small and large components
needed to be stored efficiently. Support was needed for incremental
improvements to the functions of the file system with a minimum of disruption.
Finally, a mechanism was needed for ensuring that files were treated consistently,
so that for example the user couldn't accidentally send object code to a line
printer. The HADES database system [Wilkes 82], was a starting point but
something considerably more general was needed.

From the start, PERG used the term entity to describe an object held in the file
system, since it was “more than a file”. The most popular design was that of an
attributed file system [Mitchell 81] in which entities were modeled as a collection
of strongly typed attributes with abstract interfaces. An alternative system
[Singer 81a] [Singer 81b] modeled each object as a <class, implementation,
representation > triple. Various hybrid schemes were proposed using both classes
and attributes, and there was a lot of inconclusive argument over potential
methods for representing attributes. Finally, | came to implement a trial entity file
system under TRIPOS. From this experience | concluded that attributes were not
appropriate and that what was needed was a lower level standard storage
interface with support for data structuring [Crawley 82].

By this time | was working on my own; the other members of the PERG group
either having left the Laboratory, or being too involved with their own theses to
contribute. My next activity was the implementation of the “experimental” entity
system described in Chapter 5. This was written in Modula-2 for UNIX, and
incorporated various levels of support for projection’ and two versions of a
standard storage interface. Development continued on the experimental entity
system until early 1984. | was dissatisfied with the storage interface, but was
unable to resolve the problems until it was suggested by a colleague [Pardoe 84]
that storage objects could be treated as entities in their own rights.

Over a period of 3 or 4 months in 1985, a new entity system kernel was written in
Mesa to run under the Xerox Development Environment on a Dandelion
workstation. The treatment of storage objects as entities has made a considerable
impact on the new system. It has also benefited from being reimplemented in a
more suitable language (Mesa) and programming support environment (Pilot /
XDE). Unlike previous versions, the XDE entity system is intended to develop into
a “production” system that could be used for programming environment
research.

1.3 Requirements for an Entity System.

The aim of an entity system is to provide abstract data typing at the filing system
level, in such a way as to support the development and evolution of large scale
software systems. In summary, the requirements are as follows.

1) The entity system should provide a strictly type checked interface to the data it
stores.

2) The entity system's type system should be extensible. The programmer should
be able to design and implement new abstract data types at any time.

3) The mechanisms for representing objects should allow object representations
and associated algorithms to evolve without undue inconvenience.

1 Projection is a form of dynamic coercion of operations on entities. See Chapter 4.

4) The data stored in the entity system should be relatively secure against
corruption due to bugs in client programs and in service routines. When
something does go wrong with an entity, the spread of corruption to other
entities should be contained.

5) The entity system should be capable of supporting client programs in a number
of programming languages.

6) The entity system should be a suitable basis for building such things as
e user level filing systems,
e integrated software development environments, and
® large scale applications systems.

7) It should be possible to implement the entity system efficiently on computers
with conventional architectures, and in decentralized and distributed comp-
uter systems.

1.4 The Structure of the Thesis.

The rest of the thesis is organised along the following lines.

Chapter 2 is a survey of the spectrum of persistent storage interfaces and
techniques as used by application programs. The first section discusses abstraction
in data storage and data models. The remaining sections survey storage interfaces
provided by conventional file systems, programming languages and database
systems. Special attention is paid to support for abstraction and for incremental
change.

Chapter 3 describes the basic entity system. The first two sections define an entity
and associated concepts, and outline the generic operations. Section 3 presents
some example entities, and illustrates the need for entity polymorphism. Section
4 compares entities with object abstraction in other systems.

Chapter 4 describes the part of the entity system which provides polymorphism.
The first section defines the concept of projection of operation. Section 2
describes and illustrates a number of techniques for resolving projections. The last

section discusses the problem of projection ambiguity, and describes some
methods for avoiding it.

Chapter 5 is an outline of the “experimental entity system” implemented in
1983/84. The first section discusses the constraints within which the system was
implemented. Sections 2 through 5 respectively describe the low level storage
interface, the basic entity system kernel, support for projection, and a simple'
environment built to test the system. The final section outlines a number of
lessons that were learnt from implementing the experimental entity system. '

Chapter 6 discusses a number of implementation issues which were not explored
in the experimental entity system. Section 1 discusses language independent class
definition and the problems of passing operation arguments from one language
to another. Sections 2 and 3 discuss naming and management of entity classes
and implementations. Section 4 deals with problems in implementing an entity
system in a range of host architectures. Section 5 presents some methods for
improving entity system performance.

Chapter 7 offers some conclusions based on the rest of the thesis. Then it provides
a sketch of various ideas for programming environments which the author and
colleagues are currently exploring using the XDE entity system.

Appendix A is a description of the dynamic modules package used in the experi-
mental entity system.

Appendix B is a glossary of entity system terminology which may prove useful in
case of confusion in the body of the thesis.

Chapter 2 - Persistent Storage and Storage Interfaces.

The entity filing system draws ideas from a large variety of persistent storage
systems including conventional file systems, database systems and programming
languages with support for persistent data. This chapter surveys the spectrum of
storage interfaces from the viewpoint of the interface used by the client. In this
context the client is typically an application program, though it could equally be a
higher level storage management layer.

2.1 Abstraction, Data Storage and Data Models.

Data storage can be viewed by the client in either of two ways which are reflected
in the design of a storage interface.

The concrete view is that the storage system is a mechanism for storing bits, bytes
or words of state. It may also provide structuring primitives (such as records), and
support a variety of methods of accessing and updating the state. The point is
that the interface treats the data in a totally general way with no regard for
meaning of the bit patterns. It is the client's responsibility to interpret the bit
patterns as representing higher level information. Thus in this view, the storage
medium is exposed to the user.

The abstract view is that the storage system is a mechanism for storing abstract
information pertaining to a model of reality used by the client. The client does
not need to know about the way that this information is represented, or how the
representation is held by the storage system.

As in programming languages, data abstraction in the storage interface is a
matter of degree. Some abstract interfaces limit themselves to information that
can be held in flat structures such as records and arrays, while others support trees
and networks. Although most abstract interfaces only support representational
abstraction, it is also possible to support the level of data abstraction found in
object based programming languages.

A storage interface allows the client to define a data model for the stored data
within the constraints of the interface. With a concrete interface the data model
deals with storing representations. With an abstract storage interface, the stored
data model corresponds to a model of reality [Kent 78]. In database systems in
particular, the data modeling facilities are founded on one of a number of
theoretical database models [Date 83] [Kerschberg 76].

It is important that the data model supported by a storage interface is compatible
with the nature and structure of the client's data and the pattern of use. Itis also
desirable for the storage interface data model to be compatible with the client's
programming language, though this is not normally the case. Support for data
abstraction in storage interfaces lags well behind the facilities available in most
programming languages.

The need for abstraction must be balanced against the cost of implementing it.
While this is important in programming languages, it is much more so in storage
interface design. Persistent storage systems are generally based on storage
devices with access times 4 or 5 orders of magnitude slower than main memory.
The concrete approach to data storage recognizes this in providing an interface
that is motivated by the need to access permanent storage efficiently. The key to
an effective abstract data storage is masking the differences between primary and
secondary storage from the client, while still managing to handle secondary
storage efficiently.

2.2 Concrete Data Models.

The storage interfaces provided by most operating systems and some language's
runtime libraries are based on the view of the storage system as a mechanism for
preserving concrete representations of information.

2.2.1 The Unit of Data.

A significant property of a concrete data model is its unit of data: the smallest unit
of storage that a client can address. Typically this is a byte: a unit capable of
representing one character of text. Other interfaces use a word as the unit,

packing a number of bytes into each word. This has implementation advantages
on machines with a word addressed architecture, but requires the client to deal
with the packing and unpacking of characters from words. Apart from that, byte
and word oriented interfaces are much the same. Examples of byte and word
oriented file system interfaces include the UNIX file system [Ritchie 74] and the
Cambridge File Server [Dion 81] respectively. Examples of concrete byte oriented
interfaces in runtime libraries include the standard C Library [Kernighan 78], and
various BCPL libraries [Richards 80] [Middleton 79] [Wilkes 82].

The other common unit of data is the record. At an abstract level, records are
modeled as a collection of named and typed fields. In a concrete model, the
internal structure of records is largely irrelevant. The common concrete model of
a record is as a fixed group and a number of occurrences of a repeating group.
When there are no repeating groups, records are said to be fixed length. Records
with repeating groups are said to be variable length, though this does not
necessarily imply that the length of a given record can be altered. Most
commercial operating systems provide a record oriented storage interface, often
with a variety of different record formats. This allows the client to choose a
format suitable for a particular application, but tends to make it more difficult to
provide general purpose utilities. Examples of record oriented interfaces include
RMS under VMS [DEC 80], the MVS Data Management Services [IBM 80] and
Record Manager under CDC's NOS operating systems. Many of the older database
systems produced at the time of the CODASYL report [CODASYL 71] are examples
of record oriented interfaces.

2.2.2 Addresses and Keys.

Data units can be identified by address or record number. An address can be an
absolute or relative disc address with an offset from the start of the block. For
example in MVS access methods, an actual address contains absolute cylinder
and head numbers, while a relative address is a logical track and block offset
from the start of the file. Other interfaces, including all non-record oriented
interfaces, use logical byte or word offsets as addresses.

When the storage interface uses record oriented addressing, the client may need
to carry out non-trivial calculations to work out the address of a particular record.
This is avoided if the interface allows records to be referred to by record number.

Record numbering is typically restricted to fixed length records or records with a
fixed maximum length asin CDC and VMS Relative files.

The other way of identifying data units is by key. Keys come in two varieties;
identifiers and data keys. Record identifiers are tokens typically generated by the
storage interface when a record is allocated. Assuch they convey no other useful
information. By contrast, data keys are client supplied values and may contain
information that is intrinsically useful. However the interface merely sees a data
key as a value. Data key values do not always need to be unique, and some
interfaces allow multiple keys per record.

File organizations that support the retrieval of records in key order as well as
randomly are commonly called indexed sequential. Keys are only used in record
oriented storage interfaces, because a single word or byte rarely conveys enough
information to justify the overhead of assigning it a key. Since auxiliary data
structure need to be maintained, file organizations with keys generally occupy
more space and are more expensive than those with only sequential or address
based access'.

2.2.3 Files and File /0O Operations.

Most concrete storage interfaces present a view of a file as a sequence of data
units. Sequences can be either vector-like or list-like. New records can only be
inserted at vacant positions in a vector-like sequence, while with a list-like
sequence they can be inserted at any point. Sequences can be enumerated in an
order defined by the addresses, numbers or keys for the records.

By contrast, some file organisations do not allow enumeration of records in any
sensible order. Hash tables can be enumerated in an order defined by hashed key
values. Organisations which simulate heaps often cannot be enumerated at all.

There are two modes of access to a file; sequential access and random access.
With sequential access the client enumerates the file one data unit at a time,

1. MVS Direct Access Method is an exception to this rule which proves the point. Since it has
no auxiliary index structure, record retrieval by key under BDAM is done by a linear
search of the disc. This can tie down a channel for a long time, blocking other I/O activity.

performing operations on data units. Unoccupied record slots are generally (but
not always) skipped by the storage interface. In many cases the client can
backspace (sometimes only once) to return to a data unit that has already been
enumerated. Sequential operations are defined in terms of the current data unit,
so that the client might read, update or delete the current data unit or insert a
new data unit before or after the current one. With random access operations,
the client supplies an address, record number, key value or key pattern which is
used to find a data unit. A random access operation is often just used to set the
current data unit for subsequent sequential operations.

2.2.4 Memory Mapped Storage Interfaces.

Most concrete storage interfaces treat data in central memory as separate from
data in the file system. The client uses the storage interface requests to explicitly
move data between these two spaces. The alternative is to make explicit I/O
unnecessary by having primary and secondary memory appear to the client as one
level in the storage hierarchy.

Many computers have hardware for virtual to physical address translation. This
hardware is frequently used to provide programs with their own virtual machines.
It can also be used to support demand paging between primary memory and a
swapping device. Additionally, address translation hardware can be used to
implement a storage interface by mapping a disc file into a client's virtual address
space. Such a file system interface is provided by the Pilot [Redell 80] [Xerox 84].
The Multics operating system [Organick 72] takes the notion a stage further by
using a uniform segmented architecture for both the address space of client
programs and the file system.

There are two ways to use a memory mapped storage interface. The client can set
up a window into a file and move it around to view different parts of the file. The
semantics are similar to those of a conventional buffered interface. Alternatively,
the client can map an entire file into its address space and manage the data it
contains using primary memory techniques. While the latter approach makes it
easier to store complicated data structures, it introduces some extra problems.

10

First, the client needs to avoid wasting disc space by storing garbage along with
the persistent data. In the absence of a language level compacting garbage
collector, the client has to keep transient and persistent data separate. A second
problem which arises with non-segmented architectures is that it is not always
possible to map a file into a client's address space at the same virtual address. This
means that the client may need to use relative pointers within the memory
mapped file which can be a nuisance even in a language like Mesa [Xerox 84b]
which supports them. Finally, the client generally has no control over the way that
the paging system writes out "dirty pages”. The state of a simple memory
mapped file after a crash is hard to predict. Consistent file update requires the use
of mechanisms like shadow paging which introduce extra overheads.

Mapped files can have a considerable impact on overall system performance
because of competition for physical memory pages. The algorithms that the client
uses to refer to mapped data must take care to avoid thrashing. In Pilot a client
can inform the paging system that particular virtual memory pages are going to
be needed soon or are no longer required. This allows the paging system to adjust
its strategy as appropriate.

Not all memory mapped storage interfaces rely on address translation hardware.
For example, the BCPL paged heap package [Jordan 79] can be viewed as
simulating a segmented address space. The disadvantage of this particular
interface is that the client needs to explicitly probe the segments to make sure
they are in primary memory, and has to lock segments to stop them being paged
out at the wrong time. Other examples include the concrete storage interfaces
that underlie PS-Algol [Atkinson 82b] and arguably persistent Poly [Matthews 84].

2.2.5 General Points.

Concrete storage interfaces have their place where efficiency and speed of access
or update are of overriding importance. The cost of efficiency is extra effort
required in program development and maintenance, and often lack of generality
and portability. The programmer loses the ability to define permanent data in
abstract terms and the assistance of a type checker in detecting errors early. This is
especially so in systems where the storage interface is a set of assembler macros.

11

Considerable knowledge is often needed to make effective use of a concrete
storage interface. The programmer needs to select the most appropriate record
type from the many possible, and decide whether to use buffered or unbuffered
/0. Unbuffered 1/0 requests need to be made in multiples of the physical disc
block size aligned on disc block and memory page boundaries. Finally, the client
often needs to select file size parameters when creating a new file so that space
can be allocated efficiently. It would be better if the application programmer did
not need to consider any of these issues.

It is the author's opinion that no single concrete model is suitable for all purposes.
However, it is desirable that concrete storage interfaces should have some
common properties. The most important of these are that an interface should
hide differences in underlying hardware and details of disc allocation as far as
possible. Interface consistency and simplicity are also important, especially when
a storage interface provides a variety of record types or file organisations.

2.3 Storage Interfaces in Programming Languages.
2.3.1 Conventional Interfaces.

Many programming languages have storage interfaces similar to the concrete
interfaces described in section 2.2.3. Such interfaces can be provided using
programming language constructs or standard runtime libraries.

An example of such an interface is the FILE data type and the associated standard
procedures in Pascal [Jensen 75]. A FILE is a sequence of units of a given Pascal
type. The FILE variable defines a buffer variable of the type of the data unit
which the client uses at the lowest level when reading and writing data. Low-level
file 1/O is done using the 4 standard functions get(), put(), reset() and
eof (). There are also higher level read() and write() routines for text files
for which Pascal allows variable numbers of arguments as a special case.

This style of interface has a number of problems. File typing is not generally well
enough defined or implemented to detect incompatibilities that might arise
between different versions of programs and files. Files produced on one system

12

may not be compatible with a second systefn in spite of the formal types being the
same. This second problem means that file portability is generally achieved by
encoding the data in a textual form which is both expensive and a potential
source of errors.

2.3.2 Checkpointing as a Storage Interface.

Many functional and logic programming languages provide a storage interface
based on checkpointing. In such an interface, the state of a computation is saved
by copying the program's workspace to disc. State is restored either by executing
the saved image, or by loading the state into a base system and resuming
execution at the appropriate point. For example, Franz Lisp [Foderaro 83]
provides a savelisp function which saves the entire program state as an
executable image. Similar facilities are provided by other Lisp systems [Pitman 83]
[Weinreb 83].

The main problem with checkpointing as a storage mechanism is that the client's
entire computation state is dumped. Checkpoint files contain a large amount of
redundant information. Systems including some implementations of Prolog
[Pereira 83] keep the code of (say) the interpreter separate from a client's state so
that only the client's state needs to be dumped. This does not help in the case
where only a small part of the client's state has changed since the last checkpoint.

A second problem with checkpointing is the lack of resilience of checkpoint files.
Minimal integrity checking is performed when a dump is taken. Thus, if a bug in
client code damages some of the data structures, the corruption is likely to
propagate to the checkpoint file undetected. When corruption is detected in a
checkpoint file, the only realistic option is to rebuild from backups. For this
reason, an alternative means of saving the client's state is essential, even if it is
only a script of the user's input. A similar need arises when upgrades are made to
the base system (or client program).

Finally, a checkpoint file is only usable by the program that produced it, and
except in the case where the file is used read-only, by only one instance of that
program at a time.

13

2.3.3 Data Flattening.

Most concrete storage interfaces, and interfaces provided by conventional
programming languages provide little support for the storage of complex objects
which use pointers. The main difficulty with storing pointers in the file system is
that pointer values depend on the location, and it is not always possible (or
desirable) to restore a data structure atits original location.

One way to deal with pointers is to write the data structure in a flattened form
replacing pointers with location independent references. If the host language is
garbage collected, there should be enough information around at runtime to
distinguish pointers from other data. This makes it possible to write a storage
interface that can flatten and store arbitrary data structures. Otherwise,
flattening is still possible, but only with the assistance of the programmetr.

A data flattening storage interface that requires minor programmer assistance is
the gc_dump / gc_read package for some implementations of the CLU
programming language [Liskov 81]. To save a cluster of a given type, the client
invokes the type parameterized gc_dump routine giving the name of the file for
the dump. The reverse process is performed by the gc_read routine which is also
type parameterized. The only client assistance required is the inclusion in each
cluster of a standard _gcd operation which simply applies the same operation to
the cluster's representation. If the CLU runtime system made available more
runtime type information, the _gcd operation would be unnecessary. A similar
mechanism [Hamilton 85] is used for marshaling the arguments and results of
remote procedure calls.

The problem with the CLU gc_dump / gc_read package is that it allows violation
of the type system in the same way as Pascal files. Since there is no abstract type
information available at runtime the gc_dump operation can only dump the
representation of the data structure. When loading from a dump file, gc_read
has no other type information whatsoever, so it has to assume that the encoded
structure corresponds to the abstract type which itis expected to return.

The other sort of data flattening storage interface is one in which a non-trivial
amount of help from the client program is needed. An example of this is the

14

“persistent data” package [Smith 84] for Modula-2 used in various VLS| design
programs. Unlike CLU, the Modula-2 runtime system cannot distinguish pointers
from other data or determine the size of an object. Thus, the client program must
register a scanning routine for each Type of object to be dumped. This routine
enumerates the data fields and the pointers in an object supplied as an argument,
giving the Type for each pointer. A scanning routine can be written to omit
redundant fields to save space, and possibly to upgrade to a new representation.

Another example of this sort of data flattening interface (though it is primarily
intended for data transmission) is given in [Herlihy 81]. A client defines an
internal and an external representation for each cluster and provides encode and
decode operations. The paper mentions the possibility of versions of a cluster
with a common external representation and different internal representations.
As an extension to Herlihy's mechanism, [Hamilton 84] proposes a new primitive
CLU type flotsam which is a discriminated union to which new variants can be
added after a client has been compiled. Assuming a global registration scheme
for flotsam tag values, Hamilton's scheme should solve the worst of the type
safety problems of Herlihy's mechanism and allow multiple external represent-
ations for clusters.

Data flattening allows the client to handle transient and persistent objects
similarly without many of the disadvantages of checkpointing. In cases where no
client assistance is required, the client program can be internally and
"(theoretically) externally type safe. The flexibility to upgrade representations can
only be had by sacrificing internal type safety and requiring the client to translate
between different forms. As with checkpointing, data flattening is not suited to
cases where the client needs to make small updates to a large permanent data
structure.

Data flattening storage interfaces provide I/O operations whose semantics are
based on copying. This causes problems when dumping objects with arbitrary
connectivity. Loops and shared subnodes within asingle object being dumped can
be handled correctly at relatively small additional cost. This is not true for
subnodes when subnodes are shared by separate objects. To preserve sharingin a
data flattening interface, the client must treat a collection of objects that share
subnodes as a single object when dumping and restoring.

15

2.3.4 Persistent Storage.

Persistent storage systems lie roughly between checkpointing and flattening
interfaces. As with checkpointing, the client can treat a file as an extension of
memory without worrying about explicitly copying the objects and the resultant
problem of shared subobjects. On the other hand, persistent storage systems are
more selective about the information that they dump, allowing small updates to
be made at realistic cost. Persistent data can be independent of a single program,
and concurrent access by different program instances is feasible, even if it is not
usually implemented.

A good example of a persistent storage interface is that provided by the PS-algol
language [Atkinson 84]. In PS-algol, persistence is achieved by transparently
migrating a program's data objects between main memory and one or more
databases. To start up, the programmer calls the open.database routine and is
returned a pointer to a root object. As the client follows pointers outwards from
the root, the objects referred to migrate into memory where they can be read
and modified at will. When the programmer calls the commit routine, changes to
existing persistent objects, and new locally created objects are propagated to the
database(s) depending on whether or not they are accessible from the root.

The type system in PS-algol provides a single primitive pntr type which can refer
to any type of object. Type checking occurs at runtime when the pointer is de-
referenced and the object is used. The PS-algol type system is based on structural
type equivalence rather than type name equality. Complete type information is
stored in the database so that references to persistent objects from different
client programs can be type checked.

Unknown to the programmer, PS-algol pointers actually have a local and a
persistent form. The local form is an offset into a table maintained by the runtime
system containing the actual memory address, the object's type and other
information. When the program dereferences the persistent form, the runtime
system hashes the persistent pointer to get a table offset. If necessary, the object
is loaded into memory and a new table entry is allocated. The table offset is then
substituted for the persistent identifier. When commit is called, any newly
created local objects that are to be saved are allocated persistent identifiers. All

16

database objects in memory are then written out with local pointers replaced with
persistent pointers. The PS-algol runtime and database algorithms are described
in [Atkinson 82] and [Atkinson 82b].

In PS-algol, every reference to an object is made indirectly through the object
table. In the VAX/UNIX implementation of the persistent Poly system [Matthews
82] [Matthews 84] pointers to objects in memory are normal addresses and are
dereferenced directly. Persistent pointers are encoded as invalid addresses so that
attempts to dereference them result in a hardware detected address fault. The
Poly runtime system catches the resultant UNIX signal, fetches the object into
memory, replaces the persistent pointer with the object's address and resumes.
Since the cost of handling a UNIX signal is considerable, the Poly system tries to
avoid unnecessary address faults by sweeping the stack and the database area,
translating persistent pointers to objects that have already been loaded. Thus,
Poly trades off lower costs for dereferencing local pointers against higher costs of
handling persistent pointers. Another aspect where the Poly persistence system
differs from PS-algol is that Poly distinguishes between mutable and immutable
types, and can avoid writing most persistent objects that have not changed during
arun.

2.4 Databases and Database Management Systems.

Database systems differ from most other storage systems in that they treat the
data as separate from the programs that manipulate it, and go to considerable
lengths to cut down on unwanted interdependencies. A Data Base Management
System (DBMS) provides data management services for databases shared by a
number of applications. The DBMS provides the client with abstract data storage
and manipulation facilities. Concurrency control and access control facilities are
also typically provided.

This section briefly outlines some of the commonly used database data models
and some of the properties of DBMS's. The database terminology used is taken
from [Tsichritzis 77].

17

2.4.1 Database Data Models.

The network database model is a loosely defined model which draws from graph
theory. The primitives in a network database are records, types and links. A
record type which is a collection of named fields corresponds to an attribute
relationship. Duplicate record instances are in general allowed. A link represents
an N:M association between entity sets. Links can be either information carrying
or non-information carrying. Information carrying links give information that is
not otherwise represented, and must therefore be constructed explicitly. Non-
information carrying links duplicate information present in the fields of records.

The database is viewed as a network of nodes and arcs connecting the nodes,
where the nodes are instances of record types and the arcs are instances of links.
Record processing involves starting with the records of one record type, selecting
on the values of record fields and following links to other record types.

The hierarchical database model is a special case of the network model. In the
hierarchical model, links can only represent 1:N relations, with one parent record
type having links to one or more child record types. Furthermore, when a
database of record types and links is expressed as a data structure diagram, the
diagram must form an ordered tree called a hierarchical definition tree. The head
of the tree is the root record type which has no parent record type.

Data selection with the hierarchical model is done by tree traversal or by
hierarchical selection. In the former, the tree is traversed selecting records of a
given record type that match a given qualification. The client may restrict the
search to the children of a selected parent record, or to scan all records. With
hierarchical selection, a record type is treated as a hierarchical set and records are
selected on the basis of the values of fields and the parent child relationships.

The hierarchical model is more restrictive than the network model in the data that
it can represent. However, the data to be represented can be simplified by the
process of normalization, which among other things reduces N:M associations to
1:N associations.

18

The relational database model [Codd 70] is the first model to have a formal
mathematical basis. The model uses relations to represent both associations and
attribute relations, and formally defines the basis for the manipulation of data
with a relational algebra.

A relation is a set of N-tuples, where each tuple represents a relationship between
a collection of attribute instances. Unlike the network model, the tuple instances
for a given relation are unique. A relation expresses the attribute relationships of
a given object type in an obvious way. Associations between objects are expressed
as relations whose elements are the keys of objects. It is not necessary to store the
equivalent of non-information carrying links in a relational system since the
relations can be derived “on the fly” using the relational algebra.

Relational algebra defines a collection of relational operators. These operators all
take relations as arguments and return relations as results. There are 3 simple
operators for eliminating unwanted information from a relation. Restriction
(R[ABV]) and selection (R[ABB]) give subsets of the tuplesin a relation which satisfy
a simple condition 6 between an attribute value, and respectively a literal or
another attribute of the same tuple. Projection (R[A]) gives a relation with some
of the attributes of the original after duplicate tuples have been eliminated.
Three operators, union (RUS), intersection (RNS) and difference (R-S) perform set
operations on compatible relations. The final 3 operators combine relations in
other ways. The cross-product (R®S) operator produces a relation consisting of all
possible unique combinations of two relations. The join operator (R[ABB]S) gives
all combinations of the tuples in two relations for which a condition 0 holds
between a given attribute from both relations. The division operator (R[A + B]S)
expresses the “for all” condition.

2.4.2 Data Definition in DBMS's

The most difficult part of setting up a DBMS data base is defining the data it holds.
A data definition or schema [CODASYL71] describes various properties of the
data. In discussions of the architecture of an ideal DBMS [ANSI 75] there are
typically 3 levels of schema (figure 2-1), describing different aspects of the
database.

19

External Schema

Data
Model

internal Schema

Storage
Structures

Operating System

Hardware

Figure 2-1

The central conceptual schema is the logical description of the entire database.
Written in some data description language or DDL, it specifies a global data model
for the entire database. A DDL allows the Data Base Administrator to name and
describe record types, specifying such things as

e the domain and units of measurement for data values,
® integrity constraints,
® lockingrules, and

e data access control rules.

An external schema, typically written in the same DDL, describes a particular
application's view of the database. The external schema are intended to give

20

clients logical data independence by isolating them from changes to the
conceptual schema.

The internal schema describes how the global data model is mapped onto the
storage structures of the DBMS. The internal schema, written in a storage
definition language or SDL, describes such things as

e the storage medium or device to be used,
® how record types are mapped to files,
e file ordering and indexing, and

e buffer allocation strategy.

Changes can be made to the internal schema to take account changes in hardware
and to improve the performance of the DBMS without affecting applications.
Separating the internal schema from the conceptual schema gives the applications
physical dataindependence.

2.4.3 Data Manipulation Facilities in DBMS's.

A DBMS typically supports two forms of data manipulation facilities. Interactive
query systems give the user direct access to the database for ad hoc enquiries.
While interactive query is important, it is not relevant to this thesis. The other
data manipulation facility provided is the interface used by application programs.

A program level interface to a database in a DBMS takes three forms. The simplest
form is a library of routines called from the host programming language. The
second approach to the client / DBMS interface is to embed database manipul-
ation language (DML) statements in the host programming language. To do this
it is necessary to extend the syntax of the host programming language: something
that may be frowned upon by language purists. The result allows database
operations to be expressed in a more natural and concise fashion. This approach
also allows the client / database interface to be type checked (as far as the host
language allows this).

Most of the complexity of database interfaces embedded in a hostlanguage is due
to the incompatibility of procedural host languages and non-procedural database

21

models. This is particularly apparent in database selection. A selection which is
specified non-procedurally, gives a collection of records which must be returned
to the client program so that it can deal with each one procedurally. The solution
adopted by most DBMS's is to use a cursor to step through the selected records
one at atime.

The third approach to interfacing the client with the database is to write the client
program entirely in a DML. This avoids type incompatibility between the DML and
separate host languages, and removes the problem of “mixed metaphors”
programming described above. The SQL language used IBM's DB2 system
[Date 84] is an excellent example of a combined DDL and DML that can be used on
its own or embedded in PL/1, COBOL, FORTRAN or Assembler programs.

2.4.4 DataEvolution in DBMS's.

Database systems generally provide support for evolving data requirements in
two ways. The first way is to provide tools for converting the database from an
old format to a new one. This is not enough by itself, since client programs would
also need to be converted to use the new format data. The use of schemas and
subschemas helps to avoid this problem. There are however other problems.

Converting a database from one format to another is typically both expensive in
machine resources and time consuming. In a system where the data must be
available at all times, the latter is a special problem. While schemas and
subschemas help before and after reformatting, they are no help while reformat-
ting is in progress. Instead it is necessary to take a snapshot of the database and
keep a log of transactions that occur while conversion is underway.

Most DBMS's process database requests using an interpreter so that application
programs don't have to be recompiled whenever the database is changed at the
level of the conceptual or internal schema. IBM's DB2 system is unique among
commercial DBMS's in that the SQL statements are compiled to machine code. A
client program with embedded SQL is passed through a precompiler to extract
SQL statements, and insert appropriate type declarations and calls to the runtime
supervisor. The extracted SQL source is stored by DB2, then compiled and
optimized for the current structure of the database. When the client program is

22

run, the DB2 runtime supervisor checks that the database layout has not changed.
If necessary, the SQL statements are recompiled transparently before link loading.

23

3 - The Basic Entity System.

3.1 Whatis an Entity?

An abstract object can be considered as having three key properties;

® the type or mode of the group of components which represent the object,
e theinvariants for the componentvalues, and
® the actual values of the components.

For example, a date can be modeled as having 3 integer components day,
month, and year. The year has no constraints on its value, the month must have
a value in the range 1 to 12, and the value of the day component depends on
both the year and month values. Manipulations of a date must conform with
the component type rules and must not violate the value invariants.

If a client program has direct access to the fields of an data item, it is difficult to
ensure that the invariants are maintained. In most programing languages, the
invariants of a data structure are not reflected in the type definition and there-
fore cannot be checked. One way to avoid this problem is to hide an object's
" representation behind a set of procedures which carry out the necessary operat-
ions. Only the object's operation procedures need to know how the object is
represented and how operations are performed.

In some programing languages, an abstract data type (as distinct from a concrete
or representational data type) formally defines data items in terms of the
operations which are used to manipulate them. In this general context, an
instance of an abstract data type is called an object, and the style of programing
using objects is referred to as object oriented.

Abstract data typing provides the programmer with an additional means of
expressing abstractions which makes it easier to write, debug and verify programs
correct. Furthermore, encapsulating the representation of data items reduces the
likelihood that a client program will corrupt the data. This is very importantin a
file system where an object's lifetime is independent of a single program
instantiation.

24

Encapsulation of data using abstract data types is central to the entity system.
Objects in the entity system are called entities. An entity is characterized by three
distinct properties; its class, its implementation and its representation.

The first property of an entity is its class. A class is an abstract data type which
defines the operations that can be applied to an entity. Operations are specified
in terms of the formal types of the arguments and results, and their external
semantics. The entity system uses strong data typing, so the class of a given entity
cannotbe changed.

The second property of an entity is its implementation. The implementation isthe
body of code that manages the state which represents an entity. It provides
procedures for performing the entity operations defined by the class, hiding
details such as the entity's representation format and the operation algorithms
from the client. A given entity implementation will manage a number of entities
of the same class. However, there can be a number of implementations for a
given class, each using different representation layouts or operation algorithms.
A client program may simultaneously make use of different implementations of a
class without being aware of it.

The third property of an entity is its representation. An entity's representation
includes state held in secondary storage or cached by the implementation, and
the local variables of an implementation procedure that is performing an oper-
ation. The representation is defined and managed by the entity's implement-
ation, and is only accessible using the operations defined by the entity’s class.

To recapitulate, an entity is an instance of an abstract data type known as a class.
Itis managed by one of a number of type managers for the class which are known
as implementations. The client of an entity sees it in terms of the interface
presented by the class. This s illustrated in figure 3-1.

Splitting the client interface from the implementation has two important
benefits. The first is that improvements to the algorithms or representation that
do not entail a change to the object's interface can be made by producing a new
implementation. It is not necessary to change or even recompile existing client
programs to use the new implementation. In addition, it is not necessary to

25

Entities managed by Entities managed by

Implementation| . .+ Implementation J
entity 1 entity 2 entity 4 entity 5
» - « X i
Lo|entity3) s |entity 6 entity 7
O S R R T T RE T k ClassC
. _ - interface
T clientsof
entities of
class C
figure 3-1

convert existing entities to the new implementation, since client programs can
use a mixture of old and new implementations. If it is desirable that old entities
be upgraded to use a new implementation, the changeover can be made grad-
ually. New entities can be created with the new implementation and existing
entities can be recreated as and when convenient. v

A second benefit of splitting the class and implementation is that it allows the
programmer to write a number of implementations of a given class, each tuned to
work best in different situations. Suppose there is a class of entities which store
simple ASClI text. The best method of representing a given piece of text depends
on its size and the degree to which this is likely to vary. Algorithms that are best
for small text entities are not likely to be good for large ones. The entity system
gives the programmer the option of writing different text implementations tuned
for these two cases and others. While a client creating a text entity needs to
choose an appropriate implementation, a client using an existing text entity is not
aware of which implementation is used.

Entities exist in two forms; passive and active. Entities in the passive form are
held in secondary storage. Entities in the active form reside partly in primary
storage. Itis only possible to apply operations to active entities.

Passive entities are signified by entity identifiers. An entity identifier or id is a
unique and unforgeable token for an entity in its passive form. The same entity

26

identifier refers to the entity for as long as it exists. Bound to each entity id is an
entity triple consisting of a class id, an implementation id and a representation id.
Class and implementation ids are unique tokens signifying respectively, an entity's
class and implementation. They may well be the identifiers for entities holding
the class definition and the implementation code, but this is not essential to the
model. The class and implementation ids are fixed when an entity is created and
cannot be changed.

A representation id signifies that part of an entity's representation which persists
on secondary storage when the entity is made passive. The exact meaning of a
representation id is known only to the entity implementation. [t may be the
entity id for a storage object: an entity whose purpose is to provide lower level
data storage. Alternatively, it could be a private token which is understood by the
implementation alone.

Figure 3-2 illustrates the relationships between the components of a number of
passive entities. E1 through E5 are the identifiers for entities of class C. The
entities with identifiers E1 and E2 are managed by the implementation | which
uses tokens T1 and T2 to signify the entity representations. The remaining
entities of class C are managed by implementation J which uses storage objects of
class C-S to hold the representations. Thus the representation ids for entities E3
through E5 are identifiers for the storage object entities 53 through S5.

An active entity is signified by an entity handle. An entity handle is effectively a
capability which allows a client to request operations on an entity. There can be a
number of handles for a single entity, each conveying different rights to perform
operations to the respective clients. The semantics of the respective rights, and
access rules in general are part of the class specification. Entity handles are
required for all operations on entities with the exception of some of the generic
operations discussed in the next section.

Each class defines an entity handle type that is incompatible with other handle
types, so that handles and operation invocations can be statically type checked.
An entity handle is typically an opaque pointer to a data structure private to the
entity system. The handle data structure includes an operations table which holds
pointers to operations procedures provided by the implementation. Indirection

27

entity id classid impl'nid rep'nid

E1 (----- » C | T e priizlate tokens
nown to
E2 t----- » C | T2 e impl'n |
4 A
token for e tOke"" for
impl'ni
class C of class C
3
E3 f----- » C J S3 [entity ids
for storage
B4 | i c J 54 objects holding
E5 |----- > C J S5l the entity rep'ns
A
token for
S impl'nJ
of class C
S3 j----- » C-S [-S ,
storage objects
s4 |----- » CS 1-S which hold the
S5 |ooo- > cs s entity rep ns

figure 3-2

through the operations table is what allows a client to use entities with different
implementations without being aware of it.

The entity handle data structure also refers to the entity activation. An entity
activation is the part of an active entity's representation which persists between
operations, but not when the entity is made passive. In the standard model, there
is exactly one activation for an active entity which exists as long as there are
handles for the entity. An activation can be thought of as the “global frame” for
an active entity.

An entity's implementation can use an activation for any number of purposes. If
the entity's passive representation is held in a storage object, the handle for the
object will be held in the activation. It can be used as a cache for the entity's
permanent representation. It can hold lock variables and semaphores that the
implementation uses to synchronize concurrent operations on the entity. Finally

28

it can hold state associated with individual entity handles, such as the rights that
the handle conveys, or the state of an enumeration in progress.

Figure 3-3 illustrates the relationships between entities, handles and activations.
There are two active entities E1 and E2 with class C and impiementation I. There
are two handles E1/1 and E1/2 for the first entity, the first conveying “read-write”
access rights and the second “read-only”. A third handle E2/1 refers to the second
entity. The operations tables in the private handle structures are shown as
holding references to the appropriate implementation procedures, and the
associations with the activations. Each activation is shown as including a handle
for a storage object (51 or S2) containing the permanent representation of the
entities. The private handle data structures are shown as straddling the double

activation for E1

handle for S1
cached data from S1
J lock variables
etc.

{state for E1/1-R/W

state for E1/2-R

\\\\ Op1
BN Op 2.

" |op3

handle E1/1

implementation | of class C

activation for E2

handle for S2
cached data from 52
lock variables

etc.

state for E2/1 - R/'W

N Op T [
\\\ Op 2 | o
Clop3 e
A
handle E1/2

impl'ni's
operation
procedures

Op1 proc

Op2 proc |

Op3 proc| ™

Op1|”

Op?2

Op3

handle E2/1

client(s) of entities E1 & E2

figure 3-3

29

line to indicate that they form the interface between the implementation and the
clients.

3.2 Entity Operations.

Operations on entities fall into 2 distinct groups. The majority of operations are
class specific, having no meaning in the context of other classes. A few operations
are generic in that they can be applied to entities of any class. There are typically
four such generic operations for each class of entities; Open, Close, Create and
Delete. The class specific operations are handled by the entity's implementat-
ion!, while the generic operations require a call to the entity system kernel. Itis
assumed that the types of the entity handle, the arguments and the resuits can be
checked when the client program is compiled.

The syntax that the programmer uses to specify an entity operation invocation
will depend on the way that entity handles and other entity system data types
map into the client programing language. In this thesis, examples will be given in
a pseudo-code that has similarities with Mesa and CLU. In this pseudo-code, a
construct of the form handle$op indicates that the abstract operation op defin-
ed by a class C is applied to the entity of class C referred to by handle.

In general, an invocation of an entity specific operation is expressed by pseudo-
code of the form

resy,.. res, « handle$operation(argy,... arg,)

where handle is an entity handle, operation is the name of the operation
being invoked, arg; through arg, are the actual arguments for the operation,
and res; through res,are the results. The entity operation invocation results in
a call of the form

res,,.. resy « {imp1}.operation_proc(handle, argi,.. argm)

1 This is an over simplification. In an entity system implemented in a closed operating
system, the kernel may well need to be involved with passing arguments and results, and
with dispatching the operations.

30

where {imp1} is some implementation of the class of handle, and operation_
proc is an operation procedure supplied by the implementation. The value of
{imp1}.operation_proc will have been found in the operations table assoc-
iated with the handle.

Before an entity can be used, the client must obtain a handle using the open
operation defined by the class. An invocation of an open operation has the
following form,

handle « {classname}.Open(entity_id, argi,.. arga)

where {classname} is the name of some class, handle is an entity handle
whose type is defined by the class, entity_idistheidentifier for the entity to be
opened, and arg through arg, are class specificopen arguments.

An open operation has a number of functions. First it checks that the entity is of
the correct class. Next, it creates a handle for the entity of the appropriate type.
If the entity is passive, this involves finding the entity's implementation and
producing a new activation. Finally the entity implementation's open operation
procedure is called with the remaining arguments to perform implementation
specificinitialization.

Though most of an open operation either can be or has to be performed by the
kernel, the final stage is class specific. This suggests the following simple scheme
for handling an open operation invocation

handle « Kernel.Open Entity(entity_id, class_id);

{imp1}.0pen_proc(handle, entity_id, args,.. argo)

In the above, class_id is the class identifier corresponding to the class whose
open operation is being called. As for other entity operations, {imp1}.0pen_
proc is found in the entity handle's operation table.

For reasons that will become apparent in chapter 4, it is necessary to implement
the invocation of an Open operation in a more complicated way. The class
specific arguments are copied into a record and a pointer to the record is passed
as an argument to the Kernel.0pen_Entity call.

31

arg_rec.arg; < args; .. arg_rec.arg, « arga;
handle « Kernel.Open Entity(entity_id, class_id,
ADDRESS OF(arg_rec))

When Kernel.0pen_Entity has completed all it needs to do, it finds and calls
{imp1}.0pen_procdirectly, passing the pointer to the argument record.

An implementation's open operation procedure typically performs a number of
tasks. It initializes any data structures in the activation associated with the
handle. If the entity has been newly activated, it extracts the representation id
from the triple and where appropriate opens the representation storage object.
The class specific arguments may give some idea of what the client expects to use
the handle for. The operation procedure checks that the client should be allowed
access to the entity, and ensures that this does not conflict with handles for the
entity that already exist. Finally, it may pre-read strategic parts of the
representation from secondary storage in anticipation of the client's operation
invocations.

When the client has finished using an entity, it explicitly releases the handle by
invoking the close operation defined by the class. A close operation invocation
has the form

handle$Close(argy,.. argn)

where hand1e is the entity instance to be closed, and arg; through arg, are class
specific close arguments. The first thing that a close operation does is to call the
implementation's close operation procedure as follows.

{imp1}.Close_proc(handle, args,.. arg,)

A close operation procedure performs housekeeping tasks necessary before the
handle is released. These tasks may include flushing data out to secondary store,
and releasing resources associated with the handle. Depending on how the class
is defined, the close operation procedure may also be the appropriate point to
"commit” or “abandon” outstanding transactions?, or perform some other
actions that require class specific arguments. If the handle is the last one for the
activation, there may be additional things to do.

32

When the close operation procedure has finished, the kernel is called to release
the entity handle, and if necessary the activation. The kernel close call has the
following form.

Kernel.Close Entity(handle)

A new entity is generated by the create operation defined by the entity's class.
An invocation of create takes the following form.

entity id, handle « {classname}.Create(impl_id, args,.. argn)

In the above, imp1_id gives the client's selection of implementation for the new
entity, and argy through arg, are class specific creation parameters. The results
of the create operation are an entity identifier and a handle.

A create operation is performed in two parts as follows

entity id, handle « Kernel.Create_ Entity(impi_id);

{imp1}.Create_proc(handle, entity_id, argy,.. argn)

where {imp1}.Create_proc is the implementation’s create operation proced-
ure taken from the entity handle. The Kernel.Create_Entity routine makes
a new entity identifier and triple. Then it finds the implementation, allocates an
activation for the new entity and makes the handle. The {imp1}.Create_proc
performs any implementation specific initialisation. It initialises the activation for
the new entity. It allocates and initialises the entity's long term representation,
and binds the corresponding representation id into the entity triple. Depending
on how the operation is defined, the class specific arguments can include
initialisation parameters and information about the initial entity handle.

The delete operation is applied when an entity is about to be removed from the
filing system. At the appropriate time, the entity system kernel calls the implem-
entation's delete operation procedure as follows.

2 The entity system does not provide primitives for implementing atomic transactions.
However there is no obvious reason why classes and implementations cannot be designed
with these properties.

33

{imp1}.Delete_proc(handle, kilT)

This procedure releases any resources held by the entity, and deals with any
interdependencies with other entities. In some situations it is reasonable for an
entity's implementation to take steps to prevent the entity from being deleted.
To avoid problems with undeletable entities, the kernel needs to be able to
suppress entities that are behaving pathologically. If an entity is about to be
suppressed, the {imp1}.Delete_prociscalled with the ki11 flag TRUE.

3.3 Some Examples of Entities.

In this section, a number of entity classes are discussed as examples of the entity
system described so far. They will also be used to illustrate a number of problems
which have not yet been encountered. The example classes described are

® timestamp entities,
® textentities,
® directories, and

e Modula-2 program entities.

The first (trivial) example is the class of Time_Stamp entities. A timestamp is
simply a record of the time. When a significant event occurs, the client program
may record the time by applying the Take_Stamp operation. At a later time the
timestamp may be read back using the Read_Stamp operation. In the notation
of the previous chapter, the client interface to a timestamp is as follows

ts_handle$Take_Stamp()

time ¢ ts_handle$Read_Stamp()

wﬁmrets_hand1eisanentﬁyhandm\NhO%ereisdeﬂnedbytheTime_Stamp
class, and time is a numerical time value. The following operation procedures
would need to be provided by an implementation of the Time_Stamp class.
{imp1}.Take_Stamp_proc(ts_handle)
time ¢ {imp1}.Read_Stamp_proc(ts_handle)
{imp1}.0pen_proc(ts_handle, entity_id)

34

{imp1}.Close_proc(ts_handle)
imp1}.Create proc(ts_handie, entity_id
p - -
{imp1}.Delete_proc(ts_handle, kill)

where time and ts_handle are as above, and entity_idisthe identifier for a
timestamp entity.

In a simple implementation of the timestamp class3, the value of an active
timestamp might be cached in memory. Open_proc would read the stamp value
into memory, Read_Stamp_proc would return a copy of the cached stamp,
Take _Stamp_proc would update the cached stamp, and Close_proc would
flush the cached stamp back to the passive storage area. Create_proc would
simply initialize the passive representation to a null value, and Delete proc
would be adummy routine.

In some situations, it is preferable for a timestamp value to be written to stable
store the moment it is updated. To this end, a second implementation can be
defined with the appropriate properties. Timestamps could then be created with
which ever implementation is more appropriate, and programs which use the
entities would never need to know the difference.

The Time_Stamp class could have been defined to provide another operation of
the form

date, day of week, time_str ¢ ts _handle$Stamp_Strings()

where date, day_of week and time_str together make up human readable
string representation for a timestamp value. At first sight this seems quite
sensible, since producing a human readable representation for the value of a
given a timestamp entity is likely to be a common activity. However, since every
implementation of the class would need to support the time to string conversion,
it is better to provide a library routine of the following form.

date, day of week, time_str ¢ Time_Strings(ts_handle)

3 The Time_Stamp example class is somewhat contrived. In practice timestamps would
normally be a part of a larger entity and would not have a separate implementation.

35

A more general way of providing this sort of derived operation will be discussed
in chapter 4.

The next example is of a class of Text entities. Entities of this class could be the
source code of computer programs, unformatted documents or sections of
documents, command scripts: anything which can be represented as a series of
characters. By way of illustration, the Text class is defined to support atomic
update.

Most programs which use text objects will want to refer to them in terms of a
character stream. However, for the sake of efficiency the class of text objects is
defined to provide a buffered interface onto which streams can be retrofitted.
The operations of the class can be defined as follows.

buffer, nos_read « text _handle$Read(nos_chars)
text _handle$Write(buffer, nos_chars)
text _handle$Seek(position)
text _handle$Set_End_Of_Text()

position « text_handle$Tell()

position « text_handie$Tell_End_Of_Text()

The Read and Write operations transfer data starting at the current position?,
with Write automatically extending the entity. The Seek operation resets the
current position within the text, and the Set_End_Of_Text operation truncates
or extends the entity to the current position. The Tel1l operations return the
current position and the position of the end of text respectively. The class
definition for text entities could define additional parameters for the Open and
Close operations as follows

text_handle ¢« Open_Entity(entity, text class_id, mode)

Close Entity(text_handle, commit)

4 Here it is assumed that the operation invocation mechanism does not lose messages. I
this were not so, the Text interface could be defined to have idempotent semantics which
are generally less convenient for the client.

36

where mode is a collection of flags specifying read access, write access, truncate
on open and so on, and commit is a flag which allows the client to commit the
changes made or to cancel them. It should be noted that both access control and
atomicity must be provided by the implementation of a text entity.

A third example is the class of Directory entities. Ina conventional file system,
the directory is the primary (often the only) mechanism for naming and
associating a number of related files. In the entity system, special purpose classes
can provide whatever structuring is appropriate to a particular application: the
final example is intended to illustrate this point. In some situations though, the
conventional directory model is the most appropriate way of organizing
information. This example is an attempt to model the high level properties of the
CHAOS filing system [Wilkes 79].

A Directory entity consists of a collection of named entries providing
connections to other entities. Each directory entity handle has an associated set
of access rights {C, V, X, Y, Z}. These rights are requested by the client and
checked by the implementation when the directory is opened. The C right allows
the client to create new entries in the directory. The {V, X, Y, Z} rights determine
the access the client has on individual entries. The exact meaning of these rights
depend on the context, but they may be thought of as representing access groups
or levels of access.

Each directory entry consists of a name, an entity id, an access matrix for the
entity and a set of (say) 8 entry access bits. Three of the entry access bits {D, A, U}
control respectively deletion of the entry, alteration of the access matrix and
updating of the entity identifier. The remaining 5 access bits are defined by the
class of the entity held in the entry. The access matrix is a 4 x 8 matrix of boolean
values with a row for each of {V, X, Y, Z} and a column for each access bit.

When the client invokes a directory operation for a given entry, the vector of
rights {V, X, Y, Z} is multiplied logically by the access matrix to give an 8 bit access
mask. The result is a mask which is ANDed with the entry's access bits to give the
client's effective access. This is illustrated in figure 3-4. When a client whose
handle gives {V, X} access to the directory requests an operation on an entry
whose access matrix and access bits are given, the effective access to the entry is

37

DAU RW

VXYZ V 11100000
[11()0] % X 00100011
Y 00000001

client's directory 7 00000000

access
entry's access matrix

[11100011] ® [11100011]

l entry's access bits

[11100011]

client's effective access

figure 3-4

{D, A, U, R, W}. Similarly, just {Z} access to the directory gives the client no access
atall to the entry.

The class specific access bits represent the client's access to the entity held in the
entry. When the entity is opened, they are passed to the entity’s implementation
as an open argument. Figure 3-4 shows two access bits; R and W. The interpret-
ation for an entity of another class would be different. A directory entity controls
access to entities by performing entry open operations on the client's behalf. This
is difficult to express cleanly in most languages.

The operations provided by the directory class can be described as follows.

handle « dir$Open_Entry(entry_name, class,
requested access, argi,.. arg)

dir$Insert Entry(entity_id, entry_name,
access _matrix, entry_access)

38

dir$Update Entry(entity_id, entry_name, entry_access)
dir$Alter Matrix(entry_name, new_matrix)
dir$Delete Entry(entry_name)

dir$Alias Entry(entry_name, alias_dir, alias_name,
access matrix, entry_access)

found, entry access, access_matrix, times ¢«
dir$Examine_Entry(entry_name)

found, name, entry access, access_matrix, times ¢
dir$Examine Next(first)

dir_access, times « dir$Directory_Info()

The Insert Entry operation creates a new entry called entry_name which
conﬁhwthegWenentity_idﬂNhhaccess_matrixandentryﬁaccess.The
Update_Entry,A]ter_MatrixeﬂKiDe]etewEntnyoperaﬁonsmxpecﬂvmyre—
place the entry's entity id, replace the access matrix and delete an existing entry.
Alias_Entry allows entity sharing and moving without breaching the access
control system. An entry called alias_name is inserted into the directory
alias_dir with access determined by masking entry_access with the effect-
ive permissions from the original entry. When an appropriate entry is present,
Examine Entry returns information about it. The Examine_Next operation
allows a client program to scan through a directory looking at all of the entries.
Finally, Directory Info returns the timestamp values for the entire directory
and the directory access that is given by the client's handle.

A directory entity has a number of timestamps. Associated with the directory as a
whole there are timestamps for the directory's creation and for the directory’s last
update and access. In addition, each directory entry has an individual last update
timestamp. These timestamps are accessible through various examine operations
described above. However, this sort of interface is unnecessarily restrictive.

Suppose we want to write a client program whose sole purpose is to display
timestamp values. When this program is applied to a free standing timestamp
entity, the operation to extract the time value from the entity will be of the form

39

time ¢ ts_handle$Read_Stamp()
while for a directory entity, the operation will be either

., times ¢ dir_hand$Examine_Entry(entry_name)
or

., times ¢ dir_hand$Directory_Info()

depending on which of the many timestamps is required. For other classes the
interface is likely to be different again. The timestamp display program would
also need to know how to open each class of entity. This would be just about
bearable if it were not for the fact that new classes may be being defined all the
time, requiring continual changes to this and other utility programs. This
illustrates the need for support for polymorphism in the entity system. This issue
is discussed in chapter 4.

The directory entity also illustrates the need for support for multiple handles and
nested operation requests on a single entity. Suppose that the client wants to
alias an entry within a directory; e.g. the CAP command "alias .a .b". This
maps onto an implementation procedure call of the form

Alias Entry(current_dir, "a",.. current_dir, "b",..)
which may then invoke the operation.

current_dir$Insert_Entry("bd",..)

The result is two overlapping operations on the entity handle current_dir.
Multiple handles for a single entity arise when a client requests an operation on
the directory structure that involves following a loop. For example, if the
component "*" in a pathname indicates a link to the root node of a filing
system, and the user is selected to the root directory, then following pathnames
of the form ".a.b.*.a" or ".*.a" is likely to result in multiple handles for the
root directory entity.

An example which illustrates the use of the entities as a structuring mechanism is
M2_Program, the class of Modula-2 program entities. The previous two examples
of entity classes are essentially a rehash of conventional filing system facilities.
The classes provide no features that are not already provided by conventional

40

systems (without the benefit of typing and support for multiple implementations
of course). The same cannot be said for the following example.

A computer program may be viewed as a complex data object with a large
number of heterogeneous components. In the case of Modula-2, these include

® source code forthe DEFINITION and IMPLEMENTATION modules,

e symbol and code reference tables for the modules,

® relocatable binaries for the IMPLEMENTATION modules,

e the executable image of the program,

e compiler and linker directives for producing the executable image,

e information about dependencies on external subroutine libraries,

® testprogramsand benchmarking data,

e internal and external documentation, manual entries, help files, etc.,

e changelogs.

In a conventional system, the components of a program are organised in an ad
hoc fashion using filename suffixes, and other conventions that are liable to
break down. Dependency information in the form of a Makefile is typically
inaccurate or incomplete.

In the entity system, a class of M2_Program entities can be defined which ties
together the components in a well defined way. Each module of a program
would be represented by an M2_Defs_Module or M2_Imp1_Module subentity.
Other components such as the executable image, the linker directive and program
documentation would be represented by the entity itself. The M2_Program class
would provide operations for reading and writing the top level components,
initiating a link-edit and for gaining access to the subentities.

An M2 Module sub-entity would contain the source code, compilation directive,
and dependency list for the module as well as the derived object code, symbol
tables and debugger information. Operations would be provided for reading and

41

writing the source code and the compilation directives. Another operation would
be used to request recompilation. The dependency list would be a list of pairs of
module names and M2_Module entity ids for other modules in the program and
shared library modules. The compiler would check that the dependencies
correspond to the source code. If the compilation was successful, it would also
update the derived components using operations provided for that purpose.
Other operations would be used by the linker and debugger to read the object
code, symbol table and so on. These operations would check that the derived
components are up to date, and automatically initiate recompilation if necessary.

With an object as complex as this, it can be difficult to decide on the best way to
provide the required functionality. For example, a programing environment
requires version management at both the program and module levels, but it is
unclear how this should be split between the program entity and a separate
version management utility. This sort of question can often only be answered
after a process of experimentation. Unfortunately, the entity system described to
date allows the programer one chance to get the class definition correct. If the
interface is defined badly, the programmer has to live with the consequences. A
method for resolving this problem is proposed in the next chapter.

3.4 Comparison with Other Languages and Systems.

The three best established examples of object based type systems in programing
languages are Simula 67, Smalltalk and CLU. In Simula 67 [Birtwistle 73], an object
type is called a class. A class declaration gives the external interface to an object
and the implementation of the interface. The external interface includes all of
the variables declared as class parameters and in the class body, so that Simula
67 classes do not fully hide the implementation of an abstraction from the client.
A class declaration can be prefixed with another class so that the class being
declared inherits the variables and actions of the superclass. This allows classes to
be composed from other classes by the technique known as data specialization.

In Smalltalk [Goldberg 83], a class defines the messages an object accepts, the
instance variables and the methods which implement the classes messages.
Classes can inherit messages, instance variables and methods from a superc/ass in
a similar way to Simula 67's class prefixing. The Smalltalk type system is
polymorphic in that a message can be sent to any object whose class or

42

superclasses provides an appropriate method. Runtime type checking is used to
ensure that an object has a method to deal with the messages it receives.
Smalltalk implements operations on two objects by sending a message to the first
object with the second object as a message argument.

In CLU [Liskov 81], a cluster defines the abstract interface, an object's concrete
representation and the implementation of the operations defined by the
interface. CLU uses type parameterization rather than subclassing as the means
for constructing cluster types. The CLU type system is designed for compile time?
checking and does not support polymorphism.

None of these languages support multiple implementations of a class. Indeed in
both CLU and Simula 67, dyadic operations assume that both operand objects
have the same representation. Smalltalk comes closest to supporting multiple
implementations. It is possible to define new classes that are externally
equivalent to existing classes in all but name. This is quite adequate for providing
objects tuned for different purposes. However it is not ideal as the method of
upgrading implementations for two reasons. First it is not transparent to the
client, since the object's class will be different. Second it will tend to lead to a
proliferation of classes.

The author postulates that the Smalltalk language could be extended to separate
the protocol description from the implementation description and allow multiple
implementations for a given class. [t seems that this would not interfere with
Smalltalk's way of handling dyadic operations.

Unlike Simula 67, Smalltalk and CLU, classes and implementations are defined
separately in the entity system. Since a class can have multiple implementations,
dyadic operations need to be implemented in the entity system either using the
Smalltalk approach, or as implementation independent procedures provided by
the class. The latter could be treated as library routines.

4 In practice, inter-cluster type checking is defered to the link edit phase in order to cope
with type parameterisation. As a result, relinking a large program is very expensive.

43

The entity system does not support composition of classes using type parameters
or subclassing. While such features are desirable in an object oriented
programming language, adding type parameters or subclasses to the entity
system would cause severe problems for clients written in non-object oriented
languages. Besides, the entity system is intended to supplement existing
programming languages in a particular area rather than replace them. The basic
entity system (described in this chapter) does not support polymorphic types.
However, operation projection described in the next chapter does provide a
degree of polymorphism.

In many object oriented operating systems such as Eden [Almes 83] and CAP-3
[Herbert 78] [Pardoe 85], objects are automatically activated and passivated
without the client program's knowledge. While this makes writing client
programs much simpler, it has a number of disadvantages. Automatic activation
means that the client cannot inform the object's implementation of the sort of
operations that will be requested. Information of this nature has to be passed to
the object in separate operation requests. Alternatively, the implementation has
to make conservative assumptions about the expected uses of the activation, and
initialize accordingly. The policy used in CAP-3 is to avoid unnecessary activation
by activating the smallest possible unit of storage required for the immediate
situation. The effect is that attempting to use a complex object results in a
number of kernel operations to activate object components.

A second disadvantage is that automatic passivation requires a fast asynchronous
garbage collector for object activations. The garbage collector needs to be able
to passivate objects quickly before locks that they hold and other system resources
they are tying down interfere with the smooth running of the system. A fast
asynchronous garbage collector would be expensive, and could have the side
effect of causing unnecessary object passivation and reactivation.

The entity system also requires a garbage collector, albeit for a different reason.
When a client program terminates or an entity is passivated, there is a possibility
that it might fail to close other entity handles which it possesses. The kernel can
often detect this if it keeps track of the entity handles used by each program and
implementation. However, there is a possibility of entity activations (directly or
indirectly) holding handles for themselves, and an entity handle garbage collector
is needed to deal with this problem. It can be important that such a loop of

44

handles is broken at the correct point. While no general scheme is available for
finding the correct point, the heuristic of breaking the loop at the oldest handle is
likely to be appropriate most of the time.

When tidying up entity handles, the kernel is not in a position to apply an entity's
normal close operation since it cannot supply the class specific arguments. The
solution is for each implementation to provide a generic abort operation
procedure of the form.

{imp1}.Abort(handle)

Such a procedure would be similar to the same implementation's close procedure
except in respect of the class specific arguments. In the case of entities whose
update semantics use the transaction approach, an abort procedure would roll-
back the transaction in progress.

Another area that warrants discussion is the relationship between entity handles
and activations. In earlier versions of the entity system, a distinct entity activation
was used for different handles for the same entity. This was simple in that an
entity implementation had to deal with a single handle only. However, since this
meant that there was no sharing of temporary data between the handles for an
entity, correct management of cached data was a problem. Furthermore, if these
versions of the entity system had been multi-threaded it would have been very
difficult for an implementation to synchronize concurrent operations on different
handles.

Since all handles for an entity now use the same activation, the programer can
potentially use the implementation language's concurrency primitives to syn-
chronize entity operations. The implementation can use a shared activation for
caching information common to all handles for an entity. Sharing an activation
reduces the overhead of opening the second and subsequent handles, since the
kernel does not need to create a new activation, and the implementation open
procedure can avoid repeating a lot of the initialisation.

45

Chapter 4 - Projections and Perspectives.

4.1 Projections and Perspectives.

The main problem with the entity system as described in chapter 3 is the rigidity of
the type scheme. For example, the timestamp display program in section 3.3 had
to use a number of interfaces to access the timestamp values; one for free
standing timestamps, another for the creation and update timestamps on a
directory, a third for the corresponding directory entry timestamps and so on.

A similar problem arises when a class definition needs to be changed to correct
some deficiency in the interface. After changing the class definition, the program-
mer must update all programs that use the class and some or all of the existing
entity implementations. In addition, it may also be necessary to convert the
representations of existing entities with the old version of the class.

This degree of rigidity in the type system is acceptable in a small self contained
program where changing an interface affects that program and nothing more. It
is a different matter with large systems and when persistent objects are involved.
A minor change to (say) a client's interface to a conventional operating system
often requires that a large number of applications are recompiled. A changeto an
interface provided for a class of persistent objects is likely to involve data
conversion as well as program conversion. To get around problems of type
rigidity, the entity system provides a dynamic operation coercion scheme called
projection!. This section describes projection and presents some illustrative
examples.

In section 3.2, an entity was described as being characterized by 3 properties; the
class, the implementation, and the representation. The class that is a property of
an entity is better described as the base class or natural class of the entity. Now
we introduce the concept of the perspective class through which the client views
the entity. Previous descriptions assumed that the perspective class used by the

1 The idea of a projection mechanism for the entity system was originally proposed in
[Wilkes 81]. While the mechanism proposed there was simple operation renaming which
is akin to projection in the database sense, entity system projection has evolved into
something considerably more powerful.

46

client is the same as the natural class of the entity. When this is not the case,
operations which the client requests from the point of view of the perspective
class are projected into operations for the base class.

The mechanism for projecting perspective class operations into base class
operations is set up when the client program opens an entity. The client invokes
the open operation supplied by the perspective class and the perspective class
identifier is passed as an argument to the Kerne1.0pen_Entity call: |

handle ¢ Kernel.Open Entity(entity_id,
persp class_1id, arg_ptr)

If persp_class_id differs from the base class identifier in the entity triple, the
kernel goes through a process known as projection resolution. If resolution
succeeds, the handle returned by the Open Entity call is a handle for the
perspective class which allows the client to invoke perspective operations. These
invocations are projected into the appropriate base class operations on the
underlying entity.

Projection is intended to be transparent to the client program. For instance, the
timestamp display program should not need to distinguish between free standing
timestamp entities, and timestamps in directory, program or any other entities.
The program opens them all with the Time_Stamp.Open operation and sees a
Time_Stamp handle which providesa Read_Stamp operation.

The restrictions on projections are as follows:

® |t must be possible to resolve the projection at open time using the arguments
supplied in the open call.

® The semantics of an operation in perspective space must be compatible with
the semantics of the corresponding natural operation.

® A projection must be independent of the implementation of the natural class.
A projection of a base class as a perspective class must work for all implement-
ations of the base class.

47

4.2 Mechanisms for Projection and Projection Resolution.

In the previous section, the concepts of projection and projection resolution were
outlined. In this section, the basic projection mechanism is described. Various
projection resolution techniques are presented and discussed with some simple
illustrations.

The projection resolution mechanism is built around routines called resolution
functions. A resolution function has the following general form.

handle ¢« resolution fn(proto_handle, arg;,.. arg)

Proto_handleisa collection of information about the base entity being opened,
and the perspective which the client has asked for. When the time comes, this
information will be sealed to form the handle. The class specific open arguments
are passed in arg; through arg,.

A typical resolution function first decides whether it is capable of resolving the
projection given the client's open arguments. If it is, it then builds an operation
table for the handle using operations procedures from the entity's implement-
ation and from the resolution function itself. At some point the entity's open
operation procedure is called. Finally the resolution function calls the kernel to
transform the proto-handle into a full handle for the perspective class. This
handle is returned to the client.

The components of a proto-handle include the perspective class identifier, and
information about the immediate entity such as its class and implementation
identifiers. At various stages in the resolution process it may also contain a
pointer to the entity activation, a template operation table supplied by the
implementation, and the operation table which the resolution function is
building. The information that constitutes a proto-handle is heavily dependent
on the way that the entity system is implemented.

A given resolution function may well fail to produce a suitable projection. When
this occurs, the entity system kernel tries other resolution functions in turn until

48

one of them succeeds. If all possible candidate resolution functions are tried and
none of them succeed, the client's open request fails.

The need for using the more complicated method of passing open operation
arguments should be apparent by now. A resolution function needs access to the
class specific open arguments, yet it must be called from the kernel. In languages
like Modula-2, CLU and Mesa, the only reasonably type safe way to pass generic
arguments through the kernel is to assemble them in a record and pass the
address of the record. Thus a resolution function actually looks more like the
following

handle ¢« resolution fn(proto_handle, arg_rec_ptr)

where arg_rec_ptr is the pointer to the record of open arguments passed to
Kernel.Open Entity.

A number of techniques are available to the programmer writing resolution
functions. The simplest of these is operation substitution or renaming. Suppose
we define an Option class with three class specific operations

handle$Set Option(string)
string ¢« handle$Get_Option()
time « handle$Time_Set()

The semantics of these operations are obvious. Get_Option and Set_Option
respectively read and update the option value, and Time_Set returns the time at
which the option was last updated.

The formal argument and result types and the operation semantics for the
Option.Time_Set and Time_ Stamp.Read_Stamp operations are compatible.
The projection of an option entity as a (read-only) timestamp conceptually
renames Time_Set as Read_Stamp. In practice, the resolution function subst-
itutes the Time_Set operation procedure from the Option entity's implement-
ation for the Read Stamp operation in the operation table being built. Thus
whenever the client program invokes the operation it views as Read_Stamp, it is
the Time_Set procedure thatis actually called.

49

In a given situation, there may be many possible mappings from the client's
perspective class onto the natural class. For instance, suppose that the option class
also provides the operation

time ¢« handle$Time_Created()

which returns the time when the option entity was created. An open invocation
of the form

handle « Kernel.Open Entity(option_entity_id,
Time Stamp.class_id)

does not provide sufficient information for resolving the projection. The client
could be referring to either of two different timestamps within the option entity.
To get around this problem, the perspective class open operation can be defined
to take a selector string argument which is used to select between alternative
projections.

handle ¢« {persp_classname}.Open(entity_id,
selector_string, argi,.. arg,)

The extra selector_string argument is also present in the arguments for the
corresponding perspective open operation procedure. Thus an option entity is
opened as a timestamp using one of the following invocations.

handle ¢« Time Stamp.Open(option_entity_ id, "created")
handle « Time_Stamp.Open(option_entity_id, "set")

The resolution function would assemble an entity handle with either Time_
Created or Time_Set substituted for the Read_Stamp operation depending on
the selector string.

A resolution function for projecting options as timestamps is given in figure 4-1.
This illustrates both substitution and the use of a selector string. The resolution
function checks that the client has not asked for write access to the timestamp. To
prevent attempts to write the timestamp, the resolution function substitutes an
error trap for the Take Stamp operation. Then it substitutes the appropriate
operation procedure from the option entity implementation for Read_Stamp,
and the Close_proc operation procedure for timestamp Close operation.

50

/* Open argument record type defined by class */
Time_Stamp.Open_Args: TYPE = RECORD [
selector: String
mode: {Read_Only, Read_Write}]

FUNCTION Project Opt As_TS(p: Proto_Handle,
args: POINTER TO Time_Stamp.Open_Args
): Time_Stamp.HandleType
BEGIN
IF argst.mode # Read_Only THEN
/* The Take Stamp operation cannot be projected */
EXCEPTION(Projection_Failed,...)

ENDIF
/% Substitute Error_Trap for Time_Stamp.Take_Stamp */
IF argst.selector = "created" THEN

/* Substitute Base Impl.Time_Created_proc
for Time Stamp.Read_Stamp */
ELSIF argst.selector = "set" THEN
/* Substitute Base Impl.Time_Set_proc
for Time_Stamp.Read_Stamp */
ELSE
EXCEPTION(Projection_Failed,..)
ENDIF
/* Substitute Base Impl.Close_proc
for Time_Stamp.Close */
RETURN (/* Seal p as Time_Stamp handle */)
END Project Opt As_TS

figure 4-1

The third projection resolution technique is the use of projection operations. A
projection operation is an operation defined by the natural class of an entity
which is applied during projection resolution. It allows the resolution function to
make use of information stored in the entity, without introducing any
dependencies on the entity implementation. The arguments and results of a
projection operation are defined by the class as for other operations. In principle,
there is nothing to stop projection operations being invoked directly by the client.

As an example of the use of projection operations, suppose that a text editor
attempts to access one of the text components of a program entity, using a

51

selector string to give the name of the component. Some components have fixed
names like "1inker-directives" and "modification-log" that can be
built into the resolution function. Others like the source code components, will
have names that can only be determined by accessing the program entity being
opened. In the latter case, the resolution function needs to use a projection
operation to find the correct component.

Suppose that the program class provides a set of operations compatible with the
text entity operations. A further program operation is of the following form

success « handle$Select Text Component(name)

selects the component to which the program / text operations refer. A resolution
function for resolving a program as a text object could be written as in figure 4-2.

FUNCTION Project Prog As_Text(p: Proto_Handle,
args: POINTER TO Text.Open_Args): Text.Handle
BEGIN
handle: Text.Handle
/* Substitute Base Impl.Read Text proc for Text$Read */

/* Substitute Base Impl1.Close_proc for Text$Close */
handle « /* Seal p as Text_Handle */
IF Base Impl.Select_Text_Component(
handle, argst.selector) THEN

RETURN handle
ELSE

handle$Close(...)

EXCEPTION(Projection_Failed)
ENDIF

END Project Prog As Text

figure 4-2

The resolution function makes a text handle, substituting program operations for
text ones as necessary. Then it calls the Select_Text_Component procedure to
switch to the appropriate text component?. If this succeeds, the text handle is

2 There is a possible problem with typing here. The resolution function has a text handle
but Select_Text Component is an operation on a program handle. If this matters, the
resolution function should assemble a program handle as well.

52

returned to the client otherwise the text handle is closed, and the resolution fails.

The representation of the text components of a program entity is implementation
dependent (naturally). Components such as compilation directives may be held in
the entity's storage object, while components such as the source code may be
represented as free standing text entities. In the former case, the implementation
of the Select Text Component operation might cache the text component in
the activation ready for the text manipulation operations. In the latter case, the
implementation for Select _Text Component would open the relevant sub-
entity, and the text manipulation procedures would degenerate into operation
requests on the subentity handle. This suggests an alternative projector operation
which returns a completed text handle as follows.

text _handle « prog_handle$Open_Text_Component(name, ..)

The final technique for projection resolution is operation filtering. Unlike the
previous techniques, filtering incurs significant overheads whenever an operation
is invoked. Supporting operation filtering also makes the kernel more complicat-
ed. On the other hand, this technique allows the entity system to provide facilities
that would be very hard to reproduce in more conventional file systems and in
other object based systems.

In the last chapter, a class of directory entities was described. Consider the
problem of projecting such a directory entity as a timestamp. While the
operations Directory Info and Examine Entry provide access to a direct-
ory's timestamps, these operations are not type compatible with the timestamp
operation Read_Stamp. This means that the operation substitution technique is
not directly applicable. The resolution function could apply Directory_Infoor
Examine Entry as a projector operation, but none of the mechanisms discussed
so far will return the time value in response to a client's Read_Stamp request.
Besides, this approach is incorrect, since it would give the values of the timestamps
at the time the directory was opened rather than the time at which the
Read Stamp request was made.

The solution is for the resolution function to substitute one of its own local
procedures for the Read _Stamp operation. It then opensthe directory entity as a
directory, and stores the handle in the projection activation along with other
information supplied at open time. When the client later invokes the

53

Read Stamp operation, the substituted procedure invokes the Directory_
Info or Examine Entry operation on the directory. The timestamp value is
then returned to the client.

Given that the operation which returns a directory's creation and last update
timestamps has the form

current perms, creation_time, update_time ¢
dir _handle$Directory Info()

and the corresponding timestamp operation is,
time « ts_handle$Read Stamp()

a resolution function capable of projecting just a directory's creation and update
datesisiilustrated in figure 4-3.

Operation filtering relies on being able to use a projection activation to store
state for the handle after the resolution function has returned. In the above
example, this state includes the global variables dir_handle and sel_create.
Unlike entity activations, there is a separate projection activation for each entity
handle. A projection activation is created every time a resolution function is called
by the kernel. If the resolution function fails, or if it does not substitute any of its
local procedures, the activation is released on return to the kernel. Otherwise, the
projection activation is kept until the entity handle is closed.

The motivation for shared entity activations does not apply to projection activat-
ions. Cached data is best held in the underlying entity activation rather than the
projection activation, since the best caching scheme will depend on the entity
implementation. Furthermore, since the entity could simultaneously be accessed
by other routes, there is a risk that the cache will get out of date. Synchronization
of operations on projected handles has to be carried out in the underlying entities
for the same reason.

54

/* Resol'n function globals (the projection activation) */
dir_handle: Directory.Handle
sel _create: BOOLEAN

FUNCTION Dir_As TS(p: Proto_Handle,
args: POINTER TO Time_Stamp.Open_Args
): Time_Stamp.Handle
BEGIN

IF argst.selector = "created" THEN
sel create « TRUE
ELSIF argst.select = "updated" THEN
sel _create ¢« FALSE
ELSE
EXCEPTION(Projection_Failed,..)
ENDIF
dir_handle « /* Seal p as Directory.Handle */
/* Substitute Filter for Time_Stamp$Read_Stamp */

/% Substitute Close for Time_Stamp$Close */
RETURN /* Seal p as Time_Stamp.Handle */
END Project Dir_As_TS

FUNCTION Filter(ts_hand: Time_Stamp.Handle): Time
BEGIN
create, update: Time
VOID, create, update « dir_handle$Directory_Info()
IF sel _create THEN
RETURN create
ELSE
RETURN update
ENDIF
END Filter

PROCEDURE Close(ts hand: Time_Stamp.Handle)
BEGIN

dir_handle$Close()
END Close

figure 4-3

55

4.3 Projection Ambiguity.

The examples presented so far have been single level projections, requiring only
one resolution function. The power of the projection mechanism does not
become apparent until more complicated examples are considered. This section
presents such an example, and discusses a serious problem with projection which
the example brings to light.

Objects in most filing systems can be referred to by a textual name. The syntax
and semantics of object names vary considerably, reflecting differences in the
filing system structure and the designer's personal tastes. In the typical filing
system, directories hold object name information in parallel with structural
information. In an entity system, the structural information can be represented by
entities of many classes. Furthermore, entity projection can produce structural
viewpoints that are not explicitly defined by a base class; for example, a program
entity can also be viewed as a collection of text objects. Object naming in the
entity system needs to reflect both the natural and projected structural view-
points.

A name can be associated with any visible component of the entity system,
whether it is a complete entity or a component of an entity. The names of some
components such as directory timestamps are bound into the code of resolution
functions or entity implementations. Others, such as directory entry names and
program source component names, are derived from data stored in entities.

Name to component mapping can be performed as part of the projection
resolution process. A componentname is passed as the selector string in the entity
open operation invocation. A resolution function may interpret the name
immediately, possibly with the help of projector operations. Alternatively it can
save the component name in the projection activation for use in filter operations.

A sequence of component names can be thought of as a path through the entity
filing system. The same sequence of names concatenated with separators into a
single string forms a pathname. A resolution function handles a pathname by

56

stripping off and interpreting the first component, and recursively calling the
kernel entity open routine with the rest of the pathname as selector string.

The sample resolution function in figure 4-4 can handle a single step in a multi-

FUNCTION Dir_As_Anything(p: Proto_Handle,
args: POINTER TO Any_Open_Args): Any_Handle
BEGIN

head, tail: STRING
dir_handle: Directory.Handle
handle: Any Handle

head, tail « Strip Off Head(argst.selector)
dir_handle « /* Seal p as Directory */
USE HANDLER Dir_Error_Trap
handle « dir_handle$Open_Entry(
head, p$Persp Class_Id, tail,..)
dir_handle$Close(...)
RETURN handle
END Dir_As _Anything;

HANDLER Dir_Error_Trap(exception: EXCEPTION)
BEGIN
IF exception = Directory_ Error(Entry_Not_Found) THEN
dir_handle$Close(...)
RAISE Projection_Failed(...)
ELSE
RESTIGNAL
ENDIF
END Dir_Error_Trap
figure 4-4
stage projection; the step being the projection of a directory as a directory entry.
The resolution function splits the selector string at the leftmost component
separator, then invokes the directory operation Open_Entry, using the head
component as a directory entry name, and passing the rest as the selector string
for Open_Entry. If the implementation for the directory entity fails to find the
named entry, it raises the exception Entry_Not_Found. The exception handler
catches this, tidies up the directory handle, and signals that the resolution
function has failed.

57

A sketch of an implementation of the Open_Entry operation is given in figure
4-5 The implementation procedure searches for an entry with the required name.

TYPE Directory Entry = RECORD [
entity id: Entity_Id

]

PROCEDURE Open_Entry(
dir_hand: Directory_Handle, entry_name: STRING,
persp_id: Class_Id, selector: STRING,..): Any_Handle
BEGIN

entry: Directory Entry
entry ¢ Find Entry(entry_name)

RETURN Open_ Entity(
entry.entity id, perspective, selector,...)
END Openkntry

figure 4-5
After checking permissions for the entry, it calls the kernel routine to open the
entity, passing through the client's perspective and (in this case) the tail string
from the resolution function. If the tail string is null and the perspective id
matches the natural class id, the kernel will perform a simple open. Otherwise,
the kernel starts on the next stage of the resolution.

It is not always immediately obvious how a projection should be resolved.
Consider the following sample filing system structure in figure 4-6. Suppose thata
client program tries to open the directory entity x as a timestamp handle. There
are a large number of selector strings that the client could supply; "created”,
"A" "A.inserted”, "B.updated"”, "B.C" and "B.C.updated” are just a few
of the possibilities. Given just the perspective class and selector string, the kernel
cannot determine a priori the sequence of resolution functions that will
successfully resolve the projection.

All resolution functions are specific to one base class and a subset of the perspect-
ive classes. This limits the number of possible resolution functions at each stage.
The kernel's resolution routine tries each of these functions in turn until it finds

58

directory

x: created, updated time stamp
"A",inserted, updated »| a: time value
"B",inserted, updated.__|

directory

b: created, updated time stamp
"C",inserted, updated c: time value

\ 4

figure 4-6

one which succeeds. By using this strategy at each stage, the kernel performs a
depth first scan of the tree of possible projections until one that works is found.

In the example above, the only applicable resolution functions for the first stage
are Dir_As_TS for the directory's created and updated stamps, Dir_As_
Entry TS for the inserted and updated stamps associated with a given
directory entry, and Dir_As_Anything for free standing timestamps entities
entered in the directory. If the client supplies the selector string "B.C.
updated", the projection search tree might look something like figure 4-7.

The problem with this scheme is that it allows ambiguous names. In the sample
directory structure, "B.updated" could refer to either the "updated™” stamp of
directory b or the "updated" stamp of the "B" entry in directory x. Further
ambiguities arise if a timestamp entity is inserted into one of the directories with
the name "created", "updated"” or "inserted".

The naming ambiguity reflects inconsistencies between the base class and the
different projections. The static component name "updated” is used in two
places to mean slightly different things. It can be avoided by changing the names
of the entry timestamps to (say) "entry-inserted" and "entry-updated”.
The other problem is that directory entry names can clash with static component
names defined by resolution functions. A somewhat unsatisfactory way of

59

:Open_Entity(x, TS_class_Id, "B.C.updated")é

Dir_As Anything(...)

§x$0pen_Entry("B", TS class_Id,
"C.updated",..) 5
- Open_Entity(b, TS_class_Id, "C.updated")

figure 4-7

removing this ambiguity would be to choose static component names which do
not conform with the syntax rules for directory entry names.

This is just an example of the general problem of projection ambiguity. In a given
situation, there may be a number of different possible resolutions for a given
projection, each giving an entity handle with different semantics. Without extra
information, there is no way that the kernel can tell which is the correct projection
to use. It would seem that ambiguity problem is inherent to this form of type
coercion. In any case, some way is needed to avoid practical ambiguity problems.

The client program may be in a position to specify which resolution function is to
be used at a given point. Ifso, it needs to pass the name of the resolution function
to the kernel. One option is to encode the name in the selector string using an
escape sequence. If the kernel finds an escaped resolution function name at the
beginning of the selector string it applies the function without searching for any
other. Thus in the example above, a selector string of "!Dir_As_Entry_TS!
B.updated" would unambiguously give the timestamp for the last update of the
entry "B", and "!Dir_As Anything!B.updated" would give the timestamp

60

for the last change to the directory b. This scheme relies on the kernel
understanding the selector string which implies that it is a general rather than
class specificopen argument.

In the absence of any other information, the order in which possible resolution
functions are tried in an ambiguous case determines the projection which results.
Thus, another way that a client can affect the resolution process is by altering the
order in which resolution functions are tried.

Resolution function ordering information is held in a data structure called a
projection index. A projection index holds an ordered list of resolution functions
for each perspective / base class combination. At each stage in the resolution
process, the kernel finds the appropriate list and tries the functions in the given
order until one of them succeeds. If the list is empty, or if none of the resolution
functions succeeds, the resolution fails. In a multi-stage resolution, the kernel
backs up to the previous stage and tries the next alternative.

The order in which the kernel tries resolution functions also affects the efficiency
of projection resolution. Ideally, the correct resolution function will be the first
one tried in the majority of cases. Otherwise, a lot of time could be wasted
applying the wrong resolution functions.

The previous discussion assumes that each stage is carried out by separate resolut-
ion function calls. This need not be so. A resolution function can also handle a
number of alternative projections or a sequence of projection stages. In the
timestamp example, Dir_As TS and Dir_As_Entry_TS can be written as a
single resolution function which handles both cases. Similarly, the Dir_As_
Anything resolution function could be rewritten to follow the path through a
number of directory entries in one application.

Bundling resolution functions avoids the kernel calling resolution functions that
cannot possibly succeed, and reduces the number of resolution function calls in
general. Since setting up a resolution function call can be expensive, such
optimizations may be well worth doing. The disadvantage is that the client loses
control of the resolution process. When a number of stages in the resolution
process are handled by a single function, the client cannot get around ambiguity

61

problems by altering the order of resolution functions in the projection index or
by specifying the resolution function by name.

62

Chapter 5 - An Experimental Entity System.

This chapter describes an experimental implementation of the entity system. The
purpose of the system was to try out the entity system concepts. Though some of
the concepts outlined in chapters 3 and 4 have progressed since work stopped on
the experimental entity system, most of the key areas were implemented.

5.1 The Scope of the Experimental System.

An initial prototype of the entity system was implemented in a few months in
BCPL for LSI-4 computers in the Cambridge Processor Bank [Needham 82]. It ran
under the TRIPOS operating system, using the Cambridge File Server to store
entity representations. Something close to a basic entity system without
projections was implemented along with some sample classes and command
programs. However, the prototype ran into address space problems, and became
too complicated to debug using the tools provided by TRIPOS.

A number of lessons were learned from the LSI-4 prototype. The most obvious
ones were the need for a typed programming language, a stable operating system
substrate and symbolic debugging. It was clear that a full scale entity system
would need a large address space. Finally there was a need for a fast interface to
the permanent storage medium.

The experimental entity system runs in a single user process on a VAX 11/750
computer under the 4.1bsd and 4.2bsd versions of UNIX. Passive entities and other
entity system state is held in a simulated disc file store. The file store is
implemented on top of a file in the UNIX file system and is accessible from UNIX
for debugging purposes. UNIX is used for editing, compiling and linking, and
when the entity system is running, it provides a stable substrate from which to run
debuggers. The benefits of a powerful and stable support environment cannot be
over emphasized.

The experimental entity system is mostly coded in Modula-2 [Wirth 80], with a
little VAX assembler code. Modula-2 is a simple strongly typed language suitable
for operating systems work. Its main advantages over languages such as C and

63

BCPL are that it provides both strict type checking, and modular separate
compilation facilities. CLU [Liskov 81] has proper support for object based
programming, but suffers from the disadvantage of requiring garbage collection.
Besides, an object based file system implemented in a non-object based language
can be generalized to an object based language while the reverse is not
necessarily so. At the time the decision was made, a significant point in favor of
Modula-2 was that the language was actively supported at the Computer
Laboratory.

The experimental entity system was implemented with the following limitations:
e itrunsasasingle UNIX processin asingle address space,
e thereis provision for only one client process, and
e only one programming language (Modula-2) issupported.

This a consequence of the fact that there was limited time available, and that the
system needed to be simple enough to allow easy experimentation with the
kernel and its interfaces.

The experimental entity system does not satisfy many of the requirements
mentioned in section 1.3. The class definition machinery needed to fully satisfy
the type safety and extensibility requirements 1) and 2) was never completed. The
security requirement 4) is not satisfied as a consequence of the entity system
kernel, entity implementations and the client program all running in asingle UNIX
process. The multiple client language requirement 5) is simply not addressed.
Finally, requirement 6) is not satisfied as a consequence of the above.

Limiting the scope of the system avoids many problems. The kernel and entity
implementations do not normally have to worry about synchronization of
concurrent requests. Since there is only one addressing domain and one
programming language, parameter passing is considerably simplified. However,
in its final form the system tries to simulate firewalls between the kernel, entity
implementations and the client's code, and hence to show that an entity system
can be implemented in an environment where the firewalls exist.

The remainder of this chapter describes the state of the experimental entity
system when development ceased. Section 2 describes the permanent storage

64

interface and its implementation. Sections 3 and 4 describe the basic entity system
kernel and the projection mechanism. Section 5 presents some of the programs
and classes written to exercise the experimental kernel. The final section presents
a number of lessons that were learned from the experimental implementation.

5.2 A Standard Storage Interface.

There are advantages in having a universal storage interface which all entity
implementations use for long-term storage. In the experimental entity system an
attempt was made to define such an interface. The interface is based largely on
the Cambridge File Server (CFS), [Dion 80] [Dion 81] with a number of changes in
the light of experience with the file server itself, and with the LSI-4 prototype
entity system.

The Standard Storage Interface (or SSI) models information as being either links or
ordinary data. Ordinary data is treated as uninterpreted 8 bit bytes. An SSl/inkis
a unique identifier encoded as a 128 bit number. It contains a link type field which
gives the meaning of the link, and other fields depending on the type. Four link
types (see figure 5-1) are defined by the SSI: storage object identifiers, class

link type

medium | random part storage identifier

unique token class identifier

I |
L |
| unique token ‘ implementation identifier
I |

zeros nil identifier

figure 5-1

identifiers, implementation identifiers and the null link. A storage object link has
a function similar but not identical to that of a PUID! in the CFS model. In
particular, the SSI does not guarantee that a storage object identifier is
“permanently unique”, and therefore it is incorrect in this system for an SSI client
to hold identifiers outside of the SSI. This makes it possible to archive at the level

1 Inthe CFS, a PUID which stands for Permanent Unique Identifier is the identifier for a file
orindex. Clients are allowed, and in some cases expected, to bind PUIDs into their code.

65

of the storage object. As far as the SSI is concerned, class and implementation
identifiers are opaque tokens.

A storage object is the vehicle the SSI uses for the permanent storage of link and
data information. A storage object (see figure 5-2) is modeled as a pair of vectors,

link slots
0 i 1\v lim
storage link i link 5 i E E | link vector
object data bytes ... | value vector
0 lim

figure 5-2

one of bytes of data and the other of links. The links and bytes of data in the
vectors are indexed from zero up to a bound set by the client. Either or both of
the vectors can be empty. Combining the functions of CFS index and file in an SSI
storage object was motivated by the observation that CFS applications which use
indices for structuring typically have a file in parallel with each index to store
associated information.

Operations on a storage object require a storage handle as a parameter?. A
storage handle is the client's capability to use a storage object, and conveys both
the subrange of the storage object that the client has access to, and the associated
access rights. A handle for an entire object is obtained by applying the SSOpen
operation to the object's link as found in the link vector of a “parent” storage
object. A handle for a subvector of an object's link or data vectors (figure 5-3) is
obtained by applying SSRef ine to an existing handle. Operations on a refined
handle refer to links and bytes relative to the start of the refinement. When a
handle is no longer required, the client releases it with the SSC1ose operation.

2 AnSSlstorage object is not an entity, nor is a storage handle an entity handle.

06

0 fromslot fromslot + slotcount

full storage e ! I |
object - : g
0 . slotcount
refinement ‘,”{ : |
figure 5-3

The operations which deal with handles and access are as follows:
handle := SSOpen(parenthandle, slot, access)

refinedhandle := SSRefine(handlie, frombyte, bytecount,
fromslot, slotcount, access)

SSChangeAccess(handle, access)
SSClose(handle)

The operations for transferring data and links between a client's address space

and a storage object are as follows:

nbytes SSGetBytes(handle, start, length, buffer)

nbytes := SSPutBytes(handle, buffer, start, Tength)
nlinks := SSGetLinks(handle, slot, lTinkbuffer)
SSGetLink(handle, slot, 1ink)

SSPutlLink(handle, 1link, slot)

The link and data vector sizes are read and updated by the following operations:

1imit := SSFindLinkStoreLimit(handle)

67

1imit := SSFindValStorelLimit(handle)
SSChangeLinkStoreLimit(handle, limit)

SSChangeValStorelLimit(handle, 1limit)

The SSI uses a similar mechanism to the CFS for deleting objects. An object is
guaranteed to exist in the storage system so long as its link is held in the link store
of an object that is accessible from the root of the file store. Therefore, when the
SSCreate operation allocates a new storage object it stores the link in a "parent”
storage object. The SSDelete which removes the link from a slot in a link vector
may precipitate deletion. An object that has been removed from all link vectors,
will continue to exist until the client(s) close the last handle.

SSCreate(parenthandle, slot)

SSDelete(parenthandle, slot)

As with the CFS, object deletion is controlled in the first instance by reference
counts with potentially asynchronous garbage collection to pick up detached
cyclic structures. This leads to a definition of object lifetime where the existence
of an object may depend on the timing of a garbage collection. For example,
suppose there is an object for which two copies of the link exist; one held in the
root object and the other held in the object's own link store. A client reads the
link into local memory, then removes it from the root object creating a degener-
ate detached cycle. The object is now in a state where its continued existence
depends on whether the client uses SSPutLink to save the link in another link
vector before a garbage collection occurs.

This non-determinism in the definition of an object's lifetime can be removed by
replacing SSPutLink with an operation to copy a link from the link store of one
storage object to another. Source and destination objects are guaranteed to exist
because of the handles held by the client and therefore the object in question is
guaranteed to exist. If a client has a handle for a detached cycle, all objects in the
cycle are guaranteed to exist and the cycle can potentially be reattached.
However, once the last handle has been closed, all objects in the cycle effectively
cease to exist, since there is no way to reattach the cycle or open one of the
objects.

68

In the entity system, the kernel needs to be informed when objects representing
entities are going to be deleted so that the appropriate delete operation can be
applied. The SSI therefore has the concept of a cherished object. When an
cherished storage object is found to be inaccessible it is relinked into the link store
of a distinguished storage object. The client (in this case the entity system kernel)
can look in the distinguished object for deleted storage objects and deal with
them as appropriate. As a safeguard, storage objects have the cherished bit
removed when they are relinked. The SSCherish operation marks storage
objects as cherished or uncherished, and SSQueryHand1e examines the status of
an object, including whether or not the object is cherished or relinked, and the
numbers of links and handles which refer to it.

The $SI access control scheme is more flexible than the equivalent CFS scheme.
There are three basic access modes read, write and alter 1imit, each of which
controls a subset of the SS| operations. For each mode there are two access rights;
the access right and the Tock right. If a storage object handle has an access
right, a client may use it to request any of the associated operations on the object
or object refinement. If a handle has a Tock right, the client is guaranteed that
no other handles give the corresponding access right, and vice versas.

Though a client opening an object with SSopen can ask for whatever access and
lock rights it needs, SSRefine and SSChangeAccess normally only allow rights
to be removed. To prevent this being a problem, there are additional access
control and lock control rights which allow the client to enhance a handle
with enable and lock rights that it did not previously have. For example, a handle
with lock control right allows the client to use SSRefine or SSChangeAccess
gain new locks on the handle or a refinement. The control rights can never be
regained once lost by a handle.

Separating access and locking allows the client to simulate most conventional
forms of file and record locking. For example, single writer / multiple reader file
locking can be simulated by all readers requesting read access and write Tock,
and writers requesting write access and write lock. To simulate record

3 These interlock rules have an interesting implication: if a handle with an access right is
refined with the corresponding Tock right (or vice versa), the original handle's right must
be cancelled to maintain mutual exclusion. The alternative would be to fault the
refinement.

69

locking, each client needs a handle for the full file with both Tock and access
control. A client locks a record by creating a refinement for the portion of the
storage object which holds the record with the appropriate access and lock
rights.

When a handle is produced by SSOpen, the client may request any rights on the
object. This means that if the SSI access control scheme is to be the basis of file
system protection, care must be taken to ensure that links do not “leak out”. If
SSPutLink were replaced with a copy operation, this would be less of a problem.
Another thing the SSI access control mechanism does not support is waiting for
locks to become available. Given that the experimental entity system only allow-
ed one thread of control, it would have been pointless to include this facility.

The SSI as described above has been implemented in the experimental entity
system. The implementation uses a conventional file in the host filing system as a
virtual disc and simulates an implementation of a file system at the disc block
level. Three stand-alone utilities were written for maintaining the standard
storage system. The Storage Medium Initializer is a simple program which creates
a new storage medium file. The Storage Medium Editor provides interactive
commands for examining and changing a storage medium. The editor, which uses
the SSI for all operations on the storage medium, is useful when looking for bugs
in entity implementations. Finally the Storage Medium Verifier checks the
integrity of a medium file at a number of levels, and interactively corrects
inconsistencies. It has facilities for displaying virtual disc blocks and various
summaries of the storage medium data structure, and includes a (synchronous)
garbage collector.

5.3 The Basic Entity System.

The representation of an entity in the experimental system is an SSI storage object
(figure 5-4). The first two link slots of the storage object contain the entity's class
and implementation identifiers respectively. They are protected from interfer-
ence by giving the client a refined storage handle which excludes the first two
slots. Since opening a storage object in the SSI is an operation on a “parent”
storage handle, the same is true for an entity. Therefore, a client of the kernel

70

entity | storage handle | link slot

/

(

parent storage | ***"" T link store
object I / data store
v " ¢« 8
entﬁ_y storage class id |mp| idl ... entity's
object — 777 representation

figure 5-4

refers to a passive entity using the type Entity which is a record containing a
storage handle and a link slot number.

An entity handle is represented by the type EntityHandle. This is an opéque
type which hides a pointer to an entity handle descriptor (figure 5-5) held in the
kernel. The descriptor holds copies of the base class and implementation
identifiers for the entity, the class identifier for the perspective under which it was
opened, and the storage object handle passed to the client. The next, prev, parent
and child fields are pointers to other entity handle descriptors used by the kernel
when closing handles that the client has “dropped on the floor”. There is also a
pointer to an operations table for the entity handle, containing procedure
variables for procedures in the entity implementation or resolution function
which perform the class specific part of the operations.

Standard Modula-2 provides a single, statically linked instance of each IMPLEM-
ENTATION module. The experimental entity system uses a dynamic module
package to allow multiple instances of a module and dynamic module loading.
This package is described in Appendix A. Entity implementations and resolution
functions are dynamically loaded modules with a separate module instance for
each activation. Dynamic loading avoids having to relink the entire system
whenever an implementation or resolution function changes. As such it is

71

Entity Handle

\ Entity Block

next —p child — Operations Table
prev —7p- parent ———p- operation count —
base class id impl. id Open op. proc. A
persp. class id ops. tab. status Close op. proc.
operations table —_— Create op. proc.
entity activation —_— Delete op. proc
resolution fn. activation ~—p» class specificop. 1
storage object handle —» class specificop. 2

v

figure 5-5

essential to the entity system concept. The penalty is the cost of dynamic loading
and relocation, but this can be offset by preloading and caching modules. A
separate module instance is used for each activation to make entity
implementations simpler and more object like. This is useful to the programmer,
but is not necessary. Indeed, if entities were used to represent large numbers of
small objects, the global frame table would overflow.

The first time the kernel gets a request for a given implementation, it loads the
corresponding dynamic module and causes it to execute its initialisation code. The
initialisation code fills a master operations table with procedure variables and
calls back into the kernel passing a pointer to the table. The kernel sets up an
implementation table entry (figure 5-6) to record the master module instance and
operations table for the implementation and other information. The data
structures for a projection activation are similar but simpler.

72

Entity Block

Entity activation module no. ------}---- > ﬁ‘ﬂcgg’jféon
Activation impl no. ; use count Instance
//,
//
\\ /
\\\\ \
~~~~~~~~ AN
_ Master
impl module no.  -----{----- +» Module
; ; . Instance
. impl id. class id.
Implementation P

Table impl module name

operations table

activation use count

figure 5-6

In a full entity system, entity implementations and resolution functions would be
stored within the entity system itself. This was never implemented in the
experimental system. Instead, the dynamic module files are brought in from the
Unix file system, and the binding between implementation identifiers and Unix
filenames is compiled into the kernel. This avoids problems with creating a new
entity file system and bootstrapping the system at start of day. A better approach
to these problems is to bind the code for the crucial implementations into the
kernel. Non-crucial implementations would be found using an implementation
index.

When a new entity activation is required, a new instance of the implementation
module is made and an entity activation descriptor is allocated. An operation
table is produced for the handle, with procedure variables referring to the new
instance rather than the master instance. For historical reasons, the experimental
entity system does not support activation sharing between all handles for a given
entity. The use count field in an activation descriptor is used (possibly spuriously)

73




when opening an entity to indicate whether or not a handle being assembled uses |
this activation of the base entity.

Since the entity kernel tries to simulate firewalls, the client is “forbidden” from
breaking open a handle to get at the operations procedures. Instead, all entity
operation requests are dispatched by the kernel. Passing an arbitrary collection of
arguments and results in Modula-2 is a problem. One approach is to have the
kernel return the operation procedure to be invoked by a stub operation
procedure. This approach was not allowed in the experimental system because it
involved passing a procedure from one notional address domain to another.

Other approaches are for the stub procedure either to copy the class specific
parameters into a record whose address is passed, or to push them onto a stack.
Both of these approaches have been tried in the experimental system; the latter
using assembler coded stubs to save the parameters and to transfer control to the
kernel. Both approaches work, but they are tedious to code by hand and are
outside the protection of Modula-2 type system. Given time, these problems
could have been solved using a translator for a class definition language.

Class specific entity operations are handled as follows. The client calls the stub
operation procedure exported by the Modula-2 module which defines the class.
This stub procedure takes the entity handle and appropriate operation specific
parameters. |t saves the parameters (in a record or on a special stack) and calls the
kernel with the entity handle and an operation index as arguments. The kernel
uses the operation number as an index into the handle's operation table to extract
the operation procedure and calls it passing the entity handle and saved
parameters. The mechanisms for passing class specific parameters to generic
operations issimilar, except that parameters passed to the kernel are different.

The kernel open routine is called with an Ent ity record, a selector string (possibly
null), and the perspective class as arguments as well as any saved parameters. It
first opens the entity storage object and extracts the class and implementation
identifiers. The entity storage handle is then refined to exclude these slots. If the
class identifier differs from the perspective class requested, or the selector string is
non-null, the projection resolution mechanism described in the next section comes
into play. Otherwise, the kernel finds the implementation module for the entity,
and creates a new entity activation. The handle's operation table is made from

74




the master operation table, and all the pieces are assembled to give an entity
handle. The open operation procedure is invoked passing the entity handle,
refined storage handle and saved parameters and the kernel finally returns the
entity handle to the client.

The kernel create routine allocates a new storage object in the slot in the parent
object's link store and writes the class and implementation identifiers. Then it
searches the table of loaded implementations for one which matches the
implementation identifier and creates an activation and an entity handle. The
implementation's create operation is invoked, and the entity handle and
activation are freed. The kernel delete routine checks that the entity storage
object is not referred to by some other part of the filing system. If this is the case,
it makes a handle, applies the delete operation procedure, dismantles the handle
and deletes the storage object. The kernel close routine is straightforward. The
kernel extracts and applies the close operation procedure then dismantles the
handle.

5.4 The Projection Mechanism.

The projection mechanism is driven by resolution functions called by the kernel. A
resolution function typically looks at the head of the selector string, the base class
and perspective identifiers and the permissions that the client has requested for
the entity. If it is capable of doing so, it then directs the kernel in the assembly of
an operations table using natural operations taken from the base implementation
and the resolution function's own local procedures. The resolution function then
instructs the kernel to seal the handle and it returns it to the kernel. If the
projection is not possible, the resolution function returns the NIL pointer instead
of a handle and the kernel may then try another resolution function.

A resolution function in the experimental entity system is a dynamically loaded
module. Before a resolution function is invoked by the kernel, a dynamicinstance
of the module is created for the resolution function activation. This activation
lasts at least until the resolution function exits. If the function fails to produce a
handle, or if the handle does not use any resolution function procedures, the
activation is released. Otherwise, the resolution function activation is attached to
the entity handle descriptor.

75




Taking projection resolution into account, the algorithm for opening an entity is

as follows:

1) Open the entity storage object and read the class and implementation
identifiers.

2)

If the client's perspective matches the base class, and if the selector string is

null, the entity open process is completed by following steps.

a)

Make a new entity activation, loading the implementation if it is not
already loaded.

Make the implementation's operation table.
Refine the entity storage object handle.
Assemble the entity handle.

Apply the open procedure, returning the completed entity handle.

Otherwise, if the head of the selector string is an “escaped” resolution

function name, attempt to resolve the projection as follows.

a)

e)

Make a resolution activation, loading the resolution function if itis not
already loaded.

Invoke the resolution function.

If no operations from the resolution function were substituted, release
the projection activation.

If the resolution function failed, release the entity activation, and return
an error indication.

Otherwise return the entity handle produced

Otherwise, repeat the following steps until either the name lookup fails, or

the resolution function succeed:s.

a)

Lookup the name of the first (or next) resolution function for the
current base class, perspective class pair.

b) Trythe resolution function as 3) above.

76




The projection interface that resolution functions use to direct the assembly of an
entity handle consists of the 4 following kernel routines.

SubstituteImplementationOp(persp_op_no, base_op_no)
SubstituteResolutionOp(persp_op_no, resoln_proc)
entity handle ¢ SealProjectedHandle(perms, open)

entity handle « SealNaturalHandle(perms)

When the resolution function is invoked, the perspective operation table is empty.
The resolution function calls the first 2 functions in the projection to set up the
table. SubstituteImplementationOp inserts the operation procedure at
offset base_op_no in the natural implementation operation table into the
perspective operation table at offset persp_op_no. SubstituteResolution-
Op inserts the procedure resoln_proc from the resolution function module. In
both cases, the kernel massages the procedure variables so that they refer to the
appropriate activation module instances.

The remaining two routines are used to complete the assembly of entity handles.
SealProjectedHandle completes an entity handle from the perspective oper-
ations table assembled using the Substitute... routines. Thisis typically the last
statement of a resolution function. SealNaturalHandle returns an entity
handle with a copy of the base implementation's operations table referring to a
completely new activation. This handle can be used in filter operations.

The Seal... routines can apply the open operations for the handles they produce.
With SealNaturalHandle this happens unconditionally, while the behavior of
SealProjectedHandle is governed by two factors. If open is TRUE, the open
operation is applied regardless. Otherwise, it will only be applied if the handle
being produced has operation procedures from the implementation. Open
arguments are passed using the mechanisms described previously. The resolution
function typically has to build an additional set of open parameters when it uses
SealNaturalHandle.

The kernel needs to recover cleanly from the failure of a resolution function so
that alternative resolution functions can be tried. As part of the recovery process,
activations which have not been bound to entity handles are deallocated, refer-

77




ence counts on implementation and resolution function modules are decrement-
ed, and saved open arguments and operations tables are discarded. The kernel
does not close entity handles that were sealed as part of a failed resolution step,
since it cannot tell if the resolution function has already passed them to some
other part of the entity system.

The order in which resolution functions are tried is governed by the projection
index. The projection index is an entity containing an ordered list of resolution
functions for feasible combinations of perspective and base classes. To accom-
modate entity system startup and changes to the projection index, the kernel
provides the following routines for enabling and disabling projection resolution;

EnableProjections(projection_index_handle, trace)

DisableProjections()

The EnableProjections routine allows the client to select between different
projection indices. If trace is TRUE, the kernel displays a trace of the resolution
process as an aid to debugging resolution functions.

5.5 A Model Filing System.

This section describes a filing system with a simple user interface implemented
using the experimental entity system. The filing system includes a small number
of implemented classes and projections, and some client command programs for
manipulating various sorts of entities. The user interface to the filing system and
the execution environment for the commands is provided by a primitive command
line interpreter.

Six entity classes have been implemented for use in the filing system; time stamps,
“byte files”, directories, unique identifier generators, and projection and class
indices.

Timestamp entities are trivially simple, providing operations for reading and
setting a time/date value stored by the timestamp. Free standing timestamps are
of little practical use in a running system, since useful timestamp values are

78




generally components of a larger object. However, timestamp entities have
proved to be useful for testing an entity system under development.

Byte file entities store information to which no special meaning is attached. The
byte file interface provides a set of operations similar to those available for a UNIX
file; read, write, seek, tell and set_end_of_file. Additional operations
allow the client to read time stamps storing the byte file entity's creation and last
update times.

Directory entities form the backbone of the user filing system. A single directory
holds a number of entries consisting of a textual name, access control information,
and an entity identifier. The access control model provided by directory entities is
based on the CAP model [Wilkes 79] using access matrices. Operations are
provided for inserting, deleting, and examining entries, and for altering access
matrices. The directory class and its problems were described in section 3.3.

Unique identifier generator entities provide a source of class and implementation
identifiers when new classes and implementations are defined. A unique ident-
ifier generator provides a single operation generate_id. As with time stamp
entities, the implementation of an identifier generator is trivial.

Projection index entities are used by the entity system kernel as part of the
projection resolution process. A projection index appears to the outside world as
a collection of lists of resolution function names. When the kernel needs to
resolve a projection, it applies an operation to search the index for the first
resolution function for a given combination of perspective and natural classes.
Subsequent operation calls return further functions in the appropriate order.
Operations are provided for examining an index and for inserting and deleting
resolution functions. The kernel projection mechanism must be disabled to
update to the current projection index, but this restriction could be removed.

Class index entities provide the mappings between class identifiers and textual
names. Operations are provided for these mappings, for listing the index and for
creating and deleting classes from the index. A new class is created by supplying a
class name and the identifier generator handle which is used to generate a unique
class identifier.

79




In addition to the above implemented classes, a listable object perspective has
been defined, to allow entities to be displayed by a “universal” print program. A
listable object handle provides one operation which is called repeatedly to
produce a textual image of the underlying entity. Resolution functions have been
written for time stamps, byte files and directories. In the latter two cases, the
selector string supplied by the client is used to select different display formats.
Projection resolution is used for following directory paths as explained in an
example in section 4.3.

The user interface to the model filing system is a simple command line interpreter.
When the command line interpreter starts up, it finds and opens the root directory
and the global projection index. After setting up the user's environment, it
accepts commands from the user terminal and dynamically loads and invokes
command programs.

A total of 16 command programs were written for the model filing system.
Create makes a new entity and inserts it into the filing system. Alias, alter
and delete manipulate the directory structure, examine prints out a specific
directory entry, and home and set allow the user to change the current directory
and move around the filing system. Byte files are manipulated by the commands
input, type, import and export. Timestamps can be printed and, in the free
standing case, set using the time command. The universal print command called
1ist can be used to look at byte files, directories and timestamps. Finally, the
user can update class and projection indices using the interactive command
classedit. The class editor provides subcommands for listing indices, and
creating and deleting classes, and inserting and removing resolution functions.

5.6 Lessons from the Experimental Entity System.

In section 1.3, a set of 7 requirements for an entity system were listed. As noted at
the start of this chapter, the experimental entity system was intended as a test bed
for ideas rather than a production system, and several of these requirements were
not addressed. However, the experience gained using the experimental system
has lead to insight as to what could be achieved without difficulty in a full
production system, and what problems remain.

80




Though it was a huge improvement over BCPL, Modula-2 was not an ideal
language for implementing the experimental entity system. Modula-2 does not
support exceptions, and while an exception handling package was written, it was
too cumbersome in practice. Poor support for arrays with runtime bounds,
generic data types and runtime type checking proved to be a problem. The
absence of garbage collection made data structure management more difficult
for kernel and client code alike.

While the dynamic module package proved adequate, it has intrinsic problems
with interfacing to static code, and implementation problems with procedure
variables and submodules. When an improved version of the Modula-2 compiler
and debugger for the VAX was released, the dynamic module package could not
be upgraded because the runtime module structures were too different, and we
were forced to continue to use the old language tools. With hindsight it would
have been better to use records to represent entity and projection activations.

The experimental system runs as a Unix process with a single logical address space.
Therefore passing operands and results between the client and the entity
implementation does not require transfer of data across hardware protection
boundaries. While this simplifies matters, it means that many questions of
parameter passing were not explored experimentally. Mechanisms have been
proposed ([ISO 84b], [Herlihy 81] etc.) for passing complex data structures as
arguments which appear to fit the bill. These issues are discussed in the next
chapter.

The experimental entity cannot tidy up entity handles after client program failure.
Indeed, the kernel did not always deal correctly with projection failures. Ideally,
recovery of dropped handles would be integrated with the client's garbage
collector. Handles dropped when a client process crashed or exited with open
handles should be aborted by the kernel.

A colleague made some modifications to the experimental system kernel to try to
solve the problem of dropped handles [Barman 84]. In his scheme, an entity
handle potentially owns a number of other entity handles. When a handle is
closed, the implementation's Close procedure is called, and the kernel closes all
handles that the handle owns. When an entity handle is created, it is owned by a
default owner handle set up by the client. In the command line interpreter for

81




example, a new default owner handle is set up each time a command program is
run, and is closed afterwards. If an entity handle is to be passed outside of the
scope of its owner, the client can call a kernel routine to transfer ownership to
another handle.

The standard storage interface proved to be unsatisfactory for writing entity
implementations. Though storage access at this level is necessary when speed and
efficiency is paramount, too much time has to be spent designing file layouts and
writing storage allocation code. A better approach is to define a range of storage
interfaces for a variety of purposes.

One aspect of the design of the experimental entity system that is clearly wrong is
the method used to represent passive entities. Storing class and implementation
identifiers in the link store of the storage object gives rise to a number of
problems. First, it means that entity implementations must use a separate storage
object for every entity no matter how small. Second, every storage object
representing an entity must have a link store vector allocated, irrespective of
whether the implementation would otherwise need it. Finally, any client which
knows an entity identifier could break open the entity using the storage interface.

A better alternative is for an entity identifier to be a token for an entity triple
managed by the kernel (figure 5-7). The kernel can make sure that an entity's

client/kernel fire wall

entity triple

entity id

» |classid |impl.id |repn.id

representation 4/

figure 5-7

representation identifier is only ever given to a bona fide activation of the entity
implementation. It can also guarantee that class and implementation identifiers
are never changed. Releasing an entity identifier to a client would no longer risk
the integrity of the entity's representation, and would reduce the security risk.
Other implications of this alternative are discussed in section 6.5.

82




Another of the problem areas in the experimental entity system is in the control of
permissions to use entities. Irrespective of whether or not it is possible to crack
open an entity as described above, possession of an entity identifier allows a client
to open an entity with any permissions. If protection and privacy are required,
either the implementation must validate the client using some independent
means, or the client must not be given the entity identifier in the first place. The
former approach means that the access control rules must be independent of the
route the client took to get to an entity. This makes access control matrices in the
style of CAP [Wilkes 79] impossible to implement. The latter approach means that
an object holding an entity identifier must perform the open on the client's
behalf. If the entity can be of any class, as is the case with a directory entity, the
type of the operation which opens the subentity for the client cannot be
expressed without linguistic support for generic arguments.

| now believe that the only general solution to this problem is to define entity
identifiers to be capabilities which have permissions associated with them.
Primitives would be needed for duplicating identifiers, determining whether an
identifier has appropriate permissions, and for refining and enhancing an ident-
ifier's permissions. A directory entity would determine the access to which a client
was entitled using access matrices or whatever. It would then return a suitably
refined identifier for the entity so that the client could perform the entity open
itself. The capability scheme used in CAP [Wilkes 79] has a small set of global
permissions, while in Hydra [Wulf 81] and CAP-3 [Herbert 78], there are both
global and type specific permissions. In the entity system, there does not appear
to be any need for global permissions.

83




Chapter 6: Implementation Issues.

6.1 Language Independent Class Definition.

In the experimental entity system, a definition consists of a hand coded Modula-2
DEFINITION module whose implementation is coded in assembler. This would
clearly not be acceptable in a fully implemented entity system. Experience with
the experimental entity system shows that it is important that as much as possible
should be done automatically to avoid human errors.

In any single language entity system, the host programming language is the best
basis for class definitions. The programmer would specify the operations and
associated types for arguments and results in the type system of the host
language. The entity system would then add auxiliary declarations for entity
handle types, class identifier constants and the like. Any stub procedures
necessary for the operation invocation can be generated as appropriate.

An entity system which supports client programs written in many languages
presents a number of hard problems. How does the user specify types in a
language independent way? What does type compatibility mean between
different programming languages, and how is it checked? How is a class
definition translated into a form that compilers can cope with? How are value
representations translated?

The easy approach is to avoid all of these problems and require the programmer
to define classes in each of the target languages, and if necessary, functions for
mapping values from one form to another. This approach is unsatisfactory
because of the amount of clerical effort the programmer is faced with and the
scope for error.

In theory, fully general language independent specification of classes must be
possible. After all, when a programmer designs an interface, he or she starts with
a conceptual model and translates that into a programming language. Though
the model is probably fuzzy, it can be viewed as a language independent

84




interface specification. This argument is of little practical use without the ability
to express the model, and translate it into a real programming language.

Another approach might be to design a meta-language capable of describing the
type systems of all of the target programming languages. This meta-language
would form the basis for tools for automatically translating the types in a class
definition into equivalent types in each target programing language. The author
has no evidence to suggest that this approach would work, but it is worth noting
that there is considerable work in the formal specification and description of type
systems. An example which could prove to be especially relevant to entity class
definition isthe Pebble language [Burstall 84].

The most pragmatic approach to language independent class definition is to
design a class definition language or CDL based on elements of the type system
common to all of the supported programming languages. Primitive types like
signed and unsigned integers, characters and reals have similar meanings in most
programming languages. Most languages also provide some form of array and
string types, and though the methods provided for manipulating array and string
values v’ary, the meanings of the types are roughly the same.

The Courier remote procedure call standard [Xerox 81] and the ISO's Abstract
Syntax Notation One (ASN.1) [ISO 84a], [ISO 84b] are good examples of this
approach. These two standards define type abstractions for primitive types like
integers, characters and reals, and for records, arrays and other type constructors.
Then they define a standard representation that is used for transmitting typed
values between systems. Courier can deal with nested non-recursive types. ASN.1
also allows recursive types, so long as the values have a finite size. As far as they
go, both Courier and ASN.1 are roughly compatible with most strongly typed
programming languages.

A CDL can adopt the ideas of Courier and ASN.1 for concrete types. Possible
problems with the precision of primitive types such as integers and reals can
generally be solved by restricting the CDL and checking at runtime that argument
values are in the required ranges. String length restrictions can be handled in the
same way. In some cases type concepts are incompatible. For example, array
boundsin some languages start at zero or one, while in others the lower bound is
part of the array type. In this and other cases, the CDL must take a view that is

85




compatible with as many languages as possible, and the programmer must expect
to make adjustments to his or her programming style.

Assuming that the low-level incompatibilities can be taken care of, there are still a
number of problems.

Argument Passing Semantics.

In most languages, entity operation invocation is expressed as a procedure call.
Different languages use a variety of semantics for procedure call argument
passing; call by value and call by reference being the most common. It would
be preferable if entity operations defined in a CDL allowed the same
semantics. Unfortunately call by reference semantics cannot be implemented
when an entity implementation has no access to the client's address space, as
would be the case in many entity systems. The same is true when the client
and the entity implementation are written in languages with incompatible
type representations. For this reason operation arguments in a CDL should be
defined to be passed using a call by value mechanism.

An entity operation can return a number of results. Languages such as Pascal
and Modula-2 restrict the number and type of the results of a procedure call.
In such languages, an operation invocation can be transformed so that
multiple results appear in the target language to be call by reference
arguments. The stub operation procedure would be responsible for copying
the results returned by an entity implementation's operation procedure into
the “result” arguments.

Type Hiding.

Languages such as Mesa and Modula-2 have a concept of a hidden or opaque
data type. Hidden types allow a module to pass values to a client without the
client being able to use it. Hidden types in a representational type system
perform a similar function to abstract types by restricting access to data items
and minimizing dependencies between the modules of a program. Ideally, a
CDL would use abstract types and the need for hidden types would not arise.
In practice, operation arguments need to have representational types for
compatibility with existing programming languages.

86




The problem with hidden types in a CDL is that when a data item with a
hidden type is passed to a language without type hiding, the type and
contents of the item are revealed. This allows the client program to make use
of and possibly alter the hidden data. Furthermore, the client may now
depend on a hidden type in a way that was not intended by the implementor
of the interface.

Privacy of hidden types cannot be addressed by a CDL, since the value of a
hidden type is readable in any language which has type system loopholes.
Assuming that we are dealing with undisciplined rather than malicious
programmers, a possible solution is to make it difficult to write a program
which binds to a hidden type. This could be done by scrambling the namesin a
hidden type, rearranging its components, or something similar.

Object Based Typing.

Given that most of the languages concerned have no support for abstract
(object) data types, the CDL type system needs to be representational at the
level of an operation argument. In an object oriented type system the implicit
invariants of an object representation can be generally relied on provided that
the operations are implemented correctly. If an abstract object's represent-
ation is passing to a language without abstract data types or type hiding and
back, there is no way of knowing what might have happened to it. A
programmer using an object based language may need to be aware of this.

Constructed Objects in CLU.

In CLU, except for the primitive data types that fit in a single machine word, all
data types are represented as pointers to heap nodes. This gives the CLU type
system some novel and useful properties for constructed types. For example, a
given record can appear at a number of points in a CLU array of records.

From the point of view of a CDL, itis unfortunate that CLU's type semantics are
incompatible with the semantics of most other languages. A CLU array of
records is directly compatible with a conventional array of pointers to records.
To achieve compatibility with a conventional array of records, a CLU array
must be copied eliminating sharing of subnodes.

87




Pointer Arguments.

Though neither Courier nor ASN.1 make any provision for handling pointers, a
CDL needs to be able to do so. When an entity implementation and its client
are written in the same language and occupy the same address space and have
a common dynamic storage manager (i.e. garbage collector), pointer passing
introduces no new problems. These arise when passing pointers from one
address space or language to another.

A pointer argument to an entity operation might be used as follows:

® by treating it as a token and passing it back to the originator at the
appropriate time,

® by comparing it with other pointers to find the shape of a data structure,
® by dereferencing itto access the data to which it refers, and

® by interpreting it as the pointer to (say) a buffer into which data should be
written.

For the first two uses, simply passing the value of the pointer itself is sufficient.
The remaining uses are problematical.

The approach taken in various remote argument passing mechanisms for CLU
[Herlihy 81] [Hamilton 84] is to pass the entire data structure that can be
reached from a pointer. Given that the CLU type system gives all objects
pointer semantics, this is the most natural thing to do. In general, the cost of
transferring an entire data structure is going to be high, especially if the
transfer mechanism is to correctly handles cycles and shared substructures.
Furthermore this effort may well be wasted, since the client might actually use
only a small part of the copied data, or none of it atall.

Passing a data structure in this way involves making a copy of the structure in
the recipient's domain. The value of the resultant pointer in the recipient's
domain will be different from the original value. This is a problem if the
pointer is then passed back to the original address space and compared with
the original pointer value. Similarly, when copies of a pointer are passed as
different arguments in the same or separate operation invocations, the
recipient will end up with two distinct copies of the same data structures.

88




While it might be possible to preserve the relationships between data
structures in the two domains, doing so is likely to be costly.

An alternative to copying an entire data structure is to copy nodes of a data
structure on demand using similar techniques to PS-Algol [Atkinson 84] and
Persistent Poly [Matthews 84]. The worst case (where the recipient looks at the
whole data structure) is likely to be considerably more expensive than copying
the entire data structure in one operation. In addition, there are the situations
where copy on demand could lead to unexpected results. As an example,
consider what might happen if an implementation receiving a pointer tried to
use it while a later operation was in progress.

The best approach is to restrict the use of pointers along the following lines. A
client or implementation may dereference a pointer passed as an argument
provided:

® itsaddressspace is the same as that of the pointer,
® ithasappropriate access to the memory in which the data is stored,

® therespective languages have compatible type systems and represent-
ations for values, and

® the respective language garbage collector(s) can cope with the potential
problems.

If any of the above conditions is not satisfied, a client or implementation is
only allowed to compare CDL pointers and pass them as arguments.

Given that this restriction is made, there needs to be some other way for data
to be transferred between domains. In general, the simple way of implement-
ing cross-domain argument transfer is for each domain to provide routines
which marshal data structures into a standard external format and back again.
The same routines could also be called by entity client and implementation
code to explicitly dereference pointers and copy entire data structures. The
saving is that the recipient of a pointer makes the decision as to how much
data to transfer, not the argument passing mechanism.

89




Garbage Collection.

Passing a pointer from one domain to another can cause problems for
language level garbage collection. The trouble is that a garbage collector for
one domain has no knowledge of pointers held in other domains. The ideal
solution to this problem is to modify the respective intra-domain garbage
collectors to handle cross-domain pointers. Unfortunately, the effort involved
in making the necessary changes for a number of languages is likely to be
considerable.

Fortunately, it is possible to largely avoid the problem. Suppose that a pointer
to a data item in a client's address space is passed in an entity operation
invocation. While the invocation is in progress, the data in the client's domain
is safe from garbage collection since one of the stub operation procedure's
arguments will point to it. Thus the implementation's operation procedure is
guaranteed that the pointer will be valid for the duration of the call.

Use of pointer arguments after the relevant operation has finished, and use of
pointer results both require care to avoid dangling pointer problems. The
pointer argument dereferencing mechanism can check that the pointers are
still valid. The check itself is inexpensive, but extra information must be stored
with both the pointer and the node it points to.

By the time a dangling pointer is found it is probably too late to do anything
about it. Dangling pointers could be avoided entirely by providing a routine
with which a program registers an interest in a data item in another domain.
This would tell the remote garbage collector not to remove the data item. An
entity operation procedure would use this mechanism when it saves a pointer
argument. A similar routine is used to say that the node is no longer interest-

ing.

Procedure Arguments.

The entity system provides mechanisms for handling operation procedures and
for invoking remote operations. It should not be difficult to generalize them
to allow procedure values to be passed as entity operation arguments and
called by the recipient. The only difficulty is in defining the environment in
which the procedure is executed.

90




Entity Handle Arguments.

There are situations where it is necessary to pass entity handles as arguments
in entity invocations. The Directory.Alias_Entry operation insection 3.3
is an example of this. Dealing with entity handle arguments present both
conceptual and practical problems.

CDL arguments are passed by copying rather than by taking a reference. In the
case of an entity handle, there are three possible interpretations for copying.
First, a handle can be copied within a program by duplicating the pointer. The
next approach is to duplicate the private handle data structure. Finally, the
handle state held in the entity activation could be duplicated as well.

The first interpretation is not appropriate when passing handles across domain
boundaries. The second interpretation allows entity handle copying across
domains, but has unpleasant semantics. An operation on one copy of a handle
affects the handle state associated with the second. When one copy of a
handle is closed, the second copy turns into the equivalent of a dangling
pointer. The third interpretation results in two independent handles with
desirable characteristics. Copying activation data structures requires the help
of the entity's implementation since it alone understands them.

Assuming that a class definition language is possible, there remains the problem
of implementing it. One approach is to extend each target language compiler to
understand class definitions. A modified compiler would internally transform the
CDL types into the equivalent host language types, and would generate code for
invoking entity operations and converting the arguments. While this would give
the best results in the long term, it would mean wholesale changes to a number
of compilers.

A better approach is to write a translator or translators capable of converting a
class definition into source code acceptable to each target compiler. The
translator would produce equivalent target language definitions for the classes
types and operations, and any stub operation code necessary. It is relatively
unimportant that it may be necessary to bypass the target language type checker
in the stubs. Since the target language stubs would be produced automatically,
the possibility for human error in the interface does not arise. This technique is
used in the Matchmaker interface specification language used in Spice [Jones 85].

91




6.2 Class Management.

A class in the entity system is characterized by a class identifier and the definition
of the class operations. In the experimental entity system, the class definition is a
Modula-2 DEFINITION MODULE which is stored outside the entity system, and the
entity identifier is a token. Information about classes such as the value of the class
identifier and the size of the operations table is compiled into each entity
implementation by the Modula-2 compiler which runs outside the entity system.

In a self supporting system, class definitions need to be held in the entity file
system. This can be done by defining a class of entities to represent classes. A
class entity would have operations for returning the class name and operation
definitions, and operations for creating and modifying the class definition. It
would also be able to give information about the operations table needed when
building an entity handle. The entity identifier for a class entity would be the
class identifier for the class which it defines.

In the source of a client program, classes and perspectives are referred to by name
rather than by class identifier. A class name is mapped into a class identifier and
definition early on in the compilation process. The target language compiler can
then type check the operation invocations and entity handles. The compilation
process binds the class identifier(s) into the object module. Class identifiers also
need to be mapped back into names at runtime when displaying entities and
debugging implementations and client programs. The mapping between names
and class identifiers (and hence class definitions) is held in a data structure called
the class index.

When a class has been bound into a client program, or entities of that class have
been created, the class definition must be treated as immutable!. However, a
class definition can effectively be upgraded by changing the class index so that
the class name points to a new version of the class. As new and existing client
programs are compiled, they are bound to the new class definition. Other clients
and entities remain bound to the old version of class, and incompatibilities
between the different versions are handled by projection. It is also necessary to

1 Thisis necessary to allow compile and link time type checking.

92




be able to recompile a program without rebinding the classes so that old
programs and entities can be maintained.

A class definition entity holds the specifications for the operations provided by
entities of the class and associated abstract types. Each operation has a name,
type specifications for its arguments and results, and specifications for the
exceptions or signals that it raises and/or the error codes it returns. The
operations and types may well use types defined in other class definitions. Finally,
the class definition will hold the semantic specification for the class and its
operations, and any associated documentation.

6.3 Implementation and Resolution Function Management.

The requirements for naming implementations and resolution functions in the
entity system are more complex than for class naming. Implementations and
resolution functions can be grouped according to the class that they implement.
The differences between implementations of a class can be characterized using
attribute / value pairs as described in [Lancaster 83]. Implementations can be
selected by giving a search expression using these pairs. Entity implementation
selection occurs when a new entity is being created or an existing entity is being
opened. The selection of resolution functions occurs at open time using selection
criteria described in section 4.3.

When an entity is created, the implementation to be used can be found in two
ways. The implementation can be selected at compile time so that the
implementation identifier is bound to the client object module. Alternatively, the
implementation can be selected when the create operation occurs. The latter
approach means that entity creation can pick up a new implementation without
the need to rebind the client. It also means that the client can select different
implementations depending on the situation. On the other hand, runtime
selection makes entity creation more expensive, and removes the possibility of
programmer intervention when a number of implementations or none of them
have the specified characteristics.

When an existing entity is opened, the kernel uses the implementation
corresponding to the identifier in the entity triple. The binding between an

93




implementation identifier and the code needs to be “soft” so that minor changes
can be made to fix bugs. In general there may be multiple minor versions of an
implementation. It is up to the entity system kernel to select the appropriate
version when the entity is opened. It goes without saying that minor versions of
an implementation must use the same format for the long-term representation.

Applications in the entity system depend on implementations and resolution
functions conforming to class specifications. The system must guard against
trojan horses if security and privacy are taken seriously. For example, a trojan
horse version of an experimental entity system directory implementation could
bypass any access control mechanisms and release information from a directory
that the client should not have access to. A trojan horse can also act against the
interests of a client. In the case of directories, the alias_entry operation could
misuse the handle for the second directory entity by deleting entries or passing
the handle to some other process.

The trojan horse problem is hard to solve in the entity system. In general, it is
impossible to prove a program is secure [Denning 83]. However, if the kernel is
implemented as a security kernel it would be possible to include the security
constraints in the formal class specification and prove that each implementation
meets the specification. The alternative is to have someone “vet” new implem-
entations and resolution functions for critical classes before they are released to
check that they are not a security risk. This approach is vulnerable to human
corruption and carelessness.

To be effective, an implementation security scheme must make it impossible for a
user to use private implementations of critical classes without having them
vetted. Atthe same time, the user should be allowed to use his own implement-
ations and resolution functions for private and non-critical public classes.

6.4 Host Machine and Operating System Problems.

The entity system generally has to run within an existing hardware and operating
system environment. This section discusses the problems in implementing an
entity system in host systems which provide

94




® asingle virtual address space for all processes

® avirtual address space for all processes with memory access control,
e disjointvirtual address spaces for each process,

® virtual address spaces for each process with shared memory facilities,
® capability based addressing,

® processes on separate machines on alocal area network.

An entity system within an open system [Richards 79] [Redell 80] can never be
absolutely secure. Some protection is provided if the host language has strong
data typing, though most strong type systems have loopholes either by design or
by accident. Error recovery can be a problem in an open system because of
difficulties in finding the resources such as file locks and heap space that must be
freed when a piece of code crashes. Furthermore, when a program goes haywire
it may corrupt some totally unrelated data structure or piece of code. On the
other hand, open systems present the least problems for passing entity operation
parameters.

Provided that it is not necessary to convert arguments from one representation to
another, invoking an entity operation in an open system is comparable in cost to
an ordinary procedure call. Indeed, once arguments have been converted, an
operation invocation is an indirect procedure call. No process switch is required.

In a single processor, single address space system with memory protection, fire-
walls between components of an entity system are possible. This makes it possible
to reliably recover from errors in clients and implementations, and allows an
implementation to safely hold privileged information. When an unrecoverable
error occurs in a client or entity implementation, the kernel applies the Abort
operation to any entity handles held by the domain. This means that the kernel
must keeps track of entity handles passed from one domain to another. If an
implementation crashes, it is necessary to invalidate any associated entity handles
and mark the corresponding entity triples as unsafe.

The immediate cost of firewalls is in changing the memory protection registers on
each entity operation invocation. If the client and implementation are mutually

95




suspicious there is also the cost of copying operation arguments. An alternative is
to trust the implementation to access and update data in the client's domain.
When an operation's arguments include an entity handle, it would be necessary
to guard against the client passing a entity handle with a bogus implementation
in order to gain access to privileged information. Furthermore, it is advisable for
an operation to be performed using a different stack so that the client cannot
induce stack overflow, and to avoid information leaking in “dead” stack frames.
Depending on the host architecture, this may also require a process switch and
associated overheads.

When the architecture of the host system requires that individual clients and
implementations occupy disjoint address spaces, all arguments must be copied.
This sort of host environment typically equates an address space with a process,
and requires that operation arguments and results are passed using an inter-
process message passing mechanism. Facilities for sharing memory segments
between processes can be used to avoid copying operation parameters, but only if
implementation can be trusted. An entity implementation would need to use
relative addressing to avoid clashing with pointers passed by the client.

Ideally, all handles for an entity share one entity activation to facilitate
synchronization and caching. For an implementation to manage the entities as a
pool rather than individually, it needs access to a separate global data area as well
as the activations. In environments with UNIX style processes, this means either a
separate process for each activation, or one process for the entire implementation
containing all activations. In either case, the fact that processes are single
threaded causes problems when clients make simultaneous operation requests.
Requests can be queued with an implementation handling them one at time, but
special precautions would need to be taken to avoid deadlock. The alternative is
for each implementation or activation process to contain a mini-kernel which
simulates multiple threads of control. This assumes that the host operating
system allows non-blocking 1/0. This approach is taken in the Eden system
[Lazowska 81] where an Eject (Eden object) is a UNIX process which receives
interprocess invocation messages and uses a runtime library to multiplex their
execution.

A fine grained capability architecture offers the best solution to argument
passing. The iAPX 432 machine [Myers 82] allows the use of segments to
represent language level data objects, with pointers being represented by

96




segment capabilities. This avoids problems with pointers and allows complex
objects to be passed from one domain to another without worrying about
information leakage. By contrast, the capability architectures of CAP [Wilkes 79]
and CAP-3 [Herbert 78] are too coarse to be used for individual nodes in a
program's data structure.

An entity system in a distributed environment presents a different set of
problems. Communication between machines in a local area network is orders of
magnitude slower than within a single machine. When the client and the entity
activation are on different machines, marshaling operation arguments may well
take a fraction of the total time. The cost of communication makes it important
that the entity system should keep the client and the entity activation on the
same machine where ever possible.

It is simpler if there is only one activation of an entity and it is on the machine
which holds an entity's permanent representation. Unfortunately, this is counter
to the aim of reducing the client/ activation communication costs and is likely to
lead to network and processing bottlenecks. The alternative is for entity
implementations to be internally distributed, and have the operation procedures
propagate the changes between the entity activations on different machines.
This allows an implementation to take advantage of processing resources on
different machines, and makes it possible for the kernel to balance the processing
and network load to avoid bottlenecks. This must be offset against the added
complexity of an internally distributed implementation, and the additional
communication overheads this may entail.

The entity system operation invocation mechanisms would need to be rethought
to take into account the possibility of data loss and network partition. Entity
classes would also need to be defined with the distributed nature of the system in
mind.

6.5 Improving Entity System Efficiency.

For the entity system to be competitive with established techniques for storing
structured data, it needs to have comparable performance. The performance
issue was not seriously addressed in the experimental entity system, but it is

97




particularly bad in the area of storage efficiency. The overhead of storing a small
entity is enormous in relative terms, and each entity activation uses scarce
resources such as global frame table entries. Another area where entity systems
in general fall behind is in the cost of opening entities and making operation
requests. In this section, methods for improving entity system efficiency are
discussed. These ideas are based in part on work in progress on a new entity
system kernel which runs under the Xerox Development Environment.

It has already been noted that it is inefficient to hold class and implementation
identifiers in the same storage object as the entity representation. Separating the
entity triple from the representation means that the representation storage
object does not always need a link store. More important, it allows an entity
implementation to use the low level storage interface that is most appropriate to
the task in hand. Even so, storing and activating each entity separately leads to
storage overheads for small objects that are unacceptably high.

Storage efficiency is improved if an implementation manages a number of
entities together rather than dealing with them separately. In the experimental
entity system, an implementation module instance would need to handle a
number of entities and associated activations. In a system with client and entity in
separate address spaces, this means one address space per implementation rather
than one per entity activation.

Such an implementation can store the representations of a number of entitiesin a
single storage object. At entity open time, it translates an entity's representation
identifier into an offset into the storage object to find the entity's representation.
This implies that the implementation generates its own representation
identifiers. The disadvantages of multiple entity implementations is that they are
more complicated, and that when an implementation goes wrong or the machine
crashes, the number of entities at risk is higher.

Another factor that contributes to storage inefficiency for small entities is the size
of global identifiers. Global entity identifiers need to be at least 8 bytes long, and
probably longer to guarantee that identifier values are never reused. Each entity
triple contains three such identifiers (four including the entity identifier itself)
and each external reference requires a further copy of the identifier.

98




When an entity is composed of a collection of subentities that are only ever used
within the context of the large entity, the subentity identifiers do not need to be
globally unique. Instead entities and entity identifier space can be organised as a
number of nested entity domains. An identifier for an entity in a domain is only
significant within the domain and cannot reliably stored outside of the domain.
An entity can hold identifiers for entities in surrounding domains, though it will
handle them differently because of the identifier size difference. In the
experimental system, a domain could be represented within the storage object of
an enclosing entity. External identifiers would be stored in the object's link store,
and the representation of the identifiers within the inner domain would contain
the corresponding offset into the link vector.

There are many possible benefits from using nested entity domains. Identifiers
used in collections of small entities can be handled more efficiently, making it
feasible to use entities for fine grain objects. Identifier management and
garbage collection within a domain can be independent of all but surrounding
domains. This has obvious advantagesin a distributed system.

The cost of an entity operation invocation depends on the environment in which
the entity system is implemented. As far as efficiency is concerned, the best
environment is one where the client and the implementation are in the same
address space and use the same representations for parameters. When the client
and the entity implementation have to be separate processes in different address
spaces, operation arguments must be moved from one address space by copying.
At least two process switches are needed to transfer control between the client
and implementation. Finally there is the direct and indirect cost of changing the
address mapping. In such an environment, it appears that the only way to cut
down operation invocation overheads is to put the client and entity
implementation in the same address space.

Breaking down the firewalls is an unacceptable risk when either the client or the
implementation is dealing with sensitive data. Therefore it is still necessary to
support operation invocation in other address spaces. The address space contain-
ing the client and entities also needs to service operation requests from outside.
Indeed, the address space may have to persist after the client program has exited

99




to deal with requests on outstanding external handles. All of these complications
can be handled by a mini-kernel resident in the address space.

100




Chapter 7 - Conclusions.

This thesis has described a model for a file system which extends data typing
beyond the bounds of a single program. In doing so, the model addresses a
number of requirements that do not arise in the type system of a conventional
programming language. These include resilience in the face of bugs and the
ability to evolve file types and representations with time.

The entity system has an object oriented type system, so that an entity provides
both the data and the algorithms which maintain it. This simplifies application
programming, and helps to insulate the file system from the effects of erroneous
client programs. An entity is characterized by a class, an implementation of the
class and a representation which the implementation is responsible for managing.
New implementations can be brought into service without recompiling the client
programs. Indeed, since a client can transparently use entities with the same class
and different implementations, it is not necessary to convert existing entities to a
new format.

The entity system provides a mechanism known as projection which amounts to a
dynamic type coercion scheme. Projection provides the flexibility needed to allow
class interfaces to evolve with a minimum of disruption to existing programs and
objects. It can also be used to provide some of the capabilities of superclasses and
subclasses in Smalltalk and parameterized types in CLU. The main problem with
projection is that it is necessary to hand code the resolution functions to set up a
projection.

The thesis has described an experimental entity system and its associated low-level
“standard” storage interface. A number of conclusions were drawn from this
work. The most important one is that the central ideas of the entity system,
namely separation of class and implementation and the projection scheme, do
appear to be sound. Indeed, projection may turn out to be important in its own
right as the means of building complex systems. The experimental system also
provides positive evidence that a full entity system could be implemented for both
personal computers and timesharing systems.

101




On reflection, various flaws are apparent in the experimental entity system. The
idea that all implementations can be served by a single low-level storage interface
proved to be false. The strategy of storing an entity's class and implementation
identifiers in the storage object holding the representation caused problems that
had not been foreseen. It demonstrated that an access control mechanism is best
supported by the core of the system by making identifiers full capabilities with
access rights.

Chapter six discussed a number of areas which were not investigated using the
experimental entity system. Section 6.1 dealt with programming language
independent definition of classes. The idea of a class definition language was
proposed, and various alternatives for the CDL's type system were discussed with
reference to the problems of implementing them. The author hypothesizes that a
CDL could be designed and suitable translation software implemented which
would allow an entity system to be used with most strongly typed languages.

Sections 6.2 and 6.3 dealt with some of the infrastructure needed in a self
supporting entity system. Assuming that the problems of multi-language class
definition can be solved, class management is largely a matter of binding names
to classes. Implementations need to be characterized according to their prop-
erties. The need to protect against “trojan horse” implementations and resolut-
ion functions was also discussed.

Section 6.4 outlines how an entity system might be implemented within various
machine and operating system architectures. One conclusion is that passing
operation arguments is likely to be expensive in a system with memory protection
and mapping hardware, unless the implementor is prepared to trust entity
implementations to behave correctly. A fine grained capability architecture
would allow complex argument passing without compromising security. It was
shown that both UNIX-like systems and distributed systems present new problems,
butitisconjectured that they are not unsolvable.

The entity system has more inherent overheads than are encountered within most
programming languages. These overheads are especially apparent in storing
small objects and in making operation requests. In section 6.5, some methods are
proposed which would help to reduce these overheads. These include the use of
domains for closely related collections of entities, implementations which manage

102




a number of entities, and having a trusted client and the entities it uses share the
same address space.

As a general conclusion, it seems that the entity system model satisfies the original
requirements. Much work is still needed in a number of areas, including exploring
the infrastructure issues and class definition. The problems of entity system
implementation in a multi-user system like UNIX and in a distributed system also
need further work.

The author is currently working on a “full scale” implementation of the entity
system for a Dandelion workstation running the Xerox Development Environment
(XDE). The XDE entity system already supports multi-processing and implement-
ations that manage a number of entities. Storage objects are entities in their own
rights, and two different storage object classes are already available. Itis planned
to add support for entity domains, and for entity recovery and garbage collection
in the near future. The new entity system is going to be used as the vehicle for
programming environment research by the author and other people.

The last example of section 3.3 is a rough sketch of how an entity could be used to
represent the large scale components of a Modula-2 program such as the source
and object code, symbol tables, dependency lists and documentation. A colleague
is using a similar approach for organizing Mesa programs. An associated system
browser operates on entities representing Mesa program components such as
source, object and DF files!. “Annotation” entities are bound to these compon-
ents containing related information such as documentation, compilation and
display instructions. An event mechanism is proposed for notifying annotations
when the corresponding component entities change.

The author is planing to use the entity system to represent Mesa program source
code. It is observed that in a conventional programming environment, a lot of
time and effort is expended in converting programs in a textual form into parse
trees. From a number of points of view, it would be better if the primary
representation for the program was the parse tree itself. The author plans to
represent a Mesa parse tree using entities. A syntax directed editor will be written

1 The XDE DF or "Describe File” software is a set of programs for managing the versions of
the component files that make up an XDE system, utility or package.

103




which operates directly on the parse tree, and the Mesa compiler will be modified
to accept the parse tree as input. Another possibility is the use of parse trees
rather than source text as the basis of finding the differences between versions of
a program.

Using highly structured typed objects rather than textual files to represent inform-
ation has the disadvantage of making the information more difficult to display
and edit. Itis believed that projection can play an important part here. A suitable
perspective class of “display objects” could be defined, and associated resolution
functions could be written to extract and format the information held by various
classes of entity. The perspective class would be used by a generalised entity
viewer to allow the user to examine any entity for which suitable resolution
functions existed. This could be taken a step further to provide a general purpose
entity editor. Another application in this line is a generalised tool interface for
applying entity operations.

104




[Almes 83]

[ANSI 75]

[Atkinson 82a]

[Atkinson 82b]

[Atkinson 84]

[Barman 84]

[Birtwistle 73]

[Burstall 84]

[CODASYL 71]

References.

Almes, G.T., et al, ‘
The Eden System: A Technical Review,

Technical Report 83-10-05. Dept. of Computer Science,

University of Washington

American National Standards Institute

Interim Report ANSI/ X3/ SPARC Study Group on Data Base

Management Systems.

Atkinson, M. P. et al
Algorithms for a Persistent Heap,
Report CSR-109-82 University of Edinburgh.

Atkinson, M. P. et al
CMS - A Chunk Management System,
Report CSR-110-82 University of Edinburgh.

Atkinson, M. P. et al
PS-algol Reference Manual,
Report PPR-4-83 University of Edinburgh.

Barman, H. J.
Report for Year 1983-1984.

Birtwistle, G. M. et al
SIMULA BEGIN
Petrocelli/ Charter.

Burstall, R & Lampson, B.

“A Kernel Language for Abstract Data Types and Modules” in
Proceedings of the International Symposium on the
Semantics of Data Types, Sophia Antipolis, France 1984.

CODASYL DBTG

CODASYL Data Base Task Group, Conf. Data Sys. Languages,

ACM.

105




[Crawley 82]

[Date 83]

[Date 84]

[DEC 80]

[Denning 83]

[Dion 80]

[Dion 81]

[Foderaro 83]

[Goldberg 83]

Crawiley, S. C.

The Testbed Entity System,

Programming Environment Research Group Note. Cambridge
University Computer Laboratory.

Date, C. J.
An Introduction to Database Systems [2 volumes],
Addison-Wesley.

Date, C. J.
A Guide to DB2,
Addison-Wesley.

Digital Equipment Corporation
An Introduction to VAX-11 Record Management Services,
AA-D0O24C-TE Digital Equipment Corporation.

Denning, D. E. R.
Cryptography and Data Security.
Addison-Wesley.

Dion, J.

Fileserver External Specifications. Version 8,

Systems Research Group Note. Cambridge University Computer
Laboratory.

Dion, J.
Reliable Storage in a Local Network,
Technical Report 16. Cambridge University Computer Laboratory.

Foderaro, J. K. et al

“The FRANZ LISP Manual” in ULTRIX-32 Supplementary
Documents Vol 2,

AA-BG67A-TE Digital Equipment Corporation.

Goldberg, A. & Robson, D.
Smalltalk: The Language and its Implementation,
Addison-Wesley.

106




[Hamilton 84] Hamilton, K. G.
Transporting Abstract Types,
Mayflower Group Note. Cambridge University Computer
Laboratory.

[Hamilton 85] Hamilton, K. G.
A Remote Procedure Call System,
Technical Report 70. Cambridge University Computer Laboratory.

[Herbert 78] Herbert, A.J.
A Microprogrammed Operating System Kernel.
Ph. D. Thesis, Cambridge University.

[Herlihy 81] Herlihy, M. & Liskov, B.
A Value Transmission Method for Abstract Data Types,
Report of Laboratory of Computer Science, MIT.

[Hughes 83] Hughes, J. W. and Powell, M. S.
DTL: A Language for the Design and Implementation of
Concurrent Programs as Semantic Networks.
Software Practice & Experience. Vol 13 (December 83)

[IBM 80] International Business Machines
0S/VS2 MVS Data Management Services Guide Release 3.8,
GC26-3875-1 International Business Machines Corporation.

[ISO 84a] International Standardization Organisation
Specification of Abstract Syntax Notation One (ASN.1).
ISO/0OSI working document. 1SO/TC 97/SC 16 N1795.

[I1SO 84b] International Standardization Organisation
Encoding Rules for Abstract Syntax Notation One.
ISO/OSI working document. [SO/TC97/SC 16 N1796.

[Jensen 75] Jensen, K. & Wirth, N.
Pascal User Manual and Report,
Springer-Verlag.

107




[Jones 85] Jones, M. B., Rashid, R. F. & Thompson, M. R.
"Matchmaker: An Interface Specification Language for
Distributed Processing” in Proceedings of the
Twelfth Annual Symposium on Principles of
Programming Languages, ACM.

[Jordan 79] Jordan, M. J. &Singer, D. W.
BCPL Paged Heap, Program documentation.
Cambridge University Computer Laboratory.

[Kent 78] Kent, W.
Data and Reality,
North Holland.

[Kernighan 78] Kernighan, B. W., & Ritchie, D. M.
The C Programming Language,
Prentice-Hall.

[Kerschberg]  Kerschberg, L., Klug, A. & Tsichritzis, D.
“A Taxonomy of Data Models in Systems for Large Databases” in
Proceedings of the 2nd International Conference on
Very Large Data Bases,
Elsevier/North Holland.

[Lancaster 83] Lancaster, J. N.
Naming in a Programming Support Environment,
Report TR-312, Laboratory for Computer Science, MIT.

[Lazowska 81] Lazowska, E. et al
"The Architecture of the Eden System” in Proceedings of the
Eighth Symposium on Operating Systems Principles,
ACM SIGOPS Operating Systems Review Vol. 15 No. 5.

[Liskov 81] Liskov, B. et al
CLU Reference Manual,
Springer-Verlag.

[Matthews 82] Matthews, D. C.J.
Poly Report,
Technical Report 28. Cambridge University Computer Laboratory.

108




[Matthews 84] Matthews, D. C. J.
Private Communication.

[Middleton 79] Middleton, M. D.
A Proposed Definition of the Language BCPL.

[Mitchell 81]  Mitchell, J. G.
Thoughts as a Basis for Programming Environment Tools,
Programming Environments Research Group Note. Cambridge
University Computer Laboratory.

[Myers 82] Myers. G. J.
Advances in Computer Architecture,
John Wiley.

[Needham 82] Needham, R. M. & Herbert, A. J.
The Cambridge Distributed Computing System,
Addison-Wesley.

[Organick 72]  Organick, E. I.
The Multics System: An Examination of Its Structure,
MIT Press.

[Pardoe 84] Pardoe, ].B.D.
Private Communication.

[Pardoe 85] Pardoe, J. B. D.
Private Communication.

[Pereira 83] Pereira, F. editor
C-Prolog User's Manual - Version 1.4d,
SRl International.

[Pitman 83] Pitman, K. M.
The Revised MACLISP Manual,
Report, Laboratory for Computer Science, MIT.

[Redell 80] Redell, D. D. et al
Pilot: an Operating System for a Personal Computer,
Communications of the ACM. Vol 23 (February 1980).

109




[Richards 79]

[Richards 80]

[Ritchie 74]

[Singer 81a]

[Singer 81b]

[Smith 84]

[Tsichritzis 77]

[Tsichritzis 82]

[Weinreb 79]

[Wilkes 81]

Richards, M. et al
TRIPOS - A Portable Operating System for Minicomputers,
Software Practice & Experience Vol 9 (June 1979).

Richards, M. & Whitby-Strevens, C.
BCPL - the Language and its Compiler,
Cambridge University Press.

Ritchie, D. M. & Thompson, K.
The UNIX Timesharing System,
Communications of the ACM Vol 17 No. 7 (July 1974).

Singer, D. W.

Classes as the basis of a programming environment.
Rainbow Group Note. Cambridge University Computer
Laboratory.

Singer, D. W.

The first attempt PEAT Kernel,

Rainbow Group Note. Cambridge University Computer
Laboratory.

Smith, L. D.
The Management of Persistent Data in Modula-2,
VLSIC Design Aids Group, Acorn Computers UK Ltd.

Tsichritzis, D. C. & Lochovsky, F. H.
Data Base Management Systems,
Academic Press.

Tsichritzis, D. C. & Lochovsky, F. H.
Data Models,
Prentice-Hall.

Weinreb, D. & Moon, D.
Lisp Machine Manual - 2nd Preliminary Version,
Report of Artificial Intelligence Laboratory, MIT.

Wilkes, A. J.
Projections and Perspectives,

110




Programming Environments Research Group Note. Cambridge
University Computer Laboratory.

[Wilkes 82a] Wilkes, A. J.
Hades - ACommand Environment that Supports Structure,
Software Practice & Experience, Vol. 12 (1982).

[Wilkes 82b]  Wilkes, A. J.
A Portable BCPL Library,
Technical Report 30. Cambridge University Computer Laboratory

[Wilkes 79] Wilkes, M. V. & Needham, R. M.
The Cambridge CAP computer and its operating system,
Elsevier - North Holland.

[Wirth 80] Wirth, N.
Modula-2,
Institut fr Informatik, Eidgendssische Technische Hochschule,
Zurich.

[(Wulf 81] Wulf, W. A, Levin, R. & Harbison, S. P.
HYDRA/C.mmp: An Experimental Computer System,
McGraw-Hill.

[Xerox 81] Xerox Corporation
Courier: The Remote Procedure Call Protocol,
XSI1S038112. Xerox Corporation.

[Xerox 84a] Xerox Corporation
Pilot Programmer's Manual,
XDE3.0-5001 Xerox Corporation.

[Xerox 84b] Xerox Corporation
Mesa Language Manual (version 3.0),
XDE3.0-3001 Xerox Corporation.

111




Appendix A. Dynamic Modules in Modula-2.

The experimental entity system uses a dynamic module package to support
dynamic loading of implementations, resolution functions and command routines
for the command line interpreter. To explain how the dynamic module package
works, it is necessary to describe how the Modula-2 runtime system used for the
entity system works.

Implementations of Modula-2 based on Lilith M-code use a global frame table
(GFT) to bind together modules (figure A-1). Each implementation module

Global Frame

Table
global frame code frame
m}
T A
global ]
data .
proc. A
Loaded Module Table/ ¥ proc. B
module
N .
v | init. code
module name /
file name

g.f.size | c.f. size —

procedure tab. size—

figure A-1

consists of a global frame which holds the module's global variables, and a code
frame. The code frame starts with a procedure table which has pointers to all of
the module's procedures. A non-local procedure call sets a register to point at the
called module's global frame, and indirects through the procedure table to get to

112




the procedure. Calls using procedure variables are done the same way, and
therefore procedure variables consist of a GFT number and a procedure number.
Only calls to constant procedures in the current module are translated into
absolute (or PC relative) call instructions. The Loaded module table is used to map
module names into GFT slots, and find the sizes of global frames to duplicate
them.

The dynamic module package can be used in 3 ways. The simplest of these is to
dynamically load an implementation module in place of a stub implementation
module. References to procedures and global variables in the dynamic module
can then be made as if the module was statically linked.

A second technique is to load a module at a new slot in the GFT. Such a module
cannot be accessed from outside using the normal Modula-2 import / export
mechanism, since such references have to be resolved at link time. This means
that the global variables cannot be accessed, and that procedures can only be
accessed using procedure variables. It is necessary to go through some
contortions to make the relevant procedure variables known outside of the
dynamic module. One way this can be done is by the loaded module's
initialisation code calling back on a procedure exported statically by some other
part of the system with the relevant procedure variables as arguments.

Finally, the package allows the client to create a new instance of an existing static
or dynamically loaded module. This is done by duplicating the module's global
data frame and allocating a new GFT slot. This has the same external reference
problems as the previous technique. Unfortunately, one thing a duplicated
module instance cannot do is generate a correct procedure variable because the
compiler generates code which uses a constant module number bound into the
code frame when it is relocated. Indeed, the dynamic module package does not
even invoke the module initialisation code for a copied module, since
initialisation has already been done. The solution in this case is to massage
procedure variables from the original module, replacing the old module number
with the new one.

The dynamic module package has a two other limitations. First there is no
interface checking, so there is nothing to stop incompatible implementations
from being loaded. This would have been possible to implement, but it would

113




have involved referring to information that was not present in memory. The
second limitation is that there is no way of specifying dependencies between
modules so that shared submodules can be handled neatly. Asitis, modules and
collections of modules to be dynamically loaded in one operation are prelinked
into a single file. It would be desirable to have mechanisms for loading
submodules when they are needed and for avoiding the premature unloading of
submodules that are shared by many modules.

114




Appendix B. Glossary of Entity System Terminology.

Abort operation: This operation defined by all classes is applied to entity
handles which have not been closed by their clients. It gives
the implementation a chance to restore an entity to a
consistent state after the client has terminated uncleanly.

Active: An active entity is an entity in a form which allows clients to
invoke operations on it.

Base class: The base class of an entity is the entity's true type. Thisis the
class id for the base class which is bound into the entity triple.

Class: A class in the entity system is the object oriented interface that
an entity presents to its clients. Itis thusthe abstract type of
an entity.

Class definition: A class definition is the type definition for a class. It includes
the types and semantic specifications of the operations which
may be applied to all entities of the class. It also includes the
type definition for entity handles for entities of the class.

Class id: This is an identifier for a class. Since there are 1-1 relationships
between a class, a class id and a class definition, the kernel
checks entity types at run time by comparing class ids. In some
entity systems, a class id is the identifier for the entity which
holds the class definition.

Client: A clientis a piece of code which uses a given interface. It may
be a user program, a utility program, an entity implement-
ation or a resolution function, or even the entity system
kernel.

Close operation: This operation defined by all c/asses releases an entity handle,
and deactivates the corresponding entity if there are no other
handles for it.

Create operation: This operation defined by all c/asses creates a new entity using
an implementation selected by the client. Class specific create
arguments tell the entity implementation how to initialize the

115




Delete operation:

Entity:

Entity activation:

Entity handle:

Entity id:

Entity triple:

new entity. The result of the create operation is an entity
identifier.

This operation defined by all classes is applied to an entity
when it is about to be deleted so that it can release any
resources it uses. Typically the delete operation is applied by
the kernel when an entity becomes inaccessible.

This is the term for a first class object in the entity system. An
entity is strictly typed persistent object, characterised by a
class, an implementation, and a representation. An entity may
exist in active and passive forms.

An entity activation holds the short term representation of an
active entity. Thisincludes information cached from the
entity's permanent representation and state associated with
transactions in hand. It may also include the state associated
with individual entity handles. The kernel arranges that there
is never more than one activation of each entity at any given
time. The implementation can therefore use the activation to
synchronize operations on different handles.

An entity handle is a short term capability for an entity in its
active form. It may be thought of as a capability to use the
entity. In general, a client needs an entity handle to invoke an
operation on an entity. A number of handles for a given
entity may exist at any time. Individual handles may carry
access rights and other state associated with the client.

An entity id is an identifier for an entity in its passive form. It
may be thought of as a capability to refer to an entity. Entity
identifiers do not carry any fine grained access control
information.

A passive entity is conceptually stored as a triple which consists
of a class id, an implementation id and a representation id.

Generic operations:

A small number of generic operations are defined by all
classes. These operations perform standard tasks, but may
also take class specific arguments. Key parts of all of the

116




Handle:

Identifier or id:

Implementation:

Implementation Id:

Kernel:

Open operation:

Operation:

generic operations are carried out the kernel. The common
generic operations are Open, Close, Abort, Create and Delete.

A handle is a short term capability to use an object.

An identifier is a “magic number” which represents an object
for its entire lifetime. The creator of an identifier may encode
useful information in the value of an identifier. Such
information is hidden from the outside world by the type
system, but should not be relied upon to be secure.

An implementation is the type manager for a number of
entities of a given class. It provides a set of procedures which
perform the operations defined by the class. The operation
procedures are responsible for the management of each
entity's representation, for access control and for the
synchronization of concurrent operations on a single entity.
There may be a number of different implementations for a
given class, each managing a disjoint subset of the entities of
that class. Thus, a given entity is managed by one implement-
ation.

This is an identifier for an entity implementation.

The kernel of the entity system is responsible for overall entity
system control. [t manages the most important low level data
structures and provides a number common services used by
other parts of the system.

Each class defines an open operation which takes an entity
identifier and class specific arguments and returns an entity
handle for the class. The class specific arguments allow the
client to tell the implementation about the intended use of
the handle. If the perspective classimplied by the open
operation is different from the base class of the entity, the
kernel uses projection resolution to set up the entity handle.

An operation is a abstract manipulation applicable to entities
of a given class. An operation is characterised by an operation
name and an operation type. The latter consists of the formal

117




names and types of the arguments and results of the
operation. The specification of an operation also includes a
formal or informal description of its external semantics.
Operations are defined as part of the class definition.

Operation invocation:

An entity client's request to perform an operation is called an
operation invocation.

Operation procedure:

Operations table:

Passive:

Perspective class:

Projection:

Thisis a routine which performs an operation on an entity. An
operation procedure conforms with the operation type, and
when called it should perform the operation on the entity
according the specified semantics. Operation procedures are
provided by implementations and resolution functions.

Associated with every entity handle typically is a structure
called the operations table which holds pointers to the
operation procedures. When the client invokes an operation
on a handle, the operations table gives the procedure to be
called. This extra level of indirection is needed to support
projection.

A passive entity is an entity held entirely in stable storage. A
passive entity must be activated before it can be used by
clients.

A client views an entity as having a perspective class. In the
simple case, the client's perspective class and the entity's base
class are the same. Otherwise, the open operation provides
the client with an entity handle that coerces a client's
perspective class operation invocations into base class
operations on the entity itself.

Projection isthe term for run time coercion of operations. The
client invokes operations in the context of a perspective class.
These are projected into operations in the context of the
entity's base class that can be carried out by operation
procedures from the implementation. Operation projection is
transparent to the client and implementation of the entity.

118




Representation:

Representation Id:

Resolution:

The representation of an entity consists of two parts. The long
term part persists when an entity is passive. The shortterm
part is associated with an entity activation, and with individual
entity handles. An entity's representation is only accessible to
the entity's implementation.

A representation id is the identifier for an entity's long term
representation that is held in the entity triple. It may be the
identifier for a storage object which holds the representation.

Resolution is the process of deciding on a projection and
setting up the mechanisms for carrying it out. Resolution
occurs at entity open time when the client's perspective and
the entity's base class are different. Resolution can fail when
none of the available resolution functions can produce an
appropriate projection. Resolution failure is analogous to a
run time type error.

Resolution activation:

A resolution activation holds the resolution function's global
variables. Itis used by a resolution function's operation
procedures for holding information relating to the entity
handle. There is a resolution activation for every entity handle
that uses resolution function operations.

Resolution function:

Selector string:

A resolution function is a routine which does the perspective
class specific part of projection resolution. A resolution
function builds and returns an entity handle compatible with
the perspective class. The entity handle will have an
associated operations table containing operations procedures
from the implementation and the resolution function.

This is a string passed to the kernel and to resolution functions
when opening an entity. The client may use it to give more
information in cases where there is more than one way to
resolve a projection.

119




Storage object:

A storage object is an object which provides a low level data
storage interface for use by entity implementations. When
storage objects are entities there may be a number of classes
of storage object suitable for different purposes.

Stub operation procedure:

In some entity system implementations, the client calls a stub
operation procedure to invoke an entity operation. A stub
operation procedure, which is independent of the
implementation of the entity, is typically responsible for
collecting the arguments and dispatching them to the
implementation using an ordinary or remote procedure call,
and then for returning the operation results to the client.

120




