Technical Report A

Number 838

Computer Laboratory

Mining and tracking
in evolving software

Silvia Breu

June 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2013 Silvia Breu

This technical report is based on a dissertation submitted
April 2011 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Newnham
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Every large program contains a small fraction of functionality that resists clean en-
capsulation. Code for, e.g., debugging or locking is hard to keep hidden using object-
oriented mechanisms alone. This problem gave rise to aspect-oriented programming:
such cross-cutting functionality is factored out into so-called aspects and these are
woven back into mainline code during compilation. However, for existing software sys-
tems to benefit from AOP, the cross-cutting concerns must be identified first (aspect
mining) before the system can be re-factored into an aspect-oriented design.

This thesis on mining and tracking cross-cutting concerns makes three contribu-
tions: firstly, it presents aspect mining as both a theoretical idea and a practical
and scalable application. By analysing where developers add code to a program, our
history-based aspect mining (HAM) identifies and ranks cross-cutting concerns. Its ef-
fectiveness and high precision was evaluated using industrial-sized open-source projects
such as Eclipse.

Secondly, the thesis takes the work on software evolution one step further. Knowl-
edge about a concern’s implementation can become invalid as the system evolves. We
address this problem by defining structural and textual patterns among the elements
identified as relevant to a concern’s implementation. The inferred patterns are docu-
mented as rules that describe a concern in a formal (intensional) rather than a merely
textual (extensional) manner. These rules can then be used to track an evolving con-
cern’s implementation in conjunction with the development history.

Finally, we implemented this technique for Java in an Eclipse plug-in called ISIS4J
and evaluated it using a number of concerns. For that we again used the development
history of an open-source project. The evaluation shows not only the effectiveness of
our approach, but also to what extent our approach supports the tracking of a concern’s
implementation despite, e.g., program code extensions or refactorings.

Acknowledgements

First I would like to thank my supervisor Prof. Alan Mycroft, who has provided a
striking balance between freedom, trust, and guidance. His belief in me and the many
discussions have been an endless source of inspiration and motivation.

I am grateful to Gates Cambridge whose scholarship has enabled me to come to
Cambridge for my PhD degree, and whose fellow scholars have provided an inspiring
community to be part of.

I would like to thank my fiancé Christian Lindig, for his never ending support of my
endeavours away from home, and the freedom I had to go and study in one of the most
exciting, rewarding, and stimulating environments. His parents’ termly care packages
were always a welcome surprise and provided extra energy.

Additional mention should go to Thomas Zimmermann who has been a great person
to collaborate with, but also shared my love for films whenever we had an opportunity.
A special thanks to Oliver Thomas who proofread this dissertation; it certainly is not
a classicist’s everyday’s read. And last but not least a thank you is also due to the
examiners of this thesis, David Greaves and Mark Harman. Their comments provided
polish for this thesis.

The Cambridge University Volleyball Club and Cambridge University Women’s
Boat Club have not just provided plenty of experiences, competition, as well as a
balance to the academic life, but also lots of wonderful friendships and unforgettable
memories of companionship. Especially my Boat Race year has given me a lot of energy
and oddly enough made sure I finished on time.

Dedicated to my mother.

Introduction

Related Work

2.1 Aspect Mining

2.2 Concern Tracking

History-Based Aspect Mining

3.1 Background oL
3.2 Basic Definitions oL

3.3 Ranking Techniques

3.4 Locality and Reinforcement

Evaluation History-Based Aspect Mining
4.1 Basic Approach for Data Collection

4.2 Evaluation Setup
4.3 Simple Aspect Candidates

4.4 Reinforcement

4.5 Precision Revisited

4.6 Complex Aspect Candidates

4.7 Conclusions

Formal Concept Analysis

5.1 Basics
5.2 Mining Cross-Cutting Concerns
5.3 Example Results from Eclipse

Representing Concerns

6.1 Basicldea
6.2 Representing Concerns in Code
6.2.1 Concern Modelling

6.2.2 Intension Inference for Structural Relationships
6.2.3 Intension Inference for Textual Similarity

6.2.4 Mathematical Notion

6.2.5 Confidence

Contents

13

17

........ 17
........ 21

25

........ 25
........ 26
........ 29
........ 30

7 The ISIS4J System

7.1 ConcernMapper
7.2 Typical usage scenario for ISIS4J
7.2.1 Implementation L
7.3 Evaluation: Implicit Structure
7.3.1 Experimental Design
732 Results.
7.3.3 Threats to Validity
7.4 Evaluation: Implementation Tracking
7.4.1 Experimental Design
742 Results.
7.4.3 Discussion of Concern Tracking
7.4.4 Conclusions

8 Conclusions and Future Work

Bibliography

69
71
72
73
81
82
83
86
86
86
88
93
94

97

103

3.1

4.1
4.2
4.3

5.1

5.2

5.3

List of Figures

Possessional, temporal, and contextual locality for transaction 4. Trans-

actions are denoted with 57 and changed methods as (. 31
Precision of HAM for Eclipse 42
Precision of HAM for Columba 43
Precision of HAM for JHotDraw 43

Maximal blocks represent aspect candidates in a transaction (left). Here,
14 candidates form a lattice of super- and sub-aspects (right). A sub-
aspect (yellow) crosscuts fewer locations but calls more methods than a
super-aspect (blue). L o 51
The lattice of aspect candidates from a commit to EclipseCVS on 2004-
03-01 by developer ptff. Candidate 6 contains 14 additions of calls to
unsupportedIn2(). 53
The lattice of aspect candidates from a commit to EclipseCVS on 2004-
02-25 by developer ptff. Candidate 10, e.g., contains 104 additions of

calls to preReplaceChild(3), postReplaceChild(3). 54
6.1 Example of Program Element Relationships in Subsequent Software Ver-

SIONS . . v . e 59
6.2 Example Graph 63
6.3 Example Concern and Relationships of its Elements in Code 67
7.1 ISIS4J Overviewo 70
7.2 Example for an intension in XML file marker.xml 73
7.3 Example ConcernMapper file marker.cm 74
7.4 Example Code and Concern 76
7.5 Example Rule Template 7
7.6 Example: Inferring Intensional Concern Description 78
7.7 Example: Calculating Intension Confidence 79
7.8 Example: Fixed Point Inference 81
7.9 Intensions, Concern Elements and Coverage in Each Version of jEdit

(see Table 7.3 for reference to actual version names) 89
7.10 Two reasons why intension accessors0f(f;) can be disabled 90

7.11 Intension wrongly disabled, correctly re-enabled due to fixed point iteration 92

10

4.1
4.2
4.3
44

5.1

7.1
7.2

7.3

List of Tables

Precision of HAM (in %) for simple aspect candidates 39
Evaluation subjects o 39
The effect of reinforcement on the precision of HAM (in % points) . . . 40
Complex aspect candidates (M,L) found for Eclipse 45
Aspect candidates mined from 43 270 CVS transactions for Eclipse 3.2M3.

There are 88 candidates that added exactly three method calls. 55
Characteristics of Target Systems 82
Number or Intensions with Single and Fixed Point Inference at Different

Confidence 84
List of full version names of jEdit versions used in evaluation 88

11

12

“I have no special talent. I am only passionately
curious.”

Albert Einstein

Introduction

Building large-scale software systems is hard, but experience shows that building large-
scale software systems that actually work is even harder. A famous example is the
ongoing NHS IT project, which includes the implementation of the Patient Adminis-
tration System. With software systems becoming more and more complex, developers
face increasing difficulties in building systems in a modular fashion; this can no longer
be tackled by “traditional” design and programming techniques. Once can only antic-
ipate change successfully if the complexity of successive software releases is controlled
and “code tangling” is limited.

The most commonly-used technique in industry since the early 1990s is object-
oriented programmang. This seems to be the best pragmatic choice, featuring top-down
design (how the system is to be built taking into account any technical or environmen-
tal constraints) and encapsulation (concealing functional details in code units called
classes). Still, every large system contains a small fraction of functionality resisting
clean encapsulation, also called cross-cutting concerns (CCCs); if a different design
was followed to get these parts well-structured, other parts would stop being well-
designed—a bit like flattening orange peel. This is also referred to as “the tyranny of
dominant decomposition” [48].

Taking notice of this problem gave rise to aspect-oriented programming (AOP [30])
as a solution: cross-cutting functionality is factored out into so-called aspects and these
are woven back into mainline code during compilation. Using aspects makes even large-
scale software systems easier to understand and modify. However, for existing software
systems to benefit from aspects, the cross-cutting concerns must be identified first
before the system can be re-factored into an aspect-oriented design. To again take on
the picture of flattening orange peel—it is a bit like finding minimum tears in the peel.
This identification task is called aspect mining.

This thesis, by presenting approaches to mine for cross-cutting concerns, aims at
the greater vision of continously supporting developers over the development process,
to make large-scale systems work better, and to avoid problems and failures such as

13

14

the computerisation of the NHS. It thus addresses questions such as how aspect mining
techniques in particular, and program analysis techniques in general, can support dif-
ferent tasks of software engineering: refactoring, program understanding, and evolution
of software.

Previous approaches to aspect mining applied static or dynamic program analysis
techniques to a single version of a system. While this might appear natural, we ar-
gue that such aspect mining has difficulties in being precise and in scaling to large
systems. While dynamic analysis strongly depends on a compilable and executable
program version as well as on the coverage of the used test cases of a program, static
analysis techniques often produce too many details and false positives as they cannot
weed out non-executable paths. To overcome these limitations each approach would
need additional costly processing which in turn makes them less practical and less
cheap. Besides, many approaches require user interaction or even previous knowledge
about the program. We give a brief discussion of existing aspect mining techniques in
Chapter 2.

We show that instead of looking at a single version of a system, we can leverage
a system’s version history to mine aspect candidates. The technique is based on the
hypothesis that CCCs evolve within a project over time. A code change is likely to
have introduced such a concern if the modification gets introduced at various locations
within a single code change.

Our hypothesis is supported by the following example. On November 10, 2004,
Silenio Quarti committed code changes “76595 (new lock)” to the EclipseCVS reposi-
tory. Bug #76595 “Hang in gfk_pixbuf new” that reported a deadlock! and required
the implementation of a new locking mechanism for several platforms got fixed. The
extent of the modification was enormous: He modified 2573 methods and inserted in
1284 methods a call to 1lock, as well as a call to unlock. As it turns out, AOP could
have been used to weave in this locking mechanism at a much lower cost.

Our approach searches such cross-cutting changes in the history of a program in
order to identify aspect candidates. For Silenio Quarti’s changes, we find two simple
aspect candidates ({lock}, L) and ({unlock}, Ly) where Ly and Lo are sets that con-
tain the 1284 methods where lock and unlock have been inserted, respectively. It
turns out that Ly = Lo, hence, we combine the two simple aspect candidates into a
complez aspect candidate ({lock,unlock}, Lq).

This novel approach is called history-based aspect mining, and collects and analyses
aforementioned changes from one version to the next. Therefore it is independent of
the total size of a system. And since it is static as we look at the program code that
constitutes the system at certain points in its development history, it does not rely
on test cases but guarantees complete coverage. It turns out that one advantage here
is that we are able to mine industrial-sized software systems like Eclipse containing
millions of lines of code.

In addition to the achieved scalability, this thesis explores the existing connec-
tion to a mathematical foundation called formal concept analysis (FCA [22]); this is
an algebraic theory for specifically those binary relations that associate objects with
attributes. Every binary relation induces a lattice of so-called concepts where a con-

'https://bugs.eclipse.org/

15

cept is a cluster of objects that have the same set of attributes. Using this connection,
history-based aspect mining can then be formalised because it turns out that an aspect
candidate in our approach is nothing but a cluster of objects with the same attributes
within a software system. Thus, FCA can be used to efficiently [33] and correctly mine
the version archives of programs in order to identify cross-cutting concerns.

However, history-based aspect mining not only identifies cross-cutting concerns and
helps to improve the design of software, but also provides a completely new view on
the evolution of cross-cutting concerns. So, monitoring the evolution of systems can
even be further enriched—by guiding developers automatically when they change the
program code for later software releases but do not update the documentation.

As part of the evolution of software systems, the effort of locating cross-cutting
concerns either through manual or automatic location activities (e.g., aspect mining)
can become invalidated when the system evolves. This problem can be mitigated if
there is an automatic way of tracking evolving software through multiple versions, as
it is very hard to read and understand tens of thousands of lines of code.

We try to achieve such automatic tracking by inferring structural patterns be-
tween the code elements that form a cross-cutting concern, and finding an intensional
representation for those so that they can be used to automatically track evolving cross-
cutting concerns (rather than the extensional representation of merely listing the code
elements). The different patterns are based on the most common structural relation-
ships found in program code (e.g., between method calls, or based on naming conven-
tions for methods). Furthermore, there is a connection to the mathematical notion of
a relation, which helps to formalise the approach, including a notion of completeness
of patterns which is necessary in order to infer ample, stringent enough patterns to
automatically track evolving software.

The following summarises the contents of this thesis’ remaining chapters and their
contributions. Chapter 2 gives an overview of related work in the area of aspect min-
ing. It shows where the motivation for choosing a completely new point of view on
the problem of identifying cross-cutting concerns comes from. Chapter 3 explains the
underlying reasoning and definitions for our historical approach. Aspect candidates,
simple and complex, are defined, and connections between mined patterns are estab-
lished. Together they enable us to introduce the version-history-based aspect-mining
approach. Next, we present the prototype implementation of HAM which was used for
evaluating our aspect-mining approach in Chapter 4. There we show that our approach
scales very well to industrial-sized systems, and is the first that can deal effectively with
large software systems. We also discuss and compare the precision for different case
studies. The sheer amount of data that needs to be processed for large-scale software
requires a more efficient and smarter analysis. This gave rise to the idea of using for-
mal concept analysis to mine for cross-cutting concerns. In Chapter 5 we show the
connections of cross-cutting concerns with objects and their attributes, and how this
translates to a concept lattice.

Once cross-cutting concerns are identified, we know that the acquired knowledge
is at risk of being lost during subsequent code modifications. Thus, in the following
chapters, we investigate whether the knowledge could be preserved by using relation-
ships between program elements rather than keeping mere lists of program elements’

16

names. Chapter 6 discusses extensional and intensional concern representation and in-
troduces the various kinds of intensions we define and their inference. Chapter 7 details
the implementation of our prototype tool and evaluates our approach’s effectiveness
in inferring implicit structure as well as in automatically tracking cross-cutting con-
cerns’ implementation. Chapter 8 provides an outlook for potential future work and
concludes the thesis.

“Knowledge of what is does not open the door di-
rectly to what should be.”

Albert Einstein

Related Work

2.1 Aspect Mining

Previous approaches to aspect mining considered a program only at a particular time,
using traditional static and dynamic program analysis techniques. One fundamental
problem is their scalability. While dynamic analysis strongly depends on a compiled,
executable program version and on the coverage of the used program test cases, static
analyses often produce too many details and false positives as they cannot weed out
non-executable code. To overcome these limitations, each approach would need ad-
ditional methods which in turn make them then far less practical. Besides, many
approaches require user interaction or even previous knowledge about the program.
The Aspect Browser [25] was one of the first aspect mining tools introduced, and
it identifies crosscutting concerns with textual-pattern matching (much like the Unix
utility “grep”) and highlights them in colour. The working assumption is that aspects
have a signature which can be identified by a textual regular expression. This means
that success or failure of the tool heavily depends on programmers having following
naming conventions during development of the software system under analysis. The
visual representation of the results in colour, however, is very useful and makes for easy
understanding of how a concern is scattered throughout the code base being analysed.
AMT (Aspect Mining Tool) [27] is based on a multi-modal analysis to avoid the
weakness of each individual analysis by using the strength of the toher. While text-
based analysis is language independent, it does suffer as mentioned above from heavily
depending on same types where strict naming conventions have been followed. AMT
therefore combines text- and type-based analysis of source code to reduce false posi-
tives, since type-based analysis works better for objects of different types but similarly
names. A later extension of the tool, called AMTex by [54], tries to overcome the
limitation of visualisation-based aspect mining as well as dealing with industrial-sized
software systems. It offers more analytical functionality than the original AMT such as

17

18 CHAPTER 2. RELATED WORK

composition of mining activities, manages mining tasks, and cross-analyses the mining
results.

The exploration tool JQuery [28] is implemented as Eclipse plugin and provides a
generic browser that allows logic queries to be defined in a tool specific query language.
The queries can be run on an abstract representation of a Java program’s source code,
after which the results are displayed in an initial browser view. The analysis of the
source code by navigation can be based on structural relationships, regular expression
matches, or complex searches for structural patterns. Navigating the tree in the browser
view, the user can extend the initial results by making additional queries of which the
results are added as subtrees with the elements linked to the source code for easy
further investigative navigation. This has the advantage that the user does not have
to switch between view or queries which helps the developer to stay focussed and not
lose orientation when exploring the identified crosscutting concerns.

FEAT [42] (Feature Exploration and Analysis Tool) is an aspect mining (and general
software exploration) tool and implemented as Eclipse plugin. It visualises concerns
in a system using so-called concern graphs. A concern graph abstracts a concern’s
implementation details by storing the structure implementing that concern, e.g., that
a method reads a specific field, or creates an object of a certain class. Thus it docu-
ments explicitly the relationships between the different concern elements. A concern
graph’s nodes represent classes, fields, and methods; its edges represent different kinds
of relations between the nodes. FEAT is query-based, with the query process being
interactive: the user can submit additional queries based on the results. However, this
requires a starting point for the analysis, which sometimes has to be found by trial
and error. The difficulty to find such a point increases if the software system to be
analysed is unknown or large, both quite common and realistic situations. This means
that domain knowledge of the software system to be analysed has to be acquired if not
present before aspect mining using FEAT is possible.

Another framework for automated aspect mining, Ophir [45], uses a control-based
comparison inspired by code clone detection. It discovers initial candidates for refactor-
ing using program dependence graphs (PDG). In the next step, undesirable refactoring
candidates undergo data-based filtering, looking for similar data dependencies in PDG
subgraphs representing code clones. The last phase of the approach is the so-called
coalesce phase; it identifies similar candidates and coalesces these pairs into sets of
similar candidates, which are the final set of refactoring candidate classes.

Tourwé and Mens [50] introduce an identifier analysis based on formal concept
analysis for mining aspectual views. An aspectual view is a set of source code ele-
ments, e.g., class hierarchies, classes, and methods, that are structurally related. Their
mining approach has five phases: generate elements and properties, generate the con-
cept lattice, filter out unimportant concepts, analyse and classify remaining concepts,
and finally display concepts. The proposed identifier analysis discovers interesting and
meaningful aspectual views, producing many details, however, due to the lightweight
technique used, it suffers from many false positives despite filtering out unimportant
concepts in phase three of the analysis. False negatives can also occur due to program
elements not sharing the exact same substring, thus splitting one concept in two or
more. As with other approaches discussed, naming conventions not followed can aggra-

2.1. ASPECT MINING 19

vate this problem. However, the results are meaningful and interesting from a program
understanding point of view.

Krinke and I [32] propose an automatic static aspect mining based on control flow.
First, the control flow graph of the program under analysis is computed. The graph
then gets traversed, extracting uniform and crosscutting execution relationships. An
initial evaluation showed that identified crosscutting concern candidates are not con-
cerns that can be refactored following the AO paradigm, or the detected crosscutting
concern is perfectly good style. However, the results do provide interesting insights
into the crosscutting behaviour of the analysed program and thus are valuable for pro-
gram understanding. In addition, the technique can be used to identify crosscutting
anomalies in discovered execution relation patterns.

The fan-in analysis by Marin, van Deursen, and Moonen [38] determines methods
that are called from many different places, thus having a high fan-in, and in consequence
representing functionality that is used across the software system. The analysis consists
of three major steps. First, the fan-in metric for all methods in the source code being
analysed is computed, based on which they are then sorted so as to aid inspecting
methods with high fan-in. In the second step, the results are filtered, e.g., by requiring
a certain threshold for the fan-in value, or eliminating getters and setters. In the last
step, which is mostly done manually, the remaining methods and their callers and call
sites are inspected. This approach proved to be able to detect crosscutting concerns,
though aspects that only leave a small "footprint’ in the source code (thus have a lower
fan-in value) are missed. Our approach is similar in that we analyse how fan-in changes
over time.

Another aspect mining approach, DynAMiT (Dynamic Aspect Mining Tool) [4, 7],
analyses program traces reflecting the run-time behaviour of a system rather than its
static structure. The approach is inspired by the shopping basket analysis approach in
data mining. Different program executions generate program traces to build the data
pool used for aspect mining. The traces are then investigated for recurring execution
patterns based on different constraints, e.g., the requirement that the patterns have
to exist more than once or in different calling contexts in the program trace. Breu
also reports on a hybrid approach [6] where the dynamic information of the previous
DynAMIiT approach is complemented with static type information such as static object
types in order to remove ambiguities and thus improve on the results by reducing false
positives. Additionally, considering method calls rather than method executions in the
traces finds more aspect candidates.

Tonella and Ceccato [49] suggest a dynamic code analysis technique. First, execu-
tion traces for the main functionality of a software system are generated. Then, formal
concept analysis is applied to the relationship between execution traces and executed
computational units (i.e., class methods). In the resulting lattice, aspect candidates are
detected by determining class methods that come from multiple modules (i.e., classes)
and belong to multiple use-cases. The approach is semi-automated. If no use cases
for execution trace generation exist, these have to be defined. After that everything is
automated up to computing the concept lattice. Interpreting the lattice and identifying
concerns for refactoring into aspects is then manual again. No prior knowledge of the
software is needed for this interpretation step though, which is an advantage over some

20 CHAPTER 2. RELATED WORK

of the other techniques. As with all dynamic analysis approaches, its main limitation
is incompleteness, but also includes the quality of the result being dependent on the
right granularity of the use cases.

Loughran and Rashid [35] addressed the question for the best representation of
aspects found in a legacy sytem as to find a way to provide the best tool support
for aspect mining. Two general approaches were considered. Direct aspect storage
combined with meta-data, and mapping of aspect anatomy to the database model.
The conducted evaluation revealed that the first approach is easy to implement as well
as fast and efficient. The second approach has very different but equally important
strengths: it retains the aspect representation and enables fine-grained aspect mining.
Thus, the authors suggest as probably best solution a hybrid approach combining both,
direct aspect storage coupled with meta-data together with mapping aspect anatomy
to the database model.

Binkley et al. [2] have looked into a semi-automatic approach to help refactor object-
oriented code into aspect-oriented code. Their technique assumes that prior to applying
it, aspect mining has been performed that as a result produces code where markers
indicate the beginning and end of those fragments that can be aspectised. Their ar-
gument for a humanly guided process is that while a certain amount of automation
is possible and sensible, decisions regarding tradeoffs and how to migrate semantics
preserving, without changing functionality and behaviour of the software, require the
specialist knowledge of developers. Binkley et al.’s technique consists of four steps
called discovery (determine applicable refactorings), transformation (apply OO trans-
formations), selection (select refactorings), and refactoring (transform code). These
steps are iterated until a fixed point is reached, i.e., until all identified concerns hat
were marked as aspectisable have been aspectised.

In [3] they extend their work on this by introducing more refactorings that support
the migration from the object-oriented to the aspect-oriented paradigm, reimplement
their original prototype as an Eclipse plugin, and evaluate the effectiveness of their ap-
proach in an extensive case study involving four medium-sized software systems. They
conclude that it is possible to migrate code from the OO to the AO paradigm largely
automatically, though the identified refactorings cannot be done entirely automatically
but require well-understood transformations such as, e.g., side effect removal; however,
these transformations can again be automated. However, they also argue that it is
neither desirable nor achievable though to automate the whole process completely as
in some cases a human expert is best suited to make refactoring decisions.

Code clones have been connected with crosscutting concerns for a while, suggesting
that they could be refactored into aspects if the usual object-oriented paradigm is not
sufficient. Bruntink et al. [10] have evaluated how capable clone detection techniques
can be for identifying crosscutting concerns automatically with the long-term vision of
developing an automatic concern miner based on their findings. For their experiment,
they chose an industrial software component, in which an expert developer manu-
ally marked occurrences of four types of crosscutting concerns, namely error handling,
tracing, parameter checking, and memory management. Further, they chose two dif-
ferent clone detection tools, one from the category of AST-based clone detectors, and
one based on tokenised source code representation. The study revealed that certain

2.2. CONCERN TRACKING 21

crosscutting concerns such as parameter checking and memory error handling can be
identified very well using clone detection techniques, while tracing concerns and error
handling prove tricky.

One of the most frequently used techniques for mining version archives is co-change.
The basic idea is simple: Two items that are changed together in the same transaction
(program-update) are related to each other. These items can be of any granularity; in
the past co-change has been applied to changes in modules, files, classes, and methods.
Our approach is also based on co-change. However, we use a different, more specific
notion of co-change. Methods are part of a (simple) aspect candidate when they are
changed together in the same transaction and additionally the changes are the same,
i.e., a call to the same method is inserted.

Recently, research extended the idea of co-change to additions and applied this
concept to method calls: Two method calls that are inserted together in the same
transaction are related to each other. Williams and Hollingsworth use this observation
to mine pairs of functions that form usage patterns from version archives [52]. By
doing so, they recover system-specific rules that describe, for example, how functions
interact in the source code, but that have been either left undocumented or changed
over time along with the changes in the source code. Their tool analyses each version
of a file in the repository and identify new function usage patterns that got introduced
in subsequent versions of each file. However, this also creates huge amounts of data,
which, with growing project size, will require filter mechanisms. Also, removed patterns
are currently not tracked, thus stay in the list of patterns in a software project even
after they cease to exist.

Livshits and Zimmermann use data mining to locate patterns of arbitrary size
and apply dynamic analysis to validate their patterns and identify violations [34].
Their tool DynaMine, implemented as FEclipse plugin, pre-processes revision history
to find method calls that were inserted and stores them in a database. Then, this
database is mined for usage and error patterns. The user can then select patterns
and run the accordingly instrumented program, collecting dynamic data. Any pattern
violations are then presented to the user in Eclipse. The tool allows for interaction
as well: the user can go back, change the patterns, and re-instrument the program,
rerunning the dynamic analysis. Our work also investigates the addition of method
calls. However, within a transaction, we do not focus on calls that are inserted together,
but on locations where the same call is inserted. This allows us to identify cross-cutting
concerns rather than usage patterns.

2.2 Concern Tracking

These approaches discussed so far can all help to locate and document concerns in
source code. However, as mentioned before, the next step after mining for concerns is
actually to track and update that information as software systems evolve. Thus, both
activities, mining and tracking, have closely related goals. In the remainder of this
chapter we will highlight known techniques.

A number of automated and semi-automated approaches have been proposed to
help developers map high-level features to code entities. Feature location complements

22 CHAPTER 2. RELATED WORK

our approach because it can be used to provide the initial concern mappings to ISIS4J.
Feature location approaches often join multiple analysis techniques. One such exam-
ple is [55] where information retrieval and branched call graphs are combined. The
approach contains four major steps: acquire specific connections between features and
functions (using information retrieval), choose initial specific function for each fea-
ture, then determine relevant function and pseudo execution traces using the branched
call graph extracted from the source code, and determine the final specific functions.
The evaluation of the technique generated too many irrelevant pseudo execution traces
but showed promising results in the other steps, in particular for identifying specific
functions and relevant functions.

[40] combine probabilistic ranking and latent semantic indexing to identify features
in source code. Both techniques produce a set of ranked facts from the software sys-
tem to be analysed as result to the feature identification. The probabilistic ranking
ranks events observed while executing the software under given scenarios; the second
technique is an information retrieval task using latent semantic indexing of the source
code implementing the software system being analysed. The authors show in their case
studies that combining both techniques increases the precision of feature identification
and combined they perform better than either applied alone. Furthermore, this novel
combination of two techniques works well with large systems such as Mozilla.

Other approaches use dynamic analysis to find code entities that were used by cer-
tain features. One such technique is used in STRADA [16], an Eclipse-based tool that
captures and analyses scenario-based execution traces in order to ultimately recover
traceability links between development artifacts and features or requirements [17]. The
problem addressed here is the challenge of developers to understand the relationship
between a software’s source code and its requirements; also referred to as trace links.
Creating and especially maintaining trace links is labour intensive and a process prone
to errors. STRADA (Scenario-based TRAce Detection and Analysis) enables devel-
opers to investigate trace links through testing and can be applied to any software
system that is observable during executiong, meaning source code can be linked to
requirements and features by executing it during testing, thus automatically creating
traceability.

Eisenbarth, Koschke et al. [19, 31] combine dynamic and static analyses to lo-
cate features in source code. Their approach is of semi-automatic nature and aims
at identifying the computational units implementing a feature and the set of required
computational units for a feature. In order to achieve this, they propose a five-step
process: scenario creation by domain expert based on features, extraction of static
dependency graph, dynamic analysis by using the software system to be analysed fol-
lowing scenarios created in the first step, application of formal concept analysis and
interpretation of concept lattice to identify relevant computational units, and static de-
pendency analysis to identify any additional computational units relevant to selected
features. One major advantage of this approach is its ability to handle scenarios that
invoke several features. Additionally, the proposed technique allows for incremental
exploration of features.

The idea of explicitly representing the scattered code implementing a concern goes
back to Soloway et al. [46], who looked at how the software process could be facilitated.

2.2. CONCERN TRACKING 23

They showed that identifying crosscutting code is time-consuming and error-prone. .
They found that conceptual representation methods have a positive impact on the
software development process, and propose the writing of cross-referenced textual doc-
umentation in the form of annotations to code.

Numerous approaches address the problem of documenting and representing con-
cerns intensionally, meaning by different means than listing names of program elements
comprising a concern. With FEAT [43], the Feature Exploration and Analysis Tool de-
scribed already more detailed in the previous section of the chapter, a user can create
and visualise concern graphs in the Eclipse development environment by selecting re-
lationships similar to ISIS4J intensions (e.g. all methods accessing a certain field).
through the graphical user interface instead of writing queries.

An example of a query approach is the JQuery [28] exploration tool also detailed
earlier in the chapter when discussing aspect mining techniques and tools. It provides
a language similar to Prolog, allowing a user to select Java elements. Concerns can be
described using different structural characteristics (e.g. hierarchy relationships, method
calls, field accesses, etc.) and regular expression matches.

The previously discussed Aspect Browser[25], besides being useful for aspect min-
ing, also can be seen as a tool to document concerns, despite the simple underlying
idea of identifying crosscutting concerns with textual-pattern matching followed by
highlighting them in the source code browser.

A different usage of queries was proposed by Mens and Kellens [39] with IntensiVE,
the Intensional View Environment, a tool suite aimed at preventing the qualitative
deterioration of a software system’s implementation regarding design structures, coding
conventions and other so-called structural regularities. If the quality is compromised
or requirements are violated, IntensiVE will report this to avoid the software system
becoming so crippled that any further changes become time-consuming and costly. In
particular, users can define views as a set of structurally similar classes and methods
in a Smalltalk program. This is done according to logical rules that resemble ISIS4J
intensions (e.g., all classes that declare a method ’accept’ with a single parameter),
thus allowing to check for example specific architectural rules that are otherwise only
specified in accompanying documents that notoriously become out of date, or might
not even be available as it is all ’in the heads’ of the developing team.

Aspect-Oriented Programming (AOP) [29] can also be used to document cross-
cutting concerns intensionally. Pointcut languages, e.g., AspectJ [1], define naming
and runtime patterns that ultimately describe the code elements where aspects will be
injected, meaning (additional) code that should be executed. As the name suggests,
such languages use pointcuts to achieve this. A pointcut is a predicate (in the form
of specifically defined criteria) that matches join points, where a join point refers to a
point during the execution of a program. The mentioned code that should be executed
at all join points matching a specific pointcut is also called advice.

ConcernMapper [RWWO05] is a concern management tool for Java software projects,
implemented as an Eclipse plugin. It allows the developer to form a collection of
program elements that are concerned with a concern’s implementation, and save it for
future use or reference. It thus enables reorganising the modularity of a softare system
suited to your needs with changing or touching the actual source code. The concern

24 CHAPTER 2. RELATED WORK

representation is created simply by dragging and dropping the program elements of
interest into a view. This kind of concern representation is of the extensional kind
in contrast to the earlier mentioned intensional forms of representing features and
concerns. We will use this tool for our own ISIS4J approach introduced in this thesis
in later chapters.

CME [11], the Concern Manipulation Environment, is a suite of tools that help
create, manipulate, and evolve aspect-oreinted software systems. It provides a common
platform for different tools to integrate and interoperate, as well as frameworks that
offer language- and paradigm-independent access to low-level concern representation
and manipulation capabilities. One of the frameworks is the Pattern Matcher called
PUMA [47]. It is a generic query engine which included a proposal to enable users to
define a concern intension using any kind of query languages that could potentially
select any kind of artifacts (code elements, ant tasks,> documents, etc.).

All of these approaches allow users to document concerns in a way that can be robust
in the face of evolving software by relying on intensions. Although our technique also
uses intensions to track concerns in evolving source code, the main innovation of our
work is to provide a system which allows the automatic generation of intensions from
purely extensional descriptions, such as the ones that could be produced by a feature
location technique. By minimising the cost of producing robust concern description,
we hope to make their use more prevalent in the maintenance of long-lived systems.

Various techniques and tools have been developed to extract different types of im-
plicit structure from development artifacts. Marin et al. developed an aspect mining
framework that identifies crosscutting concern (CCC) sorts. These are rule sets de-
scribing certain concern types [37]. For example, if all methods accessing a database
also open and close a connection, the framework will detect a “Consistent Behavior”
CCC sort. This sort can then be used to find all methods exhibiting this behaviour or
to visualise at a higher level the cross-cutting concerns present in the software project.
This framework uses techniques such as concept analysis and fan-in analysis to perform
the rules inference. As opposed to CCC sorts that must match specific rule sets, ISIS4J
can come up with any rule combination and is not restricted to one kind of concern.

Ernst et al. [20] also proposed an approach to discover function invariants to sup-
port software evolution by using dynamic analysis. Their technique can discover pre-
and post-conditions such as “variable ashould be equal to the size of array b” when
entering a function and “the elements of array b should not have been modified” at
the end of the function. As is the case for ISIS4J, their technique benefits from fixed-
point inference since detected invariants are used to detect new invariants. Although
both approaches aim at supporting software evolution, ISIS4J performs its inference on
coarser-grained elements and focusses on concern mapping instead of function invari-
ants.

2ant.apache.org

“The only reason for time is so that everything
doesn’t happen at once.”

Albert Einstein

History-Based Aspect Mining:
Basic Technique

Previous approaches to aspect mining considered only a single version of a program
using static and dynamic program analysis techniques, and thus would look at a pro-
gram at only one point in time. Our approach introduces an additional dimension of
time: the history of a project.

We model the history of a program as a sequence of transactions. A transaction
collects all code changes between two versions, called snapshots, made by a programmer
to complete a single development task. Technically a transaction is defined by the
revision control system that is used for the code base we analyse. In our case, this
is CVS. However, our approach extends to arbitrary version archives. This and the
following two chapters are a reworking of the paper on Mining Aspects from Version
History [8] and the paper on Mining Eclipse for Cross-Cutting Concerns [9].

3.1 Background

In software development, often several developers work within one and the same code
base, and thus may be changing the same files. It is thus necessary to organise such
projects and avoid repeated changes back and forth, or conflicts because one devel-
oper overwrites another developers’ work. Software tools for revision control are thus
standard in multi-developer projects.

Revision Control. Revision control systems (often also referred to as version archives)
automatically manage changes to documents and source code, often from developers
spread apart in space or time. Changes are usually identified by increasing numbers,
with the initial set of files being named “revison 17, and after each submitted change,

25

26 CHAPTER 3. HISTORY-BASED ASPECT MINING

the newly resulting set of files being named “revision 2”, “revision 3”7, and so on. Re-
visions also contain a timestamp of the submitted change, the name of the person
who made the change, and in most cases a comment regarding why something has
been changed, e.g., “corrected spelling mistakes in Chapter 3”. Revision control also
enables a development team to go back to an earlier version and start working from
there again. One established and well-known free software revision control system is
the Concurrent Versions System (CVS) [12]. We will use the vast amount of data a
revision control system can provide to mine for aspect candidates.

Data Mining and Co-Addition. Data mining is about systematically analysing
(usually vast amounts of) data, and also the whole process of extracting patterns from
such data. It has been researched and used for decades for fraud detection, surveillance
tasks, profiling to detect terrorist activities, or marketing, to name just a few areas.
One of the most famous examples is probably the shopping basket analysis, where,
e.g., it was found that if a young man after 8 pm buys nappies, he will also buy a
six-pack of beer as he is most likely a young father on babysitter duties. Such insights
are widely used, for example, to analyse which products get bought together in order
to, for example, re-arrange where goods are on display in a supermarket. Over the
past years, data mining has also been introduced into the area of software engineering,
in particular on version archives such as CVS. It is used to predict software quality, to
find defects, to analyse software evolution, and for many more problems.

One of the most frequently used techniques for mining version archives is co-change.
The underlying idea is simple: Two items (e.g., methods, classes or packages) that are
changed together in the same transaction are related to each other. This concept has
been adapted to additions of items, in particular to the addition of method calls. It is
called co-addition: two method calls that are inserted together in the same transaction
are related to each other; they have been co-added. We will use this principle as the
basis of our technique to identify aspect candidates from the development history of
software systems.

3.2 Basic Definitions

In previous work, we introduced dynamic and hybrid approaches for aspect mining [4, 7,
5], focussing on the analysis of execution traces of programs. This was the motivation
to look at changes to programs that insert or delete method calls, as such changes,
assuming that they are not dead code, also directly change execution traces. As our
hypothesis is that cross-cutting concerns do not necessarily exist from the beginning
but may be introduced over (development) time, we concentrate on the addition of
method calls and omit deletions. For our purposes, this also simplifies a developer’s
transaction in a version archive to a set of inserted method calls only:

Definition 1 (Transaction)
A transaction T is a set of pairs (m,l). Fach pair (m,l) represents an insertion of a
call to method m in the body of the method [.

3.2. BASIC DEFINITIONS 27

The method [into which a method call m is inserted is also called method location.
To avoid ambiguities we identify [by its full signature, including package and class
name. The inserted method m is identified only by its name as well as the number
of arguments; this is a safe reduction that helps to reduce costs for preprocessing (see
Section 4.1).

For our technique, we need to access and handle certain meta-data of a transaction
T, namely the committing developer, the time of the commit, methods that were
changed, and naturally the methods that were added in a transaction. We name these
as follows:

developer(T') is the name of the developer who committed transaction 7.
timestamp(T) is when a transaction 7" was committed.

locations(T) = {l | (m,l) € T} is the set of methods that were changed in transaction
T.

calls(T) = {m | (m,l) € T} is the set of method calls that were added in transaction
T.

Now, we are searching for so-called aspect candidates in the set of transactions 7. An
aspect candidate represents a cross-cutting concern that could also be implemented as
an aspect in the AOP sense. It consists of one or more calls to methods M which are
spread across two or more method locations L. Depending on its exact form, it can
either be a simple or a complex aspect candidate. It is defined as follows:

Definition 2 (Aspect Candidate)

An aspect candidate ¢ = (M, L) consists of a non-empty set M of methods and a
non-empty set L of locations where each location | € L calls each method m € M. If
|M| =1, the aspect candidate c is called simple; if |M| > 1, it is called complex.

This means that each method call m added in transaction T leads to a potential aspect
candidate c¢. The function SIMPLE_CANDIDATES(7) in Algorithm 1 does exactly that:
it returns for every transaction 7" € T and every method call m € calls(T') one aspect
candidate.

Filtering for Large Projects. As we said before, an aspect candidate is at least one
method call spread across at least two locations. Furthermore, the results for projects
like Eclipse that have millions of lines of code and a long history would be enormous.
Therefore, we use filtering to find actual aspect candidates and decrease the number
of false positives.

To find only aspect candidates that cross-cut a considerable part of a program,
we will—for our purposes—ignore all candidates ¢ = (M, L) where fewer than eight
locations are cross-cut, i.e., |L| < 8. We believe that maintenance will benefit most from
refactoring such candidates into aspects as they are homogeneous and of considerable
size, and thus express cross-cutting concerns. The cut-off value of eight is chosen based
on previous experience [34]. This of course does not mean that the cut-off value cannot
be adjusted to suit other projects’ sizes.

28 CHAPTER 3. HISTORY-BASED ASPECT MINING

Algorithm 1 Simple aspect candidates

1: function CANDIDATES(T)

2: Cresult = @

3: for all m € calls(T) do

4: L ={l|1 € locations(T), (m,l) € T}
5: Cresult = Cresult U {({m}7 L)}

6: end for

7 return Ceou

8: end function

9:

10: function SIMPLE_CANDIDATES(7)

11: return |] CANDIDATES(T)

.TeT
12: end function

Complex Aspect Candidates. However, if we look at AOP literature, then it be-
comes apparent that challenging cross-cutting concerns often consist of more than one
method call. Remember, for example, the lock/unlock concern presented in Chap-
ter 1. In order to find such concerns, we can combine two (simple) aspect candidates
¢ = (My, Ly) and ¢o = (Ms, Lg) to a complex aspect candidate ¢ = (M',L’) with
M' = M; U M, and L' = Ly, if ¢; and ¢y cross-cut exactly the same locations, i.e.,
Ly, = Ls. This last condition, L; = Lo, might look restrictive, but actually it is sensible.
Method calls inserted in the same locations are most likely related.

Algorithm 2 on page 28 constructs such complex aspect candidates. Function CoMm-
PLEX_CANDIDATES takes all simple aspect candidates located earlier as input and com-
bines candidates with matching method locations into a new complex aspect candidate.
It is worthwhile to note that the resulting complex aspect candidates are also combined
from simple aspect candidates with different transactions as their origin.

Algorithm 2 Complex aspect candidates

1: function COMPLEX_CANDIDATES(Clmpic)
2 Cresult = @

3 for all (M, L) € Cyipie do
4 M={M"| (M',L) € Csipic }
d: Mcomplez = UM’EM M’
6 Cresult = Cresult U {(Mcomplewa L)}
7 end for
8 return Creou
9: end function

3.3. RANKING TECHNIQUES 29
3.3 Ranking Techniques

As one can probably imagine, mining in thousands of transactions, if the program is
of industrial size, will produce a vast number of aspect candidates. Not all results
will be as good an aspect candidate as others. What would be nice is a ranked list
with the most likely or suitable aspect candidates near the top of the list. In order to
achieve that, certain ranking techniques can be applied. In the following, we present
three ranking techniques we defined on our located aspect candidates. They take into
account different observations, from frequently-called library methods, via fragmented
introduction (of aspect candidates) over time, to compact introduction of aspect can-
didates.

Rank by Size. The first intuitive suggestion is that aspect candidates that cross-cut
numerous locations should be more interesting. After all, on the same principle, we
suggested to only consider aspect candidates above a certain cut-off size, depending on
the overall size of a project. Therefore, the first, simple ranking technique we propose is
to sort all identified aspect candidates ¢ = (M, L) by their size |L|, with decreasing size
as we go down the ranked list. As a result, we get those candidates first, that are the
most cross-cutting. However, this still contains a certain amount of noise, depending
on how extensively a project’s programmers use Java library methods. For example,
method calls that would be frequent but do not necessarily represent cross-cutting
functionality in an AOP sense, include iter (), hasNext (), or next ().

Rank by Fragmentation. The second rating presented here will penalise the previ-
ously mentioned common Java method calls when their introduction in many locations
is spread across many transactions. If a cross-cutting concern is added to a system
and not changed later on, it appears in only one transaction. In order to capture such
aspects, and boost them up to the top of the ranking, we sort aspect candidates by the
number of transactions in which we find a candidate. If an aspect candidate is found
in fewer transactions, it is considered to be more likely not to be a false positive or
of low interest. We refer to this count of transactions, in which an aspect candidate
¢ = (M, L) appears, as the fragmentation of aspect candidate c:

fragmentation(c) = |{T € T | M C calls(T')}|

Should two or more aspect candidates have the same fragmentation because they
were added in the same number of transactions, we rank additionally by size |L|, the
number of locations in which the aspect candidate has been introduced. The more
cross-cutting it is, the higher it will be ranked within the same fragmentation count.

Rank by Compactness. Similar to the previous ranking by fragmentation, this
ranking technique has the advantage that common Java method calls are ranked low.
It is safe to assume that in most cases the developer will not introduce a cross-cutting
concern only partially, then do something completely different and commit to the
version archive, then return to complete the rest of the original work on introducing a

30 CHAPTER 3. HISTORY-BASED ASPECT MINING

CCC and commit that. But a cross-cutting concern that has been introduced in one
transaction, may get extended to additional locations in later transactions for various
reasons. However, such a cross-cutting concern would be ranked low under the previous
ranking techniques. Thus, we introduce a third ranking technique called compactness
in which aspect candidates with high compactness appear at the top of the list, and less
compact aspect candidates are pushed to the bottom of the ranking. The compactness
of an aspect candidate ¢ = (M, L) is the ratio between the size |L| and the total number
of locations where calls to M occurred together in the development history:

L]
{l|3T € T,Ym e M: (m,l) € T}

compactness(c) =

Again, should two or more aspect candidates have the same compactness, we will
apply the size |L| as an additional (second) ranking criterion.

3.4 Locality and Reinforcement

In experiments, we observed that cross-cutting concerns can be introduced within one
transaction and later inserted in other new locations in later transactions. We refer
to this as “extending a cross-cutting concern to new locations later”. This happens
when a developer introduces changes but later recognises that the task was not com-
plete with her last commit. She will then complete the introduction of a cross-cutting
concern. This also can happen when a software system grows and an existing cross-
cutting concern has to be extended to the newly added functionality, too. Although
such concerns are recognised by our technique as multiple, different aspect candidates,
these candidates may be ranked low and missed, despite the compactness criterion we
introduced earlier.

To strengthen aspect candidates that were inserted in several transactions, we use
the concept of locality. Two transactions are locally related if they were created by
the same developer, were committed around the same time, or changed the same loca-
tions. If there exists locality between transactions, we mutually reinforce their aspect
candidates.

Temporal Locality refers to the fact that aspect candidates may appear in several
transactions that are close in time. In Figure 3.1 on page 31 there exists temporal
locality between transaction 4 and transactions 3 and 5.

Possessional Locality refers to the fact that aspect candidates may have been cre-
ated by one developer but committed in different transactions; thus they are owned by
her. Girba et al. [23] define ownership by the last change to a line; in contrast, we look
for the addition of method calls, which is more fine-grained. In Figure 3.1 there exists
possessional locality between transaction 4 and transactions 1, 2, and 7, all of them
were committed by Mary.

3.4. LOCALITY AND REINFORCEMENT 31

Temporal Locality

mary mary kate mary kate ron mary

AT A \D A S\ 3 A 5

Vi V' Vi

Possessional
Locality

Contextual

context @ .
ke Locality

Figure 3.1: Possessional, temporal, and contextual locality for transaction 4. Transac-
tions are denoted with 17 and changed methods as ().

Spatial /Contextual Locality refers to the fact that aspect candidates may have
been created in different transactions that are linked by the methods being modified.
Spatial locality is caused by any method that is modified in two transactions, while
contextual locality is caused by only those methods that are in a given context, for
which we will use the set L of cross-cut methods of an aspect candidate ¢ = (M, L).
In Figure 3.1 there exists spatial locality and contextual locality in the context L =
{r, s,t} between transactions 4 and 6 because transaction 6 modified location r € L.

Definition 3 (Locality)
Let T, Ty € T be arbitrary transactions, ¢ = (M, L) be an aspect candidate, and t be a
fized time interval. We say Ty and Ty have

(a) temporal locality, written as T} e, iff

|timestamp(Ty) — timestamp(Ty)| < t

(b) possessional locality, written as Ty & T iff
developer(Ty) = developer(T5)

(c) spatial locality, denoted as T, & T, iff

locations(T,) N locations(T,) # ()

(d) contextual locality in the context of c, denoted as T, «~ T, iff

c € CANDIDATES(T,) A LN locations(T,) # 0

32 CHAPTER 3. HISTORY-BASED ASPECT MINING

Assume that we found two aspect candidates ¢; = (M;, L) and co = (Ma, Ly) in two
different transactions where the called methods are the same, i.e., My = M,. If there
exists locality of any form between these two transactions, we can combine both aspect
candidates. As a result we get a new aspect candidate ¢ = (M, L1 U Ly). We call this
process reinforcement.

Definition 4 (Reinforcement)
Let ¢y = (Mjy, Ly) and cy = (Ma, Ly) be aspect candidates. If My = My, the construction
of a new aspect candidate (M, Ly U Ly) with M = My = M, is called reinforcement.

We only reinforce if there exists locality between two transactions. After having run
some experiments, however, we decided not to take spatial locality into account as

it creates noise by linking unrelated transactions together and thus does not improve

the accuracy of our mining results. Instead, we found a way to get a similar effect
without using spatial locality: contextual locality with aspect candidates as context
relates transactions in a similar way, but with considerably less noise.

We implemented four reinforcement algorithms, which are listed in Algorithm 3 on
pages 33 et seq. The functions for temporal (TEMPORAL), for possessional (POSSESSIONAL),
and for contextual reinforcement (REINFORCE_CONTEXTUAL) are very similar in style.
They all

1. take a set T of transactions as input,

2. identify for each transaction T other transactions 7y, that are related to T" with
respect, to some form of locality

3. compute simple aspect candidates for each of these transactions, and
4. build new combined, or reinforced candidates.

The functions TEMPORAL, POSSESSIONAL and REINFORCE_CONTEXTUAL differ in
the kind of locality that is used to identify related transactions (see second step). For
contextual locality (REINFORCE_CONTEXTUAL) this step is pushed into the inner for
all loop because the related transactions depend on the chosen aspect candidate.
Additionally, we implemented an algorithm ALL that combines the results of tempo-
ral and possessional reinforcement. However, it does not use several kinds of localities
at the same time as this could reinforce all transactions. If this happened, the unique
historical perspective of our approach would get abandoned and many transactions over
a long time could “melt” into one big transaction which is then the same as previous
approaches that looked at the software system only at one point in time. Instead, the
algorithm ALL applies the different kinds of localities independetly (sequentially).

3.4. LOCALITY AND REINFORCEMENT

33

Algorithm 3 Reinforcement algorithms

10:
11:
12:

1
2
3
4
5:
6
7
8
9

: function REINFORCE(T, z € {time, dev})
Creing =0
for all T € T do

Tine = {T' T € T, T" o T}

Cioc = Uprer. CANDIDATES(T”)

for all ¢ = (M, L) € CANDIDATES(T') do
Lyeing ={L' | =(M",L') € Clpe, M' = M}
Creinf = Cremf U {(M, Lreinf)}
end for
end for
return Cpeins
end function

13:

14:
15:
16:

function TEMPORAL(T)
return REINFORCE(T, time)
end function

17:

18:
19:
20:

function POSSESSIONAL(T)
return REINFORCE(T, dev)
end function

21:

22:
23:
24:
25:

26:
27:

28:
29:
30:
31:
32:
33:

function REINFORCE_CONTEXTUAL(T)
Cremf = Q)
for all T € T do
for all ¢ = (M, L) € CANDIDATES(T') do

7?00 = {T/ | T € T,T/ s T}
Cloc = Uprer,, CANDIDATES(T")

Lremf = {L/ ‘ CI = (Mla LI) € Cloc; M/ - M}
Creinf = Cremf U {(M, Lreinf)}
end for
end for

return Ceins
end function

34:

35

36:

37

. function ALL(T)
return TEMPORAL(7) U POSSESSIONAL(T)
: end function

34

CHAPTER 3. HISTORY-BASED ASPECT MINING

“Not everything that can be counted counts, and not
everything that counts can be counted.”

Albert Einstein

Evaluation History-Based Aspect Mining

In the introduction to the thesis in Chapter 1 we told an anecdote how we identified
cross-cutting concerns in the history of Eclipse (lock/unlock). Another example for a
cross-cutting concern is the call to method dumpPcNumber which was inserted into 205
methods in the class DefaultBytecodeVisitor. This class implements a visitor for
bytecode, in particular one method for each bytecode instruction; the following code
shows the technique for instruction aload 0.

VL]
* @see IBytecodeVisitor#_aload_0(int)
*/
public void _aload_O0(int pc) {
dumpPcNumber (pc) ;
buffer.append(OpcodeStringValues
.BYTECODE_NAMES [I0pcodeMnemonics.ALOAD_0]) ;
writeNewLine();

¥

The call to dumpPcNumber can obviously be realised as an aspect. However, in this
case aspect-oriented programming could actually generate all 205 methods (including
the comment) since the methods differ only in the name of the bytecode instruction.

4.1 Basic Approach for Data Collection

We implemented the ideas presented in Chapter 3 in a prototype called HAM (History-
Based Aspect Mining). It is powerful: it can identify potential aspects in large-scale
software program. HAM analyses a software system’s development history, obtaining
sets of function calls that are likely to be cross-cutting. There is further potential in
it: by informing the programmer unobtrusively when she is about to add more of that

35

36 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

kind of functionality, the programmer can go on as planned, ignoring the ‘warning’, or
think about introducing an abstraction of the functionality to encapsulate it properly.

The implementation of the prototype is based on a preprocessing that has been
used by Zimmermann et al. for various other problems such as detecting common error
patterns [56, 34]. Zimmermann et al.’s technique collects and preprocesses CVS data
for fine-grained analysis of changes to a software system. This is why we chose their
approach as the basis for HAM; we need to be able to analyse CVS data on the function-
level. The preprocessing is useful since accessing a CVS archive for each analysis would
be very time-consuming. Also, one does not always need all the information that could
be obtained, such as type of change, author, date, time, and more. Other information
that is useful for analyses, such as changes on a function-level, cannot be obtained
directly from the CVS.

Preprocessing consists of several steps: data extraction, restoring transactions, and
mapping changes to entities. A distinguishing attribute from usual approaches is that
the whole preprocessing can be done incrementally. The data extracted in any earlier
analysis run doesn’t change. In other words, once more CVS data is available, only
the new revisions have to be processed and added to the collected data rather than
re-processing all of the CVS data.

The data-extraction phase stores all data in corresponding tables of a database:
files, directories, revisions, transactions, tags, branches, author and log messages. Ev-
erything is extracted so that the data can be used for any kind of analysis, even though
certain information might not be of interest for any current analysis. This leaves the
filtering of unnecessary information up to the individual analysis using the preprocessed
data.

The next phase deals with restoring transactions since CVS does not provide in-
formation about which files have been changed together in one commit to the version
archive. However, this can be important information for certain analyses, and will be
of importance for our aspect mining approach. Zimmermann et al. solve that problem
by using a sliding time window over all changes that have been committed by the
same author and with the same log message (if any). The time window is necessary
to account for the fact that commits to version archives can take from a few seconds
to several minutes, depending on the size of the files committed or the speed of the
network connection.

As mentioned before, we will need data that enables us to do fine-grained analysis
on a function-level which CVS does not provide. However, this information can be and
is computed by comparing each revision’s entities (on the function- rather than the
file-level) with its predecessors. This way we can determine which functions have been
modified, added, or deleted.

Our prototype uses this preprocessing of CVS data. Since we have every bit of
information we need, starting from fine-grained changes on function-level to information
about who the committing author is, we can mine the database following the techniques
outlined in Chapter 3. An evaluation of our approach to analysis shows its effectiveness,
which is presented in the following.

4.2. EVALUATION SETUP 37

4.2 Evaluation Setup

Our mining approach can be applied to any version control system; however, we based
our implementation on CVS, since most open-source projects use it. One of the major
drawbacks of CVS is that commits are split into individual check-ins and have to be
reconstructed. For this we use a sliding time window approach [56] with a 200-second
window. A reconstructed commit consists of a set of revisions R where each revision
r € R is the result of a single check-in.

Additionally, we need to compute method calls that have been inserted within a
commit operation R. For this, we build abstract syntax trees (ASTs) for every revision
r; € R and its predecessor r;_1 € R and compute the set of all calls C; in r; and C;_; for
r;’s predecessor 7;_1 by traversing the ASTs. Then C,, = C;\ C;_; is the set of inserted
calls within r;; the union of all C,, for r; € R forms a transaction T = UriE r Cr, which
serves as input for our aspect mining and is stored in a database.

Since we analyse only differences between single revisions, there exists a drawback:
we cannot resolve types because only one file is investigated at a time; in particular, we
miss the signature of called methods. Of course, analysis would benefit from resolving
types of identifiers. Unfortunately this requires usually analysing a file in the context
of a complete program. As we analyse differences between single revisions of one file at
a time, this context is not available and we cannot resolve types. ITo limit noise that
is caused by this through name collision, we use the number of arguments in addition
to method names to identify methods calls. This heuristic is frequently used when
analysing single files [34, 53], and we believe it is suitable for our purposes since we
are analysing one transaction at a time. We would get full method signatures when
building snapshots of a system. However, as Williams and Hollingsworth [51] point
out, such interactions with the build environment (compilers, make files) are extremely
difficult to handle, require manual interaction, and result in high computational costs.
In contrast, our preprocessing is cheap, as well as platform- and compiler-independent.

Renaming of a method is represented as deleting and introducing several method
calls. Thus, we may incidentally consider renamed calls as aspect candidates. Recog-
nising such changes is known as origin analysis [24] and will be implemented in a future
version of HAM. It will eliminate some false positives and improve precision.

For a more thorough evaluation we chose three Java open-source projects and mined
them for cross-cutting concerns. Refer to Table 4.2 for some statistics.

JHotDraw 6.0b1 is a GUI framework to build graphical drawing editors.®> We chose
it for its frequent use as an aspect mining benchmark.

Columba 1.0 is an email client that comes with wizards and internationalisation
support.* We chose it because of its well-documented project history.

3http://www.jhotdraw.org/
“http://www.columbamail . org/drupal/

38 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

Eclipse 3.2M3 is an integrated development environment that is based on a plug-in
architecture.® We chose it because it is a huge project with many developers and
a large history.

For each project, we collected the CVS data as described in Section 4.1, mined for
simple aspect candidates as defined in Section 3.2, reinforced them using the localities
established in Section 3.4, and also built complex aspect candidates as introduced in
Section 3.2. We investigated the following questions:

1. Simple Aspect Candidates. How precise is our mining approach? That is, how
many simple aspect candidates are real cross-cutting concerns?

2. Reinforcement. This leads to larger aspect candidates, but does it actually im-
prove precision (by ranking true simple aspect candidates high)?

3. Ranking. Can we rank aspect candidates such that more cross-cutting concerns
are ranked high? Which technique finds cross-cutting concerns better?

4. Complex Aspect Candidates. How many complex aspect candidates can we find
by the combination of simple ones?

To measure precision, we computed for each project, ranking, and reinforcement algo-
rithm the top 50 simple aspect candidates. Since some aspect candidates might rank
within the top 50 in more than one ranking for the same project, there are possible
duplicates in the rankings. To avoid multiple evaluation effort for those, we combined
these rankings into one set per project. For Columba we got 134, for Eclipse 159, and
for JHotDraw 102 unique simple aspect candidates. Next, we sorted these sets alpha-
betically by the name of the called method in order to prevent bias in the subsequent
evaluation, e.g., by knowing which candidates came from which ranking. We used this
order to classify simple aspect candidates manually into true and false cross-cutting
concerns. The precision is then defined as the ratio of the number of true cross-cutting
concerns to the number of aspect candidates that were uncovered by HAM. Precision
is the accuracy of our technique’s results and in general a common measure for search
performance.

We considered an aspect candidate (M, L) as a true cross-cutting concern if it
referred to the same functionality and the methods M were called in a similar way, i.e.,
at the same position within a method and with the same parameters. An additional
requirement for a true cross-cutting concern was that it can be implemented using
AspectJ. However, we did not take into account whether aspect-orientation is the best
way to realise the given functionality. In cases of doubt, we classified a candidate as a
false cross-cutting concern.

Of course, it would also be interesting to measure how many of all existing aspect
candidates have been detected. Recall is the ratio of the number of correct target
predictions (i.e., correctly identified aspect candidates) and the number of all target
examples (i.e., all candidates). Thus, it measures how well a search algorithm (such
as our approach) finds what is is supposed to find. However, determining recall values

Shttp://www.eclipse.org/

4.3. SIMPLE ASPECT CANDIDATES 39

Table 4.1: Precision of HAM (in %) for simple aspect candidates

Columba Eclipse JHotDraw

Size 52 52 36
Fragmentation 46 54 30
Compactness 42 52 28

Table 4.2: Evaluation subjects

Columba Eclipse JHotDraw
Presence
Lines of code 103094 1675025 57 360
Java files 1633 12935 974
Java methods 4191 74612 2043
History
Developer 19 137 9
Transactions 4105 97900 269
— that changed Java files 3186 77250 241
— that added method calls 1820 43270 132
Method calls added 24623 430848 7517
First transaction 04-08-2001 05-02-2001 10-12-2000
Last transaction 11-02-2005 11-23-2005 04-25-2005

requires the knowledge of all aspect candidates which is impossible for real-world soft-
ware systems. The projects that we analyse are too large to calculate recall, or more
precisely, the number of target examples, by hand, and it is not possible to even spec-
ulate about recall as the presented analysis approach is completely new. We therefore
cannot report recall numbers.

4.3 Simple Aspect Candidates

To evaluate our notion of simple aspect candidates we checked via manual inspection
whether the top-50 candidates per ranking and project were cross-cutting or not. The
precision as the ratio of true cross-cutting functionality and all (50) aspect candidates
is listed in Table 4.1 on page 39 for each project (columns) and each ranking (rows).

We observe that precision increases with subject size: it is highest for Eclipse and
lowest for JHotDraw, the smallest subject. The ranking has a minor impact and no
ranking is generally superior; the deviation among the precision values is at most
10 percentage points. Nevertheless, the ranking by size, which simply ranks by the
number of locations where a method was added, seems to work well across all projects.
It reaches a precision between 36 and 52 percent. Roughly speaking, every second (for
JHotDraw every third) mined aspect candidate is a real cross-cutting concern.

Unlike ranking by size, ranking by fragmentation and by compactness take trans-

40 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

Table 4.3: The effect of reinforcement on the precision of HAM (in % points)

Columba Eclipse JHotDraw

Temporal locality

Size + 2 -4 +0
Compactness + 2 - 2 + 4
Possessional locality

Size -8 -20 +2
Compactness +12 +8 + 2
All localities

Size -8 20 + 2
Compactness +10 + 6 + 2

actions or the overall number of modified locations into account. We believe that the
poor performance of these rankings for our smaller subjects JHotDraw and Columba
is caused by the much smaller number (hundreds/few thousands versus tens of thou-
sands) of transactions and added method calls available for mining (see Table 4.2). In
other words, we expect these rankings to benefit from long project histories. These
generally correspond to many transactions, as present in Eclipse.

To summarise, as answer to our first evaluation question regarding simple aspect
candidates, we can say that we were able to identify cross-cutting concerns with a
precision of between 36% and 54 %; the precision increases with project size and history,
i.e., large projects with long history boost precision. The cost of false positives is the
time a developer invests in examining them.

4.4 Reinforcement

After mining simple aspect candidates we evaluated the effect of reinforcement on them.
Reinforcement takes a simple aspect candidate (M, L) from a single transaction and
looks at locally related transactions in order to arrive at a candidate (M, L) with an
enlarged set L' O L of locations. For the evaluation we reinforced the simple aspects of
our subjects using temporal, possessional, and also using all localities applied at once.
As before, we checked the top-50 aspect candidates and computed the precision.

Table 4.3 lists the change in precision for each subject (columns), each locality
(rows), and each ranking by size or compactness (sub-rows). Changes are relative to
the precision before reinforcement (Table 4.1). Hence, these changes express the effect
of reinforcement on the precision of our mining.°

Temporal locality produces slight improvements but seems to be unsatisfying with
large projects. We presume that this is because we chose the same fixed time window
of 2 days for all three subjects; we plan to investigate whether a window size propor-
tional to a project’s size would yield better results. The Eclipse project has far more

SNote that for reinforcement we did not rank by fragmentation. This ranking punishes reinforced
aspect candidates that are spread across many transactions.

4.5. PRECISION REVISITED 41

developers as well as CVS transactions per day than JHotDraw and Columba. Thus,
we have too much noise that diminishes the positive impact of temporal locality for
Eclipse.

Possessional locality shows the most significant improvement. Albeit ranking by
size decreases precision up to 20 percentage points, possessional locality in combination
with ranking by compactness improves precision up to 12 percentage points for all
three subjects. In large projects, get and set methods are inserted in many locations
and thus alleviate the positive effects of possessional locality for Eclipse when aspect
candidates are ranked by size.

All localities considers the application of both localities. The effect on the preci-
sion is the same as with reinforcement based on possessional locality only: ranking
by size annihilates the positive impact, ranking by compactness facilitates it. Thus,
possessional locality is dominant and affects precision prominently.

The good results for possessional locality suggest that aspects belong to a devel-
oper, and are mostly not distributed over many transactions. This is backed up by
the notably improved precision of our approach after reinforcement based on posses-
sional locality combined with ranking by compactness. Besides, all our results, without
and with reinforcements, suggest that small projects have small histories and thus we
achieve a considerably lower precision. In addition, precision can only be improved
marginally with reinforcements. This is of some consequence as reinforcements lever-
age a large number of transactions and developers. In contrast, projects such as Eclipse
with a long and large history do extremely well.

To summarise, as answer to our second question posed in this evaluation regarding
the impact of reinforcement, we can say that possessional locality improves the precision
for ranking by compactness; this indicates that cross-cutting concerns are owned by
developers.

4.5 Precision Revisited

So far we have evaluated our mining by computing the precision of the top-50 aspect
candidates in a ranking. However, it is unlikely that a developer is really interested
in 50 aspect candidates. Based on experience we know that she will instead probably
look only at ten or twenty candidates at most. We have therefore broken down the
precision for the top ten, twenty, and so on candidates for each project. The results for
all three subjects are similar. For the detailed discussion here, we have chosen Eclipse
for two reasons—it is an industrial-sized project and the results are most meaningful;
they are plotted in Figure 4.1. For the sake of completeness, we have included the
results for Columba and JHotDraw in Figures 4.2 (page 43), and 4.3 (page 43).

The graph in Figure 4.1(a) shows the precision when ranked by size before and after
applying different reinforcements. The precision stays mostly flat when moving from
the top-50 to the top-10 candidates. However, the overall precision remains between 30
and 60 percent. Reinforcement seems to make matters only worse, as ranking by size
before reinforcement performs best. We can observe roughly the same for the small
projects Columba and JHotDraw (see Figures 4.2(a) and 4.3(a)).

42 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

100%
O no locality

90% O possessional locality
o temporal locality
80% O all localities

70%
60% © G
50%
40%
30%
20%
10%

0%

——

10 20 30 40 50
Top n aspect candidates

(a) Dependent on length of ranking by size

100%
90%
80%
70%
60%
50%
40%
30%
20% g ggsks)g:gitgnal locality

10% temporal locality
O all localities

0%
10 20 30 40 50

Top n aspect candidates

(b) Dependent on length of ranking by compactness

Figure 4.1: Precision of HAM for Eclipse

4.5. PRECISION REVISITED 43

O no locality O no locality
90% O possessional locality 90% O possessional locality
temporal locality
‘O all localities

temporal locality
O all localities

10 20 30 40 50 10 20 30 40 50

Top n aspect candidates Top n aspect candidates

(a) Dependent on length of ranking by size (b) Dependent on length of ranking by com-
pactness

Figure 4.2: Precision of HAM for Columba

100% 100%
‘O no locality O no locality
90% O possessional locality 90% O possessional locality
temporal locality temporal locality
80% ‘O alllocalities 80% O all localities
70% 70%
60% 60%
50% 50%
40% 40%
30% € 30% /.\ v
20% € 20%
10% 10%
0% 0%
10 20 30 40 50 10 20 30 40 50
Top n aspect candidates Top n aspect candidates

(a) Dependent on length of ranking by size (b) Dependent on length of ranking by com-
pactness

Figure 4.3: Precision of HAM for JHotDraw

In contrast, Figure 4.1(b) shows a dramatically different picture for the precision when
ranked by compactness. The precision is highest for the top-10 candidates and decreases
when additional candidates are taken into account; it is lowest for the top-50 candidates.
However, the first ten candidates have a precision of at least 90%. This means, nine
out of ten are true cross-cutting concerns. Thus, ranking by compactness is very
valuable for developers. Again, a similar improvement can be observed for Colum-
ba and JHotDraw in Figures 4.2(b) and 4.3(b): precision for the top ten candidates
increases from 30% (JHotDraw) and 50% (Columba) to 50% and 70% respectively.

In summary, size is not the most prominent attribute of cross-cutting concerns,
but compactness is. This is also supported by the obversation that temporal and
possessional locality enhance ranking by compactness for Eclipse. For Columba and
JHotDraw, temporal locality has not as much impact as possessional locality. This
is probably due to the fact that the development history for both projects is not as
long and extensive as it is the case for Eclipse. It confirms our earlier findings (see
Section 4.4) which showed that cross-cutting concerns are owned by developers and

44 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

thus possessional locality improves precision.

So, to answer our third question in this evaluation, whether ranking can give us
true aspect candidates first, we can summarise our findings by saying that ranking by
compactness pushes true cross-cutting concerns to the top such that we reach a precision
of 90% for the top-10 candidates in the industrial-sized system Eclipse.

4.6 Complex Aspect Candidates

For our evaluation subjects, we combined simple aspect candidates into a complex can-
didate if they cross-cut exactly the same locations. This condition was very selective:
for Columba we got 21, for Eclipse 178, and for JHotDraw 11 complex aspect candi-
dates. Note that all candidates cross-cut at least 8 locations. Below, we discuss the
results from Eclipse in more detail.

Table 4.4 shows the top 20 complex aspect candidates ranked by size for the Eclipse
project. Each row represents one complex aspect candidate (M, L). The second column
contains the methods M called by an aspect candidate, where the number in brackets
denotes the number of arguments for each method. The third column gives the number
| M| of methods and the fourth column shows the number |L| of method locations where
calls to M were inserted. In the first column we provide the result of our manual
inspection of this aspect candidate: v for an actual cross-cutting concern and X for a
false positive.

HAM indeed finds cross-cutting concerns consisting of several method calls. In
addition, they are ranked on top of the list. However, the performance of our approach
decreases when it comes to lower-ranked aspect candidates. We believe that one reason
for poor performance are get and set methods that are inserted in many locations
at the same time and thus out-rank actual cross-cutting concerns in the number of
occurrences. Although these getters and setters are not cross-cutting, they still describe
perfect usage patterns.

Furthermore, we find only few complex cross-cutting concerns. This is mainly a
consequence of the condition that the locations sets have to be the same (L; = Lg).
We could relax this criterion to the requirement that one location set has to be a subset
of the other (L; C Ls), however, this adds exponential complexity to the determination
of aspect candidates. We will improve on this in our future work. For now, let us look
at three cross-cutting concerns in Eclipse.

Locking Mechanism. This cross-cutting concern was already mentioned in Chap-
ter 1. Calls to both methods lock and unlock were inserted in 1284 method locations.
Here is such a location:

public static final native void _XFree(int address);
public static final void XFree(int /*long*/ address) {
lock.lock();
try {
_XFree(address) ;
} finally {

4.6. COMPLEX ASPECT CANDIDATES 45

lock.unlock();

by

The other 1283 method locations look similar. First lock is called, then a corre-
sponding native method, and finally unlock. It is a typical example of a cross-cutting
concern which can be easily realised using AOP. Note that this lock/unlock con-
cern cross-cuts different platforms. It appears in both the GTK and Motif version of
Eclipse. Typically such cross-platform concerns are recognised incompletely by static
and dynamic aspect mining approaches unless the platforms are analysed separately
and results combined.

Abstract Syntax Trees. Eclipse represents nodes of abstract syntax trees (ASTs)
by the abstract class ASTNode and several subclasses. These subclasses fall into the
following simplified categories: expressions (Expression), statements (Statement),
and types (Type). Additionally, each subclass of ASTNode has properties that cross-cut
the class hierarchy. An example for a property is the name of a node: There are named
(QualifiedType) and unnamed types (PrimitiveType), as well as named expressions

Table 4.4: Complex aspect candidates (M,L) found for Eclipse

M (M| L]

v {lock(0),unlock(0)} 2 1284
v {postReplaceChild(3), preReplaceChild(3)} 2 104
v {postlazyInit(2),preLazyInit(0)} 2 78
X {blockSignal(2),unblockSignal(2)} 2 63
v {getLength(0),getStartPosition(0)} 2 62
v {hasChildrenChanges(1),visitChildrenNeeded(1)} 2 62
X {modificationCount(0), setModificationCount(1)} 2 60
X {noMoreAvailableSpaceInConstantPool(1),

referenceType(0)} 2 57
X {g-signal handlers_block matched(7),

g signal handlers unblock matched(7)} 2 54
X {getLocalVariableName(1), getLocalVariableName(2)} 2 51
X {isExisting(1),preserve(1)} 2 48
X {isDisposed(0),isTrue(1)} 2 37
X {gtk_signal handler_block by data(2),

gtk signal handler unblock by data(2)} 2 34
X {error(1),isDisposed(0)} 2 31
X {getWarnings(0), setWarnings(1)} 2 31
X {getCodeGenerationSettings(1), getJavaProject(0)} 2 31
X {SimpleName(1), internalSetIdentifier(1)} 2 29
X {iterator(0),next(0)} 2 27
v {postValueChange(1), preValueChange(1)} 2 26
X {SimpleName(1), internalSetIdentifier(1)} 2 25

46 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

(FieldAccess). Additional properties of a node include the type, expression, operator,
or body.

This is a typical example of a role super-imposition concern [36]. As a result, every
named subclass of ASTNode implements method setName which results in duplicated
code. With AOP the concern could be realised via the method-introduction mechanism.

public void setName(SimpleName name) {
if (name == null) {
throw new IllegalArgumentException();
}
ASTNode 01dChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(0ldChild, name, NAME_PROPERTY);
}

Our mining approach revealed this cross-cutting concern with several aspect candi-
dates. The methods preReplaceChild and postReplaceChild are called in the afore-
mentioned setName method; the methods preLazyInit and postLazyInit guarantee
the safe initialisation of properties; and the methods preValueChange and postValue-
Change are called when a new operator is set for a node.

Cloning. Another cross-cutting concern was surprising because it involved two getter
methods getStartPosition and getLength. These are always called in cloneO of
subclasses of ASTNode and were also identified by our approach.

ASTNode cloneO(AST target) {
BooleanLiteral result = new BooleanLiteral(target);
result.setSourceRange(this.getStartPosition(),
this.getLength());
result.setBooleanValue(booleanValue());
return result;

To summarise our findings for the last question in our evaluation regarding the
identification of complex aspect candidates, we can say that we do indeed find complex
cross-cutting concerns. They are rare but they represent serious maintenance challenges
without AOP. Once again, the complex aspect candidates are ranked high.

4.7 Conclusions

Our evaluation confirms the hypothesis underlying our approach: cross-cutting con-
cerns do not necessarily exist from the beginning but emerge over time. They might
even ’die out’ over time when they are only temporarily introduced to deal with prob-
lems arising in the development process. The hypothesis is further supported by the
observation that the more history we have the more precise we are. By introducing
and formalising the dimension of time for aspect mining, we developed an approach

4.7. CONCLUSIONS 47

that has several advantages. Mining version archives is an effective way to mine for
cross-cutting concerns.

We can successfully identify cross-cutting concerns although better precision is
achieved the larger a project’s size is, the more developers it has, and the more re-
visions it features. Simply put, the more history we can analyse, the more precise we
can be (e.g., we reached a precision of 90% for the top-10 candidates in Eclipse). If
less project data is available, for example for small software systems, we only reach
a precision comparable to previous approaches (about 60%). However, the fact that
we scale to industrial-sizes projects with a high precision is a major advantage over
existing aspect mining approaches.

Recalling the cross-cutting concern we discovered and mentioned in Chapter 1,
the implementation of a new lock/unlock mechanism in Eclipse, we also see that
we are able to discover cross-cutting concerns across platform-specific code. Previous
approaches, whether static or dynamic, identify such cross-cutting concerns only by
mining the code base repeatedly.

Applying different concepts of locality as well as different ranking techniques showed
that some of them, even though intuitive, produce noise which can be counterproduc-
tive, but overall they improve the precision of our approach. Most notably, ranking by
compactness showed to be the best choice with large projects such as Eclipse. Our eval-
uation showed that its precision is aided by choosing possessional locality. This fact
gives additional insight into software development projects: it indicates that cross-
cutting concerns are owned by developers, and one concern is usually dealt with by
one and the same developer, even if later changes have to be applied.

Overall, our evaluation has shown that mining cross-cutting concerns from version
archives is an effective and precise new approach with its scalability to industrial-sized
projects being a great asset.

48 CHAPTER 4. EVALUATION HISTORY-BASED ASPECT MINING

“Analysis is the art of taming infinity.”
Neil Falkner

Formal Concept Analysis

As we have discussed before, software systems may contain functionality that does not
align well with its overall architecture but cross-cuts instead. In the previous chapters
we have proven our hypothesis that these do not necessarily exist from the beginning
but emerge over time. By analysing where developers add code to a program, our
history-based mining identifies cross-cutting concerns in a two-step process. First, we
mine CVS archives for sets of methods where a call to a specific single method was
added. In a second step, such simple cross-cutting concerns are combined to complex
cross-cutting concerns. To compute these efficiently, we now apply formal concept
analysis—an algebraic theory.

5.1 Basics of Formal Concept Analysis

Formal concept analysis (FCA) is used for exploratory data analysis problems and
requires no a priori knowledge. Usually, the data consists of relationships R between
objects £ and attributes M. Such a data set contains conceptual clusters (called
(formal) concepts in the context of FCA) where a cluster is a set of objects that
all share the same attributes. The concepts (or clusters) that exist in the data set,
form a partially ordered hierarchy, which is a so-called concept lattice: (Lq, M;) <
(Lo, My) <= L; C Ly. This means that any two concepts have a unique largest
common sub-concept, and any intersection of two concepts is a concept in the lattice,
too.

Ganter and Wille’s [22] algorithm for concept analysis solves the problem of com-
puting efficiently all concepts in a data set. What it does not provide explicitly is the
resulting concept lattice. Lindig [33] developed an efficient and all-purpose concept
analysis algorithm. It not only computes all concepts as well as the concept lattice,
but does so in a breadth-first fashion which allows one to explore only the top-most
concepts, or to stop if a given minimum support is not reached any longer. We will see

49

20 CHAPTER 5. FORMAL CONCEPT ANALYSIS

the use of the latter feature in Section 5.2 where we will introduce a minimal size that
must be exceeded for a concept to be of interest for our aspect mining problem. The
basic principle of Lindig’s algorithm is described in the following.

The starting point is the usually empty top concept (or cluster) for a relationship
R C L x M, often denoted with T. The reason for it to usually be empty is that it
is highly unlikely that all objects in the data set share at all share one and the same
attribute(s). Similarly, the bottom node is empty and denoted with L since for it
to not be empty the data set would need to contain at least one object which shares
all attributes at once. For any given concept (L, M) the algorithm computes a sub-
concept (L, M,,) = (M U{m}), (M U{m})") for each attribute m € M\ M that is
not already in (L, M). This list of sub-concepts contains all lower neighbours of (L, M)
in the lattice but can contain additional concepts. The following criterion only holds
for lower neighbours and is used to identify them: (L,,, M,,) is a lower neighbour iff
(M U{z})" = (M U{m})" holds Vo € M,, \ M. The ’-operator (also prime operator)
can be understood as derivative function. The derivative of a set of objects L; C L is
the set L, C M of all attributes that hold for all objects in L;, and the derivative of a
set of attributes M; C M is the set M C L of all objects that have all attributes in
Mi.

Details about the algorithm, including proofs, can be found in [33]. In the following
we will illustrate how formal concept analysis can be used to compute single and
complex aspect candidates efficiently.

5.2 Mining Cross-Cutting Concerns

To recap, we model the history of a program as a sequence of transactions. A trans-
action collects all code changes between two versions, called snapshots, made by a
programmer to complete a single development task. Within each transaction we are
searching for added method calls which may identify an aspect. We consider calls
to a small set of (related) methods that are added in many (unrelated) locations a
cross-cutting concern or aspect candidate.

We refer to a method where calls to another method are added as location, and to
the method being called simply as method. An aspect candidate is thus characterised by
two sets: a set of locations and a set of methods. This definition represents a trade-off:
albeit it is not fully general, it still captures many interesting cross-cutting concerns
and enables us to identify them efficiently. This trade-off is particularly worthwhile
when it comes to finding complex aspect candidates and possible mutations of them
that we might miss if we derive complex candidates only by following the restrictive
combination of simple aspect candidates as defined in Chapter 3.

Aspects are maximal Blocks. We can think of a transaction as a cross table
with locations as rows and methods as columns (Figure 5.1, left). The intersection of
location [and method m is marked with a cross when the transaction inserts a call
to m in location [. In this representation, each column is a simple aspect candidate;
however, to cut out noise, we only consider columns with at least 7 crosses. Formally,

5.2. MINING CROSS-CUTTING CONCERNS 51

Methods

simple

X M aspect
&2 X candidate
S X X I
=1 XX complex
©
S X X aspect
=1 XX X X candidate

X
X X X
\OQ’ \0(\};0(\){*

Figure 5.1: Maximal blocks represent aspect candidates in a transaction (left). Here,
14 candidates form a lattice of super- and sub-aspects (right). A sub-aspect (yellow)
crosscuts fewer locations but calls more methods than a super-aspect (blue).

a simple candidate is a pair (L, M) of locations L and methods M with |[M| =1 and
|L| > 7.7

Given a specific simple aspect candidate (L, M), we can arrange the table such that
all rows from L are adjacent to each other. Now a simple aspect candidate manifests
itself as a mazimal block in the table of width |M| = 1 and height |L|. In Figure 5.1 on
page 51 such a block is marked by the blue-shaded rectangle of size 1 x 7. A complex
aspect candidate (L, M) is a maximal block with |M| > 1: at each location | € L all
methods m € M are called. An example is the second, yellow-shaded rectangle of size
3 x 3 in Figure 5.1. However, to obtain such a block for a complex aspect candidate in
general, we have to re-order not just rows but also columns. It is therefore not obvious
how to compute all blocks present in a transaction.

Identifying maximal blocks in a cross table (or transaction) 7' C £ x M is provided
by the algebraic theory of formal concepts as introduced in Section 5.1. Note that in
our case L is identical to M since a method’s name identifies its body, and thus the
location where a method call has been added. A maximal block is a pair (L, M) where
the following holds:

L = {leLl](ml) forall me M}
M = {meM]|(m,1I)foralll e L}

Each block (L, M) is maximal in the following sense: we cannot add another method

"Note that in this chapter we use the notation (L, M) for ‘method m was added in location I’
whereas in Chapter 3 we used (M, L) to express the same thing. This change of order is required
to accommodate aspects to the structure of the formal concept analysis, but does not change the
meaning of such pairs representing aspect candidates.

52 CHAPTER 5. FORMAL CONCEPT ANALYSIS

m to M without shrinking L to ensure that all locations in L call m. Likewise, we
cannot add another location [to L without shrinking M. The definition allows for
blocks of any size though for our purposes we only consider blocks representing simple
aspect candidates with |L| > 7. To identify the most interesting ones, we additionally
take the area |L| x | M| of a block as a measure.

In the worst case, a transaction may contain exponentially many blocks. This makes
concept analysis potentially expensive—even in the presence of efficient algorithms [33].
This is not a concern here since we compute the blocks for each transaction individually,
thus apply FCA to many but relatively small sets of data. Computing all blocks for
the 43 270 transactions of Eclipse took about 43 seconds, that is, about one millisecond
per transaction.

The aspect candidates of a transaction form a lattice given the following partial
order: (L,M) < (L',)M') iff L C L’. A sub-aspect cross-cuts fewer locations than
its super-aspect but calls more methods (cf. Figure 5.1, graph on the right). In our
experience, aspects in one transaction are rarely in a super/sub order, but are typically
unordered.

5.3 Example Results from Eclipse

Figure 5.2 on page 53 shows the lattice of all aspect candidates from an EclipseCVS
commit transaction on 2004-03-01. In the lattice two aspects are connected if they are
in a direct super/sub-concept relation. Nodes are given the shape of the corresponding
block which gives prominence to large aspect candidates: For example, candidate 6
contains 14 location where calls to unsupportedIn2() were added. This method throws
an exception if the operation called is not supported at APT level 2.0.

public void setName(SimpleName name) {

if (name == null) {
throw new IllegalArgumentException();

}
ASTNode 01dChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY) ;
this.methodName = name;
postReplaceChild(oldChild, name, NAME_PROPERTY);

An even larger example for a cross-cutting concerns is the following: Eclipse rep-
resents nodes of abstract syntax trees by the abstract class ASTNode and several sub-
classes. These subclasses fall into the following simplified categories: expressions (sub-
class Expression), statements (subclass Statement), and types (subclass Type). Ad-
ditionally, each subclass of ASTNode has properties that cross-cut the class hierarchy.
An example for a property is the name of a node: there are named (QualifiedType)
and unnamed types (PrimitiveType), as well as named expressions (FieldAccess).
Additional properties include the type, expression, operator, or body that are associated
with a node in an abstract syntax tree.

5.3. EXAMPLE RESULTS FROM ECLIPSE 53

;E 14
24 25 1111'T_b—I

Figure 5.2: The lattice of aspect candidates from a commit to EclipseCVS on 2004-03-01
by developer ptff. Candidate 6 contains 14 additions of calls to unsupportedIn2().

This is a typical example for a role super-imposition concern [36]. As a result
of this cross-cut, every named subclass of ASTNode implements the method setName
which results in duplicated code that is difficult to maintain. With aspect-oriented
programming the concern could be realised with the method introduction mechanism.

Our mining approach revealed this cross-cutting concern with several aspect can-
didates. The lattice for the corresponding commit transaction is shown in Figure 5.3
on page 54.

The methods preReplaceChild and postReplaceChild are called in the afore-
mentioned setName method and many other methods. Node 10 contains 104 locations
where calls to both methods are added. The methods preLazyInit and postLazyInit
guarantee the safe initialisation of properties and calls to them are added in 78 loca-
tions; node 11 is the corresponding node in the lattice in Figure 5.3. The methods
preValueChange and postValueChange are called when a new operator is set for a
node; calls to them have been added in 26 locations, represented by node 12 in the
lattice.

Summary. As we mentioned before, concept analysis is potentially expensive since a
cross table of size n xn (since methods are also the locations) may have up to 2" blocks.
However, this has not been a problem; the 43270 transactions of the Eclipse CVS
archive constitute 159 448 blocks. The average transaction adds 5.4 calls in 3.8 locations
and has 3.7 blocks. The largest transaction had 1235 blocks (and was the anecdote we
identified with the original approach and mentioned in the Introduction). It took on
average less than 1 second for Lindig’s algorithm to compute all blocks for a transaction.

o4 CHAPTER 5. FORMAL CONCEPT ANALYSIS

Figure 5.3: The lattice of aspect candidates from a commit to EclipseCVS on 2004-02-25
by developer ptff. Candidate 10, e.g., contains 104 additions of calls to preReplace-
Child(3), postReplaceChild(3).

5.3. EXAMPLE RESULTS FROM ECLIPSE 55

Aspect Candidates in Eclipse 3.2M3

methods 1 2 3 >4
candidates 1878 363 88 24

Table 5.1: Aspect candidates mined from 43270 CVS transactions for Eclipse 3.2M3.
There are 88 candidates that added exactly three method calls.

We mined 2353 aspect candidates, with the distribution shown in Table 5.1. We
found 1878 simple and 363+88+24 = 475 complex candidates. In [8] we had previously
mined Eclipse for simple and complex aspect candidates, albeit with a less general
approach. We found 31 unique complex candidates that cross-cut at least 20 locations
(out of which we found 6 to be true aspects and additional 3 to be partial aspects).
Using formal concept analysis we found 64 unique aspect candidates, including all 31
aspect candidates reported in [8]. This confirms that formal concept analysis provides
the correct formal and algorithmic framework to mine for aspects. Furthermore, the
mining can be done efficiently from large projects by analysing code additions over
time.

56

CHAPTER 5. FORMAL CONCEPT ANALYSIS

“We can’t solve problems by using the same kind of
thinking we used when we created them.”

Albert Einstein

Representing Concerns in Code and
Inferring Structural Patterns

Nowadays, software systems are complex, and thus the features or concerns of which
they are comprised are not necessarily always encapsulated in their own module, e.g.,
a class®. There are various reasons for this phenomenon, and not all of them relate
to developers’ ability to design software in a modular fashion. In particular, with
increasingly complex systems, it is inherently harder to achieve a modular design:
some concerns are difficult to encapsulate [29], while others are prone to scattering as
the result of repeated changes [18].

If source code implementing a concern is scattered, a programmer who has to make
modifications to this concern not only has to spend time and effort locating the con-
cern’s code; she just also understand it to be able to perform the necessary changes.
Concern location is an important software engineering task, and many approaches have
been introduced to assist this tricky activity. Examples include the approach of Eisen-
barth et al., who propose to associate source code with features based on the analysis
of execution traces [19], or SNIAFL, a technique that associates functions with fea-
ture descriptions based on information retrieval techniques [55]. Several aspect mining
approaches fall into the category of concern location, too, such as our own approach
presented in the previous chapters. Independently of the exact details of the concern
location technique used, the result of the feature location task will be a list of program
elements (e.g., methods and fields in an object-oriented language) that are associated
with the concern in which the developer is interested.

Concern location is clearly a demanding task which can take up a substantial
amount of a programmer’s time, depending on the technique applied, the feature under
investigation, and the developer’s familiarity with the code base. Hence, it would be

8For present purposes, we use concern and feature interchangeably, even though strictly a feature
is a particular form of a concern.

o7

28 CHAPTER 6. REPRESENTING CONCERNS

worth finding a way to preserve any results of feature location efforts as an artifact
of the software project so that it can be re-used and consulted later when needed; it
would be equally useful to the developer who worked on it originally and to others.

Unfortunately, a concern-code mapping, also simply referred to as a mapping, can
become void as soon as changes are made to the program code of the software system
and become permanent when submitted to the revision control system. And it is not
only the big changes that can destroy one’s previous efforts in reverse engineering.
Even trivial changes such as simply renaming a method can potentially invalidate
feature location results, since it is not necessarily straightforward to rediscover the
original name. Since one of our research foci is on aspect mining, and thus on feature
location, we are keen to identify ways that can help preserve knowledge acquired via
these activities as lastingly and as accurately as possible.

This as well as the following chapter is a rework of the paper on Inferring Structural
Patterns for Concern Traceability in Evolving Software [13].

6.1 Basic Idea

Our hypothesis is that elements in a concern mapping form patterns that are based on
their structure within the code base, and that they constitute a stronger representation
than just the names of the program elements forming the concern. To be more pre-
cise, they form structural relationships, and we can use these to create an intensional
rather than extensional (i.e., textual) concern description. Using the structure between
concern elements to describe the concern is less prone to changes than a mere list of
concern elements. Thus we propose to identify strong structural relationships between
concern mapping elements and use this, in a way more abstract, concern description
to automatically track the implementation of concerns throughout multiple versions of
a software system.

To illustrate the idea, let us look at a very simple example (see Figure 6.1 on
page 59). Assume that for a concern C' (e.g., the Save-As-PDF feature in a text editor)
we have identified via some concern location technique that C’s mapping is comprised of
three methods my, ms, mg3, as well as a field f;. Should the three methods my, ms, and
mg correspond to all methods in the software system accessing field f;, as illustrated in
Figure 6.1(a), then our approach will identify this and produce a representation of the
pattern along with the concern mapping. With the details of the pattern associated
with the concern mapping, we can check whether the pattern is still valid in later
versions of the software system. If it is still valid, nothing happens; should it no longer
be valid, as in Figure 6.1(b), we can then automatically detect which new program
elements should be added in the concern mapping and if that proposition is taken on,
it will make the pattern valid again. Using the example above, where the pattern
describes all accessors to field fi, our approach can be used to automatically detect
new program elements which also access fi; they may now also play a role in concern
C’s implementation within the program. In this example, method m4 would now be
included since it is also an accessor of field f;, as illustrated in Figure 6.1(b).

Our idea is based on the assumption that program elements that implement a high-
level concern share enough similarities and commonalities for us to detect patterns,

99

6.1. BASIC IDEA

SUOISIOA oIem1Jog juonboesqng ut sdigsuorjeoy jyuowo[y weisolJ jo ojdwrexy :1°9 oInsrq

UOISIOA [eryiu] ut opo)) uryyis digsuoryeroy ()

19T SUOISIoA M3 © 9poy) uryyim drysuorye[ey (q)
weouos () weouos ()
<S9SS8dJJ%e> ¢ --- <S9SS9JJe> =« ---
<s|led> <-—— <S||edo> <-———

Ow s Of| [Ow Ofw |} Ofw| [Omm

60 CHAPTER 6. REPRESENTING CONCERNS

which in turn allow us to track the implementation of concerns in evolving software
systems. In Chapter 7 we discuss the use of an inference engine to identify structural
patterns between program elements forming a concern mapping, in order to track
evolving concerns in source code. Additionally, we will present how our approach for
inferring and checking patterns in concern mappings can be realised and put in action.

6.2 Representing Concerns in Code

A common goal in software engineering is the separation of concerns, resulting in
a clean modularisation. However, concerns’ implementations often end up scattered
across the rest of the program, whether this is due to poor design, or to a system
that is too complex to neatly decompose the different functionalities that build the
software system. This scattering of concerns, or cross-cutting concerns, is a pressing
matter in software engineering, and many techniques have been developed to deal with
it. These range from identifying cross-cutting concerns to keeping a record of the code
that implements a given concern.

The idea of explicitly representing the scattered code implementing a concern goes
back to Soloway et al., who looked at how the software process could be facilitated.
They found that conceptual representation methods have a positive impact on the
software development process, and propose the writing of cross-referenced textual doc-
umentation in the form of annotations to code [46]. More recently, proposed techniques
have focussed on concern representations that allow a higher level of automatic analysis.
For example, Griswold et al. [26] specify parts of the code belonging to a concern via
regular expressions, and developed Aspect Browser around the map metaphor which
allows one to manage scattered concern implementations effectively.

We base our approach to representing and modelling concerns in code on the tech-
niques developed in both, the FEAT [43] and ConcernMapper [44] tools, which are
discussed in more detail as part of presenting the realisation of our approach in Chap-
ter 7. The remainder of this chapter describes our new approach of intension inference,
representation, and tracking of concerns via intensions, combined with the confidence of
intensions. We will also discuss how this new idea fits in with existing work in the area
of feature location and tracking. This forms the background to the structural inference
system which we propose, and whose effectiveness will be evaluated, in Chapter 7.

6.2.1 Concern Modelling

Essentially, a concern mapping consists of an association between a high-level concern
and a set of source code elements. Such a set of elements can be discovered in a number
of ways, including through manual inspection of the code or through more sophisticated
reverse-engineering techniques.

The simplest way to represent a concern’s implementation is to record the elements
of source code that correspond to its implementation. For example, if a PRINTING
feature in a text editor is found to be implemented by four methods m; — my, we
would simply record the full signatures of the four methods as associated with PRINT-
ING. In this case we consider the concern to be represented extensionally, and the list

6.2. REPRESENTING CONCERNS IN CODE 61

of elements associated with the concern is its extension. This simple scheme is the
one used by the ConcernMapper concern modeling tool [44]. The major advantage of
representing concerns extensionally is the simplicity of the scheme: one can associate
source code elements with a concern simply by listing them. In situations where auto-
matic feature location techniques are used, it is thus possible to take the output of the
technique as the concern mapping. On the other hand, the main weakness of the ex-
tensional technique is that it is not resilient to evolutionary changes: modifications to
the source code (such as refactorings) will easily invalidate the mapping. For example,
renamed elements will not be found in later versions of the system.

One can also model concerns intensionally.” In this case, elements relating to a
concern are not listed explicitly but through high-level constructs, called intensions,
that describe their characteristics. For example, if all of the methods that access field
f1 are involved in the implementation of PRINTING, the intension all accessors of
f1 would be recorded. The use of intensions to represent concerns in source code is
supported by a number of concern modelling tools, including CME [47], IntensiVE [39],
AspectBrowser [26], and FEAT [43]. The advantage of specifying concerns intensionally
is that this scheme is more tolerant to evolutionary changes. For instance, in the case
described above, if accessors of field f; are added or removed as the code evolves, the
changes will automatically be reflected in the concern model. In particular, the FEAT
tool implements a model of concerns that combines both intensions and extensions,
a technique that has been demonstrated to be robust to many types of evolutionary
change [41, 43]. Unfortunately, representing concerns intensionally requires more effort
from developers, and intensional descriptions are not produced by feature location
techniques. We have thus developed a technique to infer intensions automatically
based on a given extension and a set of intension templates that represent structural
patterns among the elements in the extension.

6.2.2 Intension Inference for Structural Relationships

Object-oriented programming, the state-of-the-art in software development these days,
encapsulates functionality in classes, methods etc. to provide well-structured code.
Thus, we are safe to assume that program code is comprised of program elements such
as methods and fields. However, these program elements do not float unrelated in
space, but form relationships that can be purely structural. For instance, given four
methods m; — my and a field f, the following situations could occur:

e Methods m; — my are all the methods that access field f;.

e Methods mg — my are all the methods that override m; (or any combination
thereof).

e Methods m; — my are all the callers of a fifth method ms.

e Methods m; — my and field f; constitute all the members of class C'.

9We use the term “intension” in the sense of Eden and Kazman, to denote a structure that can
“range over an unbounded domain” [15, p.150]. See also previous work on the question for a more
in-depth discussion of the role of intensions for concern traceability [41, 43].

62 CHAPTER 6. REPRESENTING CONCERNS

All the above examples can be encoded as intensions that apply over a certain set
of elements. We have used seven intension templates for Java systems:

e callerOf a method in the program that calls another method

e calledBy a method in the program that is called by another method

e accessorOf a method in the program that accesses (reads or writes) a field

e accessedBy a field in the program that is accessed (read or written) by a method
e declaredBy a method or field in the program that is declared by a class

e implements a method in the program that implements a method declared in an
interface or abstract class

e overrides a method in the program that overrides another method

Of course, some of these relationships are each other’s inverse, e.g., callerOf and
calledBy, or accessorOf and accessedBy.

The program consisting of its program elements and their relationships can also be
seen as graph G*, where each program element e is represented by a different type
of node linL in the graph G*, and the above relationships are expressed by an edge
between its participating nodes (program elements e). The type of node is depending
on the kind of program element (e.g., method, field).

Figure 6.2 on page 63 shows a simple example graph, without any implements or
overrides relationships. Rectangular nodes represent methods which are annotated
with numbers to distinguish them, round nodes represent fields, also distinguished by
numbers. The dot-end of an edge represents the “active” partner of a relationship,
i.e., the caller or accessor of another program element; the straight end of an edge
represents the “passive” partner of a relationship, i.e., the callee or the accessed field.
In this example graph, we can see that, e.g., method 9 is callerOf method 8 but also
accessorOf field 3. However, it is also true that method 8 is calledBy method 9, and
accessorOf field 3 are methods 8 and 9.

Let us now assume that the following elements comprise a description of feature
A: methods 2 — 5 and fields 1 and 2 (the shaded area in Figure 6.2). If a developer
needs to find the implementation of this particular feature in the code, she just looks
at that description and can navigate the program code using it. However, over time,
the program will evolve, things will get added, deleted, rewritten, renamed, etc. If a
developer now wants to find the feature in the code again, maybe because she needs to
change something, or because she simply wants to understand how it is implemented,
she will quite possibly find the description to be obsolete. As the feature description is
extensional, a simple list of program elements’ names, it is not sustainable over time.
However, if we use for example the structural relationships defined above to describe
the feature intensionally, we might be better able to track and reconstruct a feature’s
description over time and after changes.

In the example, that would mean that we could describe part of the feature by
saying that “accessorOf field 1 are methods 2 and 3”. If we stored this as the intension

6.2. REPRESENTING CONCERNS IN CODE

method m, accesses field £,
e field f; is accessed by method m,

|m8() |._ | m0 | method mg galls method m.,
method m, is called by method mg

Figure 6.2: Example Graph

63

64 CHAPTER 6. REPRESENTING CONCERNS

“accessorsOf field 17, rather than the current extension (methods 2 — 3), we would be
able to reconstruct the feature’s implementation at a later stage, when maybe method
2 has been renamed, or an additional method has been introduced that also accesses
field 1: we just need to calculate the extension of the intension, i.e., to produce all
methods for which the proposition that they access field 1 is true. This is like Excel
updating inter-cell references after a row/column insertion.

We can actually define the structural relationships on the graph. In general, all
edges of the same type from a node to nodes of the same type form/represent an
intension. In Figure 6.2 this is for example true for all edges going from the method
1; they are all of the same type (method calls another method), and they all go to the
same type of node (method node).

6.2.3 Intension Inference for Textual Similarity

Developers in object-oriented programming do not only encapsulate functionality in
program elements such as methods and classes, they also follow so-called naming con-
ventions. Naming conventions are rules for picking the sequence of characters or words
to be used for the identifiers that denote methods, variables, etc. in a program’s source
code. Allowing developers to pick any sequence of characters to name program ele-
ments will not just cause problems for the person who didn’t write the code herself
and has to work with it. Following naming conventions decreases the time and effort
spent on reading and understanding program code, and improves its appearance.

While the user of software does neither see nor has any benefit from developers
following naming conventions, subsequent generations of programmers working on the
software system, extending or modifying the code, will have a significantly easier job
understanding what the implementation does, and thus will have less trouble fixing
bugs or adding new features. A simple example can illustrate this. While x = y * z;
is syntactically correct in Java, it does not disclose its intent within a program’s code.
We just know that it multiplies two values and assigns the result to a third variable.
However, in paymentDue = number0fSupervisionsGiven * supervisionRate; the
chosen identifier names imply the meaning of this bit of code while doing exactly the
same from a calculation point of view: the money earned by supervising stundents is
calculated as the product of the number of supervisions given and the payment rate
for supervisions.

As in this example, naming conventions often also refelct connections of program
elements that are all part of a bigger goal, such as implementing a specific functionality
and suggest how a developer thinks the program elements fit together. We can even go
as far as to assume that the names of methods implementing, e.g., a feature that has
to do with exporting into a PDF file, will contain one if not both of the word stems
“PDF” and “export”.

With this knowledge we can assume that there are more than just structural re-
lationships hidden between program elements that implement a specific feature or
functionality. We can use this to define another intension template

e textuallySimilar a program element in the code whose identifier (name) is textually
similar to the identifier of another program element.

6.2. REPRESENTING CONCERNS IN CODE 65

The term “textually similar” is slightly vague on purpose. The realisation of this
intension template depends on the programming language and naming conventions
used in the project one wants to analyse, as well as on how strict one wants the
textual similarity to be. For example, it can require the exact match of nouns or
verbs used for identifiers (e.g., if one includes the word “exporting”, identifiers that
only include “export” are not considered textually similar), or it can look for matching
word stems (e.g., it only needs to share the word stem “export”, which would then
also match “exporting”, “exports”, “exporter” etc.). One could go even further and
allow synonyms of words to be considered for textual similarity, though this requires
the incorporation of dictionaries and not just use the words (word stems) found in the
source code of the software system.

6.2.4 Mathematical Notion

While the representation of structural relationships using a graph is very visual, all
the previously mentioned relationships can be described by binary relations. Let, e.g.,
callerOf = {(m;, m;)|m; calls m;}, callerOf C M x M, where M denotes all methods
in a program and m;, m; € M. Similarly, all other relationships can be described as
the following binary relations, where M all methods in a program, F' all fields in a
program, and C' all classes in a program:

callerOf = {(m;, m;) | m; calls m,},
callerOf C M x M, m;,m; € M

calledBy = {(m;, m;) | m; is called by m;},
calledBy C M x M, m;,m; € M

accessorOf = {(m;, f,) | m; accesses f,},
accessorOf C M x F,m; € M, f, € F

accessedBy = {(f,,mi) | fn is accessed by m;},
accessedBy C F'x M, f, € F,m; € M

declaredBy = {(e,c) | e is declared by c},
declaredBy C (FUM) x C,e€ FUM,ce C

implements = {(m;, m;) | m; implements m;},
implements C M x M,m;,m; € M

overrides = {(m;, m;) | m; overrides m;},
overrides C M x M,m;,m; € M

textuallySimilar =
= {(e;, €;) | e;’s identifier is textually similar to e;’s identifier},
textuallySimilar C (FUMUC) x (FUMUC),e;,e; € (FUMUC)

These relations formalise our idea of describing a feature intensionally. Based on
the principle of currying functions in the lambda calculus, i.e., fixing some arguments

66 CHAPTER 6. REPRESENTING CONCERNS

in order to get a function of the remaining arguments, we can “curry” the relations,
or partially apply them. The results can be joined into an intensional concern descrip-
tion, which describes an up-to-date set of program elements for which the half-applied
relation is true (as we have binary relations here), even in later versions of the program
when elements have been deleted, renamed, or newly introduced.

Taking the example in Figure 6.2, we have the following partially applied relations,
the union of which are the intensional concern description: accessorOf(f;), acces-
sorOf(f,), accessedBy(ms), accessedBy(m3), and calledBy(m,). However, when
actually looking at the sets that these partially applied relations describe, we see that
while the resulting sets from the first four are fully a part of the concern, the last con-
tains two elements (namely mg and myg), that are not in the concern (the shaded area).
What that means, and the possibilities to address or even use it, will be discussed in
the next section.

6.2.5 Confidence

In practice, it is doubtful that we will find intensions that apply completely, i.e., that
describe program elements that are all comprised within the concern of interest. There-
fore, we need a way to express such incomplete intensions within concerns. We call the
degree with which an intension applies its confidence. It is a measure that expresses
how confident we are that the intension is a valid description of a concern.

Given a concern mapping C, an intension Z(e) based on program element e, and its
extension extension(Z(e)) the extension corresponding to the intension Z(e), we define
the confidence of intension Z(e) to be the proportion of concern elements ¢ € C that
are in the extension of Z(e):

_|C Nextension(Z(e))|
Conﬁdel’lce(z—(e» - ’extenSiOH(I(e))’

As example to illustrate this, Figure 6.3 on page 67 shows an extensional concern
description on the right, and the relationships of the program elements on the left.
Field f; is accessed by four methods m; — my4 but only m; through mjs are in concern
mapping C. Thus we would say that the confidence of intension accessorOf(f;) is 3/4
or 75%. This measure provides us with a way to discriminate between intensions
depending on whether their confidence exceeds a certain (adjustable) threshold. It
enables us to deal with mistakes developers might make when documenting a concern
description extensionally (e.g., by missing a program element), or simply to address
the fact of life that there is an exception to every rule. This also applies here where we
want to use rules to describe program behaviour but sometimes, while the rule found
is a valid intensional description, it will not apply completely. We will see the value of
this in the following chapter.

67

6.2. REPRESENTING CONCERNS IN CODE

9po)) ul sjuawaly s Jo sdrysuorje[oy pue uieduo)) ojdurexsy :¢'9 oInsiJ

UJ92U0D U {O'wr ‘Ofwr ‘O%w ‘Qlwa} = ())0sI0ss8008E
<S0SS000E> @ - - -
<s|eo> <——

° ploy
'3 ploy
Ofuw poylew
OFux poylow |
OTw poyrewl C .

A 19 uJ92uU0d

uonduosap UJ8duU0d [RUOISUBIXT ap02 ay1 uiyum diysuonejey

\

O ONE

@@

68

CHAPTER 6. REPRESENTING CONCERNS

“The important thing is not to stop questioning. Cu-
riosity has its own reason for existing.”
Albert Einstein

The ISIS4J System

IS1S4J (Implicit Structure Inference System for Java) is a tool implementing our ideas
from Chapter 6 about how to infer and apply descriptions of the implicit structure of
a concern.

The implicit structure is defined as the set of intensions that can be inferred for a
concern at a given level of confidence. The given concern is mapped in the extensional
form offered by ConcernMapper [44]. A concern mapping describes a feature or an
aspect of the software system being analysed by listing all program elements that are
involved in the implementation of the feature or aspect.

IS1S4J is implemented as a plug-in for the Eclipse platform!®. One reason for this
is, that ConcernMapper is also realised as an Eclipse plug-in, so that utilising its func-
tionality is easy. The inference process is realised using a business rule management
system!! with a forward chaining inference-based rule engine!'? using the so-called Rete
algorithm [21]. The Rete algorithm is used commonly to implement matching function-
ality within pattern-matching engines that employ a match-resolve-act cycle to support
inferencing, just as in our problem.

Figure 7.1 on page 70 presents an overview of ISIS4J, tailored for our example in
the following. The four main steps, numbered 1 to 4 in the figure are

1. identify list of program elements that implement a given feature,
2. infer implicit structure of the feature by producing a collection of intensions,

3. apply intensions to remove items that no longer exist and add new elements
relevant to the feature’s implementation, and

Ohttp://www.eclipse.org/
Ndrools.org/drools-3.0
2http://www. jboss.com/products/rules/

69

CHAPTER 7. THE ISIS4J SYSTEM

70

Intension Templates

(Rules.xml)

Java Program
(JEdit)

-

ﬁ

JBoss Rules

1IS1S4J

JayFX Fact Base

J

~

\|*Q 3

ﬁ

Concern Intensions
(marker.xml)

Concern Extension
(marker.cm)

J

Concern Description

o

Data flow =——

Figure 7.1: ISIS4J Overview

7.1. CONCERNMAPPER 71

4. provide new list of program elements currently relevant for the feature’s imple-
mentation.

Before presenting the details of the ISIS4J implementation, a brief overview of Concern-
Mapper is provided. Then we describe an example concern and illustrate how ISIS4J
can help maintain the knowledge of the concern’s implementation as the system’s code
evolves. Following that, we focus on evaluating several research questions. Does the
implementation of a feature have an implicit structure that can be described using
intensions as defined by us? How useful is the representation as implicit structure for
tracking the possibly changing nature of a feature’s implementation?

7.1 ConcernMapper

It is established that separation of concerns is a tricky challenge that cannot always
be achieved completely. When adapting or extending a software system, developers
often have to find the involved code, scattered across many files. While programming
environments such as Eclipse provide a certain amount of help navigating and locating
code, it goes beyond their capabilities to guide the developer through changes that are
related in a feature’s context but are not necessarily clearly co-located.

ConcernMapper [44] is a concern management tool for Java software projects, im-
plemented as an Eclipse plugin. It is thus easily extensible, and we used it as the basis
for our analysis needs and extended it to record data about features’ implementations.
ConcernMapper’s goal is to support daily software development by offering an easy-
to-use drag-and-drop approach to managing a concern’s or feature’s implementation
without altering or touching the actual code. The developer can maintain a simple list
of program elements that are involved in a concern’s implementation, and this descrip-
tion can be stored for future use. Thus, ConcernMapper provides a means to have an
extensional concern representation, also referred to as concern model by the developers
of ConcernMapper and its underlying theory.

Let us describe a typical usage scenario for the tool ConcernMapper within Eclipse.
A programmer has to modify an existing feature F' in a software system. Assume the
worst case, that the programmer is new to the development team. The first thing
she has to do is understand how F' is implemented. She can search for keywords that
describe the feature’s functionality in Eclipse, using different views provided, such as
the Package Explorer, or Search. Browsing the code based on the various search results,
the programmer will try to understand how the feature is implemented. Then, she
will create within ConcernMapper a concern model C' consisting of all elements that
she considers relevant for F’s implementation. While the programmer continues to
browse the code base, she will be informed, e.g., when looking at classes of her project,
which program elements (e.g., methods) already belong to her concern description in
ConcernMapper. Should she find that the feature she is aiming to understand consists
of several sub-features, the programmer can decide to create new concerns, moving
elements around the different concern descriptions by simple drag-and-drop. Once the
programmer thinks she has understood how the feature F' is implemented, she can
save the concern model C' and any sub-concern models she built for future reference.

72 CHAPTER 7. THE ISIS4J SYSTEM

When the programmer continues to work on the modifications she needs to do on F’s
implementation, she merely loads C' in ConcernMapper, and by selecting a program
element listed in the model, she can directly access the underlying code of that element.
So, the concern representation provided by ConcernMapper is extensional since it lists
all program elements involved in a concern’s implementation. It is stored internally in a
file with the ending .cm (e.g., foo.cm), while we have chosen to store the corresponding
intensional representation in XML format (e.g., foo.xml).

7.2 Typical usage scenario for ISIS4J

We base our example on the jEdit open-source text editor'®. jEdit includes the
MARKER feature which allows users to bookmark certain lines in a file, i.e. for our
purposes a set of lines of code. It is a standard jEdit example feature and has been
used previously by other researchers when illustrating or evaluating their work. Imag-
ine that a developer has been assigned the task of modifying the MARKER feature.
For that, she needs to identify those parts in the code that implement the feature.
Thus, the developer will consult any available documentation, browse the code and
use different means at her disposal to find the methods and fields that are associated
with the MARKER feature. She will then complete the modification task and commit
the changes. The program elements that make up the feature’s implementation can
then simply be obtained as the list of methods changed when committing, or could
be marked explicitly during the task of identifying how the feature is implemented by
the developer using a tool like ConcernMapper (described above), saved in a file called
marker.cm.

The developer then runs ISIS4J to infer the implicit structure of the marked el-
ements, producing a collection of intensions that are saved in the marker.xml file.
This part of the process is represented by arrows 1 and 2 in Figure 7.1. The inten-
sions describe the implicit structure that part (or all) of the concern mapping elements
have within the source code. An excerpt from the example file marker.xml is shown
in Figure 7.2 on page 73. In that example!, the rule produces all methods that
are declared by the class org.gjt.sp.jedit.Marker; the rule name "rDeclared-
By org.gjt.sp.jedit.Marker_in Marker" indicates this. The interesting part is the
right-hand side (wrapped in between <rhs> and </rhs>). There, the rule adds the
element Marker in conjunction with the intension relationship relation.DECLARES.
This means that everything that is declared in the class Marker will be returned by
this intension, also referred to as ‘rule’.

A few software versions later, the developer needs to perform another modification
task on the same feature. To save herself the tedious work of browsing the code yet
another time to identify the program elements currently involved in the implementation
of the MARKER feature, the developer uses ISIS4J. She runs ISIS4J, using the marker
intensions set marker.xml (arrow 3) and the original concern mapping file marker.cm
(arrow 1). Based on this input, ISIS4J removes the program elements listed in the
concern mapping file that no longer exist (so-called inconsistencies, e.g., methods or

Bhttp://www. jedit.org/
14 As previously mentioned, this is our chosen way of expressing intensions, see Chapter 6.

7.2. TYPICAL USAGE SCENARIO FOR ISIS4J 73

<rule name="rDeclaredBy_org.gjt.sp.jedit.Marker_in_Marker">

<!I-- All methods declared by the given class
are part of the concern model -->

<lhs>

<column identifier="javadb" object-type="JavaDB"/>
<column identifier="relation" object-type="Relation"/>
<column identifier="cmw" object-type="ConcernModelWrapper"/>
<column identifier="rw" object-type="RuleWriter"/>
<column identifier="concern" object-type="String"/>
<column identifier="type" object-type="ClassElement">

<literal evaluator="==" field-name="id"
value="org.gjt.sp.jedit.Marker"/>
</column>
</1lhs>

<rhs>cmw.addElements("Marker",
"rDeclaredBy_org.gjt.sp.jedit.Marker_in_Marker",
getRange(javadb, relation.DECLARES, type), 100);
</rhs>
</rule>

Figure 7.2: Example for an intension in XML file marker . xml

fields that were deleted). Then, ISIS4J adds the new elements that are found by
applying the intensions (e.g., a new method accessing a field identified by the accessorOf
intension). Applying an intension (or a rule) refers to executing an applicable rule
on an input, similar to how a mathematical function can be applied to a value. The
concern mapping file marker. cm is updated and the developer can now check the newly
discovered elements in the new concern mapping file (arrow 4) for relevance, and then
proceed with the planned modification task.

7.2.1 Implementation

The previously described scenario is completely supported by our ISIS4J prototype,
described as follows:

Explicit Concern Model. The main input of ISIS4J is a concern mapping file (e.g.,
marker.cm) holding extensions created using the ConcernMapper plug-in. In our cur-
rent implementation, the user creates the initial definition of the concern of interest by
explicitly selecting Java methods and fields from the current version of a Java project
and adding them to the concern model (a set of program elements) by drag-and-drop
in the ConcernMapper view. A concern mapping file for our MARKER concern can
be seen in Figure 7.3 on page 74. For example, the mapping includes methods such
as getMarkers () from the class org.gjt.sp.jedit.Buffer and removePosition()

CHAPTER 7. THE ISIS4J SYSTEM

4

<element
<element
<element
<element
<element
<element
<element
<element
<element
<element
<element

degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"
degree="100"

id="org.gjt.sp.jedit.Buffer.getMarker(C)" type="method"/>
id="org.gjt.sp.jedit.Buffer.markers" type="field"/>
id="org.gjt.sp.jedit.textarea.JEditTextArea.goToNextMarker(Z)" type="method"/>
id="org.gjt.sp.jedit.Buffer.removeMarker(I)" type="method"/>
id="org.gjt.sp.jedit.GUIUtilities.loadMenu(java.lang.String)" type="method"/>
id="org.gjt.sp.jedit.textarea.JEditTextArea.swapMarkerAndCaret(C)" type="method"/>
id="org.gjt.sp.jedit.Buffer.getMarkerAtLine(I)" type="method"/>
id="org.gjt.sp.jedit.textarea.JEditTextArea.goToMarker(C,Z)" type="method"/>
id="org.gjt.sp.jedit.Buffer.parseBufferLocalProperties(java.lang.String)" type="method"/>
id="org.gjt.sp.jedit.Buffer.removeAllMarkers()" type="method"/>
id="org.gjt.sp.jedit.jEdit.openFiles(org.gjt.sp.jedit.View,

java.lang.String, [java.lang.String)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.textarea.JEditTextArea.addMarker ()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest.<init>
(I,org.gjt.sp.jedit.View,org.gjt.sp.jedit.Buffer,
java.lang.Object,org.gjt.sp.jedit.io0.VFS, java.lang.String)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.gui.MarkersMenu.<init> (0" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.getShortcut()" type="method"/></concern></model>

Figure 7.3: Example ConcernMapper file marker.cm

75

7.2. TYPICAL USAGE SCENARIO FOR ISIS4J

<?xml version="1.0" encoding="UTF-8"7>
<model><concern name="Marker">
<element degree="100" id="org.gjt.sp.jedit.Buffer.getMarkers()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest
.writeMarkers(org.gjt.sp.jedit.Buffer, java.io.OutputStream)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.position" type="field"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.buffer" type="field"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.pos" type="field"/>
<element degree="100" id="org.gjt.sp.jedit.gui.MarkersMenu
.setPopupMenuVisible(Z)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Buffer.addMarker(C,I)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.textarea.JEditTextArea
.goToPrevMarker(Z)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest.save()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.removePosition()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.jEdit
.gotoMarker (org.gjt.sp.jedit.View,org.gjt.sp.jedit.Buffer, java.lang.String)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.getPosition()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Buffer
.&1t;init> (java.lang.String,Z,Z, java.util.Hashtable)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.shortcut" type="field"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.createPosition()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest.load()" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Marker
.&1t;init> (org.gjt.sp.jedit.Buffer,C,I)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest.markersPath" type="field"/>
<element degree="100" id="org.gjt.sp.jedit.Marker.setShortcut(C)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.Buffer.addOrRemoveMarker(C,I)" type="method"/>
<element degree="100" id="org.gjt.sp.jedit.io.BufferIORequest
.readMarkers(org.gjt.sp.jedit.Buffer, java.io.InputStream)" type="method"/>

76 CHAPTER 7. THE ISIS4J SYSTEM

from the class org.gjt.sp.jedit.Marker, as well as fields such as shortcut from
the class org.gjt.sp.jedit.Marker.

In the following, we use a simple example to illustrate the intension inference steps.
Figure 7.4 represents that for code elements constituting a concern, and their relation-

ship with other code elements.
concern C, h

method my()
method mz()
method m,()
field £,
field £,

—» <calls>
----9 <accesses>

() concem

(a) Relationship within Code (b) Extensional Concern Description

Figure 7.4: Example Code and Concern

Data Mining and Rule Engine. Once a concern of interest has been defined, ISIS4J
uses the JayFX!® Eclipse plug-in to create a fact base containing all structural relation-
ships such as method calls, inheritance relationships, and field accesses in the source
code of the project. JayFX uses class hierarchy analysis (CHA) [14] to conservatively
infer the targets of polymorphic calls. ISIS4J then infers the implicit structure of the
concern by checking its elements against the fact base. ISIS4J performs this data mining
operation using the JBoss Rules engine'® and a set of rule templates that we defined in
the Drools 3.0 XML language'” (e.g., Rules.xml, Figure 7.1; although this is an XML
file, it is not a “collection of intensions”).

JBoss Rules is a reasoning engine that includes a forward chaining rule engine
based on Drools. Forward chaining is one way of reasoning using inference rules (as in
our case). It starts with the available data, and uses inference rules to extract more
data until a goal is reached. The inference rules, consisting of an if-clause (antecedent)
and a then-clause (consequent), are searched for those where the antecedent is true.
Once found, the rule engine infers the consequent, which leads to the addition of new

Bhttp://www.cs.mcgill.ca/\simswevo/jayfx/
http://www. jboss.com/products/rules/
"drools.org/drools-3.0

7.2. TYPICAL USAGE SCENARIO FOR ISIS4J 7

<rule name="inferDeclaredBy">
<!-- All methods declared by the given class
are part of the given concern ——>
<condition>
<column id="concern" type="Concern"/>
<column id="class" type="ClassElement"/>
<eval>
checkConfidence(Relation.DECLARES, class, concern)
</eval>
</condition>
<consequence>
RuleWriter.createIntension("declaredBy",
Relation.DECLARES,class);
</consequence>
</rule>

Figure 7.5: Example Rule Template

information to its data. This process is iterated until the set goal is reached, which
means it is basically what is commonly also known as “worklist” algorithm.

Drools is a Java implementation of a rules engine, specifically fitted for Java. It is
based on Charles Forgy’s Rete algorithm [21], and adapting Rete to an object-oriented
interface allows us more naturally to express business rules with regards to business
objects. Drools allows different language implementations, thus rules can be written
in Java, Python, etc. All of this makes it a good fit for our purposes. Rule templates
expressed in Drools correspond to our intension templates as described in Section 6.2.2.

For example, as illustrated by Figure 7.5, there is one rule template that is responsi-
ble for discovering whether all methods of a given class are contained in the user-defined
concern. For a class (type="ClassElement") in a concern (type="Concern"), we check
what proportion of methods in this class are part of the concern (<eval>...</eval>).
That is the <condition>. If such a situation occurs, that rule template would then
generate the declaredBy intension defined in Section 6.2.2, which is stated in the
<consequence> part of the rule template. In other words, ISIS4J goes through all
Java elements (interfaces, classes, methods and fields) in the project and, for each ele-
ment, it computes each one of the seven relationships: callersOf, calledBy, accessorsOf,
accessedBy, overrides, implements, and declaredBy. It then generates an intension (e.g.,
declaredBy(Buffer)) associated with this particular element if a sufficient proportion
of the relationship extension is in the concern (i.e., if the intension meets a predefined
confidence threshold; see Section 6.2.5).

Figure 7.6 on page 78 illustrates a step-by-step inference of an intensional con-
cern description for the example from Figure 7.4. Methods my() and ms(), elements
of the concern description, are called by method m;(). mz() is also called by method
my(). These relationships can be expressed as calledBy intensions: calledBy(m;()) and
calledBy(my()). Furthermore, methods my() and my(), both part of the concern, access
the field f3, and method my() also accesses the field m,. Accordingly, we can express

78 CHAPTER 7. THE ISIS4J SYSTEM

these relationships by the intensions accessorsOf(f5) and accessorsOf(£f3). Similarly, we
can infere the intension accessedBy(my()), which describes the relationship that method

my () has with the fields £, and f3.

Intensional concern description Intensional concern description

[ms0 || m.0 |

calledBy(m, () ={m,0, mzO}

calledBy(m;()) ={mz0, mzO}
calledBy(m,()) ={mz0O}

Intensional concern description Intensional concern description

(0 f—{m0 | (m:0 | [ms0 f—{ms0 |
®) ®)
i i
N S
Y Y
e OO e ©

calledBy(m;()) ={mz0, mzO}

calledBy(m;) ={my(), mzQ}
calledBy(m,0) ={mz0O}

)
calledBy(m,Q) ={mz0}

accessorsOf(fy) ={m,O} accessorsOf(fy) ={m,O}
accessorsOf(fz) ={m,;(), m;0, msQ} accessorsOf(fz) ={m;(), mpQ, m4O}
accessedBy(m,()) = {fa, fz}

Figure 7.6: Example: Inferring Intensional Concern Description

Figure 7.7 on page 79 explains how to calculate the aforementioned confidence of in-
tensions. It uses the example concern C, from Figure 7.4 and the intensions inferred for
it as shown in Figure 7.6. The confidence of the five inferred intensions calledBy(m,()),
calledBy(ms()), accessorsOf(f,), accessorsOf (£3), and accessedBy(ms()) are 100%, 100%,
100%, 66.67%, and 50% respectively. Depending on the chosen confidence threshold,

7.2. TYPICAL USAGE SCENARIO FOR ISIS4J 79

INFERRED INTENSIONS

calledBy(m;)) ={m:0, mzO}
calledBy(m,O) ={mz0O}
accessorsOf(fy) ={m,O}
accessorsOf(fz) ={m;(), m;Q), m,O}
accessedBy(m,()) = {fs, fz}

CALCULATION OF INTENSIONS' CONFIDENCE

1 G, N extension(Z (e)) |

confidence(Z (e)) = | extension(Z (e)) |

confidence(calledBy(m;())) = confidence(calledBy(m,())) =
_ [{m>0, mz0), ms0), f1, f2} N {mzO, mzO} | _ I {m;(), mz0), msQ, f1, f2} N {mzO} |
[{mz0, mzO} | [{mzO} |
- |{m2()v m5()}| - & =1 A 100%3 = |{m5()}| - 1_ =1 A 100‘%,
MmO, ms0N 2 0 MmO - 1
confidence(accessorsOf(f;)) = confidence(accessorsOf(fz)) =
_ I {m0), mz0), m,0, f1, £} N {m,O} | - I {m,0), mz0), m,0, f1, £z} n {m; O, mzO, myO} |
[{m,O} | [{m,; O, mzQ, msO} |
= HmaOM -1 _ 44 q100% =m0 maOM _ 2 _ 67, 66.67%
MmO - 1 ° Tm,0, 0,0, .00~ 3 - 0T 2%

confidence(accessedBy(m,())) =

_ H{me0, mz0), my(Q), 1, £} n {fz, fz} |
- I {f27 f5} I

3 _ 1
T T 2

=0.5 2 50%

Figure 7.7: Example: Calculating Intension Confidence

only some of the intensions will be considered strong enough to describe the concern
Cy. Should the developer have chosen to accept only perfect confidence, i.e., 100%,
only calledBy(m;()), calledBy(m4()), and accessorsOf(f,) will be kept. If the confidence
threshold is more relaxed, e.g., 60%, then all inferred intensions but accessedBy(mq4())
are added to the set of intensions describing concern C;.

Implicit Structure Represented as a Set of Intensions. The output of ISIS4J
is an executable rule set describing the inferred intensions in the user-defined con-
cern, represented in the XML syntax of Drools 3.0 primitives like <condition> or
<consequence>. ‘Executable’ here refers to the rule engine iterating through the set

80 CHAPTER 7. THE ISIS4J SYSTEM

of inference rules (intensions), checking for if-clauses evaluating to True, and thus in-
ferring more data. One could also say that we ‘apply’ the inference rules (intensions).
We chose to use rules to express intensions since we already had access to the fact
base and the rule engine. In theory, intensions could be expressed by a variety of other
mechanisms, such as concern graphs [43] or JQuery queries [28]. It should be noted
that, in practice, there might be Java elements in a concern mapping that are not de-
scribed by any intension. An example can be seen in Figure 7.4; there, according to the
extensional concern description, the field £; belongs to the concern’s implementation,
but none of our defined intensions could be used to describe it. Still, the rule set can
be executed using the JBoss Rules engine on any version of the Java project to add to
the concern all Java elements corresponding to its implicit structure: we refer to this
step as applying the concern’s intensions while the additional elements are the result of
the intension-based expansion. Obviously, this can only happen if we use a confidence
threshold of less than 100%.

As an example, let us assume a confidence threshold of 65%. If we apply the
intension accessorsOf (£f3), we get {m;(), my(),ma()} as resulting set of program elements.
my () is not part of the concern description. Since the intension’s confidence is 66.67%
our set threshold of 65% is exceeded. Thus we allow the inclusion and use of the
intension accessorsOf(£3) into our rule set, as well as the intension-based expansion of
the concern Cy itself. This results in including method m () in the (extensional) concern
description Cy, which expands the original C;.

Customisable Inference. As mentioned in Section 6.2.5, ISIS4J can infer intensions
describing the concern structure even if not all elements matched by the intensions
are present in the original concern’s extension, provided that their confidence reaches
a certain threshold. This threshold is expressed as an integer value between 0 and
100 representing the required confidence level in percentage and can be set in the
Rules.xml file by the user. To recall, Rules.xml is a file that contains the definition of
all rule templates we use. ISIS4J uses the confidence threshold parameter when it infers
a concern’s implicit structure. Allowing a threshold under 100% raises the following
issue: if ISIS4J—as we call it—completes an intension by adding missing elements to
the concern, it is possible that the added elements result in increasing the confidence
for other intensions above the threshold, allowing those intensions to be added to the
intension set. We thus introduced an option to run ISIS4J until it reaches a fixed
point (where new intensions can no longer be inferred). The fixed point iteration can
have the positive impact of completing incomplete extensional concern descriptions
(see Section 7.2.1).

Figure 7.8 on page 81 illustrates an example of fixed point inference. Let us assume
a confidence threshold of 50%. Then all five of the previously discussed intensions
constitute the set of intensions describing the concern C;. The intension-based ex-
pansion of concern C; results in additionally including method m;() as well as field f;
since all five intensions reach or exceed a confidence of 50%. Now, if we re-assess the
concern, we will find two more relationships involving program elements belonging to
the concern C;: method m;() accesses field f3, and method m,() accesses field £5. This
means we can infer two more new intensions accessedBy(m;()) and accessedBy(m;()),
highlighted in boldface in Figure 7.8. After adding both intensions to our set, no fur-

7.3. EVALUATION: IMPLICIT STRUCTURE 81

Intensional concern description

\‘ *
-———>
calledBy(m, () ={m,(, mz0}
calledBy(m,()) ={mzO}
accessorsOf(f,) ={m,O}
accessorsOf(fz) ={m;(), mzQ, msO}

accessedBy(m,()) ={fs, fz}
accessedBy(m,;()) = {fs}
accessedBy(m;()) = {fs}

Figure 7.8: Example: Fixed Point Inference

ther intensions exceeding the chosen confidence threshold can be inferred, and no more
new program elements can be added to our concern description, thus our fixed point
iteration terminates. Note, that in this example, the fixed point inference also results
in higher confidence values for accessorsOf(f3) and accessedBy(my()); they rise both to
100% (from 66.67% and 50% respectively).

7.3 Evaluation: Implicit Structure

For 1SIS4J 4J to be useful to software developers we need concern mappings to have
latent intensions. By ‘latent’ we mean that the program elements in a concern mapping
are connected via relationships which are not visible just by looking at the list of
program elements that constitute a (extensional) concern (mapping). An example of
such a latent intension would be if all functions in the concern mapping access a certain
field when executed. We investigated the nature and characteristics of the intensions
produced by ISIS4J 4J on a number of benchmark concern mappings independently
produced by different subjects on four open-source systems, as part of a previous
empirical study of feature location.

82 CHAPTER 7. THE ISIS4J SYSTEM
Research Questions

We evaluated our assumption that the implementation of concerns has an implicit
structure and how useful it is by assessing three specific characteristics of our approach:

1. What is the impact of the confidence threshold on the number of intensions
detected?

2. ISIS4J can infer intensions in a single pass, or can repeat this process until a fixed
point is reached and no new intensions can be inferred. What are the tradeoffs
of using the latter method (see Section 7.2.1)7

3. We defined seven kinds of intension templates. Are all of these equally useful for
generating intensions?

7.3.1 Experimental Design

To collect initial evidence allowing us to answer the questions in Section 7.3, we anal-
ysed 16 concerns obtained from a previous empirical study of feature location. In this
study, different subjects created concern mappings for 16 different concerns in four
different systems (Table 7.1 on page 82).

System Version LOC Concern Size
GanttProject 2.0.2 43 246 22, 30, 26, 13
Jajuk 1.2 30679 14,18, 17, 11
jBidWatcher 1.0pre6 23051 20, 20, 10, 19
Freemind 0.8.0 70435 18, 28, 16, 14

Table 7.1: Characteristics of Target Systems

Our target systems shared the following characteristics: all projects are mature and
actively maintained, and their size (in LOC) is well beyond that of toy systems. As
for the concern descriptions, they consisted of a paragraph of text written by two
investigators as part of a different study. The concern descriptions were created by
explaining a feature of the system as mentioned in the user manual, help pages, or user
interface of the system.

For each concern, three different subjects were asked to identify the fields and methods
that were judged to be the most relevant to the implementation of the concern. The
subjects were undergraduate and graduate students with Java programming experience
in Eclipse. No method, process, or tool (besides the features of the Eclipse environment)
was given them to complete this task. This process resulted in 16 x 3 = 48 different
mappings. Since we were interested in studying the documentation of relatively large
sets of elements corresponding to a concern’s implementation, we selected, for each
concern, the mapping with the highest number of elements. This resulted in 16 data
points corresponding to one mapping for each concern (four in each of our target
system). In Table 7.1, the last column lists the cardinality of each of the four mapping

7.3. EVALUATION: IMPLICIT STRUCTURE 83

considered for each system. For example, for GanttProject, our four concern mappings
included 22, 29, 22, and 13 elements, respectively. The average concern mapping size
across our 16 data points is 18.5 elements. Our sample of 16 concern mappings thus
represent the fields and methods that would be identified as relevant to a concern as
manually determined by a junior programmers.

For each concern mapping, we used ISIS4J to infer intensions and we then completed
the concern mapping definition by applying those intensions (i.e., for incomplete but
above-threshold intensions, we added the elements missing in the intensions’ extension).
We automated ISIS4J and parametrised its execution according to two variables.

Fixed Point. We evaluated the impact of reaching a fixed point (see Section 7.2.1)
where no more new intensions could be inferred versus inferring intensions only once
based on the initial concern mapping.

Threshold. We tested the effect of four different threshold values for the intension
confidence of 60%, 75%, 90% and 100%, where intension confidence describes the pro-
portion of program elements forming the concern that are in the extension of the
intension.

7.3.2 Results

Table 7.2 on page 84 shows our results. For each concern (Cn.), for different thresholds,
with both the single (S) and fixed point (FP) inference options, the table lists the num-
ber of intensions detected with ISIS4J and the number of elements added by applying
the inferred intensions (in parentheses). The last column of the table provides the me-
dian value of each column. The original concern mappings size is reported in Table 7.1
on page 82 (mappings 1-4 for GanttProject, 5-8 for Jajuk, 9-12 for jBidWatcher and
13-16 for Freemind). For example, for concern 1, with a threshold of 75% and using
a single inference pass, ISIS4J inferred two intensions, and applying these intensions
resulted in adding three elements to the original concern mapping’s 22 elements (see
Table 7.2). Based on this data, we provide answers to each of our research questions.

Impact of Confidence on Number of Intensions. For a threshold above 90%,
almost no intensions were inferred.!® Our experiment shows that concern mappings
produced manually do not tend to follow rigorously regular structural lines. We see
that using a more relaxed threshold (of 60%—75%) yields, in many cases, the inference
of intensions among the elements of a concern. This observation thus highlights the
fact that in order to preserve intensional knowledge about the implementation of a
concern, the extension corresponding to latent intension must often be completed.

Fixed Point Inference Trade-Offs. Fixed point inference only made a substantial
difference when using a threshold of 60% (above that level, the threshold inhibited
the inference of intensions as can be observed by the low number and small difference
of inferred intensions with fixed point and single pass inference). With fixed point
inference, ISIS4J discovered 59% more intensions than with single pass inference for a
total of 110 intensions instead of 69. (The average is respectively 6.9 and 4.3 intensions
per concern mapping.) A higher number of intensions per concern mapping is desirable

18Results for 90% and 100% are identical.

84

9OUPYUO)) JUSISPI(] J8 9OUSISJUT JUIOJ POXI] Pue S[SUIS)M SUOISUU] I0 IdqUINN :g'L 9[qRT,

CHAPTER 7. THE ISIS4J SYSTEM

—
= © ~ (=]
=} =} S =
=X =X =X =X
9 " |= |5 |Q
Hwun|Jwn|dw|Jwn|:
N =
(S =2
SO | OO | BN |
~ =]l | N =
OO | OO | WIN O
e | e | —— | —— | -
—
=
OO | OO | oo | ™ W
~ == =~~~
O O | O OO O N W
oo (Do | oo (| =N
=
S o (oo (PO W
~ |~ ==
o O o O —_ = >~
= = | —— | W
SO | OO | WK | WwWw
~]~
=R AR R A
N gl B sl NN RSN N
SO | oo | o oo O
e el el s
O OO oo oo o
T IOo (DD | DD | oW«
—
SO (OO | O o
_~aall a1l
(== el N el RN
NNl BNl ENEANEZS RSN I =)
= = = = N DN N DO
~ ==~
oo |l oo | PPk
N BNl ENESANEP BN B |
OO | OO | == |
~ Al =
OO | OO |V =N
oo (oD | —— == @®
O O | OO | OO | Wi
e el el s
OO | OO | o oot w
N2 gl B sl R Al R ESaaly o]
OO | OO | = | OOt
el P e e Do
co|lco|mr|awo| &
T | — | O
OO | OO | o oo O
~= = a2 -
O O | OO | o oo o
— == == =
NN NN NN WW
=~ =l -
ool |-
oo (oo | —— | N
DN N[NN W W | &
~ =~
co|lco|lww|rwx|H
NNl BNl B2 ENUSENGZS BN
DO
w =
NN |
el el B BN
O OO O = DN W oo
N gl AN NGNS IS
O O | OO | OO (NN
_ala=] <
co|lco|lco|l~rr|&
DO | oo ([DD | —— | W&
W W WW| W W ks
=l === -
O O | OO | o oo o
Ny B Bl N s =2
= oh
Co|loo|ut— |k w|B

7.3. EVALUATION: IMPLICIT STRUCTURE 85

when tracking a concern in an evolving system since ISIS4J can then track more types
of change (one per intension).

On average, intension-based expansion performed with fixed point inference made
the concern mapping’s size grow by 23% while single pass inference made it grow by
only 14%. In both cases, 75% of the concern mappings did not grow by more than
25%. Thus, most of the final mapping produced by ISIS4J was representative of the
original mapping done by the subjects. This provides evidence that the quality and
relevance of concern mappings produced by ISIS4J do not degrade significantly.

For both fixed-point and single-pass inference, intensions described between 46%
and 86% of the elements in most of the concern mappings (10 mappings out of 16).
In other words, one element out of two was in the extension of at least one intension.
This suggests that ISIS4J is capable of inferring an implicit structure representative of
most of the concern mapping. Moreover, since changes can only be tracked through
intensions, it is vital that most of the concern mapping is described by intensions (as
more changes related to the concern will be captured).

Although fixed-point inference produced 59% more intensions, the additional in-
tensions described no more than 16% additional elements. This indicates that the
additional intensions mostly described elements that were already in the extension of
existing intensions. For example, if we take method m; that accesses fields f; and fs,
a single pass inference might detect the accessorsOf(f;) intension while the fixed point
inference will detect an additional accessorsOf(f5) intension: both intensions describe
the same element, m;. Intensions that applied return the same values can be useful to
track changes as they are potentially more robust: in our example, even if field f; is
refactored or deleted, we can still track the accessors of fs.

In the light of such evidence, we conclude that performing fixed-point inference is
desirable as it makes the concern implicit structure potentially more robust to changes
while not degrading significantly the quality and relevance of the original concern
mapping.

Use of Intension Templates. In all of our sample concerns, neither an overrides
intension nor a implements intension was inferred. The number of declaredBy as well
as accessedBy intensions inferred varies between 0 and 2 per concern. In most other
cases, the distribution over the remaining three intensions, calledBy, callersOf, and
accessorsOf, is fairly even. We expected that field accesses and method calls would
constitute the most significant part of the inferred intensions, but since concerns can
exhibit very different characteristics (e.g. one could use design patterns which typically
rely on polymorphism and inheritance), a good diversity of intension templates is still
important. In addition, inferring those intensions represents a negligible performance
cost when this performed along with the inference of the other intensions.

To summarise, we learnt the following lessons from the evaluation:

1. Manually extracted concern mappings benefit from completion by intension in-
ference at a lower confidence level of 60%.

2. Fixed-point inference can make a concern’s implicit structure more robust to
change.

86 CHAPTER 7. THE ISIS4J SYSTEM

3. Diversity in intension templates is important to address different concern char-
acteristics.

7.3.3 Threats to Validity

The main threat to the validity of our results is associated with the sample of concern
mappings. We used concerns from a previous study, where the task was to compare how
different developers would describe the implementation of a high-level concern. The 16
mappings used may not be representative of concern mappings in general for two main
reasons. First, they may be unique to the systems or features selected. Second, they
were produced by people and as such are subjected to the usual human factors (ability,
experience, skill and motivation of the subjects). However, given our intent to model
code identified by developers, we believe that our use of human-generated concern
models is appropriate. The use of a relatively high number of sample concern mappings
(given the cost of obtaining such samples) allows us to decrease the importance of any
specific characteristic of a given sample, and thus to achieve a reasonable level of
external validity.

7.4 Evaluation: Implementation Tracking

Using historical development data, we simulated how ISIS4J would have performed in
a given situation to evaluate its effectiveness, and to gather insights into the kinds
of evolutionary changes that could and could not be tracked with our approach. To
do so, we studied 34 major releases of the jEdit editor described in Section 7.2. We
studied the evolution of jEdit from version 4.0-prel (59 KLOC) to version 4.3-pre3
(92 KLOC). We selected the SYNTAX HIGHLIGHTING feature as the main concern of
interest because it existed throughout all the studied releases and underwent several
changes. Indeed, jEdit supports syntax highlighting of more than 130 file types, and
thus must be easily extensible.
This case study enabled us to answer the following research questions:

1. What changes to the implementation of the feature were tracked because of the
inferred intensions?

2. What changes could not be captured?

3. Does the intensional representation of concern mappings enable us to better track
concerns than their extensional representation?

7.4.1 Experimental Design

We manually created a concern mapping of the SYNTAX HIGHLIGHTING feature in the
first and last releases of jEdit we considered. We explored the source code of jEdit using
Eclipse, and identified fields and methods that we thought were the most relevant if
this feature had to be modified. We limited ourselves to 30 relevant elements, expecting
that ISIS4J would then expand this set of interest. In the first and last versions, we

7.4. EVALUATION: IMPLEMENTATION TRACKING 87

identified respectively 24 and 27 elements. We used the mapping of the first version to
infer the initial intension set. The mapping of the last version enabled us to compare
it with the results of using ISIS4J to track the concern mapping evolution.

To perform our case study, we automated the execution of ISIS4J. We selected a
confidence threshold of 60% and inferred intensions until we reached a fixed point in
the first version. We then used the same set of intensions throughout all other jEdit
versions and did not try to infer new intensions in each version (since the intermediate
concerns were not created by developers). Furthermore, we configured the experimental
framework as follows:

Intension Conservation. As the system evolves from one version to another, pro-
gram elements such as methods and fields can be added, removed or changed. Thus,
it is possible that an intension’s confidence decreases to a point where it no longer
meets the required threshold. In this case, we disable the intension from the concern
definition, but we keep the elements that were previously matched by that intension.
For example, there might exist an intension matching all the five methods accessing a
field f; in program version 1, with all those five methods being part of the concern.
If there are ten methods accessing field f; in version 2, confidence drops to 50% (five
methods are in the concern mapping out of ten existing methods); thus, the intension
will no longer be enabled in the inferred intension set, but the original five methods
are kept in the concern mapping. In the current implementation of ISIS4J, intensions
are only disabled (not removed) and are automatically re-enabled if they reach the
threshold again.

Inconsistencies. It is possible that an element (e.g., a method) identified in the
concern was deleted or re-factored between two versions of the system, thus making
the concern mapping inconsistent. Our automated experimental framework removed
those elements from the concern mapping before applying the intensions on a version
of the system. Renamed or moved elements are expected to be included in the concern
mapping, provided that (1) they are still matched by one of the intension and (2) the
intension’s confidence still exceeds the required threshold to be enabled in the intension
set.

To summarise our experimental procedure, the manual concern mapping for the first
version was taken, and an intension set describing the concern was inferred. Then, those
intensions were applied and missing elements in the concern mapping were added. This
process was repeated until a fixed point was reached. The modified concern mapping
along with the final intension set was then moved to the next version of the system.
Inconsistencies in the concern mapping, i.e., program elements that no longer existed in
the source code of the new version, were deleted and intensions that no longer reached
the threshold were disabled as described above. Intensions that were still enabled were
applied to add potentially new elements. This was repeated until we reached the last
version where the final tracked concern mapping was compared with the final manual
concern mapping.

88 CHAPTER 7. THE ISIS4J SYSTEM
jEdit version name ‘ +# jEdit version name ‘ +# jEdit version name
1 jEdit 4.0 prel 13 jEdit 4.1 pre3 25 jEdit 4.2 pre7
2 jEdit 4.0 pre2 14 jEdit 4.1 pre6 26 jEdit 4.2 prel0
3 jEdit 4.0 pre3 15 jEdit 4.1 pre8 27 jEdit 4.2 prell
4 jEdit 4.0 pre4 16 jEdit 4.1 pre9 28 jEdit 4.2 prel3
5 jEdit 4.0 preb 17 jEdit 4.1 prelO 29 jEdit 4.2 preld
6 jEdit 4.0 pre6 18 jEdit 4.1 prell 30 jEdit 4.2 prel5
7 jEdit 4.0 pre7 19 jEdit 4.1 31 jEdit 4.2 final
8 jEdit 4.0 pre8 20 jEdit 4.2 prel 32 jEdit 4.3 prel
9 jEdit 4.0 pre9 21 jEdit 4.2 pre2 33 jEdit 4.3 pre2
10 jEdit 4.0 final 22 jEdit 4.2 pre3 34 jEdit 4.3 pre3
11 jEdit 4.1 prel 23 jEdit 4.2 pre4
12 jEdit 4.1 pre2 24 jEdit 4.2 pre6

Table 7.3: List of full version names of jEdit versions used in evaluation

7.4.2 Results

Figure 7.9 on page 89 shows the progress of the following measurements for the SYNTAX
HIGHLIGHTING concern for each of the 34 versions of jEdit we considered (see Table 7.3
for a mapping between evaluation version number and full jEdit version name): the
number of intensions inferred, the average number of concern elements per intension,
the concern size (cardinality), as well as the ratio of elements in the concern that are
covered by the inferred intensions. We started with 47 intensions in jEdit 4.0-prel and
ended with 13 intensions in jEdit 4.3-pre3. We have manual concern mapping sizes of
24 and 27 elements respectively, and an average of 3.66 and 2.62 concern elements per
intension’s extension respectively. Although the intensions in the first jEdit version
cover 97% of the concern, this coverage drops to 52% after 34 versions. While this still
covers important parts of the concern, we will see how it fails to discover newly added
or changed parts of the concern, and why.

Initial Intension-Based Expansion. After ISIS4J inferred the intensions underlying
our manual concern mapping, missing elements matching those intensions were added
to the concern: the concern mapping size thus went from 24 elements to 40. All the
elements added to the concern mapping were considered by the authors to be relevant
to the SYNTAX HIGHLIGHTING feature as they contributed to this functionality. As we
had limited the size of the manual concern mapping to a maximum of 30 elements, it
was expected that ISIS4J would find other relevant elements. For example, the Token
class, the main parsing unit of syntax highlighting, and two utility classes, class GUI
Utilities and TextUtilities, were added to the concern description along with a
subset of their methods: they had not been selected in the manual mapping as they
were preferred to elements accessing and using them. For these particular examples,
the initial expansion was essential in tracking the concern, since (1) all of the methods
identified by the intension-based expansion stayed relevant through the evolution of
the concern and (2) one new relevant method was detected for each of these classes.

Changes in Intensions over Time. The overall evolution in the number of intensions
can be seen in Figure 7.9. Although the number of intensions stays relatively stable
up to jEdit 4.0-final, it drops down to 12 intensions in the following version (4.1-prel).
From then on, the number of intensions stays constant except for an additional one
being re-enabled in version 4.2-pre3.

7.4. EVALUATION: IMPLEMENTATION TRACKING 89

= 0= ' ' " intensions — 100

[~ =\ -

3 47 . original elements 1 90 .

S 40 L- final elements ««:--- 180 &

% 35 | coverage —-— | 4 g

£ 30 N{e0 8

ko) . (]

(&) 25 + .- _-"1 50 o

s ! e e === 7

% 20 || 41 40 8-,
@

8 15 ¢ ‘ TN T 1% é

s ! L ___

2 10 1 20 S

5 sl 110

= 0 - - - - - - 0

0 5 10 15 20 25 30 35

jEdit version

Figure 7.9: Intensions, Concern Elements and Coverage in Each Version of jEdit (see
Table 7.3 for reference to actual version names)

In general, the number of enabled intensions did not vary significantly between
two consecutive jEdit versions. There are two main reasons why an intension might
be disabled as illustrated by Figure 7.10 on page 90: (a) too many new elements
were refactored or introduced in the program between two versions, hence lowering the
intension confidence below the selected threshold, or (b) the intension criterion (e.g.,
field X in accessorsOf(X)) was deleted or renamed/moved. In the evolution of jEdit,
85% of the intensions were disabled for the first reason, and 15% for the second reason.

There was only one major occurrence of intension disabling in the evolution of jEdit,
indicated by the drop in the intension count in Figure 7.9 (between jEdit 4.0-final and
jEdit 4.1- prel). Three factors caused this drop. First, the deprecation of one class,
Buffer.TokenList, removed five elements and disabled three intensions. Second, the
move of the method stringToToken from class XModeHandler to Token disabled 14
intensions. This method previously referred to fields only accessed by few other meth-
ods. When method stringToToken was moved and thus removed from the concern
mapping, the intensions’ confidence dropped below the threshold. As a result, ISIS4J
disabled those intensions, so the move was not captured and subsequent methods that
referred to these fields were not included in the concern. The third factor in the major
drop in the number of intensions is related to the SYNTAX HIGHLIGHTING feature
extension. Since a significant number of new elements were introduced, all of which
accessed a given program element, the confidence of intensions whose criterion was that
element dropped below threashold, so that they were disabled.

Another interesting irregularity can be observed: a dent in the number of intensions

90 CHAPTER 7. THE ISIS4J SYSTEM

—» <calls>
m,) > C) concern
method m; ()
mz() mz() m,()
of |) (=2 o

accessorsOf(f;) = {m; (), mz0), mz(), msO}

confidence(accessorsOf(f;)) = 50%

(a) Confidence drops below a given threshold

(=) mol X

accessorsOf(f;) = {m;), m;O} accessorsOf(f;) = L

(b) Program element involved in intension is deleted from code

Figure 7.10: Two reasons why intension accessors0f(f;) can be disabled

7.4. EVALUATION: IMPLEMENTATION TRACKING 91

around version 4.0-pre4. Indeed, tracking the SYNTAX HIGHLIGHTING concern in
jEdit, the number of intensions drops from 46 to 32 in version 4.0-pre4, and comes back
to 44 in version 4.0-preb. By investigating the code base, we found this was caused
by the refactoring of method loadStyles that accessed fields used as the criterion in
various intensions. Figure 7.11 on page 92 depicts how intensions were temporarily
disabled (refactoring of method loadStyles is represented by methods m; and ms).
In version 4.0-pre4, method m; was moved to method ms causing some intensions’
confidence to drop below the threshold which disabled them (e.g. accessorsOf(f;)).
Since other intensions stayed enabled (e.g. accessorsOf(f2)), the new method ms was
added during the intension-based expansion. In the next version, 4.0-preb, the disabled
intensions were reenabled as their confidence reached the threshold again.

Comparison with the Final Manual Concern Mapping. Our approach allowed
us to detect four new elements of the SYNTAX HIGHLIGHTING concern throughout the
evolution of jEdit. Examples of these elements include the methods init in class Chunk,
or setStyles in class TextArea Painter. Although none of those four elements was
included in our final manual concern mapping, further inspection revealed that they
were related to the SYNTAX HIGHLIGHTING feature and should have been included in
the concern mapping in the first place. For instance, the Chunk class was introduced
in version 4.1-prel and replaced most of the Token class instantiations by extending
it. The setStyles method on the other hand already existed in the first version of
jEdit we studied. However, during its evolution, it became uncohesive and redefined
a token type, silently contributing to the SYNTAX HIGHLIGHTING feature. Arguably,
those changes were not easy to track manually as they involved only a few lines of code
in the existing program.

All new elements in the final manual concern mapping that were not in the original
manual mapping remained undiscovered by ISIS4J. For example, the new hierarchy of
classes implementing the interface TokenHandler was not included by ISIS4J. Further
investigation of the code revealed that most of the changes were introduced after version
4.1-prel where the massive drop in the intension number occurred. Most of those
changes could have been captured by the initial set of intensions provided they had
not been disabled because of the refactoring explained previously. Indeed, most new
elements that were not captured actually accessed the disabled intensions’ criterion.

Finally, there was one element in the ISIS4J final concern mapping that was not
in the manual final concern mapping and clearly did not contribute to the SYNTAX
HIGHLIGHTING feature: a method in the deprecated class Buffer.TokenList. Even
though this class was no longer used by any other class in jEdit, and thus was irrelevant,
one of the inferred intension in the original concern, declaredBy(Buffer.TokenList),
ensured that all existing methods of the deprecated class were included in the concern
mapping. Only, e.g., additional run-time analysis could remove elements that become
irrelevant but still exist. However, we argue this is reasonable as in fact the developers
never removed the class from the source code.

Extensional vs. Intensional Concern Definition. We started with 24 concern
elements in the first jEdit version. Considering there were 17 inconsistencies that
needed to be removed from the concern mapping during the evolution of jEdit, we would
have ended up with a concern mapping of only 7 elements if we had used an extensional

CHAPTER 7. THE ISIS4J SYSTEM

N Y
| ms0) |
mo] (X)) |

|m0 | [mO] [ms0] [maO | m;0) | | m.0 | [m:0] [m.0]
accessorsOf(f;) = {m;), myO} accessorsOf(f;) = {m,(), msO}
accessorsOf(fz) = {m,), mz0O, m,O} accessorsOf(f) = {m,), mz0, m,O} accessorsOf(fy) = {m;(), m4O , msO}
confidence(accessorsOf(f;)) = 100% confidence(accessorsOf(f;)) = 50% confidence(accessorsOf(f;)) = 100%
confidence(accessorsOf(fy)) = 100% confidence(accessorsOf(fy)) = 66.67% confidence(accessorsOf(fy)) = 100%

(a) Intensions before refactoring (b) Inconsistencies removed,intension disabled (c) Intension-based expansion

Figure 7.11: Intension wrongly disabled, correctly re-enabled due to fixed point iteration

92

7.4. EVALUATION: IMPLEMENTATION TRACKING 93

concern mapping such as provided by ConcernMapper. Using the intentional concern
definition that ISIS4J provided, we did better. First, ISIS4J did complete our initial
manual concern mapping with 10 further elements, which indicates that completion of
concerns using fixed point inference of intentions is helpful. However, one has to bear
in mind that it is only helpful if the new elements are indeed appropriate and not false
positives. Secondly, ISIS4J removed 17 inconsistencies while an additional 4 relevant
elements were found. This gives us 18 concern elements in jEdit’s final version rather
than 7.

7.4.3 Discussion of Concern Tracking

The use of the jEdit historical development data allowed us to evaluate qualitatively
how effective ISIS4J was in tracking changes. The SYNTAX HIGHLIGHTING feature
went through varied and significant changes through its evolution: 17 elements were
removed or refactored and the feature was extended in several ways. Our approach
successfully captured feature extensions (e.g. the Chunk class), refactorings (e.g. the
loadStyles method) and small but important changes (e.g. the setStyles method)
that may have otherwise been difficult to track manually.

We also found that most of our inability to track changes (the small dent in the
intension number in version 4.0-pred, the massive drop of intensions in version 4.1-
prel and the missed new elements between the manual mappings) were caused by
the intensions’ confidence level not reaching the 60% threshold. This is an indication
that our approach could actually track changes even when major restructurings occur,
provided that we lower the threshold.

As we explained in Section 6.2.5, we introduced the threshold variable configured in
Rules.xml to ensure that we would only infer intensions that were highly representative
of a concern’s implicit structure even if it did not match it perfectly. ISIS4J also used
the same threshold to enable or disable intensions between each version. We wanted
to restrict the number of irrelevant elements introduced during the intension-based
expansion performed after the initial inference and between each version. However,
as it turned out with the SYNTAX HIGHLIGHTING feature, the use of a threshold to
enable/disable intensions inhibited the tracking of important changes, which suggests
that it might be worth lowering it significantly or not using it at all once the initial
intensions have been inferred. Indeed, in a manual review of the results, we found that
some of the new elements between the original and final manual concern mappings
could have been found by the disabled intensions. However, we have to keep in mind
that it is still likely to introduce some background noise.

Another important finding is related to the dent in the number of enabled inten-
sions around version 4.0-pre4. Although we ensured that ISIS4J reached a fixed point
where intensions could no longer be inferred during the first version, we did not try to
reach such a fixed point when doing the intension-based expansion in each subsequent
version; we only used it in the first version to address the assumption that the original
concern mapping might not have been complete. However, doing fixed point iterations
also in subsequent versions would have prevented the temporary drop of intensions.
For example, if we had used fixed point inference in Figure 7.11, the accessorsOf(f;)
intension would have been reenabled in the same version after the addition of ms in

94 CHAPTER 7. THE ISIS4J SYSTEM

the mapping instead of waiting for the next version.

Finally, so far we have only investigated seven different intension templates: callerOf,
calledBy, accessorOf, accessedBy, declaredBy, implements, and overrides. However, one
can think of several other potentially promising templates. For example, if we look at
the missed new elements, we see that an intension based on textual similarity would
have found those new concern elements while they came up during evolution of jEdit.
This observation may simply reflect cut-and-paste, but can also show that developers
do give similar names to program elements that do similar things or belong to the
same feature. More specifically, if we had an intension that checks for textual similar-
ity, e.g. the same substring in method and field names, we would have identified all
but 7 new elements as most of them had at least one of the following substrings in
common: ‘keyword’, ‘token’, or ‘rule’.

To summarise, from the evaluation we learnt the following lessons:

1. Intension-based expansion of concern mappings proves to be relevant for concern
tracking based on implicit structure.

2. Intensions fail to track changes to a concern mapping if too much refactoring
happens from one version to the next, or if the intension criterion gets refactored
or deleted.

3. Intensional concern descriptions enable better tracking of concerns than exten-
sional descriptions.

7.4.4 Conclusions

This case study allowed us to better understand how the automatic application of
inferred intensions can help track the code associated with a concern, and to gather
insights about modification that are unlikely to be tracked. Although it also provides
a valuable illustration of the potential benefit of the approach, its external validity is
limited in that the case studied cannot be considered representative of the performance
of the approach in general. In practice, two main factors will affect the usefulness of
the approach: the characteristics of the concern analysed, and the characteristics of the
evolution of the code. In order to benefit from our system, a concern mapping must
exhibit latent intensions that will be detected and potentially completed by ISIS4J. As
seen in Section 7.3, not all concerns have such characteristics. Regarding the impact of
the code, the study has helped us demonstrate that the most important benefits will
be obtained in conditions of small-scale maintenance, as drastic changes are unlikely
to be tractable through existing intensions.

Investigator bias is also a threat to the internal validity of our case study as we both
selected the observed feature and produced the original and final concern mappings.
Our knowledge of ISIS4J internals could thus have influenced the results of our study.
To reduce this threat, we only looked at the first and last version of the subject pro-
gram to ensure that we would not develop an intimate knowledge with the changes and
involuntarily privilege changes that could be tracked by our system. We also ensured
that the selected feature went through several different types of structural changes, as

7.4. EVALUATION: IMPLEMENTATION TRACKING 95

can be seen by the high number of inconsistencies and the difference between the orig-
inal and final mappings. Moreover, one of the purposes of Section 7.3 was to validate
experimentally that ISIS4J was able to infer the implicit structure from concern map-
pings produced by human subjects other than the investigators. Finally, we considered
the possibility of using one of the concern mappings used in Section 7.3, but rejected
this idea since the concern mappings had been produced on a recent version of the
projects, greatly limiting the data points available for an evolution study. It was also
not possible to consistently track back the concern mappings to a prior version of the
subject programs without introducing a similar bias.

96

CHAPTER 7. THE ISIS4J SYSTEM

“I never think of the future—it comes soon enough.”
Albert Einstein

Conclusions and Future Work

Most software change tasks require knowledge about the implementation of different
concerns related to the task. This knowledge often has to be manually acquired through
reverse-engineering efforts, and is made increasingly harder by the fact that some code
is inevitably spread over the code-base in an unstructured manner. This problem gave
rise to aspect-oriented programming, which had a surge of popularity in recent years:
a cross-cutting concern can be formalised as explicit structure, an aspect. For AOP to
be beneficial for existing projects, cross-cutting concerns must be identified first.

Analysing, in particular aspect mining, the development history of a program gives
a novel way to identify these aspects. We are the first to use version history to mine
aspect candidates. The underlying hypothesis is that cross-cutting concerns emerge and
evolve over time. By introducing the dimension of time, and analysing only changes to
the system, our aspect mining approach has several advantages. It scales to industrial-
sized projects like Eclipse. In particular, we reached top precision (above 90%) for big
projects with a long and extensive, detailed history. We have seen that it can discover
cross-cutting concerns across platform-specific code (see lock/unlock in Section 4.6).
Typically, such concerns are recognised incompletely by static or dynamic approaches
which can only investigate one platform at a time, and thus require the mining process
to be run multiple times.

Furthermore, we have identified an efficient way to identify all complex aspect
candidates efficiently other than by deriving them from mined simple aspect candidates.
We proposed to use formal concept analysis for automatic detection. An added benefit
of this algebraic theory which identifies conceptual structures among data sets is that
its results will include simple aspect candidates since they can be seen as a special form
of complex candidate.

Such feature location techniques as introduced here may have to be applied time
and again since knowledge about a concern’s implementation, in particular documen-
tation, can become invalid as the system evolves. To avoid this and achieve a concern
implementation description more robust to evolutionary changes, we suggest to use

97

98 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

structural and textual patterns among the program elements for concern tracking.
Our approach has several advantages. The inferred patterns are documented as rules
that describe a concern in a formal (intensional) rather than a merely textual (exten-
sional) manner. We have seen that these rules support the tracking of a concern’s
implementation despite, e.g., program code extensions or refactoring activities by de-
velopers. Besides, the costs for the automated application of our tracking technique
are minimal, e.g., it can be run automatically upon committing changes to the code
repository. We can thus help preserve knowledge previously acquired through reverse
engineering activites such as aspect mining or tedious code inspections.

Future Work. Besides working on integrating the techniques presented here in tools
that can be used by any developer, future work could focus on addressing the following
challenges.

It would be interesting to have both approaches, the history-based aspect mining
as well as the tracking of evolving concerns via intensions, combined in one tool. New
additions to the code would automatically be mined and be the input for automatic
updates of concern implementation documentation. An integration of both approaches
would also provide additional information that would make the tracking of evolving
concerns easier and more precise. For example, if besides additions also deletions of
methods are taken into account by the aspect mining side, this can provide information
about refactorings that otherwise could get lost.

On the aspect mining side, it would be interesting to see how the concept of localities
in the history-based mining approch could be extended when using the formal concept
analysis algorithm to identify aspect candidates. One possibility would be to compute
the lattice over the sum of commits within a sliding time-window, like the time-window
used in our approach for temporal locality.

We have introduced the idea of having rules that describe textual similarity to track
features in evolving software. The evaluation has shown that this kind of intension
could be useful. Different definitions of textual similarity could be used, from exact
word stem matches to the use of synonyms. Particularly textual similarity in the wider
sense of synonyms for words (or word stems) will require interdisciplinary research with
computer linguistics, but if successful could provide a powerful extension to the current
state of the approach.

1]
2]

[11]

Bibliography

AspectJ homepage. http://eclipse.org/aspectj/.

Dave Binkley, Mariano Ceccato, Mark Harman, Filippo Ricca, and Paolo Tonella.
Automated refactoring of object oriented code into aspects. In 21st IEEE Inter-
national Conference on Software Maintenance (ICSM 2005), 2005.

Dave Binkley, Mariano Ceccato, Mark Harman, and Paolo Tonella. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering (TSE), 32:698-717, 2006.

Silvia Breu. Aspect mining using event traces. Master’s thesis, University of
Passau, Germany, March 2004.

Silvia Breu. Towards hybrid aspect mining: Static extensions to dynamic aspect
mining. In Ist Workshop on Aspect Reverse Engineering (WARE) at Working
Conference on Reverse Engineering (WCRE), November 2004.

Silvia Breu. Extending dynamic aspect mining with static information. In Pro-
ceedings of 5th International Workshop on Source Code Analysis and Manipulation
(SCAM), pages 57-65. IEEE Computer Society, September/October 2005.

Silvia Breu and Jens Krinke. Aspect mining using event traces. In Proceedings of
19th International Conference on Automated Software Engineering (ASE), pages
310-315. IEEE Press, September 2004.

Silvia Breu and Thomas Zimmermann. Mining aspects from version history. In
Sebastian Uchitel and Steve Easterbrook, editors, 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006). ACM Press, Septem-
ber 2006.

Silvia Breu, Thomas Zimmermann, and Christian Lindig. Mining eclipse for cross-
cutting concerns. In Proceedings of the 3rd International Workshop on Mining
Software Repositories, May 2006.

Magiel Bruntink, Arie van Deursen, Tom Tourwe, and Remco van Engelen. An
evaluation of clone detection techniques for identifying crosscutting concerns. In
Proceedings of the 20th IEEFE International Conference on Software Maintenance,
ICSM ’04, pages 200-209, Washington, DC, USA, 2004. IEEE Computer Society.

CME website. http://www.research.ibm.com/cme/.

99

100
[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY
CVS homepage. http://www.nongnu.org/cvs/.

Barthélémy Dagenais, Silvia Breu, Frédéric Weigand Warr, and Martin P. Robil-
lard. Inferring structural patterns for concern traceability in evolving software. In
ASE °07: Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 254—263, New York, NY, USA, 2007.
ACM.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the European Con-
ference on Object-oriented Programming, volume 952 of Lecture Notes in Computer
Science, pages 77-101. Springer, 1995.

Ammon H. Eden and Rick Kazman. Architecture, design, implementation. In
Proceedings of the 25th International Conference on Software Engineering, pages
149-159, 2003.

Alexander Egyed, Gernot Binder, and Paul Griinbacher. Strada: A tool for
scenario-based feature-to-code trace detection and analysis. In Proceedings of the
29th International Conference on Software Engineering (ICSE’07 Companion),
pages 41-42, 2007.

Alexander Egyed and Paul Griinbacher. Supporting software understanding with
automated traceability. International Journal of Software Engineering and Knowl-
edge Engineering, 15(5):783-810, 2005.

Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.S. Marron, and Audis Mockus.
Does code decay? Assessing the evidence from change management data. IEFEE
Transactions on Software Engineering, 27(1):1-12, 2001.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in
source code. IEEE Transactions on Software Engineering, 29(3):210-224, 2003.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution. In
International Conference on Software Engineering, pages 213-224, 1999.

Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17 — 37, 1982.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, Berlin, 1999.

Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How
developers drive software evolution,Software Evolution. In Proceedings of Inter-
national Workshop on Principles of Software Evolution (IWPSE). IEEE Computer
Society Press, 2005.

BIBLIOGRAPHY 101

[24]

[30]

[31]

[32]

Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and
splitting of source code entities. IEFEE Transactions on Software Engineering,
31(2):166-181, 2005.

William G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser: Tool support for
managing dispersed aspects. Technical Report CS99-0640, UC, San Diego, 1999.

William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the map
metaphor in a tool for software evolution. In Proceedings of the 23rd International
Conference on Software Engineering, pages 265—274, 2001.

Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition
of legacy code. In Workshop on Advanced Separation of Concerns, 2001.

Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In 2nd International Conference on Aspect-Oriented Software Development
(AOSD), pages 178-187, 2003.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Proceedings of the 11th European Conference on Object-oriented Programming,
volume 1241 of Lecture Notes in Computer Science, pages 220-242. Springer, 1997.

Gregor Kiczales et. al. Aspect-oriented programming. In Proceedings of 11th
European Conf. on Object-Oriented Programming (ECOOP), 1997.

Rainer Koschke and Jochen Quante. On dynamic feature location. In Proceedings
of the 20th International Conference on Automated Software Engineering, pages
420-432, 2005.

Jens Krinke and Silvia Breu. Control-flow-graph-based aspect mining. In 1. Work-
shop on Aspect Reverse Engineering (WARE) at Working Conference on Reverse
Engineering (WCRE), November 2004.

Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editor, Working
with Conceptual Structures — Contributions to ICCS 2000, pages 152-161, Ger-
many, 2000. Shaker Verlag.

Benjamin Livshits and Thomas Zimmermann. DynaMine: finding common error
patterns by mining software revision histories. In Proceedings of Furopean Soft-
ware Engineering Conference/ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 296-305, New York,
NY, USA, 2005. ACM Press.

Neil Loughran and Awais Rashid. Mining aspects. In Workshop on Farly As-
pects: Aspect-Oriented Requirements Engineering and Architecture Design (AOSD
Sat. workshop), 2002.

Marius Marin, Leon Moonen, and Arie van Deursen. A classification of crosscut-
ting concerns. In ICSM, pages 673-676. IEEE Computer Society, 2005.

102

[37]

[38]

[39]

[40]

[42]

[43]

[44]

[47]

[48]

[49]

BIBLIOGRAPHY

Marius Marin, Leon Moonen, and Arie van Deursen. A common framework for
aspect mining based on crosscutting concern sorts. In 15th IEEE Working Con-
ference on Reverse Engineering (WCRE 2006), 2006.

Marius Marin, Arie van Deursen, and Leon Moonen. Identifying aspects using
fan-in analysis. In 11th Working Conference on Reverse Engineering (WCRE),
pages 132-141. IEEE Computer Society, November 2004.

Kim Mens and Andy Kellens. IntensiVE, a toolsuite for documenting and check-
ing structural source-code regularities. In 10th Furopean Conference on Software
Maintenance and Reengineering (CSMR 2006), 2006.

Denys Poshyvanyk, Yann-Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Fajlich. Combining probabilistic ranking and latent semantic indexing
for feature identification. In Proceedings of the 14th IEEE International Conference
on Program Comprehension, pages 137-148. IEEE Computer Society Press, 2006.

Martin P. Robillard. Tracking concerns in evolving source code: An empirical
study. In 22nd IEEFE International Conference on Software Maintenance, pages
479-482, 2006.

Martin P. Robillard and Gail C. Murphy. Concern graphs: Finding and describing
concerns using structural program dependencies. In 24th International Conference
on Software Engineering (ICSE), pages 406-416, 2002.

Martin P. Robillard and Gail C. Murphy. Representing concerns in source code.
ACM Transactions on Software Engineering and Methodology, 16(1):3, 2007.

Martin P. Robillard and Frederic Weigand-Warr. ConcernMapper: Simple view-
based separation of scattered concerns. In 2005 OOPSLA Workshop on Eclipse
technology eXchange, pages 65-69, 2005.

David Shepherd and Lori Pollock. Ophir: A framework for automatic mining and
refactoring of aspects. Technical Report 2004-03, U Delaware, 2003.

Elliot Soloway, Robin Lampert, Stanley Letovsky, David Littman, and Jeannine
Pinto. Designing documentation to compensate for delocalized plans. Communi-
cations of the ACM, 31(11):1259-1267, 1988.

Peri Tarr, William Harrison, and Harold Ossher. Pervasive query support in the
concern manipulation environment. Technical report, IBM Research, 2005. Report
R(C23343.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees
of separation: Multi-dimensional separation of concerns. In ICSE-21, pages 107—
119, 1999.

Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept
analysis of execution traces. In 11th Working Conference on Reverse Engineering
(WCRE), pages 112-121. IEEE Computer Society, November 2004.

BIBLIOGRAPHY 103

[50]

[54]

[55]

[56]

Tom Tourwé and Kim Mens. Mining aspectual views using formal concept analysis.
In Proc. of Workshop on Source Code Analysis and Manipulation (SCAM), pages
97-106. IEEE Computer Society, 2004.

Chadd C. Williams and Jeffrey K. Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6):466-480, June 2005.

Chadd C. Williams and Jeffrey K. Hollingsworth. Recovering system specific
rules from software repositories. In Proceedings of the International Workshop on
Mining Software Repositories, pages 7-11, May 2005.

Tao Xie and Jian Pei. MAPO: Mining API usages from open source repositories.
In Proc. Intl. Workshop on Mining Software Repositories (MSR), pages 54-57,
May 2006.

Charles Zhang and Hans-Arno Jacobsen. Quantifying aspects in middleware plat-
forms. In 2nd Intl. Conf. on Aspect-Oriented Software Development (AOSD),
pages 130-139, 2003.

Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqging Yang. SNIAFL: Towards
a static non-interactive approach to feature location. In Proceedings of the 26th
International Conference on Software Engineering, pages 293-303, 2004.

Thomas Zimmermann and Peter Weifigerber. Preprocessing CVS data for fine-
grained analysis. In Proc. Intl. Workshop on Mining Software Repositories (MSR),
Edinburgh, Scotland, May 2004.

104 BIBLIOGRAPHY

