
Technical Report
Number 832

Computer Laboratory

UCAM-CL-TR-832
ISSN 1476-2986

Communication centric, multi-core,
fine-grained processor architecture

Gregory A. Chadwick

April 2013

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2013 Gregory A. Chadwick

This technical report is based on a dissertation submitted
September 2012 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Fitzwilliam
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract
With multi-core architectures now firmly entrenched in many application areas both com-
puter architects and programmers now face new challenges. Computer architects must
increase core count to increase explicit parallelism available to the programmer in order
to provide better performance whilst leaving the programming model presented tractable.
The programmer must find ways to exploit this explicit parallelism provided that scale
well with increasing core and thread availability.

A fine-grained computation model allows the programmer to expose a large amount of
explicit parallelism and the greater the level of parallelism exposed the better increasing
core counts can be utilised. However a fine-grained approach implies many interworking
threads and the overhead of synchronising and scheduling these threads can eradicate any
scalability advantages a fine-grained program may have.

Communication is also a key issue in multi-core architecture. Wires do not scale as well
as gates, making communication relatively more expensive compared to computation so
optimising communication between cores on chip becomes important.

This dissertation presents an architecture designed to enable scalable fine-grained compu-
tation that is communication aware (allowing a programmer to optimise for communica-
tion). By combining a tagged memory, where each word is augmented with a presence bit
signifying whether or not data is present in that word, with a hardware based scheduler,
which allows a thread to wait upon a word becoming present with low overhead. A flexi-
ble and scalable architecture well suited to fine-grained computation can be created, one
which enables this without needing the introduction of many new architectural features or
instructions. Communication is made explicit by enforcing that accesses to a given area
of memory will always go to the same cache, removing the need for a cache coherency
protocol.

The dissertation begins by reviewing the need for multi-core architecture and discusses the
major issues faced in their construction. It moves on to look at fine-grained computation in
particular. The proposed architecture, known as Mamba, is then presented in detail with
several software techniques suitable for use with it introduced. An FPGA implementation
of Mamba is then evaluated against a similar architecture that lacks the extensions Mamba
has for assisting in fine-grained computation (namely a memory tagged with presence bits
and a hardware scheduler). Microbenchmarks examining the performance of FIFO based
communication, MCS locks (an efficient spin-lock implementation based around queues)
and barriers demonstrate Mamba’s scalability and insensitivity to thread count. A SAT
solver implementation demonstrates that these benefits have a real impact on an actual
application.

3

Acknowledgments

Firstly, I would like to thank my Supervisor Simon Moore. Not only for his valuable
guidance and advice during my PhD but for his support and teaching from when I first
came to know him as an undergraduate. From the time I timidly requested to borrow
an DE2 board in the Part 1B ECAD labs for my own self study he always given me the
freedom to follow my ideas.

No work is ever done in isolation and my friends and colleagues in the computer archi-
tecture group have provided many useful hours of discussion and advice. I must give
particular thanks to Arnab Banerjee for his Bluespec implementation of the network I
used as well as Theo Markettos for his proof reading of this dissertation.

Finally I would like to thank my family for their support and my friends, for making my
time at Cambridge so enjoyable.

4

Contents

1 Introduction 17

1.1 Overview . 17

1.2 Thesis . 18

1.3 Outline . 19

1.4 Published work . 19

1.5 Contributions . 20

2 Background 21

2.1 Physical connections . 22

2.1.1 Off chip connections . 23

2.1.2 Going beyond wires . 24

2.2 Interconnect architecture . 24

2.3 Architectural communication . 25

2.3.1 Cache coherency . 25

2.3.2 Message passing . 28

2.3.3 Consistency . 29

2.4 Software communication . 31

2.4.1 Locks, barriers and notification . 32

2.4.2 Partitioned global address space . 33

2.5 Existing architectures . 33

2.5.1 Sandy Bridge . 34

2.5.2 Tile Architecture . 35

2.5.3 Single-chip Cloud Computer . 38

2.5.4 Cell Broadband Engine . 40

2.5.5 Niagara Architecture . 42

2.5.6 Tile based, application dedicated architecture 43

2.6 Summary . 44

CONTENTS CONTENTS

3 Fine-grained computation 45

3.1 Amdahl’s Law . 45

3.2 Fine-grained software . 46

3.2.1 Message passing . 47

3.2.2 Lightweight threads . 47

3.2.3 Software transactional memory . 48

3.3 Fine-grained hardware . 48

3.3.1 SIMD . 48

3.3.2 Hardware threading . 50

3.3.3 Hardware transactional memory . 51

3.3.4 Hardware synchronization . 51

3.3.5 Full / empty bits . 54

3.4 Summary . 55

4 Mamba architecture 57

4.1 Overview . 57

4.1.1 Interconnect . 58

4.1.2 Architectural communication . 58

4.1.3 Software . 59

4.2 The programming model . 59

4.2.1 Activation frames . 60

4.2.2 Presence bits . 61

4.2.3 Initialisation, exception handling and cleaning up 65

4.3 The Mamba system . 66

4.4 The processor core . 68

4.4.1 The pipeline . 70

4.4.2 Memory actions . 74

4.4.3 Scheduling . 83

4.4.4 The caches . 84

4.4.5 The network . 85

4.4.6 Profiling . 86

4.5 FPGA Implementation . 87

4.6 Summary . 89

6

CONTENTS CONTENTS

5 Software techniques 91

5.1 Primitives . 91

5.1.1 Basic spin lock . 91

5.1.2 Acquiring locations . 91

5.1.3 Notify nodes and chains . 92

5.1.4 FIFO communication . 100

5.2 A SAT solver implementation . 104

5.2.1 SAT problem . 104

5.2.2 SAT solver algorithm . 105

5.2.3 Parallelizing the algorithm . 106

5.3 Summary . 106

6 Evaluation 109

6.1 Methodology . 109

6.2 MIPS64 comparison system . 109

6.2.1 The software scheduler . 110

6.3 Software tool chain . 111

6.4 Network and Memory performance . 113

6.4.1 Network Message Size . 114

6.5 Area and memory utilisation . 114

6.5.1 Timing Overheads . 116

6.6 The benchmarks . 116

6.6.1 The lock benchmark . 116

6.6.2 The barrier benchmark . 117

6.6.3 The FIFO benchmark . 118

6.7 Results . 120

6.7.1 The lock benchmark . 120

6.7.2 The barrier benchmark . 122

6.7.3 The FIFO benchmark . 123

6.7.4 Microbenchmark summary . 130

6.7.5 The SAT solver . 131

6.8 Summary . 134

7

CONTENTS CONTENTS

7 Conclusion 137

7.1 Comparison with related architectures . 138

7.2 Future work . 138

7.3 Summary . 139

A Mamba: A Scalable Communication Centric Multi-Threaded Processor
Architecture 141

A.1 Introduction . 143

A.2 Mamba Architecture . 143

A.2.1 FPGA Implementation . 146

A.3 Software Techniques . 147

A.4 Evaluation . 149

A.4.1 MCS Lock Benchmark . 149

A.4.2 FIFO Queue Benchmark . 151

A.5 Related Work . 152

A.6 Conclusion . 154

A.7 Future Work . 154

8

List of Figures

2.1 A MESI cache coherency protocol state transition diagram 27

2.2 Sandy Bridge Architecture . 34

2.3 TILE64 Architecture . 36

2.4 Single-chip Cloud Computer Architecture 39

2.5 Cell Broadband Engine Architecture . 40

2.6 Niagara Architecture (UltraSPARC T2 pictured, IO interfaces not shown) . 42

4.1 An activation frame, PC is the program counter, ESW is the exception
status word, AT, v0 and RA are specific MIPS registers (which is what fills
the unlabeled slots) . 61

4.2 Detail of LD and LDNR operation. D is the data stored at the word
being loaded, S is the sentinel value, R is the return address of the load
and F is an already existing forwarding address. 0 refers to a non-present
word, 1 refers to a present word . 64

4.3 Detail of store operation. D is the data stored at the word being loaded,
D′ is the new data being stored, S is the sentinel value, R is a forwarding
address. 0 refers to a non-present word, 1 refers to a present word 64

4.4 Detail of VL operation. D is the data stored at the word being loaded, S
is the sentinel value, X is whatever is stored in the non-present word, R
is the return address of the load and F is an already existing forwarding
address. 0 refers to a non-present word, 1 refers to a present word 64

4.5 A 3x3 Mamba System . 67

4.6 The Mamba processor core, lines and arrows illustrate the data-flow, con-
trol is omitted . 69

4.7 The Register File Main Storage, write enables, write addr and write data se-
lect control signals and clock connections are omitted. RdAddrn is the ad-
dress for the nth read port, RdDatan is the data. WrAddrn and WrDatan
are the address and data for the nth write port 73

(a) Register File Main Storage bank structure 73

(b) Register File Main Storage constructed from eight banks 73

LIST OF FIGURES LIST OF FIGURES

4.8 The parts of a memory action’s target address, L refers to the number
of bits in the local part of the address so 2L is the size of a node’s local
memory area . 74

4.9 On/Off flow control state machine, CTS is the clear to send state, DNS is
the do not send state . 86

4.10 The FPGA implementation of Mamba. R signifies a network router, XCVR
is the Altera component responsible for driving the serial links. There are
also 4 serial controllers that communicate via JTAG over USB utilised to
output messages to a host PC and a block that can read and write DDR
memory controlled by the host PC which is used for programming and
results gathering. 88

6.1 The Software Tool Chain. SCons orchestrates the entire process as well as
generating linker scripts . 112

6.2 The program loading and running process 112

6.3 Run-time of the lock benchmark with increasing critical section size running
on 8 cores. Run-time is normalised to MIPS64 run-time on 1 core with
smallest critical section size with 8 threads 119

6.4 Run-time of the lock benchmark with increasing critical section size running
on 8 cores for 80 and 800 threads. Run-time is normalised to MIPS64 run-
time on 1 core with smallest critical section size with 8 threads 120

6.5 Run-time of the lock benchmark with increasing critical section size running
on 1 core. Run-time is normalised to MIPS64 run-time on 1 core with
smallest critical section size with 8 threads 121

6.6 Barrier benchmark normalised run-time for up to 8 threads for 1 and 8
cores. Run-time normalised to MIPS64 1 thread run-time 122

(a) Run-time with 1 core . 122

(b) Run-time with 8 cores . 122

6.7 Barrier benchmark normalised run-time for 16, 32 and 64 threads for 1 and
8 cores. Run-time normalised to MIPS64 1 thread run-time 123

(a) Run-time with 1 core . 123

(b) Run-time with 8 cores . 123

6.8 Barrier benchmark scaled run-time for 1 - 8 cores with 8 and 64 threads.
Normalised run-time is divided by the total number of threads to get scaled
run-time . 124

(a) Scaled run-time for 8 threads per core 124

(b) Scaled run-time for 64 threads per core 124

6.9 Throughput of FIFO benchmark for 1 and 7 producer cores for 1, 2, 3, 4, 8,
16 and 32 threads per producer core. Throughput is normalised to MIPS64
run with 1 producer core with 1 thread per producer core 124

10

LIST OF FIGURES LIST OF FIGURES

(a) Throughput with 1 producer core . 124

(b) Throughput with 7 producer cores 124

6.10 Throughput of FIFO benchmark 8 and 32 threads per producer core for
1 - 7 producer cores. Throughput is normalised to MIPS64 run with 1
producer core with 1 thread per producer core 125

(a) Throughput with 8 threads per producer core 125

(b) Throughput with 32 threads per producer core 125

6.11 Throughput of FIFO benchmark scaled by the total number of producer
threads with 8 and 32 threads per producer core for 1 - 7 producer cores.
Throughput is normalised to MIPS64 run with 1 producer core with 1
thread per producer core . 126

(a) Scaled throughput with 8 threads per producer core 126

(b) Scaled throughput with 32 threads per producer core 126

6.12 Latency of FIFO benchmark for 1 and 7 producer cores for 1, 2, 3, 4, 8, 16
and 32 threads per producer core. Latency is normalised to MIPS64 run
with 1 producer core with 1 thread per producer core 126

(a) Latency with 1 producer core . 126

(b) Latency with 7 producer cores . 126

6.13 Latency of FIFO benchmark 8 and 32 threads per producer core for 1 - 7
producer cores. Latency is normalised to MIPS64 run with 1 producer core
with 1 thread per producer core . 127

(a) Latency with 8 threads per producer core 127

(b) Latency with 32 threads per producer core 127

6.14 Latency of FIFO benchmark scaled by dividing by the total number of
producer threads with 8 and 32 threads per producer core for 1 - 7 producer
cores. Latency is normalised to MIPS64 run with 1 producer core with 1
thread per producer core . 128

(a) Scaled latency with 8 producer threads per core 128

(b) Scaled latency with 32 producer threads per core 128

6.15 Memory operations in the data cache of the consumer core divided by the
total number of producer threads (total number of FIFOs) in the through-
put benchmark. Normalized to the MIPS64 consumer core on the 1 pro-
ducer core and 1 producer thread run . 128

(a) Scaled memory operations with 1 producer core 128

(b) Scaled memory operations with 7 producer cores 128

6.16 Memory operations in the data cache of the consumer core and average
producer core divided by the total number of FIFOs in the core’s address
space in the latency benchmark. Normalized to the MIPS64 consumer core
on the 1 producer core and 1 producer thread run 129

11

LIST OF FIGURES LIST OF FIGURES

(a) Scaled memory operations with 1 producer core 129

(b) Scaled memory operations with 7 producer cores 129

6.17 Normalised run-time of the SAT solver for 1 and 8 cores solving the ‘huge’
instance. Run-time normalised to the MIPS64 run with 2 threads and 1 core131

(a) Run-time with 1 core . 131

(b) Run-time with 8 cores . 131

6.18 Normalised run-time of the SAT solver for 8 and 32 threads per core solving
the ‘huge’ instance. Run-time normalised to the MIPS64 run with 2 threads
and 1 core . 132

(a) Run-time with 8 threads per core . 132

(b) Run-time with 32 threads per core 132

6.19 Normalised run-time of the SAT solver for 1 and 8 cores solving the ‘medium’
instance. Run-time normalised to the MIPS64 run with 2 threads and 1 core133

(a) Run-time with 1 core . 133

(b) Run-time with 8 cores . 133

6.20 Normalised run-time of the SAT solver for a range of total thread counts
(threads per core � cores) solving the ‘huge’ instance. Run-time normalised
to the MIPS64 run with 2 threads and 1 core 134

A.1 The possible actions on a load request at a particular word. D is the data
stored in the word, S is the sentinel value, R is the return address of the
load and F is an already existing return address. 0 refers to a non-present
word, 1 to a present word. 145

A.2 The possible actions on a store request at a particular word. D is the
existing data stored at the word, D’ is the new data the store request is
writing, S is the sentinel value and R is a return address. 0 refers to a
non-present word, 1 to a present word. 145

A.3 Producer ! Consumer. C n(R) represents the address of register R in the
AF Cn. In a single consumer situation only steps 1. and 3. will occur. In
a multiple consumer situation all 3 steps will occur. 147

A.4 Run-time for the MCS Lock Benchmark with increasing work size in the
critical section, run-time normalized to MIPS64 run-time with smallest
critical section size. Benchmark run over 4 cores in all cases 150

A.5 Normalized latency for the FIFO Queue Benchmark, for differing thread
and core numbers, where t-c on the axis labels refers to t threads per
producer core and c cores producing . 153

A.6 Normalized throughput for the FIFO Queue Benchmark, for differing thread
and core numbers, where t-c on the axis labels refers to t threads per pro-
ducer core and c cores producing . 153

12

List of Tables

4.1 The new Mamba instructions . 65

4.2 DE4 Board Specifications . 87

6.1 Performance of network and memory . 113

6.2 Network message sizes . 114

6.3 Mamba and MIPS64 core resource utilisation 114

6.4 Non-core block resource utilisation, numbers given are per block 115

6.5 SAT blocks word instance statistics . 131

A.1 The three kinds of load, their mnemonics and what they do to the word
they’re loading . 148

LIST OF TABLES LIST OF TABLES

14

Listings

2.1 Dekker’s algorithm for mutual exclusion, initially threadAIn == threadBIn
== 0, note this is purely used as an example to illustrate consistency,
details of how a thread exits a critical section or waits the other thread to
exit need not concern us . 30

4.1 Read memory action pseudo-code . 78

4.2 Write memory action pseudo-code . 79

4.3 Response memory actions pseudo-code . 80

4.4 Presence bit memory actions pseudo-code 81

4.5 Register transfer memory actions pseudo-code 81

4.6 Local Requester accept logic for local memory destination, logic is similar
for register file . 82

5.1 Basic spin lock implementation . 92

5.2 Acquiring a location and implementing an atomic counter 93

5.3 Waiting on a word . 94

5.4 Notify chain lock acquire implementation 97

5.5 Notify chain lock release implementation 98

5.6 Barrier implementation . 99

5.7 Single Producer ! Multiple Consumer wait for value implementation . . . 101

5.8 Single Producer ! Multiple Consumer wake chain with value implementation102

5.9 Implementation of FIFO consumer without busy wait loop 103

5.10 Implementation of FIFO producer without busy wait loop 103

5.11 SAT Solver process and control thread loop implementation 107

LISTINGS LISTINGS

16

Chapter 1

Introduction

1.1 Overview

Increasing core counts (rather than increasing transistor counts within a single core)
are now driving increasing performance. They also demand innovation within software,
available cores must be effectively used in order to gain performance proportional to gain
in core count. It is critical that developments in processor architecture enable rather than
stifle this innovation in software (massively increased core counts are useless if writing
software to take full advantage of them is almost intractable).

In order allow the creation of software for a multi-core machine that can achieve reasonable
performance the familiar programming model of a single thread of execution working on
a single uniform memory space must be disrupted due to the reality of multiple caches
and the need for multiple threads working together to utilise more than one core. Whilst
cache coherency enables the illusion of a single flat memory space to remain due regard
must be given to the communication generated by a cache coherency protocol to achieve
good performance.

Wires do not scale as well as gates, this has led to the need for interconnection networks
on chip, to avoid long global wires that span the entire chip and instead have a network
using many smaller local wires that have a size relative to the size of a gate. When
feature sizes decreases the network can be expanded to contain more nodes but the node
to node wire length stays the same size relative to a gate allowing better wire scaling.
Communication costs become a critical design point when building software, efficient use
of the network is required to achieve the best performance [76].

To achieve good scalability with increasing core count in software a sufficient number of
threads, capable of operating in parallel, need to be made available so all cores can be
fully utilised. An obvious way to ensure that a piece of software remains scalable as core
count increases, rather than being specifically optimised for a certain number of cores, is
the use of fine-grained techniques. Here a task is broken down into many small sub-tasks
that can potentially be executed in parallel. Provided the number of sub-tasks is more
than the number of available cores the software will continue to scale. The more fine-
grained the task breakdown is the further this scaling can continue. An obvious flaw in
this argument is breaking a task down into finer and finer grained sub-tasks incurs higher

17

18 1.2. THESIS

and higher overhead in terms of scheduling those sub-tasks and synchronising between
them. Fundamentally scaling will be limited by those overheads [31].

An architecture which enables low overhead synchronisation and thread scheduling will
enable good scaling with increasing core counts in software that utilises fine-grained tech-
niques. The architecture presented in this dissertation, known as Mamba, aims to do
this.

Mamba accomplishes its aims by using a hardware scheduler combined with a tagged
memory. Each 64-bit word in memory has an associated presence bit, when this bit is
unset the word is empty, otherwise it is full. This forms the basis for thread synchro-
nisation. When a thread accesses a non-present word it waits until it becomes present
before continuing. This interacts with the hardware scheduler so a thread that is waiting
for a word may be descheduled and only becomes ready again so it may be rescheduled
when the word it is waiting for becomes present. Threads in Mamba have a lightweight
in memory representation allowing cheap thread creation as well as a number of threads
only limited by the size of memory.

Mamba also makes communication explicit. Instead of a complex cache coherency protocol
each core is assigned an area of physical address space. A core may only cache locations
within its address space, an access to a location outside of its address space must go to the
core that owns that area of address space. This ensures there is never any duplication over
caches and hence coherency is maintained without an explicit cache coherency protocol.
Because of this software can choose precisely when it communicates over the interconnect
and control communication costs by arranging data appropriately.

Mamba was created not as a direct replacement for existing architectures but as a way
to explore ideas in fine-grained computation. It is designed to achieve scaling up to
many thousands of cores (though due to practical limitations the evaluation presented
in this dissertation uses a far smaller number). Mamba was created with no particular
application area in mind, its primary aim is to demonstrate the effectiveness of its presence
bit based synchronization model which is a general and flexible mechanism which could
be used in many application areas. An important aspect of Mamba is its performance
robustness, once a maximum speed-up has been achieved (where all execution resources
are fully utilised) introducing further threads does not significantly degrade performance.
This allows the possibility of further scaling if more core were to be introduced.

1.2 Thesis

Given that a fine-grained programming model allows good scaling with increasing core
count provided synchronisation and scheduling overhead is kept low. A hardware thread-
ing model combined with per-word notification and synchronisation achieved with pres-
ence bits is an effective way to enable this.

CHAPTER 1. INTRODUCTION 19

1.3 Outline

Chapter 2 discusses the background for this work. The trends of silicon integrated circuit
technology are reviewed as the driving force behind the need for multi-core architecture.
The challenges in building multi-core systems and some solutions are introduced look-
ing at physical connections, interconnection architecture, how an architecture can use
communication and how software can use architectural features to build multi-threaded
applications. The chapter concludes with a look at some existing multi-core architectures,
examining how each has approached the previously discussed challenges.

Chapter 3 discusses fine-grained techniques as a way of enabling scalable software on
multi-core architecture. The motivations behind fine-grained techniques are examined
and existing fine-grained hardware and software is presented.

Chapter 4 introduces and gives the full detail of the Mamba architecture. Following from
the discussion on fine-grained techniques in chapter 3 and the challenges of multi-core
design in chapter 2 the motivations behind the design of Mamba are presented. This is
followed by a full description of the programming model, the micro architecture of the
Mamba core and the arrangement of a full Mamba system.

Chapter 5 examines how to write software for Mamba. Basic primitives using presence
bits are introduced and a lock, barrier and FIFO are implemented using them. A SAT
solver is implemented as a complete software example.

Chapter 6 evaluates an FPGA implementation of the Mamba architecture. An FPGA
implementation of a MIPS64 core using the same memory, cache and interconnection
architecture as Mamba but with a pure software scheduler and no presence bit mechanism
is used as a comparison system. Microbenchmarks are constructed to evaluate the lock,
barrier and FIFO implementations against comparable MIPS64 implementations. The
performance of the SAT solver is compared between the MIPS64 and Mamba systems.

Chapter 7 concludes the dissertation, summarising the benefits brought by the Mamba
architecture, comparisons are drawn with related work and future directions work on the
architecture could take are discussed.

1.4 Published work

An overview of the architecture presented in this dissertation along with a preliminary
evaluation performed with lock and FIFO communication benchmarks was published and
presented at the 30th International Conference on Computer Design (ICCD) under the
title ‘Mamba: A Scalable Communication Centric Multi-Threaded Processor Architec-
ture’ in October 2012. The paper can be found in Appendix A and provides a condensed
description of the Mamba architecture without the full detail found in the Mamba archi-
tecture chapter.

20 1.5. CONTRIBUTIONS

1.5 Contributions

� The design and implementation of a processor architecture with a hardware based
scheduler that utilises memory tagged with presence bits to achieve fine-grained
synchronisation and notification and allow a number of threads only limited by
memory with limited impact on performance

� A synchronisation mechanism based upon the MCS lock [73] named the ‘notify
chain’, that combined with the presented architecture allows multiple threads to
efficiently wait for a particular word to be written

� Implementations of a lock, barrier and single producer ! multiple consumer mech-
anism based on the notify chain

� A single producer ! single consumer FIFO based upon [58] using presence bits to
support efficient waiting on that FIFO by both producer and consumer.

� An evaluation of the presented architecture using the lock, barrier and FIFO imple-
mentations as well as a SAT solver as an example of a real application.

Chapter 2

Background

From the dawn of the microprocessor in 1971, computer architects have been enjoying the
exponential growth in computing power as measured by the number of operations that
can be completed in one second. A major part of this growth is owed to the observed
exponential trend in transistor density known as Moore’s Law. Historically the growth in
available transistors has been used to increase the instructions per cycle (IPC) a single
processor core is capable of, using increasingly sophisticated architectural methods. This,
along with the increase in clock speed available with shrinking transistor geometries, has
provided the massive gains in available computing power.

However in recent years we have reached a point where simply increasing the complexity of
a single core to increase IPC is becoming increasingly difficult or simply no longer possible.
For a given fixed die size the area of a chip reachable in a single clock cycle shrinks with
each reduction in feature size, which limits the ability for architects to construct ever more
sophisticated ways of increasing IPC in a single core. Further difficulties are encountered
in scaling clock speeds ever higher. Designs have hit a power wall, only so much heat can
be dissipated which limits the maximum clock speed. An increased clock speed would
also lead to an even smaller area of the chip reachable in a single cycle [86, 3].

The solution to the problem is multi-core design. Rather than exploiting instruction level
parallelism (ILP), extracted from a serial program by a processor via dynamic methods,
we turn to thread level parallelism (TLP), specified explicitly by programmer using a
number of threads of execution. Rather than increasing the size of a core to increase ILP
exploitation with increased transistor budgets the cores can remain the same size whilst
the number is increased to make greater TLP available to the programmer. This brings a
new set of challenges to both the architect responsible for the processors design and the
programmer responsible for producing the software to run on the processor.

A primary concern for both architect and programmer is communication. A thread must
work together with other threads to complete their tasks which necessitates communica-
tion amongst them. So an architecture must provide communication mechanisms that a
programmer can sensibly use. In a multi-core design communication could be split into
two types, local and global. Local communication is communication within a core and
given a fixed core size still scales well with decreasing feature size. Global communica-
tion is communication between cores where the time (in terms of clock cycles) and power

21

22 2.1. PHYSICAL CONNECTIONS

required to communicate over a fixed length does not scale well with decreasing feature
size. Communication between two cores that are next to each other may scale well (as the
wire distance between them scales with feature size as more cores fit on the same die) but
communication between increasingly distant cores becomes increasingly more expensive.
This means it is important to optimise for this style of communication. One method
to achieve this is to make core $ core communication explicit and controllable by the
programmer so software can be designed to best optimise for it.

In software inter-thread communication can be split into two styles, implicit and explicit.
An implicit style uses an address space shared by a group of threads. To communicate a
thread writes into this shared space and the writes are made visible to the other threads
that share this space, this can be accomplished via a cache coherency mechanism. In an
explicit style specific message passing communication primitives are supplied to the pro-
grammer (either directly using available hardware primitives or abstractions supplied by
the operating system building on available hardware primitives). Threads then explicitly
communicate via messages passed between them.

This chapter discusses multi-core design primarily focused on communication and syn-
chronisation methods. This discussion has been split into four separate sections

Physical connections How cores can be physically connected and the design challenges
this brings.

Interconnect architecture How physical connections can be used to create an inter-
connect over which cores can communicate.

Architectural communication How a multi-core architecture might use an intercon-
nect.

Software communication How software might use architectural features to enable inter-
thread communication and synchronisation.

2.1 Physical connections

Historically, physical connections were not of much concern to a processor architect.
Whilst the data flow between blocks in a processor was of course important the primary
concern was the best utilisation of limited computational resources due to the available
transistor budget. Gate delay dominated wire delay so connections between blocks, pro-
vided by wires, may have presented a challenge to place and route but had little impact
on guiding the design of architecture.

More recently wire delay has come to dominate gate delay. Increasing transistor budgets
allows greater and greater computational resources to become available to a processor
architect. How blocks should be connected to allow the best use of the available compu-
tational resources rather than just how to maximise the use of the available transistors
(whilst assuming any connectivity wanted will be available) becomes a primary concern
[76].

CHAPTER 2. BACKGROUND 23

Ron Ho [86] examined the scaling of on-chip wires in detail. A distinction was made
between two different types of wire, local wires which span a fixed number of gates and
global wires which span a fixed physical length. With decreasing feature size local wires
decrease in length whilst global wires do not. Local wires were predicted to scale well
with a 10x penalty vs. gate delay over nine process generations whilst global wires were
predicted to scale poorly with a 2000x penalty vs. gate delay over nine process generations.
The scaling of wires can be improved with the use of repeaters bringing the scaling trend
to a 40x penalty vs. gate delay over nine process generations for global wires and to a
2-3x penalty vs. gate delay over nine process generations for local wires.

An obvious implication of the predicted global wire scaling is that with decreasing feature
size the total die area that can be reached in a single clock cycle decreases. As local
wires do scale a given processor core of fixed design can continue to be scaled down,
adding further features to the core (increasing the area needed and wire lengths required
in terms of gates) will become increasingly difficult especially if the increased wire delay
encountered is to remain architecturally invisible [3].

A natural solution to this problem is a multi-core design. A core may occupy roughly
the same area in terms of gates with each new generation so for a fixed physical die size
the number of cores available will increase. The challenge is now how to connect these
cores, point to point links between them should scale with the core, but the delay between
increasingly distant (as measured by the number of gates or cores between them) cores
on a chip will increase with each generation. The design of interconnection networks is
discussed later in the chapter.

Another impact of poor global wire scaling whilst not directly related to communication
is the distribution of a clock. Building a clock tree that distributes a single clock to an
entire chip, whilst maintaining sharp edges and low skew becomes increasingly difficult
and uses increasingly larger proportions of a chip’s power budget. A solution to this
is to have an architecture that doesn’t require a globally synchronous clock but instead
uses multiple locally synchronous clock domains. This type of design works well with a
multi-core architecture with each core running off its own clock with the clock domain
cross-over handled by the interconnection network.

2.1.1 Off chip connections

Off chip communication is a major concern, specifically to memory. An optimised on
core communication architecture is useless without sufficient memory bandwidth to feed
it. Unlike the problems of wire scaling though the so called memory wall has been an
issue in computer architecture for many years. With multiple cores all with potentially
very different working sets the problem grows worse, ideally each core could have its own
memory channel or a channel shared between a small number of cores. Chip packaging
constrains the number of pins available, constraining the number of possible off chip
memory channels. Recent developments in 3D integration technologies could help combat
this. Memory could be stacked directly on top of the cores in the same chip package, this
could both increase the number of potential memory channels available as well as provide
a large reduction in memory access latency [67].

24 2.2. INTERCONNECT ARCHITECTURE

2.1.2 Going beyond wires

Wires are not the only way to communicate on chip. Recently the possibilities of optical
interconnects have been investigated, as well as more exotic wireless communication tech-
niques. Whilst these techniques may not alleviate communication issues to the extent
that a single big core can continue to be practical they do provide lower power, lower
latency interconnection networks. They can also be used for off chip connections, helping
reduce power required for driving external connections as well as decreasing the number
of package pins required, allowing greater off chip bandwidth.

New developments in photonics make it possible to produce photonic components in
CMOS in a practical way that enables both on and off chip optical communication [36].
In particular on-chip photonics could be used to construct an interconnection network
potentially built out of a hybrid of electric and optical connections, 3D integration tech-
nology would allow a separate photonic plane to be constructed above the logic plane
which performs computation. One such potential design proposed by Shacham et al. [9]
when compared to a more conventional electrical only design could reduce network power
consumption from around 100W to 4-5W when a large bandwidth is required.

Developments in printed circuit board design [59] allow the inclusion of optical channels
along with electric wiring opening up the possibility of optical chip to chip communication.
One possibility for this technology would be to use an optical interconnect for memory
to creating photonically interconnected DRAM (PIDRAM) as proposed by Beamer et
al. [12]. DRAM would be redesigned to use optical channels to connect to the memory
controller with full photonic integration inside the DRAM chip (as opposed to using an
optical ! electrical conversion at the memory end and continuing to use conventional
DRAM). Such an approach may provide memory with a lower power utilisation as well as
allow a bandwidth density two order of magnitude greater that what would be possible
with conventional electrical connections. Others [55] have explored the use of optical
connections to produce a so-called macrochip where multiple chips are placed within the
same package connected via silicon-photonics. The allows the production of a multi-chip
system which approaches the performance of a single large chip.

Wireless technology could also be employed to build interconnection networks. Hu et al.
proposed [101] a wireless network-on-chip (WNoC) architecture that uses conventional
wired networks-on-chip in combination with wireless links. Individual wired subnets can
communicate via long-distance wireless links to bypass a multi-hop wired path. This style
of design is particular suited to larger networks giving power and latency improvements
over a comparable wired only network.

2.2 Interconnect architecture

The shared bus has long been used as a basic interconnection mechanism. Both for chip
to chip communication and inter-core communication on one chip. The major advantage
of the shared bus is its simplicity, everything that wishes to communicate on the bus
simply shares wiring. The protocol controlling bus communication can be very simple as
can the arbitration. As only one thing may drive the bus at once a strong ordering on

CHAPTER 2. BACKGROUND 25

traffic is naturally maintained and as the bus broadcasts information to everything on the
bus anything connected to it has global knowledge of bus traffic. However as the number
of potential bus masters grows the contention increases, so the bus either needs to handle
significantly greater traffic volumes (multiples of the total that could be generated by a
single master) or bus masters will be forced to wait. This makes a single shared bus a poor
choice for increasingly multi-core systems. Not to mention the engineering difficulties in
building a single shared bus that runs over an entire chip that maintains good bandwidth
without using too much power.

A natural consequence of the inability to communicate across a chip within a single cycle
and the need to best utilise the available wiring to maximise communication efficiency
when coupled with multi-core design is the introduction of the on-chip interconnection
network [21] or networks-on-chip (NoC). Whilst systems using many processing nodes
that require an interconnection network have existed for many years [105], the develop-
ment of NoCs is relatively new though their design draws upon the design of interchip
interconnection networks.

The general structure of a NoC is a collection of routers. Each router is connected to
a number of other routers. Something wishing to send a message gives it to a router
which forwards it to another router and so on until the message reaches its destination.
Messages are split into units known as flits. Sometimes multiple networks may be desired,
this can be accomplished by simply replicating multiple physical networks or via virtual
channels. A virtual channel is construced by replicating the buffers in a network but
not the physical connection. A flit leaving one buffer will be tagged with the next buffer
it should be placed in to. By constraining certain messages to only use certain virtual
channels a virtual network can be constructed.

For further information please see ‘Principles and Practices of Interconnection Networks’
by Dally and Towles [22].

2.3 Architectural communication

Architectural communication could be split into two categories, communication triggered
explicitly by running code and communication triggered by the architecture to support
the running code but that hasn’t been explicitly requested by it. An example of the first
kind of communication would be in an architecture that has programmatically visible
access to an interconnection network. An example of the second kind would be a cache
coherency protocol, discussed below.

2.3.1 Cache coherency

In a multi-core system we may wish to have multiple caches and each cache may contain
copies of the same memory regions. A problem occurs when cache A and cache B are both
caching some memory address x. If the core attached to cache A writes to x and then a
core attached to cache B reads from x at some later time we need to ensure the write at A
becomes visible to B. This is the coherency problem, we need to ensure writes propagate,

26 2.3. ARCHITECTURAL COMMUNICATION

when a value is changed it must eventually become visible to others, we also need to
ensure writes serialise, changes in the value of the location must be seen in the same
order by everyone. Memory coherency is also tied to memory consistency. Consistency
concerns the order of operations when dealing with multiple memory locations. Whilst
updates to the same location may appear in the same order to all processors, updates
to different locations may appear in different orders to different processors. Processor A
may see location X change value followed by location Y, but processor B may see location
Y change first followed by location X. Coherency and consistency are intimately linked
and are affected by the design of a single processor core and the design of the coherency
protocol used to ensure cache coherence which in turn is related to the properties of the
interconnect used.

Cache coherency protocols can be divided into two categories:

Bus Based Protocols An early example was described by Goodman [34]. Each cache
participating in the coherency scheme shares a bus, this bus is used to broadcast
coherency messages as well as fetching from main memory (or the next level in the
cache hierarchy). Caches snoop on this bus, listening to what the other caches are
requesting from memory and potentially intervening (e.g., if cache A has a modified
copy of location x and cache B requests a read from x from main memory, cache A

could snoop this interaction, interrupt the read and supply B with the latest version
of x). A crucial part of these schemes is each cache line has bits giving the sharing
state of the line (e.g., a particular protocol may have three states line invalid, line
valid but not dirty, line valid and dirty and present in no other caches). These
schemes have the advantage of simplicity, however do not scale well with increasing
participants due to their broadcast nature.

Directory Based Protocols An early example was described by Censier et al. [68].
Like a snoopy protocol each line has an associated sharing state, but unlike a snoopy
protocol this state is held in a central location, the directory. Caches wishing to
access a line can consult the directory to determine the state of the line and poten-
tial sharers of the line avoiding the need for a broadcast. These schemes may be
more complex to implement than a snoop shared bus scheme (they require a proper
interconnection network rather than a shared bus) but can scale with increasing par-
ticipants [2]. However to maintain good scaling the directory needs to be distributed
to avoid a single directory becoming a bottleneck for the whole system.

Sharing states

Both directory based and bus based snoopy protocols need to keep track of the sharing
state of a particular cache line (or potentially some larger region of memory as explored
in [14]). This sharing state drives the entire coherence protocol. The most basic example
would be a valid, invalid system. Here a line being marked as valid means that it is present
in strictly one cache, and an invalid line is in no cache. In a snoopy system when a cache
has a line in a valid state any read or write requests to that line will result in a hit, if a
cache does not have that line it will request it from main memory. All caches snoop the
memory access and if a request is for a line in a valid state that cache will interrupt the

CHAPTER 2. BACKGROUND 27

M E

Write

S

Exclusive
Write

Other
Read

I

Exclusive
Read

Shared
Read

Invalidate

Invalidate

Figure 2.1: A MESI cache coherency protocol state transition diagram

memory request and either supply the line directly to the requesting cache (switching its
version of the line to invalid, the requesting cache will store the line in a valid state) or
first write the line back to memory (so the line will not be held in any cache) and then
the requesting cache will retry and get the line from main memory storing it in a valid
state.

In a directory based system with states (valid, invalid) a cache that doesn’t hold a line
that it needs to service a read or write will first check the directory, this will state whether
the line is valid, meaning it is in another cache or invalid, meaning it is in no cache and
can be fetched directly from memory. In the case of the line being in another cache the
protocol proceeds as the snoopy protocol above (either the cache holding that line writes
back or directly transfers to the request cache). The key difference being the directory
removed the need for broadcast. It is important to note that state is still required within
the cache, it needs to know whether a line is in the valid or invalid state so it knows
whether or not it holds the line.

Whilst very simple, the valid, invalid scheme is poor. An obvious deficiency is the inability
for a cache line to reside in multiple locations, in the case of rarely written but frequently
read data much unnecessary bus traffic is generated. The addition of a third state to give
a modified, shared, invalid (MSI) protocol can solve this. An invalid line exists does not
exist in a cache (but could be in another), a shared line exists in one or more caches but
is identical to the line in main memory and a modified line exists in only one cache and
is an updated version of the line in main memory (it is dirty).

A more advanced scheme, which more closely resembles the protocols used in contem-
porary architecture is the MESI protocol [83]. This protocol utilises four sharing states,
modified, exclusive, shared and invalid. The meaning of the states is the same as the
MSI protocol with the addition of the exclusive state. A line in the exclusive state is
unmodified (identical to the line in main memory) but is in only one cache. A key feature
of this protocol is it allows a line to move from exclusive to modified (due to a write hit

28 2.3. ARCHITECTURAL COMMUNICATION

on that line) without the need for any communication. In MSI a write hit to a line in
the shared state requires the cache to first invalidate that line (either by broadcasting
an invalidate message or using the directory to determine which caches to send it to) to
complete the write even if nothing else is sharing it, MESI avoids this potentially wasteful
communication. A simplified state transition diagram for MESI can be seen in Figure 2.1.
In the figure an exclusive read is one where the location being read is in no other cache, a
shared read is one where the location being read is in another cache in the shared state,
an other read is where another cache is reading something that exists in this cache, an
exclusive write is one that sends an invalidate message to any other caches that hold that
location.

Further developments

Many variations and extensions to the above have been proposed, further states could be
added (e.g., an Owned state to indicate modified data, that is present in multiple caches
to give the MOESI protocol as proposed by Sweazey et al. [95]), optimisations can be
done on directory structure (e.g., using coarse notions of what caches are sharing a line
combined with sparse directory structures to minimise storage and network traffic needed
to implement a directory based scheme as proposed by Gupta et al. [7]), specific features
could be added to the interconnection network to support coherency (e.g., employing
multicast support so sharers of a line can multicast directly to each other without the
need to consult a directory as proposed by Jerger et al. [30]), speculative communication
could be employed to improve miss times (e.g., communicating with neighbouring caches
to find a line before going to the directory as proposed by Barrow-Williams et al. [11]) as
well as novel entirely new coherence methods (e.g., token coherence where a number of
tokens are associated with each cache line, a cache may read from a line if it holds at least
one token, but may only write to the line if it holds all tokens as proposed by Martin et
al. [69]).

A unifying theme amongst all cache coherency protocols is the need to preserve the illusion
of a global shared memory amongst all cores to the programmer. A protocol observes the
loads and stores executed by a core and attempts to best optimise the communication
amongst caches so it can be kept to a minimum whilst also offering good hit rates and
lowering miss penalties. Crucially the programmer has no explicit control over this, they
may only arrange and process their data in a way that best suits the protocol being used
in the hope that the communication that occurs on the underlying interconnect will not
be wasteful.

2.3.2 Message passing

Most modern multi-core architectures utilise a shared memory programming model im-
plemented via cache coherence. If a message passing facility is desired it is generally
implemented via software, though several direct hardware implementations exist which
give programmatic control over communication. An early example is the Transputer [103].
Each core had a series of point to point links available accessible via special instructions.

CHAPTER 2. BACKGROUND 29

Communication was entirely synchronous, messages were fixed in length and a core send-
ing a message had to wait for an acknowledgement from the receiving core before sending
the next message, a direct hardware implementation of the Occam [72] programming
model.

The RAW architecture from MIT [96] is a more recent example of an architecture with
hardware support for message passing. It utilises a far more advanced design than the
transputer connecting multiple cores on a single chip with four NoCs. Two of the four
NoCs had purely static routes, defined at compile time, the other two had dynamic
routing. The networks are exposed to software via special instructions as well as direct
register mapping. Reading and writing to certain registers directly reads and writes to
the incoming and outgoing FIFO buffers of the network routers. Two dynamic networks
were required to protect against deadlock. One network is for use by privileged code only
and the other for general usage. Anything using the privileged network ensures it follows
certain rules to avoid creating a protocol deadlock in the network. The general network
may deadlock due to improper usage, this can be detected and then recovered from using
the privileged network.

Sanchez et al. recently proposed Asynchronous Direct Messages (ADM) for use in im-
plementing fine-grained scheduling [87]. ADM is used as an extension to an architecture
already using cache coherency with an interconnection network used to run the protocol.
A virtual network is added to the existing network for the purposes of passing messages.
Messages can be received asynchronously or synchronously with all functionality handled
by new instructions. Asynchronous reception is implemented via an existing exception
handling mechanism. ADM buffers messages in hardware and guarantees both message
delivery and order. A full hardware buffer is handled by trapping to software and having
it store the second half of the full buffer elsewhere and returning it to the buffer when the
first half has been received.

HAQu proposed by Lee et al. [88] is a hardware accelerated mechanism that can be used
to implement message queues on top of a cache coherent architecture. Given software
queues with a certain layout in memory HAQu provides a number of new instructions
that operating upon the queues implementing a message queue algorithm based upon one
presented by Lee et al. [60]. This approach has the advantage than no extra intercon-
nection network (virtual or otherwise) is required on top of the existing one required for
the cache coherency protocol (with the attendant extra hardware resources required and
potential deadlock issues this creates) and achieves good speed-ups compared against a
purely software implementation (6.5-7x) however unlike direct hardware scheme the actual
communication over the interconnection network is still controlled by a cache coherency
protocol and cannot be directly controlled by software.

2.3.3 Consistency

An issue with any multi-core system using a shared view of memory between cores is
consistency. Given all of the loads and stores executed by all cores there should be some
way to arrange them (in a program order preserving manner so loads and stores from
thread A will be executed in the order specified by thread A, but stores and loads from
other threads may interleave them) such that the result of executing that arrangement on

30 2.3. ARCHITECTURAL COMMUNICATION

void threadA () {
threadAIn = 1 ;
i f (threadBIn == 0) {

// C r i t i c a l s e c t i on
}

}

void threadB () {
threadBIn = 1 ;
i f (threadAIn == 0) {

// C r i t i c a l s e c t i on
}

}

Listing 2.1: Dekker’s algorithm for mutual exclusion, initially threadAIn == threadBIn
== 0, note this is purely used as an example to illustrate consistency, details of how a
thread exits a critical section or waits the other thread to exit need not concern us

a single memory in sequential order will give the same result (in terms of final memory
contents and data returned by loads) as was actually observed, this is known as sequen-
tial consistency [1] and is a simple intuitive memory model for a programmer to work
with. Unfortunately sequential consistency is not always possible to maintain, because it
prevents various optimisations (such as store buffers discussed below). Consider the ex-
ample of Dekker’s algorithm for mutual exclusion in critical sections taken from [1] shown
in listing 2.1. With a sequentially consistent programming model when thread A reads
threadBIn if it finds it to be 0 then that means that thread B hasn’t executed its store to
threadBIn yet so its safe to enter the critical section because threadAIn has been stored
to and when thread B executes its load of threadAIn it will be prevented from entering
the critical section. A relaxation of sequential consistency could break this, for example
if thread A’s store to threadAIn was in some way delayed from being seen by thread B
then it would be possible for thread A to load 0 for threadBIn and continue to the critical
section and for threadB to do the same and continue to the critical section (as A’s store
to threadAIn may not have reached thread B’s view of memory).

Fundamentally relaxed consistency models occur because all cores do not share a single
block of memory giving a single view of memory (they have separate caches, and there
may be multiple banks of memory) and the communication that a particular core has
executed a particular store on a particular block is not instantaneous. As a concrete
example a common architectural optimisation is the addition of store buffers, when a core
executes a store it places it in a buffer pending completion so execution can continue
without needing to wait for the store to finish. Stores are still executed in program order
but the result of a store will not be immediately visible to other cores (later loads on the
same core from the same location will peek into the store buffer before accessing cache
or memory). A two core system with a shared bus MESI cache coherency protocol with
store buffers at each core may not execute Dekker’s algorithm correctly. For example if
both cores had threadAIn and threadBIn present in their cache in the shared state then
the loads of threadAIn and threadBIn could complete immediately whilst the stores to
threadAIn and threadBIn may sit in store buffers for some amount of time. This would
allow both threadA and threadB to enter the critical section.

One way to deal with this issue is the introduction of memory barriers or fences [84].

CHAPTER 2. BACKGROUND 31

A memory fence will cause a core to wait until memory operations (or some subset of
them) proceeding it have actually completed. There are many different types of fences,
the precise types provided depend upon the consistency model used. As an example in
the hypothetical two core system with shared bus MESI cache coherency discussed above
a fence could be introduced that waits until all stores currently in the store queue have
had their write invalidate messages acknowledged (which means the associated cache line
is marked invalid in the cache that didn’t broadcast the message). Dekker’s algorithm can
be made to work again by inserting such a fence after the store. The ensures that when
the load occurs if the thread receives a 0 from the load and so continues to the critical
section the other core either hasn’t done its store or hasn’t complete its memory fence
yet.

Another approach is to enforce sequential consistency via novel methods that do not im-
pose large performance penalties (many consistency issues occur because of architectural
optimisations, such as store queues, simply removing these could restore sequential con-
sistency but the cost to lost performance is generally considered to be too high). Ceze et
al. propose Bulk SC [16] which divides loads and stores into chunks, each chunk appears
to execute atomically and in isolation, sequential consistency is then enforced between
chunks to give overall sequential consistency. It accomplishes this by associating read and
write signatures with each chunk which can be compared between chunks to determine
if they perform loads or stores to the same locations. If they don’t interfere with one
another it doesn’t matter how they are executed with respect to one another. Sequential
consistency only needs to be enforced amongst chunks that do interfere. BulkSC can de-
liver similar performance to relaxed consistency models without too much extra overhead
(5-13% extra network traffic on average).

2.4 Software communication

The two major models used in software for multi-core and multi-processor systems are
the shared memory model and the message passing model. In a shared memory system
all threads can have access to the same address space, in a strict message model system
threads only have access to some local address space and must communicate with other
threads via messages. The shared memory model may appear easier to program initially
but the lack of isolation between threads causes many issues. The message passing model
does not suffer so badly due to the stricter isolation that is enforced by having separate
address spaces.

Distributed shared memory (DSM) systems implement a single virtual address space on
a system consisting of multiple separate physical address spaces belonging to different
processors [79], they perform this at different levels of granularity. Whilst running a
software based DSM system on a page-level of granularity could be practical a software
based DSM system running at smaller levels of granularity (e.g., a cache line, effectively
running a cache coherency protocol in software) is not.

The converse, building a message passing system in software on top of a shared memory
system (utilising cache coherency protocols in hardware), is commonly done. Much re-
search has been done on how to build efficient message queues on top of a cache coherent

32 2.4. SOFTWARE COMMUNICATION

system [61, 37]. Some programming environments enforce strict thread isolation, allowing
only message passing as the sole communication mechanism between threads (such as
Erlang [8]). Message passing is also a useful primitive in its own right and is often used
with other methods in shared memory programming models.

2.4.1 Locks, barriers and notification

In a pure message passing system synchronization between threads can be achieved implic-
itly. If a thread should not continue past a point before another thread has accomplished
some task it can wait for a message from that thread. Atomicity of access to data struc-
tures is of no concern because of the strict memory isolation between threads. In a shared
memory programming model primitives are required to explicitly enforce synchronization.

Locks are widely used to regulate access to critical sections in shared memory program-
ming. The use of locks introduces a range of issues that the programmer needs to consider
when using them such as the possibility of deadlock. Another consideration with lock
based programming is granularity, how many locks should be used? Coarser granularity
may be simpler to reason about but a finer granularity of locking promotes more concur-
rency however it may exacerbate deadlock issues and if locks are too fine grained much
time will be wasted acquiring and releasing locks. With increasingly multi-core systems
software must utilise more concurrency in order to get the best performance out of an
architecture, efficient fine-grained locking can enable this.

Alternatively locks could be abandoned altogether. Lock-free programming utilizes a
small set of primitive atomic memory operations (e.g., compare and swap, which was
shown by Herlihy to be a universal primitive [40] in the sense that it can be used to
implement any lock-free structure) provided by hardware (these primitives could be built
upon to implement more flexible and complex atomic operations such as a multi-word
compare and swap as proposed by Fraser et al. [33]) to implement data structures that
can be accessed concurrently without needing locks. This allows fine-grained concurrency
as well as removing deadlock issues, however correct lock-free data structures require
careful construction.

Barriers are another key synchronization primitive which again presents a granularity
issue. Say an algorithm proceeds in several steps, a barrier may be needed so each thread
starts each step together after all threads have finished the previous one, but there may
be certain subsets of threads that could continue past the barrier once every thread in
that subset has finished so a more fine-grained approach to the barriers would allow a
greater degree of concurrency. Much like using more fine-grained locks, more fine-grained
barriers will increase program complexity and more time may be wasted executing the
barrier. An ideal barrier system would be one that allows a thread to continue as soon as
precisely the data it needs is ready, rather than having to wait for all threads, building a
data-parallel model of execution.

Fundamentally any synchronization technique requires some form of notification, an abil-
ity to signal to a thread than an event has occurred. For locks this event will be the
locking being released, so something else may acquire it, for the barrier the event is every
expected thread reaching the barrier. In message passing system a thread needs to know

CHAPTER 2. BACKGROUND 33

when a message has arrived so it can continue if blocked on a receive operation. Even
in lock free programming a notification mechanism could be useful, a construct often
used in a lock free programming is to loop attempting an atomic operation such as a
compare and swap. If the operation fails then it is tried again until is succeeds, because
some thread must succeed progress is guaranteed. However in a high-contention situation
several threads may attempt multiple retries before succeeding, wasting CPU time and
potentially causing needless communication. A notification mechanism that could notify
a thread when it is clear to proceed could be very useful.

2.4.2 Partitioned global address space

The partitioned global address space (PGAS) model is one where each thread is associated
with a particular part of address space. The associated memory may be private so only
the associated thread may access it, a separate global memory is provided for inter-
thread communication. The unified parallel C language from Berkeley [97] implements
this memory model. This approach has the advantage that the programmer has explicit
control over data placement as well as greater knowledge of when communication occurs
(a write to a private space doesn’t require communication, a write to a shared global space
does, though if the shared space is implemented with a standard cache coherent system
the timing and precise nature of the communication is still obscured). A PGAS model
where the partitioned space isn’t private to a particular thread (removing the need for
the separate global shared space) is also possible. Here accessing a thread’s own memory
partition would be cheaper (in terms of communication incurred) to access than another
thread’s memory partition, thus by choosing where to place data and when to access it
the programmer could exercise control over communication costs.

Related to the PGAS model is the remote store programming (RSP) model proposed
by Hoffman et al. [39]. In RSP each process or thread is created with a purely private
address space to start with. Part of this address space can be declared writable by remote
processes or threads, communication is then accomplished by writing to remote address
spaces. By arranging private address space so it is cheap (in terms of communication)
to access from the thread it is associated with a programmer is able to optimise for
communication. Hoffman et al. found that RSP allows the creation of programs that
scale well with increasing core count as well as achieving higher performance than a
standard shared memory implementation of some applications.

2.5 Existing architectures

Many multi-core designs have been produced and are in active use. Several examples are
discussed below in the context of the section above. Physical interconnect is not discussed
in the examples below. Whilst many interesting innovations in silicon technology have
been required to produce the example below they all use electrical interconnect over wires
as the more exotic methods haven’t progressed beyond the research stage and discussion
of the specific developments required to make the wires work are beyond the scope of this
dissertation.

34 2.5. EXISTING ARCHITECTURES

Core 0
Level 3
Cache

Core 1
Level 3
Cache

Core 2
Level 3
Cache

Core 3
Level 3
Cache

IO and Memory Controller

GPU

Figure 2.2: Sandy Bridge Architecture

2.5.1 Sandy Bridge

Sandy Bridge is a multi-core microarchitecture created by Intel targeted at a 32nm process.
It is used in consumer, business and server class machines. A block diagram of the general
layout can be seen in Figure 2.2. It can be configured with different numbers of cores (up
to 8 in currently released versions), the figure shows an example with 4 cores. Each core
is a out of order superscalar SMT core (so is capable of running more than one thread
at once) executing the x86 instruction set including extensions for SIMD computation of
floating point vectors. [106]

Interconnect

Interconnect on Sandy Bridge is provided by a bi-directional ring, this connects the cores,
L3 caches, IO and (on-chip) GPU. Off-Chip interconnect is provided by Quick-Path Inter-
connect (QPI) [46] which consists of high speed point to point links that allow separate

CHAPTER 2. BACKGROUND 35

chips to communicate. It uses virtual channels to support 3 separate virtual networks
for different message classes, credit based flow control is used chip to chip. Routing is
handled by static routing tables defined in firmware allowing a variety of topologies.

Architectural communication

Sandy Bridge provides a shared memory model to all cores using cache coherency. Each
core has a private L1 and L2 cache, the L3 cache is banked and is shared amongst all
cores in a single chip. A MESIF (MESI with an additional F, forward, state) directory
based protocol is used. The forward state is similar to the shared state, but a cache with
a line in the forward state must supply that line to another cache when it requests that
line [45] (this is an optimisation to prevent all caches with that line providing it wasting
bandwidth). The QPI protocol is used to carry coherence traffic around the ring on-chip,
off chip the QPI interconnect is used to carry coherence traffic. Sequential consistency is
not maintained so a number of memory fences are available. So-called locked instructions
are also available, these can be used as base atomic primitives (e.g., compare and swap)
and they are defined to execute in a total order that is visible to all cores, effectively
giving sequential consistency amongst all locked instructions. No formal official definition
of the x86 consistency model exists but Owens et al. [82] have created one based upon
available documentation. Briefly Sandy Bridge has the same ordering characteristics as
an abstract machine where each core reads and writes to a single block of memory but
writes may be buffered (so are delayed from being applied to the main memory). A core
executing a read will obtain the latest data for the address being read from its own write
buffer, but not from any other cores write buffer (that is writes from another core will
only become visible after a certain time).

Software

In general the x86 instruction set architecture is widely used for a large number of ap-
plications, Sandy Bridge is no exception. A conventional shared memory with locks pro-
gramming model is often utilised in Sandy Bridge systems but a variety of other models,
as discussed above, may also be seen.

2.5.2 Tile Architecture

The Tile Architecture is a product of Tilera. Tilera offers a variety of multi-core products
with this architecture, one of which is TILE64 which contains 64-cores on chip, the initial
implementation was done on a 90nm process. A block diagram of the general layout can
be seen in Figure 2.3. Each core implements a VLIW instruction set and may run an
operating system independently of the other cores [102]. The architecture is flexible so
products with large variations in core number can be offered without any architectural
revisions. The Tile architecture is used in a variety of applications requiring large amounts
of concurrency, such as server, multimedia and networking applications and was inspired
by the MIT RAW architecture [96].

36 2.5. EXISTING ARCHITECTURES

0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Memory Controller 0 Memory Controller 1

Memory Controller 2 Memory Controller 3

IO
0 IO

1

Figure 2.3: TILE64 Architecture

Interconnect

Cores in the Tile Architecture are connected with a 2D-mesh topology, there are five sep-
arate networks, one of which is statically routed. The dynamic networks all use dimension
ordered routing. The four dynamic networks have separate uses. One is the user network
which is directly accessible in software, I/O access is done over another network, allowing
any core to talk to any of the attached I/O devices. A fully cache coherent shared mem-
ory is also provided, this uses two networks, one, the memory network, is for cache to
memory controller communications which works with the other, the tile network, which
carries coherence traffic. Cache to cache transfers are possible and require the use of both
the memory and tile networks for responses and requests respectively to avoid protocol
deadlock. Interestingly virtual channels are not employed, each network is a physically

CHAPTER 2. BACKGROUND 37

separate network.

Flow control is a credit based scheme. The memory network implements further end to
end flow control to avoid deadlock, a node is allocated space in a buffer at a memory
controller and must never use more than its allocated space. The user and IO networks
have mechanisms to drain and refill the network so in the case of a deadlock it can be
recovered from.

Architectural communication

Coherency in the Tile Architecture is provided by a directory based cache coherency
protocol. Each core has an L1 and L2 cache, the coherency protocol runs between the L2
caches. The TilePro variation of the architecture allows software to specifically ‘home’ a
page of memory in a particular cache. If a cache line is homed like this then any write
accesses or any read misses are always sent to the cache where the line is homed. This
allows software to localise a particular part of memory to a particular core and cache,
cores close to the home location will incur less communication costs to use that location
than cores further from the home location, giving the programmer some explicit control
over communication costs. Consistency is similar to the Sandy Bridge above. Writes
will be visible immediately to the core that performed them but may not be immediately
visible to all cores. When a write does become visible to all cores it becomes visible to all
cores simultaneously, a memory fence instruction is provided as is an atomic test and set
operation. Test and set operations become globally visible to all cores at the same point,
so there is a single total ordering of them visible to all cores. [98]

The architecture allows portions of a core’s L2 cache to be used as a scratchpad memory, a
software programmable DMA engine can be used to move memory between theses scratch
pads as well as to and from main memory. This gives direct programmatic control over
incurred communication [98].

Another way for the programmer to have direct programmatic control over incurred com-
munication are the user and static networks which allow software to communicate directly
over the interconnection network between cores. This is combined with a fast interrupt
mechanism that can be used by non-privileged code which is used to notify threads of
data arrival on the dynamic user network. The networks are register mapped with a direct
connection into the ALU allowing rapid communication between cores [98].

Software

Each core in the Tile Architecture is capable of running Linux separately, or several cores
can be used to run a single instance of SMP Linux. So a wide variety of programming
models can be used (including a conventional shared memory with locks model). However
to best utilise the Tile Architecture software needs to be written with the interconnection
network in mind. The static network can be utilised to exploit data parallelism and to
build software pipelines, this could be done explicitly by a programmer or a compiler
could schedule the instructions of a sequential program across several cores [63]. For
utilising the dynamic network Tilera provide a library iLib that provides multiple channel

38 2.5. EXISTING ARCHITECTURES

abstractions. The dynamic user network can be exposed as raw channels (reading and
writing directly to the network’s buffers), buffered channels (adding software buffering
and control on top of the raw network channels) or as a generic message passing interface.

The remote store programming (RSP) model developed by Hoffman et al. [39] has been
implemented on TILEPro64, where the ability to home regions of memory at a particular
cache is utilised. The core running a particular thread has that thread’s private memory
homed at that core’s cache, so when part of that memory is made available for writing the
cost of another thread writing to it is directly proportional to the distance between the
cores running the threads in the network. Unified Parallel C has also been implemented
on the Tile Architecture again exploiting the locality exposed in the language [89].

2.5.3 Single-chip Cloud Computer

The Single-chip Cloud Computer (SCC) is an experimental prototype chip produced by
Intel Research. Its purpose is purely to enable research into multi-core design so it doesn’t
target any particular application area. Each chip contains 48 cores and is implemented
on a 45nm process. A block diagram of the general layout can be seen in Figure 2.4. Each
core is in-order superscalar, based on an old Pentium design [44].

Interconnect

Cores in the SCC are connected in a 2D-Mesh. Two cores are coupled together to share
a single router forming a tile. Dimension ordered routing is used with credit based flow
control. The network provides eight virtual channels two of which are reserved for request
and response message classes for deadlock avoidance. Each tile contains a message passing
buffer (MPB), an SRAM memory to aid in the implementation of coherency and message
passing [44].

Architectural communication

The SCC does not implement cache coherency in hardware. Each core has private L1 and
L2 caches, a miss in both of these will be serviced by one of the four DDR channels with
no interaction between the caches of other cores. A look up table in each core divides the
memory into 256 partitions, each partition can be pointed at physical off-chip memory
(DDR) or at a tile’s MPB (there are also some memory spaces used for configuration
and communicating with the external management system). By manipulating the look
up tables in each core physical memory can be divided in shared and private areas, a bit
in the page tables can mark memory as non-cacheable, this could be used for a shared
memory area so the lack of cache coherence isn’t problematic though it has obvious
performance issues. Another bit in the page table is MPBT. When this is set memory
belonging to that page can only be cached in L1, and there is a special instruction to
invalidate any lines belonging to an MPBT tagged line in the L1 cache. Combined with
the MPB memory this can be used to implement message passing. An MPB will get
mapped via the lookup table to a certain set of pages, these will be marked as MPBT. To

CHAPTER 2. BACKGROUND 39

Tile
0

Tile
6

Tile
12

Tile
18

Tile
1

Tile
7

Tile
13

Tile
19

Tile
2

Tile
8

Tile
14

Tile
20

Tile
3

Tile
9

Tile
15

Tile
21

Tile
4

Tile
10

Tile
16

Tile
22

Tile
5

Tile
11

Tile
17

Tile
23

M
em

or
y

C
on

tr
ol
le
r
0

M
em

or
y

C
on

tr
ol
le
r
1

M
em

ory
C
on

troller
2

M
em

ory
C
on

troller
3

L2
Cache

1

L2
Cache

0

Router

Core 1

Core 0

MPB

Figure 2.4: Single-chip Cloud Computer Architecture

send a message first invalidate all MPBT marked lines in the L1 cache. Writes to those
lines will get passed through the L1 direct to the destination MPB (a write combining
buffer is used to achieve good performance). The destination core can read its tile’s MPB
through the L1 cache and then invalidate the MPBT marked memory in its L1 to ensure
it doesn’t read stale data the next time [50].

Software

Whilst each core in the SCC runs the x86 instruction set and so is able to run the wide
variety of software available for x86 the lack of cache coherency means that software not
designed for the SCC can only run on a single core unmodified. An SCC system may

40 2.5. EXISTING ARCHITECTURES

SPE
0

SPE
4

SPE
1

SPE
5

SPE
2

SPE
6

SPE
3

SPE
7

PPE

MIC

IO0

IO1

Figure 2.5: Cell Broadband Engine Architecture

start separate Linux instances on each core which can then communicate via message
passing, Intel provide a library RCCE that effectively provides a light wrapper over the
MPB functionality allowing programmers to put and get data to and from any MPB
in the system along with some primitive synchronization methods so cores can wait for
other cores to complete an MPB operation before they begin their own [70]. Clauss et
al. [19] implemented an improved version of RCCE, iRCCE, which divides MPBs into
two chunks, allowing one core to write into an MPB whilst another cores allowing an
overlapping of execution for those cores when they are using the MPB to communicate
(with RCCE a core would have to wait for the other core to fill or drain the entire
MPB before continuing). iRCCE was compared to an MPI implementation also written
by Clauss et al. and using more conventional shared memory techniques. Purely using
shared memory offer predictably poor performance as shared memory must be uncached,
iRCCE offered the best performance. Still further cache control (specifically the ability
to flush an L2 cache) was desired, the explicit communication that is offered by the MPB
mechanism was not sufficient to get the best performance out of the processor.

2.5.4 Cell Broadband Engine

The Cell Broadband Engine is a heterogeneous multi-core architecture developed by IBM.
It consists of 9 separate cores, one is an in-order superscalar core compliant with IBM’s
Power architecture capable of running 2 threads at once known as the power processing
element (PPE). The other cores execute a pure SIMD instruction set running on wide
(128-bit) floating point vector registers, these cores are known as synergistic processing
elements (SPE). The major target area of the Cell is games and multimedia with an
emphasis on real-time responsiveness [53]. A block diagram of the general layout can be
seen in Figure 2.5. Along with the PPE and SPEs the Cell contains 1 memory interface
controller (MIC) and two IO controllers.

CHAPTER 2. BACKGROUND 41

Interconnect

Four unidirectional rings provide the interconnect in the cell (two go clockwise the others
counter clockwise). The rings connect together all 9 cores, the memory controller, and two
IO interfaces. One of the IO interfaces can be used to connect to another Cell processor
connecting a total of 2 PPEs and 16 SPEs together into the same network [54].

Architectural communication

The PPE is a standard Power Architecture processor with a L1 and L2 cache. The SPEs
do not have cache or direct access to main memory. Each SPE has a small (256 KB)
local memory which it operates on directly. Each SPE also has a memory flow controller
(MFC). The MFC contains a DMA unit that can be used to transfer data between the
SPE’s local memory and main memory and transfer data between the local memories of
two SPEs. The MFC allows multiple DMA commands to be queued up and executed
whilst the SPE computes in parallel. This allows a streaming style of computation with
the MFC streaming data in, the SPE performing computation on it and the results being
streamed back out by the MFC again, either to main memory or to another SPE for
further processing [54]. DMA operations may be completed out of order so fences are
provided to ensure order when this is required. Special DMA operations are provided to
perform atomic operations on lines in memory.

In addition to the MFC and local memory each SPE has two signalling channels and a
set of mailboxes, an SPE can block and wait on a signalling channel or for a message to
arrive at a mailbox. The other ends can be signalled or written by another SPE or the
PPE. A write to an outbound mailbox of an SPE can generate an interrupt on the PPE.

Software

The PPE can run Linux, however using the PPE on its own is clearly not the best way
to utilise the Cell, effective use of the SPEs is required to get the best from the Cell
architecture. Due to the specialised nature of the SPEs running a multi-core capable
operating system (such as Linux) over all 9 cores and using a shared memory and locks
programming model is impractical (for one some kind of software coherency and caching
scheme would be needed). A programmer could write software directly targeted at the
Cell, an approach taken by Chow et al. [18], this provides excellent performance (Chow
et al. achieved 46.8 GFlops on their FFT implementation running on a Cell running at
3.2GHz compared to an optimized FFT implementation running on a Power architecture
machine at 1.65 GHz which only achieved 1.55 GFlops) but this requires a large progam-
ming effort. Ohara et al. [81] proposed a new programming model, MPI microtask, based
on MPI. A programmer must partition their program into microtasks that can fit into an
SPE’s local store. The system then handles scheduling these microtasks and the required
memory movement. Eichenberger et al. [29] proposed various compiler techniques that
can be used to automatically parallelise a program across SPEs when that program is
written with an OpenMP model achieving a 7.1x speedup.

42 2.5. EXISTING ARCHITECTURES

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Cache
Crossbar

L2 B0

L2 B1

L2 B2

L2 B3

L2 B4

L2 B5

L2 B6

L2 B7

Memory
Controller 0

Memory
Controller 1

Memory
Controller 2

Memory
Controller 3

Figure 2.6: Niagara Architecture (UltraSPARC T2 pictured, IO interfaces not shown)

2.5.5 Niagara Architecture

The Niagara Architecture was created by Sun. It is targeted at commercial server class
applications that tend to have a low degree of instruction level parallelism (ILP) but a
high degree of thread level parallelism (TLP) [56]. Figure 2.6 shows the general layout
of the architecture. The actual chip pictured is the UltraSPARC T2 [90] an evolution
of the original implementation of Niagara the UltraSPARC T1. Each core is a 64-bit
SPARC processor core capable of executing eight hardware threads independently. These
are implemented in a fine-grained manner. Every cycle the thread select stage of a core’s
pipeline chooses one of the eight threads to execute an instruction for. An instruction from
the selected thread is fetched and pushed into the beginning of the pipeline. The thread
selection policy aims to switch threads every cycle giving a fine-grained interleaving of
threads in the pipeline.

Interconnect

The Niagara uses a crossbar for its interconnect. This crossbar connects every processor
core to the eight level 2 cache banks (L2 B0 etc in the diagram), but does not allow direct
communication between two cache banks or two cores. The crossbar allows up to eight
simultaneous accesses of the level 2 cache provided they each use a different bank. Four
separate memory controllers provide the level 2 cache banks with access to main memory.

CHAPTER 2. BACKGROUND 43

Architectural Communication

The Niagara is a shared memory machine that implements a directory based cache co-
herency protocol. All of the (private, per core) L1 caches implement a write through
policy and an L1 line is either in a valid or invalid state. A particular L1 line will always
be backed by the same L2 cache bank so due to the write through policy the L2 cache
can maintain a sharing directory of which L1 caches share a particular line. When a core
stores to a particular word in memory, this store will be written through the L1 cache
to the L2 which allows the L2 to invalidate all of the L1s that share the updated line.
A store will not update the L1 cache until the L2 has been updated, before the L2 has
been updated only the thread that issued the store can see the new value. This ensures
that a store from a thread becomes globally visible to all other threads at the same time
regardless of which core they are running on.

Software

Nigara is designed to run the Solaris operating system. The processor appears as 64
discrete processors to an application, the OS abstracts away the details of how these are
mapped into hardware threads and cores. Any application designed to run on Solaris will
work without any need for modification but only those that utilise multithreading will
gain any benefit from the architecture.

2.5.6 Tile based, application dedicated architecture

An emerging category of processor architectures is that of tile based architectures that are
intended to run a specific application. For example video decode is highly parallelisable
and maps well to a grid of tightly coupled processing elements. Dedicated hardware is
often constructed for the purpose but building an ASIC for a particular application is
expensive and leads to long development cycles. An emerging alternative are lightweight
processors that consist of many simple processing elements networked together. One
example is the picoArray architecture [27]. Whilst it is generally programmable it is
designed for targeting specific highly parallelizable applications that will be the only
thing utilising the chip.

A picoArray contains 430 processors, connected in a grid network consisting of many
unidirectional buses. The buses are interconnected via switches which are programmed
by software to have a particular switch schedule. Time is divided into slots and for a
particular slot particular paths will exists between processors as determined by the switch
schedule. A processor can send and receive messages directly via the network, either
synchronously, where neither sender or receiver may proceed until the communication
is complete or asynchronously, but this carries the risk that a message may be missed
as it gets overwritten in an incoming buffer before the receiving processor gets a chance
to look at it. Each processor is a 16-bit 3-way VLIW core each with their own small
local memory (between 1KB and 32 KB). Special purposes peripherals, such as an SRAM
interface or chip-chip interconnections are also present, which are accessed via the same
network processors use to communicate.

44 2.6. SUMMARY

A related architecture is the XS1 [71]. Again it consists of an array of simple processor
cores interconnected by a network. Though unlike the picoArray the network has some
routing functionality, a message header can describe a message’s intended destination and
be switched appropriately. The processor used by the XS1 is also more sophisticated, it
has hardware support for executing a number of threads. Fine-grained multithreading,
similar to what is found the Niagara architecture is utilised to execute multiple threads.
Several instructions in the XS1 cause a thread to stall pending some external event. Due
to the fine-grained nature of the thread scheduling this allows extremely rapid wakeup of
a stalled thread. This provides excellent responsiveness allowing the XS1 to implement
systems in software that traditionally required a hardware approach due to their real-time
constraints.

As with picoArray, memory in XS1 is provided in small per core memories (between 64
KB and 256 KB per core depending upon the device). Unlike picoArray any core may
access any other core’s memory over the interconnect. However for both picoArray and
XS1 there is no concept of caching from a larger external memory store. This could
be implemented but it would be done via software accessing an external memory as a
peripheral, with all caching implemented in software.

2.6 Summary

Multi-core architecture is very diverse, there are a wide range of plausible core configura-
tions, ways to interconnect cores and methods to use this interconnect. Whatever design
is chosen it is vital that it allows effective use of the provided resources. The design of the
SCC, for example, is problematic because of its retrofitting of message passing capabili-
ties into an existing cache architecture. The Tile Architecture as a counterexample offers
great flexibility in how interconnect can be used allowing a wide range of programming
styles. Multi-core architecture is also proving useful in more application specific areas,
the XS1 and picoArray use it to great effect to allow the implementation of applications
that traditional were confined to the realm of ASICs and FPGAs.

It seems certain that silicon process technology will continue to allow core counts to
increase, with increasingly sophisticated interconnection mechanisms being utilised to
enable core to core communication. This interconnect must be utilised effectively both
by the architecture and the programmer to enable good scalability.

In this chapter current technology trends and how they motivate the creation of multi-core
architectures has been reviewed. This leads into a discussion of architectural communi-
cation and how architectural mechanisms can be used from within software. Several
examples of multi-core architectures are the presented. In the next chapter the idea of
fine-grained architecture is discussed in more detail which motivates the creation of the
Mamba architecture.

Chapter 3

Fine-grained computation

3.1 Amdahl’s Law

No discussion of speed-up in parallel computation would be complete without reference
to Amdahl’s Law [5] which can be seen in equation (3.1), it relates the total speedup S

that can achieved when parallelising a fraction fp of a program across n cores.

S =
1

(1 � f p) +
fp

n

(3.1)

A major result of Amdahl’s law is that the maximum speedup that can be achieved by a
program running over an increasing number of cores is limited by the fraction of it that
is parallelisable fp as shown in equation (3.2)

lim
n→∞

S =
1

1 � f p

(3.2)

So if we wish to produce software that scales well with increasing core count we must
seek to make fp as large as possible. This is the principle behind fine-grained techniques,
by providing the programmer with tools that encourage them to split a program into as
many small parallel tasks as possible fp can be maximised, thus achieving good scalability.

An issue with Amdahl’s law is the simplicity of the model. Effectively it assumes that
there is a sequential phase followed by a parallel phase, the sequential phase may only
run on a single core and the parallel phase may run across any number of cores. Whilst
some programs may approach this style of execution, especially if you consider having
multiples rounds of the sequential phase followed by the parallel phase it is clearly not a
realistic model of all programs. Crucially it does take into account any synchronisation or
intercommunication between the parallel threads of execution, in these ‘critical sections’
a thread may have to wait for another thread to complete some task before it can proceed
(for example a thread may have to wait for another thread to finish modifying a data
structure before it can modify it).

Eyerman and Eeckhout have extended Amdahl’s law to take into account critical sections
[31]. They extend the model to include a contention probability Pctn, the probability that

45

46 3.2. FINE-GRAINED SOFTWARE

two critical sections contend, that is one must wait to the other due to parallel access
of some shared resource. The parallelisable fraction fp is split into two parts fp,ncs, the
part of parallelisable fraction that doesn’t require access to critical sections and fp,cs, the
parallelisable fraction that does (i.e. it may have to wait for some other thread when in
this fraction), fp,ncs + fp,cs = fp. They derive equation (3.3), where fs is the sequential
fraction of the program i.e. fs = 1 � f p

lim
n→∞

S =
1

fs + fp,csPctn

(3.3)

This shows that the speedup that can be achieved when scaling a program across an
increasing number of cores is not only limited by the size of the sequential fraction, but
the time it spends in critical sections. Whilst this result is relatively obvious, Eyerman
and Eeckhout place it on an analytical basis. The effect on a fine-grained system is that
not only must a programmer be encouraged to split a program into as many sub-tasks as
possible to increase fp but that Pctn, the probability of contending, and fp,cs, the fraction
of time spent in a potentially contending situation, must also be reduced. This is partially
up to the programmer but synchronisation between threads of execution is a necessity so
they can only do so much. The programmer must be provided with synchronisation
techniques that carry a low overhead reducing fp,cs and encouraging the programmer to
use them more freely at a finer-grained level, reducing Pctn as well.

This new version of Amdahl’s law is based around the idea of synchronising using critical
sections, where a lock protects some shared resource, it doesn’t consider synchronising
by other methods (for example synchronising by communicating over FIFO channels).
However a critical section is modeled by a fraction of the program that might contend
and when it does it must wait for another thread (serialising execution), such a general
description also applies to other forms of synchronisation. For example if using FIFO
based communication a consumer thread may have to wait for a producer thread if a
FIFO it wishes to consume from is empty. This is much like the thread having to wait
for another thread to release a lock before it can continue and could be modeled very
similarly with a probability that the thread will have to wait for certain fractions of the
execution time similar to the contention probability Pctn and the fraction fp,cs spent in
critical sections.

3.2 Fine-grained software

There are many approaches to a purely software based fine-grained model (that is one
that, whilst requiring a multi-core or multi-threaded architecture so it can execute multi-
ples threads in parallel, the architecture does not need to specifically support fine-grained
mechanisms). Crucially any software based model needs to provide low overhead synchro-
nisation and scheduling on top of available primitives. Typically these would be provided
by an operating system and may require expensive system calls to use. A software ap-
proached to fine-grained computation may use these as a base for lighter user-mode based
primitives (for example it may create one OS thread per core but then implement its own
lightweight task switching inside each thread).

CHAPTER 3. FINE-GRAINED COMPUTATION 47

3.2.1 Message passing

One approach to building software in a fine-grained manner is message passing, a program
is broken into isolated parts that can communicate only by sending messages (there is no
shared memory), this approach has been formalised in the actor model [42]. By enforcing
isolation between tasks there is no possibility over contention for shared resources, though
a task may be forced to wait for a message to arrive. By dividing the program into more
tasks the probability that there are not enough tasks to use all available cores can be
lowered, so it is vital that a low overhead message passing and task scheduling system is
provided.

Erlang [8] is a language designed around message passing, it provides a very lightweight
threading implementation which uses user-space threads implemented on top of OS pro-
vided threads so a programmer is able to create as many as they need rather than needing
to find an optimal number. This is combined with a user-space message passing implemen-
tation. As well as enabling fine-grained concurrency Erlang also works well for distributed
systems, systems where multiple physically distinct process nodes are connected via some
network.

3.2.2 Lightweight threads

If a program is to be split into many smaller tasks to be executed concurrently, there
must be a way to execute these without the overhead of scheduling these tasks dom-
inating execution time, effecting scalability. Whilst an operating system will provide
threading primitives they are heavyweight objects, carrying much state with them that
is not necessary for small tasks. One approach is to use work queues with work stealing
[13]. A certain number of threads are created (matching the number of cores available for
example) each with a queue of work or tasks to be completed. A thread proceeds working
its way through the queue completing tasks, which may in turn queue more tasks to be
completed. If a thread runs out of tasks to complete it may steal from another thread’s
queue, ensuring that all threads are kept busy. Provided the number of tasks relative to
the number of threads is kept high and they do not contend much scalable concurrent
software can be created. A task can be represented in a very lightweight manner compared
to an operating system thread and there is no context switching overhead on finishing
one and starting another so the number of tasks can be large.

Intel’s Threading Building Blocks (TBB) library [47] is an example of a fine-grained task
based system that utilises work stealing. A task is represented by an object with an
execute method, a scheduler is responsible for distributing tasks between processors and
executing them. In the course of executing a task can spawn further tasks forming a
hierarchical relationship between them. Contreras and Martonosi performed a study on
the overheads of TBB [20], they found that the overhead of the library effected scaling
at higher core counts, in some cases an overhead of 3% with 16 cores (allowing a 14.8�
speedup) grew to an overhead of 52% with 32 cores (allowing a 14.5� speedup). Excessive
task creation was also problematic, one benchmark when altered to spawn 6M tasks to
expose further parallelism instead of 6K tasks went from a 19� speedup to 10� . The

48 3.3. FINE-GRAINED HARDWARE

two major components of the overhead was the library waiting for resources to become
available and overhead caused by atomic operations used for synchronisation.

3.2.3 Software transactional memory

Locks are an effective and simple way to ensure safe access to a shared resource. However
using them can drastically increase software complexity, especially as the number of locks
used increases as it would when using locks in a fine-grained manner. Transactional
memory is a technique that allows software to access a shared area of memory safely
without needing locks. The code accessing the shared region needs to declare that it must
be executed as a transaction and the transactional memory system can ensure it executes
safely.

This way of dealing with shared resources matches well with a fine-grained style. A
programmer breaks their software into many small tasks that may access shared memory
as they wish in small transactions exposing a large amount of parallelism. The system
then enforces safety [41]. Transactional memory accomplishes this by logging reads and
writes that occur in the transactions and only allowing the writes to commit (i.e. become
visible to other threads) at the end of the transaction if the logged reads and writes do
not conflict with any other transactions.

A purely software based approach to transactional memory (known as STM, software
transactional memory) is possible and many implementation exist [38, 25, 104]. A soft-
ware approach requires that some (but not all, only those relevant in deciding whether
or not a transaction can commit) must be instrumented, this could be done by hand or
by a compiler. The problem is this instrumentation adds a large amount of overhead.
Cascaval et al. [15] examined this overhead comparing several popular STM implementa-
tion finding that the overhead is such that in certain cases the transactional version of a
benchmark did not achieve the performance of the non-transactional benchmark on any
STM implementation even when running over eight threads. They explore the overhead
in detail and suggest some possible solutions but conclude that lowering the overhead to
the point STM systems become usable is very challenging.

3.3 Fine-grained hardware

Fine grained hardware could be split into two separate categories, that which accelerates
or supplants some of the software techniques discussed above and that which uses new
models of execution that require large amounts of explicit parallelism. Both categories
will require software to be rewritten to take advantage of their capabilities but the first
category will often take the form of extra functionality that can be added to existing core
designs whilst the second may require entirely new core design or the use of a co-processor.

3.3.1 SIMD

Single Instruction Multiple Data (SIMD) is one of the classes of computer architecture
in Flynn’s taxonomy [32]. In a SIMD architecture a single instruction stream is applied

CHAPTER 3. FINE-GRAINED COMPUTATION 49

to multiple data streams. A multi-core system would be described as MIMD, Multiple
Instruction Multiple Data, each instruction stream (i.e. thread) has its own separate
data. Single instruction single data, SISD would be a single core system and Multiple
instruction single data, MISD, systems are rarely encountered.

SIMD techniques can be very effective methods of fine-grained computation for certain
applications. They can achieve great parallelism at low overhead. This is achieved by
using a single instruction stream over multiple data streams. The overhead of fetching and
decoding instructions can be amortized by the multiple data streams that are operated on
in parallel. Anything involving a large degree of data parallelism should map well to them.
A notable SIMD implementation is Intel’s SSE and AVX instruction set[48]. The SSE
instruction set (there are multiple revisions, AVX is the latest of these) introduces wide
vector registers that can hold multiple floating point numbers at once, special instructions
operate upon them performing arithmetical and logical operations on each of the floating
point numbers at once (effectively the registers and instructions are like a separate co-
processor).

Another notable SIMD architecture is that of graphics processing units (GPUs). Origi-
nally designed as special purpose accelerators for computer graphics the expanding feature
set and increase programmability of the graphics pipeline designed to exploit the highly
data parallel nature of rendering has lent itself well to more general purpose tasks leading
to the rise of general purpose GPU (GPGPU) techniques [51].

The rise of GPGPU has led to NVidia producing GPUs targeted at high performance
computing, an architecture known as Tesla [66]. Telsa supports a very high number of
threads in hardware, supporting lightweight thread creation and zero-overhead scheduling.
It groups threads together into objects known as warps, which are the unit of scheduling.
When executing a warp an instruction is chosen to execute which is broadcast to all
threads. Each thread in a warp may branch independently but when this happens not
all threads will be executing the same instruction, so first the instructions for the threads
that have followed the branch will be broadcast, and the threads that did not follow the
branch will simply ignore the instructions and idle, before the threads that did take the
branch finish the branch and all threads will execute the same instruction together once
again. This means that any code that relies on a high degree of branching where each
thread may take different branches will map poorly to the architecture. Zero-overhead
scheduling is achieved by having multiple warps available and dynamically choosing which
to run at each clock cycle.

Some studies have achieved speed-ups of up to two or three orders of magnitude using
GPGPU hardware compared to CPU [92, 99] with others reporting more modest but
still impressive speed-ups of up to 40� [35]. These kinds of results have caused many to
turn to GPGPU as the solution for gaining greater performance. Lee et al. [62] studied
optimising a variety of kernels for both CPU and GPU and found that whilst well op-
timised GPU implementations did out perform CPU implementations the speed-up was
far more modest around 2.5� . One explanation for the great difference in speed-ups ob-
served could be that when writing software for a system that doesn’t inherently require
fine-grained computation a programmer doesn’t attempt to extract the full amount of
parallelism because it isn’t needed to get the software working. When writing for a GPU
the architecture forces the programmer into a fine-grained way of thinking, causing more

50 3.3. FINE-GRAINED HARDWARE

parallelism to be exposed in the code which can then be exploited.

3.3.2 Hardware threading

When exploiting fine-grained computation in software one of the critical issues was schedul-
ing, the overhead of the OS scheduler combined with a context switch is too high to
allow many fine-grained threads, lightweight task based systems were built on top of
heavyweight OS threads to combat this. Another approach is to add support for such
lightweight task based systems into hardware. Kumar et al. have proposed Carbon [57].
It augments each core with a local task unit (LTU) and introduces a global task unit
(GTU) used by all cores. The LTU and the GTU work together with ISA extensions to
implemented hardware task queues. A thread may enqueue a task, which will be sent
to the global task unit, LTUs prefetch tasks from the GTU, so when a thread on a core
is done with a task it may dequeue the next one from the GTU. The GTU is respon-
sible for scheduling tasks, choosing which task goes to which core, which is does via a
work-stealing algorithm. Carbon is found to give a large performance benefit over similar
software based systems and come close to an ideal hardware scheduler (one which can
enqueue and dequeue tasks with no latency).

An evolution of Carbon was proposed by Sanchez et al. [87]. They observed that Car-
bon imposes a single scheduling algorithm that may not always be optimal for a given
application. Furthermore Carbon introduces a number of hardware structures that serve
the single purpose of hardware scheduling. They proposed a hybrid scheme, using asyn-
chronous direct messages (ADM, discussed in the background chapter) that provide direct
exchange of small messages between threads in hardware. ADM is then used to imple-
ment a family of software schedulers. Threads were split into workers and managers, a
worker actually executes the program, enqueuing and dequeue tasks from a thread-local
software queue. The managers dealt with distributing and balancing tasks and to support
greater scaling were made into a hierarchy with higher level managers coordinating lower
level managers. When an ADM scheduler was tailored to the application ADM based
scheduling could outperform Carbon by up to 70%.

Another possibility for hardware threading is to support executing multiple threads at
once on the same core. Each thread has associated hardware state (registers etc.) and
a core has multiple copies of this state. So it can make a decision on which thread to
run each cycle. The Cray XMT [75] is one system that implements this and supports 128
threads per core. In order to simplify the pipeline it enforces that each thread may only
have a single instruction in the pipeline at once. So to get full performance out of the
system many threads are required and the system relies on this to help hide latency. The
UltraSPARC T2 [90], discussed in the background chapter, is another system implement-
ing hardware threading in the same manner, which supports up to 8 threads per core.
Unlike the XMT it allows multiple instructions from the same thread to be in the pipeline
at once, giving better performance at low thread counts.

The Anaconda architecture proposed by Moore [77], implements a sophisticated hard-
ware scheduler based around a priority queue which allows a hardware implementation of
earliest deadline first and fixed priority scheduling, which makes the scheduling system
suitable for real-time applications. The key to this scheduling mechanism is a hardware

CHAPTER 3. FINE-GRAINED COMPUTATION 51

sorter that can efficiently insert and extract from the hardware priority queue. This
scheduling mechanism is combined with the concept of data driven microthreads. Small
threads that begin execution when the data they need is ready, allowing a coarse grained
data-flow style of execution. A microthread is created by an activation frame which is a
structure held in memory (though usually will be found within a local cache) that gives
up to 16 input parameters for the microthread. Each input parameter has a matching
presence bit (stored as a 16-bit word at the beginning of the activation frame) when all
presence bits are set it is sent to the scheduler (a special store instruction is used to store
to the activation frame). Part of the activation frame gives a deadline or a priority that
is utilised by the scheduler.

3.3.3 Hardware transactional memory

Hardware transactional memory (HTM) is identical to STM (discussed above) in intent
but implemented architecturally. The large advantage of an HTM system is they can
have far less overhead than an STM system. A major source of overhead in STM is the
need to instrument memory accesses in HTM, as the hardware must execute the memory
accesses extra, instrumentation isn’t required.

HTM implementations often use the cache and its coherency mechanisms as a way to
track memory accesses and ensure transactions do not conflict as was done in the original
HTM implementation by Herlihy et al. [41]. This has the advantage of simplicity and al-
lows HTM to be implemented on an existing architecture without needing too many extra
features to be added but fails when a transaction overflows the cache or is long-running.
Damron et al [23] suggested the use of this style of HTM with a STM fallback. There also
exist unbounded HTM systems that effectively implement STM systems fully in hardware
[6] however these have a high degree of complexity. Sun created a commercial implemen-
tation of HTM in the Rock processor [17] however the development of it was cancelled.
Intel have recently revealed the Transactional Synchronization Extensions (TSX), which
will be available in the Haswell processors [49] which provided HTM support but based
around detecting conflicts between cache line accesses, with the limits that implies.

HTM could enable the fine-grained possibilities transactional memory promises without
the overheads of STM. However current approaches are limited or too complex, so it has
seen little take-up in commercial processor implementations. With Intel’s inclusion of
TSX in its new architecture transactional techniques may become more popular but due
to TSX’s limitations could not replace more traditional synchronisation entirely.

3.3.4 Hardware synchronization

Specialised hardware can be introduced that supports low overhead fine-grained synchro-
nization. Zhu et al. [107] proposed the synchronization state buffer. Based on the idea
that at any given instant only a small fraction of memory locations are currently par-
ticipating in synchronization a small buffer (the synchronization state buffer or SSB) is
attached to the controller of each memory bank. This buffer manages the state of actively
synchronizing memory, it consists of a number of entries associated with an address. Each

52 3.3. FINE-GRAINED HARDWARE

entry manages the synchronization state of its associated address via a variety of locking
methods. New instructions are introduced that can interact with the SSB allowing the
creation of locks associated with a particular address. An entry is only required whilst at
least one thread is using the lock so provided the locks are fine-grained and the critical
sections short the small size of the SSB should not be an issue. Still a software fallback
mechanism is required for the cases where the buffer does overflow. SSB is demonstrated
to scale well as well having a small overhead compared to other lock implementations
(using test and set or compare and swap).

Ributzka et al. [85] extended the SSB concept (to produce the E-SSB) to allow a non-
strict approach to fine-grained synchronization where a consumer can read a value before
a producer has produced it. The consumer will only have to wait when it actually uses
the value if the producer has yet to produce it rather than stall at the point of reading the
value waiting for it to appear. When a store (a special store instruction is introduced for
using the E-SSB) is executed an entry in the E-SSB is created showing it has occurred. A
matching load looks for this entry if it finds it the data is returned and the thread continues
as normal. If the load occurs before the store no entry is found, so no data is returned
but the thread requesting the load and the register destination is noted. Scoreboarding
is used to allow the thread to continue until it actually uses the loaded value. In the
meantime if the store has occurred then the data will have been returned and the thread
will not stall, otherwise it will wait until the store happens. The implementation of the
E-SSB achieved very good scalability and outperformed other synchronization constructs.

Tullsen et al. [100] examined the basic mechanism of a spin-lock, when a thread repeatedly
checks the value of a word. A particular value indicates that the spin-lock has been
acquired by another thread and another value indicates that nothing has acquired the
spin-lock. By using an atomic operations such as a compare and swap (CAS) a thread
can observe the spin-lock is not acquired and acquire it. If it fails to acquire it it tries
again. The main issue is the repeated spinning, whilst a thread is waiting on the spin-
lock it is wasting execution resources as well as generating needless memory accesses,
potentially competing with another thread for access to the cache. This spinning aspect
was removed by introducing the lock-box. A processor core has one lock-box per hardware
thread which contains the address of a lock, a pointer to an instruction and a valid bit.
When a thread wishes to acquire a spin lock it uses a specialised acquire instruction. This
proceeds to acquire the spin-lock as usual but if it fails instead of spinning it writes the
address of the lock and the address of the just executing acquire instruction to the lock
box and the thread is paused from execution. When another thread releases a spin-lock
with a specialised release instruction the address of the released lock is checked against all
of the valid lock-box entries, if any matching entries are found the corresponding threads
are woken up.

The lock-box scheme was evaluated using a SPEC benchmark, espresso, and some liv-
ermore loops. All of these contains loops that can be parallelized but only if the syn-
chronisation used has a small overhead. They found the lock-box scheme allowed parallel
speed-ups on four out of five of the loops examined where no speed-up would be possible
on a more conventional multiporcessor. The lock-box scheme also has the advantage of
being straight-forward and doesn’t need massive architectural change. However it relies
on all lock-boxes being made aware of any lock releases that effect them. This presents

CHAPTER 3. FINE-GRAINED COMPUTATION 53

a challenge to scaling, but it is a very similar problem to the one faced by any cache
coherence mechanism so any large multi-core system that had a cache coherence system
could likely use it to implement a scalable lock-box scheme.

Kag̈i et al. [52] looked at a variety of spin-lock based synchronisation mechanisms and
found the most effective of these to be queue on lock bit (QOLB). QOLB, like Tullsen’s
lock-box aims to avoid the needless work created by a thread that is spinning waiting to
acquire a lock. When a processor attempts to acquire a spin-lock it receives a shadow
copy of the cache line that holds the lock, it spins on this shadow copy, avoiding unnec-
essary memory accesses and network traffic. A hardware queue of waiting processors is
maintained by holding queue entries in the cache line. When a processor releases a lock
it can give it to the next processor in the queue. Kag̈i et al. concluded that QOLB has
consistent and large performance gains compared to all of the other locking techniques
they studied. Whilst QOLB is clearly an effective mechanism it does rely on the in cache
queue entries. If you wish to allow many threads on a single processor the basic QOLB
mechanism will not be effective. If several threads on the same processor are attempt-
ing to acquire the lock they will still interfere with each other and other threads on the
same processor. The single queue entry in the lock’s cache line can only point to a single
other processor, it isn’t sufficient for storing a queue where multiple threads on a single
processor may be in it.

The Stanford DASH Multiprocessor [64] which is an multiprocessor architecture that
utilises directory based cache coherency contained a specific optimisation for locking.
The directory held information on what processors were spinning on a lock. When the
lock was held each processor would be spinning on a local copy of the lock, the issue is
when the lock is released all copies of the lock would be invalidated and re read, causing
much needless network traffic. Instead a single waiting cluster of processors can be chosen
at random from the knowledge in the directory of what is spinning on a particular lock,
only that cluster needs to be informed of the lock release avoiding needless network traffic.

A common theme amongst the variety of hardware based synchronization mechanisms
is the idea of extending or augmenting the set of memory operations. Solomatnikov [94]
proposed a general scheme called Smart Memories. Where by introducing a programmable
aspect into the operation of on-chip memory a variety of different synchronisation and
communication mechanisms can be employed. The Smart Memories architecture divides
up a multiprocessor into a number of quads, each of which contained four tiles with a single
protocol controller that can execute basic memory system operations and coordinates
memory accesses inside the quad. Each tile consists of two cores and a configurable
memory. The configurable memory consists of an array of data words and associated
metadata bits. Programmable logic is used to modify precisely how this memory array
is accessed, the metadata bits are fed into the logic as well as updatable by it (e.g. you
could program the configurable memory to disallow writes to all data words with a certain
metadata bit set). More specialised comparator and pointer logic allows the use of the
memory array as tag storage for a cache or as a FIFO.

The Smart Memories Architecture was used to implement shared, streaming and trans-
actional memory models. The shared model is a implementation of a standard broadcast
based MESI cache coherence protocol. The streaming model is one where cache coherency
is not used, software managed local memories along with DMA are utilised instead. The

54 3.3. FINE-GRAINED HARDWARE

transactional memory model implements a transactional memory system with a hybrid
model, hardware provided primitives and used by software to build a full transactional
memory system. In each case the Smart Memories Architecture can be used to implement
an effective example of the model and due to the flexible nature of the system the models
can be easily tuned to improve them without the need for architectural changes. A direct
comparison was done between the streaming and shared memory models for a range of
applications, some applications performed better with a streaming memory model, others
with a shared memory model. The advantage of smart memories is both can be used to
their best effect.

In the shared memory model the metadata bits were utilised to give fast fine-grained
synchronisation using the concept of full / empty bits discussed below. New load and store
instructions allowed a processor to be stalled waiting for a word to become full or empty.
The implementation of this was tested by recompiling one of the benchmarks (a hypersonic
flow simulation) to use the new instructions for access to shared data structures. The
benchmark is unusual in that whilst locks should be used to access these structures they
aren’t necessary. This is because it involves a statistical averaging of many steps the data
races that occur without locks don’t significantly effect results. The recompiled version
using full / empty bits did not differ significantly in performance from the version which
had no locking.

Whilst the Smart Memories Architecture is extremely flexible that flexibility incurs a
cost in both extra area required for the smart memory implementation but more crucially
in complexity. The advantages of being able to implement a wide variety of memory
and synchronisation models to suit your specific application are obvious but offering such
a large range of functionality can lead to complex programming environments and in-
tractable debugging issues. These can be lessened by having an operation system use the
general functional to provide a restricted set of well defined primitives, but if they suffice
a simpler, smaller, architecture implementing precisely those primitives may have been a
better option.

3.3.5 Full / empty bits

The concept of a full / empty bit is an old one. An early example of their use can be found
in the HEP system [93], every word in memory in the HEP had an associated full / empty
bit. When loading a value a load instruction could wait for the bit to become full or when
storing the store instruction could wait for a bit to become empty. This allows fine-grained
synchronisation at a word level without any limits imposed by hardware structures other
than the ultimate limit of available memory (The E-SSB described above enables the
same style of computation but with a limit imposed by the size of the hardware buffer
used).

A far more recent architecture that utilises full / empty bits is the Cray XMT [75]. The
XMTs support of full / empty bits is vital for its threading model which relies on a high
degree of parallelism. A particular thread can spin (continuously polling until it sees
the value it wants) on a full /empty bit, trapping to software after a while to allow the
operating system to deschedule it.

CHAPTER 3. FINE-GRAINED COMPUTATION 55

Li et al. recently introduced the Lightweight Chip Multi-Threading (LCMT) architecture
[91]. It utilises hardware scheduling with a tagged memory. Threads have an in-memory
representation consisting of their current register contents that can be swapped in and
out of a register file. Every word is tagged with an extension bit (xbit), which serves a
similar purpose to full / empty bits. A thread reading a word with an unset xbit can stall
and be descheduled, waiting for the word to be written. However only a single thread
can stall waiting for a word to be written. In the case of multiple threads reading a word
with an unset xbit the LCMT architecture traps to a software handler.

The Godson-T [26] is a recent multi-core architecture, based on MIPS. It offers full /
empty bit based synchronisation. However instead of tagging all of memory with full /
empty bits they are only included within the cache, so synchronisation using them must
happen on words currently in the cache. Any thread waiting for a location to become full
must spin waiting for the bit to become set, there is no direct interaction with a hardware
scheduler.

Full / empty bits are utilised in the Mamba architecture, but throughout this dissertation
they are referred to as presence bits.

3.4 Summary

In order to achieve scalability in the face of increasing core counts Amdahl’s law tells us
we must maximize available parallelism. Fine grained techniques are an ideal way to do
this by encouraging a programmer to expose as much parallelism as possible. However
the scalability of a fine-grained system is limited by the overheads of the scheduling
and synchronisation system used. It is vital that these are kept as low as possible to
allow good scalability. One way of achieving the low overhead needed is to implement
suitable primitives in hardware, however if this involves a limited hardware resource this
places limits on how the primitives can be used. Whilst software fallback is possible
a balance needs to be struck between excessive consumption of resources and limiting
performance due too much reliance on the fallback. A software fallback system can also
complicate programming, separate code paths may need to be provided to deal with the
cases hardware cannot. On the other hand full hardware implementation may add great
complexity to the design as demonstrated by boundless HTM implementations. Ideally a
hardware provided mechanism should be simple enough that full limitless implementation
does not great complexity but also should be flexible enough to deal with a large range
of possible synchronisation scenarios.

In this chapter the overheards of synchronisation and scheduling are presented as the
ultimate barrier to software scaling in multi-threaded and multi-core systems. A variety
of hardware and software systems for reducing this overhead to allow the creation of fine-
grained systems are discussed. In the next chapter Mamba is presented, a new fine-grained
architecture designed for producing highly scalable fine-grained software.

56 3.4. SUMMARY

Chapter 4

Mamba architecture

4.1 Overview

This chapter presents the Mamba architecture. It is a multi-core architecture aimed
at the challenges of the multi-core era. Mamba offers a lightweight hardware managed
threading model to allow the use of fine-grained techniques encouraging software that
scales gracefully as the number of cores available with each silicon technology generation
increases.

Mamba uses presence bits. Each word in memory has an extra presence bit that indicates
whether or not data is present at that location. A thread that loads an empty word can
be descheduled, only becoming ready again once the non-present word it attempted to
load becomes present. This is a simple mechanism, not requiring much extra complexity
in hardware but can be used for a wide range of synchronisation tasks (see the software
techniques chapter). A key part of the architecture that makes presence bits effective is
the hardware managed ready queue used by the scheduler, this is backed by main memory
so it doesn’t impose any artificial limits on software.

Mamba is based on ideas from an earlier architecture, Anaconda, proposed by Moore [77]
and discussed in the Fine-Grained Computation chapter. Much like Anaconda Mamba
represents a thread using an activation frame, an in-memory representation of a thread.
Activation frames are written to with a special store instruction, when all presence bits
on a activation frame are set that may be scheduled by the hardware scheduler. The
major differences between Mamba and Anaconda lie in the scheduling system and usage of
presence bits. Anaconda aims to support real-time applications so requires a sophisticated
scheduler utilising a priority queue to support earliest deadline first and fixed priority
scheduling. Mamba does not aim to support real-time applications so implements a
simple FIFO scheduling scheme. Anaconda utilises the idea of microthreads, a thread
which does a small amount of work before spawning further threads with its results,
giving a coarse-grained data flow method of execution. Whilst Mamba is capable of this
it is expected that many threads in the system may be long lived, though may spend
large periods descheduled waiting for an empty word to become present. Mamba also
utilises presence bits over the entirety of memory, in Anaconda they are only used within
activation frames.

57

58 4.1. OVERVIEW

Mamba has been implemented on FPGA, using high speed serial links to connect mul-
tiple FPGAs together to simulate a single multi-core processor. Each Mamba core is a
simple, scalar, in-order core supporting fine-grained multithreading allowing it to run 8
threads at once. Mamba is based on the MIPS64 ISA [74] that has been extended to
support Mamba’s threading, communication and synchronisation features. The evalua-
tion of Mamba compares it to a MIPS64 implementation that lacks these features but
is otherwise identical. The aim of the evaluation is to demonstrate the utility of these
features in enabling good software scaling and ease of fine-grained concurrency (which is
the thesis of this dissertation).

Implementing the architecture on FPGA as opposed to constructing a simulation of it
in software was chosen for two reasons. An FPGA implementation, even if it is two
orders of magnitude slower than an ASIC implementation is still fast enough to actually
run benchmarks with full dataset sizes. A software simulation, especially as the core
count increases severely limits the evaluation possibilities. An FPGA implementation
also provides strong evidence that the architecture can be realised.

4.1.1 Interconnect

Mamba uses a 2D mesh topology to connect cores. Two separate networks are used, one
for requests and another for responses to avoid protocol deadlock. Both networks are
otherwise identical, dimension ordered routing is used with on-off flow control between
routers on an FPGA. Connections between FPGAs are accomplished with high-speed
serial links. This setup has two major advantages. Firstly it is flexible, further cores
can be simply added into the mesh with no changes needed due to the simplicity of the
topology and the routing. Secondly it is ordered, messages between two cores will be
received in the order they were sent, whilst other topologies and routings may be able to
better deal with congestion this can disrupt message order which has an impact on the
memory consistency model.

4.1.2 Architectural communication

Mamba does not directly expose the interconnection network to software. It presents
a single shared memory space to all cores but it doesn’t implement a cache coherency
protocol or more accurately it implements a null cache coherency protocol. Caches are
always coherent without the need for a protocol. This is accomplished by only allowing
a cache line in memory to be cached in one particular place (that cache owns that line),
any core accessing memory in a line that its cache doesn’t own must send that memory
request to the remote cache that does own the line where it will be serviced. Memory
is thus divided into a local area and a remote area with a trivial mapping between an
address and the core that owns that address. This is a hardware implementation of a
PGAS style programming model and gives software direct control over all communication
that occurs, a local access goes to the local cache, a remote access goes to the remote
cache (with communication cost directly proportional to the distance between the local
and remote cores). Direct access to the interconnection network gives similar control over

CHAPTER 4. MAMBA ARCHITECTURE 59

communication however it allows the possibility of deadlock that must be dealt with in
software.

Another advantage of the simplistic coherency model combined with the in-order delivery
of the network is consistency. As all messages between a core and a cache will be received
in the same order they were sent and the cache processes all requests in a sequential order
sequential consistency is maintained in each core’s memory area, sequential consistency
is not maintained between memory locations that are placed in two different places.

A key part of any communication is the notification that communication has occurred, not
all communication may require data, but all communication does require some indication
that it has actually happened. Mamba supports this via the concept of presence bits, also
known as full/empty bits. Every 64-bit word in memory has an extra bit. When this bit
is set the word is said to be present, writing to a word sets that word’s presence bit. There
is a mechanism that allows a thread to block on loading a word that is non present, with
the thread only being woken when another thread writes to the word setting the presence
bit (this mechanism is discussed in detail in the this chapter). This provides a primitive
synchronisation mechanism allowing fine grained notification, locking and the ability to
exploit data parallelism.

4.1.3 Software

Each Mamba core supports up to 8 active threads in hardware and has a hardware sched-
uler. A thread is represented in memory by an activation frame (AF) and the hardware
scheduler of a core will run any ready AF that is placed in the core’s local memory,
this makes it cheap to create new threads. Combined with the ability to wait on a non-
present word and the efficient hardware context switch efficient fine-grained programming
becomes possible. This model also scales well, splitting the same amount of work up be-
tween more threads doesn’t necessarily have much of a performance impact. Encouraging
software to split computation into many threads like this leads to software that scales
with an increasing number of cores without the need to revise the software.

Presence bits provide a general mechanism for thread notification. A thread is able to
wait and be descheduled until it is signaled by the word it is waiting on being written
to. As a thread does not need to invoke an operating system to be descheduled pending
some event notification has a very low overhead. This allows simple, flexible fine-grained
synchronisation and easy exploitation of data parallelism. A structure called a notify
chain (described in the chapter on software techniques) is proposed to deal with general
notification.

4.2 The programming model

Mamba is programmed with a MIPS64 based ISA, only the user mode component of
MIPS64 is included. The programming model has two major features that are not part
of MIPS64.

60 4.2. THE PROGRAMMING MODEL

Hardware Threading Mamba supports a number of hardware threads limited only by
the size of memory available. Threads are represented in memory by an activation
frame (AF) which holds the current register values for the thread, the program
counter and an exception status word (ESW). This is all of the state required by a
thread.

Presence Bits Every 64-bit word in memory has an associated presence bit. This is
used as a fine-grained synchronisation and notification primitive. A thread which
attempts a load of a non-present word will stall until it becomes present. A hardware
scheduler deals with descheduling threads when they are waiting for a word to
become present and scheduling them again when it does become present.

A Mamba system consists of a number of nodes connected in a grid network. Each node
has a single processor core that executes up to 8 threads at once and is assigned an area
of the global address space, referred to as the node’s local address space (or the space
the node owns). Any time a thread executes a load or store instruction if it targets a
non-local address a message will be sent across the network to the node that owns that
address and the memory access will be performed via its cache. Any accesses to the local
address space will be done via local cache with no messages sent across the network. As a
result remote accesses will be slower than local accesses, but a programmer can precisely
control when communication occurs across the network by choosing where to place their
data.

4.2.1 Activation frames

An activation frame (AF) is a representation of a thread and is a 32x8 byte block of
memory. This has the current register values, program counter and exception status word
(ESW), explained in further detail below, of the thread (see figure 4.1). An AF that
has all of its presence bits set is a ready AF, one that represents a thread that can be
run. It will be placed in the ready queue, a structure managed by a hardware scheduler.
A thread, represented by an AF, is run in a context, a hardware resource, there are 8
per core so up to 8 threads may be running in a core at any time. An AF is placed in
some node’s local address space, the thread it represents will only run at that node. The
hardware scheduler deals with scheduling and descheduling threads as appropriate.

To create an AF the contents of it are written to a 256-byte aligned blocked of memory in
the local space of the node that has been chosen to run the thread it represents. A special
store instruction SDA exists to write words to a new AF. It signals to the processor that
after doing the store it should check the presence bits of all words within the AF and add
it to the scheduler’s ready queue if they are all set. When a thread is done it can destroy
the AF (that is ensure it will no longer be scheduled and allow the memory to be reused)
by executing an instruction that branches to itself.

As each register in a thread is represented by a word in its AF every register is effectively
addressable. The register file can be seen as a specialised cache that holds the contents
of the activation frame whilst the thread is running. A load or store targeted at an AF
whilst it is currently occupying a context (i.e. the thread it represents is being executed)

CHAPTER 4. MAMBA ARCHITECTURE 61

PC

AT

v0

ESW

RA

Word

0

1

2

28

31

Figure 4.1: An activation frame, PC is the program counter, ESW is the exception status
word, AT, v0 and RA are specific MIPS registers (which is what fills the unlabeled slots)

may interfere with the execution of that thread, potentially causing it to stall forever.
Loading or storing to an AF that doesn’t currently occupy a context but is either in the
ready queue or waiting for a word to become present may also interfere with the execution
of that thread. Because of this between the point the AF is created with SDA and the
point it destroys itself by an instruction that branches to itself the result of any memory
access to that AF is undefined.

4.2.2 Presence bits

Every load or store interacts with a presence bit. There is one presence bit per 64-bit
word, an access less than 8 bytes to a non-present word is considered an invalid operation,
further details are given below. A load of a present word acts normally, as soon the data is
read from cache it is returned to the thread executing the load so it can use it immediately.
A load of a non-present word causes the thread that triggered the load to be stalled, but
only at the point it attempts to use the data. A store to a non-present word sets the
presence bit as well as writing the data and waking up any thread that was waiting for
the word to become present.

As well as every 64-bit word, every register has an associated presence bit. When a thread
uses a register that is non present it will cease executing until it becomes present. The
register presence bits are taken from the presence bits of the corresponding words in the

62 4.2. THE PROGRAMMING MODEL

AF. So when an AF is first created and the thread it represents runs all registers will
be present. When a load instruction is executed the destination register for the load
becomes non-present. When the load has completed the result will be written into the
destination register and it will become present again. A load in Mamba is non-blocking
so the thread will immediately execute the instruction following the word even if the load
has not completed. In the meantime accessing the load’s destination register will cause
the thread to wait. This is the basic mechanism that allows a thread to wait upon a
word becoming present, it will attempt to load the word to a certain register, when the
thread tries to use that register it will pause, potentially becoming descheduled. When
something else writes to the non present word the write will be forwarded to the currently
non present destination register. This will make the register present again so the AF it is
in will have all of is presence bits set so it becomes ready allowing it to be scheduled.

When a load occurs to a non-present word we want the response to that load to be
generated when something writes to that non-present word. This is accomplished by the
load writing the address of its destination register into the non present word (leaving
the present bit unset). An address stored like this in a non-present word is known as a
forwarding address. When a store occurs on that non-present word a read response is sent
to that forwarding address. A special sentinel value (1, a non valid forwarding address as
it’s not 8-byte aligned) is used to indicate no forwarding address is present.

A problem occurs when a second thread attempts to load the same non-present word. A
forwarding address is already written to it so it’s unable to write its own (if it did then the
first thread would never receive its read response and never get woken up). In this case a
special response is sent back to the thread targeted at the destination register of the load.
This special response is known as a read exception and will set a bit in the exception status
word (ESW) corresponding to the register it’s targeted at as well as setting the presence
bit of the register (so the thread can continue to run). There are two styles of load with
different exception behaviour. With LD, the normal load, a read exception being received
will cause the thread to jump to an exception handler. With LDNR (load expecting no
return) a read exception will only set a bit in the ESW, the software is responsible for
checking the ESW after an LDNR to see if the load succeedethesis.pdfd or not. The
instruction used to examine the ESW (which is a move from coprocessor instruction)
specifies the particular bit that is wanted. The processor will pause the thread if it
attempts to read the ESW whilst there is still an outstanding load (that is one that has
yet to receive either a read or exception response) for the register that corresponds to the
bit specified. So LDNR is used in situations where the software would expect there to be
multiple threads attempting to access the same non-present word and has a mechanism
to deal with that situation. LD is used where the software would not expect multiple
threads to access the same non-present word. Exception handlers are only expected to be
used to provide safety (if instead no new forwarding address were inserted and no response
were sent on an LD to a location that already has a forwarding address then the thread
would wait forever), not as part of a mechanism to deal with multiple consumers of a
single non-present word. LDNR should be used in all cases where the software would
expect any possibility of multiple consumers (and have a mechanism to deal with them,
one such mechanism, notify chains are discussed in the software techniques chapter).

There is one more style of load, the vacating load VL. The vacating load clears the

CHAPTER 4. MAMBA ARCHITECTURE 63

presence bit of the word it operates upon, if the presence bit is already unset then it
returns a read exception, which like the LDNR instruction will just set the appropriate
bit in the ESW but doesn’t trigger an exception handler. The software is responsible for
checking the ESW after an VL and taking appropriate action if it failed.

To summarise, loads and stores work as follows:

Load (Figure 4.2) Loads from a particular address (A) to a destination register with
address (R). When a load is processed the presence bit of A is checked, if it is:

� Present — A read response is sent to the return address (R) with the contents
of the word.

� Non Present — The contents of the word are checked, if it is a sentinel value,
the return address of the load is written into the word and nothing else is done.
If the sentinel value is not there (The sentinel value is a particular invalid return
address), then some other load request has already written its return address
into this word and an exception response is immediately sent. Upon receiving
an exception response the bit corresponding to the destination register is set
in the ESW, if the response was triggered by an LD an exception handler is
triggered, if the response was triggered by an LDNR software is responsible
for checking the ESW and taking appropriate action

Store (Figure 4.3) Stores data (D′) to a particular address (A). When a store request is
processed the presence bit of the corresponding word is checked, if it is:

� Present — The contents of the word are overwritten with the new data, nothing
else is done.

� Non Present — The presence bit is set and the current word contents are
checked. If the sentinel value is there, nothing further is done. Otherwise a
load return address is there and a load response with the store data is generated
to that address.

Vacating Load (Figure 4.4) As with the standard load above, the vactating load loads
from a particular address (A) to a destination register with address (R) but it also
clears the presence bit of the A when it does. When a vacating load is processed
the presence bit of A is checked if it is:

� Present — A read response is sent to the return address (R) with the contents
of the word and the presence bit of A is cleared

� Non Present — A read exception is sent to the return address (R), this will
set the corresponding bit the ESW but it won’t trigger the exception handler.
Software must check the ESW after a vacating load and take appropriate action
if it failed.

Mamba also introduces two instructions for manipulating presence bits, test and set TAS
and test and clear TAC. Like a load these are given a memory address and a destination
register. They will set or clear the presence bit respectively at the given address and return

64 4.2. THE PROGRAMMING MODEL

Before Load After Load Response To Load

1 D 1 D R D

0 S 0 R None

0 F 0 F R Exception

Figure 4.2: Detail of LD and LDNR operation. D is the data stored at the word being
loaded, S is the sentinel value, R is the return address of the load and F is an already
existing forwarding address. 0 refers to a non-present word, 1 refers to a present word

Before Store After Store Response To Store

1 D 1 D’ None

0 S 1 D’ None

0 R 1 D’ R D’

Figure 4.3: Detail of store operation. D is the data stored at the word being loaded, D′

is the new data being stored, S is the sentinel value, R is a forwarding address. 0 refers
to a non-present word, 1 refers to a present word

the state of the presence bit before it was altered to the destination register. When we
TAC a present word as well as clearing the present bit we write in the sentinel value.
When we TAS or TAC a non-present word we check what is stored there. TASing
or TACing a non-present word that has a forwarding address is not allowed so if it is
anything apart from the sentinel value a read exception is sent to the destination register
of the TAS or TAC.

A final new instruction is MYAF, this is given a register number and computes the
address of the register within the AF of the thread that executes the MYAF.

All of the new instructions introduced in this section along with the different loads and
stores are summarised in table 4.1.

Before Load After Load Response To Load

1 D 0 S R D

0 X 0 X R Exception

Figure 4.4: Detail of VL operation. D is the data stored at the word being loaded, S is
the sentinel value, X is whatever is stored in the non-present word, R is the return address
of the load and F is an already existing forwarding address. 0 refers to a non-present
word, 1 refers to a present word

CHAPTER 4. MAMBA ARCHITECTURE 65

Mnemonic Description

LD Load instruction, clears presence bit of destination register when exe-
cuted, it will result in a read response if the location being loaded is
present, if not present a exception response will be generated if the non-
present word already has a forwarding address. This exception will set a
bit in the ESW corresponding to the destination register and trigger the
exception handler.

LDNR Load instruction identical to the above apart from a exception response
will only set a bit in the ESW and won’t trigger the exception handler

VL Vacating load instruction, operates similarly to the other two load in-
structions apart from it clears the presence bit of the word it is loading.
If the presence bit is already clear then an exception response will be
sent which will set the appropriate bit in the ESW but doesn’t trigger
the exception handler.

SD Store instruction, if the word being stored to isn’t present then its con-
tents will be checked. If it doesn’t contain the sentinel value then a read
response with the write data will be sent to the forwarding address stored
in the non-present word.

SDA Store to AF, works exactly as the store instruction above but in addition
checks the presence bits of every word in the AF being stored to. If they
are all set then the AF is ready and is placed on the scheduler’s ready
queue to be run.

TAS Test and set. Sets the presence bit of a particular word and returns the
state of the bit before setting to the destination register. Executing a
TAS on a non-present word that doesn’t have the sentinel value stored
in it is an error and will result in a read exception.

TAC Test and clear. Clears the presence bit of a particular word and returns
the state of the bit before clearing to the destination register. If clearing
the bit of a present word it writes the sentinel value into the non present
word. As with TAS a TAC of a non-present word that does hold the
sentinel value results in an exception.

MYAF AF computation, given a register number computes the address of the
register in the AF of the thread that executes the instruction.

Table 4.1: The new Mamba instructions

4.2.3 Initialisation, exception handling and cleaning up

Presence bits present a new hazard with regards to uninitialised memory or memory with
uncertain contents. Simply loading or storing an address which has a presence bit in an
uncertain state may cause unwanted side effects. If it is not present then a load may cause
a thread to wait forever (as potentially nothing may ever store to it) and a store may
trigger a read response to be sent when one is not needed (if the word has a value other
than the sentinel value in it when not present). To avoid these issues when first using a
piece of memory the presence bits must all be set before any loads or store occur to that
memory. A special set presence bit operation is provided to do this. It sets 256 presence

66 4.3. THE MAMBA SYSTEM

bits of 256 words aligned on a 2 kilobyte boundary at a time. The operation is triggered
via a move to coprocessor operation.

Non-present registers also present a difficulty for exception handling. An exception han-
dler should save any registers it needs to use before altering their contents so their value
can be restored later. However if any of those registers is non-present the thread will wait
until they become present which will take an indeterminate amount of time. To avoid this
an exception handler may use three reserved registers k0, k1 and k2. These are not saved
in the AF but are present in the register file (they are register numbers 26, 27 and 28, the
LO, HI and ESW are stored in these AF slots but they are elsewhere when an AF occupies
a context so there are three spare spaces in the register file that can be used for k0, k1 and
k2). An exception program counter (EPC) is also maintained when an exception occurs
which gives the instruction to jump back to when the exception handler is done. This is
also not saved in the AF. Because of the existence of the EPC and reserved kn registers
when an exception is triggered in a thread it is pinned into the context it occupies and
will not be swapped out until the exception handler is done.

Finally there is also a hazard with killing and reusing AF memory. If an AF simply
added itself to the back of some free memory list when it was done and then killed itself
a race condition is introduced. Another thread could potentially grab the AF from the
free memory list and reuse its memory for some other purpose before it properly kills
itself. In this case the AF may still be in the register file or may be scheduled later and
as described above the result of performing a load or store on such an AF is undefined.
When a thread wishes to kill itself it must first ensure that all of its registers are present.
It could do this by issuing a series of add instructions with the zero destination register
(which would discard the result) with each register as operands in turn, but usually either
all registers will be known to be present at the point the thread kills itself or those that
might not be present can be confined to a small subset. Then the thread’s AF can be
added to a free list. A special operation (conducted via a move to coprocessor instruction)
is introduced that removes the AF from the register file but doesn’t actually copy any
register values over nor stop the thread. The result of this is any load or store targeted at
the AF that occurs after this instruction will be sent to the memory which is safe. After
this instruction has occurred the thread cannot perform any further loads (any response
from the load would not come back to the register file), it can use a final store to set a
flag which will indicate that the AF newly added to some free list is now safe to reuse.

4.3 The Mamba system

A Mamba system consists of a number of nodes connected in a grid network (see figure
4.5). Each node comprises of a processor core, data, presence bit and instruction caches
and two network routers. In this section we discuss the micro-architecture and imple-
mentation of the processor core in detail. The cache is a standard direct-mapped design
so doesn’t warrant much discussion. The network design and implementation was taken
from elsewhere so its characteristics and its use by a Mamba node is discussed, but the
actual implementation is only briefly presented.

The major parts of a Mamba node are:

CHAPTER 4. MAMBA ARCHITECTURE 67

Node
0

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

Processor
Core

Presence
Bit Cache

Data
Cache

Instruction
Cache

Request Network

Response Network

Figure 4.5: A 3x3 Mamba System

The processor core A simple in-order core implementing a MIPS64 ISA with a 4-stage
pipeline. It has 8 register files so 8 threads can be run at once in a fine-grained
manner.

The instruction, data and presence bit caches The caches are identical in struc-
ture. They are direct mapped, with a 32-byte line size (the same size as a DDR
burst), write back with write on fetch policy. The data and instruction caches are
16KB each, the presence bit cache 4KB.

The network routers To avoid deadlock two networks are used, one for requests, the
other for responses. The two routers connect the node into these two networks.

68 4.4. THE PROCESSOR CORE

4.4 The processor core

A detailed diagram of the processor can be seen in figure 4.6. The diagram shows the
data flow inside the core, which has been classified into three types

Memory Actions A memory action is a packet of data that describes an action to
be performed upon memory (for example ‘read doubleword’ would be one possible
memory action) and may represent a request or a response. A response will be
generated by certain requests (for example any read will generate either a response
with data resulting from the read or a read exception). All memory actions have a
target address. They are described in further detail below.

Internal Data Data flow inside the core excluding memory actions. This includes
data going between pipeline stages and reads and writes to caches.

External Data Representing a connection external to the core, the request and
response networks, the DDR memory system and the Avalon IO bus are all external
systems that are connected in to the core.

The core consists of several parts, brief descriptions of them are:

Scheduler, Context Queue, Ready Queue, Sequencer The scheduler chooses which
of the 8 running threads to begin executing in a given cycle as well a deciding when
to swap a currently running thread for a ready thread. The context queue contains
contexts which represent a currently running thread. The ready queue contains AF
addresses of threads that are ready to run. In order to support a number of threads
bounded only by memory size the ready queue can spill over into DDR memory. The
sequencer is responsible for managing a context switch when we swap a currently
running thread for a ready thread.

IF,DE,EX,WB These are the four pipeline stages.

RF This is the register file, it contains 8 copies of each register and 8 program counters,
one for each context.

Local Requester This is responsible for routing memory actions from several sources
(sequencer/EX stage, network, RF, local memory) to the correct destination.

Local Memory This takes memory actions destined for this core’s node and enacts
them.

I$, D$, P$ These are the caches, the instruction, data and presence bit caches respec-
tively.

Prof This is the profiling unit, it looks at completed instructions and updates various
performance counters as appropriate.

CHAPTER 4. MAMBA ARCHITECTURE 69

S
ch
ed
u
le
r

IFI$

D
E

E
X

IO

L
o
ca
l

R
eq
u
es
te
r

L
o
ca
l

M
em

or
y

W
B

P
ro
f

S
eq
u
en
ce
r

R
F

D
$

P
$

T
o
D
D
R

R
ea
d
y

Q
u
eu
e

C
on

te
x
t

Q
u
eu
e

R
eq
u
es
t
N
et
w
or
k

R
es
p
on

se
N
et
w
or
k

T
o
A
va
lo
n
B
u
s

T
o
D
D
R

T
o
D
D
R

M
em

or
y
A
ct
io
n
s

In
te
rn
al

D
at
a

E
x
te
rn
al

D
at
a

F
ig
u
re

4.
6:

T
h
e
M
am

b
a
p
ro
ce
ss
or

co
re
,
li
n
es

an
d
ar
ro
w
s
il
lu
st
ra
te

th
e
d
at
a-
fl
ow

,
co
n
tr
ol

is
om

it
te
d

70 4.4. THE PROCESSOR CORE

4.4.1 The pipeline

The core will execute up to 8 threads at once. This is accomplished by having 8 separate
register files and program counters. A context is a particular register file and program
counter (PC). So a currently running thread occupies one of the 8 contexts. The scheduler
is responsible for deciding which context should enter the pipeline in a given cycle. It
does this in a simple round-robin order. Context numbers are enqueued into the Context
Queue, the context to be run for a given cycle is simply the one at the head of this queue.
Once a context enters the pipeline its number is only enqueued back on to the tail of the
context queue once the instruction from that context has been through the pipeline. By
doing this we ensure no data or control hazards occur because a given context will have
either zero or one instructions in the pipeline at any point. Scheduling is discussed in
further detail below.

If a particular instruction is unable to complete for whatever reason (A source register
may not be present, or it may not able to generate a needed memory action or IO request)
then the PC for the associated context is not updated, so the instruction will be tried
again until it succeeds, effectively stalling the context only, not the entire pipeline.

The core is built around a 4-stage pipeline, the stages are:

IF - Instruction Fetch Given a context number from the scheduler, fetches the instruc-
tion pointed to by the current program counter (PC) of that context.

DE - Decode Decodes the instruction and fetches its source registers.

EX - Execute Executes the instruction. The execute stage includes multiplier and di-
vider units. The multiplier is implemented with multipliers built into the FPGA
so has the same latency as any other arithmetic or logic instruction (1 cycle). The
divide unit has many cycles of latency (up to 64) and is not shown in detail on
the core diagram. The execute unit will generate any memory action or IO access
needed to execute the instruction.

WB - Write Back Writes the result of execution (or IO access) to the appropriate des-
tination register, sets the presence bit of the destination register as needed and
updates the program counter for the appropriate context.

The scheduler is not considered a pipeline stage. This is because there is no pipeline
register between the scheduler and the IF stage, it provides a context number to the IF
directly.

Memory access

Notably the pipeline is missing a memory access stage, this is because one is not required.
When executing a load or a store the execute stage generates a memory action that
performs the operation. The write memory action simply gets accepted and completed
with no further interaction required with the pipeline. The read memory action has a
response address where a read response is sent, so a load gives the address of the load’s

CHAPTER 4. MAMBA ARCHITECTURE 71

destination register as the response address (as any register may be referred to by its
address within an AF). It is the read response that writes the result of the load back to
the register file rather than the write back stage, so a memory access stage isn’t needed
as we don’t need to wait for a load to complete to write it back. When a load is executed
we clear the presence bit of the destination register, so when we attempt to use the result
of the load the context will stall if the read response has not yet come back. The memory
system is structured such that a load that hits in the cache will write its data into the
register file via a read response before the thread that triggered that load will execute
its next instruction. This is described in further detail below in the section on memory
actions.

When any instruction is executed the presence bit of the destination register must also
be checked. If it is not present then the context must stall until it becomes present. The
reason for this is a non-present register will be awaiting a read response from somewhere
(the result of a previously executed load instruction), if another instruction writes to the
register before the response appears a WAW (write after write) hazard will be introduced.

Presence bit and ready queue overflow storage

The presence bit cache caches the state of presence bits however it cannot hold all of the
presence bits for a node’s memory so they must be stored in main memory. The memory
used is the top 1

64
th of the node’s memory. This means that area of memory cannot be

written to via any running program (giving us small gaps in memory next to the borders
between each node’s local memory space).

In order to place no restriction on the number of threads available at a node, other than
the ultimate restriction of memory size the ready queue, which holds the addresses of AFs
that a ready to run can spill over into main memory. This requires an area of memory to
spill in to. The next 1

64
th of memory below the area used to store presence bits is the spill

over area. As an AF address is 256-byte aligned and only the local part of the address
is required only 32-bits are required to store ready AF addresses (which gives an upper
limit of 1TB memory per node, any more and more than 32-bits would be required to
store the local part of each AF address). This means that 1

64
th of the local memory space

is sufficient to store all possible AF addresses (i.e. the upper limit of the ready queue is
as many AFs as we could possibly have).

Were Mamba to include a virtual memory system this could be used to hide the gaps
caused by the presence bit storage and ready queue spill over area. The ready queue spill
over area could also be more finely managed, the core would trap to an OS when the
ready queue runs out of spill over storage and the OS could allocate it a new page to
add to its available spill over area. Then the memory used by the ready queue would be
of a more suitable size. The scheme detailed above is used because of its simplicity and
ultimately is of not much relevance to the appraisal of the architecture.

Exception handling

If a context needs to jump into an exception handler two bits are set in the register
file that indicate (i) the context is handling an exception and (ii) that the next time an

72 4.4. THE PROCESSOR CORE

instruction is fetched for that context it should be fetched from the exception handler
address and not the program counter. At the same time the fetch of the first exception
handler instruction occurs the PC that would have been fetched from is saved to the
EPC (exception program counter) register for that context and the fetch from exception
handler address bit is cleared. The handling exception bit stays set until an ERET occurs
(this will jump to the EPC for the context resuming execution after the exception handler
has finished). Any context with the exception bit set cannot be swapped out.

The register file

A diagram of the register file main storage implementation be seen in figure 4.7. It needs
to support three register reads and two register writes per cycle. This is because two
reads are required for up to two source registers per instruction and one write for a single
destination register per instruction as well as a single read and write required to deal with
any memory actions incoming to the RF.

It is implemented using 8 banks (figure 4.7b) (one per context) consisting of three cells
per bank (figure 4.7a). Each cell is an individual FPGA memory block. The memory
blocks used support a dual-port operation that allows one asynchronous read and one
synchronous write to occur at the same time, so by having three with the write ports con-
nected together we obtain a memory with 3 asynchronous read ports and one synchronous
write port. By enforcing that the two RF write ports must write to two separate contexts
if both are used at the same time we can perform two simultaneous writes to two separate
blocks to implement two write ports.

The first write port is used by the Write Back stage of the pipeline, the second write
port is used to service any memory actions that would require a write to the register file.
To ensure we never attempt to write to the same context with both write ports at the
same time, the Write Back stage blocks any memory action that would target a context’s
registers from entering the register file if the Write Back stage will be writing to that
context’s registers this cycle.

The main storage is addressed with 8-bit addresses, these consist of the register number
we wish to access in the lower 5 bits concatenated with the context number in the upper
3 bits.

Along with the main set of 32 registers per context the register file also stores a program
counter, exception status word (ESW) and activation frame address for each context.
These are both accessed differently to the main registers so aren’t part of the main storage
structure shown in figure 4.7. Instead they are stored in FPGA registers (doing so for all
registers would use an excessive amount of FPGA resources). Presence bits are also stored
using FPGA registers, we require 32 per context, so eight 32-bit registers are employed
to store them.

When a thread, represented in memory by an activation frame, occupies a context, the
register file can be seen as acting as a cache for the area of memory used by the activation
frame. Any memory actions targeting that activation frame must be sent to the register
file so they can be performed. The local requester is responsible for determining what
actions should be sent to the register file. So the register file gives it access to the

CHAPTER 4. MAMBA ARCHITECTURE 73

Data

RdAddr

WrAddr
Q

Data

RdAddr

WrAddr
Q

Data

RdAddr

WrAddr
Q

WrAddr

WrData

Q0 Q1 Q2

RdAddr0 RdAddr1 RdAddr2

(a) Register File Main Storage bank structure

RdAddr0

RdAddr1

RdAddr2

Data

WrAddr

Q0

Q1

Q2

RdAddr0

RdAddr1

RdAddr2

Data

WrAddr

Q0

Q1

Q2

Bank 0 Bank 7

RdAddr0[4:0]

RdAddr1[4:0]

RdAddr2[4:0]

RdData0

RdData1

RdData2

RdAddr0[7:5]

RdAddr1[7:5]

RdAddr2[7:5]

WrData0
WrData1

WrAddr0
WrAddr1

WrData0
WrData1

WrAddr0
WrAddr1

Eight Banks in total

(b) Register File Main Storage constructed from eight banks

Figure 4.7: The Register File Main Storage, write enables, write addr and write data
select control signals and clock connections are omitted. RdAddrn is the address for the
nth read port, RdDatan is the data. WrAddrn and WrDatan are the address and data
for the nth write port

activation frame address for each context so it can check the target of all memory actions
to determine if it should be sent to the register file. The memory actions that may act
upon a activation frame that is currently in the register file are restricted to avoid issues
that would be caused by arbitrary reads and writes altering register contents whilst a
context is running. This is discussed in further detail below in the section on memory
actions.

Also of note are the HI and LO registers. These are the target of any multiply or divide
instruction, holding the high and load words of a result in the case of a multiply or the

74 4.4. THE PROCESSOR CORE

quotient and remainder in the case of a divide. These are not present in the register file
main storage either, this is because (i) doing so would give the banks in the main storage
a non power of two size, (ii) after a multiply or divide we must write to both at the same
time, and it is not allowable to use both write ports of the main storage to write to the
same bank and (iii) HI and LO cannot be generally used as a source register nor can they
be the target of any memory action, so the 3 separate read ports and extra write port are
not necessary. Again FPGA registers are used to store HI and LO for each context.

4.4.2 Memory actions

Node address AF address AF doubleword
63 L L− 1 8 7 3 2 0

Figure 4.8: The parts of a memory action’s target address, L refers to the number of bits
in the local part of the address so 2L is the size of a node’s local memory area

A memory action is targeted at a particular address (the target address) which refers to
a 64-bit word memory (the target location) and gives an operation to perform related to
that location. A target address can be split up into three parts, node address, AF address
and AF doubleword as shown in figure 4.8. The bottom 3 bits of the address are ignored
when determining where to send the action, they are only utilised for read and writes
of non double-word size to determine what part of the 64-bit word needs to be operated
upon.

A memory action may be generated by one of four things, (i) the execute stage of the
pipeline, (ii) the sequencer, for transferring registers during context switches and (iii) the
local memory and (iv) the register file, in response to a another memory action. Any
generated memory action goes to the local requester, which decides where to send the
memory action. A memory action’s destination will depend upon whether or not its
target address is local to the node and whether or not it refers to an AF that is currently
occupying a context in the register file. The request and response networks are also a
source of actions, but neither network generates actions of its own accord.

A memory action falls in to one of five categories, which are described below, with pseudo-
code describing their semantics in listings 4.1, 4.2, 4.3, 4.4, 4.5. The pseudo-code describes
how a particular action is processed. In the pseudo-code, data refers to the data read
from the target address, present is true if the target location is present, type refers to
the type of the memory action, AF address and doubleword refers to the AF address
and doubleword parts of the target address (figure 4.8), AF presence is a 32-bit word
containing all of the presence bits in the AF referred to by the target address. Other
variables are taken from the memory action itself. In the descriptions below a tuple is
given of the data in each action.

A memory action may be processed by either the register file or the local memory de-
pending upon whether or not its target is in an area of memory that is part of an AF
currently occupying a context. If an action is processed by the register file the writeMem,
readMem and setPresence functions in the pseudo-code are acting directly on the relevant

CHAPTER 4. MAMBA ARCHITECTURE 75

registers, not memory. Otherwise they are operating upon memory via the local node’s
data and presence bit caches.

Reads Action data consists of (target address, response address, size, trigger exception).
A request to read the data at the target address. It will result in an immediate
read response sent to the response address if the location is present and either no
immediate response or a read exception if the data is non-present (depending on
if a forwarding address is already set for the location or not). A read size that is
not a double-word will result in a read exception sent to the response address if the
location is not present (presence bit semantics only work on 64-bit words, not parts
of that word).

A read may be marked as a vacating read (trigged with the VL instruction) in
which case if the target location is present the presence bit will be unset as well
as sending a read response. In the case of a non-present location a vacating read
always results in a read exception.

The trigger exception flag is set for a read triggered by an LD and unset for a
read triggered by an LDNR (its value is always 0 for a vacating load as they never
trigger the exception handler). The trigger exception flag is copied into any read
exception generated by the read, which causes different behaviour in the AF that
receives the exception (see ‘Responses’ for details).

Details are given in pseudo-code in listing 4.1.

Writes Action data consists of (target address, write data, size). A request to write data
to the target address. If the target location is present it is updated with the write
data and nothing further happens. If not present it may cause a read response to be
generated if a target has a valid forwarding address. A write will set the presence
bit of the target location. If the write is of non-doubleword size then the write
will update the target location and set the presence bit but if there is a forwarding
address then it will send a read exception rather than a read response (as writing a
non-doubleword to a non-present location should not be done).

A write may be marked as a write to an activation frame (trigged with the SDA
instruction), in which case all the presence bits in the activation frame that contains
the target location will be checked when the write occurs. If they are all set then
the activation frame is ready to run and it gets placed on the back of the ready
queue.

Details are given in pseudo-code in listing 4.2.

Responses There are two types, a read response with data (target address, read data)
and a read exception with data (target address, trigger exception).

A read response is much like a write to an activation frame in that it will update
the target location with the read data, set the presence bit and check to see if every
presence bit in the activation frame that contains the target location, adding that
activation frame to the ready queue if they are all set. However it differs in two
ways (i) it doesn’t check for a forwarding address so it will never generate a further
read response (this could lead to a deadlock in the network) and (ii) if the presence

76 4.4. THE PROCESSOR CORE

bit is already set it does nothing. However as a read response will only ever be sent
due to a read request its target location will have had its presence bit unset when
the read request was generated so the situation of a read response being targeted
at a present location should not occur.

A read exception will set the presence bit of the target location and then set the
appropriate bit of the corresponding ESW. If the memory action has been sent to
the register file this will be a separate FPGA register within the register file, if it
has been sent to local memory, the exception status word is in the 28th 64-bit word
of the activation frame and can be written directly. As with a read response after
setting the presence bit it will check all presence bits in the activation frame and add
it to the ready queue if all are set. Read exceptions targeted at present locations
are ignored.

A read exception should also cause the thread that owns the location it is targeted
at to jump to the exception handler, except in the case where the read exception is
the result of a read request action triggered by an LDNR or VL instruction. The
trigger exception flag indicates whether or not a read exception should cause a jump
to the exception handler or simply set the appropriate bit in the ESW. When an
LDNR instruction is executed the presence bit of the destination register is cleared
and the read request generated exactly as with an LD instruction but with the
trigger exception flag unset in the read request. The trigger exception flag of a read
exception matches the trigger exception flag of the read request that triggered it. If
a read exception is targeted at a location not currently in the register file then the
exception handler may have to be triggered when the AF gets swapped in, this is
indicated by setting the 32nd bit of the ESW.

Details are given in pseudo-code in listing 4.3.

Presence bit operations The TAS and TAC instructions will generate a memory ac-
tion with data (target address, response address) that will set or clear the target
location’s presence bit (depending on whether TAS or TAC is used respectively)
and then return a read response with the value of the presence bit before it was
changed. If we TAS a non-present location that doesn’t have the sentinel value
in then a read exception is sent to the response address instead leaving the pres-
ence bit and location untouched. The reason for this is if something other than
the sentinel value is there it may be a forwarding address or it may just have been
uninitialised memory, in the former case setting the presence bit without sending a
read response to the forwarding address would cause a thread to wait forever for a
response that never comes. In the latter case if we choose to send a read response to
the potential forwarding address if it turned out to just be uninitialised memory a
read response will be sent somewhere that wasn’t expecting one potentially causing
issues. Performing a TAC on a non-present location that doesn’t have the sentinel
value in also causes a read exception, for similar reasons. If the TAC reset the word
to the sentinel value the thread waiting for that word to become present would wait
forever. Code TACing a location intends to have a non-present location with no
forwarding address, so if this doesn’t actually happen an exception is appropriate.

There is also a set line presence memory action that is used to set an entire presence
bit cache line’s worth of presence bits (256 presence bits, corresponding to 256 64-bit

CHAPTER 4. MAMBA ARCHITECTURE 77

words or 2KB of memory), this is used for the rapid initialisation of newly allocated
memory as the use of memory with uncertain presence bits may have unintended
side effects (such as spurious read responses being sent).

Details are given in pseudo-code in listing 4.4.

Register transfer operations When the scheduler chooses to swap a running thread
out of a context and swap a new one in we need to copy the thread’s register state,
represented by its activation frame, into memory and copy the new thread’s activa-
tion frame into the register file. Two separate actions are used, register transfer to
memory and register transfer to register file both with data (target address, regis-
ter data, presence bit). Register transfer to memory actions are generated by the
register file during a context switch and register transfer to register file actions are
generated by the sequencer.

A register transfer to memory action simply writes the register data into the target
location and sets the presence bit to the given value, if the target location corre-
sponds to the final word in an activation frame all the presence bits of the activation
frame are checked, if they are all set the activation frame is ready and it is placed
at the back of the ready queue.

A register transfer to register file action acts differently depending upon whether it
is processed in local memory or the register file. The sequencer generates the action
initially and it is sent to the local memory. When local memory processes the action
it reads the data and presence bit in the target location and generates a new register
transfer to register file action with the read data and presence bit. This then goes
to the register file, the register file updates the register corresponding to the target
location with the given register data and presence bits. This is discussed in further
detail in the scheduling section below.

Details are given in pseudo-code in listing 4.5.

The local requester

The local requester is responsible for routing memory actions around the core. Any
memory action that has either been generated in the core, or is coming in to the core
from the network goes to the local requester which routes it to the correct location.
Conceptually this is a simple process; first the node address part of any memory action’s
target address (figure 4.8) is compared to the local node’s address, if they match the
action is targeted at this node, otherwise it is targeted at a remote node and sent out
to the network. If it is targeted at the local node a comparison against the AF address
part of the target address is done against the 8 AF addresses of the threads currently
occupying the register file. If the AF address matches any AF currently in the register file
the memory action is sent there (with the address rewritten to refer to a context number
instead so the register file need not repeat the AF matching procedure), otherwise it is
sent to the local memory.

In practise the routing is a delicate procedure, we need to ensure low latency whilst also
avoiding deadlock.

There are four sources of memory actions connected in to the local requester:

78 4.4. THE PROCESSOR CORE

i f (s i z e == doubleword) {
i f (pr es ent) {

generateAct i on (Read Response , (r e sponse address , data))
i f (type == Vacating Read) {

c l e a rP r e s ence (ta r g e t addres s)
}

} else {
//1 i s the s e n t i n e l value , an i n v a l i d forwarding address . I f i t ’ s

pre sen t in the t a r g e t l o c a t i on then we can wr i t e in our re spose
address as the forwarding address , however t h i s i s not done on a
vacat ing read

i f (data == 1 && type != Vacating Read) {
writeMem(ta r g e t address , r e sponse addres s)

} else {
//For a vacat ing read except ion f l a g i s never s e t as i t never

t r i g g e r s the except ion handler
i f (type == Vacating Read)

generateAct i on (Read Exception , (r e sponse address , 0))
else

generateAct i on (Read Exception , (r e sponse address ,
except i on f l a g))

}
}

} else {
i f (pr es ent) {

// S e l e c t from the 64− b i t data we have read the par t we need g i ven the
bottom 3 b i t s o f address and read s i z e

data = selectFromDoubleWord(data , t a r g e t addres s [2 : 0] , s i z e)
generateAct i on (Read Response , (r e sponse address , data))

} else {
//Except ion f l a g always s e t i f non doubleword read as i t should always

t r i g g e r the except ion handler
generateAct i on (Read Exception , (r e sponse address , 1))

}
}

Listing 4.1: Read memory action pseudo-code

� The execute stage and sequencer (they are multiplexed into one source), referred to
as the CPU source below

� The register file

� The local memory

� The network (we have two networks, request and response these are multiplexed
into one source)

The are three destinations the local request may send a memory action:

� The register file

� The local memory

� The network (With requests and responses sent on two different networks)

Each destination will only accept a single memory action per cycle, so arbitration is
required to determine which memory action goes to a destination if several need to be
routed to the same one. This is done with the following static ordering:

CHAPTER 4. MAMBA ARCHITECTURE 79

i f (pr es ent) {
writeMem(ta r g e t address , wr i te data , s i z e)

} else i f (s i z e == doubleword) {
// I f we don ’ t have the s en t i n e l va lue we have a forwarding address , so generat e

a read response to t ha t address
i f (data != 1) {

generateAct i on (Read Response , (data , wr i te data))
}

writeMem(ta r g e t address , wr i te data , s i z e)
s e tPresence (ta r g e t addres s)

i f (type == Write to Act ivat i on Frame) {
// I f a l l b i t s in the AF are now se t wr i t e AF address to ready queue
i f (AF Presence == 0xFFFF FFFF)

addToReadyQueue(AF addres s)
}

} else {
//Present b i t semant ics not designed to work with non doubleword s i z e

operat ions , so a non doubleword wr i t e to a non presen t l o c a t i on generat e s an
except ion i f we have a forwarding address (as i t was expec t ing a doubleword)

i f (data != 1) {
generateAct i on (Read Exception , (data , 1))

}

writeMem(ta r g e t address , wr i te data , s i z e)
s e tPresence (ta r g e t addres s)

}

Listing 4.2: Write memory action pseudo-code

1. Register File

2. Local Memory

3. CPU/Network

As ultimately all memory actions are generated due to the actions of a processor core, the
register file and local memory are unable to prevent the CPU and network from accessing
a destination forever so their higher priority does not cause a starvation issue.

To minimise latency routing decisions are made with purely combinational logic. All
memory action destinations have a signal that goes high to indicate an action sent to
them has been accepted (if isn’t accepted the action needs to be held by the source until
it can be, this will block the source from sending any other actions as well). However for
the local memory and register file their action accepted signal depends in part on whether
the action they may wish to send this cycle has been accepted. As the register file and
local memory may wish to send actions to each other, or the local memory may wish
to send an action to itself this introduces a loop in the logic if only the action accepted
signals are used to determine whether an action is accepted (e.g., local memory may try
to send an action that is routed to itself, in which case it will only accept the incoming
action if its outgoing action is accepted but its outgoing action is only accepted if its
incoming action is accepted).

To break this cycle two extra signals are introduced, an ‘all actions blocked’ signal and
an ‘accepts any actions’ signal. If ‘all actions blocked’ is raised by a destination then any
action sent to it will not be accepted, if ‘accepts any actions’ is raised by a destination

80 4.4. THE PROCESSOR CORE

i f (type == Read Response) {
//A read response to a presen t l o c a t i on i s ignored
i f (! pr es ent) {

writeMem(ta r g e t address , read data)
s etPresence (ta r g e t addres s)
// I f a l l b i t s in the AF are now se t wr i t e AF address to ready queue
i f (AF Presence == 0xFFFF FFFF)

addToReadyQueue(AF addres s)
}

} else i f (type == Read Exception) {
//A read except ion to a presen t l o c a t i on i s ignored
i f (! pr es ent) {

s e tPresence (ta r g e t addres s)
// I f t he t a r g e t i s in the r e g i s t e r f i l e we have a except ion s t a t u s word

r e g i s t e r we can wr i t e d i r e c t l y
i f (RF) {

//Bi t s 7 − 3 of the t a r g e t address are the number o f the
r e g i s t e r wi th in the AF tha t i s t he t a r g e t o f t he read
except ion

setExceptionStatusWordBit (AF doubleword)
// I f except ion f l a g i s s e t we t r i g g e r the except ion handler
i f (except i on f l a g) {

tr iggerReadExcept ion ()
}

}
//Otherwise in l o c a l memory we wr i t e to the except ion s t a t u s word which

i s s tored in the AF in the 28 th word
else {

//Except ion s t a t u s word address found by concatenat ing AF
address wi th 0x1C = 28 in decimal and s e t t i n g bottom 3 b i t s
to 0

exceptionStatusWordAddress = {AF address , 0x1C , 0}
exceptionStatusWord = readMem(exceptionStatusWordAddress)
s e tB i t (exceptionStatusWord , AF doubleword)
i f (t r i g g e r except i on) {

//32nd b i t o f ESW ind i c a t e s t ha t AF needs to jump to
except ion handler when i t s swi t ched in

s e tB i t (exceptionStatusWord , 32)
}

writeMem(exceptionStatusWordAddress , exceptionStatusWord)

i f (AF Presence = 0xFFFF FFFF)
addToReadyQueue (AF addres s)

}
}

}

Listing 4.3: Response memory actions pseudo-code

than any action sent it to will be accepted. If neither is raised then the design of the local
memory and register file guarantees that any action sent to them will be accepted if and
only if their own outgoing action is accepted, or if they have no outgoing action.

The routing logic thus proceeds as follows:

1. Examine the target addresses of the memory actions from all sources and determine
which destination they should be routed to.

2. If more than one source wishes to send an action to the same destination, apply
arbitration as specified above.

3. After arbitration each destination will have zero or one actions to be sent it, we
then determine what actions will be accepted.

CHAPTER 4. MAMBA ARCHITECTURE 81

i f (type == TAS | | type == TAC) {
// I f we ’ re t r y i n g to s e t and l oca t i on i s not pre sen t and i t doesn ’ t contain the

s e n t i n e l va lue then t h i s i s an i n v a l i d TAS so send a read except ion
// I f we ’ re t r y i n g to c l e a r and l oca t i on i s not pre sen t and i t doesn ’ t contain

the s e n t i n e l va lue t h i s i s a l s o i n v a l i d .
i f (data != 1 && ! present) {

generateAct i on (Read Exception , (r e sponse address , 1))
} else {

generateAct i on (Read Response , (r e sponse address , pr es ent))
i f (type == TAS) {

s e tPresence (ta r g e t addres s)
} else {

c l e a rP r e s en s e (t a r g e t addres s)
//Write in s e n t i n e l when c l e a r i n g presence (otherwi se i t may

contain an a r b i t r a r y forwarding address)
writeMem(ta r g e t address , 1)

}
}

} else i f (type == Set l i n e pr es ence) {
//This s e t s t he presence b i t s o f 2KB worth o f memory , so we di scard the bottom

12 b i t s o f t he t a r g e t address
s e tL inePresence (ta r g e t addres s [6 3 : 1 2])

}

Listing 4.4: Presence bit memory actions pseudo-code

i f (type == Reg i s t e r Trans f e r to Memory) {
writeMem(ta r g e t address , r e g i s t e r data)
setPresenceTo (ta r g e t address , pr es ence b i t)

} else i f (type == Read Trans f e r to RF) {
i f (Memory) {

// I f t h i s ac t ion i s be ing processed by l o c a l memory we generat e another
Read Transfer to RF act ion , wi th the data and presence b i t found at
the t a r g e t address . This w i l l make i t s way to the r e g i s t e r f i l e
where the data and presence read here w i l l be wr i t t en in to the
r e g i s t e r f i l e

generateAct i on (Read Trans f e r to RF, (t a r g e t address , data , pr es ent))
} else {

//Read Transfer to RF be ing processed by the r e g i s t e r f i l e , so i t
conta ins new r e g i s t e r data and presence read from memory

context = contextNumberFromAF (AF addres s)
wr i t eReg i s t e r (context , AF word , r e g i s t e r data)
s e tReg i s te rPresenceTo (context , AF word , pr es ence b i t)

}
}

Listing 4.5: Register transfer memory actions pseudo-code

� If a destination has raised ‘all actions blocked’ the action won’t be accepted.

� If a destination has raised ‘accepts any actions’ the action will be accepted.

� For the network destination, then we use the network ‘action accepted’ signal
as there is no circularity (Whether or not the network can accept depends only
upon how many elements are in the outgoing FIFO).

� For the local memory and register file destinations it is more complex. We need
to examine any outgoing action they have as well to determine whether an
incoming action will be accepted. If the local memory or register file is sending
to the network then they can accept an incoming request if the network can
accept their outgoing action, provided they haven’t raised ‘all actions blocked’.
If the local memory is sending to itself it will always be accepted, provided

82 4.4. THE PROCESSOR CORE

i f (memory a l l a c t i on s blocked) {
//Memory b locked a l l ac t ions , cannot accept ac t ion
return fa l se

} else i f (memory accepts any ac t i on s) {
//Memory accept s a l l ac t ions , can accept ac t ion
return true

} else i f (no memory outgoing act i on) {
// I f memory i s not sending any ac t ion i t w i l l accept an ac t ion
return true

}
//Memory i s sending an act ion , can only accept an incoming ac t ion i f outgoing ac t ion i s

accepted
else i f (memory outgoing de s t i na t i on == network) { //Memory outgoing ac t ion w i l l go to

network
return network act i on accepted //So can accept incoming ac t ion i f network

accept s outgoing ac t ion
} else i f (memory outgoing de s t i na t i on == memory) { //Memory sending to i t s e l f

return true //Can always accept in t h i s case
}
//Memory i s sending an ac t ion to RF, so can only accept an incoming ac t ion i f RF w i l l

accept our outgoing ac t ion
else i f (memory outgoing de s t i na t i on == RF) {

i f (r f a l l a c t i on s blocked) //RF b l oc k i ng ac t ions
return fa l se //Can ’ t send memory outgoing , so memory incoming i s not

accepted
else i f (r f accept any ac t i on s) //RF accept ing ac t ions

return true //Memory outgoing can be sent so memory incoming can be
accepted

else i f (r f outgoing de s t i na t i on == memory)
return true // I f RF sending to memory and memory sending to RF can

accept incoming
else i f (r f outgoing de s t i na t i on == network) // I f RF sending to network

return network act i on accepted // I f RF can send to network then memory
can send i t s outgoing so i t can accept i t s incoming

else i f (no r f outgoing act i on) // I f RF sending nothing
return true //Then memory outgoing can be sent so memory incoming can be

accepted
}

Listing 4.6: Local Requester accept logic for local memory destination, logic is similar for
register file

‘all actions blocked’ isn’t raised. If local memory is sending to the register file
then we need to check if the register file has an outgoing request and determine
whether or not that will be accepted. The full detail of this is given is pseudo-
code 4.6.

An action traverses the local requester with zero cycles of latency. This is important as
a load instruction is implemented by the execute stage generating a read memory action
with the response address set as the address of the load’s destination register. If the
execute stage generates the read request memory action on cycle n then provided the
cache isn’t busy and the action isn’t blocked by one of a higher priority (i.e. one from the
register file or the local memory) then the cache read will start cycle n. If we have a cache
hit then the data will be returned from the cache on cycle n + 1 (when the instruction
that triggered the load is in the write back stage), and the local memory will generate
a read response action with the returned data. This be sent to the register file on cycle
n + 2, with the data written to the register file on the same cycle (due to the zero cycle
latency of the local requester), as this point the context that triggered the load will have
just been written to the context FIFO. This ensures that the result of the load is written

CHAPTER 4. MAMBA ARCHITECTURE 83

to the register file before it is needed (if the instruction following the load uses the result
immediately) if we have a cache hit avoiding a needless stall.

The write back stage has the ability to block memory actions targeted at a particular
context from entering the register file. This is used when writing a destination register
in write back, we block memory actions targeted at the context the destination register
is in to avoid two writes to the same context occurring the same cycle as the register file
doesn’t support this.

During a context switch the contents of the AF being swapped into memory and the AF
being swapped into the register file could be in either place so the local requester may
route requests for them to the wrong place. To avoid this all actions from the CPU and
network are blocked during a context switch.

The local requester also has a couple of hard routing rules that ignore the target of a
memory action. A register transfer to register file memory action coming from the CPU
always gets routed to the memory and a register transfer to memory memory action
coming from the RF always gets routed to the memory. This is to enable the context
switch process, further details are given below in the Scheduling section.

4.4.3 Scheduling

The scheduler is responsible for two things, providing the next context to have its instruc-
tion fetched to the pipeline and deciding when to perform a context switch, where all the
registers of an AF currently in the register file are copied out to memory and a new AF
coped in. The sequencer is responsible for orchestrating the actual switch, the scheduler
is just responsible for choosing when this happens which context should be switched and
what AF will be copied into the register file.

The scheduler is pre-emptive with round robin used to choose the next AF. There are
eight contexts and each cycle the scheduler must provide a context number to the pipeline
which will be the next context that has its instruction fetched and executed. It takes this
context number from the head of the context FIFO. When a context has finished the
write back stage its context number is written to the tail of this FIFO, at the same time
the quantum counter for that context is decremented.

When the quantum counter reaches 0, the deschedule signal for that context is asserted.
The deschedule signals are fed into a priority encoder which chooses which context to
deschedule if several have their deschedule signal’s asserted. The context with the lowest
number will be descheduled before a context with a higher number.

If a context is handling an exception it must not be descheduled, this is because during
the execution of the exception handler it may use the special k0, k1 and k2 registers that
are not saved into the activation frame so there is no way to resume execution of the
exception handler if an AF is swapped out of a context whilst it is handling an exception.
A ‘handling exception’ bit is set in the register file for a context for the entire time the
context is handling an exception, if that bit is set the scheduler will not deschedule the
context.

When a context to be descheduled has been chosen we take the AF at the head of the
ready queue and notify the sequencer of the context number that is being switched and

84 4.4. THE PROCESSOR CORE

the AF to be switched in. The actual switch is started when the write back stage attempts
to add the number of the context to be descheduled to the back of the context FIFO, this
is suppressed and the switch started, when the switch is finished the context number is
added back to the context FIFO again. This is done to ensure the switch doesn’t start
until the context is not in the pipeline and that the context isn’t executed whilst it is
being switched.

Sequencer

The sequencer is responsible for orchestrating the context switch. It is supplied with a
context number and the address of the new AF to switch in. First it notifies the register
file that a switch is occurring and tells it to start generating register transfer to memory
memory actions which transfer the contents of the context’s registers to the appropriate
AF in memory. Due to the hard routing rules in the local requester these are sent to the
local memory despite the fact that they target an AF still in the register file. Once all
of the context’s registers have been transfered the AF address of the context is updated
to the new AF. The sequencer itself then starts generating register transfer to register
file actions, these are given a target address of each of the new AF’s registers in turn.
Again due to the hard routing rules in the local requester these are sent to the local
memory, despite the fact they target the new AF which now has its address written into
one context’s AF address register. In local memory the transfer action causes the register
contents and presence bit to be read from memory and generate another register transfer
to register file memory action with the same target address using the data just read. This
gets routed to the register file due to the standard routing rules. Once this has been
done for all registers the context swap is complete and the number of the context we were
swapping can get written back to the context FIFO so it can be executed again.

During the context swap process all memory actions from the execute stage and from the
network are blocked, this is for two reasons

� We do not know where to send a memory action being targeted at an AF being
swapped. Furthermore a memory action that writes may trigger a read response
that targets an AF being swapped so simply blocking any action from the execute
stage or network that targets one of the AFs being swapped is not sufficient as we
may have block further actions generated in the local memory and blocking local
memory would prevent the context swap from finishing.

� It allows the context swap to finish in as short a time as possible.

Also before the context swap process is started we must wait for any pending memory
actions in the local memory to be completed in case one of them targets one of the AFs
being transfered (or generates a memory action targeting one of the AFs being transfered)

4.4.4 The caches

All of the caches are direct mapped, they are write back caches and implement a fetch
on write policy. Lines are 256-bits long, the same size as a burst read or write from the
DDR memory.

CHAPTER 4. MAMBA ARCHITECTURE 85

They are unremarkable apart from two features:

Whole Line Set When a chunk of memory is first used its presence bits are in an un-
known state. Operating upon memory with presence bits in an unknown state is
hazardous as writes may trigger unwanted read responses (the data in the memory
chunk is also undefined so something that is non present may have what appears to
be a forwarding address within it), and reads may never generate a response (though
reading memory you have yet to write to could also be considered hazardous). To
resolve this we need a mechanism to set presence bits, preferably in large batches
to avoid spending too long on memory allocation. A single line in the presence
bit cache holds 256 presence bits, the whole line set mechanism sets all of the bits
within a cache line to zero or one. If the whole line set is targeted at an address not
in the cache then the new line is written directly to main memory without fetch (a
violation of the fetch on write policy, however if using a whole line set it is likely
the line won’t be immediately accessed as it’s probably part of an initial memory
allocation, so it would be counter productive).

Immediate Write When performing a read memory action if the location is non present
and there is no current forwarding address the read actions response address must
be written to the location. A write to the cache requires a line to be fetched from the
cache memory (to check the tag) so starting a fresh write would cause a repeat of the
last cache memory read. Immediate write allows the line read in the cache read from
the previous cycle to be altered and written back to cache memory. This mechanism
is also used for all write memory actions as they may trigger read responses, so need
to read the line before updating it anyway.

4.4.5 The network

The network design and implementation was not the work of the author. It is briefly
presented here for completeness. The network was built by Arnab Banerjee based on his
work [10].

Two separate networks are employed, a request and a response network, they are identical
in design. This is required to avoid protocol deadlock. Each network has a 2-dimensional
mesh topology. At each node there is a router, this router has 5 inputs and 5 outputs.
The first 4 inputs and outputs are north, east, south and west, they connect the router
to the other routers in the topology. The fifth input and output is tile, this connects to
the Mamba node. Data in the network is passed around as flits, several flits make up
a packet which carries a single memory action. The header of each flit has an output
port field, this is the output port a router must send an incoming flit to. The router also
calculates the output port the flit must be sent to for the next router. Dimension ordered
routing is used to do this. A flit first gets sent along the east-west direction of the mesh
until it reaches the column that contains its destination, then it traverses the north-south
direction until it reaches its destination and which point it gets sent to the tile port of a
router.

When a memory action packet is generated at a node the x (east-west) and y (north-
south) displacements required to get to the target node are calculated. These are placed

86 4.4. THE PROCESSOR CORE

CTS DNS

nearly full & flit sent

nearly full

Figure 4.9: On/Off flow control state machine, CTS is the clear to send state, DNS is the
do not send state

in the header of each and a reduced by 1 towards 0 when the flit makes a step in the
corresponding direction (x displacement reduced when going east-west, y displacement
reduced when going north-south). A router looks at the remaining displacement required
and determines the appropriate output port on the next router (east or west if we still
have x displacement left, north or south if we have y displacement left and tile if no
displacement is left) and writes this in to the flit header.

On/Off flow control is used between the routers. Between two routers connected by a
link a there is a single signal, nearly full. This is asserted when the input buffer of the
downstream router reaches a certain number of empty spaces n. It is only asserted when
the number of empty spaces is precisely n, not when it is below n. The upstream router
requires a small state machine (see figure 4.9), this starts off in the clear to send (CTS)
state, when the nearly full signal is asserted and the upstream router sends a flit on the
link it transitions to the do not send (DNS) state, as the flit being sent will push the
incoming buffer of the downstream router over the threshold. When in this state the
upstream router must send no more traffic on that link. It transitions backs to the CTS
state when the nearly full signal is asserted (which will happen when the downstream
router has precisely n spaces again, so something has been removed from the buffer)
allowing the upstream router to begin sending on that link again.

4.4.6 Profiling

The core includes a profiling unit, which holds performance counters that can be used
to measure a variety of metrics. All counters are per-core rather than per-context or
per-thread. The available performance counters are:

Cache Counters There are operation counters and miss counters for each cache with
separate operation and miss counters for reads and writes. Operation counters
are incremented every time a read or a write is requested from the cache and the
corresponding miss counter is incremented if that operations leads to a cache miss

Stall Counters There are two reasons a thread may stall (not update its program
counter to the next instruction at the write back stage so the current instruction
gets repeated), there is a stall counter for each of them which gets incremented every
time that kind of stall occurs

CHAPTER 4. MAMBA ARCHITECTURE 87

No Presence Stall A stall that occurs when a context cannot progress because a
needed register is not present

Memory Request Blocked Stall A stall that occurs when the execute stage is
unable to generate a memory request needed to complete the instruction be-
cause there is no space in the outgoing action queue.

PC Region Counters PC regions can be defined by software, any time a context tries
to execute an instruction within one of these regions the corresponding counter is
incremented regardless of whether or not that instruction causes a stall or not. It
does this rather than only counting successful executions as that would not give an
accurate picture of how long a core spends executing a particular region.

Step Counter Every time something traverses the write back stage the step counter is
incremented, this is to give a count that can be used with the other counters (e.g.,
to compute percentage of time spent in a region using the pc region counters).

The profiling unit receives input from the write back stage. Everything that goes through
the write back stage generates a profile input which gives the PC that the instruction
being executed came from, whether or not it stalled and if it did stall for what reason.
This passes through a small pipeline which first compares the given PC against the PC
regions and then updates the counters appropriately. The cache counters are updated
directly by the cache when an operation or miss occurs.

Software has the ability to pause profiling so no counters and get updates and the ability
to reset all counters at once in one atomic instruction.

4.5 FPGA Implementation

The actual system implementation utilises Altera Stratix IV EP4SGX 230 FPGAs on a
Terasic DE4 board. The DE4 board consists of a single FPGA, a multitude of peripherals,
two DDR2 memory channels and high speed serial interconnect, full specifications can be
seen in table 4.2. There are 4 Mamba nodes per FPGA, so each DDR2 channel is shared
between two nodes. An 8-core system is constructed by continuing the network links
over high speed serial connections to another board. The majority of the system was
written in the Bluespec System Verilog [78] HDL, with small amounts of Verilog utilised
to interface with Altera supplied IP (such as the DDR memory controller and high speed
serial interface) and FPGA specific features (the register file in the processor core is
constructed of a specific arrangement of in-built FPGA memory blocks).

Table 4.2: DE4 Board Specifications

1 x Stratix IV GX EP4SGX230
2 x DDR2 Memory Channels, 4GB maximum capacity per channel
4 x Gigabit Ethernet Ports
2 x SATA Host Ports, 2 x SATA Device Ports

88 4.5. FPGA IMPLEMENTATION

Core
0

Core
2

Core
1

Core
3

R R

R R

Reliable
Link Layer

Reliable
Link Layer

XCVR

R R

R R

Reliable
Link Layer

Reliable
Link Layer

DDR Controller 1

DDR Controller 2

4x Serial Links

Altera Supplied IP

Block not created by author

Block created by author

Request Network

Response Network

Figure 4.10: The FPGA implementation of Mamba. R signifies a network router, XCVR
is the Altera component responsible for driving the serial links. There are also 4 serial
controllers that communicate via JTAG over USB utilised to output messages to a host
PC and a block that can read and write DDR memory controlled by the host PC which
is used for programming and results gathering.

Figure 4.10 illustrates what is implemented on a single FPGA. It is a mixture of blocks
written by the author, blocks written by others (Routers and network by Arnab Banerjee,
reliable link layer by Simon Moore) and Altera supplied IP. The designs used by the
two boards are effectively mirror images of each other so the networks match up. The
SATA host and device ports provide a total of 4 serial channels in each direction. This
allows each to be dedicated to a single network link without requiring any multiplexing.
The reliable link layer is responsible for taking network flits and transmitting over a
serial link, it implements a reliable link protocol that ensures all network flits are fully
transmitted (otherwise the Mamba would have to deal with the possibility of packet loss
in the network). The XCVR is the Altera supplied IP that actually drives the serial links.
Altera’s Avalon bus is used to connect cores to DDR controllers and the reliable link layer
to the XCVR. Also present are four serial controllers that communicate via JTAG over
USB, and a block capable of reading and writing DDR memory, both are supplied by
Altera. The serial controllers are used for low-speed communication with the host PC so
messages from each core can be displayed in a terminal. The block that reads and writes

CHAPTER 4. MAMBA ARCHITECTURE 89

memory is used to program the system and gather results from the host PC. Neither of
these are pictured in figure 4.10.

4.6 Summary

This chapter presented the architecture of Mamba. A system designed to encourage
the creation of programs that will scale over a large number of cores without the need
to tailor a program to a specific number of cores. This is accomplished by provided a
simple, lightweight synchronisation mechanism in the form of presence bits combined with
a hardware scheduler.

90 4.6. SUMMARY

Chapter 5

Software techniques

Mamba’s programming model gives rise to new software techniques, these are discussed
in this chapter. Many are adaptations of existing algorithms and data structures altered
to use presence bits.

5.1 Primitives

5.1.1 Basic spin lock

An obvious use of a presence bit is as a simple lock. A particular word could start off
present, representing the unlocked state. TAC can be used to clear the word. TAC
returns the state of the presence bit before it clears it and that can be checked. If it was
present before the clear the lock has been successfully acquired if it was not present before
the clear something else has the lock, so either the TAC is retried until lock acquisition is
successful or the thread does some other work. This gives a basic spin-lock, see listing 5.1.
However it doesn’t present any advantage over a spin-lock constructed using a compare
and swap instruction.

5.1.2 Acquiring locations

The presence bit of a word could be seen as a lock specifically for the contents of that
word. If the word is present then the lock has not been acquired so the word may be
read, but not modified. If the word is not present then some thread has acquired the lock
and may be modifying the data in the word. This can be implemented with the vacating
load, the VL instruction, which clears the presence bit of a word if the load succeeds
(that is the word is present when the request is processed). If the VL does not succeed
then an exception response is sent back. So when accessing a word in such a way first an
VL is performed, then the exception status word (ESW) is checked to see if an exception
response was received. If not the VL’s destination register has the data from the word
and the presence bit of the word is unset. If an exception was received then the VL can
be retried. This process is known as acquiring a location. When a thread has acquired a

91

92 5.1. PRIMITIVES

//Acquire the ba s i c spin lock , lock , i t i s a po in t e r to a 64− b i t word
void a c q u i r e b a s i c s p i n l o c k (l o c k t ∗ l ock) {

u i n t64 t o ldPresence ;
do {

//Test and c l e a r the l o c k word
o ldPresence = TAC(lock) ;

// I f t he o ld presence b i t was c l eared , then the l o c k was a l ready acqu i red so we
need to t r y again . I f i t was s e t then the l o c k was not acqu i red and we have
j u s t c l e a r e d the l o c k word ’ s presence b i t , so the l o c k has j u s t been
acqu i red .

} while (! o ldPresence) ;
}

//Release the ba s i c spin lock , l o c k
void r e l e a s e b a s i c s p i n l o c k (l o c k t ∗ l ock) {

//Releasing the l o c k j u s t r e qu i r e s s e t t i n g the l o c k word ’ s presence b i t .
∗ l ock = 1 ;

}

Listing 5.1: Basic spin lock implementation

location it does what it needs with the data and then it must release it, it does this by
storing the word back. This will write the data to the location and set the presence bit,
allowing something else to acquire it. An implementation of this and example of using
it to implement an atomic counter is given in listing 5.2. Whilst this could be simply
emulated with a separate spin lock, acquiring the lock and then reading the value of the
word must be done in two separate operations. VL allows these to be merged into a single
operation.

5.1.3 Notify nodes and chains

A presence bit can be used as a fine grained notification mechanism. A thread that wishes
to be notified of some event can TAC a word and then immediately load it and attempt
to use the result. As the word has had its presence bit cleared the thread will pause.
When the event the thread wishes to be notified about occurs the word is written to and
the thread woken up. The word write could be used to pass some data to the thread as
part of the notification or the result of the load may be discarded, if all that matters was
the event occurring. This is known as waiting on a word, a sample implementation can
be seen in listing 5.3.

This is a commonly used pattern, so a structure known as a notify node is introduced.
This contains two words one, known as the wait word, is the word that has its presence
unset and has a thread wait upon whilst awaiting some event. The other is a pointer to
another notify node. Nodes can be linked together to form a notify chain. A notify chain
is used when multiple threads wish to wait upon the same thing. When a thread wishes
to wait on a notify chain it creates a notify node and adds it to the chain, it then waits
on the wait word. A thread wakes the notify chain by writing to the first wait word,
waking the first thread. The just-woken thread can then continue to wake the next node
in the chain or it can perform some action before waking the next node (producing either
a notify one or notify all behaviour).

The implementation of notify chains must atomically insert a notify node into the chain.
It must also avoid a potential lost wakeup problem. Say there is a condition C, that if

CHAPTER 5. SOFTWARE TECHNIQUES 93

//Acquire a locat ion , t h i s re turns with the l o c a t i on ’ s va lue and the l o c a t i on ’ s presence
w i l l be c l e a r ed .

u i n t64 t a c qu i r e l o c a t i o n (u i n t64 t ∗ l o c a t i o n) {
u i n t64 t go t exc ep t i on ;
// l o c a t i on v a l u e must be s tored in a s p e c i f i c r e g i s t e r as the except ion s t a t u s

word (ESW) i s checked f o r a read except ion on t ha t p a r t i c u l a r r e g i s t e r
register u i n t64 t l o c a t i o n v a l u e ;
do {

// load the l o c a t i on ’ s va lue with VL, i f t he l o c a t i on i s pre sen t the
va lue w i l l be re turned and the l o c a t i on ’ s presence c l e a r ed . I f t he
l o c a t i on i s not pre sen t a read except ion w i l l be re turned which s e t s
a b i t in the ESW corresponding to the VL’ s de s t i na t i on r e g i s t e r

l o c a t i o n v a l u e = VL(l o c a t i o n) ;

//The read except ion w i l l s e t a b i t corresponding to the VL’ s
de s t i na t i on r e g i s t e r in the ESW, check ESW look s at t h i s b i t and
return i t s va lue

go t exc ep t i on = check ESW(l o c a t i o n v a l u e) ;

// I f we got an except ion we need to r e t r y the VL, i f we didn ’ t we got
the va lue

} while (go t exc ep t i on) ;

return l o c a t i o n v a l u e ;
}

//Atomical ly increment the 64− b i t word poin t ed to by counter
void atomic increment (u i n t64 t ∗ counter) {

// F i r s t acqu i re the counter locat ion , we ge t a l o c a l copy of the current counter
va lue . The ’ master ’ va lue w i l l be marked as non present , wh i l s t i t i s non
presen t nothing e l s e can acqu i re i t

u i n t64 t cu r r en t coun te r = a cqu i r e l o c a t i o n (counter) ;

// Increment our l o c a l va lue
cu r r en t coun te r++;

// Store i t back , s e t t i n g the presence o f the counter l o c a t i on so something e l s e
i s ab l e to acqu i re i t

∗ counter = cur r en t coun te r ;
}

Listing 5.2: Acquiring a location and implementing an atomic counter

true allows a thread to continue but if false means a thread must wait on a notify chain
which will be notified when C becomes true. Thread A checks C and finds it to be false
so prepares a notify node to add to the chain, meanwhile thread B performs an action
causing C to become true, so wakes the chain. Following this thread A atomically inserts
itself into the chain, missing the notify from thread B and potentially waits on the chain
forever.

Similar problems are encountered in the MCS lock [73] which is a type of spin lock that
utilises a queue. When a thread wishes to enter the lock it prepares a new node for the
queue. Exactly as a notify node this contains two words, one is a boolean the other is a
pointer to the next node in the queue. The thread checks the queue, if it is empty nothing
has the lock and thread may proceed (the thread acquires the lock). If it contains another
node the thread adds its node to the queue and then sits in a busy waiting looping waiting
for the boolean in its node to change from false to true. To release the lock a thread writes
true into the boolean field of the node pointed to by the thread’s node’s next pointer.

Only a tail pointer for the queue is maintained, to atomically insert into the queue a
compare and swap operation can be used to switch the tail from its current value to

94 5.1. PRIMITIVES

//Causes a thread to wai t u n t i l a word become presen t (or more s p e c i f i c a l l y t i l i t s
va lue i s 0 and i t i s pre sen t) , c l e a r s the word ’ s presence i n i t i a l l y . To wake up a
thread wai t ing on a word l i k e t h i s use not i f y word on t ha t word

void wait on word (volat i l e u i n t64 t ∗ word) {
//Clear the presence b i t o f t he word
TAC(word) ;

//Looks l i k e a busy wai t loop but the f i r s t load o f the word w i l l cause the
thread to wai t because the word i s not present , when another thread wakes
t h i s thread by wr i t i n g 0 to the wai t word the presence b i t w i l l be s e t so
the thread w i l l wakeup , the whi l e loop condi t i on w i l l be f a l s e so the loop
e x i t s .

while (∗word) ;
//Doesn ’ t have to be a whi l e loop , could load and then use the r e s u l t in an add

with r e g i s t e r zero as i t s de s t i na t i on r e g i s t e r (r e g i s t e r zero i s a constant
0 so using i t as the de s t i na t i on of an add has the e f f e c t o f d i s c a rd ing the
r e s u l t) , t he thread cannot execut e the add u n t i l t he word becomes presen t
and a read response i s re turned .

}

//Wakes up a thread wai t ing on word
void not i f y word (volat i l e u i n t64 t ∗ word) {

// Store 0 to the word which makes the word presen t and causes the whi l e loop in
wai t on word to e x i t

∗word = 0 ;
}

Listing 5.3: Waiting on a word

the new node. Then the next pointer on the old tail can be updated to point to the
new tail with a standard store. The lost wakeup occurs when a thread, A, releases the
lock. Thread B may have created a new node and switched the tail pointer, but the next
pointer of the old tail hasn’t been updated yet, so when thread A checks the next pointer
of its node to find something to wake it finds nothing. Thread B then finally changes the
next pointer of the old tail to point to its node, but its too late, thread B will never exit
its busy waiting loop. To prevent this thread A attempts to compare and swap the tail
pointer from its node (if it’s releasing the lock and nothing else is acquiring its node must
be the tail) to NULL. If this fails then another thread is adding its node to the queue so
thread A enters a busy waiting loop waiting for its node’s next pointer to be updated.

The notify queue is very similar in structure and implementation to the MCS lock, but
with two crucial differences, (i) it waits on a wait word rather than sitting in a busy
waiting loop waiting for a boolean to become true, (ii) instead of using compare and
swap to atomically insert nodes into the chain and to avoid the lost wakeup issue the tail
pointer location is acquired with VL to perform atomic updates.

The lost wakeup issue as described above only occurs when we have a condition C that
is linked to whether or not we wait on the notify chain and is altered by something that
also notifies the chain. In the MCS lock this condition C is effectively, lock acquired or
not. There may be situations where no condition exists, e.g., if the notify chain was used
to notify threads of some external event (e.g., a timer expiring, or an IO event occurring)
in which case a thread missing a notify is not an issue as another one will be triggered
from elsewhere so it won’t wait forever.

The precise condition which causes the lost wakeup issue depends upon the use the notify
chain is put to (concrete examples are given below). In general anything notifying the
notify chain or adding a node to the notify chain must first acquire the tail pointer before

CHAPTER 5. SOFTWARE TECHNIQUES 95

performing the action that alters the condition or checks the condition. After that is
done the tail pointer is replaced so something else can acquire it. As only one thread
can acquire the tail pointer at once the lost wakeup cannot occur as the condition cannot
change between a thread deciding to add itself to the notify chain and the addition
occurring. Effectively the acquisition of the tail pointer is acting as a lock, the lock must
be acquired before the notify chain is used. A notify chain could also use a head pointer
rather than a tail pointer, the mechanism is exactly the same apart from new nodes will
be inserted at the front rather than the back.

In general waiting on a notify chain works as follows:

1. Create a notify node

2. Acquire the tail pointer (or head pointer if this notify chain wants insert at front
behaviour).

3. Check the condition C, to see if a notify chain wait is needed.

4. If no wait needed, release tail pointer and continue.

5. Otherwise insert node into notify chain:

� Change next pointer of current tail to point to new node (or change next of
new node to point to current head).

� Update tail/head pointer to point to new node (releasing tail/head pointer so
another thread can acquire it).

6. Wait on wait word of notify node, if something has notified the chain between this
step and updating the tail pointer then the wait word will be present and thread
continues immediately.

7. After wait on wait word finishes, write to the wait word of the notify node pointed
to by our node’s next if notify all behaviour is desired.

To wake a notify chain simply write to the wait word of the head node of the notify chain
having obtained the tail/head pointer first, then return the tail/head pointer.

Similar Mechanisms

The notify chain takes inspiration from the MCS lock [73] but also shares many similari-
ties with other mechanisms. Three examples (discussed in the fine-grained computation
chapter) are Tullsen’s lockbox [100], the queue on lock bit mechanism (QOLB) [52] and
the queue based locks from the DASH multiprocessor [64]. All three serve a similar pur-
pose. They seek to reduce or entirely remove the excess memory accesses in a multicore
system when several processors are spinning on a lock. In QOLB this is accomplished
by any processor spinning on the lock taking a shadow copy of the cache line that holds
it and spinning on that locally. In each cache stored with the cache lines is a pointer,
these pointers can form a queue. When something releases a lock it only needs to notify

96 5.1. PRIMITIVES

the processor next in the queue rather than invalidating all shadow copies everywhere.
DASH’s queue based locks do something similar only instead the sharing directory from
the cache coherency system, which knows what processors are sharing the lock’s cache
line, is used to determine where the lock should be acquired next. QOLB differs from
notify chain as it requires extra data in each cache (compared to the single presence bit
required for the notify chain), it also operates on a per-processor basis, the notify chain
operates on a per-thread basis. DASH’s queue based locks use existing state within the
cache coherency system, but again it operates on a per-processor basis, not a per-thread
basis.

Tullsen’s lockbox takes a different approach, any thread spinning on a lock via a special
acquire instruction can be stalled, with the address of the lock and acquire instruction
placed in a lockbox (there is one per thread), when the lock is released, any lockbox that
has the address of the lock is notified and its thread can be rewoken. This differs from
the notify chain as it requires an extra per-thread hardware structure and it requires a
general way to efficiently broadcast the releasing of a lock to any lockboxes which hold its
address. Finally it should be noted that all three mechanisms require specific hardware
support. The notify chain is built in software on the presence bit mechanism.

Notify chains are a general mechanism that can be used in many ways, below are three
possibilities:

Locks

These follow directly from the implementation of a notify chain being taken from the
MCS lock implementation. To acquire the lock follow the general process for waiting on
a notify chain above with the following changes:

� Condition C is whether or not tail is NULL. If the tail is NULL nothing has the
lock so the thread can acquire it immediately

� If the tail is NULL a thread must set the tail to its notify node when acquiring the
lock. This removes the need for a separate head pointer for the chain.

� If the tail is not NULL then wait on the wait word of the notify node. When awoken
don’t write to the next node in the chain as notify one, not notify all behaviour is
desired

Once a thread is done waiting on the wait word of its notify node (or if it never had to
wait because the tail pointer was NULL) it has acquired the lock. To release it it writes
to the wait word of the notify node pointed to by the next field of its notify node. If its
notify node has a non NULL next field then it can just write directly to the wait word of
that node and its done. If its notify node has a NULL next field then currently there is
no next thread to wakeup, however it is possible that another thread has determined the
lock is acquired but hasn’t added itself to the notify chain yet. So to avoid a lost wakeup
it acquires the tail pointer, then if the tail pointer points to the notify node of the thread
releasing the lock nothing else has been added to the chain so it may safely set the tail
to 0 and do nothing else. Otherwise the tail has changed so there is another thread to

CHAPTER 5. SOFTWARE TECHNIQUES 97

//Acquires the n o t i f y chain l oc k lock , a l s o needs a no t i f y node to add to the n o t i f y
chain

void a c qu i r e l o c k (volat i l e not i f yCha inLock t ∗ l ock , volat i l e not i f yNode t ∗ noti fyNode) {
//To wait on the n o t i f y node we need to c l e a r i t s wai t word
TAC(¬i fyNode−>waitWord) ;

// I f adding no t i f y node to the chain i t w i l l be at the t a i l so s e t next to NULL
noti fyNode−>next = 0 ;

//Acquire the t a i l po in t e r
not i f yNode t ∗ not i f yCha inTai l = acqu i r eLocat i on (&lock−>cha inTai l) ;

// I f t a i l i s NULL, nothing has the l o c k so add no t i f y node as the only node in
the chain and return immediate ly because the l o c k has been acqu i red .

i f (not i f yCha inTai l == 0) {
//Make wai t word presen t again as we ’ re not going to wai t on i t
noti fyNode−>waitWord = 0 ;
lock−>cha inTai l = noti fyNode ;
return ;

}

//Otherwise t a i l i s not NULL, something e l s e has the lock , add the n o t i f y node
to the t a i l

not i f yCha inTai l−>next = noti fyNode ;
lock−>queueTai l = noti fyNode ;

//Wait f o r the wai t word to become presen t (l ook s l i k e a busy wai t ing loop but
w i l l cause the thread to s l e e p un t i l noti fyNode−>waitWord becomes presen t at
which poin t the loop w i l l e x i t as we ’ l l wr i t e 0 to notifyNode−>waitWord)

while (noti fyNode−>waitWord) ;
}

Listing 5.4: Notify chain lock acquire implementation

wakeup so it writes to that thread’s notify node’s wait word. The code to acquire the
lock can be seen in listing 5.4 and the code to release the lock can be seen in listing 5.5.

Barriers

Any thread waiting on a barrier will wait until the number of threads waiting on that
barrier reaches some value, at which point they will all be notified and all threads wake
and continue execution. Along with a notify chain they require two integers, one is the
total thread count required and the other is the number of threads currently waiting on
the barrier. To wait on the barrier follow the general process for waiting on a notify chain
above with the following changes:

� Condition C is whether the number of threads waiting is equal to the total number
of threads we’re waiting for. If the thread entering the barrier will bring the number
of threads waiting up to the total we’re waiting for then that thread can immediately
continue, it must also wake the notify chain and reset the number of threads waiting
to 0. The number of threads waiting must be checked after the head pointer has
been acquired. If it is checked before then multiple threads could observe the same
value, this is not an issue for a thread that will be waiting on the chain for the
barrier to complete (provided the count is incremented atomically), but if multiple
threads read the same value and those threads are the last to wait on the barrier
then one of them must wake the chain and only one of them must wake the chain

98 5.1. PRIMITIVES

//Release the n o t i f y chain l oc k lock , must supp ly the same no t i f y node t ha t was used f o r
acqu i r ing the l o c k

void r e l e a s e l o c k (volat i l e not i f yCha inLock t ∗ l ock , volat i l e not i f yNode t ∗ noti fyNode) {
// I f t he n o t i f y node has a non NULL next then t ha t ’ s t he next th ing t ha t should

acqu i re the l o c k
i f (noti fyNode−>next) {

//So wake i t
noti fyNode−>next−>waitWord = 0 ;
//And we ’ re done
return ;

}

//Otherwise e i t h e r nothing i s a t t empt ing to ente r the lock , or something has
seen the l o c k i s acqu i red but hasn ’ t been added to the n o t i f y chain yet , so
acqu i re the t a i l po in t e r l o c a t i on

not i f yNode t ∗ not i f yCha inTai l = acqu i r eLocat i on (&lock−>cha inTai l) ;

// I f t a i l i s s t i l l t he supp l i e d n o t i f y node then nothing has been added to the
n o t i f y chain

i f (not i f yCha inTai l == noti fyNode) {
//As only one thread can have acqu i red the t a i l at once we can be sure

nothing i s about to add i t s e l f hav ing a l ready looked at the t a i l , so
r e p l a c e t a i l wi th NULL and we ’ re done

l ock−>cha inTai l = 0 ;
} else {

//Otherwise t a i l has changed so there i s now something to wakeup so put
the t a i l back

l ock−>cha inTai l = not i f yCha inTai l ;
//Wakeup whatever i s next in the chain
noti fyNode−>next−>waitWord = 1 ;

}
}

Listing 5.5: Notify chain lock release implementation

so it is vital that precisely one of them see a number of thread waiting one less than
the total expected. All threads must acquire the head pointer in any case because
they are either adding themselves to the chain or waking the chain.

� If the thread isn’t the last in and must wait on the notify chain then it increments
the threads waiting counter.

� After a thread is done waiting on the notify node it must notify the next node in
the chain as pointed to by its node’s next pointer as notify all behaviour is desired.

The barrier uses a head rather than tail pointer as the last thread in needs to wake the
head of the chain, if only a tail pointer is used (like in the lock implementation) then it
doesn’t know what the head is. This does result in a last in, first out behaviour for the
barrier but as it is notify all this isn’t a major issue. Both a head and tail pointer could
be maintained if first in, first out behaviour is required.

The threads waiting count gets reset by the last thread in to the barrier which also
wakes the chain. It resets the count before waking the chain which enables a thread to
immediately wait on the barrier again even if other threads have yet to be awoken (i.e.
they’re still waiting on the barrier). This will not cause issues because a thread that hasn’t
been awoken yet doesn’t need to check the thread waiting count (so arbitrary changes it
to are fine) and the notify chain it is in won’t be disturbed by another thread waiting on
the barrier again. The barrier implementation can be seen in listing 5.6

CHAPTER 5. SOFTWARE TECHNIQUES 99

//Wait on bar r i e r b , not i fyNode used when thread must wai t (i . e . i t ’ s not the l a s t
thread to c a l l waitOnBarrier)

int waitOnBarrier (b a r r i e r t ∗ b , not i f yNode t ∗ noti fyNode) {
//Acquire head of b a r r i e r ’ s n o t i f y chain
not i f yNode t ∗ chainHead ;
chainHead = acqu i r eLocat i on (&b−>noti fyChain−>head) ;

// I f we ’ re the l a s t thread in
i f (b−>threadsWait ing + 1 == b−>totalWanted) {

//Wake no t i f y chain , i f t he re i s anything in the n o t i f y chain
i f (b−>noti fyChain−>head)

b−>noti fyChain−>head−>waitWord = 0 ;

//Reset thread wai t ing counter , as we l l as head of n o t i f y chain so
bar r i e r can be immediate ly reused (threads be ing woken aren ’ t
e f f e c t e d by changes in the se va lue s)

b−>threadWaiting = 0 ;
//Head r e s e t l a s t as t ha t puts head poin t e r back , a l l ow ing other threads

to wai t on the bar r i e r again .
b−>noti fyChain−>head = 0 ;

} else {
//We’ re not the l a s t thread in , so increment threads wai t ing count (we

have acqu i red the head pointer , so sa f e to increment t h i s as no
other threads can be here at the same time)

b−>threadsWait ing++;

//Prepare n o t i f y node f o r use
TAC(¬i fyNode−>waitWord) ;
noti fyNode−>next = 0 ;

// I f t he n o t i f y chain i s empty
i f (chainHead == 0) {

b−>noti fyChain−>head = noti fyNode ;
} else {

//Otherwise j u s t add to f r on t and s e t head appropr i a t e l y
noti fyNode−>next = chainHead
b−>noti fyChain−>head = noti fyNode ;

}

//Wait f o r wakeup
while (noti fyNode−>waitWord) ;

//We want to n o t i f y a l l so i f we have a non NULL next po in t e r on our
no t i f y node wake t ha t a l s o

i f (noti fyNode−>next)
noti fyNode−>waitWord = 0 ;

}
}

}

Listing 5.6: Barrier implementation

Single producer ! multiple consumer

The Mamba architecture inherently supports a single producer ! single consumer commu-
nication style. Initially the location a producer and consumer wish to use to communicate
is set to non-present, then the consumers loads it. The consumer thread will either con-
tinue immediately because the producer has already stored to it (so it has become present)
or it will wait until the producer stores to it (because it is still non-present). If a second
consumer loads the location when it is non-present then it will receive a read exception (as
the first consumer will have already setup a forward address in the non-present location
when it did its load).

100 5.1. PRIMITIVES

A notify chain can be used in this situation, if a consumer has already attempted a load
of a non-present location (setting up a forwarding address at that location so anything
else will receive a read exception on a load) then further consumers can join a notify chain
which gets notified by the producer when that word gets written.

A consumer should use the LDNR rather than LD instruction as it is expecting a read
exception might occur. After performing the LDNR the ESW is checked, if the load
succeeded than the consumer continues, otherwise it joins the notify chain. It is important
a consumer performs an LDNR before trying to wait on the chain. If the first one is done
after acquiring the head pointer of the notify chain and the location is not-present with
no forwarding address the thread will pause until the location becomes present whilst it
still has the head pointer acquired preventing anything else from waiting on the chain. It
uses the general process for waiting on a notify chain above with the following changes:

� Condition C is whether the LDNR succeeds or not (that is whether the ESW
indicates an exception or not), if it does succeed location is present and no wait
required. For the first consumer LDNR will succeed (no read exception will occur)
but not immediately, the thread will wait until the producer writes to the location.
Still no interaction with the notify chain is required as the wait has been handled
by the architecture.

� Otherwise LDNR does not succeed so wait on the notify chain. When a producer
produces a value it should wake the chain by storing that value into the wait word
of the head node of the chain. So when a thread is woken by its node’s wait word
being stored to it has been given a copy of the value, avoiding the need to load the
(now present) word being consumed again. When a thread is woken it should store
the value loaded from its wait word into the wait word of the next node in the chain
as a notify all behaviour is desired

Again a head pointer is used rather than a tail pointer as the producer needs to know what
node is the head of the chain. When it produces a value the producer first stores it to
the word being consumed then it must acquire the head pointer of the notify chain before
writing the produced value to the wait word of the head node of the chain. Otherwise a
lost wakeup issue is introduced (a consumer thread may have failed an LDNR but not
added itself to the chain when the producer thread wakes it so the consumer thread waits
forever).

5.1.4 FIFO communication

Lamport presents a implementation of a single producer ! single consumer FIFO based
around a ring buffer in [58]. Along with the ring buffer, read and write pointers are
maintained. Given a ring buffer size b these are stored as integers modulo 2b, so the value
of the pointer modulo b gives the slot in the ring buffer it is pointing at. The read pointer
points to the next slot in the ring buffer that the producer should read from, the write
pointer points to the next slot in the ring buffer that the consumer should write to. The
empty condition is indicated by the read and write pointer pointing to the same spot in

CHAPTER 5. SOFTWARE TECHNIQUES 101

//Attempt to load a va lue from loca t i on wai tLocat ion with LDNR, i f l o c a t i on i s
non−presen t and has a forwarding address thread w i l l wai t on no t i f y chain ‘ chain ’
using n o t i f y node not i fyNode . Any producer s t o r i n g to the l o c a t i on should wake
chain with wakeChainWithValue . Function w i l l re turn the va lue at the locat ion ,
e i t h e r immediate ly because the l o c a t i on i s pre sen t or a f t e r i t has woken by producer
s t o r i n g to the l o c a t i on and waking the chain with wakeChainWithValue .

u i n t64 t waitForValue (volat i l e not i f yCha in t ∗ chain , volat i l e not i f yNode t ∗ noti fyNode ,
volat i l e u i n t64 t ∗ waitLocation) {

//Acquire chain head
not i f yNode t ∗ chainHead ;
chainHead = acqu i r eLocat i on (&chain−>head) ;

//Attempt an LDNR on the locat ion , at t h i s po in t we assume an LDNR has a l ready
been t r i e d and g iven an except ion , need to t r y a f t e r acqu i r ing head to avoid
l o s t wakeup

u i n t64 t l ocat i onValue ;
u i n t64 t gotException = 0 ;
l ocat i onValue = LDNR(waitLocation) ;
gotException = check ESW(l o c a t i o n v a l u e) ;

// I f we have no except ion on LDNR then between f i r s t LDNR and t h i s one producer
has s tored to the l o c a t i on

i f (! gotException) {
//So put head back and return the l o c a t i on va lue we got
chain−>head = chainHead ;
return l ocat i onValue ;

}

//Otherwise wai t on chain , so prepare n o t i f y node f o r use
TAC(¬i fyNode−>waitWord) ;
noti fyNode−>next = 0 ;

// I f t he n o t i f y chain i s empty
i f (chainHead == 0) {

// Just need to s e t t he head
noti fyChain−>head = noti fyNode ;

} else {
//Otherwise add to f r on t and s e t head appropr i a t e l y
noti fyNode−>next = chainHead ;
noti fyChain−>head = noti fyNode ;

}

//Read the va lue and pass i t on to the next node in the chain immediate ly as
n o t i f y a l l i s d e s i r e d . The presence b i t ensures t ha t t h i s won ’ t occur u n t i l
t he va lue has a c t u a l l y been produced .

u i n t64 t value = noti fyNode−>waitWord ;
i f (noti fyNode−>next)

noti fyNode−>next−>waitWord = value ;

return value ;
}

Listing 5.7: Single Producer ! Multiple Consumer wait for value implementation

the buffer. The full condition is indicated by the distance between the two pointers being
equal to the size of the ring buffer (this will be different to them both pointing to the
same slot because they are stored modulo 2b rather than modulo b).

A producer checks if the buffer is full, if it isn’t it writes the word it is producing to where
the write pointer points and then increments it (storing the result back modulo 2b). If
the buffer is full the producer must sit in a busy waiting loop waiting for the read pointer
to change (indicating that the consumer has taken a word out of the FIFO so a slot is
now free for the producer to write to) or perform some other work.

102 5.1. PRIMITIVES

//Wake a no t i f y chain , chain with a value , va lue .
void wakeChainWithValue(not i f yCha in t ∗ chain , u i n t64 t value) {

//Acquire head f i r s t
not i f yNode t ∗ chainHead ;
cha inHai l = acqu i r eLocat i on (&chain−>head) ;

// I f t here ’ s something in the chain
i f (chain−>head)

//Then wr i t e the va lue to i t s wai t word . Each thread wai t ing on the
chain w i l l t ake care o f wr i t i n g the va lue to the next node in the
chain

chain−>head−>waitWord = value ;

//Clear the chain f o r reuse
chain−>head = 0 ;

}

Listing 5.8: Single Producer ! Multiple Consumer wake chain with value implementation

A consumer checks if the buffer is empty, if it isn’t it reads the word pointed to by the
read pointer and then increments it (storing the result back modulo 2b). If the buffer
is empty the consumer must sit in a busy waiting loop waiting for the write pointer to
change (indicating that the producer has put a word into the FIFO that can now be
consumed) or perform some other work.

Note that no locks or special atomic operations (such as compare and swap) are needed
for this to function correctly. This is because whilst both producer and consumer examine
both pointers only the consumer updates the read pointer and only the producer updates
the write pointer. Updating the write and read pointers after a word has been produced or
consumer respectively prevent race conditions between the producer and consumer both
acting on the same word of the ring buffer at the same time. If multiple producers or
consumers are introduced the algorithm is not sufficient to ensure correctness.

Using the facilities of the Mamba architecture we can improve upon this to easily remove
the busy waiting required by both the producer and consumer. First to remove the busy
waiting required of the consumer the ring buffer starts with all of its slots marked as
non-present. The check for an empty buffer is removed from the consumer routine so it
immediately loads from the slot pointed to by the read pointer. If the producer hasn’t
produced anything (i.e. the buffer is empty and the read pointer is pointing at an empty
slot) then the load will be targeted at a non-present word so the consumer will wait until
the producer writes something there. Upon successfully completing a load the consumer
immediately clears the presence bit of the word just loaded from before incrementing the
read pointer (whilst the read pointer remains where it is the producer thread won’t write
to the slot it points to so it is safe to clear the presence bit). So any word that has yet
to be consumed has the presence bit set, otherwise it will be unset so the consumer can
safely load the read pointer directly without worrying about empty/not-empty because if
it is empty the consumer will automatically wait until the producer writes to the buffer.
The consumer implementation can be seen in listing 5.9.

Removing the busy wait loop from the producer is slightly more involved. After the
producer has determined the ring buffer to be full it needs to be able to wait for the
consumer to consumer something, without continuously checking the full/not-full state of
the buffer. This is done via a single word which the producer can wait on when the buffer

CHAPTER 5. SOFTWARE TECHNIQUES 103

//Consume a word from FIFO f i f o , consumed data i s s tored to the word d poin t s to
void f i f o consume (volat i l e u i n t64 t ∗ d , volat i l e FIFO t∗ f i f o) {

//Load from bu f f e r s l o t po in t ed to by the read poin t e r (modulo f i f o s i z e) , no
need to check i f t he re ’ s anything in the FIFO as i f t he re i sn ’ t t he s l o t
won ’ t be pre sen t and the consumer thread w i l l wai t u n t i l t he producer wr i t e s
something to the FIFO (making the s l o t t he consumer at tempted to load from
present) .

∗d = f i f o −>bu f f e r [f i f o −>r eadPo inter & (f i f o −>s i z e − 1)] ;
//As soon as we ’ ve loaded the data from the s l o t , c l e a r i t s presence b i t
TAC(& f i f o −>bu f f e r [f i f o −>r eadPo inter & (f i f o −>s i z e − 1)]) ;

// Increment read poin t e r modulo 2 ∗ f i f o s i z e (f i f o−>modMask == (f i f o −>s i z e ∗ 2)
− 1 , so & performs the modulus provided the f i f o s i z e i s a power o f two)

f i f o −>r eadPo inter = (f i f o −>r eadPo inter + 1) & f i f o −>modMask ;
// Set the presence o f the producer wai t word waking up the producer i f i t i s

wai t ing f o r the FIFO to become non− f u l l
f i f o −>producerWait = 0 ;

}

Listing 5.9: Implementation of FIFO consumer without busy wait loop

//Puts a produced word d in to the FIFO f i f o
void f i f o p r odu c e (u i n t64 t d , volat i l e FIFO t∗ f i f o) {

// F i r s t c l e a r the producer wai t word
f i f o −>producerWait = 1 ;
TAC(& f i f o −>producerWait) ;

//Check to see i f f i f o i s f u l l
i f (((f i f o −>wr i tePo inter − f i f o −>r eadPo inter) & f i f o −>modMask) == f i f o −>s i z e) {

// I f so we wai t on the producer wai t word
while (f i f o −>producerWait) ;

}

// Store to the b u f f e r at t he s l o t po in t ed to by the wr i t e pointer , at t h i s
point , e i t h e r the f i f o wasn ’ t f u l l in the i n i t i a l check , or the producer has
been wai t ing on the producer wai t word and has been woken by the consumer
consuming so there ’ s no space to s t o r e .

f i f o −>bu f f e r [f i f o −>wr i tePo inter & (f i f o −>s i z e − 1)] = d ;
// Increment wr i t e po in t e r modulo 2 ∗ f i f o s i z e (f i f o −>modMask == (f i f o −>s i z e ∗

2) − 1 , so & performs the modulus provided the f i f o s i z e i s a power o f two)
f i f o −>wr i tePo inter = (f i f o −>wr i tePo inter + 1) & f i f o −>modMask ;

}

Listing 5.10: Implementation of FIFO producer without busy wait loop

is full. Before checking if the buffer is full or not the producer clears the presence of the
word (known as the producer wait word), if then checks to see if the buffer is full, if it
is it waits on the producer wait word. When the wait is done it is clear to write to the
write pointer. The consumer stores to the producer wait word after it has updated the
read pointer every time it consumes, if the producer is waiting for the buffer to become
not-full this will wake it up. The producer implementation can be seen in listing 5.10.

After the producer has performed the TAC that clears the presence bit of the producer
wait word there are a few possibilities:

1. The buffer wasn’t full, so after examining the read and write pointers the producer
determines its clear to store a word in the buffer. The consumer can only alter the
read pointer and cannot make the buffer become full so it is safe for the producer
to store to the buffer regardless of what the consumer does between the producer
clearing the producer wait word and deciding to store to the buffer.

104 5.2. A SAT SOLVER IMPLEMENTATION

2. The buffer is full, so after examining the read and write pointers the producer
determines it must wait so it waits on the producer wait word, the following things
may occur:

(a) Between the presence bit of the producer wait word being cleared and the
producer loading the wait word the consumer hasn’t done anything, so the
producer wait word remains non-present. The producer will eventually be
woken by the consumer writing to the producer wait word after it has consumed
something and altered the read pointer so it is safe for the producer to continue
and store to the buffer.

(b) Between the presence bit of the producer wait word being cleared and the
producer loading the wait word the consumer consumes. The consumption
involves two steps that are visible to the producer, the updating of the read
pointer and the setting of the producer wait word presence bit. If the read
pointer is updated before the producer examines it then the producer will
(correctly) determine the buffer isn’t full and immediately continue with writ-
ing to a spare slot. If the read pointer is updated after the producer examines
it then the producer will wait upon the producer wait word. At some point
the consumer will store to the producer wait word, setting its presence bit, if
this occurs before the producer starts the wait, then when it does (by loading
the producer wait word) the producer will immediately continue and can safely
write to the ring buffer. If the consumer stores to the producer wait word after
the producer starts the wait then the producer will be woken up, continue and
can safely write to the ring buffer. There is no possibility of a lost wakeup as
only the producer clears the presence bit of the producer wait word and there
is only one producer so the bit won’t be set and cleared again between the
producer deciding to wait and the wait actually beginning.

So the producer will successfully write a word to the FIFO without having to continuously
poll. The word will either be written immediately because there was space or after waiting
and being woken by the consumer.

5.2 A SAT solver implementation

5.2.1 SAT problem

The SAT problem is one of deciding whether or not a particular boolean formula can be
satisfied, that is there is an assignment of booleans to the free variables in the formula
that makes that formula true. The SAT problem is of interest for a few reasons. Firstly
many things can be constructed as a SAT problem. A common example would be formal
verification of hardware. A SAT instance can be constructed that is satisfiable if and only
if a given hardware design meets certain criteria. Secondly SAT is NP complete so it is
non-trivial to write a useful SAT solver so their development is an area of active research.
Finally it is a problem amenable to parallelization but it is not straight forward, intricate
synchronisation is required.

CHAPTER 5. SOFTWARE TECHNIQUES 105

An SAT problem can be represented in conjunctive normal form (CNF). A CNF formula
consists of a number of clauses. Each clause is a disjunction (OR) of variables (which may
be negated) and the formula is a conjunction (AND) of clauses. Any boolean formula can
be transformed into CNF so it can be used as a general representation. An advantage
of CNF is it gives a regular structure to any particular instance of the SAT problem. A
small example can be seen in equation (5.1).

(A _ B _ :C) ^ (A _ :B _ :C) ^ (:A _ B _ :C) (5.1)

A satisfying assignment is one that makes the formula true, in this case a satisfying
assignment would be A = T , B = T , C = F where T is true and F is false.

The SAT solver presented here is not intended to compete with modern SAT solvers. It
exists as a test case for the architecture. It is not essential that is compares favourably
with other SAT solvers provided it exposes enough parallelism that a useful conclusion
can be drawn about Mamba from it.

5.2.2 SAT solver algorithm

An obvious way to implemented a SAT solver is via an exhaustive backtracking search.
Variables are assigned in turn until a contradiction is reached (the partial assignment pro-
duces a false result) at which point the solver backtracks and tries a different assignment.
The method used by the solver is taken from that of Davis-Putnam-Logemann-Loveland
(DPLL)[24]. The DPLL method proceeds as backtracking search does, choosing a variable
to assign and then assigning it. When a variable is assigned all clauses are searched for
ones containing the assigned variable. If the assignment makes the clause true (trivial to
determine as the clause is an OR of variables) the clause is removed. If the assignment is
to a variable in the clause but doesn’t make it true (i.e. assignment is to true but variable
is negated in the clause or vice versa) the variable is removed from the clause. If an empty
clause is created the current partial assignment produces a contradiction so backtracking
is required. If all clauses are removed then the formula has been satisfied. Along with the
basic search DPLL adds the following inferences:

Pure Literal Elimination If every occurrence of a particular variable in the remaining
clauses is negated or non-negated then that variable can be instantly assigned.

Unit propagation If a clause only contains a single variable then in order to make the
formula true there is only one possible assignment for that variable (the one that
makes the clause true).

If either inference determines a particular assignment must be made this will be done
before choosing the next variable to assign, this often leads to further inferences. This
has the effect of removing large parts of the search space that the backtracking algorithm
without any inference would explore.

The SAT solver used in the evaluation only uses the unit propagation inference.

106 5.3. SUMMARY

5.2.3 Parallelizing the algorithm

This algorithm is parallelized by splitting up the clauses of the problem between a given
number of threads, known as the process threads. A single control thread directs the
process threads. It chooses which variable to assign next and what to assign it to. This
decision is relayed to all of the process threads which attempt the assignment on all of
their assigned clauses. If it results in a contradiction the control threads tells all process
threads to backtrack. If it doesn’t each process thread prepares a list of unit inferences
(i.e. assignments that must be made due to unit propagation discussed above) which are
fed back to the control thread. It checks these inferences do not contradict, backtracking
if they do, and sending them to all process threads if not.

Presence bits can be used to coordinate the process threads. Each process thread has an
action (assign or backtrack) and an assignment (i.e. a variable name and true or false)
and produces a result (whether or not that assignment produced a contradiction). For
every process thread there is an action word and a result word which start non present.
The thread reads the action word, clears its presence bit and then performs the action.
The control thread writes an action to every process thread’s action word and then reads
the result word, clearing its presence bit after. The presence bits ensure that a process
thread only performs an action once the control thread has given it one and that the
control thread may only continue once all process threads have returned a result. See
listing 5.11 for pseudo-code of the top level loops.

When a process thread performs an assignment it may generate unit inferences, these
are checked as the process thread performs the assignment on all of it’s clauses to see if
they conflict. If they do not they must be propagated back to the control thread, this is
done via a FIFO. So when the control thread has assigned a variable if all process threads
have completed the assignment without causing a contradiction it reads all of the unit
inferences from all of the process threads’ FIFOs. These are checked for contradictions,
causing the control thread to issue a backtrack if one is found or further assignments if
none are found.

The MIPS64 implementation is identical to the Mamba implementation, apart from the
control and process thread coordination. Instead of a process thread waiting for an action
word to become present it instead continuously polls the action word until it becomes a
valid action. Similarly the control thread after issuing actions polls the result word for
each process thread until it becomes a valid result. FIFOs are still used to propagate unit
inferences (albeit with different internal implementations).

A clear bottleneck in the presented parallelization is the single control thread. Though
this allows the study of how Mamba behaves when an applications scaling is limited by
its implementation. Furthermore as shown in the evaluation a fair speedup is achievable
before the bottleneck limits performance.

5.3 Summary

This chapter discusses how software can be built for Mamba, the basic concept of waiting
on a word is introduced which is used to create a notify chain. A simple and general queue

CHAPTER 5. SOFTWARE TECHNIQUES 107

pr oc e s s th r ead () {
while (True) {

act i on = ∗(act i on word)
switch (act i on) {

case ACTION ASSIGN:
TAC(act i on word)
\\do assignment . .
∗(r e s u l t word) = r e s u l t
break

case ACTIONBACKTRACK:
TAC(act i on word)
\\do backtrack . . .
∗(r e s u l t word) = r e s u l t
break

}
}

}

con t r o l th r ead () {
while (True) {

act i on = dec i d e ac t i on ()
f o r each (p r o c e s s thread) {

TAC(r e s u l t word)
∗(act i on word) = act i on

}

r e s u l t = RESULT OK
for each (p r o c e s s th r ead) {

i f (∗ (r e s u l t word) == RESULT FAIL)
r e s u l t = RESULT FAIL

}

p r o c e s s r e s u l t (r e s u l t)
}

}

Listing 5.11: SAT Solver process and control thread loop implementation

based mechanism for a number of threads to efficiently wait for an event to occur that
can be utilised to implement locks, barriers and a single producer ! multiple consumer
communication pattern. The concept of waiting on a word is also used to implement a
single producer ! single consumer FIFO.

108 5.3. SUMMARY

Chapter 6

Evaluation

6.1 Methodology

The evaluation of Mamba aims to show that the new architectural features added by
Mamba, namely the use of a tagged memory combined with a hardware scheduler, are
effective in enabling the use of fine-grained threading techniques. To show this Mamba
must be capable of keeping synchronisation and scheduling overheads low as thread and
core count is increased allowing good scaling. To this end Mamba is compared to a
similar MIPS64 based system (described below) that lacks a tagged memory and hardware
scheduler. Three microbenchmarks were constructed, one based around locking, one based
around barriers and one based around FIFO communication. Mamba is found to exhibit
better scaling than the MIPS64 system as well as being insensitive to thread count, in
situations where the performance of the MIPS64 systems rapidly degrades with increasing
thread count Mamba maintains its performance.

The SAT solver described in the software techniques section is evaluated as an example
of a full application. It is run using varying numbers of process threads and cores with
two different SAT problems. The Mamba implementation is found to perform better than
the MIPS64 implementation as well as degrading more gracefully at extremes of thread
count. When the thread and core count capable of reaching maximum performance (where
further scaling is limited not by the hardware but by the algorithm employed) is reached
Mamba is more able to maintains this maximum performance as threads and cores are
increased compared to the MIPS64 implementation before overheads start to degrade this
performance.

6.2 MIPS64 comparison system

The MIPS64 comparison system is very similar to Mamba. Like Mamba is executes a
subset of the MIPS64 ISA, however it doesn’t include the extensions added by Mamba. It
uses a 5-stage pipeline very similar to the original MIPS design. It has 8 hardware contexts
as Mamba does, each cycle an instruction from a different context is fetched and enters
the pipeline and the contexts are scheduled in a strict round robin order. Unlike Mamba

109

110 6.2. MIPS64 COMPARISON SYSTEM

there is no hardware scheduling system that chooses to switch contexts, all scheduling is
handled by the software. An exception handling mechanism is included so a pre-emptive
software scheduler can be used.

The MIPS64 core runs in the exact same system Mamba does, the interconnection net-
work, caches and memory controllers are identical. MIPS64 uses the same caching system
as Mamba in that each node in the systems owns an area of address space, addresses
within that space are cached only by that node. An access by a node to an area of mem-
ory outside of its part of address space will always go via the cache that owns that part
of address space.

A compare and swap (CAS) instruction is added to the MIPS64 ISA as an atomic primi-
tive. The MIPS64 ISA includes linked load and store conditional instructions but these are
usually implemented by utilising a cache coherency protocol. The caching structure used
by Mamba and MIPS64 is not conducive to efficient implementation of these primitives
which is why CAS was used instead.

6.2.1 The software scheduler

The MIPS64 system utilises a software scheduler supporting an unlimited number of
software threads. It schedules threads in the exact same manner as the Mamba hardware
scheduler, there is a single ready queue per core, when a thread’s quantum expires it
gets swapped out of its hardware context and a new thread swapped in in its place. The
one difference is when threads get added to the ready queue, Mamba has the benefit of
presence bits so only adds a thread to the ready queue when all of its registers are present.
MIPS64 lacks this mechanism so a thread that is swapped out is added immediately to
the back of the ready queue. An interrupt mechanism periodically triggers an exception
in the MIPS64 system that allows the thread scheduler to switch threads. This occurs in
every context (the scheduler is not capable of choosing to switch a thread into another
context, it can only switch threads in the context it is currently running in). The scheduler
is entirely disabled in any of the benchmarks below that use 8 threads or less.

Quantums are handled differently in Mamba and MIPS64. In both Mamba and MIPS64
a separate counter is associated with each hardware context which holds that context’s
quantum. In Mamba this is decremented every time an instruction for the context reaches
the end of the pipeline (regardless of if it managed to complete or not, e.g., if an instruc-
tion accessed a currently non-present register the instruction would be repeated but the
quantum counter would still be reduced by 1). In MIPS64 every quantum counter is
decremented every cycle (in effect they are simple count-down timers).

MIPS64 also has a far larger quantum than Mamba. The quantum used for MIPS64 was
chosen experimentally by examining the effect of the quantum on the microbenchmarks
and choosing one which provided the best performance. The MIPS64 quantum is set
at 200’000 cycles. As the MIPS64 quantum is decreased every cycle rather than every
instruction through the pipeline like Mamba this means a context will perform a thread
switch every 200000

8
= 25000 instructions if no instruction stalls and all hardware contexts

are in use. The Mamba quantum is set at 1’000. So MIPS64 will switch 25x less often than
Mamba. However a Mamba switch only occurs if there is a thread in the ready queue and

CHAPTER 6. EVALUATION 111

the MIPS64 software has the ability to yield, which causes the scheduler to immediately
deschedule the thread and schedule something else in its place so switching frequency won’t
always be 25x less in MIPS64. A smaller quantum for MIPS64 that is more comparable
to Mamba was trialled but it was found that this caused awful performance. Only limited
experimentation was conducted with the Mamba quantum as it is hardwired into the
scheduler.

The MIPS64 context switch itself is very lightweight. When a quantum expires the thread
jumps to an exception handler. This saves all of the current register values into memory,
removes a ready thread from ready queue (there is one per core), adds the current thread
to the back of the ready queue and finally restores the register values of the thread just
removed from the ready queue. This is a sequence of around 150 instructions. As the
ready queue is shared amongst all hardware contexts on a core it is protected by a simple
spin lock. This lock only needs to be held during the dequeue and enqueue operation and
as this is very simple this does not cause a small performance bottleneck, two threads
would have to jump into the scheduler at very similar times (within a few cycles of each
other) to contend and even if they did one would not have to wait very long for the other.
Li et al. measured the time to took to perform a context switch under linux on a dual
core 2GHz Intel Xeon processor [65]. They measured a time of 3.8 µs for a direct context
switch (that is the context switch alone, without any penalties incurred due to cache
misses etc.because of a change in working set) giving 7’600 cycles for a switch. MIPS64 is
significantly quicker than this because its threading and scheduling model do not contain
the complexities a modern operating system entails.

During a Mamba context switch all 32 registers of a context must be copied into memory
and the 32 registers of the newly scheduled activation frame must be copied from memory
into the register file. This process is handled by the context switch sequencer and does
not involve the context. During the switch the context being switched is entirely removed
from the pipeline. In order to avoid race conditions that may occur should a memory
action targeted at the AFs being switched enter the core during the switch all memory
actions are blocked from entering the core during the switch. This means that if another
context executes a load or store operation during the switch the entire pipeline will stall
until the switch is over.

6.3 Software tool chain

All benchmarks were written in C with a small amount of assembler used for initialisation
and exception handling code with inline assembly used to access the new Mamba instruc-
tions within C code. The GNU assembler, GAS, had its MIPS backend altered to include
the extra Mamba instructions. Clang and LLVM were used to compile C. When the
implementation of the software was started LLVM only supported MIPS32. The author
wrote a new MIPS64 backend for LLVM based on the existing MIPS32 backend. The
exact same compiler tool chain was used to build software for both Mamba and MIPS64.
The -O1 level of optimisation was used as higher levels were found to occasionally produce
incorrect code.

The SCons build system was used to automate the building of software. As each core has

112 6.3. SOFTWARE TOOL CHAIN

.c .s

Clang
+

LLVM

GAS

.o

Input C or
assembly
source

Object file
output

SCons .o .o

.LD

Linker

.bin .bin

Linker
Script

One binary
file per core

Program
object files

Figure 6.1: The Software Tool Chain. SCons orchestrates the entire process as well as
generating linker scripts

.bin .bin .csv

TCL Programming and
Results Gathering Script

DDR Memory

Core Binaries Results File

Program code/data Result data

Figure 6.2: The program loading and running process

CHAPTER 6. EVALUATION 113

Off-chip memory access latency 9 cycles
Off-chip memory throughput 256 bits / cycle
Board $ Board serial latency 6 cycles
Board $ Board serial throughput 24 bits / cycle
Router $ Router on-chip latency 4 cycles
Router $ Router on-chip throughput 72 bits / cycle
Core $ Router latency 3 cycles
Cache access time 1 cycle
Cache miss penalty 11 cycles

Table 6.1: Performance of network and memory

a different local memory area every program had to be separately linked for each core
to ensure addresses were correct. SCons automated the creation of the necessary linker
scripts. Initially to load the programs one of the ethernet ports on the DE4 board was
used. This required the porting of the lwIP TCP/IP stack to the Mamba and MIPS64
architectures. This provided a useful test case for the compiler tool chain. The network
bootloader was stored in a ROM on the FPGA that was loaded into the DDR2 memory
on power up. Eventually the use of this bootloader was discontinued to simplify the
automation of loading benchmarks and gathering results. In its place an Altera provided
component was used that allows direct access to the Avalon bus that connected the
DDR2 memory to the MIPS64 and Mamba cores via the DE4’s USB port. A TCL script
automated writing a program into memory and taking the cores out of reset. When a
benchmark was completed it wrote its results into a particular area of memory that the
TCL script could then read and save the results into a CSV file. Figure 6.1 illustrates
the software build and figure 6.2 illustrates the loading and running of a program on the
FPGA.

6.4 Network and Memory performance

Table 6.1 gives various figures for the performance of the network and memory. It is
notable that the off-chip memory latency is very small compared to any modern system,
this is due to the 25 MHz clock rate of the FPGA system. However as the working set
size of the benchmarks presented in this evaluation is small the off-chip memory latency
is not a big factor in their performance.

The router $ router figures given are for a flit that travels from the input port of one
router, over an on-chip link and to the output port of another router. Effectively they
are the latency and throughput of a single core $ core network link. Any flit that must
travel to a node on the other board incurs an extra penalty for traveling over the serial
link. The core $ router latency figure is the number of cycles a flit generated in a core
takes to reach the input port of its tile router. Or from a flit from that router to reach
the core. From this we can calculate the first flit of a remote memory request going to a
neighbouring core will have a latency of 3+4+3 = 9 cycles to go from being generated in
one core’s execute stage to reaching the other core’s local memory where it will generate

114 6.5. AREA AND MEMORY UTILISATION

Message type Size in bits

MIPS64 Read Request 44
MIPS64 Write Request 95
MIPS64 Read/CAS Response 67
MIPS64 CAS Request 170
Mamba All Messages 134

Table 6.2: Network message sizes

Core ALMs Memory Block Bits
(Total) Kb

Memory Block Bits
(Cache) Kb

Memory Block Bits
(Non-Cache) Kb

Mamba 15900 381.3 346.8 34.5
MIPS64 13200 311.5 308.0 3.5

Overhead 20% 22% 12% 890%

Table 6.3: Mamba and MIPS64 core resource utilisation

a response. The TILE64 architecture is reported to have total latency of 9 cycles and
throughput of 31.44 bits per cycle over its networks [102]. Though the throughput given
is in actual data transferred and the Mamba figure given is in raw bits.

6.4.1 Network Message Size

The network uses flits with a payload size of 58 bits, when including the header this gives
a total flit size of 72 bits (this size was chosen as it matches the size of flits sent by the
serial link). Whilst Mamba and MIPS64 use an identical network the size of messages
sent differs between them. In Mamba all messages sent are 134 bits whilst in MIPS64
messages come in 4 separate categories each with a different size. These are given in
table 6.2. It should be noted that no particular effort was made to optimise the messages
sizes. Though a request in Mamba will always require more information than a request in
MIPS64 as in Mamba any request has a response address referring to a particular word
in memory, whilst in MIPS64 the request merely needs to state which node and context
the response should be sent back to.

6.5 Area and memory utilisation

The area and memory utilisation for both Mamba and MIPS64 are presented in table 6.3.
It should be emphasised that no time was spent on resource optimisation so the figures
are included to give an idea of the relative cost of a Mamba core vs a MIPS64 core but do

1These figures are rounded to the nearest 100 and in the case of the DDR2 controller several figures
were produced by the synthesis tool, one for each controller, that differed by up to 150 ALMs, the average
of these was used and rounded. So whilst the area figures presented are identical the precise areas are
not

CHAPTER 6. EVALUATION 115

Block ALMs Memory Block Bits
Kb

Number in system

Network Router 850 0.8 8
DDR2 Controller 4300 1 220.7 2
Serial Link Transceiver 4300 1 6.8 1

Table 6.4: Non-core block resource utilisation, numbers given are per block

not provide a definitive answer. Table 6.4 gives the area and memory utilisation for other
non-core blocks in the system. In this section when discussing memory sizes a capital
B refers to bytes, a lower case b refers to bits. The K prefix signifies a block of 1024
bytes or bits. All area figures are rounded to the nearest 100. The FPGA synthesis tool
usually gives different areas for the same piece of HDL instantiated in different places and
in different designs. Where several possible figures exist they were averaged before being
rounded.

Logic utilisation is measured in adaptive logic modules (ALMs). These are the basic
building block of the Stratix IV FPGA. They consist of two 6-input LUTs, two adders
and two registers [4]. The LUTs can be programmed to implement combinational logic
or in some ALMs the SRAMs that implement them can be directly used as memory.
Both the MIPS64 and Mamba register files have their memory implemented in ALMs (so
register file memory is not counted in the block memory bits in table 6.3). The Stratix IV
also has separate dedicated memory blocks which are used to implement cache memories
as well as most FIFOs (in general the synthesis tool makes the decision of what to use to
implement a FIFO, some small FIFOs may be implemented purely in registers).

As Bluespec eradicates all hierarchy and produces a flat Verilog file it is not possible to
precisely break down the resource utilisation of all parts of the system. The network
routers were implemented in an entirely separate Bluespec module so resource utilisation
could be tabulated for them. Compared to MIPS64 Mamba used 20% more ALMs.
This is due to the logic required for the scheduler, the local requester (which routes
incoming memory actions to the appropriate place inside the course), the implementation
of presence bits semantics and the extra presence bit cache’s control logic.

Block memory usage has been broken down into cache and non-cache memories. Both
Mamba and MIPS64 contain separate 16 KB data and instruction caches. Mamba has
a further 4 KB presence bit cache leading to a 12% higher usage of block memory. The
given cache sizes are for the actual stored data, there is additional overhead for storing
tags and valid and dirty bits.

Mamba’s non-cache block memory usage is 890% higher than MIPS64. The vast majority
of this is taken up by the ready queue, used to store AFs that are ready to be run (backed
by DDR2 memory if it overflows). This consists of 511 64-bit words giving a total memory
usage of 31.9 Kb. If seeking to reduce the memory requirements of a Mamba core this is
a good target for optimisation, the queue depth could be shrunk and it does not need to
be 64 bits wide. Only the local part of the AF needs storing. A 64-bit wide queue was
used because it simplified the implementation.

If the ready queue is entirely removed from the non-cache memory usage of Mamba, non-

116 6.6. THE BENCHMARKS

cache memory usage is 26% lower than MIPS64. This lower usage is due to the different
internal network request buffering used by Mamba and MIPS64. In Mamba all network
requests and responses are buffered in the same FIFOs. In MIPS64 read, write and CAS
requests are separated into different FIFOs. This was done because each of these requests
is a different size and the different FIFOs eased implementation.

The register file of MIPS64 requires 2 read ports and 1 write port. In Mamba a register
file with 3 read ports and 2 write ports is required. In the FPGA implementation this
leads to a 50% higher usage of ALMs for the Mamba register file compared to the MIPS64
register file.

In summary Mamba has a reasonable overhead in terms of logical utilisation but it is not
excessive and it is likely it could be reduced were an effort made to do so. The increase in
terms of cache memory is also reasonable. The non-cache memory overhead is huge due
to the AF ready queue, however this can be significantly reduced and non-cache memory
only accounts for around 10% of total core memory usage in Mamba.

6.5.1 Timing Overheads

As with logic utilisation no particular effort was made to optimise the frequency of either
Mamba or MIPS64. Parts of the Mamba system may well have longer critical paths
producing a slower system. The most likely issue in the Mamba architecture is the local
requester which routes memory actions in the Mamba core, though it would be possible
to pipeline this if it proved necessary. However that said the FPGA synthesis reports a
maximum frequency of 39.38 MHz for MIPS64 and 34.54 MHz for Mamba, in all of the
benchmarks below both systems were run at 25 MHz.

6.6 The benchmarks

Four benchmarks have been used in the evaluation, three microbenchmarks based around
the lock, FIFO and barrier implementations and one based on the SAT solver. For every
benchmark all threads involved are created at the beginning and do not get destroyed.
The thread creation time is not included in the run-time of any benchmark.

6.6.1 The lock benchmark

An implementation of a lock for Mamba using notify chains based around the MCS lock
[73] is described in the software techniques chapter. An MCS lock is constructed for the
MIPS64 system. In the lock benchmark a single lock is created per core involved to protect
a shared area in the local memory area of that core’s node. The shared area consists of
a number of integers. Every thread in the benchmark chooses a shared area at random
and attempts to acquire the lock. Once the lock is acquired, the thread may enter the
shared area. It sums the integers within the area and writes the result of the sum to the
area. It then randomly generates more integers and releases the lock exiting the area (the
intention being to simulate some work being done requiring memory associated with the

CHAPTER 6. EVALUATION 117

shared area involving a mixture of computation that can be done locally without reference
to the shared area and computation that directly access the area). Once a thread has left
a shared area it repeats the process again for another randomly chosen shared area up to
a certain number of rounds.

The benchmark is executed with a varying number of threads (8, 16, 80 and 800) over
a varying number of cores (1,2,4,8). The number of rounds each thread does varies with
total thread count so the total number of rounds executed by a core remains constant.
The total number of rounds is 800 so 100 rounds are done with 8 threads and 1 round is
done with 800 threads. After all rounds are completed the number of integers summed
and generated within the shared area is increased and the rounds are repeated. The
number of integers starts at 10 and increases in increment of 10 to 500. For each thread
and core number the total run-time was measured as a number of cycles for each different
number of integers.

In the MIPS64 implementation of the benchmark as the scheduler has no information
on which thread will gain the lock next and thus should be scheduled a situation where
most or all threads currently scheduled are just spinning on the lock could occur. They
may also impede the progress of any other threads by generating many, effectively useless,
memory operations. To alleviate this a small delay was introduced into the spin loop and
a count is kept of how many times the thread has spun. Once it has spun 100 times the
thread yields to the scheduler, scheduling another thread in its place. The number of
spins until yield was experimentally determined to be the one that gave the best results.

6.6.2 The barrier benchmark

The barrier benchmark tests the performance of the barrier implementation described in
the software techniques chapter. The MIPS64 implementation is similar to the Mamba
implementation. To wait on the barrier in the MIPS64 implementation a thread first
acquires a spin lock. Once the lock is acquired a count is increased, if this isn’t yet
the total expected the thread attempts to acquire an MCS lock (releasing the spin lock
before waiting on it). This lock has been setup so it starts locked meaning the thread
will immediately begin to wait on it. When a thread increases the count of threads
waiting on the barrier to the total expected it unlocks the MCS lock. Every other thread
waiting on the barrier is attempting to acquire this lock and when they succeed they
immediately release it. This has the effect of every thread waiting on the MCS lock (and
thus the barrier) being woken. The overall situation is very similar to the Mamba barrier
which uses a notify chain with the notable difference that every MIPS64 thread is actively
spinning on a location whilst the Mamba threads sleep.

The barrier consists of a number of threads waiting on a single barrier over a number of
rounds. The time each thread takes to do all of the rounds is measured. Measurement
starts from the second round, this is because the time of the first round will include the
setup time to create all of the threads and will be longer than usual. The benchmark is
executed with a varying number of cores (1-8) with varying numbers of threads (1, 2, 3,
4, 8, 16, 32, 64).

As with the lock benchmark the MIPS64 barrier will suffer when the scheduler schedules
only threads that are waiting on the MCS lock and the next thread to be woken has not

118 6.7. RESULTS

been scheduled. So a delay is introduced into the spin loop and a yield to the scheduler
after a certain number of spins exactly as it was for the lock benchmark.

6.6.3 The FIFO benchmark

The FIFO benchmark tests the latency and throughput of the FIFO described in the
software techniques chapter. The MIPS64 implementation of the FIFO is that of Lamport
[58]. This is the FIFO design that formed the basis of the Mamba implementation. The
benchmark designates a single core as the consumer core and a varying number of cores as
the producer cores. For each producer core a certain number of threads are created and
a matching thread created on the consumer core (so if there are c producer cores and t

threads per producer core there will be c� t threads created on the consumer core). Each
producer thread sends a number of integers (100’000 in the benchmarks presented here),
for the throughput measurement the consumer threads receive and discard the integer,
for the latency measurements the consumer threads send the integer back to the producer
thread that sent it (two separate FIFOs are used one for each direction). When testing
latency a producer thread will wait until it has received its integer back before sending
the next.

The benchmark is executed with a varying number of producer cores (1-7) with varying
numbers of threads per producer core (1, 2, 3, 4, 8, 16, 32), there is always a single
consumer core. The time each thread takes to execute is measured separately, and the
total number of cache reads and writes are measured for each core.

The MIPS64 implementation of the benchmark does not include a scheduler yield or
a delay in the loop where a producer or consumer is waiting for the FIFO to become
non-empty or non-full. This wasn’t done because doing so reduced performance (for the
throughput benchmark this indicates a producer or consumer rarely needed to wait for
the FIFO to become non-empty or non-full and for the latency benchmark this indicates
it effected the responsiveness as a thread was more likely to be descheduled before it could
reply back)

It is important to realise that the microbenchmarks are not intended to show a decreasing
run-time with increasing thread count. For the FIFO benchmarks we are measuring
throughput and latency, raw runtime actually increases with increasing thread count and
core count because each thread sends 100000 words each. So each extra thread and core
increases the total amount of work done. For the lock and barrier benchmarks we are
interested in the system’s sensitivity to thread count. In the lock benchmark as the lock
is a serialising operation simply adding more threads wont decrease run-time. For the
barrier benchmark because it performs a linear wake up of threads wed expect a linear
increase in run-time with thread count.

CHAPTER 6. EVALUATION 119

02040608010
0

12
0

14
0

NormalizedRun-Time

50
10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0

Si
ze

of
C

ri
tic

al
Se

ct
io

n

M
am

ba
8

T
hr

ea
ds

pe
r

C
or

e
M

am
ba

16
T

hr
ea

ds
pe

r
C

or
e

M
am

ba
80

T
hr

ea
ds

pe
r

C
or

e
M

am
ba

80
0

T
hr

ea
ds

pe
r

C
or

e
M

IP
S6

4
8

T
hr

ea
ds

pe
r

C
or

e
M

IP
S6

4
16

T
hr

ea
ds

pe
r

C
or

e
M

IP
S6

4
80

T
hr

ea
ds

pe
r

C
or

e

F
ig
u
re

6.
3:

R
u
n
-t
im

e
of

th
e
lo
ck

b
en
ch
m
ar
k
w
it
h
in
cr
ea
si
n
g
cr
it
ic
al

se
ct
io
n
si
ze

ru
n
n
in
g
on

8
co
re
s.

R
u
n
-t
im

e
is
n
or
m
al
is
ed

to
M
IP

S
64

ru
n
-t
im

e
on

1
co
re

w
it
h
sm

al
le
st

cr
it
ic
al

se
ct
io
n
si
ze

w
it
h
8
th
re
ad

s

120 6.7. RESULTS

0

100

200

300

400

500

600

700

800

900

N
or

m
al

iz
ed

R
un

-T
im

e

10 20 30 40 50 60 70 80 90 100

Size of Critical Section

Mamba 80 Threads per Core
Mamba 800 Threads per Core
MIPS64 80 Threads per Core
MIPS64 800 Threads per Core

Figure 6.4: Run-time of the lock benchmark with increasing critical section size running
on 8 cores for 80 and 800 threads. Run-time is normalised to MIPS64 run-time on 1 core
with smallest critical section size with 8 threads

6.7 Results

6.7.1 The lock benchmark

Results of running the lock benchmark over 8 cores can be seen for 8, 16 and 80 threads
for Mamba and MIPS64 in figure 6.3. The size of critical section refers to the number
of integers summed and generated within the shared area when a thread acquires that
shared area’s lock. The results show that for Mamba thread count does not have much of
an effect on performance. Whilst there is more variation in run-time for 800 threads it still
performs at the same level as the 8 thread run. For MIPS64 the difference in performance
between the 16 threads and 80 threads is huge. For 8 threads the MIPS64 version achieves
similar performance to the Mamba version, with MIPS64 between 5% and 13% slower,
at 16 threads the MIPS64 version is between 19% and 250% slower. Though the biggest
difference occurs at the smallest critical section size. As the size of the critical section
increases Mamba the MIPS64 get closer in performance for 16 threads. For 80 threads the
MIPS64 implementation is between 150% and 1390% slower, with the biggest difference
occurring at a critical section size of 10 and the smallest difference occurring at a critical
section size of 480.

Result for 800 threads in MIPS64 have been left off the graph, this is because they cannot
sensibly fit. A graph comparing Mamba and MIPS64 for 80 and 800 threads only over 8
cores can see in figure 6.4. Here the run-time is only measured up to a critical section size
of 100 because the run-time was getting large and the trend is clear so there is no need

CHAPTER 6. EVALUATION 121

0

20

40

60

80

100

N
or

m
al

iz
ed

R
un

-T
im

e

50 100 150 200 250 300 350 400 450 500

Size of Critical Section

Mamba 8 Threads per Core
Mamba 16 Thread per Core
Mamba 80 Thread per Core
Mamba 800 Thread per Core
MIPS64 8 Thread per Core
MIPS64 16 Thread per Core
MIPS64 80 Thread per Core

Figure 6.5: Run-time of the lock benchmark with increasing critical section size running
on 1 core. Run-time is normalised to MIPS64 run-time on 1 core with smallest critical
section size with 8 threads

to take it to 500. At its fastest MIPS64 is 46� slower than Mamba (critical section size
of 60) and at its slowest MIPS64 is 256� slower than Mamba (critical section size of 40).

There are various critical section sizes where Mamba performs best at 800 threads. This
is because at 800 threads each thread only attempts to acquire a single lock once. This
means all of the lock contention happens at the beginning of the benchmark when all
threads attempt to acquire one of the available locks. Once the notify chain is setup no
further contention occurs. If the shared areas randomly chosen by each thread happen
to be in that thread’s local memory or in a close neighbour than the single run through
the shared area will be fast, it is these cases than show the best performance. When
the number of rounds a thread does increases as the total thread count is decreased lock
contention will happen throughout the benchmark and it is less likely that a single thread
will always access shared areas that are in its local memory or nearby, so the performance
trend is more uniform.

The lock benchmark doesn’t show much sensitivity to core count in terms of how the
benchmark behaves with increasing thread number and critical section size at a given
core count. The results for 1 core can be see in figure 6.5, again at 8 and 16 threads
there is not much difference in performance between Mamba and MIPS64. For 8 threads
MIPS64 is between 6% and 2% slower and for 16 threads MIPS64 is between 13% and
47% slower (again the biggest difference occurring at the smallest critical section size, the
gap quickly closes as the size of the critical section is increased). For 80 threads MIPS64 is
between 36% and 740% slower (biggest difference at critical section size of 20, smallest at
10). At 800 threads MIPS64 is between 2� (critical section size of 10) and 143� (critical

122 6.7. RESULTS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
N

or
m

al
iz

ed
R

un
-T

im
e

1 2 3 4 8

Threads

MIPS64
Mamba

(a) Run-time with 1 core

0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

R
un

-T
im

e

1 2 3 4 8

Threads

MIPS64
Mamba

(b) Run-time with 8 cores

Figure 6.6: Barrier benchmark normalised run-time for up to 8 threads for 1 and 8 cores.
Run-time normalised to MIPS64 1 thread run-time

section size of 70) slower than Mamba.

The performance between numbers of cores whilst keeping the thread number constant
can also be compared, with performance differences between 1% and 25% for Mamba
and 6% and 44% for MIPS64, except at small critical section sizes where sensitivity to
core count can be seen. In MIPS64 beyond 8 threads with a critical section size of 10
comparing 8 core run-time vs. 1 core run-time there is a difference of 187% at 16 threads,
a difference of 20� at 80 threads and a difference of 258� at 800 threads. In Mamba at
800 threads 8 cores is 700% slower than 1 core (at a critical section size of 10) but this
gap rapidly closes to the 1% to 25% range otherwise performance difference between cores
stays in the 1% to 25% range.

Originally the MIPS64 version of this benchmark performed worse. Each thread created a
node on that stack that that thread spins on whilst waiting for the lock (the MCS lock is
a list of these nodes waiting for the lock). Due to the way memory is allocated the address
of each thread’s node aliased to the same line in the cache (as it is direct mapped), so
whilst several threads were spinning on their nodes performance was degraded due to the
continuous cache misses. This problem was corrected (nodes are placed elsewhere in a
manner that does cause them all to be in the same cache line) to give the results presented
here. The Mamba implementation also creates the nodes of the notify chain on the stack,
and these will also all be placed in the same cache line, however it is not an issue within
Mamba as the threads do not actively spin on the node.

6.7.2 The barrier benchmark

The performance difference in the barrier benchmark between Mamba and MIPS64 is
similar for up to 8 threads. The trend in performance with increasing thread number
is similar for the different numbers of core. Graphs of the normalised run-time of the
benchmark for 1 and 8 cores for up to 8 threads can be seen in figure 6.6. For up to 8
threads between 1 - 8 cores MIPS64 is between 260% and 320% slower than Mamba.

CHAPTER 6. EVALUATION 123

0

200

400

600

800

1000

1200

1400

1600
N

or
m

al
iz

ed
R

un
-T

im
e

16 32 64

Threads

MIPS64
Mamba

(a) Run-time with 1 core

0

5000

10000

15000

20000

25000

N
or

m
al

iz
ed

R
un

-T
im

e

16 32 64

Threads

MIPS64
Mamba

(b) Run-time with 8 cores

Figure 6.7: Barrier benchmark normalised run-time for 16, 32 and 64 threads for 1 and 8
cores. Run-time normalised to MIPS64 1 thread run-time

Beyond 8 threads the performance of MIPS64 rapidly becomes worse, figure 6.7 shows
the run-time for 1 and 8 cores for 16, 32 and 64 threads. With 1 core at 16 threads
MIPS64 is 17� slower and with 8 cores at 64 threads MIPS64 is 46� slower. In figure
6.8 the normalised run-time is divided by the total number of threads (number of cores �
number of threads) and graphed for 8 thread and 64 threads with increasing core count.
This demonstrates how well the barrier implementation scales. At 8 threads both MIPS64
and Mamba scale well with no drastic differences in scaled run-time. At 64 threads per
core Mamba continues to exhibit good scaling whilst MIPS64 does not.

The likely cause of MIPS64’s poor performance in this benchmark is the linear nature
of the barrier wake up operation. If the next thread to be woken is not scheduled then
time is wasted whilst other threads spin. A more efficient barrier would involve a tree
structure, where each thread wakes up two or more threads. Still at 8 threads and below
where no scheduling occurs Mamba can still outperform MIPS64 by up to 100%. A tree
implementation of the barrier would greatly improve MIPS64’s performance at higher
thread counts but the tree implementation would also benefit Mamba.

6.7.3 The FIFO benchmark

Throughput

The run-time of every thread in the FIFO benchmark is measured and averaged with
each producer thread sending a continuous stream of integers and each consumer thread
consuming an integer and immediately discarding it. Throughput is then the reciprocal of
the run-time. The measured throughput for increasing threads per producer core can be
seen for 1 producer core and 7 producer cores in figure 6.9. For 1 producer core MIPS64
has between 115% and 31% worse throughput than the Mamba implementation, with
the smallest difference occurring at 8 threads per producer core and the largest at 32
threads per producer core. For 7 producer cores MIPS64 has between 39% and 770%

124 6.7. RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
al

ed
R

un
-T

im
e

1 2 3 4 5 6 7 8

Cores

MIPS64
Mamba

(a) Scaled run-time for 8 threads per core

0

5

10

15

20

25

30

35

40

45

50

Sc
al

ed
R

un
-T

im
e

1 2 3 4 5 6 7 8

Cores

MIPS64
Mamba

(b) Scaled run-time for 64 threads per core

Figure 6.8: Barrier benchmark scaled run-time for 1 - 8 cores with 8 and 64 threads.
Normalised run-time is divided by the total number of threads to get scaled run-time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(a) Throughput with 1 producer core

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(b) Throughput with 7 producer cores

Figure 6.9: Throughput of FIFO benchmark for 1 and 7 producer cores for 1, 2, 3, 4, 8,
16 and 32 threads per producer core. Throughput is normalised to MIPS64 run with 1
producer core with 1 thread per producer core

worse throughput with the smallest difference occurring at 1 thread per producer core
and the largest at 32 threads per producer core.

In figure 6.10 thread count per producer core is held constant (at 8 and 32 threads per
producer core), whilst the number of producer cores varies. For 8 threads per producer
core MIPS64 has between 31% and 204% worse throughput than Mamba, with the smallest
difference occurring at 1 producer core and the largest at 7 producer cores. For 32 threads
per producer core MIPS64 has between 115% and 770% worse throughput than Mamba
with the smallest difference occurring at 1 producer core and the largest at 7 producer
cores.

It is notable that throughput is significantly worse for both Mamba and MIPS64 when
comparing equal thread counts on differing numbers of producer cores. This is to be
expected as as the number of producer cores increases the number of consumer threads

CHAPTER 6. EVALUATION 125

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

or
m

al
iz

ed
T

hr
ou

gh
pu

t

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(a) Throughput with 8 threads per producer core

0.0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(b) Throughput with 32 threads per producer core

Figure 6.10: Throughput of FIFO benchmark 8 and 32 threads per producer core for 1 -
7 producer cores. Throughput is normalised to MIPS64 run with 1 producer core with 1
thread per producer core

(which are all the same core) also increases. The bottleneck formed by the single consumer
core is the reason that throughput gets worse as the number of producer cores is increased.
In figure 6.11 the throughput is scaled by the total number of producer threads (producer
threads per core � producer cores) to give a measure of the total throughput achieved
by all FIFOs rather than the throughput of an individual FIFO. This demonstrates that
the Mamba implementation exhibits significantly greater resilience to the total increase in
producer threads. For Mamba in both the 8 threads per producer core and 32 threads per
producer core cases the scaled throughput is slightly lower with 7 producer cores compared
to 1 producer core with a peak in the middle. The difference between the highest and
lowest scaled throughput is 18% for 8 threads per producer core and 17% for 32 threads
per producer core. For MIPS64 in both the 8 threads per producer core and 32 thread per
producer core cases the scaled throughput drops off immediately. The difference between
the highest and lowest scaled throughput is 350% for 8 threads per producer core and
440% for 32 threads per producer core.

Overall Mamba is maintaining roughly the same total throughput. As the number of
producer threads increases throughput per thread goes down but in proportion to the
increase in producer threads. The same is not true of MIPS64.

Latency

For the latency measurement every time a consumer thread consumes an integer it im-
mediately sends it back via another FIFO. The producer thread waits for the response
from the consumer thread before producing the next integer. The run-time of all threads
is measured and averaged, this is directly proportional to the average latency. The mea-
sured latency for increasing threads per producer core can be seen for 1 producer and 7
producer cores in figure 6.12. For 1 producer core for up to 16 producing threads MIPS64
has between 81% and 320% higher latency than Mamba, the smallest difference occurs
at 8 threads per producer core and the largest at 16 threads per producer core. At 32

126 6.7. RESULTS

0

2

4

6

8

10

Sc
al

ed
T

hr
ou

gh
pu

t

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(a) Scaled throughput with 8 threads per producer
core

0

1

2

3

4

5

6

7

8

9

Sc
al

ed
T

hr
ou

gh
pu

t

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(b) Scaled throughput with 32 threads per pro-
ducer core

Figure 6.11: Throughput of FIFO benchmark scaled by the total number of producer
threads with 8 and 32 threads per producer core for 1 - 7 producer cores. Throughput is
normalised to MIPS64 run with 1 producer core with 1 thread per producer core

0

2

4

6

8

10

12

14

16

N
or

m
al

iz
ed

L
at

en
cy

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(a) Latency with 1 producer core

0

20

40

60

80

100

120

140

160

N
or

m
al

iz
ed

L
at

en
cy

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(b) Latency with 7 producer cores

Figure 6.12: Latency of FIFO benchmark for 1 and 7 producer cores for 1, 2, 3, 4, 8, 16
and 32 threads per producer core. Latency is normalised to MIPS64 run with 1 producer
core with 1 thread per producer core

producer threads Mamba performs slightly worse than MIPS64 with 11% greater latency.
For 7 producer cores MIPS64 has between 94% and 760% higher latency than Mamba,
the smallest difference occurs at 1 thread per producer core and the largest at 32 threads
per producer core.

Figure 6.13 shows how latency changes with increasing producer core count with the
number of threads per producer core held constant. For 8 thread per producer core
MIPS64 has between 68% and 300% worse latency with the smallest difference occurring
at 3 producer cores and the largest different occurring at 5 producer cores. For 32 threads
per producer core MIPS64 has between 620% and 770% worse latency apart from at 1
producer core where MIPS64 is 11% better, otherwise the smallest difference occurs at 2

CHAPTER 6. EVALUATION 127

0

2

4

6

8

10

N
or

m
al

iz
ed

L
at

en
cy

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(a) Latency with 8 threads per producer core

0

20

40

60

80

100

120

140

160

N
or

m
al

iz
ed

L
at

en
cy

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(b) Latency with 32 threads per producer core

Figure 6.13: Latency of FIFO benchmark 8 and 32 threads per producer core for 1 - 7
producer cores. Latency is normalised to MIPS64 run with 1 producer core with 1 thread
per producer core

producer core and the largest at 6 producer cores.

As with throughput a scaled result can be used to determine how well the latency of the
FIFO implementation scales with increasing total thread count. The normalised latency
is divided by the total number of producer threads (producer threads per core � producer
cores) to give scaled figure. The result of this can be seen in figure 6.14 for 8 threads and
32 threads per producer core. Both Mamba and MIPS64 exhibit reasonable scaling here.
For 8 threads per producer core there is a maximum of 39% difference in scaled latency
for MIPS64 (difference between 1 producer producer core and 7 producer cores) and a
maximum of 39% difference in scaled latency for Mamba (difference between 1 producer
core and 7 producer cores). For 32 threads per producer core there is a maximum of 57%
difference in scaled latency for MIPS64 (difference between 1 producer core and 7 producer
cores) and a maximum of 20% difference for Mamba (difference between 2 producer cores
and 7 producer cores) ignoring the 1 producer core case (which is 78% worse than the
best). Though in the 32 threads per producer core case there is a noticeable upward trend
in scaled latency for MIPS64, the trend for Mamba appears flatter.

Memory Operations

Also of interest in the FIFO latency and throughput benchmarks are the memory oper-
ations, the number of reads and writes that occur in each cache. For the Mamba FIFO
produce and consume operations a memory access should only occur when an item can
be placed or removed from the FIFO. If this is not possible the producer or consumer
thread using the FIFO should stall until it is able to continue. So producing or consuming
an item will use a constant amount of memory accesses regardless of how long it takes.
Unlike in the polling version where the longer a thread waits to produce or consume the
more memory operations are used.

For the throughput benchmark all the FIFOs are contained in the address space of the
consumer core. Figure 6.15 shows the measured memory operations in the data cache of

128 6.7. RESULTS

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Sc

al
ed

L
at

en
cy

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(a) Scaled latency with 8 producer threads per core

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
al

ed
L

at
en

cy

1 2 3 4 5 6 7

Cores

MIPS64
Mamba

(b) Scaled latency with 32 producer threads per
core

Figure 6.14: Latency of FIFO benchmark scaled by dividing by the total number of
producer threads with 8 and 32 threads per producer core for 1 - 7 producer cores.
Latency is normalised to MIPS64 run with 1 producer core with 1 thread per producer
core

0

1

2

3

4

5

6

7

8

Sc
al

ed
M

em
or

y
O

pe
ra

tio
ns

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(a) Scaled memory operations with 1 producer
core

0

1

2

3

4

5

6

7

8

Sc
al

ed
M

em
or

y
O

pe
ra

tio
ns

1 2 3 4 8 16 32

Threads

MIPS64
Mamba

(b) Scaled memory operations with 7 producer
cores

Figure 6.15: Memory operations in the data cache of the consumer core divided by the
total number of producer threads (total number of FIFOs) in the throughput benchmark.
Normalized to the MIPS64 consumer core on the 1 producer core and 1 producer thread
run

the consumer core for 1 and 7 producer cores divided by the total number of producer
threads (threads per producer core � producer cores) which is the total number of FIFOs.

The scaled memory operations remain similar for all numbers of threads for Mamba, this
is not the case for MIPS64. For 1 producer core the biggest difference in scaled memory
operations for Mamba is 42%, it is 860% for MIPS64. At 7 producer cores Mamba has
a maximum difference of 47% in scaled memory operations and MIPS64 has a maximum
difference of 890%.

CHAPTER 6. EVALUATION 129

0

2

4

6

8

10

12
Sc

al
ed

M
em

or
y

O
pe

ra
tio

ns

1 2 3 4 8 16 32

Threads

MIPS64 - Producer Core
MIPS64 - Consumer Core
Mamba - Producer Core
Mamba - Consumer Core

(a) Scaled memory operations with 1 producer
core

0

5

10

15

20

25

30

Sc
al

ed
M

em
or

y
O

pe
ra

tio
ns

1 2 3 4 8 16 32

Threads

MIPS64 - Producer Core
MIPS64 - Consumer Core
Mamba - Producer Core
Mamba - Consumer Core

(b) Scaled memory operations with 7 producer
cores

Figure 6.16: Memory operations in the data cache of the consumer core and average
producer core divided by the total number of FIFOs in the core’s address space in the
latency benchmark. Normalized to the MIPS64 consumer core on the 1 producer core
and 1 producer thread run

Mamba initially performs slightly more operations than MIPS64, however at higher thread
counts MIPS64 uses significantly more. For 1 producer core at 1 thread per producer core
Mamba uses 8% more operations but at 32 threads per producer core MIPS64 uses 620%
more. For 7 producer cores at 1 thread per producer core MIPS64 uses 58% more memory
operations than Mamba and at 32 threads per producer core MIPS64 uses 940% more.
It is also notable that Mamba uses fewer operations at 7 producer cores compared to 1
producer core, with a difference of 99% at 1 thread per producer core and a difference
of 79% at 32 threads per producer core (The two graphs have the same scale so can be
compared directly).

For the latency benchmark again all of the FIFOs written to by the producer threads
are in the address space of the consumer core but the other FIFOs written to by the
consumer threads in response to the producer threads are placed in the address space of
the corresponding producer cores. The scaled memory operations from the data cache of
the consumer core and the average of the producer cores are presented here in figure 6.16
for 1 and 7 producer cores.

In Mamba there is not much difference in scaled memory operations between the consumer
and producer cores compared to MIPS64. The greatest difference for 1 producer core is
5% at 8 threads per producer core and 68% for 7 producer cores at 3 thread per producer
core. For MIPS64 the greatest difference is 840% at 1 producer core with 16 threads, and
360% for 7 producer cores at 8 threads per producer core.

For 1 producer core at 8 threads and below Mamba and MIPS64 have similar amounts of
scaled memory operations, the biggest difference occurs at 16 threads per producer core
where the MIPS64 consumer core has 880% more scaled memory operations than the
Mamba consumer core. At 7 producer cores Mamba mostly has significantly less scaled
memory operations with the smallest difference being 56% between the average MIPS64
and Mamba producer core at 1 thread per producer core and the largest difference being

130 6.7. RESULTS

23.9� between the average MIPS64 and Mamba producer core at 32 threads per producer
core.

Again the scaled memory operations remain fairly similar for Mamba regardless of thread
or core number apart from at 1 producer core with 32 producer threads. At 1 producer
core between 1 and 16 producer threads the maximum difference in memory operations is
88%, for 32 producer threads there 520% more memory operations than the lowest amount
(at 1 producer thread). At 7 producer cores the biggest difference seen is 73%. This
offers a possible explanation for the poorer performance of the Mamba implementation
at 32 producer threads with 1 producer core. Excess context swapping will generate
more memory operations so it may be that that particular setup causes bad scheduling
behaviour where threads get swapped whilst still running (i.e. not stalled waiting for
something to become present) so there is always something in the ready queue so context
swaps happen more often.

For MIPS64 scaled memory operations do not remain the same for differing thread and
core numbers. For 1 producer core the biggest difference seen is 11.6� and for 7 producer
cores the biggest difference seen is 25.8� .

6.7.4 Microbenchmark summary

From the lock and barrier benchmarks it is clear than beyond 8 threads when the software
scheduler of MIPS64 will start performing context switching in software, performance
rapidly diverges between Mamba and MIPS64. This is because the Mamba scheduler,
informed by presence bits, makes more intelligent decisions about when to switch in a
thread. Still even with 8 threads per core or below Mamba can show superior performance,
as seen in the FIFO latency and throughput benchmarks at the lower thread and core
numbers. Again the difference in Mamba and MIPS64 becomes significantly larger as the
number of threads in the FIFO benchmarks is increased.

The ability for Mamba to stall a thread waiting for a word to become present allows it to
keep the memory operations required roughly proportional to the total amount of work
done for FIFO communication due to the lack of polling. This is part of the reason Mamba
shows superior performance to MIPS64. The ability for presence bits to give information
to the scheduler about what threads are ready to run also helps increase responsiveness
as seen in the latency benchmark.

Mamba also scales well with increasing thread count. In the lock benchmark work being
done remains constant, it is just split over more threads and so the run-time of the bench-
mark remains roughly similar with increasing thread count. With the FIFO benchmarks
work done increases with thread count (as each thread sends the same amount of numbers
through a FIFO) but when scaled by the total number of FIFOs being used performance
remains roughly the same. This demonstrates that the number of threads spawned to do
a particular amount of work is not of critical importance in Mamba.

CHAPTER 6. EVALUATION 131

Instance Number of Variables Number of Clauses

Medium 116 953
Huge 459 7054

Table 6.5: SAT blocks word instance statistics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

R
un

-T
im

e

2 4 8 16 32

Threads

MIPS64
Mamba

(a) Run-time with 1 core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

R
un

-T
im

e
2 4 8 16 32

Threads

MIPS64
Mamba

(b) Run-time with 8 cores

Figure 6.17: Normalised run-time of the SAT solver for 1 and 8 cores solving the ‘huge’
instance. Run-time normalised to the MIPS64 run with 2 threads and 1 core

6.7.5 The SAT solver

The SAT solver was run on two different problem instances taken from SATLIB [43], both
are blocks world problems. A blocks world problem consists of an initial configuration of
blocks and a goal configuration, a sequence of moves satisfying certain rules (can’t move
a block with another block on top of it, a block must be placed on top of another block
etc.) that transforms the initial configuration to the goal configuration is a solution to
the problem. These problems can be encoded into CNF formulae which are satisfiable if
and only if there exists a solution.

The two instances taken from SATLIB are described as ‘medium’ and ‘huge’, both are
satisfiable. Table 6.5 lists the numbers of variables and clauses in both instances. These
instances were chosen because the huge instance takes a reasonable amount of time to
solve (around 45 minutes for the slowest run) and the medium instance is sufficiently large
that at the largest thread and core count examined (8 cores with 32 threads per core)
each thread has some work to do, but not a large amount (there are 3.7 clauses per thread
at that point) which allows an examination of performance at an extreme.

The SAT solver was run using 1, 2, 4 and 8 cores with 2, 4, 8, 16 and 32 process threads
per core. Figure 6.17 shows the normalized run-time of solver for the ‘huge’ instance for 1
and 8 cores. In all cases Mamba performs better than MIPS64, the smallest performance
difference of 10% occurring at 2 threads with 1 core and the biggest performance difference
of 770% occurring at 32 threads per core with 8 cores. With 1 core Mamba and MIPS64
scale very similarly down to 8 threads per core at which point the performance of Mamba
stays level but the performance of MIPS64 gets worse. At 32 threads per core Mamba

132 6.7. RESULTS

0.0

0.1

0.2

0.3

0.4

0.5

0.6
N

or
m

al
iz

ed
R

un
-T

im
e

1 2 4 8

Cores

MIPS64
Mamba

(a) Run-time with 8 threads per core

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

R
un

-T
im

e

1 2 4 8

Cores

MIPS64
Mamba

(b) Run-time with 32 threads per core

Figure 6.18: Normalised run-time of the SAT solver for 8 and 32 threads per core solving
the ‘huge’ instance. Run-time normalised to the MIPS64 run with 2 threads and 1 core

performs 300% better compared to 1 thread per core and performs 350% better than
MIPS64 at 32 threads per core, the best performance for Mamba occurs at 8 threads per
core and performance at 32 threads per core is only 3% worse. MIPS64 at 32 threads
per core performs 9% worse than MIPS64 at 1 thread per core with the best performance
occurring at 8 threads per core, 32 threads per core performs 350% worse than 8 thread
per core. So with 1 core Mamba exhibits good scaling, once it reaches the maximum
performance allowable by the algorithm employed increasing the number of threads does
not have much impact, for MIPS64 increasing the number of threads beyond the optimal
has far greater impact.

With 8 cores both MIPS64 and Mamba exhibit worse scaling. For MIPS64 the optimal
run-time occurs at 4 threads per core, the worst run-time occurs at 32 threads per core
and is 9.8� worse than 4 threads per core. For Mamba the best run-time occurs at 8
threads per core, 32 threads per core has the worst run-time and is 93% slower than the
run-time at 8 threads per core. Still compared to MIPS64 for the same core number the
scaling trend is significantly better.

Figure 6.18 shows the run-time of the solver for the ‘huge’ instance for 8 and 32 threads per
core with increasing core number. At 8 threads per core both MIPS64 and Mamba exhibit
good scaling behaviour, whilst MIPS64 is slower than Mamba performance continues to
increase with increasing core count. It reaches a plateau at 4 cores though 8 cores are
slightly faster, there is a difference of 97% between 1 core and 8 cores. For Mamba
performance continues to get better all the way to 8 cores, with a difference of 500%
between 1 and 8 cores.

At 32 threads per core MIPS64 scales poorly with increasing core count, it reaches a
plateau at 2 and 4 cores but performance drops off again at 8 cores, performance at
8 cores is 42% worse than the performance at 2 and 4 cores and 28% worse than the
performance at 1 core. Mamba reaches a plateau at 4 cores, performance at 8 cores is
only 4% worse than performance at 4 cores and is 310% better than performance at 1
core.

CHAPTER 6. EVALUATION 133

0

2

4

6

8

10

N
or

m
al

iz
ed

R
un

-T
im

e

2 4 8 16 32

Threads

MIPS64
Mamba

(a) Run-time with 1 core

0

2

4

6

8

10

N
or

m
al

iz
ed

R
un

-T
im

e

2 4 8 16 32

Threads

MIPS64
Mamba

(b) Run-time with 8 cores

Figure 6.19: Normalised run-time of the SAT solver for 1 and 8 cores solving the ‘medium’
instance. Run-time normalised to the MIPS64 run with 2 threads and 1 core

Figure 6.19 shows the normalized run-time of the solver for the ‘medium’ instance for 1
and 8 cores (the graph scales are the same so the bars can be directly compared between
1 and 8 cores). The medium instance is solved far quicker than the huge instance (around
4 seconds for the slowest run compared to 45 minutes for the ‘huge’ instance). The
SAT solver scales poorly on both MIPS64 and Mamba for the medium instance. At 1
core MIPS64 is 960% slower at 32 threads compared its best performance at 4 threads.
Mamba scales better than this but still has an upward trend by 32 threads. At 32 threads
Mamba is 32% slower than its best performance at 8 threads. At 8 cores MIPS64 has
a sharp upward trend with its worst performance at 32 threads 37� worse than its best
performance at 2 threads. Mamba hits a performance plateau at 4 threads before trending
upwards with its worst performance at 32 threads 680% worse than its best performance
at 4 threads.

Figure 6.20 more clearly illustrates the performance increase gained with increasing thread
count in the SAT solver benchmark with the large instance. Here thread count is the total
number of threads in the system, i.e. threads per core � cores. It starts at 2 threads on
1 core. For each further point the number of threads and cores doubles til it reaches 16
threads on 8 cores. The final point of 256 threads is 32 threads on 8 cores. Whilst it may
seem that Mamba only offers modest gains in performance given the greatly increased
thread count it is important to realise than at 5 threads or more per core a particular core
is unable to offer further performance as it is being fully utilised at that point. At the
third point on the graph, we have 32 threads provided by 8 threads over 4 cores. If the
benchmark were perfectly scalable wed expect a 10x speedup at best here. At the first
point in the graph were using 2 threads, so we have a maximum of 5/2 = 2.5x speedup
from fully utilising a single core and a 4x speedup from the increased core count giving
a maximum of 10x. However due to the single control thread we know the scaling of the
SAT solver is limited so the maximum speedup may not be possible. Mamba achieves
a speedup of 6x which compares favourably with the maximum possible were there no
bottlenecks. It also shows once we hit the bottleneck further increases in thread count do
not have an adverse impact on performance.

134 6.8. SUMMARY

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

or
m

al
iz

ed
R

un
-T

im
e

0 50 100 150 200 250 300

Total Threads

MIPS64
Mamba

Figure 6.20: Normalised run-time of the SAT solver for a range of total thread counts
(threads per core � cores) solving the ‘huge’ instance. Run-time normalised to the MIPS64
run with 2 threads and 1 core

SAT solver summary

The SAT solver demonstrates that the advantages of the Mamba architecture, illustrated
by the micro-benchmarks, can provided real benefit in an actual application. By using
presence bit based primitives in the Mamba implementation both performance and scal-
ability are improved compared to the MIPS64 implementation (which is implemented in
exactly the same way but without the benefit of presence bits and scheduling guided by
them). The SAT solver has an inherent bottleneck in the form of a single control thread,
in Mamba when performance has reached the maximum as allowed by this bottleneck
further increases in thread and core count did not have the same negative effect that they
did in MIPS64. Only when using the more extreme example of the ‘medium’ instance
problem did Mamba exhibit poor scaling when pushing the core and thread count beyond
what was needed to gain the best performance.

6.8 Summary

In this chapter we have evaluated the Mamba architecture against a MIPS64 system that
lacks Mamba’s hardware scheduling and presence bits but it is otherwise identical. Mi-

CHAPTER 6. EVALUATION 135

crobenchmarks looking at lock, barrier and FIFO performance show that Mamba is not
sensitive to thread count, an equal amount of work split amongst more of less threads
results in similar performance, the same was not so of the MIPS64 system. More so-
phisticated software mechanisms may help close the gap between Mamba and MIPS64,
but Mamba can achieve good performance without them. A SAT solver benchmark was
presented to demonstrate that the advantages of Mamba shown by the microbenchmarks
translated to real gains in an actual application.

136 6.8. SUMMARY

Chapter 7

Conclusion

This dissertation presented Mamba, an architecture designed for the challenges of the
multi-core era. Based on the idea that to produce a highly scalable system fine-grained
techniques with low overheads must be used, Mamba provides lightweight thread schedul-
ing and synchronisation via a hardware scheduler combined with a tagged memory system
that is utilised by the scheduler to know when a thread should be scheduled as well as by
the threads as a synchronisation mechanism.

Mamba has been fully implemented on FPGA and evaluated against a MIPS64 compar-
ison system, identical to Mamba but lacking the hardware scheduling and presence bit
mechanisms. In microbenchmarks of lock and barrier performance and FIFO throughput
and latency Mamba has been shown to scale well with increasing thread and core count
and has been shown to be insensitive to thread count. Mamba’s simple scheduler informed
by presence bits is highly effective compared to a similar simple software scheduler that
lacks the knowledge that presence bits give to the scheduler.

For a real application, the SAT solver, Mamba continues to show good performance
and good scaling compared to the MIPS64 system. Again Mamba was not sensitive to
thread count. When the optimum performance as allowed by the application was reached
increasing thread count didn’t have an immediate detrimental effect, only in the extreme
case of the ‘medium’ instance did performance become poor at higher thread counts. This
property of Mamba frees the programmer from having to ensure their application was
using the optimum number of threads, unlike in the MIPS64 system where performance
quickly degraded from optimum with increasing thread count.

The SAT solver also demonstrated that lightweight low-overhead primitives provided by
Mamba do not inherently make software perform and scale better, the bottleneck of the
single control thread in the SAT solver eventually limited scaling and performance. What
Mamba does do is allow the programmer to use many threads in a fine-grained manner
without having to worry about getting the precise number correct to achieve the optimum
performance so instead the number of threads must suited to the application (as opposed
to the architecture) can be used.

Mamba enables the creation of scalable programs and it has done this without the need for
many new architectural features, with a simple scheduler and no extra software support to
guide the scheduler scalable programs can be created. Despite being hardware managed

137

138 7.1. COMPARISON WITH RELATED ARCHITECTURES

thread count is not constrained by some limited hardware resource so a programmer
doesn’t need to target a particular instance of the architecture to get the best performance
from their program. The presence bit mechanism is straight forward and flexible, large
number of new instruction and memory semantics are not needed to gain its benefits.

7.1 Comparison with related architectures

In Chapter 3 on fine-grained architecture a few existing systems that use presence bits
were reviewed. The Cray XMT [75] supported presence bit based synchronisation for all
words in memory but this was implemented differently to Mamba. A thread waiting for
a word to become present must spin continuously checking the word before trapping to
a software handler if this takes too long. Part of Mamba’s strength lies in its ability to
immediately stall a thread without the need for spinning when a thread is waiting on
a word. The Godson-T [26] implements a similar mechanism but only words that are
currently in the cache are tagged with a presence bit, limiting their usefulness.

The LCMT [91] architecture is the most similar to Mamba. The major difference is how it
handles multiple threads attempting to load a non-present word. In LCMT this involves
an immediate trap to a software handler, whilst Mamba allows the normal flow of the
program to continue and to fix the situation itself (e.g., via a notify chain) if it chooses
to do so. The LCMT also has more load and store types than Mamba (e.g., store only
if non-present). This does allow more flexibility but also adds more complexity to the
memory semantics requiring the use of more state for non-present words. In Mamba a
non-present word either has a forwarding address or it doesn’t in LCMT several other
states are introduced (e.g., one which would only send stored data to a forwarding address
and leave the word non-present).

7.2 Future work

As clearly demonstrated in the lock and barrier benchmarks when the MIPS64 system
began to use its software scheduler, without the benefit of presence bits to guide it, it
quickly resulted in bad performance. Mamba’s simple hardware scheduler managed to
achieve good scaling. It is clear Mamba’s methods are useful but it is not clear that the
scheduling and context switching system must be entirely hardware based. An interesting
avenue for future work would be investigating what parts of the Mamba scheduling system
need to be in hardware to get the benefits seen in the evaluation and what can be left in
software. One possible design would be a hardware managed ready queue that informs
a software scheduler. Replicating the generality of the presence bit mechanism entirely
in software is likely to carry a high overhead, however the scheduler itself could have an
efficient software implementation, even with the high context switching frequency Mamba
currently utilises. A software implementation would also provided far greater flexibility
to the programmer, priority levels for threads for example would be a useful feature which
would be easily handled if a software scheduler were used.

CHAPTER 7. CONCLUSION 139

Every word in Mamba is tagged with a presence bit, however not every word in Mamba
uses that presence bit. Some data structures will use them internally for synchronisation
but it is likely in any large application that there will be large amounts of memory that
do not require the functionality of presence bits. To avoid storing these a virtual memory
system could be used, a page would be marked to indicate it uses presence bits, the page
tables would also indicate where pages that used presence bits would store the presence
bits. Combing this with a hardware managed ready queue would be one possibility for
adding Mamba like features to an existing architecture without huge disruption.

The idea of utilising paging so presence bits only take up memory when they’re actually
required could be extended to the hardware managed ready queue. Initially the queue
would be entirely on-chip, which is overflowed the buffer an exception would be triggered
and a few pages could be allocated to the ready queue, so the memory utilised by it would
be proportional to the maximum number of ready threads present.

Currently when Mamba performs a context switch all register contents are copied, however
a thread may not have used all of its registers, some may have contents identical to what is
stored in memory, some may never have been read. A lazy context switching system could
be created where registers are only copied in the register file from memory when they are
used as a source operand. When a context is switched out, only those registers that have
been written to would be copied back. This would allow very lightweight threads to be
created that run small sections of code with low overhead.

The LCMT architecture briefly discussed in the Fine-grained computation chapter intro-
duces multiple load and store types, allowing actions such as only storing if a word is
empty. Whilst such extra functionality increases flexibility it also increases complexity
and the extra memory semantics may lead to more compositions of operations having
unwanted side effects. Future work should look at the current memory semantics offered
by Mamba and see if extra load and store types may be useful and worth the added extra
complexity.

The MIPS64 system used as a comparison basis for Mamba is unsophisticated compared
to modern CMPs with the benefit of modern operating systems. The simplicity of MIPS64
was necessitated by the need for a comparison system that could be as identical to Mamba
as possible and time available meant that this could not include more sophisticated soft-
ware mechanisms. Future work should look at comparing Mamba to software running on
a modern operating system as well as how Mamba could be used by a modern operating
system.

7.3 Summary

Overall Mamba has been shown to have great promise, it deals elegantly with many
threads and fine-grained synchronisation. The architecture does not constrain the pro-
grammer with having to worry about optimising for limits specific to a particular instance
of the architecture enabling the creation of scalable fine-grained programs. Mamba is by
no means a silver bullet, an application must still be properly constructed to maximise
its parallelism but Mamba encourages the creation of such programs.

140 7.3. SUMMARY

Appendix A

Mamba: A Scalable Communication
Centric Multi-Threaded Processor
Architecture

This appendix contains a preprint of the paper that will be presented at the 30th Inter-
national Conference on Computer Design. It presents Mamba along with a preliminary
evaluation. It provides a condensed description of the architecture without the full detail
offered in the Mamba architecture chapter.

Abstract

In this paper we describe Mamba, an architecture designed for multi-core systems. Mamba
has two major aims: (i) make on-chip communication explicit to the programmer so they
can optimize for it and (ii) support many threads and supply very lightweight communi-
cation and synchronization primitives for them. These aims are based on the observations
that: (i) as feature sizes shrink, on-chip communication becomes relatively more expen-
sive than computation and (ii) as we go increasingly multi-core we need highly scalable
approaches to inter-thread communication and synchronization. We employ a network
of processors where a given memory access will always go to the same cache, remov-
ing the need for a coherence protocol and allowing the program explicit control over all
communication. A presence bit associated with each word provides a very lightweight,
fine-grained synchronization primitive. We demonstrate an FPGA implementation with
micro-benchmarks of standard spinlock and FIFO implementations and show that pres-
ence bit based implementations provide more efficient locking, and lower latency FIFO
communications compared to a conventional shared memory implementation whilst also
requiring fewer memory accesses. We also show that Mamba performance is insensitive
to total thread count, allowing the use of as many threads as desired.

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 143

A.1 Introduction

In the last few years we have seen the rise of the Chip Multiprocessor (CMP). With clock
speeds staying static but feature sizes still shrinking exploiting thread level parallelism
(TLP) along with instruction level parallelism (ILP) is the natural way to gain further
performance. Given a constant die size with shrinking feature size, the chip area reachable
in a single cycle also shrinks. This complicates the design of a single large core that uses
the increasing availablity of gates to extract more ILP. Using that area to instead have a
multitude of smaller, simpler cores, increasing core number, rather than core complexity,
is preferable and the costlier global cross-chip communcations can be made architecturally
explicit, allowing software to optimize for it [86].

Most CMPs utilize shared memory along with a cache coherency protocol to allow commu-
nication between separate threads and cores. The cache coherency protocol is responsible
for deciding when to communicate between cores and the programmer can only indirectly
influence this communication by choosing what data is shared between threads. Much
effort has been made to optimize coherency protocols to reduce needless communication
([28], [7]). Furthermore, in order to achieve good performance sequential consistency is
not maintained, and a more relaxed consistency model used instead [1]. This breaks
that idea that a shared memory system with cache coherency presents a familiar memory
model to the programmer.

With increasing core counts [102] software needs to be capable of achieving performance
that scales with the number of cores. Amdahl’s law shows that this is limited by the
time spent synchronizing and in critical sections [31]. So for a program to scale well with
core count it needs to have as much TLP as possible, and for each thread to spend as
little time as possible synchronizing and in critical sections. This suggests a programming
model that provides very light-weight threads and synchronization primitives to go with
them will enable software that scales well with an increasing number of cores.

This paper presents Mamba, an architecture that

i) Gives explicit control over communication, so software can be optimized to reduce it

ii) Provides a light-weight threading and synchronization model.

We introduce Mamba in section 2, discuss some software techniques for it in section 3,
review related work in section 4, present a evaluation of an MCS Lock and FIFO queue
implementation in section 5, conclude in section 6 and consider future work in section 7.

A.2 Mamba Architecture

A Mamba system consists of a network of nodes. Each node contains a simple in-order
RISC core, a cache and a network-on-chip (NoC) router. Each node is allocated an area of
global physical address space which is termed that node’s local address space; any other
addresses are in a remote address space. When a node’s core accesses local address space
it goes to the local cache. Remote address space is accessed from remote cache via the

144 A.2. MAMBA ARCHITECTURE

network. Provided the network retains ordering of messages between nodes we can ensure
sequential consistency within a particular local address space.

It should be emphasised that the programmer’s view of memory is fully coherrent. Whilst
there is no explicit cache coherency system, enforcing that a given area of memory must
always be cached in the same cache ensures there is no duplication which is effectively
acting as a very simple cache coherency protcol.

Every 64-bit memory word in a Mamba system has an associated presence-bit (also known
as a full/empty bit). This is used as a basic primitive for thread to thread communication
and synchronization. A thread attempting to read a non-present location will be stalled
and descheduled until that location becomes present. Each register also has an associated
presence bit, when a thread attempts to use a non-present register it stalls until the
register becomes present. Presence bits are stored in main memory at the top of each
node’s local address space, this leaves a gap in the address space that cannot be used for
data storage, however this could be hidden by a virtual memory system.

A node supports hardware threading and scheduling. The register file (RF) in a node’s
core can hold the registers of eight separate threads. Every cycle it will issue an instruction
from a different thread, scheduling the threads within the register file in a round robin
manner. A thread is represented in memory by an activation frame (AF), this is simply
the contents of the thread’s registers, its program counter (PC) and a status word. It fits
in a 256-byte (32 x 64-bit words) block.

There is a special store instruction (store doubleword to AF, SDA) that causes a node to
check the presence bits of the AF being stored to and if they are all set it places the AF
on a queue of ready nodes. The node has a simple round-robin scheduler that switches
contexts from the RF back into memory and switches an AF from the ready queue from
memory into the RF. A context switch occurs when an active thread’s quantum expires.

Each node has three separate caches. An instruction cache, a data cache and a presence
bit cache. The instruction cache does not obey the restriction that a particular address
can only live in a particular cache, so code may be replicated across instruction caches. A
seperate presence bit cache is used as it allows checking of an entire AFs worth of presence
bits without looking at multiple cache lines (which would be the case if presence bits were
stored along with words in the data cache).

When a core executes a load or a store instruction it generates a memory request, this
will be sent directly to the local cache or out to the network depending upon the address.
Upon executing a load a core will clear the presence bit of the register which is the load’s
destination, so if a thread attempts to use that register before the load has completed it
will stall.

There are two major request types, load and store:

Load (Figure A.1) has an address (A) to load from and a return address (R). The return
address is where the response from the load should be sent. As each thread is represented
by an AF, each register has a memory address so the return address is the address of the
register that was the load’s destination. When a load request is received the presence bit
of the corresponding word is checked, if it is:

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 145

Before Load After Load Response To Load

1 D 1 D R D

0 S 0 R None

0 F 0 F R Exception

Figure A.1: The possible actions on a load request at a particular word. D is the data
stored in the word, S is the sentinel value, R is the return address of the load and F is an
already existing return address. 0 refers to a non-present word, 1 to a present word.

Before Store After Store Response To Store

1 D 1 D’ None

0 S 1 D’ None

0 R 1 D’ R D’

Figure A.2: The possible actions on a store request at a particular word. D is the existing
data stored at the word, D’ is the new data the store request is writing, S is the sentinel
value and R is a return address. 0 refers to a non-present word, 1 to a present word.

� Present — An immediate data response is sent to the return address with the
contents of the word.

� Non Present — The contents of the word are checked, if it is a sentinel value, the
return address of the load is written into the word and nothing else is done. If the
sentinel value is not there (The sentinel value is a particular invalid return address),
then some other load request has already written its return address into this word
and an exception response is immediately sent.

Store (Figure A.2) has an address (A) to store to and the data to store (D′). When a
store request is received the presence bit of the corresponding word is checked, if it is:

� Present — The contents of the word are overwritten with the new data, nothing
else is done.

� Non Present — The presence bit is set and the current word contents are checked. If
the sentinel value is there, nothing further is done. Otherwise a load return address
is there and a load response with the store data is generated to that address.

Upon receiving a data response, the AF portion of the address is checked. If the AF is in
the RF then the corresponding register is updated with the data from the response and
the register’s presence bit is set. If the AF has been swapped out to memory then the
corresponding word within the AF is updated and its presence bit set. The presence bits

146 A.2. MAMBA ARCHITECTURE

of all words within the AF are checked and if they are all set the AF is placed at the back
of the ready queue.

The mechanism above allows many communication styles. For simple producer ! single
consumer communication the presence bit of a particular word can be cleared, at some
point a thread (the consumer) loads from that word. When the thread tries to use the
result of that load it will stall (as the word was non-present so no response is received
and thus the register holding the result is still marked as non-present). At a later point
another thread (the producer) will write to the non present word causing a data response
to be sent to the consumer’s AF. Either the consumer will still be in the register file so
upon receiving the response can begin execution again immediately or the scheduler will
have swapped it out in which case the data response will cause all words within the AF
to be present so the consumer will be placed at the back of the ready queue.

If we add a second consumer which attempts to read a non-present word an immediate
exception response is sent. So when the producer eventually writes to the non-present
word only the first consumer will receive the data (see Figure A.3). There are two possible
solutions. If the number of consumers is fixed and known ahead of time the single producer
! multiple consumer situation can be turned into multiple single producer ! single
consumer situations. If this is not possible, or undesirable, a software solution described
in the software techniques section can be employed.

To enable this software mechanism a second load instruction is added. When the consumer
receives an exception response from a load there are two possible things that can happen:

� An exception is triggered in the consumer’s thread and it jumps to a handler

� A bit is set in an exception status register corresponding to the destination register
the load was intended for and execution continues

The two separate load instructions allow the programmer to choose how the exception
response is dealt with. The first (LD the standard load instruction) will cause the first
action to occur on an exception response and the other (LDNR) will cause the second
action to occur. So LD is used when we either expect the word will always be present
or that if non-present that only a single thread will attempt to read it. LDNR will be
used when we expect multiple consumers of a non-present word. After executing the load
the software must check the exception status before using the result of the load. If an
exception was received then the software must take appropriate action (precisely what this
is depends upon the software, a possible scenario is described in the software techniques
section).

If the consumer’s AF is swapped out at the time of receiving the read exception the status
word in the AF is updated to indicate the exception and the appropriate action is taken
when the AF gets swapped back.

A.2.1 FPGA Implementation

To experiment with the Mamba architecture we have produced a fully functional FPGA
implementation. It executes a modified subset of the MIPS64 ISA. MIPS64 was chosen

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 147

1. C1

A: 0 S 0 C1(R)

Load to C1(R) from A

2. C2

A: 0 C1(R)

C2

Load to C2(R)from A

Exception

3. P

A: 0 C1(R) 1 D

C1

Store D to A

D

Figure A.3: Producer ! Consumer. C n(R) represents the address of register R in the
AF Cn. In a single consumer situation only steps 1. and 3. will occur. In a multiple
consumer situation all 3 steps will occur.

due to its ease of implementation and existing compiler tool chain. For a comparison
system we have implemented a plain MIPS64 core which is implemented very similarly to
Mamba but lacks presence bits and hardware thread scheduling. It has 8 fixed hardware
threads that like Mamba are implemented with 8 separate register files and an instruction
for a different thread being issued every cycle, but unlike Mamba there is no hardware
thread switching or hardware scheduling system. To allow implementation of concurrency
primitives a CAS (compare-and-swap) operation was added. A software thread scheduler
was also written, this functions exactly as the Mamba thread scheduler does (pre-emptive,
round-robin, fixed quantum) but is implemented entirely in software.

We use Altera Stratix IV FPGAs on a DE4 board. Multiple DE4 boards can be connected
with high speed serial links to increase the number of cores available. The current setup
uses a single board which can hold four Mamba cores on the FPGA. We are working on
building a larger system with 64 DE4 boards connected in a grid topology.

A.3 Software Techniques

Another use of the presence bits is as a binary sempahore to guard access to the associated
word. This is implemented using a third load instruction (see table A.1), the vacating load,
with mnemonic VL (chosen as it’s an existing instruction within the MIPS64 instruction
set, however the semantics are not the same). The vacating load checks the presence bit
of the word it is loading. If it is set it clears the bit and sends back a data response.
If the bit is already clear it sends back an exception response (Setting a bit in the read
exception status register).

This can be used to atomically update a word. Say the word contains a counter, a thread

148 A.3. SOFTWARE TECHNIQUES

Table A.1: The three kinds of load, their mnemonics and what they do to the word they’re
loading

Mnemonic Action if present Action if not present

LD Sends data response to return ad-
dress

Write return address into word if
sentinel present, otherwise sends
exception response, triggering ex-
ception handler in thread

LDNR Sends data response to return ad-
dress

Write return address into word if
sentinel present, otherwise sends
exception response, setting read
exception flag for destination reg-
ister

LL Clear presence and sends data re-
sponse to return address

Sends exception response, setting
read exception flag for destination
register

can use a VL to get the counter, increment it, and then store it back. Between the load
and the store the presence bit is unset so any other thread which attempts to load it will
either stall waiting for the data to be written or will receive an exception response back.
Any thread seeking to also atomically update the counter will spin doing repeated VLs
until it successfully gets the word.

Ideally if a thread is unable to continue because a word it requires is not present it should
stall and be descheduled rather than spin. This is dealt with by the architecture as de-
scribed in the mamba architecture section for the producer ! single consumer situation
but otherwise this can be accomplished via a lightweight construct we call a ‘notify chain’.
These are similar in structure to MCS queue based spin-locks [73] with one crucial differ-
ence. Rather than spinning on a particular value waiting for it to become 1, the presence
bit of that value is cleared, so when the thread loads it and attempts to use it, it stalls
and is descheduled. It is then woken by another thread writing into that value.

In more detail, the notify chain is a singly-linked list of two word nodes. The first word
(the wait word) initially has its presence bit cleared, the second word is a pointer to the
next node in the chain. When a thread wishes to wait on a notify chain it first constructs
a node within its local memory space and then atomically inserts itself into the tail of the
chain. Finally it loads the wait word (which has a cleared presence bit) and immediately
uses the result of the load, which has the effect of causing the thread to stall until a store
sets the presence bit of the wait word. When a thread wishes to notify the notify chain
it simply writes to the wait word of the head of the chain. When a thread is woken up
in this manner it could either immediately wake the next thread in the chain or wake the
next thread later (depending on if a notify next, or notify all behaviour is desired). As
each thread creates its notify node within its local space the store request which triggers
the thread wakeup will go directly from the thread that triggers the wakeup to the thread
that receives the wakeup, which is the minimum communication required for such an
action.

Atomic insertion into the chain tail is accomplished using VL. To insert a notify node

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 149

into the tail a thread simply VLs the tail pointer. It updates the tail’s node’s (if there is
one) next to point to its own node then writes a pointer to its own notify node as the new
tail pointer. When a thread wants to notify the chain it must also VL the tail pointer.
This is for two reasons:

1. It avoids a lost wakeup problem where a thread notifies the thread owning the tail
node before the tail node’s next is updated to the new tail during an insert

2. It needs to check if it is the tail node and update the tail pointer to NULL if it is

This general notify chain mechanism can be used for a variety of tasks such as:

1. As part of a queue based lock, where a thread will stall if it’s unable to take the
lock and woken up by the thread in front of it when its done with the lock.

2. As part of a barrier, threads can wait on a notify chain until something notifies
them all that they can proceed (a counter could keep a count of threads in the
chain, when a thread adds itself to the chain it will check the counter, if its hit a
certain number it will notify all, otherwise it will increment the counter and wait).

3. As part of a producer ! multiple consumer situation. A consumer could try to load
a word with LDNR if it receives an exception response it will wait on a notify chain.
The producer will notify this chain when it stores to the word, the new word value
can be used as the value written to the wait word so the waiting threads receive it
immediately on wakeup.

Whilst the consistency model employed by Mamba requires a network that preserves the
ordering of messages between two nodes, is it not essential that this is always the case. The
current software targetted at the architecture relies on this fact but it could be rewritten
to take the reordering of messages into account.

A.4 Evaluation

To test the FPGA implementation of the system we have written a series of micro-
benchmarks, two are presented here. Each micro-benchmark has been implemented on
the Mamba and MIPS64 systems so results can be compared.

As the Mamba and MIPS64 systems both run on the same FPGA, using the same caches,
memory controllers and interconnect architecture, details such as memory latency and
the raw throughput and latency of the network are the same in both cases so are not
considered here.

A.4.1 MCS Lock Benchmark

The MCS Lock [73] is a standard way of implementing a scalable spin-lock. Any thread
wishing to enter the lock first constructs a node, it then attempts to atomically add that

150 A.4. EVALUATION

0

10

20

30

40

50

60

N
or

m
al

iz
ed

ru
n-

tim
e

50 100 150 200 250 300 350 400 450 500

Size of critical section

Mamba 8 Threads
Mamba 16 Threads
Mamba 80 Threads
Mamba 800 Threads
MIPS64 8 Threads
MIPS64 16 Threads
MIPS64 80 Threads

Figure A.4: Run-time for the MCS Lock Benchmark with increasing work size in the
critical section, run-time normalized to MIPS64 run-time with smallest critical section
size. Benchmark run over 4 cores in all cases

node to a queue. If the queue is empty the thread gains the lock, enters the critical section
and places its node as the only element in the queue. If the queue is not empty it places
its node at the tail of the queue and spins on its node waiting for a lock field to turn from
false to true. When a thread releases the lock it checks its node to see what is next in
the queue, if there is a node there it sets its lock field to true giving the next thread the
lock and allowing it into the critical section. As the node is constructed in local storage
the spin does not generate any needless remote memory accesses.

We have implemented the MCS lock on MIPS64 using the CAS primitive as described in
[73]. In Mamba a notify chain as described above is used. When a thread attempts to
acquire a lock it simply waits on the notify chain, when it does this the thread will be
descheduled until woken. During this period it won’t perform any operation, and in par-
ticular any memory operations, unlike the MIPS64 version which must spin continuously
reading the lock field of its node.

All four cores available in the FPGA implementation are used, each contains a single
shared area protected by an MCS lock. Every thread randomly chooses a shared area to
access and attempts to acquire the MCS lock. In the shared area is an array of integers,
once a thread has acquired this MCS lock it sums these integers and writes the result into
the shared area, it then replaces the integers with new randomly generated values. The
point of this is so the thread performs some operation on the data protected by the lock
as well as doing its own local computations whilst in the critical section to simulate the
kind of work that would be done in a real application. Once a thread has left the lock it
loops round and repeats the process again with another randomly selected shared area.
This repeats for a number of rounds.

Once all threads have done all their rounds the number of integers summed and generated
within the shared area is increased and the benchmark is run again. The number of
cycles taken for the benchmark to run for different critical sections size (as measured by

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 151

the number of integers summed and generated in the critical section) is measured for the
MIPS64 implementations and Mamba implementations with 8, 16, 80 and 800 threads
per core. With each increase in thread count the number of rounds a thread does is
correspondingly scaled down so the total amount of work done is the same (100 rounds
per thread with 8, 50 rounds per thread with 16, etc). The cycle count of each run is
normalized to that of the 8 thread MIPS64 run with the smallest amount of work (10
numbers summed and generated).

The run-time of the MCS lock benchmark with increasing work in the critical section
can be seen in Figure A.4. They show that with 8 threads MIPS64 is only slightly worse
than Mamba (betwen 5% - 16% worse), however with Mamba thread count does not have
any particular impact on the benchmark performance. Whilst at higher thread counts
the variation of results from the trend is greater, the benchmark still scales equally well
amongst all thread counts. For MIPS64 it gets steadily worse as thread count is increased.
The results for 800 threads would not fit on the graph, with the smallest critical section
size run-time was 48� worse compared to the 8 thread version and 16� worse with a
critical section size of 100.

Also of note are the average memory operations per core. A memory operation is defined
as any read or write that occurs in a node’s data cache. A Mamba thread can sleep and
be woken by its node in the MCS lock queue being written to so it does not generate any
memory operations spinning whilst waiting to be notified. MIPS64 on the other hand has
all threads continuously generating memory operations even if they’re not doing any useful
work. As a result MIPS64 produces between 14� and 16� as many memory operations
as Mamba during the benchmark run in the 8 thread run. Interestingly MIPS64 produces
less memory operations in the 16 thread run compared to its own 8 thread run, but this
is still between 7� and 10� more memory operations compared to the Mamba 16 thread
run. It produces more memory operations in its 80 thread run compared to its 16 thread
run and between 10� and 22� more than the Mamba 80 thread run.

A.4.2 FIFO Queue Benchmark

A simple FIFO queue implementation was written based upon [58]. The queue is based
around a ring buffer, with read and write pointers pointing to the item at the top of the
queue, and the next free slot in the buffer respectively. Provided we guarantee that at
most one thread enqueues and one thread dequeues at any given time nothing beyond
normal load and store operations are needed (i.e. we do not need CAS). For MIPS64
this has been implemented exactly as [58], for Mamba a simple modification was made.
The FIFO ring buffer starts with all its presence bits unset. When dequeuing, a thread
checks the size of the queue by looking at the read and write pointers; if it is empty it
spins waiting until an item appears. In Mamba we simply directly read the slot the read
pointer points to. If the queue is empty then this points to the slot the next item will
be written to and so will be non-present and the thread will sleep until an item is added.
When we have dequeued an item we clear the presence bit on the ring buffer slot it came
from and then increment the read pointer (ensuring the enqueueing thread will not write
to the slot until we have cleared the presence bit).

152 A.5. RELATED WORK

We have measured the throughput and the latency of the Mamba and MIPS64 imple-
mentations of this queue. One core executes all the consumer threads, these each had
their own FIFO queue in their local address space. Paired with a consumer thread was a
producer thread, which was located on another core. The producer thread simply sent a
sequence of increasing integers.

The number of cores used to produce was varied between 1-3 with 1 or 2 threads on each
core. The 3 producer core arrangement was also measured with 4, 8, 16 and 32 threads
per core to test scaling ability. The first core executes all the consumer threads so ran
between 1 and 96 threads depending on the number of producer threads and cores. The
measurements for each thread were averaged and normalized to the result for the MIPS64
implementation with 1 thread and 1 core.

Latency results can be seen in Figure A.5, they show that the Mamba implementation
gives between 75% and 641% better latency, achieving the best latency improvement in
the 32 threads per producer core with 3 producer cores arrangement. They also show
that the Mamba implementation scales far better than MIPS64 with increasing thread
count. The bars for 16 and 32 producer threads per core would not fit on the graph for
MIPS64 and are 17.7 and 63.1 respectively compared to 4.3 and 9.8 for Mamba. Below 4
threads per core the performance gap remains roughly similar with Mamba between 75%
and 85% better.

As the implementation of MIPS64 and Mamba both utilise the exact same interconnect
architecture the latency introduced by the network isn’t taken into account as it will
be the same in both cases, so it is not essential that is is separated from the latency
introduced by the differing FIFO implementations

Throughput results can be seen in Figure A.6, they show that the Mamba implementation
gives between 13% and 246% better throughput. Again the Mamba implementation scales
far better than MIPS64 with increasing thread count. Below 8 threads per core the
performance gap remains roughly similar with Mamba between 13% and 27% better.

The Mamba implementation shows good scaling with throughput, if the measured through-
put is multiplied by the number of threads producing per core we find it reaches a peak
of 3.19 at 8 threads producing per core with 3 producer cores and only reduces to 2.61
for 32 threads producing per core with 3 producer cores.

A.5 Related Work

Godson-T [26] is also a MIPS based multicore architecture that utilizes presence bits.
However unlike Mamba they are only present in cache-lines and are only used when
those cache-lines are configured as a scratch-pad memory. They may be used to allow
fine-grained synchronization between currently running threads but they don’t interact
directly with thread scheduling so cannot be used to implement a notification system
that wakes a thread when data is ready. Separate hardware mechanisms are used to
implemented fine-grained locking and barriers. The Cray XMT [75] building on earlier
work done by the J-Machine [80] and HEP [93], utilizes hardware multithreading and has
a presence bit per word in memory, though when a presence bit is not of the desired state

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 153

0

1

2

3

4

5

6

7

8

9

10

N
or

m
al

iz
ed

L
at

en
cy

1-1 1-2 1-3 2-1 2-2 2-3 4-3 8-3 16-3 32-3

Threads - Cores

MIPS64
Mamba

Figure A.5: Normalized latency for the FIFO Queue Benchmark, for differing thread and
core numbers, where t-c on the axis labels refers to t threads per producer core and c
cores producing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

1-1 1-2 1-3 2-1 2-2 2-3 4-3 8-3 16-3 32-3

Threads - Cores

MIPS64
Mamba

Figure A.6: Normalized throughput for the FIFO Queue Benchmark, for differing thread
and core numbers, where t-c on the axis labels refers to t threads per producer core and
c cores producing

a thread simply spins until it is, eventually trapping to a software handler if this takes
too long. Mamba builds on earlier concepts from Cambridge [77].

The Intel x86 ISA [48] offers an MWAIT instruction, which combined with a MONITOR
instruction allows a program to wait for a write to a particular address range. MWAIT can
be used to optimise anything relying on repeated polling of a memory location, much like
presence bits in Mamba can be used. However the MWAIT mechanism is not equivalent
to the presence bit mechanism. It only provides a hint to the processor that it can enter
an implementation defined optimized state. After executing an MWAIT memory must

154 A.6. CONCLUSION

be checked again and it has no direct interaction with a scheduler. In contrast with
Mamba, once a load of an initially empty word completes you can be sure that a value
has been written to the word. When a word needed by a thread becomes available the
thread immediately gets added to the scheduler’s ready queue. As an MWAIT would
only be used when a processor is idle to construct a similar mechanism without presence
bits would require a thread to notify the scheduler about certain memory operations, this
would carry far higher overhead effecting performance and scalability.

A.6 Conclusion

We have demonstrated and prototyped Mamba on FPGA, a processor architecture that
makes communication explicit, provides scalable hardware threading and a fine-grained
synchronisation and notification mechanism based on presence bits. With minor modifi-
cations to an MCS lock implementation, replacing spinning on a local word to waiting for
a local word to become present we achieved better performance as well as dramatically
reducing the number of memory accesses required. With minor modifications to a FIFO
queue implementation latency and throughput was greatly improved.

Mamba’s threading model provides performance that is insensitive to thread count. For
the MCS lock benchmark thread count was of little consequence to run-time, for FIFO
communication total throughput did not decline much with increasing thread count. This
frees a programmer from having to carefully consider the number of threads to use for a
particular task, or for the need to change this for different numbers of cores.

We conclude that Mamba is a promising architecture for the future of increasingly multi-
core systems. Existing concurrency primitives can be simply adapted to utilize presence
bits achieving performance gains and threads can be employed as the programmer desires.

A.7 Future Work

One interpretation of the results would be that the hardware scheduler of Mamba brings
about the majority of the benefits seen and the presence bit mechanism is not required.
However it is the presence bit mechanism that allows a particular thread to wait for a
word to become present without needless polling and it allows the scheduler to know
what threads are ready. As stated above a purely software version of a similar mechanism
would add overhead preventing it from being used at such a finely grained level. Though
a hardware managed ready queue with a software scheduler or hybrid software/hardware
scheduler is a design point worth exploring in future work.

The presented architecture lacks a virtual memory system. A key design point of a virtual
memory system for Mamba is whether a word’s physical or virtual address specifies which
node it belongs to. If a virtual address is used there are two issues. The first is aliasing,
two separate virtual address may map to the same physical address breaking coherency
and the virtual address mapping may distort or totally obscure the relation between
addresses and word location, hiding the communication costs the architecture attempts
to make explicit. Using a physical address would not present these issues but using a

APPENDIX A. MAMBA: A SCALABLE COMMUNICATION CENTRIC

MULTI-THREADED PROCESSOR ARCHITECTURE 155

virtual address adds functionality, for example it could be used to create a data and
thread migration system where the node holding a particular piece of data or a thread
could be altered without disturbing the memory address needed to access it. The aliasing
issue is an existing problem already dealt with by operating systems and NUMA systems
need to allocate pages with due regard to the locality of memory so solving these issues
in the specific case of Mamba should be not problematic.

Acknowledgments

The authors would like to acknowledge Arnab Banerjee for implementing the interconnect
architecture used by the Mamba system and would like to thank Paul Fox, Timothy Jones
and Theo Markettos for their valuable feedback.

156 A.7. FUTURE WORK

Bibliography

[1] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29(12):66 –76, December 1996.

[2] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of direc-
tory schemes for cache coherence. In Proceedings of the 15th Annual International
Symposium on Computer architecture, ISCA ’88, pages 280–298, Los Alamitos, CA,
USA, 1988. IEEE Computer Society Press.

[3] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate
versus IPC: the end of the road for conventional microarchitectures. In Proceedings
of the 27th annual international symposium on Computer architecture, ISCA ’00,
pages 248–259, New York, NY, USA, 2000. ACM.

[4] Altera Corporation. Stratix IV Device Handbook. Number SIV5V1-4.6. September
2012.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint
computer conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

[6] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie. Unbounded
transactional memory. In High-Performance Computer Architecture, 2005. HPCA-
11. 11th International Symposium on, pages 316 – 327, Feburary 2005.

[7] Anoop Gupta, Wolf-dietrich Weber, and Todd Mowry. Reducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coherence Schemes. In
In International Conference on Parallel Processing, pages 312–321, 1990.

[8] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

[9] Assaf Shacham, Keren Bergman, Senior Member, and Luca P. Carloni. Photonic
Networks-On-Chip for Future Generations of Chip Multiprocessors. IEEE Trans.
Computing, page 1260, 2008.

[10] Arnab Banerjee. Communication flows in power-efficient Networks-on-Chips. Tech-
nical Report UCAM-CL-TR-786, University of Cambridge, Computer Laboratory,
August 2010.

157

158 BIBLIOGRAPHY

[11] Nick Barrow Williams, Christian Fensch, and Simon Moore. Proximity coherence
for chip multiprocessors. In Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, PACT ’10, pages 123–134, New
York, NY, USA, 2010. ACM.

[12] Scott Beamer, Chen Sun, Yong-Jin Kwon, Ajay Joshi, Christopher Batten, Vladimir
Stojanović, and Krste Asanović. Re-architecting DRAM memory systems with
monolithically integrated silicon photonics. In Proceedings of the 37th annual in-
ternational symposium on Computer architecture, ISCA ’10, pages 129–140, New
York, NY, USA, 2010. ACM.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. J. ACM, 46(5):720–748, September 1999.

[14] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving Multiprocessor
Performance with Coarse-Grain Coherence Tracking. SIGARCH Comput. Archit.
News, 33(2):246–257, May 2005.

[15] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie
Chiras, and Siddhartha Chatterjee. Software Transactional Memory: Why Is It
Only a Research Toy? Queue, 6(5):46–58, September 2008.

[16] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk en-
forcement of sequential consistency. In Proceedings of the 34th annual international
symposium on Computer architecture, ISCA ’07, pages 278–289, New York, NY,
USA, 2007. ACM.

[17] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and
M. Tremblay. Rock: A High-Performance Sparc CMT Processor. Micro, IEEE,
29(2):6 –16, March 2009.

[18] Alex C. Chow, Gordon C. Fossum, and Daniel A. Brokenshire. A Programming
Example: Large FFT on the Cell Broadband Engine. IBM, May 2005.

[19] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and improvements of
programming models for the Intel SCC many-core processor. In High Performance
Computing and Simulation (HPCS), 2011 International Conference on, pages 525
–532, July 2011.

[20] G. Contreras and M. Martonosi. Characterizing and improving the performance
of Intel Threading Building Blocks. In Workload Characterization, 2008. IISWC
2008. IEEE International Symposium on, pages 57 –66, September 2008.

[21] William J. Dally and Brian Towles. Route packets, not wires: on-chip inteconnection
networks. In Proceedings of the 38th annual Design Automation Conference, DAC
’01, pages 684–689, New York, NY, USA, 2001. ACM.

[22] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks.
The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kauf-
mann Publishers, 2003.

BIBLIOGRAPHY 159

[23] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and operating
systems, ASPLOS-XII, pages 336–346, New York, NY, USA, 2006. ACM.

[24] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[25] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings of
the 20th international conference on Distributed Computing, DISC’06, pages 194–
208, Berlin, Heidelberg, 2006. Springer-Verlag.

[26] Dongrui Fan, Hao Zhang, Da Wang, Xiaochun Ye, Fenglong Song, Guojie Li, and
Ninghui Sun. Godson-T: An Efficient Many-Core Processor Exploring Thread-Level
Parallelism. Micro, IEEE, 32(2):38 –47, March 2012.

[27] A. Duller, G. Panesar, and D. Towner. Parallel Processing-the picoChip way. Com-
municating Processing Architectures, 2003:125–138, 2003.

[28] S. J. Eggers and R. H. Katz. Evaluating the performance of four snooping cache
coherency protocols. In Proceedings of the 16th annual international symposium on
computer architecture, pages 2–15, New York, NY, USA, 1989. ACM.

[29] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu, Tong
Chen, Peter H. Oden, Daniel A. Prener, Janice C. Shepherd, Byoungro So, Zehra
Sura, Amy Wang, Tao Zhang, Peng Zhao, and Michael Gschwind. Optimizing Com-
piler for the CELL Processor. In Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’05, pages 161–172,
Washington, DC, USA, 2005. IEEE Computer Society.

[30] Natalie D. Enright Jerger, Li-Shiuan Peh, and Mikko H. Lipasti. Virtual tree co-
herence: Leveraging regions and in-network multicast trees for scalable cache co-
herence. In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 41, pages 35–46, Washington, DC, USA, 2008. IEEE
Computer Society.

[31] Stijn Eyerman and Lieven Eeckhout. Modeling critical sections in Amdahl’s law and
its implications for multicore design. In Proceedings of the 37th annual international
symposium on Computer architecture, ISCA ’10, pages 362–370, New York, NY,
USA, 2010. ACM.

[32] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. Comput-
ers, IEEE Transactions on, C-21(9):948 –960, September 1972.

[33] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2), May 2007.

[34] James R. Goodman. Using cache memory to reduce processor-memory traffic. In
Proceedings of the 10th annual international symposium on Computer architecture,
ISCA ’83, pages 124–131, New York, NY, USA, 1983. ACM.

160 BIBLIOGRAPHY

[35] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John
Manferdelli. High performance discrete Fourier transforms on graphics processors.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
2:1–2:12, Piscataway, NJ, USA, 2008. IEEE Press.

[36] Cary Gunn. CMOS Photonics for High-Speed Interconnects. IEEE Micro, 26(2):58–
66, 2006.

[37] Jungwoo Ha, Matthew Arnold, Stephen M. Blackburn, and Kathryn S. McKinley.
A concurrent dynamic analysis framework for multicore hardware. In Proceedings
of the 24th ACM SIGPLAN conference on Object oriented programming systems
languages and applications, OOPSLA ’09, pages 155–174, New York, NY, USA,
2009. ACM.

[38] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing mem-
ory transactions. In Proceedings of the 2006 ACM SIGPLAN conference on Pro-
gramming language design and implementation, PLDI ’06, pages 14–25, New York,
NY, USA, 2006. ACM.

[39] Anant Agarwal Henry Hoffmann, David Wentzlaff. Remote Store Programming:
Mechanisms and Performance. Technical Report MIT-CSAIL-TR-2009-017, MIT,
2009.

[40] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[41] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support
for lock-free data structures. In Proceedings of the 20th annual international sym-
posium on computer architecture, ISCA ’93, pages 289–300, New York, NY, USA,
1993. ACM.

[42] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR
formalism for artificial intelligence. In Proceedings of the 3rd international joint
conference on Artificial intelligence, IJCAI’73, pages 235–245, San Francisco, CA,
USA, 1973. Morgan Kaufmann Publishers Inc.

[43] Holger H. Hoos and Thomas Sttzle. SATLIB: An Online Resource for Research on
SAT. pages 283–292. IOS Press, 2000.

[44] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.
Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund Larsen, S. Steibl, S. Borkar, V. De, R.
Van Der Wijngaart, and T. Mattson. A 48-Core IA-32 message-passing processor
with DVFS in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pages 108 –109, Feburary 2010.

[45] Herbert H. J. HUM and James R. GOODMAN. Forward state for use in cache
coherency in a multiprocessor system. Patent, 07 2005. US 6922756.

BIBLIOGRAPHY 161

[46] Intel Corporation. An Introduction to the Intel QuickPath Interconnect, 2009.

[47] Intel Corporation. IntelR© Threading Building Blocks Reference Manual. Number
315415-016. Jan 2012.

[48] Intel Corporation. IntelR© 64 and IA-32 Architectures Software Developer’s Manual.
Number 325462-043US. May 2012.

[49] Intel Corporation. IntelR© Architecture Instruction Set Extensions Programming
Reference. Number 319433-012A. February 2012.

[50] Intel Labs. SCC External Architecture Specification (EAS) Revision 0.934.

[51] John D. Owens AND David Luebke AND Naga Govindaraju AND Mark Harris
AND Jens Krger AND Aaron Lefohn AND Timothy J. Purcell. A Survey of General-
Purpose Computation on Graphics Hardware. Computer Graphics Forum, 26(1):80–
113, 2007.

[52] Alain Kägi, Doug Burger, and James R. Goodman. Efficient synchronization: let
them eat QOLB. In Proceedings of the 24th annual international symposium on
Computer architecture, ISCA ’97, pages 170–180, New York, NY, USA, 1997. ACM.

[53] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell multiprocessor. IBM Journal of Research and Development,
49(4.5):589 –604, July 2005.

[54] M. Kistler, M. Perrone, and F. Petrini. Cell Multiprocessor Communication Net-
work: Built for Speed. Micro, IEEE, 26(3):10 –23, May 2006.

[55] Pranay Koka, Michael O. McCracken, Herb Schwetman, Xuezhe Zheng, Ron Ho,
and Ashok V. Krishnamoorthy. Silicon-photonic network architectures for scalable,
power-efficient multi-chip systems. SIGARCH Comput. Archit. News, 38(3):117–
128, June 2010.

[56] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded
Sparc processor. Micro, IEEE, 25(2):21 – 29, March 2005.

[57] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: architec-
tural support for fine-grained parallelism on chip multiprocessors. In Proceedings
of the 34th annual international symposium on Computer architecture, ISCA ’07,
pages 162–173, New York, NY, USA, 2007. ACM.

[58] Leslie Lamport. Specifying Concurrent Program Modules. ACM Trans. Program.
Lang. Syst., 5(2):190–222, 1983.

[59] E.-H. Lee, S. G. Lee, B. H. O, S. G. Park, and K. H. Kim. Fabrication of a hy-
brid electrical-optical printed circuit board (EO-PCB) by lamination of an optical
printed circuit board (O-PCB) and an electrical printed circuit board (E-PCB).
In A. M. Earman and R. T. Chen, editors, Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, volume 6126 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, pages 215–224, 2006.

162 BIBLIOGRAPHY

[60] P.P.C. Lee, Tian Bu, and G. Chandranmenon. A lock-free, cache-efficient multi-
core synchronization mechanism for line-rate network traffic monitoring. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1
–12, April 2010.

[61] P.P.C. Lee, Tian Bu, and G. Chandranmenon. A lock-free, cache-efficient multi-
core synchronization mechanism for line-rate network traffic monitoring. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1
–12, April 2010.

[62] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU
vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In
Proceedings of the 37th annual international symposium on Computer architecture,
ISCA ’10, pages 451–460, New York, NY, USA, 2010. ACM.

[63] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of instruction-
level parallelism on a raw machine. In Proceedings of the eighth international con-
ference on Architectural support for programming languages and operating systems,
ASPLOS-VIII, pages 46–57, New York, NY, USA, 1998. ACM.

[64] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M.
Horowitz, and M.S. Lam. The Stanford Dash multiprocessor. Computer, 25(3):63
–79, March 1992.

[65] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch.
In Proceedings of the 2007 workshop on Experimental computer science, ExpCS ’07,
New York, NY, USA, 2007. ACM.

[66] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. Micro, IEEE, 28(2):39 –55, March 2008.

[67] C.C. Liu, I. Ganusov, M. Burtscher, and Sandip Tiwari. Bridging the processor-
memory performance gap with 3D IC technology. Design Test of Computers, IEEE,
22(6):556 – 564, November 2005.

[68] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in
Multicache Systems. IEEE Transactions on Computers, 27:1112–1118, 1978.

[69] M.M.K. Martin, M.D. Hill, and D.A. Wood. Token Coherence: decoupling perfor-
mance and correctness. In Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on, pages 182 – 193, June 2003.

[70] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas,
Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and
Saurabh Dighe. The 48-core SCC Processor: the Programmer’s View. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,

BIBLIOGRAPHY 163

Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.
IEEE Computer Society.

[71] D. May. The XMOS XS1 Architecture, 2009.

[72] David May. OCCAM. SIGPLAN Not., 18(4):69–79, 1983.

[73] John M. Mellor Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–
65, 1991.

[74] Inc MIPS Technologies. MIPS64 Architecture for Programmers Volume 1: Intro-
duction to MIPS64. March 2011.

[75] David Mizell and Kristyn Maschhoff. Early experiences with large-scale Cray XMT
systems. In Proceedings of the 2009 IEEE international symposium on parallel &
distributed processing, IPDPS ’09, pages 1–9, Washington, DC, USA, 2009. IEEE
Computer Society.

[76] Simon Moore and Daniel Greenfield. The next resource war: computation vs. com-
munication. In Proceedings of the 2008 international workshop on System level
interconnect prediction, SLIP ’08, pages 81–86, New York, NY, USA, 2008. ACM.

[77] S.W. Moore. Multithreaded Processor Design. Kluwer international series in engi-
neering and computer science. Kluwer Academic Publishers, 1996.

[78] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level speci-
fications. In Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04.
Proceedings. Second ACM and IEEE International Conference on, pages 69 – 70,
June 2004.

[79] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and algo-
rithms. Computer, 24(8):52 –60, August 1991.

[80] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-machine
multicomputer: an architectural evaluation. In Proceedings of the 20th annual in-
ternational symposium on computer architecture, ISCA ’93, pages 224–235, New
York, NY, USA, 1993. ACM.

[81] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI microtask for
programming the Cell Broadband Engine processor. IBM Systems Journal, 45(1):85
–102, 2006.

[82] Scott Owens, Susmit Sarkar, and Peter Sewell. A Better x86 Memory Model: x86-
TSO. In Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics, TPHOLs ’09, pages 391–407, Berlin, Heidelberg, 2009.
Springer-Verlag.

[83] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In Proceedings of the 11th annual
international symposium on Computer architecture, ISCA ’84, pages 348–354, New
York, NY, USA, 1984. ACM.

164 BIBLIOGRAPHY

[84] Paul E. Mckenney. Memory Barriers: a Hardware View for Software Hackers, 2009.

[85] Juergen Ributzka, Yuhei Hayashi, Joseph B. Manzano, and Guang R. Gao. The
elephant and the mice: the role of non-strict fine-grain synchronization for modern
many-core architectures. In Proceedings of the international conference on Super-
computing, ICS ’11, pages 338–347, New York, NY, USA, 2011. ACM.

[86] Ron Ho and Mark A. Horowitz. On-Chip Wires: Scaling and Efficiency, 2003.

[87] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexible architectural
support for fine-grain scheduling. In Proceedings of the fifteenth edition of ASP-
LOS on Architectural support for programming languages and operating systems,
ASPLOS ’10, pages 311–322, New York, NY, USA, 2010. ACM.

[88] Sanghoon Lee, D. Tiwari, Y. Solihin, and J. Tuck. HAQu: Hardware-accelerated
queueing for fine-grained threading on a chip multiprocessor. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium
on, pages 99 –110, February 2011.

[89] O. Serres, A. Anbar, S. Merchant, and T. El Ghazawi. Experiences with UPC on
TILE-64 processor. In Aerospace Conference, 2011 IEEE, pages 1 –9, March 2011.

[90] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington,
P. Jordan, M. Luttrell, C. Olson, B. Sana, D. Sheahan, L. Spracklen, and A. Wynn.
UltraSPARC T2: A highly-treaded, power-efficient, SPARC SOC. In Solid-State
Circuits Conference, 2007. ASSCC ’07. IEEE Asian, pages 22 –25, November 2007.

[91] Sheng Li, S. Kuntz, J.B. Brockman, and P.M. Kogge. Lightweight Chip Multi-
Threading (LCMT): Maximizing Fine-Grained Parallelism On-Chip. Parallel and
Distributed Systems, IEEE Transactions on, 22(7):1178 –1191, July 2011.

[92] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens.
Efficient computation of sum-products on GPUs through software-managed cache.
In Proceedings of the 22nd annual international conference on Supercomputing, ICS
’08, pages 309–318, New York, NY, USA, 2008. ACM.

[93] Burton J Smith. Architecture and applications of the HEP multiprocessor computer
system. Real time signal processing IV, 298:241248, 1981.

[94] A. Solomatnikov. Polymorphic chip multiprocessor architecture. ProQuest, 2009.

[95] P. Sweazey and A. J. Smith. A class of compatible cache consistency protocols and
their support by the IEEE futurebus. SIGARCH Comput. Archit. News, 14(2):414–
423, May 1986.

[96] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat,
Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert
Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank,
Saman Amarasinghe, and Anant Agarwal. The Raw Microprocessor: A Computa-
tional Fabric for Software Circuits and General-Purpose Programs. IEEE Micro,
22(2):25–35, 2002.

BIBLIOGRAPHY 165

[97] The UPC Consortium. UPC Language Specifications v1.2. 2005.

[98] Tilera Corporation. Tile Processor User Architecture Manual, May 2011.

[99] J. Tolke and M. Krafczyk. TeraFLOP computing on a desktop PC with GPUs for
3D CFD. Int. J. Comput. Fluid Dyn., 22(7):443–456, August 2008.

[100] D.M. Tullsen, J.L. Lo, S.J. Eggers, and H.M. Levy. Supporting fine-grained synchro-
nization on a simultaneous multithreading processor. In High-Performance Com-
puter Architecture, 1999. Proceedings. Fifth International Symposium On, pages 54
–58, January 1999.

[101] Wen-Hsiang Hu, Chifeng Wang, and N. Bagherzadeh. Design and Analysis of a
Mesh-based Wireless Network-on-Chip. In Parallel, Distributed and Network-Based
Processing (PDP), 2012 20th Euromicro International Conference on, pages 483
–490, February 2012.

[102] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro,
27(5):15–31, 2007.

[103] Colin Whitby Strevens. The transputer. SIGARCH Comput. Archit. News,
13(3):292–300, June 1985.

[104] Peng Wu, Maged M. Michael, Christoph von Praun, Takuya Nakaike, Rajesh Bor-
dawekar, Harold W. Cain, Calin Cascaval, Siddhartha Chatterjee, Stefanie Chiras,
Rui Hou, Mark Mergen, Xiaowei Shen, Michael F. Spear, Hua Yong Wang, and
Kun Wang. Compiler and runtime techniques for software transactional memory
optimization. Concurr. Comput. : Pract. Exper., 21(1):7–23, 2009.

[105] William A. Wulf and C. G. Bell. C.mmp: a multi-mini-processor. In Proceedings
of the December 5-7, 1972, fall joint computer conference, part II, AFIPS ’72 (Fall,
part II), pages 765–777, New York, NY, USA, 1972. ACM.

[106] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-
CPU, GPU and memory controller 32nm processor. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 264
–266, Feburary 2011.

[107] Weirong Zhu, Vugranam C Sreedhar, Ziang Hu, and Guang R. Gao. Synchro-
nization state buffer: supporting efficient fine-grain synchronization on many-core
architectures. In Proceedings of the 34th annual international symposium on Com-
puter architecture, ISCA ’07, pages 35–45, New York, NY, USA, 2007. ACM.

