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Summary

The objective of automated planning is to synthesise a plan that achieves a set of goals

specified by the user. When achieving every goal is not feasible, the planning system

must decide which ones to plan for and find the lowest cost plan. The system should take

as input a description of the user’s preferences and the costs incurred through executing

actions. Goal utility dependencies arise when the utility of achieving a goal depends on

the other goals that are achieved with it. This complicates the planning procedure because

achieving a new goal can alter the utilities of all the other goals currently achieved.

In this dissertation we present methods for solving planning problems with goal utility

dependencies by compiling them to a variant of satisfiability known as weighted partial

maximum satisfiability (WPMax-SAT). An optimal solution to the encoding is found using

a general-purpose solver. The encoding is constructed such that its optimal solution can be

used to construct a plan that is most preferred amongst other plans of length that fit within

a prespecified horizon. We evaluate this approach against an integer programming based

system using benchmark problems taken from past international planning competitions.

We study how a WPMax-SAT solver might benefit from incorporating a procedure known

as survey propagation. This is a message passing algorithm that estimates the probability

that a variable is constrained to be a particular value in a randomly selected satisfying

assignment. These estimates are used to influence variable/value decisions during search

for a solution. Survey propagation is usually presented with respect to the satisfiability

problem, and its generalisation, SP(y), with respect to the maximum satisfiability prob-

lem. We extend the argument that underpins these two algorithms to derive a new set

of message passing equations for application to WPMax-SAT problems. We evaluate the

success of this method by applying it to our encodings of planning problems with goal

utility dependencies.

Our results indicate that planning with preferences using WPMax-SAT is competitive

and sometimes more successful than an integer programming approach – solving two to

three times more subproblems in some domains, while being outperformed by a smaller

margin in others. In some domains, we also find that using information provided by

survey propagation in a WPMax-SAT solver to select variable/value pairs for the earliest

decisions can, on average, direct search to lower cost solutions than a uniform sampling

strategy combined with a popular heuristic.
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Chapter 1

Introduction

Planning can be described as the process of identifying a sequence of actions to perform

that will result in the successful completion of a task. A wide variety of problems match

this description, but amongst those problems there can be substantial differences in their

characteristics. Common to all planning problems is the idea that a plan must have some

net useful effect that accomplishes an objective set by a user, which is usually described

as a collection of goals. The plan may then be executed by the user themselves or by an

autonomous agent acting on the user’s behalf. The development of automated planning

systems that take as input a description of a planning problem and output solutions has

been a long-standing goal of artificial intelligence.

Historically, planning research focussed on methods for finding plans that achieve all of

a problem’s goals, but since the turn of the century there has been a growing research

trend to place emphasis on finding high quality plans. An understanding of the quality

of a plan is needed in order to make decisions that involve trade-offs during planning.

Such scenarios arise in realistic problems either because there are more goals than it is

feasible to achieve with limited resources or because some goals are not important enough

to warrant the cost involved in achieving them. These type of problems are referred to as

oversubscription or partial satisfaction problems.

Faced with one of these problems, asking the user to choose a feasible subset of goals from

an oversubscription problem goes against the ambition of automated planning. A simple

approach that maximises the number of goals achieved is not sufficient either since the

importance of goals to the user can vary. The planning system must be supplied with a

description of the goal preferences that a user has for the problem so that it can make its

own choices that match the user’s requirements.

In many scenarios, the user may prefer that a group of goals are achieved together by a

plan because they belong to a relationship that the user is interested in. Conversely, it

is also reasonable that a user may want to avoid plans that achieve more than one goal

9



10

in a specific group because they overlap in their usefulness and act as substitutes for one

another. In these cases, the user will feel a degree of satisfaction with a solution according

to how well it meets their preferences. A measure of the degree of satisfaction is often

called the utility. In the above case, the utility of a goal is dependent on the collection

of goals that are achieved, and we will refer to such situations as exhibiting goal utility

dependencies.

Alternative types of preferences are needed in situations where priorities might make it

more desirable to achieve a set of goals in a certain order. Similarly, there may be facilities

that are only available at certain times, and when they are available, the user would prefer

that these facilities are used over alternatives. Common to these types of preferences is

the idea that some plans may be preferable to others even if they achieve the same set

of goals for the same cost. Collectively, such preferences are referred to as trajectory

preferences.

Once a set of preferences has been specified, we might ask the planning system to syn-

thesise a most preferred plan. This is likely to be a much more computationally intensive

procedure than those that perform classical planning, as it is not sufficient to simply find

a plan: for each plan the system encounters, it must either find a better one or prove

that a more preferred plan does not exist. Only when the latter has been established

can an optimal planning system terminate. Thus, the search procedure must engage in a

systematic exploration of the solution space. For practical problems, a simple exhaustive

search covering all possible plans is infeasible. Therefore it is important to be able to

establish when a particular branch of the search cannot contain any better solutions and

to prune that branch accordingly. Without the ability to exclude large portions of valid

plans by pruning, we will be defeated by the exponential growth in the number of valid

plans.

A compilation approach to planning encodes the problem in another framework such as

constraint satisfaction or satisfiability. A general purpose solver from that framework is

then used to solve the encoding. The encoding is specially constructed so that once a

solution to the encoding is obtained, a solution to the original planning problem can be

extracted from it. Compilation approaches have been very successful in classical planning:

a SAT-based planner was the winner of the propositional optimal1 track in the fourth

(2004) and fifth (2006) International Planning Competitions. Rintanen (2010) has shown

that incorporating a planning specific heuristic into a SAT solver leads to a SAT-based

planner that can outperform some of the best satisficing classical planners.

Many of the target frameworks used for a compilation approach to planning have opti-

1In these planning competitions, an optimal plan had the smallest makespan over all other plans. Since
then, there has been a departure from this definition to use action costs instead to define the optimal
plan, which we favour and focus on in this dissertation.
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misation variants. These typically involve the definition of an optimisation function that

is to be minimised or maximised during the solution procedure. This makes it possible

to construct encodings such that their optimal solutions correspond to optimal plans.

The optimisation variant of the satisfiability problem is called maximum satisfiability

(Max-SAT).

In this dissertation, we concentrate on a variation of the Max-SAT problem known as

weighted partial Max-SAT. A problem in this class consists of hard and soft clauses, where

soft clauses have an integer valued weight associated with them. An optimal solution to

such a problem is a truth assignment that satisfies all hard clauses and maximises the sum

of weights of satisfied soft clauses. Research into these solvers is in its infancy: the first

Max-SAT evaluation was held in 2006 as part of the International Conference on Theory

and Applications of Satisfiability Testing; the weighted partial Max-SAT category was

added to the evaluation in 2007.

Recently a new method called survey propagation (Mézard and Zecchina 2002) has been

proposed, originating from ideas developed within the statistical physics community, that

can be used to solve a higher proportion of the hardest satisfiability problems in a class

of problems known as random k-SAT. Survey propagation is used to estimate, for each

variable, the probability that it is constrained to take the value True, the value False or

is unconstrained in a randomly selected satisfying truth assignment. These are then used

to identify strongly biased variables: those which are much more likely to be assigned one

value than another. The most strongly biased variables are set to their more likely values

in a process known as decimation. This results in a simplified problem that is hopefully

easier to solve by a more conventional method.

The underlying ideas behind survey propagation can be adapted to the Max-SAT problem,

which leads to an algorithm known as SP(y) (Battaglia et al. 2004). An optimal solution

to a Max-SAT problem is a truth assignment that satisfies the greatest number of clauses.

Instead of treating all assignments as equal, the SP(y) method defines a distribution over

truth assignments which has its highest value for assignments that satisfy the greatest

number of clauses. This alters the probability estimates in order to direct the decimation

procedure towards truth assignments that satisfy as many clauses as possible.

This dissertation presents an approach to handling preferences within a Max-SAT frame-

work. We develop an encoding scheme for solving STRIPS planning problems with goal

utility dependencies and action costs as a weighted partial Max-SAT problem. We then

adapt the survey propagation technique to handle weighted partial Max-SAT problems,

which consist of hard and soft clauses together with non-uniform integer weights. This

leads to a new set of equations, which we refer to as the WPSP(y) equations. We then

use probability estimates derived from this method as heuristic guidance in a weighted

partial Max-SAT solver to test the effectiveness of the theory.



12 1.1. DISSERTATION OUTLINE

1.1 Dissertation outline

In Chapter 2 we present an overview of background material discussing planning models,

weighted partial Max-SAT and encoding planning as satisfiability. Alternative approaches

are briefly discussed for completeness. Chapter 3 defines goal utility dependencies and

relates this type of utility function to the existing net benefit model for planning with

preferences. Then we present a new procedure for encoding net benefit planning with

goal utility dependencies as weighted partial Max-SAT.

In Chapter 4 we introduce the survey propagation method and its application. We sum-

marise a derivation of the survey propagation method which illustrates the reason for its

success. Building upon this, we present a derivation of a new set of equations which we

refer to as the weighted partial survey propagation (WPSP(y)) equations. These are more

general than the SP(y) equations in that they consider the case where clauses may be

hard or soft, and may have arbitrary integer weights.

In Chapter 5 we present two main sets of experimental results that evaluate the success

of our new techniques described in Chapters 3 and 4. These aim to test the following

hypotheses,

• Representing planning problems with goal utility dependencies in weighted partial

Max-SAT allows problems to be solved more quickly than can be done when using

an integer programming based represention.

• Using bias estimates provided by WPSP(y) to guide a weighted partial Max-SAT

solver directs the search towards solutions of higher quality than using uniform

sampling from the same set of variable/value pairs. Moreover, we expect to observe

an improvement over the default heuristic that is used in the weighted partial Max-

SAT solver that we study.

The first hypothesis is motivated by empirical observations indicating that integer pro-

gramming encodings of STRIPS planning do not perform as well as SAT encodings. The

second hypothesis is motivated by an understanding of what the SP(y) and WPSP(y)

methods attempt to do. In summary, they define a probability distribution that is peaked

around assignments that have the highest sum of satisfied clause weights. Through a series

of approximations, the methods attempt to estimate marginal values of this distribution.

If these estimates are accurate, then variables that have a high marginal probability of

being True or False are likely to take that value in a truth assignment selected at ran-

dom according to that distribution. If the distribution is sufficiently peaked, then a truth

assignment selected according to that distribution is likely to be a low cost solution.
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Therefore, setting variables that are strongly biased towards one value or another should

direct the solver towards a low cost solution.

We make our concluding remarks and discuss directions for future work in Chapter 6. In

summary, this dissertation makes the following original contributions:

• The first encoding scheme for representing STRIPS net benefit planning problems

with goal utility dependencies as weighted partial Max-SAT formulas. The encoding

scheme is flexible enough to also represent partial satisfaction problems which do

not exhibit goal utility dependencies, such as the PSP net benefit class of problems

from the 2008 International Planning Competition.

• An implementation built upon Satplan, which we call MSatplan, of a planning

system that produces encodings according to the above scheme. MSatplan then

uses a general-purpose weighted partial Max-SAT solver to find an optimal solution

to the encoding, from which a plan is extracted that is optimal amongst all other

plans of equal or smaller makespan2. We conduct an empirical evaluation of the

performance of MSatplan against a planning system that solves planning problems

with goal utility dependencies via an integer programming encoding.

• A derivation of a new set of equations called the WPSP(y) equations, which can be

applied to any weighted partial Max-SAT problem, not just encodings of planning

problems. This allows the survey propagation method of decimation to be applied

to our encodings.

• An implementation of an optimal weighted partial Max-SAT solver based upon an

existing successful solver, MiniMaxSat. Our implementation uses the WPSP(y)

equations to perform a decimation procedure in the initial stages of search for an

optimal truth assignment to a weighted partial Max-SAT problem.

• An empirical evaluation that studies the effects of performing this decimation using

the WPSP(y) equations within our weighted partial Max-SAT solver. We compare

against other heuristics that are used in the successful MiniMaxSat solver. Our

evaluation is performed using our encodings of STRIPS net benefit planning prob-

lems with goal utility dependencies; however, the approach has broader applicability,

and, with only slight modifications, it could potentially be used on any weighted

partial Max-SAT problem.

2The makespan of a plan relates to the number of ‘parallel steps’ that it executes. A precise definition
is presented in the next chapter.
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The material presented in Chapter 3 and the empirical results related to that work,

presented in Chapter 5, are an expanded version of material that was presented as a full

technical paper (Russell and Holden 2010) at the International Conference on Automated

Planning and Scheduling (ICAPS) 2010.



Chapter 2

Background

In this chapter we present an overview of the formalisms that we will work with throughout

the rest of the dissertation. We discuss relevant alternative approaches from the litera-

ture. A more detailed literature survey related to preferences and survey propagation is

contained in Chapters 3 and 4, respectively.

2.1 Planning models

When describing planning models, we work with an abstraction of the world. The world

can exist in a collection of states. Within the world there are objects and agents that can

perform actions. Performing an action causes a transition between states.

The field of planning is separated into subfields based upon various simplifying assump-

tions about these abstractions. For instance, the world can either be static, meaning that

transitions between states only occur when actions are performed, or it can be dynamic,

which requires agents to repeatedly sense their environment to check for changes.

This dissertation is concerned with the subfield often referred to as classical planning.

In this subfield, a single agent operates in a world that is finite and static; states are

fully observable; actions have deterministic effects and when executed, their effects are

instantaneous.

Within classical planning, there are several formalisms for describing planning problems,

of which we will discuss the influential STRIPS language, the community standard PDDL,

and the multi-valued state representation SAS+.

15



16 2.1. PLANNING MODELS

2.1.1 STRIPS

The STRIPS (STanford Research Institute Problem Solver) language (Fikes and Nilsson

1971) was designed to be simple enough to be used for efficient inference but expressive

enough to describe useful planning problems. It became the standard model for planning

research in subsequent decades and many extensions have been made to the model to

handle aspects of the real-world such as conditional effects, durative actions and uncer-

tainty.

In STRIPS, properties of the world are described using formulas written in first order

logic; however, the salient aspect of the STRIPS language, and a large contributor to the

formalism’s success, is its simple action representation. Each action is described using a

precondition formula, which describes what must be true in the world in order for the

action to be applicable, and a set of effects, which describe how the world changes if the

action is applied. Effects are represented in the form of an add and a delete list. The add

list describes the properties of the world that might not have been true before but will be

true after the action is executed. Similarly, the delete list describes those properties that

might have been true before but will be false after its execution.

Let us illustrate how STRIPS can be used to model a planning problem that requires the

moving of people between cities. Two people, Alison and Adam, can move between the

cities Paris and London. Alison is initially in London and Adam is initially in Paris. We

can model the location of a single person in first order logic using the predicate At(p, l),

which is true if person p is at location l, where p and l are variables. Note that in first order

logic, the set of objects in the world for this problem is {Alison,Adam,Paris,London}.
Let us assume that constant symbols of the same name are mapped to these objects.

We want to avoid instantiations that are valid in first order logic but are semantically

meaningless to us, for example, At(Paris,Alison). Thus, most implementations of STRIPS

incorporate a typing system, which could be replicated in first order logic by the use of

unary predicates, for example, City(Paris) denotes Paris as a city and Person(Alison)

denotes Alison as a person.

For compactness, actions are typically described using action schema that accept param-

eters, for example, Go(p : Person, l1 : City, l2 : City), is an action schema for moving

a person from one city to another. It has a precondition At(p, l1), an add effect At(p, l2)

and a delete effect At(p, l1), where we have used ‘:’ to indicate typing of variables. The

typing restrictions avoid semantically erroneous instantiations of the action schema.

A problem will include a description of the initial state. This will include a typed list of

objects and a list of predicates that are true initially. The domain will specify the actions

that can be performed. Together, this implicitly describes the set of atoms that can be

generated through repeated application of actions. Note that some valid instantiations of
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predicates may not be reachable from the initial state, and this has implications for the

choice of state representation.

A STRIPS problem can be translated to a propositional STRIPS problem by considering

all possible ground atoms of the first order theory, which correspond to the possible facts,

and ground instantiations of action schemas. For reasons of convenience, we will work

with this formalism, although the reader should be aware that this translation must take

place, and can lead to large problem specifications.

In propositional STRIPS, a classical planning problem is described by a 4-tuple 〈F , I,G,A〉
where

• F is a finite set of ground atomic formulas that correspond to the facts about the

world,

• I ⊆ F is the initial state, which are the facts that are initially true,

• G ⊆ F is the subset of facts that are the goals of the problem,

• A is a set of ground actions. Each action a ∈ A has

– a precondition set Pre(a) ⊆ F of ground atomic formulas that must all be true

for a to be applicable,

– a set Add(a) ⊆ F of add effects which are the facts that are made true if a is

executed,

– a set Del(a) ⊆ F of delete effects which are the facts that are made false if a

is executed. We require that Add(a) ∩ Del(a) = ∅.

States of the world are described as sets S ⊆ F which denote the facts that are true in the

state: a fact f ∈ F is true in state S if and only if f ∈ S. An action a ∈ A is applicable

in state S if and only if Pre(a) ⊆ S. Note that this forces the preconditions of actions to

be positive literals; alternative models such as ADL allow actions to have negative literals

as preconditions. A plan is an ordered sequence of actions (a1, . . . , am) with () denoting

the empty plan that contains no actions.

The result of executing a plan P from the starting state S is Result(P, S) which is recur-

sively defined as

Result((), S) = S, (2.1)

Result((a), S) =







Add(a) ∪ (S \ Del(a)) if Pre(a) ⊆ S,

S otherwise,
(2.2)

Result((a1, . . . , am), S) = Result((a2, . . . , am),Result((a1), S)). (2.3)
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Note that we have used Bylander’s convention that executing an action in a state in which

it is not applicable results in no change in the state. A plan P is a solution to a planning

problem 〈F , I,G,A〉 if and only if G ⊆ Result(P, I).
Propositional STRIPS planning is PSPACE-complete (Bylander 1994). If actions are

allowed to have only positive effects then the problem is NP-complete. Severe restrictions

must be placed on actions in order to make the planning problem polynomial time solvable:

for example, if each action can have only positive preconditions and one effect.

2.1.2 SAS+

The SAS+ (Simplified Action Structures) (Bäckström and Nebel 1995) formalism was

initially developed to study tractable restrictions for planning problems. A state is repre-

sented using a set of multi-valued variables. Constraints, such as action preconditions and

effects, assert that variables should take on particular values from their domains. Each

action specifies, in addition to its preconditions and effects, prevail-conditions, which

describe the values of precondition variables that go unchanged by the operator.

Edelkamp and Helmert (1999) present an automatic conversion procedure from STRIPS

planning problems to a SAS+ representation. As previously alluded to, not all ground

instantiations of predicates are reachable; moreover, for some groups of predicates, only

one member of that group can be true at any one time. Modelling locations provides a

good example of this. At(Alison,Paris) and At(Alison,London) cannot be simultaneously

true for the following reason: At(Alison,London) is the only one of the two initially true

and whenever the Go action adds a fact of the form At(Alison, l′), it deletes the currently

true fact At(Alison, l). So Alison is only ever at one location. Thus, we could represent

the predicate that is true by enumerating the possible locations and storing the integer

corresponding to the predicate that is true. Actions then cause changes in the value of

such variables. This is an example of one of the ways Edelkamp and Helmert convert the

STRIPS problem to a multi-valued representation.

This multi-valued state representation is used as the basis for the integer programming

encoding by van den Briel et al. (2008), which we will compare against later in this

dissertation.

2.1.3 PDDL

The Planning Domain Definition Language (PDDL) is an attempt to standardise the lan-

guage used to express planning problems so that they may be shared between researchers.

PDDL 1.2 (McDermott et al. 1998) was adopted by the International Planning Com-

petition (IPC) to compare the performance of competing planning systems. A problem
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definition is made in two parts: the domain file in which requirements, constants and

actions are specified, and the problem file in which objects, the initial state and goals

are specified. Requirements define particular subsets of the language that a planner must

support in order for the problem to be solved. In general, planning systems are not ex-

pected to support all features of the language; instead, they must identify the language

features they need to model their target application.

PDDL 1.2 allows the user to express STRIPS problems; however, the language allows ac-

tion preconditions to contain negative literals. This can produce confusion because some

planning systems work with a definition of STRIPS – which is used in some textbooks

(Russell et al. 1995) – where the preconditions of actions must be positive literals. Hence,

the situation can arise where a PDDL problem which advertises only the STRIPS re-

quirement cannot be solved by a STRIPS planning system because of the use of negative

literals in action preconditions.

Since the initial version, extensions have been made to the language to move towards

modelling more realistic problems and addressing plan quality. PDDL 2.1 (Fox and Long

2003) extends the language to allow temporal and numeric properties to be modelled.

Actions can change the value of numeric variables and the applicability of actions can be

conditional on functions of values of numeric variables. In particular, it introduces the

idea of a plan metric, which can be calculated from the values of these numeric variables,

that is to be minimised or maximised.

The temporal model adopted by the language allows durative actions to have discretised

or continuous effects. In both cases, an action has a start and an end time. Precondition

constraints on actions can be at the start or end of the action; invariant conditions, that

must hold throughout the duration of the action, can also be specified.

In the discrete model, changes in numeric variables occur instantaneously at either the

start or the end of the action. The continuous variant allows this change to occur gradually

in-between the start and end times. To do this, each action is equipped with a special

variable that denotes the time that has elapsed since the action started. This can be

used together with a rate of change to calculate its value at any point within the interval

defined by its start and end times.

PDDL 3.0, extends the language to allow the modelling of trajectory and goal preferences

(Gerevini and Long 2006). Trajectory preferences are modelled using modal logic opera-

tors in first order formulas in the style of linear temporal logic (Pnueli 1977). This allows

the user to specify constraints on plans such as ‘this fact must always be true’ or ‘this fact

must be true at least once during the plan’. Modal operators cannot be nested, but there

are some operators that replicate the behaviour of some nesting constructs that might be

frequently required. One area of weakness in the language is that specifying constraints
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on the occurrence of individual actions is not possible: trajectory constraints can only

specify properties about states.

PDDL 3.0 allows goals and constraints to be soft, which means that it is not imperative

that a plan satisfies such a constraint, but it should try to do so where possible. Further-

more, building upon the ability to specify a plan metric that was introduced in PDDL 2.1,

violating a soft constraint can incur a penalty, see Figure 2.1. This allows the planner to

make decisions that lead to plans that minimise the total penalty incurred as a result of

violating soft constraints.

( : metr ic minimize (+ ( i s−v i o l a t ed DeliveryWithinOneDay )
(∗ 5 ( i s−v i o l a t ed DeliveryWithinTwoDays ) ) ) )

Figure 2.1: Weighting soft constraints so that failure to deliver within two days is five times
worse than failing to deliver within one day.

2.2 The planning graph

Blum and Furst’s seminal work on planning graphs (1997) for STRIPS-based planning

has become the cornerstone for many automated planning methods. It is a graphical

presentation of a planning problem that uses nodes to denote facts and actions, and edges

between nodes to indicate when a fact is a precondition or an effect of an action.

Since fluents change over time and actions can be executed multiple times in a plan, each

fact and action carries an extra time argument. Time is divided into integral steps, and

a finite number of steps is considered, often referred to as the horizon or makespan of

the plan. For instance, a planning graph of makespan m divides time into the values

0, 1, 2, . . . , m.

The graph consists of alternating layers of ground facts and fully instantiated actions

grouped in increasing order of time. The layers are labelled such that the actions in layer

t have their effects in fact layer t+ 1 and their preconditions in fact layer t.

A special action known as a NOOP, short for ‘no operation’, is used to denote that

a fact persists from one fact level to the next. For example, a NOOP for the fact

At(Alison,Paris) could be denoted by NOOP-At-Alison-Parist and would have a precon-

dition Att(Alison,Paris) and an effect Att+1(Alison,Paris), where the subscript indicates

the time step for the fact or action.

Part of the reason for the planning graph’s success is its use of a limited form of consistency

enforcement. This is provided by binary mutual exclusion links, which are referred to as

mutexes. Mutexes are linked either between two facts or two actions, within the same
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layer. If two facts at level t in the planning graph are connected by a mutex then this

indicates that those two facts cannot be simultaneously true at time step t. Similarly,

two actions at level t that are marked mutex cannot be simultaneously executed at time

step t; however, from the conditions under which we mark facts and actions as mutex, as

described below, we will not be able to identify all possible mutexes. Consequently, if two

facts or actions are not marked mutex in the planning graph at a given level, this does

not imply that they can be simultaneously true or simultaneously executed at that level

in a valid plan, respectively.

The construction of a planning graph is carried out as follows. All facts occurring in the

initial state are added to the 0th fact layer; there are no mutexes in the 0th fact layer.

Then the following steps are iterated for i = 0, . . . , m− 1,

• Add to the ith action layer, every ground action that has all its preconditions

appearing pairwise non-mutex in fact layer i. For every fact fi occurring in fact

layer i, add to action layer i a NOOP action af,i which has Pre(af,i) = {fi} and

Eff(af,i) = {fi+1}.

• For every action, including NOOP actions, appearing in action layer i, add to fact

layer i + 1 all the facts that are contained in the add lists of at least one action

present in action layer i.

The above two rules are iterated using the following conditions for when two facts or

actions are mutex. Two actions a and b that occur in layer i of the planning graph are

marked mutex if any of the following conditions are true,

• Inconsistent effects – at least one effect of a is the negation of an effect of b, or vice

versa.

• Competing needs – a has at least one precondition which is marked mutex at level

i with a precondition of b.

• Interference – at least one effect of a is the negation of a precondition of b, or vice

versa.

Two facts f and g that occur in layer i > 0 of the planning graph are marked mutex if

• Inconsistent support – both f and g cannot be achieved by a single action in layer

i− 1 and all pairwise choices of supporting actions in layer i− 1 are marked mutex

in that layer.
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At(Alison,London)

At(Adam,Paris)

At(Alison,London)

At(Adam,Paris)

At(Alison,Paris)

At(Adam,London)

Go(Alison,London,Paris)

Go(Adam,Paris,London)

Figure 2.2: An example planning graph. NOOPs are indicated by empty squares. Effects in the
delete list are indicated by a dashed line. Mutexes are indicated by thick edges.

A simple backtracking search can be performed on a planning graph to directly solve a

problem. If all goals are to be achieved, we first need to expand the planning graph to at

least the level at which all goals appear in the planning graph pairwise non-mutex. Then

one can perform a backtracking search on the graph to try to find a plan. If that fails,

the graph should be extended by an extra level and the process repeated.

A planning graph is said to level-off if the expansion of it by one layer adds no actions

to the new layer that were not present in the previous action layer. If two facts do not

appear in or are marked mutex in the final layer of a levelled-off planning graph, then

we can deduce that no plan starting from the same initial state can co-achieve those two

facts; hence, the problem is unsolvable. Otherwise, if a planning graph has levelled-off

and we have still not found a solution, we may have to continue expansion for a finite

number of extra layers in order to either find a solution or determine insolubility – see

Blum and Furst (1997) for a termination condition.

At present, the planning graph is seldom used as the only strategy for solving planning

problems. Instead, it is often used as the primary data structure for extracting information

from planning problems for use with alternative search paradigms. One example of this

is the use of the relaxed planning graph in heuristic search.

2.2.1 The relaxed planning graph

A relaxed planning graph (Bonet and Geffner 2001) is constructed from a problem in

the same way as the normal planning graph with the exception that the delete list of

every action is ignored. Note, that this implies that a relaxed planning graph contains no

mutexes.

A relaxed plan can be extracted from a relaxed planning graph in polynomial time (Hoff-

mann and Nebel 2001).1 An admissible heuristic is one that never overestimates the true

1At a first glance, this might seem to contradict our earlier statement that STRIPS planning with
only positive effects is NP-complete (Bylander 1994), but Bylander’s NP-complete result applies when
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cost to the goal. Finding the shortest relaxed plan could be used to provide an admissible

heuristic estimate for the remaining number of actions needed to achieve all goals: the

shortest relaxed plan must be shorter than the shortest non-relaxed plan because it does

not need extra actions that repair the deleterious effects of actions from the non-relaxed

problem. Unfortunately, computing the shortest relaxed plan is NP-hard for STRIPS

problems (Bonet and Geffner 2001).

2.3 Planning as satisfiability

Although Bylander (1994) shows that STRIPS planning is PSPACE-complete, as Kautz

and Selman (1996) observes, the hardness comes from allowing plans to have exponential

length; if we restrict our attention to plans of polynomially bounded length, STRIPS

planning becomes NP-complete. Hence, we can represent STRIPS planning in other

problem classes that are also NP-complete, in particular, the well-known satisfiability

problem.

2.3.1 The satisfiability problem

The satisfiability problem is a central problem in complexity theory. It was the first

problem that was shown to be NP-complete (Cook 1971). It is a problem of consider-

able research interest and has found applications in software and hardware verification

(Prasad et al. 2005), bioinformatics (Lynce and Marques-Silva 2006) and security protocol

verification (Armando et al. 2003).

Problem description

A propositional or Boolean variable v has a domain Dom(v) = B = {t, f} corresponding
to the values true and false, respectively. A literal is either a propositional variable v or

its negation ¬v. A formula is either a literal or is constructed from other formulas by

repeated applications of the operations of disjunction (∨), conjunction (∧) and negation

(¬) together with the use of parentheses to indicate application. For a set of propositional

variables V , the set of formulas L(V ) over those propositional variables is the minimum

set that satisfies the following properties:

• If v ∈ V then v ∈ L(V );

actions can have negative preconditions, whereas Hoffmann and Nebel’s result applies when actions can
have only positive preconditions.
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• If A ∈ L(V ), then ¬A ∈ L(V );

• If A ∈ L(V ) and B ∈ L(V ), then A ∧ B ∈ L(V ) and A ∨ B ∈ L(V ).

A propositional satisfiability problem is a tuple (V ,F ), where V is a set of propositional

variables and F ∈ L(V ). A truth assignment to the set of variables V is a function

T : V → B that maps a variable to a Boolean value. If T is defined for each variable

in V then the truth assignment is complete, otherwise it is partial. An interpretation

over propositional variables V with a complete truth assignment T to the variables V ,

is a function J·KT : L(V ) → B, which is recursively defined in the following way. For

propositional formulas A,B ∈ L(V ):

• JA ∧BKT = t if and only if JAKT = t and JBKT = t; otherwise, JA ∧ BKT = f .

• JA ∨BKT = t if and only if either JAKT = t or JBKT = t; otherwise, JA ∨ BKT = f .

• J¬AKT = t if and only if JAKT = f ; otherwise, J¬AKT = f .

For a propositional variable v ∈ V , JvKT = t if and only if T (v) = t; otherwise, JvKT = f .

A clause is a disjunction of literals (ℓ1 ∨ · · · ∨ ℓk). We sometimes use the shorthand

{ℓ1, . . . , ℓk}, where we have omitted the disjunction symbols. A formula is in conjunctive

normal form (CNF) if it is a conjunction of clauses. Any formula in propositional logic

can be expressed in conjunctive normal form (Tseitin 1968).

We can now define the search problem class PROPSAT.

Definition 1. PROPSAT: Given a propositional satisfiability problem (V, F ) where F

is expressed in CNF, find a truth assignment T such that JF KT = t or deduce that no

such truth assignment exists.

2.3.2 Satisfiability solvers

Howmight a program be written that solves a problem in PROPSAT? We can divide such

algorithms into two classes: systematic and local search. A systematic solver will explore

the entire space of truth assignments and will return the first solution it encounters; if it

fails to find a solution after completing its exploration, it can conclude that no solution

exits. In contrast, a local search procedure – for example, WalkSat (Selman et al. 1994)

– repeatedly samples from the space of truth assignments until it finds a truth assignment

that is a solution. Local search procedures often take a cutoff parameter that limits the

number of samples it can take before giving up on finding a solution.
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We say that a solver is complete if it is guaranteed to find a satisfying assignment to

a problem when one exists. Systematic solvers by their very nature are complete. In

contrast, local search procedures are not complete because there remains the possibility

that there is a satisfying truth assignment that was not sampled. One important basis

for a systematic solver is the Davis-Putnam-Lodgemann-Loveland method.

Davis-Putnam-Lodgemann-Loveland (DPLL) algorithm

The DPLL procedure (Davis et al. 1962) is the foundation of most state-of-the-art sys-

tematic satisfiability solvers. Its basic procedure is summarised in Algorithm 1. The

procedure takes a set C of propositional clauses. If C is empty, then the formula is triv-

ially satisfiable. If C contains an empty clause then C is unsatisfiable. Two methods that

perform unit propagation and remove pure literals are iterated until no change occurs in

the clauses in C.

Unit propagation is implemented in the method unitPropagation(C), which iterates over

each clause of the form {ℓ} and sets the literal ℓ to true. The method returns a set of

clauses C ′ ⊆ C which contains only the clauses in C that do not contain the literal ℓ or

can be derived from a clause in C by removing ¬ℓ from the clause.

Pure literal elimination is implemented in the method removePureLiterals(C). A pure

literal ℓ is one for which ¬ℓ does not appear in any clause in C. All pure literals can be

safely set to true. The method removePureLiterals(C) returns a set of clauses C ′ ⊆ C such

that a clause is in C ′ if and only if it did not contain a pure literal in C.

When the set of clauses can no longer be simplified by applying unit propagation or pure

literal elimination, if there are still unsatisfied clauses, DPLL chooses a variable from the

set of currently unassigned variables to assign a value to. The chosen variable is referred to

as a decision variable. The method getDecisionVar(C) returns the next decision variable.

We do not know whether a decision variable should be set to true or false so we must try

both values. Hence, the DPLL method branches on decision variables and backtracks if

an empty clause is derived.

Modern SAT solvers

Almost all modern SAT solvers make use of some form of conflict clause learning. These

procedures were taken from the constraint satisfaction problem field and introduced to

DPLL propositional satisfiability solvers (Bayardo and Schrag 1997). DPLL only sets

variables either through a branching decision or when a clause becomes unit. When an

empty clause is derived, we can identify the subset of the current partial assignment that

caused this conflict.
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Algorithm 1: DPLL procedure

Result: (b, A) where b is a boolean indicating if the formula is satisfiable and A
describes a partial assignment corresponding to the decision variables that
can be extended to a satisfiable assignment by unit propagation.

begin1

if ∅ = C then return (⊤, ∅)2

if ∅ ∈ C then return (⊥, ∅)3

Cbefore ← ∅4

repeat5

Cbefore ← C6

C ← removePureLiterals(C)7

C ← unitPropagation(C)8

until C = Cbefore9

v ← getDecisionVar(C)10

(isSat,A) ← dpll(C ∪ {v})11

if isSat then return (⊤, A ∪ {v})12

else13

(isSat,A) ← dpll(C ∪ {¬v})14

if isSat then return (⊤, A ∪ {¬v})15

else return (⊥, ∅)16

end17

Consider a formula that contains the clauses C1 = {a,¬y}, C2 = {a,¬z} and C3 =

{x, y, z} amongst other clauses. If at some point during the search we have the partial

assignment x 7→ f and a 7→ f , where the assignments were made in left-to-right order,

then C1 forces the assignment y 7→ f and C2 forces the assignment z 7→ f through unit

propagation. Hence, clauses C1 and C2 are the reason clauses for the assignments to y

and z, respectively. However, now C3 has become empty because all of its variables are

assigned false. This is referred to as encountering a conflict and C3 is the conflict clause.

To be systematic, we backtrack to the most recently assigned variable that can fix the

conflict. This is the assignment to z, but the reason clause for z is C2. By resolving C2

with C3 we obtain the clause {x, y, a} which indicates that we cannot have a satisfying

assignment that assigns false to x, y and z. Now the most recently assigned variable is

y, but the reason clause for y is C1. Hence, by resolving {x, y, a} with C1 we obtain the

clause {x, a}. Now we know that we cannot have a satisfying assignment where both x

and a are assigned false. The clause {x, a} subsumes {x, y, a} since any truth assignment

that violates the latter also violates the former. If x and a are both decision variables, that

is to say they were added as branching decisions rather than through unit propagation,

then we may add the clause {x, a} to our formula in order to avoid revisiting this failed

branch again during search.
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In general, the above process repeats until we identify the most recently assigned decision

variable that is part of the reason for the conflict at which point we can change our

branching decision – if we do not encounter such a variable, then this indicates that the

formula is unsatisfiable. Conflict clause learning retains these reason clauses and includes

them in the DPLL procedure as if they were part of the original formula. In practice,

retaining all learnt clauses is prohibitively expensive, so a policy that decides when to

forget learnt clauses must be used.

Heuristics for choosing decision literals, such as VSIDS, and improvements in implemen-

tation techniques for DPLL algorithms, such as the two watched literal scheme, help to

increase performance further (Moskewicz et al. 2001).

2.3.3 Encoding schemes for planning problems

STRIPS planning as satisfiability was first formulated by Kautz and Selman (1992). This

initial formulation constructs a linear encoding of a STRIPS problem and then attempts

to find a satisfiable assignment for the generated formula using a local search procedure,

Gsat. From a satisfiable assignment, a valid plan can be reconstructed.

Linear encodings

A linear encoding divides time into a sequence of discrete steps, such that at each step ex-

actly one action can be executed. They are called ‘linear’ because the number of variables

in these encodings is linear in the number of time steps. A simple encoding scheme maps

each ground action at each time step to a propositional variable. A disadvantage of this

approach is that the number of ground instantiations of an action is exponential in the

number of parameters of the action. If an action has p parameters, each with domain of

size d, then there are at most dp ground instantiations. If we are producing an encoding

that allows m time steps, this contributes mdp propositional variables to the encoding

size.

Since the complexity of propositional satisfiability is widely believed to be exponential in

the number of variables in the worst case, it makes sense to try to reduce the number of

variables in the encoding wherever possible. Since linear encodings admit only one action

per time step, a more compact encoding can be achieved using a split action representation

(Kautz et al. 1996). This encodes a single proposition for each argument of the action.

For example, encoding the action Go(p, l1, l2, t) would lead to a proposition GoArg1Alisont

that is true if and only if an action of the form Go(Alison, l1, l2, t) is executed. This would

require a total of dp propositions to encode the ground instantiations of an action, which

would contribute mdp propositional variables to the encoding size.
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Further improvements can be made by overloading the splitting, which allows actions to

share arguments. For example, Action(Go, t) and Arg1(Alison, t) would denote an action

of the form Go(Alison, l1, l2, t). The Medic planner explored the space of these type of

encodings (Ernst et al. 1997). The experimental results suggested that although these

more complicated splitting schemes provide a lower worst-case complexity in the size

of the encoding, smaller encodings can be produced using the simpler encoding scheme

provided that a pre-processing simplification procedure is used. This simplification pro-

cedure uses typing of objects and action parameters, which limits the number of ground

instantiations to the extent that a simple one-to-one mapping between ground actions and

propositions is more compact than a complicated splitting procedure that allows nonsen-

sical instantiations. Encouragingly, the results also show a positive correlation between

smaller encodings and faster running times.

Kautz et al. (1996) also present a compact encoding for a lifted SAT solver that uses

causal links; however, this is not reduced to a CNF formula in propositional logic, so the

success of this approach is reliant on finding a strong first order (without quantification)

satisfiability solver.

Parallelised encodings

One problem with linear encodings is that they allow only a single action to be executed

at each time step. In some sense, this is wasteful because for each time step, only a very

small number of variables can be set to true to encode that a single action is executed.

The other remaining variables for that time step must be set to false. Given that the

number of variables in a linear encoding is a linear function of the number of time steps,

smaller encodings could be produced by allowing more than one action to execute at each

time step and thus reducing the number of time steps needed in the encoding to find a

plan. Schemes of this type are known as paralellised encodings.

Specifying the semantics of when it is possible to execute a set of actions together in a

single time step affects the size of the encoding. One possibility is to allow a set of actions

to be executed in a single time step if all possible total orderings of those actions are valid.

Rintanen et al. (2006) refers to this as a ∀-step semantics. Alternatively, relaxing this

condition so that a set of actions can be executed together in a single time step if at least

one total ordering of the actions is possible is referred to as a ∃-step semantics, which

admits more parallelism. ∃-step semantics are encoded in satisfiability by using a data

structure called a disabling graph and the following sufficient condition: a valid total order

for a group of actions exists if the subgraph of these actions over the strongly connected

components of the disabling graph are acyclic. By introducing auxiliary variables, it

is possible to enforce this acyclicity property in the CNF encoding; consequently, this
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restricts the satisfiable truth assignments to those that correspond to plans that satisfy

the ∃-semantics.

A parallelised encoding has been devised for action splitting that reduces the number of

variables in the encoding over other approaches such as Satplan’s standard encoding

and ∃-step semantics (Robinson et al. 2008); however, the encoding often admits less

parallelism than the other approaches, which means that longer time steps are required

to find solution plans.

Planning graph encodings in SAT

The planning graph allows a certain level of parallelism at each time step: any group of

pairwise non-mutex actions can be executed so long as all of their preconditions can be

achieved by that time step. The conditions for labelling actions as mutex mean that any

total order of the actions in such a group is valid. Thus, the parallelism that is admitted

closely matches Rintanen et al.’s ∀-step semantics.

We can use the planning graph to construct compact parallelised encodings of planning

problems (Kautz and Selman 1996). The mutex reasoning and reachability analysis in-

volved in constructing the planning graph also helps to reduce the size of the encoding

by pruning unreachable facts and unexecutable actions from the encoding. This is used

in the Blackbox planner (Kautz and Selman 1999). Blackbox was developed up to

2003; a more recent implementation of the planning as satisfiability paradigm is Satplan

(Kautz et al. 2006)2.

Algorithm 2 summarises the encoding scheme used in Satplan06. It constructs a formula

ϕT in CNF that encodes a planning graph of makespan T . This formula has the property

that if a satisfiable assignment can be found for it, then a valid plan can be efficiently

extracted from the assignment. A′ extends A by incorporating the NOOP actions from

the planning graph. Vact(a, t) maps an action a ∈ A′ that occurs in the planning graph

at level t to a unique propositional variable. Similarly, Vpred(ρ, t) maps a fact ρ ∈ F that

appears in the planning graph at level t to a unique propositional variable.

Line 8 enforces that if an action is executed at level t then its preconditions are all true

at level t. Lines 10 and 12 require that if a fact is true at level t then a supporting action

is executed at level t − 1. Line 16 prevents two actions that are mutex at level t from

being executed together at level t. Line 19 prevents two facts that are mutex at level t

from being simultaneously true at level t. Goals reachable at level T are added as unit

clauses in line 21 to insist that they are achieved.

2We sometimes append a year to the end of Satplan’s name to indicate the source code we used, for
example Satplan06 relates to the 2006 version.
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Once a satisfiable truth assignment is found, for each action a and time step t such that

Vpred(a, t) is true in the assignment, the action a is added at that time step to the plan. A

post-processing step then removes unnecessary and spurious actions – these are allowed

as a result of not enforcing action effects – that are present in the plan.

Algorithm 2: Encoding the planning graph (ϕT ).

Result: ϕT encoding the planning problem.
begin1

ϕ← true2

foreach ρ ∈ I do3

ϕ← ϕ ∧ (Vpred(ρ, 0))4

for t← 1 to T do5

foreach a ∈ A′ applicable at level t− 1 do6

foreach ρ ∈ Pre(a) do7

ϕ← ϕ ∧ (¬Vact(a, t− 1) ∨ Vpred(ρ, t− 1))8

foreach ρ ∈ F reachable at level t do9

C ← ¬Vpred(ρ, t)10

foreach a ∈ A′ applicable at level t− 1 such that ρ ∈ Add(a) do11

C ← C ∨ Vact(a, t− 1)12

ϕ← ϕ ∧ C13

foreach a1, a2 ∈ A′ applicable at level t− 1 do14

if Mutex(a1,a2,t− 1) then15

ϕ← ϕ ∧ (¬Vact(a1, t− 1) ∨ ¬Vact(a2, t− 1))16

foreach ρ1, ρ2 ∈ F reachable at level t do17

if Mutex(ρ1,ρ2,t) then18

ϕ← ϕ ∧ (¬Vpred(ρ1, t) ∨ ¬Vpred(ρ2, t))19

foreach g ∈ G reachable at level T do20

ϕ← ϕ ∧ (Vpred(g, T ))21

ϕT ← ϕ22

return ϕT
23

end24

The Blackbox planning system also uses the failed-literal rule, which is sometimes

referred to as probing, to simplify its SAT encodings of planning problems (Kautz and

Selman 1999). This method attempts to set each literal in turn to true; unit propagation

is then iterated to remove unit clauses. If the empty clause is derived at any point then we

can conclude that the literal must be set to false if a satisfying assignment is possible. This

simplification routine was found to solve some planning problems from the Blocksworld

domain entirely without any branching decisions being made.

Londex constraints (Chen et al. 2007) extend the original mutex links from the plan-
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ning graph to indicate mutual exclusion across time steps. This method uses the SAS+

representation to determine, for any variable, the minimum number of actions required

to change between pairs of values. This allows one to infer that corresponding pairs of

propositional facts in a SAT encoding must be separated by the same number of time

steps. Hence, we can mark any pair of facts that violates that condition as mutex; for

example, facts f1 and f2 are marked mutex if 0 ≤ t(f2)− t(f1) < r, where t indicates the

time step of the fact and r is the minimum number of actions required to make f2 true

from f1. Furthermore, pairs of actions across time steps can be marked as mutex if there

are conflicts between their preconditions and effects that can be detected using either orig-

inal or long distance mutexes between facts. Adding these constraints to the Satplan04

encoding helped to reduce solution times and solve a greater number of problems in their

evaluation.

What needs to be in the encoding?

Initial formulations of planning as satisfiability found that solution times could be reduced

by adding unnecessary axioms to the encoding that explicitly prohibited impossible con-

ditions (Kautz and Selman 1992). For example, including an axiom to prevent an object

being on top of itself. These axioms were unnecessary since they could be deduced from

other axioms that were already included in the encoding. The authors claim that this

performance increase was only observed when using local search SAT solvers. When a

DPLL method was used to solve the encodings, the extra axioms failed to cause an im-

provement in performance; however, they only present data that shows an improvement

in local search and omit data for the DPLL case.

Nevertheless, extra axioms may help to guide a local search procedure towards a solution

and to avoid local minima. Since DPLL is complete, it will eventually find a truth

assignment if one exists; however, it is somewhat surprising that adding extra axioms,

that have the potential to allow shortcuts in unit propagation, does not improve the

performance of DPLL. Modern SAT solvers with clause learning have the potential to

deduce these type of clauses automatically.

Rintanen (2008) showed that fact mutexes in planning graphs can be derived from a

parallel encoding of planning problems when using a unit propagation with look-ahead3

and a 2-literal clause learning procedure. They also show how londex constraints can be

derived using unit propagation and so do not add any extra information or prune the

search space; therefore, the performance advantage offered by londex constraints must

3Look-ahead is similar to probing. It iterates through unassigned literals, running unit propagation
under the condition that the literal is set to true. If unit propagation produces an empty clause then we
can conclude that its negation must be true if there is a chance of finding a satisfiable assignment.
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come from some other effect, such as changing the evaluation of heuristic functions or

offering shortcuts in the inference procedure.

Sideris and Dimopoulos (2010) conduct a systematic review of encoding schemes for plan-

ning as satisfiability. For a given londex constraint (¬p(t+ k)∨¬q(t)), which states that

literals corresponding to two different time points t + k and t cannot both be true, they

say that the clause is forward redundant if ¬p(t + k) can be derived from unit propa-

gation when q(t) is true, and it is backward redundant if ¬q(t) can be derived by unit

propagation when p(t + k) is true. Sideris and Dimopoulos show that londex constraints

are forward redundant for the Satplan06 encoding. Using this terminology, one realises

that Rintanen has only shown that londex constraints are forward redundant for their

parallel encoding. Thus, there remains the possibility – although we are not aware of

a proof either way – that those encodings are not backward redundant and this may be

why londex constraints improve performance for those encodings. Sideris and Dimopoulos

present a new encoding for which londex clauses can be shown to be both forward and

backward redundant with regard to the underlying encoding, and so londex constraints

offer no extra information than what can be derived through unit propagation.

2.4 The maximum satisfiability problem

The Maximum Satisfiability (Max-SAT) problem is the optimisation variant of the tra-

ditional SAT problem. The objective is to find a truth assignment that minimises the

number of violated constraints or clauses. If we associate with each clause a weight, then

the weighted Max-SAT problem is to find a truth assignment that minimises the sum of

weights of violated clauses. A weighted partial Max-SAT problem divides clauses into

two classes: hard and soft. Any truth assignment that is a solution to a weighted partial

Max-SAT problem must satisfy all hard clauses, whereas soft clauses can optionally be

satisfied.

Formally, a weighted clause is a pair (Ci, wi) where Ci is a propositional clause and wi ∈
N0 ∪ {⊤} is the weight of clause Ci. ⊤ is a special weight that denotes that the clause is

hard. Sometimes it will be convenient for us to write a weighted clause (ℓ1 ∨ · · · ∨ ℓq, w)
as

(ℓ1 ∨ · · · ∨ ℓq)
︸ ︷︷ ︸

w

. (2.4)

A weighted partial Max-SAT (WPMax-SAT) formula over a set of propositional variables

V is a set F ⊆ {(C,w) | C ∈ L(V ) is a clause and w ∈ N0 ∪ {⊤}}. A truth assignment
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T to the set of variables V satisfies a weighted partial Max-SAT formula F if and only if

u
wwv

∧

(Ci,wi)∈F
s.t. wi=⊤

Ci

}
��~

T

= t. (2.5)

The cost Cost(T , F ) of a truth assignment T to the set of variables V that satisfies a

WPMax-SAT formula F is equal to

∑

(Ci,wi)∈F
s.t. JCiKT =f

wi. (2.6)

We are now in a position to define the optimisation problem class WPMAXSATOPT.

Definition 2. WPMAXSATOPT: Given a WPMax-SAT problem (V, F ), where F is a

WPMax-SAT formula, find a truth assignment T that satisfies F and for which there is

no other truth assignment T ′ to the set of variables V such that Cost(T ′, F ) < Cost(T , F ),
or deduce that such a truth assignment does not exist.

Like SAT solvers, Max-SAT solvers can be classified as either systematic or local search.

Local search solvers aim to minimise the cost of a solution but cannot guarantee that

a solution is optimal. In contrast, systematic solvers will prove that either a solution

does not exist or return an optimal solution. Hence, we will be primarily interested

in systematic solvers. These often follow a branch-and-bound search combined with a

DPLL-style framework. A branch-and-bound algorithm keeps track of an upper bound,

which corresponds to the cost of the best solution found so far, and a lower bound on the

lowest cost that would be incurred by extending the current partial assignment to a total

assignment.

Research in Max-SAT often focuses on the case where all clauses are soft with weight

equal to 1. Algorithms specialised for WPMax-SAT can take advantage of knowing that

all hard clauses must be satisfied, which allows the use of unit propagation. Also, soft

clauses can be promoted to hard clauses when their weight exceeds the difference between

the cost of the current partial assignment and the cost of the upper bound.

This dissertation explores representing planning problems within this framework. Using

the optimisation features of this framework, it is possible to find provably optimal plans.
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2.5 Other compilation approaches to planning

Following the success of compiling classical planning problems to satisfiability problems,

similar approaches were attempted to compile to integer programming (Vossen et al. 1999)

and constraint satisfaction (Do and Kambhampati 2001a) problems.

2.5.1 Integer programming

The canonical form of a linear program (LP) is written as

maximise cTx

such that Ax ≤ b

∀i.xi ≥ 0.

(2.7)

If the values of the variables xi are constrained to be integers, then it is known as an

integer program (IP). If only a subset of the variables xi are constrained to be integers

then it is known as a mixed integer program (MIP). Vossen et al. (1999) presented an en-

coding scheme for representing STRIPS planning problems as integer programs. Separate

variables are created for each fact and action present at each time step in the planning

graph. The encoding is similar to that used for satisfiability, for example, the mutex

(¬x1 ∨ ¬x2) can be written as the constraint x1 + x2 ≤ 1.

One of the main advantages of using an integer programming representation is the ease

with which numerical variables and constraints can be represented in the target language.

Expressing the need for a minimal number of actions can be done by setting ci = 1 for all

i such that xi encodes an action, and setting ci = 0 everywhere else. Fixed-horizon cost-

optimal planning can be performed by setting ci to the cost of executing the corresponding

action.

Vossen et al.’s empirical results suggest that BlackBox is quicker at solving SAT en-

codings of planning compared to applying a MIP solver to IP encodings of planning.

Optiplan (van den Briel and Kambhampati 2005) improves upon Vossen et al.’s state-

change encoding by only encoding facts and actions that are present in the planning

graph. This reduces the number of variables and constraints in the encodings, leading to

faster solution times. van den Briel et al. (2008) present a ‘loosely-coupled’ formulation

of planning that improves upon Optiplan. Their state-change encodings are constructed

from a multi-valued SAS+ representation of the problem. It is likely that this translation

step leads to more compact representations that are responsible, in part, for the improved

performance over Optiplan. van den Briel et al.’s generalised one state change encoding

adopts a ∃-step semantics (Rintanen et al. 2006), which further reduces the size of the
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encodings required to solve a problem by admitting an increased level of parallelism, as

was discussed in Section 2.3.3.

2.5.2 Constraint satisfaction

Planning graphs have also been compiled to constraint satisfaction problems (CSPs) (Do

and Kambhampati 2001a). In this encoding the variables in the CSP correspond to

propositions in the planning graph; the domain of a variable is its set of supporting actions

at that level in the planning graph. The final results presented by Do and Kambhampati

show that their solver, GP-CSP, is faster than Blackbox. The use of explanation

based learning in the constraint solver is a large contributor to this good performance.

The Relsat solver, which is one of the underlying SAT solvers used by Blackbox, also

incorporates explanation based learning; however, there is not much evidence to suggest

that its policy for retaining explanations for failure has been as optimised as that used in

GP-CSP. Moreover, GP-CSP also incorporates variable and value ordering heuristics

that use information from the planning graph.

The conclusion presented by Do and Kambhampati is that GP-CSP is faster than

Blackbox using either Satz or Relsat. While their results confirm this, it is worth

noting that they optimise the explanation based learning whereas this was not done for

Relsat on planning problems.

2.6 Heuristic search approaches to planning

Planning as heuristic search has proven to be one of the most popular and successful

approaches to STRIPS planning over the last decade. Hsp (Bonet and Geffner 2001) uses

a planning graph as the basis for its heuristic computation, which defined the approach

for many subsequent systems. Bonet and Geffner present two variations of heuristic

search: Hsp andHspr which correspond to progression (starting from the initial state and

progressing towards a goal) and regression searches (starting from the goal propositions

and regressing back towards the initial state), respectively.

Hsp’s heuristic computation at a state s constructs a relaxed planning graph from s to

a level at which all the goal propositions occur. Estimates of the cost of achieving each

proposition are then computed using a dynamic programming approach over the relaxed

planning graph. The results are used to estimate the cost of achieving the group of

unachieved goal propositions. Since this requires computing a planning graph for every

state visited, Hspr was proposed. This constructs a relaxed planning graph from the

initial state and uses a similar cost computation used to estimate the number of actions
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needed to move from the initial state to one that achieves a group of propositions. In this

way, a regression planner is able to compute cost estimates once and reuse them many

times during search.

The cost estimates of achieving a group of propositions C make assumptions about how

independent the propositions in C are. Since one action can achieve and delete many

propositions, a sequence of actions that achieves a proposition in C can, in addition,

achieve other propositions in C; similarly, it can also delete propositions that are achieved

by a parallel sequence of actions supporting another member of C. This is termed positive

and negative interaction, respectively. Estimating the cost of a collection of propositions

as the sum of their individual costs neglects both positive and negative interaction which,

in the former case, can overestimate the true cost. Taking the estimate as that of the two

hardest propositions to co-achieve will never overestimate the true cost but can be less

informative because it neglects the cost of achieving the other propositions.

The AltAlt planner (Nguyen et al. 2002), which conducts a regression state-space search

very similar to Hspr, attempts to correct estimates by considering the difference between

the first level at which two propositions appear non-mutex in a non-relaxed planning

graph and the level at which both propositions first appear in the relaxed planning graph.

This estimates the cost of fixing interference between supporting actions. For a group

of propositions C, the two propositions in C that have the largest fixing estimate are

identified, and this fixing estimate is added to the length of the relaxed planning graph

that contains all propositions C in its final layer, to produce an improved heuristic.

The FF planning system (Hoffmann and Nebel 2001) builds upon the main idea of Hsp

by conducting an enforced hill-climbing progression search with a relaxed planning graph

heuristic. The heuristic is calculated by finding a relaxed plan, from the current state, that

supports all goal propositions and then summing the number of actions in this relaxed

plan to give the value of the heuristic. This takes into account positive interactions

between actions in a way that Hsp does not. The term ‘enforced’ refers to the part of

the algorithm that at each state s, performs a breadth-first search until a state s′ with

h(s′) < h(s) is found; hence, we are always selecting a next state which estimates a better

distance to the goal. If no such state can be found, the search terminates and reverts to

the complete heuristic search algorithm.

The idea of using relaxed planning graphs in heuristic computation has been extended

to handle planning with durative actions and metric resource constraints in the Sapa

planner (Do and Kambhampati 2001b). A relaxed temporal planning graph is used to

extract heuristics. Since the planner is metric, a new kind of relaxation can be performed

that ignores effects that reduce the quantity of a resource. Since the planner is temporal, a

new kind of heuristic can be computed that is based upon the sum of durations of actions

in a relaxed plan. Observing that actions often consume resources rather than produce
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them, heuristics can be improved by calculating, for each resource, the excess amount

required by a relaxed plan and by identifying the maximal increase in each resource that

is possible by executing a single action. Together, this can improve the heuristic estimate

by calculating the minimum number of action executions needed to produce the resources

required for a relaxed plan.

The fast downward planning system (Helmert 2006) uses a causal graph to compute heuris-

tic estimates. This is constructed from a domain transition graph that uses a SAS+ rep-

resentation of the planning problem. The planning system combines multiple heuristics

by maintaining an open-list for each heuristic. State expansions are then made from each

open-list in a round-robin fashion, with expanded states being added to all open-lists.

The Lama planning system, winner of the 2008 IPC sequential satisficing track, is built

upon the fast downward planner (Richter and Westphal 2008). Its main contribution is to

include a landmark counting heuristic. Landmarks, which are described in more detail in

our future work (Chapter 6), are facts that must be true at some point in any valid plan.

The landmark counting heuristic estimates the cost to a goal state my considering the

number of landmarks that remain to be achieved. This is combined with other heuristics

according to the fast downward planner’s algorithm.

Rintanen (2010) has investigated the effect of incorporating a planning specific heuristic

for selecting decision variables inside a SAT solver to be used on SAT encodings of planning

problems. The heuristic is quite simple: choose an action that achieves an open (sub)goal

at the earliest time possible. The use of this heuristic leads to an improvement in finding

satisfiable assignments over the popular VSIDS heuristic and is competitive with the

Lama planning system, one of the most successful state-space heuristic search planners.

2.7 Applications

Before concluding this chapter, we briefly review some past and emerging applications of

automated planning systems that motivate research in planning.

Mars Exploration Rover

NASA’s Mars Exploration Rover is an example of an autonomous agent operating in an

environment where communication with the agent is difficult. Each rover is only able to

communicate with orbiting spacecraft for a limited time each day as an orbiter passes over

the rover. The solution is to give each rover a plan of work to do for the period of time

that it is unable to communicate with Earth. Advances in technology means that it is now

possible for rovers to cover large distances while they are incommunicado. While a rover
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is travelling it may encounter many objects of scientific interest. Given that scientists are

unable to receive a live video feed, they cannot interrupt the rover to ask it to explore new

areas. The AEGIS (Autonomous Exploration for Gathering Increased Science) system is

used to identify targets of scientific interest from a rover’s panoramic camera (Estlin

et al. 2009). Once such objects are identified, they are passed onto a replanning system

as additional goals. The replanning system must then calculate whether it is feasible to

take scientific measurements in the new area given its other goals and resource constraints.

If so, it must adjust the current plan to incorporate those experiments.

Contract bridge

Contract bridge is a game of incomplete information, which gives rise to a large branch-

ing factor. This limits the effectiveness of traditional adversarial search methods. This

branching factor can be significantly reduced by observing that bridge players often en-

gage in one of only a small number of standard tactical plays: for example, finessing,

ruffing and crossruffing.

Bridge baron achieved success as a computer program for playing bridge by incorporating

hierarchical task networks from planning research to automate play (Smith et al. 1998).

Hierarchical task networks use methods that decompose tasks into sub-tasks. Eventually,

by repeatedly applying methods, a plan consisting of entirely atomic tasks is derived,

which can then be executed as a plan. In bridge, methods encapsulate particular tactical

plays and describe the order of steps needed to complete the play. Using this approach,

only successful strategies are considered, which allows search to progress to the leaf nodes

and to propagate scores upwards through the tree to decide which move to make.

Semantic web

The semantic web is an umbrella term used to describe the objective of making the

information on the Internet understandable by machines. Part of this goal is to provide

a semantic annotation of Web services so that the discovery, execution and composition

of Web services can be automated (McIlraith et al. 2001). The latter goal is of particular

interest as a practical application of planning methods.

The hope is that eventually, users will be able to describe their need, and from this, a

planning system can combine a collection of Web services, that have been identified as

providing particular functions, such that the user’s need is met. A example of where

this might be useful is for the task of planning a holiday. There are various options

for travel between locations, of varying costs and durations. A user is likely to have

preferences over the time, cost and duration of travel. While on holiday he would like to



CHAPTER 2. BACKGROUND 39

participate in a range of activities and he would like his time to be planned so that he

can participate in as many activities as possible while minimising the cost and slack time

between activities. An automated holiday planner could identify a possible itinerary for

the user that attempts to closely match his preferences, thus allowing the user to refine

the plan and decide whether to commit to it.

Recent research has attempted to combine this with planning techniques in pursuit of

making such methods a reality. Examples include:

• a system that translates OWL-S – a language for describing the semantics of Web

services – to PDDL before solving the planning problem using a FF style planner

(Klusch et al. 2005).

• formulating the ‘composition goal’ and description of existing Web services as a

planning problem, and then using a solution plan to produce a program in a low-

level process language that describes how to execute existing Web services to achieve

the composition goal (Traverso and Pistore 2004).

2.8 Summary

In this chapter we have introduced the STRIPS model of classical planning and described

how planning problems represented in this language can be compiled to satisfiability

problems. We have reviewed various aspects of the choice of encoding that is used to rep-

resent such problems. We have highlighted competing approaches to classical planning,

such as compilation to other target languages (IP, CSP), and heuristic search methods.

We introduced the optimisation problem called maximum satisfiability that will be used

throughout the rest of this dissertation to direct plan search towards higher quality so-

lutions. In the next chapter, we explore how to represent preferences in planning within

this framework.
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Goal utility dependencies

In this chapter we describe the concept of goal utility dependencies in more detail. We

describe how such preferences can be included in the net benefit quality metric. We

present an encoding scheme in WPMax-SAT that can be used to solve this problems for

a limited planning horizon.

3.1 Introduction

In a classical planning problem, valid plans must achieve every goal; however, when faced

with limited resources, it is often useful to relax this constraint and allow the planner to

make a trade-off between the benefit and cost of achieving a set of goals. Such planning

problems are often called partial satisfaction or oversubscription problems. There is a

growing body of research concerning how to utilize concepts of utility and preference from

decision theory in the solution of such problems. This has produced a renewed interest

in modeling problems as integer programs due to their facility for explicitly expressing an

optimization function over solutions. Despite integer programming (IP) lagging behind

satisfiability in performance (van den Briel et al. 2008), the possibility of a satisfiability

approach to partial satisfaction problems in classical planning has largely been neglected.

In previous years, satisfiability approaches to planning have enjoyed much success: in

the 4th and 5th International Planning Competition (IPC) Satplan (Kautz and Selman

1999; Kautz et al. 2006) achieved first and joint first prizes respectively for optimal plan-

ning in propositional domains. In this context, an optimal plan is one with the smallest

number of discrete time steps, often referred to as the plan’s makespan. This notion of

optimality is not a particularly natural one; instead IPC-6 adopts a collection of different

metrics for optimization: number of actions, total action cost and net benefit, where the

net benefit of a plan is the total utility of the goals achieved minus the cost of the exe-

40
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cuted actions. This raises the question of how the total utility of a set of goals should be

defined.

There are scenarios where the utility of achieving a single goal depends upon which other

goals are co-achieved. One such example arises in the area of autonomous scientific

agents, which are tasked with performing a collection of experiments. For these systems,

it seems desirable to achieve complementary goals, which give good scientific coverage.

For example, the utility of taking an image and a rock sample from a single experiment

site should be greater than the sum of the utilities of achieving either of those tasks in

isolation.

Groups of goals do not always interact positively, and there are scenarios where jointly

achieving two or more goals has a reduced utility over achieving any one of them in

isolation. For a purchasing problem, the agent may be expected to choose a single item

from a collection of similar products. Purchasing more than one item may provide little

extra benefit and the agent should not incur the extra cost of doing so in such instances.

Do et al. (2007) described these types of problems as having goal utility dependencies, and

they presented a systematic approach for handling them using the Generalized Additive

Independence (GAI) model of utility and integer programming. Their iPUD planner finds

solutions with maximum net benefit for a bounded makespan horizon, but plans may exist

with larger makespans that have a greater net benefit.

Thus, it seems that integer programming has received renewed interest for this type of

planning because of its facility for explicitly expressing an optimization function. There

has been some work on handling preferences in SAT: Satplan has been extended to

minimize the cost of executed actions in planning within a bounded horizon (Giunchiglia

and Maratea 2007). In principle, it should be possible to extend this to solve PSP net

benefit problems. However, maximum satisfiability (Max-SAT), in particular its weighted

variants, also offers a facility for explicitly defining an optimization function in a similar

manner to integer programming.

To our knowledge, we present the first system that handles planning problems with pref-

erences using a general-purpose WPMax-SAT solver. It is also the first to explore a

satisfiability approach to handling goal utility preferences. This chapter will present an

encoding scheme for representing PSP net benefit problems with goal utility dependencies

in WPMax-SAT together with a technical extension, which we call MSatplan, to Sat-

plan that implements this using a general-purpose WPMax-SAT solver. The empirical

evaluation of this system is presented in Chapter 5, where we find that MSatplan has

competitive and often better performance than an IP counterpart.
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3.2 Partial satisfaction planning

Each user has their own set of preferences, and a planning system should take a description

of this set of preferences in order to return a plan that closely matches them. Utility

provides one method of describing a user’s set of preferences. Utility is a measure used

to assess the degree of satisfaction that a user has with a particular outcome. For a

particular user, this measure is described by a utility function, which maps each outcome

to a number. This determines an ordering over outcomes such that those outcomes with

higher utility are more preferable to the user.

In partial satisfaction planning (PSP), the outcome of a plan can be regarded as the

subset of goals that are achieved. The PSP net benefit metric (Van Den Briel et al. 2004)

assumes that each goal has an individual utility, and that the total utility of a set of

goals achieved by a plan can be expressed simply as the sum of their individual utilities;

however, it also assumes that each action has a cost that is incurred when executed.

The utility and cost measures are assumed to have the same unit of measurement. This

determines an ordering over valid plans: those with higher net benefit are more preferable

to the user. The PSP model is worth studying because it is conceptually simple to state

but can express a variety of interesting problems: the class of Simple Preferences from

PDDL3 can be reduced to PSP (Benton et al. 2009).

Formally, a PSP planning problem is the extension 〈F , I,G,A, u, c〉, where F , I, G and

A are defined in the same way as for a classical planning problem 〈F , I,G,A〉 (see Sec-

tion 2.1.1); the function u : G → N0 gives each goal g ∈ G a utility u(g); and the function

c : A → N0 gives each action a ∈ A a cost c(a). A plan P of length m is an ordered se-

quence of actions (a1, . . . , am) that achieves the set of goalsG = Result((a1, . . . , am), I)∩G.
For such a problem, the net benefit of P is equal to

∑

g∈G
u(g)−

m∑

i=1

c(ai). (3.1)

An optimal solution to a PSP planning problem is a plan that has maximal net benefit

over all other plans. Note that this definition of PSP net benefit assumes all goals to be

soft. Hard goals can be incorporated by restricting valid plans to those P such that all

hard goals are members of Result(P, I).

One shortcoming of the PSP net benefit framework is that it is difficult to model situations

where goals act as substitutes or complements for other goals. Consider an automated

holiday planning system. The holiday destination might consist of many museums that

are of interest to the user, but the user’s holiday only lasts a small number of days and

they wish to undertake other activities, such as visiting a spa, and do not want to spend
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all their time and money visiting museums. If the utilities of each activity, and the costs

of achieving them, are of comparable magnitudes, then net benefit planners may exhibit

indifference between plans that visit only museums and ones that visit only spas. This is

because the planner is indifferent between achieving goals that add the same net benefit

to the plan, that is, their utility minus the cost of achieving them is identical. The planner

is unable to consider that one goal might be more preferable because it provides the user

with something different to that which has been currently achieved. For example, that

the holiday plan so far consists of only visits to museums, so something other than an

extra museum visit should be achieved.

One possible way around this problem is to enforce rules such as ‘at least one spa visit

should be made’ or ‘no more than two museum visits should be made’. This could be

accomplished by introducing extra pseudo actions and auxiliary goals. However, this

approach adds to the number of variables in the encoding, which increases the search

space.

There are also scenarios where the utility of achieving a single goal depends upon which

other goals are co-achieved. Consider an example based on the Mars Exploration Rover.

A Rover must gather experimental data at a number of locations. There are different types

of experiments to perform, such as taking images or rock samples, which each measure

a particular aspect of the location. In such a scenario, it may be desirable to achieve

complementary goals that give good scientific coverage. For example, the utility of taking

an image and a rock sample from a single site should be greater than the sum of the

utilities of achieving either of those tasks in isolation.

3.3 Goal utility dependencies

The underlying reason for the shortcomings described above is that the PSP net benefit

definition has assumed something about the user’s utility function: that the utility of

achieving a group of goals is equal to the sum of the utilities of achieving each goal in

isolation. When this is not true, we need to be able to model the user’s utility function

over the set of achieved goals.

To make this more concrete, let us start by defining some fundamentals. We work with a

classical planning problem 〈F , I,G,A〉. We will also use the set of binary values B = {0, 1}
and the set of natural numbers N0 = {0, 1, 2, . . .}. For a nonempty set G ⊆ G of N

propositional variables with indexed elements {g1, . . . , gN} and a subset S ⊆ G of goals
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achieved by a particular plan, we define the characteristic vector 1G
S = (x1, . . . , xN) where

xi =







1 if gi ∈ S
0 otherwise.

Thus, we can use 1G
S to describe which goals have been achieved from a particular subset

of goals.

For two different outcomes of a plan o1, o2 ∈ B|G|, we could represent our preference be-

tween the outcomes qualitatively using a partial order � by writing o1 � o2 when o1

is more preferred than o2. Since there are 2|G| different outcomes, a naive representa-

tion would require the user to specify O(22|G|) pairs in order to describe fully the user’s

preferences over choices between outcomes. While this number might be manageable for

a computer to work with, since the number of goals will be comparatively small, it is

unreasonable to expect users to specify this information even for a modest number of

goals.

In practice, we can describe our preferences in a much more compact form because we

do not often reason using total orders over all possible combinations. For instance, if

we say that we prefer to go swimming rather than hiking during a holiday, we rarely

mean that we prefer any holiday itinerary where swimming is included over any where

hiking is included. Under this semantics, we would prefer a holiday in which we went

swimming and did nothing else over a holiday where we were paid one million pounds

to take part in a hiking trip. Instead, we often mean that we prefer to go swimming

over hiking if all other parameters of the itinerary remain the same. This is referred to

as preferential independence between attributes of outcomes. It is analogous to the idea

of independence in probability, and by exploiting it where available, we can obtain more

compact representations of utility functions. The following standard definitions describe

preferential independence more precisely, see Keeney and Raiffa (1993) for a thorough

treatment of the subject.

Preferential independence

If we partition the set of goals G into two sets X, Y ⊆ G such that Y = G \X . For any

x ∈ B|X| and y ∈ B|Y |, we use the shorthand of writing xy to denote the vector 1G
S where

S = Sx ∪ Sy; Sx is the smallest set that satisfies 1X
Sx

= x; and Sy is the smallest set that

satisfies 1Y
Sy

= y.

A subset of goals X is preferentially independent of its complement Y = G \X if and only
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if for all x1,x2 ∈ B|X| and all y1,y2 ∈ B|Y | the following is true,

x1y1 � x2y1 iff x1y2 � x2y2. (3.2)

In other words, for a subset of goals X , we always prefer an outcome that achieves those

goals in X that are indicated by x1 rather than those goals in X that are indicated by

x2 if the set of goals that are achieved but are not in X is held to be the same in both

instances. In this case, we say that assignment x1 is preferred to x2 ceteris paribus (‘all

other things being equal’).

Conditional preferential independence

Let the set of goals be partitioned into three disjoint sets X, Y, Z such that X∪Y ∪Z = G.
Similarly, for x ∈ B|X|, y ∈ B|Y | and z ∈ B|Z|, we write xyz to denote the vector 1G

S where

S = Sx ∪ Sy ∪ Sz; Sx is the smallest set that satisfies 1X
Sx

= x; Sy is the smallest set that

satisfies 1G
Sy

= y; and Sz is the smallest set that satisfies 1G
Sz

= z.

X is preferentially independent of Y given the assignment z ∈ B|Z| if for all assignments

x1,x2 ∈ B|X| and assignments y1,y2 ∈ B|Y |, the following is true,

x1y1z � x2y1z iff x1y2z � x2y2z. (3.3)

If the above condition holds for all z ∈ B|Z|, then we say that X is conditionally prefer-

entially independent of Y given Z.

CP-nets

A conditional preference network, or CP-net, (Boutilier et al. 1999) is a graphical model

used to represent a user’s preferences over the values that a set of variables can take. A

CP-net consists of a set of nodes which represent variables – for our purposes, G is the

set of binary variables, and g ∈ G takes value 1 if the corresponding goal is part of the

outcome and 0 otherwise – which are joined by directed edges to form a directed acyclic

graph. The parents of variable X are contained in the set of variables Parents(X) for

which each element has an outgoing edge joined to X in the CP-net. Each variable node

in a CP-net is annotated with a conditional preference table (CPT), which states for each

assignment to its parents, the ordering over its values. For a CP-net to be valid, every

variable X must be conditionally preferentially independent of G\(X∪Parents(X)) given

Parents(X).

An example CP-net is shown in Figure 3.1 and the orderings between assignments that
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a b

c

a : t � f b : f � t

a b c

t t t � f
t f t � f
f t f � t
f f t � f

Figure 3.1: An example CP-net.

it implies are shown in Figure 3.2. We can see that ab̄c1 is the most preferred assignment

and ābc is the least preferred assignment according to the CP-net. However, the CP-net

does not make any assertion about the preference between certain pairs of assignments,

for example, abc̄ and āb̄c̄. When it is not possible to achieve particular outcomes due

to the set of actions available to the planning system, the CP-net representation can be

problematic for describing preferences between outcomes of plans.

For example, consider a planning problem with three goals a, b, c where the preferences

between outcomes is described by the above CP-net. Imagine that this planning problem

only contains three different actions with add lists {a}, {a, b} and {b, c}. Moreover, b

does not appear in the delete list of any action; that is to say, the outcome ab̄c is not

achievable by a valid plan. The CP-net does not make any assertion about which of the

two possible outcomes abc and ab̄c̄ is more preferable. Hence, a planning system using

this representation would be unable to decide between two plans with these respective

outcomes. This problem can be overcome by using a quantitative ranking of outcomes.

ābc

ābc̄

abc̄ āb̄c̄

abc āb̄c ab̄c̄

ab̄c

Figure 3.2: Orderings implied by the example CP-net.

1x̄ indicates that variable x is assigned the value False.
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3.3.1 Generalized additive independence

A utility function u : B|G| → N0 induces a preference order � over outcomes o1, o2 ∈ B|G|

such that o1 � o2 iff u(o1) ≥ u(o2). Having such a utility function would make it easy to

select the most preferred outcome from any pair of options: apply u separately to both

options and choose the outcome that leads to the higher value of u.

We assume that we are given this utility function by the user. In the worst case, to describe

u will have a space requirement that is exponential in the number of goals; however, we

can achieve a more compact representation if we assume that u can be factorized in some

way. The Generalized Additive Independence (GAI) model (Bacchus and Grove 1995)

provides one such method for decomposing a utility function and is used by Do et al.

(2007) in their framework for handling goal utility dependencies. We still want to make

use of concepts such as preferential independence to make it easy for a user to specify

preferences in an intuitive manner.

Let us split G into k, not necessarily disjoint, nonempty subsets G1, . . . , Gk such that
⋃

i=1,...,kGi = G. The utility function u has an additive decomposition over G1, . . . , Gk if

u can be expressed as

u(1G
S) =

k∑

i=1

fi(1
Gi
Gi∩S) (3.4)

for a collection of k functions fi : B|Gi| → N0. Hopefully, k and the size of each Gi will

be sufficiently small to allow us to represent the function using less space than a single

tabular representation of u over |G|, thus leading to a more practical encoding.

UCP-nets

UCP-nets are an extension to CP-nets that use an additive decomposition of a utility

function (Boutilier et al. 2001). A UCP-net for the utility function u exists if a directed

acyclic graph can be constructed such that u has an additive decomposition

u(g1, . . . , gn) =
n∑

i=1

fi(gi,Parents(gi)), (3.5)

and the preference order � induced by u is such that each variable X , in the UCP-net, is

conditionally preferentially independent of G\(X∪Parents(X)) given Parents(X). Not all

utility functions with additive decompositions have a UCP-net representation due to the

acyclicity and conditional preferential independence restrictions; however, all UCP-nets

must have an additive decomposition. Consequently, we will assume that u is specified

using an additive decomposition as described above. This will allow us to handle user

preferences that are specified by UCP-nets.
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Net benefit

The utility of a set of goals achieved by a plan is only one aspect of its quality; there

are often many different plans that will achieve a particular set of goals. In order to

distinguish between them, we should include their execution cost in our measure of plan

quality. For each action a ∈ A we associate a cost c(a) ∈ N0 for executing that action. By

writing the set of goals achieved by a plan P as Goals(P ) = Result(P, I)∩G, we can now

precisely define the most preferred plan P ⋆ as the plan that maximizes the net benefit:

P ⋆ = argmax
valid plans

P=(a1,...,am)

(

u
(

1G
Goals(P )

)

−
m∑

i=1

c(ai)

)

. (3.6)

3.3.2 Plan Encoding

We will encode a planning problem as a WPMax-SAT formula (see Section 2.4). We

extend the ‘thin-gp’ encoding from Satplan (Kautz et al. 2006) to create a formula ϕT
h

in propositional logic with the property that a satisfying assignment to it allows us to

extract a plan with a makespan of at most T from the truth assignment; however, since

all goals are soft, we do not include the clauses that force each goal to be true at level

T , and we add additional axioms, not included in the original ‘thin-gp’ encoding, that

ensure a goal is not achieved by the extracted plan if it is false at level T .

A summary of the steps involved in producing this encoding can be found in Algorithm 3.

Lines 3–19 are from the original ‘thin-gp’ encoding; we write A′ to denote A extended to

include NOOP actions for each fact. For more details the reader should refer to Kautz

et al. (2006).

A planning graph (Blum and Furst 1997) of makespan T is built from domain and problem

PDDL files. For 0 ≤ t ≤ T , a binary variable Vpred(ρ, t) is created for each fact ρ that is

reachable at time step t. For 0 ≤ t ≤ T − 1, a binary variable Vact(a, t) is created for each

action a that has reachable and non-mutex preconditions at level t.

A satisfying truth assignment, S, to the variables in ϕT
h corresponds to a valid plan

Plan(S); however, it is no longer necessary for a valid plan to achieve all the goals in

G. For each goal fact ρi ∈ G, if ρi is in the planning graph at level T then the variable

Vpred(ρi, T ) occurs in ϕT
h and we say that ρi is coded for as a goal in ϕT

h . If ρi has been

coded for as a goal then ρi is achieved by executing Plan(S) from the initial state iff

S[Vpred(ρi, T )] is true; in all other cases, including those for which ρi has not been coded

for as a goal, Plan(S) does not achieve ρi. The ‘only if’ condition is ensured by the
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addition of the following axiom to the encoding:

¬Vpred(g, t)⇒






¬Vpred(g, t− 1) ∨

∨

a∈A
s.t. g∈Del(a)

Vact(a, t− 1)






∧

∧

a∈A
s.t. g∈Add(a)

¬Vact(a, t− 1), (∀g ∈ G, 1 ≤ t ≤ T ), (3.7)

which produces the clauses as described in lines 20–27 in Algorithm 3.
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Algorithm 3: Encoding the planning graph (ϕT
h ).

Result: ϕT
h encoding the planning problem.

begin1

ϕ← true2

foreach ρ ∈ I do3

ϕ← ϕ ∧ (Vpred(ρ, 0))4

for t← 1 to T do5

foreach a ∈ A′ applicable at level t do6

foreach ρ ∈ Pre(a) do7

ϕ← ϕ ∧ (¬Vact(a, t− 1) ∨ Vpred(ρ, t− 1))8

foreach ρ ∈ F reachable at level t do9

C ← ¬Vpred(ρ, t)10

foreach a ∈ A′ applicable at level t− 1 such that ρ ∈ Add(a) do11

C ← C ∨ Vact(a, t− 1)12

ϕ← ϕ ∧ C13

foreach a1, a2 ∈ A′ applicable at level t− 1 do14

if Mutex(a1,a2,t− 1) then15

ϕ← ϕ ∧ (¬Vact(a1, t− 1) ∨ ¬Vact(a2, t− 1))16

foreach ρ1, ρ2 ∈ F reachable at level t do17

if Mutex(ρ1,ρ2,t) then18

ϕ← ϕ ∧ (¬Vpred(ρ1, t) ∨ ¬Vpred(ρ2, t))19

foreach g ∈ G reachable at level t do20

foreach a ∈ A′ applicable at level t− 1 such that g ∈ Add(a) do21

ϕ← ϕ ∧ (Vpred(g, t) ∨ ¬Vact(a, t− 1))22

if g is reachable at level t− 1 then23

C ← Vpred(g, t) ∨ ¬Vpred(g, t− 1)24

foreach a ∈ A′ applicable at level t− 1 such that g ∈ Del(a) do25

C ← C ∨ Vact(a, t− 1)26

ϕ← ϕ ∧ C27

ϕT
h ← ϕ28

end29
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3.4 Optimization function

So far, we have presented a method for creating a clausal formula ϕT
h in propositional

logic, consisting only of hard clauses, from which we can extract a valid plan from any

satisfiable truth assignment to that formula. In order to guide the search procedure to

plans of high net benefit, we need to specify an optimization function over solutions. Our

approach is to construct a clausal formula ϕT
s in propositional logic, consisting only of

weighted soft clauses, with the property that an optimal satisfiable truth assignment S⋆

to the WPMax-SAT formula ΦT = ϕT
h ∧ϕT

s gives a plan Plan(S⋆) of maximum net benefit

over all possible plans of makespan less than or equal to T .

We assume that our utility function u has an additive decomposition over G1, . . . , Gk as

given in Equation 3.4. We introduce a measure which we call the residual utility resulting

from a truth assignment to the arguments of a function fi in the additive decomposition

of u. The residual utility is the amount of utility that we failed to secure by choosing this

truth assignment over one that would maximize the utility for this factor. More precisely,

let the maximum of the function be

f̄i = max
v∈B|Gi|

fi(v). (3.8)

Define the function ri : B|Gi| → N0 that calculates the residual utility of a truth assignment

v ∈ B|Gi| to the arguments of fi as

ri(v) = f̄i − fi(v). (3.9)

Using this measure, and assuming that all facts in G are coded for as goals in ϕT
h , we con-

struct ϕT
s such that it satisfies the property that for every complete satisfiable assignment,

S to ΦT , the following holds:

1. For each action a that is executed in Plan(S), a unique clause is violated in ϕT
s with

weight c(a).

2. For each Gi in the additive decomposition of u, a unique clause is violated in ϕT
s

with weight ri(1
Gi
Gi∩S) where S is the set of goals achieved by Plan(S).

3. No other clauses are violated.

If ϕT
s satisfies this property, then the sum of weights of violated clauses for such a truth

assignment S will be given by

k∑

i=1

ri

(

1Gi

Gi∩Goals(Plan(S))

)

+

m∑

i=1

c(ai), (3.10)
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where Plan(S) = (a1, . . . , am). An optimal WPMax-SAT solver applied to ΦT will find

the truth assignment S⋆ that minimizes this quantity which is equivalent to maximizing

its negative. Therefore, S⋆ is given by

S⋆ = argmax
S s.t.

JϕT
h KS = t

[
k∑

i=1

fi

(

1Gi

Gi∩Goals(Plan(S))

)

−
m∑

i=1

c(ai)

]

, (3.11)

where the ai and m are dependent on S such that Plan(S) = (a1, . . . , am). Note that

the quantity being maximized is a form of Equation 3.6; thus, a WPMax-SAT solver

applied to ΦT will find a valid plan that is optimal up to the makespan T with regard to

maximizing the net benefit metric.

3.4.1 Encoding the optimization function

We have seen that if ϕT
s satisfies the property we outlined above, then the plans produced

maximize net benefit for a fixed makespan. Now we discuss the details of how such a

formula is constructed according to our procedure shown in Algorithm 4.

The first part of the property is encoded in lines 4–6 where a clause is added to ϕT
s for each

action that is applicable at each level up to the makespan T . If an action a is executed at

level t in a plan extracted from a truth assignment, then Vact(a, t) is necessarily true from

the definition of ϕT
h . Consequently, the clause (¬Vact(a, t)) with weight c(a) is violated

and c(a) is added to the cost of the truth assignment. If the action is not executed, then

Vact(a, t) is false and its corresponding clause is satisfied and makes no contribution to

the cost of the assignment.

The second part of the property is ensured by lines 7–17; the objective is to produce, for

each Gi and each truth assignment to facts in Gi, a soft clause, weighted by the residual

utility, that is violated iff the facts in Gi take on that truth assignment. Our procedure

is made more complicated by accounting for situations where one or more facts in G are

not coded for as goals in ϕT
h .

If a particular Gi is being processed, for each truth assignment, the facts inGi are split into

two sets, π+ and π−, depending on whether the fact is assigned true or false respectively

(lines 9–10). We then check to see if the truth assignment might be possible on line 11

by checking if any pair of facts in π+ is known to be mutex at the final level of the plan.

If this is true then the truth assignment will never satisfy ϕT
h so there is no need to add

a clause for this particular truth assignment to Gi to ϕ
T
s .

If at least one fact in π+ is not coded for as a goal, then this tells us that this fact cannot

be achieved by any plan of makespan less than or equal to T ; thus, this truth assignment
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Algorithm 4: Encoding the optimization function (ϕT
s ).

Result: ϕT
s encoding the optimization function.

begin1

ΩT ← { ρj ∈ G | ρj is coded for as a goal in ϕT
h }2

ϕ← true3

for t← 0 to T − 1 do4

foreach action a ∈ A applicable at level t do5

ϕ← ϕ ∧ (¬Vact(a, t))
︸ ︷︷ ︸

c(a)6

for i← 1 to k do7

foreach v ∈ B|Gi| do8

π+ ← {ρj ∈ Gi | vj = 1}9

π− ← {ρj ∈ Gi | vj = 0}10

if MutexFree(π+,T) and π+ ⊆ ΩT then11

L← {¬Vpred(ρ, T ) | ρ ∈ π+}12

L← L ∪ {Vpred(ρ, T ) | ρ ∈ π− ∩ ΩT}13

if L 6= ∅ then14

ϕ← ϕ ∧
(
∨

ℓ∈L
ℓ

)

︸ ︷︷ ︸

ri(v)15

ϕT
s ← ϕ16

end17

and its corresponding clause should be ignored. This is the reason for the check π+ ⊆ ΩT

on line 11.

At lines 12 and 13 we gather the set of literals for the clause. We negate variables

corresponding to facts in π+ and leave as positive literals the variables corresponding to

facts in π− ∩ ΩT . If the truth assignment is made, then all literals will be false and the

clause will be violated. Notice how we exclude any facts that are in π− \ΩT because they

are unreachable at the final level and cannot be achieved by any plan of makespan less

than or equal to T , consequently they are fixed to false. The check at line 14 handles the

special case where the truth assignment assigns false to all facts in Gi and none of these

facts are coded for as goals in ϕT
h . This results in an empty clause that is always violated;

therefore, we need not include it in the encoding since it will not affect the minimization.

Finally, at line 15 the clause is added with weight set to the residual utility of the truth

assignment to the facts in Gi.

We implemented this procedure on top of the Satplan06 system. We modified the parser

and lexer to read in a specification of action costs and a description of the utility function.
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To represent the utility function we use a UCP-net2 (Boutilier et al. 2001). As discussed in

Section 3.3.1, each node in the UCP-net representation corresponds to the value of a single

goal fact from G. Each node X contains a conditional preference table which we specialize

to a tabular representation of a pseudo-Boolean function fX : B|Parents(X)|+1 → N0 since

all variables in the UCP-net are Boolean-valued. fX represents X ’s contribution to the

utility of a plan dependent on its value and those of its parents.

3.5 Related work

Using Max-SAT to model hard and soft constraints in optimisation problems has been

studied for Steiner trees (Jiang et al. 1995), although this did not use the weighted partial

Max-SAT variant, so hard constraints were modelled with very high numeric weights.

Although preferences are receiving an increasing amount of attention from the plan-

ning community, there has been little work examining how the planning as satisfiabil-

ity paradigm can handle preferences. Plan-A is a SAT-based fixed-horizon cost-optimal

planner that uses a custom DPLL procedure that adds blocking clauses to avoid revisiting

satisfiable assignments (Chen et al. 2008). This allows the full collection of valid plans to

be systematically considered; however, it does not seem necessary to add these blocking

clauses as the search can be made systematic in the implementation of the backtracking

algorithm. At each stage, the best solution is retained, and pruning occurs when the

current cost of a partial assignment exceeds the best solution found so far.

Satplan(p) handles quantitative and qualitative preferences using a custom DPLL solver

that branches according to a preference order (Giunchiglia and Maratea 2007). In partic-

ular, for a problem with quantitative preferences, the value of the optimisation function

is encoded as a sequence of bits, and the preference order prefers higher/lower order bits

to be set depending on whether the optimisation function is to be maximised/minimised.

Their experimental results only cover the cases where either (1) each goal is soft with a

utility of 1 and there are no action costs or (2) all goals are hard and all actions have cost

1. Thus, it remains to be seen how their approach scales for optimisation functions that

are more flexible.

Gamer solves PSP net benefit problems with a breadth-first style search that uses a

binary decision diagram (BDD) to compactly represent sets of states (Edelkamp and

Kissmann 2009). The search progresses in layers of increasing cost, with each layer rep-

resenting a collection of states that are reachable with the same cost. A separate BDD

is used to represent the set of states contained in each layer. The search maintains the

2We ignore the ceteris paribus condition that ensures the dominance property at each node because
we compile the function to WPMax-SAT where it is not exploited by the solver.
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best solution found so far and terminates when the cost exceeds this or all preferences

are satisfied. Since the latter case has highest utility and the search progresses through

states of increasing cost, the net benefit can only decrease from that point onwards so the

search can be terminated.

The heuristic search planners AltAlt and Sapa have been extended to solve PSP problems

(Van Den Briel et al. 2004); the former heuristically selects a set of goals to plan for, and

Sapa uses an A* search with a heuristic that estimates the extra net benefit available from

extending the current partial plan. Sapa has also been extended to handle goal utility

dependencies (Do et al. 2007). Its heuristic calculation first greedily constructs a relaxed

plan that supports all reachable goals; it then encodes a problem in IP to find the most

beneficial plan contained in the relaxed plan.

TCP-nets (tradeoff-enhanced CP-nets) extend the CP-net model to allow the user to

optionally specify when certain preferences are more important than others (Brafman

et al. 2002). This model also allows the importance ordering to be conditional on the

values of particular outcomes. Using TCP-nets to model conditional qualitative goal

preferences has been implemented in a CSP-based planner (Brafman and Chernyavsky

2005). The solution search procedure is altered to respect the TCP-net by first assigning

to variables that appear as goals in the final layer of the planning graph and have no

parents in the TCP-net that describes the user’s preferences. The value ordering heuristic

is altered to respect the TCP-net by trying more preferred values first.

An alternative method for selecting goals to plan for is to represent an abstracted part

of the planning problem as an orienteering problem (Smith 2004). This is motivated by

oversubscription planning problems relevant to the Mars rover where the cost of achieving

goals depends strongly on the order in which they are achieved. The aim is to model the

cost dependencies between achieving goals, but this ignores the idea of goal utility de-

pendencies. If such goal dependencies are sufficiently localised so that none exist between

‘cities’ in the orienteering graph, then a system such as iPUD or MSatplan might find

use in producing reward estimates for each city provided that the subproblems are small

enough and the computation time constraints are sufficiently generous.

3.5.1 Cost-optimal planning as satisfiability

One of the disadvantages of a compilation approach to planning has been that the planning

horizon, or makespan, must be specified in advance. Without this, the planner must

repeatedly construct and solve encodings for increasing makespans until a plan can be

found. While this approach is not ideal, it maintains completeness and optimality with

regard to finding the plan of shortest makespan; however, when considering cost-optimal

planning, if we have found a solution of makespan n, it is possible that a plan of lower cost



56 3.5. RELATED WORK

exists at a makespan greater than n. Hence, a cost-optimal, SAT-based planner following

this strategy, would not know when to terminate because it is not equipped with the

power to deduce that lower cost plans of higher makespans are not possible.

The first system to satisfactorily address this shortcoming of planning as SAT is Cos-P

(Robinson et al. 2010), which uses a WPMax-SAT encoding of STRIPS planning problems

with action costs. Cos-P encodes a planning problem of makespan n as expected but

adds a relaxed suffix to the encoding based upon a delete relaxation of the planning

problem. In the delete relaxation, actions have no delete effects, so the cost of optimal

plans in the delete relaxation are lower bounds to the costs of plans that start from the

same state and achieve the same goals in the non-relaxed problem. The relaxed suffix

also includes Boolean variables for a collection of causal links, which were introduced in

SAT encodings by Kautz et al. (1996). A causal link is used to specify that a proposition

supports another proposition, i.e. for propositions p1, p2 such that there is an action a

where p1 is a precondition of a and p2 is in the add list of a, then there is a causal link

from p1 to p2.

Causal links were originally introduced by McAllester and Rosenblitt (1991), where they

were used as constraints to indicate that a step achieves a precondition for another step

and that any other step that deletes that precondition cannot possibly interleave these

two steps. In Cos-P, causal links are only used in the delete relaxation where there can

be no interference between actions. Instead, causal links are used in Cos-P to express

how propositions are achieved and to prevent a proposition supporting itself in the relaxed

plan. In effect, they are used in a collection of axioms that together enforce the property

that a proposition is true in the relaxed plan if and only if there is a supporting chain

from propositions that are true in the final layer of the prefix.

Cos-P has two encodings: Variant I which is a standard encoding for makespan n and

Variant II which is Variant I with the added relaxed suffix. Since Cos-P uses an

optimal WPMax-SAT solver, an optimal solution to the Variant II encoding will yield

the lowest cost method of achieving some (possibly empty) subset of the goals by level

n and then achieving the remaining goals in the relaxed suffix. This is a lower bound

to the actual lowest cost of achieving all goals. A solution to Variant I will yield the

lowest cost method of achieving all goals by level n. Since both encodings force at least

one proper action to occur at each step up to n, there will eventually be some n where

all goals are achieved by level n in Variant II with lowest cost. Hence, if the optimal

solutions to the Variant I and Variant II encodings are equal then we know that we

cannot do better than the lowest cost plan we have found of makespan n. Otherwise, we

repeatedly increase n by one, solving at each step until the cost of optimal solutions to

Variant I and Variant II are equal.

Keyder and Geffner (2009) show that STRIPS planning with soft goals and action costs
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can be compiled to STRIPS planning with only action costs. They report experiments

that show that sequential optimising planners operating on such compiled problems can

outperform their net benefit optimising variants; however, the data is not particularly

convincing: the Mips-XXL planner solves more problems expressed as net benefit prob-

lems than when they are compiled to cost-only problems; the Gamer planner repeats this

pattern for two domains and solves more problems when they are compiled to cost-only

problems rather than expressed as net-benefit for one domain. The only planner in their

data that shows the trend of solving more problems using the cost-only compilation is for

the Hsp∗ planner; which ironically, already solves net benefit problems by reducing them

to a cost-only representation before running a heuristic regression search similar to that

used on the sequential optimal encoding.

Keyder and Geffner also discusses how this compilation step can be extended to compile

utilities defined on formulas of fluents, which is relevant to goal utility dependencies,

but they do not present an empirical study of such a compilation. We believe that it

is premature to abandon research in this area as it has received only a small amount of

attention so far – one set of benchmarks designed for a single competition.

3.6 Summary

We have reviewed the concept of utility dependence and existing representations of user’s

preferences. This motivated using an additive decomposition to represent the user’s util-

ity function so that it is possible to accept UCP-net descriptions of preferences for our

encoding. We presented an encoding scheme that represents planning problems of a fixed

horizon as a weighted partial Max-SAT formula. The optimal solution of this formula

corresponds to a plan of optimal net benefit for that horizon.



Chapter 4

Survey propagation

In this chapter we review the survey propagation method and extend its derivation to

handle WPMax-SAT formulae resulting in a new set of message passing equations. We

then present a method for using information obtained from fixed points of these equations

to make branching decisions in a WPMax-SAT solver.

4.1 Introduction

In the last chapter we presented an encoding scheme for solving planning problems that

consist of utility dependencies between the goals achieved by a plan. We did this by

representing the problem as a weighted partial Max-SAT formula, which is then solved

by a general purpose solver. Much work needs to be done to increase the effectiveness of

such solvers on large problems that have practical applications. Moreover, in the presence

of many valid solutions, these solvers will require new heuristics to guide them towards

the best solutions. This chapter will explore a scheme for incorporating a method known

as survey propagation, which has been successful at solving large hard k-SAT problems,

to provide heuristic guidance in a weighted partial Max-SAT solver.

The k-SAT problem is a instance of Boolean satisfiability where each clause contains ex-

actly k literals. The study of randomly generated k-SAT problems is an area of significant

research interest that aims to understand why some problems are harder than others for

algorithms to solve. For a randomly sampled k-SAT formula with M clauses and N vari-

ables, there is strong empirical evidence to suggest that the satisfiability of the formula is

determined by its clause to variable ratio, α =M/N , in the limit N →∞. Moreover, for

each k ≥ 2, experiments suggest that a phase transition occurs about a unique ratio αt
k

where random k-SAT formulas with α < αt
k are almost always satisfiable and those with

α > αt
k are almost always unsatisfiable.

58
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Intuitively, one can view these two regions as being over- or under-constrained, respec-

tively. The threshold αt
k at which the switch from being under-constrained to over-

constrained is referred to as the satisfiability phase transition. Deciding the satisfiability

of a random k-SAT formula appears to be hardest – those problems exhibit the longest

runtimes – for formulas with α in the region of this phase transition ratio (Cheeseman

et al. 1991; Mitchell et al. 1992). The skewness in running times for 3-SAT appears to be

solver dependent and for some solvers can vary significantly with α (Coarfa et al. 2000).

Survey propagation (Mézard et al. 2002; Braunstein et al. 2005) is a technique developed

within the statistical physics community, which has led to an algorithm that can solve a

high proportion of random k-SAT formulas close to the phase transition ratio αt
k. It has

also helped to develop new hypotheses for why problems with clause-to-variable ratios

close to the phase transition are particularly difficult to solve by current algorithms.

Survey propagation operates on a graphical representation of a SAT formula, known as a

factor graph. This representation consists of separate nodes for each variable and clause

that occurs in the SAT formula, with edges connecting variable nodes to clause nodes to

indicate when a variable appears in a clause. A message passing procedure then takes

place where information is exchanged along each edge in the factor graph. The purpose

of this message passing is to estimate for each variable, the probabilities of it taking the

value True, taking the value False, or being unconstrained in a randomly chosen satisfying

assignment.

A message passed from a clause to a variable estimates the chance of that variable having

to take the value that satisfies that clause. A message passed from a variable to a clause

estimates the chance of that variable taking a value that will not satisfy that clause. These

messages are computed according to the survey propagation equations. The computation

of each outgoing message from a node only requires the knowledge of incoming messages

to that node, so the messages are said to be locally computed.

Once this collection of probabilities has been estimated, one can calculate the bias of a

variable, which is the difference between the estimated probability of that variable taking

the value True compared to the probability of it taking the value False. One can then

identify the subset of variables that have a strong bias towards taking a particular value.

By fixing a percentage of these strongly biased variables, the problem can be simplified

by removing satisfied clauses, fixing pure literals and performing unit propagation where

possible. We can then apply another round of message passing using the survey propa-

gation equations to arrive at new bias estimates for this simplified problem and set any

highly biased variables. This process is known as decimation, and it continues until survey

propagation no longer identifies any strongly biased variables. Hopefully, this happens

when the problem has been simplified enough that the application of a local search solver

will find a satisfying assignment to the remaining unassigned variables.
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The underlying techniques of survey propagation can be applied to solve the Max-SAT

problem. This variant of survey propagation is known as the SP(y) algorithm (Battaglia

et al. 2004). An function is used to describe the cost of an assignment to variables. For a

given assignment, each unsatisfied clause contributes an increase to the energy associated

with that assignment. In the classical Max-SAT problem, we search for an assignment to

variables that minimises the number of unsatisfied clauses, which is equivalent to seeking

an assignment of minimum energy. This chapter will review the ideas behind the survey

propagation method and will show how they can be adapted to derive a new set of

message passing equations that can be used on WPMax-SAT problems. We will conclude

by describing how this can be incorporated into a WPMax-SAT solver to provide heuristic

guidance early on in the search.

4.2 Applications to random k-SAT

One can generate a random k-SAT problem by sampling with replacement from all possible

clauses of k literals that do not contain duplicate variables. For a fixed number of variables

N , one needs to generate M = αN such clauses to generate a random k-SAT problem

for a fixed density α. If we take a collection of randomly generated k-SAT problems with

density α, we can calculate the percentage of problems that are found to be satisfiable

after applying a local search solver to them. This leads to an empirical estimate for the

probability that a randomly generated k-SAT problem of density α will be satisfiable.

Recent theoretical results have placed the following lower and upper bounds on the satis-

fiability phase transition αt
3 for 3-SAT: 3.52 ≤ αt

3 (Kaporis et al. 2006) and αt
3 ≤ 4.4898

(Dı́az et al. 2009). Figure 4.1 shows the above empirical estimates obtained for several

densities between the theoretical bounds for two different approaches: applying Walk-

sat alone and running survey inspired decimation before running Walksat. One can

see that by using survey inspired decimation, Walksat is able to find more satisfiable

assignments closer to the phase transition, which is expected to be around 4.27 (Mézard

and Zecchina 2002). One can also observe that the known theoretical bounds are quite

loose compared to the empirical observations.

Rintanen et al. (2004) examined the phase transition in solubility for randomly generated

classical planning problems. Operators are generated randomly, each with 3 preconditions

and 2 effects, by selecting from the set of state variables. Further restrictions are placed

on the set of operators to avoid the case where a problem is insoluble simply because a

goal does not appear in the effect of any operator. The ratio of number of operators to

number of state variables is varied and a transition in solubility takes place such that as

the ratio increases, a randomly generated problem with that ratio is more likely to have
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a solution. The phase transition appears to take place over a larger range in the ratio

than is observed for 3-SAT. Although this may sharpen when the number of variables is

increased. Rintanen et al. also presents results that show a peak in difficulty for problems

with certain ratios. This suggests a method for creating inherently difficult problems for

evaluating planning algorithms.
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Figure 4.1: Empirically observed chance of finding a satisfiable assignment to a random 3-SAT
problem with N = 5000 variables for different clause densities (α = M/N for M clauses).
We compared running Walksat (cutoff = 1 × 106) against running survey propagation based
decimation to set a maximum of 2000 variables before running Walksat with the same cutoff.
100 trials were conducted for each α/solver pair to arrive at the probability estimates.

The survey propagation equations can be derived by applying belief propagation to com-

pute marginals on an extended space, where variables can take a ‘joker’ value when they

are not constrained by clauses and other assignments to take the value True or False

(Braunstein and Zecchina 2004; Maneva et al. 2007). This leads to the idea of a cover

(Achlioptas and Ricci-Tersenghi 2006), which is a total assignment to variables involving

the values {0, 1, ∗}, where ∗ denotes the ‘joker’ state. For a particular partial assignment,

a supported variable Xi is one that is assigned the value 0 or 1 with the constraint that

there is a clause C such that a literal containing Xi satisfies C and all other literals in C

evaluate to False under the assignment. A cover is a total assignment of values {0, 1, ∗}
for which every clause contains either at least two literals that are assigned the value ∗, or
a literal that satisfies the clause; and every variable that is assigned 0 or 1 is a supported

variable. The trivial cover which assigns ∗ to all variables exists for all formulae, even

those that are unsatisfiable. A true cover is one which can be extended to a satisfiable

total assignment.

Maneva et al. (2007) shows that for a particular initial assignment to messages, survey
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propagation performs a peeling procedure that sets unconstrained variables to the joker

state until no unconstrained variables are left in the assignment, which identifies a cover.

Empirical evidence suggests that non-trivial covers can be found by applying this peeling

procedure to solutions of random 3-SAT problems, although the fraction of solutions that

lead to non-trivial covers becomes vanishingly small as the number of variables increase

(Kroc et al. 2007).

Chieu and Lee (2009) extend Maneva et al.’s markov random field (MRV) formulation

of survey propagation to handle the weighted Max-SAT problem. A weighted Max-SAT

formula is represented as a MRV. Belief propagation is then applied to the MRV to produce

a set of message passing equations. These can be understood as estimating marginals over

min-covers – an extension of the idea of a cover to Max-SAT. Their approach shows good

performance compared to SP(y) on random Max-3-SAT problems. Adapting this MRV

formulation to handle WPMax-SAT would be a natural extension to the work we present.

4.3 Belief propagation

Belief propagation (Pearl 1982) is intimately related to the technique of survey propa-

gation. Belief propagation (BP) is a technique for computing marginals on graph-based

representations (graphical models) of probability distributions. The marginals it calcu-

lates are exact when the graphical model is a tree. In other cases, the marginals it yields

may still be close to the exact marginals; consequently, it has been applied to many

non-tree graphical models.

Let us use an indexing set In ≡ {1, . . . , n} to label the family of variables {Xi}i∈In where

each Xi has the same finite domain B = {0, 1}. For this family of variables, consider

a full joint probability distribution p : Bn → [0, 1]. We will use lowercase letters xi as

placeholders for the value that a variable Xi takes and adopt p(x1, . . . , xn) as shorthand

for p(X1 = x1, . . . , Xn = xn), for p and other similar functions.

For a subset S = {i1, . . . , ik} ⊆ In we denote a vector of variables XS ≡ (Xi1, . . . , Xik)

and a vector of values xS ≡ (xi1 , . . . , xik) where i1 < i2 ∧ · · · ∧ ik−1 < ik. In such cases,

p(xS) is shorthand for p(Xi1 = xi1 , . . . , Xik = xik). The marginal distribution pS for a

subset of variables S ⊆ In is

pS(xS) =
∑

xIn\S

p(xIn), (4.1)

where the sum is over all possible assignments to the variables XIn\S. Belief propagation

is used to calculate the marginal distribution for single variables.
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4.3.1 Factor graphs

A factor graph (Kschischang et al. 2001) is a graphical representation of a function that

is expressed as a product of other simpler functions, known as factors. Given a subset

S ⊆ In, a potential function over S is written as ψS : B|S| → R. We will assume that each

factor is expressed as a potential function. Let A ⊂ P(In) be the set of arguments that

the potential functions take, where P(In) is the powerset of In. For each a ∈ A, there is a
factor expressed as a potential function ψa. In summary, to represent a function g over n

variables using a factor graph, we will assume that g is expressed as a product of factors:

g(xIn) =
∏

a∈A
ψa(xa). (4.2)

Although two factors operating on the same set of arguments can be combined to form a

single factor, it will be convenient for us to allow multiple different factors that operate on

the same set of arguments to simplify the implementation. The factor graph representation

of g has a separate node for each variable Xi, a separate node for each factor ψa and edges

that connect any variable node for Xi to a factor node for ψa if i ∈ a.

A factor graph is a triple (V, F, E) where V is a set of variable nodes, F is a set of factor

nodes, and E is a set of undirected edges. For any i ∈ V and a ∈ F , E contains the edge

(i, a) if and only if i represents a variable Xp and a represents a potential function ψQ

and p ∈ Q. We write the set of neighbours of i ∈ V as ∂i = {a ∈ F | (i, a) ∈ E} and

the set of neighbours of a ∈ F as ∂a = {i ∈ V | (i, a) ∈ E}. Notice that two variable

nodes or two factor nodes are never joined together; hence, the factor graph is bipartite.

To distinguish between the two classes of nodes in drawings, factor nodes are drawn as

squares and variable nodes are drawn as circles.

Throughout the rest of this chapter we will often refer to the variable nodes using place-

holders i, j and k; similarly, we will refer to factor nodes using placeholders a, b and c.

To simplify the notation we will write xi for i ∈ V to denote a value taken by the variable

corresponding to node i. Also, for a ∈ F , we will write ψa(x∂a) to denote the application

of the factor represented by node a to an assignment of values x∂a to its arguments.

Satisfiability example

The satisfiability of a propositional formula consisting of variables {Xi}In and expressed

in conjunctive normal form with clauses C1, . . . , Cm can be represented as a product of

functions. For each clause Ci, let Vi be the set of indices of variables appearing in that
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{¬x1,¬x2} {¬x4, x2} {¬x4, x3} {¬x5, x1} {¬x6, x5, x4}

x1 x2 x3 x4 x5 x6

Figure 4.2: An example factor graph representation of a propositional formula shown above.
Dotted lines indicate a negative literal and solid lines indicate a positive literal.

clause. For i = 1, . . . , m define the function φi as

φi(xVi
) =







1 if Ci is true for the values xVi
assigned to variables {Xj}j∈Vi

,

0 otherwise.
(4.3)

Note that two different clauses may contain the same set of variables, and so our factori-

sation may consist of multiple factors that have the same set of arguments. Define the

function Φ as

Φ(xIn) =
m∏

i=1

φi(xVi
). (4.4)

Then Φ(xIn) is equal to 1 if the assignment to variables satisfies all clauses and 0 if at least

one clause is violated. Figure 4.2 shows an example factor graph representation for the

function Φ. Normalising Φ would give a uniform probability distribution over satisfying

assignments to the formula, and we could apply belief propagation to the above graph to

estimate marginal probabilities for each variable.

4.3.2 The belief propagation equations

If we are given a factor graph (V, F, E), for each edge (i, a) ∈ E, two messages νi→a

and ν̂a→i are sent. The subscript of the message indicates the direction the message

is travelling. In the case of binary valued variables, each message is a two-vector, and

νi→a(xi) is a real number for the case that the variable, represented by node i ∈ V , takes
the value xi. The belief propagation equations are:

ν
(t+1)
i→a (xi) = αia

∏

b∈∂i\a
ν̂
(t)
b→i(xi), (4.5)

ν̂
(t+1)
a→i (xi) =

∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i
ν
(t)
j→a(xj). (4.6)
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ν
(k)
i→a(xi) and ν̂

(k)
a→i(xi) are the messages at iteration k. We use the notational convention

of placing a circumflex above a message that is sent from a function node to a variable

node. αia is a normalisation constant so that νi→a(1) + νi→a(0) = 1. When ∂i \ a = ∅,
νi→a(xi) = 0.5. When ∂a \ i = ∅, ν̂a→i(xi) = ψa(x∂a).

The equations can be understood as the graphical equivalent of variable elimination or

‘pushing a summation’ inside a product of factors, for example,

∑

x1,x2,x3

f1(x1)f2(x1, x2)f3(x3) =
∑

x1

f1(x1)
∑

x2

f2(x1, x2)
∑

x3

f3(x3).

The belief propagation algorithm iteratively applies Equations 4.5 and 4.6 until conver-

gence. In practice, a convergence precision ǫ is used so that the iterative process ends

when no message changes by more than ǫ during an iteration. Unless otherwise stated, we

use a precision of ǫ = 0.001 in our work. Although we may talk about finding fixed-points

of message-passing equations, when we use ǫ to determine convergence, we are in fact

only returning approximate fixed-points and so results derived from these approximate

fixed-points are also only approximations.

If convergence is reached, an estimate of the marginal probability for a variable can be

found by calculating

α
∏

a∈∂i
ν̂∗a→i(xi), (4.7)

where α is a normalisation constant. Here we have used the notation of adding an asterisk

as a superscript to messages that belong to an approximate fixed-point of the message-

passing equations, and this notation will be used later in this section.

For a tree-structured factor graph, it is easy to see that belief propagation is guaranteed

to converge and will calculate exact marginals. By rooting the tree at any variable node

and applying the BP equations from the leaves, working upwards, the correct marginal

estimate is made for the root. After a number of iterations equal to the length of the

longest path in the factor graph, all information will have propagated throughout the

graph, and there will be no further change in the messages.

4.3.3 Related work

Belief propagation has found a successful application in the decoding of low density par-

ity check codes, or Gallager codes, which achieve performance close to the Shannon limit

(MacKay and Neal 1996). The decoding problem involves computing marginal posterior

probabilities for each bit of the transmitted codeword given the received codeword, the

parity-check matrix and an assumption about the corrupting properties of the channel.
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In practice, the decoding problem can be successfully solved by applying belief propaga-

tion to compute these marginals despite the factor graph representation of the posterior

containing many loops.

Murphy et al. investigated whether this good performance was transferable to a wider

collection of problems other than error correcting codes (Murphy et al. 1999). Their em-

pirical data showed that belief propagation converged to accurate marginals for several

types of problems that contained many small loops without highly peaked posteriors;

however, there were also groups of problems that produced oscillations in message pass-

ing and failed to converge. This could be partly mitigated by applying an exponential

moving average to message values, but while this increased the chance of convergence, the

marginals were sometimes found to be inaccurate.

The main criterion for success in decoding is the identification of the correct codeword; it is

not important that the marginals we use to do this decoding are not entirely accurate. This

is similar to the process of solving satisfiability problems, where we are usually interested

in finding a satisfiable assignment rather than computing accurate marginals. This is why

we do not test the accuracy of the bias estimates obtained by survey propagation and its

related methods in our work.

One might wonder why loopy belief propagation has any success at all. One possible reason

is that fixed points of the belief propagation equations correspond to stationary points of

the Bethe free energy (Yedidia et al. 2003). This provides us with an alternative when

belief propagation does not converge: minimise the Bethe free energy which is guaranteed

to terminate. Empirical data has suggested that this approach produces similar results

to belief propagation (Welling and Teh 2001).

This link between belief propagation and the Bethe approximation to the free energy has

inspired propagation methods based on increasingly accurate approximations to the free

energy, known as Kikuchi approximations; these methods are often collectively referred to

as generalised belief propagation (Yedidia et al. 2000). These approximations are obtained

by grouping variables into regions and summing the free energies of each region, then

subtracting the free energies of over-counted intersections of regions, then adding over-

counted free energies of intersections of intersections of regions, and so on. Messages are

then passed from regions to their subregions. The accuracy improves with the size of the

regions chosen to the point where the approximation is exact when a region surrounds

the entire graph; however, as one might expect from a method with such a property, the

complexity grows exponentially with the size of the regions. The practical applications

of generalised belief propagation are for graphs with many small loops where most of

the error that belief propagation generates can be eliminated by considering many small

regions that surround those loops, which results in only a small increase in computational

complexity.
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The Expectation Maximisation Belief Propagation (EMBP) algorithm is an attempt to

adapt the ideas of belief propagation, when applied to satisfiability, to guarantee con-

vergence (Hsu and McIlraith 2006). The idea is to parameterise the problem through a

vector θ that contains an estimate, for each variable in the SAT formula, of that variable

being set to True. We then seek the maximum likelihood value of θ (that which maximises

P (SAT|θ)). A collection of latent binary variables is assumed {sc,v} where sc,v is set to

True if variable v is the sole support of clause c (the only variable that satisfies clause c).

A distribution over these latent variables is defined in terms of the parameters θ, and by

applying the expectation maximisation algorithm, an update rule for θ can be derived. In

Hsu and McIlraith’s experimental results, EMBP behaves significantly worse compared

to BP when applied to random 3-SAT problems, which would lead one to conclude that

EMBP is not simply a version of BP that is guaranteed to converge. It would be interest-

ing to investigate an approach that minimises the Bethe free energy directly for random

3-SAT problems to check whether the behaviour is the same as BP.

4.3.4 Maximum marginals

A variant of belief propagation is the max-product algorithm (Kschischang et al. 2001).

When applied to a factor graph that represents a function µ over variables X1, . . . , Xn,

the max-product algorithm aims to find the maximum marginal µmax
i for each variable Xi

as given by

µmax
i (xi) = max

x1,...,xi−1,
xi+1,...,xn

µ(x1, . . . , xn). (4.8)

We are interested in computing this property because when solving WPMax-SAT prob-

lems, we want to find a truth assignment to variables of lowest cost. If we can find a

suitable distribution such that an assignment to variables that maximises µ is also an

assignment of minimum cost, we can apply the max-product equations to find such an

assignment. The max-product equations are given as

ν
(t+1)
i→a (xi) = αia

∏

b∈∂i\a
ν̂
(t)
b→i(xi), (4.9)

ν̂
(t+1)
a→i (xi) = αai max

x∂a\i



ψa(x∂a)
∏

j∈∂a\i
ν
(t)
j→a(xj)



 . (4.10)

αia and αai are normalisation constants that do not affect the maximisation but add to

stability and avoid numerical underflow. One can see that this set of equations is identical

to the belief propagation equations with the exception that the summation is replaced

by a maximisation operator in the second equation. This is a result of trying to find the

most likely assignment rather than marginalising over other variables.
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Given an approximate fixed-point of the max-product equations, an estimate of the max-

marginal for variable Xi is

µmax
i (xi) = α

∏

a∈∂i
ν̂∗a→i(xi), (4.11)

where α is a normalisation constant. Like belief propagation, if the max-product algorithm

is applied to a tree-structured factor graph, it will converge to a fixed-point and will

compute exact maximum marginals. If µ is the full joint distribution, then the maximum

marginal for each variable can be used to find the most likely assignment to variables on

a tree-structured factor graph. This is done by first running the max-product algorithm

to convergence, and then setting the variable Xi with the highest maximum marginal to

the value that maximises µmax
i . A new factor graph is constructed to represent µ with

Xi’s value fixed, and the procedure is repeated until all variables are set.

4.4 Survey propagation

In this section we review the derivation of the optimisation variant of the survey propa-

gation algorithm, often referred to as the SP(y) algorithm (Battaglia et al. 2004). Survey

propagation is a special case of the SP(y) algorithm that arises in the limit y →∞. This

corresponds to the requirement that all clauses must be satisfied.

The differences between the derivations of SP and SP(y) are found only in the simplifying

assumptions about the problem that lead to an efficient set of equations: they both use

the same core method, which is referred to as the 1RSB (Replica Symmetry Breaking)

cavity method. The 1RSB cavity method makes assumptions about how the probabil-

ity distribution over variable configurations decomposes and on this basis, it is used to

make quantitative predictions about the large-scale properties of the system. Mézard and

Zecchina (2002) use the 1RSB cavity method to predict the satisfiability phase transition

for 3-SAT as αt
3 = 4.267, which coincides with empirical measurements and suggests that

the set of assumptions is reasonable for large-scale 3-SAT problems.

There is much that remains to be understood in this area, and we will not dwell on

the nature of these assumptions. We do not attempt to calculate quantities such as

αt
3, and so the formal statement of the underlying assumptions is less important. We

aim for a practical application of this method where our success is judged by whether the

heuristic guidance that is extracted from the results of message passing yields a significant

improvement. If it does, then this indicates that the assumptions may be appropriate for

the problem and warrant further investigation.

We justify that our message passing equations fit within the cavity method approach. We

do this by starting from an intuitive setting that is easy for someone unfamiliar with the
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1RSB cavity method. We then summarise the arguments that lead to the 1RSB cavity

equations. The reason for this is twofold: it provides an introduction to the method for

those unfamiliar with it, and it establishes a vocabulary for describing our contribution.

A full technical derivation of the survey propagation method is presented by Mézard and

Zecchina (2002). We summarise the material presented by Mézard and Montanari (2009)

that leads to the 1RSB cavity equations, using most of their notation, in Sections 4.4.1,

4.4.2 and 4.4.3.

After the presentation of the 1RSB cavity equations, our work takes a different direction

to previous works. Our contributions are as follows. In Section 4.4.4 we present the form

that the message passing equations take for weighted partial Max-SAT formulae; we call

this set of equations weighted partial Max-SAT survey propagation, or WPSP(y). These

are different to the SP(y) equations in that they allow clauses to be specified as hard,

and soft clauses can have any positive integer weight rather than being restricted to unit

weights. In Section 4.4.7 we present how the variable biases can be computed from a fixed

point of the WPSP(y) equations. This can then be used with the normal survey inspired

decimation procedure used in SP(y) and SP to set variables and simplify problems.

An overview of how the cavity equations are derived is as follows. They are derived

by first defining a Gibbs probability distribution over assignments to variables. We then

study the form that the max-product equations take under this distribution and show how

the max-product equations simplify to a set of equations called the min-sum equations.

Following this, we apply the cavity method to estimate distributions over messages that

are exchanged in the min-sum algorithm. Using these distribution estimates, we arrive

at a decimation algorithm for deciding how to make assignments to variables in order to

simplify the problem.

4.4.1 A factor graph representation of a WPMax-SAT formula

Consider a WPMax-SAT problem over variables X1, . . . , Xn with a set of m weighted

clauses {(Ci, wi)}i∈Im as discussed in Section 2.4. The variables take values in B = {0, 1}
where a 1 indicates the value True, and 0 indicates the value False. Here we will define

a probability distribution over truth assignments to these variables that has the property

that maximums of the distribution correspond to truth assignments of minimum cost.

This will then be represented as a factor graph, which we will apply the max-product

equations to.

The WPMax-SAT problem described above, already defines the structure of our factor

graph (V, F, E) representation, where there is a separate variable node for each variable

and a separate factor node for each weighted clause in the WPMax-SAT problem. In order
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to describe the distribution over truth assignments, we will adopt the terminology used

in survey propagation, which refers to the energy of a truth assignment for a particular

problem. For each weighted clause (Ca, wa) in the problem, there is a unique factor a ∈ F .
Each weighted clause contributes an energy Ea(x∂a) for an assignment x∂a to the variables

appearing in Ca defined as

Ea(x∂a) =







0 if x∂a satisfies clause Ca

∞ if x∂a violates clause Ca and wa = ⊤,
wa otherwise.

(4.12)

We can express the total energy E(xIn) of a truth assignment xIn as

E(xIn) =
∑

a∈F
Ea(x∂a). (4.13)

Note that if any hard clause is violated by an assignment, the energy of the whole assign-

ment is infinite. Let us now consider a Gibbs measure over truth assignments to variables

X1, . . . , Xn as given by

µ(x1, . . . , xn) =
1

Z
exp (−βE(x1, . . . , xn)) , (4.14)

where Z =
∑

xIn
exp(−βE(x1, . . . , xn)) is a normalisation constant and β is an inverse

temperature parameter. This distribution can be written in the factorised form

µ(xIn) =
1

Z

∏

a∈F
exp(−βEa(x∂a)). (4.15)

It is this factorised form that our factor graph (V, F, E) represents, that is, each a ∈ F
represents a factor ψa(x∂a) = exp(−βEa(x∂a)). Note that we do not include the term

1/Z in the factor graph as we will normalise variable-to-factor messages using on-the-fly

normalisation as described by MacKay (2003).

We can apply the max-product algorithm to this distribution in order to compute the

maximum-marginals for each variable, and in so doing let us take logarithms of both

sides of Equations 4.9 and then multiply by −1/β to obtain the following variation of the

max-product equations:

−1
β

log (νi→a(xi)) =
∑

b∈∂i\a

−1
β

log (ν̂b→i(xi)) + κia (4.16)

−1
β

log (ν̂a→i(xi)) = min
x∂a\i



Ea(x∂a)−
1

β

∑

j∈∂a\i
log(νj→a(xj))



+ κai, (4.17)
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where κia and κai are a result of taking logarithms of the normalisation constants in

the max-product equations. We are able to take the logarithm inside the maximisation

because it is a monotonically increasing function. Taking the minus sign inside the max-

imisation turns it into a minimisation. Since β is held constant, we can define

ηi→a(xi) =
−1
β

log(νi→a(xi)), η̂a→i(xi) =
−1
β

log(ν̂a→i(xi)), (4.18)

and rewrite the max-product equations as

ηi→a(xi) =
∑

b∈∂i\a
η̂b→i(xi) + κia, (4.19)

η̂a→i(xi) = min
x∂a\i



Ea(x∂a) +
∑

j∈∂a\i
ηj→a(xj)



+ κai. (4.20)

These equations are known as the min-sum equations. In a tree-structured factor graph,

the message ηi→a(xi) is the minimum total energy achievable by a truth assignment con-

sistent with Xi = xi in the subtree rooted at variable Xi. Similarly, the message η̂a→i(xi)

is the minimum total energy achievable by a truth assignment consistent with Xi = xi

in the subtree rooted at factor node a. These equations can be used to find the energy

minimum-marginal for each variable, which is given as

Emin
i (xi) = κ+

∑

a∈∂i
η̂a→i(xi). (4.21)

We can now write the maximum-marginal estimate given in Equation 4.11 as

µmax
i (xi) =

1

Z
exp

(

−β
∑

a∈∂i
η̂a→i(xi)

)

. (4.22)

Observe that µmax
i (xi) takes its maximum value at the same xi for which E

min
i (xi) takes

its minimum value.

4.4.2 Energy of a truth assignment

We want to find a truth assignment with minimum energy, and we will attempt to do

this by applying the min-sum equations. Since the structure of our factor graph is de-

termined by the WPMax-SAT formula, we expect the factor graph to contain loops, and

so the min-sum equations are not guaranteed to converge and the minimum marginals

will only be approximations. The energy of a total assignment is calculated according to

Equation 4.13. If we do find a fixed point of the min-sum equations, we can estimate the
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quantity minxIn\∂a
E(x) at each factor a ∈ F by evaluating

Ea(x∂a) +
∑

i∈∂a
η∗i→a(xi). (4.23)

In order to minimise the energy of an assignment we should start by assigning to the

neighbouring variables {Xi}i∈∂a the assignment x∗
∂a given as

x∗
∂a = argmin

x∂a

[

Ea(x∂a) +
∑

j∈∂a
η∗j→a(xj)

]

. (4.24)

Note that it may not be possible to achieve a total assignment that is consistent with x∗
∂a

for each a ∈ F . Nevertheless we will use the quantity

U∗({η∗i→a, η̂
∗
a→i}(i,a)∈E) =

∑

a∈F
Ea(x

∗
∂a), (4.25)

to estimate a lower bound to the minimum energy achieveable. We now show that

U∗({η∗i→a, η̂
∗
a→i}(i,a)∈E) can be simply expressed as a sum involving the following terms:

F(i,a)(η
∗
i→a, η̂

∗
a→i) = min

xi

[η∗i→a(xi) + η̂∗a→i(xi)] , (4.26)

Fi({η̂∗b→i}b∈∂i) = min
xi

[
∑

a∈∂i
η̂∗a→i(xi)

]

, (4.27)

Fa({η∗j→a}j∈∂a) = min
x∂a

[

Ea(x∂a) +
∑

j∈∂a
η∗j→a(xj)

]

. (4.28)

We start by defining

x∗i (a) = argmin
xi

[η∗i→a(xi) + η̂∗a→i(xi)] . (4.29)

Note that x∗i (a) and x∗
∂a both depend on a set of fixed-point messages that are a solution to

the min-sum equations. We have not made this explicit to avoid cluttering the notation.

The reader should keep in mind that these values are all dependent on a single set of

fixed point messages that we are implicitly considering. The following three lemmas are

presented as exercises without proof in Mézard and Montanari (2009).

Lemma 1. F(i,a)(η
∗
i→a, η̂

∗
a→i) = η∗i→a(x

∗
i (a)) + η̂∗a→i(x

∗
i (a)).

Proof. By definition of x∗i (a).

Lemma 2. Fi({η∗i→b, η̂
∗
b→i}b∈∂i) =

∑

a∈∂i η̂
∗
a→i(x

∗
i (a)).

Proof. Since {η∗i→b, η̂
∗
b→i}b∈∂i belong to a fixed-point of the min-sum equations, for a ∈ ∂i,
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we can use the expression for η∗i→a(xi) from Equation 4.19 to write Equation 4.29 as

x∗i (a) = argmin
xi

[η∗i→a(xi) + η̂∗a→i(xi)]

= argmin
xi

[
∑

b∈∂i
η̂∗b→i(xi) + κia

]

= argmin
xi

[
∑

b∈∂i
η̂∗b→i(xi)

]

.

Recall the definition of x∗
∂a in Equation 4.24.

Lemma 3. Fa({η∗j→a, η̂
∗
a→j}j∈∂a) = Ea(x

∗
∂a) +

∑

j∈∂a η
∗
j→a(x

∗
j (a)).

Proof. By contradiction. Instead, assume that x′
∂a = (x′i1(a), . . . , x

′
ik
(a)) minimises the

right hand side of Equation 4.28. Then there must be at least one iz such that x′iz(a) 6=
x∗iz(a). We can write x′iz(a) as

x′iz(a) = argmin
xiz

[

min
x∂a\iz

{

Ea(x∂a) +
∑

j∈∂a
η∗j→a(xj)

}]

= argmin
xiz



η∗iz→a(xiz) + min
x∂a\iz






Ea(x∂a) +

∑

j∈∂a\iz

η∗j→a(xj)











= argmin
xiz

[
η∗iz→a(xiz) + η̂∗a→iz

(xiz)− κai
]

= argmin
xiz

[
η∗iz→a(xiz) + η̂∗a→iz

(xiz)
]

= x∗iz(a),

which contradicts our assumption that x′iz(a) 6= x∗iz(a).

Using the above results, it is easy to verify that

U∗({η∗i→a, η̂
∗
a→i}(i,a)∈E) =

∑

a∈F
Fa({η∗j→a}j∈∂a) +

∑

i∈V
Fi({η̂∗b→i}b∈∂i)

−
∑

(i,a)∈E
F(i,a)(η

∗
i→a, η̂

∗
a→i). (4.30)

4.4.3 The cavity method

We assume that there will be multiple fixed point solutions to the min-sum equations

for our problems. We want to find the fixed point solution that has the lowest energy
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estimate, U∗. The cavity method considers a Gibbs distribution over fixed point solutions

to the min-sum equations, constructs a factor graph representation of this distribution and

uses belief propagation to estimate the distribution of messages in the min-sum equations.

Auxiliary graph

In this new factor graph, which we refer to as the auxiliary graph, there are |E| vari-
ables, one for each edge (i, a) ∈ E in the factor graph representation of µ described in

Section 4.4.1. For each edge (i, a) ∈ E we index the variable associated with that edge

as (i | a). We write an assignment to the variable indexed by (i | a) as m(i|a) which is

a tuple (mL
(i|a),m

R
(i|a)), where mL

(i|a) is a possible message sent from i to a and mR
(i|a) is a

possible message sent from a to i in the factor graph (V, F, E).

For any variable i and the subset of factors S, where S is either ∂i or ∂i \ a for some

a ∈ ∂i, write the contents of S explicitly as S = {a1, . . . , ak} ⊆ ∂i. We then define the

following:

• MS = (m(i|a1), . . . ,m(i|ak)),

• ML
S = (mL

(i|a1), . . . ,m
L
(i|ak)),

• MR
S = (mR

(i|a1), . . . ,m
R
(i|ak)).

For example, M∂i\a = (m(i|b1), . . . ,m(i|bk)) where ∂i \ a = {b1, . . . , bk}.
Similarly, for any factor a and the subset of variables V , where V is either ∂a or ∂a \ i
for some i ∈ ∂a, we write the contents of V explicitly as V = {i1, . . . , ik} ⊆ ∂a. We then

define the following:

• MV = (m(i1|a), . . . ,m(ik|a)),

• ML
V = (mL

(i1|a), . . . ,m
L
(ik|a)),

• MR
V = (mR

(i1|a), . . . ,m
R
(ik|a)),

For example, ML
∂a\i = (mL

(j1|a), . . . ,m
L
(jk |a)) where ∂a \ i = {j1, . . . , jk}.

We consider a Gibbs distribution over solutions to the min-sum equations using the ap-

proximation U∗ given in Equation 4.30 to the minimum energy.

Ψ({η∗i→a, η̂
∗
a→i}(i,a)∈E) =

1

Z
exp

(
−yU∗({η∗i→a, η̂

∗
a→i}(i,a)∈E)

)
(4.31)

=
1

Z

∏

a∈F
exp(−yFa({η∗j→a}j∈∂a))

∏

i∈V
exp(−yFi({η̂∗b→i}b∈∂i))

×
∏

(i,a)∈E
exp(yF(i,a)(η

∗
i→a, η̂

∗
a→i)). (4.32)
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where Z is a normalisation constant and y is an inverse temperature parameter. Again,

the factor 1/Z will not appear in our factor graph as we will use on-the-fly normalisation.

We only want to assign non-zero probabilities to assignments that correspond to solutions

of the min-sum equations. We make use of two message transformation functions, T and

T̂, that compute the min-sum equations

ηi→a = Ti→a({η̂b→i}b∈∂i\a), η̂a→i = T̂a→i({ηj→a}j∈∂a\i). (4.33)

Using the above functions we define the following factors

Ψi(M∂i) =
∏

a∈∂i
I(mL

(i|a) = Ti→a(M
R
∂i\a)) exp(−yFi(M

R
∂i)), (4.34)

Ψa(M∂a) =
∏

i∈∂a
I(mR

(i|a) = T̂a→i(M
L
∂a\i)) exp(−yFa(M

L
∂a)), (4.35)

Ψ(i,a)(m(i|a)) = exp(yF(i,a)(m
L
(i|a),m

R
(i|a))), (4.36)

where I is the indicator function which returns 1 if its argument evaluates to True and 0

otherwise. Thus, if for a particular assignment, there is a variable that is assigned a pair

of messages that do not follow from the min-sum equations together with the assignments

to that variable’s neighbours, the whole assignment will have a probability equal to zero.

Given the above factorisation of the distribution, the auxiliary graph is the factor graph

(V ′, F ′, E ′) that represents this distribution, where V ′, F ′ and E ′ are defined as follows:

V ′ = {(i | a) | (i, a) ∈ E}
F ′ = {Ψa | a ∈ F} ∪ {Ψi | i ∈ V } ∪ {Ψ(i,a) | (i, a) ∈ E}
E ′ = {((i | a),Ψa) | (i, a) ∈ E} ∪ {((i | a),Ψi) | (i, a) ∈ E} ∪ {((i | a),Ψ(i,a)) | (i, a) ∈ E}.

Applying belief propagation

To estimate the marginal distribution of messages according to the above Gibbs distri-

bution, we apply the belief propagation algorithm. Note that each variable (i | a) in the

auxiliary graph is connected to only three factor nodes: Ψa, Ψi and Ψ(i,a). Moreover, the

node (i | a) need not pass a message to the factor Ψ(i,a) since that factor is not connected

to any other nodes, and (i | a) will always receive the same message from Ψ(i,a).

Therefore the belief propagation equations, given in Equations 4.5 and 4.6 simplify into
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two cases:

ν(i|a)→Ψa(m(i|a)) ∼= Ψ(i,a)(m(i|a))
∑

M∂i\a

Ψi(M∂i)
∏

b∈∂i\a
ν(i|b)→Ψi

(m(i|b)), (4.37)

ν(i|a)→Ψi
(m(i|a)) ∼= Ψ(i,a)(m(i|a))

∑

M∂a\i

Ψa(M∂a)
∏

j∈∂a\i
ν(j|a)→Ψa(m(j|a)). (4.38)

∼= indicates equality up to a normalisation constant, as we are using on-the-fly normali-

sation. Using Lemmas 1, 2 and 3 from the previous section, we can express the following

products of factors as

Ψ(i,a)(m(i|a))Ψi(M∂i) = eym
L
(i|a)

(x∗
i (a))

∏

b∈∂i
I(mL

(i|b) = Ti→b(M
R
∂i\b))

× exp



−y
∑

c∈∂i\a
mR

(i|c)(x
∗
i (c))



 , (4.39)

Ψ(i,a)(m(i|a))Ψa(M∂i) = eym
R
(i|a)

(x∗
i (a))

∏

j∈∂a
I(mR

(j|a) = T̂a→j(M
L
∂a\j))

× exp



−y
∑

k∈∂a\i
mL

(k|a)(x
∗
k(a))



 e−yEa(x∗
∂a). (4.40)

When Equations 4.39 and 4.40 are substituted into Equations 4.37 and 4.38, the first

term eym
L
(i|a)

(x∗
i (a)) of ν(i|a)→Ψa(m(i|a)) will cancel with the term e−ymL

(i|a)
(x∗

i (a)) in the sum

wherever ν(i|a)→Ψa(m(i|a)) is used in Equation 4.38. Similarly, the first term eym
R
(i|a)

(x∗
i (a)) of

ν(i|a)→Ψi
(m(i|a)) will cancel with the term e−ymR

(i|c)
(x∗

i (c)) in the sum wherever ν(i|a)→Ψi
(m(i|a))

is used in Equation 4.37. Therefore, by making the following substitution,

ζi→a(m(i|a)) = ν(i|a)→Ψa(m(i|a)) exp(−ymL
(i|a)(x

∗
i (a))) (4.41)

ζ̂a→i(m(i|a)) = ν(i|a)→Ψi
(m(i|a)) exp(−ymR

(i|a)(x
∗
i (a))), (4.42)

we can simplify Equations 4.37 and 4.38 to

ζi→a(m(i|a)) ∼=
∑

M∂i\a

∏

b∈∂i
I(mL

(i|b) = Ti→b(M
R
∂i\b))

∏

c∈∂i\a
ζ̂c→i(m(i|c)), (4.43)

ζ̂a→i(m(i|a)) ∼=
∑

M∂a\i

∏

j∈∂a
I(mR

(j|a) = T̂a→j(M
L
∂a\j))

∏

k∈∂a\i
ζk→a(m(k|a))e

−yEa(x∗
∂a).(4.44)

The above equations can be written in another form by noting that mL
(i|a) only depends
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on mR
(i|b) for b ∈ ∂i \ a and mR

(i|a) only depends on mL
(j|a) for j ∈ ∂a \ i. By writing

Qi→a(x) =
∑

m(i|a)

I(mL
(i|a) = x)ζi→a(m(i|a)), (4.45)

Q̂a→i(x) =
∑

m(i|a)

I(mR
(i|a) = x)ζ̂a→i(m(i|a)), (4.46)

we can seek a solution to the simpler equations

Qi→a(m
L
(i|a))

∼=
∑

MR
∂i\a

I(mL
(i|a) = Ti→a(M

R
∂i\a))

∏

b∈∂i\a
Q̂b→i(m

R
(i|b)), (4.47)

Q̂a→i(m
R
(i|a))

∼=
∑

ML
∂a\i

I(mR
(i|a) = T̂a→i(M

L
∂a\i))

∏

j∈∂a\i
Qj→a(m

L
(j|a))e

−yEa(x∗
∂a). (4.48)

These are known as the 1RSB cavity equations. We will now look at how to find an

approximate fixed point of these equations efficiently for the case of a WPMax-SAT

formula.

4.4.4 The WPSP(y) message passing equations

The messages mL
(i|a) and mR

(i|a) each have two values: a value for Xi = 1 and a value for

Xi = 0. In a tree structured factor graph, each value is the lowest energy achievable in

the subtree rooted at a from (i, a) for the respective assignment to Xi. As we discussed

earlier, the auxiliary graph is constructed in such a way as to limit the assignments that

have non-zero probability to those that correspond to a set of messages that are a fixed

point of the min-sum equations of the original factor graph. Therefore mR
(i|a) is calculated

using the equation

mR
(i|a)(xi) = min

x∂a\i



Ea(x∂a) +
∑

j∈∂a\i
mL

(j|a)(xj)



+ κai. (4.49)

According to this equation, the values that mR
(i|a) can take can be divided into two classes:

mR
(i|a)(0) = mR

(i|a)(1) and mR
(i|a)(0) 6= mR

(i|a)(1). Values that belong to the first class are

produced when the values of xj that minimise the sum
∑

j∈∂a\i m
L
(j|a)(xj) also satisfy

the clause a, which means that the minimum energy achievable in this subtree is not

dependent on the value chosen for Xi. In all other cases, values belong to the second

class. We know that values mR
(i|a)(xi) in this second class have their smallest value for the

xi that satisfies a, and mR
(i|a)(0) and mR

(i|a)(1) cannot differ by more than the weight wa

of the clause a.
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This means that we can determine the value that Xi should take in order to minimise

the energy in that subtree without having to consider all possible values that the message

mR
(i|a) could take. In other words, if mR

(i|a)(xi) differs in its value between xi = 0 and

xi = 1, then we interpret this as a warning that Xi should take the value that satisfies

clause a in order to minimise the energy in that subtree. This is an extension of the idea

of a warning from Braunstein et al. (2005).

A variable Xi can receive conflicting warnings from its neighbouring factors, which means

that Xi is being separately advised to take the value True and also the value False. If we

only consider satisfiable assignments then conflicting warnings from hard clauses will not

occur; however, we must still resolve conflicting warnings from soft clauses. We will want

to choose the value for Xi that results in the smallest overall energy across the graph. If

this value does not satisfy a neighbouring clause a, then i sends a warning to a that it

will not be able to satisfy it.

Let us first split the neighbours of variable i into four sets that are a function of a clause

a connected to i:

1. Hu
i (a) – the set of hard clauses in F where variable Xi appears with an opposite

sign to that which it takes in clause a.

2. Hs
i (a) – the set of hard clauses in F , excluding a, where variable Xi appears with

the same sign to that which it takes in clause a.

3. Su
i (a) – the set of soft clauses in F where variable Xi appears with an opposite sign

to that which it takes in clause a.

4. Ss
i (a) – the set of soft clauses in F , excluding a, where variable Xi appears with the

same sign to that which it takes in clause a.

Each message mL
(i|a) is calculated using the equation

mL
(i|a)(xi) =

∑

b∈∂i\a
mR

(i|b)(xi) + κia. (4.50)

Without loss of generality, let us assume that clause a contains the literal Xj . Then

mL
(j|a)(xj) takes its lowest value at xj = 0 – the value that does not satisfy a – if

∑

b∈Su
j (a)∪Hu

j (a)

mR
(j|b)(1)−mR

(j|b)(0) >
∑

b∈Ss
j (a)∪Hs

j (a)

mR
(j|b)(0)−mR

(j|b)(1). (4.51)

That is to say, the energy would be increased by a larger amount if Xj took the value

that could violate some clauses in Su
i (a)∪Hu

i (a) rather than the value that could violate

some clauses in Ss
i (a) ∪Hs

i (a).
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To make further progress, we will assume that differences between values such as mR
(j|b)(0)

and mR
(j|b)(1) are exactly equal to the weight wb of the clause b from which the message is

sent. As we have discussed above, these values cannot differ by more than the weight wb,

so this is a worst case assumption. It also results in a loss of accuracy but simplifies the

computation of whether a warning is sent from a variable to a clause. Under this scheme,

for a given set of warnings that Xj is receiving, it should sum the weights of those clauses

that contain the literal Xj and are sending a warning, call this sum w+, and sum the

weights of those clauses that contain the literal ¬Xj and are sending a warning, call this

sum w−. If w+ > w−, then Xi = 1 (True) results in a lower total energy across those

subtrees, otherwise Xi = 0 (False) does. This assumption of the worst case can lead us

to erroneous conclusions as is illustrated in Example 1.

Example 1. Consider a clause {¬Xi, Xj} represented by the factor a and the message

mR
(i|a)(xi). Let the clause a have a weight of 10 and consider an incoming message from

j which has the values 4 and 5 for Xj = 0 and Xj = 1, respectively. According to

Equation 4.49, this gives values of mR
(i|a)(0) = 4 + κai and mR

(i|a)(1) = 5 + κai. Hence,

variable Xi is receiving a warning from clause a suggesting that Xi be set to 0 (False) to

satisfy a; however, if Xi does not assume such a value, the cost increases by 1 rather than

the weight of a, since Xj can change its assignment to satisfy clause a.

Surveys

The above outlines a scheme for computing whether a warning is sent from variable i to

clause a. A clause a sends a warning to a neighbouring variable i if a is receiving warnings

from all j ∈ ∂a \ i. Let us return our attention to Equations 4.47 and 4.48, which show

message passing in terms of Qi→a(m
L
(i|a)) and Q̂a→i(m

R
(i|a)). We have outlined why we

only need to consider warning messages in order to find a truth assignment of minimum

energy. Let us now consider the probability of a warning message being exchanged between

variables and factors.

We assume the messages Qi→a and Q̂a→i have been normalised. Define ωi→a(1) as the

probability of a warning being sent from variable i to a and ω̂a→i(1) as the probability of

a warning being sent from clause a to variable i. ωi→a(0) and ω̂a→i(0) are the probabilities

of those warnings not being sent.

ωi→a(1) =
∑

mL
(i|a)

such that

m
L
(i|a)

(x) < m
L
(i|a)

(1 − x)

and Xi = x violates clause a

Qi→a(m
L
(i|a)), (4.52)

ω̂a→i(1) =
∑

mR
(i|a)

such that

m
R
(i|a)

(0) 6= m
R
(i|a)

(1)

Q̂a→i(m
R
(i|a)). (4.53)
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As a result of normalisation, we can write ωi→a(0) = 1−ωi→a(1) and ω̂a→i(0) = 1−ω̂a→i(1).

The probability of a warning being sent is referred to as a survey.

Since a hard clause carries an infinite weight, according to Equation 4.51, if a warning

is received from a hard clause then one side of the inequality will be infinite. Hence, a

warning from a clause b ∈ ∂i \ a must be obeyed and determines whether a warning is

sent from the variable i to clause a.

The probability of variable Xi receiving a warning from a clause in Hu
i (a), a clause in

Hs
i (a), and no clauses in Hu

i (a) ∪ Hs
i (a) is proportional to the terms Hu

i (a), Hs
i (a) and

H0
i (a), respectively:

Hu
i (a) =



1−
∏

b∈Hu
i (a)

(1− ω̂b→i(1))




∏

b∈Hs
i (a)

(1− ω̂b→i(1)), (4.54)

Hs
i (a) =



1−
∏

b∈Hs
i (a)

(1− ω̂b→i(1))




∏

b∈Hu
i (a)

(1− ω̂b→i(1)), (4.55)

H0
i (a) =

∏

b∈Hu
i (a)∪Hs

i (a)

(1− ω̂b→i(1)). (4.56)

The terms are normalised by the sum Hu
i (a) + Hs

i (a) + H0
i (a) since we stipulate that

receiving conflicting warnings from hard clauses is not possible. These equations are the

same as the survey propagation equations for the SAT problem (Braunstein et al. 2005).

In the absence of receiving warnings from neighbouring hard clauses a variable that is

connected to soft clauses must resolve any conflicting warnings from these clauses. By

rewriting Equation 4.51 for only soft clauses,

∑

b∈Su
j (a)

mR
(j|b)(1)−mR

(j|b)(0)−
∑

b∈Ss
j (a)

mR
(j|b)(0)−mR

(j|b)(1) > 0,

we can see that we need to compute the sum h of weights of soft clauses in Su
i (a)∪ Ss

i (a)

that are sending a warning to i, where a warning from a clause b ∈ Su
i (a) contributes

+wb and a warning from a clause c ∈ Ss
i (a) contributes −wc to the sum. If h > 0 then a

warning is sent from variable i to clause a. Let Pi,a(h) be the probability that the set of

incoming warnings to i from clauses b ∈ ∂i \ a is such that this sum is equal to h.

In addition, define the two quantities

Su
i (a) =

∞∑

h=1

Pi,a(h), Ss
i (a) =

−∞∑

h=−1

Pi,a(h). (4.57)

Therefore, Su
i (a) is the probability that a warning is sent from i to a given that there are
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Figure 4.3: Calculating Pi,a(h) if all soft clauses have weight 1. For each soft clause, we ei-
ther receive no warning and move horizontally, or we receive a warning and move up or down
depending on the sign that the variable takes in the clause that is sending the warning.

no warnings incoming to i from hard clauses.

We can now write the message passing equations for what we call weighted partial Max-

SAT survey propagation, or WPSP(y). They are as follows:

ωi→a(1) =
Hu

i (a) +H0
i (a)Su

i (a)

Hu
i (a) +Hs

i (a) +H0
i (a)

(4.58)

ω̂a→i(1) =
∏

j∈∂a\i
ωi→a(1) (4.59)

In summary, variable i sends a warning to clause a if it receives a warning from a hard

clause to take a value that would not satisfy a or it receives no warnings from hard clauses

but a net warning from soft clauses to take a value that would not satisfy a.

4.4.5 Calculating Pi,a(h)

In order to compute Pi,a(h), we do not need to sum over all possible assignments. We

can use dynamic programming to construct the distribution. This has a simple form if

all soft clauses have weight equal to 1, as would be the case in the unweighted Max-

SAT problem (see Figure 4.3). Without loss of generality, we can consider all clauses

in Ss
i (a) first and then consider all clauses in Su

i (a). This is why Figure 4.3 shows only

horizontal or downward movements initially and then switches to only horizontal and

upwards movements.

Let us consider the term e−yEa(x∗(a)) for the message Q̂a→i(m
R
(i|a)) in Equation 4.48. As we

have already discussed, when mR
(i|a)(0) = mR

(i|a)(1), x
∗(a) will satisfy clause a regardless of

the value chosen forXi; in which case, Ea(x
∗(a)) = 0 and the term disappears. Otherwise,

in the case of mR
(i|a)(0) 6= mR

(i|a)(1), we have assumed that the messages differ by wa. In
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Algorithm 5: Calculating Pi,a(h)

Result: The distribution Pi,a(h) of the net sum of weights h of soft clauses in
Ss
i (a) ∪ Su

i (a) sending warnings.
begin1

t← 12

P̃
(1)
i,a (0)← 13

for b ∈ Ss
i (a) do4

for h ∈ {x | P̃ (t)
i,a (x) 6= 0} do5

P̃
(t+1)
i,a (h)← P̃

(t+1)
i,a (h) + (1− ω̂b→i(1))P̃

(t)
i,a (h)6

P̃
(t+1)
i,a (h− wb)← P̃

(t+1)
i,a (h− wb) + ω̂b→i(1)P̃

(t)
i,a (h)7

t← t + 18

for b ∈ Su
i (a) do9

for h ∈ {x | P̃ (t)
i,a (x) 6= 0} do10

P̃
(t+1)
i,a (h)← P̃

(t+1)
i+1 (h) + (1− ω̂b→i(1))P̃

(t)
i,a (h)11

P̃
(t+1)
i,a (h+ wb)← P̃

(t+1)
i,a (h + wb) + ω̂b→i(1)P̃

(t)
i,a (h)e

−yθ(h,wb)
12

t← t + 113

Z ←∑∞
h=−∞ P̃

(t)
i,a (h)14

Pi,a(h)← 1
Z
P̃

(t)
i,a (h)15

end16

this case, the value of Ea(x
∗(a)) will depend upon the value assigned to Xi. If Xi’s

value does not satisfy clause a, then Ea(x
∗(a)) equals wa, otherwise it equals 0 and the

term disappears. Therefore, when a warning is being sent, we defer inclusion of the term

e−yEa(x∗(a)) in the calculation of ω̂a→i(1) until we know the best assignment for Xi. That

is to say, each value h determines the assignment of Xi, so the computation of Pi,a(h)

includes a term e−ywa for each clause a that took part in the sum that gave h and had its

warning ignored.

Let us now look at how this affects the computation of Pi,a(h), which is described in

detail in Algorithm 5. Firstly, P̃
(t)
i,a (x) is initialised to 1 for t = 1, x = 0 and to 0 for

all other values of t and x. While we are in the h < 0 area, any warning from a clause

b ∈ Ss
i (a) decreases h by wb (line 7) and if we remain in this area, then the assignment

to Xi will eventually be such that clauses in Ss
i (a) are satisfied. Thus, we should not be

multiplying by the term e−yEa(xi). While we are in the h < 0 area, any warning from a

clause in b ∈ Su
i (a) will increase h by wb (line 12). If we are still in the h < 0 area after

considering all clauses in Su
i (a), then the minimum energy will be achieved by assigning

Xi to a value that violates clauses in Su
i (a). Therefore, when we receive a warning from

a clause b ∈ Su
i (a) while in the region h < 0 we must multiply by e−ywb .

If we cross the boundary to the h > 0 region, then the preferred value for Xi is now the
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one that satisfies clauses in Su
i (a). Then all the terms e−ywb that we included while we

were in the h < 0 region no longer originate because of warnings received from clauses

b ∈ Su
i (a), but instead they are attributed to clauses in Ss

i (a). This is still correct because

in order for an upwards movement in the h < 0 region to be made, a downward movement

must have been made beforehand. While in the h > 0 region, we never include the term

e−ywb when a warning is received from a clause b ∈ Su
i (a) because this region indicates

that the warning clause will eventually be obeyed by the assignment to Xi.

The θ term found in line 12 is introduced to describe what happens when a transition

is made from h < 0 to h ≥ 0 by receiving a warning from a clause in b ∈ Su
i (a) with a

weight wb. Say we were at h1 < 0 before receiving the warning and at h2 = h1 + wb ≥ 0

after receiving the warning. Then we should include the term eyh1 . We do not include

the full weight e−ywb because on crossing the boundary we switch the assignment that

should be made to Xi to one that will satisfy clauses in Su
i (a) and so the penalties are

now attributed to clauses from Ss
i (a) and e

yh1 is the remaining unaccounted for penalty

term. Consequently, θ is defined as

θ(h, w) =







0 if h > 0,

w if h+ w < 0,

−h otherwise.

(4.60)

Figure 4.4 illustrates an example of the possible paths that lead to different values of h

for incoming warnings from three soft clauses.

4.4.6 Finding a fixed-point of the WPSP(y) equations

Before applying the survey propagation technique to a WPMax-SAT formula we prepro-

cess the formula so that it contains no unit hard clauses or pure literals. As described in

Section 2.3.2, we do this by performing unit propagation on hard unit clauses and setting

pure literals to True. We also remove trivially satisfied clauses such as those that contain

both a literal ℓ and ¬ℓ.
The procedure for finding a fixed-point of the WPSP(y) equations is given in Algorithm 6.

The procedure starts by initialising all surveys {ω̂a→i(1)}(i,a)∈E in the graph to random

values in the range [0, 1]. To avoid repeating calculations, we cache the values ωi→a(1)

and recompute them from {ω̂b→i(1)}b∈∂i\a only when it is possible that they might have

changed. Surveys are iteratively updated in place by applying the WPSP(y) equations.

In each iteration the order in which clauses are visited is randomised. For each clause

that we visit we update each outgoing survey. We repeat this procedure until no survey

changes by more than the convergence precision ǫ = 0.001 during a single iteration or the
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Figure 4.4: An illustration of the different energy levels that are possible from incoming warnings
for a variable Xi sending a message to clause a when Su

i (a) contains a single clause with weight
4 and Ss

i (a) contains two clauses with weight 2 and 5, respectively.

number of iterations exceeds the upper limit tlim. The return value indicates whether the

procedure has been successful in finding a fixed point of the equations.

Algorithm 6: Finding a fixed-point of the WPSP(y) equations

begin1

Initialise all surveys {ω̂a→i(1)}(i,a)∈E to random numbers in the range [0, 1].2

for t← 1 to tlim do3

Let π be a randomly selected permutation of {1, . . . , m}.4

hasChanged← false5

for p← 1 to m do6

for i ∈ ∂π(p) do7

ω̂′
π(p)→i(1)← T̂π(p)→i({ωj→a(1)}j∈∂π(p)\i)8

if
∣
∣
∣ω̂′

π(p)→i(1)− ω̂π(p)→i(1)
∣
∣
∣ > ǫ then9

ω̂π(p)→i(1)← ω̂′
π(p)→i(1)10

hasChanged← true11

if ¬hasChanged then return Success12

return Failure13

end14
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4.4.7 Calculating bias estimates

Once an approximate fixed-point is found, we must use the surveys to decide which

variable to assign to next and which value should be chosen for that assignment. Earlier,

in Equation 4.22, we gave the form that the max-marginal takes when using the min-sum

equations. We noted that, for variable Xi, the max-marginal µmax
i (xi) takes its maximum

value at the same xi that minimises the sum,

∑

a∈∂i
η̂a→i(xi), (4.61)

of incoming messages in the min-sum message passing scheme. Deciding how to minimise

the above equation is similar to how we decided to minimise Equation 4.50 earlier. Instead

of the summation being over b ∈ ∂i \ a, it is over a ∈ ∂i.
In the same manner with which we defined the terms in Section 4.4.4 we now define the

following:

1. H+
i – the set of hard clauses in F that contain the literal Xi.

2. H−
i – the set of hard clauses in F that contain the literal ¬Xi.

3. S+
i – the set of soft clauses in F that contain the literal Xi.

4. S−
i – the set of soft clauses in F that contain the literal ¬Xi.

The probability of variable Xi receiving a warning from a clause in H+
i , a clause in H−

i ,

and no clauses in H+
i ∪H−

i is proportional to the terms H+
i , H−

i and H0
i , respectively:

H+
i =



1−
∏

b∈H+
i

(1− ω̂b→i(1))




∏

b∈H−
i

(1− ω̂b→i(1)), (4.62)

H−
i =



1−
∏

b∈H−
i

(1− ω̂b→i(1))




∏

b∈H+
i

(1− ω̂b→i(1)), (4.63)

H0
i =

∏

b∈H+
i ∪H−

i

(1− ω̂b→i(1)). (4.64)

Let P̃i(h) be proportional to the probability of variable Xi receiving a set of warnings from

soft clauses such that the weight of those clauses sums to h, where the weights of soft

clauses found in S+
i and S−

i contribute positively and negatively to the sum, respectively.
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The normalised distribution is written as Pi(h) =
1
Zi
P̃i(h), where Zi =

∑∞
h=−∞ P̃i(h). We

define S+
i as the probability of receiving a set of warnings from soft clauses that leads

to the aforementioned sum of weights equalling a value greater than zero. Similarly, we

define S−
i to be equal to the probability that the sum is less than zero, as follows:

S+
i =

∞∑

h=1

Pi(h), S−
i =

−∞∑

h=−1

Pi(h). (4.65)

Pi(h) can be calculated by a simple modification to Algorithm 5. Line 4 should be changed

to iterate over b ∈ S−
i and line 9 should be changed to iterate over b ∈ S+

i .

Xi should take the value True if either it receives a warning from a clause in H+
i or it

receives no warnings from hard clauses and the sum of weights of clauses in S+
i that it

receives warnings from is greater than the sum of weights of clauses in S−
i that it receives

warnings from. Since these two events are mutually exclusive, we can write them as a sum

of two probabilities. The case when Xi should take the value False is the same but with

the + and − roles switched. We define the probability that Xi should take the values

True and False as B+
i and B−

i , respectively. Assuming that messages from neigbouring

nodes are sent independently, B+
i and B−

i can be written as

B+
i =

H+
i +H0

iS+
i

H+
i +H−

i +H0
i

, B−
i =

H−
i +H0

iS−
i

H+
i +H−

i +H0
i

. (4.66)

Bias(i) = B+
i − B−

i . (4.67)

The bias of variable Xi is equal to Bias(i).

When a variable is selected for assignment, it should be assigned to True if B+
i −B−

i > 0

and False otherwise. If no variable’s absolute bias exceeds a threshold in between 0 and

1, then this might indicate that further assignments using the bias estimates may not be

worthwhile and we should switch to a different search strategy.

Figures 4.5 and 4.6 show the measured biases for all unassigned variables, calculated from

four fixed points of the survey propagation equations we obtained by running Algorithm 6

to convergence on problems p18 from Rovers and p12 from DriverLog (see Chapter 5 for

information on these problems). One can see that most variables either have a bias of

+1, −1 or a value close to 0. Also, note that many action variables have a bias of −1.
This is not so surprising since we expect only a small number of actions to be executed;

however, setting an action variable to False makes an early commitment to not execute

that action, but does not make any real progress towards forming a plan that achieves a

set of goals. Consequently, we decided to pursue a strategy that uses survey propagation

to identify variables that should be set to True.
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Three methods for choosing the next variable to assign to, taken from the survey inspired

decimation algorithm (Braunstein et al. 2005), are:

1. Select the variable with the highest absolute bias |B+
i − B−

i |,

2. Select with uniform probability from all variables that have an absolute bias exceed-

ing a certain threshold.

3. Set multiple variables with a high bias to their suggested value.

Our empirical results show that the biases tend to belong to one of three groups: either

equal to +1, 0 or −1. This would make the first scheme awkward to implement as an extra

criterion would be needed to choose between two variables that had a similar bias. The

third scheme is not very conservative as it may be the case that two variables with a high

positive bias are not simultaneously true in any complete truth assignment. Thus, it seems

preferable to select with uniform probability from the variables highly biased towards a

True value and it is this scheme that we adopt in our implementation. Variations on this

scheme can be made by adjusting the threshold that constitutes a high bias, and it is not

clear what is an appropriate value and whether this is problem dependent. We use the

same value of 0.3 for our threshold across all problems in our implementation.

We also restricted our selections to fact variables as this appeared to give better results

in our preliminary experimentation. This required each CNF file to be accompanied by

an annotation file that describes the type of each variable. The WPMax-SAT solver we

describe in the following sections uses this file to determine the type of each variable.



88 4.4. SURVEY PROPAGATION

0 2000 4000 6000 8000
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 2000 4000 6000 8000
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 2000 4000 6000 8000
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 2000 4000 6000 8000
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

Fixed points of WPSP(y) for Rovers p18

Figure 4.5: Bias of unassigned variables calculated from four fixed points of the survey propa-
gation equations that were found for problem 18 of the Rovers domain.

0 400 800 1200 1600
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 400 800 1200 1600
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 400 800 1200 1600
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

0 400 800 1200 1600
Variable Id

�1.0

�0.5

0.0

0.5

1.0

Bi
as

Fact Action

Fixed points of WPSP(y) for DriverLog p12

Figure 4.6: Bias of unassigned variables calculated from four fixed points of the survey propa-
gation equations that were found for problem 12 of the DriverLog domain.
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4.5 Restart strategy

A Las Vegas algorithm is one which always produces the correct answer if it terminates,

but has a running time that is a random variable. If the distribution over running times

is sufficiently wide then we may be able to find an answer more quickly by repeating

runs with limits on the number of steps each run can take. A restart strategy (t1, t2, , . . . )

specifies that for a Las Vegas algorithm A, it should be first run for a maximum of t1

steps; then A is started again and run for at most t2 steps, and so forth until a run of

A returns an answer. Each time A is run, its running time is randomly determined; by

limiting the number of steps in each run we hope to terminate runs that have a long

running time and retry to find a run that has a short running time, and by doing this

reduce the total expected running time.

4.5.1 Luby strategy

If we know the distribution of running times, that is the probability p(t) of A terminating

after exactly t steps, then there is a known optimal restart strategy. However, typically

we do not have such knowledge, so we must adopt a restart strategy that works well

regardless of the underlying distribution on running times. The Luby strategy fulfills this

requirement and can be shown to have an expected running time that is optimal amongst

other restart strategies up to a constant factor (Luby et al. 1993).

The Luby strategy of run lengths is

(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...).

Every element in the strategy is a power of two, starting with 1 for the first element. The

sequence of run lengths can be generated by repeated applications of the following rule.

Rewrite the sequence as two repetitions of the sequence generated so far, and then set

the next element in the sequence to double the value of the largest element found so far.

Alternatively, the above strategy can be precisely described as (luby(1), . . . , luby(i), . . . )

where luby(i) is defined as

luby(i) =







2k−1 if i = 2k − 1,

luby(i− 2k−1 + 1) if 2k−1 ≤ i < 2k − 1.
(4.68)

Restarts in message passing

Without the limit tlim, Algorithm 6 can be classified as a Las Vegas algorithm. The

objective is to find a fixed point of the WPSP(y) equations. Since the messages are
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initialised to random values on each run, and the order in which the messages are updated

is randomised, the number of iterations before a fixed point is reached is a random variable.

Moreover, since we are not guaranteed to find a fixed point, the running time could be

infinite.

We do not expect to have information about the distribution of the number of iterations

required before reaching a fixed point of message passing. Therefore, it is sensible to

adopt a Luby restart strategy to set the value tlim of the maximum number of iterations

to perform without finding a fixed point before restarting message passing from a new set

of initial messages.

Restarts in SAT solvers

Gomes et al. (1997) showed empirically, for backtracking SAT solvers, that the erratic

behaviour of the sample mean and variance, when measuring the number of backtracks

before a solution is found, for increasing numbers of trials, were similar to what one

might expect from heavy-tailed distributions. Informally, a heavy-tailed distribution is

one which does not decay exponentially and so carries more probability weight in the tails

than a normal distribution, for example. Such distributions can have infinite variance

and mean, although for a SAT solver, the number of backtracks is bounded to a number

that is exponential in the size of the input, and so we talk about bounded heavy-tailed

distributions as having a mean or variance that is exponential in the size of the input.

This heavy-tailed behaviour could be removed by incorporating randomised restarts into

the solution procedure (Gomes et al. 1998). Chen et al. (2001) presented three mod-

els of backtracking search and showed how imbalanced trees could lead to heavy-tailed

distributions; however, the authors found that balanced trees did not lead to such distri-

butions and so would not benefit from restarts. This leads to the theory that SAT solvers

which employ good heuristics lead to imbalanced trees which cause them to suffer from

heavy-tailed distributions in their running times. This partly explains the prevalence of

randomised restart strategies in successful SAT solvers.

4.6 IncorporatingWPSP(y) into aWPMax-Sat solver

We now present a complete and optimal solver for weighted partial maximum satisfiability

problems, based upon the MiniMaxSat solver (Heras and Larrosa 2006), that incorpo-

rates survey propagation as a variable/value selection heuristic. The MiniMaxSat solver

is itself built upon MiniSat+ (Eén and Sörensson 2006). We build our implementation

of MiniMaxSat on top of MiniSat2.2, which is a minor upgrade of the 2008 SAT-Race

‘CNF sequential’ track winner MiniSat2.1 (Sörensson and Eén 2009).
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Survey propagation has been incorporated into a SAT solver in the Varsat system (Hsu

and McIlraith 2009). Our work is different to Varsat in that we handle the optimi-

sation variant incoporating the WPSP(y) equations, which we have developed, into a

WPMax-SAT solver. We also make some different design choices to Varsat; for exam-

ple, Varsat stops using survey propagation once its bias estimates do not exceed an

activation threshold. We found that on finding such a fixed point, restarting the mes-

sage passing procedure might lead to a different fixed point which did have a variable

with a sufficiently high bias. Like Varsat, we found that performing message passing is

computationally intensive; hence, we limit its use to the initial decision levels.

4.6.1 MiniMaxSat’s main search routine

Algorithm 7: Max-Sat main search routine

Result: the pair (b, u) where b is True iff the problem is satisfiable and u is the
cost of the best solution found.

begin1

while true do2

C ← Propagate()3

if C is HardConflict then4

if decisionLevel = 0 then return (false,∞)5

level ← Analyse(C)6

Backjump(level)7

else if C is SoftConflict then8

success ← ChronologicalBacktrack()9

if not success then return (true,upperBound)10

else11

ℓ← PickBranchLiteral()12

if ℓ is Undef then13

// Found a model
if lowerBound < upperBound then // If we’ve found a better solution14

upperBound ← lowerBound15

if upperBound = 0 then return (true,0)16

success ← ChronologicalBacktrack()17

if success then return (true,upperBound)18

else19

NewDecisionLevel(ℓ)20

end21

In line 3 unit propagation is performed: any hard clauses that have become unit have

their remaining literal added to the propagation queue, any soft clauses that have become
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unit have their cost added to UnitWeight(ℓ). This propagation procedure is repeated

until either a conflict is encountered and returned or there are no remaining literals in

the propagation queue and no conflict is returned. The algorithm then procedes based on

the type of returned conflict. Hard conflicts correspond to a hard clause becoming empty.

Soft conflicts correspond to the lower bound exceeding the current upper bound.

If a hard conflict is encountered and the algorithm is at decision level 0, then this indicates

that the problem has a subset of hard clauses that is unsatisfiable. Otherwise, in line 6

the conflict is analysed and the decision level to backtrack to is returned.

If a soft conflict is encountered then we attempt to perform chronological backtracking

in line 9, which returns True if and only if the attempt was successful. Chronological

backtracking unwinds the propagation queue to the first decision literal for which we have

not tried its alternative value. If the attempt failed then we have exhausted all possible

assignments and can return the best solution found as the solution with optimal cost.

If unit propagation did not encounter any conflicts, then we choose the next literal to

branch on as in line 12. If the literal ℓ returned is undefined then this means that there

are no remaining unassigned variables and we have arrived at a solution. The current

lower bound is therefore an exact value for the cost of the solution. If the new solution

has a lower cost than any other we have found, we update the upper bound to the current

cost and save the solution. If the cost is 0 then we know it is optimal because we only

allow non-negative weights for clauses, and so we return that solution. Otherwise, we

attempt to chronologically backtrack to find other solutions. If this attempt fails then

we have exhausted all possible assignments and can return the best solution so far as the

optimal one.

Finally, if the literal ℓ was not undefined, we create a new decision level and add ℓ to the

propagtion queue in preparation for the next iteration of the loop.

4.6.2 Lower bounding in MiniMaxSat

The first step in improving the lower bound in MiniMaxSat is to identify unit soft

clauses ({ℓ}, u) and ({¬ℓ}, v) that are present in the formula for any literal ℓ. Since

either ℓ or ¬ℓ must be false in a total assignment, any total assignment will incur a cost

of at least m = min(u, v) as a result of those two clauses being present in the formula.

Therefore, those clauses can be changed to ({ℓ}, u−m) and ({¬ℓ}, v−m), and the lower

bound can be updated as lowerBound← lowerBound+m.

The second technique to improve the lower bound is to perform a procedure called Sim-

ulated Unit Propagation. This assumes all soft clauses are in fact hard and then iterates
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unit propagation under this assumption. If the empty clause is derived, then this in-

dicates that a subset of hard and soft clauses are together unsatisfiable. A resolution

refutation tree is built by unwinding the propagation queue. Each literal that is present

on the propagation queue keeps track of the original clause that became unit and hence is

the reason for that literal being added to the propagation queue. Start with the original

clause C1 that has become empty. The first literal ℓ1 whose negation is present in C1

has its reason clause resolved with C1 to give a clause C2. We then keep unwinding the

propagation queue until a literal ℓ2 is found whose negation is in C2, and then the reason

clause for ℓ2 is resolved with C2 to give a clause C3. This process is continued until the

empty clause is derived1. When the empty clause is derived, we are left with a list of

clauses C1, . . . , Cn, for some n, that form a resolution refutation tree. We know that the

clauses in this tree cannot be simultaneously satisfied; moreover, all hard clauses must

be satisfied. Therefore, we can identify the minimum weight m of soft clauses in the tree

and subtract that from all soft clauses in the tree while adding m to lowerBound.

MiniMaxSat can also perform Max-Sat resolution based lower bounding, which we do

not implement. This applies a Max-SAT resolution transformation rule between clauses

in the resolution refutation tree. Eventually, this results in a soft empty clause being

derived with weight equal to the minimum weight amongst all clauses in the tree. This

procedure transforms the formula and must be undone on backtracking. MiniMaxSat

heuristically selects between Max-SAT resolution and substraction based lower bounding

while our implementation uses substraction based lower bounding exclusively.

We do not implement a procedure called soft probing, which is used as a preprocessing

step in MiniMaxSat. For each literal ℓ it assumes that ℓ is true and performs simulated

unit propagation to identify whether this leads to an empty clause. If an empty clause

is encountered, then either the resolution refutation tree consists entirely of hard clauses,

in which case we can infer that ¬ℓ must be true, or we can take the minimum weight m

of the soft clauses in the refutation tree and add the unit soft clause ({¬ℓ}, m) at the

same time as subtracting m from the weights of soft clauses in the tree. This can lead to

improvements in the lower bound.

4.6.3 Selecting the branch literal

In line 12 of Algorithm 7 the function PickBranchLiteral() returns the next literal

to branch upon. We now review the existing branching strategies of VSIDS, Jeroslow-

Wang and weighted Jeroslow-Wang which are used in MiniMaxSat. We then discuss

our implementation of PickBranchLiteral() that is different to MiniMaxSat in that

1The reason clause for a decision literal ℓ is taken to be the hard unit clause {ℓ}
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it incorporates a different strategy for the initial branching decisions and then reverts to

that used by MiniMaxSat for the remaining branching decisions.

Marques-Silva (1999) argues that while the choice of branching strategy is important to

the success of a DPLL propositional SAT solver, more significant gains are achieved by

applying techniques such as clause learning and non-chronological backjumping to prune

the search space. As we have said before, in a solver such as MiniMaxSat the branching

strategy affects the ability to prune through lower bounding; so it is possible that the

importance of the choice of branching strategy is increased for these types of algorithms.

VSIDS heuristic

The Variable State Independent Decaying Sum (VSIDS) branching heuristic (Moskewicz

et al. 2001) favours choosing literals that have recently been involved in clause learning.

The rationale is that solvers encounter and learn many hard conflicts during search on

hard problems and decisions made by the solver should respect the most recent of these

conflicts.

The heuristic is computed as follows. For each literal in the formula, an activity value is

stored, which is initialised to 0. Each time a clause is added to the formula via conflict

learning, each literal in that clause has its activity incremented by 1. The unassigned

literal with the highest activity is selected to be assigned to True next. Periodically

all activities are divided by a constant, which corresponds to the decaying part of the

algorithm. This allows past activity to be forgotten and an emphasis to be placed on

recently learned clauses.

The VSIDS-like heuristic adopted in MiniSat+ records an activity for each variable

rather than each literal. If a variable v appears in the conflict clause, either as v or ¬v,
then its activity is boosted by 1. The next decision literal chosen is the unassigned variable

v with the highest activity. The literal v is then set to True. This is the default setup,

but there are alternatives to this strategy such as randomly choosing between setting v

or ¬v to True.

Jeroslow-Wang heuristic

Let F be any propositional formula written in CNF, the Jeroslow-Wang heuristic (Jeroslow

and Wang 1990) of literal ℓ is defined as

J(ℓ) =
∑

C∈F
s.t. ℓ∈C

2−|C|. (4.69)
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The rational for this expression is that for a formula with n variables, each clause of length

p rules out 2n−p of the 2n possible truth assignments; of course, for multiple clauses, the

assignments that are ruled out might intersect. Thus, 2nJ(ℓ) is an upper bound to the

number of truth assignments that are ruled out by the clauses that ℓ appears in. Setting ℓ

to True satisfies those constraints and hopefully allows greater flexibility in the remaining

2n−1 assignments. Thus, the one-sided Jeroslow-Wang heuristic suggests that we set the

currently unassigned literal ℓ that has the largest J(ℓ) value. A two-sided version of the

Jeroslow-Wang heuristic selects the variable v that has maximum J(v) + J(¬v) over all

other variables and sets v to True if J(v) > J(¬v) and False otherwise.

Weighted Jeroslow-Wang heuristic

A weighted version of the Jeroslow-Wang heuristic applicable to literals ℓ from a CNF

formula F is given by Heras et al. (2008) as

Jw(ℓ) =
∑

(C,w)∈F
s.t. ℓ ∈ C

2−|C|w. (4.70)

When w = ⊤, a value which is greater than the sum of weights of all soft clauses is used.

This is provided by the DIMACS format but is set to one more than the sum of weights

of all soft clauses in our generated problems. If a weight is large then this boosts the

importance of satisfying that clause.

The selection algorithm

Our modification to PickBranchLiteral() is shown in Algorithm 8. In Section 4.6.4 we

will discuss three strategies for selecting a decision variable: WPSP(y), Rand and Basic.

The performance of these strategies are compared in Chapter 5. First, we will describe

how these strategies are used in the solver.

The chosen strategy is assigned to selectionStrategy. The method selectLiteral() re-

turns a decision variable according to the chosen strategy. For the first seven decision lev-

els we attempt to select a literal using selectionStrategy. If the method selectLiteral()

fails to select a variable in line 3, it will return Undef. In this case, PickBranchLiteral()

returns a literal to branch on according to MiniMaxSat’s normal routine described in

lines 5–22.

Lines 5–22 choose between two heuristic methods: if there is an unassigned variable v that

appears as a literal ¬v in one unsatisfied hard clause and v in another unsatisfied hard
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clause then the VSIDS-like heuristic is used, otherwise the one-sided2 weighted Jeroslow-

Wang heuristic is used. The function useJeroslow() in line 6 performs this test and returns

True if and only if the weighted Jeroslow-Wang heuristic should be used according to the

test above. Note that if this test returns True, then we have essentially found an assign-

ment that satisfies all hard clauses, since we can set each remaining unassigned variable

to a value that satisfies the clauses it appears in, and our only remaining consideration is

how to minimise the cost of the total assignment.

The original MiniMaxSat system uses the two-sided weighted Jeroslow-Wang heuristic,

which orders variables by Jw(ℓ) + Jw(¬ℓ); however, in our encodings all action variables

only occur in their negated form in soft clauses so there is no difference between the two-

sided and one-sided variants in those cases, whereas goal variables have both unnegated

and negated occurrences in soft clauses. Thus, we decided to use the one-sided variant to

reduce the effect of this bias. We expect most choices to be made with the the VSIDS-

like heuristic, especially early on in the search, since the condition to use the weighted

Jeroslow-Wang heuristic will fail until an assignment that satisfies all hard clauses is

found.

Both heaps wjeroMaxHeap and vsidsMaxHeap are reconstructed before the procedure in

Algorithm 8 is called. The heap wjeroMaxHeap is structured so that the top element is

the variable v such that for either ℓ = v or ℓ = ¬v, Jw(ℓ) has maximum value amongst all

other variables in the formula. If the variable returned by the heap in line 10 is already

assigned a value then we continue through the loop to select another variable from the

heap. If at a particular iteration we find that the heap is empty, as is tested in line 8, then

there can be no remaning unassigned variables to choose from so the procedure returns a

special symbol Undef in line 22 to indicate this.

Similarly, the heap vsidsMaxHeap is structured so that the top element is the variable v

with highest activity. Again, we loop through lines 16 to 21 until either an unassigned

variable is popped from the heap, in which case we return this variable as an unnegated

literal, or vsidsMaxHeap becomes empty, in which case we return Undef to indicate that a

total assignment has been found.

4.6.4 Selection strategies

In line 3 of Algorithm 8, a selection strategy is used to choose the next literal to branch

upon. We now outline three different strategies called WPSP(y), Rand and Basic, that

we compare in our experimental results in Chapter 5. The WPSP(y) strategy uses survey

propagation to identify an unassigned fact variable to set to True; the Rand strategy

2The original MiniMaxSat system uses the two-sided weighted Jeroslow-Wang heuristic.
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Algorithm 8: PickBranchLiteral function

Result: the literal to branch on
begin1

if decisionLevel < 8 then2

ℓ← selectionStrategy.selectLiteral()3

if ℓ 6= Undef then return ℓ4

// Otherwise, choice is by VSIDS or weighted Jeroslow-Wang heuristic.
v ← Undef5

if useJeroslow() then6

while v = Undef do7

if wjeroMaxHeap.isEmpty() then return Undef8

else9

v ← wjeroMaxHeap.removeMax()10

if ¬isAssigned(v) then11

if Jw(v) > Jw(¬v) then return v12

else return ¬v13

else v ← Undef14

else15

while v = Undef do16

if vsidsMaxHeap.isEmpty() then return Undef17

else18

v ← vsidsMaxHeap.removeMax()19

if ¬isAssigned(v) then return v20

else v ← Undef21

return Undef22

end23

sets a randomly chosen unassigned fact variable to True; and the Basic strategy uses the

normal procedure outlined in lines 5–22 of Algorithm 8.

The WPSP(y) selection strategy

This strategy is described in Algorithm 9. It attempts to run survey propagation until

convergence is reached. If this is successful, it uses the bias estimates obtained from the

fixed point messages to decide which literal to return. Our strategy only selects variables

that encode facts from the planning graph.

The function RunSP, which is called in line 4, takes a single argument specifying the

maximum number of iterations of message passing that can be performed before returning.

tmax is held fixed throughout a run, but luby(i) changes with each attempt according to

the Luby strategy defined in Equation 4.68. This allows an increase in the maximum
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Algorithm 9: Survey propagation high bias selection strategy.

begin1

state ← Unconverged2

for i← 1 to 10 do3

state ← RunSP(luby(i)× tmax)4

if state = Converged then break5

if state = Converged then6

stack ← ∅7

for v ← 1 to N do8

if Fact(v) and Bias(v) > 0.3 and ¬Assigned(v) then stack.push(v)9

k ← Random(0,stack.size())10

if k ≥ 0 then return stack.getElement(k)11

return Undef12

end13

number of iterations if we repeatedly fail to reach convergence. After ten attempts to find

a fixed point of message passing, the strategy gives up and returns Undef to indicate that

a variable has not been selected.

If convergence does occur, we iterate through each variable in line 8 and check if the

following three conditions hold: the variable encodes a fact from the planning graph,

it has a high bias (> 0.3) and is not currently assigned a value. If all three of these

criteria are met, then that variable is added to a stack. In lines 10 and 11 we select

randomly from amongst the variables that have been accumulated on stack. If there

are no unassigned variables that meet the above criteria, the function returns Undef to

indicate that a variable has not been selected. Note that if a variable is selected then this

variable’s value will be initially set to True.

The Rand selection strategy

This strategy is described in Algorithm 10. It selects uniformly from all unassigned

variables that encode facts from the planning graph. If there are no remaining unassigned

variables that correspond to facts in the planning graph, then the method returns Undef

to indicate this. Note that if a variable is returned, it will initially be set to True.

A random selection strategy is not necessarily as bad as one first might suppose it to

be. If it is combined with an aggressive restart policy, then it has the potential to abort

early mistakes. For propositional satisfiability, Marques-Silva (1999) compared a random

variable branching heuristic with other heuristics that selected based on certain problem

statistics. For some problem domains, a random selection strategy outperformed all other

heuristics, including one-sided and two-sided Jeroslow-Wang heuristics.
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Algorithm 10: Random selection strategy.

begin1

stack ← ∅2

for v ← 1 to N do3

if Fact(v) and ¬Assigned(v) then stack.push(v)4

k ← Random(0,stack.size())5

if k ≥ 0 then return stack.getElement(k)6

return Undef7

end8

The Basic selection strategy

This strategy uses the normal procedure outlined in lines 5–22 of Algorithm 8. Hence,

there is no change between the branching literal selection used in the first seven decision

levels to that used for the remaining decision literals. This strategy is not randomised;

however, this does not imply that there is no difference in the search path taken after a

restart compared to the path taken before the restart. This is because a solution that is

found before the restart could lower the upper bound which might allow pruning to occur

after the restart where previously it could not have been done because the upper bound

was higher. This would result in a different search path after the restart.

4.7 Summary

We have introduced and presented an extension of the SP(y) algorithm that can be applied

to WPMax-SAT problems. Our extension handles the partial nature of the formula: it

allows the specification of hard clauses that must be satisfied and soft clauses that describe

an optimisation function. We allow soft clauses to have arbitrary positive integer weights

whereas SP(y) restricts soft clauses to have a weight equal to 1 or 0. We refer to our

equations as the WPSP(y) equations.

We also presented a method for incorporating bias estimates derived from a fixed point

of the WPSP(y) equations in a WPMax-SAT solver based upon the architecture of Min-

iMaxSat. Our modifications preserve the optimal and complete properties of Mini-

MaxSat. We will use this system to investigate the effects of using such bias estimates

to provide heuristic guidance in the solver. The theory predicts that if the approximations

are reasonable, we can use these bias estimates to direct the search towards lower cost

solutions.



Chapter 5

Results

In this chapter we present our experimental results. These are divided into two main

sections. In Section 5.2 we study the performance of a general purpose WPMax-SAT

solver when applied to planning problems represented in SAT using the encoding scheme

presented in Chapter 3. This is compared against a general purpose mixed integer pro-

gramming solver applied to an integer programming encoding devised by Do et al. (2007).

In Section 5.3 we evaluate how successful theWPSP(y) equations are in providing heuristic

guidance within a WPMax-SAT solver by comparing the strategies described in Chapter 4.

We then present results describing an approximate version of the WPSP(y) strategy that

may be more suitable in practice.

5.1 Problem domains

Throughout this chapter, we use benchmark problems, taken from previous International

Planning Competitions, as a starting point for our evaluation. We modified these problems

to contain action costs and descriptions of goal utility dependencies, which are not present

in past competitions. Below are brief descriptions of the domains that we used in our

experimental analyses.

Depot

The Depot domain consists of crates, trucks, pallets, hoists and places. Crates can be

lifted and dropped by hoists. When a crate is being held by a hoist, it can be loaded

into a truck or released onto another crate or pallet. Hoists can also be used to unload

crates from trucks. In order to execute these actions the relevant truck, crates, hoists and

pallets must be co-located. Finally, trucks can transport crates between places.

100
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DriverLog

The DriverLog domain consists of drivers, trucks, packages and locations. Objects must

be loaded into trucks, which are then driven to locations where there exists a path between

the two locations. Objects can then be unloaded from trucks at their target destinations.

Drivers may need to walk from their current location to one where a truck is, and they

can only walk between locations where there is a path connecting them.

ZenoTravel

The ZenoTravel domain consists of people, aircraft, cities and fuel-levels associated with

each aircraft. There are two modes of flying: one which is slower but consumes less fuel;

the other is faster but consumes more fuel. People can board and debark from aircraft at

their location. Aircraft can transport people on board between cities. Aircraft must not

run out of fuel though, so there is also a refueling action.

Rovers

The Rovers domain consists of vehicles that can navigate between waypoints; these vehi-

cles are variously equipped with aparatus necessary to perform activities such as capturing

images or taking rock or soil samples. The results of these analyses must then be com-

municated to the lander.

Truck

The Truck domain is another logistics domain where packages need to be moved between

locations by trucks. The loading space in a truck is divided into areas, and packages can

only be loaded onto an area if all areas between it and the truck door are empty. Some

packages must be delivered to locations by a deadline.

Pathways

The Pathways domain is based on biochemical pathways from the field of molecular bi-

ology. Reactions that are likely to occur in the pathway are modelled by an action with

preconditions representing reactants and effects that denote products of the reaction.
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5.2 Goal Utility Dependencies

In this section we report experimental results concerning the use of the general purpose

WPMax-SAT solver, MiniMaxSat1.0, to solve STRIPS based planning problems with

goal utility dependencies. We compare this strategy with an integer programming based

approach.

5.2.1 Experimental setup

At the time of writing, the iPUD system was the only other compilation-based approach

to STRIPS planning with goal utility dependencies described in the literature. We com-

pared our system MSatplan with iPUD using a one state change (1SC) encoding over a

collection of problems derived from past International Planning Competition (IPC) bench-

marks: DriverLog, Depot, ZenoTravel and Rovers from IPC3; and Truck and Pathways

from IPC4. These benchmark problems did not have utility functions exhibiting goal util-

ity dependencies attached to them; therefore, it was necessary to generate our own, which

meant that we had to choose appropriate values for action costs that would be low enough

to allow some goals to be achieved but high enough to introduce trade-offs. We wrote a

Java program to parse untyped STRIPS problems and attach randomly generated action

costs and utility functions over goals. This process is described as follows. For each action

in a domain, a cost is generated randomly according to a discrete uniform distribution

over the values {x ∈ N | 1 ≤ x ≤ 30}. For each problem, a random utility function is

generated in two stages. Firstly, a DAG with a restriction on heuristic induced width

is randomly generated according to a method that is used to generate random Bayesian

networks (Ide et al. 2004). Given this DAG, a conditional preference table (CPT) is gen-

erated for each node. For each truth assignment T for a node X and its parents, if T [X ]

is false then an entry of 0 is made in the CPT for that truth assignment; otherwise, a

value is randomly generated according to a discrete uniform distribution over the values

{x ∈ N | 100 ≤ x ≤ 200}, and this is entered in the CPT for the truth assignment T . The

numbers in these ranges are somewhat arbitrary; they were selected by experimenting to

find values that tended to allow valid plans of increasing net benefit as the makespan was

increased from 1 to 10. If the action costs are too high or the utilities too low it precludes

the existence of any nonempty plan with positive net benefit; the optimal plan would be

empty in these cases.

We do not use the original iPUD system because it uses a commercial linear program

solver called CPLEX 10.01, which we did not have access to; instead, we implemented

1http://www.ilog.com/products/cplex
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iPUD’s encoding scheme by extending the 1SC encoding2 of IPPlan (van den Briel

et al. 2008) and modifying it to use a mature open-source mixed integer program solver

SYMPHONY 5.1 (Ralphs and Guzelsoy 2005). We refer to this implementation as

iPUD/SYM to avoid ambiguity. We believe this remains a reasonably fair test since the

algorithms for SYMPHONY are published and open for inspection. SYMPHONY uses

a linear programming solver, CLP, that employs many of the same methods as CPLEX,

such as simplex and interior point methods. MSatplan uses a non-commercial WPMax-

SAT solver, MiniMaxSat 1.0 (Heras et al. 2008) to solve its encodings. MiniMaxSat was

chosen because of its strong performance across domains in the Max-SAT-2008 evaluation.

Since all goals are soft, a (possibly empty) plan exists at every makespan, and consequently

it is not very interesting to search for the plan with smallest makespan. Instead, we

split each problem up into subproblems parameterized by a makespan variable d. Each

subproblem is to find a plan of makespan d that solves the original problem with optimal

net benefit over all other plans of makespan d. For each problem in a domain benchmark,

we derive subproblems for d = 1, . . . , 10. Each planning system is given 30 minutes to

solve each subproblem, and is aborted if it fails to do so.

In summary, each run of our experiment consists of generating a random utility tree and

action costs for each problem in each domain, splitting each problem into 10 subproblems

and attempting to solve each subproblem with both solvers. We conduct five runs using

randomly generated utility trees and action costs each time. Where appropriate, we

compute the sample mean and sample variance over these different runs to investigate

how the utility tree and action costs affect solution times. All experiments are conducted

on a Linux machine with an Intel 2.4 GHz quad core CPU (although neither program is

multithreaded) and 2 GB of memory; however, we limit the memory resource available to

each program to 1.5 GB to reduce paging.

When examining these results, it should be noted that iPUD/SYM uses a translation

step, taken from the Fast Downward Planner (Helmert 2006), that converts PDDL2.2

(Edelkamp and Hoffmann 2004) files to the SAS+ formalism (Bäckström and Nebel 1995),

which is used to represent multi-valued planning tasks. Inspection of several experiments

revealed that for problems 06–30 from the Pathways domains, this translation step almost

always failed to complete within 30 minutes. We found that this was also the case for the

original translation tool applied to the original PDDL2.2 files taken from the Pathways

domain from IPC-4; the reason for this failure remains unclear.
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Figure 5.1: Comparison of MSatplan with iPUD/SYM on the number of subproblems solved
as each system is given more time. Each point shows the mean number of subproblems solved
within the corresponding time limit. Error bars show ±2.776√

5
σ, calculated over five runs. A lack

of an error bar indicates that there was no observed variance in that measurement.

5.2.2 Results

For a collection of time limits, the data collected for each one of the five runs were used

to calculate the number of subproblems solved within each time limit. The time limits

were chosen to achieve equally spaced points on a logarithmic scale. The results for each

time limit were then averaged over the five runs. Figure 5.1 shows a plot of the results.

MSatplan shows a clear advantage over the 1SC encoding of iPUD/SYM for the Depot

and Truck domains by solving 235 ± 24% and 109 ± 8% more subproblems respectively.

MSatplan also performs very well on the Pathways domain; however, comparing this

with iPUD/SYM is not possible because of a problem with the translation step as de-

scribed above. iPUD/SYM solves 19± 15%, 38± 10%, and 3± 3 % more problems than

MSatplan for the DriverLog, ZenoTravel and Rovers domains respectively. The larger

variance in the results of MSatplan is in part due to the use of randomness in the local

search solver, Walksat, that is used by MiniMaxSat to search for an initial satisfiable

assignment. We believe that this is not much cause for concern as the time spent proving

optimality typically dominates the running time.

How the two systems compare over the range of fixed makespans can be seen in Figure 5.2.

The percentage of subproblems that are solved drops off with an increase in makespan, as

one would expect; however, the gradient of this decrease differs quite substantially between

domains. For the Depot and DriverLog domains, the decrease is smooth with a reasonably

2We use the 1SC encoding instead of the G1SC one used in Do et al.’s original paper because it allows
the same amount of parallelism as the SAT-based encoding that MSatplan extends.
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Figure 5.2: Comparison of the successful search depth between MSatplan and iPUD/SYM
over six problem domains taken from IPC-3 and IPC-4. Each point shows the mean number
of subproblems, of a particular makespan, that were solved by each system. Error bars show
±2.776√

5
σ, which is calculated over the five runs. A lack of an error bar indicates that there was

no observed variance in that measurement.

consistent gradient for both systems. For the Truck and Pathways domains, there is

very little decrease initially and almost all the decrease occurs within 2–4 makespans for

MSatplan.

How each system performed on an individual problem can be seen in Figure 5.3. It is

somewhat surprising that MSatplan’s performance is maintained across the Pathways

domain. For other domains the performance tends to degrade as the problem number

increases, since these are considered harder problems. It is also surprising thatMSatplan

solves a large number of subproblems from the higher problem numbers in the DriverLog

domain, but not for problem numbers 04–10, which would normally be considered easier

to solve.

5.2.3 Discussion

The crossover that can be observed in the DriverLog and ZenoTravel domains in Figure 5.1

is probably due to the SAS+ translation step that compresses the state representation

(Edelkamp and Helmert 1999). In certain domains, this may help the iPUD/SYM solver

to solve larger problems than MSatplan. Figure 5.2 shows that iPUD/SYM is able to

solve more subproblems with makespans ≥ 5 for the DriverLog and ZenoTravel domains,

which supports this idea. It would be interesting to integrate the SAS+ translation step

into a SAT-based planning system to try to reduce encoding sizes to test this hypothesis.

In Section 4.6.1 we discussed how MiniMaxSat finds an optimal solution to a WPMax-
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Figure 5.3: Comparison of MSatplan with iPUD/SYM on each problem over a total of six
domains from IPC-3 and IPC-4. The height of a bar indicates the mean number of subproblems
solved by that system for that problem. Error bars indicate ±2.776√

5
σ, calculated over five runs.

A lack of an error bar for a column indicates that there was no observed variance in that
measurement.

SAT formula using a branch-and-bound search. If we incrementally increase the plan

makespan and find optimal solutions for each one, we can trivially extend an optimal

solution for a makespan of d− 1 to a solution with makespan d by executing appropriate

NOOP actions between layers d− 1 and d. From this, we can produce a nontrivial lower

bound on the best net benefit obtainable at makespan d and thus produce a nontrivial

value for ub for the problem at makespan d. Hopefully, this will increase the number of

pruning and promotion events, as described above, that occur early on in the branch-and-

bound search.

It is worth noting that these branch-and-bound searches keep track of the best solution

encountered during search. This can produce a solution to a planning problem at any time

– before the first non-trivial solution is found, this would return the empty plan. In our

experiments we terminated searches that lasted for longer than 30 minutes and recorded

no solution. Alternatively, after 30 minutes, we could have returned the best solution

found so far in the branch-and-bound search and compared this to the results obtained

by a heuristic search planner; however, MiniMaxSat did not support this feature.

5.3 Survey Propagation

In this section we report experimental results concerning the incorporation of survey

propagation into a WPMax-SAT solver as a variable and value selection heuristic. The

performance of this strategy is compared with the existing heuristic method used by
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MiniMaxSat1.0 and another randomised selection strategy. The average cost of the

best solution found by each strategy over a series of restarts is plotted to visualise the

trajectory that each strategy takes. By examining these trajectories we can see how

quickly each strategy improves upon its solutions with time. This is of interest because

finding better solutions earlier in the search should lead to more pruning, which reduces

the number of nodes that need to be expanded to find an optimal solution. Our results

find that for many cases the strategy based upon survey propagation leads to statistically

significant improvements in the solution trajectory. This section concludes by discussing

an approximation to the WPSP(y) strategy that makes the method more practical.

5.3.1 Experimental setup

Our experimental evaluation is based upon STRIPS problems taken from the third and

fourth International Planning Competitions (IPCs). These problems have been trans-

formed to net benefit problems with goal utility dependencies according to the procedure

described in Section 5.2. The domains that are investigated are Depot, DriverLog, Zeno-

Travel and Rovers from IPC3 and Truck and Pathways from IPC4.

The results presented in Figure 5.3 on page 106 effectively tell us, for each problem in

each domain, the makespan for which MiniMaxSat1.0 could not solve the WPMax-

SAT encoding of that planning problem in under thirty minutes. We used this data

to identify a single makespan, for each domain, that would yield a high proportion of

challenging problems that could not be optimally solved in under thirty minutes by the

MiniMaxSat1.0 solver. For domains taken from IPC3, we chose makespans of 6, 6, 7

and 5 for the Rovers, DriverLog, Depot and ZenoTravel domains, respectively; for domains

taken from IPC4, we chose makespans of 8 and 9 for the Pathways and Truck domains,

respectively. Since each problem is different, it is unlikely that these makespans hold some

special significance across all problems within a domain that would favour one strategy

over another; hence, we do not vary the makespan dimension in our experimental results.

From these problems, CNF encodings are constructed for the makespans specified above

using the scheme described in Chapter 3. Again, the physical memory used to generate

these encodings is limited to 1.5GB to restrict our attention to manageable encodings.

If the memory limit is exceeded, the problem is removed from our results. This is why

we only report results for problems 1 to 13 out of the possible 20 problems from the

ZenoTravel domain. The encodings are also preprocessed by iterating unit propagation

and pure literal elimination to remove unit clauses and pure literals from the problem.

Our results compare the performance of the three branching strategies (WPSP(y), Rand

and Basic) outlined in Section 4.6.4. The experiments are run on a Condor 6.8.3 pool

of virtual machines spread across several Xen-enabled servers. This enables more data
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to be gathered at the expense of losing the ability to take accurate timed measurements.

Hence, we do not report any timed measurements in our data. Instead we record the best

solution found by each strategy at certain points during the search. By studying this data

we can see if one strategy on average finds lower cost solutions earlier in the search.

We are primarily interested in whether WPSP(y) can be used to provide better heuristic

guidance. By limiting each strategy to the same number of leaf nodes that it can encounter

inbetween reporting results, we can test if the WPSP(y) strategy is leading us towards

lower cost solutions more on average and how soon these are discovered. This will help

us to determine if the application of the ideas underpinning survey propagation in this

new setting is successful. If our results indicate an improvement, then we can focus on

making the method more practical by developing a version that guarantees convergence.

Since the WPSP(y) and Rand strategies are randomised algorithms, we used the restart

strategy from MiniSat2.2 that operates according to the Luby sequence described in

Section 4.5.1. This is done to avoid heavy tailed behaviour as we described earlier and

according to the work of Gomes et al. (1998).

The solver progresses in a sequence of restart iterations. Each restart iteration is given

an index i starting from one and increasing by one each time a restart is made. A limit

is placed on the number of hard and soft clauses that can be encountered in each restart

iteration. If this limit is exceeded then a restart is made and the solver progresses to the

next restart iteration. Upon a restart, the current partial assignment must be discarded,

and search in the next restart iteration begins from the root. The current best upper

bound on cost is remembered between restart iterations; hopefully, this will lead to more

pruning in the subsequent search.

In the following experiments, the limit on hard and soft clauses for the ith restart iteration

is equal to 100× luby(i). The factor of 100 comes from the MiniSat2.2 implementation,

and we did not experiment with different values for it as the intention is to establish a

limited resource and to compare different search strategies within this constraint. If one

algorithm produces better solutions while encountering the same number of conflicts, one

can regard it as being more efficient at finding good solutions; however, there remains

the possibility that the very best solutions are found in subtrees which contain many

dead-ends. We are not too dissuaded by this line of argument because we believe that

this desire for efficiency is important for the class of branch-and-bound search algorithms.

In branch-and-bound search, the earlier that good solutions are found, the more pruning

can occur, which in turn leads to faster improvements upon these solutions; thus, it has

the potential to result in a positive feedback loop, which it seems desirable to encourage.

The experiments look at the behaviour of the strategies across the first 31 restarts. This

allowed the vast majority of jobs to complete within 24 hours. If a strategy reaches the
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31st restart iteration, it can encounter a maximum of 1600 soft or hard conflicts during

that iteration before it must terminate. The next higher limit is encountered at restart

63, where the limit is 3200 hard and soft conflicts. We decided not to gather data beyond

31 restarts in order to keep the time taken to perform the experiments manageable and

we believed that 31 restarts gave us sufficient insight into the difference in performance

of our new method.

Experiments are repeated with different random seeds where randomisation is used. The

WPSP(y) and Rand strategies are run on each problem ten times; however, since the Basic

strategy is not randomised, it is run on each problem only once. Each time a strategy is

run on a problem a trace is recorded which details the lowest cost of a solution found at the

end of each restart iteration. For a particular trace these costs should be monotonically

decreasing as the best solution found so far is remembered between restarts.

The y value

In the following results, we state that we use a value of y = 100 for the WPSP(y) strategy.

However, for each problem, this is divided by the sum of weights of soft clauses in that

problem, before it is used in the message passing equations. For example, if the sum of

weights of soft clauses for a problem equals 1000, then the value used in message passing

is actually y = 0.1. This step was introduced as an attempt to derive suitable values

of y for each problem in a consistent manner. Through experimentation, we found that

changing y did not noticeably change the quality of the results. Two different values for

y that are sufficiently large are indistinguishable in their behaviour because they cause

the exponential terms in message passing to underflow.

Problem statistics

Table 5.1 shows the size of each CNF encoding used after pure literal elimination and

unit propagation has been iterated until no pure literals or unit clauses remain. A low

clause-to-variable ratio α indicates that the problem is under-constrained and potentially

easier to find a satisfiable assignment for than problems with higher α values.
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Problem Variables (N) Clauses (M) α = M/N

Rovers
01 336 2660 7.9
02 331 2564 7.7
03 382 2362 6.2
04 457 3249 7.1
05 717 7991 11.1
06 809 10203 12.6
07 843 8122 9.6
08 1334 22404 16.8
09 1456 22626 15.5
10 1569 28284 18.0
11 1577 39145 24.8
12 1334 24012 18.0
13 2174 84648 38.9
14 1796 35479 19.8
15 2230 69922 31.4
16 1946 37155 19.1
17 3172 96123 30.3
18 4538 162790 35.9
19 6113 518033 84.7
20 7709 736012 95.5

DriverLog
01 177 537 3.0
02 476 2705 5.7
04 705 5043 7.2
05 671 4578 6.8
06 923 6434 7.0
07 1067 7978 7.5
08 1050 8036 7.7
09 573 3634 6.3
10 1173 11586 9.9
11 768 6421 8.4
12 556 4022 7.2
13 840 8752 10.4
14 895 10718 12.0
15 498 3562 7.2
16 1969 31327 15.9
17 3530 70255 19.9
18 2159 34123 15.8
19 2261 37017 16.4
20 7761 238641 30.7

ZenoTravel
01 231 2879 12.5
02 295 5383 18.2
03 815 22636 27.8
04 602 15589 25.9
05 594 20706 34.9
06 916 31283 34.2
07 569 8629 15.2
08 1814 105165 58.0
09 1571 83176 52.9
10 2064 105926 51.3
11 2954 238945 80.9
12 2406 160370 66.7
13 2986 252880 84.7

Problem Variables (N) Clauses (M) α = M/N

Depot
02 656 4375 6.7
03 679 4531 6.7
04 677 4587 6.8
05 765 5337 7.0
06 579 3340 5.8
07 1040 11836 11.4
08 1512 27516 18.2
09 1613 28092 17.4
10 1416 14600 10.3
11 1394 14053 10.1
12 1234 10670 8.6
13 1381 14894 10.8
14 2198 36056 16.4
15 2651 53901 20.3
16 2750 69518 25.3
17 4916 254276 51.7
18 6427 444301 69.1
19 3827 74039 19.3
20 4272 89328 20.9
21 11351 517419 45.6

Pathways
01 422 2964 7.0
03 529 4015 7.6
04 663 5410 8.2
05 840 7776 9.3
06 1086 17113 15.8
07 1270 21673 17.1
08 1337 22650 16.9
09 1505 30416 20.2
10 1092 20068 18.4
11 1601 29926 18.7
12 1135 19362 17.1
13 1498 30501 20.4
14 1678 26587 15.8
15 1503 27480 18.3
16 1429 37797 26.4
17 1577 44689 28.3
18 1614 29210 18.1
19 1958 41573 21.2
20 1738 35931 20.7
21 1812 47262 26.1
22 2394 49822 20.8
23 2471 51935 21.0
24 1673 39888 23.8
25 2302 63600 27.6
26 2222 57771 26.0
27 2128 62830 29.5
28 2749 61840 22.5
29 2243 41788 18.6
30 1713 42853 25.0

Truck
01 717 8706 12.1
02 801 10064 12.6
03 1400 25449 18.2
04 1404 24801 17.7
05 2070 47185 22.8
06 2170 50329 23.2
07 1639 44658 27.2
08 2124 65801 31.0
09 2406 80886 33.6
10 2878 104932 36.5

Table 5.1: Size of CNF encodings of planning problems after unit propagation and pure literal
elimination has been performed. Columns contain the number of variables, number of clauses
and the clause to variable ratio α for each encoding.
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5.3.2 Results

The results are presented in two parts. The first section summarises the data obtained

from multiple runs of the WPSP(y) and Rand strategies and combines this with the data

from the single runs of the Basic strategy. These summaries detail the best solution

found amongst multiple runs and the earliest time that a solution of that quality is found.

They also show whether optimal solutions were found for each problem. This data is

useful for interpreting the trajectory plots that we present in the subsequent section. The

trajectory plots show how the sample mean varies over restart iterations for each strategy

and problem pair. This allows us to see if one strategy is directing the search towards

better solutions earlier than other strategies on average.

Lowest cost solutions

For each problem, the ten traces produced by the WPSP(y) and Rand strategies are taken

and the cost of the best solution found is recorded together with the earliest and latest

restart iterations that a solution of this cost was observed. The same is done with the

single trace produced by the Basic strategy. This data is presented in Tables 5.3 and 5.4;

these results are summarised in Table 5.2, which details the number of times that each

strategy produced the best result out of the traces gathered.

In Tables 5.3 and 5.4, the final column ‘WPSP(y) improvement’ indicates the percentage

change of the best solution found by the WPSP(y) method compared to the best solution

found by either the Rand or Basic strategies. If this value is negative, it indicates an

improvement, if it is positive it indicates that it is worse; for example, if the best solution

cost found by WPSP(y) for a problem is 90 and the other strategies best solutions were

100 and 120, then the improvement is -10%.

For many problems, the WPSP(y) improvement is 0.0%, but this does not imply that

WPSP(y) offered no benefit over the other strategies. If it found a solution of equal

quality to another strategy but at an earlier restart iteration, then this is advantageous.

To give some indication as to when this occurs, for each score, the entries in the columns

labelled ‘first’ and ‘last’ indicate the earliest and latest restart iteration that a solution

of that cost was found. If the value in the column labelled ‘last’ is less than 31, then

it indicates at least one of two scenarios have occurred. Either at least one run failed

to complete all 31 restart iterations before the 24 hour cutoff limit was applied, or at

least one run proved that the solution with that cost was optimal and no better solution

existed.

Determining which of the two scenarios occured can be done by looking at the value in

the ‘opt’ column, which indicates whether a solution found was shown to be optimal by
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at least one run of that strategy. An entry of ‘t’ in that column indicates that this was

the case whereas an entry of ‘f’ indicates that no run proved optimality. If the ‘opt’

column is set to t then we know that at least one run proved optimality within a number

of restarts between the values in the columns labelled ‘first’ and ‘last’. If the value in the

‘opt’ column is set to the value ‘f’ then we know that all runs that found that solution

cost did not make it past the number of restart iterations equal to the entry in the column

labelled ‘last’.

Across all domains in our results, the Basic strategy is consistently outperformed by the

WPSP(y) and Rand strategies. In all domains except Pathways, WPSP(y) found the

greatest number of best solutions to problems; WPSP(y) also proved optimality for more

problems than the other two strategies.

No. best performing runs
Domain WPSP(y) Rand Basic Total

Rovers 19 5 3 20
Depot 20 6 1 20

DriverLog 19 7 1 19
Pathways 3 29 2 29
Truck 9 6 1 10

ZenoTravel 11 8 2 13

Table 5.2: The number of best performing runs that belonged to each strategy. Note that more
than one strategy could obtain the same best score. The final column shows the total number
of problems in the domain.
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WPSP(y) Rand Basic WPSP(y)
Problem score first last opt score first last opt score first last opt improvement

Rovers
01 150 1 6 t 150 1 7 t 242 27 31 f 0.0%
02 223 1 29 t 223 3 31 t 223 6 31 f 0.0%
03 246 3 31 t 246 6 31 t 246 4 6 t 0.0%
04 146 2 15 t 146 4 11 t 146 14 14 t 0.0%
05 546 5 31 f 562 23 31 f 919 28 31 f -2.8%
06 1097 15 31 f 1120 29 31 f 1411 8 31 f -2.1%
07 408 18 31 f 416 21 31 f 702 31 31 f -1.9%
08 796 3 31 f 893 10 31 f 986 13 31 f -10.9%
09 886 27 31 f 883 31 31 f 927 13 31 f +0.3%
10 1124 31 31 f 1210 30 31 f 1387 15 31 f -7.1%
11 1079 21 31 f 1236 31 31 f 1356 14 31 f -12.7%
12 485 14 31 f 557 14 31 f 909 3 31 f -12.9%
13 1419 27 31 f 1482 15 31 f 1726 10 31 f -4.3%
14 822 31 31 f 876 25 31 f 1066 6 31 f -6.2%
15 1445 21 29 f 1463 21 31 f 1788 23 31 f -1.2%
16 1442 31 31 f 1503 30 31 f 1778 7 31 f -4.1%
17 2023 25 31 f 2193 25 31 f 2222 5 31 f -7.8%
18 1608 24 31 f 1723 31 31 f 1753 28 31 f -6.7%
19 2477 15 17 f 2535 31 31 f 2822 10 31 f -2.3%
20 3041 15 17 f 3213 6 31 f 3292 30 31 f -5.4%

DriverLog
01 196 1 4 t 196 2 4 t 196 15 15 t 0.0%
02 574 6 29 t 574 3 31 f 619 23 31 f 0.0%
04 642 13 31 f 741 31 31 f 766 22 31 f -13.4%
05 723 2 31 f 736 30 31 f 1156 3 31 f -1.8%
06 442 12 31 f 673 14 31 f 857 28 31 f -34.3%
07 616 31 31 f 696 28 31 f 958 7 31 f -11.5%
08 811 13 31 f 1002 22 31 f 1099 14 31 f -19.1%
09 680 6 31 f 680 10 31 f 812 28 31 f 0.0%
10 705 18 31 f 707 23 31 f 1140 4 31 f -0.3%
11 740 2 31 f 759 7 31 f 934 2 31 f -2.5%
12 1215 2 31 f 1215 3 31 f 1260 4 31 f 0.0%
13 746 1 19 t 746 7 31 f 818 3 31 f 0.0%
14 1234 6 31 t 1234 13 31 f 1444 22 31 f 0.0%
15 1494 1 5 t 1494 7 31 t 1628 4 31 f 0.0%
16 2577 9 31 f 2678 18 31 f 2916 10 31 f -3.8%
17 2557 29 31 f 3098 31 31 f 3188 21 31 f -17.5%
18 3217 14 31 f 3261 22 31 f 3376 11 31 f -1.3%
19 3946 25 31 f 4044 21 31 f 4660 31 31 f -2.4%
20 3965 21 31 f 4432 25 31 f 4460 9 31 f -10.5%

Truck
01 274 2 31 f 274 7 31 f 274 23 31 f 0.0%
02 389 10 31 t 389 14 31 f 436 31 31 f 0.0%
03 548 14 31 f 548 6 31 f 574 29 31 f 0.0%
04 721 31 31 f 721 12 31 f 793 31 31 f 0.0%
05 705 30 31 f 723 31 31 f 845 13 31 f -2.5%
06 986 22 31 f 986 31 31 f 987 21 31 f 0.0%
07 638 27 31 f 667 30 31 f 834 3 31 f -4.3%
08 832 14 31 f 974 30 31 f 942 31 31 f -11.7%
09 1053 7 11 f 1074 21 31 f 1077 30 31 f -2.0%
10 1283 15 29 f 1198 19 31 f 1296 8 31 f +6.6%

Table 5.3: IPC 3 (Rovers,m = 6) (DriverLog, m = 6) IPC 4 (Truck, m = 9) y = 100, tlim = 200.
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WPSP(y) Rand Basic WPSP(y)
Problem score first last opt score first last opt score first last opt improvement

Depot
02 357 2 31 t 357 5 31 f 386 6 31 f 0.0%
03 771 4 31 t 771 5 31 f 800 3 31 f 0.0%
04 391 3 11 t 391 13 31 t 524 1 31 f 0.0%
05 970 14 31 f 970 14 31 f 1106 7 31 f 0.0%
06 692 1 7 t 692 5 29 t 692 3 31 t 0.0%
07 475 14 31 t 486 25 31 f 719 3 31 f -2.3%
08 704 6 31 f 735 26 31 f 719 7 31 f -2.1%
09 1689 19 31 f 1941 16 31 f 2072 1 31 f -13.0%
10 669 7 31 f 681 18 31 f 737 30 31 f -1.8%
11 1299 31 31 f 1304 31 31 f 1383 31 31 f -0.4%
12 1204 5 31 f 1245 25 31 f 1297 5 31 f -3.3%
13 596 4 31 f 596 30 31 f 726 5 31 f 0.0%
14 635 15 31 f 679 30 31 f 1027 4 31 f -6.5%
15 1536 30 31 f 1809 26 31 f 1906 3 31 f -15.1%
16 778 19 31 f 881 20 31 f 816 2 31 f -4.7%
17 450 15 31 f 894 30 31 f 936 13 31 f -49.7%
18 1781 22 31 f 2210 28 31 f 2267 1 31 f -19.4%
19 1051 30 31 f 1294 15 31 f 1150 1 31 f -8.6%
20 1845 25 31 f 2069 31 31 f 2281 29 31 f -10.8%
21 651 28 31 f 1138 31 31 f 1300 7 31 f -42.8%

Pathways
01 93 2 31 f 93 2 31 t 93 3 7 t 0.0%
03 341 13 31 f 341 6 31 t 349 10 31 f 0.0%
04 349 31 31 f 335 7 31 t 371 8 31 f +4.0%
05 617 22 31 f 590 10 31 f 793 11 31 f +4.4%
06 1219 23 31 f 1198 29 31 f 1231 14 31 f +1.7%
07 1711 15 31 f 1686 26 31 f 1767 8 31 f +1.5%
08 2004 21 31 f 1997 22 31 f 2048 16 31 f +0.3%
09 2083 29 31 f 2070 31 31 f 2124 1 31 f +0.6%
10 1229 30 31 f 1229 15 31 t 1243 30 31 f 0.0%
11 2262 15 31 f 2171 31 31 f 2373 6 31 f +4.0%
12 2203 30 31 f 2177 22 31 f 2177 15 31 f +1.2%
13 2257 30 31 f 2136 29 31 f 2225 7 31 f +5.4%
14 3083 31 31 f 3034 22 31 f 3073 18 31 f +1.6%
15 2721 31 31 f 2473 31 31 f 2796 6 31 f +9.1%
16 1927 25 31 f 1914 30 31 f 1995 4 31 f +0.7%
17 2128 31 31 f 1927 29 31 f 2154 8 31 f +9.4%
18 3636 15 31 f 3059 30 31 f 3655 16 31 f +15.9%
19 3634 31 31 f 3417 31 31 f 3664 17 31 f +6.0%
20 3755 30 31 f 3168 31 31 f 3832 29 31 f +15.6%
21 3135 29 31 f 2968 29 31 f 3255 13 31 f +5.3%
22 4292 31 31 f 4161 31 31 f 4283 23 31 f +3.1%
23 5062 13 31 f 4801 31 31 f 5120 3 31 f +5.2%
24 2401 31 31 f 2106 30 31 f 2800 7 31 f +12.3%
25 4307 31 31 f 4277 27 31 f 4500 14 31 f +0.7%
26 3749 15 31 f 3223 31 31 f 3741 7 31 f +14.0%
27 3834 29 31 f 3829 27 31 f 3952 15 31 f +0.1%
28 4856 29 31 f 4508 31 31 f 4822 15 31 f +7.2%
29 6030 22 31 f 5612 31 31 f 6171 29 31 f +6.9%
30 3112 30 31 f 2600 31 31 f 3139 2 31 f +16.5%

ZenoTravel
01 22 1 1 t 22 1 2 t 22 2 2 t 0.0%
02 126 1 5 t 126 1 5 t 126 5 5 t 0.0%
03 270 5 31 t 285 31 31 f 442 22 31 f -5.3%
04 275 9 31 f 275 22 31 f 301 31 31 f 0.0%
05 147 2 12 t 147 2 20 t 370 31 31 f 0.0%
06 187 15 31 f 187 22 31 t 327 6 31 f 0.0%
07 576 28 31 f 576 11 31 f 730 3 31 f 0.0%
08 441 29 31 f 459 14 31 f 521 3 31 f -3.9%
09 691 14 31 f 600 30 31 f 997 22 31 f +13.2%
10 671 31 31 f 857 30 31 f 968 22 31 f -21.7%
11 603 12 21 f 585 6 31 f 966 8 31 f +3.0%
12 655 18 24 f 767 15 31 f 981 6 31 f -14.6%
13 1009 18 29 f 1140 28 31 f 1371 31 31 f -11.5%

Table 5.4: IPC 3 (Depot, m = 7) (ZenoTravel, m = 5) IPC 4 (Pathways, m = 8) y = 100,
tlim = 200.
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Solution trajectories

In order to examine the effects of the three branching strategies, their trajectories over

several restarts are plotted. Since each problem p that is solved is finite, and the initial

decision variable selection strategy s is a random process, then the cost, Xi,s,p, of the best

solution found at the end of each restart iteration i is a random variable and will have a

population mean µi,s,p. We are interested in how this population mean is altered by the

use of different selection strategies. Note that since all problems have an optimal solution,

for different complete strategies s and s′ we expect limi→∞ µi,s,p = limi→∞ µi,s′,p.

Ideally, we want to find a strategy that lowers the mean as quckily as possible towards

the optimal solution cost. In order to investigate this, we plot, for each problem and

strategy pair, the sample average of the lowest cost solution obtained at the end of each

restart iteration calculated over ten runs. Due to early termination, there is a possibility

that fewer than ten runs reached a certain restart iteration. In those cases, we ignore all

results for that iteration; hence, the sample averages that are displayed are supported by

exactly n = 10 data points.

The plots are constructed using the following manner for each problem and solution strat-

egy. For each iteration i, strategy s and problem p, we compute the sample mean X̄i,s,p

and the sample standard deviation3 Si,s,p of the lowest cost solution found by that config-

uration, with a sample size n. If n is sufficienty large then X̄i,s,p is normally distributed

by the central limit theorem and

(X̄i,s,p − µi,s,p)

√
n

Si,s,p

, (5.1)

follows Student’s t-distribution with n−1 degrees of freedom (Spiegel and Stephens 2008).

We use this to plot the 95% confidence interval for the true population mean µi,s,p as

X̄i,s,p ± 2.262
Si,s,p√
n
, (5.2)

where 2.262 is taken from the 95% two-sided Student’s t-distribution with 9 degrees of

freedom.

Hypothesis 1. Null hypothesis H0(s1, s2, i, p): There is no difference in the mean lowest

cost solution obtained by strategies s1 and s2 at the ith restart iteration for problem p.

Hypothesis 2. Alternate hypothesis Ha(s1, s2, i, p): There is a difference in the mean

lowest cost solutions obtained by strategies s1 and s2 at the ith restart iteration for problem

p.

3This is computed from the unbiased sample variance using Bessel’s correction.
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By using the above confidence interval we can apply a conservative visual check for sig-

nificance by testing if the intervals overlap for two different strategies. If the intervals do

not overlap then we can infer significance at the 5% level and reject the null hypothesis;

however, if the intervals do overlap we can neither reject nor accept the null hypothesis

and are required to conduct a less conservative analysis of the data (Schenker and Gen-

tleman 2001). We adopt this scheme for ease of presentation of our results. In many of

the graphs that we present there is a clear separation of the 95% confidence intervals so

we argue that our method frequently reduces the average lowest cost of solutions found

through the intial phase of the search. This scheme is also conservative in the sense that

we could apply a one-sided test to show significance in the reduction direction with a

greater chance of being able to reject the null hypothesis.

Distribution analysis

In order to test the validity of the above assumptions used in forming the confidence

intervals, we investigated the empirical distribution of best solution costs obtained at the

ith restart iteration. To check for heavy-tailed behaviour, we looked at the sample mean

over 5000 trials using the Rand selection strategy. The problems we experimented with

had to be sufficiently easy to solve in order to gather data for such a large number of

trials.

Figure 5.4 shows that the sample mean converges to a single value as the number of trials

increase. This is what one would expect when each sample is generated from indepen-

dent and identical distributions with finite expected value, according to the law of large

numbers.

Since the problems have finite size, the variance σ2
i is also finite. One would expect,

through the central limit theorem, that sample means over n trials follow a normal distri-

bution N(µi,
σ2
i

n
) for large n. To check this, we divided the 5000 trials into 500 groups of

10 trials, which were used to generate 500 sample means. Figure 5.5 shows histograms of

the sample means obtained for various restart iterations. One can visually check that the

histograms are close to the predicted normal distributions, which are plotted using the

sample mean and sample variance over the 5000 trials to give an estimate for µi,s,p and

σ2
i,s,p, respectively (see Figure 5.4). One can see that as the restart iteration i increases,

the peak of the sample mean is reduced towards the optimal solution, which has cost equal

to 574 for p02 in DriverLog. We see that for n = 10 the approximation is reasonable.
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Figure 5.4: Convergence of the sample mean over 5000 runs of the Rand selection strategy on
problem two from the DriverLog domain.
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Figure 5.5: Distribution of 500 sample means obtained by running the Rand selection strategy
on problem two from the DriverLog domain ten times to obtain each sample. Overlayed is the
normal distribution that the central limit theorem predicts the distribution will converge to as
the sample sizes increase. The cost of the optimal solution is 574.
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5.3.3 Solution trajectories

The following pages present and discuss the solution trajectories we measured for each of

the three strategies across the six domains we obtained data for.

DriverLog

Results for the DriverLog domain, shown as trajectory plots in Figures 5.6 and 5.7 show

the WPSP(y) strategy to be advantageous over the other strategies we considered. In

problems 16, 17, 18 and 20 there is a clear separation between WPSP(y) and other

strategies. The Basic strategy either matches the trajectory or is worse than the Rand

strategy, with the exception of problem 20 where it shows better performance in the inital

restarts.

Table 5.5 shows the percentage of successful variable selections performed by the WPSP(y)

strategy. This is high for most problems in the domain, close to 100%; however, for

problems 2, 13, 14 and 15, which are optimally solved by at least one run of the WPSP(y)

strategy, the percentage of successful selections is low.

With the exception of problem 10 and those problems for which optimality is proven, the

WPSP(y) strategy is able to complete all 31 restart iterations. Combining this statistic

with the high percentage of successful variable selections that are made by the WPSP(y)

strategy indicates that for many problems in this domain it is easy to find fixed points of

the message passing equations that yield fact variables with sufficiently high bias to be

considered for selection.

Trial (%)
Problem 1 2 3 4 5 6 7 8 9 10

DriverLog
01 100 100 100 100 100 100 100 100 100 100
02 61 55 62 57 56 58 62 53 51 62
04 100 100 100 100 100 100 100 100 100 100
05 99 95 99 96 98 99 97 97 95 95
06 100 100 100 100 100 100 100 100 100 100
07 100 100 100 100 100 100 100 100 100 100
08 100 100 100 100 100 100 100 100 100 100
09 99 100 100 100 100 100 100 100 100 100
10 100 99 99 100 100 100 100 100 99 100
11 86 82 78 86 85 79 84 88 91 83
12 96 98 96 97 93 96 95 97 95 99
13 70 68 66 63 67 65 79 68 64 68
14 67 58 57 64 55 59 62 54 60 59
15 36 55 55 54 33 40 37 44 56 37
16 67 64 63 64 66 66 67 66 66 66
17 100 100 100 100 100 100 100 100 100 100
18 76 70 76 72 69 73 76 72 78 74
19 100 100 100 100 100 100 100 100 100 100
20 100 100 100 100 100 100 100 100 100 100

Table 5.5: Percentage of successful selections performed by the WPSP(y) strategy for the Driver-
Log domain.
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Figure 5.6: Solution trajectories for problems 1–11 from the DriverLog domain (makespan = 6).
Problem 1 is optimally solved by all three strategies in at least one of the ten runs. Problem 2
is optimally solved by at least one run of the WPSP(y) strategy.
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Figure 5.7: Solution trajectories for problems 12–20 from the DriverLog domain (makespan
= 6). Problems 13, 14 and 15 are optimally solved by the WPSP(y) strategy. Problem 15 is
also optimally solved by at least one run of the Rand strategy.
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Depot

The trajectories shown in Figures 5.8 and 5.9 drawn from the experimental results from

the Depot domain show that the WPSP(y) strategy exhibits good performance when

compared to the Rand and Basic strategies. It is competitive over all problems: the

average performance of WPSP(y) is not worse than the alternative strategies for any

problem in this domain. In problems 9, 10, 12, 15 and 17, WPSP(y) achieves, by restart

fifteen, a statistically significant improvement in the average lowest cost solution found

over that achieved at restart thirty-one by either of the alternative strategies. WPSP(y)

also solves problems 2, 3, 4, 6 and 7 optimally in at least one of the ten runs, compared

to Rand , which solves only problems 4 and 6 in at least one run, and Basic that solves

only problem 6.

The WPSP(y) strategy performs particularly well on problem 21: by the end of 31 restart

iterations, it has a mean cost around half that of the other two strategies. The performance

of Basic is notable on problem 16, where it finds a very low-cost solution within the first

restart iteration which is only contested by other strategies in the latter half of restart

iterations.

The percentage of successful variable selections performed by the WPSP(y) strategy,

as presented in Table 5.6, is high (over 90%) for problems 12 and above. With the

exception of problem 18, where the WPSP(y) strategy fails to complete all thirty-one

restart iterations, the data suggests that it is not too difficult to find fixed points of the

message passing equations and that they often result in fact variables having sufficient

bias to be considered for selection.

Trial (%)
Problem 1 2 3 4 5 6 7 8 9 10

Depot
02 95 95 92 92 96 96 94 96 94 93
03 87 88 88 87 90 86 88 87 89 89
04 86 79 80 80 85 80 80 80 78 82
05 94 89 90 95 92 94 89 88 93 92
06 95 90 87 87 86 81 90 82 93 76
07 88 88 88 88 86 87 88 89 90 89
08 88 91 90 89 91 86 90 87 91 87
09 95 88 94 95 91 89 93 91 90 92
10 96 97 92 94 97 92 97 99 97 97
11 78 74 74 69 75 68 73 62 67 71
12 95 92 93 96 94 93 93 94 94 93
13 93 90 94 91 91 88 89 91 87 94
14 99 100 99 100 99 100 100 100 100 100
15 99 99 100 99 99 99 100 99 98 99
16 91 91 94 92 92 93 89 91 92 91
17 98 100 99 99 100 100 99 99 98 99
18 100 100 99 99 99 99 98 100 99 99
19 91 92 89 92 94 90 92 88 91 92
20 97 94 94 96 96 95 96 95 97 96
21 100 100 100 99 100 100 99 100 100 100

Table 5.6: Percentage of successful selections performed by the WPSP(y) strategy for the Depot
domain.
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Figure 5.8: Solution trajectories for problems 2–11 from the Depot domain (makespan = 7).
Problems 2, 3, 4, 6 and 7 were optimally solved by at least one run out of the ten runs of
WPSP(y). Problems 4 and 6 were optimally solved by at least one run out of the ten runs of
Rand. Problem 6 was optimally solved by Basic.
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Figure 5.9: Solution trajectories for problems 12–21 from the Depot domain (makespan = 7).
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Rovers

The trajectories shown in Figures 5.10 and 5.11 drawn from experimental results from the

Rovers domain suggest that the WPSP(y) strategy is very effective at reducing average

best solution costs. The Rand strategy is competitive with the Basic strategy, frequently

outperforming it but sometimes lagging behind. In contrast, the WPSP(y) strategy is

usually better and is never worse than the other strategies.

The percentage of successful variable selections performed by the WPSP(y) strategy is

high, over 95% for most problems, as can be seen in Table 5.7. This means that fixed

points of message passing are almost always found and that when they are, there are

fact variables that have a bias that exceeds the threshold that makes them eligible for

selection. The WPSP(y) strategy failed to complete all thirty-one restart iterations in

at least one run for problems 15, 18, 19 and 20. Given that the percentage of successful

selections by the WPSP(y) strategy are so high, this must indicate that iterations of

message passing are slow and restarts are being made in order to search for fixed points of

message passing. However, in those cases, with the exception of problem 18, the WPSP(y)

strategy achieves a mean cost that is lower than the other strategies achieve by the end

of thirty-one restarts.

Selections (%)
Problem 1 2 3 4 5 6 7 8 9 10

Rovers
01 99 91 87 95 99 91 89 95 90 95
02 96 96 96 97 98 95 97 98 98 98
03 76 84 88 77 84 75 75 77 77 81
04 100 93 94 88 100 92 96 100 94 94
05 100 98 98 98 100 99 99 97 99 99
06 98 99 99 99 99 97 98 99 99 99
07 96 98 100 99 99 99 98 99 99 99
08 100 100 100 100 100 100 100 99 100 100
09 99 99 99 100 99 99 98 98 99 97
10 100 100 100 100 100 100 100 100 100 100
11 100 100 99 100 100 100 100 100 100 100
12 99 100 100 100 100 100 100 100 99 100
13 100 100 100 100 100 100 100 99 100 100
14 99 99 99 99 100 100 99 100 100 100
15 100 100 100 100 100 100 100 100 99 100
16 100 100 100 99 100 99 99 100 100 97
17 100 100 100 100 100 100 100 100 100 100
18 100 100 100 100 100 100 100 100 100 100
19 100 100 100 100 100 100 100 100 100 100
20 100 100 100 99 100 100 100 99 100 99

Table 5.7: Percentage of successful selections performed by the WPSP(y) strategy for the Rovers
domain.
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Figure 5.10: Solution trajectories for problems 1–10 from the Rovers domain (makespan = 6).
Problems 1–4 are solved optimally by at least one run of the WPSP(y) and Basic strategies.
Problems 3–4 are solved optimally by the Basic strategy.
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Figure 5.11: Solution trajectories for problems 11–20 from the Rovers domain (makespan = 6).
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Truck

Although the results presented in Table 5.3 suggest that the WPSP(y) strategy is able to

find lower cost solutions than the other strategies, the trajectories shown in Figure 5.12

reveal that the average performance of the WPSP(y) strategy is poor compared to the

other strategies. The average performance is significantly worse on problems 7, 9 and

10, where the solution cost means are so large that including them in the graph would

have resulted in a y-axis scale that would not allow enough detail to observe the differ-

ences between the Rand and Basic strategies. For other problems the WPSP(y) strategy

performed poorly on the first 10–15 restart iterations where it often failed to find assign-

ments that satisfied all hard clauses which resulted in a high mean and variance in the

solution costs. After this period of a high mean, the mean suddenly drops to a value that

is competitive with that achieved by the other strategies.

The percentage of successful variable selections made by the WPSP(y) strategy is shown

in Table 5.8 and reveals that it had difficulty finding useful fixed points of the message

passing equations. For any problem/run pair in this domain, the WPSP(y) strategy made

approximately between 50% and 80% successful variable selections, having to resort to

Basic selection in the other cases.

Only the WPSP(y) strategy was able to prove optimality for a problem in this domain

(problem 2).

Selections (%)
Problem 1 2 3 4 5 6 7 8 9 10

Truck
01 70 70 65 58 62 65 62 61 67 62
02 65 66 66 65 67 67 62 59 64 66
03 67 66 66 69 69 64 69 67 68 66
04 72 71 74 72 74 77 71 74 75 74
05 75 75 74 74 71 77 78 80 73 77
06 75 79 78 80 79 74 78 76 69 80
07 79 74 81 78 82 76 80 87 81 79
08 75 73 73 76 69 75 79 75 76 72
09 80 75 81 80 80 76 76 75 78 69
10 76 76 75 79 81 77 74 77 77 80

Table 5.8: Percentage of successful selections performed by the WPSP(y) strategy for the Truck
domain.
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Figure 5.12: Solution trajectories for problems 1–10 from the Truck domain (makespan = 9).
The WPSP(y) strategy appears off the chart and is worse than the other strategies for problems
7, 9 and 10.
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Pathways

The results in Table 5.9 show that the WPSP(y) strategy has a very high selection rate,

which is greater than 97% for most problems in this domain. The trajectories in Fig-

ures 5.13, 5.14 and 5.15 also indicate that the WPSP(y) strategy completed all 31 it-

erations for every one of the 10 runs on each problem. Together, these two statistics

suggest that it is easy to find fixed points of the message passing equations for which

there are variables of sufficiently high bias to be considered for selection. Disappointingly,

the WPSP(y) strategy performs poorly compared to the other strategies.

The Rand strategy matches or outperforms the other strategies across problems in this

domain. Although the WPSP(y) strategy often closes in on the Basic strategy by the end

of the 31st restart iteration, it also often exhibits very high variance in the initial restart

iterations (see problems 23 and 28 in Figure 5.15). This high variance is a result of not

finding an assignment that satisfies all hard clauses, which is denoted by a solution cost

equal to the large hard clause weight, for at least one run.

The WPSP(y) strategy also failed to prove optimality for any problems in this domain,

whereas the Rand strategy was able to prove optimality for runs on problems 1, 3, 4 and

10; and the Basic strategy was able to prove optimality for runs on problem 1.

Selections (%)
Problem 1 2 3 4 5 6 7 8 9 10

Pathways
01 80 80 79 77 80 82 80 79 82 81
03 89 82 84 85 86 81 89 89 86 85
04 96 95 96 93 96 94 96 96 95 96
05 95 93 96 95 96 95 96 96 97 95
06 99 99 99 99 98 98 98 99 99 99
07 98 98 97 97 98 97 98 98 98 98
08 98 98 98 98 99 99 99 99 99 98
09 97 97 98 97 98 97 96 97 97 98
10 99 98 98 99 98 99 98 99 98 99
11 99 98 99 99 99 99 99 97 99 100
12 99 98 98 99 99 99 99 99 98 99
13 100 100 99 99 100 99 99 99 99 100
14 100 99 99 100 100 99 99 100 99 100
15 99 99 99 99 99 100 99 99 100 100
16 100 99 99 100 100 99 99 99 100 99
17 99 100 100 99 99 99 98 100 98 98
18 100 99 100 100 100 99 100 100 100 100
19 99 100 100 100 99 100 100 100 100 100
20 99 100 100 99 100 100 99 100 100 100
21 99 100 99 99 100 99 100 100 98 100
22 100 100 100 100 100 100 100 100 100 100
23 100 100 100 100 100 100 100 100 100 100
24 100 100 100 100 100 99 100 100 100 99
25 100 100 100 100 100 100 100 100 100 100
26 100 100 100 99 100 100 100 100 100 100
27 99 99 99 99 100 100 99 99 100 100
28 100 100 100 100 100 100 100 100 100 100
29 99 100 100 100 100 100 100 99 100 100
30 99 99 99 99 99 99 98 99 98 99

Table 5.9: Percentage of successful selections performed by the WPSP(y) strategy for the Path-
ways domain.
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Figure 5.13: Solution trajectories for problems 1 and 3–11 from the Pathways domain (makespan
= 8). Problems 1, 3, 4 and 10 were optimally solved by at least one run of the Rand strategy.
Problem 1 was optimally solved by the Basic strategy.
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Figure 5.14: Solution trajectories for problems 12–21 from the Pathways domain (makespan
= 8).
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Figure 5.15: Solution trajectories for problems 22–30 from the Pathways domain (makespan
= 8).
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ZenoTravel

All three strategies are closer together in their average performance across problems in this

domain. In the trajectory plots shown in Figure 5.17, we see that the WPSP(y) strategy

shows statistically significant improvements over the other two strategies in problems 10

and 12, although it fails to complete all 31 iterations for at least one of the ten runs in

each problem. WPSP(y) also shows difficulty in completing all 31 iterations in problems

6, 9, 11 and 13. This is partly due to the large encoding sizes: from Table 5.1 we see that

problems 10–13 have more than 2,000 variables and 100,000 clauses each, which are among

the largest encodings that we test. Such large encoding sizes result in longer computation

times for iterations of message passing. The other cause for such long computation times is

the difficulty in finding a fixed point of message passing; message passing is not converging

within the iteration limits and repeated attempts are made to find a fixed point. Table 5.10

shows that the WPSP(y) strategy can fail to select a variable according to the WPSP(y)

equations quite frequently for some problems, for example problems 5, 6, 9 and 13. This

indicates that either convergence is not reached or for some fixed points, no variable has

a sufficiently high bias to be chosen.

The WPSP(y) and Rand strategies show an advantage over the Basic strategy: they

both find provably optimal solutions for four of the thirteen problems in at least one run,

whereas the Basic strategy only produces an optimal solution for two problems.

Trial (%)
Problem 1 2 3 4 5 6 7 8 9 10

ZenoTravel
01 100 100 100 88 100 100 100 100 100 100
02 84 90 69 53 56 66 61 67 81 57
03 99 100 100 100 99 99 100 99 100 100
04 99 100 100 99 100 100 100 100 100 100
05 45 47 49 55 47 55 53 47 36 47
06 88 83 85 83 86 86 84 85 89 84
07 96 96 95 96 94 95 96 95 93 97
08 100 100 100 100 100 100 100 100 100 100
09 72 76 71 74 75 74 73 75 73 71
10 81 79 74 78 76 74 84 83 74 76
11 100 99 99 99 99 99 99 99 99 99
12 90 95 96 93 94 95 93 96 91 95
13 53 53 47 48 55 55 43 51 51 49

Table 5.10: Percentage of successful selections performed by the WPSP(y) strategy for the
ZenoTravel domain.
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Figure 5.16: Solution trajectories for problems 1–9 from the ZenoTravel domain (makespan = 5).
Problems 1–3 and 5 are optimally solved by at least one run of the WPSP(y) strategy. Problems
1, 2, 5 and 6 are optimally solved by at least one run of the Rand strategy. Problems 1 and 2
are optimally solved by the Basic strategy.
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Figure 5.17: Solution trajectories for problems 10–13 from the ZenoTravel domain (makespan
= 5).
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5.3.4 Discussion

Our results illustrate the benefits of using randomisation with a restart strategy to mit-

igate the effects of making poor decisions during early decision levels. Problems such as

p14 and p7 from Depot; p10 and p5 from DriverLog; p12 and p16 from Rovers; p18 and

p30 from Pathways; p11 and p12 from ZenoTravel and p7 from Truck all show the Basic

strategy struggling to improve upon its best solution as the number of restart iterations

increase. This is despite it being allowed to search more of the tree as the number of

allowed backtracks increases. This highlights the difference between what is achievable

with the same limits on backtracking if different search paths are chosen during early

decision levels.

For any non-trivial problem, all three strategies first attempt to set variables in the

earliest decision levels to True before trying the assignment False. From decision levels

8 and onwards, the same strategy is employed to select the variable/value assignments.

Part of the improvement of the Rand strategy over the Basic strategy might be due to

restricting variable assignments to fact variables in the earliest decision levels, whereas

the remaining difference is the introduction of randomness into the procedure. This

randomness is introduced in the variable selection level rather than the value selection

level: recall that an alternative version of VSIDS assigns to the selected variable the value

True with probability 0.5 rather than always selecting True. Hence, it may be possible to

improve the use of the VSIDS heuristic by selecting randomly from a group of the highest

ranked variables.

In the DriverLog, Depot and Rovers domain the WPSP(y) strategy delivers the best

trajectories of the three strategies. For almost all problems in those domains, it either

matches the other strategies or improves upon them. The WPSP(y) strategy remains

competitive in the ZenoTravel domain but only occassionally leads to lower cost solutions;

however, it is encouraging that it does this for the harder problems in the domain.

For the Truck and Pathways domain, the WPSP(y) strategy displays the worst trajectories

of the three strategies. Although the average performance of WPSP(y) eventually catches

up with the other strategies by 31 restart iterations, the intention was to improve the

performance during early restart iterations. In this respect, WPSP(y) has not been a

success for these two domains. The results appear to suggest that WPSP(y) has difficulty

in finding a satisfiable assignment of any cost in the earliest decision levels. This may

be because the search is being directed into branches of the search tree that contain few

solutions; however, it is more likely that the approximations used in the derivation of the

WPSP(y) equations introduce a large amount of error. Developing a region-based survey

propagation built on top of generalised belief propagation may help to reduce the error,

but would be more expensive to compute.
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Computation times

The WPSP(y) strategy is considerably more computationally expensive than the other

strategies employed. Part of the difficulty is that the message passing equations are not

guaranteed to converge when applied to factor graphs containing loops. If the search for

a fixed point is proving to be difficult, eventually we must abandon message passing in

order to make progress towards finding a solution.

We observed that when message passing is seen to converge, it often does so within a

small number of iterations. To avoid choosing a set of initial messages that converge

slowly or not at all, we incorporated randomised restarts. However, we have to specify

the number of iterations allowed before a restart is made and the maximum number of

restarts allowed. The choice of these parameters has a strong influence on the time taken

to find a fixed point. Moreover, their optimum values may vary between problems.

An approximation that can be applied when it is difficult to find fixed points of message

passing algorithms is the following. Run message passing for a prespecified number, n,

of iterations, halting if convergence is reached. If convergence is not reached, then the

messages that are obtained after n iterations are taken as an approximation to a fixed

point and used to calculate marginals in the case of belief propagation, or biases in the

case of survey propagation and its related methods4.

We attempted this approach by implementing a new strategy AWPSP(y) that is an ap-

proximation of the WPSP(y) strategy. Like our other experiments, the AWPSP(y) strat-

egy is applied only to decision levels < 8. Each time the AWPSP(y) is called to select a

literal, it runs message passing for at most 20 iterations. If convergence is reached within

those 20 iterations, we use messages from that fixed point; otherwise, we use the mes-

sages obtained at the end of 20 iterations. From these messages we calculate biases for all

variables. We then select randomly from those fact variables v, such that Bias(v) > 0.3.

If no such variable exists, then we use the Basic strategy for that variable selection. This

variable is then set to True for that decision level.

We tested this strategy using the same methodology as described above on the domains for

which WPSP(y) was most successful: Rovers, Depot and DriverLog. We used makespans

of 5, 6 and 5, respectively. These are one less than the makespans used for the results

presented above. We compared the trajectories for the AWPSP(y) strategy against the

Rand and Basic strategies.

Figures 5.18 and 5.19 show the trajectories for problems from the Rovers domain. Fig-

ures 5.20 and 5.21 show the trajectories for problems from the Depot domain. Figures 5.22

and 5.23 show the trajectories for problems from the DriverLog domain.

4Note that loopy belief propagation is already an attempt to approximate marginals, so there are two
levels of approximation in this approach.
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Our results show that the AWPSP(y) strategy is still more effective than the Rand and

Basic strategies at finding lower cost solutions earlier; however, the gap in performance

appears to have narrowed. In part this is due to a lower percentage of successful variable

selections made by the AWPSP(y) strategy. This occurs when no fact variables have

a positive bias greater than 0.3. In decision levels where this happens, the AWPSP(y)

strategy temporarily reverts to the Basic strategy for that variable selection. These results

may not be as good as WPSP(y) strategy, but they may be of more practical relevance

as they place bounds on the computational effort devoted to calculating biases.

Although message passing is expensive, it is only performed for a small number of variable

selections, and so it may be worth bearing this extra expense if it leads to significant

improvements. Moreover, in the cases where WPSP(y) provides significant improvements,

our results suggest that it often does so within a small number of restart iterations of the

WPMax-SAT solver. Consequently, it may not be necessary to continue to use WPSP(y)

during later restart iterations, which would improve speed considerably. In particular,

when we have found an optimal solution, all that remains to be done by the WPMax-SAT

solver is to demonstrate that no better solution exists. It would be an interesting topic

of future work to test whether the variable/value orderings suggested by the WPSP(y)

strategy help to accomplish this ‘optimality proof’ within the WPMax-SAT solver more

efficiently than the other strategies.
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Figure 5.18: Solution trajectories for problems 1–10 from the Rovers domain (makespan = 5).
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Figure 5.19: Solution trajectories for problems 11–20 from the Rovers domain (makespan = 5).
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Figure 5.20: Solution trajectories for problems 2–11 from the Depot domain (makespan = 6).
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Figure 5.21: Solution trajectories for problems 12–21 from the Depot domain (makespan = 6).
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Figure 5.22: Solution trajectories for problems 1, 2 and 4–11 from the DriverLog domain
(makespan = 5).
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Figure 5.23: Solution trajectories for problems 12–20 from the DriverLog domain (makespan
= 5).
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5.4 Summary

We have reported two main sets of experimental results. First we compared the perfor-

mance of a general purpose weighted partial Max-SAT solver (MiniMaxSat) against a

mixed integer programming solver when applied to encodings of STRIPS planning prob-

lems with goal utility dependencies. We generated the test problems by adding randomly

selected action costs and utility functions to problems taken from past International Plan-

ning Competitions. We found that the WPMax-SAT approach was competitive and often

outperformed the integer programming approach despite the latter using the SAS+ trans-

lation step that eliminates much redundancy in the state representation.

We then evaluated the effect of incorporpating bias estimates made by the WPSP(y)

equations into a WPMax-SAT solver based upon the architecture of MiniMaxSat. The

bias estimates were used as heuristic guidance for selecting decision literals in the first 7

decision levels of search. We compared this strategy to the default heuristic and a uniform

random selection strategy. We found that for many problems in the DriverLog, Depot and

Rovers domain our WPSP(y) strategy directed the search towards lower cost solutions

earlier in the randomised restart search. This is an encouraging result that suggests the

theory of survey propagation may give us new insights into practical problems and may

have a broader application than the solution of random k-SAT formulae.
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Conclusion

We have demonstrated a system, MSatplan, for solving planning problems with goal

utility dependencies using an optimisation variant of propositional satisfiability, known as

weighted partial Max-SAT. This system is guaranteed to produce plans that are optimal

up to a given makespan. We compared our implementation against a successful integer

programming based encoding, implemented as iPUD/SYM, using past benchmark prob-

lems from the International Planning Competition. Our results showed that MSatplan

is competitive with iPUD/SYM, solving as many as 109 ± 8% and 235 ± 24% more

subproblems for the Truck and Depots domains; it also demonstrated consistently good

performance on the Pathways domain. When iPUD/SYM outperformed MSatplan in

our experiments, it did so by a smaller margin: 19 ± 15%, 38 ± 10% and 3 ± 3% more

problems solved for the DriverLog, ZenoTravel and Rovers domains.

We also applied the technique of survey propagation to the weighted partial Max-SAT

encodings produced by the above method. To do this we derived a new set of equations,

which we refer to as the WPSP(y) equations. These are a generalisation of the SP(y)

equations from Max-SAT to weighted partial Max-SAT. We incorporated the WPSP(y)

equations into a weighted partial Max-SAT solver based upon the MiniMaxSat system.

Bias estimates from fixed points of the WPSP(y) equations were used to provide heuristic

guidance during the first seven decision levels of search. We compared this strategy

against uniform random selection from the same set of variables and the default VSIDS

and weighted Jeroslow-Wang heuristic.

For the DriverLog, Depot and Rovers domains, we found that using these bias estimates to

select variable/value assignments for the first seven decision levels reduced the average cost

of the best solution found over many restart iterations of the search. This means that with

the same limits on backtracking, using bias estimates directed the solver towards lower

cost solutions than the other strategies on average. The method remained competitive

for the ZenoTravel domain. For the Pathways and Truck domains, the bias estimates
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directed the search towards higher cost solutions. One possible reason for this is that

the approximations were inappropriate and introduced a large amount of error into the

search.

It is worth remembering that message passing using the WPSP(y) equations is not guaran-

teed to converge when applied to WPMax-SAT encodings of STRIPS planning problems.

We have demonstrated empirically that approximate fixed points of the WPSP(y) equa-

tions can be frequently found, through message passing, for encodings produced from

several IPC benchmark domains.

Informally, the survey propagation method assumes that the min-sum equations admit

many approximate fixed-point solutions. Plans potentially contain a lot of symmetry:

pairs of sequences of actions that are independent - that is to say that they do not interact

with one another by achieving or invalidating preconditions - may be executed in many

different ways through different choices of how to interleave the sequences. Since plans

correspond to solutions in our WPMax-SAT encodings, a solution to such an encoding

may have many different variations, all of equal cost. It is also worth noting that our

encodings contain variables that, for a certain collection of solutions, may be flipped

without altering the cost or the satisfiability of the truth assignment; for example, a

propositional variable corresponding to a NOOP action at level i may be safely flipped

to create a new solution if the fact that the NOOP propagates is achieved at level i but

is irrelevant to the rest of the plan from levels i+ 1 onwards.

In summary, it is likely that the solution space for our encodings is structured as follows.

The solutions can be divided into several ‘cost’ levels, where each level contains many so-

lutions of equal cost. Within a cost level, the solutions are grouped into clusters according

to their Hamming distance1. Each cluster within a cost level corresponds to a particular

choice of the levels in the planning graph that each action in the plan is executed in.

Contained within each cluster are many solution variations that arise from single flips of

variables that correspond to irrelevant details, such as NOOPs that are not required by

the plan. This clustered solution space is likely to give rise to many different approxi-

mate fixed points of the WPSP(y) equations and may partly explain the success of the

WPSP(y) strategy in many of our experiments. Future work might test this hypothesis

by testing the WPSP(y) strategy on encodings of planning problems that are designed to

not exhibit symmetry in their solutions. Extra axioms might be included in the encoding

to eliminate the many variations on a solution that are possible in our current encoding

scheme; for example, by asserting that every true fact is either deleted at the next level or

is propagated by a NOOP. This should reduce the number of solutions that an encoding

has. This might make it hard to find a non-trivial fixed point of the WPSP(y) equations

1The Hamming distance between two truth assignments is the number of variables which differ between
the two assignments in their assigned value.
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or adversely affect the performance of the WPSP(y) strategy.

Practically, we are not really interested in finding all the different symmetrical versions

of a plan; instead, we only want to find a lowest cost solution. A clustered solution

space, such as the one described above, can lead to an abundance of sub-optimal local

minima. It is a well known problem that local search solvers often get trapped in such local

minima. Further investigation into the behaviour of the WPSP(y) decimation strategy

on encodings of planning problems may help us to gain insight into how to simplify the

search space to eliminate such problematic local minima. Similarly, by taking symmetry

into account, we may be able to design systematic solvers that operate in a reduced search

space, which would reduce the time taken to complete optimality proofs.

Most research on survey propagation has studied its application to random k-SAT. This

work demonstrates that the underlying method of survey propagation can be used for

beneficial effect in more practical optimisation problems. Our results motivate further

study of this method with the desire to make it more computationally practical and to

increase its accuracy. Ensuring convergence and reducing the error that results from the

factor graph containing loops would develop the work towards meeting those goals.

6.1 Future work

We obtained our results for MSatplan using a general-purpose weighted partial Max-

SAT solver to find a plan. An area for future work is to investigate how we can specialize

the algorithms used in these solvers to exploit the regular structure that is found in plan

encodings.

6.1.1 Plan specific optimisation heuristics

Although the objective of automated planning is to develop domain-independent planning

systems, which precludes the use of problem-specific heuristics, there appears to be a dis-

crepancy between compilation and heuristic search approaches to planning. Compilation

approaches often focus on creating encodings in the target language that model partic-

ular aspects of the planning problem. A state-of-the-art general purpose solver for that

target language is then used to solve the problem. However, these solvers are designed to

be general with respect to the target language, which means that they must be efficient

across a broad range of problems, many of which will share no resemblance to encodings

of planning problems.

In contrast, heuristic search approaches to planning focus on developing more efficient and

accurate ways of extracting structured information from an arbitrary planning problem.
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This information is then included in a heuristic to estimate the distance to the goal. These

methods are general in the sense that they apply to any problem that can be expressed in

the planning language, however they take advantage of typical behaviour and structure

that is observed to be common across planning problems. For example, the fast downward

planner exploits hierarchical structure that is often present in planning problems (Helmert

2006).

There is a significant gap in the literature surrounding the integration of ideas from

heuristic search into satisfiability solvers, that are specialised to handle planning problems.

In Chapter 2, we mentioned that the performance of planning as CSP benefitted from

the inclusion of planning specific heuristics into the CSP solver. Rintanen’s (2010) recent

work on using planning specific heuristics in a SAT-based planner provides encouraging

evidence that SAT-based planning can compete with and outperform a state-of-the-art

heuristic search planner such as Lama.

A general purpose WPMax-SAT solver, such as MiniMaxSat1.0, that uses a branch-

and-bound search must use a lower bounding function that is robust across a wide variety

of problems. We believe that there is considerable potential for improving the performance

of the paradigm we have set out in Chapter 3, by improving the lower bounding function

to exploit planning-specific information. One suggestion for how this might be achieved

is through the incorporation of landmarks.

Landmarks in planning

In planning, a landmark is a fact that is true at some time in every solution plan (Por-

teous et al. 2001). Although determining the set of landmarks for a planning problem is

PSPACE-hard, the following sufficient condition can be used to identify some landmarks.

For a fact F , construct the relaxed problem Π′ which contains every action, ignoring their

delete effects, from the original problem except those that have F as an add effect. If

Π′ does not have a solution that achieves the goals of the original problem then F is

a landmark. A backward chaining procedure is performed on a relaxed planning graph

in order to identify landmark candidates, which are then either confirmed or ignored by

applying the above test to each candidate in turn.

The procedure that identifies landmark candidates first takes the set of goals as landmarks.

It then collects all the achieving actions for those goals and takes the intersection of their

preconditions to obtain new landmark candidates. This is recursively applied until all

the preconditions are contained in the initial state. As landmarks are identified they are

added as nodes to a directed tree using the ordering that was implied at their discovery:

landmarks that were discovered as preconditions of supporting actions for other landmarks

are ordered before them.
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Porteous et al. then runs a forward state-space planner to plan for the leaf nodes of

the tree, that is to say the landmarks that occur least in the ordering. Once these have

been achieved they are removed from the tree and the process is reapplied to achieve

the new leaf nodes of the tree starting from the end of the last plan. This continues

until all landmarks (and hence goals) are achieved or failure is encountered. On success,

the plans are concatenated to form one plan that transforms the initial state into a goal

achieving state. The experimental evidence suggests that it reduces the time taken to

find a solution at the expense of slightly longer plans since landmarks are planned for one

layer at a time. Richter et al. (2008) adapted landmark generation to the SAS+ model of

planning and uses the generated landmarks as part of a heuristic in a sequential heuristic

search planner, Lama(Richter and Westphal 2008).

6.1.2 Improving lower bounds through landmarks

Landmarks can be used to derive admissible heuristics for cost-optimal planning in an A∗

search (Karpas and Domshlak 2009). The heuristic is computed for a state as follows.

The set L of landmarks that remain to be achieved are identified together with the set

A of actions that can achieve these landmarks. For each action a ∈ A and landmark

φ ∈ L that it could achieve, a cost c(a, φ) is associated with the pair. The cost c(φ) of

a landmark φ ∈ L is then equal to the minimum c(a, φ) over actions a that can possibly

achieve it. The costs c(a, φ) are constructed such that the sum
∑

φ′ c(a, φ′) ≤ c(a) where

the sum is over the landmarks φ′ ∈ L ∩ Add(a). A simple implementation might divide

the action cost equally amongst landmarks; the quality of the estimate can be improved,

at an extra computational cost, by casting the equation as a linear program and solving

for the optimisation function that maximises
∑

φ∈L c(φ).

One can also identify landmark actions, which must occur in any solution plan. Obviously

if an identified landmark action is not yet present in a plan up to the current state,

then we are certainly required to execute it before we reach the goal; hence, the cost

of that action should be added to the heuristic estimate for that state. To compute

an admissible heuristic that combines both types of landmarks we can identify all such

unperformed landmark actions A′ and compute the set of yet to be achieved landmark

facts L′ = L \ ⋃a∈A′ Add(a) that are not achieved by any of the unperformed landmark

actions. A heuristic estimate is then given by the sum of costs of actions in A′ added with

the heuristic estimate, as derived above, of achieving the landmarks in L′.

It may be possible to improve the lower bound on the cost of extending a partial truth

assignment to a complete one through the use of landmarks. By considering the set of

landmark facts and actions that have yet to be achieved and executed given the current
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partial truth assignment, lower bounds on the costs of achieving and executing these facts

and actions may yield tighter lower bounds on the true cost.

6.1.3 Inferential strength of landmarks in SAT

Up until recently, we were not aware of any satisfiability approach that included landmarks

in its encodings. SatPlanLM (Cai et al. 2011), an entry in the recent 2011 International

Planning Competition, uses landmarks generated by the Lama planner and their ordering

constraints to add extra axioms to the planning encoding. We have not seen empirical

results that explore the effects of including such axioms in the encoding.

One particular class of these ordering constraints are necessary orderings. A fact ψ occurs

necessarily before a fact φ if in any plan where φ is made true at time step i, ψ is true at

time step i− 1. For this type of ordering, SatPlanLM adds a clause {¬φi, φi−1, ψi−1}.

This clause is equivalent to the following three implications:

1. φi ∧ ¬φi−1 ⇒ ψi−1.

2. ¬ψi−1 ∧ ¬φi−1 ⇒ ¬φi.

3. φi ∧ ¬ψi−1 ⇒ φi−1.

If the encoding of the planning problem is the thin-gp encoding, taken from SatPlan,

that we use, one can observe that the last two implications can be deduced from unit prop-

agation. First note that necessary orderings are marked when ψ is a common precondition

of all the non-NOOP supporting actions for φ. Now, for example, if ¬ψi−1∧¬φi−1 is true,

then the NOOP anoopi−1 , which preserves φ across time steps i − 1 and i, must be false

because a hard clause {¬anoopi−1 , φi−1} is present in the encoding. Similarly, all other non-

NOOP supporting actions aji−1 of φ must be false because a hard clause {¬aji−1, ψi−1} is
present in the encoding. From the hard clause {¬φi, a

noop
i−1 , a

1
i−1, . . . , a

k
i−1} that is present

in the encoding, where φ has k supporting actions, unit propagation would deduce that

¬φi must be true, which is the conclusion of the second implication listed above.

A little thought will convince the reader that the first implication is the only one that

provides a conclusion that is not possible by applying unit propagation to the thin-gp

encoding alone. This is because inference gets as far as concluding that the clause

{a1i−1, . . . , a
k
i−1} must be true, and unit propagation is not powerful enough to observe

that no matter which aji−1 is true, there is a clause {¬aji−1, ψi−1} (since ψ is a common

precondition of all the non-NOOP supporting actions of φ) which will lead to the conclu-

sion ψi−1 regardless of which supporting action is chosen.
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Observe that if we used Rintanen’s (2008) unit propagation with look-ahead procedure,

we would not need the axiom for necessary orderings at all. Observe that in the case of the

first implication described above, when the unit propagation with look-ahead procedure

probed the literal ¬ψi−1, the presence of clauses {¬aji−1, ψi−1} would force aji−1 to be false

for j = 1, . . . , k. This would then transform the clause {a1i−1, . . . , a
k
i−1} into the empty

clause. Hence, unit propagation with look-ahead would correctly determine that ψi−1 is

true, which is the conclusion of the first implication described above.

The above motivates the idea of strengthening the inferential power of a SAT solver to

allow it to make such deductions without requiring those extra axioms to be included in the

encoding. Furthermore, it would be interesting to find more theoretical results regarding

which axioms add to the information that can be derived from unit propagation, in the

same way that Sideris and Dimopoulos and Rintanen have done.

6.1.4 Similarity to probing

As we have suggested above, it seems that the technique of probing from the field of

satisfiability shares some similarities with landmark discovery. Landmarks are often dis-

covered by removing an action from the set of operators and checking if a relaxed plan

still exists. Similarly, probing tries a value for a literal and sees if it can derive the empty

clause by unit propagation from that assumption. If it can it knows the literal must take

the opposite value if a satisfiable assignment is possible.

Perhaps the idea of probing could be generalised for encodings of planning problems.

Given the layered nature of encodings and the way that fresh copies of facts and actions

are included in each subsequent layer, instead of setting a single literal to a value, we

could set to false, for a fact f , all the propositional variables fℓ, . . . , fn corresponding

to that fact. If the empty clause can be derived from that assumption, then we know

that at least one of those propositional variables must be true. From this, we know that

the clause {fℓ, . . . , fn} must be satisfied. In essence, such a procedure has discovered a

landmark fact.
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M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random

satisfiability problems. Science, 297(5582):812–815, 2002.

D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems.

In Proc. AAAI, 1992.

M.W. Moskewicz, C.F. Madigan, Y Zhao, L. Zhang, and S Malik. Chaff: Engineering an

efficient SAT solver. In Proc. 38th Annual Design Automation Conference, 2001.

K. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for approximate infer-

ence: An empirical study. In Proc. UAI, 1999.

X.L. Nguyen, S. Kambhampati, and R.S. Nigenda. Planning graph as the basis for deriving

heuristics for plan synthesis by state space and CSP search. Artificial Intelligence, 135

(1-2):73–123, 2002.

J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. In

Proc. AAAI, 1982.

A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium on Foun-

dations of Computer Science, pages 46–57. IEEE, 1977.

J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage of

landmarks in planning. In Proc. ECP, 2001.

M.R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in sat-based formal

verification. International Journal on Software Tools for Technology Transfer (STTT),

7(2):156–173, 2005.

T. Ralphs and M. Guzelsoy. The SYMPHONY callable library for mixed integer pro-

gramming. In Proc. of the Conf. of the INFORMS Computing Society, 2005.

S. Richter and M. Westphal. The lama planner using landmark counting in heuristic

search. In Proc. IPC, 2008.

S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Proc. AAAI, 2008.



BIBLIOGRAPHY 159

J. Rintanen. Planning graphs and propositional clause learning. In Proc. KR, 2008.

J. Rintanen. Heuristics for planning with SAT. In Proc. International Conference on

Principles and Practice of Constraint Programming, 2010.

J. Rintanen, K. Heljanko, and I. Niemela. Planning as satisfiability: parallel plans and

algorithms for plan search. Artificial Intelligence, 170(12-13):1031–1080, 2006.

J. Rintanen et al. Phase transitions in classical planning: an experimental study. In Proc.

KR, 2004.

N. Robinson, C. Gretton, D.N. Pham, and A. Sattar. A compact and efficient SAT

encoding for planning. In Proc. ICAPS, 2008.

N. Robinson, C. Gretton, D.N. Pham, and A. Sattar. Cost-optimal planning using

weighted MaxSAT. In Proc. ICAPS Workshop on Constraint Satisfaction Techniques

for PLanning and Scheduling Problems, 2010.

R. Russell and S. Holden. Handling goal utility dependencies in a satisfiability framework.

In Proc. ICAPS, 2010.

S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Planning. In Artificial

intelligence: a modern approach, volume 74, page 377. Prentice hall Englewood Cliffs,

NJ, 1995.

N. Schenker and J.F. Gentleman. On judging the significance of differences by examining

the overlap between confidence intervals. The American Statistician, 55(3):182–186,

2001.

B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In

Proc. AAAI, 1994.

A. Sideris and Y. Dimopoulos. Constraint propagation in propositional planning. In Proc.

ICAPS, 2010.

D. Smith. Choosing objectives in over-subscription planning. In Proc. ICAPS, 2004.

S.J.J. Smith, D.S. Nau, T.A. Throop, et al. Success in spades: Using AI planning tech-

niques to win the world championship of computer bridge. In Proc. IAAI, 1998.
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