
Technical Report
Number 821

Computer Laboratory

UCAM-CL-TR-821
ISSN 1476-2986

Modelling energy efficiency
for computation

Charles Reams

October 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Charles Reams

This technical report is based on a dissertation submitted
October 2012 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

In the last decade, efficient use of energy has become a topic of global significance, touching
almost every area of modern life, including computing. From mobile to desktop to server,
energy efficiency concerns are now ubiquitous. However, approaches to the energy problem
are often piecemeal and focus on only one area for improvement.

I argue that the strands of the energy problem are inextricably entangled and cannot
be solved in isolation. I offer a high-level view of the problem and, building from it,
explore a selection of subproblems within the field. I approach these with various levels of
formality, and demonstrate techniques to make improvements on all levels. The original
contributions are as follows.

Chapter 3 frames the energy problem as one of optimisation with constraints, and explores
the impact of this perspective for current commodity products. This includes considera-
tions of the hardware, software and operating system. I summarise the current situation in
these respects and propose directions in which they could be improved to better support
energy management.

Chapter 4 presents mathematical techniques to compute energy-optimal schedules for
long-running computations. This work reflects the server-domain concern with energy
cost, producing schedules that exploit fluctuations in power cost over time to minimise
expenditure rather than raw energy. This assumes certain idealised models of power,
performance, cost, and workload, and draws precise formal conclusions from them.

Chapter 5 considers techniques to implement energy-efficient real-time streaming. Two
classes of problem are considered: first, hard real-time streaming with fixed, predictable
frame characteristics; second, soft real-time streaming with a quality-of-service guarantee
and probabilistic descriptions of per-frame workload. Efficient algorithms are developed
for scheduling frame execution in an energy-efficient way while still guaranteeing hard
real-time deadlines. These schedules determine appropriate values for power-relevant pa-
rameters, such as dynamic voltage–frequency scaling.

A key challenge for future work will be unifying these diverse approaches into one “Theory
of Energy” for computing. The progress towards this is summarised in Chapter 6. The
thesis concludes by sketching future work towards this Theory of Energy.

3

Acknowledgements

First I would like to thank my supervisor Prof. Alan Mycroft, whose faith in my ability to
complete this work always exceeded my own. I hope I have repaid the trust and freedom
he has granted me over the last three and a half years.

I must also thank my family, who unknowingly put me on the road to this PhD twenty
years ago when they would allow me to play on my Game Boy until (the agony!) the
batteries ran out. I would also like to thank Emma Seaber, who tolerated the long and
difficult labour that birthed this thesis with exceptional grace, and feigned interest in
Pareto frontiers far beyond the call of duty. There are not enough Nutrageouses to repay
you.

Many more people deserve a mention than this space will allow, but to select a few:
Michael Wallace, Miloš Puzović, and Greg Chadwick for making it so much more than
the work, and David Brown, who on many occasions showed me the light at the end of
the tunnel. Thank you all.

Additional thanks belong to the examiners of the thesis on which this technical report is
based, John Daugman and Simon McIntosh-Smith. Their comments have improved this
final edition in every respect, from high concept to lowly punctuation. All remaining errors
are, of course, mine.

My final thanks belong to Clare College, whose Domestic Research Scholarship supported
me throughout my studies.

This thesis is dedicated to the memory of my late grandfather, Jim Burnett, who lived
to see the first words of this thesis but not the last. As the more mathematical chapters
demonstrate, I have inherited his enthusiasm for brackets.

4

Contents

1 Introduction 15

1.1 Central thesis . 16

1.2 Contributions . 16

1.3 Chapter plan . 16

2 Survey of previous work 19

2.1 The meaning of energy awareness . 19

2.2 Energy-aware hardware . 20

2.2.1 Historical trends in hardware energy efficiency 21

2.2.2 Future tends in hardware energy efficiency 23

2.2.3 Energy characteristics at sub-peak performance 26

2.3 Energy-aware operating systems . 28

2.4 Energy-aware protocols . 28

2.4.1 Energy-aware data protocols . 29

2.4.2 Energy management protocols . 30

2.5 Energy-aware software . 31

2.6 Summary of related work . 32

3 Towards energy-efficient computing 35

3.1 Energy in the computing space . 36

3.2 Modern power management . 38

3.2.1 ACPI . 39

3.3 Energy efficiency in computing . 39

3.3.1 Maintenance of required performance 40

3.3.2 Response to changes in demand . 41

3.3.3 Power capping . 42

3.3.4 Summary of constraints . 42

3.4 Directions toward a solution . 42

CONTENTS CONTENTS

3.4.1 Power model . 42

3.4.2 Workload constraints and performance assessment 43

3.4.3 Energy optimisation by the system 44

3.5 Routes towards energy efficiency . 45

3.5.1 Considerations for the operating system 45

3.5.2 The evolution of application software 48

3.6 Conclusion . 49

4 Cost optimisation for power-aware computing 51

4.1 Motivation . 51

4.2 Related work . 52

4.2.1 Dynamic voltage–frequency scaling 53

4.2.2 Other formal methods . 55

4.3 Definition of terms . 55

4.4 Problem statement . 55

4.5 Formal model . 56

4.5.1 Assumptions and justification . 57

4.6 Solutions for specific cost models . 59

4.6.1 Constant cost . 59

4.6.2 General discrete variable cost . 63

4.6.3 Real-world example . 65

4.6.4 Exponential cost . 67

4.6.5 Generalised time intervals . 67

4.6.6 Summary of cost model-specific solutions 70

4.7 General methods . 70

4.7.1 Monotonic cost functions . 71

4.7.2 Constant spending . 72

4.8 Conclusion . 74

5 Energy-efficient real-time streaming 77

5.1 Introduction . 77

5.1.1 Definition of an operating point . 79

5.1.2 Assumptions regarding operating points 80

5.2 Problem statement . 81

5.3 Related work . 83

5.4 Algorithm description . 85

6

CONTENTS CONTENTS

5.4.1 Dominated points . 87

5.4.2 Downscaling . 89

5.5 Evaluation . 90

5.5.1 Diminishing returns . 90

5.5.2 Simulation . 92

5.5.3 Heuristic improvements . 94

5.5.4 Evaluation of domination . 95

5.6 Probabilistic generalisation . 95

5.6.1 Probabilistic model . 95

5.6.2 Suitability for practical soft real-time problems 96

5.6.3 Assumption of normality . 97

5.6.4 Probabilistic manifestation . 98

5.6.5 Probabilistic algorithm . 98

5.6.6 Generalised domination . 100

5.6.7 Probabilistic evaluation . 101

5.6.8 Probabilistic summary . 104

5.7 Conclusion . 105

6 Conclusions 107

6.1 Concluding argument . 107

6.2 Future directions . 109

6.2.1 Future work on the theory of energy-efficient computing 109

6.2.2 Future work on cost-efficient computing 110

6.2.3 Future work on energy-efficient streaming 110

Appendices 113

A Future work: online learning in hard real-time 113

A.1 Introduction . 113

A.2 Motivation . 113

A.3 Problem outline . 114

A.4 Proposed methodology . 115

A.5 Challenges . 115

A.6 Related work . 116

Bibliography 119

Glossary 133

7

CONTENTS CONTENTS

8

List of Figures

2.1 Graph of computations per unit energy through history, in support of
Koomey’s Law. Reproduced from [Koomey et al., 2011]. 20

2.2 Size comparison of a set of DEC Alpha cores from a heterogeneous multi-
core chip; each core is labelled with the single-core chip in which it originally
appeared. Reproduced from [Kumar et al., 2003]. 24

2.3 Plot of power consumption against nominal parallel efficiency for various
numbers of cores. Reproduced from [Li and Mart́ınez, 2005]. 25

2.4 Transistor behaviour in sub-, near-, and super-threshold operating voltage
regions. Reproduced from [Dreslinski et al., 2010]. 27

3.1 Energy usage breakdown by equipment type in United States, from 2000
to 2006. 37

3.2 Time-throughput diagram showing latency to reach maximum performance. 41

4.1 Potential cost saving λ, as a percentage, against static fraction µ, for some
realistic α values. 62

4.2 Cost incurred to perform a long-running computation, for various ratios of
static to dynamic power. 65

4.3 Energy required to perform a long-running computation, for various ratios
of static to dynamic power. 66

4.4 A continuous cost function and two different methods of discretising it into
ten steps. 69

4.5 Schedules for two different quantised approximations to the same continu-
ous cost function. Arbitrary units of rate. 70

4.6 Comparison of cost overheads incurred by regular and fitted quantisations
for several values of α. Horizontal axis is on a logarithmic scale. 71

5.1 Comparison of the traditional Turing model and streaming computation. . 78

5.2 Example set of operating points. 79

5.3 An example set of operating points and a per-frame deadline shown in
energy–time space. 81

5.4 Example set of operating points, showing dominated and undominated
points, arbitrary units. 88

LIST OF FIGURES LIST OF FIGURES

5.5 Probability that integer time values generated uniformly at random have
a common factor, as a function of m, the number of values. 90

5.6 qν for increasing values of ν, averaged over one hundred random examples.
Note that the vertical axis starts at 0.4. 91

5.7 Energy–time diagram for real BSOM operating points. 92

5.8 Comparison of the per-frame energy reduction achieved by my static algo-
rithm and a dynamic greedy algorithm. 93

5.9 Comparison of the per-frame energy reduction achieved, as a fraction of
the available maximum. 94

5.10 Diagram showing the variable deadline encountered by the dynamic frame
scheduling algorithm. 102

5.11 Comparison of the energy reduction achieved by my static algorithm and
a dynamic greedy algorithm for normally distributed execution times. . . . 103

5.12 Two different forms of operating point energy–time description, represented
graphically. 105

10

List of Tables

3.1 Energy usage breakdown for computing equipment in the United States.
Energy figures are in billions of kWh. 36

5.1 Average solution time. 94

5.2 Point counts for BSOM data, and comparison to heuristic estimates. 95

5.3 Power reductions measured for the BSOM benchmark. For meaning of col-
umn headings, see text. 104

LIST OF TABLES LIST OF TABLES

12

List of Algorithms

1 Dynamic programming algorithm to find minimal energy which meets the
throughput requirement. 86

2 Algorithm to find undominated operating points. 88

3 Brute-force algorithm to find frequencies which minimise expected energy
and meet the probabilistic timing constraint. 99

LIST OF ALGORITHMS LIST OF ALGORITHMS

14

Chapter 1

Introduction

Many fields of computing are currently experiencing a new or renewed interest in energy
efficiency. In desktop computing, ecological concerns are forcing hardware designers to
refine their traditional assumption that mains electricity is an unlimited source of power.
In the server space, energy demands over the lifetime of the hardware are rapidly increasing
and may come to dominate the cost of the hardware itself [Barroso and Hölzle, 2007]. In
both contexts, reducing power demand from electronic components also reduces the power
demand of the cooling subsystem, so savings are multiplied. And of course any form of
mobile computing, a huge growth area in the last decade, must consider power efficiency;
most obviously from the perspective of maximising battery life, and additionally from the
complication of cooling in a mobile context.

The energy problem has diversified considerably in recent years. The range of use cases and
attendant hardware and software, from servers to desktops to laptops to tablets to mobile
telephones to embedded devices and so on, is now so vast that it is infeasible to attempt to
approach all of them simultaneously. This is particularly true if one seeks analytic rather
than heuristic solutions, as will generally be the case in this thesis. One might compare
the situation to that of physics in the 19th Century; the great breakthrough of James
Clerk Maxwell’s unification of electricity and magnetism was not possible until the two
phenomena were individually well-understood.

In recognition of these difficulties, I make a two-part argument in this thesis: on the one
hand, we should not be too hurried to solve all the problems of energy-efficient computing,
since such a solution is clearly intractable with our current understanding; on the other
hand, we should remain aware of the larger picture as we advance the subproblems, so
that opportunities to unify and generalise can be uncovered as they come within reach.

Furthermore, with the central argument in mind, I make headway on some of these par-
ticular problems: power cost management and real-time streaming. My intention is that
these pieces will ultimately be fitted into a “grand unified theory” of energy-efficient
computing.

In power cost management, I generalise traditional notions of energy efficiency to include
energy cost efficiency, and argue that these concerns are connected but not identical and
that cost optimisation presents an interface to economic reality that is not available if
one simply “counts joules”. I present formal models connecting power, performance, and
cost, and show formal optimisation methods for them. I then investigate whether these
optimisations present adequate efficiency savings to justify their deployment in practice.

15

16 1.1. CENTRAL THESIS

In real-time streaming, I develop a framework in which tasks in a (potentially infi-
nite) stream can be processed energy-efficiently while still meeting hard real-time dead-
lines. This framework includes an abstraction from the particular characteristics of the
workload—hardware or software—and, on this platform, presents a generalisation of tra-
ditional energy-efficient scheduling techniques such as voltage dithering. I also present
algorithms to find these schedules, and explore whether it is possible to compute them
in a time- and space-efficient manner. Again, the results of the schedules are tested by
simulation against existing approaches, and the energy differential measured.

I conclude with a discussion of what is still to be done towards a unified theory of energy-
efficient computing.

1.1 Central thesis

My central thesis is that the subproblems of the energy problem as it pertains to computing
are deeply interrelated, and it is necessary to consider the whole before addressing the
parts. To support this argument, I survey and discuss the state of the field, and in later
chapters, make headway on certain parts—in particular, power cost management and
real-time streaming—and relate these back to the problem as a whole.

1.2 Contributions

My contributions to the field are as follows:

• An extensive description of the current situation “on the ground” with regards to
energy efficiency, across the server, desktop and mobile sectors.

• The proposal of energy cost as the true metric of optimisation in energy-aware
computing.

• Formal methods for solving energy cost problems under realistic cost and perfor-
mance models.

• The proposal of the operating point as a clean abstraction of execution details (in
both hardware and software), suitable for general-purpose energy-aware modelling.

• The description of precise algorithms for solving operating point problems in energy-
efficient streaming, and their time and space characteristics.

1.3 Chapter plan

Following this chapter, the chapter structure of this thesis is as follows:

• Chapter 2 surveys various strands in the field of energy-aware computing.

• Chapter 3 presents a large-scale view of several pragmatic levels on which the energy
problem might be approached, with a particular emphasis on the view from industry.

CHAPTER 1. INTRODUCTION 17

• Chapter 4 introduces the concept of energy cost minimisation, describes mathe-
matical techniques by which such minimisation may be achieved, and measures the
utility of these techniques.

• Chapter 5 defines the “operating point” and develops a framework for energy-
efficient hard real-time streaming, based on the concept of operating point dithering.

• Chapter 6 synthesises the results of previous chapters into a single argument, making
the final demonstration of the central thesis.

18 1.3. CHAPTER PLAN

Chapter 2

Survey of previous work

Given the diversity of the topics considered in this document, this survey of prior work
does not attempt to introduce all of the detailed context immediately; instead, much of
the relevant material will be introduced directly in the appropriate chapter. Rather, this
chapter serves as a general summary of the state of the art in energy-aware computing,
and thereby puts the specific work of later chapters in broader context. Of course, it
makes no pretension to cover every area, and is necessarily highly selective in those that
are covered, but nevertheless its purpose is the provision of an adequate foundation for
the details of what follows.

2.1 The meaning of energy awareness

The phrase “energy-aware computing” is carefully chosen, because there are many possible
interactions between computation and the energy it requires. For example, in a battery-
operated device, the usual objective is to minimise the total energy of a computation;
that is, the integral of power with respect to time over the whole computation. In other
devices, peak instantaneous power is the more pressing constraint. Some machines, such
as spacecraft, may combine solar power with battery back-up, and so are subject to
both constraints. Other constraints might include a thermal dissipation limit imposing
a maximum average power over a given period of time. Additionally, there are various
classes of problem depending on which performance, energy, power and so forth are to
be optimised and which are constrained. To further complicate matters, batteries require
quite specific usage profiles to give optimal performance, as described below. Moreover,
the machine may not be intended for energy efficiency at all, but pure energy awareness,
simply measuring its own energy usage and displaying this to the user or relaying it
to an external reporting service. In practical systems, resolving these requires a different
approach in each case, so this survey presents as broad coverage of these areas as possible.

To recapitulate, my central thesis is that the different parts of the energy problem are
closely related and must be considered as one. Consequently, while this chapter catalogues
the related work according to the particular area that it targets–hardware, operating
system, protocols, and software–this taxonomy does not quite carve nature at the joints,
and so the chapter concludes with a discussion of some interdisciplinary work.

19

20 2.2. ENERGY-AWARE HARDWARE

Figure 2.1: Graph of computations per unit energy through history, in support of
Koomey’s Law. Reproduced from [Koomey et al., 2011].

2.2 Energy-aware hardware

To call hardware energy-aware seems almost tautological, since hardware is definitionally
composed of physical objects subject to the usual laws of thermodynamics. However there
is still a distinction to be drawn between three areas of work: techniques by which the
hardware itself is made more energy-efficient; mechanisms for monitoring and communi-

CHAPTER 2. SURVEY OF PREVIOUS WORK 21

cating power and energy values to higher levels; and hardware features that these higher
levels may use to further improve the energy profile, closing the loop.

In fact, the historical trend of increasing performance closely tracks increases in energy
efficiency, and this is encapsulated in an analogue of Moore’s Law known as Koomey’s
Law [Koomey et al., 2011]. Moore stated that the number of components (latterly transis-
tors) per chip doubled every two years; Koomey observed that computation per kilowatt-
hour has followed a similarly exponential trend, doubling every 1.57 years. This trend is
seen to hold throughout the history of computing, from the 1946 ENIAC to the most
recent laptop and desktop machines, as shown in Figure 2.1. It has been said that “in
1978, a commercial flight between New York and Paris cost $900 and took seven hours. If
the principles of Moore’s Law were applied to the airline industry, that flight would now
cost about a penny and take less than one second” [Semiconductor Industry Association,
2005]. If Koomey’s Law were applied analogously, the aircraft would now require less than
27 milligrams of fuel1.

Koomey’s Law is an empirical observation about machines operating at peak performance
and consequently maximum power consumption. This suggests a neat partition of the
existing work on hardware power-awareness into three parts: how such reductions have
actually been achieved historically; to what extent this trend can be expected to continue
into the future; and, how machines behave when operating at less-than-peak performance.

2.2.1 Historical trends in hardware energy efficiency

Koomey’s central collection of evidence is presented in Figure 2.1. The trend is clear to the
naked eye, and is borne out by the line of best fit, with an R2 value of 0.983.2 Furthermore,
since Koomey’s observation is more recent, it is less vulnerable than Moore’s Law to the
criticism that it is a self-fulfilling prophecy, with the semiconductor industry adjusting its
goals to meet the predictions. Therefore one can be reasonably confident of its robustness.

First, I address the historical explanation of Koomey’s observation. There are several
salient features of Figure 2.1. The leap seen in the early 1960s is explained by the transition
from vacuum tube computing to the transistor, and progress through the 1970s can be
attributed to the adoption and eventual dominance of CMOS, but since then progress
has been steadier. The continued reductions can be understood by consideration of the
three main ways in which energy is expended in a CMOS circuit: leakage, direct-path
short-circuiting, and switching [Chandrakasan et al., 1995].

Leakage power is given by IleakageVdd, where Ileakage is the leakage current and Vdd the
supply voltage. Traditionally neglected, leakage current is determined primarily by the
CMOS fabrication technology, and has increasingly become a limitation in modern chip
design since its reduction has been rather slower than that of other factors [Roy et al.,
2003]. Only in the last decade has it been a significant explanatory factor in Koomey’s
Law, and its future is discussed below.

1This assumes a Boeing 777 at its maximum 150 MW power output and BP Avgas 80 fuel producing
44.5 MJ/kg, considered independently from the reduction in flight time. Values taken from the BP Hand-
book of Products, 2000. http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/

local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf
2The traditional coefficient of determination R2 can only increase as more variables are added, encour-

aging over-fitting. R2, or adjusted R2, is a modification that penalises models for each additional variable
they introduce. Koomey’s model is bivariate so the adjustment is very slight.

22 2.2. ENERGY-AWARE HARDWARE

Direct-path short circuiting occurs when the N- and P-transistors of a CMOS unit are
both activated at once, briefly connecting the supply to ground, and is given by Psc =
IscVdd; again Isc is another hardware-determined constant, typically small in well-designed
circuits.

Finally, the switching power is given by perhaps the most important equation in the field:

Pswitch = αCLV
2
ddf (2.1)

where Pswitch is the switching power expended, α the switching activity, CL the load ca-
pacitance, and f the clock frequency. Historically, switching power has been the dominant
contributor to total power in CMOS, and prior work has targeted all four of these factors.

The switching activity 0 ≤ α ≤ 1 is a constant denoting the fraction of clock cycles on
which a transition occurs; CMOS consumes little power except during such a transition.
Some techniques addressing α occur at the compiler or ISA design level, addressed be-
low, but other work targets hardware components directly. For example, the Bus-Invert
method reduces the switching factor on an I/O bus by sending data inverted if this would
produce fewer state switches; this inversion must itself be signalled, which may require an
additional switching event. This trade-off is in fact a profitable one, as empirical results
show that Bus-Invert produces a mean reduction of 25% in average power and 50% in
peak power [Stan and Burleson, 1995]. Address buses are another attractive target, since
they follow naturally long paths within and across the chip boundary, and carry fairly
predictable data; for example, adjacent instructions are usually accessed sequentially, and
therefore the instruction addresses tend to be consecutive or nearby integers. This sug-
gests that use of a Gray code for instruction addresses might substantially reduce the
expected number of transitions on the bus; indeed, in simulations a 58% reduction in α
was observed by use of this technique [Su et al., 1994b].

Load capacitance is a physical characteristic determined by the chip’s wiring. Modern
place-and-route tools seek (among many competing objectives) to minimise the total
routed wire-length (RWL), and in particular to shorten long wires, which are the main
culprits for high CL values [Alpert et al., 2010]. One simple optimisation, typically per-
formed as one of the last phases in place-and-route, is to insert additional repeaters into
long wires off the critical path, transforming the path into multiple shorter wires [Alpert
et al., 2010, p. 9]. Capacitance also scales up with increasing wire diameter, and of course
wider wires are more difficult to route and (like repeaters) increase delay [Li et al., 2008].
More recently, the advent of three-dimensional integrated circuits has allowed substan-
tial reductions in RWL. The extra dimension afforded by stacking multiple planes of
transistors on top of one another, while presenting many new challenges in design and
manufacturing, is known to afford remarkable improvements in overall routing quality;
in a typical set-up, it was shown to reduce the RWL by 28–51% and the length of the
longest wire by 31–56% [Das et al., 2003].

The supply voltage is the most obvious target in Equation 2.1 due to its quadratic propor-
tion to the switching power. Miniaturisation of MOSFETs, and the consequent shrinkage
of CMOS, naturally allows lower supply voltages. Modern chip designs often permit the
supply voltage to be varied dynamically, at the cost of some performance, but this dis-
cussion is left for Section 2.2.3.

Clock frequency is primarily determined by the delay of the critical path, although clock
distribution imposes additional limitations. Frequency has become something of a con-
troversial issue in the last twenty years, as frequency became a quotable marketing point

CHAPTER 2. SURVEY OF PREVIOUS WORK 23

for competing processor manufacturers. Some retailers promoted the notion that a higher
number simply denoted better performance: the so-called “megahertz myth”.3 While this
is typically true for a given architecture, the comparison between architectures is a good
deal more complex. While Intel’s design focused on maximising clock speed, rival man-
ufacturer AMD explored some of the techniques by which comparable performance can
be achieved with a lower clock speed; in particular, superior superscalability and reduced
memory latency [Matsui, 2006]. As discussed below, varying the clock frequency dynam-
ically is also a well-explored field.

It is worth noting, finally, that the rate of improvement in battery technology has been very
modest in comparison with the explosive trend of Koomey’s Law, and that we therefore
cannot rely on increasing the total energy available in order to lengthen time between
charges. Also, modern batteries do not simply provide a fixed amount of energy; rather,
their efficiency depends on the current drawn, which should ideally be low [Pedram and
Wu, 1999]. In other words, doubling the current drawn by a device would reduce the
battery life by substantially more than half. The variability of the current over time
also has an impact, with more stable currents correlating with higher efficiency. This
complication is rarely considered in the literature to date.

2.2.2 Future tends in hardware energy efficiency

Early transistor improvements were driven by so-called “Dennard scaling”: ever-improving
miniaturisation, with attendant improvements to supply voltage and clock speed [Den-
nard et al., 1974]. Pure Dennard scaling ended around the year 2000 with the 130 nm
CMOS process; since then, other techniques have been required to keep pace with Moore’s
Law [Kuhn, 2009]. The International Technology Roadmap for Semiconductors4 estimates
that the current 22 nm CMOS production process will be reduced to 16 nm by 2013 and
11 nm by 2015. However, the majority of the future improvements will have to lie else-
where.

On the general rate of energy reduction, Koomey notes cheerfully that “we fully expect
those improvements to continue in coming years” [Koomey et al., 2009]. Indeed, work
is underway in many areas that are expected to yield further increases in computations
per unit energy irrespective of miniaturisation. It is now widely agreed that the future
of processing lies in more cores per chip—the so-called “chip multi-processor” (CMP)
era—for the following reasons. As mentioned above, leakage current is now a significant
factor of total power, and this can be controlled effectively by disabling individual cores.
Another motivation is Pollack’s Rule, which states that [Borkar, 2007]

performance ∝
√

complexity (2.2)

and this mitigates against very large-area cores; therefore, it is better to invest the die area
in a larger number of small-area cores. Options more flexible than completely disabling
cores are available. One approach is use of heterogeneous multi-core architectures, with

3The origin of the term “megahertz myth” is unknown, but it had been adopted by the main-
stream press by the early 2000s, for example http://www.guardian.co.uk/technology/2002/feb/28/

onlinesupplement3.
4International Technology Roadmap for Semiconductors, 2011 Edition. http://www.itrs.net/

Links/2011ITRS/Home2011.htm

24 2.2. ENERGY-AWARE HARDWARE

Figure 2.2: Size comparison of a set of DEC Alpha cores from a heterogeneous multi-
core chip; each core is labelled with the single-core chip in which it originally appeared.
Reproduced from [Kumar et al., 2003].

each core (or set of cores) placed at a different point in the power-performance trade-off;
workloads are then assigned to an appropriate core dynamically. Tests show that, for an
example set of DEC Alpha cores running the SPEC benchmarks, one can reduce total
energy by an average of 39% while increasing execution time by just 3% [Kumar et al.,
2003]. This particular configuration, in which various generations of the same processor
family are loaded onto a single die, has multiple benefits: first, the die size is kept man-
ageable, since the most recent generation is typically at least as large as the previous
generations combined, as shown in Figure 2.2; second, the design and verification is more
straightforward since the components already exist and are known to work. So we can
expect to see more such designs in the future.

For applications that exhibit a high degree of internal parallelism (as opposed to the exter-
nal parallelism of multiple applications running independently), multicore offers another
opportunity for energy saving. Define the nominal parallel efficiency εn(N) of such an
application when run on N processors as

εn(N) =
C1

NCN
(2.3)

where Ci is the number of cycles the program will consume when executed on i cores.
(Note that in general, Ci > C1 for i > 1 because the program must perform extra work to
communicate data and synchronise control flow between the threads.) Existing work shows
that, for certain values of εn(N), a higher value of N may produce the same performance
for less energy [Li and Mart́ınez, 2005]. Tests were conducted on an example program
running on a typical 65 nm processor; Figure 2.3 plots its power consumption against
εn(N) for a given performance requirement; the plot shows the power for N = 2, 4, 8, 16
and 32, normalised by the power required for the same program on a single core. Evidently,
for εn(N) & 0.25, energy can be saved by deploying more cores, although the optimal
number of cores bears a complex relationship with the value of εn(N). Even for values
close to one (denoting perfect linear speedup), it is not necessarily optimal to enable as
many cores as possible. This demonstrates that savings can also be made on homogeneous
systems.

CHAPTER 2. SURVEY OF PREVIOUS WORK 25

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

(6
5n

m
, T

1
=

 1
00

°C
)

Nominal parallel efficiency εn(N)

Figure 2.3: Plot of power consumption against nominal parallel efficiency for various
numbers of cores. Reproduced from [Li and Mart́ınez, 2005].

Theoretical limits to computational energy

One might reasonably ask how long Koomey’s Law can continue to hold before some the-
oretical bound is reached. In fact, the question of computational energy bounds has been
explored since well before the formulation of Koomey’s Law, and wide-ranging arguments
have been made on the subject for several decades [Bennett and Landauer, 1985]. In 1985,
Richard Feynman estimated that the amount of electricity per unit computation might
be reduced by a factor of 1011 [Koomey et al., 2011]. Improvements since then amount to
around 105, and if Koomey’s Law continues, such a limit would be reached sometime in
the year 2041.

More fundamentally still, Landauer’s Principle gives a thermodynamic lower bound on
the amount of energy expended in changing a single bit of information in any physical
representation [Landauer, 1961]. This Landauer limit is kT ln 2, where k is the Boltzmann
constant and T is the absolute temperature of the relevant physical object. Let us assume,
very optimistically, that a computation required only a single bit change and occurred at
the background temperature of the universe, the lowest temperature one can reach without
expending further energy on cooling. In this case, T = 2.725 K and a computation could
be performed in 7.2× 10−33 kilowatt-hours. This limiting value is the efficiency predicted
by Koomey’s Law for the year 2098.

In fact, one can go further still, by application of reversible computing, a mode of comput-
ing in which information is not destroyed and therefore Landauer’s entropic argument can
be sidestepped [Bennett, 1973]. Although it is not possible to build a computer that pre-
serves information perfectly in its state transitions, there is, in our current understanding

26 2.2. ENERGY-AWARE HARDWARE

of physics, no limit to how closely one might approach this limit. So, at least in theory, we
may see Koomey’s Law upheld for some time yet. Neatly enough, the promising field of
quantum computing, a form of reversible computing, also originates with Feynman [Feyn-
man, 1982].

2.2.3 Energy characteristics at sub-peak performance

Koomey’s Law addresses the efficiency of a computer running at peak performance. How-
ever, machines often allow a much wider range of dynamic performance-power trade-offs.
This is discussed in greater detail in Chapter 3, but some points are of general relevance.
Many devices now provide low-power idle states, in which they are not usable but must in-
stead be transitioned back to the active state. (Of course the transition itself also requires
some time and energy.) Modern CPUs are among the most dynamic of these. For much
of their history, CPUs simply executed no-ops when they had no useful work to perform.
This was the basis for many of the early “crowdsourcing” computational projects, such
as the Great Internet Mersenne Prime Search5, SETI@home6, and distributed.net7, since
these cycles would otherwise have been wasted. More recent designs allow CPUs to tran-
sition between various idle states, among other power-saving measures, such as dynamic
voltage–frequency switching.

Dynamic voltage–frequency scaling

Equation 2.1 demonstrates the relationship between supply voltage and switching power,
the latter of which has until recently accounted for the majority of the processor’s power
consumption. Many modern designs allow dynamic voltage scaling (DVS), in which the
operating voltage of a processor can be adjusted on-the-fly so as to trade performance for
power. However, the circuit delay also varies with the operational voltage, according to
the equation

t ∝ VDD
(VDD − VT)α

(2.4)

where VDD is the operational voltage, VT the threshold voltage, and α the so-called velocity
saturation index [Taur and Ning, 1998, pp. 269–271]. (The latter two are parameters of the
CMOS technology.) Since the maximum clock frequency is in turn limited by the circuit
delay, one typically scales frequency and voltage in concert: dynamic voltage–frequency
scaling (DVFS). Since the power is reduced quadratically while the performance degrades
only linearly, there is a net linear saving in total energy. Therefore, at least in the region
for which the switching power is the dominant contributor to total power, we can expect
approximately linear energy savings as the time allowed for computation increases. Of
course, DVFS is not without its drawbacks. Changing the supply voltage often requires a
processor stall, incurring a time delay of 10–100 µs [Von Kaenel et al., 1990]. The energy
savings will therefore be obliterated by the overhead of changing voltages unless the
system can make accurate predictions about the future performance requirements on the
order of milliseconds. Recent work has explored techniques for reducing this delay to the
nanosecond range, but there are many complications and this is not yet widely deployed

5http://www.mersenne.org
6http://setiathome.berkeley.edu
7http://www.distributed.net

CHAPTER 2. SURVEY OF PREVIOUS WORK 27

Figure 2.4: Transistor behaviour in sub-, near-, and super-threshold operating voltage
regions. Reproduced from [Dreslinski et al., 2010].

in practice [Kim et al., 2008]. A further disadvantage is that the thermal variation induced
by varying the voltage may cause microscopic damage to the device and ultimately reduce
its lifespan [Lee, 2000]. Notwithstanding these limitations, later chapters discuss the many
and varied ways in which DVFS can be leveraged to save energy.

Near-threshold computing

An exciting development at the extremes of the power-performance trade-off is near-
threshold computing (NTC). The model embodied by Equation 2.4 does not apply to
operating voltages below the threshold voltage, in which region the behaviour of the tran-
sistor is slower, more complex, and vastly more erratic; see Figure 2.4. Sub-threshold
computing, although certainly low-power, has therefore never found widespread applica-
bility, while traditional computing has reserved itself to operating voltages safely in excess
of the threshold. However, NTC operates in the region at which VDD ≈ VT , which offers
significant energy benefits and only a subset of the difficulties faced in the sub-threshold
region: in comparison to normal super-threshold operation, the circuit experiences an or-
der of magnitude reduction in performance; five orders of magnitude increase in memory
failures; a fivefold increase in inter-device variability with regards to performance; and
doubled increase in sensitivity to operating temperature [Dreslinski et al., 2010]. Recent
work has made significant developments in managing the impact of these limitations; in
particular, the introduction of highly parallel architectures to ameliorate the loss of per-
formance and device stability, and the use of transistors and SRAM blocks designed for
sub-threshold reliability. Further experiments have justified other enhancements, such as
the use of dual operating voltages, both in the near-threshold range, to offset a significant

28 2.3. ENERGY-AWARE OPERATING SYSTEMS

fraction of the performance penalty [Kakoee et al., 2010]. On the theoretical side, recent
circuit models describe near-threshold behaviour much more precisely than was possible
with earlier approximations [Harris et al., 2010]. Superior understanding of the underlying
behavioural properties will inevitably lead to improvements in the practicality of NTC,
and practical NTC-purposed cores have now been constructed; for example, the Phoenix
processor, which operates in the near-threshold region (among many other optimisations),
requires only 2.8 pJ per cycle when executing at full speed [Seok et al., 2008]. Including
its on-die battery, the Phoenix occupies less than one cubic millimetre and, in a sensor
network (its intended environment) can run on this battery for over a year. All of this
suggests that NTC may soon find real-world deployment in particularly energy-sensitive
devices.

2.3 Energy-aware operating systems

The operating system makes multiple important contributions to the overall picture of
an energy-aware system. First, while the hardware can address some power concerns
directly, it can also provide facilities for higher layers to exploit; for example, DVS simply
allows performance to be traded for power, and it is the task of the operating system
to set the proportions of this trade-off in order to achieve actual savings. Making these
decisions is the motivating problem for the area of energy-aware scheduling, and a full
description of this work is left for Chapter 4 where it is more pertinent. Such decisions
may theoretically be made in hardware, but in general there are typically some features
that are better handled by a higher level.

A second factor in the operating system’s contribution to energy-awareness is that the
kernel is itself a process that must be executed and therefore requires energy. In the future
we may see operating systems optimised for energy as any other piece of software might
be. However, the operating system presents some unique opportunities. One particular
example is the recent development of a “tickless kernel”, detailed in Section 3.5.1, which
dispenses with the traditional polling-based implementation of thread preemption. Similar
re-examination of fundamental operating system constructs has been considered in other
operating systems, such as OpenSolaris’ Tesla Project.8

2.4 Energy-aware protocols

Computing is a world of protocols, but in reference to energy-awareness, one usually means
networking protocols; there has been little research on energy usage for internal protocols
such as APIs at the operating-system level. Network protocol design is an important
field: 1997 figures suggest that around 18% of a laptop’s power is expended in the wireless
card, and, while there is a dearth of comparable measurements for modern hardware, the
current figure is perhaps higher, since the hardware improvements of Section 2.2 do not
substantially impact the cost of radio broadcast itself [Stemm and Katz, 1997]. Within
networking protocols, one can distinguish two independent strands of work: on the one

8The Tesla Project is no longer active, although it did make some lasting contributions such as
the PowerTOP power monitoring tool, http://hub.opensolaris.org/bin/view/Community+Group+

pm/powertop.

CHAPTER 2. SURVEY OF PREVIOUS WORK 29

hand, energy concerns in communication protocols, which typically means modifying the
existing protocol stack to improve energy efficiency; on the other hand, creation of new
protocols intended for energy management per se. This section describes each in turn.

2.4.1 Energy-aware data protocols

Wireless networks are typically taxonomised into infrastructure networks, in which wire-
less devices communicate with a wired base station in a single hop, and ad hoc networks, in
which multiple mobile devices communicate amongst each other, and may be completely
isolated from any non-mobile power source. Clearly these pose quite different challenges
from an energy perspective. When a fixed device transmits to a mobile device, it is worth
expending a substantial amount of power in the transmitter to save power in the receiver,
and similarly when the mobile device is to transmit, mutatis mutandis. On the other hand,
when communication is mobile-to-mobile, interacting concerns of efficiency and fairness
arise. This summary will mainly consider infrastructure networks since this is the under-
lying assumption of later chapters. The Open Systems Interconnection (OSI) model is the
standard characterisation of the layers of the network stack, so this summary categorises
the relevant work according to these layers [Zimmermann, 1980].

The challenges of the physical layer are well-known, such as hidden and exposed terminals
and frequency-band collisions. No more will be said about these directly, although the tight
layer integration requires close consideration of the physical layer in what follows.

At the data link layer, the focus is on reducing the overhead of retransmissions. Two tech-
niques dominate: forward error correction (FEC) and automatic repeat request (ARQ).
FEC extends packets with redundant information such that, up to some maximum number
of bit errors, the original information can be recovered even if some of the data is damaged
in transit. Clearly this redundancy is a data overhead in itself, and the optimal trade-off
depends on the expected fidelity of the connection. Modern “turbo codes” can very closely
approach the Shannon limit, the theoretical maximum for data transmission over a noisy
channel [Berrou et al., 1993]. Resultant work also exists on decoding these turbo codes
in an energy-efficient manner [Leung et al., 1999]. In ARQ, intermediate nodes in the
network detect dropped packets without explicit notification from the end-point and re-
quest retransmission immediately, thereby reducing latency and eliminating the need for
some metadata packets from the receiver. ARQ may hook directly into the physical layer,
suggesting the optimal transmission power, which must balance the obvious trade-off be-
tween energy required per packet and the probability of a retransmission being required;
existing work suggests that this may well be a profitable approach, although empirical
measurements are hard to obtain [Arulselvan and Berry, 2002]. There is a similar trade-off
with packet size versus retransmission probability, which has been analysed in an energy-
aware context [Modiano, 1999]. The optimal packet size is relatively straightforward to
derive given an accurate model of the channel, and surprisingly an adequate model can be
learnt relatively quickly, in perhaps 104 bits of transmission. These results illustrate the
general principle that close integration of layers in the network stack is often necessary
for optimisation, and this is no less true for energy than for other performance metrics.

Further illustrating the principle, system designers frequently coalesce the network and
transport layers in energy-aware devices, following observations on the substantial en-
ergy benefits this can bring [Raisinghani and Iyer, 2004]. In almost all cases this means

30 2.4. ENERGY-AWARE PROTOCOLS

“TCP/IP”; the Transmission Control Protocol9 at the transport layer, above the Internet
Protocol10 at the network layer. Early results indicated that none of the basic variants of
TCP performed particularly satisfactorily from an energy standpoint, with TCP Tahoe
being generally the least bad among them [Tsaoussidis et al., 2000]. This motivated the
development of more suitable TCP variants. Energy-efficient TCP (E2TCP) was proposed
soon afterwards, with several refinements [Donckers et al., 2002]. To reduce data overhead,
E2TCP uses header compression, and supports selective acknowledgements to minimise
retransmitted data. Furthermore, while traditional TCP attributes all dropped packets
to congestion and consequently backs off rapidly, E2TCP recognises the distinct problem
of burst errors (from, say, wireless interference) as essentially transient, and handles this
situation differently. In tests, E2TCP was shown to have slightly superior data efficiency
but vastly superior time efficiency, allowing the wireless card to be placed into a low-
power state earlier and to remain so for longer. In tests, the two protocols were used to
support real-time streaming of the kind explored in Chapter 5. The energy overhead of
each protocol was then calculated by reference to the theoretical minimum energy for
transmission. When the channel entered a “bad” state (indicating high probability of bit
errors) for two seconds for every twenty seconds of clean transmission, E2TCP incurred
2% energy overhead to Tahoe’s 5%; with more frequent cycling, such as 0.1 seconds of
bad transmission for every second of clear transmission, E2TCP required 6% overhead
and Tahoe 10%. This demonstrates not only the amount of energy improvement available
for traditional TCP variants but also the headroom for further improvement on E2TCP.

Higher layers in the OSI model (session, presentation, and application) are addressed in
Section 2.5.

2.4.2 Energy management protocols

A newer area is the development of protocols to manage and coordinate power directly.
This area emerged in ad hoc wireless networks, where it is a fundamental concern, but
now has applications more relevant to this document, such as web server management.
For example, consider the following: a modern web service typically adopts a multi-tiered
architecture, such as a Web interface to business logic with a database back-end. Each tier
is run on a separate machine or set of machines. Therefore, depending on the demands
of each tier, the performance of each one may be traded off differently for energy, subject
to (for example) a latency constraint on the whole stack. Previous work has developed
a protocol based on the “Weighted Feedback DVS” algorithm, by which the tiers may
communicate to coordinate the performance-power points selected [Horvath et al., 2007].
In tests, a Linux implementation of the protocol was shown to reduce energy consumption
by up to 30% compared to the native power-saving mode. Further developments extend
the control loop to include virtualised servers, in which it is not so straightforward to power
down or scale back hardware components [Wang et al., 2008]. Empirical evidence in this
case suggests that such an approach can reduce average power from 240 W to around
205 W for an example system, while still maintaining adequate average response time.
Future work may explore the coordination of other hardware and software configuration
choices.

9See RFC 793, Transmission Control Protocol: Darpa Internet Program: Protocol Specification, http:
//www.ietf.org/rfc/rfc793.txt.

10See RFC 791, Internal Protocol: Darpa Internet Program: Protocol Specification, http://tools.

ietf.org/html/rfc791.

CHAPTER 2. SURVEY OF PREVIOUS WORK 31

2.5 Energy-aware software

Energy efficiency at the higher layers of the OSI stack—the session, presentation, and
application layers—is naturally a highly domain-specific problem and therefore the focus
has been on providing developers with tools to profile their own implementations and im-
prove performance directly. An early contribution to this area was PowerScope [Flinn and
Satyanarayanan, 1999]. PowerScope is analogous to a traditional profiler, but measures
the energy rather than the time and space demanded by each point in the call stack; then,
as with CPU or memory profiling, the programmer can direct his or her efforts towards
improving the most energy-intensive parts of the application. In an example given by the
authors, such analysis and improvement allowed a 46% reduction in the energy consump-
tion of a certain video decoding program. A measure of the success of this work is that
most mobile device manufacturers now produce their own tools to measure the power
usage of various hardware components, such as Nokia’s Energy Profiler11.

Another general approach targeting the software layer is energy-aware compilation. Typ-
ical compiler techniques are manipulations intended to improve the energy efficiency of
the program with little or no loss in performance, and therefore they form part of the
general literature of optimising compilers, albeit with a novel metric of optimisation. One
approach is based on profile-driven compilation, in which measurements of the program’s
behaviour are taken on representative input data during compilation and used to optimise
various code features for that data. For example, one example system looks for regions
that are mostly memory-bound and, using DVFS, slows the CPU in these regions [Hsu and
Kremer, 2003]. This system is carefully designed for practical use, allowing for non-CPU
static power, transition time and energy penalties, battery discharge characteristics, and
other details. Consequently, when measured on a real laptop, it produces energy reduc-
tions for various benchmarks averaging 11%, reaching 28% in the most favourable cases
although with essentially no benefit in the hardest cases; performance is only reduced
by a few per cent. An alternative approach, requiring more programmer intervention, is
to insert “checkpoints” at the beginning of every basic block, and require annotations
describing the maximum time that execution may take to make all possible transitions
between these checkpoints; in other words, to ascribe maximum time values to every arc
in the control flow graph [Azevedo et al., 2002]. A run-time system, again using DVFS,
adjusts the performance within each block to meet these values in a best-effort fashion; it
is shown empirically that a good heuristic for estimating the frequencies is the minimum
time between the checkpoints. This is shown to reduce the energy of the processor by up
to 82%, although whole-system values are not provided.

Register allocation has been another popular mechanism to address. Traditional metrics,
such as minimising register spillage, certainly correlate positively with energy efficiency,
but more can be done. For example, successive reads of a register allocated to the same
variable are not relevant to traditional liveness analysis, which defines the lifetime of a
variable as spanning from its first write to its final read; however, each of these reads
incurs an energy cost, which must be factored in to the total analysis. At the register
allocation phase, one can also employ a detailed model of register and main-memory en-
ergy consumption, including the benefits of locality of reference in main memory. One
implementation of this technique was able to reduce the energy consumption of the mem-

11http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_

Profiler/

32 2.6. SUMMARY OF RELATED WORK

ory hierarchy by 87–90%, under the assumption that a memory access requires about
thirty times as much power as a register access [Zhang et al., 2002]. However, this was
only evaluated against small example programs, although the compilation technique is
efficient enough computationally to attack larger examples.

There are numerous other strands of work in this area. For example, one might aim to
reduce register spills (even with a large L1 cache) or to reduce the activity factor [Tiwari
et al., 1994, Su et al., 1994a]. As seen in Equation 2.1, the leakage energy is another
relevant factor, and an increasingly significant one in modern architectures. Leakage can
be reduced by disabling unused functional units within the CPU. A compiler implementa-
tion has been presented that inserts explicit enable/disable instructions into basic blocks
according to which units are required, subject to the competing consideration of the
units’ start-up latencies, and was able to reduce average leakage by 45.4% over various
examples from the MediaBench and Spec benchmark suites [Zhang et al., 2003]. This is
particularly beneficial on complex architectures, which provide various subunits such as a
floating-point co-processor, which, while vital for some applications, are largely irrelevant
for others, and can be disabled completely.

This document will not consider compilation techniques much further, but rather assumes
that the software is provided as-is in binary form, and primarily targets techniques that
could be provided by the operating system rather than the application programmer. This
is motivated by the argument that software engineers are already overwhelmed with com-
peting considerations, and would be unlikely to extend their development cycles in pursuit
of reducing an energy bill incurred, for the most part, by someone else (their customers).
This is discussed further in Chapter 3.

2.6 Summary of related work

Evidently, a vast range of work has been undertaken on the energy problem, and there
is much more to come. At the hardware level, Koomey’s Law continues to drive up the
number of computations per unit energy, and to provide new features for exploitation by
higher layers. In the operating system, the multicore era creates highly complex scheduling
problems which must still be solved quickly if they are to remain essentially transparent to
the user. Energy-aware protocols impact more and more devices as Internet connectivity
becomes expected on ever-smaller and more portable devices. And software engineers,
already challenged by the demands of highly parallel programming, now face a second
front from the demands for energy-efficient operation at every level of the execution stack.

Furthermore, beyond the four-piece taxonomy used above lie many interactions between
these areas; for example, the shift to a large number of simple cores may ultimately reduce
the necessity of kernel quiescence, since waking one core among thousands is a much less
significant event than waking a single monolithic processor. To give another example, the
low voltage of near-threshold computing offsets some of the difficulties of power dissipa-
tion in three-dimensional circuit integration. And there are further issues external to the
taxonomy given here; for example, power generation, while certainly outside the scope
of computer science, impacts the way in which power can be used within a computing
context. However, these details are rather specific and are left for the relevant chapters.

This document does not, of course, attempt to tackle all of these problems at once,
but rather argues that to improve on certain details it is valuable to understand the full

CHAPTER 2. SURVEY OF PREVIOUS WORK 33

picture. In my own contributions, I generally take the hardware as a given, representing an
immutable background above which other optimisations take place. The protocol stack
is significant firstly because it suggests the sort of devices that will be expected to be
networked in the future (which is to say: all of them) and secondly because it gives an
idea of the performance and characteristics of networking on those devices; the latter is
of particular significance in Chapter 5. I also generally consider the software layer to be
out of reach, because the diversity of software energy challenges is too great to describe
completely general methods for them; also, as discussed, the pressures on modern software
engineers are already substantial, and therefore techniques making further demands on
them (such as annotation) are unlikely to gain traction in industry. Instead, my focus
lies primarily in the middle: in deciding how the hardware’s features may be best used
to improve the energy of the system, which decisions the operating system can make
transparently, and, contrariwise, which features the system might expose directly to the
software layer. This is the topic of the succeeding chapters.

34 2.6. SUMMARY OF RELATED WORK

Chapter 3

Towards energy-efficient computing

The majority opinion in both corporate and academic circles is that the “energy problem”
is now real and pressing; humanity’s primary sources of energy are running out while the
demand for energy in commercial and domestic environments is increasing, and the side-
effects of energy use have important environmental considerations on a global scale. The
emission of greenhouse gases such as CO2, now seen by most climatologists to be linked
to global warming, is only one issue.

World leaders and pre-eminent scientists are perhaps most focused on a strategic solution:
the need to develop new sources of clean and renewable energy if humanity is to ultimately
overcome its energy problem. Lord Rees, president of the Royal Society, emphasised its
urgency in an annual address delivered in 2008, saying1

“At this year’s G8 summit, in Japan, the member nations formally espoused the goal
of reducing global CO2 emissions, by 2050, to half the 1990 level. . . . Realistically, there
is no chance of reaching this target, nor of achieving real energy security, without new
technologies.”

However, the realisation of new sources of sustainable energy is expected to be at least
three decades away. Steve Chu, director of the Lawrence Berkeley National Laboratory
prior to his appointment as United States’ Secretary of Energy, placed this in context,
saying2

“A dual strategy is needed to solve the energy problem:

1. Maximise energy efficiency and decrease energy use.

2. Develop new sources of clean energy.

Number 1 will remain the lowest-hanging fruit for the next few decades.”

1Quoted from Lord Martin Rees of Ludlow’s Anniversary Address to the Royal Soci-
ety, 2008, http://royalsociety.org/uploadedFiles/Royal_Society_Content/about-us/history/

Anniversary_Address_2008.pdf.
2Quoted from The energy problem and Lawrence Berkeley National Laboratory, talk given to the

California Air Resources Board in February 2009.

35

36 3.1. ENERGY IN THE COMPUTING SPACE

Component Energy (2000) % Total Energy (2006) % Total CAGR
Site infrastructure 14.1 50% 30.7 50% 14%
Network equipment 1.4 5% 3.0 5% 14%
Storage 1.1 4% 3.2 5% 20%
High-end servers 1.1 4% 3.2 5% 20%
Mid-range servers 2.5 9% 2.2 4% -2%
Volume servers 8.0 29% 20.9 34% 17%
Total 28.2 – 61.4 – 14%

Table 3.1: Energy usage breakdown for computing equipment in the United States. Energy
figures are in billions of kWh.

3.1 Energy in the computing space

Energy is an inescapable problem in computing. Even if future improvements in power
efficiency adhere to Koomey’s Law and increase the available energy for computation
beyond our current imagination, as discussed in Section 2.2.2, there are fundamental
limits to what can be computed with a given amount of energy. More currently, power
distribution and cooling is already a significant challenge in the data centre, and future
hardware refinements are only likely to exacerbate this [Fan et al., 2007]. Put simply,
the conclusion of thermodynamics is that energy is the ultimate limited resource in the
universe.

In August 2007, the Environmental Protection Agency (EPA) issued a report to the
U.S. Congress on the energy efficiency of servers and data centres [U.S. Environmental
Protection Agency, 2010]. Some key findings from the report include:

• Servers and data centres consumed 61 billion kilowatt-hours of energy in 2006.

• This was 1.5% of total U.S. electricity consumption that year, amounting to $4.5
billion in electricity costs, which is equivalent to 5.8 million average U.S. households.

• Electricity use in this sector doubled between 2000 and 2006, a trend that is expected
to continue.

• Infrastructure systems necessary to support the operation of IT equipment (such as
power delivery and cooling systems) also consumed a significant amount of energy,
comprising 50% of annual IT electricity use.

Excerpts from the EPA report are shown in Figure 3.1 and Table 3.1. There are two partic-
ularly notable points in the data. The first is that as much energy is being consumed by site
infrastructure as by the computing equipment itself. This infrastructure primarily repre-
sents HVAC (heating, ventilation, and air-conditioning) equipment, as well as that used to
convert and transmit power and to maintain its continuity; this includes transformers and
in-building power-switching and transmission equipment, as well as power-conditioning
and sustaining equipment such as uninterruptible power supplies. This factor is of great
consequence because it suggests that energy savings at the computing level would have
an attendant impact on HVAC as well.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 37

2000 2001 2002 2003 2004 2005 2006
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0
Site infrastructure
Network equipment
Storage
High-end servers
Mid-range servers
Volume servers

Year

An
nu

al
 e

le
ct

ric
ity

 u
se

 (b
ill

io
n

kW
h)

Figure 3.1: Energy usage breakdown by equipment type in United States, from 2000 to
2006.

Within the computing equipment itself, however, is the second point of interest. Of the
five types of IT equipment studied, volume servers alone were responsible for the majority
(68%) of the electricity used. Assuming that the 17% combined annual growth rate of
volume servers continues, this suggests that they are the prime targets for energy reduction
in the server space. The 20% growth rate of storage devices shown here—a rate that more
recent data suggests is accelerating—indicates another significant trend.

If the exponential growth of data-centre computing equipment revealed by this study
continues, the demand for electricity in data centres seen in 2006 is expected to have
roughly doubled by the time of writing. This poses challenges beyond the obvious economic
ones. For example, peak instantaneous demand is expected to have risen from 7 gigawatts
in 2006 to 12 gigawatts in 2011, and ten new base-level power plants would be needed to
meet such a demand.

Physical limitations on power availability are already a constraint for data centres in
some areas; a managing director of IT for Morgan Stanley observed in 2009 that the
company is now physically unable to source the power needed for a new data centre
in Manhattan. The seriousness of the situation is demonstrated by the zeal with which
corporations such as eBay, Google, Amazon, Microsoft, and Yahoo have pursued suitable
locations in which the data centres required to run their contemporary Web applications
and services can be constructed [Katz, 2009]. A number of these companies have already
negotiated with certain states in the U.S., as well as internationally, to construct these
facilities along with the power plants necessary to supply them. In 2006, Google triggered
a “multibillion-dollar face-off” after situating a new facility along the Columbia River
in Washington [Markoff and Hansell, 2006]. The combined benefits of lower land cost,
lower external ambient temperature, and the availability of running water for cooling and
hydroelectric power generation are intended to provide relief for Google’s acute energy-

38 3.2. MODERN POWER MANAGEMENT

availability and energy-cost problems.

The U.S. Energy Information Administration showed in their report to Congress3 that in
2001, PCs and printers in American households consumed 23.1 terawatt-hours of energy;
the figures were similar in 2006 [Roth and McKenney, 2007]. This suggests that the amount
of energy consumed by mobile and desktop computing equipment is of roughly the same
magnitude as that used by servers in data centres, although there is no correspondingly
comprehensive and authoritative current study to refer to. The EPA data presented here
provides some detailed perspective on where the energy goes in the important and growing
server segment of the computing landscape. Also, some groundwork has already been laid
in the mobile and desktop computing space as a result of the earlier focus of the EPA’s
EnergyStar program on consumer electronics, which includes computer systems.

3.2 Modern power management

Perhaps the key factor to consider with today’s computer systems is that the amount
of power they consume does not adjust gracefully according to the amount of work the
system is doing. The principal design objective for most general-purpose computer systems
to date has been to maximise performance (or perhaps performance at a given price point)
with very little consideration given to energy use. This is changing rapidly as we near the
point where the capital cost to acquire computing equipment will be exceeded by the cost
of energy to operate it, even over its relatively short (three- to five-year) amortisation
period, unless we pay some attention to energy-conscious system design.

The case has been made for energy-proportional computing [Barroso and Hölzle, 2007].
This is the design ideal in which the amount of power a system (or component) requires
corresponds directly to its degree of utilisation. However, this is far from the current
situation. Many components of computer systems today exhibit particularly poor effi-
ciencies at low levels of utilisation, and most systems spend a great proportion of their
time operating at relatively low usage levels. Power supplies have been notorious for their
inefficiency, especially when at low load, and fans can also waste a significant amount
of energy when operated carelessly. In just four years, however, the efficiency of power
supplies has improved markedly4, and algorithms are emerging that continuously adjust
fan speeds in response to thermal need, rather than using just a few discrete speed points.
The majority of hardware components in today’s computer systems must still be managed
explicitly, however, and the current widely deployed conceptions and facilities for power
management in computer systems remain rudimentary.

There are two basic modalities for power management: a running versus suspended (not-
running) aspect in which a component (or whole system) can be powered off when not
in use and turned on again when needed; and a performance-adjustment aspect (while
running) in which the performance level of a component can be lowered or raised in
reaction to either the observed or predicted level of utilisation or other needs of the
workload.

The running versus not-running choices are often called the component’s (or system’s)
power states. Typically a single state represents running, while different levels of suspen-

3Energy Information Administration Residential Energy Consumption Surveys 2001, http://www.

eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html.
4Recent standards for power supply efficiency; http://www.80plus.org

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 39

sion may be distinguished into multiple states. The latter allows power to be progressively
removed from more of the hardware associated with the component (or system) if there is
some important power-relevant structure to its implementation. CPUs, for example, may
have their execution suspended simply by stopping the issuance of instructions or by turn-
ing off their clock circuitry. “Deeper” power states, however, might successively remove
power from the processor’s caches, translation lookaside buffers, memory controllers, and
so on. While more energy is saved as more of a component’s hardware has its power re-
moved, there is then either a greater latency to recommence its operation, or extra energy
is required to save and restore the hardware’s contents and restart it, or both.

The performance-adjustment choices while running are most naturally called the com-
ponent’s performance states. A widely applied technique for adjusting performance is
to change the component’s operating frequency. When clock speed is slowed, operating
voltage levels can also be reduced, and these two factors together—the dynamic voltage–
frequency scaling of Section 2.2.3—result in a compound power saving, a fact exploited
in later chapters. Performance states were first introduced for CPUs, since processors are
among the most consequential consumers of power on the hardware platform (something
in the range of 35 to 165 watts is typical of a contemporary multicore CPU). Performance
states might also be used to control the active cache size, the number and operating rates
of memory and I/O interconnects, and so on.

3.2.1 ACPI

For reference in later discussion, it is worth presenting the most widely implemented ar-
chitecture for power management in use today: the Advanced Configuration and Power
Interface (ACPI). ACPI has evolved together with the Intel architecture, the hardware
platforms based on the most widely available commodity CPUs and related components.
Although there are many detailed aspects to the specification, ACPI principally offers
the controls needed to implement the two power-management modalities just described.
It defines power states: seven at the whole-system level, called S-states (S0–S6); and four
at the per-device level, called C-states (C0–C3) in the case of CPUs and D-states (D0–
D3) for other devices. The semantics of each non-running power state are specific to the
device (or device class) in question. The zero-numbered state—S0 for the system, or D0
for each device—indicates the running (or active) state, while the higher-numbered states
are non-running (inactive) states with successively lower power and correspondingly de-
creasing levels of availability (run-readiness). ACPI also defines performance states, called
P-states (P0–P15, allowing a maximum of sixteen per device), that affect the component’s
operational performance while running. Both power states and performance states affect
power consumption.

3.3 Energy efficiency in computing

Although ACPI is an important de facto standard with reasonably broad support from
manufacturers, it provides nothing more than a mechanism by which aspects of the system
can be controlled to affect their power consumption. This enables but does not explicitly
provide energy efficiency. Higher-level aspects of the overall system architecture are needed
to exploit this or any similar mechanism.

40 3.3. ENERGY EFFICIENCY IN COMPUTING

One might ask how energy-efficient computing differs from power management, and how
one would know that the energy-efficiency problem had been “solved” for a given com-
puter system. A simple criterion might be: the system consumes the minimum amount
of energy required to perform any task. In this formulation, energy efficiency is simply
an optimisation problem. Such a system must adjust the system’s hardware resources
dynamically, so that only what is needed to perform those tasks (whether to complete
them on time, or analogously, to provide the throughput and latency required to maintain
a stated service level) is made available, and that the total energy used is minimised as a
result. Section 2.1 demonstrated that this formulation is inadequate, but it is instructive
to consider the complications of even this simplest of objectives.

Traditionally, systems have been designed to achieve maximum performance for the work-
load. In an energy-efficient system, maximum performance for some tasks (or the whole
workload) will still be desired in some cases, but even within that constraint the system
must also minimise energy use. Performance and energy efficiency are not mutually exclu-
sive. For example, even when achieving maximum performance, any resources that can be
deactivated, or whose individual performance can be reduced without affecting the work-
load’s best possible completion time or throughput, contribute to energy optimisation.
Indeed, for a typical desktop or server machine, it is almost impossible to simultaneously
demand the full performance of every component; in fact, this has security consequences
seen in the relatively young field of study surrounding “thermal viruses”, malicious code
designed to place specific parts of the system under maximum energy load, thereby dam-
aging them or overloading the cooling system [Dadvar and Skadron, 2005, Hasan et al.,
2005]. Systems that strive to achieve maximum performance at all times are notoriously
over-provisioned and correspondingly under-utilised; however, dynamic capacity planning
and provisioning is a difficult problem and is far from solved.

Energy optimisation is obviously subject to certain constraints. Some examples follow.

3.3.1 Maintenance of required performance

The system must generally endeavour to meet deadlines, where they exist. In the general
case, a deadline is specified for a task or the workload. When any deadline is specified
that is less than or equal to the optimum that the system can achieve with any or all of
its hardware resources, this can be taken to maximum performance; this is effectively the
degenerate case. Maximum performance for a task or the workload provides an implicit
stipulation of the optimal deadline to, or “as soon as possible”. All values of the deadline
D less than the shortest achievable deadline to is equivalent to setting D = to. We can
therefore denote maximum performance by D = 0. In this case, energy optimisation is
restricted to those resources that can be deactivated, or whose individual performance
can be reduced, without affecting the workload’s best possible completion time; alterna-
tively, there may be several resource configurations that produce the same latency and
throughput, in which case optimisation is free to select among them according to lowest
energy, instantaneous power, or other thermal concerns.5

If a deadline later than the best achievable deadline is specified, the computation may
take any length of time up to this deadline, and the system can seek a global energy
minimum for the task (or workload). Deadlines might be considered “hard”, in which

5This suggests a higher-dimensional version of the Pareto frontier that will be introduced in Chapter 5.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 41

Maximum
throughput Tmax

Initial
throughput T0

TimeDemand spike
occurs

Maximum resources
brought online

Latency L

P
er
fo
rm
an
ce

Figure 3.2: Time-throughput diagram showing latency to reach maximum performance.

case the system’s energy-optimising resource allocator must somehow guarantee to meet
them (raising difficult implementation issues), or “soft”, in which case a best effort can
be tolerated. In the latter case, some sort of “quality of service” metric must be provided,
describing how, when, and by how much deadlines may be missed.

Services must operate at their required throughput. For online services, the notion of
throughput may be more appropriate than that of a completion deadline. Since services,
in their implementation, can ultimately be decomposed into individual tasks that do
complete, we expect there to be a technical analogue, although the most suitable means
of specifying its performance constraint might be different.

3.3.2 Response to changes in demand

Real workloads are typically not static: the amount of work provided and the resources
required to achieve a given performance level will vary over the course of execution, and
from instance to instance. Dynamic response is an important practical consideration re-
lated to service level. Figure 3.2 shows the relationship diagrammatically; stated formally,
the system must be able to reach its maximum throughput Tmax from any throughput T0
within latency L. Therefore, whenever a spike in the demand for the service occurs, the
system can react to it, re-enabling or scaling up the performance of the relevant compo-
nents, within the given time limit. Specification of the maximum latency within which
reserved hardware capacity can be activated or its performance level increased seems a
clear requirement, but this must also be related to the performance needs of the task or
workload in question.

The meaning of “throughput” is dependent on the nature of the task. A metric such as
transactions-per-second (TPS) might be relevant for database system operation, triangles-
per-second for the rendering component of an image-generation subsystem, or correspond-
ing measures for a filing service, I/O interconnect, or network interface. Interactive use
imposes real-time responsiveness criteria, as does media delivery: computational, storage,
and I/O capacity required to meet prescribed audio and video delivery rates. A means

42 3.4. DIRECTIONS TOWARD A SOLUTION

by which such diverse throughput requirements might be handled in practice is suggested
below.

3.3.3 Power capping

Instantaneous power must never exceed a specified power limit P . A maximum power
limit may be specified to respect practical limits on power availability, whether to an
individual system or to some aggregated structure, such as a data centre. In some cases,
exceeding this limit briefly may be permissible, although this requires a more detailed
system description to manage the thermal consequences.

3.3.4 Summary of constraints

Other constraints are also possible. Combinations of such constraints mean that over-
constraint must be expected in some circumstances, and therefore a policy for constraint
relaxation will also be required. A strict precedence of the constraints might be chosen or
a more complex trade-off made between them. This area is not currently well-understood.

3.4 Directions toward a solution

Given this concept for energy-efficient computing, a natural question is how such a system
might be constructed, and in general, how one would expect an energy-efficient system
to operate. A system has three principal aspects that could solve this problem, each of
which represents a significant body of existing work.

1. The system must be able to construct a power model of how and where power is
consumed, and how it can manipulate that power, since this is the basis for enacting
any form of power management.

2. The system must have a means for determining the performance requirements of
tasks or the workload, whether by observation or by some more explicit means of
communication. This is the constraints-determination and performance-assessment
component.

3. Finally, the system must implement an “energy optimiser”: a means of deciding on
an energy-efficient configuration of the hardware at all times while operating. The
optimisation may be relative (heuristically decided) or absolute (based on analytical
techniques). This is the capacity-planning and dynamic-provisioning component.

Each of these are discussed in detail below.

3.4.1 Power model

In order to manage the system’s hardware for energy efficiency, the system must know the
specific power details of the physical devices under its control. The “system” here most

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 43

naturally suggests the operating system, although it is clear that this must include the
hypervisor for virtualised systems; one can reasonably expect that this concept will need
to be broadened to include some aspects of the firmware and even hardware components
(on the low end) and important runtimes, such as the Java Virtual Machine, which have
responsibility for, or particular knowledge of, resource allocation. Power-manageable com-
ponents must expose the controls that they offer, such as their power and performance
states (D-states and P-states, respectively, in the ACPI architectural model). To allow
modelling of power relative to performance and availability—in other words, relative to
its activation responsiveness—the component interface must also describe at least the
following:

• The per-state power consumption (for each inactive state) or power range (for each
active state).

• State-transition latency (time required to make each state transition).

• State-transition energy (energy expended to change state).

Once the system has such a power model, consisting of all its power-manageable hardware,
it has the basic foundation for operating to optimise energy. Importantly, it has the
knowledge of those components that consume the most power and those that have the
most highly responsive controls that can be used to affect power use and effect power
reduction.

3.4.2 Workload constraints and performance assessment

In order to impose appropriate constraints on the optimisation of active hardware and
energy consumption, a system must also be able to measure the throughput of its ap-
plications to ensure that they still meet the relevant service levels and deadlines. The
assessment of throughput is subject to the task or application in question. The oper-
ating system can observe the degree to which its various resources have been and are
currently being used, and it might use these observations as its best basis for prediction
of future resource needs, thus shrinking or enlarging what is available. This is a relatively
weak basis to determine what the workload will need, especially to anticipate its dynamic
responsiveness sensitivities. As a result, the system will inevitably be much more conser-
vative in its reduction of available resources or their performance levels. It seems clear
that the best result will be realised if applications assess their own throughput relative
to their service-level requirements or completion deadlines, and can convey that informa-
tion to the operating system through an interface. This is counterbalanced by the desire
to avoid overloading the application programmer with additional programming language
complexity. However this is resolved, the system can then use this information to make
potentially much more aggressive resource adjustments and realise an improved overall
energy-optimisation solution accordingly.

Perhaps the suitable division of labour is to make the system responsible for solving the
energy-optimisation problem subject to the resources it allocates, while the application
is responsible for monitoring its own performance level and informing the system so that
appropriate resources can be provided to meet them. Thereby the application needs only
a domain-specific metric of performance to feed back to the operating system; it does not
need to be concerned with the details of energy per se.

44 3.4. DIRECTIONS TOWARD A SOLUTION

3.4.3 Energy optimisation by the system

Once provided with the hardware’s power characteristics, and possibly descriptive infor-
mation from application-level software about its constraints, the operating system must
begin the dynamic process of adjusting the hardware’s performance and availability lev-
els to control power consumption and improve system-wide energy use. The following
techniques might form part of this decision.

Heuristic methods

Provisioning for maximum throughput may, in some cases, optimise energy. This is the
conjecture that “[maximum] performance is green,” reflected in the ideas of race-to-idle
or race-to-sleep [Garrett, 2007]. Although there is some evidence that this approach has
merit in client-side computing when the system becomes idle—especially for embedded
and mobile systems where 95% of the energy may be saved if the entire system can be put
into a suspended state—it is not clear how applicable this is to server-side computing. A
super-linear increase in the power required to get linear speed-up (or throughput) exists in
some cases (Intel’s Turbo mode on contemporary CPUs being one example) and hence, the
energy optimum will not be found at a provisioning and performance point commensurate
with maximum throughput in all cases.

A widely used heuristic for energy improvement on active systems is to adjust the hard-
ware’s performance level dynamically, based on its current utilisation: downward with low
utilisation or upward with high utilisation (with some hysteresis). This can be an effective
technique but is restricted to situations in which both the latency and the energy to make
the state change are so low as to be inconsequential.

Constrained optimisation

In some cases, it may be possible to idealise the problem into precise mathematical models,
and from these derive a complete analytical solution. For example, if we consider only a
single task on a single CPU with a well-understood power–performance trade-off, it is
relatively straightforward to completely specify a schedule in which the task will meet its
deadline with the minimum total energy; more general formal results are also possible, as
demonstrated in Chapter 4. This relies, however, on a number of assumptions, such as good
estimates of the total work required by a process, which are often uncomputable or hard
to obtain in practice. Weaker assumptions can also lead to formal work, as demonstrated
in Chapter 5, although, in existing systems, optimisation is typically performed by online
heuristic algorithms. There is some existing work in this area but not yet enough to
underpin a general-purpose operating system [Yao et al., 1995].

For an optimisation-based approach to be generally applicable, a range of techniques will
be necessary. In the simplest cases, autonomous device-level operation is possible; for
example, at the hardware level, a graphics co-processor (GPU) can power down unused
hardware pipelines aggressively, based solely on instantaneous assessment of their utilisa-
tion levels, because the latency to bring those pipelines back up as they become necessary
is inconsequential. Similar practices appear to be applicable in the use of CPU P-states,
since both the state-transition energy and latency are very low.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 45

Hardware state changes that affect power require a different treatment if they exhibit a
much greater transition latency or energy. An obvious example is spinning down a hard
disk, considering the long latency to bring it back to full performance, but reactivation
latency is not the only concern. Semiconductor memory systems in which part of the
total physical memory could be powered off if not required, and where power-on latency
may be near zero, will still have a consequential transition energy, since a great many
in-memory transactions may be required to gather the working set into those physical
pages that will remain active. One might consider whether traditional heuristics might
have analogues in energy optimisation, such as the Five-Minute Rule, proposed in 1986 as
a memory hierarchy heuristic and renewed several times since [Gray and Putzolu, 1987,
Gray and Graefe, 1997, Graefe, 2007]. Resources of this class require greater knowledge
of the task or workload behaviour, as well as an anticipatory treatment of the required
hardware resources, to ensure that the activation latency can be tolerated or managed
and that the state-change energy will be exceeded by the energy that will be saved while
in that state.

Some common optimisation techniques may be based on state-change latency, their energy
demands, and so on, and a taxonomy of such techniques might arise from this, some formal
or analytical, some based on more numerical or heuristic methods.

Although we expect the specific techniques for energy optimisation appropriate to different
hardware resources or subsystems to be somewhat different, subject to the properties of
the hardware resources in question, the hope is that the composition of energy-efficiency
optimisers for all such resources will accumulate to form an efficiency scheme for the
whole system. On the other hand, such reductionism may be overly optimistic if there are
interactions between the resources allocated by different subsystems, and a more holistic
approach may then be necessary in systems for which “every joule is precious” [Vahdat
et al., 2000].

3.5 Routes towards energy efficiency

The vision of system-wide concessions to energy efficiency cannot be accomplished in a
single swift step. Today’s systems software is not equipped in the ways described, nor are
applications written in a way that could exploit that capability. This section discusses how
this outcome might be achieved in practical terms, and what steps are already underway.

3.5.1 Considerations for the operating system

As a first consideration, systems need to be revised to pay attention to their use of energy;
even the operating system itself, while always running, has not yet been optimised in its
own use of energy, as discussed in Section 2.3. To date, almost all software, including
systems software, has been optimised (quite understandably) for performance, robustness,
and scalability with no consideration of energy. An initial step, therefore, is the redesign
and implementation of the operating system so that its operation is energy efficient. This
is a significant undertaking, and its full implications are not yet well understood. It is
not clear whether modifying existing operating systems to consider energy as a first-
class constraint is feasible, although this would certainly be preferable. Experience with
system security, multi-tasking, multimedia and so forth suggests that introducing such

46 3.5. ROUTES TOWARDS ENERGY EFFICIENCY

fundamental considerations after the fact is fraught with complications [Loscocco and
Smalley, 2001, Leslie et al., 1996]. We can certainly anticipate fundamental new structures
within systems software, and perhaps even that new operating systems will emerge as a
result of the energy-efficiency pressure.

At the very least, resource-management facilities within the operating system must be
adapted for energy awareness, and then for energy optimisation. This section surveys the
components common to most server systems and the energy issues which surround them.

Processor efficiency

A significant fraction of power on contemporary computing platforms can be attributed
to CPUs (and the early introduction of power-management features on them as a result),
and much progress has already been made with operating-system schedulers and thread
dispatchers. Reactivation of idle hardware components when there is no useful work to be
done is a common culprit; polling within the operating system (or within applications)
is an obvious example, and the use of a high-frequency clock-tick interrupt as the basis
for timer events, time-keeping, and thread-scheduling can be equally problematic. If the
OS supports preemptive scheduling, this is typically implemented by scheduling a regular
interrupt, known as a tick, that passes control to the OS and allows it to select which
thread is to be executed. Both kernel space and user space permit the scheduling of further
regular timers to handle periodic events in a non-blocking fashion; this may be used as
the basis for a polling system, for example. From a design and performance standpoint,
this is preferable to a busy-wait methodology when implementing regular events, but does
present an unfortunate interaction with CPU sleep modes. If a timer is scheduled for, say,
every 10 ms, an otherwise-idle CPU is woken by an interrupt at least this often, and is
therefore unable to enter a deep sleep state or to remain in a shallow sleep state for any
substantial period of time. As the number of timers increases, each with an independent
offset and period, the length of time until the next interrupt dwindles rapidly, and this has
a significant impact on power efficiency, especially for devices for which the CPU is the pre-
eminent power consumer. One proposed solution to this is the “tickless kernel”, for which
a working implementation is now available in Linux [Siddha et al., 2007]. This introduces
several techniques to reduce the number of interrupts generated. One is the concept of a
jiffy, which is an approximate unit of time used to schedule events for which the precise
periodicity is not important; the kernel then coalesces all events to jiffy boundaries and
executes them at once. For example, instead of scheduling twenty events with 8 ms of work
to do each second, the kernel schedules a single interrupt every second which then triggers
160 ms of contiguous work, allowing the CPU to enter a sleep state for the rest of the
second. In tests, the number of interrupts on an idle system was reduced by this technique
from 2 002 per second to 118, and the average time spent in an idle state increased from
651 µs to 10 161 µs. The tickless kernel also presents a new deferrable timer API; a
deferrable timer will trigger normally when the CPU is busy anyway, but is deferred
when the CPU is idle; many device drivers naturally tolerate the consequent variability in
latency. This further doubled the average time between state transitions. This work has
motivated sweeping changes to other parts of the OS, middleware, and software, all in
pursuit of increasing interrupt quiescence and further decreasing the number of interrupts
on an apparently idle system6.

6A bug filed against the Fedora kernel, reporting excessive wake-ups caused primarily by driver polling,
has at the time of writing aggregated seventy-three dependent fixes! https://bugzilla.redhat.com/

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 47

The confluence of features on modern processors—CMT (chip multithreading), CMP
(chip multiprocessor), and NUMA (non-uniform memory access) for multiprocessor sys-
tems with multiple sockets—invites a great deal of new work to implement optimal-
placement thread schedulers [Fedorova, 2006]. The ability to alter performance levels and
the expected introduction of heterogeneous multicore CPUs7 will only introduce further
opportunities for successive improvement [Shelepov et al., 2009, Fedorova et al., 2009].

Storage efficiency

Compared with CPUs, the power consumed by a disk drive does not seem especially large.
A typical 3.5-inch, 7200-RPM commodity disk consumes about 7 to 8 watts, only about
10% of a typical multicore CPU’s consumption. Although higher-performance 10 000-
RPM spindles consume about 14 watts, and 15 000-RPM drives perhaps use around 20
watts, this is still a small consideration. The alarming relative rate of growth in storage,
mentioned earlier, could quickly change the percentage of total power accounted for by
storage devices. Performance and reliability factors have already resulted in the common
application of multiple spindles to implement a simple RAID solution, even on commodity
desktop systems. In the data centre, storage solutions are scaling up faster still. Low-end
volume server boxes now routinely house a dozen or more drives; an example 4U rack-
mount storage array product from Sun accommodates 46 3.5-inch drives. A single instance
of the latter unit, if it used 10 000- or 15 000-RPM industrial drives, might therefore
account for 1.1 to 1.6 kilowatts, rather a more significant energy-use picture.

Storage subsystems are now obviously on the radar of the energy-attentive. There are
at least two immediate steps that can be taken to help improve energy consumption by
storage devices. The first is direct attention to energy use in traditional disk-based stor-
age. Some of this work has been started by the disk hardware vendors, who are beginning
to introduce disk-drive power states, and some has been started by operating-system
developers working on contemporary file systems (such as ZFS) and storage resource
management. The second, particularly derived from the recent introduction of large in-
expensive flash memory devices, is a more holistic look at the memory hierarchy [Graefe,
2007]. Flash memory fills an important performance/capacity gap between main mem-
ory devices and disks but also has tremendous energy-efficiency advantages over rotating
mechanical media [Leventhal, 2008, Mogul et al., 2009].

Memory efficiency

Main memory, because of its relatively low power requirement (on the order of 2 watts
per DIMM), seems at first glance to be of even less concern than permanent storage.
Its average size on contemporary hardware platforms, however, may be poised to grow
rapidly. With hardware system manufacturers’ focus primarily on performance levels (to
keep up with the corresponding performance demands of multicore CPUs), maintaining
full CPU-to-memory bandwidth is critical. The consequence has been an evolution from

bugzilla/showdependencytree.cgi?id=204948
7A heterogeneous CPU means, in this instance, a multicore CPU in which cores of different perfor-

mance levels and different microarchitectures are included in the same multicore package; the power
consumption characteristics are consequently very different to those of traditional single-core or homoge-
neous multicore processors.

48 3.5. ROUTES TOWARDS ENERGY EFFICIENCY

single- to dual-channel and now to triple-channel DIMMs along with the corresponding
DDR, DDR2, and DDR3 SDRAM technologies. Although reductions in the process feature
size (DDR3 is now on 50-nanometer technology) have enabled clock frequency to go up
and power per DIMM to somewhat decline, the desire for even greater performance via
an increase in DIMMs per memory channel is still increasing the total power consumed
by the memory system.

For example, a current four-socket server system (based on the eight-core Sun Niagara2
CPU) with 16 DIMMs per socket using DDR2 dual-channel memory technology has 64
DIMMs total. This would increase to 24 DIMMs per socket (96 total) if its faster successor
used DDR3 triple-channel memory instead. A representative DDR2 DIMM consumes
1.65 watts (or 3.3 watts per pair), whereas the lowest-power edition of the current DDR3
DIMMs consumes 1.3 watts (or 3.9 watts per triplet). The result appears to be an increase
in power consumption of only 20%, increasing from about 100 to 120 watts total in the
example given.

Since the next-generation CPU will also have twice as many cores per socket, however,
a possible scenario is also to desire twice the number of memory sets per socket (for a
possible 192 total DIMMs) to balance overall memory system performance. The result,
therefore, could be an increase from 100 watts to 240 watts: a 140% increase in power
consumption for the whole memory system! This trend is even being observed on desktop-
class machines, admittedly at a much smaller scale, as systems containing quad-core
hyperthreaded CPUs (such as Intel’s Nehalem) have appeared.

If available physical memory is to be enabled and disabled, and perhaps correspondingly
reconfigured as a system’s processing capacity is dynamically adjusted, some new func-
tionality will be required of the operating system’s memory-management subsystem. The
design of a future-looking virtual memory system that is energy-aware and able to adjust
physical memory resources while running is an open problem.

I/O efficiency

Energy aspects of the I/O system on hardware platforms will likely become more impor-
tant as well. As a simple example, present-day local-area networking interconnect and
subsystems have evolved in two important respects: link-aggregation is increasingly used
to bolster network bandwidth and reliability; and individual interconnect speed has ad-
vanced from 1 Gb to 10 Gb, with 40 Gb on the horizon. A transceiver for a 10-Gb network
interface card may now require as much as 14 watts when operating at full speed, with
a consequential power reduction when its link speed is reduced to 1 Gb or lower (about
3 watts at 1 Gb, 1 watt at 100 Mb). Other high-speed interconnects such as InfiniBand
can be expected to have similar energy implications for the overall system.

3.5.2 The evolution of application software

The most strategic aspect of energy-efficient computing will be the evolution of appli-
cation software to facilitate system-wide energy efficiency. Although we can certainly
expect new application interfaces to the system software, supporting the development of
new energy-efficient applications, the transition of historical and present-day applications
represents a long-term evolution. There is a significant question as to how the problem

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 49

of greater energy efficiency for the remainder of the installed base might be addressed in
the interim. Obviously, it will not be brought about as the result of a unique epoch in the
implementation of all existing applications.

One possibility for addressing the energy agnosticism of existing applications is to perform
extrinsic analysis of their runtime behaviour. Empirical data can be gathered about the
degree to which application performance is sensitive to varying levels and types of resource
provisioning. For example, one can observe the degree to which performance is increased
by the addition of CPU resources, or the allocation of a CPU with higher-performance mi-
croarchitecture, and so on [Shelepov et al., 2009]. The application might then be labelled,
in its binary form, with its measured degree of sensitivity, without requiring the alteration
of its existing implementation. The operating system could use this metadata to assign
resources that pursue a certain specified performance level or to locate an appropriate
power-performance trade-off.

By analogy with memory management, it seems likely that a combination of techniques
will be needed: explicit, in which the application itself informs the system of its throughput
and resource provisioning needs; and implicit, in which static and dynamic analysis is used
to model resource needs relative to performance and energy consumption.

3.6 Conclusion

We are still at the debut of energy-conscious computing, with a great deal of the indus-
try’s attention directed at the introduction and use of power-management mechanisms
and controls in individual hardware components rather than the broader problem of en-
ergy efficiency: the minimisation of total energy required to run computational workloads
on a system. This chapter suggests an overall approach to energy efficiency in comput-
ing systems. It proposes the implementation of energy-optimisation mechanisms within
systems software, equipped with a power model for the system’s hardware and informed
by applications that suggest resource-provisioning adjustments so that they can achieve
their required throughput levels or completion deadlines.

In the near term, a number of heuristic techniques designed to reduce the most obvious
energy waste associated with the highest-power components, such as CPUs, are likely to
remain practical. In the longer term, and for more effective total energy optimisation,
increasing importance must be attached to techniques able to model performance relative
to the system’s hardware configuration (and hence its energy consumption), alongside
improved understanding of workload prediction. In Chapter 4, I explore one respect, the
processor speed, in which the operating system can schedule tasks for greater efficiency.

50 3.6. CONCLUSION

Chapter 4

Cost optimisation for power-aware
computing

4.1 Motivation

In this chapter, I turn to a particular class of problem in the field of energy-efficient com-
puting, and illustrate the value of developing a solution with understanding of the broader
context. The problems are those surrounding energy cost for long-running computations
with deadlines. The existence of a deadline implies that the work is time-sensitive, but
that there is no particular benefit to completing the work quickly provided the deadline is
respected. Such problems occur most commonly in the server environment; perhaps, for
example, a large scientific calculation that must finish analysing the daily dataset before
the next day’s dataset arrives. This subspace in the vast space of energy optimisation
problems is large enough to be of some useful generality, since I do not make any specific
assumptions about the type of work that is being undertaken, and only weak assump-
tions about the nature of the hardware on which the task is run; on the other hand, the
subspace is small enough that strong results can be derived in a precise mathematical
framework.

In recognition of a consideration common in the server environment, I will be consider-
ing a more general problem than total energy consumption. For many institutions, the
financial incentive to reduce energy consumption is stronger than the ecological one; in
other words, they are more concerned with spending less on energy than using less energy
per se. Of course, these two considerations are connected and until now have generally
been considered identical, and, accordingly, previous work has been most concerned with
minimising total energy rather than total cost of energy. But there are good reasons to
separate the two quantities. As shown in Chapter 3, American data centres account for 61
billion kWh of electricity every year at a cost of $4.5 billion, so even a small reduction in
this cost would have significant impact on the bottom line [U.S. Environmental Protection
Agency, 2010]. The distinction is relevant when power cost varies over time, such as with
the daily off-peak period, by season, or with some stochastic element from the energy
market. In this chapter I will describe the cost using a cost function parametrised by
time. The cost is typically constant over short timespans, but here I am concerned with
long-running computations; the simpler case can be recovered by supplying a constant
cost function.

51

52 4.2. RELATED WORK

The term “cost function” naturally suggests monetary cost, but this need not be the case.
For example, cost might incorporate rising user dissatisfaction as a server request takes
longer to resolve. By constructing a mathematical model that includes this dissatisfaction
alongside real energy usage, cost minimisation could be used to balance user satisfaction
with monetary cost, although construction of such detailed models is not attempted here.
Nevertheless, this problem and many others could be described and in some cases solved
within the framework established here.

My approach is to describe algorithms or, when possible, closed-form equations to de-
cide the rate at which computation should proceed in order to minimise cost while still
respecting the deadline. I generally assume that this rate change is effected by dynamic
voltage–frequency scaling although other implementations are amenable to a similar anal-
ysis. For reasons discussed in Chapter 3, I do not consider source or binary manipulation,
but only the “how” and “when” of execution. Of course, it is well known that incorpo-
rating power considerations into the scheduling algorithm, alongside traditional time and
resource allocation, can be an effective approach to energy efficiency [Hong et al., 1999].
The originality of my contribution derives from the particular class of problem considered,
the precise analytical nature of the results, and the generalisation to power cost.

4.2 Related work

Long-running workloads are common across divers areas of computation. Some are purely
numerical, such as the Lucas-Lehmer test used by Great Internet Mersenne Prime Search1,
which manipulates huge integers and takes several weeks to determine if large values of a
certain form are prime. Others are the largely recreational, such as the two-decade effort
to completely solve the game of draughts [Schaeffer et al., 2007]. And still others have sig-
nificant implications for the security of some of the world’s most important cryptographic
systems, such as the contests to break the once-popular DES encryption system by brute-
force search of the key space2. In these and many other cases, a level of parallelism exists
in the problem, but the granularity of efficiently exploitable parallelism is such that even
the subproblems are long-running non-parallel workloads in themselves. For example, the
Great Internet Mersenne Prime Search allocates candidate Mersenne numbers to indi-
vidual users; each user then evaluates the candidate for primality, and, weeks or months
later, returns the result to a central server. At the time of writing, the project has access
to around 30 000 machines in a typical month, with a throughput of approximately 80
teraflops.3 Evidently the candidates are processed on a hugely parallel scale; however,
each individual test requires a large number of sequential operations which cannot be
parallelised, since each step of the Lucas-Lehmer test is contingent on the result of the
previous step. In some cases, such as the Mersenne numbers, the problem size is logically
unbounded4 and therefore the granules of parallelism expand naturally until they become

1Great Internet Mersenne Prime Search: The Math, http://www.mersenne.org/various/math.php.
2In the late 1990s, RSA Security Inc. proposed three challenges, with large cash prizes, to anyone

who could recover the plaintext of a series of DES-encrypted messages. Although DES encryption was
not broken per se, its 56-bit key size was shown to be inadequate, as the first message was recovered
ninety-six days after release, while the final challenge lasted just twenty-two hours. An archive of these
contests is available online at http://www.rsa.com/rsalabs/node.asp?id=2092.

3Figures drawn from GIMPS PrimeNet, urlhttp://www.mersenne.org/primenet/.
4It is not known whether the number of Mersenne primes is infinite, although there are many conjec-

tures that imply it [Gillies, 1964]. In either case the number of Mersenne candidates is obviously infinite,

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 53

long-running on any given hardware. Likewise there are problems which are provably in-
tractable and difficult to parallelise, which are likely to favour single-processor execution
for the foreseeable future. For example, algorithms for analysis of abstract strategy games
such as generalised chess, Go and Reversi are PSPACE-complete with respect to the size
of the board [Fraenkel and Lichtenstein, 1981, Lichtenstein and Sipser, 1980, Iwata and
Kasai, 1994]; they also have complex control flow and intricate data dependencies, making
efficient parallelisation very challenging as 64- or 128-core machines become available [Soe-
jima et al., 2010, Brockington, 1996]. Given human nature, we must assume that these
problems are likely to remain of interest as our computational power grows. Therefore
we must recognise that long-running unparallelised workloads are a permanent feature of
the computational landscape no matter what conceptual or technical improvements might
arise in the future.

In this chapter I address only a specific subset of large-duration energy problems and a
certain type of solution to them, and I cannot make an argument for the logical perma-
nence of either, but I have tried to relax the assumptions made as far as possible to make
the contribution useful in practice, notwithstanding its mathematical abstraction. I par-
ticularly address the problem of energy-efficient scheduling; that is, given a particular task
to be run and hardware on which to run it, how that hardware should be used in order
to complete the task and optimise the energy usage according to some metric, under var-
ious constraints. Formal methods have often been applied to problems of energy-efficient
scheduling. The simplest model takes the machine as a set of components which have
an active state and some number of sleep states, each trading idle power for latency of
transition to activity. An energy-efficient strategy is then a path through the set of states,
which can be seen as a Markov decision process and solved exactly [Benini et al., 1998].

4.2.1 Dynamic voltage–frequency scaling

This chapter asks what part computer equipment plays in the demand for energy, and
where we must focus to reduce consumption and improve energy efficiency in the future.
Recent work has explored the continuous and relatively low-latency power scaling afforded
by DVFS. DVFS exploits the observation that reducing the operating voltage of a chip
reduces its operating power approximately quadratically, while necessitating only a linear
decrease in operating frequency; therefore, the execution time also increases linearly, and
a net gain in total execution energy can be made [Burd and Brodersen, 1995]. The voltage
can be varied quite freely during execution and can be controlled by the processor itself,
closing the loop; the machine thereby controls a crucial component of its own energy
footprint. Typically a chip has some minimum and maximum voltage, and may support
only a limited number of voltages between these extremes, but the relatively low time
and energy penalties for transitioning between voltages makes for much greater flexibility
in scheduling than could be achieved by discrete sleep states. Consequently there already
exists a vast body of work on the subject, and even summary papers are quite numer-
ous [Chen and Kuo, 2007, Tiwari et al., 1994]; there is only space here to discuss some
particularly pertinent strands.

since they are simply 2p − 1 where p is prime. Other classes of efficiently-testable prime candidates,
such as Proth numbers, would provide comparably difficult problems if the Mersenne primes were to be
exhausted.

54 4.2. RELATED WORK

Some approaches require a probability density function (pdf) over the number of cycles
required to complete the task; this pdf must be zero beyond some maximum value, known
as the worst-case execution cycles (WCEC), or more precisely, the worst-case execution
cycle count. (In this chapter, I do not draw a distinction between instructions and cycles;
a multi-cycle instruction is simply considered as separate instructions.) One particularly
powerful technique, requiring a concrete power model and an execution time pdf, can
derive precise optimal operating voltages for various situations: energy minimisation for
a given deadline, time minimisation under an energy constraint, and minimisation of
a generalised penalty model proportional to energy and time together [Barnett, 2005].
However, while this work is mathematically powerful and quite general in its arguments—
supporting, for example, any execution time pdf with finite support—its relevance is
limited by the lack of empirical data. The schedules, while formally optimal, are not
tested with concrete parameters, so it is unclear how much improvement they can provide
over a simpler approach; this is a limitation I attempt to address in my work. In other
work, a similar approach is used to schedule a set of sequential tasks to run in an energy-
efficient way, assuming (as in this chapter) a particularly idealised processor [Xu et al.,
2005]. Again this work considers DVFS exclusively as the method of energy efficiency.
Each task is scheduled to execute at a certain speed (and therefore voltage); speeds are
chosen such that all tasks are completed before the specified deadline, while the total
energy is minimised. It is shown that such a schedule can be found quite efficiently;
although formal bounds are not derived, the algorithm requires minimisation of N convex
functions, where N is the number of tasks, and of course highly efficient algorithms for
convex minimisation are well known [Boyd and Vandenberghe, 2004, pp. 457–513].

Other approaches to static scheduling are possible. For example, Qu and Potkonjak also
establish a theoretic framework similar to that used here, and go on to describe mul-
titask scheduling as a “utility maximization problem”; they show this problem to be
NP-complete, and then describe powerful approximations to efficiently compute sched-
ules arbitrarily close to the optimal [Qu and Potkonjak, 2000]. On the other hand, Irani
et al. describe the Dynamic Speed Scaling with Sleep algorithm (DSS-S), which assumes
a convex power function, availability of DVFS, and zero-energy transitions in and out
of sleep; all assumptions in common with this chapter [Irani et al., 2007]. In contrast to
my approach, DSS-S is not a scheduler per se, but rather a method for improving an
established schedule by reducing its energy usage without affecting (soft) deadline misses
or increasing deadline overshoot times. A static scheduling approach more similar to mine
is given by Hong et al., who propose the treatment of voltage as “an optimization de-
gree of freedom for . . . applications with real-time constraints” [Hong et al., 1999]. They
then propose an algorithm to perform this constrained optimisation, which simulation
suggests is a successful approach. However, they do not attempt to bound or restrict the
computational complexity of the algorithm, so its practicality is not clear even as an of-
fline solution. Work on soft deadlines can also support energy minimisation, although the
characterisation of the problem as one of reward maximisation is not transferrable to the
case where all deadlines must be met [Melhem et al., 2002].

Online (dynamic) scheduling methods are generally heuristic in their approach, but work
also exists on more formal techniques in this space. For example, by applying techniques
from differential calculus to the execution-cycle pdf, one can derive an optimal execution
speed which reacts to the progress of the task so as to minimise the expected total energy
of execution [Gruian, 2001]. Clearly this reactive approach can only improve on the static
case, but does incur a computation penalty in practice. The techniques in this chapter also

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 55

employ calculus but do not demand an execution time pdf, which is often very difficult
to obtain. An alternative approach generalises the Markov state model to a continuous-
time decision process, and can be shown empirically to outperform heuristic policies [Qiu
and Pedram, 1999]. However, the computational overhead of solving such a process is
considerable and again this consideration is not factored into the total energy expenditure.

4.2.2 Other formal methods

To illustrate the full gamut of formal methods for energy, it is worth observing that there
are other benefits to energy efficiency, and other objectives than the minimisation of total
energy.

For example, all hardware has a maximum operating temperature, and we might wish
to schedule computation so as to minimise the peak temperature of the cores during
computation. Assuming Fourier Law cooling and making some further (quite reasonable)
assumptions about hardware characteristics, Bansal et al. give an efficient algorithm to
calculate such a schedule, using the same polynomial power model assumed here [Bansal
et al., 2004].

Early energy-efficiency work considered the reliability impact of the rapid temperature
changes potentially caused by voltage scaling [Lee, 2000], but this area has itself been
scaled back to a low intensity in recent years. Energy efficiency also has an impact on
reliability, since low-power computing is more susceptible to transient faults from radiation
events and so forth; modelling and managing this trade-off has also been the subject of
some formal work [Zhu et al., 2004, Zhu, 2006].

4.3 Definition of terms

The following terms will have these specific meanings in this chapter:

• The workload (or WCEC) is the maximum number of instructions to be executed
in order to complete the task.

• The deadline is a point in time by which all work must be completed. This is a hard
deadline; in other words, any admissible schedule must guarantee that the deadline
is met.

• The cost function describes the price per unit energy for all points in time until the
deadline.

• The power model characterises the interaction of energy consumption with perfor-
mance.

4.4 Problem statement

Having outlined the general class of problem that this chapter addresses, I state the
problem precisely as follows: given the workload, deadline, and power and cost functions,

56 4.5. FORMAL MODEL

determine the rate of computation for all points in time (from “time zero” until the
deadline) which minimise the total cost of the energy expended, while still completing all
work before the deadline.

My approach is as follows.

• In Section 4.5, I justify a simple and approximate mathematical model of computa-
tional power consumption in terms of utilisation.

• In Section 4.6, I demonstrate optimal strategies for this model in some plausible
cost models, and show that these strategies could produce significant cost savings
in reasonable cases.

• In Section 4.7, I outline mathematical tools for the solution of more general cost
models.

4.5 Formal model

Some simplifying assumptions are always required in order to construct a precise math-
ematical model. For simplicity, this section presents the model directly; the assumptions
are defended at length below.

Let W be the number of instructions to execute (the workload) and let T be the time
available to complete the task (the deadline). By convention t denotes some time value
in the range [0, T].

Power consumption is assumed here to follow the polynomial dynamic model [Cho and
Melhem, 2008], which is

P (t) = (σ +Rα(t))I(t) (4.1)

(Throughout this chapter fn(x) stands for [f(x)]n rather than repeated application of f ,
although f−1 denotes the inverse of f .)

In this model, σ is the static power, R : [0, T] → R+ is a function indicating the work
rate (in cycles per unit time) of the processor at time t, and α is a constant that controls
the relationship between power and work rate, which is determined by the hardware
configuration. Typical values would be α ≈ 2 or α ≈ 3 [Cho and Melhem, 2008]. I :
[0, T]→ {0, 1} is a simple indicator function denoting whether the system is powered on.
The ordered pair (I, R) is referred to as a “strategy”, since it determines the behaviour
of the system, and consequently how much power it requires at any given time.

The cost function U : [0, T] → R+ denotes the unit cost of energy at time t, so that the
total cost of the computation, C, is given by

C =

∫ T

0

P (t)U(t) dt (4.2)

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 57

The formal problem statement is

Given U , α, σ, T and W , find the strategy (I, R) which minimises C.

The following constraints apply:

• Work cannot be undone and energy has some value; this is encapsulated in the
restriction of the codomains of R and U to R+.

• The power function is strictly increasing. In the polynomial model, this simply
implies that α > 1.

• The power function is convex. This has a simple consequence for the polynomial
model, since a function is convex over a region if its second derivative is non-negative
throughout that region [Rudin, 1987, p. 61]. This implies that

∂2P

∂r2
= α(α− 1)rα−2 ≥ 0 (4.3)

for r ≥ 0, and therefore simply that |α| ≥ 1. This is therefore subsumed by the
previous requirement that the function be strictly increasing, since this implies the
stronger constraint that α > 1.

• All the work is done by the deadline. I refer to this as the “Completion Constraint”.
Formally, ∫ T

0

R(t)I(t) dt = W (4.4)

The cost function and the strategy together determine the total energy of the computation.

4.5.1 Assumptions and justification

The power model describes a system with the following characteristics: when turned on,
the system requires zero or more units of “static power” and some additional “dynamic
power” which increases monotonically with performance; when turned off, it requires no
power. The assumption that the power function is strictly increasing (∂P/∂r > 0) is
fundamental and it is hard to imagine any system in which running faster would reduce
the power requirement; certainly such situations are esoteric enough that I do not con-
sider it necessary to optimise for them in the general case. The assumption of convexity
(∂P 2/∂2r ≥ 0) is more disputable; in concrete terms, I assume that each additional cycle
requested from the processor (per unit time) requires more energy (per unit time) than
the last. Nevertheless, the assumption is likely to hold, since systems generally scale super-
linearly with utilisation [Barroso and Hölzle, 2007], and it is widely adopted [Lehoczky
et al., 1989, Okuma et al., 1999, Gutnik and Chandrakasan, 1997, Lorch and Smith, 2001].
Generally this chapter assumes a polynomial model of dynamic power [Cho and Melhem,

58 4.5. FORMAL MODEL

2008]. With suitable parameters, this model is a reasonable approximation to most real
hardware and crucially, it is sufficiently simple that it permits the derivation of strong
theoretical results. Additionally, the convexity constraint follows from the monotonicity
constraint, rendering the former assumption less debatable.

I consider only two contributors to the total system power: a dynamic term varying with
utilisation (measured in cycles per unit time), and a constant term. The dynamic term
models the power of the CPU, and potentially any further components which scale in line
with the CPU; these may include, for example, main memory or the network interface
card. The constant term encompasses the power of the remaining components, and the
static power of the CPU itself. The dynamic behaviour which is not proportional to CPU
utilisation, such as the power consumed by the network card in peak-traffic periods, is
assumed to be small compared to the dynamic range of the CPU.

I assume an idealised CPU, in the following sense: the voltage and clock frequency can
be changed instantaneously and at no energy cost, and can take on any value from zero
to the maximum frequency supported by the CPU. In practice, ignoring switching energy
makes little difference to the choice of frequencies, although of course it underestimates
the exact energy totals [Swaminathan and Chakrabarty, 2001]. As for the energy penalty,
energy cost changes are relatively infrequent and, by a result demonstrated explicitly be-
low, computation speed changes are similarly infrequent, so it is reasonable to discard
these for a computation of the assumed length. Clearly the assumption that frequency
can be changed instantaneously does not hold, since in practice there is some overhead
associated with adjusting the clock frequency; however, simulation has shown that the
energy differential for more involved models is only about 7% [Hong et al., 1998]. The
assumption that voltage and clock frequency may be varied continuously within the finite
bounds is essentially true for some processors. On the other hand, for processors which
support only a finite number of pre-determined frequencies, the optimal solution is sim-
ply to round to the nearest available frequency [Ishihara and Yasuura, 1998]. Empirical
evidence suggests that the loss of flexibility in such cases has a small impact on overall
efficiency [Lee and Sakurai, 2000].

I assume that the workload is known in advance. In reality the workload may be difficult to
provide and is of course undecidable in general. In cases where exact workload predictions
cannot be made, it may be possible to find an upper bound. The resultant schedule is
likely to be over-eager and thus somewhat energy-suboptimal, but still no worse than the
näıve approach. However, in cases where the upper bound is loose, a dynamic run-time
approach would probably perform better. Requiring this input is not as unreasonable
as it might once have been: there is now a large body of work on proving termination
for programs as large as 100 000 lines of code, despite the impossibility of the general
case [Cook et al., 2006]. The problem of calculating execution time bounds has also been
extensively studied, with considerable practical success [Bedin França et al., 2011, Souyris
et al., 2005, Heckmann and Ferdinand, 2004]. If no upper bound can be determined, it is
impossible for any schedule to guarantee a hard deadline and so this case is not considered.
On the other hand, there are some situations in which it is reasonable to expect an exact
workload. For example, in decoding an encrypted or compressed stream, it is possible to
determine at encode-time exactly what must be done to decode the resultant stream, and
this information could then be embedded into the stream itself. Predictable workloads
have already been shown to have power-efficiency benefits in the realm of digital signal
processing [Chandrakasan et al., 1996]. In any case it is clear that an algorithm for this

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 59

problem requires an upper bound on the workload, and that for offline algorithms a tighter
bound will produce a superior schedule.

I further assume that the number of instructions executed is independent of the rate at
which they are executed. In practice this is not completely accurate, due to complicating
effects such as caching, pipelining, bus speed mismatches and so on [Seth et al., 2003].
However, empirical evidence suggests that, for a reasonable cache size, the effect is very
small: typically less than 2% [Melhem et al., 2004, p. 4]. Therefore a task is simply
considered to take a certain number of instructions to resolve, and every instruction
requires a fixed amount of time. Therefore the worst-case execution time (WCET) is
simply the workload divided by the speed of the processor, in cycles per unit time.

4.6 Solutions for specific cost models

In this section, I propose some forms of cost model that I believe are likely to correspond
to realistic cases. As ever, a trade-off exists between the strength of assumptions and the
viability of analytic solutions. This section provides exact analytic solutions, and therefore
I have endeavoured to make the models as general as possible within that constraint;
variables are introduced wherever possible to provide flexibility.

4.6.1 Constant cost

The simplest cost function is U(t) = u for some constant u. This is the degenerate case
in which minimising energy and energy cost are identical objectives. This result has been
derived in previous work, under the name “energy-efficient frequency”, so I verify that it
is recreated within my framework [Zhu et al., 2004, p. 3].

Since the cost function is constant, I assume without loss of generality that the system is
powered on for one contiguous block of time. Consequently, any strategy can be reduced
to one in which the system begins powered off, remains off for some period of time S
(the “slack time”), is then powered on, and remains on for the remaining T − S time.
(This also minimises the number of state changes, which helps preserve the assumption
that these are not significant contributors to execution time and energy.) The slack time,
which embodies the discovery that it may be economical to do nothing for a certain length
of time in a large computation, is named in homage to Gottbrath’s introduction of another
form of slack time [Gottbrath et al., 1999]. In that formulation, the computational power
of new hardware increases so rapidly that a long-running computation may finish earlier
if we delay its start until better hardware becomes available. That result, of course, is
predicated upon Moore’s Law, whereas here I only make the less startling assumption
that static power is a non-trivial component of total power. Nevertheless, the ideas enjoy
numerous similarities.

Due to the convexity of the power function (the assumption that α > 1), a strategy
in which computation occurs at a constant rate for the entire work phase is at least as
good as any other. This can be seen intuitively by the following argument: consider any
strategy which deviated from a constant rate; now reduce the work rate at its highest point
and increase it at its lowest point by the same amount, such that the total number of
instructions executed is the same. Now the reduction in power at the high point is clearly

60 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

greater than the increase in power at the low point, since the power function is convex
with respect to work rate. Therefore the overall energy is reduced. Consequently, only a
strategy which has no such “high points” can be optimal, which is exactly the constant
functions. A more precise argument can be given; here, I formalise the argument sketched
by Gutnik and generalise it to the continuous case [Gutnik and Chandrakasan, 1997].
This argument applies to any convex power function, including of course the dynamic
polynomial model I generally assume. Consider Jensen’s Inequality [Gradshteyn et al.,
1980, pp. 1132–1133], which states the following.

Theorem 4.6.1. (Jensen’s Inequality) Consider an interval [a, b]. Let p be any function
on the interval such that p(x) ≥ 0 and p 6≡ 0; let f be any function and define constants
α and β, chosen such that ∀x ∈ [α, β].α ≤ f(x) ≤ β; let φ be any convex function. Then5

φ

(∫ b
a
f(x)p(x)dx∫ b
a
p(x)dx

)
≤
∫ b
a
φ(f(x))p(x)dx∫ b
a
p(x)dx

(4.5)

Given Equation 4.5, the result follows quite straightforwardly.

Proof. Set a = 0, b = 1, p(x) = 1 in Jensen’s Inequality, and substitute x 7→ t, f 7→ R
and φ 7→ P . By assumption, P is convex, as required; furthermore, since it is convex
everywhere that it is defined (which is to say, [0, T]), we can take α = 0 and β = ∞,
which certainly bound any R(t) we might see. Then Jensen’s Inequality reduces to the
following compact form:

P

(∫ 1

0

R(t)dt

)
≤
∫ 1

0

P (R(t))dt (4.6)

Assume without loss of generality that the window of computation is 0 ≤ t ≤ 1. Then one
can recognise the term inside the left-hand brackets as the workload, W , in Equation 4.4.
Likewise the right-hand side is the total energy consumed, E. Hence we have the concise
result that E ≥ P (W). Now consider a constant rate of work, which by the Completion
Constraint requires that R(t) = W . In this case,

E =

∫ 1

0

P (W)dt = P (W) (4.7)

This is the lower bound of the inequality above. Hence, as required, the lower bound for
E is achieved when R is a constant function.

Note that we have not proved the converse and therefore do not exclude the possibility
that an alternative strategy might be equally efficient, but it cannot be superior. In fact,
this result is not specific to power; any resource which is a convex function of utilisation
is minimised by constant consumption, and similar results have been established in other
work [Melhem et al., 2002, p. 133].

5There are multiple formulations of Jensen’s Inequality, with measure theory’s presentation being
perhaps the most convenient; however, to avoid the dependency on the fairly specialised notation of that
field, I give the inequality in the slightly more cumbersome form used for real analysis and then eliminate
the unnecessary terms directly.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 61

Given the assumption of a contiguous slack time and a constant rate of computation
during the non-slack time, the formal strategy (I, R) must take the following form:

I(t) =

{
0 if t ≤ S
1 if t > S

(4.8)

and R(t) = r for some constant r. By the Completion Constraint,∫ T

0

R(t)I(t) dt = r(T − S) = W (4.9)

so r = W/(T − S), and the total cost C is

C =

∫ T

0

P (t)U(t) dt (4.10)

= u(T − S)

(
σ +

(
W

T − S

)α)
(4.11)

To find the optimal slack time, set ∂C/∂S = 0, so

σ +

(
W

T − S

)α
= (T − S)(αWα(T − S)−α−1) (4.12)

which has the unique solution

S = T −W α

√
α− 1

σ
(4.13)

As expected, the solution is independent of u, which is just a scaling factor of the cost. It
may transpire that this value of S is outside the valid range, in other words that S < 0,
in which case simply take S = 0. Clearly it cannot be that S > T .

Substituting this optimal S gives the optimal rate of calculation:

ropt = α

√
σ

α− 1
(4.14)

This agrees with the established result for energy-efficient frequencies.

The minimal cost can also be given explicitly:

Copt =
ασWu

α− 1
α

√
α− 1

σ
(4.15)

Next, I determine how much this optimal solution stands to gain over the näıve solution:
that is, computing at maximum speed until the work is complete. To answer this, define
Rmax to be the maximum work rate of the processor; this is both the speed at which
the näıve strategy will compute (until the task is complete), and an upper bound on the
admissible values of R from any alternative strategy. Clearly the näıve strategy incurs
cost Cmax, where

Cmax = (σ +Rα
max)

Wu

Rmax

(4.16)

62 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
α = 2
α = 2.5
α = 3

Static fraction

E
ne

rg
y

sa
vi

ng

Figure 4.1: Potential cost saving λ, as a percentage, against static fraction µ, for some
realistic α values.

Let λ be the fraction of the cost required by the näıve strategy that could be saved by
the optimised strategy, so that

λ =
Cmax − Copt

Cmax
= 1− ασRmax

(α− 1)(σ +Rα
max)

α

√
α− 1

σ
(4.17)

Of course, the exact value of the cost saving depends on the values of the other variables
in the power model and so forth, but usefully, this definition is independent of W , u
and T . This reduces the dimensionality of the space over which one most compare the
two strategies. One dimension that must be considered is the ratio of static to dynamic
power, so define µ to be the fraction of total power consumed by static power at peak
performance:

µ =
σ

σ +Rα
max

(4.18)

This can then be substituted into Equation 4.17 to give

λ = 1− α α
√

1− µ
(

µ

α− 1

)1−1/α

(4.19)

and this eliminates Rmax so that λ remains dependent on only two variables. Therefore
one can reasonably sketch out the behaviour for some likely parameter values.

Note that this definition is only correct if the optimised strategy respects the maximum
rate of computation, in other words ∀t.R(t) ≤ Rmax. This implies that we must have
W/(T − S) ≤ Rmax, which reduces to the simple constraint that µ ≤ 1 − 1/α. For
µ > 1− 1/α, the optimised strategy converges to the näıve strategy, so λ = 0.

Figure 4.1 shows the aforementioned sketch of λ for varying values of µ, with some plau-
sible values of α. Several interesting conclusions can be drawn from this sketch that are

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 63

not immediately obvious from Equation 4.19. First and most obviously, the optimised
solution is always able to save some energy; and, when µ is small and the dynamic energy
dominates, the optimised strategy is able to achieve much higher savings. Whether these
solutions are actually possible also depends on the value of T , which is not considered here;
the specific case µ = 0 would favour computing infinitely slowly and so is not shown. The
sensitivity to α is less obvious from Equation 4.19, but clear from the figure; for example,
when the maximum dynamic power is fixed at twice the static power (µ = 1/3), λ is 6%,
14% and 21% for α = 2, 2.5, and 3 respectively, which is a significant discrepancy. The
effect is predictable, since the steeper the power curve the more wasteful maximum-speed
computation becomes; however, the magnitude of it is perhaps surprising. Furthermore,
for larger α values, the static fraction has to be considerably larger before optimisation
becomes useless; µ = 46%, 56% and 62% respectively. This suggests that the optimisation
is markedly more useful when deployed in systems with α values towards the higher end
of typical estimates; again this is qualitatively obvious but the magnitude of the effect is
somewhat unexpected.

4.6.2 General discrete variable cost

Consider now a more general case, where U varies in any number of discrete regular time
steps; in other words, for some integer m:

U(t) =

u0 if 0 ≤ t < T/m
...
um−1 if (m− 1)T/m ≤ t < T

(4.20)

where u0, . . . , um−1 are positive real constants. Assume that ui ≤ ui+1; this assumption
can be made without loss of generality since one can always sort the time steps into cost
order.

Since the cost is increasing, any optimal strategy must involve working from the start for
some period of time and then switching off for the rest of the time. (In the general case,
this corresponds to working in only the cheapest time slots.) This strategy is parametrised
by the length of this working period, which is assumed to be some multiple of s; in other
words, computation spans a whole number of time steps. This method can be extended
to remove this assumption but this simpler case illustrates the technique more clearly;
alternatively one can slice the steps into small substeps to provide an arbitrarily good
approximation.

Under these conclusions, “Strategy n” can be defined as (In, Rn) with

In(t) =

{
1 if t ≤ Tn/m
0 if t > Tn/m

(4.21)

and

Rn(t) =

r0 if 0 ≤ t < T/m
...

...
rn−1 if T (n− 1)/m ≤ t < Tn/m
0 otherwise

(4.22)

64 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

for constants r0, . . . , rn−1, and 0 < n ≤ m. The Completion Constraint requires that

n−1∑
i=0

riT

m
= W (4.23)

or, extracting r0, that

r0 =
Wm

T
−

n−1∑
i=1

ri (4.24)

The total energy cost is

Cn =
T

m

n−1∑
i=0

(σ + rαi)ui (4.25)

So to minimise Cn (for fixed n), the following system of equations must be solved:

∂Cn
∂r0

= · · · = ∂Cn
∂rn−1

= 0 (4.26)

The variables r1, . . . , rn can be considered mutually independent, with r0 constrained by
Equation (4.24); therefore

∂ri
∂rj

=

1 if i = j
0 if 0 6= i 6= j 6= 0
−1 otherwise

(4.27)

So, for any j 6= 0,
∂Cn
∂rj

=
T

m
(αrα−1j uj − αrα−10 u0) = 0 (4.28)

which is solved by rj = r0ζj where

ζj = α−1

√
u0
uj

(4.29)

This gives each rj in terms of r0, so to complete the solution, return to the Completion
Constraint, which is now

n−1∑
i=0

Tri
m

=
Tr0
m

n−1∑
i=0

ζi = W (4.30)

and so, by normalisation,

r0[opt] =
Wm

T
∑n−1

i=0 ζi
(4.31)

and the solution is complete. This describes the strategy for a given n; the minimal cost
is therefore

Cn[opt] =
T

m

(
(r0[opt] α−1

√
u0)

α

n−1∑
i=0

1−α
√
ui + σ

n−1∑
i=0

ui

)
(4.32)

The optimal value of n can be found efficiently by any univariate maximisation technique.
However, for larger values of m, a more direct mechanism might well be desirable; in
Section 4.6.4, I demonstrate that for specific cost functions, more efficient computational
techniques for finding n can be applied.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Race to stop
Cost-agnostic
Cost-aware

Static fraction

C
os

t (
£)

Figure 4.2: Cost incurred to perform a long-running computation, for various ratios of
static to dynamic power.

4.6.3 Real-world example

To illustrate the advantages of cost optimisation, this section describes a plausible problem
case and shows the savings that cost optimisation can achieve. I consider the following
situation:

• The system has one week to complete some computational task, starting at midnight
on Monday.

• The workload is 48 hours’ work at the maximum rate.

• Electricity costs are based on the standard plan offered by power provider E.ON
Energy6 in the author’s postcode as of November 2011. Therefore off-peak electricity
is available from 11.30pm to 7.30am at 6.1845p per kilowatt-hour (kWh); on-peak
electricity is available at all other times, priced 16.905p per kWh.

• When computing at the maximum rate, the system requires 450 W of power. This is
divided between the static and dynamic components according to the static fraction
parameter.

• The machine follows the dynamic polynomial power model, with α = 2.5.

Note that the value of Rmax follows from the static power, maximum dynamic power, and
value of α, so is not given explicitly.

6http://www.eonenergy.com

66 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Race to stop
Cost-agnostic
Cost-aware

Static fraction

En
er

gy
 (k

W
h)

Figure 4.3: Energy required to perform a long-running computation, for various ratios of
static to dynamic power.

Figure 4.2 shows the cost of completing this computation for varying values of the static
fraction. The simple race-to-stop strategy, which simply runs at maximum speed until
completion, always consumes 450 W and is therefore independent of the static fraction;
it requires 21.6 kWh at a cost of £2.88. The figure also shows the behaviour of the cost-
agnostic algorithm, which optimises for energy but not energy cost, and the full algorithm
which minimises energy cost. (In both cases, the Rmax limit is imposed, so the comparison
is a fair one.) At low static powers, the two algorithms behave similarly because they both
compute throughout the week, although the cost-aware algorithm is still slightly more
efficient since it moves more cycles into off-peak pricing periods. As the static component
increases, the cost-agnostic schedule runs early time segments at Rmax and then turns the
system off, converging on the race-to-stop schedule. When the static power accounts for
more than about 60% of the total, all three schedulers level off, although the cost-aware
model continues to make better use of off-peak energy, converging to £1.34.

Figure 4.3 shows the raw energy usage for the three schedulers. As expected, the cost-
aware scheduler consumes more total energy than the cost-agnostic scheduler; the superior
price is achieved by performing more total work but shifting it to off-peak times. This
might seem undesirable but, since the grid has almost no storage capacity and produces
a reasonably constant output of electricity throughout the day, this would actually be a
net win for both the provider and the consumer; this is, after all, exactly the behaviour
that the off-peak period is designed to incentivise. Both figures display a “phase change”
in cost-aware behaviour at around 16% static power; this is the first point at which it
becomes cost-efficient to perform any computation at on-peak prices.

Of course this example includes many arbitrary constants, but clearly demonstrates that
there are significant cost savings to be made in a practical case; for a realistic system
with static power of perhaps 40%, cost-aware optimisation is 56% cheaper than the näıve

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 67

race to stop, and 52% cheaper than even an energy-optimal schedule. While some of this
margin would undoubtedly be lost in the translation to all the complexities and overheads
of a real system, I believe it is large enough that a significant reduction in the real cost
would be achievable.

4.6.4 Exponential cost

In the long term, one might expect the cost of energy to behave exponentially, either
increasing or decreasing depending on one’s optimism about the progress of technology.
In this section I specifically consider the case where cost increases exponentially at each
time step, in order to preserve the assumption that ui ≤ ui+1; the solution can easily be
adapted for the case of exponential decrease. Assuming arbitrary units of cost, define

ui = eT i/m = zi (4.33)

where z = eT/m. Hence ζi = ki where k = 1−α
√
z. Then, substituting into Equation 4.31

gives a simple geometric sum so

r0 =
Wm(1− k)

T (1− kn)
(4.34)

Likewise Equation 4.32 collapses into a compact form:

Cn =
T

m

(
1− zn

1− z
σ +

(
Wm

T

)α(
1− k
1− kn

)α−1)
(4.35)

Expanding terms dependent on n, this can be written in explicit and particularly concise
form:

Cn = A(1− zn) +B(1− kn)1−α (4.36)

where the constants are independent of n, viz.

A =
Tσ

m(1− z)
(4.37)

and

B = Wα

(
m(1− k)

T

)α−1
(4.38)

This equation makes it highly efficient to compute the optimal n for even large m by any
standard optimisation technique.

4.6.5 Generalised time intervals

A simple approach to optimising for the fully general continuous cost function would
be to replace it with an approximate discretised version of the same function. In this
case, the obligation to separate time into fixed quanta of length T/m might be overly
restrictive, and it would be preferable to sample the function more finely in regions with

68 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

larger derivative. Therefore I also present the solution for arbitrary-length time segments.
Define 0 = t0 < t1 < . . . < tm = T , and then take

U(t) =

u0 if t0 ≤ t < t1
...
um−1 if tm−1 ≤ t < tm

(4.39)

The completion constraint is
n−1∑
i=0

ri(ti+1 − ti) = W (4.40)

and the cost

Cn =
n−1∑
i=0

(σ + rαi)(ti+1 − ti)ui (4.41)

so

∂ri
∂rj

=

1 if i = j = 0
−(ti+1 − ti)/t1 if i = 0, j 6= 0
0 if i 6= 0

(4.42)

and, by the earlier method, we have ri = r0ζi since the interval terms cancel. Normalising
completes the solution, giving

r0 = W

(
n−1∑
i=0

(ti+1 − ti)ζi

)−1
(4.43)

The minimum cost is, therefore

Cn = σ
n−1∑
i=0

ui(ti+1 − ti) + (r0 α−1
√
u0)

α

n−1∑
i=0

(ti+1 − ti) 1−α
√
ui (4.44)

It can be readily verified that these solutions coincide with the fixed case when ti = Ti/m.

To demonstrate the utility of this adaptive quantisation, consider the continuous cost
function

U(t) = k + (1− k) sin

(
πt

2

)
(4.45)

where k is a small constant to prevent zero-cost energy at t = 0 (I take k = 0.01). Take
T = 1, so that U(t) is monotonically increasing over the relevant range, 0 ≤ t ≤ 1. Rather
than solve for this function directly, let us take a discrete approximation. I discretise
in two different ways to demonstrate the contrast. One method, regular quantisation,
simply divides the function into n regular steps of width 1/s. The other method, fitted
quantisation, divides the function into s variable-width steps such that the value of U(t)
increases by the same amount over each; in this case, the ith step runs from

2

π
arcsin

(
i

s

)
≤ t <

2

π
arcsin

(
i+ 1

s

)
(4.46)

Figure 4.4 compares the two methods of quantisation against the continuous function for
s = 10; note how the fitted quantisation uses smaller steps in the steeper part of the sine

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 69

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Continuous function
Regular quantisation
Fitted quantisation

t

0.
01

 +
 0

.9
9

si
n(

π
t/2

)

Figure 4.4: A continuous cost function and two different methods of discretising it into
ten steps.

curve. In both methods the effective value of U is sampled at the midpoint of the interval,
so the continuous curve intersects each step of the discrete functions at the midpoint of
each step. Note that, although the fitted quantisation is intuitively a better fit, there is no
reason to believe that it is the optimal approximation for our purposes; this is intended
only as a demonstration of the advantages of variable width quantisation for this purpose.
To demonstrate this advantage, I optimise for the two quantisations and measure the cost
incurred, assuming the cost function of Equation 4.45.

For further illustration, Figure 4.5 shows the proposed schedules for both quantisations
in the case where s = 25, with α = 2.5. The figure also shows the optimal solution. (This
was in fact computed numerically by taking s = 10 000.) The system is assumed to be
powered down wherever the rate is zero, and in particular the rate is zero for the unshown
portion of the graph (t > 0.3). Note that the adaptive solution computes for ten steps to
the regular solution’s seven, but still finishes earlier since the steps are smaller. During
the active period, it is not immediately obvious that the fitted quantisation is a better
approximation to the optimal solution, but the total costs bear it out: regular quantisation
produces a solution 6.3% more expensive than the optimal, while the fitted quantisation
incurs only a 3.6% cost overhead.

Finally, Figure 4.6 shows the overhead of the two approaches, compared to the optimal
solution, over a range of s values and for α = 2, 2.5, and 3. Evidently the fitted quantisa-
tions are measurably better in every case, excepting a few small anomalies for the coarsest
quantisations (which illustrates the point that this quantisation is not necessarily opti-
mal for this purpose). For s values of 100 or more, the overhead becomes negligible; for
s ≥ 180 both methods are less than 1% inefficient. This demonstrates that, as an offline
optimisation technique, there is no great benefit to the added complexity of the adaptive
method, justifying the decision to present the simpler case explicitly. Nevertheless, this

70 4.7. GENERAL METHODS

0 0.05 0.1 0.15 0.2 0.25 0.3

Regular quantisation
Fitted quantisation
Optimal solution

Time

R
at

e
of

 c
om

pu
ta

tio
n

Figure 4.5: Schedules for two different quantised approximations to the same continuous
cost function. Arbitrary units of rate.

also demonstrates that flexible quantisation is justified if the overhead of computing the
schedule must be kept low; for example, as illustrated in later chapters, it might sometimes
be desirable to recompute a schedule online in the light of new information.

4.6.6 Summary of cost model-specific solutions

In this section, I have presented precise algebraic solutions to the fixed cost model and to
any model described by a series of discrete steps, and demonstrated that the latter can
be an effective approximation to more complex continuous functions. I have also shown
that the algebra can be pushed further in particularly amenable cases, such as ui = zi,
to make the parameter search more efficient. However, while it can be approximated, the
more general problem of an arbitrary continuous cost function remains unsolved. This I
address in the next section.

4.7 General methods

In this section I present some techniques for optimising for continuous cost functions in
the general case. While it is not possible to complete the solution in the general case, the
methods developed here can be applied to particular continous cases and thereby simplify
the process of finding a solution. I also describe a method for finding solutions subject to
an additional constraint: constant spending.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 71

1 10 100
0%

20%

40%

60%

80%

100%
α = 2, regular
α = 2, fitted
α = 2.5, regular
α = 2.5, fitted
α = 3, regular
α = 3, fitted

s

C
os

t o
ve

rh
ea

d
ve

rs
us

 o
pt

im
al

 s
ol

ut
io

n

Figure 4.6: Comparison of cost overheads incurred by regular and fitted quantisations for
several values of α. Horizontal axis is on a logarithmic scale.

4.7.1 Monotonic cost functions

It is not possible to provide a complete analytical solution for an arbitrary cost function,
but in this section I develop some techniques that may be useful in minimising cost
for general monotonic cost functions. By analogy with the earlier assumption that ui ≤
ui+1, assume that U is a monotonically increasing continuous function. A monotonically
decreasing function V can be converted into the appropriate form by taking U(t) =
T − V (t), effectively reversing the arrow of time; since the algorithm is entirely offline,
there is no issue with causality. For cost functions that are not monotonic, one can apply
the approximation technique of Section 4.6.5, or more powerful mathematics are required,
as discussed in Section 4.8.

By the earlier argument, the following indicator is as good as any other for suitable S:

I(t) =

{
0 if t ≤ S
1 if t > S

(4.47)

so that the Completion Constraint becomes simply∫ T

S

R(t) dt = W (4.48)

Now the power function P is parametric in S; the longer the CPU idles at the beginning,
the faster it must run once it starts. For convenience, define f(S, t) = U(t)PS(t), so one
can simply state

C =

∫ T

S

f(S, t) dt (4.49)

72 4.7. GENERAL METHODS

To find the optimal S, set ∂C/∂S = 0 as usual. Under the reasonable assumption that f
is continuous over [S, T], one may differentiate under the integral to give

∂C

∂S
=

∂

∂S

∫ T

S

f(S, t) dt

=

∫ T

S

∂

∂S
f(S, t) dt− f(S, S)

= 0

using the standard result [Gradshteyn et al., 1980, p. 23].

Rearranging, and expanding f , gives

PS(S)U(S) =

∫ T

S

U(t)
∂PS
∂S

dt (4.50)

since U is independent of S.

Since only the dynamic power depends on the slack time, this can be further rewritten in
terms of R:

[σ +Rα(S)]U(S) = α

∫ T

S

U(t)Rα−1(t)
∂R

∂S
dt (4.51)

The latter seems more readily soluble, since the Completion Constraint also involves R.
This gives an approach to finding R for any general U , if one can solve the integral in
Equation 4.51.

To illustrate the technique, let us briefly return to the case of the constant cost function,
U(t) = u. As in Section 4.6.1, this implies R(t) = W/(T − S), and consequently the
derivative

∂R

∂S
=

W

(T − S)2
(4.52)

One can now apply Equation 4.51, to give(
σ +

(
W

T − S

)α)
u = α

∫ T

S

u

(
W

T − S

)α−1
W

(T − S)2
dt (4.53)

Despite its apparent inelegance, this equation quickly cancels down to give

σ +

(
W

T − S

)α
= α

(
W

T − S

)α
(4.54)

and a simple rearrangement produces the now-familiar form of Equation 4.13, complet-
ing the solution. Even in this simplest of examples, it is apparent that the volume of
algebra and risk of error can be reduced by applying the general method embodied in
Equation 4.51.

4.7.2 Constant spending

A particular class of solution arises if the cost per unit time is required to be constant
over the non-slack region of computation. Here let P be any power function, so that

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 73

P (r) is the power consumption of computing at rate r. As before, P must be strictly
monotonically increasing and hence invertible; let P−1 denote this inverse. Let V be the
rate of spending, so that ∀t.U(t)P (t) = V with V independent of t. To find V , apply the
Completion Constraint: ∫ T

S

P−1
(

V

U(t)

)
dt = W (4.55)

Solving this integral for the relevant U gives an equation for V in terms of S. The total
cost is then

C =

∫ T

S

P (t)U(t) dt = (T − S)V (4.56)

and so
∂C

∂S
= (T − S)

∂V

∂S
− V (4.57)

So setting ∂C/∂S = 0, the optimal slack time can be derived by the neat equation

V = (T − S)
∂V

∂S
(4.58)

Solving this may be hard in practice, depending on the tractability of Equation 4.55. Of
course numeric approximations are possible, although in the general case the energy cost
of the computation might exceed the energy saved by prudent scheduling.

As an example, assume that P (r) = σ+ rα as before, so that P−1(p) = α
√
p− σ. First set

U(t) = u in order to check that the simple case of Section 4.6.1 is recovered. The solution
to Equation 4.55 is then

V = u

((
W

T − S

)α
+ σ

)
(4.59)

Hence,
∂V

∂S
= αuWα(T − S)α−1 (4.60)

And, substituting these into Equation 4.58 leads quickly to the solution

S = T −W α

√
α− 1

σ
(4.61)

which of course is Equation 4.13.

However, to illustrate the difficulties of this method, consider instead the case of expo-
nential cost, so that U(t) = et. The solution to the integral in Equation 4.55 is then very
difficult to obtain; an analytic algebra package7 gives

−(α) 2F1

(
− 1

α
,− 1

α
; 1− 1

α
;
σet

V

)
α

√
V e−t − σ
1− σet/V

= W (4.62)

where 2F1 is Gauss’s hypergeometric function. This is about as far as one can proceed
with this method; evidently, numerical approximation is necessary to solve the integrals
for even quite elementary cost functions.

7Wolfram’s Online Integrator, http://integrals.wolfram.com

74 4.8. CONCLUSION

4.8 Conclusion

In this chapter, I have argued that minimising energy cost rather than energy itself is a
realistic approach for long-running computations, and that it would be quite reasonable
for real-world application. In fact, paradoxically, using more energy may be not only
more cost-efficient but actually more energy-efficient, due to the structure of the electricity
supply system. If such optimisations became a reality, and computing continues to increase
its share of total energy usage, then one would expect to see power providers offering a
more finely-grained incentive scheme; the framework I have described is capable of refining
its schedules for exactly this scenario. The result would be an overall improvement in
the efficiency of the world’s power generation infrastructure, in terms of both cost and
energy, and would therefore form some small part of the solution to the global problems of
power provisioning as world population accelerates towards its peak of perhaps ten billion
people [Lutz et al., 2001]. Of course there are significant caveats to the efficacy of this
solution, but since all expectations are that computing will become only more widespread
and diverse, it is clearly a goal worth pursuing.

Having established the legitimacy of the problem, I have also presented a framework in
which such problems can be described, and argued for its fidelity as an approximation to
the myriad complexities of real systems. As far as possible the results in this chapter apply
to almost any plausible power function, since it is hard to imagine any hardware for which
this would not be monotonically increasing and convex with respect to processor speed.
However, I have also provided more detailed results for one particular class of power
function, the dynamic polynomial model, which is believed to be widely applicable in
practice. Although these results are necessarily somewhat specific, I believe the techniques
used are of broader applicability for other power functions, and it seems likely that similar
techniques could produce analogous results for other characterisations of power. Perhaps
most importantly, I have demonstrated concretely that these techniques would have a non-
negligible impact on the execution strategy used by real workloads, and on the energy
cost incurred by those strategies. The margins obtainable in theory are large enough that,
although some fraction would inevitably be lost in the translation to the complications
of reality, the remainder would still be enough to justify the outlay in technical and
conceptual complexity.

In general, of course, the greater the dynamic range of power supported by the hardware,
the greater the opportunities for optimisation; for machines in which static power domi-
nates, the näıve race-to-stop approach cannot be beaten for energy efficiency. Indeed, it
seems that future hardware trends are in this direction; certainly for larger devices, it
is expected that future chip design will focus on larger numbers of simpler computing
elements, which individually may not support much power scaling. However, cost opti-
misation introduces a new front in this struggle between performance and efficiency; as
amply demonstrated by Section 4.6.3, there are considerable savings to be made even
when there is no margin for energy reduction.

The approach of this chapter is not without its limitations. Section 4.7.2 illustrates that
relatively simple formulations can quickly lead to algebraically intractable problems, if one
requires precise solutions; although, given the dependence on the notoriously recalcitrant
subject of integrals, this should not be particularly surprising. On the other hand, for
more challenging cost functions, such as the fully continuous non-monotonic case, a more
powerful technique might be needed; in this case, it seems that the calculus of variations

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 75

is perhaps the right tool. Given the difficulty of even the elementary problems presented
above, I have not attempted these cases. Furthermore it is not clear that they would be
of much practical utility.

One foreseeable objection to the work of this chapter is that the static, offline analysis of
energy costs has an implicit assumption of determinism in the cost model. The real energy
market is a complex stochastic system. A simple defence would be that price changes are
generally long-term, and are quite predictable at these timescales. However, an important
and widely predicted development in future power provisioning could weaken this defence
substantially: the proliferation of renewable energy. Renewable energy, like traditional
fossil fuel or nuclear power generation, provides little storage capacity and therefore tends
to be over-provisioned in times of low utilisation. (Although, in some cases, the drop in
supply conveniently mirrors the drop in demand, such as the low production of solar energy
at night.) However, many renewable sources also have the radically different characteristic
that their production varies over time in a way that cannot be controlled and can barely
be predicted; for example, a wind turbine can produce any amount of power from zero to
its maximum output, with variations in time, local geography, season and so on, and only
broad trends in this value can be identified [Renewable Energy Research Laboratory,
2009]. This would create significant problems for an offline approach if the goal is a
power billing infrastructure that more accurately captures the true cost of production.
If consumer cost tracked production cost then it too would vary over time according to
unpredictable environmental factors, even when aggregated across whole wind farms, solar
farms and suchlike. However, there are several considerations that mitigate this problem.
First, current power producers are eager to maintain the simplicity of relatively constant
power availability, and research is underway into how this might be done as the fraction of
power provided by renewables increases [Cavallo, 1995]. Likely candidates include large-
scale energy storage using compressed air, efficient long-distance transmission and load
balancing to increase the scale of aggregation, and backup from more traditional sources
to smooth out demand spikes. Second, computing presents an unusual use-case for the
power grid since it barely matters where the computation actually takes place. Rather
than moving power to the task, it would be far simpler to move the task to where the
cheapest power is. As discussed in Chapter 3, multi-nationals can perform this sort of
allocation in siting new data centres; but, in the future, far more rapid relocations of
individual tasks might be profitable, and much of the software infrastructure to achieve
this already exists [Clark et al., 2005, Zamfir et al., 2007]. If a more dynamic energy
market does come to pass by one means or another, it would most likely be better suited
to a dynamic power scheduler, but there is considerable pressure to maintain the present
straightforwardness for other reasons, and redistribution of computing could actually form
part of the smoothing that makes this possible.

In summary, then, this chapter has demonstrated that generalisation to energy cost is
economically useful in a broader context, analytically tractable in many cases, and can
produce markedly better solutions than are possible with simpler methods.

76 4.8. CONCLUSION

Chapter 5

Energy-efficient real-time streaming

5.1 Introduction

This chapter investigates another aspect of the energy efficiency problem: energy-efficient
streaming. Streaming is itself a multifaceted concept, and the term has related but subtly
different meanings in various fields. In this chapter, I define a streaming computation by
the following characteristics:

• The computation happens continuously, and need not necessarily terminate.

• New data and computational requests may arrive during the computation; unlike
the traditional Turing model, the input is not a static set provided on entry to the
program.

• The computation produces intermediate results for particular subproblems. In the
non-terminating case, this is of course the only method by which the computation
can produce results; again, this differs from the Turing model in which the compu-
tation is essentially useless if it does not terminate.

• Suitable measures of efficiency are subproblem throughput, latency, or some com-
bination of the two. This contrasts with the traditional efficiency metric of whole-
program execution time, which is not useful for non-terminating programs.

Figure 5.1 presents the comparison with Turing computation diagrammatically. The tra-
ditional model comprises three discrete parts: input, computation, and output. Streaming,
on the other hand, is a more continuous model, processing a stream (infinite in this case)
of new inputs and returning intermediate outputs. This should not be understood to
imply that streaming is fundamentally “outside” the Turing model—certainly the same
constraints of computability apply, and the Church-Turing thesis is not threatened—but
rather that streaming presents an alternative perspective that is more appropriate for
certain computational needs.

This is a broad definition of streaming, and encompasses several other concepts that are
sometimes called “streaming”, all of which are now common parts of the computing land-
scape. For example, streaming audio and video over a network or from permanent storage
is now a common task for desktops and portable devices; this can be seen as consuming a

77

78 5.1. INTRODUCTION

input

output

computation

input

output

input

output

input

output

computation

Streaming computation

Traditional Turing computation

Figure 5.1: Comparison of the traditional Turing model and streaming computation.

series of encoded frames and producing the decoded media stream for the appropriate de-
vice driver, with latency and throughput requirement imposed by the sampling frequency
and bit-rate of the media object. Examples may be finite (a movie) or essentially infinite
(online radio). In another sense of the term, streaming is fundamental to modern computer
graphics, where it occurs as a refinement of the Single-Instruction Multiple-Data (SIMD)
paradigm. Generating modern 3D graphics is essentially a stream of matrix operations,
implemented as a series of identical “kernel” functions applied across different geometrical
data; at regular intervals, this stream produces a complete display’s worth of graphical
output, which is then presented to the user. This has acquired particular practical signifi-
cance in the last few years with the ubiquity of GPUs able to perform SIMD calculations
in a highly parallel manner; at the time of writing, commodity GPUs may provide 1024
cores and performance rated at almost 2.5 teraflops.1 More recently, as the devices have
become more sophisticated, the industry has seen the ascent of general-purpose processing
on the GPU (GPGPU) [Wu and Liu, 2008]. GPGPU is intended to leverage the SIMD
architecture for a wider class of computational problems, such as simulations of fluid dy-
namics [Müller et al., 2003]. Now GPGPU has spawned its own languages, which have
acquired significant diversity and sophistication in themselves [Hwu et al., 2009, Stone
et al., 2010]. In fact, streaming-centric programming languages have a long history of their
own, in the form of dataflow programming, which is the ultimate origin of modern GPU
streaming [Wadge and Ashcroft, 1985, Smolka, 1995]. Evidently, stream processing in var-
ious forms is now a standard requirement of many devices, whether portable or otherwise
energy-constrained, and the latter category now includes almost any device anywhere.

1For example, the Nvidia GeForce GTX 590, http://www.geforce.com/Hardware/GPUs/

geforce-gtx-590/specifications

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 79

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

Time (seconds)

En
er

gy
 (j

ou
le

s)

Figure 5.2: Example set of operating points.

In many streaming computations, each unit of work has an associated deadline. For ex-
ample, each frame of a video stream must be decoded in time for its appearance on the
screen, so deadlines are defined by the frame rate of the video. In an energy-sensitive
context, such as a mobile device, this computation would ideally be performed so as to
minimise the energy per unit of computation while still meeting the deadlines. Existing
work typically studies this problem as a dynamic feedback loop, in which the system
monitors its own throughput and power consumption and scales performance up or down
according to energy and throughput goals, as described in Chapter 3. Certainly this is
the approach widely adopted in real systems. Although successful, this approach has two
limitations. Firstly, the system must track suitable performance metrics and make real-
time decisions, which incurs some energy and performance overhead. Secondly, and more
seriously, these systems operate on a “best effort” basis influenced by a complex series
of interactions with the environment and the dataset, so it is difficult to provide any
hard mathematical guarantees about their performance. This is particularly problematic
in a hard real-time context, in which deadlines must not be missed. In this chapter I
address these issues by giving an approach that has well-defined mathematical properties,
guarantees to find an energy-optimal schedule within the given constraints and, being
essentially static, incurs no runtime overhead. Throughout the development of this ap-
proach, I illustrate the importance of understanding the broader context of modern mobile
and streaming computation.

5.1.1 Definition of an operating point

The basic unit of work in a streaming task will be referred to here as a frame. Many factors
influence the speed of computation, and consequent energy per frame (EPF), for a given
frame and given workload, from hardware to algorithm design to implementation (see
Section 5.3). For the purposes of this chapter, it is enough to observe that this diversity
in time and energy exists and can be controlled by some means or another. To abstract
away the details of how this variety is provided, I introduce the concept of an operating

80 5.1. INTRODUCTION

point.

Definition: An operating point describes the following information for a given task and
a given platform on which that task is being streamed:

1. A description of a configuration of the hardware and software environment in which
a frame might be processed. This might include the state of each hardware com-
ponent (active, hibernating, depowered and so forth), referred to in Section 3.2 as
the performance state; any global decisions about the program that will process the
frame, such as what that program is and what its general parameters might be; and
any other global indicators for the system, such as whether it is receiving mains or
battery power. This part is considered opaque: the operating point is not expected
to provide a description of this environment in a structured way; it should be seen
only as a token that some such configuration exists.

2. A characterisation, in some fashion, of the energy and time required to process
a frame in that configuration. This part is transparent; the operating point must
provide some means to query what these values are, in whatever manner they are
described.

The nature of the energy and time characterisation depends on the purpose for which the
operating point is intended. At its simplest, an operating point can be regarded as a point
in energy–time space; Figure 5.2 shows an example set. The “time” component represents
the worst-case execution time for a frame, measured in wall clock time; the “energy”
component represents the average-case energy. The use of the worst case for time on the
one hand but average case for energy on the other is motivated by distinct purposes for
which these two values will be used: specifically, the need to bound the execution time
but optimise the energy. This illustrates the connection between the intended usage and
the description given. Note that one cannot say anything specific about the way in which
frames can be produced at those energy–time values, but only that there is in fact some
suitable configuration.

5.1.2 Assumptions regarding operating points

I make the following assumptions about the use of operating points:

• The operating point can only be changed between frames, not within them. This is
necessary because no assumptions are made about the source of variability in the
operating points or the application being run. For example, it is not possible in the
general case to change the number of threads of execution in the middle of a frame
without restarting the frame or incurring some other substantial penalty. Of course
other parameters might be variable within a given frame, such as clock frequency,
but this is lost in the abstraction.

• Frames are homogeneous; the execution time of all frames is bounded by the same
worst-case value or, in the probabilistic case, is drawn from the same distribution.
Any problem can be converted into this form by aggregating probabilities or worst-
cases, at the cost of losing some information.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 81

E
ne
rg
y

TimeDeadline

A
B

C

Figure 5.3: An example set of operating points and a per-frame deadline shown in energy–
time space.

• Transitions between operating points incur no energy or time penalties. Even if non-
zero, switching energy has little impact on the optimal choice of voltage [Swami-
nathan and Chakrabarty, 2001]. I assume that this result holds for other operating
point parameters.

• The set of operating points is finite. In particular, CPU voltage and frequency, if it
is variable at all, can only be sampled at finitely many values. For processors that
support only a fixed number of frequencies and voltages, this is unproblematic; in
practice many processors only support frequencies of the form f, f/2, f/3, . . . where
f is the maximum frequency. For processors that do support essentially arbitrary
values, the energy penalty for restricting consideration to a finite subset is negligible,
even for an ideal processor [Lee and Sakurai, 2000].

• If buffering of frame results is required at all, the energy overhead it incurs is negligi-
ble. As discussed below, this assumption can in fact be weakened without substantial
impact on the arguments presented below. However, for the purpose of simplication,
buffering will generally be neglected.

In later sections, I extend the manifestation of the “operating point” concept to include
more information, but the core energy–time characterisation is maintained. The assump-
tions regarding buffering and transition costs could be lifted at the expense of increased
analytical complexity, but this is not addressed here.

The assumption of frame homogeneity has the important consequence that there is no
particular reason to favour processing a later frame before an earlier one; in other words,
one can assume without loss of generality that frames are processed in the order in which
they arrive. This also alleviates any concerns about data dependencies between frames,
since no attempt to reorder them is made.

5.2 Problem statement

The objective of the work in this chapter is simple: to minimise the energy requirement of
streaming; in particular, to make the best possible use of the available operating points in

82 5.2. PROBLEM STATEMENT

order to minimise the EPF. Let OP be the set of operating points for a particular task.
The näıve approach to energy optimisation can then proceed straightforwardly: produce
the set OP? ⊆ OP of points with time component low enough to guarantee the required
throughput; then select from OP? the point with the lowest energy component. (Other
constraints, such as instantaneous power limitations, must be addressed by filtering the
operating points in advance.) Figure 5.3 shows a set of operating points in arbitrary units.
The grey points are discarded since they are too slow for the deadline shown. Of the
remaining points, B has the lowest energy, and therefore the system will process frames
at this operating point. However, this chapter explores a more flexible refinement that
may make better use of the available operating points. By interleaving frames of different
speeds such that the overall throughput still meets or exceeds requirements, it may be
possible to reduce the overall EPF for the average frame. Operating points that are slower
than the required deadline may be used provided they are interleaved with other, faster
operating points. Essentially, the operating points may be dithered to produce a better
overall result. Figure 5.3 illustrates that points A and C are sufficiently fast that their
average time would be to the left of the deadline, and their average energy is lower than the
energy of B. Therefore, by processing frames at operating points A and C alternately, the
throughput requirement can be respected even though C /∈ OP?, and the average energy
per frame can be reduced. My hypothesis is that opportunities for such optimisation occur
quite widely in practice.

This is not without its complications. For example, if frames must be held until their
deadline, they may require buffering, and the extra power for storage must be taken into
account; as above, this overhead is generally discarded here. In other cases, it may be
that there is no cost to producing some frames ahead of schedule provided the overall
throughput requirement is maintained. There is the additional concern that frames may
not arrive in time to be processed; respecting this constraint is trivial in the single-point
case but may become more involved in the generalisation to multiple operating points.
Fortunately, one can always arrange the period so that the slowest operating points occur
first. On the other hand, if this limitation is not present (for example, if all the frames
are available from the beginning), this decrease in energy may also produce a decrease
in start-up latency, since the fastest points can be placed at the start of the period. For
example, in Figure 5.3, the first frame could be processed at point A, and would thus be
available earlier than under the näıve solution using point B.

I now state the problem precisely, using the concept of operating points. Consider process-
ing an infinite stream of frames, each at a specified operating point. In the parlance of real-
time systems, this represents an infinite number of jobs from a single periodic task [Liu,
2000]. I wish to give a finite static description of the assigned operating points, so I consider
the mapping of frames to operating points to be periodic; in other words, the algorithm
will produce a list of operating points P1, . . . , PL such that frames 1, L+ 1, 2L+ 1, . . . are
executed at P1, frames 2, L + 2, 2L + 2, . . . are executed at P2 and so on. The aim is to
find P1, . . . , PL ∈ OP (not necessarily distinct) such that the average time required to
complete each frame is below some threshold and, subject to this constraint, the objective
is to minimise the average energy required per frame. The optimal sequence may require
several frames to be computed at the same operating point, and some available points may
be unused, requiring too much time or energy. Since the only concern at this optimisation
phase is the average time and energy over the period, the ordering of the operating points
is not important; a later stage can permute the order according to other constraints, as
discussed above. Therefore only the number of uses of each point is relevant.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 83

It might seem surprising in view of the developments of Chapter 4 that the focus of
optimisation here is raw energy, rather than energy cost. However, in a mobile context,
the two concerns are essentially equivalent. When a battery is the only source of energy, the
energy “cost” is fixed with respect to time. This is the degenerate case of the generalised
problem, which coincides exactly with the original cost-agnostic solution. The monetary
cost of the energy required to charge the battery of a mobile device is negligible compared
to, say, the cost of the device itself. Perhaps the cost model might be applicable in some
situations; for example, perhaps energy is more valuable when the remaining charge of
the battery is low, and indeed modern devices often include a more conservative power
mode for this eventuality. However, this is not considered here.

To state the problem precisely: let OP be the set of m points defined by

OP = {(t1, E1), . . . , (tm, Em)} (5.1)

with ti and Ei the time and energy of point i as previously described. Assume without
loss of generality that t1 ≤ . . . ≤ tm. For each i ∈ {1, . . . ,m}, let ni ∈ {0, 1, . . .} be the
number of frames executed at operating point i in each period, so that L =

∑m
i=1 ni is

the length of the period. Let T be the maximum permissible average time per frame, so
that 1/T is the minimum throughput over the period.

Let ΨT be the average time per frame, so

ΨT =
1

L

m∑
i=1

niti (5.2)

and ΨE the average energy per frame, so

ΨE =
1

L

m∑
i=1

niEi (5.3)

Now the problem can be stated as:

Given OP and T , find n1, . . . , nm such that ΨE is minimised and ΨT ≤ T .

5.3 Related work

The concept of a hard real-time system is assumed to be broadly familiar, and therefore
many of the technical details are omitted as tangential to the main argument. This chapter
generally adopts the terminology of Krishna and Shin’s Real-Time Systems [Krishna and
Shin, 1997]; each term is defined inline as it is introduced here.

The idea of operating point dithering is a generalised form of voltage dithering. In voltage
dithering, an arbitrary operating voltage is approximated on a processor with a finite num-
ber of available voltages by altering the voltage dynamically in a regular pattern. This can

84 5.3. RELATED WORK

accurately approximate arbitrary voltage scaling with as few as four fixed rails [Gutnik
and Chandrakasan, 1997]. Voltage dithering alone has been shown to reduce energy con-
sumption by up to 44% for certain applications [Putic et al., 2009]. My approach extends
this by allowing other sources of power and performance variability to be exploited.

As indicated above, there are many factors which influence the speed and power of compu-
tation. The basic dichotomy, as discussed at length in Chapter 4, is that faster computation
typically requires more dynamic power but, since the duration of computation is reduced,
expends less energy on static power. If voltage–frequency is the only variable considered,
dynamic power is approximately quadratic or cubic with respect to speed [Cho and Mel-
hem, 2008]. However, dynamic power is influenced by many other factors such as cache
sizes, depth of pipelining and instruction-level parallelism. Many modern architectures
support alteration of some of these parameters dynamically, through technologies like
dynamic voltage scaling, and one can thereby construct energy-efficient schedules [Govil
et al., 1995]. Other factors are also significant. Memory usage and access patterns can
make a substantial difference; for real-time media streaming, focusing on this alone has
been seen to reduce power by a factor of 3.6 for only a 5% performance sacrifice for modern
decoders such as MPEG-2 [Kulkarni et al., 1999]. For workloads that can be processed in
parallel, increasing the number of processors used may actually increase energy efficiency
by better amortising the static power [Li and Mart́ınez, 2005]. At the software level, differ-
ent algorithms for the same problem may have make different time-space trade-offs, which
has consequences for energy consumption in terms of execution time and energy expended
in the memory hierarchy. Within a given algorithm, different implementations may also
have radically different power characteristics, depending on which functional units within
the processor are used, which co-processing units are involved, or other external factors
such as memory access patterns. Furthermore, compilation techniques exist that trade ex-
ecutable size for execution time, or make more targeted trade-offs with energy efficiency,
as discussed in Section 2.5. Additional work in this area considers artificially extending
the ranges reported by live variable analysis (LVA), producing a negative impact on effi-
ciency of register allocation, but allowing slower (and more energy efficient) registers to be
used [Menon et al., 2003]. Clearly these software choices can be deferred until execution
itself if the implementer is willing to provide the relevant alternatives, such as multiple
implementations for a given problem. One can even imagine a dynamic despatch model
in which more or less energy-hungry code paths could be selected at runtime, although it
appears that no compiler supports this natively at present.

A great deal of existing work addresses the problems of measuring and simulating the
energy–time values needed for the simplest manifestation of an operating point [Monchiero
et al., 2006, Brooks et al., 2000, Muralimanohar et al., 2007]. There are also powerful
techniques for inferring large numbers of such values without direct simulation [Lee and
Brooks, 2006, Engin and McKee, 2006]. Consequently, the means to generate accurate
values for significant quantities of realistic operating points already exists. This chapter
explores ways in which this data can be put to good use.

Previous work has investigated best-effort systems for energy efficiency, which trade power
for performance according to specified power and throughput goals. These typically focus
on extracting trends from previous behaviour and extrapolating to future workloads [Govil
et al., 1995, Hong et al., 1999, Leung et al., 1999, Dubach et al., 2010]. This work shows
that significant gains are possible, and its ideas have been successfully deployed in prac-
tice. In some cases these systems can guarantee a hard deadline while still reducing en-

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 85

ergy by over 90% under realistic assumptions, although unlike the framework of this
chapter they usually do not support general-purpose workloads [Lee and Sakurai, 2000].
Qu and Potkonjak describe an algorithm that learns the relationship between power and
performance at run-time and scales accordingly [Qu and Potkonjak, 2000]. Their ap-
proach considers this space to be continuous, and is shown empirically to make significant
energy savings, although again its results cannot be described precisely. Swaminathan
and Chakrabarty describe a scheduling algorithm that guarantees hard deadlines and
minimises energy, and give an approximation algorithm fast enough to execute in real
time [Swaminathan and Chakrabarty, 2001]. However, their approach allows for only a
single processor with a choice of two frequencies and no other dynamic parameters. Gruian
explores a probabilistic description of execution times that does not require the assump-
tion of worst-case performance [Gruian, 2001]. This approach is similar to mine although
no bounds are proven and again the variability in performance is attributed exclusively
to DVFS. Energy savings of 40–80% for tasks are observed for some benchmarks with
uniformly distributed execution times.

As mentioned above, it is assumed that frames are processed in order. Frame reordering
can be a powerful technique if there is some variation between frames and some simple
means of differentiating them [Gruian and Kuchcinski, 2003]. For example, the MPEG
video standard defines three types of frame (I, B and P), each of which requires a different
technique to decode. By processing frames with more predictable execution times first,
more flexibility is created for scheduling of the more variable frames later. However these
techniques are not directly comparable to those demonstrated here.

More formal work includes Qiu and Pedram’s modelling of power scheduling, which they
consider as a continuous-time Markov decision process [Qiu and Pedram, 1999]. This
approach models devices with multiple power states and considers transition costs, so it is
suitable for practical use. Due to its firm mathematical footing, this approach consistently
outperforms heuristic approaches in energy efficiency and latency. Its primary limitation
is that solving the relevant Markov equations is rather computationally intensive and
therefore difficult to undertake in real time without specialised hardware support. Other
work has studied energy efficiency with provable properties by placing tight constraints
on the permitted workloads. For example, it may be necessary for the producer of the
stream to insert markers denoting the amount of work that the consumer will need to
undertake to process each frame [Chandrakasan et al., 1996]. This may be plausible in,
for example, an MPEG encoder or other compression frameworks. MPEG decoding in
particular has been extensively studied; for example, Choi et al. exploit domain-specific
nuances to produce energy savings of 80–90% [Choi et al., 2002]. In this case, assuming the
worst-case decoding time is wasteful because the inter-frame variability is high, so they
describe heuristics to improve decode-time prediction. They also exploit the distinction
between types of frame in the stream, which have very different decoding properties. The
techniques in this chapter are, in their current formulation, unable to take advantage of
such domain-specific features.

5.4 Algorithm description

Allowing arbitrary interleaving of operating points results in exponential growth of the
search space with respect to the number of available operating points. However, the sim-
ilarity of the problem to existing linear programming examples suggests that an efficient

86 5.4. ALGORITHM DESCRIPTION

dynamic programming algorithm can be found; in particular, there are strong echoes of
the integer knapsack problem [Garey and Johnson, 1979]. Indeed there is an analogous
algorithm for this problem, although there are significant subtleties.

The algorithm proceeds as follows. Assume the deadline T and all frame execution times
ti to be integers. (This assumption can be satisfied by suitable selection of measurement
unit.) Define et,L, for each t ∈ {0, . . . , T} and L ∈ {1, . . .}, to be the minimal total energy
across the period, with total time no greater than t, using exactly L frames. A recursive
definition follows. First, there is no combination of L frames with total time less than t1L,
so if t < t1L then let et,L =∞. Otherwise,

et,L = min

(
et−1,L , min

ti≤t
(Ei + et−ti,L−1)

)
(5.4)

In words, the minimal energy with time limit t and L frames is either:

• the minimal energy with time t− 1 and L frames, or

• the energy of one frame plus the minimal energy with the remaining time and L−1
frames.

The minimal EPF for a given L is then eLT,L/L. So the overall minimal EPF is

min
L≥1

(eLT,L
L

)
(5.5)

Algorithm 1: Dynamic programming algorithm to find minimal energy which meets
the throughput requirement.

Input: Operating points OP = {(t1, E1), . . . , (tm, Em)} with each ti ∈ N and
Ei ∈ R+, per-frame time limit T ∈ N and maximum period N ∈ N.

Output: The minimal EPF for OP within the given constraints.

1 εopt :=∞;
2 p := [∞, . . . ,∞]; /* NT elements */

3 for L = 1, . . . , N do
4 r := [∞, . . . ,∞]; /* NT elements */

5 foreach t ∈ {t1L, . . . , NT} do
6 r[t] := r[t− 1];
7 for i = 1, . . . ,m do
8 if ti ≤ t then
9 r[t] := min(r[t], Ei + p[t− ti]);

10 εopt := min(εopt, r[LT]/L);
11 p := r;

12 return εopt;

There is no obvious way to compute an upper bound on L; no matter how great the
value of L, it may be that some longer, more complex interleaving would produce further
savings. In practice such a bound is usually imposed by the need to buffer results in
a queue of finite size, or by some latency requirement from the consumer, so one can

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 87

reasonably require a parameter N , the upper limit on L, to be provided as an input to
the algorithm; in other words, apply the additional constraint that

m∑
i=1

ni ≤ N (5.6)

If the stream is in fact finite thenN could be set to its total length, although this is unlikely
to be practical. In cases where there is no apparent limit, the algorithm may be retried with
larger values of N until a satisfactory solution is reached. Section 5.5 analyses whether
this artificial limit has any noticeable effect on the quality of the solutions produced.

Furthermore, if one did wish to impose a penalty for long-period solutions, this could be
embedded into Equation 5.5; for example, by choosing a suitable constant c, one could
instead compute

min
L≥1

(eLT,L
L

+ cL
)

(5.7)

This might be used to represent the energy overhead of buffering, allowing the earlier
assumption of zero-overhead buffering to be discarded. It also imposes a natural upper
bound on L, since the search could be terminated once cL alone is larger than the best
solution found. The algorithms in this chapter could readily be modified to admit this
more general case, but for clarity these modifications will not be given explicitly.

This definition is exploited by the dynamic programming solution in Algorithm 1, which
iterates L from 1 to N , finding the optimal EPF in each case. The array r holds et,L for
all values of t and the current value of L, while p holds equivalent values for the previous
value of L, as required by Equation 5.5.

The time and space characteristics of the algorithm are straightforward to obtain. The
time complexity is obviously O(mN2T) from the structure of the nested loops. As with
the integer knapsack problem, this is linear time with respect to m and pseudo-polynomial
time with respect to N and T . The algorithm is pseudo-polynomial because, while it is
polynomial with respect to N , the size of N in the input is O(lgN), given the compact
natural representation of integers, and likewise for T . Therefore, more precisely, one should
say that the algorithm requires O(2t4nm) time where n and t are the number of bits in
N and T respectively, but for practical purposes this is rather misleading. The space
complexity is similarly simple to determine. The arrays r and p are initialised to size
NT , and all elements may be non-zero, precluding a sparse representation. The remaining
variables are of constant size, so the space requirement is simply O(NT). This is analogous
to the best exact result for the knapsack problem [Toth, 1980].

5.4.1 Dominated points

Given the numerous sources of variation that may generate operating points—such as
hardware settings, implementation settings, and battery characteristics—it is reasonable
to expect that m is quite large in practical cases. Therefore it is worth investigating some
general-purpose optimisations to this algorithm.

One valuable observation is that many of the points in a typical OP can never form part of
an optimal solution. These points can be eliminated cheaply before the main algorithm is
applied, thereby shrinking the effective value of m, and significant execution-time savings
may result.

88 5.4. ALGORITHM DESCRIPTION

undominated
dominated

Time

En
er
gy

Figure 5.4: Example set of operating points, showing dominated and undominated points,
arbitrary units.

Algorithm 2: Algorithm to find undominated operating points.

Input: Operating points OP = {(t1, E1), . . . , (tm, Em)} with t1 ≤ . . . ≤ tm.
Output: The subset of undominated points in OP .

1 r := {};
2 lowest := ∞;
3 for i = 1, . . . ,m do
4 if Ei ≤ lowest then
5 lowest := Ei;
6 r := r ∪ {(ti, Ei)};
7 return r;

To illustrate this idea, I describe one particular form of eliminable point, analogous to
“dominated points” in the integer knapsack problem [Zhu and Broughan, 1997]. I follow
that convention and call these points dominated. The redundancy of dominated points
can be seen by a simple “cut and paste” argument: assume point i requires more time
and more energy than point j. Then any solution that used point i would be faster and
require less energy if all uses of i were replaced by j. Therefore i cannot be part of the
optimal solution, so i is dominated and can be eliminated. Figure 5.4 shows an example
set of points divided in this way.

Undominated points can be identified in a single pass of OP taking O(m) time and O(1)
space; see Algorithm 2. In fact, this problem is well known to economists as it is analogous
to finding the Pareto frontier [Gibbons, 1992, p. 88]. In algorithmics this is known as the
skyline problem or the 2-dimensional vector maximum problem, and the correctness and
efficiency of Algorithm 2 is well-established [Kung et al., 1975]. This algorithm moves
forwards through the list of points, which (by earlier assumption) are sorted by their
time component, excluding any point requiring more energy than the lowest-energy point
occurring before it. Analysing the time and space complexity of this algorithm is simple,

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 89

but one might ask how many points it is likely to eliminate in a typical case. This question
appears not have been answered before; the solution can be estimated by considering
the action of the algorithm from an alternative perspective. One can imagine that the
algorithm finds the lowest energy values amongst those with time value less than a given
maximum, for successively increasing values of that maximum. As the maximum time
is increased and new energy lows are found, each of the lows can be seen as a “record-
breaker”. The expected number of record breakers in m attempts is known to grow with
the harmonic sum Hm [Havil, 2003, p. 125], given by

Hm =
m∑
i=1

1

i
(5.8)

and, surprisingly, this result is independent of the underlying distribution. This sum di-
verges extremely slowly as m goes to infinity, and can be approximated asymptotically
using the result that

lim
m→∞

Hm = γ + lnm (5.9)

where γ ≈ 0.57721 . . . is the Euler-Mascheroni constant [Havil, 2003, pp. 69–73]. So on
average the running time of the search is improved from O(TN2m) to O(TN2 lnm).
However, this result is subject to the assumptions that the operating point energies are
independent and identically-distributed; in reality neither of these assumptions is com-
pletely respected, but as an approximation this is promising. Section 5.5.4 evaluates this
assumption against real data.

Several other notions of dominance have been described for the integer knapsack problem,
each allowing certain points or combinations of points to be eliminated from considera-
tion; for example, collective dominance, threshold dominance, multiple dominance, and
modular dominance [Poirriez et al., 2009]. It is possible that they too have analogues in
the operating point problem. However these are complex properties, and identifying and
exploiting them in a concrete algorithm is rather involved; therefore this avenue is not
explored further in this chapter.

5.4.2 Downscaling

Two useful transformations can further reduce the effective values of the parameters.
First, all time values can be divided through by their greatest common denominator,
gcd({T, t1, . . . , tm}). This is equivalent to selecting the largest possible unit of time that
can represent all time values exactly. Assuming momentarily that the values are indepen-
dent and uniformly random, the probability that these m+ 1 values have a GCD greater
than 1, and therefore this optimisation actually reduces the time values, is given by the
following equation [Nymann, 1972].

Pr(GCD({X1, . . . , Xm}) > 1) = 1− 1

ζ(m+ 1)
(5.10)

where each Xi is a suitable discrete random variable and ζ is the Riemann zeta func-
tion [Apostol, 2010]. Unfortunately this tends rapidly to zero; see Figure 5.5. However,
the GCD can be computed in O(m ln t1) time in the worst case (assuming t1 to be the
smallest value involved), even using the simple Euclidean algorithm [Knuth, 1997]. This

90 5.5. EVALUATION

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m

1
- 1

/ζ
(m

+1
)

Figure 5.5: Probability that integer time values generated uniformly at random have a
common factor, as a function of m, the number of values.

is so inexpensive that my implementation performs it anyway, and for non-uniform values
this may well be productive.

Secondly, consider subtracting some constant k from all ti’s. Then

m∑
i=1

ni(ti − k) =

(
m∑
i=1

niti

)
− kL (5.11)

and consequently the constraint on ΨT can be rewritten as

1

L

m∑
i=1

ni(ti − k) ≤ T − k (5.12)

for any k. Therefore one is also free to subtract any constant from all time values. A
natural candidate is k = t1 since this is the smallest time value that appears.

Therefore, one can add or subtract any constant to the time values, and multiply or divide
(subject to maintaining the integer constraint) by another constant. In other words, these
two results in conjunction permit a linear transformation of the given times, which, by
reducing the effective value of T , can be exploited to save both time and space.

5.5 Evaluation

This section measures the performance of the schedules produced by the algorithm, and
the amount of work required to produce them. It also evaluates the success of the heuristics
described above.

5.5.1 Diminishing returns

First, let us investigate whether the artificial limit on L has a significant effect on the
quality of the solutions produced. Let ΨE[ν] be the energy of the best solution found

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 91

0 10 20 30 40
0.4

0.6

0.8

1

Average
Bad
Worst

ν

N
or

m
al

ise
d

so
lu

tio
n

qu
al

ity

Figure 5.6: qν for increasing values of ν, averaged over one hundred random examples.
Note that the vertical axis starts at 0.4.

with N = ν. Let M = miniEi be the smallest energy value of any point in OP , so the
theoretical limit for any solution would be ΨE = M , and of course in most cases this is
unattainable. Therefore, define the following quality metric:

qν =
ΨE[∞] −M
ΨE[ν] −M

(5.13)

By subtracting M from the achieved energy values, I consider only the fraction of avail-
able headroom that the solutions exploit, so this allows a measure of the success of the
algorithm somewhat independent from the limitations of the operating points provided.
Alternatively, one could see this as shifting the base line of the comparison from zero
energy (clearly impossible) to the minimum energy that could be achieved in the absence
of a deadline (maybe still impossible, but more reasonable). Note also that this expression
is undefined if ΨE[ν] = M ; since this occurs only when the theoretical limit is achieved,
take qν = 1 in this case.

The algorithm was tested with one hundred sets of random operating points. These points
were generated randomly in several ways. Fifty sets were generated by jittering BSOM
data (see Section 5.5.2); in other words, applying a small random offset to each point.
A further fifty were generated ab initio, with a normal or uniform distribution providing
each parameter value. The points were filtered to remove negative time and energy values,
and then further filtered to remove dominated points. Each set contained exactly thirty
points after filtering.

Figure 5.6 shows the behaviour of the quality metric for increasing values of ν. The
“average” curve shows the mean values of qν over these random sets. Evidently, the optimal
solution is usually found by ν = 20 and there is little penalty even for values as small
as ν = 10. The “bad” curve shows the mean minus one standard deviation, representing

92 5.5. EVALUATION

20 30 40 50 60 70 80
1000

1200

1400

1600

1800

2000

2200

2400

Time (ms)

En
er

gy
 (m

J)

Figure 5.7: Energy–time diagram for real BSOM operating points.

the quality of somewhat more difficult examples. These typically require larger limits
to achieve good solutions but even then ν = 20 is almost indistinguishable from the
optimal solution. Finally the “worst” curve shows the lowest values of qν observed over
all OP sets for each value of N . Evidently even the most difficult cases yield an almost
perfect solution for ν = 40. One can reasonably conclude that this artificial limit does not
significantly reduce the quality of the solutions found, and the N2 factor in the algorithm’s
time complexity can be kept under control.

5.5.2 Simulation

So far I have made a theoretical argument for my hypothesis that operating-point dither-
ing can make measurable savings, and in this section I proceed to test the hypothesis
against real data. This experiment was conducted on the energy and time values mea-
sured for execution of the data mining application BSOM [Li and Mart́ınez, 2005]. For this
application, energy–time values were readily available for a range of operating points, with
various voltage and frequency levels and up to sixteen processors. In total this made for
71 operating points, shown in Figure 5.7. BSOM is not intended as a streaming algorithm,
so successive runs of the algorithm can be interpreted as separate frames, guaranteeing
the independence axiom.

For comparison, I also simulated the performance of a greedy dynamic algorithm. This
algorithm selects the lowest-energy point among those which will complete before the
next deadline. This choice is repeated after each iteration, so slack time accumulated
from earlier fast frames can be used to choose slower but potentially more efficient points
in later iterations. The simulation was run for 10 000 iterations and the average energy per
frame recorded. This greedy dynamic algorithm is not a full reflection of a real dynamic

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 93

20 25 30 35 40 45 50 55 60 65 70
0%

1%

2%

3%

4%
Static
Greedy

T (ms)

En
er

gy
 re

du
ct

io
n

Figure 5.8: Comparison of the per-frame energy reduction achieved by my static algorithm
and a dynamic greedy algorithm.

algorithm, because part of the value of a dynamic algorithm comes from its ability to
respond to tasks completed in less than their worst-case execution time; my current model
assumes that tasks always take the full time, so the greedy algorithm is somewhat neutered
in this respect. (This limitation is lifted in Section 5.6.) Both algorithms are compared
with the näıve static algorithm, which simply selects the lowest-energy point that meets
the timing constraint at the beginning and persists with it, as described in Section 5.2.

Figure 5.8 shows the performance of the two algorithms normalised by the näıve solution.
I sweep the entire valid range of T values for the data in Figure 5.7 to avoid accidental
cherry-picking. The static algorithm uses N = 40 and, as shown above, this will find
an almost-perfect solution in almost every case, providing a tight lower bound for the
algorithm’s performance. The behaviour with respect to T is quite volatile as different
operating points become viable. However, the overall trend is clear: my algorithm out-
performs the greedy algorithm across the board, although the margin is quite variable,
reaching 2% and averaging around 0.3%. In some cases the two algorithms produce indis-
tinguishable results. It might appear disappointing that the peak energy saving is barely
4% and my approach is only marginally better than a greedy real-time algorithm. How-
ever, there are two counterpoints to consider. First, the behaviour of my static solutions
is better-defined than that of the real-time algorithm, which is not predictable without
simulation and can vary chaotically with small changes in T (as seen in the region around
T = 56 ms); therefore my solutions are in some sense preferable even if the energy saving
is no greater. Also, the baseline comparison is somewhat unfair to both algorithms be-
cause I have not normalised for M1; in other words, it may be that greater savings than
these few percent are simply impossible with the operating points available. This normal-
isation is applied in Figure 5.9. Evidently, the margin between the two algorithms grows
considerably; on average, my approach exploits over 10% more of the available headroom,

94 5.5. EVALUATION

20 25 30 35 40 45 50 55 60 65 70
0%

20%

40%

60%

80%

100%

Static
Greedy

T (ms)

N
or

m
al

ise
d

en
er

gy
 re

du
ct

io
n

Figure 5.9: Comparison of the per-frame energy reduction achieved, as a fraction of the
available maximum.

Optimisations Time (ms)
None 5520
+ Dominated-point removal 1390
+ Downscaling 758

Table 5.1: Average solution time.

with the differential reaching 56% in some cases. So while in real terms the savings may
only amount to an increase in battery life of 4% or less, this is largely a limitation of
the dynamic range permitted by the hardware and not the algorithm. To put it another
way, it is possible to get considerably closer to the optimal deadline-free energy, but in
absolute terms there is not, in this example, much room for improvement.

5.5.3 Heuristic improvements

Sections 5.4.1 and 5.4.2 proposed two heuristics that, while not affecting the result re-
turned, might improve the practical performance of the algorithm. Table 5.1 shows the
effect of these optimisations on the time taken for the algorithm to run on the BSOM
data, averaged over T = 30, 31, . . . , 50. The timings are taken from a rudimentary im-
plementation on a commodity desktop machine.2 Evidently both forms of optimisation
prove productive; the overall speedup is over 86%. With all optimisations, the average
time is less than a second, which is clearly tolerable for offline usage. Micro-optimised
implementations could undoubtedly push this considerably lower.

2The machine in question is a 2.40 GHz four-core Intel Core 2 Quad with 6 GB RAM running Ubuntu
10.04 (“Lucid Lynx”). The algorithm is implemented in single-threaded Java, although the Java Virtual
Machine itself may take advantage of additional cores internally.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 95

Point type Number of points
All points 71
Undominated points only 13
Hn 4.85 . . .
γ + lnn 4.84 . . .

Table 5.2: Point counts for BSOM data, and comparison to heuristic estimates.

5.5.4 Evaluation of domination

Table 5.2 shows the number of points in the real example alongside the estimated counts
given in Section 5.4.1. Evidently the approximation Hn ≈ γ+ lnn is already quite precise
for n = 71, but these are nevertheless significant underestimates for the true number
remaining after the removal of dominated points. This presumably reflects the fact that
the values are not, in reality, generated independently from an underlying probability
distribution, but rather bear an approximate correlation: slower points will, in general,
tend to require less energy. However as an asymptotic approximation the discrepancy is
tolerable.

5.6 Probabilistic generalisation

So far I have assumed the time values to be worst-case limits, and that therefore the
timing constraint can be guaranteed. In many situations, this is inadequate. For some
classes of streaming computation, the worst-case frame is significantly slower than the
average case, and therefore this would be a highly inefficient solution to the problem. In
other situations, there may be no finite worst case for particular frames, so no approach
to scheduling can guarantee a deadline, and these problems would simply be insoluble in
the framework presented thus far.

These problems can be handled by generalising the problem and extending the values
contained within the operating point. In particular, a probabilistic approach can provide
a much richer description that encompasses the sort of problems described above.

5.6.1 Probabilistic model

Here I attempt to give the simplest possible probabilistic model, in order to generalise
the earlier deterministic model with as few extra assumptions as possible.

First, since it must now be possible for deadlines to be missed (in order to support frames of
unbounded size), this requires a more general metric for “quality of service” than a simple
guarantee to meet all deadlines. This section adopts the parameter p which is simply a
limit on the probability that any given frame misses its deadline. More complex models
could certainly be given; for example, modelling the amount by which the deadline is
missed, how many deadlines can be missed in any given period of time, and so on; however,
even the simplest probabilistic model provides numerous challenges. I do not relinquish
the requirement that all frames must eventually be completed, so this analysis does not
consider when or how frames might be dropped. The operating point is also extended
probabilistically, as the worst-case time is replaced with a probability distribution over

96 5.6. PROBABILISTIC GENERALISATION

possible execution times; I do not require that there be any maximum value to this pdf.
In pursuit of simplicity, I assume that a given operating point requires the same power
throughout its execution; therefore, the operating point no longer provides an energy value
but a power constant, denoting the instantaneous power of computing at that point. In
other words, the energy consumed is assumed to be proportional to time spent, with the
constant of proportionality being the power value.

The formal representations of average frame and energy must also be redefined. To this
end, let Ti be the random variable denoting the execution time of the ith frame in the
period, and let Pi be the power constant of this frame. The time per frame is a random
variable defined by the following linear combination:

ΨT =
m∑
i=1

1

L
Ti (5.14)

and likewise the energy per frame is

ΨE =
m∑
i=1

Pi
L
Ti (5.15)

As before, let ni denote the number of frames in each period executed at operating point
i. Finally, the formal probabilistic problem statement can be given.

Given OP , T and p, find n1, . . . , nm such that E(ΨE) is minimised and the following
timing constraint is met:

Pr(ΨT > T) ≤ p (5.16)

5.6.2 Suitability for practical soft real-time problems

Since deadlines may now be missed, this model can capture so-called soft real-time prob-
lems, in addition to the earlier hard real-time problems. In soft real-time, the system is not
required to absolutely guarantee each deadline. In fact many real-time problems must be
prepared to miss frame deadlines no matter their internal schedule, due to external effects;
consider, for example, streaming video over a network with congestion and packet loss, in
which the input may not even arrive before the deadline [Kumar and Srivastava, 2001].
This section considers how accurately the description given here can actually capture a
practical soft real-time problem such as MP3 decoding.

MP3 frames require a variable amount of work to decode, and this can be described
by a probability distribution, which fits the model neatly, although the distribution is
not a convenient parametric one. Deadlines occur at regular intervals, governed by the
frequency of the sampling (typically 44.1kHz), although frames themselves are not of a
fixed size and may contain a variable number of samples. The model of deadline misses
given here is, however, less well-suited to audio decoding. If a frame is not decoded in

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 97

time, a streaming decoder will typically drop the frame completely, since the impact
is usually not audible. (Note that the MP3 standard actually requires decoders to be
bitstream compliant, meaning that they must produce the same decoding as the reference
implementation, so for MP3 processing and transcoding this will not occur; but this is
not typically observed by real-time decoders with direct output to the human listener.)

There is a further problem: a simple overall probability is probably not adequate to
describe the sort of performance that the decoder must provide. For a human listener,
there is clearly a marked difference between a decoder that drops every tenth frame
of a song and a decoder that drops the last tenth of the song! In other words, proximity
matters; a flat probability is too simple to describe the psychoacoustic properties that MP3
is designed to exploit. However, this is somewhat ameliorated by the periodic nature of
the schedules generated here; as described in Section 5.2, operating points can rearranged
within each period, so could be permuted post hoc to minimise the audible impact of the
variability, if this were felt to be a problem at all.

Despite these limitations, the simple model described can provide a reasonable overall
approximation to the real problem. Similar arguments can be made for other common
examples such as video decoding or graphics processing.

5.6.3 Assumption of normality

For the purpose of this section, I make the strong assumption that the distribution of
the frame execution times is normal. Of course, this is unlikely to be true in many real
examples. However, there are two important points in defence of the normal distribution.

The first is that it greatly simplifies the algebra shown, while the techniques themselves
could equally be applied to any distribution, parametric or non-parametric (at the cost of
increased complexity of logic and implementation). The particularly convenient property
of the normal distribution is that the sum of two normal distributions is itself normal; to
be precise, given independent random variables X and Y with X ∼ Normal(µX , σ

2
X) and

Y ∼ Normal(µY , σ
2
Y), the distribution of their sum is simply

X + Y ∼ Normal(µX + µY , σ
2
X + σ2

Y) (5.17)

The second point in favour of the normal distribution is more profound. In practice, one
might wish to avoid changing operating point after every frame; for example, perhaps the
assumption that the operating point transition latencies and energy penalties are effec-
tively zero is too strong. One way to address this problem within the current framework is
to aggregate several frames into one large “meta-frame”, and schedule each of these meta-
frames as if they were single frames. Then, by the Central Limit Theorem, the execution
time and energy of the meta-frames is normally distributed no matter the distribution
of the underlying frames [Lampert, 1966, pp. 66–67]. Of course this is contingent on ag-
gregating a reasonably large number of frames into each meta-frame. To be precise, let
µ and σ2 be the mean and variance of the frame time distribution; these values must be
finite. Let X1, . . . , XL be random variables denoting the execution time of each frame in
the L-frame period, so they are all mutually independent by earlier assumption. Then, by
the Central Limit Theorem,

1√
L

(
1

L

L∑
i=1

Xi − µ

)
d→ Normal(0, σ2) (5.18)

98 5.6. PROBABILISTIC GENERALISATION

for sufficiently large L, where
d→ denotes convergence in distribution. Therefore the ran-

dom variable denoting the meta-frame execution time is

L∑
i=1

Xi
d→ Normal(Lµ,L3σ2) (5.19)

and an analogous expression can be given for energy. In fact, under the Lyapunov formula-
tion of the Central Limit Theorem, an analogous convergence holds even if the frames are
not drawn from the same distribution and have distinct means and variances [Lampert,
1966, p. 69]. This would be the case in, for example, the MPEG scheduler described in
Section 5.3. However, this result is subject to certain additional conditions and therefore
is not explored further here.

5.6.4 Probabilistic manifestation

This section now proceeds under the assumption of normality. The operating point may
then be reified as follows: an operating point is a tuple (µi, σi, Pi), where a frame at that
operating point requires execution time with the distribution Normal(µi, σ

2
i) and energy

proportional to its execution time, with the constant of proportionality Pi.

Therefore, the probabilistic operating point set is OP = {(µ1, σ1, P1), . . . , (µm, σm, Pm)}.
If the jth point in the period is executed at operating point i, one can simply state that

Tj ∼ Normal(µi, σ
2
i) (5.20)

There are two further standard properties of expectation and variance that are of relevance
here [Whittle, 2000, p. 15]. For any constant a,

E(aX) = aE(X) (5.21)

and [Whittle, 2000, p. 22]
Var(aX) = a2Var(X) (5.22)

The equations of Section 5.6.1 may now be concretised as follows. The average time per
frame is

ΨT ∼ Normal

(
1

L

m∑
i=1

niµi,
1

L2

m∑
i=1

niσ
2
i

)
(5.23)

The energy per frame is simply the time scaled by the relevant Pi, so the average energy
per frame is

ΨE ∼ Normal

(
1

L

m∑
i=1

niPiµi,
1

L2

m∑
i=1

niP
2
i σ

2
i

)
(5.24)

5.6.5 Probabilistic algorithm

One might naturally look to extend Algorithm 1 to handle the probabilistic case. However,
the interplay of mean and standard deviation is less amenable to a dynamic programming
solution; it appears hard to decide locally whether a point with lower variance and higher

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 99

Algorithm 3: Brute-force algorithm to find frequencies which minimise expected
energy and meet the probabilistic timing constraint.

Input: Operating points OP = {(µ1, σ1, E1), . . . , (µm, σm, Em)}, frame time limit
T , miss tolerance p and maximum period N .

Output: The minimal energy per frame which satisfies the time limit subject to
the given miss tolerance.

1 function minEnergyProb(i, λ, τmean, τvar, ε)
2 if λ > 0 and (Tλ− τmean)/

√
τvar > Φ−1(1− p) and ε/λ < εopt then

3 εopt := ε/λ;
4 if i ≤ m then
5 foreach ni ∈ {0, . . . , N − λ} do
6 λ′ := λ+ ni;
7 τ ′mean := τmean + niµi;
8 τ ′var := τvar + niσ

2
i ;

9 ε′ := ε+ niµiPi;
10 minEnergyProb(i+ 1,λ′, τ ′mean, τ ′var, ε

′);

11 εopt :=∞;
12 minEnergyProb(1, 0, 0, 0, 0);
13 return εopt;

mean is globally preferable to one with higher variance and lower mean. Without discount-
ing the possibility of a dynamic solution, I turn to a simple exhaustive search, presented in
Algorithm 3: a basic depth-first search on frame counts. The arguments to the recursion
are:

• i, the index of the next frame to be considered. I assume frames are indexed from 1
to m.

• λ, the total number of frames accumulated so far, in other words

λ =
i−1∑
j=1

nj (5.25)

The constraint of Equation 5.6 is enforced by the loop limits of line 5.

• τmean and τvar, the partial sums for the mean and variance of the time distribution so
far, analogous to Equation 5.25. Therefore, at the bottom of the recursion, τmean/λ
and τvar/λ are the mean and variance respectively of ΨT .

• ε, the sum of the expected energies so far. Hence ε/λ is the partial sum for the
expectation of ΨE.

The recursion then explores all possible assignments of ni values, subject to Equation 5.6.
Line 11 initialises the mutable global variable εopt, which holds the lowest average energy
seen so far and ultimately the solution to the problem; the values of ni required to produce
εopt are readily available from the recursion so these can also be returned by a practical
implementation. Finally, line 12 invokes the base case of the recursion with the obvious
values and line 13 returns the algorithm’s output.

100 5.6. PROBABILISTIC GENERALISATION

One non-trivial component of the algorithm presented is the condition

(Tλ− τmean)/
√
τvar > Φ−1(1− p) (5.26)

on line 2. This is an alternative formulation of Equation 5.16, where Φ is the standard
normal cumulative distribution function (cdf).

Proof. Let Z be a random variable with standard normal distribution. The probabilistic
time constraint is

Pr(ΨT > T) ≤ p

so, reversing the signs,
Pr(ΨT < T) ≥ 1− p

and substituting the parametrised normal for a standard normal gives

Pr

(
Z <

T − τmean/λ√
τvar/λ

)
≥ 1− p

Then multiply the inner expression through by λ and introduce Φ to give

Φ

(
Tλ− τmean√

τvar

)
≥ 1− p

Finally, using the monotonicity of Φ, this can be inverted to give Equation 5.26 as required.

The advantage of this formulation is that Φ−1(1 − p), which is relatively expensive to
calculate, is independent of any recursive variables, so can be computed and stored during
initialisation.

One can also apply some simple branch-and-bound heuristics to the search but for the
sake of simplicity these are not shown.

5.6.6 Generalised domination

The dominated point heuristic from Section 5.4.1 can be transferred to the probabilistic
case, although because the problem is more complex the optimisation is weaker. In order
for the earlier cut-and-paste argument to apply, it is necessary to show that a point Y can
be replaced in any context with another point X with the resulting schedule being at least
as likely to make any deadline, and using less (or equal) energy on average. Let X and Y
be the probabilistic operating points (µX , σX , PX) and (µX , σX , PX) respectively. Then let
TX and TY be the time distributions for X and Y respectively, so that TX ∼ N(µX , σ

2
X)

and TY ∼ N(µY , σ
2
Y). Then a sufficient condition for X to dominate Y is for the following

equations to hold:
µX ≤ µY (5.27)

and
σX ≤ σY (5.28)

and
µXPX ≤ µY PY (5.29)

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 101

Proof. By Equation 5.27, for any t,

t− µX ≥ t− µY (5.30)

Dividing through by σX (since σX > 0) and using Equation 5.28, gives

t− µX
σX

≥ t− µY
σX

≥ t− µY
σY

(5.31)

Now take the left and right side of this inequality and substitute the expressions into the
cdf for a standard normal Z, using the monotonicity of Φ, to give

Φ

(
t− µX
σX

)
≥ Φ

(
t− µY
σY

)
(5.32)

Expanding the definition of Φ gives

Pr

(
Z <

t− µX
σX

)
≥ Pr

(
Z <

t− µY
σY

)
(5.33)

and so, rearranging,

Pr(ZσX + µX < t) ≥ Pr(ZσY + µY < t) (5.34)

Now (ZσX + µX) is an identical distribution to TX and likewise for TY , so

Pr(TX < t) ≥ Pr(TY < t) (5.35)

and this establishes the condition for maintaining the deadline probability.

The reduction in expected energy follows directly from Equation 5.29. Let EX and EY be
random variables denoting the energy of executing a frame at point X and Y respectively;
then

E(EX) = µXPx ≤ µY Py = E(EY) (5.36)

Hence X is at least as likely to make any deadline, and has lower or equal expected energy
consumption.

Detection of dominated points is now the 3-dimensional vector maximum problem, over
the 3-tuples (µX , σX , µXPx), and this can be solved in O(n lg n) time [Kung et al., 1975].
For simplicity, my implementation uses the näıve quadratic-time algorithm, an exhaustive
comparison of every pair of points for domination, since this phase of the algorithm
requires so little time compared to the exhaustive search; Amdahl’s Law clearly mitigates
against much optimisation in this area [Amdahl, 1967].

5.6.7 Probabilistic evaluation

Once again I measure the performance of the dithering algorithm against a näıve static
algorithm and a greedy dynamic algorithm. The principles of the compared algorithms
are analogous to those in Section 5.5; both select the lowest-energy point from those
with Pr(time > T) < p. For the greedy algorithm, I again simulate 10 000 iterations
and allow slack time to accumulate, so that the deadline may extend or contract with

102 5.6. PROBABILISTIC GENERALISATION

T 2T 3T 4T0

Time

1 2 3 4A
Fixed-risk

frame selection

1 2 3 4BNet-risk
frame selection

Figure 5.10: Diagram showing the variable deadline encountered by the dynamic frame
scheduling algorithm.

successive iterations. One complication is that, if the algorithm takes too many risks or
encounters a run of unexpectedly long frames, there may be no operating points fast
enough to meet the next deadline, leaving the algorithm to select from an empty set.
Since the normal distribution has infinite support, no schedule can ever eliminate this
possibility completely. I consider this the “panic case”, and respond by selecting the point
with minimal Pr(time > T) regardless of its energy demands.

There is one important complication to consider, which can be described as follows. After
a series of fast frames, the dynamic algorithm may accumulate enough slack to move to
a slower operating point, so in effect the value of T may vary from iteration to iteration.
However, the effective value of p does not vary; even if the algorithm meets a large number
of deadlines in a row, the next frame selected must have a probability of missing the
deadline less than p, even though overall the algorithm could be much less cautious.
Consequently, the dynamic algorithm chooses conservatively at each iteration, and the
largest admissible value of Pr(time > T) amongst the available operating points may
still be markedly smaller than p, leading to substantial inefficiency. Experimentally, the
algorithm can be seen to miss deadlines at frequencies between 0.5p and 0.01p; in other
words, the algorithm was missing the deadline between 1% and 50% of the maximum
permissible frequency, and therefore presumably working rather harder than necessary.
By contrast, the static algorithm can routinely achieve 0.98p. In an attempt to combat
this, I consider an alteration which allows more risks to be taken if past performance has
been more than adequate (and vice versa). Let I be the total number of iterations so far,
and let D be the number of deadline misses. Then replace the selection constraint with
the requirement that

Pr(time > T) +D

I + 1
≤ p (5.37)

In other words, the expected number of errors after this iteration, including all previous
errors, must not exceed the threshold fraction. Figure 5.10 illustrates the contrast with a
low deadline threshold such as p = 0.8. The darker boxes 1, 2, and 3 show the execution
times of past frames, each of which has met its deadline. The two algorithms differ in
their selection of a suitable operating point for the fourth frame. The fixed-risk approach
(top) requires an average time like that of box 4A, since the fourth frame must meet
its deadline with at least 80% probability. However, the net-risk approach (bottom) can

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 103

22 32 42 52 62 72
-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Static
Greedy

T (ms)

En
er

gy
 re

du
ct

io
n

Figure 5.11: Comparison of the energy reduction achieved by my static algorithm and a
dynamic greedy algorithm for normally distributed execution times.

tolerate a longer average time like that of box 4B. This frame may then meet its individual
deadline with less than 80% probability, but since the previous three frames already met
their deadlines, the algorithm still respects the overall 80% success rate. If 4B has a lower
expected energy, as it typically will, this is the superior choice; if not, the algorithm is
still free to select 4A.

In practice, this refinement was found to be largely unsuccessful. It seems that the algo-
rithm constantly pushes the threshold of maximum risk, and thereby triggers the panic
case far more often. The energy penalty for panicking usually exceeds the gains from ex-
ploiting the extra risk by a considerable margin. Nevertheless, to give my algorithm the
most stringent test, both versions of the greedy algorithm were run for every case, and
the canonical value taken to be the lower energy of the two.

To provide suitable test data, I again made use of the BSOM data to provide the µi
and implied Pi values, as shown in Figure 5.7. Unfortunately the published data did not
include any way to estimate σ2

i values. Since it is not possible to know the sort of σi values
that might be seen in practice, I instead provide several result sets with ersatz standard
deviations generated in different ways:

• In result set A, all σi values are set to the same constant value.

• In result set B, each σi is given as a fixed fraction of the relevant µi.

• In result set C, each σi is given a value selected uniformly at random from a chosen
range.

These result sets are intended to span a reasonable range of possibilities for the actual
characteristics of σi, which are unknown.

As an example, set each σi to a nominal value of 1, and take p = 0.1. Figure 5.11 shows
the comparison behaviour of the two algorithms for a range of T values. Some of these
percentages are now negative, indicating that the näıve approach actually does better in
some cases than the dynamic one. The average distance between the greedy and static
approaches is now 1.4%, with the static approach reaching 4.7% improvement in some
cases.

104 5.6. PROBABILISTIC GENERALISATION

Set p σi Astatic Adynamic Bstatic Bdynamic DiffA DiffB

A

0.001 1.0 2.0% 0.7% 45.6% 6.8% 1.3% 38.8%
0.01 1.0 1.8% 0.4% 43.8% 4.7% 1.4% 39.2%
0.1 1.0 1.6% 0.1% 41.4% 1.3% 1.4% 40.2%

0.001 0.1 1.2% -0.3% 37.7% -3.3% 1.5% 41.0%
0.01 0.1 1.1% -0.4% 37.6% -3.5% 1.5% 41.1%
0.1 0.1 1.1% -0.4% 37.5% -3.7% 1.5% 41.2%

B

0.001 µi/10 4.0% 4.0% 59.9% 54.4% 0.1% 5.5%
0.01 µi/10 3.4% 3.2% 55.8% 48.1% 0.2% 7.6%
0.1 µi/10 1.2% 0.9% 38.6% 27.7% 0.3% 10.9%

0.001 µi/100 1.4% 1.1% 40.1% 29.5% 0.3% 10.5%
0.01 µi/100 1.3% 1.0% 38.8% 28.0% 0.3% 10.8%
0.1 µi/100 1.2% 0.9% 38.6% 27.7% 0.3% 10.9%

C
0.001 U(0.1, 1) 1.8% -14.5% 42.1% -562.1% 16.3% 604.2%
0.01 U(0.1, 1) 1.5% -9.4% 41.2% -338.8% 10.9% 380.0%
0.1 U(0.1, 1) 1.3% -0.8% 39.9% -35.4% 2.2% 75.3%

Table 5.3: Power reductions measured for the BSOM benchmark. For meaning of column
headings, see text.

Table 5.3 shows results for other values of p and various methods of generating σi. I
define Astatic and Adynamic to be the percentage energy reduction of the static and dynamic
algorithms respectively compared to the näıve algorithm. These numbers tend to be small
because there is a certain minimum energy that no schedule can go below, determined by
mini(µiPi), and the amount of optimisation headroom between this value and the näıve
algorithm’s energy value may be small. Therefore I also define Bstatic and Bdynamic by
subtracting out this minimum value from the ratio, normalising for the dynamic range of
the available operating points; in other words,

Bstatic =
näıve energy - static algorithm energy

näıve energy −mini(µiPi)
(5.38)

and Bdynamic likewise. All quantities can be negative if the näıve algorithm performs
better. The columns DiffA and DiffB show the average distance between the performance
of the two algorithms, unnormalised and normalised respectively, over the full range of
T . I experiment with a range of σi values; some constant, some scaled according to the
mean time, and some generated uniformly at random over the specified range. Evidently
the dynamic algorithm performs markedly better for all choices of parameter, although
the margin of average differential varies over two orders of magnitude.

5.6.8 Probabilistic summary

As shown in Table 5.3, my static algorithm can outperform the example dynamic al-
gorithm in the presence of runtime volatility; this is largely attributable to the better
handling of risk that can be achieved by taking a long-term view. The static algorithm
typically finds a solution with an error rate only fractionally below the allowable maxi-
mum, while the dynamic algorithm tends to oscillate with the short-term fluctuations of
statistical chance.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 105

Time

E
ne

rg
y

Simple operating point

Probabilistic operating point

Figure 5.12: Two different forms of operating point energy–time description, represented
graphically.

Interestingly, there is a significant disparity in the variety of normalised differentials (the
DiffB column) between result sets; in set A, the differential is around 40% irrespective
of p and σi; for set B, both p and σi affect the norm but by a factor of less than two;
for set C, the results vary by a factor of more than eight. This suggests that it is more
important to characterise the general manner in which σi is related to the other variables
of the operating point than to discover the exact values. This presents a direction for
future work.

5.7 Conclusion

The first major contribution of this chapter is the introduction of the operating point, a
concept that abstracts away the complex web of interactions between hardware, software,
and computational energy, and replaces it with a clean interface to the relevant data for
a stream scheduler. A concrete operating point can take different forms depending on
the demands placed upon it; this chapter has explored two particular cases. The first
is perhaps the simplest possible manifestation: an expected energy consumption and a
worst-case execution time. The second is, analogously, probably the simplest possible
characterisation for the probabilistic case: the parameters of a normal distribution over
execution time, and a power constant. Both cases can be seen as describing certain points
in the energy–time diagram; Figure 5.12 generalises Figure 5.3 to illustrate the point.
The first case is simply a point in energy–time space, and states only that the actual
time will occur somewhere to the left of the dashed line; it says little about what the
energy might be, except that it has a given mean. In the particular reification chosen
for the probabilistic case, an operating point describes a line through energy–time space,
passing through the origin, and with the gradient implied by the power constant; any
given execution occurs somewhere on this line, with probability determined by the mean
and standard deviation of the underlying normal. These are just two of the many forms
that an operating point could take on.

Another key concept in this chapter is that operating points may be dithered to produce

106 5.7. CONCLUSION

more favourable energy outcomes than any individual operating point can offer. Just as the
operating point generalises configuration variables such as the operating voltage, operating
point dithering generalises and subsumes techniques such as voltage dithering. In both the
deterministic and probabilistic cases, the empirical evidence of this chapter suggests that
this approach does actually provide such energy reductions on real data; furthermore, it
shows that a static algorithm can often get much closer to the ideal deadline-free case
than a dynamic approach with the same information, and with less chaotic behaviour
with respect to the deadline.

In terms of the algorithmic mechanism for calculating these dithered operating point
schedules, there are some important differences between the two forms of operating point
considered here. The deterministic case is shown to have a deep connection to the famed
“integer knapsack problem”, one of Karp’s canonical examples of NP-completeness [Karp,
1972]. This leads naturally to an efficient dynamic programming solution, and suggests
several heuristics that might be translated to the problem at hand; this translation was
actually performed for single-point domination. The introduction of N , an artificial limit
on the length of the period in the frame cycle, presents a technical blemish, but the results
here show that it is not a significant problem in practice. Aside from this minor defect,
the problem can solved cleanly and efficiently. The probabilistic case, even in the greatly
simplified presentation given here, proves much more difficult to solve, and I have not
been able to devise a better method than basic branch-and-bound exhaustive search. Fur-
thermore, the heuristic mechanisms for the deterministic case allow examples with large
numbers of operating points to be solved; this is important for realistic examples, which
may have many axes along which operating points can be generated. In the probabilistic
case, this is simply impossible with the implementation presented, since the exponential
time requirement of the algorithm is overwhelming even in an offline context. A key chal-
lenge for future work will be developing algorithms to handle these problems, perhaps in
the direction of bounded-error polynomial-time approximation. It would also be partic-
ularly desirable to handle general (even non-parametric) probability distributions, since
the requirement for normally-distributed execution times is, despite its advantages, rather
limiting.

This chapter opened with a definition of streaming computation that I believe embraces
most of the current informal uses of the term, and continued by developing methods to
improve energy efficiency for computations within this definition. This chapter therefore
sits in opposition to the previous: streaming is, perhaps, the opposite facet of the energy
problem to the long-running computations considered in Chapter 4. The contrasts are
many. Stream computations are generally at fine granularity, as each unit of work is
typically small, while the computation as a whole may be infinite; the previous chapter,
by contrast, focused on large, long-running tasks and finite computation. Furthermore,
as formulated here, streaming computation may include a probabilistic element, since
new tasks arrive in real time and the size of the workload they require is governed by a
probability distribution. The previous chapter, on the other hand, focused exclusively on
the deterministic case: workloads with a fixed size known from the beginning. The two
forms of computation are also encountered at different stages of the same service; compare,
for example, Google’s PageRank computation (essentially a huge, long-running matrix
multiplication) with the fast Web-driven search queries that are executed against the
PageRank data in a streaming fashion [Page et al., 1999]. The two chapters consequently
provide a neat bracketing of the energy efficiency spectrum, again illustrating the value
of considering the “energy problem” in the broadest possible context.

Chapter 6

Conclusions

Our understanding of the totality of the energy problem is still in its infancy. This thesis
has taken an overview of the practical situation and, on the other hand, produced concrete
contributions in specific cases by largely mathematical means. In this final chapter, I
synthesise the work of individual chapters into a single concluding argument, and show
how the thesis leads naturally to certain areas of future work.

6.1 Concluding argument

This thesis has argued that energy efficiency is a diverse problem and that it is necessary
to understand the whole picture in order to make progress in specific areas, especially if
we seek a unified “theory of energy”. In this section I draw together the arguments of
previous chapters to show how, taken together, they demonstrate the central thesis.

Chapter 3, in presenting arguments for and routes towards energy-aware computing,
demonstrated the pressing nature of energy awareness in modern computing, and identi-
fied the swelling consumption of energy by servers as particularly problematic. Provision
of adequate power resources to a modern data centre was shown to be a significant lo-
gistical challenge, as was the compounding cost of cooling and other site infrastructure.
This established that practical energy-efficiency measures must be taken. This view from
industry then motivates the work of Chapter 4, which developed digital voltage–frequency
scaling (DVFS) techniques for long-running computations as might be undertaken in a
data centre. Following the observation that server management is primarily motivated
by economic and not ecological concerns, I proposed the novel idea of energy cost opti-
misation as a generalisation of traditional energy optimisation, and described a suitable
mathematical framework. I further showed that the structure of the electrical grid—in
particular, its lack of storage capacity—leads to the surprising result that using more
total energy may be “greener” as well as more financially sound, and that the energy
cost model can capture this important consideration. I established that the earlier cost-
agnostic results, such as the DVFS “energy-efficient frequency”, arise as special cases in
this framework. I also derived formal results for particular cost functions, and developed
some general techniques for solving other classes of cost function analytically. Further, this
chapter measured the efficiency gains of these analytic solutions against simpler heuristic
approaches for some realistic parameter sets; this is important because past work, while

107

108 6.1. CONCLUDING ARGUMENT

demonstrating its mathematical utility, has often stopped short of providing precise num-
bers by which to compare it to existing approaches. However, the chapter also recognised
the limitations of analytic solutions, and described situations in which only a numerical
method is reasonable. Overall I determined that this approach has the potential to be
deployed successfully in practice.

To return to an earlier point in the argument, Chapter 3 also characterised the sort of
constraints that a practical energy efficiency methodology must respect, with regards to
performance and responsiveness, and outlined the current mechanisms by which these
may be executed (such as ACPI). In particular, it described the tickless kernel project,
which exemplifies the central thesis: a broad understanding of the problem (kernel non-
quiescence) driving concrete, specific improvements (new kernel APIs and an array of
kernel- and user-space improvements). The end-user sees a substantial improvement in
battery life for only a fractional drop in performance. I concluded that opportunities
for improvements of this form will become more commonplace as the subtlety of the
underlying hardware characteristics increases, and often can only be seen by consideration
of the full system stack.

To illustrate the generality of the central argument, Chapter 5 concerned a complemen-
tary area of the energy efficiency problem: streaming, particularly on a mobile device.
The contrast was illustrated by comparing the continuous, infinite-streaming model of
computation used in this chapter with the traditional discrete-workload problem of the
previous. Motivated by the wider view of mobile platforms as hugely diverse in terms
of hardware, operating system, network capabilities and so forth, I then defined and de-
fended the concept of an operating point, an abstraction of hardware configuration and
performance that allows energy-efficient schedules to be derived without becoming tan-
gled in the details of implementation. I argued that more efficient solutions to streaming
problems can be found by a generalisation of voltage dithering to the level of operat-
ing points. The chapter then framed the problem formally and presented algorithms to
solve it, efficiently in the deterministic case and more exhaustively in the stochastic case.
Analogies with the integer knapsack problem allowed further heuristics to be discovered,
increasing the applicability of the algorithm to large sets of operating points as might be
seen on a modern mobile phone or tablet. Again, empirical data showed the gains that can
be made with these methods compared to the greedy reactive methods that are typically
used in practice, and demonstrated that the novel methods are sufficiently superior that
they could be applicable in practice.

To summarise, this thesis has established the following:

• Energy awareness in computing is important for reasons of economy, ecology, and
logistics.

• Energy cost is superior to raw energy as a metric of optimisation.

• The operating point is a valuable abstraction of execution details, shifting the focus
to higher-level energy optimisation algorithms.

• Formal methods can produce substantial, measurable savings compared to simpler
heuristic methods.

CHAPTER 6. CONCLUSIONS 109

6.2 Future directions

My central thesis, presented in Section 1.1, suggests the broad direction that future work
on this problem might take: we should continue to develop our understanding of individual
areas of the energy problem while looking for opportunities for unification in pursuit of a
complete theory of energy.

There are two strands of future work that would arise naturally from this thesis. The
first is to pursue the grand vision of the unified theory of energy suggested in Chapter 1,
and the second is to explore the more specific lines of future work from the individual
chapters.

6.2.1 Future work on the theory of energy-efficient computing

On the surface this goal seems rather abstract, and it is not clear how to approach it; as
Taleb says, “in the real world one has to guess the problem more than the solution”.1 A
more concrete question is to ask whether it would be possible to develop an operating
system and software stack that could scale proportionally, in both performance and power
terms, from the most heavyweight computing devices to the simplest devices capable
of general purpose computing; spaces currently occupied, at least in mass production,
by high-end data centre machines and mobile phones respectively. Turing-completeness
assures us that the programs from one end of this scale can in principle be run on the other,
but offers no guarantee that this scaling would be proportional to the energy cost incurred.
(One might even ask whether such a system could scale to non-general purpose devices,
such as wristwatches, but in the absence of Turing completeness the question becomes
more limited.) Perhaps Linux is the closest approximation to such an OS that currently
exists, but clearly the forms of Linux run on high-end server machines are materially
different to mobile-targeted distributions such as Google Android and Kubuntu Mobile.
In the software stack the discrepancy is even greater; one could not expect to run a
MySQL database server from a phone in an energy-efficient way, nor Angry Birds on a
high-end server. The sort of behaviours that are energy-efficient or energy-inefficient are
too different between the platforms; for example, polling on a mobile device prevents the
CPU entering an idle state (as seen in the discussion of the tickless kernel) and therefore
is a substantial battery drain, while on a busy server it incurs little more overhead than a
context switch. The examples of database servers and video games might seem frivolous,
but between them lie many plausible ideas which are currently rendered unworkable by
the impossibility of scaling the software to the hardware; for example, perhaps it would
be desirable to run a temporary web server from a mobile phone, and to make use of
the highly refined existing web server software rather than building a customised low-
power implementation for the platform. This is not currently possible because existing
programming abstractions, while providing suitable interfaces to other hardware features
such as available memory or multi-processing capability, do not provide any equivalent for
energy-awareness, but rather abstract it away altogether. Energy consumption is invisible
to the programmer but all too visible to the end-user.

I do not believe it would be possible to unify all scales of all devices simultaneously; the
problem is simply too vast. A more promising direction is already seen in the merging of

1From Nassim Nicholas Taleb, Fooled by Randomness, p. x, Random House Publishing, 2005.

110 6.2. FUTURE DIRECTIONS

operating systems for similar classes of hardware: for example, Windows NT 6.0 as the
underlying architecture for the workstation-targeted Windows Vista and server-targeted
Windows Server 2008. Likewise, Google’s Android and Apple’s iOS target both mobile
phones and tablets simultaneously. It appears the boundary between mobile and mains-
powered devices is currently the hardest to cross, and perhaps new challenges will emerge
as new points in the device space come into existence (as occurred, for example, with
Apple’s creation of the tablet market almost overnight). At the software level, application
programmers will perhaps need greater access to the power characteristics of the underly-
ing machine, and even a suitable description of these characteristics is not yet established.
Perhaps intelligent runtime and compile-time systems may also have a part to play. It is
not yet known how this might be done, and clearly this is a key challenge for the future.

6.2.2 Future work on cost-efficient computing

Chapter 4 describes a model of the relationship between power and performance, and
develops methods to optimise energy cost under this model. Most obviously, future work
could look at deploying these techniques in practice; perhaps a multi-user system could be
developed in which each user has a budget and can specify the deadline and workload they
require for each task in order to meet this budget. Cluster computing frequently provides
an interface to relevant constraints (such as time and space), but present implementations
do not generally consider energy to be a relevant resource.

Inevitably, both power and cost models could be further generalised. Of particular prac-
tical relevance would be the exploitation of parallelism, since this opens new avenues for
energy efficiency without sacrificing performance [Cho and Melhem, 2008]. The approach
given here might be extended to include this, especially with support for fine-grained
power control for individual cores. One could also look at extending some of the inter-
machine coordination work described in Section 2.4.2 to support cost models. Support
for soft deadlines, with some penalty for overshooting, might also be of practical benefit.
A reasonably efficient online algorithm for a more general case has been proposed, and
could be extend to embrace the variable cost approach [Yao et al., 1995]. Algebraic so-
lutions become increasingly unlikely with each extra layer of complexity but, if current
predictions for the future of computer architecture are to be believed, would be highly
beneficial.

6.2.3 Future work on energy-efficient streaming

Chapter 5 developed techniques for selecting operating points to process streams in an
energy-efficient way. This was tested on simulated operating point data, so a natural next
step would be to deploy these techniques on a real mobile device and measure the resulting
energy values. In addition to its obvious primary purpose of testing the theoretical work
in a practical context, this experiment would also serve to suggest directions in which
the model could be improved. For example, perhaps the constant power assumption that
the execution energy scales linearly with the execution time—in other words, that power
is independent of the input data and execution pathway taken—is too restrictive. These
questions can only be answered by empirical data.

The work of Chapter 5 progressed by successively weakening its assumptions. First, I
discarded the assumption that all frames must be processed at a single operating point,

CHAPTER 6. CONCLUSIONS 111

which leads to the concept of operating point dithering. Then I removed the restriction of
describing frame execution only by its worst-case, and allowed a fuller description in terms
of probability distributions. A natural question is then to ask what further restrictions
might be removed. In fact there are many. In particular the inputs to the algorithm are
rather demanding, requiring a detailed understanding of the workload and operating point
characteristics. Decreasing these demands would be a valuable direction for future work;
some detailed suggestions on future work in this area are presented in Appendix A.

112 6.2. FUTURE DIRECTIONS

Appendix A

Future work: online learning in hard
real-time

A.1 Introduction

This appendix describes what I believe to be an interesting direction for future work,
and some of the key challenges involved in this area. It assumes a degree of familiarity
with various topics outside the scope of this thesis, since there is not space here to intro-
duce them all from first principles; rather than consulting specific citations, the reader is
referred to the general background in Section A.6.

The progression of this thesis, especially in Chapter 5, has been to throw off successive
layers of assumption; first assuming that tasks require their worst-case execution time,
then relaxing this to include execution times with a normal distribution, then making a
brief exploration of more general distributions. This could certainly be pushed further.
A relevant research question might be: what could be achieved if one made no a priori
assumptions about the workload or the machine on which it is executed?

A.2 Motivation

The future of hardware manufacturing is surely towards greater inter-device variation. In
a processor with, say, one thousand cores, the machine may well boot up to discover that
a few cores have perished for some reason, and it is perfectly reasonable to expect that
such a machine could continue to function with only a proportional drop in performance.
Performance degradation may continue to occur over the lifetime of the machine. If only
a few cores are damaged, it is probably uneconomical to replace the processor completely.
On the other hand, for some specialised situations, such as deep space missions or medical
nanorobotics, it may be impossible for any outside agent to repair the system, and the
system should simply attempt to function (at a reduced level) for as long as possible.

Therefore it would be highly desirable for such a system to have the ability to discover
its own capabilities, in terms of power and performance, in an online and on-going way.
One can certainly imagine a new mobile phone learning about the particular point in the
power-performance spectrum into which it has been “born”, given the natural variation
between components. To push the idea further, perhaps there is a connection with the

113

114 A.3. PROBLEM OUTLINE

field of autonomous robotics ; in particular, the area of self-discovery, in which a robot
may for example be asked to discover, without direct programmer intervention, that it
has hands, and that hands are useful in the world.

Hard real-time, in which the system must absolutely guarantee to complete each task
before its specified deadline, is not often associated with energy efficiency. It is usually
assumed that if a system’s deadlines are worthy of being designated hard then we are
willing to expend any amount of power to meet them. However, there are several reasons
that this is not necessarily true. Firstly, energy is never free and, on a sufficient scale, even
mains electricity has a non-negligible impact on the total cost of ownership. Secondly, such
systems may be forced onto battery power at some point, either as a matter of course or
in the case of mains power failure, and battery power is a valuable and finite commodity.
Thirdly, we would like such systems to proliferate as widely as possible, and constraints
based on energy might well be limiting in this respect. And fourthly, many soft real-
time systems could provide strong Quality of Service guarantees if they were internally
constrained as hard real-time; consider, for example, a portable video player guaranteed
never to skip a frame while still providing reasonable battery life. Therefore we consider
it worthwhile to explore ways in which hard real-time streaming might be made more
energy efficient.

There are several key problems here: we do not necessarily know a great deal about
the workload in advance, especially for increasingly general-purpose computing devices
such as mobile phones; modern devices often provide numerous hardware variables that
can be adjusted to trade performance for power efficiency, such as voltage scaling, clock
gating, cache disabling and so on, and the benefit or otherwise of these trade-offs cannot
necessarily be predicted statically; and at the software level, there may be various methods
for handling each frame, perhaps with varying levels of hardware support (for example, use
of a co-processor). These factors taken together demonstrate that is generally impossible
to give offline predictions for the power and performance of every configuration. Therefore,
we would prefer to use some kind of online machine learning in order to deduce these values
and scale the performance of the system appropriately, such that energy usage is reduced
while still guaranteeing all deadlines.

Of course, online learning in a hard real-time context is difficult because we are constrained
in our ability to explore the state-space. I propose handling this by online learning in the
accumulated slack time. What this really means is described below.

A.3 Problem outline

In this section, I outline a particularly simple formulation of the problem. Certainly there
are many directions in which this could be generalised, but this presentation crystallises
the basic idea. Assume, as in Chapter 5, that the task is to process a stream of discrete
frames. Each frame requires a finite amount of work, although the stream may contain an
infinite number of frames.

From the hardware side, assume a set of “operating points” OP , as described in Sec-
tion 5.1.1. Each frame must be executed at a given operating point; in other words, one
cannot process half of a frame at one point and the second half at another. This restriction
alleviates concerns about which inter-operating point transitions are permitted and how

APPENDIX A. FUTURE WORK: ONLINE LEARNING IN HARD REAL-TIME 115

they might be effected. However, a frame can, at any time, be restarted and processed at
a new operating point, which has the embedded assumption that processing is side-effect
free until completion.

Each frame must be completed by its associated deadline, and these deadlines occur with
a fixed period T , so that frame i must be processed before time iT . As in Chapter 5, data
dependencies may exist between the workloads, and they must therefore be completed
in the order presented. One particular operating point op∗ ∈ OP is, by definition, fast
enough to compute any frame in less than time T ; such a point must be known if a hard
real-time guarantee is to be made. Informally, one might say something like

P(execution time at op∗ > T) = 0 (A.1)

although this probability is yet to be defined precisely.

The aim, as ever, is to process the frames such that every deadline is met and overall
energy is minimised.

A.4 Proposed methodology

The guarantee of A.1 is, of course, driven by the worst-case execution time (WCET) of a
frame. Real execution times will tend to be faster, and thereby the system will accumulate
slack time with each successive frame. Therefore, the system should execute frames at op∗

until there is sufficient slack before the next deadline; the meaning of “sufficient” is yet
to be determined, but for the sake of argument, let us say there is 3T time until the
next deadline. At this point, the system moves to another point op1 ∈ OP—presumably
offering lower power and reduced performance—and attempts to process the next frame.
If the frame is completed in less than 2T time, the system learns something about the
energy and performance characteristic of op1, and moves on to the next frame, making a
new decision about which operating point to select. On the other hand, if the frame has
not completed once time 2T has elapsed, the system must abandon the computation at
op1 and restart the frame at op∗, thereby maintaining the hard real-time guarantee. The
process is repeated each time adequate slack is accumulated, with the system constantly
improving its knowledge of the characteristics of the operating points. Ultimately it is
able to make highly efficient decisions about whether operating points can be usefully
employed.

A.5 Challenges

This is by no means the first suggestion to use slack reclamation and online learning to
drive energy efficiency. However, there is novelty in the work in terms of its application
to hard real-time and in the high-dimensional learning implied by the use of operating
points (as opposed to simple processor DVFS as has usually been deployed in the past).

This simple methodology conceals a host of challenges. On the surface, this problem
recalls the canonical multi-armed bandit problem: given a selection of levers that produce
rewards according to some unknown distribution, how should we select which levers to
pull to maximise the long-term payoff? This is usually formulated as an explore-exploit

116 A.6. RELATED WORK

dilemma and is widely studied as such. Several good approaches for this problem are
known. However, there are some important differences in this situation:

• Neither of the measured quantities (time and energy) are rewards as such; rather it
is desirable to know about them in order to gain some more abstract reward (energy
efficiency).

• Relatedly, no single point is ever adjudged the “best”. Even if one did have complete
knowledge of the distributions, the ideal point varies depending on the amount of
available slack time. Perhaps assuming this knowledge would be one way to approach
a simplified formulation of the problem.

• Observations may be right-censored : in the case where the explorative operating
point is aborted, the system learns only that the time and energy required for a
given frame was at least some value. To make use of this information requires more
complex learning techniques. Perhaps a relevant technique could be found in survival
analysis, a technique from medical statistics that is used to analyse data in which
subjects may disappear or drop out of a study midway through. The Kaplan-Meier
estimator, for example, allows non-parametric learning of probability distributions
with right-censored data.

• The result of one lever affects our ability to explore other levers; there is feedback
between the success of exploitation and the ability to explore.

Therefore, the traditional explore-exploit dilemma is inadequate to fully capture this
problem, and new work is needed. I suspect it would be very challenging to develop
a “zero-regret” strategy for this situation, which is the typical goal in explore-exploit
dilemmas.

Note that I have not restricted consideration to finite OP sets. If one considers continu-
ously variable operating voltages, OP naturally becomes an infinite set, and this further
increases the complexity of the learning required. I leave it to future work to decide
whether this added complexity is justified by the benefits to model fidelity.

Additionally, I have so far presented OP as an unstructured set. In reality, there is typically
at least some additional information that may aid learning. For example, one could quite
readily construct some sort of partial order of power-performance over the set; it would
generally be safe to assume that, say, disabling a cache would reduce (or at least maintain)
the system power and increase (or at least maintain) the system latency. A suitable Hasse
diagram could be provided as input to the learning algorithm. How exactly this might be
done is left to future work.

A.6 Related work

The interested reader is encouraged to review the following articles and books, and other
work by these authors.

• Multi-armed bandit problem

APPENDIX A. FUTURE WORK: ONLINE LEARNING IN HARD REAL-TIME 117

– Multi-armed bandit algorithms and empirical evaluation, J. Vermorel and M.
Mohri.

– Competing in the dark: an efficient algorithm for bandit linear optimization, J.
Abernethy, E. Hazan and A. Rakhlin.

• Explore-exploit dilemmas

– Explore/exploit strategies in autonomy, S. W. Wilson.

– An autonomous explore/exploit strategy, A. McMahon, D. Scott, and W. Browne.

• Statistical techniques

– Survival Models and Data Analysis, R. Elandt-Johnson and N. Johnson.

– Nonparametric estimation from incomplete observations, E. L. Kaplan and P.
Meier.

• Robotic self-discovery and self-organisation

– What can I control? A framework for robot self-discovery, A. Edsinger and C.
C. Kemp.

– Taming the beast: guided self-organization of behavior in autonomous robots,
G. Martius and J. M. Hermann.

118 A.6. RELATED WORK

Bibliography

Charles J. Alpert, Zhuo Li, Michael D. Moffitt, Gi-Joon Nam, Jarrod A. Roy, and Gustavo
Tellez. What makes a design difficult to route. In Proceedings of the 19th International
Symposium on Physical Design (ISPD ’10), pages 7–12, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-920-6. doi: 10.1145/1735023.1735028.

Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference
(AFIPS ’67, Spring), pages 483–485, New York, NY, USA, April 1967. ACM. doi:
10.1145/1465482.1465560.

Tom M. Apostol. NIST Handbook of Mathematical Functions, chapter 25. Cambridge
University Press, 2010.

Naveen Arulselvan and Randall Berry. Efficient power allocations in wireless ARQ pro-
tocols. In Proceedings of the 5th International Symposium on Wireless Personal Mul-
timedia Communications (WPMC ’02), volume 3, pages 976–980, October 2002. doi:
10.1109/WPMC.2002.1088323.

Ana Azevedo, Ilya Issenin, Radu Cornea, Rajesh Gupta, Nikil Dutt, Alex Veidenbaum,
and Alex Nicolau. Profile-based dynamic voltage scheduling using program checkpoints.
In Proceedings of Design Automation and Test in Europe, DATE ’02, pages 168–176,
March 2002.

Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage energy
and temperature. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 520–529, October 2004. doi: 10.1109/FOCS.2004.24.

Jeffrey A. Barnett. Dynamic task-level voltage scheduling optimizations. IEEE Transac-
tions on Computers, 54(5):508–520, May 2005. ISSN 0018-9340. doi: 10.1109/TC.2005.
77.

Luiz Andre Barroso and Urs Hölzle. The case for energy-proportional computing. Com-
puter, 40:33–37, 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.443.

Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris.
Towards formally verified optimizing compilation in flight control software. In Philipp
Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm, editors,
Predictability and Performance in Embedded Systems (PPES 2011), volume 18 of Ope-
nAccess Series in Informatics (OASIcs), pages 59–68, Grenoble, France, March 2011.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/OASIcs.PPES.2011.
59. URL http://hal.inria.fr/inria-00551370/en/.

119

120 BIBLIOGRAPHY

Luca Benini, Alessandro Bogliolo, Giuseppe A. Paleologo, and Giovanni De Micheli. Policy
optimization for dynamic power management. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 18:813–833, 1998.

Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, 1973.

Charles H. Bennett and Rolf Landauer. The fundamental physical limits of computation.
Scientific American, 253(1):48–56, 1985.

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near Shannon limit error-
correcting coding and decoding: turbo-codes. In Proceedings of the IEEE International
Conference on Communications 1993 (ICC ’93), volume 2, pages 1064–1070, May 1993.
doi: 10.1109/ICC.1993.397441.

Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of the
44th annual Design Automation Conference (DAC ’07), pages 746–749, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-627-1. doi: 10.1145/1278480.1278667.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004. ISBN 9780521833783. URL http://www.stanford.edu/~boyd/cvxbook/

bv_cvxbook.pdf.

Mark G. Brockington. A taxonomy of parallel game-tree search algorithms. Journal of
the International Computer Chess Association, 19(3):162–174, September 1996.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 83–94. ACM, June 2000.

David J. Brown and Charles Reams. Toward energy-efficient computing. ACM Queue, 8
(2):30–43, 2010. doi: 10.1145/1716383.1730791.

Thomas D. Burd and Robert W. Brodersen. Energy efficient CMOS microprocessor
design. In Proceedings of the Hawaii International Conference on System Sciences
(HICSS ’95), pages 288–297, 1995.

Alfred J. Cavallo. High-capacity factor wind energy systems. Journal of Solar Energy
Engineering, 117(2):137–143, 1995. doi: 10.1115/1.2870843. URL http://link.aip.

org/link/?SLE/117/137/1.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low power CMOS
digital design. IEEE Journal of Solid State Circuits, 27:473–484, 1995.

Anantha P. Chandrakasan, Vadim Gutnik, and Thucydides Xanthopoulos. Data driven
signal processing: an approach for energy efficient computing. In Proceedings of the
International Symposium on Low Power Electronics and Design (ISLPED ’96), pages
347–352, Piscataway, NJ, USA, 1996. IEEE Press. ISBN 0-7803-3571-6.

Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time systems on
dynamic voltage scaling (DVS) platforms. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA
’07), pages 28–38, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2975-5. doi: 10.1109/RTCSA.2007.37.

BIBLIOGRAPHY 121

Sangyeun Cho and Rami G. Melhem. Corollaries to Amdahl’s Law for energy. IEEE
Computer Architecture Letters, 7:25–28, 2008.

Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-based
dynamic voltage and frequency scaling for a MPEG decoder. In Proceedings of the
2002 IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’02),
pages 732–737, New York, NY, USA, 2002. ACM. ISBN 0-7803-7607-2. doi: 10.1145/
774572.774680.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Symposium on Networked Systems Design & Implementation
(NSDI ’05), volume 2, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1251203.1251223.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond safety. In
Thomas Ball and Robert Jones, editors, Computer Aided Verification, volume 4144 of
Lecture Notes in Computer Science, pages 415–418. Springer Berlin / Heidelberg, 2006.
ISBN 978-3-540-37406-0. doi: 10.1007/11817963/37.

Puyan Dadvar and Kevin Skadron. Potential thermal security risks. In Semiconductor
Thermal Measurement and Management Symposium, 2005 IEEE Twenty First Annual
IEEE, pages 229–234, March 2005. doi: 10.1109/STHERM.2005.1412184.

Shamik Das, Anantha Chandrakasan, and Rafael Reif. Three-dimensional integrated
circuits: performance, design methodology, and CAD tools. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI ’03), pages 13–18, February
2003. doi: 10.1109/ISVLSI.2003.1183348.

Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bassous, and Andre R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256–268, October 1974. ISSN 0018-9200.
doi: 10.1109/JSSC.1974.1050511.

Lewie Donckers, Paul J. M. Havinga, and Lodewijk Theodoor Smit. Energy efficient TCP.
In 2nd Asian International Mobile Computing Conference (AMOC ’02), pages 18–28.
ACM Sigmobile, 2002. URL http://doc.utwente.nl/38357/.

Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and Trevor
Mudge. Near-threshold computing: reclaiming Moore’s law through energy efficient
integrated circuits. Proceedings of the IEEE, 98(2):253–266, February 2010. ISSN
0018-9219. doi: 10.1109/JPROC.2009.2034764.

Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P. O’Boyle.
A predictive model for dynamic microarchitectural adaptivity control. In Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’10), pages 485–496, Washington, DC, USA, 2010. IEEE Computer Society.
ISBN 978-0-7695-4299-7. doi: 10.1109/MICRO.2010.14.

Ipek Engin and Sally A. McKee. Efficiently exploring architectural design spaces via pre-
dictive modeling. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 195–206, 2006.

122 BIBLIOGRAPHY

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the 34th annual International Symposium
on Computer Architecture (ISCA ’07), pages 13–23, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-706-3. doi: 10.1145/1250662.1250665.

Alexandra Fedorova. Operating system scheduling for chip multithreaded processors. PhD
thesis, Harvard University, September 2006. URL http://www.eecs.harvard.edu/

~fedorova/thesis.pdf.

Alexandra Fedorova, Juan Carlos Saez, Daniel Shelepov, and Manuel Prieto. Maximizing
power efficiency with asymmetric multicore systems. ACM Queue, November 2009.
URL http://queue.acm.org/detail.cfm?id=1658422.

Richard P. Feynman. Simulating physics with computers. International Journal of The-
oretical Physics, 21:467–488, 1982.

Jason Flinn and Mahadev Satyanarayanan. PowerScope: a tool for profiling the energy
usage of mobile applications. In 2nd IEEE Workshop on Mobile Computing Systems
and Applications, 1999 (WMCSA ’99), pages 2–10, February 1999. doi: 10.1109/MCSA.
1999.749272.

Aviezri Fraenkel and David Lichtenstein. Computing a perfect strategy for n × n chess
requires time exponential in n. In Shimon Even and Oded Kariv, editors, Automata,
Languages and Programming, volume 115 of Lecture Notes in Computer Science, pages
278–293. Springer Berlin / Heidelberg, 1981. ISBN 978-3-540-10843-6. 10.1007/3-540-
10843-2 23.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Matthew Garrett. Powering down. ACM Queue, 5:16–21, November 2007. ISSN 1542-
7730. doi: 10.1145/1331287.1331293.

Robert Gibbons. A Primer in Game Theory. Financial Times/Prentice Hall, first edition,
June 1992. ISBN 978-0745011592.

Donald B. Gillies. Three new Mersenne primes and a statistical theory. Mathematics
of Computation, 18(85):93–97, 1964. ISSN 00255718. URL http://www.jstor.org/

stable/2003409.

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson, and J. J. Charfman.
The effects of Moore’s law and slacking on large computations, 1999. URL http:

//arxiv.org/abs/astro-ph/9912202.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithms for dynamic
speed-setting of a low-power CPU. In Proceedings of the 1st International Conference
on Mobile Computing and Networking (MobiCom ’95), pages 13–25, New York, NY,
USA, 1995. ACM. ISBN 0-89791-814-2. doi: 10.1145/215530.215546.

Izrail Solomonovich Gradshteyn, Alan Jeffrey, and Iosif Moiseevich Ryzhik. Table of
integrals, series, and products; 4th corrected and revised ed. Academic Press, New
York, NY, 1980. Translated from the 4th Russian edition, Moscow, 1963.

BIBLIOGRAPHY 123

Goetz Graefe. The five-minute rule twenty years later, and how flash memory changes
the rules. In Proceedings of the 3rd international workshop on Data Management on
New Hardware (DaMoN ’07), pages 6:1–6:9, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-772-8. doi: 10.1145/1363189.1363198.

Jim Gray and Goetz Graefe. The five-minute rule ten years later, and other computer
storage rules of thumb. Record of the ACM Special Interest Group on Management
of Data (SIGMOD), 26:63–68, December 1997. ISSN 0163-5808. doi: 10.1145/271074.
271094.

Jim Gray and Franco Putzolu. The 5 minute rule for trading memory for disc accesses
and the 10 byte rule for trading memory for CPU time. Record of the ACM Special
Interest Group on Management of Data (SIGMOD), 16:395–398, December 1987. ISSN
0163-5808. doi: 10.1145/38714.38755.

Flavius Gruian. Hard real-time scheduling for low-energy using stochastic data and DVS
processors. In Proceedings of the 2001 international symposium on Low power electron-
ics and design (ISLPED ’01), pages 46–51, New York, NY, USA, 2001. ACM. ISBN
1-58113-371-5. doi: 10.1145/383082.383092.

Flavius Gruian and Krzysztof Kuchcinski. Uncertainty-based scheduling: energy-efficient
ordering for tasks with variable execution time. In Proceedings of the 2003 International
Symposium on Low Power Electronics and Design (ISLPED ’03), pages 465–468, New
York, NY, USA, 2003. ACM. ISBN 1-58113-682-X. doi: 10.1145/871506.871621.

Vadim Gutnik and Anantha P. Chandrakasan. Embedded power supply for low-power
DSP. IEEE Transactions on Very Large Scale Integrated Systems, 5:425–435, Decem-
ber 1997. ISSN 1063-8210. doi: 10.1109/92.645069. URL http://portal.acm.org/

citation.cfm?id=271045.271075.

D.M. Harris, B. Keller, J. Karl, and S. Keller. A transregional model for near-
threshold circuits with application to minimum-energy operation. In 2010 Interna-
tional Conference on Microelectronics (ICM ’10), pages 64–67, December 2010. doi:
10.1109/ICM.2010.5696207.

Jahangir Hasan, Ankit Jalote, T. N. Vijaykumar, and Carla E. Brodley. Heat stroke:
power-density-based denial of service in SMT. In Proceedings of the International Sym-
posium on High Performance Computer Architecture (HPCA ’05), pages 166–177. IEEE
Computer Society, 2005.

Julian Havil. Gamma: Exploring Euler’s Constant. Princeton University Press, 2003.
ISBN 0-691-09983-9.

Reinhold Heckmann and Christian Ferdinand. Worst-case execution time prediction by
static program analysis. In 18th International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), pages 26–30. IEEE Computer Society, 2004.

Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Synthesis techniques
for low-power hard real-time systems on variable voltage processors. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS ’98), pages 178–187, Washington, DC,
USA, 1998. IEEE Computer Society. ISBN 0-8186-9212-X. URL http://portal.acm.

org/citation.cfm?id=827270.829022.

124 BIBLIOGRAPHY

Inki Hong, Darko Kirovski, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Power
optimization of variable-voltage core-based systems. IEEE Transactions on Computer-
Aided Design, 18:1702–1714, 1999.

Tibor Horvath, Tarek Abdelzaher, Kevin Skadron, and Xue Liu. Dynamic voltage scaling
in multitier web servers with end-to-end delay control. In IEEE Transactions on Com-
puters, volume 56, pages 444–458. IEEE Computer Society, April 2007. doi: 10.1109/
TC.2007.1003. URL http://dl.acm.org/citation.cfm?id=1263121.1263166.

Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for CPU energy reduction. In Proceedings of the ACM SIGPLAN
2003 conference on Programming Language Design and Implementation (PLDI ’03),
pages 38–48, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5. doi: 10.1145/
781131.781137.

Wen-Mei Hwu, Christopher Rodrigues, Shane Ryoo, and John Stratton. Compute Unified
Device Architecture application suitability. Computing in Science and Engineering, 11:
16–26, May 2009. ISSN 1521-9615. doi: 10.1109/MCSE.2009.48. URL http://dl.acm.

org/citation.cfm?id=1550395.1550469.

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. ACM
Transactions on Algorithms, 3, November 2007. ISSN 1549-6325. doi: 10.1145/1290672.
1290678.

Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In Proceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED ’98), pages 197–202, New York, NY, USA, 1998. ACM.
ISBN 1-58113-059-7. doi: 10.1145/280756.280894.

Shigeki Iwata and Takumi Kasai. The Othello game on an n × n board is PSPACE-
complete. Theoretical Computer Science, 123(2):329–340, 1994. ISSN 0304-3975.
doi: 10.1016/0304-3975(94)90131-7. URL http://www.sciencedirect.com/science/

article/pii/0304397594901317.

Mohammad Reza Kakoee, Ashoka Sathanur, Antonio Pullini, Jos Huisken, and Luca
Benini. Automatic synthesis of near-threshold circuits with fine-grained performance
tunability. In Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED ’10), pages 401–406, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0146-6. doi: 10.1145/1840845.1840934.

Richard M. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

Randy H. Katz. Tech titans building boom. IEEE Spectrum, February 2009. URL http:

//www.spectrum.ieee.org/green-tech/buildings/tech-titans-building-boom.

Wonyoung Kim, Meeta S. Gupta, Gu-yeon Wei, and David Brooks. System level analysis
of fast, per-core DVFS using on-chip switching regulators. In Proceedings of the 14th
International Symposium on High-Performance Computer Architecture (HPCA ’08),
2008.

BIBLIOGRAPHY 125

Donald E. Knuth. The Art of Computer Programming, volume 2 (Seminumerical Al-
gorithms). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, third
edition, 1997. ISBN 0201896842. URL http://portal.acm.org/citation.cfm?id=

270146.

Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Assessing trends
in the electrical efficiency of computation over time. Oakland: Analytics Press, 2009.

Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Implications of
historical trends in the electrical efficiency of computing. IEEE Annals of the History
of Computing, 33(3):46–54, March 2011. ISSN 1058-6180. doi: 10.1109/MAHC.2010.28.

C. M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997. ISBN
9780070570436.

Kelin J. Kuhn. Moore’s law past 32nm: Future challenges in device scaling. In 13th
International Workshop on Computational Electronics (IWCE ’09), pages 1–6, May
2009. doi: 10.1109/IWCE.2009.5091124.

Chidamber Kulkarni, Dennis Moolenaar, Lode Nachtergaele, Francky Catthoor, and
Hugo J. de Man. System-level energy-delay exploration for multimedia applications
on embedded cores with hardware cache. Journal of VLSI Signal Processing Sys-
tems, 22:45–57, August 1999. ISSN 0922-5773. doi: 10.1023/A:1008121818984. URL
http://dl.acm.org/citation.cfm?id=331769.331779.

Pavan Kumar and Mani Srivastava. Power-aware multimedia systems using run-time
prediction. In Proceedings of the The 14th International Conference on VLSI Design
(VLSID ’01), pages 64–78, Washington, DC, USA, 2001. IEEE Computer Society. ISBN
0-7695-0831-6. URL http://portal.acm.org/citation.cfm?id=580549.835351.

Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and
Dean M. Tullsen. Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-36), pages 81–92, December 2003. doi: 10.
1109/MICRO.2003.1253185.

Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima
of a set of vectors. Journal of the ACM, 22:469–476, 1975.

John Lampert. Probability: A survey of the mathematical theory. Mathematics Monograph
Series. W. A. Benjamin Inc., first edition, 1966. ISBN 978-0471154075.

Rolf Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5:183–191, 1961.

Benjamin C. Lee and David M. Brooks. Accurate and efficient regression modeling for
microarchitectural performance and power prediction. SIGOPS Oper. Syst. Rev., 40:
185–194, October 2006. ISSN 0163-5980. doi: 10.1145/1168917.1168881.

Dennis Lee. Energy management issues for computer systems, 2000. URL http://www.

cs.washington.edu/homes/dlee/frontpage/mypapers/generals.ps.gz.

126 BIBLIOGRAPHY

Seongsoo Lee and Takayasu Sakurai. Run-time power control scheme using software
feedback loop for low-power real-time application. In Proceedings of the 2000 Asia and
South Pacific Design Automation Conference (ASP-DAC ’00), pages 381–386, New
York, NY, USA, 2000. ACM. ISBN 0-7803-5974-7. doi: 10.1145/368434.368693.

John P. Lehoczky, Lui Sha, and Ye Ding. Rate-monotonic scheduling algorithm: Exact
characterization and average case behavior. In Proceedings of the 11th IEEE Real-time
Systems Symposium, pages 166–171, December 1989.

Ian M. Leslie, David McAuley, Richard Black, Timothy Roscoe, Paul Barham, David Ev-
ers, Robin Fairbairns, and Eoin Hyden. The design and implementation of an operat-
ing system to support distributed multimedia applications. IEEE Journal on Selected
Areas in Communications, 14(7):1280–1297, September 1996. ISSN 0733-8716. doi:
10.1109/49.536480.

Oliver Yuk-Hang Leung, Chung-Wai Yue, Chi-ying Tsui, and Roger S. Cheng. Reducing
power consumption of turbo code decoder using adaptive iteration with variable supply
voltage. In Proceedings of the 1999 International Symposium on Low Power Electronics
and Design (ISLPED ’99), pages 36–41, New York, NY, USA, 1999. ACM. ISBN 1-
58113-133-X. doi: 10.1145/313817.313836.

Adam Leventhal. Flash storage today. ACM Queue, July 2008. URL http://queue.

acm.org/detail.cfm?id=1413262.

Jian Li and José F. Mart́ınez. Power-performance considerations of parallel computing
on chip multiprocessors. ACM Transactions on Architecture and Code Optimization, 2:
397–422, 2005.

Zhuo Li, Charles J. Alpert, Shiyan Hu, Tuhin Muhmud, Stephen T. Quay, and Paul G.
Villarrubia. Fast interconnect synthesis with layer assignment. In Proceedings of the
2008 International Symposium on Physical Design (ISPD ’08), pages 71–77, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-048-7. doi: 10.1145/1353629.1353648.

David Lichtenstein and Michael Sipser. Go is polynomial-space hard. J. ACM, 27:393–401,
April 1980. ISSN 0004-5411. doi: 10.1145/322186.322201.

Jane W.-S. Liu. Real-time systems. Prentice Hall, 2000. ISBN 978-0-13-099651-0.

Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling algorithms with
PACE. SIGMETRICS Perform. Eval. Rev., 29:50–61, June 2001. ISSN 0163-5999. doi:
10.1145/384268.378429.

Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into
the Linux operating system. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pages 29–42, Berkeley, CA, USA, 2001. USENIX Asso-
ciation. ISBN 1-880446-10-3. URL http://dl.acm.org/citation.cfm?id=647054.

715771.

Wolfgang Lutz, Warren Sanderson, and Sergei Scherbov. The end of world population
growth. Nature, 412, 2001. doi: 10.1038/35087589.

BIBLIOGRAPHY 127

John Markoff and Saul Hansell. Hiding in plain sight, Google seeks more power. New York
Times, 2006. URL http://www.nytimes.com/2006/06/14/technology/14search.

html?pagewanted=all.

Mitsuru Matsui. How far can we go on the x64 processors? In Fast Software Encryption,
13th International Workshop, FSE 2006, pages 341–358. Springer-Verlag, 2006. URL
http://www.iacr.org/cryptodb/archive/2006/FSE/3246/3246.pdf.

Rami Melhem, Nevine AbouGhazaleh, Hakan Aydin, and Daniel Mossé. Power man-
agement points in power-aware real-time systems, pages 127–152. Kluwer Academic
Publishers, Norwell, MA, USA, 2002. ISBN 0-306-46786-0. URL http://portal.acm.

org/citation.cfm?id=783060.783068.

Rami Melhem, Daniel Mossé, and Elmootazbellah (Mootaz) Elnozahy. The interplay of
power management and fault recovery in real-time systems. IEEE Transactions on
Computers, 53(2):217–231, February 2004. ISSN 0018-9340. doi: 10.1109/TC.2004.
1261830.

Amitabh Menon, S. K. Nandy, and Mahesh Mehendale. Multivoltage scheduling with
voltage-partitioned variable storage. In Proceedings of the 2003 international symposium
on Low power electronics and design (ISLPED ’03), pages 298–301, New York, NY,
USA, 2003. ACM. ISBN 1-58113-682-X. doi: 10.1145/871506.871580.

Eytan Modiano. An adaptive algorithm for optimizing the packet size used in wireless
ARQ protocols. Wireless Networks, 5:279–286, 1999. ISSN 1022-0038. doi: 10.1023/A:
1019111430288.

Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Operating system
support for NVM + DRAM hybrid main memory. In Proceedings of the 13th Hot Topics
in Operating Systems (HotOS), 2009.

Matteo Monchiero, Ramon Canal, and Antonio González. Design space exploration for
multicore architectures: a power/performance/thermal view. In Proceedings of the 20th
annual International Conference on Supercomputing (ICS ’06), pages 177–186, New
York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. doi: 10.1145/1183401.1183428.

Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation for
interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer animation (SCA ’03), pages 154–159, Aire-la-Ville, Switzer-
land, Switzerland, 2003. Eurographics Association. ISBN 1-58113-659-5. URL http:

//dl.acm.org/citation.cfm?id=846276.846298.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. Cacti 6.0: A
tool to model large caches. Technical report, School of Computing, University of Utah,
2007.

James E. Nymann. On the probability that positive integers are relatively prime. Journal
of Number Theory, 4:469–473, 1972.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Real-time task scheduling for
a variable voltage processor. In Proceedings of the 12th International Symposium on

128 BIBLIOGRAPHY

System Synthesis (ISSS ’99), pages 24–29, Washington, DC, USA, 1999. IEEE Com-
puter Society. ISBN 0-7695-0356-X. URL http://portal.acm.org/citation.cfm?

id=857198.857958.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. URL http://ilpubs.stanford.edu:8090/422/. Previous number =
SIDL-WP-1999-0120.

Massoud Pedram and Qing Wu. Design considerations for battery-powered electronics.
In Proceedings of the 36th annual ACM/IEEE Design Automation Conference (DAC
’99), pages 861–866, New York, NY, USA, 1999. ACM. ISBN 1-58113-109-7. doi:
10.1145/309847.310089.

Vincent Poirriez, Nicola Yanev, and Rumen Andonov. A hybrid algorithm for the un-
bounded knapsack problem. Discrete Optimization, 6:110–124, 2009. doi: 10.1016/j.
disopt.2008.09.004. URL http://hal.inria.fr/inria-00335065/en/. Hubert Curien
French-Bulgarian partnership RILA 2006 No 15071XF.

Mateja Putic, Liang Di, Benton H. Calhoun, and John Lach. Panoptic DVS: a fine-grained
dynamic voltage scaling framework for energy scalable CMOS design. In Proceedings
of the 2009 IEEE International Conference on Computer Design (ICCD ’09), pages
491–497, Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-5029-9. URL
http://portal.acm.org/citation.cfm?id=1792354.1792447.

Qinru Qiu and Massoud Pedram. Dynamic power management based on continuous-
time Markov decision processes. In Proceedings of the 36th annual ACM/IEEE Design
Automation Conference (DAC ’99), pages 555–561, New York, NY, USA, 1999. ACM.
ISBN 1-58113-109-7. doi: 10.1145/309847.309997.

Gang Qu and Miodrag Potkonjak. Achieving utility arbitrarily close to the optimal with
limited energy. In Proceedings of the 2000 International Symposium on Low Power
Electronics and Design (ISLPED ’00), pages 125–130, New York, NY, USA, 2000.
ACM. ISBN 1-58113-190-9. doi: 10.1145/344166.344545.

Vijay T. Raisinghani and Sridhar Iyer. Cross-layer design optimizations in wireless pro-
tocol stacks. Computer Communications, 27:720–724, 2004.

Renewable Energy Research Laboratory. Wind power: capacity factor, intermittency, and
what happens when the wind doesn’t blow? Community Wind Power Fact Sheet, 2009.

Kurt W. Roth and Kurtis McKenney. Energy consumption by consumer electronics in
U.S. residences. Final Report to the Consumer Electronics Association, January 2007.

Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits.
Proceedings of the IEEE, 91(2):305–327, February 2003. ISSN 0018-9219. doi: 10.1109/
JPROC.2002.808156.

Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third
edition, 1987. ISBN 0-07-054234-1.

BIBLIOGRAPHY 129

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):
1518–1522, 2007. doi: 10.1126/science.1144079. URL http://www.sciencemag.org/

content/317/5844/1518.abstract.

Semiconductor Industry Association. Annual report, 2005. URL http://www.

chiphistory.org/exhibits/ex_moores_law_SIAar/SIA_AR_2005.pdf.

Mingoo Seok, Scott Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung
Lee, Nurrachman Liu, Dennis Sylvester, and David Blaauw. The phoenix processor:
A 30pw platform for sensor applications. In 2008 IEEE Symposium on VLSI Circuits,
pages 188–189, June 2008. doi: 10.1109/VLSIC.2008.4586001.

Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. FAST:
frequency-aware static timing analysis. In IEEE Real-time Systems Symposium, pages
40–51, 2003.

Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova, Nestor
Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. HASS: A scheduler
for heterogeneous multicore systems. SIGOPS Oper. Syst. Rev., 43:66–75, April 2009.
ISSN 0163-5980. doi: 10.1145/1531793.1531804.

Suresh Siddha, Venkatesh Pallipadi, and Arjan Van De Ven. Getting maximum mileage
out of tickless. In Intel Open Source Technology Center, editor, Proceedings of the
Linux Symposium, June 2007. URL http://software.intel.com/sites/oss/pdfs/

maximum_tickless.pdf.

Gert Smolka. The Oz programming model. In Computer Science Today, Lecture Notes
in Computer Science, pages 324–343. Springer-Verlag, 1995.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluating root paralleliza-
tion in Go. IEEE Transactions on Computational Intelligence and AI in Games, 2(4):
278–287, December 2010. ISSN 1943-068X. doi: 10.1109/TCIAIG.2010.2096427.

Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, and Guillaume Borios.
Computing the worst case execution time of an avionics program by abstract inter-
pretation. In Proceedings of the 5th International Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.

Mircea R. Stan and Wayne P. Burleson. Bus-invert coding for low-power I/O. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 3(1):49–58, March 1995.
ISSN 1063-8210. doi: 10.1109/92.365453.

Mark Stemm and Randy H. Katz. Measuring and reducing energy consumption of network
interfaces in hand-held devices. Institute of Electronics, Information and Communica-
tion Engineers: Transactions on Communications, August 1997.

John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in Science Engineering, 12
(3):66–73, May–June 2010. ISSN 1521-9615. doi: 10.1109/MCSE.2010.69.

130 BIBLIOGRAPHY

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain. Low power architecture design
and compilation techniques for high-performance processors. In 1994 IEEE Compcon,
pages 489–498, March 1994a. ISBN 0-8186-5380-9.

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain. Saving power in the control path of
embedded processors. IEEE Design & Test, 11:24–30, October 1994b. ISSN 0740-7475.
doi: 10.1109/54.329448. URL http://dl.acm.org/citation.cfm?id=622176.622570.

Vishu Swaminathan and Krishnendu Chakrabarty. Investigating the effect of voltage-
switching on low-energy task scheduling in hard real-time systems. In Proceedings of
the 2001 Asia and South Pacific Design Automation Conference (ASP-DAC ’01), pages
251–254, New York, NY, USA, 2001. ACM. ISBN 0-7803-6634-4. doi: 10.1145/370155.
370337.

Yuan Taur and Tak H. Ning. Fundamentals of modern VLSI devices, volume 1. Cambridge
University Press, 1998.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low energy:
an overview. In Digest of Technical Papers from IEEE Symposium on Low Power
Electronics, pages 38–39, October 1994.

Paolo Toth. Dynamic programming algorithms for the zero-one knapsack problem.
Computing, 25:29–45, 1980. ISSN 0010-485X. URL http://dx.doi.org/10.1007/

BF02243880. 10.1007/BF02243880.

Vassilis Tsaoussidis, Hussein Badr, Xiaocheng Ge, and Kostas Pentikousis. En-
ergy/throughput tradeoffs of TCP error control strategies. In Proceedings of the Fifth
IEEE Symposium on Computers and Communications (ISCC ’00), pages 106–126,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0722-0. URL
http://dl.acm.org/citation.cfm?id=844383.845463.

U.S. Environmental Protection Agency. Report to Congress on server and data cen-
ter energy efficiency, 2010. URL http://www.energystar.gov/ia/partners/prod_

development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

Amin Vahdat, Alvin Lebeck, and Carla Schlatter Ellis. Every joule is precious: the case
for revisiting operating system design for energy efficiency. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for
the operating system, EW 9, pages 31–36, New York, NY, USA, 2000. ACM. doi:
10.1145/566726.566735.

Vincent R. Von Kaenel, Peter Macken, and Marc G.R. Degrauwe. A voltage reduction
technique for battery-operated systems. IEEE Journal of Solid-State Circuits, 25(5):
1136–1140, October 1990. ISSN 0018-9200. doi: 10.1109/4.62134.

William W. Wadge and Edward A. Ashcroft. LUCID, the dataflow programming language.
Academic Press Professional, Inc., San Diego, CA, USA, 1985. ISBN 0-12-729650-6.

Yefu Wang, Xiaorui Wang, Ming Chen, and Xiaoyun Zhu. Power-efficient response time
guarantees for virtualized enterprise servers. In Real-Time Systems Symposium, pages
303–312, December 2008. doi: 10.1109/RTSS.2008.20.

BIBLIOGRAPHY 131

Peter Whittle. Probability via expectation. Springer Texts in Statistics. Springer, 2000.
ISBN 9780387989556.

Enhua Wu and Youquan Liu. Emerging technology about GPGPU. In IEEE Asia Pacific
Conference on Circuits and Systems, pages 618–622, December 2008. doi: 10.1109/
APCCAS.2008.4746099.

Ruibin Xu, Daniel Mossé, and Rami Melhem. Minimizing expected energy in real-time
embedded systems. In Proceedings of the 5th ACM International Conference on Em-
bedded Software (EMSOFT ’05), pages 251–254, 2005.

Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. Proceedings of 36th Annual Symposium on Foundations of Computer Science,
pages 374–382, 1995.

Christian Zamfir, Colin Perkins, and Peter Dickman. Live migration of virtual block
devices. In EuroSyS 2007. Association of Computing Machinery, 2007. URL http:

//eprints.gla.ac.uk/43159/.

Wensheng Zhang, Mahmut Taylan Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin,
and Vivek K. De. Compiler support for reducing leakage energy consumption. In Design,
Automation and Test in Europe Conference and Exhibition, 2003, pages 1146–1147,
2003. doi: 10.1109/DATE.2003.1253774.

Yumin Zhang, Xiaobo (Sharon) Hu, and Danny Z. Chen. Efficient global register allocation
for minimizing energy consumption. SIGPLAN Not., 37:42–53, April 2002. ISSN 0362-
1340. doi: 10.1145/510857.510867.

Dakai Zhu. Reliability-aware dynamic energy management in dependable embedded real-
time systems. In Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 397–407, 2006.

Dakai Zhu, Rami Melhem, Daniel Mossé, and Elmootazbellah (Mootaz) Elnozahy. Anal-
ysis of an energy efficient optimistic TMR scheme. In Proceedings of the 10th Inter-
national Conference on Parallel and Distributed Systems (ICPADS ’04), pages 559–
568, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2152-5. doi:
10.1109/ICPADS.2004.20.

Nan Zhu and Kevin Broughan. On dominated terms in the general knapsack prob-
lem. Operations Research Letters, 21(1):31–37, 1997. ISSN 0167-6377. doi: 10.1016/
S0167-6377(97)00018-7. URL http://www.sciencedirect.com/science/article/

B6V8M-3SX27T9-5/2/b5088d374dfcc0f1e2061e12bbb5158b.

Hubert Zimmermann. OSI reference model—the ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28(4):425–432, April
1980. ISSN 0090-6778. doi: 10.1109/TCOM.1980.1094702.

132 BIBLIOGRAPHY

Glossary

ACPI Advanced Configuration and Power Interface.

ARQ Automatic Repeat Request.

BSOM Batch Self-Organising Map, a data-mining benchmark.

CAGR combined annual growth rate.

cdf cumulative density function.

CMOS complementary metal–oxide–semiconductor, the standard technology for inte-
grated circuits.

CPU central processing unit.

crowdsourcing the combined effort of a distributed group of people to achieve a shared
goal.

DDR double data rate.

DES Data Encryption Standard, a once-popular encryption–decryption algorithm.

DIMM dual in-line memory module.

DVFS digital voltage–frequency scaling.

DVS digital voltage scaling.

EPA Environmental Protection Agency.

EPF energy per frame.

FEC forward error correction.

GB gigabyte, 230 bytes.

Gb gigabit, 230 bits.

GIMPS Great Internet Mersenne Prime Search.

GPGPU general-purpose processing on the GPU.

GPU graphics processing unit.

133

134 Glossary

HVAC heating, ventilation, and air-conditioning.

I/O input/output.

IP Internet Protocol.

ISA instruction set architecture.

LVA Live Variable Analysis.

Mersenne number an integer of the form 2n − 1 for some integer n.

MOSFET metal–oxide–semiconductor field-effect transistor.

MPEG Moving Picture Experts Group.

NTC near-threshold computing.

operating point a configuration of hardware and software, coupled with the execution
time and energy requirements of computing in that configuration. A full definition
is given in Section 5.1.1 (p. 79).

OS operating system.

OSI Open Systems Interconnection.

pdf probability density function.

PSPACE a complexity class: the set of problems for which an algorithm exists that can
solve instances of that problem in an amount of space that grows polynomially with
respect to the size of the instance.

RAID Redundant Array of Independent Disks.

RPM revolutions per minute.

RWL routed wire-length.

SDRAM synchronous dynamic random-access memory.

SIMD single-instruction multiple-data.

SRAM static random-access memory.

superscalability the degree to which a processor makes use of instruction-level paral-
lelism.

support the subset of a function’s domain over which its value is non-zero.

TCP Transmission Control Protocol.

teraflops one trillion (1012) floating-point operations per second.

Glossary 135

TPS transactions per second.

WCEC worst-case execution cycles.

WCET worst-case execution time.

