Technical Report VA

Number 820

a5 UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

A unified graph query layer
for multiple databases

Eiko Yoneki, Amitabha Roy

August 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2012 Eiko Yoneki, Amitabha Roy

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

1

Graph structured data has become massively popular of Dateing factors for this develop-
ment include growing bodies of graph structured informa{Myikipedia), large social networks
(Facebook) [7] and geographic mapping (Google Maps), asasddiological research such as

A Unified Graph Query Layer for Multiple Databases

Eiko Yoneki and Amitabha Roy
University of Cambridge Computer Laboratory
Cambridge, United Kingdom
{eiko.yoneki}{amitabha.roy} @cl.cam.ac.uk

Abstract

There is increasing demand to store and query data with an inherent gfrapture.
Examples of such data include those from online social networks, the Sema and
from navigational queries on spatial data such as maps. Unfortunatedytidnal rela-
tional databases have fallen short where such graph structured datecesned. This has
led to the development of specialised graph databases such as Neo#jvdianaditional
databases continue to have a wide usage base and have desirabtégxrapeh as the
capacity to support a high volume of transactions while offering ACID sé¢icgnin this
paper we argue that it is in fact possible to unify different databasedjgans together in
the case of graph structured data through the use of a common queradengad data
loader that we have named Crackle (a wordplay on Gra(ph)QL). Grackvides an ex-
pressive and powerful query library in Clojure (a functional LISRetibfor JVMs). It also
provides a data loader that is capable of interfacing transparently withugaitata sources
such as PostgreSQL databases and the Redis key-value store. Ghéekls programmers
from the backend database by allowing them to write queries in Clojure. Addilyo its
graph-focused prefetchers are capable of closing the hitherto lagdafween a Post-
greSQL database and a specialised graph database such as Nead frmich 326 (with
a SQL query) to as low as 6 (when using Crackle). We also include a detailed perfor-
mance analysis that identifies ways to further reduce this gap with Crackis. bfings
into question the performance argument for specialised graph dataheteas Neo4j by
providing comparable performance on supposedly legacy data sources

Introduction

protein folding.

In online systems, this collection of information is créi¢or marketing, sales, and recommen-
dation systems. There has been an effort to characteriserai®ilstand user behaviour in social
networks [3][11][1], including information flow [9] and s@d communities [16]. In addition,

3

managing collected data and processing it in real-time ¢®iméng important. This is driving
the creation of specialised graph databases for storingjaecing graph structured data.

In traditional database systems, storing and searchinly data is difficult. Conventional
schema (e.g. columns or fields) are required to be predefim=ehly limiting flexibility.
Google introduced Pregel [20] in 2009 as its large scalelgmpcessing platform. Various
other graph-based databases have emerged over the pastdesy mcluding Neo4j [22], In-
foGrid [15], AllegroGraph [8], HypergraphDB [18], Infini&raph [14], and recently Trinity
[21] from Microsoft Research. These databases are normetignsa-less, allowing a set of
nodes with dynamic properties to be arbitrarily linked tbhestnodes through edges. Many of
these schema-less databases are based on key-value Stmemderlying assumption driving
research in this area is that compared to relational da¢adiasctures that do not support recur-
sive relationships and are optimised for joins, graph degab allow for far more rapid traversal
of edges. This allows for efficient analysis of complex rielaghips in a large set of data.

However, decades of research have been spent on the ralatiodel that still dominates data

storage, reliable high volume batch data processing arehted transactions [29]. This mo-

tivates one to ask the question: is it not possible to stodeqarery graph structured data in a
traditional database such as PostgreSQL [24][31]? Thismiam careful evaluation of a typ-

ical query workload (such as navigation) on typical graphcttired data (such as maps). As
baselines we compare two complete database systems. Tledicomplete PostgreSQL solu-

tion with the graph held in a PostgreSQL database. The sasa@nsgpecialised graph database
Neo4j, incorporating an entire storage stack specialisedgtbring and querying graphs. As

expected there is a vast difference in performance betweetwio: Neo4j outperforms Post-

greSQL by as much as 326

The key contribution of this paper is query language andygpeocessing layer called Crackle
(a corruption on Graph Query Layer or GraQL). Crackle is naatablase on its own but rather
designed to access and manipulate graph structured ddtauviegard to the actual backend
database storing the graph. Crackle runs in a Java VirtuahMa¢JVM) and allows expressive
gueries in Clojure (a LISP dialect for JVMs)[4]. It also castsiof a special query processor
consisting of prefetchers developed specifically for geadkey contribution of this paper)
and a data loader that can interface (thus far) with eithetd?eSQL relational databases or
Redis key-value stores[27]. We show in this paper that itespi being a general purpose
way to query graph databases, Crackle running with the sasigfe&QL data source cuts the
gap from the specialised Neo4j graph database t&rd@in 326 . We also include a careful
performance analysis that suggests ways to close this gapfesther.

The rest of this paper is organised as follows. We begin witloerview description of the
three database systems we have used in this paper (Secte en describe our motivating
workload (A* search) and dataset (Section 3). We then desaach of the three database
systems in some details describing their operation andilagfadata in Sections 4, 5 and 6. We
then devote a section 7 to discuss the graph-specific phifigistrategies that we have built
into Crackle. Finally we evaluate the three systems (Se&)joh\Ve then describe related work
(Section 9) before concluding.

PostgreSQL Crackle Neo4j

SQL Clojure Java Libraries
Query Language

Prefetcher
Object Cache

Postgres i
File Buffer Cache Query Processing

Data Loader

7

Postgres Postgres/ Redis Database Store Data Source

L

Figure 1: Compared Database Systems
2 System Overview

This paper focuses on the evaluation of three complete ds¢akystems on graph structured
data. The three complete databases and the layers of intethsir software stacks is shown
in Figure 1. Each database consists of a durable data sddincep of that lies the in-memory
guery processing and caching layers unique to each modeltofimost layer is a query lan-
guage that aims to provide flexible and expressive accegzrégrammers to the underlying
databases. The query language also aims to shield the progmafrom many of the lower
level details such as indexes, caches and the provision dDAgtibutes.

The first system we consider is a traditional PostgreSQLbdata PostgreSQL is a standard
open source SQL database. It has been constructed and seatifior the relational model,
where all data is stored in tables of fixed dimensions withsrawdifferent tables linked by
common keys (columns). It is the leftmost system depicteBigure 1. The second system
we consider is the Neo4j graph database, depicted as thtennghsystem in Figure 1. Neo4j
deals exclusively with (and is optimised for) graph struetldata, consisting of nodes (with
associated information) and links (edges) between thesnode

The third system and the key contribution of this paper is Klea@epicted between the Post-
greSQL and Neo4J solutions in Figure 1. Crackle is a querygssmr and query language
designed for graph structured data, but crucially doesmpbse any requirement on the under-
lying data model. The functional requirement for the syséena whole was for it to accept the
definition of a backend data source in a (structured) plaiftemat and allow it to be queried
as a graph as if it were locally available. One of the posslata sources for running queries in
Crackle is relational data such as a PostgreSQL database {stioe Figure). Databases such
as Neo4j use key-value stores, where data is stored as a kagtoupled with arbitrarily sized
values rather than as a relational table. To reflect thisiplegsaradigm shift in how graph data
might be made available, we also support the Redis [27] in-ongrkey-value store. Crackle
is therefore able to unify to two very disparate sources @&:da relational database and a
key-value store. The abstraction of these data sources ok of the data loader component.

Workloads that traverse graphs often show large amount$af ean be termed as “semantic”
locality. Consider a navigational query: “nearest policgtieh”. Such a query is likely to

traverse the road network graph starting from the currezatlon with the next node (data item)
to be fetched being spatially contiguous to the current Eedads being considered. Another
example might be “find a person on my social network who likeshsand are currently located
near me”. The next data item to be fetched must be in the fsiéatof the current set of items

5

(people) being considered. This semantic locality expdsedraph traversal algorithms is
dissimilar to spatial or temporal locality generally expgd by relational models or simple key-
value stores, where an order function on a key serves as ilantange data in a table or index.
There is no simple order function in a graph that places tinkedes close to each other (it is
impossible for a complete graph).

A portion of Crackle’s design is therefore devoted to buidprefetchers that can exploit this
semantic locality (the prefetcher block in Figure 1) andigcdssed extensively in the paper.
Indeed, as we show in the evaluation, the prefetcher is kelpting the performance gap when
operating with the PostgreSQL data source in comparisoretsiN

In later sections (4, 5 and 6) we describe the internals df ebthese databases in the context of
our graph traversal workload. In the next section howeverfivgt describe the graph traversal
workload and the data sources we use in the paper. This aitfe innderstanding of later
sections through specific examples from the workloadsjquéatly for readers who may not
be familiar with the internals of relational tables and keyjue stores.

3 Query Workload

In this section we describe the query workloads used to aetalihe database systems. Queries
on graph structured data inevitably lead to a traversaleftlaph, seeking a specified goal. We
wished to use the exact same traversal algorithm in all oftthee database systems ensuring
that we fairly compare them. At the same time the traverggréhm needs to be representative
of real-world usage of graph databases. Keeping this in nvendsed the A* search algorithm,
which is fairly representative of how one might go about iempénting a goal seeking query
on graph structured data. A* search is a commonly implengealgorithm for path finding in
networks (such as navigational queries on maps), and dacisaking using game trees.

A* search can be used to seek paths between distant nodesittkhaustively traversing the
whole graph due to the heuristic function guiding the searthis tests the capacity of the
database to supply data to the query as searches may follamga humber of edges within
the graph, even when the requests may not have traditioatibpr temporal locality. The
heuristic calculation and priority selection also tests #éxpressivity of the query language.
As we show later, this brings out the relative difficulty ofngs SQL compared to Clojure (in
Crackle) or Neo4j. Since A* is fundamental to understandimg paper, we include a detailed
description for the reader who may not be familiar with it ec8on 3.1.

Finally, we used queries on a real world dataset to drive ¢laech. We describe the dataset we
have used in Section 3.2.

3.1 A*search

The A* search algorithm [12] aims to find a path of minimum cimst graph from a given
source node to a given goal node; it is an extension of Digssfaortest path algorithm. The
core of A* [as implemented in this paper] is a priority quedepaths. The priority queue of

6

Algorithm 1 A* search

01 while true:

02 current_path = prio_queue.pop() // path with lowest heuistic cost
03 path_vertex = last(current_path.path)

04 if is_target(path_vertex):

05 return current_path

06 else if path_vertex in closed_set:

07 continue

08 else:

09 closed_set.add(path_vertex)

10 for edge in outward_edges(path_vertex):

11 if edge.destination in closed_set:

12 continue

13

14 new_path = current_path.copy()

15 new_path.path.append(edge. destination)

16 new_path.cost = current_path.cost + edge_cost(edge)

17 new_path. heuristic = new_path.cost + heuristic_cost(@dge.destination)
18 prio_queue.insert(new_path)

pathse is ordered by a function that attaches a weight to each path:
Weight(e) = PathCoge) + Heuristiqe.destinatiohn

Thus in addition to exploring paths with the minimum cost (@egly approach), A* search also
uses a heuristic to estimate the distance of the end of lbgaths from the goal. The path
with minimum cost is picked at each iteration and expandeexpjoring all neighbours of the

vertex at the end of the path.

Pseudocode for the A* search algorithm is shown in Algorithmlf the current path reaches

the goal of the algorithm, then it is returned as the resimegl 4-5). Otherwise, new paths are
generated by following each edge connected to the end ogbp#tis and their new accumulated
cost and heuristic value calculated. These new paths aneatiieied to the priority queue (line

18). Additionally, the algorithm needs to maintain a closeticontaining all the vertices already
visited, so that no vertex if considered more than onceglg€/ and line 9).

3.2 Datasets

The evaluation in this paper was done using the DIMACS [6]skttarhis is an openly available
dataset specifying the latitude and longitude of road jonstin the United States and the
connectivity (through roads) between these junctions. rbla€el junctions thus serve as nodes
and the roads themselves as edges in a graph. We drove tlensysbugh route finding
gueries. The latitude and longitude information attaclwedades is also retrieved on accesses
and used as inputs into the A* search that is attempting tetoact shortest routes. The query
needs to calculate both the length of each path (road) andetestic which we chose to be
the distance of the current end of the path to the goal. Bothesfe can be calculated from the
latitude and longitude of the involved points (road junctat either end of the road and the
lat-long information for the start and end points). We udezldreat circle distance (assuming

7

the Earth to be a perfect sphere):

Distancéa, b) =
6371 cos *(sin(aia)sin(bar)+

cos(ajar)cos(biat)cos(aiong b 1ong))

In addition to the DIMACS dataset we have used other datagetsesting. However since they
are not relevant to this paper we omit any discussion of them.

4 Crackle System Architecture

Crackle is written entirely in Clojure [4]: a LISP dialect thetn run in a Java Virtual Machine.
The main features of interest in Clojure are that it is funwip has easy Java interoperability
and has language features for concurrency, such as imrawtata structures. Immutable data
structures mean that code is naturally thread-safe exde@bwsing mutating structures from
the Java standard library. Clojure also provides strongemphtations of many of the data
structures we require. Finally, Clojure provides directemscto the Java ecosystem and thus
can also access Neo4j. This means that we were able to reesealgorithm code across the
two and since both run in a JVM, produce a more direct comparé speed.

As Clojure runs on the JVM, being able to test code quickly aatrdublesome. Therefore we
built a tool using the cake build tool for Clojure, which supigoper-project persistent JVMs
and a REPL (read-evaluate-print-loop). This makes it pts$dohave an instantly-available
environment into which code can be entered or loaded/retbdbm file. This availability
removes the common pain point of a compiled language, asoi@itation step is effectively
removed, and it allows interactive development and inspectf running code.

We now describe individual components of Crackle: the quangliage, query processing and
data loaders.

4.1 Query Language

Crackle is generic enough in its design that one can writeiggiar any language such as python
or C/C++ simply by adding appropriate adapters. Currently hewejueries in Crackle are also
written in Clojure. They are geared towards lazy loading dadas is natural with a functional
language). Algorithm 2 contains some snippets of Clojureedbdt are key to the ideas in this
paper.

The first functionast ar - r out e- f i nd implements the A* workload used in the evaluation
for this paper. As the comments indicate, it uses a stad&edpléority queue (with appropriate
wrapping) at its core (line 2). Being able to use standard dksses is one of the benefits of
using Clojure to write queries. from the graph. We initialibes priority queue to contain a
path with only the start node and of cd@s(line 04). The next few lines set up a bounded loop
(lines 5-8), the bound is for sanity checking that is neaggsehandle situations such as when
the target is altogether absent The remaining part of thexsiémentation is a straightforward

8

Algorithm 2 Clojure snippets

01 (defn astar-routefind [graph start target limt]

02 (let [q (java.util.PriorityQueue. 1000 (Conparator. (gen-Heuristic target))) ;Use Java prioq
03 closed (atom #{})]

04 (.add g {:dist 0 :path [start] :h (latlong-distance graph start target)}) ;Initialise prioqg

05 (loop [i 0] ; Place a limt (sanity check) on nunber of visited nodes
06 (if (==1i limt)
07 (do #_ (println limt "expansions, giving up.")
08 {:found nil :considering nil})
09 (let [{p-dist :dist p-path :path :as p} (.poll q) ; Dequeue the |east cost item
10 p-head (peek p-path)]
11 (if (get @l osed p-head)
12 (recur i) ; If the node we pulled out has been visited, continue
13 (if (== p-head target)
14 {:exp i :found p :considering nil} ; found our target ! return path
15 (do
16 (let [closed-set (swap! closed conj p-head)] ; add node to the visited set
17 (doseq [[edge node] (c2/get-edges-out graph p-head :road)] ; Every nei ghbour
18 (when (nil? (get closed-set node)) ; add extended path to the prioqueue
19 (let [n-dist (+ p-dist (latlong-distance graph p-head node))]
20 (.add q {:dist n-dist :path (conj p-path node)
:h (+ (latlong-distance graph node target) n-dist)})))))
21 (recur (inc i))))))))))

vv

01 (defn- ensure-node [graph id]
02 (let [g @:atonref graph)]

03 (if-let [node ((:vertices g) id)] ; If node already in our |oaded graph just return graph
04 g

05 (let [{nodes :n node-edges :e} ((:node-load graph) id) ; Call specialised node-Ioad
06 insertions (atom #{})]

07 (doseq [{:keys [id props]} nodes]

08 #_(println "Addi ng node" id)

09 (when-not ((:vertices @:atonref g)) id) ; Add | oaded node details to the graph
10 (add- node graph id props)

11 (swap! insertions conj id)))

12 (doseq [{:keys [fromto | abel props]} node-edges]

13 # (println "Adding edge " from"--" |abel "-->" to)

14 (when (or (get @nsertions from (get @nsertions to))

15 (add- edge graph fromlabel to props)))

16 @:atonref graph)))))

implementation of the pseudocode description of AlgorithmWe iterate by picking out the
path with lowest heuristic cost (via tipol | function, line 9) and considering the node at the
end of the pathg- head). We reject this path ip- head is already in the closed set (lines
11-12) and return this pathp- head is the target node (lines 13-14). We then addhead

to the closed set (line 16) and consider extensions of thilsepli path by appending all possible
neighbours ofp- head (line 17). If the neighbour is not in the closed set (line 1&rt we
compute the heuristic for this extended path and add it tptioeity queue (lines 19-20).

The second functionefisur e- node) shows how Clojure interfaces with the backend data
source. This is a generic function called to ensure that tedled node (specified hyd)

is in main memory. The most important step is to cadlde- | oad), which is specialised
depending on the data source. The remaining steps updatemegnory data structures that
hold information about loaded nodes.

"server": "127.0.0.1",

"dat abase": "roads",
"user": "chris",
"node-space": "honmogeneous",
"node": {
"sql": "SELECT lat_f as lat, long_f as long
FROM junctions WHERE id = ?",
"properties": ["lat", "long"]
H
"edges": {
"road": {
"sql": "SELECT j_to, distance
FROM roads WHERE j _from = ?",
"target": "j_to",
"properties": ["distance"]

}
}
}

Figure 2: JSON definition for the road network from PostgreSQ
4.2 Query Processing

The first key consideration in the query processing layemisnamemory representation of
the graph. We treat vertices and edges as first class objeatsh vertex has an ID, a set of
properties, and a set of labelled edges. Vertices are storetiash table (dictionary) structure
indexed by the ID for quick lookup. The set of labelled edgemaintained as a hash table
indexed by label. Each edge is a 3-tuple of a start ID, end hd,aahash of properties. Edges
only refer to their start and end vertices by an ID rather thaeference, because the data may
not be present yet in the graph. This allows for lazily logdwertices as required, but means
that vertex IDs are duplicated by edges.

4.3 Data Loading

The data loading format used was JSON [17]. JSON is a liglgtwe@narkup based on Javascript
notation that supports numbers, strings, hashes, andsarkathird-party library[5] was used in
order to parse JSON into Clojure objects. We specify the da@bnd scheme in JSON, which
then acts as an interface to the appropriate data source.

The JSON specification for connecting to the PostgreSQL neddork database is shown in
Figure 2. The first part deals with retrieving road junctiguertices) given their ID. Also
retrieved are the latitude and longitude. The second pafsdeith retrieving roads (edges)
given their originating junction.

The other data source we used for Crackle is Redis, which is-a&leng store with a flat key
structure. Values can be strings or higher-order strustwiéh string values (hashmaps, sets,
lists). Properties for a vertex or edge thus naturally fiteéh hashmap. Figure 3 therefore
describes the road dataset for the Redis data source.

10

{
"node-space": "honogeneous"
"node": {
"properties": ["lat", "long"]

"edges": {
"road": {
"suffix": "out"

}
}
}

Figure 3: JSON definition for road network from Redis

5 PostgreSQL System Architecture

One of the databases evaluated is a pure PostgreSQL sollrmstgreSQL supports a large
subset of the SQL standard for querying data in the datablhsdso supports a procedural
language PL/pgSQL as an extension which allows for finergamogning control.

PostgreSQL is a standard open source SQL database, andtsuppade range of data types,
including ‘numeric’. This type allows for arbitrary prems numbers, at the cost of perfor-
mance of calculations on them. This means that the latitaddangitude can be converted to
a decimal representation at insertion rather than at caatipattime. The structure of the table
used to represent road junctions is shown below.

Property | Type | Indexed?

id bigint yes
lat bigint no
long bigint no

lat f | numeric no
long_f | numeric no

Edges are stored in a separate table, with indices on ‘froih*t@®’ as these will be used to find
edges during traversal of the graph, shown below.

Property | Type | Indexed?
j_from | bigint yes
j_to bigint yes
distance| bigint no

We wrote a native SQL query to implement the A* search albaritising the 'WITH RECUR-
SIVE’ syntax in PostgreSQL. A recursive SQL query is compgoskan initial query, and a
secondary query that is used to iteratively add rows to theltreThis is because the algorithm
needs to obtain a new set of vertices based on a dynamic tsamather than a static starting
set for the query).

The major problem encountered in implementing this que®lifpgSQL was the lack of data
structures supported, requiring the use of temporary $ahléhe implementation of a priority
gueue and a closed set.

The closed set is a simple table using a unique index to quatiéck for the existence of some

11

key in the set. The priority queue is more involved and is enmnted using the table below.

Property | Type | Indexed?
id bigint yes
distance| real no
hval real yes
path | bigint[] no
head bigint no

In the tableHVAL is the heuristic cost of the path, and used as the prioritysomeawithHEAD
as a convenience as the last verteeATH, andDISTANCE the total accumulated real cosh

is necessary so that a row can be removed from the table aftas ibeen selected. An index
is maintained on thevaL field to speed up locating the node with lowest cost. As we show
Section 8.3 of the evaluation, this index is a key bottlenadRostgreSQL performance.

6 Neo4j System Architecture

As Neo4j runs on the JVM, it can be used directly from Clojuréesowhich the rest of the
project was written in. This also means that we were able édles A* query implemented in
Clojure to access the Neo4j database with only minor chanfjes.only other piece of work
needed with Neo4j was setting up the DIMACS road database in it

Neo4j supports storing values as any of the Java primitioearfays thereof) and strings. Stor-
ing a decimal representation of the latitude or longitudefioat or double would lose precision
and cause inconsistent results, and so for Neo4j the latidund longitude were inserted as in-
tegers, with division down to degrees done at computatioe.tiNeo4j is schema-less, and so
requires indices to be defined at insertion time for propsrtiFor the road network, the only
index required is for junction IDs so they may be retrieveuitearily. Once the vertices were
inserted, the edges were inserted in a second pass. Tharslaghd vertices are retrieved and a
‘road’ labelled edge added between them, with the distapt&d®en the junctions as an integer
property. This gives the properties for each vertex in tlapgras in the following table:

Property | Type | Indexed?
id int yes
lat int no

long int no
distance| int no

7 Prefetchers

A key contribution of Crackle is the introduction of prefeteh as part of the query processing
phase. One of the more difficult problems in dealing with grapversal is the fact that access-
ing nodes often leads to random accesses, leaving no clgaoveptimise 10. In addition, the

fact that we wish to interface Crackle seamlessly with midtgata sources requires that any

12

solution to this problem should be generic enough to appbnip backend database, particu-
larly those indexed or ordered by keys such as Postgreseloabe of a graph it is difficult to
obtain locality on the keyspace for adjacent nodes, paatityufor dense graphs.

Our solution to the problem of random access is to introdeeapability in Crackle to prefetch
nodes based on adjacency in the graph. The basic idea isydiigkue a prefetch request for
adjacent graph nodes whenever any node is accessed. Wenmgleenented two kinds of

prefetchers in Crackle. Although both are intuitive, we shiowhe evaluation that prefetching
leading to large boosts in performance.

The first prefetcher (calleddookahead) simply does a limited depth-first traversal of the graph
from the provided node. It takes a depth parameter thatditheg maximum path-length of the
explored graph from the given node. For example, specifgidgpth of 1 leads all neighbours
of the given node to be prefetched. A key limiting factor afkahead prefetching is that it is ul-
timately limited by the cost of bringing in a single node c&ra prefetch request for a neighbour
cannot be issued until the current node has been fetchetisameighbours determined. Crackle
provides an alternative lookahead mechanism called blogfefzhing that can ameliorate this
problem.

Block prefetching is based on the idea that certain keys inutttkerlying datastoreften have

a strong correlation with adjacency in the graph. Considerctdse of a social network where
nodes (people) are indexed by their postcodes. People djifitent postcodes have a higher
than normal probability of being connected. Another exagblthis is the prefetching strategy
we used for queries on our roadmap dataset in the evaludtmmany given road junctiorx(

, depending on the underlying data store, it is possiblettexe all road junctions (vertices)
within a certain distancel] : y : dist(z,y) < d . Although there need not be a path from the
current road junction to these block prefetched road jonstithere is a high probability that
there is one and this proves to be greatly beneficial to A*cdes on the road network.

We focus on prefetchers for Postgre in this paper, as it isothe on-disk database that we
consider. Both prefetchers therefore, are implemented aspg86zedures called from Clojure
code.

8 Evaluation

We evaluate the three databases on an Intel Core2 Duo 2.4 Gtenswith 8GB of RAM. In
order to obtain reliable results, all benchmarks were rartitaes independent of one another.
The JVM has global pauses for garbage collection, and sadefeery test a manual garbage
collection was triggered to try and ensure that any pauses ate¢he fault of the test being run,
rather than previous conditions. The fastest and slowaststifor each run were also discarded
to reduce outlier impact, and then the mean of the remaingty eesults was taken. The JVM
was also provisioned with minimum and maximum RAM set to twgabiytes, hence time
should not be lost when trying to acquire more memory fromstygtem. We did one pre-run
of each benchmark in order to give the JVM JIT compiler timeptimise the code.

As mentioned, the core benchmark is an A* traversal on the BT dataset. For repeata-
bility, we fixed 6 queries formed by randomly selecting startl end points such that they are

13

100000

10000

Execution Time (ms) - Log scale

1000

Lookahead Distance

Figure 4. Varying prefetch lookahead depth

10000

1000

X X0 .m0
Q@

e
6}
0]
om @

Execution Time (ms) - Log scale

e
]&
b
=

100 </\/

0 002 0.04 0.06 008 01 012 0.14 0.16
Blocksize (degree)

Figure 5: Varying prefetch block size

separated by an increasing number of nodes. The objectivesigrcise the databases with A*
searches of various necessary depths to reach the goalueaes ended up having A* search
subgraphs of sizes 420, 791, 1659, 2690, 5293 and 7820esrtic

8.1 Prefetchers

The first piece of evaluation we did was to determine whetheptefetchers are indeed effec-
tive in improving the performance of graph traversal anajfdetermine the optimum settings
for the prefetchers. We determined early on that Redis bamnigp-anemory key value store

did not show any benefits with prefetching and therefore weeigoonly on the PostgreSQL

data source for the prefetchers. We evaluate the lookahehdlacking prefetchers previously
described in Section 4.2.

Figure 4 shows an analysis of the effect of changing the depthe lookahead prefetcher.
For all the A* search sizes, increasing the lookahead dist@ives higher performance as it
returns more vertices per call, reducing the overhead ofyinge PostgreSQL. However, the
cost of the prefetch procedure itself then begins to grogelathan the avoided overhead. This
occurs because the prefetch recursion on the server sidat isnear in growth, and hence

14

smaller lookaheads are more efficient than larger prefstcAéso, although larger prefetches
may mean fewer queries later, they also mean overlap withqusly obtained vertices. Based
on this experiment, we chose a lookahead depth of 7 for laprenents.

The next piece of evaluation we did was to determine the aptiquery range for the block-
ing prefetcher. For the DIMACS dataset, for every query foadipular vertex, the blocking
prefetcher also queried for all nodes within a square coimgithe fetched vertex at the centre.
The side of the square is measured in degrees (recall thatevguarying based on latitude
and longitude that are themselves measured in degree)reFsgshows the results of vary-
ing the size of the block (square). Increasing the block gizes an initial large performance
improvement, and then levels off, and then tends towardsierease in execution time. The
increase in execution time is more pronounced for longeetsals suggesting that the increase
for individual queries is not much but the additive effecthadiny queries for longer traversals
is larger. Another conclusion is that block prefetch is ssteful in terms of fetching nodes
that have already been visited as compared to lookaheaet@nefBased on this experiment,
we chose block sizes of 0.05° and 0.1° for subsequent expatgn

8.2 Database systems

We now evaluate the three database systems against eacliooth& search on the DIMACS
dataset for the largest query: ~8k visited nodes. Figureaénaxes performance for the follow-
ing database systems and configurations:

=

Neo4j
PostgreSQL

Crackle with PostgreSQL data: labelled Crackle [no prefetch]

A w N

Crackle with PostgreSQL data and prefetcher type lookahead 7: drtekle [lookahead 7]

o

Crackle with PostgreSQL data and prefetcher type blocking 0.1: lali@tkeckle [block 0.1]
6. Crackle with PostgreSQL data and prefetcher type blocking 0.05: ldi@tkeckle [block 0.05]
7. Crackle with Redis data: labelled Crackle [redis]

8. Crackle preloaded: labelled Crackle [preloaded]

The lastitem requires some explanation. One of the datalyatems we evaluated was Crackle
with the entire graph traversed by the A* search preloadednmemory obviating the need to
make any queries to any backend data source. This lets usagv@he cost of query processing
without including the cost of data access.

Returning to Figure 6 we see that Crackle preloaded is thestasteaning that the cost of data
access is indeed the dominating factor. The next fastese@!jNvhile the slowest is Crackle
when running with PostgreSQL data and PostgreSQL. Thisrlindg the classic argument that
“legacy data sources” such as PostgreSQL are not perforemanigh for graph data necessi-
tating the construction of specialised databases such a4jNEowever, we see that Crackle

15

100000 ——————7 B '_'_'_f!§ .

10000

*

*

1000

<@

[

(8]

2]

j=2}

g

- Ei/'_)i(3

E g

Y wo &F m— —

£ — b T Ne0dd —+—
s 10 AT POStgreSQL. -

2 A Crackle [no prefetch] - 3
3 “ Crackle [lookahead 7] -3

o Crackle [redis] ---#--

i L Crackle [block 0.1] ---©--

o
Crackle [block 0.05] -~ @ -~
Cgackle [preloqded] - S N—

0 1000 2000 3000 4000 5000 6000 7000 8000
Vertices Visited

0.1

Figure 6: Comparing database systems on A* searches (NewStat&)

running with the same PostgreSQL data source but with atorefecloses the gap from 326
worse with a pure SQL query to only about &orse with the block prefetcher. It also per-
forms similarly to Redis an in-memory key value store sugggdhat relational databases are
no worse at storing graphs than key-value stores providedtarmediary such as Crackle is
used.

8.3 PostgreSQL Priority Queue Analysis

One of the core interests of this study was in determining &vpure relational database system
performs badly on graph traversals. One might ask the aquretiat if engineering resources
were to be devoted to improving the performance of Postgke@(A* search, what should be
the first angle of attack?

To answer this question we used timestamps to evaluatelgxdwtre PostgreSQL was spend-
ing its time when executing A* search. We measured the welditne spentin 4 zones. Zone A
covers finding the next path in the priority table and remgvinZones B and C cover checking
if the path’s head is in the closed set table, and adding neticgs to the closed set. Zone D
covers creating new possible paths and calculating theirste values, and adding them to
the priority table.

We found that for the largest query (~8k nodes) the time spedbne A rapidly grows and
occupies about 75% of the total time spent in the 4 zones.iFhiscause the priority queue is
maintained as a SQL table with an index on the ordering fieét{Sn 5). The performance of
this priority queue is limited by the performance of the da theHVAL property, since that
index is consulted to remove the path of lowest cost from haddble and must be updated for
every path added. Internally, the indices in PostgreSQlthesB-tree data structure. The B-tree
is atree where every path from root to leaf has the same l¢gg#iranteeing logarithmic lookup
times) and each node is large with multiple children for il transfers to and from disks with
large sector sizes. This turns out to be excellent for tiaehl SQL databases where joins are
important but sub-optimal when used as a priority queue. @perty of B-trees is that the
leaves essentially contain the elements in sorted ordénelnase of a priority queue where one
repeatedly removes the smallest element, it causes a leaéaf the extremities to continually

16

Crackle[preload] =--------- |

100 Neo4j
Redis
Crackle[block 0.05] ===~
Crackle[block 0.1]

o
50 100 150 200
Number of Queries

Execution time / Execution time (Crackle preload)

Figure 7: Normalised query time for a series of A* queries

lose elements. This in turn causes repeated rebalancirge @-tree due to the depleted leaf
node being merged with its neighbour. This is one reasortstiboptimal performance of the
PostgreSQL solution. However we saw no other alternativesiog the index since otherwise
locating the smallest element in the queue would be provéiytexpensive.

This would suggest that the first order of business in imm@WostgreSQL performance is to
Improve the availability and performance of intermediad&adstructures such as priority queues
without falling back to the traditional indexing methods. ofore for example, uses priority
gueues implemented as traditional binary heaps.

8.4 Performance with a Hot Cache

Thus far, the evaluations have focused on queries with acaade where the prefetcher played
a key role in determining query performance. A hypothesi® e that if the same (set of)
gueries were to be run repeatedly, the set of traversed rsjumdd be in Crackle’s cache,
leading the best performing versions (Crackle with blocKgihing) to perform the same as
Crackle with the entire graph preloaded. To this end we etaltiee best performing subset
of database systems described in the previous section: [Eqackoaded, Neo4j, Crackle with
PostgreSQL and block prefetching; and finally Redis. We uskxked set of 20 A* queries
each traversing about 8k nodes. We repeated this seriesdbguagain and again to observe
whether database performance converged as expected.

Figure 7 shows the results. We normalised the runtimes toofi@rackle preloaded. The first
surprising aspect is that Crackle with block prefetchingvenges to Neo4j speeds (1.8lower
than Crackle preloaded) rather than Crackle preloaded spédus most likely explanation
for this is that in Crackle preloaded we have removed callfi¢oblackend database allowing
the JVM more room for optimisation. This also suggests thatd is no essential difference
between the performance of Neo4j and Crackle were data lgadile removed from the
picture. Another aspect that surprised us was the largahiéity in performance of Redis,
something we had not seen with a cold cache. At this point wenat clear about the reasons
for variability with Redis. It only occurs for long runs such this benchmark rather than with
cold caches as above. In our setup, the Crackle dataloadenaoicates with Redis over a

17

100000

10000

1000 Crackle[preload]
F NEeo4] sweseseen
Redis
Crackle[block 0.05]

prackle[bloclg 0.1] =mmmm
50 100 150 200
Number of Queries

Total Execution Time (ms) - Log scale

0

Figure 8: Aggregate time for a series of A* queries

network socket. It is possible that the upswings in quenetimith Redis are due to the Java
garbage collector contending for CPU time and cache with tlitisR@ocess. Moving them to
different CPUs (or even different systems) to provide best@ation between the JVM running
Crackle and Redis might mitigate this problem.

A clearer picture is obtained if we plot the cumulative quame, which helps to smooth out the
variation in Redis runtimes. Figure 8 shows the aggregate tonthe A(*) queries. It clearly
brings out that Crackle with block prefetching converges ém# performance, while Crackle
with Redis is slower and Crackle with preloading is the fastest

8.5 Large Graphs

We now report on results when using thild DIMACS dataset that covers all roads junctions
across the United States (24 million nodes). We determiinaiat prefetch block width of 1.0°
Is more efficient for this larger graph, reflecting heteratyeim the roadmap data set between
the small subset considered thus far (New York) and the wiataset.

We compare database systems for A(*) searches on the wiaalenap data in Figure 9. Crackle
with block prefetch outperforms running Crackle directhaengt the Postgre databases, whose
runtimes are so large for the entire graph that we are unahbleport them. This underlines
the utility of prefetching when traversing large graphses koint of the paper. One surprise
is the relatively poor performance of Crackle when compaoaddo4). In order to understand
this we reran the experiment with Neo4j limited to 1GB of maiemory (compared to 2GB
for Crackle). In this situation Cracklautperforms Neo4j on this large dataset. This investiga-
tion uncovered inefficiencies in our Clojure code to do witlieebbloat and large amounts of
temporary object creation that triggers frequent runs efXva garbage collector. We believe
that carefully optimising both the Clojure runtime and oumosode should be instrumental in
reducing or eliminating the gap in performance we now havh Weo4j.

18

1e+006

100000

10000

1000

100 &

Crackle [Block 1.0] —>—
3 Crackle [Lookahead] ----#----
10 PostgreSQL -
Neo4J b
N‘e04J[mem‘ory constqaints <1QB] e

Execution Time (ms) - Log scale

1

20000 40000 60000 80000 100000
Vertices Visited

Figure 9: Comparing database systems on A* searches (Wholg USA
9 Related Work

Distributed Hash Tables (DHT) [13] and key-value storespampular methods for addressing
the scalability problems of large-scale data processitg récent popularity of Online Social
Network analytics has renewed interest in such mechanisrgs Twitter uses Cassandra [19]).
While these methods achieve scalability by random partitprof data stores, they do not
exploit the strong semantic locality that is present in ¢hesst datasets.

SPAR [25] shows that semantic locality in back-end data eaexploited for partitioning data
into independent components, especially for online saoiWorks. This clustering assists
in improving application scalability. Using social infoation to improve the scalability of
centralised OSNs such as Facebook or Twitter is descritsabcally in terms of how co-
location of data in social proximity can be maintained irnvees at the same physical location
for reducing network traffic. The motivation of Crackle is edn a similar concept, where
search, update, and dissemination of data would occur irymases in preloaded subgraph of
the whole graph. 64-bit addressability with large memorkeasan-memory processing of these
vast data sources possible. Keeping partitioned subgraphsmory will improve performance
significantly.

Ficus [10], Farsite [2] and Coda [30] are distributed file syst which make files available
by replication. Distributed RDBMSs (e.g. MySQL) and Bayou [g2pvide eventual data
consistency. In contrast, if semantically related dataraaiged locally, it can be maintained
without distributing the data for processing. SPAR’s apphoia based on this principle, and it
is more efficient for OSNs as it requires fetching data fronttiples servers constantly. Crackle
could be used by the distributed file system for its perforoesand availability.

Understanding the dynamics of the graph topology and sasfcts of different online social
networks (e.g. Twitter, Facebook, Google+) is key to buaiiginore efficient computer systems
[28]. It has effects on storage management, reduction efar&ttraffic, and service availability.
Understanding locality is an important aspect for buildiagye scale applications, especially
in terms of improving the system design and performancetitidaing data can be based on
guery patterns but there will be further issues when both datl the network are dynamic. A
series of topics in this research domain is emerging.

19

Relational databases and graph databases support extqusiyesupport. Existing relational
database products include SQL Server, Oracle [23], MyS@kidgPeSQL, and SQLite. In our
evaluation, we selected freely available systems that warll platforms. This left MySQL,
PostgreSQL and SQLite. PostgreSQL and MySQL are quite aimihvestigating their SQL
support, however, PostgreSQL has support for recursivaeguehile MySQL does not. Our
implementation of queries relies on such functionality,deeided that PostgreSQL would be
the best representative choice for our performance evaiuaith Crackle.

Recently a series of general graph databases has been eyriagijinling Neo4j[22], Allegro-
Graph [8], HypergraphDB [18], Trinity[21] from Microsoft Rearch, and Pregel [20] from
Google. Crackle is complementary to these systems and it®ap can be integrated into
them. Pearce et al [26] has taken an approach to store paraoii gn memory together with
distributed computation.Kang et al [33] has demonstratathble graph processing algorithm
for map/reduce operation.

10 Conclusion and Future Work

We have presented Crackle, a graph query layer, which allosyshgstructured data to be lazily
loaded from multiple data sources. The Crackle languag&sltpieries to be performed on
these datasets. Crackle is implemented in Clojure, and diyrempports Redis and Post-
greSQL data sources.lt is instrumental in closing the gawden supposedly “legacy” data
sources such as PostgreSQL and specialised graph databakexs Neo4.

There are two primary future directions of development veepursuing with Crackle. The first

is to completely close the performance gap between the RR&Q. data source and Neo4;.
The second direction is to expand the applicability of Cragckihich in turn should improve the

expressivity of queries in Clojure. We have already creatitit@nal data source connectors
to connect to Facebook and Twitter, thereby forming the tsatesto support ongoing research
into these two social networks. Crackle is also capable diung views from disparate data

sources.

Acknowledgment The research is part funded by the EU grants for the Recognitioject,
FP7-ICT-257756 and the EPSRC DDEPI Project, EP/H003959. Widwike to thank mem-
bers of Systems Research Group, University of Cambridge ér ctomments and suggestions.

References
[1] A. MiISLOVE AND H. S. KorPPULA AND K. P. GUMMADI AND P. DRUSCHEL AND B. BHATTACHARJEE.
Growth of the Frickr Social Networks. MAOSN (2008).

[2] ADvA, A., BoLOSKY, W. J., AASTRO, M., CERMAK, G., CHAIKEN, R., DOUCEUR, J. R., HOWELL,
J., R., J., IORCH, THEIMER, M., AND WATTENHOFER, R. P. Farsite: Federated, available, and reliable
storage for an incompletely trusted environmentORDI (2002).

[3] A.MISLOVE AND M. MARCON AND K.P. GUMMADI AND P. DRUSCHEL ANDD. BHATTACHARJEE. Mea-
surement and Analysis of Online Social Networks AtM SIGCOMM IMC (2007).

[4] CLOJURE http://clojure.org/.

20

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]
(18]
[19]

(20]

[21]

[22]
(23]
(24]
[25]

[26]

(27]

(28]

[29]

DAN LARKIN. Json encoder/parser for clojure. https://github. com danl arki n/
cl oj ure-json.

DIMACS. 9th dimacs implementation challenge - shorfesths.ht t p: / / ww. di s. uni romal. it/
~chal | enge9/ downl oad. sht nl .

FACEBOOK. Facebook's memcached multiget hole: More machines = mapadgity. In
http: //highscal ability.convbl og/2009/10/26/facebooks-memcached-multiget-hol e-more- machinesmore-
capacit.html (2009).

FRrRANZ INC. Rdf graph databasét t p: / / www. f ranz. coni agr aph/ al | egr ogr aph/ .

G. KOSSINETS ANDJ. KLEINBERG AND D. WATTS. The Structure of Information Pathways in a Social
Communication Network. IA\CM KDD (2008).

GuY, R. G., HEIDEMANN, J. S., MaK, W., R., T. W. P., PPEK, G. J.,AND ROTHMEIER, D. Imple-
mentation of the ficus replicated file system.UBENIX (1990).

H. CHUN AND H. KWAK AND Y. EOM AND Y. AHN AND S. MOON AND H. JEONG. Comparison of Online
Social elations in Volume vs Interaction: A case Study of Gyia. In ACM SGCOMM IMC (2008).

HART, P. E., NLssoN, N. J.,AND RAPHAEL, B. Correction to "A Formal Basis for the Heuristic Deter-
mination of Minimum Cost PathsS GART Newsdletter 37 (1972), 28029.

IAN CLARKE. A Distributed Decentralised Information Storage and iRe#d System, 1999.
INFINITEGRAPH: DISTRIBUTED GRAPH DATABASE. www.infinitegraph.com/.
INFOGRID: WEB GRAPH DATABASE. http://infogrid.org/.

J. LESKOVEC ANDK.J.LANG AND A. DASGUPTA AND M. W. MAHONEY. Community Structure in Large
Networks: Natural Cluster Sizes and the Absence of Largé-tiédined Clusters. 'CoRR, abs/0810.1355
(2008).

JSON. http://www.json.org/.
KoBRIX SOFTWARE. Directed hypergraph databagg.t p: / / www. hyper gr aphdb. or g/ i ndex.

LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized structured storage sySt6@PS Operating
Systems Review 44-2 (2010).

MALEwiIcz, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J. C., HORN, I., LEISER, N., AND CzA-
JKOWSKI, G. Pregel: a system for large-scale graph processingODC (2009).

MICROSOFT RESEARCH Trinity project: Distributed graph database. http://research.
m crosoft.com en-us/projects/trinity/.

NEO TECHNOLOGY. Java graph databadet t p: / / neo4j . org/ .
ORACLE. http://www.oracle.com/index.html.
PoSTGRESQL. http://www.postgresqgl.org/.

PuJjoL, J. M., ERRAMILLI, V., SIGANOS, G., YANG, X., LAOUTARIS, N., CHHABRA, P., AND RO-
DRIGUEZ, P. The little engine(s) that could: Scaling online socetiworks. IndGCOMM (2010).

R. PEARCE AND M. GOKHALE AND N.M. AMATO. ultithreaded Asynchronous Graph Traversal for In-
Memory and Semi-External Memory. IEEE International Conference on High Performance Computing,
Networking, Sorage and Analysis (2010).

REDIS. http://redis.io/.

ROBERTOGONZALEZ AND RUBEN CUEVAS AND CARMEN GUERRERO ANDANGEL CUEVAS. Where are
my followers? understanding the locality effect in twittarXiv: 1105.3682v1 (2011).

ROGERL. HASKIN AND RAYMOND A. LORIE. On extending the functions of a relational database system
In ACM SSGMOD (1984).

21

[30] SATYANARAYANAN , M. Coda: A highly available file system for a distributed w&tation environment.
| EEE Transactions on Computers 39 (1990), 447—459.

[31] STONEBRAKER, M., AND ROWE, L. The Design of POSTGRESechnical Report, UC Berkel ey November
(1985).

[32] TERRY, D. B., THEIMER, M. M., PETERSEN K., DEMERS, A. J., SPREITZER M. J., AND HAUSER,
C. H. Managing update conflicts in bayou, a weakly conneaptiaated storage system. 8OSP (1995).

[33] U. KANG AND CHARALAMPOS E. TSOURAKAKIS AND CHRISTOSFALOUTSOS Pegasus: A peta-scale
graph mining system. IFEEE International Conference on Data Mining (2009).

22

