
Technical Report
Number 818

Computer Laboratory

UCAM-CL-TR-818
ISSN 1476-2986

New approaches to operating
system security extensibility

Robert N. M. Watson

April 2012

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Robert N. M. Watson

This technical report is based on a dissertation submitted
October 2010 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

This dissertation proposes new approaches to commodity computer operating system

(OS) access control extensibility that address historic problems with concurrency and

technology transfer. Access control extensibility addresses a lack of consensus on oper-

ating system policy model at a time when security requirements are in flux: OS vendors,

anti-virus companies, firewall manufacturers, smart phone developers, and application

writers require new tools to express policies tailored to their needs. By proposing prin-

cipled approaches to access control extensibility, this work allows OS security to be

“designed in” yet remain flexible in the face of diverse and changing requirements.

I begin by analysing system call interposition, a popular extension technology used

in security research and products, and reveal fundamental and readily exploited con-

currency vulnerabilities. Motivated by these failures, I propose two security extension

models: the TrustedBSD Mandatory Access Control (MAC) Framework, a flexible ker-

nel access control extension framework for the FreeBSD kernel, and Capsicum, practical

capabilities for UNIX.

The MAC Framework, a research project I began before starting my PhD, allows

policy modules to dynamically extend the kernel access control policy. The framework

allows policies to integrate tightly with kernel synchronisation, avoiding race condi-

tions inherent to system call interposition, as well as offering reduced development and

technology transfer costs for new security policies. Over two chapters, I explore the

framework itself, and its transfer to and use in several products: the open source Free-

BSD operating system, nCircle’s enforcement appliances, and Apple’s Mac OS X and

iOS operating systems.

Capsicum is a new application-centric capability security model extending POSIX.

Capsicum targets application writers rather than system designers, reflecting a trend

towards security-aware applications such as Google’s Chromium web browser, that

map distributed security policies into often inadequate local primitives. I compare

Capsicum with other sandboxing techniques, demonstrating improved performance,

programmability, and security.

This dissertation makes original contributions to challenging research problems in

security and operating system design. Portions of this research have already had a

significant impact on industry practice.

3

4

Acknowledgements

Writing this dissertation would not have been possible without the support and en-

couragement of my family (especially my parents), friends, mentors, and colleagues, to

whom I offer my sincerest thanks and appreciation.

Ross Anderson, my supervisor, deserves a special note of thanks: he has been

supportive throughout my less than typical path through Cambridge’s PhD programme,

giving me space to pursue a variety of interests, many related to my PhD research, while

still shepherding the dissertation to a timely completion! The security research group

at the Computer Laboratory has been a critical source of experience and collaboration

– especially Jonathan Anderson, Steven Murdoch, and Richard Clayton. Jon’s work on

Capsicum deserves particular note – the project could not have been completed without

his help.

Early portions of my research into kernel access control extensibility, including the

MAC Framework, were supported by DARPA and the US Navy via research con-

tracts N66001-01-C-8035 (CBOSS1) and N66001-04-C-6019 (SEFOS2). This research

took place at first TIS, then NAI Labs, later McAfee Research, and finally SPARTA

ISSO. My colleagues at those institutions played central roles in helping me to take the

idea of an extensible access control framework from concept, to prototype, to widely

used system; many of them are acknowledged on page 11. However, I wish especially

to thank Russ Mundy and Sandra Murphy, who mentored me through their own re-

search projects in the TIS NetSec group. Special thanks are also due to Lee Badger,

who at NAI helped me to formulate my first DARPA proposal around the concept of

an extensible access control framework, and later at DARPA sponsored my seedling

research project that became the inspiration for Capsicum.

Industrial collaboration has also played a central role in my PhD research: Google,

Apple, nCircle Network Security, and Intel have engaged in elements of my research

into access control extensibility and technology transfer. Google’s university research

grant programme supported my PhD research; Ben Laurie has not only promoted my

research at Google, but also been an active collaborator in Capsicum. My thanks also

go to Simon Cooper and Richard Gaushell for reviewing drafts of this dissertation.

Members of the global computer security research community have provided feed-

back on my research, including the anonymous reviewers of my papers. Most notably,

Peter Neumann has provided both encouragement and detailed feedback on this dis-

sertation. Comments and suggestions from my examiners, Jon Crowcroft (Cambridge)

and Mark Handley (UCL), have made the dissertation much stronger, and are greatly

appreciated.

I have drawn heavily on the open source community, whose products are remarkable

assets for research that I have been proud to contribute to. The FreeBSD Project

1Community-Based Open Source Security
2Security Extensibility and Flexibility in Operating Systems

5

has provided seemingly endless assistance; all its contributors deserve my thanks, but

especially John Baldwin, Pawel Dawidek, Poul-Henning Kamp, Kris Kennaway, Sam

Leffler, George Neville-Neil, Colin Percival, and Bjoern Zeeb for their willingness to

support and engage with my research over the last decade.

Dedication

I dedicate this dissertation to my wife and partner, Leigh Denault – I only hope that I

supported you during your PhD as well as you have supported me!

6

Contents

1 Introduction 13

1.1 Context for this research . 14

1.2 What is an operating system? . 15

1.3 Principles of operating system security 17

1.3.1 Kernel and processes . 18

1.3.2 From isolation to access control policy 19

1.3.3 Virtualisation . 21

1.3.4 Trusted systems . 22

1.3.5 Capability systems . 23

1.3.6 Of microkernels and security kernels 24

1.3.7 Language and runtime approaches 26

1.3.8 Extensible access control frameworks 28

1.4 Structure of this dissertation . 30

2 Concurrency vulnerabilities in system call interposition 33

2.1 Operating system kernels and concurrency 34

2.2 Wrappers for security . 34

2.3 Concurrency attacks on wrappers . 35

2.4 Exploit techniques . 36

2.4.1 Concurrency approaches . 37

2.4.2 Racing on uniprocessor systems 37

2.4.3 Racing on multiprocessor systems 38

2.5 Exercising real vulnerabilities . 38

2.5.1 Generic Software Wrapper Toolkit (GSWTK) 38

2.5.2 Systrace . 39

2.5.3 CerbNG . 41

2.6 Preventing wrapper races? . 42

2.6.1 Mitigation techniques . 42

2.6.2 Message passing systems . 43

2.6.3 Integrating security and concurrency 43

2.7 Impact of the WOOT07 paper . 44

2.8 Conclusion . 45

3 The MAC Framework: extensible kernel access control 47

3.1 History of the MAC Framework . 49

3.2 Past approaches . 52

3.2.1 Direct modification . 52

3.2.2 System call interposition . 52

3.2.3 Stacked file systems . 53

3.3 Limitations of past approaches . 53

3.3.1 Kernel source code access . 53

3.3.2 Tracking vendor development 54

3.3.3 Concurrency and lock order in threaded kernels 54

3.3.4 Policy composition . 55

3.3.5 Financial cost of implementation 56

3.4 Designing for access control extension 57

3.4.1 Guiding principles . 58

3.5 Architecture of the MAC Framework 60

3.5.1 Framework startup . 61

3.5.2 Policy registration . 62

3.5.3 Entry point design considerations 63

3.5.4 Kernel service entry point invocation 65

3.5.5 Policy entry point invocation 66

3.5.6 Policy composition . 68

3.5.7 Object labelling . 69

3.5.8 Application-layer approach . 74

3.5.9 Policy-agnostic label management APIs 74

3.6 MAC Framework policy modules . 75

3.6.1 The Biba integrity policy . 75

3.7 Performance evaluation . 79

3.7.1 System call performance . 80

3.7.2 Network performance . 86

3.7.3 Kernel build performance . 88

3.8 Related work . 89

3.9 Conclusion . 89

4 The MAC Framework: from research to product 91

4.1 FreeBSD operating system . 92

4.1.1 Experimental feature status . 93

4.1.2 Performance . 94

4.1.3 Third-party contributions to the MAC Framework 98

4.1.4 Additional MAC Framework consumers 100

4.2 nCircle IP360 monitoring appliance . 101

4.2.1 What are system privileges? . 102

8

4.2.2 System privilege extensions to the MAC Framework 102

4.2.3 The nCircle MAC policy . 105

4.3 Apple’s Mac OS X and iOS . 106

4.3.1 SEDarwin research prototype 107

4.3.2 Adapting the MAC Framework to Mac OS X 108

4.3.3 Adoption by Apple . 111

4.3.4 The Sandbox access control policy 112

4.3.5 Applications constrained by Sandbox 114

4.3.6 Enforcement in Mach and BSD 116

4.3.7 Paths in policy expression . 116

4.3.8 Considerations for iOS . 117

4.3.9 Performance optimisations . 117

4.3.10 Policy label data synchronisation requirements 118

4.3.11 Conclusions on Mac OS X and iOS 119

4.4 Evaluation . 120

4.4.1 The hypothesis of security extensibility 120

4.4.2 Expressiveness . 122

4.4.3 Complexity . 124

4.4.4 Usability . 125

4.4.5 Performance . 126

4.4.6 Security . 126

4.5 Conclusion . 128

5 Capsicum: practical capabilities for UNIX 131

5.1 Introduction . 132

5.2 Capsicum design . 134

5.2.1 Capability mode . 135

5.2.2 Capabilities . 135

5.2.3 Run-time environment . 139

5.3 Capsicum implementation . 139

5.3.1 Kernel changes . 139

5.3.2 The Capsicum run-time environment 140

5.3.3 Concurrency concerns with directory delegation 141

5.4 Adapting applications to use Capsicum 143

5.4.1 tcpdump . 145

5.4.2 dhclient . 146

5.4.3 gzip . 148

5.4.4 Chromium . 150

5.5 Comparison of sandboxing technologies 150

5.5.1 Windows ACLs and SIDs . 150

5.5.2 Linux chroot . 151

9

5.5.3 Mac OS X Sandbox . 152

5.5.4 SELinux . 152

5.5.5 Linux seccomp . 153

5.5.6 Summary of Chromium isolation models 153

5.6 Performance evaluation . 154

5.6.1 System call performance . 154

5.6.2 Sandbox creation . 155

5.6.3 gzip performance . 155

5.7 Future work . 159

5.8 Related work . 159

5.9 Conclusion . 160

6 Conclusions 163

6.1 Principles . 164

6.1.1 Access control extensibility is a policy 164

6.1.2 Rehabilitating capabilities . 165

6.1.3 The risks of software interposition 165

6.1.4 Technology transfer is research 166

6.1.5 A hybrid design philosophy . 166

6.1.6 Open source infrastructure tech transfer 166

6.2 Future work . 167

6.2.1 System call wrappers . 167

6.2.2 The MAC Framework . 167

6.2.3 Capsicum . 168

6.2.4 CRASH-worthy Trustworthy Systems R&D (CTSRD) 169

10

Published work

In the course of this research, I have published the following research papers and articles

that contributed directly to the contents of this dissertation:

The TrustedBSD MAC Framework: Extensible Kernel Access Control for FreeBSD 5.0,

published in the Proceedings of the 2003 USENIX Annual Technical Conference [145].

This article was co-authored with Wayne Morrison, Chris Vance, and Brian Feldman.

Design and Implementation of the TrustedBSD MAC Framework published by IEEE in

the Proceedings of the DARPA Information Survivability Conference and Exposition

(DISCEX III), 2003 [143]. This article was co-authored with Brian Feldman, Adam

Migus, and Chris Vance.

Exploiting concurrency vulnerabilities in system call wrappers published in the proceed-

ings of the first USENIX Workshop On Offensive Technologies (WOOT), 2007 [140].

Capsicum: practical capabilities for UNIX, published in the proceedings of the 19th

USENIX Security Symposium, 2010 (best student paper) [142]. This article was co-

authored with Jonathan Anderson, Ben Laurie, and Kris Kennaway.

During my dissertation research, I published a number of additional papers and articles

in the areas of operating system and security research and development:

Building Systems to be Shared, Securely, published in ACM Queue 2004 [66]. This

article was co-authored with Poul-Henning Kamp.

Introduction to Multithreading and Multiprocessing in the FreeBSD SMPng Network

Stack, published in the Proceedings of EuroBSDCon 2005 [139].

The FreeBSD Audit System, published in the Proceedings of the 2006 UKUUG Spring

Conference [144]. This article was co-authored with Wayne Salamon.

How the FreeBSD Project Works, published in the Proceedings of EuroBSDCon 2008 [141].

Ignoring the Great Firewall of China, first published in the Proceedings of the 2006

Privacy Enhancing Technologies Workshop [25]. Republished as an article in the Jour-

nal of Law and Policy for the Information Society 2007. This article was co-authored

with Richard Clayton and Steven Murdoch.

Metrics for security and performance in low-latency anonymity systems, published in

the Proceedings of the 2008 Privacy Enhancing Technologies Symposium [88]. This

article was co-authored with Steven Murdoch.

Recipient of the BCS Brendan Murphy MSN Young Researcher’s Award for the re-

search Network stack scalability and its protocol impact presented at the Multi-Services

Networks 2010 workshop.

The Age of Avatar Realism: When Seeing Shouldn’t be Believing, published in IEEE

Robotics and Automation Magazine, 2010 [108]. This article was co-authored with

Laurel Riek.

11

Work done in collaboration

As with all significant systems research, portions of the work described in this disser-

tation were performed in collaboration with others, whom I would like to acknowledge:

The MAC Framework

The TrustedBSD MAC Framework, which I designed while a research scientist at NAI

Labs and have continued to work on during my PhD, was implemented with the sup-

port of the NAI Labs research staff, as well as industrial, academic, and open source

collaborators. My collaborators on this project have included Lee Badger, Samy Bahra,

John Baldwin, Chris Costello, Simon Cooper, Hrishikesh Dandekar, Rob Dekelbaum,

Brian Feldman, Mark Feldman, Tim Fraser, Shawn Geddis, Ilmar Habibulin, Mike Hal-

derman, Doug Kilpatrick, Suresh Krishnaswamy, Terry Lambert, Pete Loscocco, Jim

Magee, Adam Migus, Todd Miller, Wayne Morrison, Christian Peron, Andrew Reisse,

Tom Rhodes, Wayne Salamon, Mike Smith, Tom Van Vleck, Chris Vance, and Zhouyi

Zhou.

Capsicum

I have been supported in the implementation and evaluation of Capsicum by colleagues

at the University of Cambridge and Google UK Ltd. My collaborators on this project

were Jonathan Anderson, Ben Laurie, and Kris Kennaway.

12

Chapter 1

Introduction

This dissertation addresses a critical research question: how can computer operating

system (OS) security be “built-in from the ground up” yet remain flexible in the face of

changing requirements? The last fifteen years have demonstrated that this question is

a central concern in OS design, as commodity systems have been thrust from isolation

into near-ubiquitous and remarkably malicious networking environments. This trans-

formation has been catalysed by fundamental changes in computer hardware: decreased

size, increased availability, and dramatic performance improvements, allowing operat-

ing systems originally designed for network servers to be used in notebook computers,

DSL routers, and smart phones.

Operating systems are the foundation on which software systems are built, and a

firm security foundation is central to the security of the applications that run above

it. This firm foundation has become more and more necessary: countless previously

“dumb” devices now not only run non-trivial software stacks, but are also continuously

exposed to malicious environments. Yet there has been a surprising lack of consensus

about system security policy, motivating an interest in systems that support a vari-

ety of access control policies yet commit firmly to none. Growing from several years of

work on system security in this context, this dissertation argues that designing for secu-

rity extensibility allows operating systems to be adapted to new requirements without

requiring them to be rewritten from scratch.

This dissertation stems from my work in operating system security as a DARPA

principal investigator at NAI Labs and its successor organisations. I have brought

insights from new research conducted while at the University of Cambridge Computer

Laboratory that have transformed the original projects, tracking the adoption and

evolution of new ideas about security extensibility.

The theme of extensibility is the central concern of this dissertation. It has also

been a key concern in operating system research over a long period, although the

motivations for, and definitions of, extensibility have developed considerably over time.

The work described in this dissertation focuses on commodity operating systems: ones

that are widely used and have strong security requirements, yet have not taken the

13

high assurance approaches described later in this chapter. Transformations in computer

usage have motivated fresh investigation and renewed application of ideas from past

operating system and security literature: concurrency, discretionary and mandatory

access control, reference monitors, and capabilities.

We begin with a consideration of the current and historic context in which new

ideas about security have developed, an introduction to key ideas in operating system

security, and a detailed chapter outline.

1.1 Context for this research

My DARPA-sponsored research from the early 2000s focused on operating system secu-

rity models derived from the needs of mandatory access control environments in which

a system-wide access control policy is dominant. This interest spanned traditional

information flow policies such as Biba [18] and Bell-La Padula (BLP) [15], discussed

in detail later in this chapter, but also hardening policies that would later be inte-

grated into products such as smart phones, routers, and firewalls. I have revisited

that research by analysing its motivations (especially with respect to concurrency and

integrated access control), implementation (and reimplementation), and its impact on

industry.

Invaluable experience with the TrustedBSD MAC Framework (described in Chap-

ter 3) in deployment was gained through collaboration with academic, industrial, and

government collaborators, including a close collaboration with Apple during their de-

velopment of Mac OS X and iOS security features, Seccuris in their development of

monitoring appliances, and nCircle in development of a policy enforcement appliance.

Additional feedback and contributions from MAC Framework consumers such as SCC

(later McAfee) and Juniper have also been critical, as the hypothesis of an extensible

kernel security model matured. For these vendors, security extensibility has offered im-

mediate and concrete benefits: improved security, a principled model on which security

extensions can be built, and long-term reduction in cost when maintaining local security

features. This experience confirms the hypotheses of Doug Maughan’s DARPA Com-

posable High Assurance Trusted Systems (CHATS) research programme, which funded

portions of my initial work on the MAC Framework: not only was there the opportunity

to improve the state of the art through research into security and composability, but

also that open source can serve as a effective means of technology transfer.

Shortly before my move to the Computer Laboratory, I worked on a seedling re-

search project sponsored by Lee Badger, then DARPA programme manager, entitled

Visibly Controllable Computing. My analysis revealed an application-centric view of

the world, and illustrated the need to integrate security functionality into the structure

of increasingly complex (and monolithic) applications that, themselves, had clear but

unfulfilled security requirements. Among applications considered were desktop man-

agers, web browsers, and office suites which act on behalf of a user in interacting with

14

documents from various mutually untrusting (and perhaps even malicious) origins, but

require, at any given moment, few of the ambient rights of their users. This analysis is

central to the capability security model espoused in Capsicum.

Mapping distributed security properties into local enforcement, as explored in Cap-

sicum, is a particularly interesting aspect of this problem. The narrow single-system

views of OS vendors rarely serve the needs of the authors of complex distributed sys-

tems that will be based on them. All of these prior research projects have demonstrated

that we still do not fully understand what security policies will best meet our needs.

Security extensibility is, fundamentally, about planning infrastructure for poorly un-

derstood requirements, and while necessarily an imperfect approach, it is the only one

that enables us to build flexibility into our systems to allow for unanticipated future

developments. Direct support for security extensibility, rather than adopting the ac-

cess control model of the moment, therefore offers a constructive way to address this

fundamental problem in operating system design.

1.2 What is an operating system?

The history of operating systems is long and contentious. As such, this review of

the evolution and concepts of operating systems and security skims some topics and

periods, aiming at the problems that most concern this dissertation. Contemporary

OSs have their grounding in 1960s and 1970s time sharing systems, and retain many of

the principles developed in that period:

• abstraction of system hardware,

• resource management: accounting, scheduling, and synchronisation,

• storage and communication services: file systems, network stack, inter-process

communication (IPC),

• an application model, typically premised on process separation,

• libraries of common functions: mathematics, compression, etc., and

• management of user interaction and interface.

Throughout the 1960s to 1990s, new functionality evolved in mainframes, microcom-

puters, servers, and high end workstations: hardware support for robustness (especially

memory protection), security, and networking, as well as graphical user interfaces, mul-

titasking, multiprocessing, and virtualisation. In contrast, personal computers of the

1980s and early 1990s were single address-space, weakly connected to other computers

(if at all), and the primary form of software distribution was via floppy disk (“sneaker

net”). By the end of the decade, higher-end technologies had slid downmarket to the

personal workstations, notebook computers, tablets, and smart phones of the 2000s.

15

Fundamental new technologies emerged in the consumer space as well, including digi-

tal subscriber lines (xDSL), local- and wide-area wireless networking, making personal

computing devices the epicentre, rather than periphery, of computer security.

As a result, requirements for security have ballooned to include features previously

found only in research or high assurance “trusted” systems, as well as new technologies

necessary to address the world of distributed systems unanticipated by earlier systems

and security research. Some of these features centre around Anderson’s concept of a

trusted computing base (TCB) – the self-protecting core in the operating system pro-

viding confidence in its security [5]. Others place individual systems securely in a global

network context through services built on cryptography and cryptographic protocols,

also central security research products of the 1980s and 1990s. Commonly available

systems now provide, to varying degrees, the following types of security features:

• a TCB based on stronger assumptions of isolation and access control than a simple

process model,

• support for trusted/verified boot,

• security co-processors responsible for key management and cryptography,

• authentication and multiplexing of multiple simultaneous users,

• discretionary and mandatory access control models,

• security event auditing for accountability,

• cryptography for data integrity and confidentiality,

• code authentication via digital signatures,

• distributed security models (e.g., Kerberos, x.509 certificates, and TLS),

• cryptographically protected network communications (e.g., SSH, IPsec),

• sandboxing facilities to contain potentially malicious mobile code, and

• secure update to remedy vulnerabilities discovered after manufacture.

These features are found in products ranging from smart phone operating systems

such as Symbian, iOS, and Android, to workstation and server operating systems such

as Windows, Mac OS X, FreeBSD, Linux, and Solaris.

16

1.3 Principles of operating system security

As with many aspects of contemporary computer and operating system design, the

origins of operating system security may be found in the Massachusetts Institute of

Technology’s (MIT) Project MAC. The project began with MIT’s Compatible Time

Sharing System (CTSS) [27], and continued over the next decade with MIT’s Multics

project, and would develop many central tenets of computer security [28, 55]. Dennis

and Van Horn’s 1965 Programming Semantics for Multiprogrammed Computations [33]

for the first time laid out principled hardware and software approaches to concurrency,

object naming, and security for multi-programmed computer systems – or, as they are

known today, multi-tasking and multi-user computer systems. Multics implemented a

coherent, unified architecture for processes, virtual memory, and protection, integrating

new ideas such as capabilities, unforgeable tokens of authority, and principals, the end

users with whom authentication takes place and to whom resources are accounted [112].

In 1975, Saltzer and Schroeder surveyed the rapidly expanding vocabulary of com-

puter security in The Protection of Information in Computer Systems [113]. They

enumerated design principles such as the principle of least privilege, which demands

that computations run only with the privileges they require, as well as the core security

goals of protecting confidentiality, integrity, and availability. The tension between fault

tolerance and security, a recurring debate in systems literature, saw its initial analy-

sis in Lampson’s 1974 Redundancy and Robustness in Memory Protection [75], which

considered how hardware memory protection addressed both types of failure.

The security research community also blossomed outside of MIT: Wulf’s Hydra op-

erating system at Carnegie Mellon University (CMU) [152, 26], Needham and Wilkes’

CAP Computer at Cambridge [146], SRI’s Provably Secure Operating System design

(PSOS) [40, 96], Rushby’s security kernels supported by formal methods at Newcas-

tle [111], and Lampson’s work on formal models of security protection at the Berkeley

Computer Corporation all explored the structure of operating system access control,

and especially the application of capabilities to the protection problem [73, 74]. Another

critical offshoot from the Multics project was Ritchie and Thompson’s UNIX operating

system at Bell Labs, which simplified concepts from Multics, becoming the basis for

countless directly and indirectly derived products such as today’s Solaris, FreeBSD,

Mac OS X, and Linux operating systems [109].

The creation of secure software went hand in hand with analysis of security flaws:

Anderson’s 1972 US Air Force Computer Security Technology Planning Study not only

defined new security structures, such as the reference monitor described in Section 1.3.8,

but also analysed potential attack methodologies such as Trojan horses and inference

attacks [5]. Karger and Schell’s 1974 report on a security analysis of the Multics system

similarly demonstrated a variety of attacks bypassing hardware and OS protection [69].

In 1978, Bisbey and Hollingworth’s Protection Analysis: Project final report at ISI

identified common patterns of security vulnerability in operating system design, such

17

a b

Hardware

Hypervisor

Operating system kernel

Proc 1 Proc 2 Proc 3

Inter-process
isolation

/
e

h
b

a

Inter-user
isolation

libfoo
libc

rtld

libfoo
libc

rtld

libfoo
libc

rtld

ring 1

ring 0

ring 3

Memory pages
Disk

UID 5 UID 5 UID 20
Process credentials

File
system

Figure 1.1: A sketch of the contemporary OS structure and security model: the OS administers

hardware resources, such as memory pages and disk blocks, to provide higher-level services

such as processes, virtual memory, and file storage. CPU rings provide a hierarchical basis

for isolation; on this foundation, credentials bound indelibly to user processes allow access

control policies to be constructed. Numbering of rings is not consistent across architectures;

other rings may also exist for firmware services such System Management Mode (SMM).

as race conditions and incorrectly validated arguments at security boundaries [19].

Adversarial analysis of system security remains as critical to the success of security

research as principled engineering and formal methods.

Forty-five years of research have explored these and other concepts in great detail,

bringing new contributions in hardware, software, language design, and formal methods,

as well as networking and cryptography technologies that transform the context of

operating system security. However, the themes identified in that period remain topical

and highly influential, structuring current thinking about systems design.

1.3.1 Kernel and processes

Most current operating systems employ a derivative of the Multics process model, illus-

trated in Figure 1.1. In the prototypical model, described by Saltzer, hardware features

separate the OS kernel from user applications, and applications from one another, of-

fering improved robustness [112]. Programs execute in isolated processes, each a virtual

machine with its own address space, able to initiate communication directly with only

18

the OS kernel. If multiple instances of a programme are desired, then multiple processes

are used, providing independence of failure modes. The process model relies on two

CPU features: rings, which limit use of privileged chip functions to a kernel operating in

supervisor mode, and virtual addressing, which allows the kernel to control the mapping

of user process pointers into physical addresses. Additional hardware rings, described

by Schroeder, provide hierarchical protection, a feature largely exploited today for the

purposes of virtualisation, as discussed in Section 1.3.3 [118].

The operating system kernel executes in a protected address space, managing mem-

ory, servicing inter-process communication (IPC), and scheduling processes. In most

operating systems, it also hosts central system services: device drivers, file systems,

and networking – the trend towards microkernel systems, in which those services are

themselves hosted in processes, is described in Section 1.3.6. User processes invoke

operating system kernel services by initiating hardware traps, including system calls

(explicit) and virtual memory faults (implicit). The hardware arranges a transition

between rings and virtual memory contexts as the kernel regains control; kernel trap

handlers must be carefully crafted to prevent accidental leaks of information or control

between it and the user process, or between user processes.1

Whereas the Multics model called for further granular hardware controls of mem-

ory, such as fine-grained segmentation and capabilities as found in Cambridge’s CAP

Computer [146], current hardware generally provides only coarse controls at a page

granularity. Karger has explored the performance implications of various hardware de-

signs for security domain transition [68], and Wahbe’s software fault isolation, described

later in this chapter, has also considered the performance impact of this practical design

choice [134]. Witchel has more recently explored alternative x86 memory protection

models in Mondrix, derived from the Multics design, and tested it with a modified

Linux kernel under simulation, although this work was targeted at the kernel rather

than applications [147]. However, the end result is that current hardware designs pre-

vent the easy subdivision of applications into separate security domains – a limitation

that can be overcome using message-passing, at significant cost to performance and

ease of representation, or through the use of type-safe language runtimes and virtual

machines, at a significant cost in complexity. These approaches are considered in detail

in Sections 1.3.6 and 1.3.7.

1.3.2 From isolation to access control policy

The process model provides robustness by limiting application communication with the

kernel to controlled paths, and by preventing errant memory access in one application

from corrupting the memory of another. This separation is also the foundation for

security isolation, as the kernel can impose policies over whether and how exceptions

1This interface has historically been a source of frailty – recent NULL pointer vulnerabilities in

Linux have allowed accidental (and harmful) kernel access to user addresses [128].

19

to strict isolation are permitted2. For example, most operating systems mediate access

to inter-process communication (IPC), file system storage, and the network stack.

Kernels indelibly tag processes with credentials that hold security properties used

for access and resource control – the integrity of credentials is protected by placing

them in the kernel address space3. Commonly, credentials hold the user ID of the

authenticated principal on whose behalf a process is acting, additional groups the user

is a member of, and mandatory access control state, all of which are checked against

access control policies.

Discretionary access control (DAC) allows users to administer protections on objects

they own, and is frequently specified using Access Control Lists (ACLs), a technique

pioneered in the Multics file system [29]. This approach, most commonly used in

file systems, assigns sets of rights (such as read, write, and execute/lookup) to lists of

principals associated with each object. The utility of DAC is clear in multi-user systems,

where it can be used to structure collaboration, but DAC’s role in single-user computers

such as desktops, tablets, and mobile phones is less obvious. At least one system, the

Android phone OS, assigns a separate UNIX user to each application, allowing DAC

to control interactions between applications [52]. However, historic criticisms of DAC

– that it is hard to manage, and worse, that its discretionary and intricate nature

leads easily to configuration errors resulting in security problems – are relevant in both

multi-user and mobile phone settings [7].

In contrast, mandatory access control systemically enforces policies representing the

interests of system implementers and administrators. Information flow policies tag pro-

cess credentials and objects with sensitivity and integrity labels, enforcing fixed rules

to prevent reads or writes that could lead to information leakage. Multi-Level Secu-

rity (MLS), formalised as Bell-LaPadula (BLP), protects confidential information from

unauthorised release and is modelled on the military classification model [15]. MLS’s

logical dual, the Biba integrity policy [18], implements a similar scheme protecting in-

tegrity, and is sometimes used to protect TCBs, such as in Argus’s Pitbull product [12].

Fraser’s Low-Watermark Mandatory Access Control (LOMAC) puts a dynamic spin on

the Biba integrity policy by allowing subject labels to float, tracking taint on processes

to protect system integrity [45].

Early high assurance systems, such as PSOS, founded security policy definition and

enforcement on capabilities; however, Boebert has raised concerns regarding the ability

of pure capability systems to implement mandatory policies such as MLS4 [21]. PSOS’s

2While some operations persist beyond the end of a system call, such as setting up shared memory,

they must be initiated using an explicit system call that can be controlled.
3There have been notable cases in which this has not been done properly: historic UNIX systems

stored credentials in the U-area mapped directly above user process memory – incorrect protections

in one UNIX release allowed user processes to overwrite their credential!
4Kain and Landwehr have argued that this limitation applies only to specific capability system

semantics, and discuss two alternative models in which the *-property is maintained [64]. Miller, et

al., provide a more impassioned (and perhaps more accessible) defence of capabilities in Capability

20

strong enforcement of object types evolved into Boebert’s type enforcement (TE) [22],

employed in NSA and Honeywell’s PSOS-derived LoCK operating system [114]; Badger

has extended TE in domain and type enforcement (DTE) and applied it to lower-

assurance UNIX designs [13]. In TE and DTE, system subjects are labelled with

domains, and objects are labeled with types, whose interactions are controlled at every

access by a configurable rule set.

TE’s flexibility allows it to support many applications, including assured pipelines,

in which a series of processes are linked to perform stepwise processing between two

endpoints, such as two network interfaces in a firewall: data can flow between the two

endpoints only via the steps in the pipeline. TE has, as a result, seen extensive use

in both dedicated-purpose systems such as SCC’s high assurance Sidewinder Firewall

(discussed further in Chapter 3) [79], but also in the widely used SELinux [78], and

has been experimentally deployed for FreeBSD and Mac OS X [131]. In SELinux, TE’s

flexibility is also its weakness, requiring complex policy files that have proven difficult to

write and maintain, a concern I explore further in Chapter 5. I consider the microkernel

context in which TE was developed in more detail in Section 1.3.6.

Another pertinent direction in access control policy was the Compartmented Mode

Workstation (CMW), a computer system design intended for environments handling

classified intelligence data in which data of varying levels and compartments had to

be processed by users. Notable research prototype CMW systems were developed at

Mitre [16] and TRW [37]; later production CMW systems include Trusted Solaris [129].

CMW systems provided the context for applying mandatory access control to window-

ing systems, incorporating ideas about data labelling and access control to the user

interface. These ideas have been influential in the contemporary world of web browsers

and Java applets [51], as well as virtualisation in research systems such as Nitpicker [41]

and Xen3D [126].

1.3.3 Virtualisation

Operating system virtualisation is another potential application of the hierarchical

hardware rings and protection-oriented virtual memory used to implement process mod-

els. This approach inserts a hypervisor in a ring above the hardware and below the

operating system. This model has been implemented on mainframes, such as IBM’s

CP-67, since the 1970s [132].

Additional rings (long-present in the Intel architecture) have seen heavy use in full

operating system virtualisation at the lower end of the market with VMWare since the

1990s, which overcame non-virtualisable instructions on Intel systems through dynamic

code rewriting [133]. More recently, open source systems such as Xen have also become

widespread [14], and the Intel instruction set has been improved to more easily support

virtualisation5

Myths Demolished [154].
5The ring and virtualization story on Intel is further complicated by the fact that virtual machine

21

The primary thrust of virtualisation has been making efficient use of increasingly

capable (and hence idle) hardware by allowing independent services to be collocated.

However, the isolation properties of virtualisation have also been of interest in the

security arena, as suggested by Anderson in 1972 [5]. For example, NSA’s NetTop

platform relies on a blend of virtualisation of low-assurance guest operating systems and

a higher-assurance host with mandatory access control to provide strong separation [92].

1.3.4 Trusted systems

In 1983, the US Department of Defense’s (DoD) National Computer Security Center

(NCSC) released the Trusted Computer System Evaluation Criteria (TCSEC), or Or-

ange Book [91]. This document became the benchmark by which a new class of trusted

computer systems were designed, developed and evaluated, and consisted primarily of

guidance on the security features and assurance properties required for military com-

puting systems.

Access control features such as DAC and MAC policies are prescribed, as well as

accountability through detailed logging of security-relevant events, sometimes referred

to as a secure audit trail or simply security event auditing. Beyond security features,

TCSEC required assurance, or a structured argument supported by evidence that the

design, implementation, and operation of a system is trustworthy with respect to secu-

rity.

In the Orange Book, assurance is divided into two categories: life-cycle assurance,

referring to the design, implementation, testing, and maintenance of the system in

order to ensure correctness, and operational assurance, the utilisation of hardware and

software techniques to support secure behaviour. At high levels of assurance, techniques

such as mathematical proof are applied to design and then implementation, made easier

by formalisms such as the TCB6. Likewise, hardware-supported techniques, such as

multiple security domains (commonly implemented using rings and memory protection),

provide operational guarantees that are more easily reasoned about.

The requirement that computer systems used by DoD must be evaluated under

TCSEC motivated a generation of computer system vendors to collaborate with NCSC

to produce successively more feature-complete and higher-assurance systems. However,

a series of deferrals of this deadline permitted continued use of unevaluated systems in

DoD well into the 2000s.

The TCSEC was replaced during the late 1990s by the ISO-standardised Common

Criteria (CC) evaluation process – in the CC model, evaluations are with respect to Pro-

tection Profiles (PPs) identifying security requirements for specific environments7 [97].

monitors may run in “root mode”, which might logically be thought of as ring -1.
6In many Orange Book systems, the TCB consisted not only of a UNIX kernel, but also all of the

userspace components necessary to bootstrap user login – a sizeable portion of UNIX libraries and

commands!
7The Common Criteria also replaced other national standards, hence “common”.

22

Use of Common Criteria evaluation is now widespread, with most general-purpose com-

mercial operating system products evaluated against one or more OS-centric protection

profiles as a matter of course. Frequently used protection profiles include the Com-

mon Access Protection Profile (CAPP) [58] and Labeled Security Protection Profile

(LSPP) [59], that mandate, respectively, discretionary and mandatory access controls.

Despite considerable criticism of the Orange Book and Common Criteria, often

grounded in their social and economic contexts, as well as debate over the methodology

of formal evaluation processes, it is clear that these standards have had significant

impact on the design and implementation of operating systems [6]. Not least, they have

motivated the addition of features such as security event auditing that would otherwise

be omitted from commercial, off-the-shelf products such as Microsoft Windows and

Mac OS X8.

1.3.5 Capability systems

Over the next few sections, we consider three closely related ideas: capability security,

microkernel OS design, and language-based constraints. These apparently disparate

areas of research are linked by a duality, first observed by Morris in 1973, between the

enforcement of data types and safety goals in programming languages and the hard-

ware and software protection techniques explored in operating systems [87]. Each of

these approaches blends a combination of limits defined by static analysis (perhaps

at compile-time), limits on expression on the execution substrate (such as what pro-

gramming constructs can even be represented), and dynamically enforced policy that

generates run-time exceptions (often driven by the need for configurable policy and

labelling not known until the moment of access). Different systems make different uses

of these techniques, affecting expressibility, performance, and assurance.

Dennis and Van Horn’s security design was influential throughout the 1970s and

1980s [33], providing a model for the integration of software and hardware security

adopted by both research and industrial computing systems. Capabilities, of particular

interest in this dissertation, saw investigation in academia through a variety of hardware

prototypes considering various semantics for protection. These included Ackerman’s

modifications to the DEC PDP-1 architecture at MIT [4], Wilkes and Needham’s CAP

Computer at Cambridge [146], and Cohen and Levin’s Hydra computer at CMU [26, 76].

Each of these systems selected various points along several spectra of implementa-

tion choices, leading to valuable research results. Hydra develops a number of ideas,

including the relationship between capabilities and object references, developing the

object-capability paradigm, as well as pursuing the separation of policy and mechanism9.

8In 2003, I led the team that developed OpenBSM, the audit framework used in FreeBSD and Mac

OS X, and believe that audit has significant value regardless of evaluation, for historic accountability

reasons, but also as a data source for intrusion detection and security analysis systems [144].
9Miller has expanded on the object-capability philosophy in considerable depth in his 2006 PhD

dissertation, Robust composition: towards a unified approach to access control and concurrency con-

23

VFS

Operating system kernel

Proc 1 Proc 2

/
e

h
b

a

libfoo
libc

rtld

libfoo
libc

rtld

libfoo
libc

rtld

ring 1

ring 3/
e

h
b

a

Figure 1.2: The microkernel project shifts complex OS components, such as file systems,

from the kernel to userspace tasks linked by IPC. Microkernels provide a smaller, easier to

analyse, easier to debug, and more robust foundation in the face of dramatic increases in OS

complexity.

Jones and Wulf argue through the Hydra design that the capability model allows the

representation of a broad range of system policies as a result of integration with the OS

object model, which in turn facilitates interposition as a means of imposing policies on

object access, an approach discussed in Section 1.3.8 [62]. The design tension between

expressibility and access control became more clear: whereas some systems (such as

Hydra) do not permit the expression of invalid accesses since capabilities cannot be

constructed to represent them, the CAP computer imposes capability evaluation in the

memory access path, leaving the instruction set largely conventional and trapping to

specialised microcode on illegal references.

1.3.6 Of microkernels and security kernels

Denning has argued that the failures of capability hardware projects were classic failures

of large systems projects, an underestimation of the complexity and cost of reworking

an entire system design, rather than fundamental failures of the capability model [32].

However, the benefit of hindsight suggests that the demise of hardware capability sys-

tems is a result of three related developments in systems research: microkernel OS

design, a related interest from the security research community in security kernel de-

sign, and Patterson and Sequin’s Reduced Instruction Set Computers (RISC) [100].

Successors to Hydra at CMU include Accent and Mach [104, 3], both microkernel

systems intended to explore a decomposition of a large and decidedly un-robust operat-

ing system kernel. Figure 1.2 illustrates the principle of microkernel design: traditional

OS services, such as the file system, are migrated out of ring 0 and into user processes,

improving debuggability and independence of failure modes. They are also based on

trol [84]

24

mapping of capabilities as object references into IPC pipes (ports), in which messages

on ports represent methods on objects.

This shift in operating system design went hand-in-hand with a related analysis in

the security community: Lampson’s model for capability security was, in fact, based on

pure message passing between isolated processes [74]. This further aligned with propos-

als by Andrews [8] and Rushby [111] for a security kernel, whose responsibility lies solely

in maintaining isolation, rather than the provision of higher-level services such as file

systems. Unfortunately, the shift to message passing also invalidated Fabry’s semantic

argument for capability systems: that by offering a single namespace shared by all pro-

tection domains, the distributed system programming problem had been avoided [38].

A panel at the 1974 National Computer Conference and Exposition (AFIPS) chaired

by Lipner brought the design goals and choices for microkernels and security kernels

clearly into focus: microkernel developers sought to provide flexible platforms for OS

research with an eye towards protection, while security kernel developers aimed for a

high assurance platform for separation, supported by hardware, software, and formal

methods [77].

The notion that the microkernel, rather than the hardware, is responsible for im-

plementing the protection semantics of capabilities also aligned well with the simulta-

neous research (and successful technology transfer) of RISC designs, which eschewed

microcode by shifting complexity to the compiler and operating system. Without mi-

crocode, the complex C-list peregrinations of CAP’s capability unit, and protection

domain transitions found in other capability-based systems, become less feasible in

hardware. Simple virtual memory designs based on fixed-size pages and few semantic

constraints have since been standardised throughout the industry.

Security kernel designs, which combine a minimal kernel focused entirely on cor-

rectly implementing protection, and rigorous application of formal methods, formed

the foundation for several secure OS projects during the 1970s. Schiller’s security ker-

nel for the PDP-11/45 [116] and Neumann’s Provably Secure Operating System [96]

design study were ground-up operating system designs grounded in formal methodol-

ogy10. In contrast, Schroeder’s MLS kernel design for Multics [117], the DoD Kernelized

Secure Operating System (KSOS) [44], and Bruce Walker’s UCLA UNIX Security Ker-

nel [135] attempted to slide MLS kernels underneath existing Multics and UNIX system

designs. Steve Walker’s 1980 survey of the state of the art in trusted operating systems

provides a summary of the goals and designs of these high assurance security kernel

designs [136].

The advent of CMU’s Mach microkernel triggered a wave of new research into secu-

rity kernels. TIS’s Trusted Mach (TMach) project extended Mach to include manda-

tory access control, relying on enforcement in the microkernel and a small number of

security-related servers to implement the TCB, accomplishing sufficient assurance to

10PSOS’s ground-up design included ground-up hardware, whereas Schiller’s design revised only the

software stack.

25

target a TCSEC B3 evaluation [23]. Secure Computing Corporation (SCC) and the

National Security Agency (NSA) adapted PSOS’s type enforcement from LoCK for

use in a new Distributed Trusted Mach (DTMach) prototype, building on the TMach

approach while adding new flexibility [120]. DTMach, adopting ideas from Hydra, sepa-

rates mechanism (in the microkernel) from policy (implemented in a userspace security

server) via a new reference monitor framework, FLASK. [127] A significant focus of

the FLASK work was performance: an access vector cache is responsible for caching

access control decisions throughout the OS in order to avoid costly up-calls and mes-

sage passing (with associated context switches) to the security server. NSA and SCC

eventually migrated FLASK to the FLUX microkernel developed by the University of

Utah in the search for improved performance. This flurry of operating system security

research, invigorated by the rise of microkernels and their congruence with security

kernels, also faced the limitations (and eventual rejection) of the microkernel approach

by the computer industry, which perceived the performance overheads as too great.

Microkernels and mandatory access control have seen another experimental com-

position in the form of Decentralized Information Flow Control (DIFC). This model,

proposed by Myers, allows applications to assign information flow labels to OS-provided

objects, such as communication channels, which are propagated and enforced by a blend

of static analysis and runtime OS enforcement, implementing policies such as taint

tracking [90] – effectively, a composition of mandatory access control and capabilities

in service to application security. This approach is embodied by Efstathopoulos et al’s

Abestos [36] and Zeldovich et al’s Histar [156] research operating systems.

Despite the decline of both hardware-oriented and microkernel capability system

design, capability models continue to interest both research and industry. Shapiro’s

EROS (now CapROS) continues the investigation of higher-assurance software capabil-

ity designs [124], and was inspired by the proprietary KEYKOS system [56].

More influentially, Morris’s suggestion of capabilities at the programming language

level has seen widespread deployment. Gosling and Gong’s Java security model blends

language-level type safety with a capability-based virtual machine [54, 51]. Java maps

language-level constructs (such as object member and method protections) into exe-

cution constraints enforced by a combination of a pre-execution bytecode verification

and expression constraints in the bytecode itself. Java has seen extensive deployment

in containing potentially (and actually) malicious code in the web browser environ-

ment. Miller’s development of a capability-oriented E language [84], Wagner’s Joe-E

capability-safe subset of Java [83], and Miller’s Caja capability-safe subset of JavaScript

continue a language-level exploration of capability security [85].

1.3.7 Language and runtime approaches

Direct reliance on hardware for enforcement is central to both historic and current

systems, but not the only approach to enforcing isolation. The notion that limits on

expressibility in a programming language can be used to enforce security properties is

26

frequently deployed in contemporary systems in order to supplement coarse and high-

overhead operating system process models. Two techniques are widely used: virtual

machine instruction sets (or perhaps physical machine instruction subsets) with limited

expressibility, and more expressive languages or instruction sets combined with typing

systems and formal verification techniques.

The Berkeley Packet Filter (BPF) is one of the most frequently cited examples of

the virtual machine approach: user processes upload pattern matching programs to

the kernel, in order to avoid data copying and context switching when sniffing network

packet data [80]. These programs are expressed in a limited packet filtering virtual

machine instruction set capable of expressing common constructs, such as accumulators,

conditional forward jumps, comparisons, etc., but incapable of expressing arbitrary

pointer arithmetic that could allow escape from confinement, or control structures such

as loops that might lead to unbounded execution time. Similar approaches have been

used via the type safe Modula 3 programming language in SPIN [17], and the DTrace

instrumentation tool which, like BPF, uses a narrow virtual instruction set to implement

the D language [24].

Google’s Native Client (NaCl) model edges towards a verification-oriented approach,

in which programs must be implemented using a “safe” (and easily verified) subset of

the x86 or ARM instruction sets, allowing confinement properties to be validated [153].

NaCl relates closely to Software Fault Isolation (SFI) [134], in which safety properties

of machine code are enforced through instrumentation to ensure no unsafe access, and

Proof-Carrying Code (PCC) in which the safe properties of code are demonstrated

through attached and easily verifiable proofs [94]. As mentioned in the previous sec-

tion, the Java Virtual Machine (JVM) model is similar, combining run-time execution

constraints of a restricted, capability-oriented bytecode with a static verifier run over

Java classes before they can be loaded into the execution environment, ensuring that

only safe accesses have been expressed. C subsets, such as Cyclone [60], and type-safe

languages such as Ruby [110], offer similar safety guarantees, which can be leveraged to

provide security confinement of potentially malicious code without hardware support.

These techniques offer a variety of trade-offs relative to CPU enforcement of the

process model: some (BPF, D) limit expressibility that may prevent potentially useful

constructs from being used, such as loops bounded by invariants rather than instruction

limits, as well as imposing a potentially significant performance overhead. Systems

such as FreeBSD often support just-in-time compilers (JITs) that convert less efficient

virtual machine bytecode into native code subject to similar constraints, addressing

performance but not expressibility concerns [82].

Systems like PCC that rely on proof techniques have had limited impact in in-

dustry, and often align poorly with widely deployed programming languages (such as

C) that make formal reasoning difficult. Type-safe languages have gained significant

ground over the last decade, with widespread use of JavaScript and increasing use of

functional languages such as OCaML [107], and offer many of the performance benefits

27

with improved expressibility, yet have had little impact on operating system implemen-

tations. However, an interesting twist on this view is described by Wong in Gazelle, in

which the observation is made that a web browser is effectively an operating system by

virtue of hosting significant applications and enforcing confinement between them [137].

Web browsers frequently incorporate many of these techniques including Java Virtual

Machines and a JavaScript interpreter.

1.3.8 Extensible access control frameworks

Policy flexibility and extensibility have been a consideration in operating system design

since the inception of operating system access control. Multics supported two forms of

access control extensibility: first, trap entries in access control lists, allowing customised

policy code to execute, and second, general use of a capability security architecture,

allowing delegation of capabilities to encapsulate application-specified policies. These

two related principles have been explored in considerable depth, and derivatives of

both have appeared in many systems. A third principle is the separation between

policy and mechanism, valuable in assurance arguments, which enables extensibility as

policy becomes increasingly pluggable, if cleanly separated from mechanism. Anderson

et al.’s 1972 Computer Security Technology Planning Study proposes that a distinct

reference monitor implement policy, with the following guarantees:

• The reference validation mechanism must be tamper proof.

• The reference validation mechanism must always be invoked.

• The reference validation mechanism must be small enough to be subject to anal-

ysis and tests to assure that it is correct.

The method by which a reference monitor is integrated with the operating system,

however, is left open.

Levin et al. argue not only for a principled separation of policy and mechanism

in Hydra, but also for a practical implementation in which the kernel provides the

foundations for a secure object system, enforcing but not determining policy [76]. Jones

and Wulf provide an elegant philosophical argument for an extensible approach in which

the same protection mechanisms provided for the operating system should be extended

to all processes running on the system [62]. In Hydra, that mechanism is an object

capability model describing both OS objects and objects maintained by processes, in

which capabilities incorporate not just references to underlying objects, but also a list

of named rights that a given capability permits on the object. Because the semantics

of these accesses (or in current parlance, methods) does not need to be visible to the

operating system, certain policies can be enforced blind to those semantics, permitting

the object system to be extensible without change being required to the mechanisms of

enforcement. Jones and Wulf further observe that a variety of useful constructs can be

created using object interposition on capabilities, including revocation (also observed

28

by Redell [105]) and filtering. Karger demonstrates the flexibility and power of the

interposition approach as an alternative to mandatory access control in containing

trojan horses [67].

Systems such as Hydra, TMach, DTMach, and DTOS achieve, to varying degrees,

the goal of separating policy from mechanism and providing strong enforcement via

reference monitors; however, those systems have failed to see widespread adoption due

to their reliance on microkernels. FLASK itself represents a form of access control ex-

tensibility, as a generalisation of type enforcement through an extensible interface [127].

Throughout the 1990s, access control researchers also explored the application of

various security policies to medium- and low-assurance designs, including trusted UNIX

systems integrating MLS, fine-grained privileges, and occasionally, integrity protection,

as well as experimentation with alternative security policies in systems such as Linux

and FreeBSD. However, OS vendors found themselves in the awkward position of having

to support various access control models without a clear vision for what would become

a widely used feature verses an expensive-to-maintain local extension.

System call interposition, discussed in detail in Chapter 2, is an operating system

extension technique premised on “wrapping” system calls from within the kernel address

space in order to impose new semantics – not dissimilar to capability interposition

techniques. This approach was widely used in access control research in the 1990s, and

persists in research and commercial products despite strong evidence (in part raised as

a result of research in this dissertation) that the approach is fundamentally flawed in

concurrent systems. The approach is appealing for security product vendors as it does

not require modifying, or even access to, the operating system’s source code, and offers

easy access to the system call interface. A related approach relies on the use of the

ptrace debugging system call to introduce new constraints on users processes without

modifying the kernel, and frequently suffers from similar vulnerabilities.

Abrams’ Generalized Framework for Access Control (GFAC) suggests one way out:

adoption of the idea of a reference monitor, but unlike high assurance or microkernel

approaches, within the confines of the existing operating system kernel [2]. Ott im-

plemented the GFAC model for Linux in Rule Set Based Access Control (RSBAC),

and influenced future open source OS developers to consider this direction [99]. Both

the TrustedBSD MAC Framework (2000), discussed in Chapters 3 and 4 [143], and

shortly thereafter, Linux Security Modules (LSM) (2001) [148, 39] are grounded in ac-

cess control uncertainty: the desire for a reference monitor without a commitment to

a single policy. Resulting extensibility permitted the adaption of policies as varied as

Biba, MLS, LOMAC, type enforcement, and more UNIX-centric models within these

frameworks.

Apple has also explored pluggable access control in its Mac OS X and iOS operating

systems, used respectively in Mac computers and “embedded” iPhone, iPod Touch,

and iPad platforms. Initially, Apple took the approach of developing a new extension

framework, KAuth, or Kernel Authorisation Framework, to satisfy the needs of third-

29

party developers such as anti-virus vendors on Mac OS X, an approach also adopted by

the NetBSD Project [9]. However, in later releases, the TrustedBSD MAC Framework

was added to Mac OS X and iOS to support Apple’s own more comprehensive security

models, such as the Sandbox sandboxing, Quarantine data tainting framework, and

integrity protection in Apple’s Time Machine backup system. Sandbox is used to

constrain potentially risky network services on Mac OS X, and enforce isolation in the

iPhone [1]. These policies are considered in greater detail in Chapter 4.

1.4 Structure of this dissertation

This dissertation describes new analyses and technologies that contribute to under-

standing and implementing operating system access control extensibility. Validation of

these approaches through research prototypes is a critical element of the dissertation,

and so each chapter not only explores theory, but also the implications of implementa-

tion and methods of validation.

Chapter 1 has introduced central OS security constructs: isolation, the principle of

least privilege, discretionary and mandatory access control models, and capabilities. I

also considered the importance of changing hardware and security requirements, which

motivated much of this research.

Chapter 2 considers system call interposition, a security extensibility technology

popular through the 1990s and 2000s in operating system security research and products

(such as anti-virus software). Analysis of the approach reveals significant and readily

exploited concurrency vulnerabilities.

Chapter 3 investigates a new approach to operating system security extension: a

flexible access control framework. The TrustedBSD MAC Framework is tightly inte-

grated with the kernel concurrency model, allowing third-party policy modules to avoid

inherent race conditions.

Chapter 4 picks up where Chapter 3 leaves off, exploring the successful technol-

ogy transfer of the MAC Framework through a series of case studies: the FreeBSD

operating system, nCircle’s enforcement appliance, and Apple’s Mac OS X and iOS

operating systems. I consider the diverse set of requirements placed on the framework

across several operating systems, and the enhancements made to the framework from

its original design, especially relating to SMP performance and policy expressiveness,

that have led it to be a success.

In Chapter 5, I turn my attention to OS support for application security extensi-

bility through Capsicum, a new OS security model that blends historic UNIX design

with a capability model. Capsicum focuses on application writers rather than sys-

tem designers, reflecting a trend from multi-user computers to single-user systems with

security-aware applications. Concurrency plays a key design role, and we explore one

concurrency vulnerability that lends itself to formal analysis through model checking.

This dissertation makes novel contributions in each of these areas, bringing new

30

solutions to historically challenging research problems in operating system security. I

conclude in Chapter 6, deriving a set of principles for the imposition and structure of

access control in operating systems, gleaned from practical experience. These may be

of import to future system designs, as well as shedding light beyond the narrow field

in computer security.

31

32

Chapter 2

Concurrency vulnerabilities in

system call interposition

To motivate new work in operating system security extension, it is necessary to un-

derstand why prior prior approaches in the commodity OS space are inadequate. This

chapter explores system call interposition, a kernel extension technique used extensively

to augment operating system security policies without modifying underlying OS code.

System call wrappers are widely used in research systems and commercial anti-virus

software despite research suggesting security and reliability problems; Garfinkel [48],

Ghormley [50], and the author [143] have all previously described the potential for

concurrency vulnerabilities in wrapper systems.

This chapter is based on a paper presented at the First USENIX Workshop On Of-

fensive Technologies (WOOT07), which was intended to discredit system call wrappers

as an approach to access control extension – a practice that persisted due to a belief

that proposed concurreny vulnerabilities were purely theoretical. The paper provided

detailed and hands-on consideration of concurrency attacks on system call interposi-

tion, and has been cited as a key consideration in design choices for later security

research. Building on that work, I investigate vulnerabilities and exploit techniques for

real-world systems, and demonstrate that inherent concurrency problems lead directly

to exploitable vulnerabilities, concluding that addressing these systemic vulnerabilities

requires rethinking security extension architecture.

This chapter first introduces concurrency in operating system kernels and the sys-

tem call wrapper technique. I then discuss the structure of concurrency vulnerabilities,

the applicability of concurrency attacks to wrappers, and practical exploit techniques.

Next, I investigate privilege escalation and audit bypass vulnerabilities in three system

call interposition systems, Generic Software Wrappers Toolkit (GSWTK) [46], Sys-

trace [102], and CerbNG [30]. Finally, I explore deployed mitigation techniques and

architectural solutions to these vulnerabilities. As I examine new approaches to exten-

sibility in later chapters, I return not just to these specific attacks, but to more general

concerns with concurrency and security that arise in security research.

33

Operating system kernel

Process Process Process

Resources

Reference monitor

Consumer Consumer

System call wrapper

Consumer

Figure 2.1: Misleading congruence of reference monitor and system call wrappers: despite

appearances, the request path intercepted by wrappers is bypassable.

2.1 Operating system kernels and concurrency

Concurrency is a fundamental operating system feature, and must be considered care-

fully in any security design. Operating system kernels, themselves, are highly con-

current programs, producing and consuming concurrency services internally, as well

as offering them to applications. Concurrency in operating system kernels arises from

two hardware sources: interrupts resulting from timers, network events, etc, and par-

allelism deriving from hardware multiprocessing. Most desktop and server systems

support multiprocessing in some form, as do increasing numbers of embedded systems

(such as smart phones), traditional bastions of minimalism.

Concurrency also arises in operating system kernels as a result of the asynchronous

and event-oriented nature of internal kernel services and those offered to applications

running on the OS. Kernels provide internal threading facilities to kernel subsystems

(file systems, network stacks, etc) and expose concurrency to applications via processes,

threading, signals, and asynchronous input and output (I/O). Kernel subsystem authors

and application writers employ these facilities to mask I/O latency, exploit hardware

parallelism, and structure programs serving multiple consumers.

2.2 Wrappers for security

System call interposition imposes a reference monitor on kernel services by intercepting

system calls (Figure 2.1). As described in Chapter 1, Anderson states that a reference

monitor must be tamper proof, always invoked, and small enough to be subject to

analysis and tests to assure correctness [5]. On face value, system call wrappers appear

to meet these criteria: they run in the kernel’s protection domain, are invoked in the

system call path, and avoid complex modifications to kernel source code by isolating

security decisions in a self-contained module.

Further, wrappers work at the level of the UNIX application programming inter-

face (API), allowing many wrapper packages to be portable across multiple operating

systems. System call wrappers are compiled into the kernel or loaded as a module,

34

System call
wrapper

postconditon
processing

System call implementationSystem call
wrapper

precondition
checks

Process

kernel

user
User process
invokes system call

Early wrapper-enforced system
call return to user space

Normal
system
call return
to user
space

Figure 2.2: System call wrappers implement precondition and postcondition processing around

the system call.

hooking the system call trap handler (Figure 2.2). I adopt terminology from GSWTK:

• Precondition hooks execute before the system call runs, and inspect or substitute

arguments before kernel services see them.

• Postcondition hooks execute prior to returning control to user space, allowing

them to track and log results, transform return values, etc.

Wrappers perform policy checks with the system call number and arguments, and have

access to kernel data structures such as process control blocks. On access control

failure, they may abort the call, transform arguments, modify credentials, log events,

or cause other side effects. By substituting argument and return values, system call

wrappers can change system object name spaces visible to applications; e.g., a wrapper

can redirect file open requests or change the IP address bound by an application.

Policy sources include compiled policies (LOMAC) [45], policy configuration languages

(GSWTK, CerbNG), and even message passing to user processes (Systrace).

2.3 Concurrency attacks on wrappers

As highly concurrent software protecting critical data, operating system kernels are fer-

tile ground for the discovery of concurrency vulnerabilities. In contrast to assumptions

of atomic system call made in previous considerations of race conditions, key to our

approach is non-atomicity between the kernel and system call wrappers [31]. I have

identified and successfully exploited three forms of concurrency vulnerability:

• Synchronisation bugs in wrapper logic leading to incorrect operation, e.g., im-

proper locking of data.

• Lack of synchronisation between the wrapper and the kernel in copying system

call arguments, such that argument values processed by the wrapper and the

kernel differ. I describe these as syntactic race conditions.

35

• Lack of synchronisation between the wrapper and the kernel in interpreting system

call arguments, as kernel and wrapper interpretations of identical argument values

differ. I describe these as semantic race conditions.

The latter two forms involve not a wrapper in isolation, but rather its failure in com-

position with the service it protects.

I focus on syntactic race conditions that do not depend on kernel and wrapper

internals, and hence are portable across wrapper frameworks and operating systems.

I found that the most frequently identifiable and exploitable vulnerabilities fall into

three categories:

• Time-of-check-to-time-of-use (TOCTTOU) vulnerabilities, in which access con-

trol checks are non-atomic with the operations they protect, allowing an attacker

to violate access control rules.

• Time-of-audit-to-time-of-use (TOATTOU) vulnerabilities, in which the trail di-

verges from actual accesses as a result of non-atomicity, violating accuracy re-

quirements. This allows an attacker to mask activity, avoiding IDS triggers.

• Time-of-replacement-to-time-of-use (TORTTOU) vulnerabilities1, unique to wrap-

pers, in which attackers modify system call arguments after a wrapper has re-

placed them but before the kernel has accessed them, violating the security policy.

I am not aware of prior research on audit and replacement vulnerabilities.

2.4 Exploit techniques

Concurrency vulnerabilities exist where there is inadequate synchronisation of a shared

resource leading to violation of security policy. The first step in locating concurrency

vulnerabilities is to identify resources relevant to access control, audit, or other security

functionality that are accessed concurrently across a trust boundary. Relevant resources

include file system objects, shared memory, and sockets, as well as indirectly accessed

kernel objects, such as nodes/inodes and kernel buffers. To exploit race conditions

in interposition, I use process memory, accessed by the user process, wrapper, and

kernel, to hold system call arguments. User memory is accessed from the kernel with

copying functions, e.g., BSD copyin() and copyout(), which validate addresses and

page memory as needed.

Direct arguments are passed as stack variables or via registers, and contain values

such as process IDs and pointers; they are copied in by the system call trap handler.

Wrappers consume the same instance of these arguments as the kernel, so are not

subject to syntactic races.

1Neumann has observed that this is a torturous acronym.

36

Indirect arguments are referenced by pointers, often passed as direct arguments, and

copied on-demand by kernel services: for example, file paths are copied and resolved

by namei(). Indirect arguments are copied after the precondition hook, so wrappers

copy them independently from the kernel, opening a race window between the two copy

operations. These races are limited to indirect arguments, many of which are security-

critical, such as socket addresses, file paths, arguments to ioctl() and sysctl(), group

ID lists, resource limits, and I/O data.

2.4.1 Concurrency approaches

Concurrent program execution on UNIX occurs via signals, asynchronous I/O, threads,

and processes. Operations in a single process necessarily support shared memory;

processes may share memory using minherit(), rfork(), and clone(), explicit shared

memory and, debugging interfaces. For the purposes of the experimental exploits in

this chapter, I share memory across processes by inheritance, as other methods are

not consistent across systems. Prior work has considered races between user processes,

but I am interested in races between user threads and the kernel itself. This requires

the user thread and kernel to run concurrently, which is possible through interleaved

scheduling or hardware parallelism.

2.4.2 Racing on uniprocessor systems

On uniprocessor (UP) systems, the attacker must cause the kernel to yield to a user

thread between execution of the system call and wrapper preconditions and postcon-

ditions. Yielding may occur voluntarily (a thread requests blocking I/O on a socket

or disk) or involuntarily (a kernel thread accesses memory resulting in a page fault

from disk). Both may be used to race with system call wrapper preconditions and

postconditions.

Page faults on indirect system call arguments are effective in opening up race win-

dows. The resulting wait on disk I/O provides a scheduling window of several million

instruction cycles, more than enough time for an attacking thread to replace the con-

tents of a memory page. On most systems it is easy to arrange for user memory to

be paged to disk, either swap (if configured) or a memory mapped file, by increasing

memory pressure.

Initially, I believed that this technique was limited to system calls with multiple

indirect arguments, such as rename(). I was able to successfully exploit this case by

paging the rename() target path to disk, allowing the source path to be replaced between

check and use. On reflection, I realised that copy operations themselves are non-

atomic, sleeping part-way through if user data spans multiple pages, allowing even

system calls with a single argument to be attacked. This works well as the last byte of

many indirect arguments is not essential: strings are null-terminated, and many data

structures contain padding. Page faults may also be used to attack postconditions,

subject to the limitation that it is possible to force a page fault on each page only once

37

during most system calls.

Voluntary thread sleeping also prove useful: during a TCP connect(), the calling

thread will wait in the kernel for a TCP ACK to confirm the connection, allowing a

user thread to execute a postcondition attack on auditing after the arguments have

been copied in by the kernel.

2.4.3 Racing on multiprocessor systems

For the purposes of this work, I consider any system with cache-coherent shared memory

parallelism to be a multiprocessor (MP), including SMT and multicore systems. UP

systems are vulnerable to races, but require manipulating kernel scheduling via a limited

set of yield opportunities. On MP systems, races between user and kernel threads can

be exploited without relying on kernel sleeping, as user threads may run simultaneously

on other CPUs. Inter-CPU shared memory race conditions are narrow, as they occur

at memory speed (10K-100K cycles) rather than disk or network speed (>1M cycles),

and the challenge remains timing memory modifications so that the wrapper sees one

version of an argument while the kernel sees another.

I use two approaches to identify timing for argument replacement. In the case of

argument copies without replacement, a binary search for the Time Stamp Counter

(TSC) length of the race window can be performed by timing the results of the system

call being raced with; as many of these races are effectively deterministic, successful

exploitation is simply a matter of timing. In the case of argument copies with replace-

ment by the wrapper, it is possible to simply spin while watching for the replacement

to take place in-memory, and then modify the argument to its original value, or a new

value.

I found that race window length varied based across wrapper systems. Races on

arguments in GSWTK, which runs only in kernel, were often between 5K and 15K

cycles. Systrace passes control to a user process, which performs optional copies in and

out of the target process, opening race windows of over 100K cycles. The order of mag-

nitude difference in race window size did not, however, lead to measurable differences

in exploit effectiveness: I had a 100% success rate in exploiting races across packages.

2.5 Exercising real vulnerabilities

As the goal of this approach is to demonstrate the immediate practicality of exploiting

race conditions in real-world interposition systems, I now consider hands-on experi-

ments in doing so. All experiments and measurements were performed on a 3.2 GHz

Intel Xeon.

2.5.1 Generic Software Wrapper Toolkit (GSWTK)

GSWTK is a kernel access control system that allows task-specific system call wrappers

to inspect and modify arguments and return values. Wrappers are written using a

38

open() system call GSWTK
postcondition

/home/ko/.forward home/ko/Inbox

Process 1

Process 2

path

kernel

user

user

Attacker forces
last byte of path

into swap

IDwrappers copies
replaced path for

use in IDS

Attacker replaces real path
with path intended for IDS

while kernel is paging last byte

Kernel copies real path
from memory, then faults
on last byte and sleeps
until page is in memoryAttacker copies real

path of file to open
into shared memory

Exploitable race window while process 1
waits for memory to be paged

Figure 2.3: Processes employ paging to force copyin() in open() to sleep so that the process

can use a TOATTOU attack on an intrusion detection wrapper.

C language extension with integrated SQL database support. GSWTK is available

as a third-party package on the Solaris, FreeBSD, BSD/OS, and Linux platforms; I

employed GSWTK 1.6.3 on FreeBSD 4.11. A variety of wrappers are available, from

access control policies to intrusion detection systems.

I was able to successfully substitute values used in both precondition access con-

trol and postcondition auditing and intrusion detection on UP with paging, and on

MP systems from a second processor. After experimentally validating the approach

on a subset of wrappers, I inspected the remaining wrappers shipped with GSWTK.

Of 23 wrappers available for UNIX or all platforms, 16 had one or more vulnerabilities

(Table 2.1). Also of interest is Ko’s work on sequence-based intrusion detection, as it il-

lustrates the potential impact of TOATTOU vulnerabilities [72]. Investigation revealed

vulnerabilities in several intrusion detection wrappers. Figure 2.3 illustrates one such

race, in which an intrusion detection wrapper intended to detect an exploited imapd

vulnerability is bypassed by racing between the kernel open, which sees the forbidden

pathname /home/ko/.forward, and the post-condition wrapper that monitors it, which

sees to permissible pathname /home/ko/Inbox.

2.5.2 Systrace

Systrace is an access control system that allows user processes to control target processes

by inspecting and modifying system call arguments and return values. The OpenBSD

operating system includes Systrace; NetBSD has done so historically, and there are

ports available to Mac OS X, FreeBSD, and Linux. For this work, I used Systrace

on NetBSD 3.1, 4.0 (Jan. 2007), and OpenBSD 4.0. As Systrace is a programmable

policy system, I used two policies: Sudo monitor mode [86] and Sysjail [61]. I bypassed

protections in both, violating access control policy and audit trail integrity.

39

Wrapper Description Vulnerabilities

callcount Count system calls None: uses system call number.

conwatch Track IP connec-

tions by processes.

Postcondition TOATTOU race

on connect() and bind() masks

actual address/port.

dbfencrypt Encrypt files with

’$’ in their names;

prevent rename so

that policy cannot

be changed.

Postcondition TOCTTOU race

allows incorrect name in policy

check; precondition TORTTOU

races on I/O write unencrypted

data and bypass rename checks.

dbexec Authorise program

execution based on a

pathname database.

Precondition TOCTTOU race

allows bypass by substituting the

name during the wrapper check.

dbsynthetic Synthetic file system

sandbox substituting

pathnames.

Precondition TORTTOU race

bypasses path replacement; post-

condition TORTTOU race leaks

true paths

life Prints process life

cycle.

Precondition TOATTOU race

replaces exec() paths.

noadmin Deny all privileged

operations.

None: relies on the kernel’s pro-

cess credential.

aks.wr Audit file operations Pre/postcondition TOATTOU

races avoid audit.

seq-kernel.wr Sequence-based

intrusion detection

None: uses system call number.

imapd.wr Detect anomalous

access by imapd.

Postcondition TOATTOU path

races prevent alerts.

Table 2.1: Examples of concurrency vulnerabilities in GSWTK and ID Wrappers.

Sudo

Sudo is a widely used privilege management tool allowing users to run authorised com-

mands with the rights of another user [86]. The prerelease version of Sudo includes

a “monitor mode”, implemented using Systrace, that audits commands executed by

Sudo-derived processes. Sudo’s systrace monitor intercepts invocations of execve()

that occur after a successful user switch, auditing indirectly executions by the com-

mand. The execve() system call accepts a program path, command line arguments,

40

bind()
system

call

Sysjail/Systrace
precondition

0.0.0.0 0.0.0.0192.168.100.20

Sysjail copies
in 0.0.0.0;

validates and
accepts it

Process 1

Process 2

path

kernel

user

user

Attacker
copies 0.0.0.0
into memory

bind() copies
in and uses

0.0.0.0 to bind
the socket

Attacker restores original
system call arguments of 0.0.0.0

before bind() copyin runs
Process 2 waits 500k

cycles on CPU 2

Sysjail replaces IP
with jail address
192.168.100.20

Exploitable race window
between memory copies

Figure 2.4: Race to bypass protections from a second processor by replacing the IP address

passed to bind() between check and use.

and environmental variables as indirect arguments, and thus is vulnerable to attack.

Due to a user-space policy source, Systrace requires additional context switches to make

access control decisions, leading to larger race windows. With Sudo on MP systems,

the window for execve() arguments was over 430K cycles. I was able to successfully

exploit this vulnerability, replacing command lines so that they were incorrectly logged,

masking all further attacker activity in the audit trail.

Sysjail

Sysjail is a port of the FreeBSD jail containment facility using the Systrace framework

for NetBSD and OpenBSD [61, 65]. Sysjail attaches to all processes in the jail, val-

idating and in some cases rewriting system call arguments to maintain confinement.

Sysjail is of particular interest as it is intended to contain processes running with root

privilege, increasing exposure in the event of vulnerability.

Sysjail handles several indirect arguments, including IP addresses passed to bind().

It enforces two constraints: the address must be configured for the jail or it must be

INADDR ANY, in which case it will be replaced with the jail’s address. By racing with

the Sysjail, I am able to replace the IP accepted by Sysjail with another IP address,

bypassing network confinement (Figure 2.4).

2.5.3 CerbNG

CerbNG is a third-party security framework for FreeBSD 4.8 similar to GSWTK. It

allows rule-based control of system calls, checking and modifying arguments and re-

turn values, changing process properties, and logging events. I successfully exploited

TOATTOU and TOCTTOU races in rules shipped with the system, replacing com-

mand lines in log-exec.cb, which audits execve(), generating incorrect audit trails.

41

CerbNG unsuccessfully employs several virtual memory defences discussed in Section

2.6.1.

2.6 Preventing wrapper races?

System-call wrapper races can lead to partial or complete bypass of access control and

audit. To address this, concurrency must be properly managed. I consider proposed

solutions in three areas: those that retain the wrapper architecture but modify wrapper

systems to mitigate attacks, those that retain the wrapper architecture but modify the

OS kernel, and those that entirely abandon the wrapper approach in extending kernel

security.

2.6.1 Mitigation techniques

Lee Badger (private communication) has suggested a weak consistency approach: detect

and mitigate exploitative changes in kernel state via a postcondition, taking remedial

action if a violation has occurred. I believe that this approach faces challenges from

the complex side effects of some system calls (e.g., connect() and unlink()); detecting

inconsistency faces the same atomicity issues as other postconditions.

Pawel Dawidek (private communication) has experimented with marking memory

pages that hold system call arguments as read-only during system calls. If implemented

properly, this prevents argument races, but violates concurrent programming assump-

tions. Legitimate multithreaded processes may store concurrently accessed data in the

same memory page as arguments, and will suffer ill effects such as unexpected faults.

VM protection is nontrivial, as all mappings of a physical page must be protected.

One interesting case involves memory-mapped files: systems with unified VM/buffer

caches must prevent writes via I/O system calls, not just mapped memory. Protecting

pages is also insufficient: the address space must be protected to prevent the unmapping

of protected pages and remapping with writable ones. I found several vulnerabilities

in CerbNG’s VM protections, including incorrect write protection of pages, and race

windows while copying arguments.

Provos provides similar facilities in Systrace, copying indirect arguments into the

“stack gap”, a reserved area of process memory, allowing wrappers to substitute indirect

arguments of greater size than the original argument. He has also suggested that this

may be used to resist shared memory attacks as the stack gap area is unique to each

process. This protection is not effective with threads, as threads share a single address

space. Experimentation on OpenBSD indicates that the stack gap mapping can be

replaced with shared memory accessible to other processes even in the non-threaded

case. This approach also causes additional data copies for any protected arguments,

which for large arguments may significantly impact performance both by virtue of

additional copying and memory footprint.

42

Ghormley addresses argument races in the SLIC interposition framework via in-

kernel buffers that extend the user address space. Each thread caches regions of the

address space copied by the extension or kernel; future accesses will be from the cache,

preventing further modification by user threads. This approach requires replacing the

kernel copy routines so that the kernel and the wrappers use the cache. As cache buffers

are not forced to page size, the false sharing effects of page protections are avoided; how-

ever, this approach imposes a significant performance penalty, as all indirect arguments

must be copied and cached in kernel memory.

VM and caching schemes make processing indirect arguments that are read and

written in a single system call (such as POSIX asynchronous I/O) more tricky. None

of the systems with protections were able to handle this case correctly, although this

had limited impact as none of the sample policies controlled affected system calls.

Many of these mitigation techniques suffer serious correctness and performance

problems. VM and caching protect only against syntactic vulnerability, as they pre-

vent the attacker from replacing arguments and do not synchronise with kernel services.

Fundamentally, system call wrappers are not architecturally well-placed to synchronise

with the kernel, as this conflicts with clean separation from the kernel.

2.6.2 Message passing systems

In order to maintain the system-call interposition model without resorting to mitiga-

tion techniques, kernel operation must be changed. One possibility is to move to a

message-passing model, in which system call arguments are bundled and delivered to

the kernel at once rather than being copied on-demand. This approach would not

eliminate semantic race conditions, but would eliminate syntactic race conditions by

allowing wrappers to inspect the same argument values as the kernel. The disadvantage

to this model is that it requires the complete layout of arguments to be available to the

trap handler; currently, this knowledge is distributed across many layers of the kernel.

Garfinkel’s Ostia [49] and Seaborn’s Plash [119] both implement message-passing

approaches in which access to the file system name space must occur “by proxy” via a

monitor process, avoiding argument and name space copying races, but allowing further

accesses to occur directly using a passed file descriptor – a technique also employed,

with measurable overhead, in my own Capsicum design, discussed in Chapter 5. VM

mitigation schemes may be gradually extended to approximate the message passing

paradigm, although they provide less clean implementations than systems designed

with message passing in mind, such as Mach [3].

2.6.3 Integrating security and concurrency

A more flexible, if more complex approach, is to eliminate race conditions between

security extensions and the kernel by integrating security checks with the kernel itself.

Invocations of security extensions then occur throughout the kernel, atomically with

respect to use of the objects they control. For example, access control checks on a

43

process operation would be performed while holding locks on the process to prevent

changes in associated context.

As system call interposition was developed to avoid OS modification, this may seem

contradictory; however, the move to open source systems and the adoption of security

extensions has driven the creation of security frameworks by vendors in attempts to

maintain the ideals of a reference monitor. This approach has been adopted by FLASK

in SELinux [127], SEBSD [131], and SEDarwin, the TrustedBSD MAC Framework in

FreeBSD and Mac OS X [143], kauth in Mac OS X [9] and NetBSD [35], and Linux

Security Modules [148]. The degree of integration varies across systems: at one ex-

treme, the TrustedBSD MAC Framework, described in detail in Chapter 3, enforces

object locking at each entry from the kernel, allowing policies to rely on kernel locks

to protect associated access control checks. At the other extreme, the kauth frame-

work allows up-calls to a user process, which precludes holding some locks over checks:

this re-introduces the opportunity for races, but as with systrace, offers the benefit of

userspace-originated policy.

Integrated kernel security frameworks do not eliminate the problem of concurrency

vulnerabilities entirely, but they do make it possible to avoid race conditions innate to

the system call interposition approach.

2.7 Impact of the WOOT07 paper

Since the publication of my WOOT07 paper, the practicality of the attacks it describes

has influenced several OS vendors to select integrated security approaches rather than

system call interposition, especially in the arena of smart phone security. Research

has also demonstrated that similar vulnerabilities exist in large numbers of Windows

security and anti-virus products. In 2010, commercial consulting firm matousec.com

reported that 35 windows anti-virus systems they analysed could be bypassed using

system call wrapper race conditions, illustrating the broad applicability of the ap-

proach [34].

Researchers have continued to explore alternative approaches to security extensi-

bility – most notably, systems such as the MAC Framework, LSM, and file system

stacking have become the preferred models for extensibility. For example, Ford and

Cox’s Vx32 sandboxing scheme specifically addresses concurrency attacks [43], as does

Potter’s PeaPod via stacked file system use [101]. Fetzer’s SwitchBlade is limited to

direct argument processing and temporal analysis in part because of the potential for

concurrency issues [42]. Many citations to this paper now exist in security and systems

research; unfortunately, new interposition-based research has continued to be published

merely citing the potential for races, rather than addressing them [98].

44

2.8 Conclusion

In this chapter, I have explored concurrency vulnerabilities in system-call interposition

security extensions, arguing that correctness with respect to concurrency is critical to

access control and audit. I demonstrated that several wrapper systems suffer from com-

mon classes of concurrency vulnerabilities allowing privilege escalation and intrusion

detection bypass.

These vulnerabilities derive from the fundamental architectural separation of the

wrapper from native kernel synchronisation strategies – the same structural separation

that leads to an appealing but deceptive similarity to an idealised reference monitor. I

also demonstrated that many deployed mitigation solutions suffer from vulnerabilities,

as well as semantic and performance degradations, and that architectural solutions

require much tighter integration of security with the kernel.

While the problems described here are technical in nature, they are also structural.

Perhaps more fundamentally, these structural problems reflect a lack of OS vendor

involvement in security extensibility. In the next chapter, I consider approaches by

which OS vendors can directly support the needs of security extension authors. Such

facilities have also proven valuable to OS vendors themselves, as they attempt to adapt

their operating system products for changes in security requirements.

45

46

Chapter 3

The MAC Framework: extensible

kernel access control

This chapter describes the TrustedBSD MAC Framework, a kernel access control ex-

tension framework for the FreeBSD and Mac OS X operating systems. The MAC

Framework formalises the relationship between kernel subsystems and the policy ex-

tensions that will control them. An explicit facility for pluggable access control policy

extension brings a number of benefits:

1. Pluggable policy necessitates separation of policy from enforcement, as enforce-

ment is scattered throughout the kernel. This introduces the structure of a refer-

ence monitor, offering assurance benefits.

2. The cost of maintaining multiple versions of an operating system with differ-

ent access control features is reduced, making it easier to develop and maintain

“trusted” variants of commodity systems, as well as to specialise OS policy for

appliances, embedded devices, and smart phones.

3. Vendors of third-party systems, such as anti-virus systems, intrusion detection

systems, and hardening policies, can more easily write and maintain security

extensions. A well-defined interface reduces dependence on OS implementation

details, and offers a “contract” for semantics such as concurrency.

4. Access control research and technology transfer is facilitated.

The MAC Framework fulfils these goals: OS vendor and third-party security extensions

can be compiled into the kernel, loaded at boot time, or if permitted by the semantics

of a policy, even dynamically loaded and unloaded at runtime. The framework sup-

ports a variety of access control policies, from historic information flow policies such

as Biba [18] and MLS [15], rule-based labelled models such as Type Enforcement [22],

to UNIX-centric hardening policies that augment, rather than supplement, existing ac-

cess controls. It also provides common infrastructure needed by many policies, such as

47

security labelling for system subjects and objects, and policy-agnostic system calls and

utilities for managing security labels. When multiple policies are loaded simultaneously,

the results are deterministically composed in a useful way 1.

The argument for kernel access control extensibility is similar to the arguments

made for other forms of kernel extension such as the Virtual File System (VFS) and

device drivers: an initial investment to create the framework pays dividends by making

code more modular, factors out common infrastructure, and facilitates customisation.

For example, VFS allows the same OS APIs to access files across different file system

types (such as NFS, which motivated the introduction of VFS [115]). Device driver

frameworks reduce code duplication, allow new device support to be added without

significant OS changes, and reduce the opportunity for errors by imposing a uniform

structure. Likewise, an access control extension model enables access control localisa-

tion, or the adaption of a kernel’s access control policy for a specific environment.

The MAC Framework’s design directly addresses the concurrency vulnerabilities de-

scribed in Chapter 2 by integrating access control extensions with the kernel’s synchro-

nisation model. This approach avoids multiple evaluations of arguments (syntactic or

semantic), and allows policy modules atomic access to kernel structures, avoiding broad

classes of time-of-check-to-time-of-use vulnerabilities endemic in system call wrappers.

The starting point for this chapter was a paper presented at the Third DARPA

Information Survivability Conference and Exposition (DISCEX III) in 2003, which

presented the design, implementation, and evaluation of the MAC Framework as a

research technology [143]. The chapter, however, describes the framework as a produc-

tion technology as shipped in late 2009, and reframes its arguments and explanation in

light of a further six years of research, development, and technology transfer experience.

Collaborating with companies developing products based on the MAC Framework has

been a central part of my PhD research into extensible access control. Significant parts

of this chapter, and all of the following chapter, build on that experience:

• Extensive real-world feedback from deployment to millions of devices has led to

non-trivial refinements of approach, especially with respect to allowing policy

authors control of performance versus functionality tradeoffs. DTrace probes are

an example of new infrastructure added during my PhD to ease policy profiling,

debugging and framework validation.

• The transition to non-experimental status, and being compiled into the default

FreeBSD kernel, required adaptation to increasingly parallel CPU designs, but

also overcoming concerns with binary compatibility that are key to commodity

system upgrade paths, much of this considered as part of my PhD.

1Earlier MAC Framework designs supported configurable meta-policies for composition, but a

static, predictable, and useful composition has proven adequate in practice. Neumann provides a

detailed analysis of the interactions between composability and security in his CHATS final report [95].

48

• Aspects of the MAC Framework design have been substantially revised in order

to meet new requirements brought to light by the development of new classes

of policy in unanticipated environments – for example, the addition of privilege

management discussed in Chapter 4, also performed as part of this PhD.

This chapter begins with a brief history of the MAC framework. It then presents

the motivations and design principles for the framework, the implementation of the

framework and the Biba policy module, performance evaluation of the framework, and

a consideration of related research. In Chapter 4, we will explore in more detail changes

in the framework’s design made during its evolution from a DARPA research prototype

to a widely used product, focusing on specific products and their real-world use of the

framework.

3.1 History of the MAC Framework

In June, 2000, I submitted an unsolicited white paper, “Poligraph,” to Dr. Douglas

Maughan at DARPA, proposing a flexible access control policy framework for operating

systems. The goal of the design was to revisit the relationship between the operating

system kernel and its access control policies in order to facilitate research, better sup-

port development of trusted operating systems, and improve support for third-party

security extensions. The opportunity to investigate the practical implementation of

these ideas arose through the DARPA Composable High-Assurance Trustworthy Sys-

tems (CHATS) programme, which would fund research into open source security and

security composability.

Over the next three years, I was principal investigator of the Community-Based

Open Source Security (CBOSS) project at NAI Labs (later McAfee Research) that

prototyped the MAC Framework on FreeBSD2. Table 3.1 provides a rough timeline of

the evolution of the framework, first as a DARPA research project, and then as a new

security technology deployed in an increasing number of open source and commercial

products.

The TrustedBSD MAC Framework narrows my original Poligraph proposal by in-

vestigating a subset of the security extension problem: rather than abstracting base OS

security policies (such as DAC and UNIX user isolation), the framework allows policy

modules to augment or supplement the base policy. This approach leaves existing poli-

cies inlined in the kernel source, but facilitates the creation of mandatory access control

policy modules, a particular interest given the limited technology transfer successes of

MAC in 2000.

A central thrust of the project was the creation of reference policy modules that

would validate the research approach, exercise the features of the framework, and pro-

2Many members of this team are thanked in the acknowledgements of this thesis: sizeable research

projects such as this could not possibly be completed by any one individual!

49

2000 TrustedBSD Project announced with MAC design goal.

2000 “Poligraph” white paper submitted to DARPA.

2001-2004 DARPA CHATS programme; NAI Labs CBOSS project de-

velops MAC Framework in public FreeBSD Perforce.

2002 MAC Framework merged to FreeBSD 5 development tree.

2003 Framework appears in FreeBSD 5.0 marked “experimental”.

2004-2007 US Navy sponsors NAI Labs improvements to the framework,

SEBSD policy, and port to Mac OS X.

2006 nCircle sponsors privilege analysis of FreeBSD kernel, frame-

work extensions to allow privilege management.

2006 Apple ships MAC OS X Leopard desktop with MAC

Framework-based sandboxing.

2007 Secure Computing Corporation contributes improvements

from Sidewinder transition to FreeBSD; evaluated EAL 4+.

2007-2008 Institute of Software, Chinese Academy of Sciences static

analysis studies of MAC Framework.

2008 Apple introduced MAC Framework in iPhone OS 2.0 to sand-

box applications distributed via App Store.

2008 Seccuris contributes framework improvements for IPC and

networking while adding Biba to monitoring service.

2009 DTrace instrumentation added to MAC Framework at Cam-

bridge, in support of Google-sponsored TESLA project.

2009 MAC Framework upgraded to “production” feature in Free-

BSD 8.0, enabled in kernel by default.

2010 Apple completes Mac OS X EAL3+ evaluation with MAC

Framework enforcement; iPad ships with MAC Framework.

Table 3.1: Development and deployment of the TrustedBSD MAC Framework over ten years

– from a DARPA white paper to a security technology used in routers, firewalls, desktops,

servers, and even smart phones and tablet computers. My PhD research at the University of

Cambridge began in 2005.

vide many open source users access to MAC policies for the first time. Initial ref-

erence modules were information flow policies grounded in trusted systems research:

Bell-LaPadula multi-level security (MLS) and a fixed-label Biba policy. We also im-

plemented Fraser’s LOMAC low-watermark floating label integrity policy [45], which,

while also a labeled information flow policy, requires dynamic changes to subject labels

on object read, and therefore has significantly different synchronisation requirements

from MLS and Biba. Previous LOMAC prototypes instrumented kernels using system

call interposition, provide an opportunity for us to compare the two approaches.

50

As the research project proceeded, we expanded our scope to adapt SELinux’s

FLASK/TE [127] to FreeBSD – this was done before the inception of Linux Security

Modules (LSM) [148], and established a model for how FLASK, itself an abstract

security extension framework, might interact with a concrete extension system such

as the MAC Framework or LSM. We also developed several UNIX-centric policies,

which we felt would be of interest Internet Service Providers (ISPs), another significant

FreeBSD consumer chafing under the limitations of traditional UNIX access control.

UNIX-centric policies rely on existing subject and object meta-data – credentials, file

ownership, and file permissions – and illustrate the flexibility of the MAC Framework

in supporting differing points on the security vs. performance spectrum.

The CBOSS Project also developed general-purpose OS infrastructure components

necessary to support features such as mandatory access control. These included a new

Pluggable Authentication Modules (PAM) implementation, OpenPAM [125], allowing

the login process to be more easily extended, and UFS2, a significant revision to the UFS

file system in order to provide more reliable, semantically rich, and high-performance

extended attributes to store security labels [81].

In 2004, the US Navy sponsored an adaptation of the TrustedBSD MAC Frame-

work to Apple’s relatively new Mac OS X operating system [11]. At first a research

project [130], the port later matured into the security framework shipped in Mac OS

X to sandbox video CODECs and other high-risk code, as well as Apple’s iOS [10],

to sandbox third-party applications distributed to the iPhone and iPad via Apple’s

AppStore.

In 2005, I began my PhD in computer security at the Computer Laboratory at the

University of Cambridge, and continued my involvement in the MAC Framework project

as an operating system security researcher, open source contributor, and independent

contractor. This allowed me to engage in further development and technology transfer

of the MAC Framework to a broad range of products, observing and participating in

its adaptation to diverse environments.

Further transfer successes on FreeBSD included adoption of the MAC Framework

by Juniper Networks in the JunOS SDK [70], Seccuris’s instrusion monitoring prod-

ucts [121], nCircle’s policy enforcement appliances [93], and in McAfee’s high-assurance

Sidewinder firewall3 [79]. The MAC Framework design has influenced other research,

including, notably, the Asbestos operating system [36], which applied the MAC Frame-

work’s notion of policy-agnostic labels to application-level policy enforcement. Detailed

discussion of practical experience in deploying the MAC Framework in FreeBSD, the

Mac OS X and iOS ports, and enhancement of the MAC Framework for use in nCircle’s

appliance, may be found in Chapter 4.

3Ironically, despite McAfee Research having developed the MAC Framework, the framework only

entered the McAfee product line through their acquisition of Secure Computing Corporation (SCC),

who adopted the framework through the FreeBSD operating system.

51

3.2 Past approaches

Chapter 1 tracked the history of operating system security development, from early

time-sharing systems, through 1970s and 1980s microkernels, security kernels, and

trusted systems, to contemporary commercial operating systems spanning servers, desk-

tops, tablets, and phones. When work on the MAC Framework commenced in 2000,

commodity operating systems eschewed microkernel design for reasons of performance,

leaving them unable to adopt higher-assurance constructions such as security kernels;

likewise, they were prevented by hardware from using fine-grained capabilities. How-

ever, COTS systems had consistently adopted the UNIX process model, and most

enforced at least discretionary access control policies on processes. With the excep-

tion of more widespread deployment of mandatory access control, little has changed a

decade later.

Operating system access control extensions generally execute in the kernel address

space – this allows non-bypassable mediation and reliable security labelling of system

services such as file systems and inter-process communication. Prior to extension sys-

tems such as the MAC Framework and Linux Security Modules (LSM), commodity

operating security designs relied on one of three approaches to implement kernel exten-

sion: direct modification of the OS source code, system call interposition, and stackable

file systems; we will briefly consider each to understand the trade-offs in selecting an

extension model, as well as the types of problems that arise with these approaches.

3.2.1 Direct modification

Direct modification of existing operating system source code has been the path most

often taken by vendors producing a “trusted” system. It is also one of the most ef-

fective solutions for changing kernel access control policies. This strategy either bases

the work on a snapshot of an operating system release, or integrates changes into the

main-line development tree. Security researchers and commercial security product de-

velopers are able to understand and modify the operating system at a fine level, as well

as make changes to any part of the system that requires it. The direct modification ap-

proach has been taken by many operating systems, both OS vendors and third parties,

when extending commercial operating systems (such as Trusted Solaris [129], Trusted

IRIX [123], and Argus Pitbull [12]), as well as in research projects such as Badger’s

DTE [13].

3.2.2 System call interposition

System call interposition, discussed in detail in Chapter 2, modifies the kernel’s system

call table, inserting new security protections between the application and kernel service.

With this approach, developers avoid changing existing source code, instead introducing

new security semantics by limiting access to kernel services using wrappers.

Modules maintain authorisation structures in parallel to those maintained by the

52

base kernel services: prior to letting process requests reach the kernel itself, they per-

form their own security checks, and can limit or transform requests. On return from

the system call, wrappers may also enforce post-conditions and log activities.

This strategy has been applied both with and without source code access, and can be

used to introduce new security restrictions with a vendor-provided distribution. Inter-

position has been demonstrated for both specific policies, such as Fraser’s LOMAC [45],

and as a more general framework for security modification such as the Generic Software

Wrapper Toolkit [46].

3.2.3 Stacked file systems

File systems store persistent data for both the operating system and applications, and

as a result are common targets for security extension. Security is just one potential

target of file system research requiring extensibility: reliability, namespace transfor-

mation and data transformation have all driven the development of stackable file sys-

tems. This model has been explored in detail by Heidemann and Popek in FICUS [57],

and extended to a portable model spanning operating systems by Zadok and Nieh in

FIST [155].

With this approach, new services are “layered” over an existing file system by wrap-

ping operations on file system objects. In a manner similar to system call interposition,

stacking permits run-time behavioural modification of a file system unanticipated by the

file system author. Namespace and protection transforms can limit access to objects, or

securely present objects. Data transforms can also provide cryptographic protections,

presenting secure access to objects, or limiting access to compromised objects.

3.3 Limitations of past approaches

Each of these models has substantial limitations: some are inherent to extending com-

plex systems, but others are properties of the extension mechanisms themselves. All

assume either a lack of interest in the security extension from the perspective of the

original OS vendor, or a commitment only to a narrow set of extensions.

3.3.1 Kernel source code access

Direct source code modification is premised on access to source code – implicit for open

source systems, but historically problematic for widely-used proprietary systems. This

has limited access by researchers, raised the cost of development, and required close

vendor involvement in successful security extension work. Even where source access is

possible for proprietary systems, intermittent dispersion of source code snapshots makes

it difficult to track architectural changes, and precludes timely updates to third-party

extensions. Where a vendor produces security extension products themselves, these

problems may well exist within their organisation, and also discourage third parties

from attempting the same.

53

3.3.2 Tracking vendor development

Operating systems are moving targets, even once a release has been shipped. A steady

stream of major and minor updates, as well as critical security patches, risk security

extensions falling out of sync with their targets; already true in 2000, this is even more

the case today. This problem is especially troublesome for extension systems, such as

system call interposition, that rely on a complete (and static) characterisation of the

system’s application binary interfaces (ABI)4 in order to operate.

Between releases, active operating system development branches move even more

quickly, with fundamental changes in internal architecture central to the creation of

many new kernel services. These changes may have significant security side effects,

changing assumptions about information flow, access control, or simply by changing

the syntax and structure of code that has been modified or is depended on.

Other than in the area of specifically published APIs and structures (such as for

file systems or device drivers), security extension authors can rely on little consistency

between revisions. In addition, if a security extension relies on direct modification of

operating system source code, there may be literal source code conflicts in changes to

code modified by both the operating system vendor and security extension vendor, and

a lag before the extended version of the OS product becomes available following an

original OS vendor update.

Because of the significant change between releases, or even between service packs,

any formal evaluations of the composed operating system and extension face substan-

tial assurance challenges. Security vendors must make a complete argument for assur-

ance not only concerning their own product, but also regarding the operating system

vendor’s product, requiring high levels of additional investment for only incremental

operating system improvements. The burden lies entirely with the extension developer

to determine that the extension will operate correctly in the new environment.

3.3.3 Concurrency and lock order in threaded kernels

As discussed in Chapter 2, wrapping techniques, such as interposition and file sys-

tem stacking, introduce fundamental problems in environments supporting kernel par-

allelism: since the base system is unmodified, wrappers must ensure that appropriate

synchronisation primitives are used to prevent time-of-check-to-time-of-use races within

the kernel itself. In practice, this can require substantial duplication of work between

the wrapper and the base component, as well as potential lock order violations and lock

recursion (leading to deadlock).

For example, security extensions may require labels on files to provide protection

4Similar to an API, an ABI defines the binary interface between two components; typically this

will involve the names and types of symbols, as well as the binary layouts of data structures, etc. API

changes often imply ABI changes, and like API changes, some ABI changes are backwards compatible

(i.e., adding a new interface). Less innocuous ABI changes can lead to application misbehaviour and

data corruption, requiring extreme care by OS vendors as they evolve their system interfaces.

54

for those files. To access the labels, the system call wrapper must perform a series of

namespace lookups to traverse the file hierarchy to find the target of the operation.

Once the check is performed, the wrapper must release all locks on the file and names-

pace or risk violating the kernel’s lock order when the kernel attempts to perform the

lookup operation. As locks are released, the namespace and protections on objects may

change, resulting in a race condition between check and use. Similar races exist for all

objects supporting fine-grained locking in the kernel: locks released on target processes

in signal operations will permit the label on those processes to change before the kernel

performs its own lookup, locking, and protection.

Since the MAC Framework design was first sketched out in 2000, this concern has

only become more pressing: dual-core servers were unusual in 2000, while today, quad-

core notebook computers are commonplace. Operating system vendors have invested

significant effort in the intervening years to increase OS kernel concurrency in order to

exploit this new hardware, making synchronisation with an interposed security frame-

work even more difficult.

3.3.4 Policy composition

Trusted systems are often deployed with several different kernel access control poli-

cies: UNIX discretionary access control (DAC), as well as one or more mandatory

access control (MAC) policies. For example, PitBull and Trusted IRIX both ship with

Biba-derived integrity policies for TCB protection, in addition to Multi-Level Security

to protect the confidentiality of user data. Similarly, appliance vendors often com-

bine vendor-specific hardening policies with base system access control features – for

example, firewall and router vendors may rely on UNIX access control for base-line pro-

tection, but supplement that with product-specific security features. Several examples

of policy blends are considered in Chapter 4.

Safe composition of extensions is particularly important in environments where

extensions may be used to respond to new threats not anticipated at design time. For

example, new security limits might be imposed to reduce exposure to a newly discovered

application vulnerability. However, the problem of access control policy composition

is non-trivial, and a number of problems may arise in the development and use of

composed access control systems.

Literal conflicts in source code

Security extensions tend to modify the same system components in the same places,

resulting in a conflict: both sets of modifications cannot be simultaneously applied. For

example, both Biba and MLS instrument the same file system accesses, even though

they constrain flows of information in different directions.

55

Functional conflicts

Security extensions can also conflict in a purely functional sense, resulting in an un-

usable or insecure system. Of particular concern are security extension that introduce

new services or administrative interfaces, which in turn may not be properly contained

by other security extensions limiting access to those interfaces. For example, naive

simultaneous introduction of MLS and Biba might have each use policy-specific APIs

to manage labels unprotected by the other policy. As a result, MLS would not limit

the setting of Biba labels on files, and vice versa, introducing unprotected information

flow channels in violation of both policies.

Fail-open composition

Security extensions may interact poorly when composed with other security extensions

or applications, leading to fail-open semantics. For example, in early work to decompose

system privilege in Linux, “compatibility” semantics were introduced allowing setuid

root binaries to begin execution with less than full root privilege. In isolation, such

a change seems reasonable – however, when composed with applications that assumed

a root UID connotes full privilege, failure modes were problematic. For example,

on security vulnerability resulted because sendmail did not check the return value of

setuid – prior to the kernel access control model change, this was safe (albeit possibly

unwise). After the change, sendmail did not properly detect that it had failed to drop

privilege [122], allowing privilege escalation. Composition failures can have serious

consequences, and are extremely difficult to reason about.

3.3.5 Financial cost of implementation

Many of technical limitations translate into increased development and maintenance

cost. Of particular concern are:

• High level of complexity due to awkward composition of the extension and the base

operating system, increasing the cost of implementation, testing, and maintenance

of the extension.

• Minimal code reuse as different extension authors independently reproduce com-

mon infrastructure, such as file system extended attributes.

• The moving target nature of operating system development increases maintenance

costs and can lead to significant or complete re-engineering of the same extension

over successive versions.

These costs discourage security extension development by third party vendors and

researchers, resulting in poor adoption of new (or even old) access control approaches

beyond those present in the base operating system. In a world of constantly evolving

security requirements, addressing these concerns not only reduces the costs for, but also

increases the effectiveness of, security researchers and security product developers.

56

3.4 Designing for access control extension

The TrustedBSD MAC Framework sees its genesis in the observation that trusted op-

erating systems efforts frequently start with existing, commercial off-the-shelf (COTS)

systems. For example, Trusted Solaris and Trusted IRIX are based on the general-

purpose Solaris and IRIX OS products. In addition to life-cycle assurance through

improved processes and documentation, OS vendors add operational assurance fea-

tures beyond the UNIX baseline. These include enhanced discretionary access control,

security event auditing facilities, a decomposition of root privilege into fine-grained

privileges, and mandatory access control policies such as multi-level security and the

Biba integrity policy.

The MAC Framework is designed to make adding new policy models easier5 by

providing an explicit framework for access control extension – a contract between OS

vendor and security extension author. As with most trusted UNIX-based designs,

the MAC Framework accepts the UNIX process model, and adapts kernel structures

through improvements to access control and other security functionality, rather than

migrating to a security kernel. The MAC Framework design also rejects interposition,

avoiding concurrency and integration problems observed with system call wrappers.

The framework is a reference monitor: explicit control and notification entry points

are scattered throughout security-critical processing in the kernel, and may be instru-

mented by policy modules. The framework adopts a number of design philosophies from

Hydra [26] including a separation of policy from mechanism and an object-centric ap-

proach in which kernel services are considered object providers, and controls are placed

on method invocations. An object-centric approach facilitates implementing manda-

tory access control policies that are concerned with the flow of information between

subjects and objects (such as MLS and Biba). The object-centric perspective also im-

poses an ordered view on an often disordered monolithic kernel: it is the responsibility

of the kernel and MAC Framework to reconcile many of the abstraction inconsistencies

arising in a highly evolutionary kernel implementation, taking care of the book-keeping

in order to provide a clean model for policy authors.

The TrustedBSD MAC Framework depends on two fundamental, and essentially

non-technical, premises:

1. That extending the access control model of the kernel of a commodity operating

system product is a natural, desirable, and inevitable event.

2. That operating system vendors are willing to modify their products to facilitate

the goal of extensibility while avoiding common extension problems – perhaps mo-

tivated by their own requirements for security extension, and perhaps to support

third parties.

5Easier rather than easy: operating systems are complex even before you add MLS!

57

The research target for the MAC Framework is the OS vendor, rather than the security

extension vendor – a significantly different viewpoint from that taken in most system

call interposition approaches.

3.4.1 Guiding principles

The dual goals of explicit access control extensibility and engagement with commodity

system vendors lead to a number of philosophical and (at times) programmatic design

principles. These principles have, in turn, directed countless implementation choices in

the MAC Framework that will be explored throughout the remainder of this chapter:

Do not commit to a particular access control policy. Instead, provide a framework

that can support many common models. One need only inspect the broad array of

continuing access control research and the variety of access control products to con-

clude that there is no wide consensus on a “one true policy” or even “one true policy

language”. The practical implication of this design principle is that policies are repre-

sented by code, and not data, in the MAC Framework – unlike systems such as type

enforcement, which represents flexible policy within the confines of a policy language.

With the exception of a small number of static policy characteristics, such as its dis-

position with respect to dynamic load and unload, policy modules implement access

control decisions and state management functions entirely in C code, offering signifi-

cant freedom. This allows policy models to compute results entirely dynamically, or to

implement a static policy language such as found in type enforcement (and the SEBSD

policy module described in Chapter 4 does precisely this).

Avoid policy-specific intrusions into kernel subsystems. Augment existing kernel

services to be aware of the MAC Framework, but attempt to encapsulate policy-specific

concerns entirely in policy modules. While the MAC Framework is derived from the

requirements of specific policies, avoid leaking of policy-specific data representation

or access control approaches outside of the policy modules. An object-centric design

facilitates this, capturing many common policy needs in a clean manner.

Provide policy-agnostic infrastructure to avoid code redundancy. Many policies have

common infrastructure requirements beyond the selection and provision of instrumen-

tation points in the kernel, among which are security labelling (both ephemeral and

persistent), APIs for label management, and tracing. Where possible, the MAC Frame-

work should provide these facilities, with the dual goals of reducing work for policy

authors, and also allowing policy modules to capture only access control-related logic,

rather than (for example) file system storage functions for label storage. Provide policy-

agnostic APIs so that applications can be security-aware without being policy-specific

– for example, by providing policy-agnostic label management APIs.

Policy authors determine their own security and performance trade-offs. While the

MAC Framework provides infrastructure for certain heavy-weight policy designs, such

as ubiquitous labelling of network packets required by Biba and MLS, many policies

may not require those features. As such, the framework should impose the costs of that

58

infrastructure only on policies that use expensive features, allowing policy authors to

explore the design space, and allowing different sites to make different choices regarding

performance, functionality, and assurance.

Support multiple simultaneous and independent policies. Most commercial trusted

systems include at least two different mandatory access control policies; likewise, if base

policies are represented as policy modules, third parties extending the OS will want to

use the same policy interfaces to add their own policies. Where possible, provide pre-

dictable, deterministic, and ideally sensible, compositions of policies – certain policies

will necessarily conflict, but the framework itself should support rather than hinder

policy composition. Composition raises potentially tricky questions: for example, how

should one policy control subject interactions with another policy’s labels? For exam-

ple: if the Biba policy marks an object as HIGH, then a LOW subject should not be able

to change the MLS label on the object due as that would violate the integrity policy.

The MAC Framework takes the approach that such operations can be controlled, in-

troducing a two-phase commit process for subject and object relabel operations, which

may interact with multiple policies. This is detailed in Section 3.5.6

Impose structures that facilitate assurance arguments. The MAC Framework acts as

a reference monitor, a structure believed to ease assurance arguments by separating pol-

icy and mechanism, allowing those aspects of access control to be separately validated.

Separation eases auditing of policy implementations, such as determining whether a

policy protects all important methods on an object class, and whether the policy pro-

tects all desired classes, statically. Having a well-defined set of entry points into the

framework, with well-documented semantics (such as locking) makes the framework

itself easier to verify using dynamic and static analysis. Similarly, selecting a sensi-

ble and deterministic composition policy makes it easier to reason about the effects of

combining policies.

Design for an increasingly concurrent operating system kernel. While specifically

a security goal, the importance of multiprocessing cannot be understated, especially

in light of concurrency vulnerabilities found in system call interposition. In 2000,

dual-CPU systems were increasingly common; today, high-end servers and network ap-

pliances have dozens of cores, with hundred-core systems on the immediate horizon.

This trend shows signs of continuing as CPU designers expose further parallelism to

programmers rather than trying to mask it behind superscalar designs, leading in turn

to increased exposure of concurrency to operating systems and applications. FreeBSD

employs threading techniques extensively within the kernel, as well as providing thread-

ing services to user processes6 – the MAC Framework takes advantage of tight kernel

integration by aligning access control check and label maintenance with existing kernel

locking, avoiding races otherwise inherent to interposition.

6Since FreeBSD 5.0, userspace threading has changed from an M:N model to a 1:1 model – a

transition that has been largely transparent to applications utilising the pthreads API.

59

Operating system kernel

Process Process Process

TrustedBSD MAC Framework

System call interface

VFS Process
signals

Socket
IPC

Biba MLS

...Pipe
IPC

MAC
label

system
calls

Process MAC Framework
label management

APIs support policy-
agnostic security

label management

Kernel subsystems
consult MAC
Framework to
check access

control decisions,
and notify the

framework of object
life cycle events to
support labelling

ugidfw

Policy modules can
be compiled into

the kernel, loaded
at boot, or (where

supported by policy
semantics) loaded
and unloaded at

runtime

Figure 3.1: The MAC Framework defines four interfaces: the KPI from kernel services to the

framework, the API from policy-agnostic user commands to the framework, the KPI between

the framework and access control policy modules, and an additional debugging and tracing

interface via DTrace probes not shown in this illustration.

3.5 Architecture of the MAC Framework

The MAC Framework architecture, illustrated in Figure 3.1, consists of a thin service

layer linking security-aware user applications, kernel services, and access control pol-

icy modules. Policies, encapsulated in kernel modules or compiled directly into the

kernel, employ the framework’s infrastructure to instrument policy-relevant kernel se-

curity decisions, store and retrieve security labels on objects, handle label management

requests from user applications, and dynamically compose with other loaded policies.

In addition, the MAC Framework implements a set of DTrace probes, which support

debugging and profiling using the D script language [24]. The framework also exposes

policy-independent security-aware system calls so that monitoring and management

tools can query and manipulate labels on objects.

Kernel service entry point KPI

This kernel programming interface (KPI) is called by kernel services, such as the Virtual

File System (VFS) and Inter-Process Communication (IPC), to notify the MAC Frame-

work of object events such as allocation and destruction, and to perform access control

checks. Roughly 240 entry points are defined, most representing specific methods on

particular object classes; generally, access control entry points take the perspective that

a subject is invoking a method on an object, although this is not universally the case

60

– for example, IP fragment reassembly is subject-free, but security-relevant. Kernel

subsystems are responsible for providing opaque storage for labels on their objects in

the form of a void * pointer that the framework will maintain.

Policy entry point KPI

This KPI sits between the MAC Framework and registered policies. Many policy entry

points correspond directly to kernel service entry points; these are supplemented by

policy life cycle events, as well as a library of infrastructure functions available to poli-

cies, such as memory allocation and label storage. Policy modules need implement and

invoke only those KPIs that they require: if the policy controls only process operations

and not file operations, the policy will define only process-related entry points. At this

layer object labels, if present, are passed directly to policy modules so that policies do

not encode the layout of internal kernel data structures unless they explicitly use them.

Label management API

This application programming interface (API) allow userspace programs to query and

set security labels on various objects types including files, sockets, and processes. The

label management API is policy-agnostic: programs can display and manipulate la-

bels without being aware of their specific semantics. Monitoring interfaces also allow

applications to query what policies are loaded.

DTrace probes

The MAC Framework as of FreeBSD 8.0 implements a set of DTrace probes so that

framework operations can be monitored using D scripts. Probes are available on the

return from every MAC Framework access control entry point, and provide access to

arguments and return values. These probes allow profiling and tracing of access control

behaviour, which is helpful for optimising, testing, and debugging policies in both

isolation and in composition.

3.5.1 Framework startup

In order to meet the non-bypassability requirements of a reference monitor, the MAC

Framework must be initialised and ready to handle access control checks by the time the

first user process, init, begins execution. Ubiquitously labelled access control policies,

such as Biba and MLS, require that the framework be available significantly earlier

in order to maintain security labels on all kernel objects from inception. As a result,

the framework is initialised early in boot – shortly after the kernel memory allocator,

console, and locking primitives become available, but before device probing and process

creation have started. Initialisation occurs in several phases:

1. Framework data structures, locks, and memory allocation are initialised.

2. Policies compiled into the kernel or loaded before boot are registered.

61

3. The global mac late flag is set, indicating that any policies loaded after this point

will not be assured access to all kernel objects from inception.

4. The MAC Framework steady state is entered, and kernel boot continues.

Policies loaded after mac late are not assured complete access to all events on all system

objects, and are unable to rely on label memory being present for objects allocated prior

to attachment. These constraints are compatible with many UNIX-centric policies, and

even some labelling policies; for example, the mac partition policy only needs label

storage on processes created after it has been loaded. In practice, no special behaviour

currently appears to be necessary at kernel shutdown. As virtualisation techniques have

been applied to other sections of the kernel, the need to provide explicit shutdown for

subsystem instances has become more obvious – it could be that future virtualisation

work requires similar changes to the MAC Framework.

3.5.2 Policy registration

Policies must register with the MAC Framework in order to instrument access control

decisions, receive object life cycle events, label object classes, and access framework

services. The kernel abstraction for a “module” is distinct from the MAC Framework

notion of policy: kernel modules may implement zero, one, or more independent or in-

terdependent access control policies. This model allows the kernel, effectively a module

itself, to incorporate more than one compiled-in policy at a time.

The kernel linker identifies MAC policies in the kernel and kernel modules as they

are being linked using the kernel’s linker set facility7. Each policy declares a set of

properties that include whether or not the policy may be attached after boot (i.e.,

must it be initialised before kernel services such as process creation and the file system

have started), and whether it may be unloaded. The structure of MAC Framework

policies, and their registration with and use of framework infrastructure, is described

in detail in Section 3.6.

When an entry point is invoked by a kernel service, the set of loaded policies is sta-

bilised for the lifetime of that invocation; attempts to change the set of loaded policies

must wait to let in-flight invocations drain before continuing. This ensures consistent

implementation of access control checks, as well as preventing implementation races

such as use of code in a policy after its containing module has been unloaded. In the

FreeBSD 5.0 version of the MAC Framework, serialisation of entry point invocations

7Linker sets are used throughout the FreeBSD kernel to initialise and tear down module data

structures and attachments to other kernel services. The facility tags static data structures during the

compile-time linking process by placing them in a named ELF section; the run-time linker then iterates

over sections to identify data types and function pointers requiring special handling. SYSINIT tags

function pointers to be invoked during boot or module load, along with any ordering requirements.

This approach allows identical structures to be used regardless of whether code is compiled into the

kernel or loaded as a module.

62

Registration Active policy Deregistration

Active policy
entry pointsmpo_init mpo_destroy

Figure 3.2: Policy life cycle: serialised initialisation and destruction entry points bracket

potentially (very) concurrent entry point invocations on the active policy.

with respect to registration and deregistration was ensured by a busy count and lock,

but more recent versions of the framework have relied on the read-mostly and sleep-

able shared-exclusive lock primitives introduced in later FreeBSD releases, which offer

improved performance, and in the case of rmlocks, priority propagation, and starva-

tion freedom for writers. The evolution of synchronisation in the framework, and its

relationship to performance in shipping systems, is discussed in Chapter 4.

Figure 3.2 illustrates the policy life cycle: MAC policies may implement mpo init

and mpo destroy entry points that will be invoked, respectively, during policy registra-

tion and as deregistration takes place. Both entry points are invoked while exclusive

framework locks are held to ensure that all steady state entry point invocations on the

policy are bracketed by the two events, allowing safe policy initialisation and cleanup.

3.5.3 Entry point design considerations

The kernel service entry point KPI is the means by which kernel subsystems, such as

file systems and the network stack, engage the reference monitor in security-relevant

events and decisions. Wherever possible, the MAC Framework takes the perspective

that kernel subsystems implement objects whose instances may be labelled, and that

policies may be adequately enforced through controls on method invocation.

This approach is often a natural fit for the kernel architecture, which often (despite

a lack of formal language support for object-oriented programming) takes on an object-

oriented structure. In most cases, selection of the objects to protect is a straight-forward

result of analysing the APIs offered to userspace via system calls: sockets, pipes, and

files, as well as the system calls that invoke methods on them seems natural. In other

cases, the design choice is less clear: should all sysctl MBI nodes be independent

objects with labels, or should they collectively be treated as a single object with read

and write methods? The MAC Framework takes the latter approach on the basis

that many policies require fine-grained consideration of files and directories, but not of

sysctl nodes.

Once objects have been identified, selecting and placing entry points also requires

careful design: the more granular the KPI, the more expressive policies can be – how-

ever, this is also at the cost of policy complexity. Similarly, a consistent philosophy to

63

placing entry point invocations is important: the fewer the invocations, the easier they

are to validate – however, too few invocations leads to inadequate protection. MAC

Framework entry point invocation is necessarily somewhat subjective, but generally re-

volves around balancing placing the checks deep enough to allow a single enforcement

point for a particular level abstraction.

As an example: in early versions of the MAC Framework, access control checks

for files were performed in the file systems themselves – in later versions, this was

moved to the common VFS code invoking all file systems, in order to provide consistent

protection. Placing VFS access control too high in the call stack for I/O system calls,

however, would place them before file descriptors are differentiated into specific object

types such as vnodes and sockets. File systems are necessarily involved in the storage

strategy for persistent labels within the file system, but where possible rely on common

infrastructure code in the MAC Framework to implement common models, such as

extended attribute-based storage. Similarly, the labelling of vnodes rather than the on-

demand provision of labels by file systems when policies make access control decisions

was motivated by a desire to share abstractions across file systems, but also to provide

a uniform caching model8.

Most policy entry points are entered due to invocation of a corresponding kernel

service entry point:

• Object life cycle events, such as socket creation and destruction

• Access control requests checking a subject’s use of a method on an object

• General and sometimes subject-free decision requests

Entry point KPIs must be designed with great care in order to provide sufficient

information so that policies can implement their semantics while also discouraging

unsafe constructions that might, for example, lead to concurrency vulnerabilities. For

the policy entry point KPI, it is also necessary to be sensitive to kernel binary interface

(KBI) compatibility rules in the base OS, which requires that most third-party modules

compiled against an earlier point release of a major release branch work on later point

releases. In the MAC Framework context, that policy implies that policy modules

compiled on, for example, FreeBSD 8.0 should also work on FreeBSD 8.1 to the greatest

extent possible. For this reason, it is desirable to limit policy module exposure to

kernel internal data structures where not specifically required for policy semantics. It

is simultaneously desirable to offer the flexibility to use those internal structures where

8File systems operate in one of two modes in the MAC Framework: singlelabel, in which the

underlying file system cannot support persistent storage of labels for individual files and directories,

and multilabel, where the file system does implement this capability. In the former case, individual

object labels for in-memory vnodes are not precluded, but the policy must tolerate loss of values when

a vnode falls out of the cache, or an alternative method of deriving or persistently storing object labels.

UFS implements multilabel support using extended attributes

64

required in order to avoid policy developers simply bypassing formal KPIs, which would

be counter to the maintainability goals of the MAC Framework.

Structuring the MAC Framework to prevent bugs in policy modules, and the frame-

work itself, is a central design concern. Where possible, the framework design employs

language types to detect programmer errors; its structure also enables static analysis

(such as completeness checking on controlling access to classes) through its use of sym-

bols. Sometimes programmability and binary compatibility goals come into conflict,

however. Earlier versions of the framework, prior to the advent of C99 sparse static

structure initialisation, named entry points using constants registered entry point func-

tions cast to void *. On face value, this approach offers stronger KBI resilience by

avoiding embedding the layout of policy entry point vectors into modules – however, it

also discards type information for arguments to entry points. When we experimentally

switched to explicit, typed entry point functions, we discovered a number of previously

unnoticed bugs in policy modules that had been incorrectly interpreting their argu-

ments. This design choice has also been adopted by LSM, but not by Apple’s kauth(9)

framework, which leads to concern that policies implemented against the latter might

contain similar bugs9.

3.5.4 Kernel service entry point invocation

To understand how the MAC Framework is integrated into the kernel, and its relation-

ship with policies, we will consider an example in the form of access control checks that

occur when a file is read. An excerpt from vn write, the kernel function implementing

the write system call on files is shown in Figure 3.3. When the MAC Framework is

compiled into the kernel, vn write calls mac vnode check write to authorise the request.

The framework will return 0 to allow the write to continue, or in the event that one or

more policies denies the request, a non-zero errno value is returned. In most cases, the

MAC Framework is able to select the error number returned to userspace; this allows

policies to indicate, for example, whether an error is a result of violation of a policy’s

rules (EACCES) or holds inadequate privilege (EPERM).

vn write passes several arguments into the entry point: the credential authorising

the write (active cred), the credential cached in the file descriptor at the time of file

open (file cred), allowing MAC policies to implement UNIX-style capability rights,

and the vnode that the write is being performed on (vp). The stability of arguments

to entry points is ensured by the kernel synchronisation model’s interaction with the

calling code. Credential contents are copy-on-write, and references held by the calling

thread and file descriptor prevent them from being garbage collected. The vnode is

protected by a reference count, and vnode data, including the MAC label on the vnode,

9In many senses, it is weakness in the C language that forces an exchange of binary interface conser-

vatism for type safety – programming languages implementing stronger notions of objects orientation

avoid these issues by design. However, kernel programmers are, at least for the time being, stuck with

C.

65

static int

vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred,

int flags, struct thread *td)

{

...

vn_lock(vp, lock_flags | LK_RETRY);

...

#ifdef MAC

error = mac_vnode_check_write(active_cred, fp->f_cred, vp);

if (error == 0)

#endif

error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);

...

VOP_UNLOCK(vp, 0);

...

return (error);

}

Figure 3.3: The vnode code invokes mac vnode check write to authorise write: two creden-

tials, active cred authorising the current operation and file cred cached from file open,

are passed as arguments along with the vnode vp.

is stabilised by the vnode lock; vn write holds the lock over both check and use in order

to ensure adequate atomicity. This construction closes several critical time-of-check-to-

time-of-use races that might occur with system call interposition:

• The credential could change between check and write

• File labels could change between check and write

• The file selected by the descriptor could change between check and write

The arguments excluded from entry point invocation are as interesting as those

included. For example, vn write’s data pointer is not passed as data referenced by the

pointer resides in the user address space where it cannot be accessed race-free with

respect to the file write operation that will follow. These and similar design choices

throughout the kernel service KPI enable access safely expressible through the kernel

synchronisation model, while discouraging the expression of policies that cannot be

safely represented.

3.5.5 Policy entry point invocation

The MAC Framework function mac vnode check write, responsible for invoking policies

and composing their results for vnode write operations, is illustrated in Figure 3.4. The

function begins with a lock assertion, used during testing to ensure that the calling

66

MAC_CHECK_PROBE_DEFINE3(vnode_check_write, "struct ucred *",

"struct ucred *", "struct vnode *");

int

mac_vnode_check_write(struct ucred *active_cred,

struct ucred *file_cred, struct vnode *vp)

{

int error;

ASSERT_VOP_LOCKED(vp, "mac_vnode_check_write");

MAC_POLICY_CHECK(vnode_check_write, active_cred, file_cred,

vp, vp->v_label);

MAC_CHECK_PROBE3(vnode_check_write, error, active_cred,

file_cred, vp);

return (error);

}

Figure 3.4: The MAC Framework implements mac vnode check write: the locking protocol

is validated, policies are invoked and composed using MAC POLICY CHECK, and a DTrace probe

is fired on completion.

kernel service is observing the synchronisation protocol for labels and policy enforce-

ment. Normally, assertions are compiled out of production FreeBSD kernels, but may

be compiled in to provide fail-stop semantics when certain classes of synchronisation

bugs are encountered.

Next, mac vnode check write invokes MAC POLICY CHECK, which is responsible for

busying the framework to stabilise the policy set, invoking each interested policy, com-

posing the results, and invoking a DTrace probe that corresponds to the entry point.

One notable difference between the kernel services KPI and the policy KPI is that

the framework also passes pointers to object labels into policies, not just the objects

themselves. This avoids embedding binary layout assumptions about the structure in

order for a policy to access its labels. The policy framework arranges that only policies

implementing an entry point are invoked – it also analyses the entry points declared by

a policy in order to optimise its own behaviour, for example with respect to labelling.

Discussion of the evolution of labelling optimisations and further consideration of the

KBI resilience issue may be found in Chapter 4.

In addition to policy entry points mapped from MAC Framework entry points,

there are several types of entry points to the policy that are not derived in the MAC

Framework KPI, including policy registration and deregistration, label query and modi-

fication system calls, and the dedicated mac syscall. These entry points are all invoked

from within the MAC Framework, but via utility functions with similar structure and

contents to mac vnode check write.

67

Operating system kernel
MAC Framework

Process
signals

Biba

MLS

ugidfw
m

ac
_e

rro
r_

se
le

ct

m
ac

_p
ro

c_
ch

ec
k_

si
gn

alESRCH

0

EACCES

ESRCH ProcessESRCH

ki
ll

Figure 3.5: For access control checks, the results of individual policy checks are composed

by mac error select, which implements a precedence operator to select which of several

differing error results is the one to be returned by the system call.

3.5.6 Policy composition

Kernel entry points will invoke at least one, and possibly multiple, policy entry points.

The act of policy entry point invocation is non-trivial: access to the policy list must

be synchronised to prevent races with policy load and unload, the subset of policies

interested in the event must have their entry point implementations called, and the

results of those calls must be sensibly composed. In the original Poligraph design,

this composition is controlled by a configurable meta-policy able to capture the rela-

tionship between privilege models, discretionary access control models, and mandatory

access control models. In the MAC Framework design, only policies limiting the rights

granted to subjects relative to the base access control policy are supported, requiring

a much simpler composition in which the set of rights granted is the intersection of

rights granted across all registered policies. This meta-policy is simple, deterministic,

predictable by developers, and above all, useful.

Policy entry points may be broadly categorised into three types based on return

type: event notifications that do not return a value, access control checks that return

an errno value, and general decision functions that return a boolean. The composition

policy requires that for an access control check to succeed, all policies expressing interest

in the entry point must return success; as policies may return different error numbers

in response to the same access control check, a composition function, mac error select

orders and selects from among available error values. Invocation of policy entry points

and composition of the results are performed using a set of composition macros10 which

10A further composition macro, MAC POLICY GRANT, was added in FreeBSD 7.0 to allow policies to

grant privileges; this change is detailed in Chapter 4.

68

combine synchronisation, selective policy invocation, and composition:

• MAC POLICY PERFORM composes policy entry points that have no return value, and

is used to post events to interested policies. These events relate to policy changes,

label management, policy management, or kernel object life cycle events. Since

there are no return values, there is no need to provide for their composition.

• MAC POLICY CHECK composes the results of access control entry points. Unlike

MAC POLICY PERFORM, it accepts an errno return value from each policy and com-

poses the results using mac error select, a function that encodes an ordering of

various failure classes. This model is illustrated in Figure 3.5.

• MAC POLICY BOOLEAN composes the results of decision entry points returning true

and false values. It is used in scenarios where policies augment an existing kernel

service decision rather than returning an access control success or failure. For

example, during IP fragment reassembly, MAC policies labelling IP packets must

decide if each received IP fragment matches IP fragment queues as they are it-

erated over. In this case, MAC POLICY BOOLEAN is used with a boolean and: all

policies must accept a match in order for the framework to return true.

Some MAC Framework operations invoke more than one entry point during their

operation; for example, a label set system call will need to allocate and initialise tem-

porary label storage for the object type, copy in and internalize the userspace version

of the label, perform an access control, set the label, and free the temporary storage.

This sequence supports one of the more interesting aspects of policy composition: a

two-phase commit on relabelling operations. This allows one policy to provide access

control logic limiting the setting of labels associated with another policy on an object;

for example, the Biba policy can prevent MLS labels from being set on a high-integrity

object by a low-integrity subject.

3.5.7 Object labelling

Several access control policies of interest in designing the MAC Framework require

additional policy-specific metadata associated with subjects (processes), and often some

or all objects (files, pipes, network interfaces, ...). This metadata is referred to as

a label, and provides subject- or object-specific information required to make access

control decisions. For example, Biba labels subjects and objects with integrity levels,

and MLS labels subjects with clearance information and objects with data classification

levels and compartments. To this end, the MAC Framework provides a policy-agnostic

label abstraction for kernel objects, system calls for querying and setting those labels

(subject to control by policies), and persistent storage for labels on file system objects.

Policy modules control the contents of labels, and are responsible for imposing

semantics on the label data – not just in terms of the bytes stored in labels, but also

the runtime requirements for memory management, synchronisation, and persistence.

69

struct proc struct socketstruct proc

struct label * struct label *struct label *

struct label

biba

jail

biba/low biba/low

struct label

biba

jail

struct label

biba

jail

jail/ajail/b

biba/high

socket()

Figure 3.6: MAC labels on objects are simply managed vectors of data/pointers; policies can

implement a variety of memory management models to suit their needs. In this example,

the Biba policy allocates memory for each object label, whereas the Jail policy implements

reference-counted, shared storage across labels.

Figure 3.6 illustrates two possible behaviours: per-object label data, and reference-

counted common state across multiple objects. The framework’s labelling approach

is sufficiently powerful to implement these and a variety of other models that policies

authors may be interested in. Providing label infrastructure addresses a number of

problems, including avoiding the need for policy authors to replicate label storage

facilities, and by integrating the label model with the kernel’s synchronisation model

in order to avoid race conditions.

Label life cycle and memory management

The MAC Framework represents label storage using struct label, which for policies

requesting label storage, can be converted into policy-specific data. In-memory kernel

data structures for labelled kernel objects, including process credentials, virtual file

system nodes, and IPC objects, are extended to hold references to labels, which are

managed by the MAC Framework. Table 3.2 enumerates the kernel data structures

that have label storage – the top half of the table identifies objects labelled in the first

release of the MAC Framework, and the bottom half are objects that became labelled

in later releases. For some types, such as struct vnode, a label pointer is added to the

data structure itself, referencing label storage allocated and managed by the framework;

where kernel data structures already support a metadata scheme, such as mbuf tags,

that facility is used to hold label data in order to avoid unnecessarily bloating the kernel

data structure.

struct label is opaque to both kernel subsystems and MAC policies; the former

invoke kernel service entry points to manage the field in the object, and the latter

invoke two accessor functions, mac label get and mac label set to retrieve and set

70

Structure Description

struct bpf d BPF packet sniffing device

struct devfs dirent Devfs entry

struct ifnet Network interface

struct ipq IP fragment queue

struct mbuf In-flight packet

struct mount File system mount

struct pipe IPC pipe

struct socket BSD IPC socket

struct ucred Process credential, represents subject

struct vnode VFS node: files, directories, etc

struct inpcb IPv4/6 connection block

struct ip6q IPv6 fragment queue

struct ksem POSIX semaphore

struct msg System V message

struct msq System V message queue

struct pipepair IPC pipe

struct proc Process

struct semid kernel System V semaphore

struct shmfd POSIX shared memory

struct shmid kernel System V shared memory

struct syncache TCP syncache entry

Table 3.2: Kernel object types supporting MAC labels: the top half of the table lists data

structures with labels added in FreeBSD 5.0; the bottom half are data structures expanded

to include labels in later releases (sometimes because they reflect new features appearing in

later releases).

policy-specific opaque values of type uintptr t, which is sufficiently large to hold either

a pointer or an integer. Internally, the MAC Framework currently implements struct

label as an array of uintptr t indexed by a per-policy slot number allocated on policy

load if requested by the policy. However, that mechanism is left flexible due to it being

entirely internal to the MAC Framework.

In FreeBSD 8.0, labels are allocated for kernel objects only when a policy specifically

registers an initialisation entry point function for that object’s label. This refinement

was not present in earlier releases; Section 4.1.2 will discuss in greater detail the evo-

lution of label storage. As a result of that trade-off, policies loaded after boot may

find that label structures are not present for objects instantiated before the policy was

loaded, and must be able to handle that case or be marked as unloadable after boot.

71

In the FreeBSD kernel, data structure allocation occurs in a number of forms; most

frequently, the UMA slab allocator is used, which caches partially-initialised instances

of objects to avoid complete reinitialisation on each reuse. In other cases, the kernel’s

malloc allocator is used, in which case full object reinitialisation occurs on each allo-

cation. In rare cases, a subsystem manages its own memory cache in more complex

ways, such as the vnode cache, which leaves structures fully initialised and available

for continued use until the memory is reclaimed due to pressure, maximising the size

of the LRU cache while still making memory logically “free”. The memory model for

each object is reflected in the MAC Framework and policy entry points for that object

type, requiring further variation in the handling of labels across object types.

Different kernel contexts have different dispositions with respect to their ability to

wait for memory to become available in the event of high memory pressure, which

also affects memory allocation semantics for labels. Contexts that prevent sleeping in-

clude interrupt threads and kernel threads holding non-sleepable locks; in both of these

scenarios, allowing unconditional (and hence potentially sleeping) memory allocations

could lead to deadlock, and hence allocations must be allowed to fail, with knock-on

effects on the complexity of calling code which must be able to handle that failure This

structure is reflected in the MAC Framework: certain object initialisation calls accept

an argument indicating whether sleeping is permitted; when it is forbidden, a failure to

allocate a label or policy-specific label element may be returned by the policy, causing

object allocation to fail. Similar constraints will exist on the allocation of the kernel

object itself, and kernel subsystems will fail allocation of the containing data structure

if allocation of either the struct label or policy-specific label storage fails.

A kernel object’s label destruction is triggered when the object is destroyed by its

associated kernel service. The MAC Framework is given the opportunity to release

storage for the label, permitting policies to free any allocated storage or references

associated with that label. Destruction may reflect the destruction of an actual object

(such as a process exiting), or simply the recycling of in-memory storage for a persistent

object (such as a labelled file falling out of the cache).

Kernel object creation is significantly more complex than simply allocating kernel

memory: once memory is available, its fields must be initialised, including locks, it must

be hooked up to namespaces, etc. Similarly, label allocation is a separate event from

object creation and object association, the two mechanisms by which MAC policies may

initialise their own label state given security context. Creation occurs when an API to

create a new object is invoked: for example, a call to open may create a new file, socket

a new socket, and pipe a new pipe. In these scenarios, the security properties of the new

object (including any policy-specific MAC label data) will be initialised from sources

such as the creating process’s credential or the security properties of a parent object

(such as a parent directory). Association occurs when the kernel associates an instance

of a kernel data structure with an existing underlying object in persistent storage, for

which the kernel data structure is simply a cache. For example, a specific file will have

72

a vnode allocated for it only after it is pulled into the in-memory working set of the file

system, and may be detached from the vnode if it falls out of the working set and the

vnode must be reused for another file. In that scenario, label association occurs at the

point where the vnode is associated with the on-disk file, at which point MAC policies

are given the opportunity to set up policy-specific label state, perhaps derived from the

mount point the file is being loaded from, or from extended attributes from the on-disk

file. Both the source of file label data and its interpretation are policy-specific, but the

MAC Framework provides the necessary entry points to interpret and propagate label

data as required. For kernel services such as the file system, creation and association

operations implemented by policy modules are permitted to fail, in turn propagating

failure back to the kernel service. This prevents creation of a file if, for example, storage

for its security label cannot be allocated in the file system.

Label synchronisation

Where supported by the semantics of kernel locking, the MAC Framework allows policy

modules to “borrow” existing kernel locks on labeled objects. This offers not only

the benefit of improved performance by reducing the number of locks and locking

operations, but also allows label access to be synchronised with object access, avoiding

time-of-check-to-time-of-use races. Locking protocols are documented for each policy

entry point, and enforced by locking assertions in debugging versions of the kernel,

allowing policy developers to rely on synchronisation properties.

In some cases, however, these semantic are insufficient for policy requirements: for

example, if a policy shares mutable label data between multiple objects (for example, a

reference-counted sandbox descriptor), then additional synchronisation may be required

to protect policy data. Similar concerns may arise where read-write locking is used on an

object, and a policy needs to mutate the label (taint tracking in LOMAC, for example)

while only a read lock is held by the framework; in this case, the policy must provide

supplemental locking in order to ensure mutual exclusion on label data.

Another interesting case is the process credential, which itself is a reference-counted,

read-only object – an important performance optimisation that reduces the memory

overhead of credential data, and also allows for lock-free and thread-local use of creden-

tials in almost all access control scenarios. When the kernel needs to modify credentials,

it will perform a copy-on-write, allocating a new credential, copying old data, and mod-

ifying required fields – however, this means that much of the time, credential data is

shared among not just threads, but also processes. Performing credential copy-on-write

cannot be done in arbitrary contexts due to memory allocation constraints and lock

order, so the LOMAC policy uses an additional process label, protected by its own

locks, to tag processes for taint propagation asynchronously on the next system call

return. However, in the vast majority of cases, existing object locking is sufficient to

protect label data for objects. The mac test module, described later in this chapter,

validates that framework expectations for locking and label life cycles in entry points

73

are maintained. Detailed coverage of specific object behaviour can be found in the

DISCEX III paper on the MAC Framework [143].

3.5.8 Application-layer approach

For the purposes of the MAC Framework, applications are divided into three categories:

Applications unaware of access control extensions require no specific adaptation.

Applications may be influenced by policies as a result of new behaviour in the system

(most frequently, new failures), but will not use MAC Framework system calls or APIs,

such as label query interfaces. As with all security extension mechanisms, policy authors

must be careful to avoid unanticipated consequences of system behaviour changes.

For example, policy authors must consider the potential impact of causing a system

call to fail, where normally it would succeed unconditionally. Several security vul-

nerabilities have been present in shipped systems where application expectations for

system behaviour were violated as the result of a “security improvements”, such as the

bug arising from the introduction of new privilege interfaces in Linux [122]. Prior to

the addition of those interfaces, it was not possible for getuid to return 0 followed

immediately by setuid failing; as a result, sendmail failed open, leaking root privilege.

Policy-agnostic but MAC-aware applications include traditional UNIX monitoring

tools such as ps, ls, and ifconfig, which have been extended to display subject and

object label information, but also new commands such as setfmac to set MAC labels

on a file. The system login process has also been extended to set labels on process cre-

dentials based on user classes defined in login.conf. These programs all treat labels in

an abstract, policy-agnostic manner. The userland framework relies on a configuration

file, /etc/mac.conf, to determine administrator-defined defaults for labels to query and

list on files, interfaces, and processes.

Policy-specific applications are aware of the specific semantics of a security policy,

and if applicable, the security labels it places on objects. Depending on the nature of the

the application, developers may choose to use the policy-agnostic interfaces provided

by the MAC Framework, or new policy-specific interfaces exported specifically by the

policy. For example, applications that are aware of the semantics of MLS labels may

perform labelling operations involving only MLS label elements via policy-agnostic

labelling interfaces. On the other hand, the ugidfw policy module exports a rule list

via the kernel sysctl management interface.

3.5.9 Policy-agnostic label management APIs

In order to implement these functions, the kernel provides new system calls and socket

options to support querying and setting labels in a policy-agnostic format, such as

mac get file, mac get fd, mac set file, and mac set fd, which get and set labels on

files and file descriptors. Applications handle MAC labels via the opaque mac t type,

which is implemented as a string buffer internally.

Labels manipulated by applications are multi-part, consisting of a series of name

74

and value pairs, allowing label components from different policies to be manipulated

simultaneously (and with mutual atomicity) up and down the software stack. Applica-

tions can convert labels to and from an explicit text format for printing and user input;

however, in general all label parsing is left up to the kernel, a design trade-off that

appears acceptable, but motivated an expansion of safe string handling routines in the

kernel. A typical label managed by a user application might like like biba/low,mls/10

representing a label consisting of two elements: a low integrity biba label, and an MLS

label of sensitivity “10” – applications may address all of the elements available on an

object, or any subset. In earlier MAC Framework designs, we intended to allow the

userspace framework for labels to be run-time extended using plugin modules, as is the

case for the kernel, but this was abandoned in favour of a simpler approach.

3.6 MAC Framework policy modules

MAC Framework policies may be compiled into the kernel or encapsulated in loadable

kernel modules, which themselves may be loaded during boot or at run-time. Whether

a policy can be loaded or unloaded dynamically depends on its semantics, which are

exposed as properties during policy registration. The MAC Framework imposes a

common structure on policies: a declaration, an optional “slot” reservation for labelling

if required, and a set of functions implementing declared entry points.

All but the most trivial of policies will separate entry point functions, which are

aware of kernel data types and interpretations, from access control logic, which will

compute decisions relative to type-independent labels or a classification of entry points

by information flow directions. For example, in SEBSD, a port of FLASK and Type En-

forcement to the MAC Framework, entry point functions locate the Security Identifiers

(SIDs) on kernel processes and objects and pass them into FLASK’s decision functions,

providing a static mapping from kernel events to FLASK events, and isolating FLASK

from label storage and kernel data structures

FreeBSD 5.0 shipped with several kernel modules providing a diverse set of kernel

access control extensions, which have been added to both by the project and in third-

party products since that release. Table 3.3 lists the sample policies included with the

most recent FreeBSD 8.1 release, illustrating the diversity of supported models as well

as the practicality of the approach. For the purposes of exploring the structure and

implementation of policy modules, we will consider the fixed-label Biba integrity policy

in further detail.

3.6.1 The Biba integrity policy

The Biba integrity policy implements a strict information flow policy limiting the im-

pact of lower integrity subjects and objects on higher integrity subjects and objects [18].

In general, high integrity subjects are allowed to write but not read lower integrity ob-

jects, and low integrity subjects are allowed to read but not write high integrity objects.

75

Policy Description

mac biba Hierarchal fixed-label integrity

ugidfw “File system firewall” employing UNIX credentials

and file ownership rather than labels – while the

kernel module is named mac bsdextended, we will

refer to this policy by its command line tool name,

ugidfw.

mac ifoff Interface silencing to prevent leakage in packet

capture environments

mac lomac Hierarchal floating-label integrity

mac mls Multi-Level Security (BLP) with compartments

mac none Stub policy: all entry points are implemented as

no-ops; a template for new policies

mac partition Inter-process visibility policy based on process

partition labels assigned by the administrator

mac portacl TCP/IP port access control list policy, allowing

the administrator to control application uses of the

TCP and UDP port namespaces

mac seeotheruids Inter-process visibility policy based on UNIX UIDs

mac test MAC Framework invariant validation suite: tests

locking protocols and object life cycles

Table 3.3: Table of policy modules

Biba relies on ubiquitous labelling of all system objects, and determines access control

results with a dominance operator over label pairs. The policy has been frequently

deployed in trusted systems to protect the Trusted Computing Base (TCB).

The TrustedBSD Biba policy module implements a hierarchal and compartmental,

fixed-label mandatory integrity policy. Subject labels contain an effective label ele-

ment, as well as a range of available elements; the range, set by the administrator,

supports a scoped notion of privilege for users and processes by allowing selected pro-

cesses to“float” up between levels or compartments for the purposes of I/O, and may

also relabel objects subject to those constraints. A range with a lower value of the

special constant LOW and a higher value of special constant HIGH has complete priv-

ilege within the Biba model, and is therefore also used to authorise privileged system

operations that might violate the integrity properties of the process model – the role

of privilege in the MAC Framework is discussed in detail in Section 4.2. Objects in the

system are labeled with a single element reflecting the integrity grade and compartment

of data in the object.

MAC policies are declared using the MAC POLICY SET macro, which accepts a set of

76

static int biba_slot;

#define SLOT(l) ((struct mac_biba *)mac_label_get((l), biba_slot))

#define SLOT_SET(l, val) mac_label_set((l), biba_slot, (uintptr_t)(val))

...

static struct mac_policy_ops mac_biba_ops =

{

.mpo_init = biba_init,

.mpo_bpfdesc_check_receive = biba_bpfdesc_check_receive,

.mpo_bpfdesc_create = biba_bpfdesc_create,

.mpo_bpfdesc_create_mbuf = biba_bpfdesc_create_mbuf,

.mpo_bpfdesc_destroy_label = biba_destroy_label,

.mpo_bpfdesc_init_label = biba_init_label,

.mpo_cred_associate_nfsd = biba_cred_associate_nfsd,

.mpo_cred_check_relabel = biba_cred_check_relabel,

.mpo_cred_check_visible = biba_cred_check_visible,

.mpo_cred_copy_label = biba_copy_label,

...

};

MAC_POLICY_SET(&mac_biba_ops, /* Policy entry point vector. */

mac_biba, /* Policy short name. */

"TrustedBSD MAC/Biba", /* Policy long name. */

MPC_LOADTIME_FLAG_NOTLATE, /* Policy flags. */

&biba_slot); /* Label slot pointer, if required. */

Figure 3.7: Annotated excerpt of the Biba policy declaration.

policy properties, such as name and behavioural flags, and makes use of the FreeBSD

kernel linker set facility (described in Section 3.5.2). This causes policy registration and

deregistration functions to be invoked automatically whenever the containing module

is loaded and unloaded, as well as to initiate allocation of labels on desired objects.

Figure 3.7 illustrates an annotated version of the declaration of the FreeBSD Biba

policy.

The Biba policy is a ubiquitously labeled policy that cannot be loaded after boot

or unloaded, indicated by the presence of the MPC LOADTIME FLAG NOTLATE flag and ab-

sence of the MPC LOADTIME FLAG UNLOADOK flag. The Biba policy module generally uses

entry point-specific functions for object life cycle events and access control checks,

with the exception of label initialization and destruction, which are implemented using

type-independent functions biba init label and biba destroy label. This is possible

77

static int

biba_vnode_check_write(struct ucred *active_cred,

struct ucred *file_cred, struct vnode *vp, struct label *vplabel)

{

struct mac_biba *subj, *obj;

if (!biba_enabled || !revocation_enabled)

return (0);

subj = SLOT(active_cred->cr_label);

obj = SLOT(vplabel);

if (!biba_dominate_effective(subj, obj))

return (EACCES);

return (0);

}

Figure 3.8: Example Biba access control check for vnode write: after checking whether the

policy is enabled for revocation, mac biba extracts subject and object labels; if the subject

label dominates the object label, information flow is permitted.

because the Biba policy imposes a uniform internal data structure for labels across

all kernel data types; however, this model is not obligatory, and policies might wish,

for example, to use different data structures for subjects than for objects, as done in

LOMAC.

When the MAC Framework allocates label storage, the Biba policy will allocate and

attach Biba-specific label storage to the framework-provided label. When objects or

subjects are created, label values are inherited from the parent subject. When objects

are loaded from persistent or external store, labels are assigned based on the of the

storage medium, or on multilabel file systems, from system extended attributes utilised

by the Biba policy. Labels on system abstractions such as special devices and network

interfaces are configured using module defaults that may be tuned at boot-time or via

administrative actions.

The Biba policy centralises its access control logic in functions implementing a “dom-

inance” operator that compares two Biba elements with respect to their types, grades,

and compartments to determine in what directions information may be permitted to

flow between the two. Access control entry points extract subject and object labels, and

then test for dominance based on categorising information flow as subject to object,

object to subject, or a bidirectional flow, as illustrated in Figure 3.8. The SLOT macro

is defined in terms of the MAC Framework’s label accessor function, mac label get,

which returns the value stored in the label; in the case of Biba, this is a pointer to the

Biba label structure, struct mac biba.

The MAC Framework successfully isolates the details of the policy implementation

from the kernel services, but also isolates the details of the kernel services from the

78

policy implementation, reducing the risks of minor changes in one subsystem requiring

gratuitous changes in the other. The MAC Framework supports the Biba policy through

a generalised label management service, permitting the policy implementor to focus on

the details of the policy application rather than the mechanism of instrumenting the

kernel to support the policy’s instrumentation requirements.

3.7 Performance evaluation

In this section, we investigate the performance of the MAC Framework and its poli-

cies. The design of the MAC Framework is intended to satisfy three closely related

performance goals:

1. To minimise the performance overhead introduced by the framework when no

policies are loaded.

2. To minimise the overhead of the framework itself – for example, relating to policy

list synchronisation.

3. To allow policies to select their own performance trade-offs, paying only the costs

of those features actually employed.

Previous sections have considered several design choices furthering these goals, from

minimising MAC Framework synchronisation overhead to avoiding the costs of label

allocation when unused by policies, many developed during the effort to enable the

framework in the default FreeBSD kernel in 2009. These performance goals all relate to

allowing administrators to select security and performance trade offs based on the needs

of a site: if no policies are used, no overhead should be incurred; as policies use more

complex features, such as ubiquitous labelling, greater overhead is acceptable. In many

cases, the MAC Framework design successfully mitigates the costs of unused features;

in other places, these costs prove more difficult to avoid. Benchmarks presented in this

chapter employ two different kernel compilations:

• GENERIC: Default FreeBSD 8.1 kernel.

• NOMAC: FreeBSD 8.1 GENERIC kernel recompiled to disable options MAC11.

Measuring the performance of the GENERIC kernel without any policies loaded allows

us to investigate the overhead of the framework when inactive – a key concern in

enabling options MAC by default in FreeBSD 8.0. However, we are also interested in

the performance overheads experienced by various types of policy, conditional on their

requirements and configuration:

11Removing options MAC compiles out kernel service entry point invocations and MAC Framework

infrastructure from the kernel. However, even with the framework compiled out, some data structures

retain label pointer fields, slightly increasing their size.

79

• none: The mac none policy does not implement any entry points. This policy can

be dynamically loaded and unloaded, preventing the framework from optimising

out synchronisation when determining whether the policy implements an entry

point or not.

• ugidfw: The mac bsdextended policy implements a file system firewall managed

by the ugidfw tool, enforcing an administrator-defined set of rules expressed in

terms of UNIX credentials and file ownership. The policy supports constraints

along the lines of, “Regardless of file permissions, User X is not permitted to read

or write files owned by user Y.” Like mac none, it may be dynamically loaded and

unloaded; unlike mac none, it implements access control entry points with a real

policy.

• biba: The mac biba policy module implements Biba’s fixed label integrity model [18].

The policy labels all system subjects and objects with integrity information, and

controls potential paths of information flow in the system; as a result it imple-

ments most policy entry points. In this test configuration, the policy is configured

for single-label file system labelling: each mounted file system has a single label,

which is propagated to a file’s vnode label when the file enters the working set.

• biba/ML: The mac biba policy as above, but configured for multi-label operation:

files have individual labels stored persistently in extended attributes, but cached

with the struct vnode while in the working set.

We will explore performance through a set of benchmarks intended to illustrate var-

ious aspects of performance overhead imposed by the MAC Framework and its policies.

As the framework is intended to control most significant operating system services,

characterising the overall performance impact is difficult – instead, we consider a small

number of cases intended to explore particularly interesting aspects of performance

behaviour, especially as relates to design trade offs for policies.

All performance measurements have been performed on an 8-core Intel Xeon E5320

system running at 1.86GHz with 4GB of RAM, running FreeBSD 8.1’s amd64 port. At

the time of writing, this system represents a common multicore server configuration.

In order to minimise scheduling non-determinism and other effects, the test system was

kept otherwise idle, and benchmark processes were pinned to fixed CPUs. Differences

were computed using Student’s t-test at 95% confidence.

3.7.1 System call performance

Our first concern is the overhead imposed by the MAC Framework on system call over-

head; we therefore consider a set of system call micro-benchmarks. While not illustra-

tive of overall performance impact for complex workloads, they allow us to understand

the specific costs imposed by specific MAC Framework features. All benchmarks were

run by performing the target operation in a tight loop over an interval of at least 10

80

Test Kernel Time/operation Difference % difference

getuid NOMAC 0.355± 0.001µs - -

GENERIC 0.355± 0.000µs −0.000± 0.000µs −0.12%± 0.10%

none 0.355± 0.000µs −0.000± 0.000µs −0.11%± 0.10%

ugidfw 0.355± 0.000µs −0.000± 0.000µs −0.11%± 0.10%

biba 0.355± 0.000µs −0.000± 0.000µs −0.11%± 0.10%

biba/ML 0.355± 0.000µs −0.000± 0.000µs −0.11%± 0.10%

pread NOMAC 1.158± 0.005µs - -

1 byte GENERIC 1.154± 0.010µs † †
none 1.240± 0.001µs 0.082± 0.004µs 7.08%± 0.32%

ugidfw 1.240± 0.001µs 0.083± 0.004µs 7.14%± 0.32%

biba 1.187± 0.001µs 0.030± 0.004µs 2.56%± 0.32%

biba/ML 1.191± 0.000µs 0.033± 0.004µs 2.88%± 0.31%

ORC NOMAC 7.207± 0.013µs - -

1 byte GENERIC 7.468± 0.013µs 0.344± 0.015µs 3.61%± 0.17%

none 7.684± 0.015µs 0.537± 0.021µs 6.62%± 0.18%

ugidfw 8.495± 0.011µs 1.333± 0.013µs 17.86%± 0.16%

biba 7.711± 0.013µs 0.508± 0.014µs 6.99%± 0.17%

biba/ML 7.658± 0.013µs 0.451± 0.012µs 6.25%± 0.17%

pread NOMAC 207.552± 0.094µs - -

1M GENERIC 207.329± 0.116µs −0.223± 0.099µs −0.11%± 0.05%

none 207.389± 0.083µs −0.163± 0.084µs −0.08%± 0.04%

ugidfw 207.444± 0.016µs −0.108± 0.064µs −0.05%± 0.03%

biba 207.461± 0.025µs −0.091± 0.065µs −0.04%± 0.03%

biba/ML 208.121± 0.076µs 0.569± 0.080µs 0.27%± 0.04%

Create + NOMAC 1030.629± 1.237µs - -

unlink GENERIC 1035.3566± 21.061µs † †
none 1032.984± 14.660µs † †
ugidfw 1094.781± 0.746µs 64.152± 0.959µs 6.22%± 0.09%

biba 1094.864± 0.217µs 64.235± 0.834µs 6.23%± 0.08%

biba/ML 1022.006± 4.946µs −8.623± 3.387µs −0.84%± 0.33%

Table 3.4: Micro-benchmark results sorted by system call; NOMAC is the baseline for difference

calculations. Positive differences reflect greater overhead (performance loss). † indicates no

statistically significant difference.

seconds, repeating for 10 iterations. Tables 3.4 and 3.5 contain tables of system call

benchmark timings.

81

Benchmark: getuid

This test retrieves the current process’s UID using the getuid system call, an operation

uncontrolled by the MAC Framework. The test reveals little performance difference –

in fact, there is a marginal performance increase (0.12%). This change likely results

from differences in global variable layout between the two different compiled versions

of the kernel, and reflects the difficulty in benchmarking on contemporary hardware

where cache effects may appear non-deterministic. In practice, variations of as much as

2% easily arise from these effects, leading to the reasonable conclusion that the getuid

measurements do not reflect an actual performance change.

Benchmark: pread 1 byte

This test uses the pread system call to read one byte from a file cached in memory,

and is intended to reveal the overhead of an access control check performed alongside

a minimal kernel operation. With the MAC Framework compiled in, but no policies

loaded, there is no statistically significant overhead on the pread benchmark.

With dynamic policies loaded, the effects of framework synchronisation are im-

mediately visible: while neither mac none nor ugidfw implements a vnode read check,

iterating the policy list requires synchronisation, leading to an overhead of roughly

0.08µs (7%). In the case of VFS operations, such as the vnode read check, framework

synchronisation consists of acquiring a sleepable sx lock for read, a more expensive

operation than the lighter weight rmlock acquisition that can be used in unsleepable

network paths12

The static mac biba policy, on the other hand, does not require framework syn-

chronisation, and experiences only a 0.03µs (2.56%) overhead; similar results apply to

Biba in a multilabel configuration: 0.033µs (2.88%). While the Biba policy does imple-

ment the vnode read check, in the default configuration revocation of files after open is

not disabled, causing it to return success immediately, meaning that this measurement

largely represents the overhead of the framework invoking a statically registered policy.

Benchmark: open-read-close (ORC) 1 byte

This test expands the pread 1 byte test to add the open and close operations required

to lookup, open, and close the file. For this test, the file is located in a local UFS

file system, with a path of /tmp/file, requiring two lookup access control checks in

addition to open and read checks:

1. mac check vnode lookup to look up tmp in /.

12The rmlock primitives allows read acquisition touching only per-CPU variables, at the cost of

making write acquisition under contention significantly more expensive – hence “read-mostly”. In

FreeBSD 8.1 and earlier, the rmlock lock type can only be used in non-sleepable scenarios – i.e., the

lock cannot be held over an unbounded wait on I/O commonly found in VFS. In FreeBSD 9.0, it will

also be usable in sleepable scenarios as well, making it an obvious performance optimisation for the

MAC Framework going forward.

82

2. mac check vnode lookup to look up file in /tmp.

3. mac check vnode open to open /tmp/file.

4. mac check vnode read to read /tmp/file.

This test reveals a measurable overhead of 0.344µs (3.61%) for simply compiling

in the framework, likely a result of increasing cache footprint rather than direct ex-

ecution overhead from the framework – a disappointingly high overhead but not one

atypical of micro-benchmarks in which very small functional changes can cause cache

size thresholds to be exceeded.

The dynamic mac none policy imposes a 6.62% overhead due to the further costs of

synchronisation without actually performing an access control check, whereas the static

mac biba policy imposes a 6.99% performance overhead including the cost of extracting

and interpreting label data as part of an access control check.

In this test, ugidfw, the file system firewall, imposes the greatest overhead at 17.86%,

a result of the policy’s own synchronisation in checking its global (and dynamic) rule list.

Currently, this synchronisation is performed using a mutex; transitioning to an rmlock

might significantly reduce this cost. In contrast, Biba does not require synchronisation

for its own data structures since labels are per-object, and it is able to borrow the

kernel’s existing vnode locking for its label data.

Benchmark: pread 1M

This test reads one megabyte from a file in cache, and is intended to explore the

change in overhead as the cost of a kernel operation increases relative to the fixed cost

of an access control check. As might be expected, the performance impact across all

framework-enabled configurations becomes negligible in comparison to the cost of copy-

ing a megabyte of data from the file system cache to user memory – all measurements

reveal an overhead less than 0.5%.

Benchmark: file create and unlink

This micro-benchmark performs three system calls: open with the O CREAT flag to create

a file and return its descriptor, close to release the descriptor, and unlink to delete

the file. This sequence causes a number of framework-related operations to take place:

1. Lookup of the path /tmp/linkfile.

2. Authorisation, creation and labelling of the new file, including in the case of the

biba/ML test, writing its label to disk.

3. Unlinking the file, deleting it and freeing its label.

Each benchmark loop takes around 1ms to complete due to the complexity of the

combination. Both ugidfw and mac biba experience a roughly 64µs overhead, or around

83

Test Kernel Time/operation Difference % difference

local socket NOMAC 2.714± 0.001µs - -

GENERIC 2.787± 0.000µs 0.073± 0.000µs 2.70%± 0.02%

none 2.854± 0.003µs 0.141± 0.002µs 5.19%± 0.07%

ugidfw 2.863± 0.000µs 0.150± 0.000µs 5.51%± 0.02%

biba 3.348± 0.001µs 0.635± 0.001µs 23.39%± 0.02%

biba/ML 3.344± 0.000µs 0.631± 0.000µs 23.24%± 0.02%

UDP socket NOMAC 2.961± 0.001µs - -

GENERIC 2.983± 0.000µs 0.022± 0.001µs 0.75%± 0.03%

none 3.018± 0.002µs 0.057± 0.001µs 1.91%± 0.04%

ugidfw 3.037± 0.006µs 0.076± 0.004µs 2.58%± 0.14%

biba 3.891± 0.001µs 0.930± 0.001µs 31.41%± 0.03%

biba/ML 3.886± 0.001µs 0.925± 0.001µs 31.22%± 0.03%

Table 3.5: Micro-benchmark results sorted by system call; NOMAC is the baseline for difference

calculations. Positive differences reflect greater overhead (performance loss). † indicates no

statistically significant difference.

6%. Interestingly, the biba/ML benchmark sees almost no performance change despite

a presumed significant increase in file system operation complexity; this effect is likely

a result of interactions with UFS soft updates, which masks the cost of creation and

immediate deletion of a file by preventing either operation from going to disk – label

operations are also “optimised out” in this case, avoiding any I/O overhead for what is

effectively a no-op.

Benchmark: local socket

This test creates and destroys a local (UNIX) domain socket using the socket and

close system calls. The MAC Framework allows policies to restrict access to create

sockets – for example, to limit what protocols are available to a process, and so an

access control entry point is invoked. It also allows policies to label sockets, so this

sequence will involve additional memory allocation and freeing for labelled policies.

The GENERIC kernel experiences a modest 2.70% overhead in this test for having

the MAC Framework compiled in. Both mac none and ugidfw experience a roughly 5%

overhead for synchronisation required to enter the framework once for each of the two

system calls. The Biba policy, however, experiences a much higher 23.79% overhead, as

the framework itself allocates and frees an additional struct label for the socket, and

the policy also allocates and frees a struct mac biba. For policies able to store their

state entirely within the intptr t, or able to use static data or copy-on-write data,

this overhead would be significantly lower as the second allocation and free would be

avoided.

84

Benchmark: UDP socket

This test case is nearly identical to the local socket cases, except that a UDP socket is

created instead of a local domain socket. UDP sockets experience percentage-wise lower

(as well as in absolute terms lower) overheads for the GENERIC, mac none, and ugidfw

cases due to overall greater cost to the operation, although different cache properties.

However, the mac biba policy occurs an even higher overhead, explainable because not

only must it and the framework must allocate state at the socket layer, but also for the

inpcb associated with each TCP/IP socket, leading to a 31% overhead. This shadowing

of the socket-layer label offers other benefits, however: only the inpcb lock is required

to check the label, for example, avoiding additional locking and indirections during

packet receipt.

System call summary

This section has explored the performance of the MAC Framework through a system of

system call micro-benchmarks. The framework design and implementation has, to vary-

ing degrees, accomplished its goals of avoiding general overhead and allowing policies to

determine which feature overheads they incur. In fact, in some cases the overheads are

sufficiently small that they are hard to consistently measure with the background noise

present even in idle operating systems: even minor data structure layout variations

change false sharing effects on cache lines.

For system calls uninstrumented by the MAC Framework, such as getuid, there

is no measurable performance overhead. In all cases, the act of compiling the MAC

Framework into the kernel leaves system call performance affected by less than 4%, and

in most cases, 2% or less. Framework optimisations to avoid synchronisation overhead

for “static” (i.e., loadable only at boot, and not dynamically unloadable) policies appear

successful: whereas the dynamic mac none policy occurs a 7.08% overhead on the pread

1 byte benchmark, the static mac biba policy incurs only 2.56% overhead despite doing

more work.

However, this analysis also shows that the synchronisation associated with dynamic

policies remains a significant fraction of the cost of access control for dynamic poli-

cies – further optimisation of this case appears called for. It seems likely that op-

timisation schemes to avoid synchronisation overheads when no policies implement a

particular entry point would be beneficial: expanding the analysis performed by the

framework on loaded policies beyond when to allocated labels to include when to per-

form synchronisation by object class might be helpful. Such an approach might elim-

inate the synchronisation-related performance overhead measured on the local socket

micro-benchmark with the mac none and ugidfw policies have been loaded, since neither

implements socket-related access control checks. Employing the rmlock locking primi-

tive in additional cases may also prove beneficial, eliminating use of the more expensive

sx lock class in the framework itself.

85

The MAC Framework implementation appears to have been successful in avoiding

label-related memory allocation and destruction overhead for policies that do not re-

quire labels. However, the current structure for dynamic label management comes at a

significant overhead, requiring at least the framework, and often also the policy, to per-

form additional memory allocations. Various schemes could be imagined to reduce this

overhead, such as having policies expose the size of storage they require to the frame-

work, allowing it to make a single larger allocation. The impact of the policy’s own

memory allocation and synchronisation schemes should not be overlooked in searching

for further optimisation opportunities, however: the low cost of a Biba access control

check as compared to ugidfw is perhaps intuitively surprising given the generally higher

overhead a ubiquitously labelled and enforced policy might otherwise suggest.

System call micro-benchmarks are valuable, but as the pread 1 megabyte bench-

mark illustrates, 1-byte read overhead can be misleading in the bigger picture. In

practice most system calls, and more generally, workloads, perform some non-trivial

work, leaving object labelling and access control overhead a relatively small part of the

performance story.

3.7.2 Network performance

One of the kernel subsystems most sensitive to performance, and also most likely to

trigger interest in the event of performance reduction, is the network stack. In order to

investigate the effect of the MAC Framework and its policies on network performance,

we consider two micro-benchmarks that measure network latency and throughput over

the loopback interface: netperf’s UDP RR and TCP STREAM tests [63]. Table 3.6 contains

a table of benchmark measurements.

Benchmark: netperf UDP RR

netperf’s UDP RR test is a ping-pong test synchronously exchanging minimally-sized

UDP packets between client and server processes. The test captures end-to-end latency

transmitting through the socket layer, UDP, and IP, a handoff to the kernel netisr

worker thread, followed by the input path through IP, UDP, the receive-side socket

code, and delivery to userspace.

Enabling options MAC results in a small but measurable overhead (1.15%). Neither

of the dynamic policies tested, mac none and ugidfw, performs packet-based labelling

or access control checks, but the additional framework synchronisation implied by their

registration is more observable (roughly 5%). Biba experiences a 11.53% performance

loss due to instrumenting several points in the transmit and receive paths:

• mac inpcb create mbuf labels outgoing mbufs based on the socket label.

• mac ifnet check transmit checks that the mbuf can be transmitted over the loop-

back interface.

86

Test Kernel Rate Difference % difference

UDP RR NOMAC 34034± 344tps - -

GENERIC 33643± 272tps −391± 291tps −1.15%± 0.86%

none 32444± 236tps −1590± 277tps −4.67%± 0.81%

ugidfw 32216± 173tps −1818± 256tps −5.34%± 0.75%

biba 30110± 187tps −3924± 260tps −11.53%± 0.76%

biba/ML 29945± 192tps −4088± 238tps −12.01%± 0.70%

TCP STREAM NOMAC 6391± 20µs - -

GENERIC 6359± 22Mb/s −32.1± 20.0Mb/s −0.50%± 0.31%

none 6285± 19Mb/s −106.1± 18.3Mb/s −1.66%± 0.29%

ugidfw 6284± 21Mb/s −106.7± 19.4Mb/s −1.67%± 0.30%

biba 6187± 12Mb/s −204.0± 15.6Mb/s −3.19%± 0.24%

biba/ML 6175± 29Mb/s −215.6± 23.6Mb/s −3.37%± 0.37%

Table 3.6: netperf performance benchmark results; NOMAC is the baseline for differences. Neg-

ative differences reflect reduced transactions per second (tps) or bandwidth (Mb/s) (perfor-

mance loss).

• mac ifnet create mbuf optionally relabels the mbuf on receipt back in the loopback

interface; in the case of Biba, it will relabel the packet.

• mac inpcb check deliver checks that the received mbuf can be delivered to the

receiving socket.

Given the amount of work performed by the Biba policy, it is pleasantly surprising

that the overhead is so low, but in part reflects the fact that other costs in loopback

delivery are quite high. Over the course of loopback UDP processing, multiple threads

are woken up in the delivery pipeline, multiple allocations occur, and Biba itself in-

curs no synchronisation overheads due to its use of object-local labelling protected by

existing synchronisation.

Benchmark: netperf TCP STREAM

netperf’s TCP STREAM test is a throughput test performed over TCP, utilising the full

MTU of the interface (16K by default on the FreeBSD loopback interface). This test

experiences a much lower overhead due to amortisation of access control and labelling

costs over a greater amount of work performed in delivering the stream. Simply compil-

ing in the kernel introduces an almost unmeasurable 0.50% overhead; enabling policies

requiring synchronisation of entry to the framework increases this to 1.66% for mac none

and 1.67% for ugidfw; fully labelled and checked mac biba sees roughly 3%.

87

Kernel Time Difference % difference

NOMAC 143.7± 0.9s - -

GENERIC 143.5± 0.7s † †
none 143.1± 1.6s † †
ugidfw 144.1± 1.0s † †
biba 143.1± 1.3s † †
biba (multilabel) 155.4± 2.4s 11.7± 1.7s 8.1%± 1.2%

Table 3.7: Kernel compile and link performance benchmark results; NOMAC is the baseline for

differences. Positive differences reflect greater overhead (performance loss). † indicates no

statistically significant difference.

3.7.3 Kernel build performance

To supplement micro-benchmarking of system calls and slightly higher-level bench-

marking of network behaviour, we consider one further benchmark: kernel build and

link time. This classic benchmark incorporates a blend of compute by the compiler, file

system namespace manipulation due to large numbers of files created during a com-

pile, significant amounts of read and write I/O on the file system, but also significant

OS overhead in the form of process creation and destruction, VM system activity, and

inter-process communication via pipes and FIFOs. In order to mask I/O latency and

better exploit the 8 cores available on the test system, the build uses up to 8 simulta-

neous instances of itself to parallelise compilation and linking steps. Table 3.7 contains

a table of benchmark timings.

At the build macro-benchmark level, none of the kernel configurations we have

considered in previous sections shows any measurable performance difference: with

all the other work taking place: the cost of in-kernel labelling and enforcement is

unmeasurable. However, we are able to explore one further case: extended attribute-

backed label storage, which did not present a performance difference for the system

call micro-benchmarks measuring read or open performance due to label caching in the

vnode of each file. In the build benchmark, however, the additional cost of I/O for the

extended attributes is noticeable, leading to an 8.14% overhead on a multilabel UFS

file system.

This is at least in part due to the use of synchronous I/O to ensure that Biba security

labels reach disk before the inode is hooked up to its parent directory – this prevents

a race condition in which a system crash might leave a new file without adequate

labelling on recovery. UFS file system employs soft updates to address the problem of

synchronous I/O, reordering I/O rather than requiring software to wait synchronously

before proceeding to the next operation [47]. A similar optimisation to order label I/O

to disk before parent directory operations would at least mask the synchronous I/O,

although not the additional I/O bandwidth required for label storage.

88

3.8 Related work

As described in Chapter 1, the area of operating system access control has been exten-

sively explored by research and commercial project. Research initially focused on pos-

sible access control policies, developing models such as Bell and LaPadula’s BLP/MLS

confidentiality [15], Biba’s integrity policy [18], Boebert’s (or possibly Neumann’s) Type

Enforcement [22, 96], and Badger’s Domain and Type Enforcement [13]. Unsatisfyingly,

no single policy model has proven simple, flexible, and useful for all configurations.

This in turn has led to the popularity of more flexible models (such as TE), but also

research into extensible access control models increasingly based around Anderson’s

reference monitor [5]. Systems such as Ott’s Rule-Set Based Access Control (RSBAC)

for Linux [99], based on Abrams Generalized Framework for Access Control GFAC) [2],

and FLASK [78] both explore this area. Similarly, system call interposition systems

have attempted to fill this gap, including Badger’s Generic Software Wrappers [46].

More recently, the MAC Framework and Linux Security Modules [148] have inves-

tigated this space to great effect: by providing a reference monitor that has a close

integration with kernel data structures, problems with system call interposition can

be avoided while still supporting higher level abstractions such as BLP, Biba, and TE

(most commonly via FLASK). Unlike LSM, the MAC Framework place a strong fo-

cus on supporting infrastructure (such as labelling semantics and policy-agnostic label

system calls) and the kernel synchronisation model, offering stronger guarantees for

policy authors. Apple’s Kernel Authorization framework (kauth) also provides kernel

extensibility with the intention of supporting anti-virus systems, and has been adopted

by NetBSD [9, 35], but has proven insufficiently expressive to support mandatory pro-

tection schemes, leading Apple to also adopt the TrustedBSD MAC Framework in their

Mac OS X and iOS operating systems.

3.9 Conclusion

This chapter introduced the TrustedBSD MAC Framework, an access control extension

framework for the commodity FreeBSD operating system. Premised on OS vendor sup-

port for access control extensibility, the goal of the framework is to improve assurance

through use of a reference monitor design, reduce the cost of access control localisa-

tion, improve OS vendor support for third-party security products such as anti-virus

packages, and facilitate access control research and technology transfer. To validate

the framework, we implemented a variety of access control policies, ranging from tradi-

tional MAC models such as Biba and MLS, to the research LOMAC policy, to hardening

models designed around UNIX credentials and file ownership. The MAC Framework

incorporates a set of guiding design principles intended to address both critical concerns

with prior work and obstacles to adoption:

• Vendor lock-in to a specific access control policy is avoided while improving the

89

flexibility to support OS vendor security extensions.

• Policy-specific kernel changes are avoided, with the majority of MAC Framework

entry points being used by more than one policy.

• Infrastructure is provided for commonly required functional dependencies, such

as policy-agnostic labelling of kernel objects and label management system calls.

• Policy authors can select their own performance and functionality tradeoffs, pay-

ing only for the features they use.

• Multiple policies are composed sensibly, encouraging encapsulation of indepen-

dent models in their own policy modules.

• The design facilitates assurance arguments through the structure of a reference

monitor, well-defined concurrency semantics, and self-testing through locking as-

sertions and object life cycle validation implemented in the mac test module.

• Increasingly concurrent OS design is directly addressed through integration with

the kernel’s synchronisation model, limitations on the expression of unsafe con-

structs, and optimisations for multiprocessing.

• Concurrency vulnerabilities described in Chapter 2 are “designed out” by pro-

viding strong synchronisation linking access control policy authorisation, access

control meta-data, and methods on protected objects.

In the next chapter, we turn to the MAC Framework’s evolution from a DARPA

research prototype to an access control technology integrated into a myriad of widely-

deployed products. Designed for the open source FreeBSD operating system, the frame-

work has proven surprisingly adaptable to systems as diverse as Apple’s iOS operating

system on the iPhone and iPad to nCircle’s policy enforcement appliances. The di-

verse range of access control policies implemented and used with the MAC Framework

validates its fundamental hypothesis: that an access control extensibility framework

“designed in” to the operating system facilitates the exploration and deployment of

new security technology at a time when no access control policy panacea has been

found.

90

Chapter 4

The MAC Framework: from

research to product

The previous chapter described the design and implementation of the TrustedBSD

MAC Framework, a kernel access control extension framework for commodity operating

systems. In this chapter, I consider the framework’s transition from a DARPA research

prototype to its widespread use in industry via the open-source FreeBSD operating

system, and evaluate the effectiveness of the MAC Framework in validating the security

extensibility hypothesis. At heart, the MAC Framework is a tool for security technology

transfer, and the story of how the framework itself was transferred sheds considerable

light both on the nature of and motivations for technology transfer. A number of

factors have contributed to the success of the framework in open source and proprietary

products:

1. The need for new access control was pressing. The classic UNIX model failed

to meet the requirements of routers and firewalls, Internet service provider sys-

tems, and smart phones. Likewise, the threat of attack became universal due to

ubiquitous networking and a proliferation of malware.

2. Technical and structural arguments for a MAC Framework: explicit access control

extensibility was indeed the preferred way to support local security extensions,

and successfully catered to a range of security and performance requirements.

Access control research has continued to produce and refine policy systems, but

no one policy model has proven appropriate to all environments.

3. Hardware performance improvements increased tolerance for the overhead of new

security features. So dramatic were the hardware performance enhancements of

the last decade that not only could large server systems afford access control and

extensibility overhead, but so could small devices such as consumer phones, which

have some of the greatest security needs.

4. The open source technology transfer strategy proved extremely successful, providing

a community and forum for collaborative research and development, but also a

91

pipeline for adoption into both existing and new products relying on open source

foundations.

The MAC Framework has evolved considerably since 2003. Experience has brought

many refinements of approach, and in some cases, significant course adjustments. While

it might be argued that the need to extend the MAC Framework to meet unanticipated

needs is a failure of the approach, I argue instead that the fact that the framework was

adopted, and that extensions were made within the structure of the MAC Framework,

reflects its success.

Much of this evolution relates directly to adoption into products, which this chapter

investigates through three case studies: the open source FreeBSD operating system for

which the framework was originally developed, nCircle’s FreeBSD-based IP360 security

and compliance monitoring appliance, and Apple’s Mac OS X operating system, used in

their desktop and server products, and the iOS operating system used in their iPhone,

iPod Touch, and iPad product lines. In each case, I consider the motivation for using

the MAC Framework, changes made to the framework to meet the requirements of a

specific product, and the types of policies deployed with the product.

4.1 FreeBSD operating system

FreeBSD is an open source operating system developed by the FreeBSD Project, an

open source community, and supported by the FreeBSD Foundation, a non-profit foun-

dation1. FreeBSD’s origins lie in the Berkeley Software Distribution (BSD), a version

of UNIX developed at the University of California at Berkeley in the 1970s and 1980s;

BSD is the origin of a number of critical UNIX technologies, including the Fast File

System (FFS), the Berkeley TCP/IP stack, and the Berkeley sockets API [82]. Beyond

its technical success, the Berkeley open source license has proven extremely successful

for technology transfer, essentially allowing unrestricted use without either license fees

or a requirement to return changes to the open source project2.

As a result, FreeBSD is used throughout industry as a platform for building online

services and as a foundation for building other operating system and embedded prod-

ucts. Countless Internet Service Providers (ISPs) including Yahoo!, New York Internet,

BitGravity, Verio-NTT, and the Internet Systems Consortium (ISC) use FreeBSD as

a platform for provisioning network services across hundreds of thousands of servers.

Product companies such as Juniper, Cisco, McAfee, nCircle, Sandvine, NetApp, and

Apple use FreeBSD as a source of operating system technology, relying on it to varying

1My roles as a member of the elected FreeBSD Project core team, the project’s management board,

and as a member of the board of directors of the FreeBSD Foundation, have offered me considerable

insight into their respective operation.
2The BSD license is similar to academic licenses used by a number of other major computer science

research organisations, including Carnegie Mellon University and MIT.

92

degrees to provide core infrastructure features such as networking, file systems, security,

device drivers, and POSIX APIs.

This diverse source of user requirements combined with an open development com-

munity led me to create the MAC Framework, whose basic premise is an engagement

between the OS vendor and downstream consumers who require the ability to extend

the security model of the operating system. In practice, the framework has seen heavi-

est use in appliances, embedded network devices, and consumer products; of the above

list, Juniper, McAfee, and Apple rely on the MAC Framework to support their custom

security models.

In this section I consider the evolution of the MAC Framework from an “exper-

imental” feature in FreeBSD 5.0, released in 2003 before I began my PhD research,

to its upgrade to a production feature in FreeBSD 8.0, released in 2009. The MAC

Framework is a complex piece of software; although the framework itself is only around

8,500 lines of code, with an additional 15,000 lines of code in its reference policies, it

integrates with a multi-million line kernel. This integration required modifying most

major kernel subsystems, adding fields to many central kernel data structures, and

making significant modifications to the system boot and login mechanisms. As the

changes matured and were merged, and despite best intentions, it was inevitable that

not all design tradeoffs selected during initial prototyping matched the requirements

of general-purpose OS use. The transition to production status relied on several fac-

tors, including an increasing confidence in the framework’s correctness, additional work

to improve completeness of mediation, and responsiveness to community feedback on

design and performance. The MAC Framework produced significant interest in the

community, leading to a number of external contributions of code, both in terms of

new features and analysis of correctness, some of which will be detailed in this section.

4.1.1 Experimental feature status

The MAC Framework was merged into the FreeBSD source tree shortly before FreeBSD

5.0, and appeared in that release as an “experimental” feature. Marking the framework

as experimental had a number of implications:

• Required that the framework not be configured by default, needing an explicit

administrator action to enable it.

• Required that the MAC Framework be clearly marked as experimental, notifying

users of its potential incompleteness or instability.

• Accepted a reasonable likelihood of security issues in early versions of the frame-

work. Vulnerabilities in experimental features are fixed, but do not require secu-

rity advisories or binary updates implied by vulnerabilities in production features.

• Avoided programming and binary interface (API, KPI, ABI, and KBI) stability

requirements: MAC Framework interfaces could be changed or removed with-

93

out formal deprecation processes, and with reduced sensitivity to forward and

backward compatibility3.

The goal of merging a feature before it is fully mature is to seek feedback from a ore

broader community and to support early adopters who are willing to use and improve

it. This applied well to the MAC Framework: as an extension framework intended to

encourage experimentation with new access control policies, we argued that it could

become mature only through exercise by early adopters who would establish whether

it was sufficiently expressive and mature to meet their needs. Marking the framework

as experimental allowed this to occur without unmet expectations of stability and

completeness. We were concerned with four specific problems that we felt must be

resolved before the framework could be considered production-worthy:

1. The potential performance impact was poorly understood due to the narrow set

of benchmarks and analyses performed on the early prototype.

2. The binary compatibility implications for the base kernel, non-MAC kernel mod-

ules, MAC policy modules, and kernel monitoring tools were not fully understood.

3. Several less commonly used OS features (such as System V IPC) were not fully

mediated, limiting the framework’s effectiveness for ubiquitous information flow

control policies.

4. There was no integration with the OS privilege model, preventing the MAC

Framework from providing effective containment of the root user.

The previous chapter provided a brief summary of how issues of binary compatibility

and feature completeness were addressed. The next section considers the evolution of

performance, especially in networking. Section 4.2 discusses the MAC Framework’s

integration with the FreeBSD privilege model done in collaboration with nCircle.

4.1.2 Performance

FreeBSD is used in performance-sensitive environments: high-volume web servers,

routers, firewalls, file servers, and more recently, low-power consumer devices where

I/O and computational overhead translate into reduced battery life. As discussed in

Chapter 3, this implies a number of performance goals for the framework, including

minimising overhead when the framework is not in use in order to make enabling the

framework in the default kernel more acceptable, minimising framework overhead when

it is used, and requiring policies to only pay performance penalties for features they de-

pend on. The previous chapter’s performance analysis is based on the MAC Framework

3It should be observed that the FreeBSD Project’s own ideas about API and binary compatibility

evolved significantly over this period, as pressure mounted from users to improve application and

device driver compatibility between versions.

94

as shipped in FreeBSD 8.1 in 2010; those results were accomplished only after several

years of iterative development, profiling, and feedback from real-world use. In this

section, I consider various performance optimisations introduced since 2003 in order to

reach the current results.

Labelled networking

Information flow MAC policies, such as Biba and MLS, require labelling and control

of all potential communication paths in the system. In most MLS extensions to UNIX

systems, the practical implementation of this is labelling not only of IPC primitives

directly engaged by applications (such as sockets), but also in-flight packets passing

between IPC endpoints. Packet labels are typically derived from the socket or network

interface where the packet originated. In FreeBSD, struct mbuf chains represent in-

flight packets, which must therefore carry labels when policies such as Biba and MLS

are used.

In the initial FreeBSD 5.0 implementation, a struct label was embedded in the

network stacks’s struct pkthdr, which carries meta-data for packets, such as their

length, originating interface pointer, VLAN information, as well as (to a limited extent)

processing state associated with adding and removing protocol headers. Semantically,

this provided exactly the desired behaviour: one label for each in-flight packet; however,

even when the framework was compiled out of the kernel, automatic zeroing of the

20- or 40-byte structure led to a several-percent performance overhead in per-packet

processing.

In FreeBSD 5.1, the MAC Framework approach for mbufs was revised to use the

new m tag packet meta-data facility; this allows a linked list of data structures to be

hung off of in-flight packets for less commonly used features, such as IPsec and MAC.

In this design, overhead for non-MAC kernels is eliminated, but a more significant

overhead potentially exists for policies that employ packet labelling, as MAC labels are

stored in external memory that must be allocated, freed, and indirected to for every

packet. Further, if other kernel features employing mbuf tags are present, such as IPsec,

allocation overheads are multiplied, and the number of indirections to follow the list

(along with associated cache misses) is similarly increased. To mitigate this expense

for MAC policies that do not employ per-packet labelling, a new policy flag was added,

MPC LOADTIME FLAG LABELMBUFS; only when at least one policy had set the flag would

the MAC Framework allocate labels for mbufs.

Labelling of other kernel objects

While network processing is particularly sensitive to packet labelling, the same princi-

ples also apply to other kernel object types. Somewhat lagged from the evolution of

mbuf labelling, the MAC Framework’s handling of other kernel objects has also evolved.

Four considerations influenced these changes:

95

• reducing memory overhead when the MAC Framework is compiled out,

• changing the implementation of struct label without affecting the binary layout

of kernel data structures,

• changing the implementation of struct label without affecting MAC policy mod-

ules that consume it, and

• avoiding allocating labels unused by the actual loaded set of policies, especially

for object types with large standing allocations (such as vnodes).

To this end, in FreeBSD 5.2, all embedded instances of struct label were replaced

with label pointers, avoiding allocation of labels for non-MAC kernels, as well as al-

lowing the implementation of the label structure to be modified without affecting the

layout of core kernel data structures. This design choice has two downsides, however:

an additional indirection is added to every label access, and label structures must be

independently allocated and freed, requiring additional calls to the kernel memory allo-

cator. This trade-off is considered worthwhile, but as micro-benchmarks in Chapter 3

showed, the overhead of additional allocations is non-trivial.

An important motivation to move to an opaque and separately allocated label struc-

ture was the desire to be able to modify the size and layout of the per-policy data array

in the label without changing the kernel binary interface (KBI) for loadable modules.

From inception, the MAC Framework had explicitly passed label pointers as well as ob-

ject pointers to MAC policies in order to avoid policies incorporating dependence on the

binary layout of core kernel data structures containing labels. However, in FreeBSD 7.0,

the framework KPI for policies was modified to add accessor functions, mac label get

and mac label set, hiding the internal implementation of label structures from policies

as well.

In FreeBSD 8.0, a general strategy of avoiding label allocation for each object type

unless required by a specific policy was adopted: rather than using a policy flag for

each object type, the framework determines whether labelling is required for each object

type by analysing the entry points a policy implements when it registers, eliminating

the need for a specific MPC LOADTIME FLAG LABELMBUFS policy flag. If a policy registers a

label initialisation function for an object type, then the MAC Framework will allocate a

struct label for each instance of the object the kernel creates4. For policies compiled

into the kernel or loaded at boot-time, this maintains the invariant that all instances of

the object type will have label storage; for policies loaded dynamically, this guaranteed

may not hold as objects may have been allocated before the policy was loaded. Rather

4Mac OS X further refines this approach for certain types, such as vnodes by allowing labels to be

allocated on specific objects only when required; this model is difficult to impose on all kernel objects,

however, due to policy invariants that labels always be available, as unconditional memory allocation

is not possible in all kernel contexts.

96

than dynamically modify all outstanding object instances, which would incur significant

overhead, it is instead the responsibility of the policy to handle this case.

In the case of policies used with FreeBSD, these trade-offs seem to work well: in-

formation flow policies that depend on ubiquitous labelling for correctness are already

statically loaded. Dynamically loaded policies will need to be able to tolerate a lack of

labels on, for example, packets instantiated before the policy loaded regardless. How-

ever, this consensus has not been accepted in all environments: McAfee’s Sidewinder

firewall directly embeds label information in the struct mbuf header in their local im-

plementation, rather than accept additional per-packet overhead. The version of the

MAC Framework in Mac OS X, forked before the introduction of automatic policy

interrogation for label use, makes different trade-offs for several data types due to po-

tential memory overhead in a largely unlabelled OS environment; this is discussed in

greater detail in Section 4.3.

Where possible, the MAC Framework relies on existing object locking in the kernel,

avoiding additional synchronisation to protect labels where label access aligns with

object access; this reflects the practical (and intentional) reality that per-object locks

are often held at the time that access control checks are performed. For most labelled

policies, this works well – for example, Biba and MLS set or modify labels only on

object creation or during explicit relabel operations. For LOMAC, however, writes to

labels may occur when only object read locks are held, requiring additional locking.

Optimisations to FreeBSD locking over time have necessarily modified MAC Frame-

work locking – fine-grained object locking in the kernel implies fine-grained locking in

the framework, both for correctness and performance. For example, as locks in differ-

ent layers of the network stack were differentiated to allow greater parallelism between

processing across layers, changes were required to not just locking in the MAC Frame-

work, but also labelling: caches of socket-layer labels were introduced in network pro-

tocol layers, such as on struct inpcb describing the IP-layer state for TCP and UDP

connections. This avoids the need to enter the socket layer from the network protocol

to check labels, as is done for other cached values in the inpcb.

Synchronisation overhead entering the framework

As policy modules can be loaded and unloaded dynamically, the MAC Framework pro-

vides synchronisation to ensure that modules are not unloaded while functions they

contain are in execution. In FreeBSD 5.1, this synchronisation is provided by a refer-

ence count, protected by a mutex, that is incremented whenever an entry point begins

executing, and decremented whenever entry points complete. Attempts to modify the

list of policies, either to add or remove a policy, wait for the reference count to drain

and acquire the mutex.

In FreeBSD 5.2, this approach was refined by differentiating “dynamic” policies

from “static” policies: a dynamic policy can be loaded or unloaded, and hence requires

synchronisation around its invocation, whereas a static policy does not. A policy is

97

considered static if it is loaded during boot and its policy flags indicate that it cannot

be unloaded; the policy mutex is not held when iterating over statically configured

policies, but is acquired to test whether dynamic policies are present, in which case

the reference count is bumped (and later dropped through another acquisition of the

mutex). This approach is further refined in FreeBSD 5.3 by adding a kernel option

MAC STATIC, which allows the set of policies to be declared fixed, preventing run-time

loading and unloading, but entirely avoiding the need for synchronisation in the frame-

work – a useful feature for routers and firewalls.

In FreeBSD 8.0, further effort was made to reduce overhead from options MAC to

near-zero so that the framework could be included in the GENERIC (default) kernel.

An analysis of synchronisation overhead from simply entering the framework on entry

points was performed and the reference count was replaced with optimised locking

primitives. To avoid deadlock, one of two locks is used depending on the type of entry

point: certain entry points occur in contexts permitting unbounded sleeping (such as

on slow disk I/O), but others (such as in the network stack) forbid it. The introduction

of read-mostly locks in FreeBSD 8 meant that not only were atomic operations no

longer required to synchronise the framework, but also also avoided writes to cache

lines shared across CPUs. Combined with improvements in CPU performance and a

shift to cache-centric CPU designs, the resulting overhead is minimised.

As of FreeBSD 8.0, the MAC Framework is compiled into the default kernel across

all architectures; while there have been reports of overhead in certain edge cases, most

measurements to date have indicated that on contemporary (cache-rich) hardware, the

overhead of the framework when unused is measurably insignificant. Optimisation

strategies between FreeBSD 5.0 and 8.0 changed substantially: focusing on minimising

overhead for first when the framework was compiled out, and later compiled in, by

default. Optimisation also changed with hardware: as the focus on instruction over-

head became less important, minimising cache footprint and locking overhead became

critical, reflecting a transition to multicore hardware.

4.1.3 Third-party contributions to the MAC Framework

One of the most important goals of the MAC Framework was to encourage the de-

velopment of new access control policies, as well as seek contributions from the open

source community and downstream consumers in improving the framework. In this

section, I consider several uses of the MAC Framework in open source, academia, and

industry, with a particular focus on improvements motivated by policy and correctness

requirements.

SEBSD

The most significant effort at an externally maintained open source policy module is

SEBSD, a port of the FLASK and Type Enforcement implementation from SELinux to

FreeBSD, created at NAI Labs [78, 131]. The SEBSD project led to the introduction of

98

a number of new MAC Framework features, including complete mediation of previously

omitted services such as System V IPC. Unfortunately, this policy module has not seen

widespread use in the community, nor continuing maintenance, for two reasons:

1. Type Enforcement policies are extremely complex, and while the SELinux refer-

ence policy captured security policies for many common Linux applications also

used on FreeBSD, the overhead of maintaining a port of the policy was considered

too great by the community.

2. The SELinux implementation of FLASK and TE falls under the GNU Public

License (GPL), an obstacle to adoption into the FreeBSD base system as a tightly

integrated policy module. This concern would not prevent it being maintained

by third parties and distributed as an add-on module, but that has not occurred.

The SEBSD policy module also relied on two further modifications to the MAC

Framework that were not merged to FreeBSD at the time: labelling and mediation

of file descriptors, and more fine-grained control of system privileges (“capabilities” in

Linux terminology). The latter feature now appears in the FreeBSD kernel, described

in Section 4.2, albeit expressed somewhat differently than the SELinux-based version

developed in SEBSD; updating and adding file descriptor labelling and mediation would

not be difficult. Concerns about license and policy authoring, then, remain the primary

concern for supporting SEBSD in the future. The Kylin operating system, based on

FreeBSD and discussed later in this chapter, ships with the SEBSD policy.

Digital signature verification on binaries

Christian Peron of Seccuris has developed a MAC policy module that stores and vali-

dates cryptographic checksums on application binaries and their dependencies. While

mac chkexec is not distributed with FreeBSD, it is available for download from the

FreeBSD Perforce server.

UNIX credential control entry points

In 2005, Samy Al Bahra developed several extensions to the MAC Framework to allow

policy modules to exercise greater control over the UNIX credential model. New entry

points were added to control credential modifications, such as setting UIDs, GIDs, and

additional groups.

Static analysis of the MAC Framework for memory safety and security

Between 2007 and 2008, while working on this PhD, I mentored and collaborated with

Zhouyi Zou, a PhD student at the Institute of Software, Chinese Academy of Sciences in

Beijing, as part of the Google Summer of Code programme. Zou’s research explored the

application of static analysis and dynamic testing to the MAC Framework to validate

to memory safety and the correctness of access control hook placement [150, 151].

99

His study revealed a number of bugs in memory handling and incorrect enforcement,

for which he submitted patches. These studies have given us significantly increased

confidence in the correctness of the MAC Framework implementation, as well as its

policy modules.

MAC Framework DTrace probes

As part of ongoing dynamic analysis research, to be described in a future paper, I

developed DTrace extensions to the MAC Framework in 2009. Described in Chapter 3,

these dynamic trace points allow debugging, profiling, and analysis of the framework

and its policies using DTrace’s D scripting language.

4.1.4 Additional MAC Framework consumers

In addition to nCircle’s and Apple’s products highlighted later in this chapter, several

other FreeBSD-based products employ the MAC Framework. In most cases, the amount

of public detail available is limited, but this summary is suggestive of the types of uses

that the framework is seeing in industry.

McAfee Sidewinder Firewall

The high-assurance Sidewinder firewall was developed by Secure Computing Corpora-

tion (SCC) and employs the Type Enforcement policy system described in Chapter 1.

Historically the firewall was based on a MAC-hardened derivative of the BSD/OS op-

erating system. The Sidewinder product was transitioned to the FreeBSD operating

system with the acquisition and subsequent cancelation of the BSD/OS product line

by Wind River Systems.

In converting to FreeBSD, the MAC Framework was adopted as a means to instru-

ment access control decisions and manage security labels, using a similar construction

to that explored in SEBSD. SCC submitted one change during their FreeBSD port to

add an additional access control check to authorise socket creation, but otherwise was

able to use the MAC Framework unmodified for a complex and comprehensive cus-

tom security policy. In general, Sidewinder employs the MAC Framework’s labelling

facilities as-is, with the exception of mbuf labelling, where for performance reasons,

direct mbuf header modifications have been made in order to avoid indirections. Cer-

tain availability-related, rather than access control-related, modifications continue to

be maintained as local patches, rather than being merged into the MAC Framework.

Juniper Junos SDK

Juniper’s Junos router operating system runs on the control planes of all Juniper routers

and switches. The Junos SDK [70] allows user applications to run in the router control

plane, and makes use of the MAC Framework and a custom policy module to protect

the integrity of the router environment, as well as isolate router applications from one

another.

100

Kylin operating system

Kylin is a FreeBSD-derived operating system developed at the National University of

Defense Technology in China [149]. Kylin blends a new microkernel with the FreeBSD

kernel, and adds a large number of functional and security enhancements, including a

cryptographic file system and new access control policies. Kylin uses the MAC Frame-

work and integrated FreeBSD access control policies, as well as SEBSD prototype type

enforcement implementation and Kylin-specific policy modules.

Seccuris monitoring appliance

Seccuris provides network security monitoring as a set of appliances, analysis tools,

and services [121]. The system employs the Biba integrity policy via the MAC Frame-

work, to isolate components within monitoring appliances. Seccuris has contributed a

significant number of MAC Framework improvements as a result of their experience,

including bug fixes, improvements in user experience (such as the labelling of special

devices), and additional controls.

4.2 nCircle IP360 monitoring appliance

nCircle Network Security, Inc., is a vendor of security and compliance monitoring tools,

whose customers are as varied as Facebook, HSBC, and USAID [93]. The FreeBSD-

based IP360 distributed monitoring appliance is one of nCircle’s core products, and can

be used to scan networks for not just versions of software with known vulnerabilities,

but also vulnerable configurations, as well as noncompliance with regulations such as

Sarbanes-Oxley. The IP360 uses a modified version of the FreeBSD operating system;

while most security changes could be made within the framework of existing operating

system access controls, customers of the IP360 requested the ability to audit all parts

of the configuration and contents of the appliance directly.

While wanting to meet this customer requirement, nCircle also wanted to limit the

potential for damage to the appliance’s data and configuration that could be caused by

compromise or misuse of the audit account. The UNIX security model, while flexible,

does not easily allow the constrained delegation (and arbitrary scoping) of privilege

such as the right to read all files. To address this problem, nCircle turned to a custom

MAC Framework policy module, which would augment the existing UNIX policy.

The nCircle MAC policy modifies the native UNIX DAC policy to allow an audit

user full read access to the file system and current kernel configuration, bypassing DAC

protections such as file permissions. To prevent potential privilege escalation from

the audit account, the MAC policy would also deny access to other important system

privileges, such as the ability to write to any file, or to load a kernel module. In its

original design, the MAC Framework is only able to perform a subset of the required

augmentation of the base OS policy: it can prevent certain types of system access, such

101

as arbitrary write access, but is not able to grant new privileges. This led nCircle to

seek my assistance in 2006 with enhancing the MAC Framework to add a new category

of functionality: the ability to selectively grant and deny a fine-grained collection of

system privileges using a MAC policy module.

4.2.1 What are system privileges?

Operating system privilege refers to the right to perform operations that violate of

the OS security policy, including the ability to manage system settings (such as net-

work interface addresses), the ability to bypass discretionary access control (override

permissions or change file ownership), and the ability to violate integrity constraints

associated with the process model and kernel protection (such as the ability to load

kernel modules or enable direct I/O access from a user process). In the classic UNIX

design, the kernel denies system privileges to any process not running with an effective

UID of 0, the root user5.

The UNIX userspace builds on this model, combined with setuid binaries: the init

process starts with a UID of 0, but drops privilege by switching to other users at login.

When escalation of privilege is required, setuid binaries allow a process to switch to

the root user, acquiring system privilege but only via an executable that will constrain

actions performed with that privilege. A system of user application privileges is built

on top of the kernel model, using a combination of setuid binaries and message-passing

to allow users to perform selected functions, such as changing passwords, printing to

shared devices, etc.

4.2.2 System privilege extensions to the MAC Framework

For the purposes of this work, our goal was to allow a policy module to augment the

kernel privilege policy in order to grant (but constrain) specific privileges for a specific

user. This presented three technical concerns: how to identify and distinguish different

types of privilege when exercised, how to augment granting of privilege, and how to

express a policy to decide when to grant that privilege.

These problems resemble, in microcosm, the larger problem addressed by the MAC

Framework: the structuring of a reference monitor for access control extensibility; it

seemed a natural fit for the framework despite a departure from the design choice to

limit, rather than grant, additional rights. In prior work developing the Jail security

model with Kamp [65], I had explored another rethinking of root privilege, allowing

root users in jailed processes certain violations of system access control policy, but

not the ability to violate process integrity constraints. I had also previously explored

implementing POSIX.1e privileges on FreeBSD, although to an unsatisfactory end:

we concluded that the file-system based extended privilege model proposed in POSIX

was too risky, especially in light of the Linux vulnerabilities that arose through the

composition of a persisting root user and the new privilege model [122].

5In a few edge cases, such as process count limits, the real UID may be used instead.

102

In the first phase, all existing uses of the suser and suser cred kernel functions,

which check the current thread or another credential for root privilege, were analysed

and replaced with new calls to priv check and priv check cred, which check for spe-

cific named privileges passed via an argument rather than total privilege. Figure 4.1

illustrates a few of the roughly 200 different privileges identified in the FreeBSD ker-

nel; this contrasts with the roughly 30 privileges used in the Linux implementation of

POSIX.1e, providing a much more granular naming of privileges than are collectively

captured in catch-all Linux privileges such as CAP SYS ADMIN.

Certain privileges exist in equivalence classes: for example, the right to perform raw

I/O and the right to load kernel modules are effectively equivalent because either implies

the other. Other privileges are effectively equivalent due to the structure of userspace

above the kernel: the right to read any file connotes access to the SSH private key of

the host, which might be leveraged to switch to any user – a right also granted by the

privilege to change a file’s UID. As the equivalencies are often unclear, and because the

implications of a privilege are impacted by other aspects of the context (for example:

the right to override file permissions is constrained by chroot, which limits the ability

to name files via open), we distinguish privileges based on their direct effects as system

methods, preferring a clear mapping of functionality into privileges, which can then be

interpreted and coalesced as required for policies.

Despite sacrificing the efficient representation of privilege masks in a single 32-bit

integer, this approach met the needs of the FreeBSD operating system much better: for

example, exemptions to the root user model implemented in Jail could be converted

from flags passed selectively to invocations of suser cred to a central list of permitted

privileges for jailed processes, centralising implementation of the policy.

In the second phase, the new priv check cred routine was reworked to effect an

explicit composition policy for sources and limitations of privilege, with two new MAC

entry points added. mac priv check takes the standard MAC entry point format, ac-

cepting a credential and a named privilege argument, and returning an error code that,

if non-zero, aborts the privilege check and returns that error. mac priv grant diverges

from the existing MAC Framework model in two ways. First, it allows overriding the

base OS privilege policy to grant new rights, rather than restrict them, replacing the

default EPERM that will be returned by mac priv grant when privilege is not present.

Second, it uses a new policy composition macro, MAC GRANT that composes errors from

policies by using an alternative precedence operator that defaults to EPERM but allows

one or more policies to replace it with a successful 0 if desired.

This approach adopts design elements from the original Poligraph proposal by al-

lowing pluggable policy modules to supplement (or replace) the system privilege model,

while still offering a sensible composition. The explicit meta-policy in priv check cred

means that any MAC policy may deny privileges that would otherwise be granted by

the base privilege policy or another MAC policy. Assuming that no policies deny access

to the privilege (including Jail), new privileges may then be granted.

103

/*

* The remaining privileges typically correspond to one or a small

* number of specific privilege checks, and have (relatively) precise

* meanings. They are loosely sorted into a set of base system

* privileges, such as the ability to reboot, and then loosely by

* subsystem, indicated by a subsystem name.

*/

...

#define PRIV_ACCT 2 /* Manage process accounting. */

#define PRIV_MAXFILES 3 /* Exceed system open files limit. */

#define PRIV_MAXPROC 4 /* Exceed system processes limit. */

#define PRIV_KTRACE 5 /* Set/clear KTRFAC_ROOT on ktrace. */

#define PRIV_SETDUMPER 6 /* Configure dump device. */

#define PRIV_REBOOT 8 /* Can reboot system. */

#define PRIV_SWAPON 9 /* Can swapon(). */

#define PRIV_SWAPOFF 10 /* Can swapoff(). */

#define PRIV_MSGBUF 11 /* Can read kernel message buffer. */

#define PRIV_IO 12 /* Can perform low-level I/O. */

...

/*

* VFS privileges.

*/

#define PRIV_VFS_READ 310 /* Override vnode DAC read perm. */

#define PRIV_VFS_WRITE 311 /* Override vnode DAC write perm. */

#define PRIV_VFS_ADMIN 312 /* Override vnode DAC admin perm. */

#define PRIV_VFS_EXEC 313 /* Override vnode DAC exec perm. */

#define PRIV_VFS_LOOKUP 314 /* Override vnode DAC lookup perm. */

...

Figure 4.1: Excerpt from list of system privileges supported by priv(9).

In some cases, MAC entry points already existed to perform access control checks

for privileged system operations. In these cases, it was necessary to decide whether the

new granular privilege model was sufficient to replace the existing kernel service entry

point, or whether an entry point might still be required. The deciding factor in each

case was whether additional arguments passed to the entry point to supplement the

credential authorising the operation were valuable for access control purposes. This

reflects a fundamental difference between the privilege model and the MAC Frame-

work viewpoint: privileges are determined solely with respect to the subject credential,

whereas most entry points are considered methods on objects, and therefore granted

rights can be scoped based on the objects affected. Two example entry points illustrate

this distinction:

104

• The entry point mac check system nfsd, which authorised a thread to become

part of the NFS server, is an example of a check entirely subsumed by the priv-

ilege system, as it accepted no additional arguments. With the introduction of

mac check priv6, this entry point has been removed.

• In contrast, the entry point mac check system swapon, which authorises a thread

to configure a particular vnode as a swapping target is retained, as the additional

object context was key to the access control check. For example, the Biba policy

enforces the requirement that a system swap device or file be labelled as HIGH, as

a swap target may hold memory contents from processes with a variety of labels.

Finally, it was necessary to decide how new privilege functionality would be exposed:

we selected to implement only privilege extensibility, and not a user model for privilege

management, at that time. This means that MAC policies can adjust the privilege

policy, and new policies can be written to implement new privilege services, but that

system administrators are not directly presented with a role-based privilege system.

These features appeared in the MAC Framework as of FreeBSD 7.0; existing MAC

policies such as Biba were modified to limit access to a number of system integrity

privileges when running without Biba privilege, improving resilience of the policy to a

compromised root user running at lower integrity grades.

4.2.3 The nCircle MAC policy

The nCircle MAC policy builds on these features to create an audit user with the right

to audit the contents of most (but not all) files on the system, the system log, and the

system firewall configuration:

1. It identifies a specific UNIX user ID as the audit user, to which all remaining

modifications of the system policy will apply.

2. The privilege-granting entry point is implemented, and grants several additional

privileges to the audit user, including PRIV MSGBUF, granting access to the ker-

nel log buffer, PRIV VFS READ and PRIV VFS LOOKUP, granting the right to override

permission and access control list limits on reading files and directories, and

PRIV NETINET IPFW READ, granting the right to read the active firewall configura-

tion.

3. VFS entry points are implemented, denying write access to all objects, but also,

denying read access to specific files in the file system, such as the password file.

This structure, in which privileges are granted via one entry point, and then

moderated via another, is another example of the continuing tension between the

6Due to entry point name normalization in FreeBSD 8.0, this entry point is now

named mac priv check; mac check system swapon has similarly been renamed

mac system check swapon.

105

concept of subject-associated privileges and the desire to constrain access scoped

by object.

With privilege enhancements, the MAC Framework allows the nCircle policy mod-

ule to combine controlled privilege escalation with mandatory constraints on access,

meeting the needs of their product while minimising local OS modification. While nCir-

cle’s specific policy module remains closed source, they contributed my improvements

to FreeBSD’s privilege model and MAC Framework extensions back to the FreeBSD

Project under a BSD license for FreeBSD 7.0. These enhancements of the framework

allowed existing policies to be improved, as well as opening the door, through imple-

mentation of a fine-grained model for privileges, to future privilege-related security

features. For example, it would now be relatively straight forward to implement an

assignment of system privileges to users using role-based access control (RBAC), such

as found in Solaris.

4.3 Apple’s Mac OS X and iOS

In short succession, Apple released versions of its two flagship operating system prod-

ucts, Mac OS X Leopard for desktop and server in 2007 [11], and iPhone OS 2 for

Apple’s iPhone and iPod Touch in 2008 [10], incorporating the TrustedBSD MAC

Framework as a reference monitor. Since then, the role of MAC Framework-based poli-

cies has grown, incorporating a variety of critical security functions. The current Mac

OS X Snow Leopard release ships with four MAC policy modules:

• Sandbox provides policy-driven containment of vulnerability-prone components

processing untrustworthy data. Prime examples are network server processes and

video CODECs7.

• Quarantine manages taint labels on downloaded files, tracking information such

as the original web site files were downloaded from. This supports features such

as user confirmation before executing a newly downloaded application.

• Parental controls prevent the execution of unapproved programs8; not all aspects

of parental control use the framework however, as most of its constraints are

application-level.

• Time Machine Safety Net protects the integrity of backup data managed by Ap-

ple’s Time Machine backup system.

7The sandbox policy shipped in Mac OS X Leopard, iPhone OS 2.0, and iPhone OS 3.0 is referred

to as Seatbelt. Sandbox is a significantly reworked version of Seatbelt, and ships with Snow Leopard

and iOS 4.0.
8The irony of using military-inspired mandatory access control to enforce parental controls has been

observed by a number of parties. Interestingly, the MAC Framework is not involved in the enforcement

of Digital Rights Management (DRM) in Mac OS X.

106

Apple’s iOS 4.1 (previously iPhoneOS) ships with two policies – Sandbox, and a MAC

policy integrated with iOS’s code signing facility. All of these policies across both plat-

forms employ the MAC Framework as a reference monitor, modifying core behaviours of

the operating system, and enforcing diverse policies unanticipated in our initial design

of the MAC Framework.

In the following sections, I describe in greater detail the history, adaptation, and use

of the MAC Framework in these Apple operating systems, as well as potential future

directions.

4.3.1 SEDarwin research prototype

Apple began public beta-testing of Mac OS X in September, 2000, and the promise

of a commodity desktop operating system with an open source, user-modifiable kernel

was difficult to ignore. That Mac OS X’s XNU kernel was based in part on FreeBSD

made it particularly appealing: I already had in-progress research that might easily

be made available on Mac OS X, offering a further path for technology transfer. NAI

Labs, where I was working at the time, began in-house ports of my early TrustedBSD

features, such as extended attributes and access control lists, to Mac OS X in order to

understand the platform better [138].

XNU is a sophisticated blend of OS components from several sources: CMU’s Mach

3.0 microkernel, portions of the open source FreeBSD 5.0 kernel, and numerous addi-

tional features developed at Apple. While not itself a microkernel, XNU adopts many

elements from Mach, including the scheduler, IPC model, and virtual memory sys-

tem. Higher-level kernel components used Mach facilities within a single kernel address

space, but they are also available directly to user processes. Mach IPC is central to

most Mac OS X userspace subsystems, including the window server and desktop IPC

model – it is not possible to usefully explore security in Mac OS X without a careful

consideration of the implications of Mach IPC.

The FreeBSD process model, IPC model, network stack, and VFS are grafted onto

Mach, providing a rich POSIX programming model. XNU performance is improved by

having FreeBSD kernel features in the same address space as Mach, allowing subsystems

such as VFS to use pointers to refer directly to Mach VM objects. Method invocations

on Mach objects can then be performed via direct function invocation, eliminating

the need for message passing and context switching in countless in-kernel fast paths.

These performance benefits come at the cost of lost protection between Mach and

BSD, and direct exposure of BSD features to userspace rather than encapsulating them

using message passing, potentially making Hydra-style interposition more difficult to

implement. Apple-developed kernel components found in the first release of Mac OS

X included the IOKit device driver system, Network Kernel Extension model (NKEs),

and the HFS+ file system; this list that has only grown with more recent versions of

the operating system.

Interesting research problems abounded: how would Mac OS X combine with secu-

107

rity designs requiring a whole-system view? Would we find that ideas developed by NSA

and its collaborators in the DTMach [120] and DTOS [127] microkernel projects applied

better or worse than the monolithic kernel design addressed by the MAC Framework?

How would security features such as mandatory access control and labelling play out in

such a complex runtime environment with so many effectively unmodifiable proprietary

base system components and third-party applications (such as Microsoft Office)? The

features that made Mac OS X so promising were also the features that made if most

challenging to perform research on: a commercial, mainstream desktop vendor with

in-demand applications.

With the DARPA CHATS research programme under way, and an increasingly ma-

ture MAC Framework on FreeBSD, we engaged with our research sponsors (including

DARPA and the US Navy) and Apple between 2003 and 2007 to port the MAC Frame-

work and SEBSD policy module to Mac OS X9, a process described by Vance et al at

the 2007 SELinux Symposium [130]10.

4.3.2 Adapting the MAC Framework to Mac OS X

The design of the MAC Framework reflects a detailed analysis of the FreeBSD kernel;

the resulting system is tightly integrated with low-level kernel memory management

and synchronisation, as well as high-level services such as the file system, IPC facilities,

and network stack. A reference monitor must be aware of and able to integrate with all

security-critical services in the kernel – especially, it must be able to label and control

access to all system objects relevant to policies such as MLS and Biba. While our

adaptation of the framework to Mac OS X was able to rely heavily on Apple’s reuse

of FreeBSD kernel components, the framework also required fundamental changes to

reflect differences in low-level and high-level kernel features between FreeBSD and XNU.

The project was performed in several stages:

1. An initial port of the framework where obvious mappings existed between the

two systems, protecting BSD objects from BSD system call accesses.

2. Feature enhancements to the framework to support specific Mac OS X porting

goals relating to policy expression and protection.

3. Expanded analysis to cover new services found only in Mac OS X – especially,

Mach objects such as tasks and ports.

In the next few sections, I consider a few of the more interesting research problems

discovered during the SEDarwin project.

9I was principal investigator for this project both at McAfee Research and following our acquisition

by SPARTA ISSO. Although I left SPARTA in 2005 to begin my PhD, I continued my collaboration

with SPARTA and Apple, engaging with Apple developers adapting the framework for use in their

products.
10Unfortunately, only a prepublication draft of this paper is available online.

108

Phase 1: XNU BSD kernel components

In this phase, a number of obstacles were encountered reflecting semantic differences

between the two operating systems. For example, the HFS+ file system is structured

around the idea of a disk catalogue, in which the directory namespace is a first-class

object, unlike UFS in which directories are simply a form of file supporting special

operations. One implication of this difference is that Mac OS X includes several system

calls that operate on the catalogue rather than on individual files, such as getattrlist

which performs bulk retrieval of both directory listings and file attributes. HFS+’s

implementation of the underlying vnode operation, vnop readdirattr, did not instan-

tiate a vnode for each entry in order to query these attributes – a problem for the

MAC Framework that assumes file system access control is performed with respect to

vnodes, which are labelled kernel objects. In the initial port, we disabled this optimi-

sation, forcing a vnode to be allocated, a change later adopted in Mac OS X for similar

reasons.

There also proved to be significant differences in the basic construction of the XNU

kernel: FreeBSD relies heavily on the linker set facility described in the previous chap-

ter. Mac OS X lacks the SYSINIT facility, requiring manual insertion of the MAC

Framework and its policies into the boot process, as well as explicit registration of

policies during module init and destroy routines.

Phase 2: MAC Framework enhancements

During development of the SEDarwin prototype, the MAC Framework was enhanced in

several ways to address functional differences from FreeBSD, but also to explore feature

improvements in the framework itself:

• The XNU kernel’s BSD subsystem included features such as POSIX semaphores

and shared memory that would arrive only later in FreeBSD. In general, these

features fit naturally into the existing MAC Framework model; this code would

later be backported as the FreeBSD kernel grew similar features.

• The Mac OS X port of the MAC Framework supports labelling of file descriptors

as well as access control on file descriptor operations (such as lseek). This feature

was introduced during SEBSD development, but never merged back into the base

FreeBSD tree; as it was required for SEDarwin, it was subsequently included in

Mac OS X.

• A further enhancement added to the Mac OS X version of the MAC Framework

is explicit kernel “login contexts,” an abstraction allowing labelling of an entire

login session. This feature was added in order to support the notion of a more

complex security context associated with the session, which would augment the

security labelling of a particular process – for example, for use in a Compart-

mented Mode Workstation policy environment [16]. This feature is, as far as I

109

am aware, unexercised in both the SEDarwin TE policy and all policies shipped

by Apple.

• One known problem with the design of the MAC Framework in FreeBSD is that

while the policy-agnostic APIs allow userspace tools to query labels for policies

without specific knowledge of their semantics, the query system calls require that

the userspace tool be aware of the label element names (such as “biba”). In Free-

BSD, defaults are configured using /etc/mac.conf; in the SEDarwin prototype,

the MAC Framework was extended to allow policies to declare lists of element

names that they accept. Userspace is able to query that list, in order to provide

a useful default set of label elements to query.

• Mac OS X has a much more formal notion of kernel programming interface (KPI)

for third-party developers; in order to conform to this design, and allow greater

flexibility to change policy memory allocation models, the MAC Framework in

SEDarwin provides explicit memory allocation and free interfaces that the frame-

work translates into Mach memory allocation calls.

• As part of maturing the MAC Framework on Mac OS X, many entry point names

were “normalised”, or given a more consistent format. This change was later

largely propagated back to FreeBSD 8.0, leading to a significant change in KPI.

In general, the new names better reflect the object-method paradigm, and make

it easier to predict the name of an entry point.

• The MAC Framework on XNU can control configuration of the audit subsystem,

but also submit its own audit records. Control of audit was later merged to the

FreeBSD version of the MAC Framework, but not the ability to submit audit

records.

Phase 3: Mach tasks, ports, and services in XNU

In the third phase, coverage was expanded to include Mach objects – especially, Mach

tasks and Mach ports (IPC channels). A technical issue that quickly arose in adding

labelling and access control entry points for Mach objects was the order of the XNU

boot. The module linker is initialised only after a number of Mach objects, including

early Mach tasks and ports, have been created. As a result, policies registered “early”

would still miss the creation of these early Mach objects, missing the opportunity to

label them from inception. In the SEDarwin port, the creation of early Mach objects

is “journalled” and then entry points for those objects are replayed once early modules

have been loaded, allowing early boot objects to be labelled in order, restoring the

universal labelling and mediation invariants of policies such as MLS and Biba.

As with processes in FreeBSD, Mach tasks represent the “subject” in operations

on the system, invoking operations (via threads) on services. An XNU process is con-

structed, then, of two parts: an underlying Mach task which provides the scheduling

110

and virtual memory properties, and a BSD process layered above it that carries UNIX

properties such as credentials, file descriptors, signal state, etc. This separation presents

a fundamental philosophical problem: policies such as MLS and Biba require a unified

view of interactions between subjects and objects in the system, labelling both and en-

forcing protections between them regardless of their “layer” in an abstraction hierarchy.

Is the MAC Framework a service of the Mach layer, or the BSD layer?

Our conclusion was that, while useful in some ways, the abstraction boundary be-

tween Mach and BSD was fundamentally artificial as system subjects can directly ad-

dress both layers: the MAC Framework must likewise serve both layers, and be aware

of data types and semantics for both layers. In the SEDarwin port, this conflict is

resolved for subjects by maintaining security labels on both the BSD process and the

Mach task, but with the BSD label considered the authoritative copy; label changes

are propagated to the task label when required. BSD-level operations can then be au-

thorised against the credential label, and Mach operations are authorised against the

task label, maintaining the code abstraction while satisfying the needs of policies such

as Type Enforcement.

Mach ports are another case in which the microkernel origins of Mach come into

conflict with the design premises of the MAC Framework. Mach ports are one-way

IPC channels effectively treated as object capabilities in Mach, and unlike semantically

rich IPC channels in BSD, which rely on kernel-managed namespaces such as the file

system, Mach ports rely solely on userspace provision of global namespaces, typically

managed by launchd, which provides port lookup services for applications (including

the desktop IPC namespace).

Taking a leaf from the DTOS book, SEDarwin adopts an approach in which userspace

applications providing services, such as the namespace, are responsible for labelling and

access control, since only they have visibility into the semantics of methods invoked on

ports. SEDarwin provides a label handle abstraction, which applications can use to

query labels associated with the tasks making requests via IPC, and can also invoke

the MAC Framework to authorise operations from a string-based object type and op-

eration namespace that kernel-based policies can interpret – a significant divergence

from the DTOS model, which performed policy computations in a userspace security

service11.

4.3.3 Adoption by Apple

Development of the TrustedBSD MAC Framework was motivated by a need for security

policies beyond UNIX discretionary access control, in turn spawned by an explosion of

new use cases for UNIX-based operating systems. Apple’s Mac OS X and iOS operating

systems fit both of those trends: Apple is now the single largest vendor of desktop UNIX

11The “security server” parlance originating in DTOS can still be found in SELinux and its

SEBSD/SEDarwin derivatives even though the security server now executes as a kernel-space ser-

vice rather than in a userspace task.

111

systems, and was among the first to deploy a UNIX operating system as the software

foundation for a smart phone – both a far cry from the DEC PDP-7 for which UNIX

was originally developed. Apple also experienced the same pressures felt elsewhere in

industry: increasingly ubiquitous networking and a clear and present threat to even the

most casual use of computers. From this perspective, creating a kernel access control

extension framework for the open source OS on which Apple had built their products

was quite timely.

Adoption of the MAC Framework by Apple was not assured, however. Not least,

competing technologies were being simultaneously considered at Apple, motivated by

similar observations about new requirements and awareness of future product direc-

tions. These included a system call interposition-based technology discussed in Chap-

ter 2, and kauth(9) [9], a kernel authorisation framework modelled in part on ideas

from the MAC Framework and targeted at anti-virus vendors. Apple found arguments

about the fallibility of system call interposition convincing, and in the end adopted

two different access control extension technologies: kauth for third parties such as anti-

virus vendors, and the MAC Framework for Apple to use in constructing sandboxing

and other stronger protections.

The potential concern regarding anti-virus vendors should not be underestimated:

as explored in Chapter 3, it is easy for kernel access control extensions to incorporate

strong assumptions about the implementation details of kernel services. For the Free-

BSD operating system, this has proven a continuing challenge despite a liberal policy

on kernel binary compatibility: compatibility is required for important kernel module

types across minor, but not major, version increments. In Mac OS X, development

of a well-defined Kernel Programming Interface (KPI) model, along with associated

Kernel Binary Interface (KBI) model, was critical to market success: when a user up-

grades their kernel and the system instantly crashes, it is the OS vendor rather than

the anti-virus vendor who is blamed!

While Apple clearly does not consider the MAC Framework experimental, employ-

ing it for a variety of security-critical tasks on all of its major platforms, the framework

not yet part of the public programming interface of Mac OS X. Despite this status limi-

tation, it is entirely possible for third-party module authors to create MAC Framework

policy modules on Mac OS X; for any vendor considering, for example, a mandatory

access control policy such as MLS, Biba, or TE, kauth would not be an option due its

far simpler approach to security extensibility.

4.3.4 The Sandbox access control policy

Apple’s Mac OS X and iOS MAC Framework policy modules are not open source so

we are unable to consider their implementation in detail. However, there is public

documentation available for the Sandbox policy, used by native Mac OS X applications

112

Profile Description

kSBXProfileNoInternet TCP/IP networking is prohibited.

kSBXProfileNoNetwork All sockets-based networking is

prohibited.

kSBXProfileNoWrite File system writes are prohibited.

kSBXProfileNoWriteExceptTemporary File system writes are restricted

to the temporary folder /var/tmp

and the folder specified by the

confstr(3) configuration variable

CS DARWIN USER TEMP DIR.

kSBXProfilePureComputation All operating system services are

prohibited.

Table 4.1: Sandbox defines a number of statically configured profiles to make sandboxing

easier; applications may either uses these profiles, or define their own in a Scheme policy

definition language.

and third-party applications such as Google’s Chrome web browser 12.

Sandbox allows applications to voluntarily restrict their access to operating system

resources such as the file system, IPC namespaces, and networking. Sandboxed pro-

cesses are tagged with a sandbox profile, stored in their process credential MAC label.

Profiles are expressed in a configuration language built on Scheme, and restrict access

to system resources described in terms of services, methods, and in some cases, expres-

sions matching names. Applications may select from several statically defined policies

provided by Apple, listed in Table 4.1, or they may define custom policies directly in

the policy language.

Public Sandbox APIs allow a process to set its label directly, or through the

sandbox-exec helper, set policies on programs brought into execution through execve.

Figure 4.2 shows the common.sb profile used by Google’s Chrome web browser on Mac

OS X. This policy illustrates some of the key constructs supported by Sandbox: the

ability to scope operations by target object, such as limiting signal delivery to specific

processes, broad controls for services such as sysctl and POSIX shared memory, and

regular expression-based selection of files to apply specific access constraints to. In

Chapter 5, I consider some of the limitations of this approach.

In addition to an enforcement mode, Sandbox supports a tracing mode that al-

lows information to be collected on what rights an application requires; sandboxd is

12The Mac OS X Sandbox model was developed solely by Apple, and is not part of the research

produced in this PhD. However, an analysis of Apple’s policies and framework integration contribute

significantly to both our understandings of kernel access control extensibility and the technology trans-

fer process for the MAC Framework.

113

Component Description

cvmsComAgent part of the OpenGL JIT system

cvmsServer part of the OpenGL JIT system

fontmover for installing fonts

kadmind Kerberos admin (server only)

krb5kdc Kerberos (on all systems, client and server)

mDNSResponder Bonjour multicast DNS service discovery

mds Spotlight query server

mdworker Spotlight indexer process (accepts plugins)

named BIND DNS server (server only)

ntpd Network Time Protocol daemon

portmap RPC registration service

quicklook-job-creation for quicklooks (“previews” of documents,

media in finder)

quicklookd for quicklook processes

sshd SSH privilege separation sandbox

syslogd System log daemon

xgridagent xgrid (OS X server only)

xgridagent task nobody xgrid: anonymous client job (server only)

xgridagent task sombody xgrid: authenticated client job (server only)

xgridcontrollerd xgrid (OS X server only)

Table 4.2: A significant number of networked Mac OS X components ship with sandboxing

enabled out of the box. Some components exist on, or are only sandboxed on, Mac OS X

Server.

responsible for collecting and displaying this information. This mode is not dissimilar

to SELinux’s permissive mode, which disables enforcements and generates policy based

on the accesses performed by an application.

4.3.5 Applications constrained by Sandbox

Apple employs Sandbox to constrain a number of base OS components and bundled

applications, with a particular focus on network servers; Table 4.2 lists programs that

have custom profiles. In addition, Sandbox is used with statically configured profiles in

several cases; one notable example is the iChat video codec, which uses a computation-

only profile permitting only communication with a host process via Mach IPC.

114

;;

;; Copyright (c) 2010 The Chromium Authors. All rights reserved.

;; Use of this source code is governed by a BSD-style license that can

;; be found in the LICENSE file.

;;

; This configuration file isn’t used on it’s own, but instead implicity

; included at the start of all other sandbox configuration files in

; Chrome.

(version 1)

(deny default)

; Support for programmatically enabling verbose debugging.

;ENABLE_LOGGING (debug deny)

; Allow sending signals to self - http://crbug.com/20370

(allow signal (target self))

; Needed for full-page-zoomed controls - http://crbug.com/11325

(allow sysctl-read)

; Each line is marked with the System version that needs it.

; This profile is tested with the following system versions:

; 10.5.6, 10.6

; Allow following symlinks

(allow file-read-metadata) ; 10.5.6

; Loading System Libraries.

(allow file-read-data (regex #"^/System/Library/Frameworks($|/)"))

; 10.5.6

(allow file-read-data (regex #"^/System/Library/PrivateFrameworks($|/)"))

; 10.5.6

(allow file-read-data (regex #"^/System/Library/CoreServices($|/)"))

; 10.5.6

; Needed for IPC on 10.6

;10.6_ONLY (allow ipc-posix-shm)

Figure 4.2: Sample sandbox policy file included with Google’s Chrome web browser.

115

4.3.6 Enforcement in Mach and BSD

As explored earlier in our consideration of SEDarwin, comprehensive access control

policies on Mac OS X must take into account the operating system’s split personality:

a set of semantically strong services with well-defined, kernel-controlled namespaces in

BSD, and a message-passing application model built on Mach IPC. Sandbox likewise

provides two sorts of protection: access control for kernel-implemented objects such

as the file system and network stack, and access control on critical userspace services

reached via Mach IPC. As such, Sandbox relies primarily on kernel enforcement, but

also some in the trusted launchd process, which implements the Mach namespace used

by applications to look up Mach IPC-based services in Mac OS X.

In Seatbelt, programs setting up sandboxes would request that launchd create a new

name service port with policy bound to it, which would be passed to the sandboxed

application. In Sandbox, the kernel policy provides a policy lookup service to launchd,

which queries policy via the mac syscall policy system call, passing the PID of the

requesting process (extracted from the Mach message trailer of the request). This

capability-oriented approach does not require kernel enforcement in Mach IPC, a fact

relied on for performance optimisations described later in this section; however, it does

resemble the approach taken in DTMach and DTOS, in which policy queries could be

sent to the security server based on Mach trailer tagging of remote task domain, for

enforcement by arbitrary server processes.

Kernel-enforced policies are set on processes using MAC Framework process labels,

which may be set explicitly on the current process, or by passing the label to mac execve,

a version of the execve call that permits the caller to request a policy-specific label

transition. In Seatbelt, profile descriptions written in Scheme are submitted to the

kernel policy, which will then upcall to sandboxd to convert the policy to an executable

byte code. With Sandbox, policy is compiled to byte code by a library executing within

the program creating a sandbox, eliminating the need for an up-call. Both models avoids

the complexity of compiling regular expressions in the kernel, as well as avoiding the

bytecode becoming part of the fixed binary interface for applications.

4.3.7 Paths in policy expression

Path-based controls are one of the highlights of the Sandbox policy model; as with

DTE [13], the benefits of a path-centric approach to manually administered file labels

are clear. Programmers write applications using paths to access objects, and writing

policy using paths is a more accessible approach than managing individual labels on

countless files, long a criticism of labelled policies such as Biba, MLS, and TE.

In FreeBSD, such a scheme would be difficult to implement correctly: the UNIX

VFS model treats pathnames as second class objects – ephemeral instructions provided

by the user process for traversing the actual objects: directories and files. The UNIX

file system makes path-based reasoning extremely difficult: files can have zero names

116

(unlinked files that are still open), one name (typical files), or many names (hard linked

files, and in Mac OS X, even hard linked directories). Further, one name might refer to

many potential files due to chroot and covering effects from file system mountpoints.

Names on objects can be changed without any direct access to the object itself, and the

UNIX VFS model makes this occurrence difficult or impossible to efficiently track; for

example, while the path used to access a hard linked file can be cached, if that name is

unlinked, other names may still be valid for the file but would require a linear search

of all directories in the file system to identify.

In Mac OS X, the file system namespace is semantically much stronger. The HFS+

file system implements a parent pointer from files back to their containing directories,

with additional book-keeping to handle hard links. The name cache ensures that all

names leading to an object are available at all times, and Mac OS X avoids complex

namespace manipulations that can lead to pathname confusion, such as layered file

system mounts. As a result, conversion from an object reference to a path is considered

a reliable operation. The Sandbox policy also attempts to enforce operations only at

initial reference, such as during file open, rather than potentially later on operations

such as read and write, avoiding the need for permission evaluation both in the fast

path and when paths may be less readily available.

4.3.8 Considerations for iOS

Sandbox is used in many system services in the Mac OS X desktop and server operating

systems; however, existing applications incorporate strong assumptions of ambient au-

thority, or the ability to access any object in the system (perhaps at the request of the

user). With the development of the iPhone, the opportunity arose for Apple to break

fundamental assumptions incorporated into existing applications. One of those assump-

tions was the assumption of ambient authority: in the iPhone, iPod Touch, and iPad,

applications execute with a fundamental assumption of isolation from system services

and other applications. Above all, the goal of this approach is to ensure robustness and

reliable recovery: application programmer errors are prevented from causing problems

with the device’s critical services (such as being a phone), or with other applications.

As such, almost all applications, including Apple’s own applications, are sandboxed in

iOS.

4.3.9 Performance optimisations

As part of my PhD research, I put significant effort into improving MAC Framework

performance to the point where the framework could be enabled in the default FreeBSD

kernel. However, the version of the MAC Framework shipped in Mac OS X and iOS

was branched (and even shipped in Apple products) before many of those optimisations

have been introduced. In order to meet its own performance goals for security, as well

as address the specific tradeoffs present in its products, Apple produced its own set of

performance optimisations, with a goal of minimising overhead for applications. Some

117

of these optimisations were similar to, or derived from, FreeBSD optimisations; others

were significantly different.

Conditional configuration of labelling and some enforcement

In the version of the MAC Framework shipped with Mac OS X, a number of labelling

and access control features required for ubiquitously labelled and enforced policies such

as Biba, MLS, and TE are not enabled by default. For example, while labelling and

control of Mach tasks and ports is supported in the framework, it is not compiled into

the default Mac OS X kernel; similarly, support for labelling of sockets and network-

layer access control checks is disabled in the default kernel configuration.

Although support for labelling vnodes is compiled into the default Mac OS X kernel,

a global switch enabling label allocation for vnodes is disabled by default. Instead,

policies can specifically request that labels be allocated for vnodes that specifically

require it by calling vnode label on the vnode. As policies shipped with Mac OS X do

not make use of vnode labelling, this avoids a significant memory overhead, while still

allowing policies that might require vnode labels to use them.

Conditional enforcement by thread

In FreeBSD, optimisations on entering the MAC Framework rely to a large extent on an

all-or-nothing distinction between sites willing to pay the synchronisation overhead of

the framework, vs. sites that are not. This is consistent with the design of mandatory

policies ranging from MLS to mac bsdextended, in which the goal is to apply policy to

all processes in the system. In Mac OS X, however, the assumption is that sandboxing

will apply only to specific high-risk processes, making it desirable to avoid the overhead

of enforcement on other processes.

To this end, each process carries a flags field, p mac enforce, indicating which object

types require protection for that process. Given the micro-benchmark results in Chap-

ter 3, it might be desirable to apply a similar approach in FreeBSD in order to avoid, for

example, network performance overhead when using a file system-only access control

policy such as mac bsdextended. This assumption of partial enforcement becomes less

true in a system like iOS, in which most or all processes will be subject to some form

of sandboxing; as the Mac OS X application model evolves, and application developers

become more used to the idea of sandboxing, it seems desirable that this will be the

case there as well. In that case, applying further optimisations developed in FreeBSD

to Mac OS X, such as the use of read-mostly locks, might also be appropriate.

4.3.10 Policy label data synchronisation requirements

Development work to introduce fine-grained locking in the FreeBSD and Mac OS X

kernels took place simultaneously, but also independently. The starting code bases are

similar, but minor design differences have led to significantly different synchronisation

properties between the two OSs. One important difference lies in synchronisation of

118

file system objects in VFS: in FreeBSD, the notion of a vnode lock shared between the

VFS and the file system implementation is maintained, and the MAC Framework is

able to borrow this lock to protect its own metadata.

In Mac OS X, the significance of VFS layer locking is reduced, and as the possibility

of making the MAC Framework a supported KPI is considered, masking the internal

locking strategy of the operating system from third-party policy developers is increas-

ingly desirable. As such, Mac OS X policy modules are not able to integrate as directly

with the kernel synchronisation model as in FreeBSD, leading to the potential for race

conditions, and also greater overhead due to policies having to separately lock label

state that in FreeBSD could rely on borrowed OS locks.

4.3.11 Conclusions on Mac OS X and iOS

Adoption by Apple has been one of the greatest technology transfer successes of the

MAC Framework: it has simultaneously met the critical needs of a major systems

vendor in supporting the development of new access control policies, and been deployed

over millions of devices ranging from smart phones to high-end server hardware. It has

also proven one of the most challenging adaptions of the framework, in part due to the

integration of Mach and BSD in the XNU kernel. However, as applications become more

complex, and even multi-million line “monolithic” kernels such as FreeBSD’s appear

small in comparison to applications, similar philosophical issues raised will arise there

as well.

Finally, the interchange of features between the FreeBSD and Mac OS X versions

of the framework has been effective, but much remains to do. FreeBSD has not yet

adopted several interesting features in the Mac OS X version, some developed during

the SEDarwin project, and others as part of Apple’s adoption of the framework:

• Per-process entry point masks for access control, allowing the overhead of frame-

work synchronisation to be avoided when loaded policies are interested in enforc-

ing for only certain classes of objects. This approach could be extended also to

deal with life cycle notifications, based on existing label allocation optimisations

in FreeBSD.

• File descriptor labelling and controls, desirable to fully support FLASK/TE on

FreeBSD.

• Label name registration, allowing userspace applications to query the set of avail-

able names, as well as to detect conflicts between independently authored policies

attempting to use the same names for label elements.

Similarly, Mac OS X is missing several more recent changes to the FreeBSD version of

the MAC Framework, most developed during my PhD research:

• Integration with the OS privilege model, and more generally, a fine-grained treat-

ment of privileges in the kernel.

119

• Several performance optimisations in FreeBSD, especially automatic analysis of

policies to determine labelling requirements, and SMP optimisations for frame-

work synchronisation.

• DTrace instrumentation of the MAC Framework has proven invaluable in policy

debugging, performance analysis, and most recently, testing of the MAC Frame-

work.

4.4 Evaluation

Chapter 3 evaluated the MAC Framework using a number of more traditional systems

research criteria: performance overhead measured through benchmarks, expressivity

through measured with respect to a range of access control models, and specific security

objectives such as avoidance of the classes of vulnerabilities inherent to system call

wrappers discussed in Chapter 2. However, in light of widespread industry adoption

described in this chapter, there is also the opportunity to evaluate the framework from

a more pragmatic perspective: did the hypothesis of security extensibility prove correct

in practice? Regardless of laboratory analyses and measurements, was the framework

adequately extensible, expressive, performant, usable, and secure in production?

This section explores those questions through the experiences gained in transferring

and deploying the MAC Framework in dozens of products and millions of shipped de-

vices. This discussion is necessarily qualitative, and at times anecdotal, in nature, as

it considers the results of an experiment in systems design that can have no control.

However, the results contribute significantly to our understanding of the use of secu-

rity in real-world products, and the impact a framework for security extensibility has

adapting systems to rapidly evolving requirements.

4.4.1 The hypothesis of security extensibility

This dissertation proposes the hypothesis that “designing in” security extensibility for

operating systems offers significant advantages in the presence of changing access control

requirements. The MAC Framework embodies that hypothesis by offering OS vendors,

third-party product vendors, and even certain end users the ability to augment the

operating system access control policy. Chapter 3 asserted several specific advantages: a

reference monitor structure with assurance benefits, reduced cost when OS vendors wish

to offer extended security policies based on commodity operating systems, that third-

party security extensions would be better-supported, and that access control research

and technology transfer would be facilitated.

The MAC Framework has proven fertile ground in confirming all of these claims:

security vendors have used the framework to develop and integrate a broad range of

security policies documented in this chapter, but also as a means of improving security

arguments as seen in Wu et al’s static analysis work and high-assurance evaluation of

120

McAfee’s Sidewinder firewall [150, 151, 79]. McAfee’s and nCircle’s experiences have

similarly confirmed that a modular security framework facilitates long-term mainte-

nance of third-party security extensions against an upstream vendor operating system

making significant implementation changes over time [79, 93]. Likewise, the MAC

Framework has provided infrastructure for research and development of new access

control models in FreeBSD and Mac OS X, including Apple’s Sandbox [1] – a secu-

rity model markedly different from the labelled policies for which the framework was

designed, yet well-expressed using the MAC Framework.

An evolving framework

Experience in industry has confirmed that the MAC Framework’s imposition of struc-

ture on security extension assists developers in the formulating and representing security

policies, and reduces the maintenance cost of those policies over the long term. How-

ever, this chapter has also documented non-trivial changes to the MAC Framework

that were required to meet the needs of consumers:

• Significant performance improvement and functional refinement was required in

order to enable the MAC Framework in the default FreeBSD kernel, as well

as greater attention to kernel programming and binary interface compatibility.

These had little effect on the programming model for policy writers, but did

require reimplementation of many elements of the framework itself.

• As the FreeBSD operating system evolved, new kernel features required the intro-

duction of new MAC Framework entry points; in general, these additions followed

the model of introducing new objects and/or methods as OS services expanded.

Examples of these changes include the addition of new POSIX shared memory

and semaphore objects and methods.

• The addition of DTrace to FreeBSD allowed integrated tracing facilities to be

added to the MAC Framework, improving the process of monitoring and debug-

ging of policies and their compositions during development and in production.

• In some cases, it was necessary to extend the framework in order to support

desirable policies – primarily, to allow policies to instrument the kernel privilege

model, which required additional entry points and the new ability to grant, rather

than restrict, rights. The change normalised access control for many system

administration functions by making privilege checks effectively act as methods

on a singleton system object. This approach appeared, but was not handled

consistently, in the original design, being limited to a few key system events such

as reboot; this enhancement improved existing policies as well, such as the Biba

integrity policy, which is as a result able to usefully constraint the root user.

An important question, then, is whether the need to modify the framework in

order to express new policies invalidates the claim that an extensibility framework

121

limits the need for operating system changes when developing access control policies.

I argue that the evolution of the framework, even with respect to privileges, maintains

its original central design choices: policy modules augment the OS security policy,

implement controls on objects and methods of kernel-backed objects, are composed

using a simple meta-policy, and build on common policy infrastructure such as object

labelling and policy-agnostic management APIs. The addition of privilege constraints

arguably reflects an oversight in the original implementation, which omitted control on

a critical implied (rather than explicit) kernel object: the operating system itself. In all

senses, it seems that that the framework has accomplished (and exceeded) its original

goals of access control extensibility, and that changes to the framework over its lifetime

have reflected incremental, rather than transformative modifications to its approach.

4.4.2 Expressiveness

Expressiveness is a central concern in the MAC Framework design, both from the

perspective of what is made easy to express, and what is not. The choice to create a

large number of reference policies, described in Chapter 3 was motivated by a desire to

identify common requirements across policies and ensure that a broad range of policies

could be easily and efficiently expressed using the framework. A related goal was

to discourage the expression of policies that are difficult or impossible to implement

correctly – in stark contrast to system call interposition, which is extremely expressive

but encourages the implementation of difficult-to-implement security policies (i.e., ones

that necessarily suffer security vulnerabilities as documented in Chapter 2). These

factors led to a subject-object-method design, reflecting the essentially object-oriented

structure of the kernel and its approach to synchronisation, but also the needs of security

policies, which often centre around the flow of information between subjects and objects,

interpreted through methods.

During the design and implementation of the framework, two challenges to expres-

siveness were identified: the necessity for revocation and floating labels (flip sides of the

same coin), and the desire to express file system policies with respect to paths, which

I will now consider in greater detail.

Revocation and floating labels

One of the key attributes of most security policies is their ability to express security

configuration changes – typically this occurs in one of two forms: the update of a global

rule list (such as in ugidfw), or via changes to labels on subjects or objects (such as in

mac biba or mac mls). When policy configuration changes, the rights of subjects may

expand or contract; in the latter case, this raises the question of what happens to any

existing “open” references by subjects to objects to which they should no longer have

access: rights could be retained (leading to a period of inconsistency) or revoked.

Different policies have different requirements: the ugidfw policy tracks the semantics

of UNIX open files, which perform an access control check at time of open, and if file

122

ownership or permissions change at a later time, I/O access continues. Other policies

may demand stronger consistency: if MLS is to prevent the flow of information in

violation of its confidentiality constraints, then relabelling of an object should lead

to revocation of held rights in order to avoid inappropriate read up or write down

operations.

Many kernel operations are authorised as access begins, and given kernel locking,

these checks are atomic with the access itself – label operations are suspended until

outstanding operations complete. However, other operations are long-lived (potentially

beyond the lifetime of a system call) – especially file open and memory mapping through

mmap. For open, revocation can be implemented (if required) by policies during later

I/O calls, leaving the descriptor present but limited to only uses permissible after a

relabel operation; this approach is taken by mac biba and mac mls, which offer a global

configuration flag to enable file descriptor revocation (disabled by default).

Memory mapped I/O presents a significant challenge, however: no further system

calls will be issued once a page from the buffer cache is mapped directly into process

memory; if revocation is required, then the VM data structures must be walked to

identify and invalidate existing references (a significant book-keeping problem), and

leading to difficult-to-handle application faults as existing mappings become invalid.

The MAC Framework, as a result of this complexity, implements revocation support

for memory mappings following a subject relabel operation, but not an object relabel

operation, instead requiring new objects to be created rather than relabelled.

This approach is sufficient to implement support for LOMAC, which downgrades

subjects based on a data taint model, but provides weak support for object relabelling

combined with memory mapping. In order to limit application compatibility problems,

modifications to process memory mappings on downgrade also make use of copy-on-

write, rather than true revocation, to divorce data “before” and “after” the subject

relabel: this is important, as it is desirable for copy-on-write versions of pages (such

as linked binary pages) to remain functional, even though they might notionally be

high integrity. In practice, these design choices have proven adequate for many prior

implementations of Biba and MLS, but represent an edge case in the subject-object-

method access control model, which assumes explicit, rather than implicit, operations.

A further concern with relabelling occurs because of integration between the ker-

nel locking model and the MAC Framework: when an object label is protected by a

shared lock on entry to an entry point, mutation of the label is not permitted by the

synchronisation model. Labelled policies such as Biba and MLS modify subject and

object labels only in MAC Framework relabel system calls where exclusive locks are

held consistently. However, floating label policies such as LOMAC or DIFC13 may mu-

13Despite this challenge, it appears that DIFC may well be easily implementable using the MAC

Framework, as it takes a very similar perspective on subject-object-method and information flow as

policies such as Biba and LOMAC. This is facilitated by the fact that policy modules can determine

their own policies for label interpretation and operations – in this sense as well, the MAC Framework

123

tate labels at many more points in kernel operation. If a policy module needs to float

a label on a subject or object at an arbitrary point in time, it may need to supplement

framework-provided synchronisation with its own label data locks. In the case of sub-

ject labels, the copy-on-write model used for process credentials makes this particularly

tricky: subject label changes require memory allocation, an operation that cannot be

performed reliably in arbitrary kernel paths. For the purposes of LOMAC, which may

relabel a subject while in the file system or network code following exposure to tainted

data, the subject relabel operation must be deferred to another context – typically

the next system call return (ensuring that the subject has been relabelled before the

operation returns to userspace).

Access control and pathnames

One of the most common queries received about authoring MAC Framework policies

on the FreeBSD operating system has to do with the enforcement of access control

properties based on the path of the file being accessed. On Mac OS X, path-based

controls are a central part of the Sandbox access control policy, which allows files to be

selected for control using regular expressions on file system paths.

On FreeBSD, however, providing that facility is extremely difficult, due to its weak

notion of file system path: a file can have zero names, one name, or multiple names

due to unlinked files and hard links; worse, the same file may have different names

for different processes or the same name might refer to different files (due to chroot)

and mount point overlays). This expressiveness constraint is a serious limitation to

the MAC Framework, but also not one that the framework itself can address – solving

this problem requires changing the semantics of file system paths in the FreeBSD VFS,

perhaps along the lines of similar changes in Mac OS X. This problem has also arisen

in the context of security event auditing, in which users desire (and expect) to audit

records to identify objects by name, but the system is unable to reliably meet this need

in important edge cases [144].

4.4.3 Complexity

The MAC Framework has roughly 240 MAC policy entry points available for policy

modules to implement, and instruments the operation of dozens of core kernel data

types; the implementation of the MAC Framework itself is several thousand lines of C

code. Given this apparent complexity, it is desirable to consider whether the framework

could accomplish its goals with a less complex formulation.

One answer to this question is that the number of MAC Framework interfaces

corresponds to the product of the number of core kernel objects requiring controls, and

the number of methods on those objects – i.e., that the complexity of the framework

corresponds directly to core complexity in the kernel itself, and that reducing that

exposed complexity would reduce necessary expressiveness. Another perspective is

is able to implement policies that resemble discretionary, not just mandatory, access control.

124

that the level of complexity of the framework itself is quite small compared to the

overall kernel: a few thousand lines of C code allow instrumentation of all the core

security functions of the kernel, and that the only 3600 lines of C code implementing

the mac biba module is in fact extremely small for the implementation of a ubiquitous

information flow policy spanning all the major communication channels of a UNIX

operating system.

A reasonable conclusion is that although the specific presentation of the complexity

might differ, that the current level of complexity is minimised. As mentioned in Chap-

ter 3, one design choice explored early in development of the framework was whether to

take the approach of using separate entry point function pointers for different object-

method pairs, or to use a smaller number of entry points with arguments indicating

what object type of method was involved – an approach adopted in Kauth [9]. In tran-

sitioning to explicit methods, access to the C language’s type system was improved,

and numerous bugs were discovered and corrected. This suggests that an improvement

in programming language to facilitate flexibility while maintaining typing (such as an

explicit object system) might allow for an improvement in presentation of necessary

complexity.

4.4.4 Usability

Security usability is an evolving area of research in which there are few absolutes and

many challenges. In the context of the MAC Framework, the are two important us-

ability considerations: programmability for security policy authors, and any impact the

MAC Framework has on user experience.

With respect to programmability, the critical question is whether policy writers are

able to easily and successfully implement policy modules that capture their intents.

The experiences of companies described in this chapter is that the MAC Framework

eases the task of policy writing considerably: little if any kernel code must be modified

(also reducing the cost of code maintenance), and the quantity of code required to

implement a policy is reduced as the framework provides common infrastructure such

as object labelling, system calls, and command line tools. Writing a new kernel security

model still requires significant knowledge of operating systems – a requirement I believe

cannot be eliminated with current systems. While these conclusions are qualitative, the

widespread adoption and use of the framework for these purposes reflects it success in

this regard.

Usability from a user perspective is a challenging issue, and one that the MAC

Framework has relatively little influence over – it is typically the management require-

ments and semantics of security policies that affect usability, not the kernel instrumen-

tation framework by which they accomplish their goals. However, at least in the area of

UNIX command line tools, allowing a small set of policy-agnostic command line tools,

rather than policy-specific tools, likely helps usability. Anecdotally, it appears that

useful policies implemented with the framework can improve system security without

125

harming usability: Mac OS X and iOS have been lauded for their usability properties,

and make extensive use of operating system access control.

4.4.5 Performance

In Chapter 3, I considered the performance impact of the MAC Framework through

benchmarks, deriving frequently found security and performance results: a small but

measurable overhead on operation. In general, the performance goal evolved through

interactions with the open source community and with commercial consumers was to

experience an overhead of 3% or less for enforced security policies in embedded devices

and appliances. This goal was met, excepting network performance with ubiquitously

labelled MAC policies, following an extended period of optimisation and real-world use.

Specific efforts were made to improve performance for networking and the file system,

many details of which are considered in this and the previous chapter.

The performance optimisation path taken for the FreeBSD operating system reflects

a desire to minimise performance overhead for the case where options MAC (compiling in

the framework) is minimised, and to minimise the overhead of hardening policies. This

is accomplished by making many of the costs of labelled policies conditional on those

features being used – for example, network packet label storage is not allocated unless

a policy specifically requires it. In contrast, the focus of performance optimisation

in Mac OS X was to permit additional overhead for policy enforcement – but only

for processes that were explicitly “sandboxed.” This led to a strategy of optimising

enabling/disabling access control checks on a per-thread basis.

In general, it is possible to assert that the performance goal of minimising the cost

of the framework was met in the most pragmatic sense, by virtue of the framework

being accepted for use across a broad range of products.

4.4.6 Security

Metrics are a challenging issue in security research and security product development

– effective metrics for “system security” remain elusive. From the perspective of the

MAC Framework, three questions appear of immediate import:

• Has the structure of the framework proven resistant to vulnerability?

• Has the structure of the framework deterred vulnerabilities in policies imple-

mented with the framework?

• Have systems built using the framework and its policies proven resistant to vul-

nerability?

There are no controls available in evaluating any measures of vulnerability counts;

the closest we can come is to observe that few vulnerabilities have been found through

efforts with static and dynamic analysis described in this chapter, nor have any been

reported in the field. By design, the framework has explicitly eliminated broad classes of

126

security vulnerabilities such as those present in system call interposition systems – tight

integration of framework and policies to the kernel synchronisation model has prevented

any known instances of time-of-check-to-time-of-use vulnerabilities that were rife and

trivially exploitable in wrapper systems discussed in Chapter 2. Similarly, products

based on the MAC Framework (such as McAfee’s Sidewinder) appear to pass high

assurance security evaluations, and be strongly resistant to attacks in the field despite

a clear and present threat (Apple’s iOS).

A more detailed consideration of iOS reveals considerable subtlety in this evaluation,

however. Despite a lack of a comprehensive public catalogue of iOS vulnerabilities,

several trends emerge, in part as a result of widespread efforts to provide “jail breaking”

tools for end users unhappy with the policy constraints imposed on the iPhone and iPad,

such as mobile phone network lock-in:

• Exploits against iPhoneOS 1.x applications; that version of the operating sys-

tem neither supported third-party applications, nor sandboxing using the MAC

Framework. As a result, any application compromise was effectively a root com-

promise of the phone – an illustration of the risks of not deploying sandboxing.

• “Tethered” exploits, which attack the complex and (apparently) entirely privi-

leged software components on the iPhone used to synchronise, backup, and update

iOS and its applications when plugged into a USB cable. These vulnerabilities

require physical access to the device, and are the preferred mechanism for jail

breaking.

• “Untethered” exploits against applications run without sandboxing, or with inad-

equate sandboxing, such as some of Apple’s own applications. As with iPhoneOS

1.x vulnerabilities, these vulnerabilities lead to compromise of the phone; anecdo-

tally, several appear to have been in PDF rendering. These vulnerabilities reveal

under-application of sandboxing techniques.

• “Untethered” exploits against the OS kernel or services by sandboxed applica-

tions, such as a recent vulnerability in the kernel’s parsing of Mach-O binary

headers, yielding kernel-level access. Such vulnerabilities can be attacked by ei-

ther applications directly (perhaps due to a malicious application author), or fol-

lowing compromise of a vulnerable application yielding arbitrary code execution

on the device. Such attacks violate the kernel and process isolation assumptions

described in Chapter 1, and hence are able to bypass access control.

• One widely-discussed bug in which the sandboxing policy shipped with the phone

failed to protect the received SMS database from reading by arbitrary applications

– an error in policy-authoring.

These categories of vulnerabilities reveal both the strengths and the weaknesses

of sandboxing implemented using the MAC Framework. Vulnerabilities in arbitrary

127

applications yielded complete control of the phone in iPhoneOS 1.x, an effect largely

eliminated in later OS versions through the introduction of sandboxing. Instead, at-

tackers must find gaps in either the policy (such as inadequately sandboxed applications

written by Apple, such as phone-side synching), or kernel vulnerabilities that violate

non-bypassability requirements for MAC Framework policies. It seems clear, however,

that without sandboxing, these issues would be significantly worse, especially with

regard to malicious application authors.

Overall, a decade of experience with the MAC Framework, half of which involved

widespread deployment of the technology, appears to offer prima facia evidence that

the security goals of the framework have been accomplished to an adequate extent to

meet the expectations of industry, but also to significantly improve the state of the

art for operating system security. The effectiveness of the framework depends on the

effectiveness of its OS foundations and the correct implementation of its policies, but

the framework itself has proven a firm yet flexible foundation for significant security

improvements.

4.5 Conclusion

In this chapter, I have considered the TrustedBSD MAC Framework’s transition from

a DARPA research project to a critical and widely deployed security component across

a broad range of open source and commercial products. We have reviewed how and

why the framework was selected as the means to deliver new access control policies, the

nature of the policies used, and in some cases, the changes required to the framework

in order to meet the specific needs of products. We have considered in particular

three case studies: the open source FreeBSD operating system, nCircle’s enforcement

appliances, and Apple’s Mac OS X and iOS operating systems. The role of open source

in technology transfer success should not be underestimated. The FreeBSD operating

system community proved a fertile environment in which to develop a new security

technology, and a wide community of users who have returned changes in order to

reduce their maintenance costs – despite a license that does not obligate that return.

While the prototype security policies developed in Chapter 3 have seen use by the

FreeBSD user community, perhaps the greatest research success of the framework has

been in supporting the development and maintenance of unanticipated policies in third-

party products: selective sandboxing, parental controls, and download tainting in Mac

OS X, sandboxing and code signing of applications on iOS, and customisation of the

UNIX security policy in nCircle’s policy enforcement appliance. Beyond those dis-

cussed in this chapter, the MAC Framework has seen use in McAfee’s high-assurance

Sidewinder firewall, which implements a custom type enforcement policy, widespread

deployment in Juniper’s routers as part of the JunOS SDK, where the MAC Frame-

work similarly provides isolation and robustness for third-party components, and in

services such as Seccuris’s monitoring service, which employs MAC-enforced isolation

128

of components exposed to untrustworthy data.

Finally, the use of the MAC Framework as a building block in industry, a few ex-

amples of which have been highlighted in this chapter, has led to significant impact on

real-world systems, improving security and reliability of critical network infrastructure,

network services, and consumer devices. I have considered the framework’s effective-

ness in terms of both traditional research metrics and pragmatic experiences with field

deployment, evaluating the hypothesis of security extensibility with respect to expres-

siveness, complexity, usability, performance, and security.

129

130

Chapter 5

Capsicum: practical capabilities for

UNIX

The TrustedBSD MAC Framework has proven a powerful tool in support of operating

system access control extensibility, seeing ready and successful deployment in a host of

embedded, appliance, and Internet service provider environments. In this chapter I con-

sider Capsicum, a new application-centric security model blending the UNIX security

model with the neglected capability security paradigm in order to support operating

system access control extensibility for security-aware applications.

The MAC Framework approach is fundamentally system-centric: system policies are

encapsulated in kernel modules, and managed by administrators, system integrators,

and device vendors. The transition from multi-user computers to multi-computer users

has not invalidated its approach: system-centric security remains critical to protect

the TCB and impose global constraints on operation. A purely system-centric view,

however, fails to address the observation that the security interactions of “users” are

decreasingly central: desktop and notebook computers, tablet PCs, and smart phones

typically have exactly one user.

Instead, applications themselves represent the competing interests of many different

parties: the user (perhaps the owner), the application writer, the authors of software

components (such as plugins) to the application, not to mention the multiple authors

of (potentially active) content it may provide access to via web integration. While the

MAC Framework performs well in containing not just users at ISPs, but also third-

party applications in the iPhone, and third-party components on Juniper routers, it

provides little infrastructure and no philosophy for supporting applications that them-

selves implement security models.

Even a single application can have complex security requirements – web browsers,

for example, are execution environments for mobile (and potentially malicious) code

originating from mutually untrusting sites, and employ security techniques such as Java

sand-boxing to isolate them. The potential impact of such vulnerabilities is significant:

the web browser simultaneously hosts diverse code ranging from JavaScript cloud-based

131

mail clients (such as Google Mail) to Flash applications (such as YouTube), while also

handling sensitive content from medical, banking, and e-commerce web sites. Failure of

separation could allow sites to eavesdrop on each others’ content, or directly manipulate

user input, displayed content, or downloaded files. Further, malicious code might gain

access to the ambient authority of the user beyond the web browser context, accessing

local file data from other applications, system configuration information, key storage,

or hardware devices such as radios and cameras.

Mapping distributed security models into local enforcement mechanisms is a key

aspect to security extensibility, and applications are the point of confluence between

those two worlds. Current OS security facilities solve this security problem poorly

due to their system-centric focus and requirement for privilege originating from the

assumption that the only relevant security state transition is between users. While a

MAC Framework policy could be turned to this end, it is worth observing a fundamental

limit on the framework: it is intended to restrict, rather than facilitate, processes

by limiting rather than creating opportunities for communication and sharing via the

operating system. Capsicum relies on enhancing certain OS APIs, such as process IDs,

for capability operation, allow them to be delegated in a way not previously possible

in UNIX.

In this chapter, I present Capsicum, an application capability security framework

targeted at a new class of security-aware applications. Capsicum extends POSIX to

add new facilities, including capability mode and capabilities, which augment traditional

OS facilities by providing sandbox and granular delegation APIs. Capsicum, and the

capability model it depends on, are fundamentally enabling technologies, structured

around the constructive act of security delegation, requiring a separate integration with

the operating system. The problems addressed by the MAC Framework and Capsicum

are not strictly orthogonal, but the composition of the two approaches successfully

captures notions of system-centric and application-centric controls.

Capsicum was first described in a paper presented at the 2010 USENIX Security

Symposium in Washington, DC. This chapter is based on that paper, but includes

additional material on static analysis of concurrency properties presented at the 4th

Analysis of Security APIs (ASA-4) workshop in Edinburgh, Scotland.

5.1 Introduction

Capsicum is an API that brings capabilities to UNIX. Capabilities are unforgeable

tokens of authority, and have long been the province of research operating systems

such as PSOS [96] and EROS [124]. UNIX systems have less fine-grained access control

than capability systems, but are very widely deployed. By adding capability primitives

to standard UNIX APIs, Capsicum gives application authors a realistic adoption path

for one of the ideals of OS security: least-privilege operation. We validate our approach

through an open source prototype of Capsicum built on (and now planned for inclusion

132

in) FreeBSD 9.

Today, many popular security-critical applications have been decomposed into parts

with different privilege requirements, in order to limit the impact of a single vul-

nerability by exposing only limited privileges to more risky code. Privilege separa-

tion [103], or compartmentalisation, is a pattern that has been adopted for applications

such as OpenSSH, Apple’s SecurityServer, and, more recently, Google’s Chromium web

browser. Compartmentalisation is enforced using various access control techniques, but

only with significant programmer effort and significant technical limitations: current

OS facilities are simply not designed for this purpose.

The access control systems in conventional (non-capability-oriented) operating sys-

tems are Discretionary Access Control (DAC) and Mandatory Access Control (MAC).

DAC was designed to protect users from each other: the owner of an object (such as

a file) can specify permissions for it, which are checked by the OS when the object is

accessed. MAC was designed to enforce system policies: system administrators specify

policies (e.g. “users cleared to Secret may not read Top Secret documents”), which are

checked via run-time hooks inserted into many places in the operating system’s kernel.

Neither of these systems was designed to address the case of a single application

processing many types of information on behalf of one user. For instance, a modern web

browser must parse HTML, scripting languages, images and video from many untrusted

sources, but because it acts with the full power of the user, has access to all his or her

resources (such implicit access is known as ambient authority).

These mechanisms vary by platform, but all require a significant amount of pro-

grammer effort (from hundreds of lines of code or policy to, in one case, 22,000 lines of

C++) and, sometimes, elevated privilege to bootstrap them. Our analysis shows sig-

nificant vulnerabilities in all of these sandbox models due to inherent flaws or incorrect

use (see Section 5.5).

Capsicum addresses these problems by introducing new (and complementary) se-

curity primitives to support compartmentalisation: capability mode and capabilities.

Capsicum capabilities should not be confused with operating system privileges, occa-

sionally referred to as capabilities in the OS literature. Capsicum capabilities are an

extension of UNIX file descriptors, and reflect rights on specific objects, such as files

or sockets. Capabilities may be delegated from process to process in a granular way

in the same manner as other file descriptor types: via inheritance or message-passing.

Operating system privilege, on the other hand, refers to exemption from access control

or integrity properties granted to processes (perhaps assigned via a role system), such

as the right to override DAC permissions or load kernel modules. A fine-grained priv-

ilege policy supplements, but does not replace, a capability system such as Capsicum.

Likewise, DAC and MAC can be valuable components of a system security policy, but

are inadequate in addressing the goal of application privilege separation.

We have modified several applications, including base FreeBSD utilities and Chromium,

to use Capsicum primitives. No special privilege is required, and code changes are min-

133

UNIX process
ambient authority

Browser process
ambient authority

Renderer process
capability mode

Renderer process
capability mode ...

Kernel

Traditional UNIX application Capsicum logical application

becomes

Figure 5.1: Capsicum helps applications self-compartmentalise.

imal: the tcpdump utility, plagued with security vulnerabilities in the past, can be

sandboxed with Capsicum in around ten lines of code, and Chromium can have OS-

supported sandboxing in just 100 lines.

In addition to being more secure and easier to use than other sandboxing techniques,

Capsicum performs well: unlike pure capability systems where system calls necessarily

employ message passing, Capsicum’s capability-aware system calls are just a few per-

cent slower than their UNIX counterparts, and the gzip utility incurs a constant-time

penalty of 2.4 ms for the security of a Capsicum sandbox (see Section 5.6).

5.2 Capsicum design

Capsicum is designed to blend capabilities with UNIX. This approach achieves many

of the benefits of least-privilege operation, while preserving existing UNIX APIs and

performance, and presents application authors with an adoption path for capability-

oriented design.

In order to protect user data from malicious JavaScript, Flash, etc., the Chromium

web browser is decomposed into several OS processes. Some of these processes handle

content from untrusted sources, but their access to user data is restricted using DAC

or MAC mechanism (the process is sandboxed).

Capsicum extends, rather than replaces, standard UNIX APIs by adding kernel-

level primitives (a sandboxed capability mode, capabilities and others) and userspace

support code (libcapsicum and a capability-aware run-time linker). Together, these

extensions support application compartmentalisation, the decomposition of monolithic

application code into components that will run in independent sandboxes to form logical

applications, as shown in Figure 5.1.

Capsicum requires application modification to exploit new security functionality,

but this may be done gradually, rather than requiring a wholesale conversion to a pure

capability model. Developers can select the changes that maximise positive security

impact while minimising unacceptable performance costs; where Capsicum replaces

134

existing sandbox technology, a performance improvement may even be seen.

This model requires a number of pragmatic design choices, not least the decision

to eschew microkernel architecture and migration to pure message-passing. While ap-

plications may adopt a message-passing approach, and indeed will need to do so to

fully utilise the Capsicum architecture, we provide “fast paths” in the form of direct

system call manipulation of kernel objects through delegated file descriptors. This al-

lows native UNIX performance for file system I/O, network access, and other critical

operations, while leaving the door open to techniques such as message-passing system

calls for cases where that proves desirable.

5.2.1 Capability mode

Capability mode is a process credential flag set by a new system call, cap enter(); once

set, the flag is inherited by all descendent processes, and cannot be cleared. Processes

in capability mode are denied access to global namespaces such as the filesystem and

PID namespaces (see Figure 5.1). In addition to these namespaces, there are several

system management interfaces that must be protected to maintain UNIX process iso-

lation. These interfaces include /dev device nodes that allow physical memory or PCI

bus access, some ioctl() operations on sockets, and management interfaces such as

reboot() and kldload(), which loads kernel modules.

Access to system calls in capability mode is also restricted: some system calls requir-

ing global namespace access are unavailable, while others are constrained. For instance,

sysctl() can be used to query process-local information such as address space layout,

but also to monitor a system’s network connections. We have constrained sysctl() by

explicitly marking ≈30 of 3000 parameters as permitted in capability mode; all others

are denied.

The system calls which require constraints are sysctl(), shm open(), which is per-

mitted to create anonymous memory objects, but not named ones, and the openat()

family of system calls. These calls accept a directory descriptor argument relative

to which open(), rename(), etc. lookups will occur; in capability mode, they are con-

strained so that they can operate only on objects “under” this descriptor. For instance,

if file descriptor 4 is a capability allowing access to /lib, then openat(4, "libc.so.7")

will succeed, whereas openat(4, "../etc/passwd") and openat(4, "/etc/passwd") will

not.

5.2.2 Capabilities

The most critical choice in adding capability support to a UNIX system is the rela-

tionship between capabilities and file descriptors. Some systems, such as Mach/BSD,

have maintained entirely independent notions: Mac OS X provides each task with both

indexed capabilities (ports) and file descriptors. Separating these concerns is logical,

as Mach ports have different semantics from file descriptors; however, confusing results

can arise for application developers dealing with both Mach and BSD APIs, and we

135

8

10

14
...

Process file
descriptors

struct
file

struct
vnode

struct
file

struct capability

mask = READ | WRITE

struct
file

struct capability

mask = READ

...

Figure 5.2: Capabilities “wrap” normal file descriptors, masking the set of permitted methods.

wanted to reuse existing APIs as much as possible. As a result, we chose to extend the

file descriptor abstraction, and introduce a new file descriptor type, the capability, to

wrap and protect raw file descriptors.

File descriptors already have some properties of capabilities: they are unforgeable

tokens of authority, and can be inherited by a child process or passed between processes

that share an inter-process communication (IPC) channel. Unlike “pure” capabilities,

however, they confer very broad rights: even if a file descriptor is read-only, operations

on meta-data such as fchmod() are permitted. In the Capsicum model, we restrict these

operations by wrapping the descriptor in a capability and permitting only authorised

operations via the capability, as shown in Figure 5.2.

The cap new() system call creates a new capability given an existing file descriptor

and a mask of rights; if the original descriptor is a capability, the requested rights must

be a subset of the original rights. Capability rights are checked by fget(), the in-kernel

code for converting file descriptor arguments to system calls into in-kernel references,

giving us confidence that no paths exist to access file descriptors without capability

checks. Capability file descriptors, as with most others in the system, may be inherited

across fork() and exec(), as well as passed via UNIX domain sockets.

There are roughly 60 possible mask rights on each capability, striking a balance

between message-passing (two rights: send and receive), and MAC systems (hundreds

of access control checks). We selected rights to align with logical methods on file

descriptors: system calls implementing semantically identical operations require the

same rights, and some calls may require multiple rights. For example, pread() and

preadv(), which read file data into memory, both require CAP READ in a capability’s

rights mask, and read() (read bytes using the file offset) requires CAP READ | CAP SEEK

in a capability’s rights mask.

136

Namespace Description

Process ID (PID) Processes identifiers, returned by fork(), are used

for signals, debugging, monitoring, and exit status.

File paths Files exist in a global, hierarchical namespace,

which is protected by DAC and MAC.

NFS file handles The NFS identifies files and directories on the wire

using a flat, global file handle namespace. They

are also exposed to processes to support the lock

manager daemon and optimise local file access.

File system ID File system IDs supplement paths to mount points,

and are used for forceable unmount when there is

no valid path to the mount point.

Protocol addresses Protocol families use socket addresses to name

local and foreign endpoints. These exist in global

namespaces, such as IPv4 addresses and ports, or

the file system namespace for local domain sockets.

Sysctl MIB The sysctl() management interface uses named

and numbered entries to get or set system informa-

tion, such as process lists and tuning parameters.

System V IPC System V IPC message queues, semaphores, and

shared memory segments exist in a flat, global

integer namespace.

POSIX IPC POSIX defines similar semaphore, message queue,

and shared memory APIs, with an undefined

namespace: on some systems, these are mapped

into the file system; on others they are simply a

flat global namespaces.

System clocks UNIX systems provide multiple interfaces for

querying and manipulating system clocks and

timers.

Jails The management namespace for FreeBSD-based

virtualised environments.

CPU sets Global namespace process and thread affinities.

Table 5.1: Global namespaces in the FreeBSD operating kernel

137

Apache Apache
Worker 1

Apache
Worker 2

Logical Application

/
etc var

apache passwd www

site1 site2

Figure 5.3: Portions of the filesystem namespace can be delegated to sandboxed processes.

Capabilities can wrap any type of file descriptor including directories, which can

then be passed as arguments to openat() and related system calls. The *at() system

calls begin relative lookups for file operations with the directory descriptor; we disallow

some cases when a capability is passed: absolute paths, paths containing “..” compo-

nents, and AT FDCWD, which requests a lookup relative to the current working directory.

With these constraints, directory capabilities delegate file system namespace subsets,

as shown in Figure 5.3. This allows sandboxed processes to access multiple files in a

directory (such as the library path) without the performance overhead or complexity

of proxying each file open() via IPC to a process with ambient authority.

The “..” restriction is a conservative design, and prevents a subtle problem similar

to historic chroot() vulnerabilities. A single directory capability that enforces contain-

ment by preventing “..” lookup only on the root of a subtree is correct in isolation;

however, two colluding sandboxes (or a single sandbox with two capabilities) can race

to rearrange a tree so that the check always passes, allowing escape from a subset. It

is possible to imagine less conservative solutions, such as preventing upward renames

that could introduce exploitable cycles, or additional synchronisation; these strike us

as risky tactics, and we have selected the simplest solution, at some cost to flexibility.

Many past security extensions have composed poorly with UNIX security leading

to vulnerabilities; thus, we disallow privilege elevation via fexecve() using setuid and

setgid binaries in capability mode. This restriction does not prevent setuid binaries

from using sandboxes.

138

5.2.3 Run-time environment

Even with Capsicum’s kernel primitives, creating sandboxes without leaking unde-

sired resources via file descriptors, memory mappings, or memory contents is difficult.

libcapsicum therefore provides an API for starting scrubbed sandbox processes, and

explicit delegation APIs to assign rights to sandboxes. libcapsicum cuts off the sand-

box’s access to global namespaces via cap enter(), but also closes file descriptors not

positively identified for delegation, and flushes the address space via fexecve(). Sand-

box creation returns a UNIX domain socket that applications can use for inter-process

communication (IPC) between host and sandbox; it can also be used to grant additional

rights as the sandbox runs.

5.3 Capsicum implementation

5.3.1 Kernel changes

Many system call and capability constraints are applied at the point of implementation

of kernel services, rather than by simply filtering system calls. The advantage of this

approach is that a single constraint, such as the blocking of access to the global file

system namespace, can be implemented in one place, namei(), which is responsible for

processing all path lookups. For example, one might not have expected the fexecve()

call to cause global namespace access, since it takes a file descriptor as its argument

rather than a path for the binary to execute. However, the file passed by file descriptor

specifies its run-time linker via a path embedded in the binary, which the kernel will

then open and execute.

Similarly, capability rights are checked by the kernel function fget(), which con-

verts a numeric descriptor into a struct file reference. We have added a new rights

argument, allowing callers to declare what capability rights are required to perform

the current operation. If the file descriptor is a raw UNIX descriptor, or wrapped by

a capability with sufficient rights, the operation succeeds. Otherwise, ENOTCAPABLE is

returned. Changing the signature of fget() allows us to use the compiler to detect

missed code paths, providing greater assurance that all cases have been handled.

One less trivial global namespace to handle is the process ID (PID) namespace,

which is used for process creation, signalling, debugging and exit status, critical op-

erations for a logical application. A related problem for logical applications is that

libraries cannot create and manage worker processes without interfering with process

management in the application itself – unexpected SIGCHLD signals are delivered to the

application, and unexpected process IDs are returned by wait().

Process descriptors address these problems in a manner similar to Mach task ports:

creating a process with pdfork() returns a file descriptor suitable for process manage-

ment tasks, such as monitoring for exit via poll(). When the process descriptor is

closed, the process is terminated, providing a user experience consistent with that of

139

Application
calls

libcapsicum
with fdlist to

create
sandbox

libcapsicum merges
application and rtld

fdlists, exports to shared
memory; flushes

undelegated capabilities;
calls fexecve

rtld-elf generates
library path fdlist

pdfork fexecve

rtld-elf-cap
links

application,
calls cap_main

Application
executes; queries

libcapsicum for
delegated

capabilities as
needed

libcapsicum unpacks
fdlist from shared
memory; provides

capabilities to
application on demand

LIBCAPSICUM_FDLIST
shared memory,
application fds

 LD_BINARY
 binary fd

 LD_LIBRARY_DIRS
 library fds

Figure 5.4: Process and components involved in creating a new libcapsicum sandbox

monolithic processes: when a user hits Ctrl-C, or the application segmentation faults,

all processes in the logical application terminate. Termination does not occur if refer-

ence cycles exist among processes, suggesting the need for a new “logical application”

primitive – see Section 5.7.

5.3.2 The Capsicum run-time environment

Removing access to global namespaces forces fundamental changes to the UNIX run-

time environment. Even the most basic UNIX operations for starting processes and

running programs have been eliminated: fork() and exec() both rely on global names-

paces. Responsibility for launching a sandbox is shared. libcapsicum is invoked by the

application, and responsible for forking a new process using pdfork(), gathering to-

gether delegated capabilities from the application and libraries, and directly executing

the run-time linker, passing the sandbox binary via a capability. ELF1 and the headers

normally contain a hard-coded path to the run-time linker to be used with the binary.

We execute the Capsicum-aware run-time linker directly, eliminating this dependency

on the global file system namespace.

Once rtld-elf-cap is executing in the new process, it loads and links the binary

using libraries loaded via library directory capabilities set up by libcapsicum. The

main() function of a program can call lcs get() to determine whether it is in a sand-

box, retrieve sandbox state, query creation-time delegated capabilities, and retrieve an

IPC handle so that it can process RPCs and receive run-time delegated capabilities.

This allows a single binary to execute both inside and outside of a sandbox, diverging

behaviour based on its execution environment. This process is illustrated in greater

detail in Figure 5.4.

1ELF, the Executable and Linkable Format, is the file format used in most contemporary UNIX

systems, with the exception of Mac OS X, which uses the Mach-O format.

140

Once in execution, the application is linked against normal C libraries and has access

to much of the traditional C run-time, subject to the availability of system calls that

the run-time depends on. An IPC channel, in the form of a UNIX domain socket, is set

up automatically by libcapsicum to carry RPCs and capabilities delegated after the

sandbox starts. Capsicum does not enforce the use of a specific Interface Description

Language (IDL), as existing compartmentalised or privilege-separated applications have

their own, often hand-coded, RPC marshalling already. Here, our design choice differs

from historic microkernel systems, which universally have selected a specific IDL, such

as the Mach Interface Generator (MIG) on Mach.

libcapsicum’s fdlist (file descriptor list) abstraction allows complex, layered ap-

plications to declare capabilities to be passed into sandboxes, in effect providing a

sandbox template mechanism. This avoids encoding specific file descriptor numbers

into the ABI between applications and their sandbox components, a technique used

in Chromium that we felt was likely to lead to programming errors. Of particular

concern is the hard-coding of file descriptor numbers for specific purposes, when those

descriptor numbers may already have been used by other layers of the system. Instead,

application and library components declare process-local names bound to file descriptor

numbers before creating the sandbox; matching components in the sandbox can then

query those names to retrieve (possibly renumbered) file descriptors.

5.3.3 Concurrency concerns with directory delegation

In earlier chapters, we have explored the issue of correctness in the presence of concur-

rency for security extension mechanisms – a critical consideration with contemporary

operating system design. For example, whereas system call interposition suffered from

fundamental races, the MAC Framework was crafted specifically to integrate security

policies with the kernel’s synchronisation approach. Concurrency is likewise a signif-

icant concern in the design and implementation of Capsicum, albeit in significantly

different ways than those raised in Chapters 2 and 3. Much of the safety of Capsicum

rests on atomicity properties already provided by the FreeBSD kernel, such as atomic

validation of file descriptor policies during lookup. However, one area of significant com-

plexity, and potentially risky concurrency, in Capsicum is its imposition of namespace

delegation via directory descriptors.

Capsicum allows directory capabilities to be passed to sandboxes, as shown in Fig-

ure 5.5, granting access for specified operations to the directory and any children ob-

jects. In effect, this allows delegations of the form “The sandbox may open for read

any object under /tmp/sandbox” or “The sandbox may read or write all files and direc-

tories under /tmp/sandbox/foo, creating a hybrid of the UNIX namespace and a pure

capability model. While this functionality could be implemented using only passing

of file descriptors, directory delegation offers another fast path avoiding the need for

expensive interposition.

To provide this model of delegation, Capsicum only allows objects “below” the

141

root

tmp

..
tmp

..

sandbox

foo

..

..

sandbox

foo

bar

..
bar

File descriptor array

Process

Root directory

Current working
directory

✘

✘

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

✘

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

✘

Figure 5.5: Capsicum directory delegation

directory capability to be accessed. This requires the UNIX path resolution routine,

namei(), to implement a new invariant: during a lookup, the parent (“..”) of the

starting directory capability can never be named. In our initial implementation, we

modified namei() to introduce a new constraint: any attempt to look up “..” relative

to the starting directory capability would lead to access control failure. This approach

has a low implementation cost, and otherwise allows full file system semantics in the

subtree, such as creating, renaming, removing, and opening files and directories.

After implementing Capsicum, we encountered a concurrency vulnerability exploit-

ing non-atomicity in namei(): two threads can concurrently collude in manipulating

the file system to escape their respective sandboxes. Figure 5.6 illustrates how this

might occur using two writable directory capabilities, one a subset of the other. When

the threads simultaneously issue openat() and renameat() system calls, an in-progress

namei() operation can experience a cycle, allowing the parent of the starting directory

capability to be reached without violating the “..” lookup invariant of either directory

capability. In our example, /tmp is reachable despite neither capability granting access

to it. We were able to successfully exploit this vulnerability on a dual-core system in

roughly 100,000 loops of simultaneous openat() and renameat(), illustrating that this

is not simply a theoretical vulnerability.

Fundamentally, file system delegation with UNIX semantics is extremely tricky:

paths are ephemeral traversal instructions, rather than first class objects. Therefore we

had to consider fixes that limited UNIX semantics: our first pass disallows “..” in paths

looked up using directory capabilities, preventing cycles in modifications and traversals

and eliminating the vulnerability. However, this change also breaks compatibility with

existing applications that might reasonably expect “..”. Other semantic weakening is

142

root

tmp

..
tmp

..

..
bar

bar

openat(foofd, "bar/../..");
renameat(foofd, "bar", sandboxfd, "bar");

..
✔

tmp

sandbox

foo

bar

..
rename

File descriptor array

Process

Root directory

Current working
directory

✘

✘

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

✘

Directory capability

ATBASE, FCHDIR,
FSTAT, CREATE,

DELETE, LOOKUP...

✘

Figure 5.6: A malicious lookup which evades constraint to violate invariants

also sufficient, such as eliminating renameat(), and preventing concurrent namespace

operations.

To better explore the problem, we employed the SPIN model checker to exhaustively

test a model of the problem and potential solutions. It became clear through analysis

that the fundamental problem is the creation of cycles in the namespace, a property of

concurrency composed with high levels of expressiveness in the API. To this end, we

have retained the restriction on looking up “..” in the final version of the Capsicum

model despite its significant impact on file system semantics, as it directly addresses

the presence of cycles during lookup: the file system becomes a directed acyclic graph

from the perspective of colluding sandboxed processes. With this narrower model in

directory capability pathname lookup, it is still possible for a sandboxed process to

escape directory capability containment – but only when colluding with a process that

has ambient authority (i.e., running outside of the capability system model).

5.4 Adapting applications to use Capsicum

Adapting applications for use with sandboxing is a non-trivial task, regardless of the

framework, as it requires analysing programs to determine their resource dependencies,

and adopting a distributed system programming style in which components must use

message passing or explicit shared memory rather than relying on a common address

space for communication. In Capsicum, programmers have a choice of working directly

143

with capability mode or using libcapsicum to create and manage sandboxes, and each

model has its merits and costs in terms of development complexity, performance impact,

and security:

1. Modify applications to use cap enter() directly in order to convert an existing

process with ambient privilege into a capability mode process inheriting only spe-

cific capabilities via file descriptors and virtual memory mappings. This works

well for applications with a simple structure like: open all resources, then process

them in an I/O loop, such as programs operating in a UNIX pipeline, or interact-

ing with the network for the purposes of a single connection. The performance

overhead will typically be extremely low, as changes consist of encapsulating broad

file descriptor rights into capabilities, followed by entering capability mode. We

illustrate this approach with tcpdump.

2. Use cap enter() to reinforce the sandboxes of applications with existing privilege

separation or compartmentalisation. These applications have a more complex

structure, but are already aware that some access limitations are in place, so

have already been designed with file descriptor passing in mind. Refining these

sandboxes can significantly improve security in the event of a vulnerability, as

we show for dhclient and Chromium; the performance and complexity impact

of these changes will be low because the application already adopts a message

passing approach.

3. Modify the application to use the full libcapsicum API, introducing new com-

partmentalisation or reformulating existing privilege separation. This offers sig-

nificantly stronger protection, by virtue of flushing capability lists and residual

memory from the host environment, but at higher development and run-time

costs. Boundaries must be identified in the application such that not only is

security improved (i.e., code processing risky data is isolated), but so that re-

sulting performance is sufficiently efficient. We illustrate this technique using

modifications to gzip.

Compartmentalised application development is, of necessity, distributed application

development, with software components running in different processes and communi-

cating via message passing. Distributed debugging is an active area of research, but

commodity tools are unsatisfying and difficult to use. While we have not attempted to

extend debuggers, such as gdb, to better support distributed debugging, we have modi-

fied a number of FreeBSD tools to improve support for Capsicum development, and take

some comfort in the generally synchronous nature of compartmentalised applications.

The FreeBSD procstat command inspects kernel-related state of running processes,

including file descriptors, virtual memory mappings, and security credentials. In Cap-

sicum, these resource lists become capability lists, representing the rights available to

the process. We have extended procstat to show new Capsicum-related information,

144

+ if (cap_enter() < 0)

+ error("cap_enter: %s", pcap_strerror(errno));

status = pcap_loop(pd, cnt, callback, pcap_userdata);

Figure 5.7: A two-line change adding capability mode to tcpdump: cap enter() is called

prior to the main libpcap (packet capture) work loop. Access to global file system, IPC, and

network namespaces is restricted.

such as capability rights masks on file descriptors and a flag in process credential listings

to indicate capability mode. As a result, developers can directly inspect the capabilities

inherited or passed to sandboxes.

When adapting existing software to run in capability mode, identifying capability

requirements can be tricky; often the best technique is to discover them through dy-

namic analysis, identifying missing dependencies by tracing real-world use. To this end,

capability-related failures are distinguished from other failures by a new errno value,

ENOTCAPABLE, and system calls such as open() are blocked in namei, rather than the

system call boundary, so that paths are shown in FreeBSD’s ktrace facility and are

available to DTrace scripts.

Another common compartmentalised development strategy is to allow the multi-

process logical application to be run as a single process for debugging purposes. libcapsicum

provides an API to query whether sandboxing for the current application or component

is enabled by policy, making it easy to enable and disable sandboxing for testing. As

RPCs are generally synchronous, the thread stack in a sandbox is logically an extension

of the thread stack in the host process, which makes the distributed debugging task

less fraught than it otherwise might appear.

5.4.1 tcpdump

tcpdump provides an excellent example of Capsicum primitives offering immediate wins

through straight-forward changes, but also the subtleties that arise when compartmen-

talising software not written with that goal in mind. tcpdump has a simple model:

compile a pattern into a BPF filter, configure a BPF device as an input source, and

loop, printing captured packets. This structure lends itself to sandboxing: resources

are acquired early with ambient privilege, and later processing depends only on held ca-

pabilities, so can execute in capability mode. The two-line change shown in Figure 5.7

implements this conversion.

This significantly improves security, as historically fragile packet-parsing code now

executes with reduced privilege. However, further analysis with the procstat tool is

required to confirm that only desired capabilities are exposed. While there are few

surprises, unconstrained access to a user’s terminal connotes significant rights, such as

access to key presses. A refinement, shown in Figure 5.8, prevents reading stdin while

still allowing output. Figure 5.9 illustrates procstat on the resulting process, including

145

+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)

+ error("lc_limitfd: unable to limit STDIN_FILENO");

+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)

+ error("lc_limitfd: unable to limit STDOUT_FILENO");

+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)

+ error("lc_limitfd: unable to limit STDERR_FILENO");

Figure 5.8: Using lc limitfd(), tcpdump can further narrow rights delegated by inherited

file descriptors, such as limiting permitted operations on stdin to fstat().

PID COMM FD T FLAGS CAPABILITIES PRO NAME

1268 tcpdump 0 v rw------c fs - /dev/pts/0

1268 tcpdump 1 v -w------c wr,se,fs - /dev/null

1268 tcpdump 2 v -w------c wr,se,fs - /dev/null

1268 tcpdump 3 v rw------- - - /dev/bpf

Figure 5.9: procstat -fC displays capabilities held by a process; FLAGS represents the file

open flags, whereas CAPABILITIES represents the capabilities rights mask. In the case of

stdin, only fstat() (fs) has been granted.

capabilities wrapping file descriptors in order to narrow delegated rights.

ktrace reveals another problem, libc DNS resolver code depends on file system

access, but not until after cap enter(), leading to denied access and lost functionality,

as shown in Figure 5.10.

This illustrates a subtle problem with sandboxing: highly layered software designs

often rely on on-demand initialisation, lowering or avoiding startup costs, and those ini-

tialisation points are scattered across many components. This is corrected by switching

to the lightweight resolver, which sends DNS queries to a local daemon that performs

actual resolution, addressing both file system and network address namespace concerns.

Despite these limitations, this example of capability mode and capability APIs shows

that even minor code changes can lead to dramatic security improvements, especially

for a critical application with a long history of security problems. An exploited buffer

overflow, for example, will no longer yield access to the file system, the ability to instan-

tiate new connections, or the ability to load kernel modules: a significant improvement

in security.

5.4.2 dhclient

FreeBSD ships the OpenBSD DHCP client, which includes privilege separation sup-

port. On BSD systems, the DHCP client must run with sufficient privilege to open

BPF descriptors, create raw sockets, and configure network interfaces. This creates an

appealing target for attackers: network code exposed to a complex packet format while

running with root privilege. The DHCP client is afforded only weak tools to constrain

146

1272 tcpdump CALL open(0x80092477c,O_RDONLY,<unused>0x1b6)

1272 tcpdump NAMI "/etc/resolv.conf"

1272 tcpdump RET connect -1 errno 78 Function not implemented

1272 tcpdump CALL socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP)

1272 tcpdump RET socket 4

1272 tcpdump CALL connect(0x4,0x7fffffffe080,0x10)

1272 tcpdump RET connect -1 errno 78 Function not implemented

Figure 5.10: ktrace reveals a problem: DNS resolution depends on file system and TCP/IP

namespaces after cap enter().

PID COMM FD T FLAGS CAPABILITIES PRO NAME

18988 dhclient 0 v rw------- - - /dev/null

18988 dhclient 1 v rw------- - - /dev/null

18988 dhclient 2 v rw------- - - /dev/null

18988 dhclient 3 s rw------- - UDD /var/run/log

18988 dhclient 5 s rw------- - ?

18988 dhclient 6 p rw------- - - -

18988 dhclient 7 v -w------- - - /var/db/dhcl

18988 dhclient 8 v rw------- - - /dev/bpf

18988 dhclient 9 s rw------- - IP? 0.0.0.0:0 0.

Figure 5.11: Capabilities held by dhclient before Capsicum changes: several unnecessary

rights are present.

operation: it starts as the root user, opens the resources its unprivileged component

will require (raw socket, BPF descriptor, lease configuration file), forks a process to con-

tinue privileged activities (such as network configuration), and then confines the parent

process using chroot() and the setuid() family of system calls. Despite hardening of

the BPF ioctl() interface to prevent reattachment to another interface or reprogram-

ming the filter, this confinement is weak; chroot() limits only file system access, and

switching credentials offers poor protection against weak or incorrectly configured DAC

protections on the sysctl() and PID namespaces.

Through a similar two-line change to that in tcpdump, we can reinforce (or, through a

larger change, replace) existing sandboxing with capability mode. This instantly denies

access to the previously exposed global namespaces, while permitting continued use of

held file descriptors. As there has been no explicit flush of address space, memory, or

file descriptors, which is the key limitation to this approach, it is important to analyse

what capabilities are available to the sandbox. Figure 5.11 shows a procstat -fC listing

of file descriptors.

The existing dhclient code has done an effective job at eliminating directory access,

but continues to allow the sandbox direct rights to submit arbitrary log messages to

147

syslogd, modify the lease database, and a raw socket on which a broad variety of

operations could be performed. The last of these is of particular interest due to ioctl();

although dhclient has given up system privilege, many network socket ioctl()s are

defined, allowing access to system information. The Capsicum version of dhclient

blocks these potential escapes, providing more robust constraint in the event of protocol

parsing bugs.

It is easy to imagine further extending the privilege separation in dhclient to use the

Capsicum capability facility to further constrain file descriptors inherited in the sandbox

environment, for example, by limiting the IP raw socket to send() and recv(), disallow-

ing ioctl(). Using the libcapsicum API would require more significant changes, but

as dhclient already adopts a message passing structure to communicate between its

components, it would be relatively straightforward, offering better protection against

capability and memory leakage. Further migration to message passing would prevent

arbitrary log messages or unformatted writes to the leases file by enforcing syntax.

5.4.3 gzip

The gzip command line tool presents an interesting target for conversion for several rea-

sons: it implements risky compression routines that have suffered past vulnerabilities,

it contains no existing compartmentalisation, and it executes with ambient user (rather

than system) privileges. Historic UNIX sandboxing techniques, such as chroot() and

sandbox UIDs, are a poor match because of their privilege requirement, but also be-

cause, unlike with dhclient, the notion of a single global sandbox for the application is

inadequate. Many gzip sessions can run independently for many different users, and

there can be no assumption that placing them in the same sandbox provides the desired

security properties.

The first step is to identify natural fault lines in the application: for example, code

that requires ambient privilege (due to opening files or building network connections),

and code that performs more risky activities, such as parsing data and managing buffers.

In gzip, this split is immediately obvious: the main run loop of the application processes

command line arguments, identifying streams and files to process and send results to,

and supplies input and output file descriptors to compression routines. This suggests

a partitioning in which pairs of descriptors are submitted to a sandbox for processing

after the ambient privilege process opens them and performs initial header handling.

We modified gzip to use libcapsicum, intercepting three core functions and option-

ally proxying them using RPCs to a sandbox based on policy queried from libcapsicum,

as shown in Table 5.2. Each RPC passes two capabilities, for input and output, to

the sandbox, as well as miscellaneous fields such as returned size, original filename,

and modification time. By limiting capability rights to a combination of CAP READ,

CAP WRITE, and CAP SEEK, a tightly constrained sandbox is created, preventing access

to any other files in the file system, or other globally named resources, in the event a

vulnerability in compression code is exploited.

148

Function RPC Description

gz compress PROXIED GZ COMPRESS zlib-based compression

gz uncompress PROXIED GZ UNCOMPRESS zlib-based decompression

unbzip2 PROXIED UNBZIP2 bzip2-based decompression

Table 5.2: Three gzip functions are proxied via RPC to the sandbox

These changes add 409 lines (about 16%) to the size of the gzip source code, largely

to marshal and un-marshal RPCs. In adapting gzip, we were initially surprised to see

a performance improvement; investigation of this unlikely result revealed that we had

failed to propagate the compression level (a global variable) into the sandbox, leading

to the incorrect algorithm selection. This serves as reminder that code not originally

written for decomposition requires careful analysis. Oversights such as this one are not

caught by the compiler: the variable was correctly defined in both processes, but never

propagated.

Compartmentalisation of gzip raises an important design question when working

with capability mode: the changes were small, but non-trivial: is there a better way

to apply sandboxing to applications most frequently used in pipelines? Seaborn has

suggested one possibility: a Principle of Least Authority Shell (PLASH), in which the

shell runs with ambient privilege and pipeline components are placed in sandboxes by

the shell [119]. We have begun to explore this approach on Capsicum, but observe that

the design tension exists here as well: gzip’s non-pipeline mode performs a number of

application-specific operations requiring ambient privilege, and logic like this may be

equally (if not more) awkward if placed in the shell. On the other hand, when operating

purely in a pipeline, the PLASH approach offers the possibility of near-zero application

modification.

Another area we are exploring is library self-compartmentalisation. With this ap-

proach, library code sandboxes portions of itself transparently to the host application.

This approach motivated a number of our design choices, especially as relates to the

process model: masking SIGCHLD delivery to the parent when using process descriptors

allows libraries to avoid disturbing application state. This approach would allow video

codec libraries to sandbox portions of themselves while executing in an unmodified web

browser. However, library APIs are often not crafted for sandbox-friendliness: one rea-

son we placed separation in gzip rather than libz is that gzip provided internal APIs

based on file descriptors, whereas libz provided APIs based on buffers. Forwarding

capabilities offers full UNIX I/O performance, whereas the cost of performing RPCs to

transfer buffers between processes scales with file size. Likewise, historic vulnerabilities

in libjpeg have largely centred on callbacks to applications rather than existing in

isolation in the library; such callback interfaces require significant changes to run in an

RPC environment.

149

5.4.4 Chromium

Google’s Chromium web browser uses a multi-process architecture similar to a Cap-

sicum logical application to improve robustness [106]. In this model, each tab is asso-

ciated with a renderer process that performs the risky and complex task of rendering

page contents through page parsing, image rendering, and JavaScript execution. More

recent work on Chromium has integrated sandboxing techniques to improve resilience to

malicious attacks rather than occasional instability; this has been done in various ways

on different supported operating systems, as we will discuss in detail in Section 5.5.

The FreeBSD port of Chromium did not include sandboxing, and the sandboxing

facilities provided as part of the similar Linux and Mac OS X ports bear little resem-

blance to Capsicum. However, the existing compartmentalisation meant that several

critical tasks had already been performed:

• Chromium assumes that sandboxed processes cannot open new objects

• Certain services were already forwarded to renderers, such as font loading via

passed file descriptors

• Renderers transfer output to the browser via shared memory

• Separation using RPC and descriptor passing was already present

The only significant Capsicum change to the FreeBSD port of Chromium was to

switch from System V shared memory (permitted in Linux sandboxes) to POSIX shared

memory code as used in the Mac OS X port, which is capability-oriented and hence

permitted in capability mode. Approximately 100 additional lines of code were required

to introduce calls to lc limitfd() to limit access to file descriptors passed to sandbox

processes, such as Chromium data pak files, stdio, and /dev/random, font files, and

to call cap enter(). This compares favourably with the 4.3 million lines of code in

the Chromium source tree, but would not have been possible without existing sandbox

support in the design. We believe it should be possible, without a significantly larger

number of lines of code, to explore using the libcapsicum API directly.

5.5 Comparison of sandboxing technologies

We now compare Capsicum to existing sandbox mechanisms. Chromium provides an

ideal context for this comparison, as it employs six sandboxing technologies (see Ta-

ble 5.3). Of these, the two are DAC-based, two MAC-based and two capability-based.

5.5.1 Windows ACLs and SIDs

On Windows, Chromium employs DAC to create sandboxes [106]. The unsuitability of

inter-user protections for the intra-user context is demonstrated well: the model is both

150

OS Model LoC Description

Windows ACLs 22,350 Windows ACLs and SIDs

Linux chroot() 605 setuid() root helper sandboxes renderer

Mac OS X Sandbox 560 Path-based MAC sandbox

Linux SELinux 200 Restricted sandbox type enforcement domain

Linux seccomp 11,301 seccomp and userspace syscall wrapper

FreeBSD Capsicum 100 Capsicum sandboxing using cap enter()

Table 5.3: Sandboxing mechanisms employed by Chromium.

incomplete and unwieldy. Chromium uses Access Control Lists (ACLs) and Security

Identifiers (SIDs) to sandbox renderers on Windows. Chromium creates a SID with

reduced privilege, which does not appear in the ACL of any object, in effect running

the renderer as an anonymous user.

Objects which do not support ACLs are not protected by the sandbox. In some

cases, additional precautions can be used, such as an alternate, invisible desktop to pro-

tect the user’s GUI environment. However, unprotected objects include FAT filesystems

on USB sticks and TCP/IP sockets: a sandbox cannot read user files directly, but it

may be able to communicate with any server on the Internet or use a configured VPN.

USB sticks present a significant concern, as they are frequently used for file sharing,

backup, and robustness against malware.

Many legitimate system calls are also denied to the sandboxed process. These calls

are forwarded by the sandbox to a trusted process responsible for filtering and serving

them. This forwarding comprises most of the 22,000 lines of code in the Windows

sandbox module.

5.5.2 Linux chroot

Chromium’s Linux suid() model also attempts to create a sandbox using legacy OS

access control; the result is similarly porous, but with the additional risk posed by the

need for OS privilege to create the sandbox.

In this model, access to the filesystem is limited to a directory via chroot(): the

directory becomes the sandbox’s virtual root directory. Access to other namespaces,

including System V shared memory (where the user’s X window server can be contacted)

and network access, is unconstrained, and great care must be taken to avoid leaking

resources when entering the sandbox.

Initiating chroot() requires a setuid() binary: a program that runs with full system

privilege. While comparable to Capsicum’s capability mode in terms of intent, this

model suffers from significant weakness (for example, permitting full access to the

System V shared memory as well as all operations on passed file descriptors), and

151

comes at the cost of an additional setuid-root binary that runs with system privilege.

5.5.3 Mac OS X Sandbox

On Mac OS X, Chromium uses a MAC-based framework for creating sandboxes. This

allows Chromium to create a stronger sandbox than is possible with DAC, but the

rights that are granted to render processes are still very broad, and security policy

must be specified separately from the code that relies on it.

The Mac OS X Sandbox system allows processes to be constrained according to a

scheme-based policy language [53]. It uses the MAC Framework [143] to check applica-

tion activities; Chromium uses three policies for different components, allowing access

to filesystem elements such as font directories while restricting access to the global

namespace.

As with other techniques, resources are acquired before constraints are imposed, so

care must be taken to avoid leaking resources into the sandbox. Fine-grained filesystem

constraints are possible, but other namespaces such as POSIX shared memory, are an

all-or-nothing affair. The Seatbelt-based sandbox model is less verbose than other

approaches, but like all MAC systems, security policy must be expressed separately

from code. This can lead to inconsistencies and vulnerabilities.

5.5.4 SELinux

Chromium’s MAC approach on Linux uses an SELinux Type Enforcement policy [78].

SELinux can be used for very fine-grained rights assignment, but in practice, broad

rights are conferred because fine-grained Type Enforcement policies are difficult to

write and maintain. The requirement that an administrator be involved in defining new

policy and applying new types to the file system is a significant inflexibility: application

policies cannot adapt dynamically, as privilege is required to reformulate policy and

relabel objects.

The Fedora reference policy for Chromium creates a single SELinux dynamic do-

main, chrome sandbox t, which is shared by all sandboxes, risking potential interference

between sandboxes. This domain is assigned broad rights, such as the ability to read

all files in /etc and access to the terminal device. These broad policies are easier to

craft than fine-grained ones, reducing the impact of the dual-coding problem, but are

much less effective, allowing leakage between sandboxes and broad access to resources

outside of the sandbox.

In contrast, Capsicum eliminates dual-coding by combining security policy with code

in the application. This approach has benefits and drawbacks: while bugs can’t arise

due to inconsistencies between policy and code, there is no longer an easily accessible

policy specification that can be analysed statically. This reinforces our belief that Type

Enforcement and Capsicum are potentially complementary, serving differing niches in

system security.

152

OS Sandbox FS IPC NET S6=S’ Priv

Windows ACLs ! ! % % !

Linux chroot() ! % % ! %

Mac OS X Sandbox ! ! ! ! !

Linux SELinux ! ! ! % %

Linux seccomp ! ! ! ! !

FreeBSD Capsicum ! ! ! ! !

Table 5.4: Comparison of security properties of Chromium sandboxes using different OS

isolation models.

5.5.5 Linux seccomp

Linux has an optionally-compiled capability mode-like facility called seccomp. Processes

in seccomp mode are denied access to all system calls except read(), write(), and

exit(). At face value, this seems promising, but as OS infrastructure to support

applications using seccomp is minimal, application writers must go to significant effort

to use it.

In order to allow other system calls, Chromium constructs a process in which one

thread executes in seccomp mode, and another “trusted” thread sharing the same ad-

dress space has normal system call access. Chromium rewrites glibc system call vectors

to forward system calls to the trusted thread, where they are filtered in order to prevent

access to inappropriate shared memory objects, opening files for write, etc. However,

this default policy is, itself, quite weak, as read of any file system object is permitted.

The Chromium seccomp sandbox contains over a thousand lines of hand-crafted

assembly to set up sandboxing, implement system call forwarding, and craft a basic

security policy. Such code is a risky proposition: difficult to write and maintain, with

any bugs likely leading to security vulnerabilities. The Capsicum approach is similar

to that of seccomp, but by offering a richer set of services to sandboxes, as well as more

granular delegation via capabilities, it is easier to use correctly.

5.5.6 Summary of Chromium isolation models

Table 5.4 presents a comparison of the security properties of the different sandbox

models. Capsicum offers the most complete isolation across various system interfaces:

file system (FS), interprocess communication (IPC), and networking (NET), as well

as isolating individual sandboxes from one another (S6=S’), and avoiding the require-

ment for OS privilege to instantiate new sandboxes (Priv). Exclamation points indicate

cases where protection does exist in a model, but is either incomplete (FAT file sys-

tem protection in Windows) or improperly used (file system access under the seccomp

153

sandbox is present in the underlying model, but due to poor semantics, is re-enabled

by Chromium with excessive scope).

5.6 Performance evaluation

Typical operating system security benchmarking is targeted at illustrating zero or near-

zero overhead in the hopes of selling general applicability of the resulting technology.

Our thrust is slightly different: we know that application authors who have already

begun to adopt compartmentalisation are willing to accept significant overheads for

mixed security return. Our goal is therefore to accomplish comparable performance

with significantly improved security.

We evaluate performance in two ways: first, a set of micro-benchmarks establishing

the overhead introduced by Capsicum’s capability mode and capability primitives. As

we are unable to measure any noticeable performance change in our adapted UNIX

applications (tcpdump and dhclient) due to the extremely low cost of entering capability

mode from an existing process, we then turn our attention to the performance of our

libcapsicum-enhanced gzip.

All performance measurements have been performed on an 8-core Intel Xeon E5320

system running at 1.86 GHz with 4GB of RAM, running either an unmodified FreeBSD

8-STABLE distribution synchronised to revision 201781 (2010-01-08) from the FreeBSD

Subversion repository, or a synchronised 8-STABLE distribution with our capability

enhancements.

5.6.1 System call performance

First, we consider system call performance through micro-benchmarking. Figure 5.12

summarises these results for various system calls on unmodified FreeBSD, and related

capability operations in Capsicum. Figure 5.5 contains a table of benchmark timings.

All micro-benchmarks were run by performing the target operation in a tight loop over

an interval of at least 10 seconds, repeating for 10 iterations. Differences were computed

using Student’s t-test at 95% confidence.

Our first concern is with the performance of capability creation, as compared to

raw object creation and the closest UNIX operation, dup(). We observe moderate, but

expected, performance overheads for capability wrapping of existing file descriptors:

the cap new() syscall is 50.7% ± 0.08% slower than dup(), or 539 ± 0.8ns slower in

absolute terms.

Next, we consider the overhead of capability “unwrapping”, which occurs on every

descriptor operation. We compare the cost of some simple operations on raw file descrip-

tors, to the same operations on a capability-wrapped version of the same file descriptor:

writing a single byte to /dev/null, reading a single byte from /dev/zero; reading 10000

bytes from /dev/zero; and performing an fstat() call on a shared memory file descrip-

tor. In all cases we observe a small overhead of about 0.06µs when operating on the

154

capability-wrapped file descriptor. This has the largest relative performance impact on

fstat() (since it does not perform I/O, simply inspecting descriptor state, it should

thus experience the highest overhead of any system call which requires unwrapping).

Even in this case the overhead is relatively low: 10.2%± 0.5%.

5.6.2 Sandbox creation

Capsicum supports two ways to create a sandbox: directly invoking cap enter() to

convert an existing process into a sandbox, inheriting all current capability lists and

memory contents, and the libcapsicum sandbox API, which creates a new process with

a flushed capability list.

cap enter() performs similarly to chroot(), used by many existing compartmen-

talised applications to restrict file system access. However, cap enter() out-performs

setuid() as it does not need to modify resource limits. Entering a capability mode

sandbox is roughly twice as fast as entering a traditional UNIX chroot() and setuid()

sandbox. This suggests that the overhead of adding capability mode support to an ap-

plication with existing compartmentalisation will be negligible, and replacing existing

sandboxing with cap enter() may even marginally improve performance.

Creating a new sandbox process and replacing its address space using execve() is an

expensive operation. Micro-benchmarks indicate that the cost of fork() is three orders

of magnitude greater than manipulating the process credential, and adding execve()

or even a single instance of message passing increases that cost further. The pdfork()

system call, which returns a process descriptor from a fork operation rather than a PID,

adds no measurable overhead with respect to fork. We also found that dynamically

linked library dependencies (libcapsicum and dependency libsbuf) impose a further

9% cost to the fork() syscall, presumably due to the additional virtual memory map-

pings being copied to the child process. This overhead is not present on vfork() which

we plan to use in libcapsicum in the future; this suggests that a new pdvfork() would

be a useful addition to the Capsicum system call repertoire, offering capability-oriented

semantics for process creation with the reduced overhead of vfork(). Creating, syn-

chronously sending an RPC to, and destroying a single sandbox (the “sandbox” label

in Figure 5.12(b)) has a cost of about 1.5ms, significantly higher than its subset com-

ponents.

5.6.3 gzip performance

While the performance cost of cap enter() is negligible compared to other activity, the

cost of multi-process sandbox creation (already taken by dhclient and Chromium due

to existing sandboxing) is significant.

155

Benchmark Time/operation Difference % difference

dup 1.061± 0.000µs - -

cap new 1.600± 0.001µs 0.539± 0.001µs 50.7%± 0.08%

shmfd 2.385± 0.000µs - -

cap new shmfd 4.159± 0.007µs 1.77± 0.004µs 74.4%± 0.181%

fstat shmfd 0.532± 0.001µs - -

fstat cap shmfd 0.586± 0.004µs 0.054± 0.003µs 10.2%± 0.506%

read 1 0.640± 0.000µs - -

cap read 1 0.697± 0.001µs 0.057± 0.001µs 8.93%± 0.143%

read 10000 1.534± 0.000µs - -

cap read 10000 1.601± 0.003µs 0.067± 0.002µs 4.40%± 0.139%

write 0.576± 0.000µs - -

cap write 0.634± 0.002µs 0.058± 0.001µs 10.0%± 0.241%

cap enter 1.220± 0.000µs - -

getuid 0.353± 0.001µs −0.867± 0.001µs −71.0%± 0.067%

chroot 1.214± 0.000µs −0.006± 0.000µs −0.458%± 0.023%

setuid 1.390± 0.001µs 0.170± 0.001µs 14.0%± 0.054%

fork 268.934± 0.319µs - -

vfork 44.548± 0.067µs −224.3± 0.217µs −83.4%± 0.081%

pdfork 259.359± 0.118µs −9.58± 0.324µs −3.56%± 0.120%

pingpong 309.387± 1.588µs 40.5± 1.08µs 15.0%± 0.400%

fork exec 811.993± 2.849µs - -

vfork exec 585.830± 1.635µs −226.2± 2.183µs −27.9%± 0.269%

pdfork exec 862.823± 0.554µs 50.8± 2.83µs 6.26%± 0.348%

sandbox 1509.258± 3.016µs 697.3± 2.78µs 85.9%± 0.339%

Table 5.5: Micro-benchmark results for various system calls and functions, grouped by cate-

gory.

156

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

du
p

ca
p_

ne
w

sh
m

fd
ca

p_
ne

w
_s

hm
fd

fs
ta

t_
sh

m
fd

fs
ta

t_
ca

p_
sh

m
fd

w
rit

e
ca

p_
w

rit
e

re
ad

_1
ca

p_
re

ad
_1

re
ad

_1
00

00
ca

p_
re

ad
_1

00
00

ge
tu

id
ch

ro
ot

se
tu

id
ca

p_
en

te
r

Ti
m

e/
sy

sc
al

l (
us

)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

fo
rk

vf
or

k

pd
fo

rk

fo
rk

_e
xe

c

vf
or

k_
ex

ec

pd
fo

rk
_e

xe
c

pi
ng

po
ng

sa
nd

bo
x

Ti
m

e/
sy

sc
al

l (
us

)

Figure 5.12: Capsicum system call performance compared to standard UNIX calls.

157

 0.001

 0.01

 0.1

 1

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B 1K 2K 4K 8k

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

Ti
m

e/
gz

ip
 in

vo
ca

tio
n

(s
ec

)

File size

Capabilities gzip
Standard gzip

Figure 5.13: Run time per gzip invocation against random data, with varying file sizes;

performance of the two versions come within 5% of one another at around a 512K.

To measure the cost of sandbox creation, we timed gzip compressing files of various

sizes. Since the overheads of sandbox creation are purely at startup, we expect to

see a constant-time overhead to the capability-enhanced version of gzip, with identical

linear scaling of compression performance with input file size. Files were pre-generated

on a memory disk by reading a constant-entropy data source: /dev/zero for perfectly

compressible data, /dev/random for perfectly incompressible data, and base 64-encoded

/dev/random for a moderate high entropy data source, with about 24% compression after

gzipping. Using a data source with approximately constant entropy per bit minimises

variation in overall gzip performance due to changes in compressor performance as

files of different sizes are sampled. The list of files was piped to xargs -n 1 gzip -c

> /dev/null, which sequentially invokes a new gzip compression process with a single

file argument, and discards the compressed output. Sufficiently many input files were

generated to provide at least 10 seconds of repeated gzip invocations, and the overall

run-time measured. I/O overhead was minimised by staging files on a memory disk.

The use of xargs to repeatedly invoke gzip provides a tight loop that minimising the

time between xargs’ successive vfork() and exec() calls of gzip. Each measurement

was repeated 5 times and averaged.

Benchmarking gzip shows high initial overhead when compressing single-byte files,

but also that the approach in which file descriptors are wrapped in capabilities and

158

delegated rather than using pure message passing leads to asymptotically identical be-

haviour as file size increases and constant startup costs are dominated by compression

workload, which is unaffected by Capsicum. We find that the overhead of launching a

sandboxed gzip is 2.37± 0.01ms, independent of the type of compression stream. This

cost derives from several factors, including the added overhead of creating a new sand-

box (1.5ms in earlier micro-benchmarking), as well as additional costs in transferring

file descriptors with an RPC, and linkage overheads due to the use of shared libraries

in the sandbox. For many workloads, this one-off performance cost is negligible, or can

be amortised by passing multiple files to the same gzip invocation.

5.7 Future work

Capsicum provides an effective platform for capability work on UNIX platforms. How-

ever, further research and development are required to bring this project to fruition.

We believe further refinement of the Capsicum primitives would be useful. Perfor-

mance could be improved for sandbox creation, perhaps employing an Capsicum-centric

version of the S-thread primitive proposed by Bittau. Further, a “logical application”

operating system construct might improve termination properties.

Another area for research is in integrating user interfaces and OS security; Shapiro

has proposed that capability-centered window systems are a natural extension to capa-

bility operating systems. Improving the mapping of application security constructs into

OS sandboxes would also improve the security of Chromium, which currently does not

consistently assign web security domains to sandboxes. It is in the context of windowing

systems that we have found capability delegation most valuable: by driving delegation

with UI behaviors, such as Powerboxes (file dialogues running with ambient authority)

and drag-and-drop, Capsicum can support gesture-based access control research.

Finally, it is clear that the single largest problem with Capsicum and other privilege

separation approaches is programmability: converting local development into de facto

distributed development adds significant complexity to code authoring, debugging, and

maintenance. Likewise, aligning security separation with application separation is a key

challenge: how does the programmer identify and implement compartmentalisations

that offer real security benefits, and determine that they’ve done so correctly? Further

research in these areas is critical if systems such as Capsicum are to be used to mitigate

security vulnerabilities through process-based compartmentalisation on a large scale.

5.8 Related work

As described in Chapter 1, capability system approaches to security were developed

simultaneously with time-sharing systems such as MULTICS [113]. Capsicum adopts

philosophical elements from a number of capability systems, but especially CMU’s

159

Hydra [26] and Mach [3], making the capability model a first class component of the

operating system’s access control.

However, unlike pure capability systems, Capsicum both retains global namespaces

(outside of capability mode), and differentiates capabilities for resources offered by the

kernel and userspace. The former are Capsicum capabilities, providing native OS per-

formance when directly accessing objects such as sockets and files – however, since they

do not support interposition, certain desirable constructs, such as revocation, are not

supported. The latter are based on IPC objects such as UNIX domain sockets, offer-

ing full message-passing semantics but the added cost of inter-process communication.

Capsicum places significantly little emphasis on recrafting IPC primitives, such as those

investigated by Shapiro in EROS [124] (now CapROS), inspired by KEYKOS [56].

Provos’s OpenSSH privilege separation [103] and Kilpatrick’s Privman [71] rekindled

interest in microkernel-like compartmentalisation projects, such as the Chromium web

browser [106] and Capsicum’s logical applications. In fact, large application suites

compare formidably with the size and complexity of monolithic kernels: the FreeBSD

kernel is composed of 3.8 million lines of C, whereas Chromium and WebKit come to

a total of 4.1 million lines of C++. How best to decompose monolithic applications

remains an open research question; Bittau’s Wedge offers a promising avenue of research

in automated identification of software boundaries through dynamic analysis [20].

Seaborn and Hand have explored application compartmentalisation on UNIX through

capability-centric Plash [119], and Xen [89], respectively. Plash offers an intriguing

blend of UNIX semantics with capability security by providing POSIX APIs over ca-

pabilities, but is forced to rely on the same weak UNIX primitives analysed in Sec-

tion 5.5. Supporting Plash on stronger Capsicum foundations would offer greater

application compatibility to Capsicum users. Hand’s approach suffers from similar

issues to seccomp, in that the run-time environment for sandboxes is functionality-

poor. Garfinkel’s Ostia [49] also considers a delegation-centric approach, but focuses

on providing sandboxing as an extension, rather than a core OS facility.

5.9 Conclusion

This chapter has described Capsicum, a practical capabilities extension to the POSIX

API, and a prototype based on FreeBSD, planned for inclusion in FreeBSD 9.0; interest

has also been expressed in integrating Capsicum into Google’s ChromeOS and the

NetBSD operating system. An evaluation of several real-world applications suggests

that Capsicum is an effective tool in supporting application compartmentalisation and

privilege separation, mitigating vulnerabilities by reducing the privilege delegated to

sandboxes. The capability-centred model seems a more natural fit to models being

adopted by programmers than existing sandbox techniques on UNIX systems.

Capsicum’s relationship to existing access control and security techniques appears

constructive: it usefully complements mandatory techniques in a manner not dissimilar

160

to the link between capabilities and mandatory access control found in systems such

as DTMach [120] and LOCK [114]. There always exists a risk that the composition

of security technologies leads to new security failures, which cannot be ignored – on

the other hand, the relationship between mandatory access control and capabilities has

been studied extensively in the research literature, giving us confidence that they can

be used together successfully.

Capsicum also provides a useful tool for potential future work, such as compartmen-

talisation of further types of applications (such as office suites), exploring applications

launched without any access ambient authority (rather than self-compartmentalising),

delegation of capabilities through the user interface, and new techniques for program

analysis and decomposition. Capsicum lends itself to adoption by blending immediate

security improvements to current applications with the long-term prospects of a more

capability-oriented future.

161

162

Chapter 6

Conclusions

It seems remarkable, almost fifty years after Corbató, Vyssotsky, Daley, and Neu-

mann first described the Multics security architecture [28, 29], that the integration of

access control into operating systems remains an open research problem. Although

Saltzer and Schroeder’s foundational principles of computer security showed remark-

able insight [113], the convergence of technical, economic, and social circumstances

supporting their widespread adoption has only recently occurred. Five broader trends

in computing have combined to force renewed interest in those foundational principles:

near-ubiquitous network connectivity; a clear and present threat of attack to even the

most trivial use of computers; the increasing reliance of the world economy on elec-

tronic communication and transactions; orders of magnitude increases in software size

and complexity; and dramatic changes in hardware performance. The central concern

of this dissertation has been to demonstrate that “designing in” operating system se-

curity extensibility can help address both the immediate security needs of computer

vendors, application writers, and end-users, while also providing a long-sought technol-

ogy transfer path for decades of systems security research.

In Chapter 2, I developed not just new theory, but also practical exploit techniques

for concurrency vulnerabilities previously considered only theoretical. These results

motivated design choices throughout the remainder of my dissertation, and also caused

several companies to change product designs to avoid the use of vulnerable techniques.

In Chapters 3 and 4, I described the multi-year process of designing, implementing,

and deploying a new type of reference monitor – one not only resistant to concurrency

attacks, but also able to support new flexibility for operating system access control,

encouraging access control localisation and policy research. Through a series of case

studies – the open source FreeBSD operating system, nCircle’s enforcement appliance,

and Apple’s Mac OS X and iOS operating systems – I explored the impact of various

design choices and continuing tensions between policy requirements and expressibility

in widely-deployed open source and commercial products.

In Chapter 5, I investigated two concepts. First, I presented a new and practical

blend of capability security (a neglected but powerful security design philosophy with

163

strong historic ties to Cambridge) and the UNIX process model, targeted at the bur-

geoning field of security-aware application writers. Second, and perhaps more critically,

I developed the notion of a hybrid capability architecture, offering not just a vision, but

also a practical transition path from current commodity systems to a markedly different

architecture for operating system and application security.

Throughout, I have built on past research, developing new theory and new ap-

proaches that allow a rich field of access control research to be newly accessible to

commodity system designs.

6.1 Principles

The following sections consider some of the principles and design philosophies that

spanned the various research projects making up this dissertation.

6.1.1 Access control extensibility is a policy

While Saltzer and Schroeder’s principles apply throughout the software stack, their ap-

plication to operating systems is particularly important in order to ensure that higher

software layers have secure foundations to build on. The diversity of security require-

ments and plethora of solutions proposed by the security research community has, how-

ever, proven a particular challenge to operating system developers. Each new model is

promoted as a panacea, but proves instead to be a blend of difficult trade-offs: prob-

lems with usability, administrative complexity, application-programmer confusion, new

vulnerabilities, and worst of all, significant performance overheads that, unlike security

benefit, can be easily quantified. It has become increasingly clear that there can be no

“one policy to rule them all”: instead, we will live in a world in which many policies

compete for deployment.

When I began my research into operating system security extensibility, I hoped

that extensibility would address these concerns by allowing operating system vendors

to avoid committing to any one solution, catering to the needs of a diverse audience

through the flexibility of allowing sites and deployments to select their own specific

balances between functionality, performance, and security. I also hoped that making

it easier to experiment with new access control policies would encourage investigation

leading to better access control models. Experience in researching, developing, and

transferring the MAC Framework has born out both of these hopes.

Further, Capsicum suggests that access control extensibility is not only a way to

avoid too narrow an access control focus, but is also a necessary tool for the construction

of applications that come with their own security models. Increasingly applications,

rather than operating systems, are the point of confluence for multiple security domains

– from office suites handling documents from different origins to web browsers running

code on behalf of different websites. System-centric access control models will remain

central in protecting the trusted computing base (TCB) and enforcing global properties,

164

but facilities targeting application-local policy and enforcement are just as critical to

ensuring robustness when mapping distributed policies into local enforcement.

6.1.2 Rehabilitating capabilities

The idea of a capability originates in Dennis and Van Horn’s 1965 paper on multipro-

gramming [33], and up until the early 1990s, capability-centric system design philoso-

phies were assumed to be the most desirable direction for high-assurance system designs.

With the decline of capability hardware designs, and the rise and fall of microkernels,

local capability models have seen only limited deployment (the notable exception is the

Java Virtual Machine (JVM)).

Capsicum attempts to rehabilitate the capability design philosophy for mainstream

operating systems by arguing that capabilities provide a better primitive for application-

driven access control extension. Particularly, I believe that the delegation-centric phi-

losophy of capabilities lends itself to non-traditional policy sources: application struc-

ture, user interface gestures, etc, by leaving the OS responsible for enforcement, but

only some portions of policy. More generally, the delegation-centric enforcement model

provided by capabilities seems a good match for an increasingly sandbox-focused se-

curity: applications are increasingly operating systems themselves, supporting (often

malicious) mobile code embedded in a distributed security model. I see capabilities as

complementing other access control paradigms, such as discretionary and mandatory

access control, a view more consistent with historic capability system designs [96] than

recent pure capability systems [124].

6.1.3 The risks of software interposition

My research into the concurrency implications of software interposition for security

do not apply just to system call wrappers, as explored in Chapter 2: interposition is

a software design construct used throughout security as it separates enforcement and

policy from the implementation of an underlying service. I demonstrated that inter-

position in the presence of concurrency is not simply a question of sequentially calling

hooks before an underlying software service – careful reasoning about the goals, and in

some cases, synchronisation spanning layers of abstraction, is required for correctness.

In non-security circumstances, näıve application of interposition leads to bugs; in the

security context, I have illustrated how such bugs may easily be escalated to complete

bypass of protections.

Philosophical concerns about interposition have far-reaching consequences. Propo-

nents of object-capability systems argue for interposition as a method for implementing

access control policies such as revocation [105, 62]. This has immediate consequences

for systems such as Capsicum – while our focus has not been on interposition (and, in

fact, trivial interposition is difficult for some of its kernel-backed objects), interposition

for application-level capabilities is a natural design pattern to be deployed over it.

The MAC Framework itself can be framed as an interposition system, albeit one

165

carefully designed for correctness in the presence of concurrency. With the continuing

explosion of highly concurrent systems, from local multiprocessing to distributed sys-

tems, further formal consideration of the properties of interposition is called for – and

in the mean time, so is extreme caution.

6.1.4 Technology transfer is research

Operating system security research has a 50-year history, making it inevitable that past

ideas will be rediscovered or reinvented; for example, access control policies and security

mechanisms first proposed in the context of kernel/process separation modality are now

seeing frequent repurposing in the world of virtual machine separation. Often, but not

always, new proposals of old ideas revisit the assumptions of earlier work – particularly,

the limitations that may have led them to be disregarded, and ideally demonstrate

how a change in circumstances or approach allows those ideas to be applied to new

problems. In effect, then, much interesting new operating system security research,

due to its heavy grounding in past approaches, is actually research into technology

transfer. With the fundamental changes in computer use identified throughout this

dissertation, such reinvestigations are extremely valuable, and my own research has

built on past research wherever possible.

In Capsicum, I have tried to take into account the many lessons of technology

transfer from developing and deploying the MAC Framework: focus on an incremen-

tal adoption path, show sensitivity to performance and binary compatibility, do not

under-emphasize the value of open source as a tech transfer methodology, and carefully

consider real-world deployment scenarios. Investigating real-world deployment is time-

consuming and detail-oriented, but as the failures of past operating systems show, the

research gap is in how to create new technologies suited for technology transfer.

6.1.5 A hybrid design philosophy

The MAC Framework and Capsicum both implement what I refer to as hybrid models,

in which new (or even old) security ideas are applied to existing systems in such a way

that there is a clear incremental adoption path for the resulting design. The notion

that it is possible to have the best of both worlds, both backwards compatibility and

fundamental new security features, is a key tenet to my approach to technology transfer-

centric research, and one I hope to explore further in the future. This is not to dismiss

blue-sky systems research building from the ground up, which I consider fundamental

in developing new approaches, but rather to argue that a hybrid design philosophy is

an important way to take those ideas and apply them to existing systems in second

generation research.

6.1.6 Open source infrastructure tech transfer

A key argument made in Chapter 4 is that open source has proven an extremely suc-

cessful tech transfer strategy for the MAC Framework. Open source systems such

166

as FreeBSD and Linux increasingly provide the operating system foundations for em-

bedded systems and appliances by providing a mature and affordable infrastructure

grounded in non-competitive and non-differentiating technologies. Appliance builders

do not compete on low-level OS design technologies – rather, they benefit from a com-

mon baseline and joint investment in infrastructure.

By improving the security of that baseline, a philosophy also espoused in the

DARPA CHATS research programme, there is the opportunity to improve countless

downstream products. Of course, open source systems, as with commercial systems,

come with their own technology transfer challenges. For example, Chapter 4 provides a

detailed exploration of the performance-related changes made to the MAC Framework

as a result of community feedback.

6.2 Future work

This dissertation proposes solutions to a number of significant research problems in

operating system security; however, it has inevitably led to further research questions,

which I consider briefly in this section. Collectively, these suggest a sizeable operating

system security research agenda for the future.

6.2.1 System call wrappers

The appeal of system call wrappers lies in large part in their simplicity: they impose

controls on a well-defined interface independently of the implementation of the under-

lying system. As my research into concurrency vulnerabilities has shown, this appeal

is deceptive – successful interposition involves not just sequential or nested invocations

of software components, but instead requires a rich understanding of their semantic

composition. Interposition cannot simply be dismissed, however: it is a fundamental

primitive of software composition, so we require a better understanding of how to apply

it correctly.

When encountering the problems I described in Chapter 2, many people suggest a

transition to message passing – I counter that argument by observing that while this

closes a class of races I refer to as syntactic races, it leaves open a larger and more subtle

class of races I have described as semantic races: ones that arise not from race conditions

on the values of arguments, but their interpretations. Such races invoke significant

synchronisation problems, including concern about deadlock. Further research into the

nature of these problems would be extremely valuable, as they potentially exist not

just in with system call wrappers, but also in other interposition models in OS kernels

and also application software.

6.2.2 The MAC Framework

In Chapters 3 and 4, I described the TrustedBSD MAC Framework, a DARPA re-

search project I began before starting my PhD at Cambridge, and have continued work

167

on as part of my PhD research. The framework is now a mature reference monitor

used in countless commercial products with great success – however, research continues

throughout the technology transfer process, and there remain many further opportuni-

ties to improve the framework.

Most immediately, many downstream consumers have made improvements to the

MAC Framework that should be analysed and selectively merged back into the author-

itative copy in FreeBSD – for example, improvements found in the Mac OS X port.

Some of these changes are minor, but others reflect fundamental philosophical changes

of approach that should be investigated.

More generally, it is clear that the last word in access control policies has not

yet been spoken, suggesting that the creation of new access control models remains a

promising avenue for future research. Apple’s focus on path-centric access control spec-

ification, similar to earlier thinking in DTE, deserves further consideration – especially

in light of its potential for semantic conflicts not only with local UNIX file systems

that do not consider paths a first class object, but also in distributed file systems that

either incorporate UNIX semantics, have no defined semantics “on the wire,” or have

semantics significantly different from local semantics. A clear moral here, and one seen

also in Capsicum, is that security policy must be expressed in the vocabulary of the

end user, referring to objects and actions that fit the user’s mental model for system

operation. Capsicum suggests other important sources of policy: application structure

and user interaction – further investigation of the composition of mandatory access

control models and capability models is likewise desirable.

I remain unsatisfied with the integration of security event auditing with the MAC

Framework; while the framework can usefully control audit operation, how best to allow

policies to generate audit records, annotating existing events with extended access

control information, is an unsolved problem. I have speculated in FreeBSD design

discussions that allowing policies to generate their own records, cross-referenced with

base kernel records, may be one path forward.

6.2.3 Capsicum

Capsicum, significantly less mature in a technology transfer sense than the MAC Frame-

work, raises many more research questions.

While it appears to be a significant improvement on the state-of-the-art, Capsicum

relies on a number of worrying premises, not least that application writers can usefully

perform compartmentalisation on complex applications using today’s programming lan-

guages and runtime models. Compartmentalised applications, when authored in the

C language and executing in the UNIX process model, are fundamentally distributed

applications: the programmer is reduced to using message passing, which is not only

markedly slower than direct function invocation, but also introduces significant pro-

gramming hurdles due to the loss of an assumption of a single address space.

Research into how to perform compartmentalisation and improved models for sep-

168

aration are critical to the future success of Capsicum, but also more generally the

application of the notion of the principle of least privilege. Can we create tools to help

application authors identify decompositions of applications in support of specific and

well-defined security policies? Can we provide tools to partially or even fully automate

the compartmentalisation process? Can we develop new models for compartmentali-

sation, grounded in CPU and OS security features, that improve programmability for

compartmentalised applications, refining the UNIX process model? How should pro-

grammers trade off security, performance, and programmability, and can the selection

of trade-offs be made dynamic, allowing reworking of application compartmentalisation

on demand as new vulnerabilities are discovered, or as the threat of attack goes up?

Collectively, these research questions are critical to future work in operating system

and application security.

6.2.4 CRASH-worthy Trustworthy Systems R&D (CTSRD)

Peter Neumann and I hope to pursue many of these research questions in a new DARPA-

sponsored joint research project between SRI and Cambridge, CRASH-worthy Trust-

worthy Systems R&D (CTSRD). Among the research themes of the project is the

development of Capability Hardware Enhanced RISC Instructions (CHERI), which

translates the hybrid operating system design philosophy of Capsicum into a hybrid

hardware design, blending commodity hardware designs based on page-oriented virtual

memory with a delegation-oriented hardware capability model. This will allow effi-

cient compartmentalisation of software, from application programs to operating system

kernels (including Capsicum), by allowing security differentiation within a single ad-

dress space. We hope that the results will solve core performance and programmability

problems that currently hamper the use of compartmentalisation.

Another research them in CTSRD is a new invariants and testing system, Tempo-

rally Enhanced Security Logic Assertions (TESLA), which will help to address a key

observation from the MAC Framework project: security policy enforcement, as embod-

ied in a software implementation, is an artefact of the policy, rather than the policy

itself. Similarly, existing enforcement and testing systems rely on instantaneous state

of a system, but security properties are fundamentally temporal in notion. TESLA

enhances existing assertions in the FreeBSD kernel and userspace to allow the expres-

sion of temporal rules, both in a temporal assertion logic inline with source code, and

via explicit automata describing permissible state transitions. Initially, our goal will

be to make testing security properties such as “check before use” and “eventual audit”

easier; later, we hope to investigate using TESLA to drive mechanical implementation

of enforcement, avoiding problems such as potential missing MAC Framework entry

points, and creating a closer link between the policy and its implementation.

169

170

Bibliography

[1] 318 Inc. A brief introduction to Mac OS X Sand-

Box Technology. http://techjournal.318.com/security/

a-brief-introduction-to-mac-os-x-sandbox-technology/, April 2008.

30, 121

[2] M. D. Abrams, K. W. Eggers, L. J. L. Padula, and I. M. Olson. A generalized

framework for access control: An informal description. In Proceedings of the 13th

NIST-NCSC National Computer Security Conference, pages 135–143, 1990. 29,

89

[3] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:

A New Kernel Foundation for UNIX Development. Technical report, Computer

Science Department, Carnegie Mellon University, August 1986. 24, 43, 160

[4] W. B. Ackerman and W. W. Plummer. An implementation of a multiprocessing

computer system. In SOSP ’67: Proceedings of the first ACM Symposium on

Operating System Principles, pages 5.1–5.10, New York, NY, USA, 1967. ACM.

23

[5] J. P. Anderson. Computer Security Technology Planning Study. Technical re-

port, Electronic Systems Division, Air Force Systems Command, Hanscom Field,

Bedford, MA 01730, October 1972. 16, 17, 22, 34, 89

[6] R. Anderson and S. Fuloria. Certification and evaluation: a security economics

perspective. In ETFA’09: Proceedings of the 14th IEEE international conference

on emerging technologies & factory automation, pages 1156–1162, Piscataway,

NJ, USA, 2009. IEEE Press. 23

[7] R. J. Anderson. Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. Wiley Publishing, 2 edition, 2008. 20

[8] G. R. Andrews. Partitions and principles for secure operating systems. Technical

report, Cornell University, Ithaca, NY, USA, 1975. 25

[9] Apple Inc. Kernel Authorization. Technical Note TN2127, Apple Computer, Inc.,

2007. http://developer.apple.com/technotes/tn2005/tn2127.html. 30, 44,

89, 112, 125

171

http://techjournal.318.com/security/a-brief-introduction-to-mac-os-x-sandbox-technology/
http://techjournal.318.com/security/a-brief-introduction-to-mac-os-x-sandbox-technology/
http://developer.apple.com/technotes/tn2005/tn2127.html

[10] Apple Inc. iOS Dev Center. http://developer.apple.com/devcenter/ios/

index.action, 2010. 51, 106

[11] Apple Inc. Mac OS X Snow Leopard. http://www.apple.com/macosx/, 2010.

51, 106

[12] Argus Systems Group. Pitbull foundation. http://www.argussystems.com/

Products/pitbull-foundation.html, October 2010. 20, 52

[13] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat.

Practical Domain and Type Enforcement for UNIX. In SP ’95: Proceedings of

the 1995 IEEE Symposium on Security and Privacy, page 66, Washington, DC,

USA, 1995. IEEE Computer Society. 21, 52, 89, 116

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03:

Proceedings of the nineteenth ACM Symposium on Operating Systems Principles,

pages 164–177, New York, NY, USA, 2003. ACM. 21

[15] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-

tions and model. Technical Report M74-244, The MITRE Corp., Bedford MA,

May 1973. 14, 20, 47, 89

[16] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T. Cummings. Com-

partmented mode workstation: Prototype highlights. IEEE Trans. Softw. Eng.,

16(6):608–618, 1990. 21, 109

[17] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,

C. Chambers, and S. Eggers. Extensibility safety and performance in the SPIN

operating system. In SOSP ’95: Proceedings of the fifteenth ACM Symposium on

Operating Systems Principles, pages 267–283, New York, NY, USA, 1995. ACM.

27

[18] K. Biba. Integrity considerations for secure computer systems. Technical Report

TR-3153, Mitre, Bedford, MA, Apr. 1977. 14, 20, 47, 75, 80, 89

[19] R. Bisbey and D. Hollingworth. Protection Analysis: Final Report. Techni-

cal Report ISI/SR-78-13, Information Sciences Institute, University of Southern

California, May 1978. 18

[20] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting Applica-

tions into Reduced-Privilege Compartments. In Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation, pages 309–322.

USENIX Association, 2008. 160

172

http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action
http://www.apple.com/macosx/
http://www.argussystems.com/Products/pitbull-foundation.html
http://www.argussystems.com/Products/pitbull-foundation.html

[21] W. E. Boebert. On the inability of an unmodified capability machine to enforce

the *-property. In Proceedings of 7th DOD/NBS Computer Security Conference,

pages 291–293, September 1984. 20

[22] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical integrity

policies. In In Proceedings of the 8th National Computer Security Conference,

1985. 21, 47, 89

[23] M. Branstad and J. Landauer. Assurance for the Trusted Mach operating system.

Proceedings of the Fourth Annual Conference on Computer Assurance, pages 103–

108, 1989. 26

[24] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of

production systems. In ATEC ’04: Proceedings of the USENIX Annual Technical

Conference, Berkeley, CA, USA, 2004. USENIX Association. 27, 60

[25] R. Clayton, S. J. Murdoch, and R. N. M. Watson. Ignoring the great firewall of

china. In PETS ’06: Proceedings of the 8th international symposium on Privacy

Enhancing Technologies, Berlin, Heidelberg, 2006. Springer-Verlag. 11

[26] E. Cohen and D. Jefferson. Protection in the hydra operating system. In SOSP

’75: Proceedings of the fifth ACM Symposium on Operating Systems Principles,

pages 141–160, New York, NY, USA, 1975. ACM. 17, 23, 57, 160

[27] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An experimental time-

sharing system. In AIEE-IRE ’62 (Spring): Proceedings of the May 1–3, 1962,

Spring Joint Computer Conference, pages 335–344, New York, NY, USA, 1962.

ACM. 17

[28] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the Multics

system. In AFIPS ’65 (Fall, part I): Proceedings of the November 30–December

1, 1965, fall joint computer conference, part I, pages 185–196, New York, NY,

USA, 1965. ACM. 17, 163

[29] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary

storage. In AFIPS ’65 (Fall, part I): Proceedings of the November 30–December

1, 1965, fall joint computer conference, part I, pages 213–229, New York, NY,

USA, 1965. ACM. 20, 163

[30] P. J. Dawidek and S. Zak. CerbNG: system firewall mechanism, 2007. http:

//cerber.sourceforge.net/. 33

[31] D. Dean and A. J. Hu. Fixing Races for Fun and Profit: How to use access(2).

In Proceedings of the 13th USENIX Security Symposium. USENIX Association,

August 2004. 35

173

http://cerber.sourceforge.net/
http://cerber.sourceforge.net/

[32] P. J. Denning. Fault tolerant operating systems. ACM Computing Surveys,

8(4):359–389, 1976. 24

[33] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed

computations. Commun. ACM, 9(3):143–155, 1966. 17, 23, 165

[34] Different Internet Experience Ltd. Khobe 8.0 earthquake for windows desk-

top security software. http://www.matousec.com/info/articles/khobe-8.

0-earthquake-for-windows-desktop-security-software.php. 44

[35] E. Efrat. kauth: kernel authorization framework. http://www.netbsd.org/

~elad/recent/man/kauth.9.html, January 2007. 44, 89

[36] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,

D. Mazières, F. Kaashoek, and R. Morris. Labels and event processes in the

asbestos operating system. SIGOPS Oper. Syst. Rev., 39:17–30, October 2005.

26, 51

[37] J. Epstein, J. McHugh, and R. Pascale. Evolution of a Trusted B3 Window

System Prototype. In Proceedings of the 1992 IEEE Symposium on Research in

Security and Privacy, Oakland, CA, USA, May 1992. 21

[38] R. S. Fabry. The case for capability based computers (extended abstract). In

SOSP ’73: Proceedings of the fourth ACM Symposium on Operating System Prin-

ciples, page 120, New York, NY, USA, 1973. ACM. 25

[39] R. Farrow. A Report on the Linux 2.5 Kernel Developers Summit. ;login:, 26(3),

June 2001. 29

[40] R. J. Feiertag and P. G. Neumann. The foundations of a provably secure operating

system (PSOS). In Proceedings of the National Computer Conference, pages 329–

334. AFIPS Press, 1979. 17

[41] N. Feske and C. Helmuth. A Nitpicker’s guide to a minimal-complexity secure

GUI. In ACSAC ’05: Proceedings of the 21st Annual Computer Security Appli-

cations Conference, pages 85–94, Washington, DC, USA, 2005. IEEE Computer

Society. 21

[42] C. Fetzer and M. Süßkraut. Switchblade: enforcing dynamic personalized system

call models. In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2008, pages 273–286, New York, NY,

USA, 2008. ACM. 44

[43] B. Ford and R. Cox. Vx32: lightweight user-level sandboxing on the x86. In

ATC’08: USENIX 2008 Annual Technical Conference on Annual Technical Con-

ference, pages 293–306, Berkeley, CA, USA, 2008. USENIX Association. 44

174

http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
http://www.netbsd.org/~elad/recent/man/kauth.9.html
http://www.netbsd.org/~elad/recent/man/kauth.9.html

[44] Ford Aerospace and Communications Corporation. Secure Minicomputer Oper-

ating System (KSOS) Executive Summary: Phase I: Design of the Department

of Defense Kernelized Secure Operating System. Technical report, 3939 Fabian

Way, Palo Alto, CA 94303, March 1978. 25

[45] T. Fraser. LOMAC: Low Water-Mark Integrity Protection for COTS Environ-

ments. In Proceedings of the 2000 IEEE Symposium on Security and Privacy.

IEEE, 2000. 20, 35, 50, 53

[46] T. Fraser, L. Badger, and M. Feldman. Hardening COTS Software with Generic

Software Wrappers. In Proceedings of the 1999 IEEE Symposium on Security and

Privacy, May 1999. 33, 53, 89

[47] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt. Soft updates:

a solution to the metadata update problem in file systems. ACM Transactions

on Computer Systems, 18(2):127–153, 2000. 88

[48] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interposition

Based Security Tools. In Proceedings of the Network and Distributed Systems

Security Symposium, February 2003. 33

[49] T. Garfinkel, B. Pfa, and M. Rosenblum. Ostia: A delegating architecture for

secure system call interposition. In Proceedings of the Internet Society, 2003. 43,

160

[50] D. P. Ghormley, D. Patrou, S. H. Rodrigues, and T. E. Anderson. SLIC: An

Extensibility System for Commodity Operating Systems. In Proceedings of the

USENIX Annual Technical Conference. USENIX Association, June 1998. 33

[51] L. Gong and G. Ellison. Inside Java 2 Platform Security: Architecture, API

Design, and Implementation. Pearson Education, 2003. 21, 26

[52] Google, Inc. Security and Permissions - Android Developers Dev Guide. http:

//developer.android.com/guide/topics/security/security.html, October

2010. 20

[53] Google, Inc. The Chromium Project: Design Documents: OS X Sandboxing

Design. http://dev.chromium.org/developers/design-documents/sandbox/

osx-sandboxing-design, October 2010. 152

[54] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996. 26

[55] R. M. Graham. Protection in an information processing utility. In SOSP ’67:

Proceedings of the first ACM Symposium on Operating System Principles, New

York, NY, USA, 1967. ACM. 17

175

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://dev.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://dev.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design

[56] N. Hardy. Keykos architecture. SIGOPS Operating Systems Review, 19(4):8–25,

1985. 26, 160

[57] J. S. Heidemann and G. J. Popek. File-system development with stackable layers.

ACM Trans. Comput. Syst., 12(1):58–89, 1994. 53

[58] Information Systems Security Organization, National Security Agency. Con-

trolled access protection profile version 1.d (CAPP), October 1999. 23

[59] Information Systems Security Organization, National Security Agency. Labeled

security protection profile version 1.b (LSPP), October 1999. 23

[60] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang.

Cyclone: A safe dialect of C. In ATEC ’02: Proceedings of the USENIX An-

nual Technical Conference, pages 275–288, Berkeley, CA, USA, 2002. USENIX

Association. 27

[61] K. Johnson and M. Deksters. sysjail: systrace userland virtualization. http:

//sysjail.bsd.lv/, 2007. 39, 41

[62] A. K. Jones and W. A. Wulf. Towards the design of secure systems. Software

Practice and Experience, 5(4):321–336, 1975. 24, 28, 165

[63] R. Jones. The temporary netperf homepage. http://www.netperf.org/, Octo-

ber 2010. 86

[64] R. Y. Kain and C. E. Landwehr. On access checking in capability-based systems.

IEEE Transactions on Software Engineering, 13(2):202–207, 1987. 20

[65] P. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root. In Pro-

ceedings of the 2nd International SANE Conference, 2000. 41, 102

[66] P. Kamp and R. N. M. Watson. Building systems to be shared, securely. ACM

Queue, 2(5):42–51, 2004. 11

[67] P. A. Karger. Limiting the damage potential of discretionary trojan horses. In

IEEE Symposium on Security and Privacy, pages 32–37, 1987. 29

[68] P. A. Karger. Using registers to optimize cross-domain call performance.

SIGARCH Computer Architecture News, 17(2):194–204, 1989. 19

[69] P. A. Karger and R. R. Schell. Multics security evaluation: Vulnerability analysis.

Technical report, HQ Electronic Systems Division: Hanscom AFB, MA., 1974.

17

[70] J. Kelly, W. Araujo, and K. Banerjee. Rapid service creation using the JUNOS

SDK. SIGCOMM Comput. Commun. Rev., 40(1):56–60, 2010. 51, 100

176

http://sysjail.bsd.lv/
http://sysjail.bsd.lv/
http://www.netperf.org/

[71] D. Kilpatrick. Privman: A Library for Partitioning Applications. In Proceedings

of USENIX Annual Technical Conference, pages 273–284. USENIX Association,

2003. 160

[72] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and Countering System

Intrusions Using Software Wrappers. In Proceedings of the 9th USENIX Security

Symposium. USENIX Association, August 2000. 39

[73] B. W. Lampson. Dynamic protection structures. In AFIPS ’69 (Fall): Proceedings

of the November 18-20, 1969, Fall Joint Computer Conference, pages 27–38, New

York, NY, USA, 1969. ACM. 17

[74] B. W. Lampson. Protection. SIGOPS Operating Systems Review, 8(1):18–24,

1974. 17, 25

[75] B. W. Lampson. Redundancy and Robustness in Memory Protection. In Infor-

mation Processing 74 (Proceedings of the IFIP Congress 1974), volume Hardware

II, pages 128–132. North-Holland, Amsterdam, 1974. 17

[76] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism

separation in hydra. In SOSP ’75: Proceedings of the fifth ACM Symposium on

Operating Systems Principles, pages 132–140, New York, NY, USA, 1975. ACM.

23, 28

[77] S. B. Lipner, W. A. Wulf, R. R. Schell, G. J. Popek, P. G. Neumann, C. Weissman,

and T. A. Linden. Security kernels. In AFIPS ’74: Proceedings of the May 6-10,

1974, National Computer Conference and Exposition, pages 973–980, New York,

NY, USA, 1974. ACM. 25

[78] P. A. Loscocco and S. D. Smalley. Integrating Flexible Support for Security

Policies into the Linux Operating System. In Proceedings of the USENIX Annual

Technical Conference, pages 29–42. USENIX Association, June 2001. 21, 89, 98,

152

[79] McAfee Inc. McAfee Firewall Enterprise. http://www.mcafee.com/us/

enterprise/products/network_security/firewall_enterprise.html, Octo-

ber 2010. 21, 51, 121

[80] S. McCanne and V. Jacobson. The BSD packet filter: a new architecture for

user-level packet capture. In USENIX’93: Proceedings of the USENIX Winter

1993 Conference, Berkeley, CA, USA, 1993. USENIX Association. 27

[81] M. K. McKusick. Enhancements to the fast filesystem to support multi-terabyte

storage systems. In BSDC’03: Proceedings of the BSD Conference 2003 on BSD

Conference, pages 9–9, Berkeley, CA, USA, 2003. USENIX Association. 51

177

http://www.mcafee.com/us/enterprise/products/network_security/firewall_enterprise.html
http://www.mcafee.com/us/enterprise/products/network_security/firewall_enterprise.html

[82] M. K. McKusick and G. V. Neville-Neil. The Design and Implementation of the

FreeBSD Operating System. Pearson Education, 2004. 27, 92

[83] A. Mettler and D. Wagner. Class properties for security review in an object-

capability subset of Java. In PLAS ’10: Proceedings of the 5th ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security, pages 1–7, New

York, NY, USA, 2010. ACM. 26

[84] M. S. Miller. Robust composition: towards a unified approach to access control

and concurrency control. PhD thesis, Johns Hopkins University, Baltimore, MD,

USA, 2006. 24, 26

[85] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active

content in sanitized javascript, May 2008. http://google-caja.googlecode.

com/files/caja-spec-2008-06-07.pdf. 26

[86] T. C. Miller. Sudo, 2007. http://www.gratisoft.us/sudo/. 39, 40

[87] J. H. Morris, Jr. Protection in programming languages. Communications of the

ACM, 16(1):15–21, 1973. 23

[88] S. J. Murdoch and R. N. M. Watson. Metrics for Security and Performance in

Low-Latency Anonymity Systems. In PETS ’08: Proceedings of the 8th inter-

national symposium on Privacy Enhancing Technologies, pages 115–132, Berlin,

Heidelberg, 2008. Springer-Verlag. 11

[89] D. G. Murray and S. Hand. Privilege Separation Made Easy. In Proceedings of

the ACM SIGOPS European Workshop on System Security (EUROSEC), pages

40–46. ACM, 2008. 160

[90] A. C. Myers and B. Liskov. A decentralized model for information flow control.

SIGOPS Oper. Syst. Rev., 31:129–142, October 1997. 26

[91] National Computer Security Center (NCSC). Trusted Computer System Evalua-

tion Criteria (TCSEC). U. S. Department of Defense, December 1985. 22

[92] National Security Agency. NetTop. http://www.nsa.gov/research/tech_

transfer/fact_sheets/nettop.shtml, October 2010. 22

[93] nCircle Network Security. http://www.ncircle.com/, October 2010. 51, 101,

121

[94] G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In

OSDI ’96: Proceedings of the second USENIX symposium on Operating Systems

Design and Implementation, pages 229–243, New York, NY, USA, 1996. ACM.

27

178

http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.gratisoft.us/sudo/
http://www.nsa.gov/research/tech_transfer/fact_sheets/nettop.shtml
http://www.nsa.gov/research/tech_transfer/fact_sheets/nettop.shtml
http://www.ncircle.com/

[95] P. G. Neumann. Principled assuredly trustworthy composable architectures.

Technical report, Computer Science Laboratory, SRI International, Menlo Park,

December 2004. 48

[96] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A

Provably Secure Operating System: The System, Its Applications, and Proofs,

Second Edition. Technical Report CSL-116, Computer Science Laboratory, SRI

International, May 1980. 17, 25, 89, 132, 165

[97] NIST Common Criteria Implementation Board. Common criteria version 2.1

(ISO IS 15408), 2000. 22

[98] K. Onoue, Y. Oyama, and A. Yonezawa. Control of system calls from outside

of virtual machines. In SAC ’08: Proceedings of the 2008 ACM symposium on

Applied computing, New York, NY, USA, 2008. ACM. 44

[99] A. Ott. Rule Set Based Access Control (RSBAC) for Linux. http://www.rsbac.

org/, October 2010. 29, 89

[100] D. A. Patterson and C. H. Sequin. RISC I: A Reduced Instruction Set VLSI

Computer. In ISCA ’81: Proceedings of the 8th annual symposium on Computer

Architecture, pages 443–457, Los Alamitos, CA, USA, 1981. IEEE Computer

Society Press. 24

[101] S. Potter, J. Nieh, and M. Selsky. Secure isolation of untrusted legacy applica-

tions. In LISA’07: Proceedings of the 21st conference on Large Installation Sys-

tem Administration Conference, pages 1–14, Berkeley, CA, USA, 2007. USENIX

Association. 44

[102] N. Provos. Improving Host Security with System Call Policies. In Proceedings of

the 12th USENIX Security Symposium, Washington, DC, August 2003. USENIX

Association. 33

[103] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege Escalation. In Pro-

ceedings of the 12th USENIX Security Symposium. USENIX Association, 2003.

133, 160

[104] R. F. Rashid and G. G. Robertson. Accent: A communication oriented network

operating system kernel. In SOSP ’81: Proceedings of the eighth ACM Symposium

on Operating Systems Principles, pages 64–75, New York, NY, USA, 1981. ACM.

24

[105] D. Redell and R. Fabry. Selective revocation of capabilities. In Proceedings of

the International Workshop on Protection in Operating Systems, pages 197–209,

August 1974. 29, 165

179

http://www.rsbac.org/
http://www.rsbac.org/

[106] C. Reis and S. D. Gribble. Isolating web programs in modern browser archi-

tectures. In EuroSys ’09: Proceedings of the 4th ACM European Conference on

Computer Systems, pages 219–232, New York, NY, USA, 2009. ACM. 150, 160

[107] D. Rémy and J. Vouillon. Objective ML: a simple object-oriented extension of ML.

In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 40–53, New York, NY, USA, 1997.

ACM. 27

[108] L. Riek and R. Watson. The age of avatar realism. Robotics and Automation

Magazine, IEEE, 17(4):37 –42, Dec 2010. 11

[109] D. M. Ritchie and K. Thompson. The unix time-sharing system. Communications

of the ACM, 17(7):365–375, 1974. 17

[110] Ruby Users Group. Ruby Programming Language. http://www.ruby-lang.

org/, October 2010. 27

[111] J. M. Rushby. Design and verification of secure systems. In SOSP ’81: Proceedings

of the eighth ACM Symposium on Operating Systems Principles, pages 12–21,

New York, NY, USA, 1981. ACM. 17, 25

[112] J. H. Saltzer. Protection and control of information sharing in Multics. In SOSP

’73: Proceedings of the fourth ACM Symposium on Operating System Principles,

New York, NY, USA, 1973. ACM. 17, 18

[113] J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. volume 63, pages 1278–1308, September 1975. 17, 159, 163

[114] O. Sami Saydjari. Lock: an historical perspective. In Proceedings of the 18th An-

nual Computer Security Applications Conference. IEEE Computer Society, 2002.

21, 161

[115] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and

implementation of the Sun network filesystem. In Proceedings of the Summer

1985 USENIX Conference. USENIX Association, June 1985. 48

[116] W. L. Schiller. The design and specification of a security kernel for the PDP-

11/45. Technical report, The MITRE Corporation, Bedform, MA, 01730, March

1975. 25

[117] M. D. Schroeder. Engineering a security kernel for Multics. In SOSP ’75: Pro-

ceedings of the fifth ACM Symposium on Operating Systems Principles, pages

25–32, New York, NY, USA, 1975. ACM. 25

[118] M. D. Schroeder and J. H. Saltzer. A hardware architecture for implementing

protection rings. Commun. ACM, 15(3):157–170, 1972. 19

180

http://www.ruby-lang.org/
http://www.ruby-lang.org/

[119] M. Seaborn. Plash: tools for practical least privilege, 2007. http://plash.

beasts.org/. 43, 149, 160

[120] E. J. Sebes. Overview of the architecture of Distributed Trusted Mach. In Pro-

ceedings of the USENIX Mach Symposium, pages 20–22. USENIX Association,

November 1991. 26, 108, 161

[121] Seccuris Inc. Assured Protection. http://www.seccuris.com/, October 2010.

51, 101

[122] SecurityFocus. Linux capabilities vulnerability. http://www.securityfocus.

com/bid/1322, June 2000. 56, 74, 102

[123] SGI. Multilevel Security (MLS) by Trusted IRIX. http://www.sgi.com/pdfs/

3241.pdf, 2002. 52

[124] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability system. In SOSP ’99:

Proceedings of the seventeenth ACM Symposium on Operating Systems Principles,

Dec 1999. 26, 132, 160, 165

[125] D. Smørgrav. OpenPAM. http://www.openpam.org/, October 2010. 51

[126] C. Smowton. Secure 3D graphics for virtual machines. In EUROSEC ’09: Pro-

ceedings of the Second European Workshop on System Security, pages 36–43, New

York, NY, USA, 2009. ACM. 21

[127] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau.

The Flask security architecture: System support for diverse security policies. In

Proceedings of the 8th USENIX Security Symposium, pages 123–139, Washington,

D.C., USA, Aug. 1999. USENIX Association. 26, 29, 44, 51, 108

[128] B. Spengler. Linux 2.6.30+/SELinux/RHEL5 test kernel 0day, exploiting the

unexploitable. http://lwn.net/Articles/341773/, July 2009. 19

[129] Sun Microsystems. Trusted Solaris 8 Operating Environment: A Technical

Overview, 2000. 21, 52

[130] C. Vance, T. C. Miller, R. Dekelbaum, and A. Reisse. Security-Enhanced Darwin:

Porting SELinux to Mac OS X. In Proceedings from the Third Annual Security

Enhanced Linux Symposium, 2007. Draft 2007/01/22 11:35. 51, 108

[131] C. Vance and R. N. M. Watson. Security Enhanced BSD. Technical report,

Network Associates Laboratories, 2003. 21, 44, 98

[132] T. V. Vleck. The IBM 360/67 and CP/CMS. http://www.multicians.org/

thvv/360-67.html. 21

181

http://plash.beasts.org/
http://plash.beasts.org/
http://www.seccuris.com/
http://www.securityfocus.com/bid/1322
http://www.securityfocus.com/bid/1322
http://www.sgi.com/pdfs/3241.pdf
http://www.sgi.com/pdfs/3241.pdf
http://www.openpam.org/
http://lwn.net/Articles/341773/
http://www.multicians.org/thvv/360-67.html
http://www.multicians.org/thvv/360-67.html

[133] I. VMWare. VMWare Virtualization Software. http://www.vmware.com/, Oc-

tober 2010. 21

[134] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based

fault isolation. In SOSP ’93: Proceedings of the fourteenth ACM Symposium on

Operating Systems Principles, pages 203–216, New York, NY, USA, 1993. ACM.

19, 27

[135] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification

of the UCLA Unix security kernel. Communications of the ACM, 23(2):118–131,

1980. 25

[136] S. T. Walker. The advent of trusted computer operating systems. In AFIPS

’80: Proceedings of the May 19-22, 1980, national computer conference, pages

655–665, New York, NY, USA, 1980. ACM. 25

[137] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter.

The multi-principal OS construction of the Gazelle web browser. In Proceedings

of the 18th USENIX Security Symposium, pages 417–432, Berkeley, CA, USA,

2009. USENIX Association. 28

[138] R. N. M. Watson. TrustedBSD: Adding Trusted Operating System Features to

FreeBSD. In Proceedings of the USENIX Annual Technical Conference. USENIX

Association, June 2001. 107

[139] R. N. M. Watson. Introduction to multithreading and multiprocessing in the

FreeBSD SMPng network stack. In Proceedings of EuroBSDCon 2005, November

2005. 11

[140] R. N. M. Watson. Exploiting concurrency vulnerabilities in system call wrap-

pers. In WOOT ’07: Proceedings of the first USENIX Workshop on Offensive

Technologies, pages 1–8, Berkeley, CA, USA, 2007. USENIX Association. 11

[141] R. N. M. Watson. How the FreeBSD project works. In Proceedings of Euro-

BSDCon 2008, October 2008. 11

[142] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum: Practical

capabilities for UNIX. In Proceedings of the 19th USENIX Security Symposium,

Berkeley, CA, USA, 2010. USENIX Association. 11

[143] R. N. M. Watson, B. Feldman, A. Migus, and C. Vance. Design and Imple-

mentation of the TrustedBSD MAC Framework. In Proceedings of the Third

DARPA Information Survivability Conference and Exhibition (DISCEX), IEEE,

April 2003. 11, 29, 33, 44, 48, 74, 152

182

http://www.vmware.com/

[144] R. N. M. Watson and W. Salamon. The FreeBSD Audit System. In Proceedings

UKUUG LISA Conference. UKUUG, 2006. 11, 23, 124

[145] R. N. M. Watson and C. Vance. The TrustedBSD MAC framework: Extensible

kernel access control for FreeBSD 5.0. In In USENIX Annual Technical Confer-

ence, pages 285–296. USENIX Association, 2003. 11

[146] M. V. Wilkes and R. M. Needham. The Cambridge CAP computer and its operat-

ing system (Operating and programming systems series). Elsevier North-Holland,

Inc., Amsterdam, The Netherlands, 1979. 17, 19, 23

[147] E. Witchel, J. Rhee, and K. Asanović. Mondrix: memory isolation for Linux

using Mondriaan memory protection. In SOSP ’05: Proceedings of the twentieth

ACM Symposium on Operating Systems Principles, pages 31–44, New York, NY,

USA, 2005. ACM. 19

[148] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux

Security Modules: General Security Support for the Linux Kernel. In Proceedings

of the 11th USENIX Security Symposium, August 2002. 29, 44, 51, 89

[149] Q. Wu, H. Dai, X. Liu, and H. Feng. The Kylin operating system. In Proceedings

of EuroBSDCon 2006. WillyStudios.com, November 2006. 101

[150] X. Wu, Z. Zhou, Y. He, and H. Liang. Static Analysis of a Class of Memory Leaks

in TrustedBSD MAC Framework. Information Security Practice and Experience,

pages 83–92, 2009. 99, 121

[151] X. Wu, Z. Zhou, Y. He, H. Liang, and C. Yuan. Static analysis based correctness

verification for mandatory access control framework. Jisuanji Xuebao(Chinese

Journal of Computers), 32(4):730–739, 2009. 99, 121

[152] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

HYDRA: the kernel of a multiprocessor operating system. Communications of

the ACM, 17(6):337–345, 1974. 17

[153] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,

N. Narula, and N. Fullagar. Native client: A sandbox for portable, untrusted

x86 native code. In SP ’09: Proceedings of the 2009 30th IEEE Symposium on

Security and Privacy, pages 79–93, Washington, DC, USA, 2009. IEEE Computer

Society. 27

[154] K. Yee, M. Miller, and J. Shapiro. Capability myths demolished. http://zesty.

ca/capmyths/, October 2010. 21

[155] E. Zadok and J. Nieh. FiST: a language for stackable file systems. In ATEC ’00:

Proceedings of the Annual Conference on USENIX Annual Technical Conference,

Berkeley, CA, USA, 2000. USENIX Association. 53

183

http://zesty.ca/capmyths/
http://zesty.ca/capmyths/

[156] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information

flow explicit in HiStar. In OSDI ’06: Proceedings of the 7th Symposium on

Operating Systems Design and Implementation, pages 263–278, Berkeley, CA,

USA, 2006. USENIX Association. 26

184

	818.pdf
	Introduction
	Context for this research
	What is an operating system?
	Principles of operating system security
	Kernel and processes
	From isolation to access control policy
	Virtualisation
	Trusted systems
	Capability systems
	Of microkernels and security kernels
	Language and runtime approaches
	Extensible access control frameworks

	Structure of this dissertation

	Concurrency vulnerabilities in system call interposition
	Operating system kernels and concurrency
	Wrappers for security
	Concurrency attacks on wrappers
	Exploit techniques
	Concurrency approaches
	Racing on uniprocessor systems
	Racing on multiprocessor systems

	Exercising real vulnerabilities
	Generic Software Wrapper Toolkit (GSWTK)
	Systrace
	CerbNG

	Preventing wrapper races?
	Mitigation techniques
	Message passing systems
	Integrating security and concurrency

	Impact of the WOOT07 paper
	Conclusion

	The MAC Framework: extensible kernel access control
	History of the MAC Framework
	Past approaches
	Direct modification
	System call interposition
	Stacked file systems

	Limitations of past approaches
	Kernel source code access
	Tracking vendor development
	Concurrency and lock order in threaded kernels
	Policy composition
	Financial cost of implementation

	Designing for access control extension
	Guiding principles

	Architecture of the MAC Framework
	Framework startup
	Policy registration
	Entry point design considerations
	Kernel service entry point invocation
	Policy entry point invocation
	Policy composition
	Object labelling
	Application-layer approach
	Policy-agnostic label management APIs

	MAC Framework policy modules
	The Biba integrity policy

	Performance evaluation
	System call performance
	Network performance
	Kernel build performance

	Related work
	Conclusion

	The MAC Framework: from research to product
	FreeBSD operating system
	Experimental feature status
	Performance
	Third-party contributions to the MAC Framework
	Additional MAC Framework consumers

	nCircle IP360 monitoring appliance
	What are system privileges?
	System privilege extensions to the MAC Framework
	The nCircle MAC policy

	Apple's Mac OS X and iOS
	SEDarwin research prototype
	Adapting the MAC Framework to Mac OS X
	Adoption by Apple
	The Sandbox access control policy
	Applications constrained by Sandbox
	Enforcement in Mach and BSD
	Paths in policy expression
	Considerations for iOS
	Performance optimisations
	Policy label data synchronisation requirements
	Conclusions on Mac OS X and iOS

	Evaluation
	The hypothesis of security extensibility
	Expressiveness
	Complexity
	Usability
	Performance
	Security

	Conclusion

	Capsicum: practical capabilities for UNIX
	Introduction
	Capsicum design
	Capability mode
	Capabilities
	Run-time environment

	Capsicum implementation
	Kernel changes
	The Capsicum run-time environment
	Concurrency concerns with directory delegation

	Adapting applications to use Capsicum
	tcpdump
	dhclient
	gzip
	Chromium

	Comparison of sandboxing technologies
	Windows ACLs and SIDs
	Linux chroot
	Mac OS X Sandbox
	SELinux
	Linux seccomp
	Summary of Chromium isolation models

	Performance evaluation
	System call performance
	Sandbox creation
	gzip performance

	Future work
	Related work
	Conclusion

	Conclusions
	Principles
	Access control extensibility is a policy
	Rehabilitating capabilities
	The risks of software interposition
	Technology transfer is research
	A hybrid design philosophy
	Open source infrastructure tech transfer

	Future work
	System call wrappers
	The MAC Framework
	Capsicum
	CRASH-worthy Trustworthy Systems R&D (CTSRD)

