Technical Report i

Number 801

a5 UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Software lock elision
for x86 machine code

Amitabha Roy

July 2011

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2011 Amitabha Roy

This technical report is based on a dissertation submitted
April 2011 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Emmanuel
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Software lock elision for x86 machine code

Amitabha Roy

Summary

More than a decade after becoming a topic of intense res#daohis no transactional memory
hardware nor any examples of software transactional meos#yutside the research commu-
nity. Using software transactional memory in large piecesaftware needs copious source
code annotations and often means that standard compildrslesuggers can no longer be
used. At the same time, overheads associated with softvearggictional memory fail to moti-
vate programmers to expend the needed effort to use softveargactional memory. The only
way around the overheads in the case of general unmanagedsctite anticipated availabil-
ity of hardware support. On the other hand, architects avellimg to devote power and area
budgets in mainstream microprocessors to hardware tramsacmemory, pointing to trans-
actional memory being a “niche” programming construct. Adleck has thus ensued that is
blocking transactional memory use and experimentatiohemainstream.

This dissertation covers the design and construction oftevace transactional memory runtime
system called SLE_x86 that can potentially break this dezdby decoupling transactional
memory from programs using it. Unlike most other STM desjghe core design principle
is transparencyather thamperformance SLE_x86 operates at the level of x86 machine code,
thereby becoming immediately applicable to binaries fergbpular x86 architecture. The only
requirement is that the binary synchronise using knownitagkonstructs or calls such as those
in Pthreads or OpenMP libraries. SLE_x86 provides spewgeléick elision (SLE) entirely in
software, executing critical sections in the binary usiags$actional memory. Optionally, the
critical sections can also be executed without using trei@as by acquiring the protecting
lock.

The dissertation makes a careful analysis of the impact oionpeance due to the demands
of the x86 memory consistency model and the need to trangfharestrument x86 machine
code. It shows that both of these problems can be overcomeatthra reasonable level of
performance, whergansparentsoftware transactional memory can perform better thanka loc
SLE_ x86 can ensure that programs are ready for transattioeraory in any form, without
being explicitly written for it.

Acknowledgements

| gratefully acknowledge my supervisor Steven Hand andssatviim Harris for all the advice,

discussion and feedback they have provided throughoutmmg it Cambridge. In particular, |

am thankful for all the drafts they have read through palyeiiheir support has helped me gain
considerable expertise and confidence. This thesis habaisdited from feedback by Robert
Mullins and lan Watson. | am also grateful to the Cambridge Mehru trusts, the Overseas
Research Scholarship, the Freshwater Fund and the LunBgssarch Award for funding my

studies at Cambridge.

A ton of thanks go out to my family, particularly my mother aiather for having believed in
me and for putting up with my insistence on exploring the wwn instead of settling down.
This PhD simply would not have been possible without the lbd§you. Thanks also go out to
the rest of the “troops” and yes, all the cats !

This thesis is indebted to Mohita, my wife, who | met here amBedge. | plead guilty to
spending, perhaps, too much time “solving things in my heasdyou have so rightly observed.
| promise to henceforth spend much more time with you. Ind€aghbridge would have a been
an awfully lonely place without you by my side. Thanks alscogib to your family for having
welcomed me into their fold.

Finally I'd like to acknowledge my friends for the MexicanrvgDerek, Eiko, Anil, Theo,
Malte and Chris), for all the squash (Nishant), the actiovie® (Pradipta), the table football
(Anastasios, Fei, Fernando and Periklis) and indeed toy tmamame here.

Some of the experiments for this thesis were performed oil€8MOS Consortium super-
computer within the DIRAC Facility jointly funded by STFQ\d Large Facilities Capital Fund
of BIS and the University of Cambridge. | am grateful to thesn the use of the SGI Altix
UV1000 supercomputer.

Contents

1 Introduction 15
1.1 Motivation 51
1.2 Contributions 17
1.3 Outline 18
1.4 Publications 19

2 Background 21
2.1 Hardware transactionalmemory 0 . 22
2.2 Software transactionalmemory Lo e 25

2.2.1 Non-blockingdata structures 25
2.2.2 Non-blockingSTMs 26
2.23 Lock-based STMs 27
2.2.4 Word-based and object-based STMs 29
2.3 STMinstrumentation 30
2.3.1 Library 30
2.3.2 Compiler 30
2.3.3 Binaryrewriting 32
2.4 Atomicity specifications e 33
24.1 Atomicblock 33
24.2 Lockelision. 34
25 Weakvsstrongatomicity e 36

2.6 Single lock atomicity and memory consistency 38
2.7 Hybrid transactionalmemory Lo e e 39
2.8 Performance benefits of transactionalmemory 40

2.9 Software lock elision for x86 machinecode 41

3 x86-safe software transactional memory
3.1 x86 memory consistencymodel
3.2 Counterexamples e
3.3 Aserialising design: STM_x86_strict
3.3.1 STMoprimitives e
3.3.2 Speculationphase. Lo
3.3.3 Commitphase
3.3.4 SLAspeculation
3.4 Recovering scalability: STM_x86
3.4.1 Publicationsafety
3.4.2 AbOrts.
3.5 Comparison with language level memory models
3.5.1 Memoryupdateconsistency
3.5.2 Speculationsafety
3.5.3 Dynamicseparation
3.6 Mapping critical sectionsto SLA e
3.7 Mixing locking with transactions
3.8 Implementation
3.8.1 Metadataandlogging.
3.8.2 Arbitrary granularitylogs o e
3.8.3 Lockblacklists
3.9 Evaluationof STM X86. it
3.10 DISCUSSION o e e e
4 x86 machine code instrumentation
4.1 Approach e
4.1.1 Staticbinaryrewriting
4.1.2 Dynamicbinaryrewriting L.
4.1.3 Combining static and dynamic techniques
4.2 x86 instrumentation modes and backends
4.3 Activemode
4.3.1 Identifying critical sections
4.3.2 Basicblockdiscovery o
4.3.3 Basicblock instrumentation
4.3.4 PICoperations

4.4 Passivemode s

4.4.1 Preparation e
4.4.2 Interceptanddispatch 86
45 EXCeptions. e 7 8
4.6 Checkpoints 8 8
4.6.1 Registers e
4.6.2 Memory e e
4.7 SLE x86inpractise. e 90
47.1 Backends
4.8 Evaluation of the instrumentationsystem. 91
4.9 Evaluationof SLE x86 92
410 DISCUSSION o e e e e 95
Critical section characterisation 97
5.1 Disjointaccess parallelism, 97
5.2 Lockcontention 99
5.3 Profileroperation 101
54 Profiling 1o
55 Postprocessing e 102
5.6 Characterising a Microbenchmark, 104
5.7 Characterising STAMP 104
5.8 DISCUSSION o e e 081
Thread-private data tags 109
6.1 Genericcapabilities e 109
6.2 Associating tags withlocations 110
6.3 Applications 112
6.3.1 OpenMP thread privatedata 113
6.3.2 Stackdata.
6.4 Adaptivetaggingfor STAMP 116

6.4.1 Tag metadata and allocationsites 116
6.4.2 The non-transactional access problem 117
6.4.3 Reducing undo-loggingoverheads 119

6.4.4 Inliningchecks 012
6.5 Evaluation e 201
6.6 DISCUSSION o 221

7 Applicability 127

7.1 Scalability 127
7.2 Impact on software development 129
7.3 Condition variables and fine-grained locks 132
7.3. 1 Facesim 134
7.3.2 Fluidanimate 134
7.4 DISCUSSION o e e e 361
8 Conclusion 139
8.1 Summary e 139
8.2 Futureresearch 140
Appendix A: SLE_x86 restrictions 142
Appendix B: Experiment configurations 144

10

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Sorted linked list using Herhily et al’'s HTM instruct®n. 23
Sorted linked list using Hammond etalsTCC 24
Linked listusingthe TL2 library 31
Sorted linked list using atomicblocks 33
Abarrierfortwothreads 34
Privatisation 37
Publication 83
Memory ordering differences L e 39
TSOmachine 44
Loads must be ordered after earlier transactions 48
Stores must be ordered across atomicblocks 50
nfenceinatransaction 0. 55
Visibility of writes from a transaction 55
Privatisation 59
Optimisation trades generality for scalability 62
Publication 36
Memory consistency model vs weak atomicity 64
Memory consistency implicationsforanSTM 64
Symmetric dependentvisibilityo oL L. 66
Buggysignalling 67
Type of asymmetricdatarace e 67
Bypassingwritestoreads oo 70
STM performance on the STAMP benchmarks(1) 73
STM performance on the STAMP benchmarks(2) 74
TL2: Maximum variation in execution time as a fractidriree median 75

Is using STM_x86 better than using the loakmeans also better than sequentiahs

11

12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Possibly nestedlocking L 78

Executioninactivemode e 80
The same function in multiplecontexts 82
Shared memory instrumentation fora basicblock 84
Executioninpassivemode 86
Interceptanddispatch 87
Checkpointingthestack u.. 89
Putting ittogether: UsingSLE 90
STAMP: Static characteristics e 92
Basic blocks added to PIC in each active executiortitgra 92
Binary instrumentationoverhead, 93
SLE on the STAMP benchmarks(1) 93
SLE on the STAMP benchmarks(2) 94

Is using SLE_x86 better than using the logk"tneans also better than sequentiaf4

Profilerphases 102
Example profilingoutput o o 103
Red-Black tree memory access characterisation 105
STAMP critical section memory operations 106
A fragment of code from the labyrinth benchmark 107
STAMP critical section characteristics 108
Association of tag metadatawithpages 112
Example of OpenMP ThreadPrivate from Quake 113
Sharing stack locations in the Bodytrack benchmark iR dRSEC 115
A fragment of code from the Genome benchmark 116
Extended tag metadata for adaptivity L. 117
Extended tag metadata with mirror mappings 119
Inlinedtagcheck 120
SLE (with private data tagging) on the STAMP benchmdrks(. 121
SLE (with private data tagging) on the STAMP benchma&ks(. 122
Yada data structure: original (top) and separateddimt. 123
Performance of Yada after data structure decompositio. 124
Labyrinth source fragment: original (top) and anrextédottom) 124
Performance of Labyrinth with annotation 125

LIST OF FIGURES

6.14 Is using Best Of(SLE_x86, SLE_x86 with PDT) better thiaing the lock ?

(*" means also better than sequential). 125
7.1 Microbenchmark profiles(8 threads) 128
7.2 Scalingona Corei7 NUMAsystem 129
7.3 Scalability at CPU socketintervals 130
7.4 QuakeusingSLE 113
7.5 Quake using different implementations of critical smet 131
7.6 Quakeprofile 213
7.7 Quake using different implementations of critical &ats (older Xeon system) 132
7.8 PARSEC critical section memory operations 135
7.9 UsingSLEonFacesim 361
7.10 Using SLE on Fluidanimate u.. 136
7.11 Using SLE on Fluidanimate with Single Lock Atomicity 137

13

LIST OF FIGURES

14

Chapter 1

Introduction

This dissertation describes the design, construction eald&tion of a system that applies soft-
ware transactional memory (STM) to an x86 binary synchingigith locks. The system aims

to improve scalability when coarse-grained locks are ddamttk in the program while guaran-
teeing that the result of execution of the program is indgatishable from that were locks to be
used.

In this chapter | outline the motivation for this work. | alsammarise the contributions of
the dissertation and list the contents of the following ¢begpthat describe the contributions in
detail.

1.1 Motivation

Locks are the most popular method of synchronisation in ithu#aded programs. With in-
creasing thread counts in systems due to the availabilityudficores, coarse-grained locks can
become a scalability bottleneck in programs. This has ledtemsion between coarse-grained
and fine-grained locking in programs. Coarse-grained taxks easier to get right since fine-
grained locking is (a) prone to programming errors such asdldek and (b) makes composable
software engineering hard since calls that cross multigdutes need to be aware of held locks
in order to avoid deadlock. On the other hand fine grainedd@ckvide better scalability since
critical sections do not need to wait on the same lock if thegchto access different shared
memory locations.

A simple example serves to illustrate the problem of lockyngnularity. Consider the prob-
lem of implementing a concurrent red-black tree. A strdmyfwtard solution would be to start
from a sequential implementation of red-black trees alskelan a standard textbook [CLRS01]
and protect the tree with a single coarse grained lock. A moatable solution is to use the
considerably more complicated relaxed version of redibtaees [HOSS97] that relaxes the
data structure by decoupling insertion and deletion frofbakancing. One could then refer to
Fraser’s dissertation [Fra03] that includes a fairly nowil fine grained locking protocol for
relaxed red-black trees.

The parallel programming research community has beentigagisig transactional memory
[HM93] as the solution to this problem. Hardware transawionemory provides special hard-
ware support for executing blocks of code transaction&@bftware transactional memory im-
plements transactional memory entirely in software makegenefits of transactions available

15

1. Introduction

to programs running on current microprocessors withouhtrel to wait for hardware transac-
tional memory to become available. When using transadtioeanory, rather than explicitly
waiting for and acquiring any coarse-grained locks, exeaytroceeds speculatively and uses
a two phase commit protocol similar to database style tcimses. Transactions thus only need
to wait for each other when there are conflicting accessdsetsame piece of shared data. In
the example, two updates to a red-black tree can proceedatiglaif they modify different
subtrees. This is usually the case for large enough treethasdptimistic concurrency con-
trol can provide the scalability of fine grained locking vath the associated complexity (a fact
that Fraser also demonstrated [Fra03]). However, in spitdnoost a decade of research into
transactional memorthere is no transactional memory hardware nor any examplgside the
research community of the use of software transactionalomgm

Using software transactional memory is too disruptive titveare engineering for large pieces
of software. The stumbling block to adoption is a clean iratign of transactional memory
into the software stack. Integrating transactional meniuiiy a language requires defining the
semantics of a construct that can expose transactional mpgmthe programmer (such as an
atomic blocHFO03]) and ensuring that the software transactional mgnmoplementation pre-
serves those semantiasdthe language memory model (which in the case of many widedg us
languages is only just being defined). Further, an STM regugither tedious and error-prone
instrumentation of source to use an STM library or equallijdes annotation of source to use
experimental STM compilers that are yet to agree on langaeatgnsions. Finally precompiled
library calls and system calls (and I/O in general) are diffito use in transactions unless one
is prepared to sacrifice scalability by serialising tratisacexecution in order to executgevo-
cably[WSATO08]. At the same time, overheads associated with sofwransactional memory
fail to motivate programmers to expend the needed effors&osoftware transactional memory.
The only way around the overheads in the case of general uagedrcode is the anticipated
availability of hardware support.

On the other hand, architects are unwilling to devote power area budgets in mainstream
microprocessors and deal with the complexity of hardwaredactional memory implementa-
tion. They point to transactional memory being a “niche”’gramming construct. Further, the
limitations of hardware means that a hybrid solution wheme transactions can be executed
in software is necessary. Unfortunately, the lack of magash acceptance of software transac-
tional memory means that even if hardware transactional ongmere to become available it
would be some time before programs could be modified to takeardadge of it.

A deadlock has thus ensued that is blocking transactionaionguse and experimentation in
the mainstream. These problems have prompted some reseatohabel software transac-
tional memory a research toy [CBN08] and raise serious questions about the future of trans-
actional memory in general.

The crux of the problem with integrating transactional memioto language level synchronisa-
tion is that it is contrary to the systems design principléseparating mechanism from policy”.
Transactional memory is a mechanism for synchronisatioin @ptimistic concurrency control
and is not a sound and easy waysfeecify(or think about) synchronisation. Hence this dis-
sertation proposes leaving the well known and ubiquitou& ks the means for specifying
synchronisation in programs. A coarse grained lock can &nulld) be used for easy and
maintainable synchronisation.

This leaves the question of when to apply the mechanismarfisgictional memory”. This thesis
proposes applying it as late as possible: to machine codatitre and making it anptional

16

1.2. Contributions

mechanism of execution. Software transactional memorgeési wo elidé lock acquisition and
speculatively execute the critical section as a transact#gplying it late means that the soft-
ware development environment stays unchanged. It alsosibkanthe mechanism is language
and compiler neutral (and requires no changes to eithelgadyecode (including libraries) is
no longer a problem. Keeping it optional means that the nogran be simply executed with
locks for debugging as usual. Locking can also be selegtivetd for critical sections that do
operations that are difficult to reconcile with transacéilomemory such as system callgthout
requiring other unrelated transactions to stop runningitsaurrent proposals for irrevocability
in STMs.

These benefits are attractive enough for various otherndsara to design and implement lock
elision systems. Other proposals for lock elision so fanegitinvolve unavailable hardware
[RGO1]; are limited to Java [ZWATO08]; or require the programmer to convert code to use a
new synchronisation primitive together with a special coenguUSB09].

This dissertation presents the design and implementafian software lock elision system
(SLE_x86) that uses as a starting point an x86 binary symi$irgg with locks. Although
the implementation | describe is x86 specific the generalagqt could be replicated for other
architectures. It provides a clean separation of mechafrmm policy while being usable on
current off-the-shelf hardware. Additionally | show howetimfrastructure built for SLE_x86
can be used to build a runtime profiler for x86 binaries. Thi®vjules statistics about critical
sections in the binary and insights into their possibleratBon with transactional memory;
particularly to explain the benefit or lack thereof that canobtained through the use of soft-
ware lock elision.

The driving design principle for SLE_x86 &pplicability andtransparency It is a widely and
easily applicable software transactional memory runtigstesn, since it requirasothingfrom
the programmer in terms of awareness of transactional mertonakes software transactional
memory backward-compatible with existing code. UnlikeestBTM designs, performance is
only a secondary design goal for SLE_x86 and the designfeasrperformance when needed
for transparency.

1.2 Contributions

It is my thesis that software transactional memory can beraatically, transparently and cor-
rectly applied at runtime to critical sections in binarikattsynchronise with locks and are not
constructed to have any awareness of software transalcti@mory.

The first key contribution of this dissertation is the desagwl construction of a software trans-
actional memory that preserves the x86 memory consistecem| start by showing that it
is impossiblgor a non-trivial STM to preserve the x86 memory consistemogel for all pro-
grams. | then show that it is possible to recover scalaldijtygxcluding programs that contain
a certain type of data race. | argue that such races likehgspond to program bugs and there
exist practical techniques to detect such races.

The second key contribution of this dissertation is a ligkight low-overhead mechanism to
instrument critical sections in lock-based x86 programg. istrumentation infrastructure is
built with two key design goals in mind. The first is that thestof inserting instrumentation

IElisionn.: A deliberate act of omission.

17

1. Introduction

should be zero. The second is that the execution overhealeudritical sections should be
zero. These ensure that software lock elision is “pay to uséérms of overhead. The in-
strumentation infrastructure also incorporates a numb&owel methods to safely filter out
thread-private accesses to further reduce overhead.

1.3 Outline

I now outline the organisation of the rest of this disseotati

In Chapter 2 | survey background literature and place thasdd this dissertation in proper
context. | also delineate my contributions in this dissetawith reference to previous work in
lock elision and profilers that attempt to to quantify pragrsuitability for the use of optimistic
concurrency control.

In Chapter 3 | consider the requirements for building an STvitime that can be used to
elide locks and execute critical sections concurrentlgsBrving the semantics of x86 machine
code requires considering the behaviour of the programrindef the memory model of the
underlying hardware. The STM runtime should thus strivereserve the memory model even
while applying optimistic concurrency control to criticgdctions. There have been no previous
STM designs that have considered a hardware memory camsysteodel and the focus of the
chapter is on designing an STM algorithm that preserves@6ememory consistency model. |
also include an evaluation of the STM against designs tleatare scalable but only support
weakeranguage leveinemory consistency models.

In Chapter 4, | present a lightweight and low overhead tegto instrument shared memory
accesses within critical sections of x86 programs. My tegpl builds on an existing stable
binary rewriting engine but removes associated overheHus chapter also includes an evalu-
ation of the instrumentation system on its own (in terms arbead over manual instrumenta-
tion) and an evaluation of a complete system for softwark é&ision in combination with the
STM design of the previous chapter.

In Chapter 5 | present the design and construction of a prdfieg makes use of this instru-
mentation to profile the suitability of an x86 binary for ugittansactional memory. | identify
the two key metrics that need to be measured (lock conteatiancritical section disjoint ac-
cess parallelism) and show how they can be measured witlmamierror from executions of
the binary. This profiler is extremely useful to debug thefgrenance of SLE and, being TM
agnostic, is useful to characterise the suitability of xB&kes for TM in general.

In Chapter 6 | tackle one of the key problems with the SLE sydbeilt and evaluated in the
previous chapters: instrumentation of thread-privata &tds to significant overheads for some
benchmarks over an STM applied through manual instrumentat present a technique for
automatically distinguishing thread-private data anelyaéliminating STM related overheads
for them.

In Chapter 7 | evaluate software lock elision in a more gdregting. In previous chapters,
| focus on a single comprehensive benchmark (the STAMP beadhsuite) geared towards
exercising speculation. In this chapter | compare with céenpthat support STM at a language
level, on systems architected at a hardware level for sitié§adnd finally on the more real world
benchmark of the Quake game server.

In chapter 8, | conclude and provide some suggestions farduareas of research.

18

1.4. Publications

1.4 Publications

Some of the research described in this dissertation alseeapm the following publications:

1. Amitabha Roy, Steven Hand and Tim Harris. Hybrid binakyritng for memory access
instrumentation. IrProceedings of the Conference on Virtual Execution Envitents
2011.

2. Amitabha Roy, Steven Hand and Tim Harris. Poster: Weakiaity under the x86
memory consistency model. Rroceedings of the Symposium on Principles and Practice
of Parallel Programming2011.

3. Amitabha Roy, Steven Hand and Tim Harris. Exploring thenits of Disjoint Access
Parallelism. IProceedings of the USENIX Workshop on Hot Topics in Paiaitig2009.

4. Amitabha Roy, Steven Hand and Tim Harris. A runtime sydtarsoftware lock elision.
In Proceedings of the European Conference on Computer Sys260%.

Of these, the last mentioned publication described a systgmthe exactoppositedesign
goals to the one in this dissertation. It covered the designsoftware lock elision system that
emphasised performance over transparency, requiring ribggrgammer to manually annotate
source code and only supporting the weaker C++ memory model.

19

1. Introduction

20

Chapter 2

Background

Transactional memory for general purpose software wasrgtspy database transactions and
aims to bring the benefits of optimistic concurrency contookynchronisation problems in
multithreaded code. Starting with the earliest propoddM93, ST95], the fundamental idea
behind transactional memory has been to not wait for acoesat, on the premise that critical
sections will not, in the common case, make conflicting asees

The advantages of this kind of synchronisation can be rhtistl by data structures that have
potential for disjoint access parallelism, such as redlbteees that have historically been an
important benchmark for the transactional memory commutfibne were to consider a large
tree and threads making simultaneous lookup, update aetedgberations, it is highly likely
that a read access will not conflict with a write access siheaipdates would be confined to a
subtree not accessed by a reader. The data structure andassgatterns thus exhibit disjoint-
access-parallelism [IR94] i.e. parallelism emanates fthenfact that concurrent accesses are
likely made to disjoint sets of locations.

Given this scenario, protecting the entire tree with a lachkkely too conservative. However,
omitting the lock would be wrong as there is no guaranteegbegsses to the tree from simulta-
neously executing critical sections are always disjoirnis possible (but hopefully uncommon)
that they will conflict. Transactional memory provides aeradtisynchronisation mechanism
for such a scenario. Entire computations and shared mencogsses representing one of the
possible operations on the tree are encapsulated in a drdos” and presented to the transac-
tional memory system. The transaction is then executedyugptimistic concurrency control.
All transactions proceed in parallel. If no conflict is deeetthe transactions can complete
simultaneously. On the other hand if a conflict is detectedtthnsactional memory system
has the capability to roll back the transaction that has entsved a conflict and restart it. The
effect of such a system on the concurrent accesses to th#aekliree — when the tree is used
to implement the set abstract data type — is to present arigeelaschedule to the program-
mer [HW9O0]. A linearised schedule is a total order on the ssoperations, consistent with the
behaviour of a set, that also respects the constraint thepemation that finishes before another
operation begins is also ordered before it in the linearssdddule. The transactional memory
system thus presents to the programmer the illusion theatlsrexecute with mutual exclusion
even though they are in fact accessing the data structure ailgl.

The rest of this chapter surveys various transactional mgsystems starting with hardware
transactional memory and then moving on to software trammssd memory. | then focus on
software transactional memory and discuss ways to appigaictional memory instrumentation

21

2. Background

to programs. Next, | discuss means for specifying synclsaiian to the underlying transac-
tional memory system and its interaction with the memoryststency model. Finally, | discuss
the system built in this dissertation in comparison to othemsactional memory research.

2.1 Hardware transactional memory

One of the earliest proposals for hardware transactionahomg [HM93] proposed allowing

a sequence of memory operations to be made atomic by piggiifgaon existing and widely
used cache coherence protocols. Herlihy et al. proposeatiadd instructions for transactional
load (LT) and transactional stor&T), both of which operate on memory addresses. They also
added one to validate the currently executing transacwéh. { DATE) and finally one to com-

mit the currently executing transactiocd@M T). Using these extensions to the instructions set
architecture, one can write code to add a node to a conclweoeied linked list, as illustrated in
Figure 2.1. The example uses th€ instructions to load pointers to successive nodes until the
right successor has been determined. It then useSThestruction to insert the new node. If
the commit using th€OMM T instruction succeeds it breaks out of the loop. Otherwiseaits

for a time dictated by an exponential backoff (to avoid teanti®ns starving each other). Also
interesting is the use of théALI DATE instruction. It ensures that the data set of the transaction
(locations read and written) have not been accessed by thiteaxds and thus the thread’s view
of shared memory (in this case the linked list nodes detexdiio have a smaller value than that
of the node being inserted) c®nsistent

The implementation proposed by Herlihy et al. consistedha@hdra transactional cache that was
smaller than and held data exclusive from that in the norraahe of the processor. Transac-
tional loads and stores placed their accessed cache lities fransactional cache. Lines in the
transactional cache accessed by the current transaction és those holding linked list nodes
in the example) were either KCOVM T or XABORT states. The former state labeled lines that
were to be discarded on a successful commit, while the |atéde was for lines that were to
be discarded on an abort. Every line filled in the transaatioache would have a second copy
added, with one placed in tBCOVM T and one in theXABORT state. Crucially, stores would
only be made to lines in th€éABORT states and thus stores were buffered and discarded in case
the transaction aborted. This capability to roll back sjetore changes is fundamental to the
way transactional memory (both the hardware and softwarants) operates.

Subsequently, hardware transactional memory maturedetpaimt where it was proposed as
the solemeans of synchronisation with coherency and consistenitydvound the idea of a
transaction [HWC04]. Hammond et al. proposed thalt code be run in transactions with
transaction boundaries marking points where speculabigeges are committed back to main
memory. Their objective was to simplify the cache coheremzememory consistency for large
scale chip multiprocessors. They did away with the coneaatisnoopy or directory based pro-
tocols. Instead, processors arbitrated for commit ordeaind broadcasted writes within a trans-
action as a broadcast packet. Processor caches only snibedawadcast packets which could
result in the currently running transaction being abortethe event of a conflicting write from
a previously committed transaction. The HTM system of Hamdhet al. results in the broad-
cast of occasional large packets (4KB-8KB based on theiulgitions). This requires larger
amounts of bandwidth from the interconnect but is relayivatency insensitive as compared
to traditional cache coherence protocols that require btericy transfers of smaller amounts
of data. Furthermore, within a transaction there was no neexdder reads or writes, with

22

2.1. Hardware transactional memory

t ypedef struct node_st {
i nt val ue;
struct node_st =*next;
} node_t;

node t * head;

voi d add_node(node_t * new)
{

node t =*=*pcur;

node t =*cur;

while(true) {
pcur = &head;
whi | e(VALI DATE()) {

cur = LT(pcur);

i f(cur == NULL) {
ST(pcur, new)
br eak;

}

i f(LT(&cur->val ue) >= new- >val ue) {
new >next = cur;
ST(pcur, new;
br eak;

}

pcur = &cur->next;

}
i f(COW T())
br eak;
exponenti al _backoff ();

Figure 2.1: Sorted linked list using Herhily et al's HTM insttions

the transactional memory system providing the illusioneafigential consistency to committed
transactions. Another interesting contrast between tbpgsal of Hammond et al. and that of
Herlihy made a decade earlier is the software interface. rHand et al. do away with trans-
actional loads and stores. Instead all operations withimstactions are handled transactionally
(which is the only mechanism to access memory). The link&delkample thus simplifies to
Figure 2.2. The simplification is due to the fact that Hammenel's system was targeted
towards general purpose concurrent code rather than siogiyfree data structures.

Both the proposals of Herlihy et al. and Hammond et al. chosettin the original as well as
modified versions of cache lines in a transaction. On a cortimibriginal version was dis-
carded while on an abort the modified version was discardethe case of Herlihy’s proposal
both versions were kept in the transactional cache while irHdand chose to depend on main
memory for the original (unmodified) version. Moore et al.BM*06] made the observation

23

2. Background

t ypedef struct node_st {
i nt val ue;
struct node_st =*next;
} node_t;

node t * head;

voi d add_node(node_t * new)

{
node t =*=*pcur;
node t =*cur;
TRANSACTI ON_BEG N_MARKER()
pcur = &head;
while(l) {
cur = *pcur;
i f(cur == NULL) {
*pcur = new,
br eak;
}
i f(cur->val ue >= new >val ue) {
new >next = cur;
*pcur = new,
br eak;
}
pcur = &cur->next;
}
TRANSACTI ON_END_ MARKER()
}

Figure 2.2: Sorted linked list using Hammond et al's TCC

that in the common case when the commit succeeds, keepidpthiersion around was waste-
ful. They came up with an HTM that applied changes directlgdohe lines and chose to log
old values into a special “before-image” log. Commits regtacsimply flash clearing marking
bits for cachelines written in the transaction and discaydie log.

A common problem with early hardware transactional memoopgpsals had been cases where
transactions overflowed the cache (or a set in a set-asiveataiche). Rajwar et al. proposed
a solution to this problem by virtualising the transactiologs into virtual memory of the
process [RHLO5]. In the (assumed) common case where triamssdit in cache, they use a
standard HTM. If the transaction overflows the cache, tha datl associated tags are placed in
a log in the process’s virtual memory. Incoming snoops waidéd to lookup this log (using a
firmware or software walker). They further proposed redgtims cost by maintaining a bloom
filter to filter out incoming snoops before initiating an erpare walk of the virtual memory
log in software.

In spite of the wealth of research into hardware transaatioremory there has thus far been
only one manufactured mainstream microprocessor thatpocated general purpose HTM.
The Rock microprocessor from the SPARC family (how candgliscorporated a best-effort

24

2.2. Software transactional memory

hardware transactional memory [DLMNO09]. Modestly sizeddwaare transactions can be ex-
ecuted using Rock’s hardware transactional memory. Istiegly functions calls, “difficult”
instructions such as division, and TLB misses are not alklbwe transaction (in addition to ca-
pacity limits) and the authors point to this being a seriosogediment in their attempts to apply
the HTM to various benchmarks. In general the HTM is “be&t&f with no guarantee that a
transaction can be executed entirely in hardware. The eutBoommend using it to assist an
alternative software transactional memory implementetti@t guarantees eventual transaction
commit to obtain best performance without undue restmaion the contents of transactions (I
discuss hybrid transactional memory implementations latéhe chapter).

Due to the absence of hardware transactional memory suipporinstream processors, soft-
ware transactional memory has also received considertibtgian in the research community.
| discuss software transactional memory in the next section

2.2 Software transactional memory

Software transactional memory was proposed by Shavit andotoin 1995 [ST95], clearly in-
spired by the then recent proposal of hardware transacdtios@ory by Herlihy et al. However,
they wanted to implement general purpose transactionaloneemtirely in software by making
use of an atomic compare-and-swap instructitvat was available in most architectures. Fur-
thermore, although the proposal of Herlihy et al. was terfimtk-free” since it did away with
mutual exclusion locks, it was in fact blocking becausedtisecould end up infinitely aborting
each other. Shavit et al’s solution was implemented egtiresoftware and allowed threads to
execute transactions with a non-blocking guarantee: sbhread would make progress as long
as any (not necessarily the same) thread was able to exestrigcitions.

2.2.1 Non-blocking data structures

Software transactional memory has essentially evolvewh fresearch into non-blocking data

structures. In general non-blocking data structures arsetlwhere the suspension of one or
more executing threads does not prevent other threads flakmmprogress. This distinguishes
such data structure designs from those using a lock, sirggesding a thread holding a lock

means that other threads requiring the same lock cannot prageess. In the worst case all

threads would need the lock leading to no progress in theesysfThere are three types of

non-blocking guarantees:

e Wait freedom guarantees that every thread completes iatiparwithin a constant num-
ber of steps regardless of the suspension of other threads.

e Lock freedom guarantees that as long as some thread in ttesrstekes steps, some (not
necessarily the same) thread will complete its operatiothemata structure.

e Obstructions freedom guarantees that any thread thateesttaking steps will complete
its operation regardless of the suspension of other threads

lcas(l oc, old, new): atomically check if the current contentslobc is ol d and if so set it tanew.
Return the contents ¢foc that was read.

25

2. Background

Wait freedom, lock freedom and obstruction freedom thusigesuccessively weaker guaran-
tees. Various algorithms have been proposed for data stasctvith non-blocking guarantees,
such as lock free double-ended queues [Mic03] and theirwdigin free variant [HLMO3].
The primary difficulty with these designs is that they areiti@d to specific data structures and
algorithms. One of the motivators for early STMs was thaytbeuld be used to implement
any data structure with the needed non-blocking guarastaing from simple single-threaded
algorithms for that data structure.

2.2.2 Non-blocking STMs

Shavit et al.'s work spawned a number of STM designs thatrpaated some form of non-
blocking guarantee. These were classified (in retrospefciXwo primary classes.

The first class of STM designs comprises of lock-free onesdéscribed above an STM de-
sign is lock-free if some thread makes progress towards @ing a transaction as long as
anythread is able to execute instructions. The underlyingufeadf lock-free STM designs is
“recursive helping”. A thread on encountering an obstarctn executing its transaction (pos-
sibly due to the obstructing thread being unable to run)sip obstructing thread complete its
transaction before continuing execution of its transacti®havit et al.’s original proposal was
lock-free but could deal with only static sized transacti@where the set of reads and updates
were known a-priori). Also Shavit et al.’s proposal was ae#d on a simulator and thus left
some question about the practical applicability of loakefiISTM designs. A more practical
STM for dynamic data structures that is also lock-free is lk@aser’'s Object-Based Software
Transactional Memory (OSTM) [Fra03]. One of the key conttibns of Fraser’s thesis was a
comparison of red-black tree and skiplist data structureaaiual NUMA systems when built
using the best available fine grained locking mechanisngaiggdSTM. He showed that OSTM
was able to outperform locks except at low thread counts, dstablishing the practical possi-
bilities for software transactional memory to scale gelheugpose code.

An alternative to lock freedom for software transactionahnory is obstruction freedom. This
is a stronger guarantee than that provided by a simple loesf any other thread holds a nec-
essary lock, suspending it will preclude any thread from gletmg. On the other hand thisis a
weaker guarantee than lock freedom. There is no guarardeartl thread makes progression
towards completing its transaction: on encountering atroton, obstruction free implemen-
tations either choose to abort the current transaction ort dbe obstructing transaction. It is
thus possible for transactions to abort each other indefyhieading to livelock. However, ob-
struction freedom admits substantially simpler impleragnohs than lock-free STMs. One of
the earliest proposals for obstruction free STMs was Dyo&boitware Transactional Memory
(DSTM) [HLMSO03]. In addition to proposing obstruction fidk@m as a simpler non-blocking
guarantee, this was one of the first STMs to allow dynamiclbcated objects to be accessed
transactionally, thus allowing concurrent versions ofayic data structures such as linked lists
and trees to be implemented.

A key challenge in designing transactional memory with amdkof progress guarantee is
handling STM metadata. A fundamental building block in foeking STM designs is the ca-

pability to atomically switch the state of entire objectmfrthe current to the next version when
a transaction modifying it commits. For example in the cd4@STM each object consisted of

a header that pointed to a transactional locator. The locdtject consisted of a pointer to the
transaction that had last opened it for write, a pointer toldrversion and pointer to a new ver-
sion. If the transaction pointed to had committed, then & wersion was the correct version

26

2.2. Software transactional memory

to use for transactions reading the object. On the other tidinel transaction had aborted, then
the old version was the correct version to use. If the traiwagvas still running, DSTM (in
the spirit of obstruction freedom) allowed the accessiaggaction to either wait or abort the
obstructing transaction. This double indirection is a sewf significant overhead and hence
later obstruction free designs (such as Rochester SoffWaresactional Memory [MSHO6])
reduced the number of indirections to one. Non-blockingodedirection Software Transac-
tional Memory (NZSTM) [TWGMO7] further reduced this ovedtewith a metadata design
that — in the common case of an uncontended object — requir@ttirection.

Another interesting challenge, specific to obstructioe {88 Ms, is tackling livelock. The job
of deciding whether an obstructing transaction should loetatl or waited for was delegated to
a ‘contention manager’, which is responsible for ensurirggpess in the system. Obstruction
free STMs spawned extensive research into contention neamagf (a good example being that
in RSTM [SSO05]), which could be plugged into the obstrucfi@e implementation, regardless
of the actual STM design. Contention managers usually eypploandomised backoff with
some form of heuristic to decide when to abort an obstrudtiagsaction. The heuristics are
driven by feedback about commit and abort events and presdaoh design space. For ex-
ample, ‘timestamp’ based contention managers give preced® older transactions. On the
other hand ‘karma’ style contention managers take into @icthe amount of work done by
competing transactions when deciding which one to abort.

2.2.3 Lock-based STMs

An alternative to STM systems that provide some kind of ntmthking guarantees aleck-
basedSTMs. Ennals [Enn05] argued that non-blocking guarantess @n unnecessary source
of overhead in STM design. He based his reasoning on two kegreations. The first is
that a runtime could tailor the number of running threadsh number of cores (hardware
threads) available. This makes it unlikely that an opegatipgstem would swap out a thread
running a transaction thereby leading to an obstructiore géctond is that thread failure still
remains a problem for non-transactional versions of thgnam or non-transactional parts of
the same program. Thus, guarding against thread failude avibhon-blocking guarantee is
not very useful in the practical sense. The most importantrdgmtion of Ennals’ work was
however the comparison of his lock-based (blocking) STMgieagainst non-blocking STMs.
For example, he showed that his algorithm consistentlystakéy around0% —60% of the time
taken by Fraser’s lock free implementation. As a consecqgiefh@voiding object indirection,
he also showed that his algorithm incurred only around 50%h@fcache misses and 22% of
the TLB misses of Fraser’s algorithm for red-black trees.

Lock-based STMs represented a low enough overhead to evrapglying STMs to real world
programs and spawned much research into building and tdacigbased STMs. Ennals’
work was followed up by Dice et al.'s Transactional LockingT2.2) [DSS06] algorithm that
made important advances on the practicality front over thgir@l proposal. It proposed to
decouple metadata from data by using out-of-band metadBltiégs enabled the STM to be
applied “mechanically” through the insertion of read andtevfbarriers” without requiring
extensive data structure changes that would have beensitated by Ennals’ or previous non-
blocking proposals. TL2 is also the basis for the STM desigrekent in this dissertation and
hence | discuss the operation of the TL2 STM in some detail.

TL2 uses an out-of-band array of locks and associates eaeltida in memory with a lock
in the array, using a straightforward hash function. Eadk lis a simple counter that acts

27

2. Background

Algorithm 1 TL2 algorithms

TransactionBegin:
ReadVersion := GlobalClock

TransactionalWrite(loc, value):
Append (loc, value) to WriteSet

TransactionalRead(loc):
if (loc, value) in WriteSethen
/I Correctly handle read after write cases
Return most recent value from WriteSet
else
current_metadata := metadata for loc
value := contents of memory at loc
Check metadata for loc is still at current_metadata
Check metadata for loc is unlocked
Check metadata for loc is not greater than ReadVersion
Append loc to ReadSet
return value

Commit:
for all (loc, value)e WriteSetdo
lock metadata for loc, using bounded spinning to avoid dezd|
Atomically increment GlobalClock by 2, setting WriteVessito post-increment value
for all loc € ReadSetlo
check metadata for loc is less than or equal to ReadVersion
for all (loc, value)e WriteSet in ordedo
set location loc to value
for all (loc, value)e WriteSet in ordedo
unlock metadata for loc setting it to WriteVersion

both as a version number and a write lock: if the least sigmtfidit is set then the lock is
held. The rest of the bits represent the version number. Tiiner globally shared entity is a
“timestamp counter” incremented every time a transact@nrmoits. The timestamp counter is
used to ensure that speculating transactions see a consist® of memory. This is referred to
as a global clock in the TL2 design. The key steps involvedetating a transaction are listed
in Algorithm 1 (if any of the checks listed at any stage faile transaction is aborted). Each
thread maintains a local read-set of addresses loaded andladrite-set of address-value pairs.
The transaction begins by callinig ansact i onBegi n. Writes within the transaction call
Transacti onal Wit e while reads within the transaction cdll ansact i onal Read.

At the end of the transactioBommi t is called in order to commit changes back to shared
memory, atomically with respect to other transactions.

A number of optimisations are possible to TL2’s basic aldyoni. Dice et al. themselves pro-
posed a few. For example, checking the local write-set fpalsging values to reads can be done
by first checking a bloom filter to filter out the common case w&hee read does not read any
previous write. A number of optimisations are also posdibleeduce contention for the global
clock. Dice et al. pointed out that incrementing the globatk was unnecessary for transac-

28

2.2. Software transactional memory

tions that did not perform any writes. A more extensive asiglpf commit sequences where an
expensive CAS to the globally shared clock could be avoigedatso been done [ZBS08].

Another important set of variations to the basic TL2 design be obtained by changing the
point at which locks on written locations are acquired. Tbh2dwed a lazy approach: locks
are acquired only at commit time. An alternative is eagerrmoenter time locking. In such
such a scheme, the lock is acquired when the first write toatitmtis encountered and writes
are performed directly to shared memory. Reads thus no toregs to indirect into the write-
set. There is also no need to acquire locks in the commit philiseugh locks do need to be
released. However with an eager scheme it is necessary taaimean undo log where the old
value of locations are logged. On a transaction abort, ttiealues are restored from the undo

log.

The multi-core runtime STM (McRT-STM) [SATHD6] incorporates both eager and lazy lock-
ing but Saha et al. conclude that the eager approach pertogttes than the lazy one. On the
flip side, evaluation of both an eager as well as the origimay} Mersions of the original TL2
algorithm [CMCKOO08] reveals that the lazy version can otfgren the eager version on some
benchmarks. This is because the eager version is more prdivelbck between competing
transactions while the lazy version often allows one of th&lacting transactions to finish, thus
reducing the amount of wasted work. Other work has shownahatager STM suffers more
in high conflict scenarios due to the cost of applying the diodoin order to roll back transac-
tions [DS07]. There is thus no clear consensus on which agprs better, with the accepted
conclusion being that no one size fits all benchmarks. Hermesiderations other than pure
performance typically drive the decision to pick betweendpproaches.

2.2.4 Word-based and object-based STMs

An important differentiator between STMs of both the noodking and lock-based variety is
whether they are word-based or object-based. Word-baskts 8ivide memory into fixed-size
chunks and associate external STM metadata with each clsimdcahash function. In contrast,
object-based STMs treat memory as composed of variableé sigects with the metadata either
embedded in an object or placed externally and associatbdha base address of the object.
Fraser [Fra03] proposed both object-based and word-basedlocking designs in his thesis.
RSTM [MSH"06] on the other hand is exclusively object-based. TL2 [D&g$80a word-based
STM while McRT-STM [SATH"06] incorporates both an object-based and word-based STM.

Object-based STMs present both advantages and disadeartegy word-based STMs. A key
advantage is that the amount of STM metadata manipulatedidaynsaction decreases if mul-
tiple fields of the same object are accessed. On the other, bajett-based STMs require a
precise mapping of field accesses to their containing ahjelhis is not possible when auto-
matically inserting STM calls in code generated from unnggakeenvironments such as C/C++
unless there is some amount of source code informationmrésée taken into consideration
by the instrumentation system. In general word-based ST¥lpreferred in such unmanaged
environments.

There have been STM designs that try to combine the propestievord-based and object-
based STMs. Riegel et al. [RBdB08] proposed a data struetuaéysis (DSA) pass in their
compiler, which could automatically identify object bowamgs in compiled code. They then
used this information to associate external metadata vbigcd bases rather than with individ-
ual fields. Roy et al. [RHHO9b] proposed a word-based STM withable word size. Their

29

2. Background

proposal however depended on the programmer specifyinglijeet size and base address to
their library-based STM.

2.3 STM instrumentation

A key problem with practically applying software transactil memory at scale is that of in-
strumentation. Using software transactional memory in@agram involves at the very least
delimiting the start and end of a transaction and, more difficndirecting every shared mem-
ory access to the STM runtime system. There are two prevajgmoaches to the problem.
The first uses the STM runtime system as a library and inspprogriate calls to it directly in
the source. The second approach makes use of an STM compuielepends on annotations
in the code to delimit transactions; the compiler can theoraatically insert instrumentation
for shared memory accesses. A third (not so widely useddojiito insert instrumentation at
runtime using a dynamic binary rewriting engine. | discunse three alternatives next.

2.3.1 Library

Library-based STMs expose an API to the programmer to irtsdi at the start and end of a
transaction, as well as calls at every shared memory adéessexample, Figure 2.3 shows how
the linked list example looks when using the TL2 STM API. Tkertsand end of transactions
are delimited byTxSt art andTxConmmi t calls while shared memory loads and stores are
indirected througii’xLoad andTx St or e calls respectively.

Most of the early STM implementations were made availabléasry-based STMs (since the
alternative of compilers was yet to mature). Library-baS&¥s suffer from two key problems.
The first is the large amount of tedious instrumentationitmast be inserted by hand. This can
often be a source of errors that negates much of the suppwsplicity of using transactional
memory. The second problem with library-based STMs is dinglback aborted transactions.
Library-based STMs useet j np andl ongj np calls in order to checkpoint and restore state.
While this restores registers, it does not restore varsabestack that are known to be thread-
private and not instrumented by the programmer. In FiguBef@. example, theocur and
cur variables are changed in the transaction but are not relstoran abort. The programmer
is required to ensure that there are no live variables wh&riag the transaction that are not
indirected through the STM.

On the plus side however, library-based STMs empower thgranomer to tweak and opti-
mise the instrumentation. For example, the programmer eaid £TM calls for data that is
known to be thread-private and not live when entering thestration. The STAMP benchmark
suite [CMCKOQO08] contains a number of examples of such “progner-driven optimisation”.
In Chapter 6 | discuss techniques by which some of the gapdastautomatically generated
instrumentation and this kind of optimised instrumentatan be closed.

2.3.2 Compiler

Compiler-based software transactional memory uses thgitemto insert STM instrumenta-
tion into programs.

30

2.3. STM instrumentation

t ypedef struct node_st {
i nt val ue;
struct node_st =*next;
} node_t;

node t * head;

voi d add_node(node_t * new)
{
node t =*=*pcur;
node t =*cur;
TxStart(...); // Transacti onBegin
pcur = &head;
while(1l) {
cur = TXLoad(..., pcur); // Transacti onal Read
i f(cur == NULL) {
TxStore(..., pcur, new); // Transactional Wite
br eak;
}
I f(TxLoad(..., &cur->value) >= new >val ue) {
new >next = cur;
TxSt or e(pcur, new;
br eak;
}
pcur = &cur->next;

}
TxCommit(...); // Commit

Figure 2.3: Linked list using the TL2 library

Harris et al. were the first to integrate transactional mgmsapport in a Java compiler [HFO3].
Subsequently, Adl-Tabatabai et al. implemented transaatimemory support in a Java com-
piler [ATLM T06] using the McRT-STM (discussed before). Their solutioovfes language
extensions to Java that allowed the programmer to delirartstctions. They used a com-
piler toolkit that translated these language extensiotibttary calls into their STM. In the JIT
phase, they generated a transactional and a non-trarmszatersion of each method and oper-
ated with the guarantee that the transactional versionduaeilcalled only within a transaction.
The transactional version had STM-related instrumemnatfn interesting aspect of their in-
strumentation was that they allowed both object-based ard-Wwased software transactional
memory to be used on a type-by-type basis.

Harris at al. [HPSTO06] presented an STM compiler for the Camrintermediate Language
(CIL), meant to execute in a managed runtime similar to .NHWeir implementation was for
Bartok, an experimental compiler for CIL. The crucial foafsthat work was in optimising
memory transactions. They showed that by properly decomgdke STM interface it was
possible to perform significant optimisations over a nangertion of STM calls. For example,
with their object-based STM, opening an object for writimgiltl be hoisted out of a loop, while

31

2. Background

leaving the actual updates to object fields within the bodghefloop.

Tanger is a transactifying compiler for C/C++ developed le}bEr et al. [FFM07]. Tanger
is a not a compiler by itself but rather a pass in the LLVM [LA@®mpiler infrastructure.
It instruments code in transactions to use a word-based SHdy showed that the compiler
was able to insert and optimise STM instrumentation to al lhet was equivalent to hand
instrumented code, a major step in terms of automation fibrarly based STMs.

Wang et al. WCW 07] presented an optimising compiler for C/C++ code thapsujed trans-
actions. They used a variant of the MCRT-STM and presentgdugoptimisations that can be
done to mitigate the overhead of the STM. A key contributibang et al.'s work however
is their focus orsafety They showed that integrating an STM into an unmanaged @mvient
such as C/C++ that allowed pointer arithmetic and did notanuiae type safety is extremely
challenging. Some of the problems they pointed out, sucheadded difficulties in support-
ing a programming construct called privatisation are atdevant to this dissertation. | return
to these problems later in this chapter.

2.3.3 Binary rewriting

A key problem with the compiler-based approach is that iheffective when source code is
not available. Such a situation occurs, for example, whearssaction calls a legacy library
function that has not been ‘transactified’. An alternatweompiler-based instrumentation is
to start with compiled code and insert instrumentationdiyeat the machine code level. Some
of the early work in using binary rewriting focused sapportingSTM compilers.

Felber et al. [FFMO07] proposed using a static binary rewriting scheme to umsént such
legacy x86 libraries using a tool they called Tarifa (thdiViM module was called Tanger). Tar-
ifa uses a static rewriting scheme (along the lines of ATOE9&]|) where the legacy library is
first disassembled, instrumentation is inserted and finladynstrumented assembly code is as-
sembled back into machine code. Their conclusion was thalewsing binary instrumentation
did not introduce any fundamental scalability limits, nekeless it added significant overhead
to code generated and optimised by Tanger.

Wang et al. [WYWO08] developed a tool called LDBTOM (Lightwéi Dynamic Binary Trans-
lation and Optimization Module) to allow legacy x86 code ®® d¢alled within a transaction
compiled with an STM capable compiler. LDBTOM was developgdomplement the STM
compiler developed by the same authors. Wang et al. alsatramignificant overhead over
compiler generated code.

Olszewski et al. [OCS07] developed JudoSTM on top of theiaky rewriting engine, Judo. Ju-
doSTM depended on marker functions being inserted in theceaode to delimit transactions
and inserted transactional barriers automatically. &sténg aspects of their STM included the
use of value-based validation and generation of trangaatistance-specific commit sequences
— sequences of x86 instructions for each executed transaetspecific to the read and write
set. They obtained extremely efficient commit in return fog tnstruction cache miss costs.
JudoSTM reported comparable performance to RSTM (manirdtlyumented) for counter,
linked list and hash table benchmarks.

32

2.4. Atomicity specifications

t ypedef struct node_st {
i nt val ue;
struct node_st =*next;
} node_t;

node t =*head;

voi d add_node(node_t * new)

{
node t =*=*pcur;
node t =*cur;
atom c {
pcur = &head,
while(l) {
cur = xpcur;
i f(cur == NULL) {
*pcur = new,
br eak;
}
i f(cur->val ue >= new >val ue) {
new >next = cur;
*pcur = new,
br eak;
}
pcur = &cur->next;
}
}
}

Figure 2.4: Sorted linked list using atomic blocks

2.4 Atomicity specifications

Transactional memory is a way to execute sections of codmieatly. While the previous
sections have survey@dechanismi execute transactionally this section focusegpalicyi.e.
atomicity related synchronisation constructs used in faomg. There have been two primary
constructs that assist programmers in specifying syneébation using transactional memory.

2.4.1 Atomic block

The notion of building language-level atomic blocks usirgnsactional memory was intro-
duced by Harris et al. [HFO3] in the context of the Java prograng language. They advocated
the atomic block for declarative concurrency control ass @ilass language feature.

Although Harris et al.’s original proposal for atomic bl@ecwas in the context of Java, atomic
blocks are a popular means for expressing synchronisati@mwsing transactional memory.
Both library-based STMs such as TL2 as well as compilers fionanaged environments such

33

2. Background

int x=0
/'l Thread 1 /'l Thread 2
| ock(l1); do {
| ock(12); | ock(12);
X = 100; t2 = x;
unl ock(I 2); unl ock(I 2);
do { } while (t2 !'= 100);
| ock(12); | ock(12);
tl = x; x = 200;
unl ock(I 2); unl ock(I 2);
} while (t1 !'= 200);

unl ock(Il1);

Figure 2.5: A barrier for two threads

as Wang et al.’s compiler chose to expose transactional metadhe programmer through
atomic blocks. Figure 2.4 shows how the sorted linked ligtneple of this chapter can be
expressed using atomic blocks.

Atomic blocks have the key advantage of composability whemmared to the more imperative
style of expressing synchronisation using locks. Congiteproblem of removing a node from
a sorted linked list and reinserting the node into anoth&ilenmaking the operation appear
atomic. A concurrent thread searching both lists for theenp@lue) should be guaranteed
to find it. Thread-safe building blocks for the individualesptions are available either using
atomic blocks or locks.

Using atomic blocks the solution would simply involve ersitay both operations in a larger
atomic blocK, therebycomposinghe smaller fragments into a larger one. Using locks pretect
ing the individual lists on the other hand, one would have ¢orwabout lock acquisition order
to avoid deadlock.

2.4.2 Lock elision

Despite the popularity of atomic blocks as a language lavelriace to transactional mem-
ory, researchers have explored lock elision as an altematiock elision assumes that locks
continue to be the method of synchronisation. Transadtior@emory provides a best effort
execution of the enclosed critical section by eliding (regjwring) the lock and hence not wait-
ing for it. If execution of the critical section using the lotails for some reason, it can be
re-executed with the lock held, without using transactionamory. Lock elision has three
important advantages over atomic blocks.

The first advantage is that existing synchronisation cantdrthat use locks need not neces-
sarily have a straightforward transformation to atomicckio Starting from legacy code, one
might be tempted to simply remove the lock and unlock calts iastead enclose critical sec-
tions in atomic blocks. This is not always correct. Cons@éarrier between two threads, as

2Atomic blocks allow themselves to be nested.

34

2.4. Atomicity specifications

shown in Figure 2.5. The lodk2 protects the shared variablehat is used for synchronisation
between the threads. In the cas@bf ead 1 the entire barrier code is executed while holding
lock| 1. If the locks were to be replaced with (nested) atomic blaclksstraightforward trans-
formation, no forward progress is possible since the atdnaicks cannot be serialised in a way
that allows forward progredsOn the other hand, the commonly used Single Lock Atomicity
(SLA) semantics of atomic blocks can be simulated with alsipgocess-wide recursive lock.

The second reason is legacy code. In spite of much reseatol fin atomic blocks, locks
continue to be the most popular method of synchronisatiorpfogrammers. Lock elision
allows the scalability benefits of transactional memoryeambtained for legacy code without
requiring it to be be rewritten using atomic blocks. Evertwvah STM compiler and rewritten
source code, legacy libraries become a problem if they aedpiks.

A third reason for lock elision to be preferred is flexibilityVith atomic blocks as the sole
means of synchronisation, every critical section must @bestansactionally. This can be detri-
mental in some scenarios. For example, if a critical sedtiorements a shared counter, it will
inevitably suffer from a high conflict rate. Lock elision dmetother hand decouples transac-
tional memory from synchronisation. It is possible to cletselide some locks but not others
for either performance (as some researchers have showa3 bsfbow in this dissertation) for
correctness reasons.

Hardware lock elision

The idea of lock elision was first proposed by Rajwar et al.)R[zand described in detail by
Ravi Rajwar in his PhD thesis [Raj02]. Their proposal for@pative lock elision was imple-
mented using hardware transactional memory. CriticaliGestwere detected by looking for
silent store pairs: two atomic updates to the same locatloys® cumulative effect was to leave
that location unchanged. The critical section itself wasceed using hardware transactional
memory. The memory occupied by the lock variable was expliadded to the read-set of the
transaction. Thus, any other thread could choose to acthérieck (writing to it) and execute
the critical section non-transactionally, and the systeyald/ensure that any other transactional
executions were invalidated.

Another example of lock elision using hardware transaetiomemory is TxLinux [RHP 07].

In this work, the researchers replaced conventional spislan the Linux kernel with a “co-
operative transactional spinlockéXspi nl ock) that could either be acquired transactionally
or acquired normally as a spinlock. Normal spinlocks weredughen the critical section
protected by the spinlock did /0.

Azul system$ support lock elision using HTM in their proprietary systemsck elision is
aimed at accelerating code running in Java Virtual Machii@sce the system is proprietary,
few details are available about it.

Researchers working with hardware transactional memattyefiRock Microprocessor also ex-
perimented with eliding locks [DLMNOQ9]. They were motivdtby the possibility of applying
their HTM to legacy software written to use locks and impleteel Transactional Lock Elision
(TLE) for data structures in the C++ STL and Java. They shotlatifar better scalability
resulted when using transactions to elide lock acquisstadthough they had to modify the data

3This is a race-free variant of a similar example in [MBLO6].
“htt p: // www. azul syst ems. coml event s/ vee_2009/ 2009_VEE. pdf

35

2. Background

structure implementations to get around some of the falimigthe Rock HTM, as discussed
previously.

Software lock elision

Ziarek et al. [ZWAT08] proposed a unification of Java’s monitors with transal memory.

In their “unified execution environment” programmers coalbose to synchronise using ei-
ther the Javaynchr oni zed keyword or atomic blocks. Both kinds of critical sectionsreve
executed using transactions. In the event that the criieetion could not be executed transac-
tionally (eg. if it made native calls) execution would falldk to pessimistic locking along the
lines of traditional Java monitors.

Nakaike et al. proposed eliding the lock for read-only catisections in Java [NM10]. They
implemented a sequence IGakhere the lock consisted of a counter, with an odd count indi-
cating that the lock is held. Readers simply took a snapshthieocounter and, if it was even,
proceeded into their critical section eliding lock acauiisi. At the end of their critical section
and at various validation points they would ensure that thenter value remained unchanged
which guaranteed that no writer could have overwritten aatg évhich has been read. For read-
mostly microbenchmarks they showed significant speedupsreader-writer locks since they
avoided an expensive atomic operation to acquire the lottkditase of readers.

Roy et al. [RHHO9b] proposed software lock elision for C/Qaregrams. They wrapped exist-
ing locks in a special elidable lock. The critical sectiorsviiastrumented using a library-based
STM. Critical sections could execute either transactigralafter acquiring the lock. An inter-
esting feature of this work was the capability of threads plessimistically acquired the lock to
make progress even if other threads might have speculasdt p@his was achieved by using
an implementation of revocable locks [HFO5] for the finehgea locks in the underlying STM.

Usui et al. [USB09] proposed an adaptive lock design thatdcdynamically choose to exe-
cute the enclosed critical section using either a lock oaadaction. Their solution involves
extending the C language with @ om c(1) construct, allowing the enclosed compound
statement to be executed either by acquiring the lock by using a transaction. The choice
is based on dynamic (and changing) runtime information. Réyefocus of their work is on
deriving and efficiently implementing@ynamiccost-benefit analysis of performance, focusing
on whether transactions or locks would be better for a padicritical section.

2.5 Weak vs strong atomicity

A traditional area of difficulty for transactional memonsearchers is considering cases where
the same memory is accessed concurrently both within arsitewa transaction. Depending on
the desired behaviour in such a situation Martin et al. [MBL€lassified transactional memory
as either providingtrong atomicityor weak atomicit.

TM implementations that provide strong atomicity guarartteat the non-transactional access
is serialised either before or after any transaction theésges the same memory. HTM im-
plementations by virtue of modifying existing cache cohegeprotocols automatically provide

5The authors attribute the idea to sequence locks used initlu kernel.
6Some researchers instead use the textnasmg isolationor weak isolatiorrespectively.

36

2.5. Weak vs strong atomicity

/1l Thread 1 /1l Thread 2
del eteNode(...) { updat eNode(...) {
Li st Node *node; Li st Node *node;
atom c { atom c {
node = ...; node = ...;
} r = 1/ node->val ue;
node- >val ue = 0; }
free(node); }
}

Figure 2.6: Privatisation

strong atomicity. STM implementations on the other handtrpay a price in order to en-
force strong atomicity. One approach is to expand all nandactional accesses into “mini-
transactions”. Shpeisman et al. [SMA0J7] implemented strong atomicity in a Java STM using
this technique. They used a static analysis to determinenwbgects are never accessed in
transactions and dynamic escape analysis to determineatjects never leave transactions in
order to reduce the number of STM barriers required (whichld/otherwise be prohibitive).
Abadi et al. [AHMO09] present a strongly atomic STM for C# (amaged environment). Instead
of attempting to statically reduce barriers in non-tratisa@l code, they used standard memory
protection hardware (paging) to detect when code outsateséctions accesses data currently
being accessed transactionally and patched it into a mansaction.

On the other hand, TM implementations providing weak atagnallow non-transactional ac-
cesses to interleave with transactional ones. Most STMé@mphtations provide weak atom-
icity due to the cost and complexity of providing strong atcity. Allowing such interleav-
ing however leads to a number of difficult issues from the pertve of the semantics pro-
vided to programs. One such problem that has caused coraresinfost every weakly atomic
STM implementation iprivatisation Privatisation has been extensively studied in STM liter-
ature [SMAT"07, SMDSO07]. Privatisation represents the broad rangesakisthat arise when
objects move from being shared and accessed within transadb being private to a single
thread and accessed without any synchronisation. Thisiggriited in Figure 2.6

In this examplet hr ead 1 privatises a node from a shared linked list by removing itfrthe
list. It next updates the value of the node and finally freesnfemory belonging to the node
for further reuse. There are two privatisation related f@ais that arise here.

If the transaction ohhr ead 2 commits before the transactiontifr ead 1, it might still be

in the process of writing back its changes whiler ead 1 finishes its transaction and does an
unprotected write to the node. It might thus overwrite thdatp fromt hr ead 1. The update
fromt hr ead 2 might also come after the node has been freed rbmead 1 and possibly
used for a completely different data-type, which could [Bachemory corruption.

The second class of problems arises if the transactiarhoead 1 commits first. In this case
the transaction obhhr ead 2 becomes aombietransaction — one that is doomed to abort —
since it is working on a node that has been removed from thkedinist. Thr ead 2 might

37

2. Background

i nt published = 0, value =0;

/'l Thread 1 /1l Thread 2

val ue = 1; atom c {

atom c { C
. | ocal val ue = val ue;
publ i shed = 1 | ocal _published = published,;
}

} i f(local _published == 1)

sone_function(l ocal val ue);

/'l 1 npossible: |ocal published == 1 and | ocal val ue ==

Figure 2.7: Publication

suffer an unanticipated arithmetic fault if it ends up readihe node’s value as 0 (as updated
byt hread 1) for the division.

A variety of solutions have been proposed in STM designsdtm kinds of privatisation related
problems. Explicit solutions to the privatisation problemolve requiring the programmer to
indicate when data moves from being shared to thread priR&806, DMS10, SMDS07]. On
the other hand, implicit solutions to the privatisationlgeon add a privatisation related fence
to the commit phase of the STM design [SMDS07, WQW].

A mirror to the privatisation problem is publication. Figu2.7 illustrates this construct, where
t hread 1 makes a location shared by publishing it. Consider the cds@enthe access to
publ i shed int hread 2 occurs after the access paubl i shed inthread 1 and thus
ends up with ocal _publ i shed == 1. In this case an STM needs to be careful that the
racing access teal ue int hr ead 2 not occur before the updatetrihr ead 1. Otherwise,
the undesired result will occur.

Instead of linking programming idioms to STM internals samesearchers have suggested Sin-
gle (Global) Lock Atomicity (SLA) as a semantic requirem@émSTM implementations
[HLR10]. An STM exports SLA semantics to users if any exemutcan be mapped to one
where every transaction begins by acquiring a hypothgticadess-wide mutual exclusion lock
and ends by releasing it. SLA supports both privatisaticsh publication and presents easy
STM implementation-independent semantics to programmktsnon et al. [MBS 084a] in-
vestigated an STM that supported SLA for Java. They condubat this added significant
overhead to the STM and thus also investigated weakenin§ Afthat supported common
programming idioms (such as the two above) and incur lowerlead.

2.6 Single lock atomicity and memory consistency

Constructing an STM that supports single global lock atamrequires establishing that every
execution can be mapped to one where transactions are teliby the acquisition and release
of a hypothetical global lock. In addition, optimistic cameency control must not result in ex-
ecutions that are forbidden by the underlying memory coaiscy model. For a weakly atomic

38

2.7. Hybrid transactional memory

int X=0, Y =0;

/1 Thread 1 [/ Thread 2
atom c {

X = 10; tl1 =Y,

Y = 10; t2 = X
}

C++. Catch fire due to data race, any result allowed
Java: Intra-thread reordering allowed
x86: No intra-thread reordering

Figure 2.8: Memory ordering differences

STM, transactions are atomic with respect to each other tfamisequentially consistent with
respect to each other). However, interactions betweenttamsactional and transactional ac-
cesses can reveal the inner workings of the STM and a depdraum the memory consistency
model if the STM is not carefully designed. Consider the $engxample in Figure 2.8.

Under the C++ memory modenyresult is allowed for this racy program. This is commonly
referred to as “catch-fire” semantics and the racing reaglsabowed to return any arbitrary
value and the program to crash. In effect, the C++ memory ifodads data races. An STM
designed for use in C/C++ (such as TL2) thus simply need netalaout such data races. Such
STMs usually focus only on preserving atomicity betweengeations and correctly supporting
privatisation.

Under the Java memory model no out-of-thin air values shbaldeturned i.e. a read should
return either the initial value of a location or the valuettem by an executed write. This is
expressed as a requirement for causality in executionserfifeless an STM is still afforded
considerable flexibility. For example an STM working at aleadine granularity (such as
McRT-STM) could reorder the writes t§ andY by virtue of X being located later in a cache
line thanY and thus written out later in the commit phase. This is pdgfexcceptable in the
Java memory model. Consequently the resalt== 10 andt 2 == 0 is allowed.

The x86 memory model however is much stronger. The execofiali programs — including
those with data races — is precisely specified. In additioeret are intra-thread ordering con-
straints. In the example the writes XoandY cannotbe reordered and the restult == 10
andt 2 == 0 is forbidden.

One of the key results of this dissertation (Chapter 3) is ahaeakly atomic STM providing
SLA for the x86 memory model is forced to serialise all trartigas. | also show in the same
chapter how a practical STM can be built for the x86 memory ehbg relaxing the require-
ments that it be applicable to any arbitrary program.

2.7 Hybrid transactional memory

Software transactional memory in general imposes highhaaet when compared to hardware
transactional memory due to the cost of adding instrumiemtdéor shared memory accesses.

39

2. Background

On the other hand most proposals for hardware transactiwaiory recognise that structures
such as caches in hardware are always limited and thus he theasactional memory can only
be “best-effort” and cannot guarantee atomic executiomafd transactions. The unbounded
designs of Rajwar et al. that proposed virtualising tratisadogs in order to solve this prob-
lem involve even more hardware complexity and thus reptesemeven bigger barrier to the
availability of hardware TM.

Motivated by these observations, Damron et al. propbsedid transactional memorysing a
combination of software transactional memory with hardesnsactional memory [DFI06].
The common case is execution of transactions entirely idvaare, representing the best pos-
sible performance. In the uncommon case where a transaiomt be handled in hardware,
execution could fall back to software transactional memdhge key idea of Damron et al. was
to automatically add STM-related metadata to the read $étardware transactions. This en-
sured that hardware transactions were atomic with respestftware transactions that might
access the same locations.

Damron et al.'s proposal provided strong atomicity to thedtere transactions due to the
presence of a coherence mechanism that would detect nmsattgonal accesses. On the other
hand, it provided only weak atomicity to software transasi, allowing interleaving of non-
transactional accesses. Minh et al. [MT@] proposed a design for a hybrid transactional
memory system that used a weakly atomic STM (TL2) but stoMpted strong atomicity. This
was achieved by using a special bloom filter to encode thearddvrite sets of the software
transaction and checking coherence requests from nosattional accesses on other threads
against it. On a match the software transaction is aborted.

2.8 Performance benefits of transactional memory

Transactional memory aims to bring the performance of firséngd locking to programs writ-
ten with coarse-grained synchronisation, which is preqiyneasier and less prone to prob-
lems such as deadlock. Traditionally, data structures ascled-black trees have been used
to demonstrate how transactional memory can improve sitifand hence performance over
coarse grained locking at higher thread counts.

In the process of examining the more general applicabilitransactional memory, research
has focused on the conditions under which transactional anewan actually deliver better
performance than alternative methods of synchronisatioh as locks.

Rossbach et al.'s work on TxLinux [RHP7] used simulated hardware transactional memory
with no overhead for transactional accesses to replaceigakthe Linux kernel. Surprisingly,
they obtained only a 5% speedup over the lock-based vergibimax. The reason for this is
that Linux is well-tuned enough that little time is wastedtwa for a lock: i.e. lock contention

is low. There was thus little advantage in allowing multifleeads to execute critical sections
simultaneously since they rarely wanted to do so.

The amount oflisjoint-access parallelisffiR94] is also an important determinant of transac-
tional memory performance. Transactions that incrememglesshared counter will conflict.
On the other hand transactions that update a large red-tsleelare unlikely to conflict. A red-
black tree thus has a far larger amount of disjoint-accesslpbsm than a counter. Von Praun
et al. [vPBCO08] studied the amount of disjoint-access pelrsin available in programs by col-
lecting memory access traces from sequential executioraaalysing them to detect possible
conflicts.

40

2.9. Software lock elision for x86 machine code

Some researchers have considered quantifying the beradfirdéimsactional memory can bring
to programs using locks by combining measurements of lockerdion and disjoint-access
parallelism. Roy et al. [RHHO09a] built a tool that measurecklcontention and disjoint-access
parallelism using dynamically instrumented programstétat al. [PW10] built a similar tool,
but they used execution on a simulator for measurements. yAkaefit of this approach is
that it can also be applied to operating system kernels viroleet al.’s techniques are limited
to application software. On the other hand Roy et al. useldesascution, which yields more
accurate lock contention data.

Usui et al. [USBO09] built dynamic adaptivity into their stin for software lock elision. They
measured lock contention and transaction conflicts to nheter whether locks or transactions
were a better way to execute a particular critical sectioruci@lly they also considered the
overhead of software transactional memory in their cosebieanalysis; previous approaches
had either ignored this overhead, or focused only on hargtvansactional memory.

One of the key contributions of this dissertation is a profiat accurately analyses and charac-
terises critical sections in x86 binaries. It uses the sarfrastructure as that built for software
transactional memory. In addition to memory access chaniatits of critical sections, it also
produces data related to possible conflicts and lock caotgnivhich can be used to judge
possible performance gains from using transactional mgmor

2.9 Software lock elision for x86 machine code

This dissertation focuses on building software lock efidior x86 machine code. There are a
number of decisions that | made in the design for SLE in refetd previous work.

| use word-based STM as the basis for software lock elisidnis & because detecting object
boundaries in x86 machine code is not feasible. | use a wed&lyic design. Using strongly
atomicity would require either hardware support or expengisertion of barriers faall shared
memory accesses in the binary rather than only instrunientat accesses in a critical section.
Previous weakly atomic STM designs had focused on providingle lock atomicity for lan-
guage level memory consistency models. In Chapter 3 | fitgegbe problem of designing an
STM that provides SLA for the stricter x86 memory consistemodel.

| chose to use dynamic binary rewriting to insert instruragoh for the STM. Unlike a library-
based STM this is fully automatic; and unlike a compilerdthSTM it is language, compiler
and debugger agnostic thus requiring no changes to the areftdevelopment environment,
one of the stated goals of this dissertation. Unfortunadglyamic binary rewriting adds large
amounts of overhead. In Chapter 4 | present the design fghaneight binary instrumentation
infrastructure that avoids much of the overhead traditignacurred when using heavyweight
dynamic binary rewriting engines.

The next two chapters discuss this work supporting efficgtriE. Chapter 5 discusses a profiler
that is built from the instrumentation infrastructure faES It explains some of the performance
anomalies seen with SLE in Chapter 4. Also, since it operditestly on lock-based binaries,
it can be used to evaluate the possible impact of transadtraemory on programs in a TM
agnostic manner. In Chapter 6 | discuss a way to make SLE nfficeest by eliminating
thread-private data from the STM logs. In Chapter 7, | dis@isE in a more general setting in
terms of applicability before concluding.

41

2. Background

For all the benchmarks in this dissertation, the hardwaxck tanichain used is available in
Appendix B.

42

Chapter 3

x86-safe software transactional memory

The first step towards SLE for x86 machine code is to buildfe transactional memory that
preserves the x86 memory consistency model and can be ussgdoe critical sections in x86
machine code with transactions. This chapter describedasign and construction of such an
STM, that | refer to as STM_x86. There are two subproblemsnbad to be solved for this.
The first is to build software transactional memory that press the x86 memory consistency
model and provides Single (Global) Lock Atomicity (SLA) tamnsactions. This is done in
Sections 3.1 to 3.5. The second subproblem, discussed 1lL®&c6, is to show how critical
section execution can be mapped onto execution with SLA.

3.1 x86 memory consistency model

In order to describe the construction of an STM that presetile x86 memory consistency
model (x86-MM) and provides SLA, it is important to use a wedifined model for x86-MM. |
use the recent model proposed by Owens et al. [0SS09] thattbesx86 as a total store order
machine. This model adequately considers the (informa&)ma@nuals and formalises them to
a level that is usable for this dissertation.

Owens et al. describe the x86 microprocessor as essergiabguential machine with a write
buffer per hardware thread. | use the terms thread and mocegerchangeably in this disser-
tation. In other words, they cast the x86 as a Total Store IQ®0) machine. This means
that loads and stores execute in order. However, each theesad local write buffer that allows
writes to be visible to local reads before they are visibletteer threads.

A TSO machine model is depicted in Figure 3.1. The registel® processor are abstracted
in the Conput at i on block. Each processor includes a write buffer and there ipbatly
visible shared memory. An important addition to a simplaevbuffered machine is tHeock.
Exactly one processor can hold theck at a time. A processor is said to beckedif some
other processor holds the lock. This “TSO lock” is acquirgdh® processor before executing
a locked x86 instruction and released by the processor anti®f the locked instruction.

Any x86 processor can perform the following steps:

e A processor can read from a register.

e A processor that is not blocked can read from shared memdheit is ho matching
location in its own write buffer.

43

3. x86-safe software transactional memory

Computationje—, Computation

Y

[) [) [)
Lock/Unlock I Wla]=v Wla]=v
| -
0] (]
E R[al=v Rlal=v b
3 3
1} i}
Y[Bypass Bypass |3
T C
3 3

Eock Shared Memory

Lock/Unlock

Figure 3.1: TSO machine

A processor that is not blocked can read its own most recadte fwom its write buffer.
A processor can write to a register.

A processor can add a write to its own write buffer.

A processor that is not blocked can move the oldest write ftemrite buffer to memory.
A processor can execute a barrief €nce) if its write buffer is empty.!

If a processor’s write buffer is empty then the processor aeguire al ock (if it is
available), or release a lock (if the processor holds it).

I now define formal terms that | use in the rest of this chaptéis chapter is concerned with
programs executed on the TSO machine. Formally, a prograncaasist of the following
operations:

4.

. Read: Aread, denoted aRead(p, x, Val ue), meaningthata read from locatian

by processop returnsval ue.

. Write: A write, denoted a8Vite(p, X, Val ue), meaning a write to locatiox by

processop of Val ue.

. LockedRMW: A locked read-modify-write instruction denotedlasckedRMA(p, X,

Read, Wi te) meaning the Read and Write performed atomically on locatidoy
processop. This models locked x86 instructions Beck cnpxchg that atomically
read from and write to a memory location with the written \eabeing a function of the
read value.

Fence: An nf ence instruction on processqr denoted asf (p) .

44

Thel f ence andsf ence x86 instructions are no-ops for the writeback memory type.

3.1. x86 memory consistency model

Execution Trace: An execution trace of a multithreaded program is a sequehoperations
for each processor.

Execution of a program on the TSO machine results in events.event generated by one
processor is “observable” by other processors. There aned$ of events.

1. MenRead(p, X, Val ue) meaning that a read from memory of locatierreturns
Val ue on processop. This is generated by the execution of a read that does nat get
value from the local write buffer.

2. MenFl ush(p, x, Val ue) meaning thata store leaves a write buffer and gets written
to shared memory. This does not necessarily corresponcetiuggn of any instruction
(write buffer flushes are asynchronous).

3. I Lock(p) Processop acquires the lock. Again, the write buffer on that processost
be empty.

4. 1 Unl ock(p) Processop releases the lock. Again, the write buffer on that processor
must be empty.

Event Trace: An event trace is a sequence of events.

Event Order <.: e; <. e, if ¢; precedeg; in the event trace.

Eachstepof the TSO machine is a tuple consisting of an operation anevent. Either the
operation or the event (but not both) can be empty. A step eamb of the following:

1. (Read(p, x, Value), MemRead(p, X, Value)): A processadsea value from memory.

2. (Read(p, X, Value), None): A processor reads a value ftetadal write buffer generating
no event.

3. (Write(p, X, Value), None): A processor appends a valutstiocal write buffer generat-
ing no event.

4. (None, MemFlush(p, x, Value)): A processor flushes a vimitiéer entry to memory.

5. Alocked RMW operation generates a sequence of steps:
(None, llock(p))
(Read(p, x, Valuel), MemRead(p, X, Valuel))
(Write(p, x, Value2), None)
(None, MemFlush(p, x, Value2))
(None, 1Unlock(p))

6. (mf(p), None): A processor executes a memory fence, gingmo event

A valid executioron the TSO machine is simply a sequence of steps in accorddtit¢he
rules of the TSO machine specified at the beginning of theémectThe term “execution”
always refers to a “valid execution” unless otherwise dpeti

45

3. x86-safe software transactional memory

Owens et al. also introduce a progress-related conditiaohwiestricts the allowable paths on
TSO such that: any entry in any write buffer is ultimatelytien back to memory. This means
that any execution must ultimately end in empty write bufier all processors.

Single lock atomicity requires the notion of a software Hbthat is acquired at the start of
a transaction and released at the end of it. | model that Iefkrfed to as the SLA lock) as
a test and set lock that is acquired and released through ot®pare and swap instructions
(cnmpxchg). SLA execution thus generatesock(p) andl Unl ock(p) events at both the

start and end of a transaction.

Finally, any practical STM design providing optimistic @amrency control needs to modify
program execution from that attained when using pessiotA locking. The STM produces
“equivalent” executions from the perspective of the progreer. It is important to precisely
define what is meant by this equivalence.

Equivalent Execution: A valid execution is equivalent to another valid one if on& dee
derived from the other by deleting events of the form (Reaxi(palue), None) and by delaying
events of the form (Write(p, x, Value), None) up to a pointdsefthe corresponding (None,
MemFlush(p, x, Value)) is generated for it from the writefeuf

The notion of equivalent executions stems from the factttieege deletions and reorderings are
invisible to processors other than the one on which it isqgreréd and leaves shared memory
untouched. For the processor on which reordering/delesigerformed, the STM machinery
ensures that the intermediate values of registers are astexjin the original execution for any
deleted memory reads.

Another important flexibility needed for STMs is the cap#apilo introduce arbitrary reads and
writes to STM metadata locations. The execution when rupmiith an STM would include
these “additional” steps. The programmer is concerned witly a subsequence of the execu-
tion that affects program locations (distinct from STM lboas). This can be formalised as
follows.

Consider a partitioning of memory into “special” locaticarsd “general” locations and an exe-
cution which is a sequence of steps. Consider an executiorefbby asubsequencef this ex-
ecution such that it consists only of accesses to generatitos (and possibly memory fences)
and there is no updating step (memory write or write buffest)uo a general location in the
steps of the execution outside the subsequence. The s@megs also restricted to contain all
steps originating from locked read-modify-write operaido general locations and must not
contain any steps originating from locked read-modifytevdperations to special locations.

Theorem 1. The subsequence forms a valid execution.

Proof. Consider a TSO machine M executing all the steps in the segudrwill show that
there exists a TSO machin€e’ khat executes the steps in the subsequence. The proof gsocee
by induction on the steps of the sequence. | also show thahdohines maintain the inductive
invariants: 1) The write buffers of Monsists of the write buffers of M with all writes to special
locations deleted 2) The main memory of Mas the same values as the main memory of M for
all general locations 3) If a processor holds the TSO lock iriidn that same processor holds
the TSO lock in M.

Clearly the invariants hold before any step is executed thyeemachine. If the current step in
the sequence is not part of the subsequence then M executleseitM’ takes no step. It must
be shown that the invariants are still preserved at the etiteastep. If the step does not modify

46

3.1. x86 memory consistency model

the write buffer or main memory or acquire the TSO lock, die#lne invariant is preserved.
The other possible steps are:

1. (Write(p, SpecialLoc, Value), None): Appends a write tepacial location to the write
buffer. The invariants are preserved.

2. (None, MemFlush(p, SpecialLoc, Value)): Updates theeaf SpecialLoc in memory.
The invariants are preserved.

3. (None, ILock(p)): The invariants are preserved sincedlés no step. Note that the write
buffer for p must have been empty in both the machines due to the invarnehting
before the step is taken.

4. (None, IUnlock(p)): Mtakes no step. It is important to show that no processor’in M
can be holding the lock. Assume otherwise that some procasst’ were holding the
lock. This processor must lgeotherwise the invariant would be violated before the step
(p must be holding the lock in M in order to release fi)can only acquire the lock in M
due to a step from theubsequenceorresponding to a locked RMW. Two locked RMWs
cannot be interleaved in the sequence and hence, this (Ndmeck(p)) must belong to
a locked RMW to a general location, which would then requiradvitake a step.

5. (mf(p), None): Mtakes no step. The invariants are preserved. Note that tite lvuffer
of p must have been empty in both the machines due to the invatahding before the
step is taken.

Next, consider a step that is part of the subsequence. BothdWh must be able to perform
the step. Further, the invariant must be preserved at thefeheé step. The possible steps are:

1. (Read(p, GeneralLoc, Value), MemRead(p, GeneralLotyeyp Due to the invariant
both machines can perform the read. The invariants arepestafter the step.

2. (Read(p, GeneralLoc, Value), None): Same reasoningasab

3. (Write(p, GeneralLoc, Value), None): Both machines pernf the step. The invariants
are preserved.

4. (None, MemFlush(p, GeneralLoc, Value)): Since M can guenf this step,p is not
blocked. Due to the invariant the same holds true fortivdit performs the step. The
invariants are preserved.

5. (None, ILock(p)): Again Mcan perform this step at the end of whigholds the lock
for both M and M. This lock acquisition must begin a locked RMW to a genereatmn
that cannot be interleaved with any other locked RMW.

6. (None, IUnlock(p)): Both M and Mrelease the lock in an identical fashion. The invari-
ants are preserved.

7. (mf(p), None): Both M and KMtake the step. The invariants are preserved. Note that the
write buffer ofp must have been empty in both the machines due to the invahaiding
before the step is taken.

47

3. x86-safe software transactional memory

Initially: X ==0, Y == 0, donel == fal se, done2 == fal se

/'l Thread 1 /1l Thread 2
atom c { atom c {
3: Wite(X, 100) 5: Read(Y, 0)
4: Wite(donel, true) 6: Wite(done2, true)
} }
/[l Thread 3 /1 Thread 4
1: Wite(Y, 300) Read(donel, true)
2: Wite(X, 300) Read(done2, fal se)

/| Forbidden by x86-MM Finally X == 100
Figure 3.2: Loads must be ordered after earlier transagtion

O

This theorem allows an STM to add operations to “special” Slbkhtions while ensuring
that a subsequence corresponding to the executed prograaingea valid execution. Note
that the proof above does not say anything about the stategafters. Ensuring that register
read-writes and computation proceeds as expected frometfspgrtive of a thread remains
the responsibility of the STM instrumentation machineryls@ while the programmer can
ignore the STM when considering the execution of the proguaiher observers such as another
processor on the system bus or a debugger would see thesaffeabe STM.

3.2 Counterexamples

In this section, | consider the consequences of suppottiex86 memory consistency model
in a weakly atomic STM providing transactions with SLA seiti@ My approach is to start
with the assumption that if two transactions running onelléht threads access disjoint sets of
memory locations, an STM providing optimistic concurreaowntrol is free to run them without
reference to each other. | then provide counterexampldsgassertion, which aim to show
that this leads to executions that violate the x86 memorgistency model. The result of these
counterexamples is that STM designs are constrained toanedctions in strictly serial order.

The examples illustrate executions abstracted as progpamatons. | use “atomic blocks” to
delimit sections of code to be run as transactions.

First, consider the example in Figure 3.Zhr ead 4 observes thathr ead 1 must have
acquired the SLA lock beforéhr ead 2. WhenThr ead 2 reads the value of as 0O, the
flush to memory of the update 6 followed by the flush to memory of the update Xaby
Thread 3 is yet to happen. However at this point (due to SLA semanths)update toX
by Thr ead 1 has already happened. Hence the updadlg Thr ead 1 must precede the
update toX by Thr ead 3. Hence the final value of cannot be 100.

48

3.2. Counterexamples

That this is an illegal execution can be formally shown akfes. Assume that the disallowed
execution were to occur; then eachtdfr ead 1 andt hr ead 2 must generate the following
events (recall locked instructions flush the write buffer):

| Lock(thread 1) <.1Unlock(thread 1)

<. MenFl ush(thread 1, X, 100)

<. MenFl ush(thread 1, donel, true) <.IlLock(thread 1)
<. 1'Unl ock(thread 1)

| Lock(thread 2) <.IUnlock(thread 2) <. MenRead(thread 2, Y, 0)
<. MenFl ush(done2, true) <.ILock(thread 2) <.1Unl ock(thread 2)

FurthermoreThr ead 4 observesionel == true anddone2 == fal se. Thisis only
possible if

Mentl ush(thread 1, donel, true)
<. MenFl ush(thread 2, done2, true)

In combination with the above, one can thus conclude:

MenFl ush(thread 1, X, 100) <. MenRead(thread 2, Y, 0)

As the final value oK is 100, this means that:

MenFl ush(thread 3, X, 300) <. MenFlush(thread 1, X, 100)

Since the write buffer is ordered:

MenFl ush(thread 3, Y, 300) <. MenFlush(thread 3, X, 100)

Hence | can conclude:

MenFl ush(thread 3, Y, 300) <. MenRead(thread 2, Y, 0)

This is a violation of x86-MM, since the read frohmust see the write to it.

The transactions omhr ead 1 andThr ead 2 access completely disjoint sets of locations.
A weakly atomic STM executing the two transactions couldlgasiow the updates tdonel
anddone?2 to happen in the order indicated but allow the read to proceed early omhr ead

2. This would result in the illegal execution.

The next example is Figure 3.3. Stores from the same threadrdered under the x86-MM.
The lock acquisition and release at the beginning and end 8LA transaction must flush the
write buffer. Hence for SLA semantics either all storesTm ead 2 must be ordered after all
stores onThr ead 1, or vice-versa. This leads to the assertion (which saysTthaead 3
must not observe interleaved stores). This can again beaftyrshown as follows:

We immediately have, for any execution:

49

3. x86-safe software transactional memory

/[l Initially: X=0, Y=0, Z==0, W==

[l Thread 1 /'l Thread 2 [l Thread 3
atom c { atom c { Read(X, 100)
Wite(X, 100) Wite(Z, 100) Read(Z, 0)
Wite(Y, 100) Wite(W 100) Read(W 100)
} } Read(Y, 0)

/| Execution not allowed by x86-MM and SLA

Figure 3.3: Stores must be ordered across atomic blocks

MenFl ush(thread 1, X, 100) <. MenFlush(thread 1, Y, 100)

MenFl ush(thread 2, Z, 100) <. MenFl ush(thread 2, W 100)
In order fort hr ead 3 to observe the forbidden result:
MenFl ush(thread 1, X, 100) <. MenFlush(thread 2, Z, 100)
MenFl ush(thread 2, W 100) <. MenFl ush(thread 1, Y, 100)
Hence the write buffer flushes frothr ead 1 andt hr ead 2 must have been interleaved:

MenFl ush(thread 1, X, 100) <. MenFl ush(thread 2, Z, 100)
<. MenFl ush(thread 2, W 100) <. MenFl ush(thread 1, Y, 100)

If t hr ead 1 executed its transaction first under SLA then it is requiredgoning through the
lock acquires and releases as in the previous example) that:

MenFl ush(thread 1, X, 100) <. MenFlush(thread 1, Y, 100)
<. Men¥l ush(thread 2, Z, 100) <. MenFlush(thread 2, W 100)

On the other hand if hr ead 2 acquires the SLA lock first, then:

MenFl ush(thread 2, Z, 100) <. MenFl ush(thread 2, W 100)
<. MenFl ush(thread 1, X, 100) <, MenFl ush(thread 1, Y, 100)

Hence the interleaved result is forbidden.

Again, the transactions access completely disjoint setseshory locations. Running them on
a weakly atomic STM could end up interleaving the stores.

The two counterexamples have serious consequences feattaon execution. A load in a
transaction must wait until all concurrently executingnsactions are finished to avoid the

50

3.3. A serialising design: STM_x86_strict

situation in the first counterexample. A store in a transacthust wait until all concurrently
executing transactions are finished to avoid the situatioiné second counterexample. In short,
transaction execution must be serialised.

These examples illustrate the difficulty of building an STi\tt preserves x86-MM for all ex-

ecutions. The only way around this is to restrict the clagsrofgrams that can be handled, in
essence excluding difficult constructs that prevent thecéffe use of optimistic concurrency
control.

3.3 A serialising design: STM_x86 _ strict

In this section | present a design for STM_x86, which usey lagsion management, lazy
conflict detection, and a global version number. It is simitaprinciple to TL2 [DSS06]. It
aims to provide SLA and x86-MM faall programsand thus ends up serialising transactions. In
the next section | discuss an optimisation to this basicagugr in order to recover scalability.

3.3.1 STM primitives

The rest of this chapter makes references to a set of STMpréwithat | define below:

e Met adat a(| oc) : Each location is mapped (many to one) to a metadata loGatioich
holds a simple sequence number.

e Thr eads: The set of threads in the system

e ReadLog(t) : An ordered set of (location, value) pairs on thread t

e WitelLog(t): An ordered set of (location, value) pairs on thread t

e Snapshot SeqNo(t) : A sequence number maintained locally by thread t

e Epoch(t) : A sequence number updated only by thread t but readabld bthaks

e DirtyList(t): A set of metadata locations corresponding to locationfi@nWrite
Log

e SLASeqNo: A globally shared sequence number
e Next SegNo: Another globally shared sequence number
e St abl eSegNo: Another globally shared sequence number

e Next SLAExec: Another globally shared sequence number

The STM primitives are held in memory and are only acces&iplihe STM. Before any trans-
action can be execute8t abl eSeqNo and all metadata locations are initialised to zero. All
other shared sequence numbers that can be updated by morertbdahread are initialised
to two. The value ofEpoch on every thread is initialised to zero at thread creatioretim
Transactions operate in two phases. In the §psculation phasehe transaction is executed
speculatively and execution can be rolled back in the eveatoonflict. In the secondommit
phase the effects of the transaction are applied atomicallyl{wéspect to other transactions)
and made visible through shared memory.

51

3. x86-safe software transactional memory

3.3.2 Speculation phase

The fundamental task of the speculation phase in STM_x86 tapture an execution of the
transaction. It aims to collect the set of steps represgritie execution of the transaction.
This is conceptually achieved for the thretadn the ordered logst epLogHead(t) and

St epLogTai | (t). AppendingSt epLogTai |l (t) to St epLogHead(t) produces a se-
quence of steps corresponding to the execution of the tinedexcluding the enclosing SLA
lock and unlock) on a TSO machine where the write buffer otcpssort is constrained to
flush writes to memory only at the end of the transaction. $hepLog is abstract and for
illustration only; operations to it use italics in the algbbms. The actual implementation uses
an ordered read log where reads from shared memory are legglegh ordered write log where
writes to shared memory are logged. No writes are actualfippeed to shared memory, thus
ensuring that no effects are leaked from the speculativsaction that might be seen by other
threads.

A threadt that begins a transaction calls Algorithm 2. A write\@! ue to locationl oc in
the transaction is appended to the write log by calling Altipon 3. A read froml oc in the
transaction is accomplished by calling Algorithm 4. Thistfichecks the local write log to see
if there is a write td oc, which is then forwarded to the read (lines 1-2). If this i$ sm then
a read is made from shared memory and, after a series of SiEWdechecks (lines 5-8), the
result of the read is appended to the read log.

Algorithm 2 SpeculationBegin(t)

1. Epoch(t) := Epoch(t) + 1
Memory Fence
SnapshotSeqNo(t) := StableSegNo
Initialise WriteLog(t) to empty
Initialise ReadLog(t) to empty
Initialise DirtyList(t) to empty
Initialise StepLogHead(t) to empty
Initialise StepLogTail(t) to empty

O No gk wd

Algorithm 3 SpeculativeWrite(t, loc, Value)
1: DirtyList(t) := DirtyList(t) U Metadata(loc)
2: Append (loc, Value) to WriteLog(t)
3: Append (Write(t, loc, Value), None) to StepLogHead(t)
4. Append (None, MemFlush(t, loc, Value)) to StepLogTail(t)

An implementation of the logging algorithms must take intc@unt that the x86 allows ac-
cesses of different size and alignment that can lead to neadislly overlapping with writes.
Extensions to the logging algorithms that handle thesescaigegiven later in this chapter.

3.3.3 Commit phase

At the end of a transaction the threfigbxecute<Commi t (t) , described in Algorithm 5. The
algorithm makes use of two instructions native to x86:

52

3.3. A serialising design: STM_x86_strict

Algorithm 4 SpeculativeRead(t, loc)

1: if 9 (loc, value)e WriteLog(t) then
2. get most recent (loc, resuk) WriteLog(t)
Append (Read(t, loc, result), None) to StepLogHead(t)
. else
result := contents of memory at loc
if Metadata(loc) is odthen
abort
if Metadata(loc)> SnapshotSegNo(then
abort
10: Append (loc, result) to ReadLog(t)
11: Append (Read(t, loc, result), MemRead(t, loc, result)tépBSogHead(t)
12: return result

© N gR®

e x86Fet chAdd(| oc, i ncrenent):x86 mnemonixadd, this atomically adds
i ncrenment tol oc and returns the original value bbc

e X86CAS(| oc, old, new): x86 mnemonicnpxchg, this atomically set$ oc to
new if the current value isl d; it also returns the current contentslaic.

The core of the algorithm is straightforward: the transactis assigned a global sequence
number (in SLA execution) fronsLASeqNo. This is the next unassigned even number (see
line 1), and is stored in the local varialile cket . Lines 2—17 execute the standard two phase
commit associated with word based STMs (such as TL2). M&ddeations corresponding to
updated locations in shared memory are locked and for lmtsitiead, a check is made that both
the contents of the location and their metadata is unchanged

The algorithm then proceeds te-executehe critical section using SLA in lines 18-26. Rather
than re-executing the computation it aims to generate #psgtom

St epLogHead(t) followed by the steps fronst epLogTai | (t) on the TSO machine.
This assumes that the transaction is deterministic and mewrtctes are purely determined by
memory reads.

In an execution of the program using the STM | consider onéy(tmmodified by the weakly
atomic STM) steps outside any transaction and the stepslin@s20—24 ofConmi t . There
are no writes outside this subsequence to program locasindsSTM locations (global and
thread-private) are not manipulated in this subsequenoeorem 1 says that this is therefore a
valid execution and | focus only on this subsequence.

An execution where the critical section has been replacethéysubsequence consisting of
the steps irSt epLogHead(t) followed by the steps irst epLogTai | (t) is equivalent
(definition in Section 3.1) to one where the bypassed reaglsl@leted and write operations
moved down till some point before the corresponding memaghiés. Such an execution can
be achieved by first replaying the read log (which does natatotypassed reads) and then the
write log (performing the writes to shared memory) followdexplicitly flushing the write
buffer using the locked-RMW operation in line 26G@bmm t .

Being able to maintain a “trace” of the transaction in theasafedSt epLogs depends on
there beingho mfence or x86 locked instruction in the transacti®uch an instruction would
necessitate the flushing of the write buffer and hence disahe reordering of loads before the
stores. This leads to:

53

3.

x86-safe software transactional memory

Algorithm 5 Commit(t)

1

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:
33:

2
3
4
5:
6
7
8
9

. ticket := x86FetchAdd(SLASeqNo, 2)
. while x86CAS(NextSeqNo, ticket, tickes ticketdo
wait
. for all metadatae DirtyList(t) do
if metadata is odthen
abort
metadata := metadata + 1
. x86FetchAdd(NextSeqNo, 2)
. for all (loc, Value)e ReadLog(t) (in orderylo
if Metadata(loc) is odthen
if Metadata(loc) DirtyList(t) then
abort
if Metadata(loc) SnapshotSegNo(then
abort
if Contents of Memory at logz Valuethen
abort
Epoch(t) := Epoch(t) + 1
/I SLA lock acquire
while x86CAS(NextSLAEXxec, ticket, ticket¥ ticketdo
wait
for all (loc, Value)e ReadLog(t) (in orderjlo
if Contents of Memory at logt Valuethen
abort
for all (loc, Value)e WriteLog(t) (in order)do
set contents of loc := Value
StableSegNo := ticket
/I SLA lock release
x86FetchAdd(NextSLAEXxec, 2)
for all metadatae DirtyList(t) do
metadata := ticket
for all x € Thread=do
EpochOther := Epoch(x)
if EpochOther is odthen
while EpochOther = Epoch(xJo
wait

The reason for this restriction can be illustrated by thengda in Figure 3.4. The disallowed ex-
ution can occur if the STM were to ignore tifeence, since it could complet€éhr ead 1’s
read ofy beforeThr ead 2 can update it. Hence, on encountering either of the abowigis
ns during speculation, the STM must abort the transaciod retry in a non-speculative

ec

tio

Restriction 1: No LockedRMW or Fence can appear in the execution of thetrans

action.

fashion (Section 3.6).

54

3.3. A serialising design: STM_x86_ strict

[l Initially: x == 0, y ==

/1l Thread 1 /1l Thread 2
atom c {
Wite(x, 1) Wite(y, 1)
nf ence nf ence
Read(y, 0) Read(x, 0)
}

/'l Execution not allowed by x86-MM and SLA

Figure 3.4:nf ence in a transaction

Initially: gol == false, go2 == fal se
/'l Thread 1 /'l Thread 2
atom c {
Wite(go2, true) | oop
| oop whi | e(Read(go2, false))
whi | e(Read(gol, false)) Wite(gol, true)

Figure 3.5: Visibility of writes from a transaction

3.3.4 SLA speculation

The STM needs to ensure that speculating threads see a vieembry that is consistent with
SLA execution. This is critical for my intended applicatsorExecuting from an inconsistent
state (due to updates by other committing threads) can teadthread faulting, entering an
infinite loop or even corrupting STM state. Weakly atomic Siivplementations for managed
environments such as Java [ATLM6] can use sandboxing, integration with a garbage collecto
and other techniques to ensure that execution can recarardn inconsistent read set. This is
not an option for x86 machine code.

The first point to consider in this context is the effect of @x#on of a speculative thread on
the rest of the system. Since all writes are buffered, thepatdeak out from a speculating
transaction. A speculating thread executes memory reatiates from the execution trace in
order but buffers all writes. This is equivalent to a TSO exien where the write is held in the
write buffer until the end of the transaction. However thigd not guarantee progress. When
executing with the STM, writes from a transaction are nablgsuntil the end of the transaction.
As such, a transaction might stall waiting for a signal fromother thread, or simply enter an
infinite loop. x86-MM dictates that all performed stores Ili@mately visible to other threads.
This problem with progress leads to the second restrictiotransactions that can be executed
with this STM:

Restriction 2: Execution cannot depend on stores in a transaction being mad

55

3. x86-safe software transactional memory

visible to other threads before the transaction completes.

This restriction is illustrated by the example code fragmerfigure 3.5:Thr ead 2 cannot
make progress until the write from the transactiodfintr ead 1 is made visible.

The next point to consider is the effect that the rest of thetesy can have on a speculating
thread. In this STM, transactions commit in SLA order diethby the assigned sequence
number. In addition, we desire that a speculating thiteastecutes with a read set consistent
with SLA sequence numb&napshot SeqNo(t) + 2 (recall that the SLA sequence number
is always even).

First, | need to show that all SLA transactions with sequangeber at most
Snapshot SegNo(t) have made their writes visible.

Theorem 2. Consider a speculating thread with sequence numb&napshot SeqNo(t) .
Consider another thread # t that has successfully committed with sequence nunvber
Snapshot SegqNo(t) . If x writes an update tb oc through

MenFl ush(x, |oc, Val ue) andt readsSt abl eSegNo in line 3 of

Specul at i onBegi n generating the TSO event

MenRead(t, Stabl eSeqNo, Snapshot SeqNo(t)) then:

MenFl ush(x, |oc, Value) <.
MenRead(t, StableSeqNo, Snapshot SeqNo(t))

Proof. St abl eSegNo must have been updated by execution of line 2Bafm t generat-
ing: Mentl ush(x, Stabl eSegNo, w).We know thatw < Snapshot SeqNo(t) and,
sinceSt abl eSegNo is monotonically increasing, this update must have pretdae read of
St abl eSeqNo by thread , i.e.

MenFl ush(x, Stabl eSegNo, w)
<. MenRead(t, Stabl eSeqNo, Snapshot SeqgNo(t))

However, this memflush itself is preceded by the actual viwiteoc:

MenFl ush(x, |oc, SonmeVal ue) <. MenFl ush(x, StableSegNo, w)
<. MenRead(t, Stabl eSeqNo, Snapshot SeqgNo(t))

The write is thus visible to the read. O

Next, consider reads generated by speculating transadtidme 5 of Specul at i veRead.
I now show that if this read receives a value from a transacitomust be from a transaction
whose sequence number is at most the snapshot sequencer miithigereading transaction.

Theorem 3. Consider a speculating thread that generates a read event due to execution of
line 3 of Specul ati veRead: MenRead(t, |oc, Val ue). Assume that this read re-
turns the result of the write from a committed transactiontireadx # t due to execution

of line 24 ofConm t generating the TSO evententl ush(x, | oc, Val ue). Lets be

56

3.3. A serialising design: STM_x86_ strict

the sequence number used by that instand€omfni t on threadx (i.e. the value held in its
ti cket). Then we have:

s < Snapshot SeqNo(t)

Proof. Consider the set of events generated along Wkin| ush(x, | oc, Val ue).
There must be updates to Metadata(loc). We thus have

MenFl ush(x, Metadata(loc), OddVval ue) <. MenFl ush(x, |oc, Value)
<. MenFl ush(x, Metadata(loc), s)

Due to the serialisation in accessing metadatoimm t there can be no intervening updates to
the metadata from other threads until an even value is writtéhis metadata and made visible
to other threads.

Similarly from the perspective of the reader, thenRead(t, |oc, Val ue) is gener-
ated. The following checks in lines 5-8$§pecul at i veRead must generatbenRead(t ,
Met adat a(l oc), k), wherek is some value for the metadata. We have

MenRead(t, |oc, Value) <. MenRead(t, Metadata(loc), k)

Furthermore, the memread lobc must see the memflush and hence the memread of

Met adat a(| oc) must follow the memflush that locks it. Howevé&rmust be even for the
checks on the reading transaction to succeed. There canih&engening updates to the meta-
data from other threads while it is “locked” I§onmi t to an odd value. Hence the memread
of Met adat a(| oc) must occur after the Memflush that unlocks the metadata ierdhat an
even value be observed.

MenFl ush(x, Metadata(loc), s) <. MenRead(t, Metadata(loc), k)

Metadata numbers are strictly increasing and sok. We also check ispecul at i veRead
thatk < Snapshot SeqNo(t) . Hence we haves < Snapshot SeqNo(t).

O

Finally if any thread executes a transaction with SLA segaerumber more than the snapshot
sequence number of a speculating thread then it must notidxeeal to generate any writes
including those outside the scope of a transactlat may be visible to this speculating thread.
This safety property is the most difficult to provide sincenitolves constraining the visibility
of operations outside a transaction using only a weakly ex@MM (recall that weakly atomic
STMs cannot constrain execution outside a transaction)mynSTM design, a thread that
commits with a later sequence number to a speculating thstgab at line 33 ilCommi t .
Updates made in the transaction are invisible to the sptiegldoread (by virtue of the previous
theorem). | only need to prove that the odd quantity inEpech of the speculating thread is
correctly observed by the thread that has just executédbitsn t .

57

3. x86-safe software transactional memory

Theorem 4. Consider a speculating thread and another threack # t that has commit-
ted with a sequence number larger th8napshot SeqNo(t) . It generatesvenRead(X,
Epoch(t), Possi bl yQddVval ue) atline 30 ofCommi t . At some point the speculating
thread has generatedentl ush(t, Epoch(t), SonmeCGddVal ue). We then have:

MenFl ush(t, Epoch(t), SonmeGddVval ue) <.
MenRead(x, Epoch(t), Possi bl yGddVval ue)

Proof. Due to the memory fence at line 2 8pecul at i onBegi n, we have:

MenFl ush(t, Epoch(t), SoneGddVval ue) <.
MenRead(t, Stabl eSeqNo, Snapshot SeqNo(t))

Since the sequence number written by the committing traioseto St abl eSeqNo is larger
thanSnapshot SegNo(t) , we have:

MenFl ush(t, Epoch(t), SoneCGddVal ue) <.
MenRead(t, Stabl eSeqNo, Snhapshot SeqNo(t)) <.
Mentl ush(x, Stabl eSegNo, SoneVal ue)

Due to the locked instruction at line 26 @bnmi t , the write to StableSeqgNo must be flushed
before the read from the speculating thread’s epoch is matieea30. We thus have as an
extension to the event order above:

MenFl ush(t, Epoch(t), SoneCddVal ue) <.
MenRead(t, Stabl eSeqNo, Snapshot SeqNo(t)) <.
Mentl ush(x, Stabl eSegNo, SoneVal ue) <.
MenmRead(x, Epoch(t), Possi bl yGddVval ue)

This completes the proof. 0J

Privatisation safety

The need for safe speculation can be illustrated througprigramming idiom of privatisation
(discussed in Chapter 2). Figure 3.6 replicates the exafrgotethat chapter wheréhr ead 1
privatises a node from a shared linked list and subsequantigsses it directly. Consider the
two kinds of problems that can arise here.

Firstly, if Thr ead 2 commits first and is in the process of writing back its updalbes ead 1
might then commit and free the node leading to memory coimaptin my STM, this is not
possible since the updates frorhr ead 2 are explicitly ordered (througNext SLAExec
in Conmi t) before the updates ifhr ead 1. Otherwise, ifThr ead 1 commits first, this
leavesThr ead 2 as a “zombie” transaction (doomed to failure). HoweverMengust proved
thatThr ead 2 must operate on a consistent read set and h&hcead 2 cannot see any
updates fromThr ead 1. In particular it cannot suffer an unanticipated arithmé#iult on
performing the division.

58

3.4. Recovering scalability: STM_x86

/1l Thread 1 /1l Thread 2
del eteNode(...) { updat eNode(...) {
Li st Node *node; Li st Node *node;
atom c { atom c {
node = ...; node = ...;
} r = 1/ node->val ue;
node- >val ue = 0; }
free(node); }
}

Figure 3.6: Privatisation

3.4 Recovering scalability: STM_x86

In accordance with the conclusion of Section 3.2, Algorithiserialises SLA transaction exe-
cution. It includes an apparently redundant repetitioneafs at line 15, since it is followed a
little later by the actual replay of reads at line 21. Howeberfirst batch of reads is performed
in parallel by committing threads while the second batch tnmesserialised. If, for a given

execution, both reads return the same value then the seebrars be eliminated, reducing
the length of the serialised portion of commit and improv&eglability. This, however would

also mean that for executions where the reads differ, the $3aiMlead to a divergence from
x86-MM. In this section | precisely identify the class of ewéons where this can occur.

| begin by first defining the notion of a data race [AH98] thaséun this chapter. This is based
on defining a partial order on operations in the executiocetf a program.

If an operationy follows an operatiorx on the same thread then | say tlyats
ordered in program order aftgr X —po y

If a LockedRMW operatiory implementing the SLA lock acquire at line 18 of
Commi t reads the result of a LockedRMW operatioommplementing the SLA lock
release at line 26 o€ommi t , | say thaty occurred in synchronisation order after
X:X =gV

Finally, the happens-before order is the transitive clesidithese two:
def

—hb= (_>po U _>so)+
Assume that in an execution with SLA, the result of the eanread from location oc in
Commi t differs from the same read done later. Let the earlier reagigee event
MenRead(t, |oc, Val ue) during execution and the later read generate
MenRead(t, |oc, O herVal ue) during execution. This means that there must have
been an interveninyenftl ush(x, | oc, O herVal ue) during execution from some
other threadX #1), i.e.

MenRead(t, |oc, Value) <. MenFl ush(x, |oc, O herVal ue)
<. MenRead(t, loc, O herVal ue)

59

3. x86-safe software transactional memory

Theorem 5. Mentl ush(x, | oc, O herVal ue) cannot originate from a transaction.

Proof. Assume that the MemFludtid originate from a transaction. First, consider the case
where the writing transaction executes in SLA order aftertthnsaction that does the read. Its
writes are ordered through the operationd\ext SLAExec and thus we have:

MenRead(t, |oc, O herVal ue)

<. MenFl ush(t, Next SLAExec, seq)

<. MenRead(x, Next SLAExec, Later Seq)
<. MenFl ush(x, loc, OherVal ue)

which contradicts the required order.

Next, consider the case where the writing transaction @gecén SLA order before the transac-
tion that does the read. The wait biext SeqNo and the metadata checks establish:

MenRead(t, Next SeqNo, Later Seq)

<. MenRead(t, Metadata(loc), EvenVal ue)
<. MenRead(t, |oc, SomeVal ue)

<. MenRead(t, |oc, O herValue)

From the perspective of the writing transaction we have:

MenFl ush(x, Metadata(loc), QddVval ue)

<. Mentl ush(x, Next SeqNo, Earlier Seq)

<. MenFl ush(x, 1oc, O herVal ue)

<. MenFl ush(x, Metadata(loc), SonmeEvenVal ue)

As a consequence of ordering through the sequence numbeawee h

Mentl ush(x, Metadata(loc), GddVval ue)

<. MenRead(t, Metadata(l oc), EvenVal ue)
<. MenRead(t, |oc, SoneVal ue)

<. MenRead(t, |oc, O herValue)

There can be no updates to the metadata while the writingdrion has locked it. The reading
transaction sees an even value. Hence the unlock must préced

MenFl ush(x, Metadata(loc), QOddval ue)

<. MenFl ush(x, loc, O herVal ue)

<. MenFl ush(x, Metadata(loc), SoneEvenVal ue)

<. MenRead(t, Metadata(loc), EvenVal ue)

<. MenRead(t, | oc, SoneVal ue) <. MenRead(t, |oc, O herVal ue)

60

3.4. Recovering scalability: STM_x86

which again contradicts the required order. O

There is another restriction in the execution el ush(x, |1oc, O herVal ue). It
should not be ordered using a happens-before relation toethe in the transaction. Let
Wite(x, loc, OherVal ue) be the originating write in the execution trace for the
eventMentl ush(x, |loc, O herVal ue) in the event trace. Similarly, le€Read(t,

| oc, O herVal ue) be the originating read fdvenRead(t, |oc, O herVal ue).

Theorem 6. Read(t, |oc, O herValue) —,,Wite(x, |oc, O herValue)
does not hold.

Proof. Due to the definition of the happens-before order, an operatan be ordered before
an operation on another thread through a sequence thav@s/elynchronisation operations
across threads. Thus, the ordering between the read anditbeave established through such
a sequence:

Read(t, |loc, O herValue) —n,Wite(x, NextSLAExec, v1) —pp
Read(t, Next SLAExec, v2) —,,Wite(x, loc, O herVal ue)

The corresponding event orders would then be:

MenRead(t, |oc, O herValue) <. MenFl ush(x, Next SLAExec, vl1) <.
MenRead(t, Next SLAExec, v2) <. MenFlush(x, |loc, OherVal ue)

which contradicts the required order. O

Theorem 7. Wite(x, loc, OherValue) —Read(t, |oc, O herValue)
does not hold.

Proof. Assume that the happens-before relatidoegshold. We have already shown that
Wite(x, loc, OherVal ue) cannotbe in a transaction in the previous theorem.

Again, due to the definition of the synchronisation order \areeh

Wite(x, loc, OQherValue) —p,Wite(x, NextSLAExec, Vv1) —p
Read(t, Next SLAExec, v2) —p,Read(t, loc, O herVal ue)

The write thus precedes a locked operatiorNerxt SLAExec that flushes the write buffer on
threadx. This write must precede in TSO event order a later read fdemt SLAExec that in
turn is followed by a read frorhoc.

Hence we have:

Wite(x, loc, OQtherValue) <. Wite(x, NextSLAExec, v1) <.
Read(t, Next SLAExec, v2) <. Read(t, |oc, O herVal ue)

Now, sincewite(x, loc, OherValue) —n,Wite(x, NextSLAExec, v1)

and the write is not in a transaction means that it must peetiee transaction in the program
execution trace (both are on the same thread). This alsostieanit precedes the operation on
Next SeqNo. We thus have:

61

3. x86-safe software transactional memory

Before: x86-MM for any program

Get SLA Seq

[Transaction 1 |Specu|ationll [Commit (9-16)][Commit (20-24)]

[Transaction 2 [Speculation] [Commit (9-16)] N
Wait for NextSLAExec

Get SLA Seq

After: x86-MM unless TRUW race in execution

Get SLA Seq

[Transaction 1 |Specu|ation|l [Commit (9-16) |[Commit (23-24)]

[fransaction 2 [Speculation] ~ [Commit (9-16)]«——— [Commit (23-24)
f Wait for NextSLAExec

Get SLA Seq

Figure 3.7: Optimisation trades generality for scalapilit

MenFl ush(x, loc, O herValue) <. MenFl ush(x, NextSeqNo, vl1) <.
MenmRead(t, NextSeqNo, v2) <. MenRead(t, |oc, SoneVal ue) <.
MenRead(t, |oc, O herVal ue)

This contradicts the required order. O

The theorems in this section imply that eliminating theratet of reads (line 21 dfonmi t)

to produce STM_x86 is safe (preserves the x86-MM) when tieewion of the program with
SLA does not have a write that is outside any transaction sumdt ordered (happens-before)
with a read in a transaction to the same location. Technicdlis is a “data-race” between a
write outside any transaction and a read inside a transad&ior convenience, | refer to such a
race in an execution as a Transactional Read Unprotectde Yede (TRUW) race. | thus have
the third restriction on programs that can be executed \WgSTM:

Restriction 3: The execution must not contain a TRUW race.

Given this restriction, | delete lines 20-22 frd@onmm t . Committing transactions no longer
need to replay their reads in SLA order. Note that this retsom excludes code such as Fig-
ure 3.2 early in this chapter, which | had used to show that BM 8at preserves x86-MM
needs to serialise reads in a transaction after writes lree&nansactions. That example con-
tains a TRUW race between the readvton Thr ead 2 and the write toY in Thread 3.

This optimisation improves scalability. Figure 3.7 shovesvha later transaction spends less
time waiting for an earlier transaction with this change.

3.4.1 Publication safety

The previous theorems should not be taken to construe tHAYW Rices leading to a departure

from x86-MM are always fatal from a program perspective. @xample of this is th@ubli-
cation construct from Chapter 2, which is the mirror of privatisati data moves from being

62

3.5. Comparison with language level memory models

i nt published = 0, value =0;

/'l Thread 1 /1l Thread 2

val ue = 1; atom c {

atom c { C
. | ocal val ue = val ue;
publ i shed = 1 | ocal _published = published,;
}

} i f(local _published == 1)

sone_function(l ocal val ue);

/'l 1 npossible: |ocal published == 1 and | ocal val ue ==

Figure 3.8: Publication

thread-private to being shared transactionally. An examplpublication from that chapter is
replicated in Figure 3.8.

Consider the two possibilities that might occur. Tiir ead 1 commits first then STM_x86
correctly provides SLA and ensures thiatl ue is read correctly (if it is not, the check at line 15
of Comm t would fail). On the other hand, fhr ead 2 commits first then there is a TRUW
race in the execution on accessey & ue. STM_x86 no longer guarantees compliance with
x86 but in this case the race is benign since it still correctly redbl | shed as zero and
hence does not usel ue during execution.

3.4.2 Aborts

The references to the capability to abort a transaction fdausave not formally specified an
abort. Aborts are accomplished through Algorithm 6. Therenly one necessary step in abort,
to increment the epoch, since the thread is no longer spgeuylaDepending on where the
transaction aborts (such as after locking metadataoimi t) additional bookkeeping might
be necessary (such as unlocking metadata). The simplicépor t stems from the fact that
writes are buffered, and hence simply discarding the watgundoes all the effects of the
transaction.

Algorithm 6 Abort(t)
1. Epoch(t) := Epoch(t) + 1

3.5 Comparison with language level memory models

Language level memory models (such as those for C++ and devajeaker than the x86-MM.
The rigidity of the memory model has considerable impact dBMScalability. An STM aims
to execute all transactions concurrently without refeectoceach other. In order to ensure that

63

3. x86-safe software transactional memory

STM Scalability

More Less Some None, Section 3.2
| | | | |

1 1 | 1 1
C++ Java STM_x86 x86-MM Sequential

Memory Model

Figure 3.9: Memory consistency model vs weak atomicity

volatile int flag = 0
volatile int value =

/'l Thread 1 /1l Thread 2

atom c { while(!flag);
val ue = 1; tenp = val ue;
flag = 1;

}

/1 Java Menory Model guarantees tenp ==

Figure 3.10: Memory consistency implications for an STM

transactions appear to execute as dictated by the memorgln®0dMs (such as the one pre-
sented above) are forced to introduce synchronisationdsstwansactions running on different
threads even when the transactions do not conflict with onéhanin terms of their data ac-

cesses. The stricter the memory model, the more the synishtmm. Hence a continuum of

weakly atomic SLA STMs exists, as shown in Figure 3.9. STM g8ts around the complete
lack of scalability due to the strictness of the x86 memorygleiby providing weaker behaviour

to programs with TRUW races.

Even the weaker language level memory models impose réstison the interactions between
transactional and non-transactional accesses. Reseatafiling STMs for languages often
identify specific (named) programming idioms that illugtrthese interactions. In this section
| cover some of these idioms, focusing on how STM_x86 hantllem by virtue of being
designed for a stronger memory model.

3.5.1 Memory update consistency

Memory update inconsistenayises when the STM does not update memory in the order ex-
pected by a programmer from the underlying memory consigterodel. This term was intro-
duced by Shpeisman et al. in the context of STM design for J&AT T07]. It is illustrated

by the code in Figure 3.10.

Declaring the global variable as volatile requires (at aJamguage level) that the updates from
Thread 1 happen inorder. An STM that buffers at large enough graitigai(such as McRT-
STM that buffers at cacheline granularities) can write bago#tates out of order ifihr ead 1

64

3.6. Mapping critical sections to SLA

leading to a disallowed result.

There is no notion of volatile memory locations in x86, buBX#&M requires the same ordering
onThr ead 1 and this is provided by the ordered write log of STM_x86.

3.5.2 Speculation safety

Speculation safetig a property referred to in more than one work on STM desighiAZ * 08,
MBS*08b, SMAT"07]. It reflects the fact that, fundamentally, STM designevalpeculative
executions to be rolled back on encountering conflictingases. Any updates made by a trans-
action that is yet to commit successfully must not be madéleiso other threads, particularly
those not speculating since they cannot be rolled back. A Supporting speculation safety
must either use strong atomicity or disallow in-place updatSTM_x86, like many language
level STMs that provide speculation safety chooses to esaiplace updates.

3.5.3 Dynamic separation

An STM that targets the C++ memory model is less restrictaah tihat for Java. The C++
memory model explicitly gives no semantics to programs wiéa races [BA08] and thus,
for example, the STM is free to do any re-ordering it wishastlfie writes ofThr ead 1 of
Figure 3.10. STMs written for unmanaged C/C++ code [DSS0#189b, WCW"07] often
simply assume aeparationof data into that which can be accessed transactionally laed t
which cannot. Separation means that at any point duringutagcwith single lock atomicity,
a data item can be accessed transactionally or non-tramsaity, but not both. The rationale
for this is that a program that admits executions withouhssgparation in the context of SLA
semantics for transactions would likely contain a data.race

Nevertheless STMs for the C++ memory model still need to eeti concurrent transac-
tional and non-transactional accesses to the same data Tam is because separation can
be dynamic [ABH 08], where an object moves from being accessed transaltyidaanon-
transactionally and vice-versa (in a race-free mannem. prlvatisation and publication idioms
arose when studying STM designs supporting dynamic separdthave already shown how
STM_x86 provides privatisation safety (Section 3.3.4) padlication safety (Section 3.4.1).

3.6 Mapping critical sections to SLA

I now discuss the second part of the STM design problem for: @xEcuting critical sections
protected by locks using transactions providing SLA seimantA critical section is a subse-
guence of the execution trace of a program where at leastookad held. | assume that lock
and unlock calls can be intercepted and elided (unlike [R&0a& not attempt to identify them
speculatively). | also assume that the lock and unlock djper®have no side-effect other than
serialising execution of critical sections protected by $hme loclandadding a memory fence
at the beginning and end of the critical section.

The approach | follow is to execute all critical sectionsngsELA. From a correctness stand-
point there is no problem. An SLA execution can be mapped &ousing locks where exactly

65

3. x86-safe software transactional memory

bool gol, go2 = fal se;

/1l Thread 1 /'l Thread 2

Lock(L1); Lock(L2);
go2 = true; whi | e(go2 == fal se);
whi |l e(gol == fal se); gol = true;

Unl ock(L1); Unl ock(L2);

Figure 3.11: Symmetric dependent visibility

one lock can be acquired at a time. Also STM_x86 is designexbgo insert a memory fence
at the beginning and end of the transaction.

From a progress standpoint however, there may not exist asyifle SLA executions of a
given lock-based program. This happens when two or moreargections depend on each
other to make progress. Ziarek et al. first encountered thesvattempting to replace monitors
with transactions in Java [ZWAT08]. They described such constructs as requisipgmetric
dependent visibilitya simple example being illustrated by the code in Figuré 3.1

Execution of such lock-based programs using SLA falls urtderSTM restriction already
discussed: execution must not depend on stores in a traotsdeting made visible to other
threads before the transaction completes.

| now examine each of the restrictions on execution using SX88 in the context of lock-
based programs. | first express the restriction in terms ef@tions of the lock-based program
withoutany STM in the picture (since SLA execution is one possibbélbased execution). |
then show that one of the following holds true:

1. The forbidden behaviour is detected when executing witt Sx86 and correct execution
is preserved by falling back to acquiring the lock (Sectiof) 3

2. The forbidden behaviour implies possible executiondietdck-basedorogramwithout
STM_x8@&hat should be considered buggy and hence unlikely to ooqoractise.

Restriction 1: No lockedRMW or Fence in the execution trace of the transacti

If the lock-based program does not admit any execution wadoeked instruction or memory
fence is executed in a critical section, then this restiicttannot be violated when executing
with SLA (which is just a particular locking schedule).

Detecting memory fences and locked instructions duringetxen is easy with appropriate
instrumentation, since these instructions can be sthtim@ntified. If any memory fence or
locked instruction is detected in a critical section theacerion falls back to the lock.

Restriction 2: Execution cannot depend on stores in a transaction being msithle to other
threads until the transaction completes.

If the lock-based program does not admit any execution tepedds on a store in a critical
section being made visible before the critical section ¢hds this restriction is satisfied.

This restriction deals with critical sections that sendhaig to other threads (since that can be
the only reason why the write needs to be visible before tloeodénhe critical section). If the

66

3.6. Mapping critical sections to SLA

bool go = false;

/'l Thread 1 /1l Thread 2
atom c {
go = true; whi |l e(go == fal se);
whil e(true);
}

Figure 3.12: Buggy signalling

/1l gScript is shared

/'l Thread 1 /'l Thread 2
EnterCritical Section();
I f(gScript == NULL) {

baseScri pt = default;

}

el se { gScri pt = NULL;
baseScri pt = gScri pt;

}

ExitCritical Section();

baseScri pt - >Conpi |l e();
Figure 3.13: Type of asymmetric data race

transaction terminates then the signal will be visible drede is no problem. If the transaction
does not terminate, there are two possibilities: the tretrma itself waits for a signal or the
transaction enters an infinite loop unrelated to any othesath

If the transaction itself waits for a signal then in STM_x8@enerates a continuous sequence
of reads from the signal variable which ultimately leadsri@aerflow of the read buffer (which
must be finite in any implementation). On an overflow of any Sdfer, execution falls back
to the lock. This leaves SLE vulnerable only to programs saschigure 3.12. | argue that such
program behaviour is buggy.

Restriction 3: The execution must not contain a TRUW race.

Extending the definition of synchronisation operationsécti®n 3.4 to include the operations
used to acquire and release the lock in the lock-based pmgtas holds if: the lock-based
program does not admit a race between a write outside angatrtection and a read in a
critical section. If the lock-based program does not adméce between a write outside any
critical section and a read in a critical section then SLAcexi®n cannot have a TRUW race.

A race between an operation in a critical section and oneidmuny critical section is an
asymmetric data race (which is a subclass of all data radé® restriction refers to a further
subclass of asymmetric data races that involve a writeradbegsses a shared variable without

67

3. x86-safe software transactional memory

holding a lock, while a reader accesses the same sharetleanhile holding a lock. | argue
that such a scenario likely originates from a program bugymaetric data races have been
the subject of research by Ratanaworabhan et al [RE and Figure 3.13 shows an example
from that worK. It is an example of the type of racy behaviour not supporie8TM_x86 and

is a program bug due tohr ead 2 not acquiring the needed lock when accesgBgr i pt .
Ratanaworabhan et al. also design and implement a dynang@aetector called Tolerace that
can be used to detect such races. Tolerace can be used o6 hiha8ies before SLE is applied.

Alternatively, a simple modification tG@ormmi t allows STM_x86_strict to serve the purpose
of a dynamic race detector that looks for TRUW races in SLAcaken. The algorithm is
run without the optimisation of Section 3.4 since we are & foint not sure if there exist
executions with TRUW races. If in any execution, the metadaecks in lines 13-14 succeed
but the memory location is found to be modified in either lifkeat line 21, then we have a
racing write outside the control of the STM indicating a TRU%#¢e. Note that this kind of
dynamic race detection (as also Tolerace) produces no falsiives but can produce false
negatives. Unlike static race detections techniquesnibigerfectly sound and can miss races
in execution.

3.7 Mixing locking with transactions

Algorithm 7 Blacklist(t, L)
1: QuiescelList := QuiesceList { L }
2: Memory Fence
3: for all x € Threadsdo
4: EpochOther := Epoch(x)
5. if EpochOther is odthen
6
7
8
9

while EpochOther = Epoch(xJo
wait

: dummyticket := x86FetchAdd(SLASegNo, 2)

: while x86CAS(NextSeqNo, dummyticket, dummyticketdummyticketdo
10: wait
11: x86FetchAdd(NextSegNo, 2)
12: while x86CAS(NextSLAExec, dummyticket, dummyticket)dummyticketdo
13: wait
14: x86FetchAdd(NextSLAEXxec, 2)
15: BlackList := BlackListu {L}
16: QuiescelList := QuiescelList {L}

A crucial feature of Software Lock Elision is the capabilityacquire a lock and execute the
critical section directly without indirection into the STMrefer to this agessimistic locking
(as opposed to optimistic concurrency control).

Pessimistic locking is enabled througtBhackLi st of locks (note that the blacklist is a set
and not an ordered list, regardless of the name). A lock irbtheklist is always acquired and
never elided. Locks start off outside the blacklist and atdea to it if STM_x86 encounters

2Taken from the Mozilla application suite.

68

3.8. Implementation

Algorithm 8 Elide(t, L)
1: while L € QuiescelListo
2: wait
3. if L € Blacklistthen
4: Pessimistic Locking
5. SpeculationBegin(t)

any condition (such as those discussed above) during egadhiat prevents optimistic con-
currency control. Locks cannot simply be added toBhackLi st since there may be other
threads that have speculated past it. This requires a sppQui esceli st. A lock in
the Qui esceli st is in the process of being blacklisted. A threladtan blacklist a lock.
using Algorithm 7 after which the thread is free to acquire kbck. Any thread that is elid-
ing a lock uses Algorithm 8, which checks tBeackl i st status of the lock before calling
Specul at i onBegi n.

Bl ackl i st works by first adding the lock to tHgui escelLi st . It then needs to ensure that
any speculating thread that has executed past lineEl pfle for the same lock has finished
the transaction. It does so by first waiting for an epoch, enguhat the speculating thread
has reached line 18 @onm t . It then executes dummycommit, which ensures that specu-
lating threads have safely reached line 2TCofmi t and have thus finished accessing shared
memory or have aborted. It then adds the lock toBhackl i st and removes it from the
Qui esceli st.

3.8 Implementation

The implementation of STM_x86 is contained in approxima8€00 lines of C code. Many of
the implementation details are the same as well known wasskth STMs such as TL2 [DSS06].
I highlight here the specific aspects of the implementatian are relevant to x86 machine code.

3.8.1 Metadata and logging

| use a single aligned memory word of 4 bytes to store sequeunc®ers. | use a metadata
table with22° or approximately 1 million entries. | associate metadat wiemory locations
using the hash function:

Hash(s) = (s >> 4)&(2%° — 1)

The representation uses C notation:> is the rightshift operator anét is the bitwise-and
operator. It sequentially maps every 16 bytes of memory theometadata table wrapping
around after? entries. The decision to treat 16 bytes of memory as one sigitided by the
fact that all aligned x86 memory accesses up to and inclutied6 bytes vector SSE2 accesses
would fit in 16 bytes. This minimises the possibility that acess needs to map to multiple
metadata words. The hash function and mapping unit is osecwnable through compile time
parameters.

69

3. x86-safe software transactional memory

Thread Local Memory Shared Memory

1. Initialisation Copy(0:3)

Dirty Copy:Oxdeadbeef <—
Clean Copy:0xdeadbeef <—

Oxdeadbeef

2. Write(offset=0, size = 2, value = 0xf00f)

Dirty Copy:0xfO0fbeef:
Clean Copy:0xdeadbeef Update(0:1)

3. Read(offset=0, size=2) T

Dirty Copy:0xfO0fbeef Return(0:1)

Clean Copy:0xdeadbeef » Oxdeadbeef
Compare (0:1)

4. Read(offset=1, size=2) T
Dirty Copy:0xf00fbeef Return(1:2) oxdeadbect
. » Oxdeadbee
Clean Copy:0xdeadbeef Compare (1.2) >

Figure 3.14: Bypassing writes to reads

An interesting difference between the STM design in thiselitation and TL2 is that | do
not need atomic operations to manipulate metada@oimmi t . This trades off the latency of
atomic operations for the serialisation Next SeqNo in Commi t (Algorithm 5, line 2).

3.8.2 Arbitrary granularity logs

The logs are maintained as FIFO buffers implemented asyslimied lists. The key compli-
cation with logging in the STM is bypassing values from poes writes to later reads. This is
because the x86 architecture allows accesses of varyiagsany alignment. Most word-based
STMs such as TL2 assume word-sized accesses aligned to wond&ries.

Consider the access pattern shown in Figure 3.14. Firstjta fiom a transaction updates 2
bytes in memory (step 2). Next, a read from the same tramsecteads those 2 dirty bytes
and thus can proceed by simply reading the results of thaquewvrite (step 3). In order to

enable this, | maintain a dirty buffer consisting of aligri&&lbyte chunks of memory that have
been written to. | initialise the dirty buffer (step 1) frornet clean contents of memory. If a
containing dirty buffer is found for a read, it receives itdues out of the buffer.

The next read (step 4) however presents a significant coatjalitsince it reads partially from
a previous write and partially from shared memory. Both Osvehal.’s model as well as

70

3.8. Implementation

the architecture manuals [x8609] are silent about the betinef the write buffer under such
circumstances. | assume that the read receives part oflitssscom the write buffer and part
from shared memory (effectively executing a split read).

Implementing this feature however proved a challenge fer$iM. One option is to track
which bytes of the dirty buffer are actually dirty. This meampdating the data structure doing
the tracking on every write. Using some micro-benchmarkigtérmined that this has an un-
acceptable cost, since it leads to an extra operatioevenywrite, while the actual number of
reads hitting a dirty buffer is relatively rare.

Instead, my solution uses the result bypassed from the blirtier andsimultaneouslyreats
the whole read as being from clean data. To do this | maintearversions of the dirty buffer.
The first version acts as normal while the second versioprfed to as the clean copy) is never
changed after initialisation. | check that the memory cotgeare unchanged by comparing
the accessed portion in the clean buffer with memory. Th@erform STM metadata related
checks on the read. This ensures that | use the correct cfeg¢ke clean portion of the read, if
any. The conservativeness means that abort rates canlgassiease since data that has been
forwarded can potentially be dirtied in memory, leading tousmnecessary abort. However, |
saw no such effect in practise.

The enhancements needed to the pBprecul at i onW it e andSpecul ati onRead are
shown in Algorithm 9 and Algorithm 10 respectively. They ntake an additionadi ze pa-
rameter. The read and write logs are also enhanced to intthedsze of the access in addition
to the location and value.

Algorithm 9 SpeculativeWriteEnhanced(t, loc, size, Value)
1: DirtyList = DirtyList(t) U Metadata(loc)
2: Append (loc, size, Value) to WriteLog(t)
3: if 3 (DirtyBuffer, CleanBuffer) containing loc in ByPassLigtthen
4: Apply update (loc, size, Value) to DirtyBuffer
5. else
6: Initialise DirtyBuffer, CleanBuffer containing loc from@mory
7. if Metadata(loc) is odthen
8
9

abort
. If Metadata(loc)> SnapshotSegNo(then
10: abort
11: Apply update (loc, size, Value) to DirtyBuffer
12: Append (DirtyBuffer, CleanBuffer) to ByPassList(t)

The implementation described thus far assumes that ascdss®t cross 16 byte boundaries.
For some benchmarks | examined, a simmparcpy often causes misaligned accesses that
cross a slot boundary. Hence such split accesses must biedamdhandle such accesses as
follows:

1. Split the access into two partial accesses, one per slot

2. Make a recursive call for each partial access (for writdghit additions to the write log
for the partial access)

3. Add an entry to the appropriate read or write log for theialchccess with the data

71

3. x86-safe software transactional memory

Algorithm 10 SpeculativeReadEnhanced(t, loc, size)

1. memvalue := contents of Memory at loc

2: Append (loc, size, memvalue) to ReadLog(t)

3: if 3 (DirtyBuffer, CleanBuffer) containing loc in ByPassLigtthen
4: result ;= contents of loc in DirtyBuffer

5. if memvalue# contents of loc in CleanBufféhen

6

7

8

9

: abort

. else

: result := memvalue

. if Metadata(loc) is odthen

10: abort
11: if Metadata(loc)> SnapshotSegNo(then
12: abort

13: return result

The allows me to correctly add the read and write accessegagls accesses (as expected in
the TSO machine). It also cleanly handles metadata for datlascessed. Finally, it adds
extra reads for split-reads but there is no correctnesterkissue there, since neither individual
split-read can fault given that the whole read does not.

The bypass list is a pair of singly linked lists of buffersedor the dirty buffer and one for the
clean buffer. | use a pair of bloom filters to avoid unneceskakups in the linked list, which
is otherwise searched linearly. For large transactiongjitch to a hash index on the bypass
list. The physical memory requirements for the logs is cdpgted MB of physical memory
per-thread.

3.8.3 Lock blacklists

TheBl ackl i st of locks is maintained as a 1024 entry hash table indexed déyoiler 10
bits of the lock address. Each hash table entry is simplyegértthat holds one of three values:
0 is the default valuel means the lock is in th€ui escelLi st and2 means that the lock in
in theBl ackLi st. The hash table size and function are configurable and | &alty chose
these settings based on the benchmarks | considered falishertation.

I ignore conflicts in mapping locks to table entries, mearitingpossible for a blacklisted lock
to cause other locks to be acquired pessimistically. Whikepossible to handle conflict using,
for example, a closed addressing scheme, | deemed thisessag. Lock blacklisting should
ideally be very rare (otherwise the program is probably ndable for software lock elision).

One exception that can necessitate a re-examination aftipilementation decision is dynam-
ically allocated locks that are also blacklisted. This canse the hashtable to quickly fill up
with blacklisted entries, leading to the program executitith pessimistic locking throughout.

3.9 Evaluation of STM_x86

In this section, | evaluate the performance of the STM ruatsystem presented in this chap-
ter. The STM has been designed for safety and transparehgyovides SLA and exactly

72

3.9. Evaluation of STM_x86

Locks —+—

STM_x86 -

Locks —+—

STM_x86 -

STM_x86_strict -=-->-- TL2 STM_x86_strict ---->¢-- TL2 ofde
STAMP:vacation STAMP:kmeans
7 35 T
[t
_ 6 _ 3 o,
8 ® e -
g 5 T 25 A
=] 3 5
T o /\
5 4 2 > .
g_ 3 - g_ 1.5 ¥
E E a N
3 2 g & 1 I R ; ----- e
- ¥ b & R o
1 B R — 05 T e S
N —— x x x o , ,
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads
Locks —+— STM_x86 % Locks —+— STM_x86 %
STM_x86_strict ---->--- TL2 o STM_x86_strict ---->--- TL2 o
STAMP:yada STAMP:ssca2
1 1.2 T
0.9 S 1
< —= 1 £
S 08 8
€ € 1
¢ 07 <l
o o
g 06 g
g 05 g
o o o
o 04[p- =y
=] =]
g o3 2
2 2
o 02 @
0.1
0 0

Threads

Figure 3.15: STM performance on the STAMP benchmarks(1)

Threads

preserves the x86-MM for the targeted set of programs. leroial properly characterise the
price that must be paid for working with a strict memory modetompare its performance

with TL2 [DSS06]. TL2 is built for scalability and performea, as well as being for use as a
library-based STM by a programmer who is familiar enougthig internals to understand its

implication for program safety. It is meant for programshwdiynamic separation (only guaran-
teeing ordering between operations in transactions) amlrtiost suitable for the C++ memory
consistency model that forbids races. In addition, it dagsguarantee privatisation safety to
speculating transactions. In a sense, the STM in this chapteTL2 lie at opposite ends of the
safety/scalability scale.

Further, in order to properly characterise various aspafctse STM design in this chapter, |
evaluate two different variants of it. The firstis STM_x88icd, that provides x86-MM tall
programs without exception. The next is STM_x86, obtaing@plying the optimisation of
Section 3.4. This is also the STM used in the rest of this digsen.

| use the STAMP benchmark suite [CMCKOO08] for evaluation. eTdgight benchmarks in
the STAMP suite are: a gene sequencing program (“Genomdiayasian learning network
(“Bayes”), a network intrusion detection algorithm (“latter”), a k-means clustering algo-
rithm (*KMeans”), a maze routing algorithm (“Labyrinth'3,set of graph kernels (“SSCA2"), a
client-server reservation system simulating SpecJBBdcaan”) and finally a Delaunay mesh
refinement algorithm (“Yada”). STAMP uses transactionssfgrchronisation and shared mem-
ory reads and writes have beeranuallyinstrumented. STAMP has been built to exercise
STMs and includes a variety of transactions in terms of tme pent spent by the program in
a transaction and the length of the transactions. | use [a@ee) input sets for the STAMP

73

3. x86-safe software transactional memory

Locks —— STM_X86 ¥ Locks —— STM_X86 ¥
STM_x86_strict ---->--- TL2 e STM_x86_strict ---->--- TL2 e
STAMP:intruder STAMP:bayes

12 . . — . 3

Speedup over sequential

Speedup over sequential

1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads
Locks —— STM_X86 - Locks —+— STM_X86 -
STM_x86_strict ---->--- TL2 o STM_x86_strict ---->--- TL2 o
STAMP:genome STAMP:labyrinth
9 6
n
8 : il
8 g 5
g 7 : 2 . |
@ &) [o
2 6 2 4 e
Q Q o “
2 5 2 o T -
5 5 3 ’
3 4 B s K
Q o D -~
3 3 3 2 :
@ 5] o)) B
o) s iaaneeneeann Hreereesnnnnnannnnin, [}
o 2 e Qe 'X
0 G *oer o o1 *# — +
N T
o ¥ ¥ * o
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads

Figure 3.16: STM performance on the STAMP benchmarks(2)

benchmarks (both for experiments in this chapter as welbathbse in the later ones) shown
below.

BenchmarkInput

Vacation -n2-g90 -u98 -r1048576 -t4194304

Kmeans -m40 -n40 -t0.00001 -i inputs/random-n65536-dB2 &t
Yada -al5 -i inputs/ttimeu100000.2

SSCA2 -s19-i1.0-ul.0-I3 -p3

Bayes -v32 -r2048 -n10 -p40 -i2 -e8 -s1

Intruder -al0 -1128 -n262144 -s1

Genome -g16384 -s64 -n16777216

Labyrinth -i inputs/random-x512-y512-z7-n512.txt

| use a 48-core system for the evaluation (Appendix B: Tidére system configuration is
available in Appendix B. STAMP only allows thread countsttaee a power of two. It also

includes a sequential version of each benchmark. | reperétlecution time for the sequential
version of the benchmark divided by the observed executioe for that same benchmark
running with the desired STM or lock. Any measured executiioe is the median of 5 runs.

The results are shown in Figures 3.15 and 3.16. For most ddghehmarks, the relative perfor-
mance of the three STMs is as expected. STM_x86_strict isltveest although surprisingly
it is occasionally able to perform better than a lock (sucmagacation). This is likely due to
the transactions being computation heavy, which is perorin parallel. STM_x86 (the STM
for the rest of this dissertation) comes next. It performisdoghan STM_x86_strict by virtue

74

3.9. Evaluation of STM_x86

Threads
Benchmark 1 [2 | 4 | 8 | 16 | 32

labyrinth (]0.0240.0060.0480.131/0.1650.060
yada |/0.0080.0470.0240.0140.0480.043
bayes ||0.0010.0201.0300.2970.4030.174
vacation [|0.0060.0760.0230.031/0.0540.030
genome ||0.0030.0550.0270.0510.0100.004
kmeans (|0.0230.2880.4810.9960.5330.129
ssca2 |/0.0050.0990.0250.0040.0050.008
intruder {0.0030.0490.021/0.0400.0250.208

Figure 3.17: TL2: Maximum variation in execution time asaction of the median

Threads
Benchmark 1| 2 [4 | 8 | 16 | 32

labyrinth ||NO| NO | YES*| YES* YES*| YES*
yada |[NO| NO| NO | NO | YES| YES
bayes |[NO| NO | NO | YES*| NO | YES*
vacation ||[NO| YES| YES | YES* YES*| YES*
genome [NO| YES| YES* YES* YES*| YES*
kmeans [[NO| NO | NO | NO | NO | NO
ssca2 |[NO| NO | YES| YES| NO | NO
intruder |INO| YES| YES| YES| YES | YES

Figure 3.18: Is using STM_x86 better than using the lo¢k Pheans also better than sequential)

of the optimisation. Also, as expected, TL2 performs the lvegeneral.

There are also some interesting exceptions to this ordéetgeen the STMs. In the case of
Yada, Intruder and Bayes the STM in this dissertation parfobetter than TL2. This is likely
due to the fact these three benchmarks demonstrate a cdmbhiioé long transactions and
high conflict rates [CMCKOO08]. The STM in this dissertatiooals wasted work by detecting
conflicts early due to the strict insistence on a consistesd Iset compared to TL2. Another
important factor is the variance in runtimes. | use 5 runswafre benchmark, reporting the
median of the 5 runs. Figure 3.17 gives the maximum relatik@ érom the reported median
in the case of TL2. The other STMs show similar behaviourhkr¢dase of Kmeans, the close
performance of STM_x86 and STM_x86_strict coupled with ligh variance explains why
the latter is faster than the former for some thread counts.

The final question of interest is whether STM_x86 (transplaoetimistic concurrency control)

can improve performance when compared to locking. Figut8 8emonstrates that STM_x86
can indeed perform better than a lock in spite of being boiltd strict memory model and

transparency.

75

3. x86-safe software transactional memory

3.10 Discussion

Designing an STM that can be safely used at the level of x8ehinaacode is clearly a non-
trivial endeavour. | started this chapter with a set of exl@mphowing that the strictness of the
x86 memory model is a significant challenge for an STM compto¢he weaker language level
memory models. | showed that STM_x86 must trade off gergratid presented the design for
an STM that only disallows programs that result in TRUW raaeder transactional execution.
| argue that this likely originates from buggy programs watborrect synchronisation and thus
does not severely limit the applicability of SLE. Finallyptesented an evaluation showing
the scalability tradeoffs made in order to work at the lovestel of the x86-MM. In spite of
the significant extra synchronisation needed to ensurspeaency and applicability, STM_x86
can perform better than a lock.

The STM presented in this chapter has been used with manuaeskevel instrumentation. In
order to be actually used with SLE, it needs to be appliedraatizally at machine code level.
This requires a means to automatically instrument machaade ¢o intercept lock and unlock
calls and all memory accesses in a critical section, whithdsubject of the next chapter.

76

Chapter 4

X86 machine code instrumentation

As chapter 3 showed, STM_x86 preserves x86-MM but by itsatk$é the means to inter-
face with x86 machine code to provide software lock elisidhis chapter presents the design
and implementation of a binary instrumentation systemahatvs instrumentation of the lock
and unlock calls in a binary as well as instrumentation oshired memory accesses within
the delimited critical sections. Together with STM_x86e ttomplete system (referred to as
SLE_x86) provides software lock elision for x86 machineeod

| begin this chapter by discussing the two prevalent appresto instrumenting x86 machine
code: static and dynamic binary rewriting. | argue thathezitof them alone is sufficient for
SLE_x86. Instead, | show how the best features of each caarbbined into a special purpose
improved binary instrumentation system.

4.1 Approach

Research in the area of instrumenting machine code has loeen doth by the need to build
profiling tools that operate at the binary level, such as [RB&] as well as tools that actively
modify execution: such as to eliminate dead code [BDAOO]waneto apply software trans-
actional memory [OCS07]. Given x86 machine code contaimed program there are two
prevalent approaches to rewrite binary code into a formeRatutes an instrumented version
of the machine code: a purely static (pre-execution) ampraad the other is a purely dynamic
(runtime) approach. | discuss each of these approachesfoensing on their strengths and
weaknesses with regard to my intended application of usifog software lock elision.

4.1.1 Static binary rewriting

Static binary rewriting modifies binaries before executioproduce an instrumented version.
An early example of static binary rewriting is the binary riing tool ATOM [SE94]. Other
examples are DIABLO [VPCDB05] and PLTO [SDALO1].

Static binary rewriting has one key advantage: there is motmad to insert instrumentation,
since this process happens before the binary is executenn #re perspective of SLE_x86
however, there are two key difficulties with using staticdsnrewriting.

77

4. x86 machine code instrumentation

i f (Anal ysi sOpaqueCondi tion())
pt hread_rnut ex_| ock(& ock) ;
pt hread _nut ex_| ock(&possi bl y _nested | ock);

pt hr ead_nut ex_unl ock(&possi bly nested | ock);
/1 Should the follow ng be instrunented ?

i f (Anal ysi sOpaqueCondition())
pt hr ead_nut ex_unl ock(& ock);

Figure 4.1: Possibly nested locking

The first problem is indirect branches. Static binary ramgineeds to analyse the control flow
graph to decide which basic blockis the binary need to be instrumented. For example, in the
case of software lock elision, the critical section is mapetiall basic blocks reachable from
the basic block containing the lock call, but without endeuimg an unlock call. This cannot
(in general) be determined with static binary rewriting.GWl, for example, uses understanding
of the manner in which case statements are complied (by a @itamnto work out possible
targets of indirect branches. Since | wish to make SLE laggusgnostic, | cannot use this
technique.

The second problem, specific to SLE_x86, is demarcatingarisections in the presence of
nested locking. Consider the example in Figure 4.1. A pwsttic approach cannot determine
whether the portion of code after the first unlock call shdagdnstrumented since its inclusion
in a critical section is execution dependent.

4.1.2 Dynamic binary rewriting

Dynamic binary rewriting can be used to modify binaries atceion time in order to in-
sert instrumentation. Dynamic binary rewriting has relyegained popularity since it enables
extremely useful program analysis and optimisation toolbd built. A number of dynamic
binary rewriting engines have been produced, including [RIBM *05], FastBT [PG10], Dy-
namo [BDBO0O] and Valgrind [NSO7]. They have formed the bésisuseful program analysis
tools such as Memcheck [SNO5] and program optimisation [BOB Since instrumentation
is inserted dynamically, it does not suffer from the proldemth static rewriting mentioned
above. Dynamic binary rewriting however suffers from thelggem of high overhead. There
are two primary sources of this overhead.

The first is the cost of inserting instrumentation. Code aken must be stopped in order
to rewrite it with instrumentation inserted. This happersrg time new instrumentation is
inserted.

Another source of high overhead is maintenance of the ‘cadbe: a region of memory that
holds all executed (and possibly modified) basic blocksc&the dynamic binary rewriting en-
gine cannot at any point guarantee that no new code requirgtigimentation will be executed,
it executes all code out of a ‘code cache’. The code cache@vaains code that has not been
instrumented. This ensures that the dynamic binary revgriéingine maintains control of code
execution and is able to see all newly executed code. Unfatély the ‘code cache’ imposes

LA single-entry single-exit sequence of machine code.

78

4.2. x86 instrumentation modes and backends

significant overhead even for uninstrumented code. Thiesfeom the cost of maintaining the

finitely sized code cache and taking care of events such asas. From the perspective of

software lock elision, the code cache is a completely ursszng source of overhead. There
is no need to instrument code outside critical sections,tlnslno need to put it into the code
cache, possibly displacing more useful instrumented lsock

4.1.3 Combining static and dynamic techniques

The instrumentation system for SLE_x86 aims to combine #reefits of static and dynamic
binary rewriting while side-stepping their problems. A¢theart of the instrumentation system
lies the Persistent Instrumentation Cache (PIC).

A PIC contains instrumented versions of basic blocks wittritical sections of its originat-
ing binary. It is persistent and held in an on-disk file. Itghepresents the instrumentation
that would have been added by a static binary rewriting enghcompletePIC contains in-
strumented versions @veryreachable basic block withieverypossible critical section of the
binary. The completeness of a PIC is clearly undecidablbermpresence of indirect branches
in the binary. | return to the problem of tolerating inconpl®ICs during software lock elision
later in the dissertation.

The PIC is generated dynamically, as | depend on executidoolo past indirect branches.
| also depend on execution to properly handle nested drieetions (such as that shown in
Figure 4.1) by dynamically counting held locks. The PIC thastains code that would have
been generated by a dynamic binary rewriting engine.

4.2 x86 instrumentation modes and backends

Instrumented execution of x86 binaries begins with an erfp@. Execution can then happen
in one of two modes:active modeor passive mode In active mode, new instrumentation
can be added to the PIC based on newly discovered basic bldcksassive mode no new
basic blocks can be added to the PIC. However execution siygasiode is much faster since
the instrumentation system avoids any overhead assoamtedntercepting and examining
executed basic blocks to determine if they should be instnied, as | show later in this chapter.

Crucially, active mode provides the capabilities of dynadiscovery normally associated with
dynamic binary rewriting while passive mode uses the (dlydauilt) PIC in a manner that
attains lower performance overheads more typical to Svatiary rewriting.

In both modes, the binary executes with instrumentatior. ilktrumentation system is oblivi-
ous to what the instrumentation does. It assumes a backahgdrttvides functions to be called
for each instrumentation hook. The x86 instrumentatiotesygrovides the following hooks:

1. El i de: Called whenever a lock is acquired. In addition to the lodd#trassEl i de takes
a set of parameters related to checkpoints (see Sectian 4.6)

2. Specul ati veRead(| oc, si ze): Called on a memory read from locatibc of
sizesi ze, within a critical section. The instrumentation hook shibndturn the (possibly
different) location from where the read is to be actuallyfpened.

79

4. x86 machine code instrumentation

(6) Add Instrumented Code

(2)

€F32 x86 Binary) Backend PIC

4)

(4) TRACE_AddInstrumentFunction(Trace ...)

>
o

(5) Callback Trace(...) [also modifies trace]

PIN

PIN Code Cache

91N29X3 pue ayde) apo)) 03 3eU| 03 PPY (£)

INILSAS NOILVINIWNYLSNI (€)

(1) SINGLE ADDRESS SPACE

Figure 4.2: Execution in active mode

3. Specul ativeWite(loc, size, rnmw flag): Called ona memory write to lo-
cationl oc of sizesi ze, within a critical section. Themw_f | ag is a boolean that that
tells the backend if the write is an x86 read-modify-writthex a simple write. The in-
strumentation hook should return the (possibly differéotation to which the operation
is to be actually performed.

4. Rel ease: Called whenever a lock is released. Indicates on returriiveheny locks are
still held.

The backend must know the type and functionality of the logkbeing used in the program
in order to be able to fall back to pessimistic locking. Foample, most of the evaluation
in this dissertation has been with backends written for greclsronisation operations in the
Pt hr eads library [DMO5)].

A simple backend used in this dissertation is thél backend The null backend simply ac-
qguires and releases locks on tkei de andRel ease calls respective. For memory access
instrumentation it simply returns the location passed ime full backend thus leaves execution
unchanged. In addition to being useful for debugging | as®itiin this chapter to evaluate the
overhead of the binary instrumentation system itself withemy of the costs associated with
STM_x86.

4.3 Active mode

Active mode executes the binary using a dynamic binary tewgrengine. Code is examined
when it is executed for the first time. If the code is being exed in the context of a critical
section, then it is instrumented and placed in the PIC. Qtiser, the code is executed uninstru-

mented.

80

4.3. Active mode

Dynamic binary rewriting engines are fairly complex to budnd maintain and by itself can
form the topic for a PhD thesis [NSO7]. | thus chose to leverag existing dynamic binary
rewriting engine for this part of the instrumentation systel use PIN [LCM"05], a widely
used and stable dynamic binary rewriting engine for x86 fi@sa My decision to use PIN was
guided by two factors.

First, PIN provides an excellent high level interface topist and manipulate x86 code. It
provides a C++ API that can operate at various levels of abstm: from whole images, down
to functions, basic blocks and individual instructions.NRilso includes a (not very widely
used) API called X86 Encoder Decoder(XED)to directly dexadanipulate and re-encode x86
instructions (complex due to their CISC nature) from and exhine code. | made extensive
use of XED to build the instrumentation system in this ditdemn.

Second, PIN has a large community of users and is activelytaiaed. This is important
because the x86 ISA is actively changing (such as the addifi®&SE3 instructions) and it is
important that the binary rewriting engine keep up with thadditions to be useful for SLE
now and in the future.

Figure 4.2 details the key software blocks and their intéwas when operating in active mode.
The first key point to note is that all components are in theesaddress space (1). The three
executable components (2) are the x86 binary, the backetd®Hd (which is mapped into
memory for use). These are never executed natively andaith&eecuted out of PINs code
cache (bottom).

The instrumentation system logic dealing with active madsts as gintool (3). It is written

in C++ and compiled into a shared library. It is loaded withRInd interacts with it at &ace
granularity — a trace is a single entry multiple exit contiga sequence of basic blocks that is
begun at the target of any branch and ends at an unconditioaath. The pintool registers
a callback with PIN through th& RACE_AddI nst r unment Funct i on call at initialisation
time (4). For every new trace encountered, PIN presentsdbe for manipulation to the pintool
(5). If the trace originates from a critical section, thetinmentation system logic places an
instrumented version of the basic block(s) in the tracetimd”IC (6). It then modifies the trace
to branch to the instrumented version in the PIC. All exedwutede (other than that from PIN
or the pintool) is placed (after possible modification) iRItN's code cache (7) from where it is
actually executed.

Most of the heavy lifting of binary interception, analysisdasynthesis is thus done through
PIN. The remaining sections focus on features of active ntodéained in the pintool that are
relevant to SLE_x86.

4.3.1 Identifying critical sections

Active execution depends being able to determine whethersa block belongs to a critical
section. Unfortunately this is notsdatic characteristic of a basic block. Consider the example
in Figure 4.3. In that example, the string copy library fuoctis called through a function
pointer twice, first outside any critical section and nesidie a critical section. On the second
call, PIN no longer presents traces in string copy for imegatation since it has already added
these instructions (without instrumentation) to its codehe after the first call. To solve this
problem | needed a way to communicate the different contebdsbasic block, such as for the
string copy code in the example, to PIN.

81

4. x86 machine code instrumentation

char+ (*fptr)(char *, char *) = strcpy;

fptr(a, b);
pt hread_nut ex_| ock(& ock);
fptr(c, d);

pt hr ead_nut ex_unl ock(& ock);

Figure 4.3: The same function in multiple contexts

To do this, | make use of a PIN facility callechce versioning This allows a trace (and hence
basic blocks in it) to be assigned a version string. The saaoe twith two different version
strings is treated as two different traces by PIN. Tracesaaseciated with a NULL version
by default. After entering a critical section, | set the ga®rsion to a special string indicating
critical section context, which is then propagated to tsaecuted by branches from that trace.
This ensures that executed code is presented for instratr@meven if it has been encountered
before (as in Figure 4.3). At the end of a critical sectiongeget the trace version string to
NULL.

The next problem is to determine when execution enters s extritical section. To do this,
| first determine (using a tool, before the program is run)aagtation from lock and unlock
function names to corresponding function addresses. Fayyénstruction presented by PIN, |
checkifitis a direct control transfer (direct xB&p/ j cc orcal |) and if the target is the same
as one of these addresses. If so, | insert the appropriatenmsntation call. The actual lock and
unlock calls are deleted, leaving the backend to eitheeaidacquire the lock. The backend
is then responsible for indicating when critical sectioreslzegun and ended (by maintaining a
count of held locks). On a critical section begin, | requireadl to a specially named function
in the backendds_begi n); similarly, on encountering the end of a critical sectibrequire

a call to another specially named functias(_end). The instrumentation infrastructure looks
for execution of these functions (which can be empty “no“psorder to learn when critical
sections begin and end. Traces branched to by a returndeorbegi n have their version set
to critical section context. On the other hand, traces liradd¢o by a return fromas_end have
their version set back to NULL. This allows dynamic handlofgesting such as that required
for Figure 4.1.

4.3.2 Basic block discovery

Active execution aims to instrument every basic block tlzat be executed in critical section
context. One way to do this is to wait for execution to disea@xeery possible trace in a critical

section and then instrument it. However, this makes bujldgincomplete PIC a function of

input and timing (in multithreaded execution) and in preetthis leads to a large number of
program iterations being needed to build a complete PICnkxgese, in the presence of indirect
branches it is impossible to decide if a PIC is complete.

However, the problens tractable given only direct branches by simply travershmg ¢ontrol
flow graph starting from a lock call. | exploit this fact by ertling dynamic code discovery
made available by PIN with static control flow graph travemsahe instrumentation logic of
the pintool. To do this, starting with a lock call, | travetke control flow graph of basic blocks
using the depth first search (DFS) shown in Algorithm 11. Ti&Dloes not look past indirect
branches and unlock calls. For direct conditional brandhpsocesses the fall-through basic
block immediately to avoid an unnecessary branch in the PIC.

82

4.3. Active mode

| thus depend on execution only to discover critical sechionndaries and to look past indirect
branches. In the evaluation at the end of this chapter | dstrete how this combination of

static traversal of the control flow graph (similar to thaedisn static binary rewriting tools

such as ATOM) and dynamic code discovery is effective in orprg the rate at which basic
blocks are added to the PIC.

Algorithm 11 Depth-first search of control flow graph

1: while BasicBlockStack is not emptjo

2. bb =BasicBlockStack.pop()

3: Instrument bb and add to persistent instrumentation cache
4: ins = bb.LastInstruction()

5. /[*ins must be a branch */

6: if ins ends a critical section (unlock calljen

7

8

9

continue
else

if ins is a direct brancthen
10: bb = BasicBlockAt(ins.target())
11: BasicBlockStack.push(bb)
12: if ins is a conditional branctihen
13: /* has a basic block at fall-through */
14: bb = BasicBlockAt(ins.next())
15: goto line 3

4.3.3 Basic block instrumentation

I now discuss how memory access instrumentation is addedosetindividual basic blocks
determined to be reachable in critical section context.lllistrate this, | use an example basic
block from one of the benchmarks considered in this dissertaconcurrent AVLtree. Fig-
ure 4.4 shows the original basic block on the left, with th&rimmented version of the basic
block on the right.

The numbered instructions on the right correspond to thebewed instructions on the left.
For example, the first instruction accesses memory. Thisngearted into an instruction that
first loads the target address into thax register. The next few instructions load the size of
access into thedx register and the rmw flag into thecx register. The size and rmw flag
are encoded such that the most common values (4 bytes aer{l fiadg to zero. This means
the registers can be set up with a two byte instruction (eskeduor-ing the register to itself),
keeping the size of instrumentation and hence instructahe pressure down. The call to the
instrumentation hook returns the (possibly) differentradd to use ieax, which is then used
in the instrumented version of the basic block.

The first notable feature of the instrumentation is flag amister management. Since calls
to the instrumentation hooks are expected to destrogéhe edx andecx registers as well
as the flags, these need to be saved and restored as apgropphét is accomplished by the
un-numbered instructions in the instrumented version@bidisic block. The save area is setup
on stack (the PIC is shared between threads) by the firsugi&in. Liveness analysis is done at
the level of the basic block to optimise away unnecessany szstores. For example, the fourth
instruction overwrites the x86 flags and thus the flags arsaed.

83

4. x86 machine code instrumentation

Note: AT&T format-> operation src, dst
| ea oxfffffffo(%sp), Yesp

Menory[8 + Reg[eax]] -= 1; nmov %eax, 0x0(¥esp)
1. subl $0x1, Ox8(¥eax) 1.1 lea 0x8(%eax) , Yeax
nov %ecx, 0x4(%esp)
nmov %edx, 0x8(¥esp)
1.2 xor %edx, Yedx
1.3 xor %ecx, %ecx
1.4 inc %ecx
Call Specul ativeWite
1.5 call Oxf f 624730
1.6 subl $0x1, (Y%eax)
Menory[12 + Reg[eax]] = Reg[esi]; nmv 0x0(%esp) , Yeax
2. mov %esi , Oxc(%eax) 2.1 lea Oxc(%eax), Yeax
2.2 xor %edx, Yedx
2.3 xor %ecx, Yecx
2.4 call Oxf f 6a4730
2.5 nov %esi , (Yeax)

Menory[4 + Reg[esp]] = Reg[eax]; nmov 0x0(%esp) , Yeax

3. nov Y%eax, 0x4(¥esp) 3. nov %eax, 0x14(Yesp)

Reg[ebx] =0

4. xor %ebx, Yebx 4. xor %ebx, %ebx

Menory[Reg[esp]] = Reg[edi];

5. mov %edi , (Y%esp) 5. nov %edi , 0x10(Yesp)
nmv 0x8(%esp) , Yedx
nmov 0x4(Y%esp) , Yecx
| ea 0x10(%esp) , Yesp

6. call 8048bal <rebal ance_insert> push $0x8048e12

oo

1
2 jnp 0x123c4bal

Figure 4.4: Shared memory instrumentation for a basic block

The second notable feature of the instrumentation is tlantrent of memory accessed through
the stack pointer (registersp). The stack is usually thread private and (due to the limited
number of registers on the x86) heavily accessed. If a logas known to be thread-private,
accesses to it (other than locked ones) can be re-orderedwiiny effects observable to other
threads and hence without any violation of x86-MM. This neetirat accesses to the stack can
be performed directly without indirection into STM_x86. i$lis turn removes a large number
of redundant calls t&pecul ati veRead andSpecul ati veW i t e. This however means
that there must be some way to return stack locations to thigjinal value if the executing
transaction aborts; | discuss how this is done in Section Al6o, there must be some way
to detect the case where stack locations are shared betwesds$ (although unlikely, this
is not impossible); | discuss how this is done in Chapter Galy, from the perspective of
instrumentation, stack accesses need to be adjusted tarddow the save area created on
stack. This can be seen in the example where the offset flsugt®n5 is adjusted upward by
16 bytes.

The final notable feature about the instrumentation is thallag of the call instruction that
terminates the basic block. The instrumented version @usteereturn address before jumping
to the target. This is standard practise for binary rewgigngines and originates from the need
to leave return addresses unmodified on stack. In the exaithae ebal ance_i nsert
function would see the original native address rather tharaddress from the PIC were it to
query the return address of the function. A common occugerfchis kind of behaviour is in
position independent code, where a call is made to the imatedglifollowing instruction which
then queries the top of stack to discover the current instmugointer (there is no direct way
on x86 in 32 bit mode to materialise the instruction pointeainy other register).

84

4 .4. Passive mode

The instrumentation of basic blocks is also complicatedhgyfact that the x86 ISA permits
complex instructions. Some instructions allow accessimgenthan one location (such as a
push of the contents of a memory location). Another compboaarises from string operations
where the length of the access cannot be determined shafiitalsually depends on the con-
tents of theecx register). | handle such cases by breaking them down intplsinRISC style
operations that are then instrumented.

4.3.4 PIC operations

There are four fundamental operations that active modepasgon the PIC. These are loading
the PIC into memory; appending instrumented basic blocksadIC; executing from the PIC;
and querying the PIC.

I load the PIC into memory by doing a memory map (Umixap) from the disk file containing
it. This ensures that the disk file is upto-date with any adds to the PIC. Appending basic
blocks to the PIC simply consists of writing out instrumehtersions of basic blocks to the
end of the PIC.

Executing from the PIC represents a problem due to speaialimg of self-modifying code by
PIN. In order to detect self-modifying code, PIN looks fogpa that are being executed from
while being marked writable. It then marks these pages aswoaly and traps any writes to it in
order to detect self-modifying code. This causes large@mwns when executing instrumented
code out of PIC pages. To work around this problem, | map theedalC page twice, once as
executable but read-only and once as read-write but noutdele. Appending to the PIC is
done through the writable mapping while execution usesxkewdable read-only mapping.

The final thing that needs to be supported by the PIC are qurimap executable native ad-
dresses to instrumented basic block addresses in the Rit@sént. The core of the logic that
handles queries is a mgp: native address— PIC offset. Such a map is easy to set up and
maintain for a single run but difficult to persist across rumke reason is that the native exe-
cutable address of the basic block in the PIC can changesauns. For example, the native
address might originate in a shared library that can chasdedad address on each active exe-
cution. To solve this problem, the map is persisted as

f : (native address relative to image baseage namg — PIC offset. It is loaded and turned
into the required form by querying the base of each loadedy@r{enain binary or shared li-
brary). A similar technique is used by dynamic binary renvgtengines that persist instrumen-
tation across runs [RCCSO07].

4.4 Passive mode

| now cover the operational details of execution in passien Figure 4.5 provides an
overview of the software components involved in passive enodll the components run in
the same address space (1). In addition to the x86 binargh@)nstrumentation system (3)
and the backend (4) are loaded as shared libraries (thranggbinix LD _PRELOAD mecha-

nism). On initialisation the instrumentation system lo#us PIC (5) by mapping the on-disk
version into memory (6). By virtue of being preloaded thdérmmsentation system is able to in-
tercept lock calls (7) at which point it can redirect exegntinto the PIC. There is no dynamic

85

4. x86 machine code instrumentation

' (2) ELF32 x86 Binary)

(7) Intercept lock calls

(3) Instrumentation System

(4) Backend (5) PIC -«
(6)mmap

(1) SINGLE ADDRESS SPACE

Figure 4.5: Execution in passive mode

binary rewriting engine (PIN) nor its code cache. Execupooceeds directly from the native
binary or the PIC.

The critical features of execution in passive mode are saityphbhnd low overhead. There is no
overhead to add instrumentation and — as | shortly show — achead when executing outside
a critical section.

4.4.1 Preparation

An offline tool needs to be run on the PIC before any passiveutian that follows an active
execution. The job of this offline tool is effectively to “&th” together basic blocks in the PIC
by patching branches across them, to target instrumentad lblacks in the PIC rather than in
the native binary. As an example, consider the call insimadt the end of Figure 4.4. During
active execution it targets the native binary and is intete# and redirected via PIN. Its target
must have been added (being a direct branch) by the CFG Vgikildm to the PIC. The offline
patching step patches the branch to point to the instrurdesatiesion of the target. Note that on
the x86 direct branches are instruction pointer relative s the patching is unaffected by
PIC relocation across different runs. The patching stepst fror example, for a 5MB PIC it
takes barely a few seconds to run.

4.4.2 Intercept and dispatch

The heart of passive execution is the intercept and disgdatgh. | illustrate this using the
example flow in Figure 4.6: dynamic execution would normatigve through the basic blocks
By through toB,,. 1. By ends in a call tgot hr ead_nut ex_| ock and thus begins a critical
section. Basic bloclB,, ends in a call tgt hr ead_mut ex_unl ock and thus ends a critical
section. The instrumented versions of the basic blockserctitical section B, till B,,) are
shown on the right.

The first step is to intercept all lock calls. This is done tigie the UnixLD_PREL OAD mecha-
nism by intercept logic which is specific to the type and fiomwlity of the locking in use: the
example deals with thet hr ead_nut ex_| ock. Instead of acquiring the lock, executing the

86

4.5. Exceptions

/
pthread_mutex_lock NO @Eé“
] o
B By
.\

82 B2

°

° ;

[] :

| i

Bn Bn

5 Locks held

\J
B Dispatcher

n+1

Figure 4.6: Intercept and dispatch

critical section and releasing the lock (as on the left),diaeamic linker in the system ensures
that the lock call transfers control to the interceptor. Triterceptor then call&l i de which
can decide to do one of two things. In the event that the lotHasklisted (Section 3.7 of the
previous chapter), the interceptor returns control to theral code flow path. Otherwise, the
lock is elided and control transfers to the dispatcher.

The dispatcher queries the PIC to determine the instrurdemtesion of the basic block pointed
to by the return address of the original lock call. It theodifiesthe return address on the
stack to point to the instrumented version of the basic blgck PIC having been mapped
into memory). On exit from the dispatcher, control transfeito the PIC and executes the
instrumented version of the critical section (on the righithe unlock call is replaced with a
call to Rel ease which indicates on return if any locks are held. If no locks held, control
returns to the native binary. Otherwise control returndodispatcher, which decides the next
basic block to branch to in the PIC.

The result is that no overhead exists for inserting instmiai#on or for executing code that is
not in a critical section, since in that case execution pedsdrom the native binary.

The dispatcher is also used to resolve indirect branchés#use a lookup in the PIC. If the
indirect branch cannot be resolved, an exception is raised.

4.5 Exceptions

The instrumentation system raises two kinds of exceptiotiseé backend:

87

4. x86 machine code instrumentation

1. Fl ushWi t eBuffer
2.ExitPIC

The first exception is raised when any locked instructiomfa@nc e instruction is encountered.
As | have shown in the previous chapter, the x86-MM cannotresgrved in this case. The
backend implementing STM_x86 handles this by switching a@gessimistic locking. The
null backend does not care about the flush of the write bufidrsamply continues executing
out of the PIC.

The second exception is raised when execution is forced itadhex PIC. There are two sit-
uations where this can arise: (i) During passive mode thei®Iidt complete and does not
contain the target of an indirect branch, (ii) A system calinade, the instrumentation system
cannot instrument the kernel. The STM_x86 backend harkles Pl C exceptions by falling
back to pessimistic locking (none of the benchmarks stuthi¢dis dissertation raise this ex-
ception, although | have simulated it in unit tests). Thd hatkend handles this exception by
switching execution back to the native binary (since itadieeffectively executes native code
by acquiring locks and performing memory accesses directly

4.6 Checkpoints

A complex requirement for SLE_x86 is the ability for transacal execution to be aborted
and its effects rolled back. The instrumentation systemiges the capability to taketaread
checkpoint and roll back execution of the thread to this kpemt. A checkpoint is taken at the
beginning of a critical section and discarded at the end.

There are two effects that transactions can have on systm shey affect register state and
they affect memory. | first discuss checkpointing registers then discuss checkpointing mem-
ory.

4.6.1 Registers

Like library-based STMs such as TL2, | use gt j np andl ongj np C library functions to
checkpoint and restore register state. Fled j np andl ongj np pair however, do not save
and restore floating point state for the x86 CPU and this nteelols done by the instrumentation
system. The calling ABI in use with the threading libraridgale built backends for (Pthreads
and OpenMP) mandate that the x86 floating point registek sse@mpty and the flags are reset
on entry and exit from the lock call. Hence, on a rollback | giyireset the floating point stack
and exception flags (using the x@Bms instruction) to remove any effects from the aborted
transaction.

4.6.2 Memory

All memory accesses indirected into STM_x86 are automiatibaffered but accesses to the
stack are performed without instrumentation under therapsion that they are thread private (I
return to the problem of detecting the case where the stackethread is accessed by another
in Chapter 6).

88

4.6. Checkpoints

x86 stack grows to lower memory £0
T {
Access directly without loggin intf v;
° y gging 9(&F V):
o }
h() g(int *p_f v)
{
M g0 9 int g_v;
lock(L);
f) fv h(p_f_v, &g_v);
unlock(L);
®
® - -
Must log and access indirectly {h('"t *p_f_v, int *p_g_v)
*p_fv=1;
Copy frame into checkpoint }*p_g_v =1;

Figure 4.7: Checkpointing the stack

However, updates to the stack still need to be rolled backdfttansaction aborts. Library-
based STMs such as TL2 that are used at a source level refjaipgagrammer to avoid up-
dating variables on the stack that are live-in to transastid his is not possible with automatic
instrumentation. Hence the instrumentation system ch@nkpthe region of stack that might
be updated in the transaction.

One problem is to determine exactly how much of the stack exighoint. On the x86 ar-
chitecture, the stack grows downwards (towards lower as$&. Hence, when a memory
checkpoint is taken, all stack memory at addresses lowerdba on the stack are dead and
are not checkpointed. This leaves the portion of the stawk &sp upto the end of the stack.
Clearly this could be a large region. Instead of checkpogti all, which would unacceptably
slow down execution with software lock elision, | only chpoknt a sub-regiondsp, esp

+ checkpoi nt _si ze).

The checkpoint size needs to be large enough to capturecaiéses to the live region of stack
made through the stack pointer during the transaction. lentak (reasonable) assumption
thatesp relative addressing is limited to the frame of the curreettgcuting function and its
parameters. It thus suffices to:

1. Checkpoint only the portion of stack occupied by frame padhmeters of the function
executing the lock call beginning a critical section

2. Raise an EXxitPIC exception if control returns from thisdtion before the critical section
(and hence the PIC) is exited

The instrumentation system (during the active phase) ahiies the checkpoint size by scan-
ning the function where the critical section is begun, logkior instructions that reserve space
on the stack and those that use an offset from the stack pgiotaccess parameters). This is
used to conservatively estimate the frame size.

To illustrate how checkpointing works, consider the sinfplexample in Figure 4.7. Execution
switches to the PIC at the critical section begun in functionAccesses through the stack
pointer during the execution of the critical section aratéd to the frame off and the frame of
the called functiomn. The frame oh is dead from the perspective of the checkpoint if execution
is rolled back. Access to locations in the frame of the cdllean only be made through pointers

89

4. x86 machine code instrumentation

#iterate

emacs programc

gcc -3 programc -l pthread -o program
gdb program

#CGenerate PIC (iterate until no new basic bl ocks added)
active_exec.sh program <ar gunent s>

#run w t hout
./ program <ar gunent s>

run with SLE
LD PRELOAD=I i bsl epassi ve. so ./ program <ar gunent s>

Figure 4.8: Putting it together: Using SLE

that are indirected into the STM. If control returns fragnbefore the critical section is exited,
pessimistic locking must be used (via raising the ExitPICegxion) since accesses to the stack
can be made if through the stack pointer outside the checkpointed region.

It is also important to ensure, from the perspective of ST86 that locations on the stack that
can be accessed through the stack pointer within a transaate never logged. For example,
in Figure 4.7, the write t@_v in functionh must not be logged in the write buffer because
a subsequent direct access through the stack pointemiauld not see the update. The STM
logging functionsSpecul at i veRead andSpecul ati veW i t e are constructed to ensure
that locations on the stack at or below (in address tees§) + checkpoi nt _si ze are
never logged. This ensures, in the example, that is correctly logged.

4.7 SLE_x86 in practise

The instrumentation system contained in the pintool, méamnactive execution is approxi-
mately 4000 lines of C++ code. The implementation suppdttbiBcode only. The SLE_x86
backend excluding the STM code described in the previoustehe approximately 2000 lines
of C code. The typical manner in which programs have beenauthfs dissertation is shown
in Figure 4.8. The first step is to write, compile and debugattgram. There is no awareness
of SLE at this stagé.

The next step is to build the PIC. This is done by iterativelgning the program under the
control of PIN in active instrumentation mode. | provide aigicthat abstracts away much
of the complexity of the PIN command line. The instrumemtatsystem pintool prints the

number of basic blocks added to the PIC in the run. | assunighbaPIC is complete when

2 consecutive runs add no new instrumented basic blockss i$hnly a heuristic since PIC

completeness is undecidable in general. However it workkfarethe programs examined in

this dissertation. Once the PIC has been built, the progeamioe run in passive instrumentation
mode.

2Indeed, the fact that there is no transactional memory inahiehain made it easy to debug some of the issues
with the larger programs used in the evaluation.

90

4.8. Evaluation of the instrumentation system

One of the interesting consequences of using aggressitre B&sic block discovery during
active instrumentation is that limited inputs can be sudfitito build the PIC. In the case of
the STAMP benchmarks that have been heavily used in thisrdésn | used a small input set
(intended for simulators) to build the PIC. This meant | cooiiild the PIC in under 2 minutes
for all benchmarks; while a full run of the benchmarks using hative input sets took to the
order of 18 minutes.

4.7.1 Backends

The backend is specific to the purpose (null or STM_x86) a$ agethe type of locking in
use. In this dissertation, | use the null backend and the SB@ backend, as well as a profiler
backend that | discuss in the next chapter; with both Ptlsraadvell as OpenMP. Each of these
six individual backends share most of their code and arébaitifferent compile-time settings.
The OpenMP backend includes support for the Intel compileer®P implementation that
in addition to standard OpenMP locking calls uses so-cdliest dispatch” calls (additional
parameters are passed to quickly locate thread privaté)data

4.8 Evaluation of the instrumentation system

| now evaluate the instrumentation system alone. | use thiebackend for this section in
order to eliminate any STM related effects. | use the sameMHAenchmarks that were
used in the previous chapter and the same 48-core systenelfdppB: Tigger). Instead of
using transactions declared and instrumented at soureg lekeplace the transactions with
critical sections that acquire a process-wide lock, theexecuting the transactions with single
lock atomicity. The manual instrumentation for shared mgnaecesses is redefined (through
macros) to no-ops i.e. direct access to shared memory. Tingilewl STAMP benchmark
binaries can thus be run either using locks, the null backeqdivalent to running with locks)
or (as | discuss in the next section) with software lock efsi

| begin with a static characterisation of the binaries fréva perspective of binary instrumen-
tation in the table in Figure 4.9. The 32 bit ELF binaries gated range in size from 52k for
Kmeans to 196k for Yada. The number of critical sectionsgmigd by counting lock calls)
range from 6 to 18. The size of the PIC generated by activeuim&ntation is usually a quarter
of the size of the binary (since it does not include code detsritical sections). There are quite
a few indirect calls in critical sections (counted from thengrated PIC), which would have
been a limitation for static techniques. A significant fractof these are to shared libraries that
would have posed a problem for a transactional memory cempgihce these ‘legacy’ libraries
would have remained uninstrumented.

The next set of results focus on the active instrumentati@se when the PIC is built. The table
in Figure 4.10 shows the number of basic blocks added in daddtion. In accordance with
the heuristic, | stop when no basic blocks are added for tmsecutive iterations. In contrast,
the table also shows what would happen were static expborafithe control flow graph not in
effect. Even after 3 iterations the PIC is missing basic lkddcom critical sections for all the
benchmarks.

3ftp:// downl oad. i ntel.com technol ogy/itj/2004/vol ume08i ssue01/art02_
compi |l ers/vol 8i ss1_art 02. pdf

91

4. x86 machine code instrumentation

BenchmarkBinary size (bytegCritical sectionsPIC size (bytes)ndirect callg

Bayes 181603 18 61574 57
Genome 118334 8 18677 30
Intruder 153089 6 30722 26
Kmeans 52821 6 9241 15
Labyrinth 116384 6 20617 23
SSCA2 140156 13 19968 19
Vacation 143772 6 40887 29
Yada 196715 9 56246 50

Figure 4.9: STAMP: Static characteristics

With CFG walk Without CFG walk
BenchmarkExec 1 Exec 4Exec 3|Exec 1Exec ZExec 3
Bayes | 1435| O 0 723 2 0
Genome | 383 0 0 221 0 4
Intruder | 629 0 0 452 2 4
Kmeans | 178 0 0 91 4 0
Labyrinth | 443 0 0 340 2 0
SSCA2 | 394 0 0 111 0 0
Vacation | 853 0 0 464 0 0

Yada 1113 O 0 899 1 0

Figure 4.10: Basic blocks added to PIC in each active exacitiration

I now focus on the difference between active and passive mblae entire objective of build-
ing a PIC is to execute without the overhead of interceptipraldynamic binary rewriting
engine. Figure 4.11 shows the overhead of instrumentatiaiir(g into the null backend). |
report the execution time of the instrumented binary digidg the execution time of theative
binary (running with locks). The executions are with one#ftt only to focus on single thread
overheads. This reflects the cost of adding memory accesarnmasntation. The results in Fig-
ure 4.11 show that passive mode is much faster than active midte gains vary from 1.13X
faster in Labyrinth to 2.27X faster in Yada.

4.9 Evaluation of SLE_x86

I now turn my attention to the purpose for which the instrutagon system has been built: soft-
ware lock elision. | use the STM_x86 backend running in p&ssiode (with a pre-generated
PIC) for the experiments in this section. This is the congBLE x86 system. The results
(also on the 48-core machine), in addition to contrasting {86 with locks also repeat the
results from STM_x86 in the previous chapter. Note that naipapplying the instrumentation

and then compiling it results in a substantially differemdgram from that obtained by auto-
matically inserting the instrumentation in machine codeu§g STM_x86 and SLE_x86 are not
directly comparable, although one would ideally like thenbé close in terms of performance.

The results are split across Figure 4.12 and Fig 4.13. Forfdbe benchmarks Vacation,
Kmeans, SSCA2 and Intruder, the performance of SLE_x8&lagpproximates the perfor-
mance of STM_x86. It is interesting to note that in some caskematic instrumentation is

92

4.9. Evaluation of SLE_x86

Speedup over sequential

Speedup over sequential

1.8
16
14
1.2

0.8
0.6
0.4

0.2 ¥

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

STAMP:Instrumentation overhead

L] L] L] L] L]
— Active C—1
5 Passive Cista
c 4
= _
3 3 =
2 o
UQ) £ e
K5 i o0
2 [] 9] O3 e st [R .
1y, X, < X
9] P 98] 8
el LR |
e ! £ % b -
1 K& Y %Sl IR el g b2
K o< bt Bt b P 0
XA % 4 %Y 158 A WA
t’\ 3 }V)' kx){ <l [k«": WA
i< Ko<t W] L Lo o [0
0 o o sl wea A b v "
= [g] 7] [(] 7] =
<)
c S 9 2 (S S °
= & = 5 I
g >] @© e 4] >
o) (&) E =
Qo I Q c
o > o = =
Benchmark

Figure 4.11: Binary instrumentation overhead

STM_x86 —+— SLE_x86 ---->--- locks *
STAMP:vacation
/'X(
¥ PV SR 3
1 2 4 8 16 32
Threads
STM_x86 —+— SLE_x86 ---->--- locks -
STAMP:yada
FOR— £V Kooy
/ R .
------------------ D AN
1 2 4 8 16 32
Threads

Speedup over sequential

Speedup over sequential

25

STM_x86 —+— SLE_x86 -3 locks 3K+

STAMP:kmeans

16 32

Threads
STM_x86 —+— SLE_x86 ---->--- locks -+

STAMP:ssca2

0.9 F-

0.8

0.7

0.6

0.5

0.4
0.3

0.2

0.1

16 32

Threads

Figure 4.12: SLE on the STAMP benchmarks(1)

93

4. x86 machine code instrumentation

STM_x86 —+— SLE_x86 ---->--- locks ¥ STM_x86 —+— locks Yo
SLE_x86(lock) ---->¢---

STAMP:intruder
STAMP:bayes

0.9 b
08 |-
07
06
05

04F ; i —]

Speedup over sequential

Speedup over sequential

F— U
------- Koo L RS
T o — Ko s ¥
0.2
0.1
0 . 0
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads
STM_x86 —+— SLE_x86 ---->¢--- locks ¥ STM_x86 —+— locks ¥

SLE_x86(Tock) -~~~

STAMP:genome
STAMP:labyrinth

5
4.5
4
35

2 k)

S =

[} [=

=] @

o 3

3 g 3

— 2]

GJ —

3 g 25 7

o o 2

=] o

3 = _—

Q [-

o Q //

a & 1T * ¥ % ¥ T
0.5[]
0

1 2 4 8 16 32
Threads Threads

Figure 4.13: SLE on the STAMP benchmarks(2)

Threads
Benchmark 1| 2 | 4 | 8 | 16 | 32

labyrinth |[NO| NO | NO | NO | NO | NO
yada |INO| NO | NO | NO | NO | NO
bayes [[NO| NO | NO | NO| NO | NO
vacation |[NO| YES| YES| YES| YES*| YES*
genome [[NO| NO | NO | NO | YES | YES
kmeans |[NO| NO | NO | NO| NO | NO
ssca2 |[NO| NO [YES| YES| NO | NO
intruder [[NO| NO | NO | YES| YES | YES

Figure 4.14: Is using SLE_x86 better than using the lo¢k theans also better than sequential)

able to outperform that inserted manually and optimisedieycompiler. The remaining four
benchmarks however do not behave well with automatic inséntation. In the case of Bayes
and Labyrinth, the number of accessed shared memory losat®o large that it overflows the
STMlogs. This is not fatal for SLE_x86, which falls back tespenistic locking. Hence, | label
them specially aSLE_x86(| ock) inthe graphs. In the case of Yada and Genome, automatic
instrumentation trails the manual one by a very large amoLim¢ focus of the next chapter is
on building a profiler that can, among other applicationglan this anomaly. In Chapter 6 |
present an extension to the automatic instrumentatioesythat helps to solve this problem
and bring the performance of SLE_x86 closer to STM_x86.

94

4.10. Discussion

Finally, Figure 4.14 shows that automatic and transparansactional memory can outperform
the lock.

4.10 Discussion

This chapter has described an instrumentation systeméhatates a persistent instrumentation
cache (PIC). The PIC is a file on disk holding instrumented n&&hine code from critical
sections in the original binary. It is generated by exegutime binary with instrumentation
enabled inactivemode. In active mode execution is intercepted by the PINrinawvriting
engine that enables instrumentation and placement of béstks from critical sections into
the PIC. Once the PIC is (heuristically) complete, instratagon can be executed passive
mode. Passive mode incurs far lower overhead than activermod as | have shown, can be
close to the performance of manual instrumentation.

This chapter however, also throws up a set of interestinfppeance-related questions. Auto-
matic instrumentation lags manual instrumentation by gelamount for four of the STAMP
benchmarks. There are also interesting TM performancetiqneghat arise here. For exam-
ple, why does Vacation benefit far more from transactionahony than SSCA2? In order to
answer these questions | have built a profiler, describedamext chapter, that uses the PIC
and passive instrumentation to produce a profile for x86ri@eaThis profile identifies critical
sections and helps to explain their behaviour when exeamitiddransactional memory.

95

4. x86 machine code instrumentation

96

Chapter 5

Critical section characterisation

One goal of my research is to separate mechanism from paafjwvare is written, compiled
and run without awareness of transactional memory whictacgwmatically be added if desired
at runtime. In this chapter | show that this decoupling caemat to profiling and performance
debugging. | show that x86 binaries can be profiled for suitpldor transactional memory
without explicitly being written to use it.

Transactional memory works well as a replacement for a Io¢ke presence of two favourable
conditions. The first is the requirement for disjoint-acgearallelism [IR94]. Informally, trans-
actions can be executed in parallel when they do not makeicimdl accesses to the same
memory location. A good example would be critical sectiomsipulating red-black trees. Up-
dates are usually localised in subtrees and thus for a lavgegh tree are unlikely to conflict
with each other. An example with low disjoint-access patain is a shared integer counter:
all updates to it will conflict.

More recently, in the context of examining how existing ldzksed applications can be adapted
to use transactional memory, researchers have come asessrad condition: lock contention.
A lock is a scalability bottleneck only if threads contend i if there is no contention there
are no scalability benefits gained via the use of transaaitimemory. This was highlighted by
TxLinux [RHP*07], where a meagre 5% speedup was obtained when spinlotke innux
kernel were replaced with transactions running on a hypicthlehardware transactional mem-
ory. The explanation is that Linux is a heavily optimisedggi®f software and there was very
little or no contention for locks. The problem is more acufithwoftware transactional mem-
ory since its associated slowdown can significantly hurralV@erformance when there is no
scalability benefit to compensate for it.

The profiler in this chapter measures the suitability of $eaational memory for an x86 binary
by measuring each of these quantities. A lock-based exatotithe binary is used to obtain the
profile. There is no assumption made about any underlyingl{yexre or software) TM system
as none is used.

5.1 Disjoint access parallelism

The only systematic attempt thus fargoantitativelydefine and measure disjoint-access paral-
lelism from actual program runs is Von Praun’s dependeneatyais [vPBCO08]. The objective
was to consider the possible speedups that could be obtaieed program execution to be

97

5. Critical section characterisation

limited only by data-flow dependencies. In order to do thia Ywaun collected memory access
traces from program fragments that could be run in paraldlbi¢h he termed tasks) and defined
a metric called dependence density across them. | desaib@&épendence density is defined
and measured below.

Taskt, is defined adlow dependenon taskitq, if ¢, reads from a location written to by,
expressed as the predicate flow_@dep,). Further let lefit) be the length of taskusing some
suitable metric (such as number of memory accesses).

Consider a set of tasks, that can potentially run in parallel. The data dependence tak
t € T, on the rest of the tasks in the set is defined as:

> len(s)

se(Tp—t)A(flow_deg(s,t)Vvilow_deg(t,s))

dep_deng) =

The dependence density represents the probability theaskewould see a conflict if executed

in parallel with another task iff,. Note that the dependence density takes into account the
length of a task. This means that a short running task is elylito create a conflict with a
longer running task even if the longer running task is flowedefent on it, since it may well
finish before the flow dependence manifests itself.

Von Praun used manual instrumentation of the source todsaehich tasks could potentially
run in parallel. That work included looking at various sagof parallelism such as executing
loop iterations in parallel (e.g. thread level speculgtiovion Praun used data fromsingle
threadedrun of the binary.

In contrast | am concerned only with parallelism from conlieg instances of critical sections
executing in parallel and this admits a more automatic agugdrol use an actual run of the binary
and place a total order on critical sections executed. | tisgna sliding window on this total
order that includes one critical section from each threalis &pproximates critical sections
that are likely to run together. It also takes into accouat thitical sections on the same thread
might be causally dependent on each other (such as if they exacuted in a loop) and thus
should not be considered for parallelism. Any instance efdiiding window thus represents
the setl}, in the equation above. To compute the dependence dens#y trace all the memory
accesses in a critical section.

Tasks represent dynamic instances of static critical @estin the binary. It is thus useful to
also roll-up the dependence density computed for each taskaidependence density for the
static critical section that originates it. | do this usingi@ple average: I7.s represents all the
dynamic tasks for a static critical section: cs, then iteecbup dependence density is:

> dep_deng)
dep_dengs) = =

Tod (1)

Finally, | also compute the dependence density for the epipin as a whole. For every window

of tasksT, | compute the data dependence density for the window (VoorPused the same
notion of dependence density for a set as a whole):

98

5.2. Lock contention

> " dep_dens(t)
teT,

dep_deng&l},) =

5|

| then average this across all windows:

> dep_dengr),)

TpeWindows

overall_dep_dens \Windows

(5.2)

The overall dependence density represents how much diagess parallelismis present in the
application as a whole. If one assumes a scheduler that gisjsnt (non-data-flow dependent)
critical sections for execution, then the average numbénrefads that can be scheduled, given
n available threads is:

n—1

Average Threads Z(l — overall_dep_densily (5.3)

1=0

The sum reflects the fact that with increasing threads thiegtnidity of encountering a depen-
dence increases. Note that the equation assumes for siyfat the dependence density is
independent and thus adding threads does not increaseitivespalependence density.

5.2 Lock contention

The two most direct metrics for lock contention are the anmairtime spent waiting for a
lock and the number of waiting threads (waiters) seen on\tbeeage when a thread attempts
to acquire a lock. | measure both of these at runtime. Theflbeianeasuring both is that
for applications with transient lock contention (such as @Quake benchmark I examine in
Chapter 7), the waiter count reveals lock contention rétiean the fraction of time spent waiting
for the lock.

There are three data structures that | use to measure loté&ntmm. The first iCount er s,

a per-thread array, each element of which is a set of fourguesi integer counters used to
accumulate the amount of time spent waiting for and exeguima critical section; the average
number of waiters seen (count of threads either waiting fdwodding the lock); and the number
of times this critical section has been sampled. The secotin@iglobally sharedant CS array
each element of which is an integer counter. The third is tbleally shared=ot CS array each
element of which is also an integer counter. Critical sexdtiare mapped (many-to-one) to a
numerical index used to look up the first array, this is acdshpd by hashing the program
address of the first instruction in the critical section. Huglress of the lock protecting the
critical section is mapped to a numerical index used to lgpkhe second and third array, by
hashing the lock address.

These arrays are thus essentially hash tables and this rinedre®llisions can have an impact
on accuracy. If there are collisions in the per-thread halsketthen data for multiple critical sec-
tions gets coalesced into one. | use a hash table size of b024periments in the dissertation
and | did not observe any collisions (there are far less tl@@4 Tritical sections in the binaries

99

5. Critical section characterisation

| studied). On the other hand if there are collisions in thabgl hash table then the number of
waiters is incorrectly estimated: in essence multiple $oafe treated as one. This can happen
in practise, particularly if the binary is using locks emted in dynamically allocated data
structures in which case the number of active locks can brerely large. Note that even in
this case, it is only when two simultaneously acquired latiep to the same hash bucket that
inaccurate measurement results, since | depend on theetiffe between two quantities that
are updated within the lifetime of a dynamic instance of ttigcal section.

Instrumentation needs to be inserted before and after adloglire and before and after a lock
release. The instrumentation in pseudocode form is showgiorithms 12, 13, 14 and 15.

Algorithm 12 PreAcquireLock(cs, L)

1. Counters[cs].Waiters += (-GotCSJ[L] + WantCSJ[L])
2: Atomiclncrement(WantCSJ[L])
3: Counters|cs].WaitTime -= Clock()

Algorithm 13 PostAcquireLock(cs, L)

1. Counters[cs].WaitTime += Clock()
2: Counters|[cs].CSTime -= Clock()

Algorithm 14 PreReleaselLock(cs, L)

1. Counters[cs].CSTime += Clock()
2. Counters|cs].WaitTime -= Clock()

Algorithm 15 PostReleaselLock(cs, L)

1. Counters[cs].WaitTime += Clock()
2: Atomiclncrement(GotCSJL])
3: Counters[cs].samples++

An interesting subtlety is present in the algorithms duentoriacing access to two quantities,
Want CS[L] andGot CS[L] in Algorithm 12. Both of these quantities are being updatgd b
racing acquisitions of the lock. Allowing the race ensutest t avoid any additional costly
locking protocols or atomic operations that would add unstentation overhead. It is important
to note the ordering of reads to those two variables in liné Algorithm 12. Got CS[L] is

read before readingant CS[L] . Due to the order of updates to those two variables we always
haveGot CS[L] < Want CS[L] . This ensures that the added quantity to the accumulation
variable is always positive in line 1 of Algorithm 12. Thisvever means that | can slightly
overestimate the number of waiters due to a racing updd@ett&€S[L] that | miss. This error

is minimal since the window between the two reads is smatl;isim any case far preferable to
reading them in the opposite order, which might result ingatige quantity leading to overflow
errors in the unsigned numbers used to represent counts.

In order to accurately measure timing, | use the CPU timgstaeounter (accessed using the
r dt sc instruction) represented as the callQloock () . This provides an accurate fine-grained
time source. However it is entirely possible that there isfhid the timestamp counters across
different processors. | bind threads to processors in dalensure that this does not affect

100

5.3. Profiler operation

timing measurements due to threads migrating across moisesFinally, for the experiments
using the profiler in this dissertation, | never use moredtisethan processors. This ensures
that multiprogramming does not play any significant rolehi@ measured contention.

5.3 Profiler operation

The profiler operates in two steps. First, the binary is ruth\passive instrumentation. | use
a variant of the null backend that continues to acquire laokd perform memory accesses
directly. However, in addition, it dumps a trace of memorgesses in critical sections and
also measures lock contention using the algorithms in teeipus section. The hash tables
containing lock contention measurements are dumped ahthefehe run. In the second step a
post-profiling tool is run that analyses the data generaygtidprofiling run and generates the
final profile. | describe these two steps next.

5.4 Profiling

The profiler generates information fronmsangle execution of the binary by sampling a subset
of the executed critical sections. The sampling is done liygua state machine. Each state
has a threshold associated with it. If the total count (acetisthreads) of critical sections exe-

cuted while in a particular state reaches its associateghiofd, a state change occurs. Critical
sections are profiled only in particular states and thusttte snachine picks (samples) critical

sections. The need for this state machine is explained below

For the sampled critical sections, the profiler needs to ig@@dock contention information
and memory access traces. This straightforward, sincedadkunlock calls are already in-
strumented in passive instrumentation mode and all shasdary accesses within a critical
section are instrumented due to execution out of the PIC.diffieult part is doing the two
together. Measuring lock contention requires accuratemgnmformation and minimum instru-
mentation overhead. On the other hand, tracing memory seses a critical section requires
recording every memory access to file. This adds significegtheead to critical section execu-
tion.

In order to reconcile these conflicting requirements, thadiler uses a 4 state machine during
execution, shown in Figure 5.1.

In theTl M NGphase critical section execution is done uninstrumentédfdte native binary.
The dispatcher after executing tBei de instrumentation call switches execution to the native
binary instead of the PIC. This is possible due to the fleijbdf passive instrumentation that
allows direct execution of native code. The critical settibus executes uninstrumented and
imposes no extra overhead to lock contention measurements.

In the TRACI NGphase no lock contention measurement is done but criticibseexecution is
redirected by the dispatcher to execute out of the PIC. Thkdral writes accessed addresses
together with information about the access out to file. Initamldto tracing individual critical
sections, this phase also imposes a total order on allargertions (regardless of the protecting
lock) by incrementing a globally shared counter.

The twoSI LENT phases serve to separate the timing and tracing phasesifgnthat timing
does not suffer from errors due to simultaneous tracingaduition they also serve to impose

101

5. Critical section characterisation

Figure 5.1: Profiler phases

a sampling rate, since no instrumentation is performechduhe silent phases. The number of
executed critical sections (measured as lock acquisitepent in each phase is configurable as
a runtime parameter to the profiler. For the runs in this diaten, | used settings of 700 for
the timing phase, 100 for the tracing phase and 100 for eatmeddilent phases. This meant
timing was measured for the majority of the execution whéalof the critical sections were
traced.

5.5 Post processing

The post processing tool takes as input the lock contenéilated hash tables and the memory
access traces, as well as debug information from the birgingtprofiled. It then produces a
profile for the binary, as shown in Figure 5.2 (which was gatest from the Vacation bench-
mark in the STAMP suite). Each critical section profiled isntified by the source file and line
number. For each critical section, the fraction of totalaeten time (counting time on each
thread separately) spent in the critical section and wagftinthe critical section is printed. The
profile also includes the average number of other threagsugixg in or waiting for, the critical
section when an attempt is made to acquire the lockdtige_q_| engt h field).

Next memory access related statistics are printed for ihieairsection; these include the num-
ber of read and write operations seen (read-modify-writegaunted as both reads and writes)
as well as the unique locations that are read or written toallyi the dependence density of
that static critical section across all the sample windsvsoimputed (using equation 5.1) and
printed. The last two lines display application-wide sumesg The overall amount of time (as
a fraction of time counted across threads) spent waiting fock is displayed. Also displayed
is the overall dependence density (computed using equat®)nThis is converted to the num-
ber of threads that could be scheduled in parallel (assuasmgany threads as were profiled is
available) using equation 5.3.

Computing the exact number of unique locations touched t@raening whether any data-flow
exists between two accesses requires determining the sadaat bytes touched by the access.
One way to do this is to record the size of every access asi@daliinformation in the trace
files. Instead, | take as input to the post-processing toegmarameter (which is a power of 2)
and assume that every access touches a set of bytes of thaitkizhe starting address rounded
down to a multiple of the size. This saves space in the traeedihd reflects the assumption that

102

5.5. Post processing

Cs cs_frac wait_frac avg_g_l ength rd_ops rd_locs w_ops w_locs dep_dens
client.c:247 0.001 0.008 6. 87 447.585 203.204 20.510 14.076 O0.440
client.c:267 0.000 0.009 6. 87 126.768 74.950 4.363 4.307 0.016
client.c:196 0.080 0.828 6. 87 447.412 127.811 12.094 11.601 O0.007

Overal |l _waiting Overall _dep_density Pred_AvgThreads
0. 845409 0.011508 7.685098

Figure 5.2: Example profiling output

most modern compilers allocate data in multiples of fourighebytes. It also allows exploring
the effect on dependence density of STMs that track conflicbarser granularities, such as
16, 32 or 64 bytes.

Rolling up the lock contention related information from tthemped hash tables is straight-
forward, as shown in Algorithm 16. It involves rolling up daih hash buckets on file into
appropriate static critical sections. The per-thread liakle buckets on file include their key
(the starting program address of the originating critiedt®n). This is mapped to the static
critical section through debug information available frtma binary.

Algorithm 16 ProcessTiming

1: for all thread tin profiled_thread$o
2. forall bucket b in per-thread hash table for threalbt
: Locate static_cs for bucket b

3

4 static_cs.WaitTime += b.WaitTime

5: static_cs.CSTime +=b.CSTime

6: static_cs.Waiters += b.Waiters

7 static_cs.samples += b.samples

8: for all static critical section static_ @k

9: static_cs.WaitFrac = static_cs.WaitTime/TotalTime/Ass®bhreads
10: static_cs.CSFrac = static_cs.WaitTime/TotalTimeActoseads
11: static_cs.AvgQLength = static_cs.Waiters/static_cspdas

The next phase of the profiler computes the dependence ylassig the memory access traces
generated by the profiler. An abstraction of the steps to doishshown in Algorithm 17.
The outermost loop walks all the dynamic critical sectioaséd (tasks in the terminology of
Section 5.1) in the total order generated. It updates theectiwindow in line 3, as part of
which it also rolls up memory access statistics such asimtatccessed and operations done.
It then does a pairwise comparison of tasks to determinehehet flow exists (this is done
by generating bloom filters from the accessed addressesufok gomparison against each
other). The dependence densities for individual tasksheme ttolled up into the corresponding
static critical sections and the overall dependence defmitthe window is also computed.
This bookkeeping is straightforward and has been absttacte line 7 of the pseudocode for
clarity.

Line 7 can clearly be an expensive step since it ©#és*) cost withn threads. Traces can
be large, often ranging to hundreds of thousands of readsvates (Section 5.7). One way
to reduce this cost is to observe that all instances of it camexecuted in parallel. In the
implementation of the post processing tool | spawn a numbéhreads to do exactly this.
Since | generally run post processing on the same system\ahioh | took the traces | spawn
as many threads as were actually profiled, bringing the segleost down ta)(n). This helps

103

5. Critical section characterisation

keep post processing costs down to a reasonable level. Brémeflargest traces discussed in
Section 5.7, post processing did not take more than five m&ut

Algorithm 17 ProcessDependences

1. for all dynamic task d in master trace fili®
2. t:=profiled thread that generated d
window(t]:=d
Update memory access related statistics for critical ge¢hat generated d
for all thread t1 in profiled_threaadt
for all thread t2 in profiled_threads such that412 do
consider flow from window([t1] to window[t2]

No ahA~w

5.6 Characterising a Microbenchmark

In this section, | illustrate the application of the profgitool by characterising a microbench-
mark: the red-black tree long studied by the STM communita(B, MSH 06, DSS06]. The
red-black tree is used to hold a set of key-value pairs, stipgdookup updateanddeleteop-
erations. As is well known, red-black trees h&¥gog n) costs for lookup, insert and delete for
a tree withn nodes. This fact can be verified by using the profiler on an x8&éri containing
the implementation of such a tree.

| used a simple red-black tree implementation, placing asso®&threads reader-writer lock
around single-threaded implementations of the tree adeas8ons: update, delete and lookup.
Running this benchmark with eight threads, | obtainedaaitsection memory footprints for
varying depths. The results shown in Figure 5.3 agree weH thie analytically known prop-
erties of red-black trees. The lookup function does no wriiet does perform reads that in
number are twice the depth of the tree plus a constant fatherscale of two comes in because
both the key and the next child pointer are read while movimgrdthe tree. The constant factor
is due to the initial access to obtain the root of the tree. filmaber of reads for updates and
deletes follows a similar scaling (but incorporating aiaial constants to check keys and so
on). For updates and deletes, on the average, a constanenofvirites are made to rebalance
the tree (regardless of depth) and this is reflected in thahgra

The experiment also confirms that tracing memory accessesgh the PIC and the post-
profiling tool works properly. This is important since it fos a critical but complex part of
the profiler unlike the relatively simple measurement okloontention.

5.7 Characterising STAMP

I now apply the profiler to the STAMP benchmarks that | havelukes far in the dissertation. |
profile a run with 8 threads for each benchmark, using the s&i@¢hat was built for SLE_x86
in Chapter 4.

| first present per-critical section results from the STAM#bhmarks in Figure 5.4. Consider-
ing the largest of the read or write sets (indicated by readribe locations), in decreasing order
we have labyrinth (31427), bayes (1859), yada (729), gen@®2), vacation (203), intruder

104

5.7. Characterising STAMP

Red-Black tree: critical section accesses

50 L L L L L
lookup:reads

45 lookup:writes
remove:reads -

40 F remove:writes
update:reads ---

35 F update:writes -

Shared memory accesses

Figure 5.3: Red-Black tree memory access characterisation

(95), kmeans (68) and ssca2 (20). Another important poattithbrought out in the profile is
that the actual number of read or write operations is alsb@tame or larger order of magni-
tude and places the STAMP benchmarks in the same relatiee:datbyrinth (1376788), bayes
(747345), yada (7310), genome (4162), vacation (447)udier (167), kmeans (100), ssca2
(38).

An important observation that can be made here is that thehpearks reporting poor perfor-
mance with SLE_x86 are the ones that seem have the largestenwohshared memory ac-
cesses. | confirmed using TL2 instrumentation that the numb@memory accesses indirected
into the STM with manual source level instrumentation iddaver.

This anomaly can be explained by considering the way in wBIENI-related barriefsare in-
serted in STAMP benchmarks. Consider the transaction géngrthe large number of reads
in Labyrinth (file router.c line 396, as identified by the plefi. The manually instrumented
code for that transaction is shown in Figure 5.5. The trammam question is delimited by the
callsTM BEG N andTM_END. As the TMprefixes and lack of them suggest, only the func-
tionsTMERI D_ADDPATHandTM_LOCAL_W\RI TE are instrumented with STM barriers while
thegri d_copy andPdoExpansi on functions do not. Thgri d_copy function accesses
the global shared grid (containing the maze to be routedigirpcontained in thgri dPt r
array. Thegri d_copy function in fact, copies the whole array into a private copgessed
by PdoExpansi on and thus generates the large number of read and write asdsssee the
array is large, sized at 512x512x7 elements). None of thiaasvn to the instrumentation in-
frastructure, which generates instrumentation for alldbeesses, including those to update the
private copy.

This is a case where the programmer has used their knowlddige program to appropriately
remove unnecessary barriers. This leads to a race conditibie case of access to the global
grid in gri d_copy. As the comment in the code indicates, not receiving the mpsb-

1The instrumented read and write accesses when using an STdftan referred to as barriers.

105

5. Critical section characterisation

Source |CS fragWait fradavg_q_leh Read Ops|Read LocsWrite Ops|Write Loc
bayes
learner.c:1189 | 0.000| 0.086 | 4.709 21.548 8.857 4.905 3.929
learner.c:1202 | 0.000| 0.043 | 4.797 336.525 | 79.300 | 74.275 | 22.525
learner.c:1414 | 0.051| 0.091 | 4.770 |747345.2951859.068 97683.182 70.727
learner.c:1385 | 0.000| 0.006 | 4.837 3.000 3.000 1.000 1.000
learner.c:1425 | 0.014| 0.000 | 4.764 | 30144.953| 119.116| 3933.163| 24.419
learner.c:1267 | 0.002| 0.043 | 5.030 | 19121.933| 178.267| 2496.200| 32.133
learner.c:1326 | 0.000| 0.090 | 4.822 | 8825.474 | 150.737| 1147.632| 31.263
learner.c:1296 | 0.000| 0.000 | 3.667 575.750 | 52.750 | 75.000 | 13.000
learner.c:1437 | 0.022| 0.003 | 4.759 | 46043.571| 272.524| 6032.143| 46.833
learner.c:1348 | 0.000| 0.077 | 4.739 | 2141.200| 75.600 | 278.650 | 17.950
learner.c:1317 | 0.000| 0.000 | 3.667 2.000 2.000 1.000 1.000
learner.c:1288 | 0.000| 0.000 | 5.091 2.000 2.000 1.000 1.000
learner.c:1451 | 0.000| 0.000 | 4.907 41.447 25.026 4.000 4.000
genome
sequencer.c:395| 0.010| 0.171 | 6.767 81.706 56.289 4.000 4.000
sequencer.c:290| 0.068| 0.706 | 6.821 | 4162.933 | 502.357| 0.003 0.003
sequencer.c:369| 0.000| 0.003 | 6.743 2.003 2.003 1.000 1.000
sequencer.c:408| 0.000| 0.003 | 6.768 8.140 7.378 4.000 4.000
sequencer.c:476| 0.000| 0.002 | 5.343 71.096 21.784 3.667 3.667
intruder
intruder.c:199 | 0.003| 0.321 | 6.936 7.000 7.000 1.000 1.000
intruder.c:210 | 0.056| 0.328 | 6.933 167.043 | 95.856 9.441 5.836
intruder.c:226 | 0.002| 0.274 | 6.952 5.153 5.153 1.038 1.038
kmeans
normal.c:168 | 0.020| 0.647 | 5.669 100.000 | 68.999 | 33.000 | 33.000
normal.c:182 | 0.002| 0.177 | 5.728 2.000 2.000 1.000 1.000
normal.c:190 | 0.000| 0.000 | 3.627 2.000 2.000 1.000 1.000
labyrinth
router.c:396 0.371] 0.629 | 1.746 1376788.75B1427.66@72873.33@8511.50
router.c:379 0.000| 0.000 | 1.748 6.667 \ 5.067 \ 0.533 \ 0.533
ssca2
computeGraph.c:4?5).007\ 0.956\ 6.770 \ 4.000 \ 4.000 \ 2.000 \ 2.000
vacation
client.c:247 0.001| 0.008 | 6.870 | 447.585 | 203.204| 20.510 | 14.076
client.c:267 0.000| 0.009 | 6.868 126.768 | 74.950 4.363 4.307
client.c:196 0.080| 0.828 | 6.871 | 447.412 | 127.811| 12.094 | 11.601
yada
yada.c:207 0.002| 0.236 | 0.119 16.312 11.922 2.468 2.234
yada.c:215 0.000| 0.212 | 0.119 2.000 2.000 0.000 0.000
yada.c:228 0.266| 0.206 | 0.126 | 7310.245| 729.703| 1064.870| 481.507
yada.c:246 0.001| 0.046 | 0.127 11.827 8.874 1.701 1.283
yada.c:233 0.000| 0.029 | 0.127 2.000 2.000 1.000 1.000

106

Figure 5.4: STAMP critical section memory operations

5.7. Characterising STAMP

T™M BEG N() ;
[+ ok if not nobst up-to-date x/
grid _copy(nyGidPtr, gridpPtr);
i f (PdoExpansion(routerPtr, nyGidPtr,
my Expansi onQueuePt r,
srchPtr, dstkPtr)) {
poi nt VectorPtr = PdoTraceback(gridPtr, myGidPtr,
dstPtr, bendCost);

i f (pointVectorPtr) {
TMERI D_ADDPATH(gri dPtr, pointVectorPtr);
TM LOCAL_WRI TE(success, TRUE);

TM_END() ;

Figure 5.5: A fragment of code from the labyrinth benchmark

date copy is not a problem from the perspective of correstn&ssimilar problem occurs with
Genome and Yada. This naturally leads to large gaps in pedoce when using automatic
instrumentation. In Chapter 6 | discuss a technique that esisting x86 memory management
hardware (the paging unit) to automatically identify titgaivate regions in order to reduce
this gap.

Finally, | classify the STAMP benchmarks from the perspectf potential benefits from the
use of transactional memory in Figure 5.6, which is a plothef overall dependence density
for each benchmark. The lower right portion of the graph & T\ friendly region, which
includes almost all the benchmarks. This is not surprisingrgthan STAMP is written with
transactional memory in mind. Yada shows the lowest disjaotess parallelism (and hence
the highest conflict rate as has been pointed out previauBlgyes has the lowest contention
and hence should show the least improvement over the losgebeersion, a fact that is borne
out by the experiments in the previous chapters.

The plot in Figure 5.6 is useful to demonstrate the perfolcaeapectrum of x86 binaries with

respect to ideal transactional memory, such as that prontigehardware TM. Performance

with software transactional memory such as in this distertalso needs consideration of the
overheads associated with software transactional merA@weet spot for an STM benchmark
is one that has sufficient disjoint access parallelism, bgttention for the critical section and
a sufficient number of accesses within the critical sectmoftset setup overheads. Vacation
falls within such a sweet spot and thus benefits more fromgusamnSTM compared to SSCA2,

which has the smallest critical sections among the STAMRIberarks and is dominated by
transaction setup overheads. On the other hand Kmeans aaddnhave roughly similar read

and write set sizes and thus as predicted by Figure 5.6,detrautperforms Kmeans when
using an STM, since SLE_x86 manages to beat the performdrtbe tock-based version in

the case of the former but not the latter.

107

5. Critical section characterisation

STAMP: Critical section properties

o
~

7 bayes +
2 genome X
- 035 F 7 intruder %
2 kmeans O
2 03 F 4 labyrinth ®
__? ssca2z O
= vacation @
£ 0.25 |] yada A
o I
T 0.2
] A
o
w 015F
0
3]
S 005} * 0 %
K]
a

o L L L I.

0 0.2 0.4 0.6 0.8 1

Contention (higher is more)

Figure 5.6: STAMP critical section characteristics

5.8 Discussion

This chapter deals with the design and construction of alprdbr critical sections in x86
binaries. It measures lock contention and memory acceatedemetrics of critical sections
such as the number of locations read and written. It alsopurates a metric determining the
amount of disjoint-access parallelism between criticatisas. Transactional memory related
measurements are made without actually using it, which st programs can be profiled for
TM suitability without rewriting them to use TM first. Furthmore, unlike other tools [PHWO07]
that measure similar TM-related metrics for lock-basedypmms using simulators, this tool
runs programs at full speed on native hardware, thus makprgctical for real-world programs
(such as the Quake benchmark | study in Chapter 7).

The profiler is useful to explain the performance with SLEskIs far in the dissertation. It is
also decoupled from any specific TM implementation and thasliseful performance profiling
tool for any transactional memory implementation. It is difficult to neagpecific speedup
predictions for a particular transactional memory systérat(would require a detailed model
of the effects of an HTM or STM or both for a hybrid TM). Nevestlss, even in its current
form | believe that the profiler is useful for performance aghing when using transactional
memory.

The most immediate use of the profiler has been to identifgiégities in automatic instrumen-
tation vis a vis instrumentation inserted and optimised pyogrammer with knowledge of the
benchmark. In the next chapter I discuss a set of techniguedlzh this gap can be closed.

108

Chapter 6

Thread-private data tags

The profiler described in the previous chapter identified fecidacy in the automatic instru-
mentation system: the inability to distinguish data thgbrisate to a thread from that which
is not. Indiscriminate instrumentation can slow down théviSSubstantially or even overflow
its internal logs. Unlike STMs applied at a source level ¢ghisrnot enough information avail-
able through static analysis to eliminate some of theseheaels. In this chapter | present a
dynamic technique that at runtime caafelyeliminate much of the STM overhead for such
thread-private data.

This chapter is organised into two parts. The first part dedls a set of generic modifica-
tions to the algorithms of Chapter 3. These modificationgetighe dynamic assignment of
tags to memory locations that indicate whether the locasahread-private. Threads avoid
unnecessary STM overheads for accesses to such locations.

The second part of the chapter discusses a practical implatien of tagging. The implemen-
tation focuses on three key applications. The first is he#gpttiat is known to be thread-private.
An example of this is OpenMP thread-private data that i<atied on the heap. The second ap-
plication is locations on the stack, that arsuallythread-private, but might occasionally be
shared between threads. The third application is heap dataniybe thread-private, as ex-
hibited by some of the STAMP benchmarks. | discuss a dynaneian® for detecting such
thread-private data at runtime.

6.1 Generic capabilities

In this section | discuss modifications to the logging altioris of Chapter 3. There are four
location tags (the state of a location is its tag):

109

6. Thread-private data tags

1. Private(t): The location is private to thread t
2. SharedRQ: The location is shared read-only
3. SharedRW: The location is shared read-write

4. Unavailable: The location in currently inaccessible pending a changsaie

This section assumes that outside a transaction (critizaios in lock-based programs):

e Locations markedPri vat e(t) are not accessed by any thread other than

e Locations marke@®har edROare not written to by any thread

The tagShar edRWs the default tag and is the only one that the logging algor&in Chapter 3
support. | use the notatiofag(| oc) to identify the tag for a locatiohoc.

Another addition to the STM is thendoLog maintained per-thread. This is an ordered list of
(location, value) pairs. It is used to record the old valuabi@ad-private locations before they
are overwritten in order that they may be restored on a tioseabort. The enhanced logging
algorithms are Algorithms 18, 19 and 20.

The enhancements change the behaviour of the logging tdigobased on the tag. The en-
hanced algorithms can write to locations directly if owngdHe thread and read from locations
directly if either owned by the thread or shared in read-ontde. If an access is not possi-
ble the thread changes the state of the location to permasadghis involves first aborting the
currently running transaction and hence the call does ot Note that on encountering an
unavailable location, the transaction is aborted. Thetaddgorithm is enhanced to undo the
effects of updates to thread-private memory.

The most important new algorithm from the perspective ofpsufing thread-private data is
Algorithm 22, for changing the tag of a location. It first matke location as unavailable. This
ensures that any transaction that attempts to access #ugolocs aborted. Next, it blacklists
a “dummy” lock using Algorithm 7 in Chapter 3. This ensureatthll executing threads that
might have a reference to the location in their STM logs hawvslied (and thus no longer use
the old tag for the location). Finally it sets the new tag fug tocation. It is important to note
that the algorithms enforce a monotonic increase in shddnthe location across the range:
[Private(t), Shar edRO, Shar edRW. To enforce this in the case of @hangeTag to
Shar edROracing with aChangeTag to Shar edRWfor the same location, a check is made
(line 9 of ChangeTag) to detect the case where the location already permitswese-access.

6.2 Associating tags with locations

The foundation for any practical implementation of thegeadxdlities is a way to associate tags
with locations. There are various design choices available

For example, one could follow the same technique as used$igrEing metadata to locations:
a hash function into a tag table. The problem with such anagmpr is that the many-to-one
mapping would cause location tagging to quickly drop to thwdst common denominator:
Shar edRW which is the dominant tag for the benchmarks | studied.

110

6.2. Associating tags with locations

Algorithm 18 SpeculationBegin(t)
1. Epoch(t) := Epoch(t) + 1

Memory Fence
SnapshotSeqNo(t) := Stable
Initialise WriteLog(t) to empty
Initialise ReadLog(t) to empty
Initialise DirtyList(t) to empty
Initialise UndoLog(t) to empty

A

Algorithm 19 SpeculativeWrite(t, loc, Value)

1. if Tag(loc) = Unavailabléhen

2. abort

if Tag(loc) = SharedRWhen
DirtyList(t) = DirtyList(t) U Metadata(loc)
Append (loc, Value) to WriteLog(t)

else ifTag(loc) = Private(tjhen
oldvalue := contents of memory at loc
Prepend(loc, oldvalue) to UndoLog(t)

9: set contents of loc := Value
10: else
11: ChangeTag(t, loc, SharedRW)

© No uhw

Algorithm 20 SpeculativeRead(t, loc)

1: if Tag(loc) = Unavailabléhen
2. abort

3: if Tag(loc) = SharedRWhen

4. if 9 (loc, value)e WriteLog(t) then

5: result := most recent write to loc in WriteLog(t)
6: else
7.
8
9

result := contents of memory at loc
if Metadata(loc) is odthen

: abort
10: if Metadata(loc)> Snapshot(tjhen
11 abort
12: Append (loc, result) to ReadLog(t)

13: else ifTag(loc) = Private(t) or Tag(loc) = SharedRkEn
14. result := contents of memory at loc

15: else

16: ChangeTag(t, loc, SharedRO)

17: return result

Algorithm 21 Abort(t)

1: for all (loc, Value)e UndoLog(t) (in order)do
2. set contents of loc := Value
3: Epoch(t) := Epoch(t) + 1

111

6. Thread-private data tags

Algorithm 22 ChangeTag(t, loc, newtag)
if Epoch(t) is oddhen

Abort(t) // Configured to return here
repeat

repeat

OldTag := Tag(loc)

until OldTag# Unavailable
. until x86CAS(Tag(loc), OldTag, Unavailable) = OldTag
. Blacklist(t, DummyLock)
if OldTag = SharedRWthen

NewTag = SharedRW
: X86CAS(Tag(loc), Unavailable, NewTag)

=

© N O WDN

ol
= o

Tag Table tag_metadata

P tag
stack flag
Oxebcd >> 12 .
Virtual/Program Address: Oxebcd - alloc_site

mirror_offset
transactional

o
[}
o]

Figure 6.1: Association of tag metadata with pages

Using a one-to-one mapping at a low granularity like seveytds can lead to an overwhelming
amount of tag metadata. Instead | made the observationrtimabdst cases thread-private data
either already has spatial locality (such as thread stamksgan be forced to be so by using
special memory allocations for heap data (as | show latezhdd | chose to associate tags with
an entire page at a tim¢ {s used to represent ‘C-style’ integer division):

Tag(loc) = TagTabléloc/SystemPageSize

The benchmarks in this dissertation were done on a systemamiB page size. The map-
ping to tag metadata is shown in Figure 6.1. Rather than destag word, the entry in the
TagTabl e itself points to a tag metadata structure, one of whose fisltte tag for the page.
The remaining fields contain other useful information thiatioduce later in this chapter. The
tag metadata structure itself is 40 bytes long in the implagaten and thus the space overhead
of tagging (including the pointer) is 44 bytes gehysicalpage used in the program which is
slightly under 1.08% overhead. In the implementation, tegauata is usually shared by multi-
ple entries in the TagTable and thus that estimate is thetwase overhead. Finally, the pointer
is set to NULL if the page has teghar edRW this imposes minimum indirection overhead for
the common case.

6.3 Applications

| now discuss how extensions to the tagging infrastructueeewused to solve three thread-
private data related problems in this dissertation. | ektbe tagging infrastructure accordingly.
The first is the simplest: certain allocations from the heaplre statically identified to contain
thread-private data (Section 6.3.1). The next is slighttyencomplicated: locations on the

112

6.3. Applications

#pragma onp t hreadprivate(host _franetine)

#pragma onp parallel shared(realtine ..)\
copyi n(host _frametine ..)

80693df : push $0x80bc6c8

80693e4: pushl 0x8098ff 8

80693ea: push $0x80bf 010

80693ef : push %ebx

80693f 0: push $0x8098f 9c

80693f 5: cal | 8049748 <__knpc_t hreadprivate_cached@l t >

Figure 6.2: Example of OpenMP ThreadPrivate from Quake

stack are assumed to be thread-private and this is the basistfinstrumenting accesses made
through the stack pointer. However | would like to try andedéthe case where they are not and
execute the program correctly (Section 6.3.2). The thirsic(tssed separately in Section 6.4)
is the most complicated and ambitious: to try to automdticablicate the optimisations done
manually by the programmer in the STAMP benchmarks.

6.3.1 OpenMP thread private data

The OpenMP specification allows the declaration of threadafe data, an individual copy
of which is created for each OpenMP thread. If so specifiech ¢aread’s copy is initialised
from the master copy every time an OpenMP parallel regiomisred. An example from the
Quake benchmark that | examine in Chapter 7 is given in Figl2eThehost _franeti ne
variable is declared as thread-private. It is initialisetha beginning of an OpenMP parallel
region through a compiler pragma that ensures every spatimead receives a private copy
initialised from the master one. In the x86 binary, evergrefce tchost _franeti ne is
indirected through _knpc_t hr eadpri vat e_cached. One of the key tasks performed by
this function is to allocate a copy for the calling thread ¢s& number in the example is held
in theebx register before being passed to the function as a stack péeaimin an interception
wrapper over this function | ensure, that during passiveetten, allocations are done out of
specially allocated pages from the heap whose tag has been®ea vat e(t) if the calling
thread ist . The OpenMP specification forbids sharing between threadsree only accesses
to these locations outside transactions can be from thengthread.

The effect of tagging OpenMP thread-private data in thismearms discussed in detail in the
benchmark results for Quake in Chapter 7. In summary, howévieads to a performance
improvement of around 40%.

6.3.2 Stack data

The instrumentation system of Chapter 4 makes the assumtptd accesses through the stack
pointer to locations on the stack are thread-private anddépnes not instrument them. The
thread-stack is treated as thread-private and Sectiof grévided a brief description of how

113

6. Thread-private data tags

accesses to the stack are specially handled. In this sdqironide a more detailed description
in terms of extensions to the generic tagging algorithms.

First, stack pagésare tagged as thread private: i vat e(t) . This is done by checking the
value of the stack pointer at thread creation (this ind#te base of the stack), at transaction
begin time and at any instruction within a critical sectibattchanges the value of the stack
pointer. These checks identify new stack pages as the stasls @nd tags them appropriately.
| also use an additional flag in the tag metadata structumedicate that this page belongs to a
thread stack.

Next, Algorithm 19 is modified to take into account that thecgtis already checkpointed. It
does so by checking for the stack flag in the tag metadatatsteuclf set, it only undo-logs
updates if the location updated above(in address terms) the checkpointed region of stack
(recall that the region below is dead, as discussed in Sedti6.2). Finally, some calls to
Specul at i veRead andSpecul ati veW i t e are statically filtered out by the instrumen-
tation system if they use the stack pointer for address géner

| now turn my attention to what happens when a thread accesssber’'s stack. Imagine
that a thread accesses another thread’s stack in a tramsad@learly this cannot happen
through the stack pointer on that thread and hence the aoogstsbe instrumented and call
one ofSpecul ati veRead orSpecul ati veW i t e, which finally callsChangeTag. The
ChangeTag algorithm is modified to check whether the location whosegageing changed
lies on a stack page (through the tag metadata structurap, It blackliststhe lock that has
been speculated past in the transaction that has genenaedtess.

Finally, | turn my attention to a basic assumption in the gent@agging algorithms:

forPri vat e(t) tagged locations, no thread other thashould access it outside a transaction
(critical section). Unfortunately, there is no efficientysa implement this without instrument-
ing all memory accesses, including those outside a crisieetion. This would break one of the
basic principles of the instrumentation system: no ovedtwedside critical sections.

The leads to the fourth and final restriction on programs wsddSLE:

Restriction 4: A location on a thread stack that is shared between threadsiig be accessed
in critical sections protected by the same lock or alwaysidetany critical section.

Any un-handled sharing would thus be detected and lead tbl#twilisting of the lock. This
safely handles all accesses including those which are stimented by virtue of being made
through the stack pointer. Unfortunately there is no easy tealetect programs that violate
the restriction on sharing stack locations (although @reabols could be constructed). It is
interesting to note that STM compilers would also need toaddnilar restriction to prevent
threads sharing (uninstrumented) locations on stackellyedleaking evidence of transactional
behaviour (such as speculative writes that are rolled back)

One reason why this restriction is not too onerous is thatstpdocations on stack is rare be-
haviour. Even in the case where they are shared, they woulally$e synchronised through
locks (as required by the restriction). The only exampldé tHaave encountered of threads
sharing stacks in this dissertation is with the Bodytraakdbenark in the PARSEC suite (Chap-
ter 7). Code fragments from that benchmark are shown in Ei§8 illustrating how sharing of
locations on the thread stack happens. Paet i cl eFi | t er Pt hr ead object is instantiated
in the stack frame of functiomai nPt hr eads. Methods of that object are executed concur-
rently by worker threads, all of which access Thecket Di spenser attribute, which is itself

1The stack is page aligned.

114

6.3. Applications

i nt mai nPt hreads(...)

{
Particl eFi |l terPt hread<Tracki ngvbdel > pf (workers);
/'l Create threads and pass pointer to pf
for(int i =0; i < frames; i++){
pf. Update((float)i);
pf. Esti mate(esti mate);
}
}

/'l Generic particle filter class tenpl ated on nodel object
t enpl at e<cl ass T>
class ParticleFilterPthread ... {

t hreads: : Ti cket Di spenser<int> particl eTi ckets;

b

/1 get a ticket and increment counter (in that order)
tenpl ate <typenane T>
T Ti cket Di spenser<T>::getTi cket() {

T rv;

| ->Lock();
rv = val ue;
val ue += inc;
| ->Unl ock();

return rv;

Figure 6.3: Sharing stack locations in the Bodytrack berarfirfrom PARSEC

an object whose attributes are also on the stack frame fatibummai nPt hr eads. However
all Ti cket Di spenser methods such as tlget Ti cket method shown in the example are
properly synchronised using the same lock and thus satisfganditions of Restriction 4.

115

6. Thread-private data tags

TM BEGA N(); { // stanp/genone/sequencer.c: 290
long ii_stop = MN(i_stop, (i+CHUNK STEP1));

for (long ii =1i; i1t < ii_stop; ii++) {
voi dx segnment = vector_at(segnmentsContentsPtr, ii);
TMHASHTABLE | NSERT(uni queSegnent sPtr, segnent,
segnent) ;
YoIxoiiox/
} TMLEND() ;

ul ong_t hash_sdbm (char* str) {
ul ong_t hash = 0;

ulong_t c;
while ((c = *str++) 1= "\0") {
hash = ¢ + (hash << 6) + (hash << 16) - hash;
}
return hash;
}

Figure 6.4: A fragment of code from the Genome benchmark

6.4 Adaptive tagging for STAMP

In this section, | discuss how tagging can be applied to atloos on the heap. Unlike the case
of thread-private OpenMP data | deal with a more complex lerathere: there is na priori
static way to classify an allocation as thread private.dagtl discuss how an adaptive algorithm
can automatically classify locations on the heap as thraadtp at runtime. The motivation for
this set of extensions to the tagging algorithms is the STAMRchmarks. As | have shown in
the previous chapter, there is a lot of potential in the imsntation infrastructure to improve
performance by eliminating STM related overheads for shobetd-private data. One example
has already been provided in the previous chapter, whenga thunk of memory is updated
exclusively by one thread. Another interesting exampldlistrated in Figure 6.4 from the
Genome benchmark.

This shows a fragment of code from Genome. The code has bstarrented for use with
TL2 and consists of a loop that iterates over a large strirdyiagerts hashes of substrings
into a shared hash table, using tThRHASHTABLE | NSERT call. The details of the hash
implementation are unimportant but it essentially inveliterating over the substring (acting
as a key) to compute a hash function, shown as the funbt@h_sdbmin the example. The
hash function accesses the substring usimgstrumentedccesses. This reflects the knowledge
of the programmer that the string iterated over by any hastatis is immutable.

6.4.1 Tag metadata and allocation sites

The general idea is to use an adaptive runtime techniquelditi@en to detecting when locations
become shared, we need some way to efficiently remember apdguate this information. A
key insight that helps make adaptive tagging efficient i¢ this history can be maintained

on a per-allocation site basis. An allocation site is therutsion pointer value at the call

116

6.4. Adaptive tagging for STAMP

Tag Table tag_metadata

¥ tag
Oxebcd 2 / stack flag
xebcd >> 1)
Virtual/Program Address: 0xebcd =—————p . alloc_site

mirror_offset
transactional

o
o
o

alloc_site_metadata

alloc_ip
escape_flag

memory
allocator

Figure 6.5: Extended tag metadata for adaptivity

to the memory allocator for allocating data from the heaplodétion sites for thread-private
data are normally distinct from those for shared data arglishcertainly true for the STAMP
benchmarks. Other researchers have used similar teclsfiguseparating allocations [Akr10],
albeit for different purposes.

Adaptive tagging intercepts all memory allocation calld Aandles them using a custom mem-
ory allocator. The memory allocator uses a different poopadies for each allocation site.
Adaptive tagging thus extends the tagging metadata as showigure 6.5. That figure ex-
tends the previous example by showing the originating atioa site to whose pool the page
belongs. Memory pools in the implementation are extendédhinnks’ of pages. All pages

in a chunk share the same tagging metadata structure t@fugtiuce space usage and enable
quick switching of state for whole chunks of pages at a timecé&sharing is detected the entire
chunk moves over to the new state thereby minimising caldkhémge tags. If memory is freed
from any of these pages it returns to the originating aliocesite.

The allocation site includes metadata used by the memaogaithr (my design uses a mem-
ory allocator with out-of-band metadata) and linked listawailable chunks. There are also
additional fields in the tag and allocation site metadata lrsyeadaptive tagging that | describe
shortly.

6.4.2 The non-transactional access problem

The generic location tagging algorithms make the assumthiat in the

Private(t) (Shar edRO) state no non-transactional access (write) is made fromeadh
other than the owning thread(any thread). For the case of stack pages | sidestep thisgpnob
by explicitly forbidding such accesses. This is reasonalnee such stacks are rarely shared.
Locations on the heap however are commonly shared acraessithand can be accessed non-
transactionally (the privatisation example in ChaptefBsirates such a construct). | therefore
need to provide an explicit solution to this problem. Theme tavo aspects to this: detecting
such accesses from other threads and triggering tag chang&asch an access to ensure that

117

6. Thread-private data tags

it can be safely executed. My solution uses the existing &g memory protection that is
provided by the hardware paging unit on the x86.

The Shar edROstate

In theShar edROstate the only accesses allowed to the location, transetto otherwise are
reads. | thus set the protection for all pages in the churdt g@hare the tag state) to read-only.
This is easily accomplished through timgr ot ect call.

The Pri vat e(t) state

This is considerably more complex. Any other thread is fddlen from makingany access.
However the owning thread can legitimately read or write ltation. Unfortunately the
implementation of threading using a shared address spatsmion(and most operating sys-
tems) means that different access permissions cannot bielpdxo the same page for different
threads.

The first step towards a solution is to split up the state wmdgub-states based on the value of
thet ransact i onal flag (Figure 6.5). It r ue the state can only be accessed in a transaction
by the owning thread. If al se the state can be accessed outside a transaction by the owning
thread.

ThePrivate(t), transactional =f al se state is handled by simply setting the page
access permissions to the most permissive, allowing adisscby all threads. This might seem
counterintuitive but results in the system being unableragkt sharing outside transactions.
However this is perfectlgafesince SLE is built on top of a weakly atomic STM and does not
care about simultaneous accesses to the same locatiomi&t®inade outside transactions.

ThePrivate(t), transactional =t rue state is handled by simply setting the page
access permissions to the least permissive: no access ahalensures that no other thread
can make a non-transactional access to the location sagsfiye safety requirement of the
tagging-capable read and write algorithms. This howevaddeto a different problem, how
do Specul at i veRead andSpecul ati veW i t e themselves access the location if made
from the owning threadl ?

To solve this problem | use a technique that has been usedhsse to implement strong
atomicity [AHMO9]: multiple mappings for the same page. U#ig 6.6 shows how this is ac-
complished. The figure takes the example of a page with Vieddress @xe000) in state
Private(t), transacti onal =true. Itis mapped into the virtual address space twice,
once at virtual addres®xe000) and once more at virtual address

(Oxe000 + m rror_of f set). Both the mappings in the page table point to the same phys-
ical page (physical addre8xa000). Crucially, the second mapping has liberal access permis-
sions and is used bgpecul ati veRead andSpecul ati veW i t e. The double mapping

is achieved by usingmap twice from the same backing file on disk (ramdisk in experitaen
for this dissertation in order to reduce overhead).

Finally there are (not infrequent) examples where threadie objects are created and fre-
quently accessed both within and outside transactions.coiresponding movement between
states leads to a large number of system calls to change paigetons and becomes a severe
bottleneck to performance. To avoid this, | place a threslodl10 state changes before such
locations become irrevocably taggedSiear edRW

118

6.4. Adaptive tagging for STAMP

Tag Table tag_metadata

¥ tag
/ stack flag
Oxebcd >> 12)
Virtual/Program Address: Oxebcd ———3»t — alloc_site

mirror_offset
transactional

e}
o
o

Page Table Page
Physical Address: Oxabcd

alloc_site_metadata

0xa000

-
/ alloc_ip
A 0xa000 escape_flag
memory
allocator

Figure 6.6: Extended tag metadata with mirror mappings

ChangeTag modifications

There are two modifications that need to be made to ChangeTaglér to support these en-
hancements. The first is the capability to change memonregtion accordingly. The second
enhancement is the capability to handle memory protectaoitd that arise due to accesses
that are not permitted from outside transactions. Thesbamdled by hooking the fault (Unix
SIGSEGV) handler, performing the appropriate state chémgd memory protection changes),
and restarting the faulting instruction.

Another important task done by ChangeTag is to release theaVaddress space occupied by
the mirror map of pages when the originating “chunk” moves tag other thaRr i vat e(t) .
This preserves virtual address space on 32-bit machinesréahis relatively scarce), and is
particularly helpful for some of the STAMP benchmarks whoeim use as much as 1.5 GB of
physical memory.

6.4.3 Reducing undo-logging overheads

Within transactions, stores form a minority of accessespared to loads. Nevertheless undo
logging for stores can be a significant source of overheadasnuhple observation can serve to
eliminate much of this. Dragojevic et al. observed that m@agsactions in STAMP perform
a significant fraction of their accesses to captured menidNAT09]: memory allocated and
released in the same transaction. Such accesses need noddogged since their initial
contents are irrelevant to execution. To take advantaglei®f track whether a chunk escapes
from a transaction: (i.e. allocated within it but not reledidby the end) in thescape_f | ag
field of the allocation site metadata. If teecape flag is not set theSpecul ati veWite
does not perform any undo-logging for the access.

119

6. Thread-private data tags

pat ch: jnp <next _instruction>
<l nlined taggi ng check>

<If success junp to access>
novl $patch, %ax

call fixup

<l oggi ng cal |l >

access:

Figure 6.7: Inlined tag check

6.4.4 Inlining checks

Even if a location is identified as thread-private by tagglrggill need to pay the cost of the call

into the logging functions. Ideally one would like to inlitkeat check in the PIC to avoid that

overhead for thread-private locations. At the same timeveméld not want to pay the cost of

that inline check for locations that are not thread-privatece it is bound to fail and represents
an unnecessary overhead.

An important observation here is that most accesses in tGeaRt either always to thread-
private locations or always to shared locations. | explig by enhancing the instrumentation
engine to inline the check as shown in the x86 level pseudadfd simplicity) in Figure 6.7

in the form of “self-modifying” instrumentation. If the imled tagging check succeeds, then
control jumps past the call to the logging function. If theeck fails then the fixup proce-
dure changes the initial jump to the next instruction to jupast the inlined tagging checks
(reflecting the fact that the location that was accessedvistagged as shared).

6.5 Evaluation

The evaluation in this chapter focuses on the effectivenéssgging in reducing instrumen-
tation overhead for the STAMP benchmarks. The evaluatierefore compares SLE_x86 to
SLE_x86 with private data tagging on (labelSHE _x86 + PDT). The objective is to close
the gap with manual instrumentation and hence | also inctodeperformance of STM_x86
(from Chapter 3) as reference. | use the 48-core system (#p®&: Tigger) for all the exper-

iments.

The results are shown Figure 6.8 and Figure 6.9. For the fenclmarks where automatic
instrumentation is close to the performance of the manual ¥acation, SSCA2, Intruder and
Kmeans, private data tagging makes little difference. Thisecause private data tagging is
adaptiveand does not change the logging behaviour once a locatidemified ashared

In the case of Bayes, automatic instrumentation no longes ad overwhelming amount of in-

strumentation, meaning that the STM no longer falls backesspnistic locking. However the

cost of checking the data tags still adds a large amount aoheael. In the case of Genome, pri-
vate data tagging significantly improves performance. Faatay private data tagging improves
performance but only marginally and in the case of Labyrexbacution continues to fall back

to the lock due to an overflow of the STM logs.

In the case of Yada, the effectiveness of private data tgggilimited by the organisation of a
key data structure shown in Figure 6.10 (top half). In ititis&ar bage andi sRef er enced

120

6.5. Evaluation

STM_x86 —+— SLE_x86 + PDT % STM_x86 —+— SLE_x86 + PDT %
SLE_x86 -3¢ SLE_x86 -3¢
STAMP:vacation STAMP:kmeans
1.8 r r r r 1.2

Speedup over sequential
Speedup over sequential

0.2

Threads Threads
STM_x86 —+— SLE_x86 + PDT - STM_x86 —+— SLE_x86 + PDT -
SLE_X86 -+~ SLE_X86 -+
STAMP:yada STAMP:ssca2
1 T T
0.9
S o8 A g
5 o 5
=} . =}
§ 0.6 // §
g 05 : g
o o
o 04 =y
=] =]
g o3 B 02
5 023 s
7 0 1T T o) ? o1
'O { ______________ '_’_‘;-J%_-;-_-;_-_-;-_-,-_-;;-_-.-;.-;X.'::'-‘-‘—’-"—'—'»'—' ------ ig """"""""""" x o
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads

Figure 6.8: SLE (with private data tagging) on the STAMP ltenarks(1)

fields can be updated after the object is created while thaireng fields are shared read-only.
This breaks the tagging algorithms, which are limited teaknag at an allocation granularity

and hence can't look inside the allocated object. One swiub this is to break up the object
into a read-write and a read-only part as shown in the bottalindh the figure. This leads to

a change of only 26 lines in 4600 lines of code. On the othedhahas a dramatic impact

on performance, as shown in Figure 6.11. The remaining gageiformance from manual

instrumentation is due to objects that are thread privatataifrequently accessed both within
and outside transactions. The changes ot thensact i onal flag for them hits the imposed

rate limit and leads to them being classified as shared.

In the case of the Labyrinth benchmark on the other hand,tdgtsing cannot by itself guess
that a large data structure can be accessed in a racy maaocal {hat the design must Isafe
and thus cannot introduce races). This is interestinggesine programmer has identified an
algorithm specific opportunity for improving performancélwan STM. The design goal of
SLE x86 is transparency. However, this doe$ mean that the programmer cannot commu-
nicate such an optimisation to it. To demonstrate this wabyrinth, | implemented a simple
mechanism for the programmer to providdiat to the SLE runtime system that a region of
memory should be treated as tagged thread-private for a&sabthe execution. Figure 6.12
shows how this is done by adding two lines to the source cotalwfrinth (consisting of a total
of 3113 lines). The instrumentation system is configuredo® for calls to a special “trapdoor”
functions that pass information to the private data taggysiem. In the Labyrinth example,
the system is first informed that a region of memory shouldeleporarily taggedPRI VATE
and later informed that the tag should be withdrawn. Thisroomicates the (racy) optimisation

121

6. Thread-private data tags

STM_x86 —+— SLE_x86 + PDT % STM_x86 —+— SLE_x86 + PDT %+
SLE_x86(lock) ---¢-- SLE_X86 -3¢+
STAMP:bayes STAMP:intruder
25 T T T 0.5 T T T T
/\ 0.45 | /
8 2 S 04%F . e
= = + 0
g /// \/ T 035 o
g g T B s sttt
2 15 2 03 W R
5 e 5 025 B —
> e Kewee, * > .
o e T T o
= 1 A ez g 3 = 0.2
3 P R ¥ B o1s
& 05% g o1
K 0.05
0 L 0
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads
STM_x86 —— SLE_x86 + PDT - STM_x86 —+— SLE_x86(lock) + PDT -
SLE_X86 -~ SLE_x86(Tock) ----X----
STAMP:genome STAMP:labyrinth
25 T T T T 5
" i 45
s 2 8 4
€ €
g R g 35
2 15 - 2 3
o . LK 7]
: / g 25 /
2 - >
5 1 K ° 2
Q * o
3 / 3 15 _—
5 s @ -
g Q /
@ 05 TR — Iy %) 1T ¥ *: ¥ *:
S st ol 0.5 [
0 Xz A 0
1 2 4 8 16 32 1 2 4 8 16 32
Threads Threads

Figure 6.9: SLE (with private data tagging) on the STAMP ltenarks(2)

in Labyrinth to the tagging algorithms.

Figure 6.13 shows the results of this source code annotdfxacution no longer falls back to
pessimistic locking and scales well, capturing the alganispecific optimisation in SLE_x86.

Finally, private data tagging also improves the absolutéopmance of SLE_x86 when com-
pared to locking. Figure 6.14 shows the cases where thewdbdmst performance of SLE_x86
alone and SLE_x86 with private data tagging can outperftwerdck. The entries with empha-
sis show where SLE_x86 with private data tagging outpersaitme lock, while SLE_x86 alone
does not.

6.6 Discussion

In this chapter | have discussed how memory locations caadget! as thread-private and how
such tagging can be used to safely reduce STM logging oveshéhave discussed three means
of automatic tagging: 1) static identification of heap aditians that are thread-private due to
the specification of the allocator such as OpenMP threagdgridata 2) data on the stack that
is usually thread private and 3) adaptively tagging alliocest from the heap as thread-private.
These mechanisms include as a subset the thread-privateatierns identified thus far by
STM researchers: stack locations [WCOZ7] and captured memory [DNAT09]. They also
capture various other patterns of thread-private dataeusagh as the read-only shared string
in the Genome benchmark of STAMP. Private data tagging ecg¥e at closing the gap with

122

6.6. Discussion

struct el enent ({

coordi nate_t coordi nates| 3];

| ong nuntCoor di nat e;

coordi nate_t circuntenter
doubl e circunRadi us;
doubl e m nAngl e;

edge_t edges| 3];

| ong nuntdge;

coordi nate_t m dpoi nts[3];
double radii[3];

edge_t* encroachedEdgePtr;
bool _t i sSkinny;

list_t* neighborListPtr;
bool t i1 sGarbage;

bool t i sReferenced;

[+ m dpoi nt of each edge */
/* half of edge length */
|+ opposite obtuse angle */

typedef struct {

bool _t isGarbage;
bool t i sReferenced;

} shared_part;

struct el enent ({

coordi nate_t coordi nates| 3];

| ong nuntCoor di nat e;
coordinate_t circuntCenter
doubl e circunRadi us;
doubl e m nAngl e;

edge_t edges| 3];

| ong nuntdge;

coordi nate_t m dpoints[3];
doubl e radii[3];

edge_t=* encroachedEdgePtr;
bool _t i sSkinny;

list_t* neighborListPtr;
shared_part =*shared,

/* m dpoi nt of each edge */
/* half of edge length */
[+ opposite obtuse angle */

Figure 6.10: Yada data structure: original (top) and sepdrgbottom)

123

6. Thread-private data tags

STM_x86 —+— SLE_X86 + PDT -
SLE_X86 -3~

STAMP:yada-sep

0.9 /
S o8 ‘
1
] 0.7 //
o
g 06 /
@
g 0.5 ' |
o 0.4 !
—
& WL %
01)(---»--.»-..»-.-»..)(....................
e
! 2 4 8 16 32

Threads

Figure 6.11: Performance of Yada after data structure dposition

T™ BEG N() ;
[+ ok if not nobst up-to-date =/
grid _copy(nyGidPtr, gridPtr);

voi d dbr _trapdoor (unsigned | ong a,
unsi gned | ong b,
unsi gned | ong c)

{
[+ nothing .. will be intercepted
* by instrunmentation system
* [
}
TM BEQ N()

/+ mark direct access to shared nenory =/
dbr _trapdoor (TAG PRI VATE, gridPtr->points,
nyGidPtr->wi dth *
nyGi dPtr->hei ght =
nyG i dPtr->depth);
[+ ok if not nobst up-to-date =/
grid _copy(nyGidPtr, gridPtr);
dbr _trapdoor (UNTAG_PRI VATE, 0, 0);

Figure 6.12: Labyrinth source fragment: original (top) amhotated(bottom)

124

6.6. Discussion

STM _x86 —+— SLE_x86 + PDT -
SLE_x86(lock) ---->¢---

STAMP:labyrinth-annotated

5 T T T T 1

45 /]
8 4
c
g 35
g 3
(2}
2 *
g 25 e _—
o
o 2 i
g 15 D

..... o
0

Threads

Figure 6.13: Performance of Labyrinth with annotation

Threads
Benchmark 112 4] 8 | 16 | 32

labyrinth NO[NO| NO | NO | NO | NO
labyrinth-hint |[NO| NO | NO | YES* YES* YES*
yada NO[NO| NO | NO | NO | NO
yada-decomposgtiO| NO| NO | NO | NO | NO
bayes NO|NO| NO| NO | NO | NO
vacation NO YES| YES| YES*| YES* YES*
genome NO| NO | YES YES* YES* YES*
kmeans NO|NO| NO| NO | NO | NO
ssca2 NO|[NO | YES| YES| NO | NO
intruder NO/NO| NO | YES| YES| YES

Figure 6.14: Is using Best Of(SLE_x86, SLE_x86 with PDT)téethan using the lock ?*
means also better than sequential)

manual instrumentation. One way to further reduce this gapaitic analysis to identify thread-
private objects. This is still an evolving field. Usui et al3B09] for example, chose to expose
the manual annotations in the STAMP benchmarks to their demmstead of depending on

static analysis to identify accesses to thread private. dd&vertheless, when STM compiler
designers choose to tackle this problem with static aralyshould be possible to bring some
of those techniques over into the SLE system.

The chapters in this dissertation thus far have focused ddibg up the SLE system as a
whole with the STAMP benchmarks on an 48-core machine asriligngl motivator. In the
next chapter | examine SLE_x86 along three different dinuerss larger systems, comparison
to an automatic compiler-based STM and finally larger beraoksthat present interesting
issues such as condition variables.

125

6. Thread-private data tags

126

Chapter 7
Applicability

SLE_x86 is a mechanism to apply software transactional mgatahe level of abstraction of

x86 machine code. Thus far, | have focused on the STAMP beadtsmon a specific system
to motivate the construction of STM_x86 and the binary imstentation system. The objective
has been to consider SLE_x86 as an automatic and safe meapiglyaransactional memory

to these programs and evaluate the impact of the strictem&@ory consistency model and
automatic instrumentation.

In this chapter | move out to a more general setting and exathisfollowing scenarios:

1. Scalability: Using SLE_x86 in a machine with a larger nembf threads, | examine
whether it imposes any hard limits to scalability due to ttietmess of the x86 memory
model. | also compare with an STM that only supports the muebker C++ memory
model and thereby provides more scalability.

2. Impact on software development: | consider a large pragraplementing the Quake
multiplayer game server. | compare a version with a coaraggd lock that is elided
at runtime using SLE_x86 with a version that uses languags software transactional
memory.

3. Condition Variables and Fine-grained locks: | considé&arge benchmark suite written
and optimised to use locks and condition variables. Camitariables have historically
been a source of difficulty for STM designs, which usuallybfdrthem within source-
level transactions. SLE_x86 should seamlessly handleittondsariables by falling
back to pessimistic locking. In addition, | consider the aopof applying SLE_x86
to programs using fine-grained locking, uncovering intiémgamplications on the use of
atomic blocks at a language level.

In this chapter | use SLE configured without support for gevdata tagging unless otherwise
specified. The reason is that none of the benchmarks (otaerQuake) perform a significant
number of accesses to thread-private locations in theicaksections.

7.1 Scalability

SLE_ x86 introduces significant synchronisation betweamcooently executing transactions
due to the strict nature of the x86 memory consistency mddes section examines the impact
of this on scalability.

127

7. Applicability

Cs cs_frac wait_frac avg_g_length rd_ops rd_locs w_ops w_|locs dep_dens
avltree.c:346 0.023 0.576 6. 656 37.795 36.933 0.000 0.000 0.000
avltree.c:268 0.005 0.187 6. 647 47.843 39.083 3.410 1.765 0.000
avltree.c:209 0.004 0.187 6.661 39.892 37.038 2.855 1.611 0.000
Overall _waiting Overall _dep_density Pred_AvgThreads

0. 950407 0. 000062 7.997756

Cs cs_frac wait_frac avg_qg_length rd_ops rd_locs w_ops w_|locs dep_dens
skiplist.c:209 0.054 0.529906 6.698 76.961 52.607 0.000 0.000 0.000
skiplist.c:176 0.009 0.190715 6.691 84.459 53.819 41.824 11.418 0.000
skiplist.c:136 0.009 0.186149 6.693 78.840 53.186 41.977 12.479 0.000
Overal |l _waiting Overall _dep_density Pred_AvgThreads

0. 906770 0. 000035 7.998725

Figure 7.1: Microbenchmark profiles(8 threads)

| use two simple microbenchmarks in this section: Skiplestd AVLTrees. Skiplist and tree
benchmarks have long been used in the STM community bechageffer enough disjoint-
access-parallelism at large data structure sizes to suggaling to large number of accessing
threads without any bottleneck in the data structure its€lie microbenchmarks perform a
mix of 75% lookups, 12.5% updates and 12.5% deletes to treesdatcture holdin@'® keys
(similar to Fraser’s dissertation [Fra03]). That thereuflisient disjoint access parallelism here
is illustrated by their profiles at 8 threads (generated leyptofiler described in Chapter 5),
shown in Figure 7.1. Threads spend a majority of their tim&imgto enter a critical section
with lots of disjoint-access parallelism (little dependemensity).

| compare three different alternative implementationshef data structures. The three imple-
mentations are identical in terms of the concurrency otiligialgorithms used to implement the
data structure. They differ however, in their choice of $ywaisation mechanism.

The first implementation uses a simple Pthreads readeenioitk to protect the tree. The sec-
ond implementation is identical to the first except that a&cexion time, SLE_x86 is used the
elide the lock. The third version uses transactions instéadlock to protect the concurrent
accesses. | use the Intel 3.0 STM compiler [WEQW, int] that provides language level atomic
blocks and automatic instrumentation of memory accesséshethree implementations the
lock is expected to be the least scalable. SLE_x86 shouldigedetter performance than
the lock. The STM compiler implements software transaetionemory for the C++ memory

model that attaches no semantics to data races. This adenjtefficient STM designs, since

properly ordering accesses across transactions is suoffiwiehout needing to worry about in-

terleaving non-transactional accesses that would be .rdtés thus expected to provide the
best performance. All three versions are compiled usingémee (STM capable) compiler to
eliminate any differences due to compiler optimisations.

Finally, | use a system supporting a larger number of hardwlareads for this section (Ap-
pendix B: COSMOS): an SGI Altix with 96 NehalemEX 2.67GHz (€o7) cores (Six cores on
a single multicore socket), connected by a cache cohereMAlidterconnect.

Figure 7.2 shows the results of running the benchmark orstfstem. The vertical axis in the
graph has been truncated for better visibility. The impletagon with the worst scalability is,
as expected, the lock. The implementation with the besabday is the C++ STM. SLE_x86
lies in between. | report the median of 5 runs and all the thesehmarks show a roughly equal
amount of variation with a majority (more th&0%) of points for each benchmark having a
variation of under 10% around the median. The variationsarily result from traffic due to
other programs running on the (shared batch-processistgray on cores other than the 96 that
| reserved exclusively for this experiment.

128

7.2. Impact on software development

AVLTree

600 T r r r r r r T
Lock ——
SLE_x86 ---->---
Compiler-STM - Ko

500 g
400

300

200

100

Transaction time in microseconds

0 10 20 30 40 50 60 70 80 90 100

Threads
Skiplist
600 T T T T T T T T T
Lock —+—
SLE_x86 -------
Compiler-STM -+ ¥

500 fz
400

300

200

Transaction time in microseconds

100

Threads

Figure 7.2: Scaling on a Corei7 NUMA system

A more fine-grained comparison of performance is given irtdbée of Figure 7.3 that provides
the ratio of the time required to run a data structure accesga lock to that using a trans-
action (language level and SLE_x86) at intervals of 6 thseaelpresenting each addition of a
multicore (6 core) socket to the system. At the maximum off®édds, SLE_x86 is about 16 to
20 times faster than a lock, while the language level STM @ia# times faster than SLE_x86.

7.2 Impact on software development

In this section | consider the impact that different apphmecto software transactional memory
(including SLE_x86) have on software development. Theeetlaree ways to go about using
transactional memory in a program. The first is to use a §bbased STM and manually insert
instrumentation in source code. The second is to use a cerfased STM that requires an-
notation to delimit transactions and mark functions that loa called within a transaction. The
third is to write the program using a lock and use SLE_g@6@onallyat runtime. Developers

on large scale software projects are usually concernedmatte than just performance. They

129

7. Applicability

AVLTree Skiplist
Thread$x86 STM|C++ STM Threadsx86 STM|C++ STM
6 1.30 2.44 6 2.13 2.93
12 2.60 6.67 12 3.60 7.71
18 4.69 14.15 18 6.35 16.97
24 6.92 19.83 24 8.11 22.42
30 6.39 20.69 30 8.40 25.48
36 8.15 28.31 36 9.73 29.70
42 9.12 34.53 42 11.14 41.45
48 9.69 40.14 48 11.67 36.05
54 11.14 47.45 54 12.46 54.60
60 12.63 51.72 60 14.02 53.00
66 11.27 52.17 66 11.46 49.07
72 13.87 62.60 72 16.33 60.98
78 14.06 66.75 78 17.62 67.28
84 14.32 67.92 84 17.96 63.68
90 15.37 67.52 90 19.74 78.07
96 16.78 67.82 96 20.93 76.65

Figure 7.3: Scalability at CPU socket intervals

also care about ease of use, the ability to use stable tantchad being able to easily debug
multithreaded code. Library-based STMs thus are usuallyraaption for large programs.

To illustrate these considerations, | use a reasonablg larggram: a server for the Quake
multiplayer game [GZU09]. This is a multithreaded version of the Quake game séinatican
be reconfigured (through source level macros) to either usaese-grained lock; or software
transactions througat omi ¢ blocks. The gameserver spans 49 files containing 27600diines
C code and is written to use the OpenMP threading model. Betsians are compiled using
the Intel 3.0 STM compiler. For repeatability, the serveswaven by client traces (simulating
gameplay) from another machine. The available version @k@drom the benchmark authors
supports a maximum of 8 threads and 16 clients. | use resuttseamaximum load of 16
clients, where neither the client nor the network are thddxméck. A portion of the server code
that processes client requests and updates the game wpddhitelised. As in Gajinov et al.’s
original work, I report on the “frame calculation time”, vdhi is the average time to execute the
parallel portion of the benchmark. | use the 48-core AMD sys{Appendix B: Tigger).

First, | focus on the performance of SLE_x86 alone. The lotehpiler generates a number
of accesses to OpenMP thread-private locations. Theseeéltdoed out using the technique
described in the previous chapter (Section 6.3.1). Figutefows how this benefits SLE_x86.
The benefits (reduction in frame calculation time) rangenfB8% to 49%.

Next, | focus on comparing SLE_x86 (running with PDT) to tleenpiler-based STM solution

in Figure 7.5. SLE_x86 scaldetterthan the STM and adds only 11% overhead to the STM at
8 threads. Neither however manages to beat the lock due tottivesic overheads of software
transactional memory.

It is interesting to note that SLE_x86 is able to scale while tompiler-based STM fails to
scale altogether, something that is contrary to expectditaon the results of the previous sec-
tion. This can be explained by looking at the profile for theaQeiserver running at 8 threads,
shown in Figure 7.6. There is a significant amount of lock entibn that is revealed by the

130

7.2. Impact on software development

Quake Game Server Performance (16 clients)

34 j — ' SLE_x86 ——

32 SLE_x86 +PDT xxa
30
28
26
24
22
20
18
16
14
12

.......

Frame Calculation Time [ms] (lower is better)

Threads

Figure 7.4: Quake using SLE

Quake Game Server Performance (16 clients)
20 T T T

18

Lock
Compiler-STM ¢ s
SLE_x86 +PDT &

16
14

12

10

[]

Threads

Frame Calculation Time [ms] (lower is better)

o N B~ O

Figure 7.5: Quake using different implementations of caitisections

average queue length. The fraction of time spent waitin@flarck is low since threads spend
a large fraction of their time in packet 10. Although locks arontended there is very little
disjoint-access parallelism behind them: on the averadye dthreads out of 8 can execute
critical sections in parallel. This has a larger impact o 8TM used in the Intel C++ com-
piler WCW07] since it uses eager locking and in-place updates makiodssexpensive when
compared to the write buffering used in SLE_x86. The resarksalso at odds with Gajinov
et al. who reported positive scaling when using the STM wersit 8 threads. This is likely a
consequence of the system in use. | repeated the experioeiats 8-core (older Intel Xeon,
Appendix B: Lander) system with four sockets on a frontsids.bThe results are shown in
Figure 7.7. Once again SLE_x86 scales better than the STMel#r unlike the other system,
the STM shows positive scaling at 8 threads.

| now turn my attention to software engineering considereti Compared to a simple coarse-
grained lock, using software transactional memory at alagg level required about 700 source
level annotations and in addition required porting soménefdtandard C library functions into

131

7. Applicability

Cs cs_frac wait_frac avg_g_l en rd_ops rd_l ocs w_ops w _l ocs dep_dens
sv_user.c: 1954 0. 000 0. 001 5. 340 2063. 683 403.678 1230.270 918.078 0.795
sv_user.c: 1641 0.001 0.003 5.236 1335.027 422.335 1473.582 936.901 0.742
sv_user.c: 1718 0. 000 0.003 5.670 268.454 92.301 18.596 5. 876 0.048
sv_user.c: 1728 0.001 0. 003 5. 605 3683.126 170.150 493.964 52.405 0.026
sv_user.c: 1761 0. 000 0. 002 5.515 484.420 188.304 54.822 25.882 0.075
sv_user.c: 1966 0. 000 0. 000 4.343 23621. 500 2355.750 4623. 750 2117.000 0.989
Overal |l _waiting Overall _dep_density Pred_AvgThreads

0.010843 0. 316659 3. 055371

Figure 7.6: Quake profile

Quake Game Server Performance (16 clients)

= 30 T

2 Lock —

QL Compiler-STM

” SLE_x86 + PDT ¢ J

@25

9]

2

o

= 20

(%2

E

g2 15

£

5

E 10

>

°

S s

“&’ 1

IS > |_| I_Ii

g L1 :
1 2 4 8

Threads

Figure 7.7: Quake using different implementations of caitisections (older Xeon system)

the source code. This is necessary because language-EBvet@npilers cannot deal well
with calls to legacy libraries (not instrumented to use ST,Memething that is not a problem
when working at x86 machine code level. The effort to use guage-level STM with Quake
starting from a lock-based version is clearly non-trivith addition, debugging support for
STM is currently limited to research projects and is congibd by speculating transactions.
Gajinov et al. depended only on strategically placed ptatesnents; a commendable effort but
difficult to convince mainstream programmers on large safénprojects to use.

In contrast SLE_x86 was added on to the lock-based versiperateffort. It requires no new
annotations and, being a runtime option, leaves the olligircgram free to be debugged with
standard tools. Since software transactional memory doetead to better absolute perfor-
mance compared to the lock for the examined thread coungswitrth thinking whether the
effort to port the application to use STM was worth it in thése. This serves to illustrate why
operating at the level of machine code in a language, comgild debugger agnostic manner
can be extremely useful, given that the value of portingg@earogram to use an STM may not
be evident.

7.3 Condition variables and fine-grained locks

Condition variables are a widely used mechanism for spgfgynchronisation in multi-
threaded programs. Condition variables are usually maetigpd within critical sections (such
as the pthread_cond related primitives in the Pthreadariipr The semantics for condition

132

7.3. Condition variables and fine-grained locks

variables is that a thread holds a lock before initiating & wa a condition variable. latom-
ically releases the lock when initiating the wait (usually to avioist signal problems). On
being woken up, the thread continues with the lock held ¢epired on a wakeup). In general
condition variables are difficult to reconcile with trangans. Attempts to integrate condition
variables with language level transactions either invajpecially designed transactional con-
dition variables [DS09], splitting transactions into adref and after transaction with respect
to the wait [SKBYO07] or by allowing communication betweenmuay transactions [LP11].
SLE_x86 on the other hand has been designed to safely harmdjeams with condition vari-
ables. The reason is that the underlying STM_x86 of Chapfits3back to pessimistic locking
on encountering locked instructions or systems calls tteatisually a part of condition variable
implementations (this is true for the Pthreads conditiamades). | verify this behaviour in this
section.

Another interesting aspect of multithreaded programsytasithe usage of fine-grained locks.
Since transactional memory is not a mainstream programaptign, developers carefully tune
their applications to avoid bottlenecks on coarse-graloekis. The do this through the use of
fine-grained locking, where threads a likely to requireat#int locks and thus do not needlessly
wait on each other.

| use the PARSEC [BKSLO08] benchmark suite to examine the \nebaof SLE_ x86 when
presented with programs that display usage of well tunedeoion-free locks and condition
variables. PARSEC is a set of benchmarks that aim to reprédsemext generation of work-
loads that will run on Chip Multi-Processing (CMP) systerdgiother more immediate aim
is to replace the dated SPLASH [WO%5] benchmark suite that is still in use for research
in general, including for software transactional memorf2,LASH benchmarks are too small
to evaluate real machines today (or those in the future) antesof the benchmarks in it use
algorithms that have been replaced by more modern versions.

PARSEC consists of 13 benchmarks all of which have been tousitale well and take advan-
tage of threads. In addition to locking, PARSEC benchmalda make use of ad-hoc synchro-
nisation [JT10] such as the construct that was discussejurd-3.10 where a thread spins on
a flag that indicates when another thread has published a f@gonsumption. When using an
STM at the x86 machine level, the STM must thus provide them86ory consistency model,

something that STM_x86 does do.

| begin with a profile of the benchmarks using a slightly madifiorm of the profiler in Chap-
ter 5. The modification aims to detect the usage of lockedungbns or systems calls in
critical sections that would necessitate pessimisticitugk This is easily done by emitting in
the traces a flag for when a locked instruction or memory femesecuted. Any such critical
section is marked with an asterix (“*”) in the profile. Furtliee post-processing tool simulates
the blacklist used by STM_x86. The lock corresponding tacaien of such critical sections
is blacklisted and any critical section acquiring the saouk lis also marked similarly. The
profiler thus provides an accurate picture of which critisattions need pessimistic locking
with SLE_x86. In the case of the PARSEC benchmarks all theseat sections (after manual
examination of the source code) were found to use conditoiables.

Three of the 13 benchmarks in PARSEC: Blackscholes, Fregum Swaptions do not use
locks at all for synchronisation and thus | do not considentthere. The Vips benchmark
uses the Glib threading model, that is not as yet supporte8Liy x86. Of the remaining 9
benchmarks Canneal acquires exactly one lock at startugp $bort period and thus is beyond
the scope of the profiler that depends on sampling (and alsurigeresting from the perspective
of lock elision). The profile for remaining 8 benchmarks (uting lines of code) is shown in

133

7. Applicability

the table of Figure 7.8. As is evident from the profile, exdepfacesim and Fluidanimate all
the other benchmarks use critical sections only to proteatition variables. All of them are
executed purely using pessimistic locking when executiitiy 8LE_x86 and their performance
is identical to that using locks. Crucially, SLE_x86 harsdilee condition variable seamlessly.
For the rest of this section | focus on the two benchmarks itit@tide conventional critical
sections unrelated to condition variables. | use the 48-8d1D system (Appendix B: Tigger)
for the experiments.

7.3.1 Facesim

At least some of the critical sections in Facesim are amertalsoftware lock elision. However,
the fraction of time spent waiting for or executing theséical sections is negligible. Since
SLE_x86 is built to execute code outside critical sectiomsadly from the native binary, it
should have little impact on performance. This fact is coméid by Figure 7.9 that shows the
performance of lock elision with SLE_x86 relative to rungimatively with the lock.

7.3.2 Fluidanimate

Fluidanimate represents an interesting benchmark siaagiitical sections are extremely short
but represent a non-negligible fraction of execution tirAa. examination of the source code
line number pointed to by the profiler reveals that it uses@raned locking and this explains
why lock contention is not an issue with Fluidanimate.

Running Fluidanimate with SLE_x86 however reveals an @dtng performance anomaly,
shown in Figure 7.10. Scalability is reversed: increashmgythread count decreases perfor-
mance relative to running the native binary without loclsieln.

Fluidanimate has been written to use fine-grained lockirthsaales well without SLE_x86 in
the picture. Using SLE_x86 on the other hand effectivalyreasedock contention since it
executes critical sections using Single Lock Atomicity setics. Critical sections that were
previously unrelated (executed with different locks) nowaite with SLA semantics requiring
system wide serialisation for some portions of the commitgeh On the other hand the baseline
lock-based version scales well since critical sectiongiféerent locks and proceed in parallel.
This leads to the inversion in performance.

To confirm this, | used a specially constructed preloademtibthat replaces all the different
Pthread locks with a single lock. Running Fluidanimate \liis library approximates the be-
haviour of using atomic blocks instead of critical sectianth the atomic blocks implemented
using a single global lock. Figure 7.11 shows that relativinis implementation of single lock
atomicity SLE_x86 does indeed improve scalability. Théiahidrop in performance is due to
the overhead added to each critical section by SLE_x86 wisiddalanced by the reduction
in time spent waiting at the lock. Increasing the number ofédlds increases the overhead of
SLE x86 (due to the epoch). This is significant given the séigrt critical sections. Ultimately
however the time spent waiting for a lock becomes a larggofdeading to the improvement
in performance.

These results pose an interesting question from the pdnapetlanguage level atomic blocks.
Language level atomic blocks are essentialiynymousneaning that they they do not reflect
that fact that some set of atomic blocks canstatically determined as non-conflicting. On

134

7.3. Condition variables and fine-grained locks

Source |CS fraWait fradavg_q_lefRead OpiRead LocVrite OpgWrite Locs

Bodytrack (10279 LOC)

Mutex.cpp:96* [0.297] 0.002 | 0.141 | 10.342| 7.871 | 4.384 | 3.287

Dedup (3689 LOC)

queue.c:65* 0.001| 0.001| 0.029 |130.800, 10.128 | 61.900 | 8.920

queue.c:35* 0.141] 0.001 | 0.006 |130.736| 10.048 | 55.457 | 8.005

encoder.c:838* 0.000| 0.000 | 0.000 |501.301 191.863| 0.644 0.644

encoder.c:889* 0.011| 0.000 | 0.000 |600.559| 233.432| 0.457 0.457

encoder.c:224* 0.032] 0.236 | 3.021 |426.692 160.231| 26.433 | 10.257

queue.c:24* 0.000| 0.000 | 0.000 | 7.000 | 3.000 3.000 2.000

encoder.c:118* 0.000| 0.000 | 0.004 |176.663] 54.343 | 8.000 4.000

Facesim (29310 LOC)

taskQDistFixed.c:29 | 0.000| 0.000 | 0.009 | 10.518| 4.185 5.857 3.918

taskQDistCommon.c:810.000| 0.000 | 6.353 | 15.933| 6.982 | 10.952 | 4.982

taskQDistFixed.c:10 | 0.000| 0.000 | 0.000 | 5.215 | 2.405 0.937 0.937

taskQDistCommon.c:920.018| 0.000 | 0.586 | 18.401| 9.189 9.382 5.311

taskQDistFixed.c:63 | 0.000| 0.000 | 0.000 | 6.000 | 2.000 6.000 4.000

taskQDistCommon.c:700.166| 0.001 | 3.898 | 19.184| 10.197 | 10.239 | 5.611

taskQDistFixed.c:30 | 0.000| 0.000 | 0.011 | 7.590 | 3.368 4.055 2.875

Ferret (9735 LOC)

semaphore.c:288* | 0.000| 0.000 | 0.000 |990.274| 6.651 | 495.017| 8.887

semaphore.c:123* | 0.000| 0.000 | 0.000 |377.069| 4.228 | 183.556| 3.843

semaphore.c:373* | 0.010| 0.000 | 0.000 |438.077| 4.455 | 215.030| 4.319

ferret-parallel.c:176* | 0.000| 0.000 | 0.248 |2109.749 10.008 |1065.8271 18.318

ferret-parallel.c:244* | 0.237| 0.000 | 0.332 | 20.000| 5.000 | 10.000 | 3.000

ferret-parallel.c:258* | 0.000| 0.000 | 0.359 | 13.000| 4.000 8.000 3.000

ferret-parallel.c:271* | 0.239| 0.000 | 0.339 | 20.000| 6.000 | 10.000 | 3.000

ferret-parallel.c:283* | 0.000| 0.000 | 0.429 | 13.000| 3.000 8.000 3.000

ferret-parallel.c:295* | 0.191| 0.000 | 0.425 | 19.967| 4.995 9.985 2.997

ferret-parallel.c:320* | 0.000| 0.000 | 0.241 | 12.918| 3.959 7.959 3.004

ferret-parallel.c:333* | 0.105| 0.000 | 0.425 | 19.695| 5.946 9.848 2.992

ferret-parallel.c:364* | 0.000| 0.000 | 0.280 | 12.885| 3.951 7.944 3.009

ferret-parallel.c:374* | 0.045| 0.000 | 0.000 | 19.728 | 5.946 9.864 2.996

Fluidanimate (1391 LOC)

pthreads.cpp:500 | 0.002| 0.007 | 0.000 | 4.000 | 4.000 1.000 1.000

pthreads.cpp:685 | 0.014| 0.054 | 0.000 | 5.000 | 3.522 3.000 1.522

pthreads.cpp:694 | 0.015| 0.056 | 0.000 | 5.000 | 3.490 3.000 1.490

pthreads.cpp:603 | 0.019| 0.075 | 0.000 | 3.000 | 3.000 1.000 1.000

pthreads.cpp:612 | 0.021| 0.076 | 0.000 | 3.000 | 3.000 1.000 1.000

Raytrace (13302 LOC)

RTThread.hxx:167* [0.111] 0.000 | 5.651 | 7.570 | 4.487 | 4.349 | 2.898

Streamcluster (1255 LOC)

streamcluster.cpp:893f0.000| 0.000 | 6.333 | 0.000 | 0.000 1.000 1.000

streamcluster.cpp:869f0.000| 0.000 | 5.765 | 0.000 | 0.000 1.000 1.000

streamcluster.cpp:8430.001| 0.000 | 2.693 | 9.201 | 6.480 5.011 2.615

x264 (40393 LOC)

frame.c:880* 0.000| 0.000 | 0.630 | 8.109 | 3.582 6.163 3.054

frame.c:888* 0.000| 0.000 | 0.151 | 3.809 | 2.183 1.478 0.739

Figure 7.8: PARSEC critical section memory operations

135

7. Applicability

PARSEC:Facesim

©
{12 r T T
L_'nJl SLE_x86 speedup ——
2 — _
Py 1
S]
'_
§ 08
g
(8]
2
5 06
=
[$]
3 o4
(0]
=
F 02
c
S
=
3 0
3 1 2 4 8 16 32
Threads
Figure 7.9: Using SLE on Facesim
& PARSEC:Fluidanimate
* 12 r r r
"_'nJl SLE_x86 speedup ———
2
Py 1
S
'_
§ 08
=
(8]
2
5 06
=
[$] —
3 o4
(0]
£
F 02
5
ERN |_| 1 —
i 1 2 4 8 16 32

Threads

Figure 7.10: Using SLE on Fluidanimate

the other hand locks allow the programmer to easily exprdsst whey already know about
necessary synchronisation in the program. Even an effigiamplemented language level

STM would lead to slowdowns in Fluidanimate over the lockdzhversion due to the need to
preserve the language level memory model. An effort to ploitienimate to use language level
atomic blocks would clearly be wasted. SLE_x86 is a runtiipion and reveals this without

the need to expend this effort. An interesting option worplering with language level STMs

as well as with SLE_x86 is the ability to statically determimhich transactions cannot conflict
and exploit this information in the STM.

7.4 Discussion

This chapter examined the performance of SLE_x86 in a weoiepplication settings. The first
is on hardware (and benchmarks) that offer unlimited sd#haldisjoint-access parallelism).

136

7.4. Discussion

PARSEC:Fluidanimate

©

< 12 T T T
LLIl SLE_x86 speedup ——
-

@/ 1 [—

(0]

£

'_

g os — —
=

8]

% 06

&5 .

?5 —

o 04

(0]

£]

= 02

c

o

3

2 0

LLi 1 2 4 8 16 32

Threads

Figure 7.11: Using SLE on Fluidanimate with Single Lock Aioity

There is no fundamental bottleneck in the scalability of Sk#6 and it performs better than a
lock. The second is a real-world multiplayer game servettenito use the OpenMP threading
primitives. In this case SLE_x86 scales better than the @vellISTM. More importantly, it
illustrates how SLE_x86 demands no extra annotations itwaoé and leaves the developer
free to use standard debuggers on their programs. The tbpiication looked at programs
that make heavy use of condition variables and are othetwrs to perform well with locks.
SLE_x86 has no problem handling condition variables.

An interesting observation that comes out from the Fluidete benchmark in PARSEC is
that language level transactions may not allow adequateession of opportunities for safe
parallel execution. Critical sections protected by défarlocks need not incur the cost of being
serialised by the same lock. One way to exploit this — and aiplesdirection for future work —
would be to look at forms of “multiple” lock atomicity, whexitical sections can be mapped
to a (small) set of logical locks in the STM runtime systemisidan be achieved, for example,
by replicating the STM data structures and algorithm fohdack, thus exploiting the fact that
fine-grained locking already specifies the available peliath in such applications.

137

7. Applicability

138

Chapter 8

Conclusion

This dissertation presented SLE_x86: a safe and automaticavapply software transactional
memory to x86 binaries that synchronise using locks. SLEB |&8ds to better scalability than
using a coarse-grained lock, when the lock is a bottlenetkarprogram. The application of
optimistic concurrency control allows threads to speeupstst locks leading to absolute better
performance than the lock-based version for many of the SFAl&Nchmarks and the AVLtree
and Skiplist microbenchmarks. In the case of the more realdsQuake multiplayer game it
leads to better scalability than the lock and is competitiva compiler-based STM. Finally,
SLE_x86 is widely applicable, even to critical sectionshagbndition variables. In the rest of
this chapter | summarise my contributions and directiom$ifture research.

8.1 Summary

In Chapter 1 | motivated the need to apply transactional nmgrabthe level of abstraction of
x86 machine code. | presented my thesis that it is possilale this automatically, transparently
and correctly to binaries not written to have any awarenégssactional memory.

In Chapter 2 | outlined research in the field of transactionamory in general and software
transactional memory in particular. | taxonomised theedéht kinds of STM designs possible
and in particular discussed why it is difficult to build an STt correctly handles the interac-
tion between transactional and non-transactional acseekakso discussed the different ways to
apply software transactional memory: manually using an Sibkry; automatically using an
STM compiler and source code annotations; and automatigsaihg dynamic binary rewriting
alone.

In Chapter 3 | presented the first primary contribution o$ tthissertation: a software transac-
tional memory design (STM_x86) that provides single loadnaitity and preserves the x86
memory consistency model. | show that, given the strictoéshe x86 memory model, the

only way to build STM_x86 is to exclude programs that contaicertain type of data race. |

argue that in the context of lock-based programs this r&edylcorresponds to buggy synchro-
nisation. The evaluation using the STAMP benchmarks in @he&examines the performance
of STM_x86 in comparison to the more scalable TL2 STM thawjoles a weaker memory

consistency model.

In Chapter 4 | presented a means to apply this STM automigtimak86 machine code syn-
chronising with locks. | use hybrid form of binary rewriting that uses dynamic execution to

139

8. Conclusion

discover code to be instrumented but places instrumentati@a static persistent instrumen-
tation cache for reuse. In general, the instrumentatiotesypresented borrows some of the
best ideas from static and dynamic binary rewriting enginesder to reduce instrumentation
overhead to acceptable levels. This leads to the complefe 86 system that is competitive
to manual instrumentation for four of the STAMP benchmakksction, Kmeans, SSCA2 and
Intruder). For the remaining benchmarks, there is a largeogawveen the performance achieved
through manual instrumentation and that achieved througimaatic instrumentation.

In Chapter 5 | presented a profiler that allows analysis dfcali section characteristics that
are important for transactional memory. It uses the samteum&ntation mechanism as in
the previous chapter but instead of software lock elisiasiniply measures lock contention
and memory access related characteristics of criticalasect It allows the determination of

whether a binary contains a critical section that is in a ‘swapot” for transactional memory:

lots of lock contention and lots of disjoint-access pat@ihe (no data flow between simultane-
ously executing critical sections). In addition, the meynaccess profiles pinpoint the precise
reason for the performance gap in four of the STAMP benchmaitke programmer has de-
liberately omitted STM instrumentation in the source cogleekploiting an understanding of

which program locations are thread private.

In Chapter 6 | presented a generic mechanism for tagging@mod¢pcations as thread-private
and then exploiting such tagging in the STM logging alganighto eliminate STM overheads
for them. | explore three specific applications of this mecsm@: the first is for locations on
the heap that are known statically to be thread-privateséo®nd is for locations on the stack
that areusuallythread-private but it is necessary to detect when they aneedhand the third is
adaptive tagging that can classify thread-private heag dgamically from that which is not.

| demonstrate that with adaptive tagging SLE_x86 providteb performance than the lock in
many of the STAMP benchmarks.

In Chapter 7 | explored the application of Software Lock i6lisin more general settings. |
show that there is no fundamental scalability limit to SLB6and it is able to beat the lock on
AVLTree and Skiplist micro-benchmarks on a large multicgystem (up to 96 cores). Next, |
show how SLE_x86 is much easier to apply to the large Quaképtayer game server and is
only 11% slower than a much harder to use STM compiler. Finally, | shsimg the PARSEC
benchmarks that SLE_x86, by virtue of being designed foetgadnd transparency has no
problems with handling condition variables.

8.2 Future research

SLE_x86 allows the wide and transparent applicability dfvgare transactional memory tdl
programs. Mainstream adoption of transactional memotyus ho longer dependent on efforts
to either change the software development environmenvaiteelegacy code.

The next step then is to build a complete hybrid transactioreanory solution for x86 bina-
ries. There is already a proposal for best-effort hardwanesactional memory support on the
x86 (Advanced Synchronisation Facility [CCDO]) for which simulators are already available.
ASF can be easily integrated with SLE_x86 to maintain thel iad write logs in hardware.
The common case (of short transactions) can be executeddwéee while the uncommon case
(longer transactions) can be executedrectlyon SLE_x86, leading to low overhead transac-
tions by Amdahl's law. Evaluating large multithreaded peogs on such a hybrid solution

140

8.2. Future research

should provide enough impetus for actually adding ASF tonstaéam x86 microprocessors
(and for other architectures). This will effectively brehlk deadlock that is currently impeding
progress in transactional memory.

Another interesting direction is to use the profiler desmxliln Chapter 5 on a large represen-
tative set of real-world programs. This can help resolveoamy debate in the transactional
memory community about whether critical sections in reatd code can truly benefit from
optimistic concurrency control.

141

142

Appendix A: SLE x86 restrictions

This dissertation includes a careful examination of théfmms caused when applying software
transactional memory to the unmanaged environment of x&hmea code. Some these prob-
lems necessitate restrictions on the programs that candaewith SLE_x86. The complete set
of restrictions is listed below.

1. Restriction 1: The program must not admit an execution with a memory fenedarked
instruction in a critical section (Section 3.6).

2. Restriction 2: Execution cannot depend on stores in a critical sectiongamiade visible
to other threads before the critical section completest(@e8.6).

3. Restriction 3: The execution must not contain a race between a read in eatisgction
and a write outside any critical section (Section 3.6).

4. Restriction 4: A location on a thread stack that is shared between threadsrdg be
accessed in critical sections protected by the same lockw@ya outside any critical
section (Section 6.3.2).

Of these, the first three are either detected and handleddigiag the use of the STM for some
critical sections or map to program behaviour that is likelgggy (Section 3.6). The last one
is necessary for efficient instrumentation and cannot betipedly avoided without (as far as |

can see) undue addition of complexity and overhead.

143

144

Appendix B: Experiment configurations

System: There are three systems that | have used in this dissertation

1. Tigger (Medium-sized multicore NUMA): Consisting of 483/ cores and used for the
vast majority of experiments in this dissertation. The eystonsists of four AMD 6168
processors running at 1.9 Ghz connected by a Hypertransgertonnect. Each pro-
cessor consists of two CMP dies connected by a faster ihipristerconnect. Each die
consists of 6 processors sharing a 6MB L3 cache. The syster6h&B main memory
distributed among the processors.

2. COSMOS (Large-scale multicore NUMA): An SGI Altix UV cassng of 768 cores
used for the experiments in Section 7.1. It is built aroun@ kel NehalemEX 7460
2.67GHz CPUs connected by the NUMAIink interconnect. EaBPlu@ a CMP die with
six cores sharing a 16MB L3 cache. The system has 2TB of mamane | was able to
reserve 96 cores for my experiments but had no control obsrjonning on other cores
on the shared system.

3. Lander (Small-scale SMP) : Four dual-core Intel 7130MiXpoocessors (8 cores of the
old P4 microarchitecture) running at 3.2 Ghz. This systey &atures in Figure 7.7
in this dissertation although much of the development asfte SLE_x86 happened on
this system. Each CPU has two cores sharing an 8MB L3 cacleCPlJs are connected
by a frontside bus. Although each core is capable of supgpttvo hyperthreads the
experiments were done with hyperthreading off. The systasr8GB of main memory.

Compiler: gcc 4.4 except for Sections 7.1 and 7.2, which used the InfeSE3M capable
prototype compiler. | use optimisation level 3 for all benwrks.

PIN: 1 used PIN version 27887 for all experiments in this dissena
Benchmarks:
1. STAMP version 0.9.1@t t p: // st anp. st anf ord. edu/ .
2. QuakeTM version 1.8t t p: / / ww. bscnsr c. eu/ sof t war e/ quaket m

3. PARSEC version 2.Btt p: // par sec. cs. pri ncet on. edu/

145

8. Conclusion

146

Bibliography

[ABH *08]

[AHO8]

[AHMO9]

[Akr10]

[ATLM *06]

[BAOS]

[BDAOO]

[BDBOO]

[BKSLOS]

[CBM*08]

Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsjednd Michael Isard.
Dynamic separation for transactional memory. TechnicaddReTR-2008-43,
Microsoft Research, 2008.

Sarita V. Adve and Mark D. Hill. Weak ordering—a newfidion. In 25 years of
the International Symposia on Computer Architecture (geld papers)pages
363-375, 1998.

Martin Abadi, Tim Harris, and Mojtaba Mehrara. Tactional memory with
strong atomicity using off-the-shelf memory protectiomdveare. InProceed-
ings of the Symposium on Principles and Practice of PardMelgramming

pages 185-196, 2009.

Periklis Akritidis. Cling: A memory allocator to nigate dangling pointers. In
Proceedings of the USENIX Security Symposipsages 177-192, 2010.

Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon,iBn R. Murphy, Bratin
Saha, and Tatiana Shpeisman. Compiler and runtime suppafficient soft-
ware transactional memory. Proceedings of the Conference on Programming
Language Design and Implementatigages 26—37, 2006.

Hans-J. Boehm and Sarita V. Adve. Foundations of thhe Concurrency mem-
ory model. InProceedings of the Conference on Programming LanguagegbDesi
and Implementatigrpages 68—78, 2008.

Derek Bruening, Evelyn Duesterwald, and Saman Aamarghe. Design and
implementation of a dynamic optimization framework for daws. InACM
Workshop on Feedback-Directed and Dynamic Optimiza000.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev BeneDynamo: a transpar-
ent dynamic optimization system. Rroceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design and Implementgiages 1—
12, 2000.

Christian Bienia, Sanjeev Kumar, Jaswinder Palghi and Kai Li. The PAR-
SEC benchmark suite: Characterization and architectomali¢cations. InPro-
ceedings of the International Conference on Parallel Aiettures and Compi-
lation Techniquespages 72-81, 2008.

Calin Cascaval, Colin Blundell, Maged Michael, Harold @&ain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Softwaresdcional memory:
Why is it only a research toy@Queue 6:46-58, 2008.

147

BIBLIOGRAPHY

[CCD'10] Dave Christie, JaeWoong Chung, Stephan Diestelhoishaé¢l Hohmuth, Mar-
tin Pohlack, Christof Fetzer, Martin Nowack, Torvald Rigegeascal Felber,
Patrick Marlier, and Etienne Riviere. Evaluation of AMD@wanced synchro-
nization facility within a complete transactional memotgck. InProceedings
of the European Conference on Computer Systeages 27—-40, 2010.

[CLRSO1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and @irstintroduction to Algo-
rithms MIT Press, 2001.

[CMCKOO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakiad Kunle Olukotun.
STAMP: Stanford transactional applications for multi4essing. InProceed-
ings of the IEEE International Symposium on Workload Chiazation pages
35-46, 2008.

[DFLT06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victorharmmgco, Mark Moir,
and Daniel Nussbaum. Hybrid transactional memory.Ptaceedings of the
International Conference on Architectural Support for framming Languages
and Operating Systemgages 336—346, 2006.

[DLMNOQ9] Dave Dice, Yossi Lev, Mark Moir, and Daniel NusslmauEarly experience with
a commercial hardware transactional memory implememtatla Proceeding
of the 14th International Conference on Architectural Sapfor Programming
Languages and Operating Systemages 157-168, 2009.

[DMO5] Ulrich Drepper and Ingo Molnar. The native POSIX tadelibrary for Linux,
2005. RedHat technical white paper.

[DMS10] David Dice, Alexander Matveev, and Nir Shavit. Ingil privatisation using
private transactions. IRroceedings of the ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Hardware Support for Transacti@@hputing 2010.

[DNAT09] Aleksandar Dragojevic, Yang Ni, and Ali-Reza Ati&batabai. Optimizing
transactions for captured memory. Rioceedings of the Annual Symposium
on Parallelism in Algorithms and Architecturgsages 214—-222, 20009.

[DSO07] Dave Dice and Nir Shavit. Understanding tradeoffsaftware transactional
memory. InProceedings of the International Symposium on Code Geoerat
and Optimizationpages 21-33, 2007.

[DS09] Polina Dudnik and Michael M. Swift. Condition varlab and transactional
memory: problem or opportunity ? Proceedings of the ACM SIGPLAN Work-
shop on Languages, Compilers, and Hardware Support forSaational Com-
puting 2009.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactidoeking Il. In Proceed-
ings of the International Symposium on Distributed Comqmfpages 194-208,
2006.

[EnnO5] Robert Ennals. Efficient software transactionahmogy. Technical Report IRC-
TR-05-051, Intel Research Cambridge, 2005.

148

BIBLIOGRAPHY

[FFM*07]

[Fra03]

[GZU+09]

[HFO3]

[HFO5]

[HLMO3]

[HLMS03]

[HLR10]

[HMO3]

[HOSS97]

[HPSTO6]

[HW9O]

[HWC*04]

Pascal Felber, Christof Fetzer, Ulrich Miller, Torv&aegel, Martin Stf3kraut,
and Heiko Sturzrehm. Transactifying applications usingogen compiler
framework. InProceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Compgt2007.

Keir Fraser.Practical lock freedom PhD thesis, Cambridge University Com-
puter Laboratory, 2003. Also available as Technical Relg@AM-CL-TR-579.

Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, idrCristal, Eduard
Ayguade, Tim Harris, and Mateo Valero. QuakeTM: parallatiza complex
sequential application using transactional memoryPioceedings of the Inter-
national Conference on Supercomputipgges 126—135, 20009.

Tim Harris and Keir Fraser. Language support for tigdight transactions. In
Proceedings of the Conference on Object-Oriented Prograxgystems, Lan-
guages, and Applicationpages 388-402, 2003.

Tim Harris and Keir Fraser. Revocable locks for ndoeking programming. In
Proceedings of the Symposium on Principles and Practiceul Rl Program-
ming pages 72-82, 2005.

M. Herlihy, V. Luchangco, and M. Moir. Obstructiofiee synchronization:
double-ended queues as an examplePrwoceedings of the International Con-
ference on Distributed Computing Systepeges 522-529, 2003.

Maurice Herlihy, Victor Luchangco, Mark Moir, and/illiam N. Scherer llI.
Software transactional memory for dynamic-sized datacsires. InProceed-
ings of the Symposium on Principles of Distributed Compfrages 92—-101,
2003.

Tim Harris, Jim Larus, and Ravi Rajwailransactional Memory Morgan &
Claypool Publishers, 2010.

Maurice Herliny and J. Eliot B. Moss. Transactionaémory: architectural sup-
port for lock-free data structures. Rroceedings of the International Symposium
on Computer Architecturgpages 289-300, 1993.

Sabine Hanke, Thomas Ottmann, and Eljas Soissdamnen. Relaxed bal-
anced red-black trees. Proceedings of the Italian Conference on Algorithms
and Complexitypages 193-204, 1997.

Tim Harris, Mark Plesko, Avraham Shinnar, and @aVarditi. Optimizing
memory transactions. IRroceedings of the Conference on Programming Lan-
guage Design and Implementatiggages 14-25, 2006.

Maurice P. Herlihy and Jeannette M. Wing. Linearitia a correctness con-
dition for concurrent objectsACM Transactions on Programming Languages
and Systemd4.2:463—-492, 1990.

Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlsti@whn D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christogykakis, and

149

BIBLIOGRAPHY

[int]

[IR94]

[JT10]

[LAO4]

[LCM*05]

[LP11]

[MBLO6]

[MBM *06]

[MBS+08a]

[MBS+08b]

[Mic03]

150

Kunle Olukotun. Transactional memory coherence and ctargig. InProceed-
ings of the International Symposium on Computer Architecfpages 102-113,
2004.

http://software.intel.con en-us/articles/
intel-c-stmconpiler-prototype-edition/.

Amos Israeli and Lihu Rappoport. Disjoint-accessgllel implementations of
strong shared memory primitives. Rroceedings of the Symposium on Princi-
ples of Distributed Computingpages 151-160, 1994.

Ali Jannesari and Walter F. Tichy. Identifying adehgynchronization for en-
hanced race detection. FProceedings of the International Parallel and Dis-
tributed Processing Symposiupages 1-10, 2010.

Chris Lattner and Vikram Adve. LLVM: A Compilation Bmework for Life-
long Program Analysis & Transformation. FProceedings of the International
Symposium on Code Generation and Optimizatpages 75-86, 2004.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patitiuk Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Haaed. Pin:
building customized program analysis tools with dynamatrimmentation. In
Proceedings of the Conference on Programming LanguagegDesid Imple-
mentation pages 190-200, 2005.

Mohsen Lesani and Jens Palsberg. Communicating metransactions. In
Proceedings of the Symposium on Principles and PracticarlRl Program-
ming pages 157-168, 2011.

Milo M. K. Martin, Colin Blundell, and E. ChristophelLewis. Subtleties of
transactional memory atomicity semantidEEE Computer Architecture Let-
ters 5(2):17-20, 2006.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, MaxkHill, and

David A. Wood. LogTM: Log-based transactional memory. Aroceedings
of the International Symposium on High-Performance ComepAtchitecture

pages 254-265. 2006.

Vijay Menon, Steven Balensiefer, Tatiana ShpeismdnRéza Adl-Tabatabai,
Richard Hudson, Bratin Saha, and Adam Welc. Single globek kemantics
in a weakly atomic STM. IrProceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for TransaetidcComputing
2008.

Vijay Menon, Steven Balensiefer, Tatiana ShpeismdnRAza Adl-Tabatabai,
Richard L. Hudson, Bratin Saha, and Adam Welc. Practicalkvagamicity
semantics for java stm. IRroceedings of the Symposium on Parallelism in
Algorithms and Architecturepages 314-325, 2008.

Maged M. Michael. CAS-based lock-free algorithnt &hared deques. Rro-
ceedings of the Euro-Par Conference on Parallel Processiages 651—-660,
2003.

BIBLIOGRAPHY

[MSH+06]

[MTC+07]

[NM10]

[NSO7]

[0CS07]

[0SS09]

[PG10]

[PHWO7]

[PW10]

[Raj02]

[RBABOS]

[RBK+09]

Virendra J. Marathe, Michael F. Spear, Christopher éterithul Acharya,
David Eisenstat, William N. Scherer Ill, and Michael L. Sicot.owering the
overhead of software transactional memory. Technical Repie 893, Com-
puter Science Department, University of Rochester, 2006.

Chi Cao Minh, Martin Trautmann, JaeWoong Chung, AustecDbhald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, andekQhlkotun. An
effective hybrid transactional memory system with straswjation guarantees.
In Proceedings of the International Symposium on Computdrifecture pages
69-80, 2007.

Takuya Nakaike and Maged M. Michael. Lock elision fiad-only critical
sections in Java. IRroceedings of the Conference on Programming Language
Design and Implementatippages 269-278, 2010.

Nicholas Nethercote and Julian Seward. Valgrindaeework for heavyweight
dynamic binary instrumentation. Proceedings of the Conference on Program-
ming Language Design and Implementatipages 89—100, 2007.

Marek Olszewski, Jeremy Cutler, and J. Gregoryf&@iefludoSTM: A dynamic

binary-rewriting approach to software transactional mgmtn Proceedings of
the International Conference on Parallel Architecture a@dmpilation Tech-
niques pages 365-375, 2007.

Scott Owens, Susmit Sarkar, and Peter Sewell. Amhe86 memory model:
x86-TSO. InProceedings of the Conference on Theorem Proving in Higher
Order Logics 2009.

Mathias Payer and Thomas R. Gross. Generating l@shead dynamic bi-
nary translators. IProceedings of the Haifa Experimental Systems Conference
pages 1-14, 2010.

Donald E. Porter, Owen S. Hofmann, and Emmett Witchethe optimism in
optimistic concurrency warranted? Broceedings of the USENIX Workshop on
Hot topics in Operating Systensages 1-6, 2007.

Donald E. Porter and Emmett Witchel. Understandnagigactional memory
performance. IrProceedings of the International Symposium on Performance
Analysis of Software Systeppages 97—-108. 2010.

Ravi Rajwar. Speculation-Based Techniques for Transactional Locle FEre-
cution of Lock-Based ProgramPhD thesis, University of Wisconsin-Madison,
2002. ISBN:0-493-92677-1.

Torvald Riegel and Diogo Becker de Brum. Makingeattibased STM practical
in unmanaged environments. Rroceedings of the ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Tranneaat Computing
2008.

Paruj Ratanaworabhan, Martin Burtscher, Darko Kiravéenjamin Zorn,
Rahul Nagpal, and Karthik Pattabiraman. Detecting anddtlegy asymmetric
races. InProceedings of the Symposium on Principles and Practicarl Rl
Programming pages 173—-184, 2009.

151

BIBLIOGRAPHY

[RCCSO07] Vijay Janapa Reddi, Dan Connors, Robert Cohn, aicthdd| D. Smith. Per-
sistent code caching: Exploiting code reuse across exssudind applications.
In Proceedings of the International Symposium on Code Geioerand Opti-
mization pages 74-88, 2007.

[RGO1] Ravi Rajwar and James R. Goodman. Speculative losior! enabling highly
concurrent multithreaded execution.Rmoceedings of the International Sympo-
sium on Microarchitecturgpages 294—-305, 2001.

[RHHO09a] Amitabha Roy, Steven Hand, and Tim Harris. Expigrihe Limits of Disjoint
Access Parallelism. IRroceedings of the USENIX Workshop on Hot Topics in
Parallelism 2009.

[RHHO9b] Amitabha Roy, Steven Hand, and Tim Harris. A rurdisystem for software
lock elision. InProceedings of the European Conference on Computer Systems
pages 261-274, 2009.

[RHLO5] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Vidlizing transactional mem-
ory. In Proceedings of the International Symposium on Computenifecture
pages 494-505, 2005.

[RHPT07] Christopher J. Rossbach, Owen S. Hofmann, Donald EeRdtiany E. Ra-
madan, Bhandari Aditya, and Emmett Witchel. TxLinux: usamgl managing
hardware transactional memory in an operating systenPréceedings of the
Symposium on Operating Systems Principteges 87-102, 2007.

[SATHT06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Huds6hi Cao Minh, and
Benjamin Hertzberg. McRT-STM: A high performance softwaensactional
memory system for a multi-core runtime. Rroceedings of the Symposium on
Principles and Practice of Parallel Programmingages 187-197, 2006.

[SDALO1] Benjamin Schwarz, Saumya Debray, Gregory Andremsl Matthew Legendre.
PLTO: A link-time optimizer for the Intel IA-32 architecter InIn Proceedings
of the Workshop on Binary Translatip2001.

[SE94] Amitabh Srivastava and Alan Eustace. ATOM: A syste&m building cus-
tomized program analysis tools. Broceedings of the Conference on Program-
ming Language Design and Implementatipages 196—205, 1994.

[SKBYO07] Yannis Smaragdakis, Anthony Kay, Reimer Behrendsd Michal Young.
Transactions with isolation and cooperation. Rroceedings of the Confer-
ence on Object-oriented Programming Systems and Apprcsitpages 191—
210, 2007.

[SMAT+07] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-TabataBéeven Balensiefer,
Dan Grossman, Richard L. Hudson, Katherine F. Moore, antrB&aha. En-
forcing isolation and ordering in STM. IRroceedings of the Conference on
Programming Language Design and Implementatmages 78-88, 2007.

[SMDS07] Michael F. Spear, Virendra J. Marathe, Luke Daesso, and Michael L. Scott.
Privatization techniques for software transactional mgmdechnical Report
TR 915, Computer Science Department, University of Ro&ne2007.

152

BIBLIOGRAPHY

[SNO5]

[SS05]

[STO5]

[TWGMO7]

[USB09]

[VPBCO8]

[VPCDB*05]

[WCW+07]

[WOT+95]

[WSATO8]

[WYWO8]

[x8609]

Julian Seward and Nicholas Nethercote. Using vathtb detect undefined
value errors with bit-precision. IRroceedings of USENIX Annual Technical
Conferencepages 2—-15, 2005.

William N. Scherer Il and Michael L. Scott. Advanaszhtention management
for dynamic software transactional memory. Rroceedings of the Symposium
on Principles of Distributed Computingages 240-248, 2005.

Nir Shavit and Dan Touitou. Software transactionahmory. InProceedings of
the Symposium on Principles of Distributed Computjpaiges 204—-213, 1995.

Fuad Tabba, Cong Wang, James R. Goodman, and Maik NA&ZTM: Non-
blocking, zero-indirection transactional memory. Rroceedings of the ACM
SIGPLAN Workshop on Languages, Compilers, and Hardwarg@tgor
Transactional Computing2007.

Takayuki Usui, Yannis Smaragdakis, and Reimer Betis. Adaptive locks:
Combining transactions and locks for efficient concurreriayProceedings of
the International Conference on Parallel Architecturesdadompilation Tech-
niques 20009.

Christoph von Praun, Rajesh Bordawekar, and Gad¢iacaval. Modeling op-
timistic concurrency using quantitative dependence amaly In Proceedings
of the Symposium on Principles and Practice of Parallel Pamgming pages
185-196, 2008.

Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De&uand Koen
De Bosschere. DIABLO: A reliable, retargetable and extaeslink-time
rewriting framework. InProceedings of the International Symposium On Signal
Processing And Information Technolggages 7-12, 2005.

Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, andR&za Adl-
Tabatabai. Code generation and optimization for transaatimemory con-
structs in an unmanaged language Phoceedings of the International Sympo-
sium on Code Generation and Optimizatipages 34-48, 2007.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jageri Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization agtthatological
considerations. IProceedings of the International Symposium on Computer
Architecture pages 24-36, 1995.

Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatalbaevocable transactions
and their applications. I8PAA '08: Proc. 20th Symposium on Parallelism in
Algorithms and Architecturepages 285-296, June 2008.

Cheng Wang, Victor Ying, and Youfeng Wu. Supportilegacy binary code in
a software transaction compiler with dynamic binary tratish and optimiza-
tion. In Proceedings of the International Conference on CompilensBauction
pages 291-306, 2008.

Intel 64 and IA-32 Architectures Software Developer's Manuw/olume 3a
November 2009.

153

BIBLIOGRAPHY

[ZBS08]

[ZWAT +08]

154

Rui Zhang, Zoran Budindj and William N. Scherer Ill. Commit phase in
timestamp-based STM. IIRroceedings of the Symposium on Parallelism in Al-
gorithms and Architecturepages 326—335, 2008.

Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Yijslenon, Tatiana Sh-
peisman, and Suresh Jagannathan. A uniform transactigrealitton environ-
ment for Java. IfProceedings of the European Conference on Object-Oriented
Programming pages 129-154, 2008.

