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Software lock elision for x86 machine code

Amitabha Roy

Summary

More than a decade after becoming a topic of intense researchthere is no transactional memory
hardware nor any examples of software transactional memoryuse outside the research commu-
nity. Using software transactional memory in large pieces of software needs copious source
code annotations and often means that standard compilers and debuggers can no longer be
used. At the same time, overheads associated with software transactional memory fail to moti-
vate programmers to expend the needed effort to use softwaretransactional memory. The only
way around the overheads in the case of general unmanaged code is the anticipated availabil-
ity of hardware support. On the other hand, architects are unwilling to devote power and area
budgets in mainstream microprocessors to hardware transactional memory, pointing to trans-
actional memory being a “niche” programming construct. A deadlock has thus ensued that is
blocking transactional memory use and experimentation in the mainstream.

This dissertation covers the design and construction of a software transactional memory runtime
system called SLE_x86 that can potentially break this deadlock by decoupling transactional
memory from programs using it. Unlike most other STM designs, the core design principle
is transparencyrather thanperformance. SLE_x86 operates at the level of x86 machine code,
thereby becoming immediately applicable to binaries for the popular x86 architecture. The only
requirement is that the binary synchronise using known locking constructs or calls such as those
in Pthreads or OpenMP libraries. SLE_x86 provides speculative lock elision (SLE) entirely in
software, executing critical sections in the binary using transactional memory. Optionally, the
critical sections can also be executed without using transactions by acquiring the protecting
lock.

The dissertation makes a careful analysis of the impact on performance due to the demands
of the x86 memory consistency model and the need to transparently instrument x86 machine
code. It shows that both of these problems can be overcome to reach a reasonable level of
performance, wheretransparentsoftware transactional memory can perform better than a lock.
SLE_x86 can ensure that programs are ready for transactional memory in any form, without
being explicitly written for it.
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Chapter 1

Introduction

This dissertation describes the design, construction and evaluation of a system that applies soft-
ware transactional memory (STM) to an x86 binary synchronising with locks. The system aims
to improve scalability when coarse-grained locks are a bottleneck in the program while guaran-
teeing that the result of execution of the program is indistinguishable from that were locks to be
used.

In this chapter I outline the motivation for this work. I alsosummarise the contributions of
the dissertation and list the contents of the following chapters that describe the contributions in
detail.

1.1 Motivation

Locks are the most popular method of synchronisation in multithreaded programs. With in-
creasing thread counts in systems due to the availability ofmulticores, coarse-grained locks can
become a scalability bottleneck in programs. This has led toa tension between coarse-grained
and fine-grained locking in programs. Coarse-grained locking is easier to get right since fine-
grained locking is (a) prone to programming errors such as deadlock and (b) makes composable
software engineering hard since calls that cross multiple modules need to be aware of held locks
in order to avoid deadlock. On the other hand fine grained locks provide better scalability since
critical sections do not need to wait on the same lock if they need to access different shared
memory locations.

A simple example serves to illustrate the problem of lockinggranularity. Consider the prob-
lem of implementing a concurrent red-black tree. A straightforward solution would be to start
from a sequential implementation of red-black trees available in a standard textbook [CLRS01]
and protect the tree with a single coarse grained lock. A morescalable solution is to use the
considerably more complicated relaxed version of red-black trees [HOSS97] that relaxes the
data structure by decoupling insertion and deletion from re-balancing. One could then refer to
Fraser’s dissertation [Fra03] that includes a fairly non-trivial fine grained locking protocol for
relaxed red-black trees.

The parallel programming research community has been investigating transactional memory
[HM93] as the solution to this problem. Hardware transactional memory provides special hard-
ware support for executing blocks of code transactionally.Software transactional memory im-
plements transactional memory entirely in software makingthe benefits of transactions available

15



1. Introduction

to programs running on current microprocessors without theneed to wait for hardware transac-
tional memory to become available. When using transactional memory, rather than explicitly
waiting for and acquiring any coarse-grained locks, execution proceeds speculatively and uses
a two phase commit protocol similar to database style transactions. Transactions thus only need
to wait for each other when there are conflicting accesses to the same piece of shared data. In
the example, two updates to a red-black tree can proceed in parallel, if they modify different
subtrees. This is usually the case for large enough trees andthus optimistic concurrency con-
trol can provide the scalability of fine grained locking without the associated complexity (a fact
that Fraser also demonstrated [Fra03]). However, in spite of almost a decade of research into
transactional memorythere is no transactional memory hardware nor any examples outside the
research community of the use of software transactional memory.

Using software transactional memory is too disruptive to software engineering for large pieces
of software. The stumbling block to adoption is a clean integration of transactional memory
into the software stack. Integrating transactional memoryinto a language requires defining the
semantics of a construct that can expose transactional memory to the programmer (such as an
atomic block[HF03]) and ensuring that the software transactional memory implementation pre-
serves those semanticsandthe language memory model (which in the case of many widely used
languages is only just being defined). Further, an STM requires either tedious and error-prone
instrumentation of source to use an STM library or equally tedious annotation of source to use
experimental STM compilers that are yet to agree on languageextensions. Finally precompiled
library calls and system calls (and I/O in general) are difficult to use in transactions unless one
is prepared to sacrifice scalability by serialising transaction execution in order to executeirrevo-
cably [WSAT08]. At the same time, overheads associated with software transactional memory
fail to motivate programmers to expend the needed effort to use software transactional memory.
The only way around the overheads in the case of general unmanaged code is the anticipated
availability of hardware support.

On the other hand, architects are unwilling to devote power and area budgets in mainstream
microprocessors and deal with the complexity of hardware transactional memory implementa-
tion. They point to transactional memory being a “niche” programming construct. Further, the
limitations of hardware means that a hybrid solution where some transactions can be executed
in software is necessary. Unfortunately, the lack of mainstream acceptance of software transac-
tional memory means that even if hardware transactional memory were to become available it
would be some time before programs could be modified to take advantage of it.

A deadlock has thus ensued that is blocking transactional memory use and experimentation in
the mainstream. These problems have prompted some researchers to label software transac-
tional memory a research toy [CBM+08] and raise serious questions about the future of trans-
actional memory in general.

The crux of the problem with integrating transactional memory into language level synchronisa-
tion is that it is contrary to the systems design principle of“separating mechanism from policy”.
Transactional memory is a mechanism for synchronisation with optimistic concurrency control
and is not a sound and easy way tospecify(or think about) synchronisation. Hence this dis-
sertation proposes leaving the well known and ubiquitous lock as the means for specifying
synchronisation in programs. A coarse grained lock can (andshould) be used for easy and
maintainable synchronisation.

This leaves the question of when to apply the mechanism of “transactional memory”. This thesis
proposes applying it as late as possible: to machine code at runtime and making it anoptional
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mechanism of execution. Software transactional memory is used to elide1 lock acquisition and
speculatively execute the critical section as a transaction. Applying it late means that the soft-
ware development environment stays unchanged. It also means that the mechanism is language
and compiler neutral (and requires no changes to either). Legacy code (including libraries) is
no longer a problem. Keeping it optional means that the program can be simply executed with
locks for debugging as usual. Locking can also be selectively used for critical sections that do
operations that are difficult to reconcile with transactional memory such as system calls,without
requiring other unrelated transactions to stop running as with current proposals for irrevocability
in STMs.

These benefits are attractive enough for various other researchers to design and implement lock
elision systems. Other proposals for lock elision so far either involve unavailable hardware
[RG01]; are limited to Java [ZWAT+08]; or require the programmer to convert code to use a
new synchronisation primitive together with a special compiler [USB09].

This dissertation presents the design and implementation of a software lock elision system
(SLE_x86) that uses as a starting point an x86 binary synchronising with locks. Although
the implementation I describe is x86 specific the general approach could be replicated for other
architectures. It provides a clean separation of mechanismfrom policy while being usable on
current off-the-shelf hardware. Additionally I show how the infrastructure built for SLE_x86
can be used to build a runtime profiler for x86 binaries. This provides statistics about critical
sections in the binary and insights into their possible interaction with transactional memory;
particularly to explain the benefit or lack thereof that can be obtained through the use of soft-
ware lock elision.

The driving design principle for SLE_x86 isapplicabilityandtransparency. It is a widely and
easily applicable software transactional memory runtime system, since it requiresnothingfrom
the programmer in terms of awareness of transactional memory. It makes software transactional
memory backward-compatible with existing code. Unlike other STM designs, performance is
only a secondary design goal for SLE_x86 and the design sacrifices performance when needed
for transparency.

1.2 Contributions

It is my thesis that software transactional memory can be automatically, transparently and cor-
rectly applied at runtime to critical sections in binaries that synchronise with locks and are not
constructed to have any awareness of software transactional memory.

The first key contribution of this dissertation is the designand construction of a software trans-
actional memory that preserves the x86 memory consistency model. I start by showing that it
is impossiblefor a non-trivial STM to preserve the x86 memory consistencymodel for all pro-
grams. I then show that it is possible to recover scalabilityby excluding programs that contain
a certain type of data race. I argue that such races likely correspond to program bugs and there
exist practical techniques to detect such races.

The second key contribution of this dissertation is a lightweight low-overhead mechanism to
instrument critical sections in lock-based x86 programs. My instrumentation infrastructure is
built with two key design goals in mind. The first is that the cost of inserting instrumentation

1Elisionn.: A deliberate act of omission.
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should be zero. The second is that the execution overhead outside critical sections should be
zero. These ensure that software lock elision is “pay to use”in terms of overhead. The in-
strumentation infrastructure also incorporates a number of novel methods to safely filter out
thread-private accesses to further reduce overhead.

1.3 Outline

I now outline the organisation of the rest of this dissertation.

In Chapter 2 I survey background literature and place the ideas of this dissertation in proper
context. I also delineate my contributions in this dissertation with reference to previous work in
lock elision and profilers that attempt to to quantify program suitability for the use of optimistic
concurrency control.

In Chapter 3 I consider the requirements for building an STM runtime that can be used to
elide locks and execute critical sections concurrently. Preserving the semantics of x86 machine
code requires considering the behaviour of the program in terms of the memory model of the
underlying hardware. The STM runtime should thus strive to preserve the memory model even
while applying optimistic concurrency control to criticalsections. There have been no previous
STM designs that have considered a hardware memory consistency model and the focus of the
chapter is on designing an STM algorithm that preserves the x86 memory consistency model. I
also include an evaluation of the STM against designs that are morescalable but only support
weakerlanguage levelmemory consistency models.

In Chapter 4, I present a lightweight and low overhead technique to instrument shared memory
accesses within critical sections of x86 programs. My technique builds on an existing stable
binary rewriting engine but removes associated overheads.The chapter also includes an evalu-
ation of the instrumentation system on its own (in terms of overhead over manual instrumenta-
tion) and an evaluation of a complete system for software lock elision in combination with the
STM design of the previous chapter.

In Chapter 5 I present the design and construction of a profiler that makes use of this instru-
mentation to profile the suitability of an x86 binary for using transactional memory. I identify
the two key metrics that need to be measured (lock contentionand critical section disjoint ac-
cess parallelism) and show how they can be measured with minimum error from executions of
the binary. This profiler is extremely useful to debug the performance of SLE and, being TM
agnostic, is useful to characterise the suitability of x86 binaries for TM in general.

In Chapter 6 I tackle one of the key problems with the SLE system built and evaluated in the
previous chapters: instrumentation of thread-private data leads to significant overheads for some
benchmarks over an STM applied through manual instrumentation. I present a technique for
automatically distinguishing thread-private data and safely eliminating STM related overheads
for them.

In Chapter 7 I evaluate software lock elision in a more general setting. In previous chapters,
I focus on a single comprehensive benchmark (the STAMP benchmark suite) geared towards
exercising speculation. In this chapter I compare with compilers that support STM at a language
level, on systems architected at a hardware level for scalability and finally on the more real world
benchmark of the Quake game server.

In chapter 8, I conclude and provide some suggestions for further areas of research.
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1.4 Publications

Some of the research described in this dissertation also appears in the following publications:

1. Amitabha Roy, Steven Hand and Tim Harris. Hybrid binary rewriting for memory access
instrumentation. InProceedings of the Conference on Virtual Execution Environments,
2011.

2. Amitabha Roy, Steven Hand and Tim Harris. Poster: Weak atomicity under the x86
memory consistency model. InProceedings of the Symposium on Principles and Practice
of Parallel Programming, 2011.

3. Amitabha Roy, Steven Hand and Tim Harris. Exploring the Limits of Disjoint Access
Parallelism. InProceedings of the USENIX Workshop on Hot Topics in Parallelism, 2009.

4. Amitabha Roy, Steven Hand and Tim Harris. A runtime systemfor software lock elision.
In Proceedings of the European Conference on Computer Systems, 2009.

Of these, the last mentioned publication described a systemwith the exactoppositedesign
goals to the one in this dissertation. It covered the design of a software lock elision system that
emphasised performance over transparency, requiring the programmer to manually annotate
source code and only supporting the weaker C++ memory model.
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Chapter 2

Background

Transactional memory for general purpose software was inspired by database transactions and
aims to bring the benefits of optimistic concurrency controlto synchronisation problems in
multithreaded code. Starting with the earliest proposals [HM93, ST95], the fundamental idea
behind transactional memory has been to not wait for access to data, on the premise that critical
sections will not, in the common case, make conflicting accesses.

The advantages of this kind of synchronisation can be illustrated by data structures that have
potential for disjoint access parallelism, such as red-black trees that have historically been an
important benchmark for the transactional memory community. If one were to consider a large
tree and threads making simultaneous lookup, update and delete operations, it is highly likely
that a read access will not conflict with a write access since the updates would be confined to a
subtree not accessed by a reader. The data structure and its access patterns thus exhibit disjoint-
access-parallelism [IR94] i.e. parallelism emanates fromthe fact that concurrent accesses are
likely made to disjoint sets of locations.

Given this scenario, protecting the entire tree with a lock is likely too conservative. However,
omitting the lock would be wrong as there is no guarantee thataccesses to the tree from simulta-
neously executing critical sections are always disjoint. It is possible (but hopefully uncommon)
that they will conflict. Transactional memory provides an ideal synchronisation mechanism
for such a scenario. Entire computations and shared memory accesses representing one of the
possible operations on the tree are encapsulated in a “transaction” and presented to the transac-
tional memory system. The transaction is then executed using optimistic concurrency control.
All transactions proceed in parallel. If no conflict is detected the transactions can complete
simultaneously. On the other hand if a conflict is detected the transactional memory system
has the capability to roll back the transaction that has encountered a conflict and restart it. The
effect of such a system on the concurrent accesses to the red-black tree – when the tree is used
to implement the set abstract data type – is to present a linearised schedule to the program-
mer [HW90]. A linearised schedule is a total order on the access operations, consistent with the
behaviour of a set, that also respects the constraint that anoperation that finishes before another
operation begins is also ordered before it in the linearisedschedule. The transactional memory
system thus presents to the programmer the illusion that threads execute with mutual exclusion
even though they are in fact accessing the data structure in parallel.

The rest of this chapter surveys various transactional memory systems starting with hardware
transactional memory and then moving on to software transactional memory. I then focus on
software transactional memory and discuss ways to apply transactional memory instrumentation
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to programs. Next, I discuss means for specifying synchronisation to the underlying transac-
tional memory system and its interaction with the memory consistency model. Finally, I discuss
the system built in this dissertation in comparison to othertransactional memory research.

2.1 Hardware transactional memory

One of the earliest proposals for hardware transactional memory [HM93] proposed allowing
a sequence of memory operations to be made atomic by piggy-backing on existing and widely
used cache coherence protocols. Herlihy et al. proposed additional instructions for transactional
load (LT) and transactional store (ST), both of which operate on memory addresses. They also
added one to validate the currently executing transaction (VALIDATE) and finally one to com-
mit the currently executing transaction (COMMIT). Using these extensions to the instructions set
architecture, one can write code to add a node to a concurrentsorted linked list, as illustrated in
Figure 2.1. The example uses theLT instructions to load pointers to successive nodes until the
right successor has been determined. It then uses theST instruction to insert the new node. If
the commit using theCOMMIT instruction succeeds it breaks out of the loop. Otherwise, it waits
for a time dictated by an exponential backoff (to avoid transactions starving each other). Also
interesting is the use of theVALIDATE instruction. It ensures that the data set of the transaction
(locations read and written) have not been accessed by otherthreads and thus the thread’s view
of shared memory (in this case the linked list nodes determined to have a smaller value than that
of the node being inserted) isconsistent.

The implementation proposed by Herlihy et al. consisted of an extra transactional cache that was
smaller than and held data exclusive from that in the normal cache of the processor. Transac-
tional loads and stores placed their accessed cache lines inthe transactional cache. Lines in the
transactional cache accessed by the current transaction (such as those holding linked list nodes
in the example) were either inXCOMMIT or XABORT states. The former state labeled lines that
were to be discarded on a successful commit, while the latterstate was for lines that were to
be discarded on an abort. Every line filled in the transactional cache would have a second copy
added, with one placed in theXCOMMIT and one in theXABORT state. Crucially, stores would
only be made to lines in theXABORT states and thus stores were buffered and discarded in case
the transaction aborted. This capability to roll back speculative changes is fundamental to the
way transactional memory (both the hardware and software variants) operates.

Subsequently, hardware transactional memory matured to the point where it was proposed as
the solemeans of synchronisation with coherency and consistency built around the idea of a
transaction [HWC+04]. Hammond et al. proposed thatall code be run in transactions with
transaction boundaries marking points where speculative changes are committed back to main
memory. Their objective was to simplify the cache coherenceand memory consistency for large
scale chip multiprocessors. They did away with the conventional snoopy or directory based pro-
tocols. Instead, processors arbitrated for commit ordering and broadcasted writes within a trans-
action as a broadcast packet. Processor caches only snoopedthe broadcast packets which could
result in the currently running transaction being aborted in the event of a conflicting write from
a previously committed transaction. The HTM system of Hammond et al. results in the broad-
cast of occasional large packets (4KB-8KB based on their simulations). This requires larger
amounts of bandwidth from the interconnect but is relatively latency insensitive as compared
to traditional cache coherence protocols that require low latency transfers of smaller amounts
of data. Furthermore, within a transaction there was no needto order reads or writes, with
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typedef struct node_st {
int value;
struct node_st *next;

} node_t;

node_t * head;

void add_node(node_t * new)
{

node_t **pcur;
node_t *cur;

while(true) {
pcur = &head;
while(VALIDATE()) {

cur = LT(pcur);
if(cur == NULL) {

ST(pcur, new)
break;

}
if(LT(&cur->value) >= new->value) {

new->next = cur;
ST(pcur, new);
break;

}
pcur = &cur->next;

}
if(COMMIT())

break;
exponential_backoff();

}
}

Figure 2.1: Sorted linked list using Herhily et al’s HTM instructions

the transactional memory system providing the illusion of sequential consistency to committed
transactions. Another interesting contrast between the proposal of Hammond et al. and that of
Herlihy made a decade earlier is the software interface. Hammond et al. do away with trans-
actional loads and stores. Instead all operations within transactions are handled transactionally
(which is the only mechanism to access memory). The linked list example thus simplifies to
Figure 2.2. The simplification is due to the fact that Hammondet al’s system was targeted
towards general purpose concurrent code rather than simplylock-free data structures.

Both the proposals of Herlihy et al. and Hammond et al. chose to retain the original as well as
modified versions of cache lines in a transaction. On a committhe original version was dis-
carded while on an abort the modified version was discarded. In the case of Herlihy’s proposal
both versions were kept in the transactional cache while Hammond chose to depend on main
memory for the original (unmodified) version. Moore et al. [MBM+06] made the observation
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typedef struct node_st {
int value;
struct node_st *next;

} node_t;

node_t * head;

void add_node(node_t * new)
{

node_t **pcur;
node_t *cur;
TRANSACTION_BEGIN_MARKER()
pcur = &head;
while(1) {

cur = *pcur;
if(cur == NULL) {

*pcur = new;
break;

}
if(cur->value >= new->value) {

new->next = cur;

*pcur = new;
break;

}
pcur = &cur->next;

}
TRANSACTION_END_MARKER()

}

Figure 2.2: Sorted linked list using Hammond et al’s TCC

that in the common case when the commit succeeds, keeping theold version around was waste-
ful. They came up with an HTM that applied changes directly tocache lines and chose to log
old values into a special “before-image” log. Commits reduce to simply flash clearing marking
bits for cachelines written in the transaction and discarding the log.

A common problem with early hardware transactional memory proposals had been cases where
transactions overflowed the cache (or a set in a set-associative cache). Rajwar et al. proposed
a solution to this problem by virtualising the transactional logs into virtual memory of the
process [RHL05]. In the (assumed) common case where transactions fit in cache, they use a
standard HTM. If the transaction overflows the cache, the data and associated tags are placed in
a log in the process’s virtual memory. Incoming snoops wouldneed to lookup this log (using a
firmware or software walker). They further proposed reducing this cost by maintaining a bloom
filter to filter out incoming snoops before initiating an expensive walk of the virtual memory
log in software.

In spite of the wealth of research into hardware transactional memory there has thus far been
only one manufactured mainstream microprocessor that incorporated general purpose HTM.
The Rock microprocessor from the SPARC family (now cancelled) incorporated a best-effort
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hardware transactional memory [DLMN09]. Modestly sized hardware transactions can be ex-
ecuted using Rock’s hardware transactional memory. Interestingly functions calls, “difficult”
instructions such as division, and TLB misses are not allowed in a transaction (in addition to ca-
pacity limits) and the authors point to this being a serious impediment in their attempts to apply
the HTM to various benchmarks. In general the HTM is “best-effort” with no guarantee that a
transaction can be executed entirely in hardware. The authors recommend using it to assist an
alternative software transactional memory implementation that guarantees eventual transaction
commit to obtain best performance without undue restrictions on the contents of transactions (I
discuss hybrid transactional memory implementations later in the chapter).

Due to the absence of hardware transactional memory supportin mainstream processors, soft-
ware transactional memory has also received considerable attention in the research community.
I discuss software transactional memory in the next section.

2.2 Software transactional memory

Software transactional memory was proposed by Shavit and Touitou in 1995 [ST95], clearly in-
spired by the then recent proposal of hardware transactional memory by Herlihy et al. However,
they wanted to implement general purpose transactional memory entirely in software by making
use of an atomic compare-and-swap instruction1 that was available in most architectures. Fur-
thermore, although the proposal of Herlihy et al. was termed“lock-free” since it did away with
mutual exclusion locks, it was in fact blocking because threads could end up infinitely aborting
each other. Shavit et al’s solution was implemented entirely in software and allowed threads to
execute transactions with a non-blocking guarantee: some thread would make progress as long
as any (not necessarily the same) thread was able to execute instructions.

2.2.1 Non-blocking data structures

Software transactional memory has essentially evolved from research into non-blocking data
structures. In general non-blocking data structures are those where the suspension of one or
more executing threads does not prevent other threads from making progress. This distinguishes
such data structure designs from those using a lock, since suspending a thread holding a lock
means that other threads requiring the same lock cannot makeprogress. In the worst case all
threads would need the lock leading to no progress in the system. There are three types of
non-blocking guarantees:

• Wait freedom guarantees that every thread completes it operation within a constant num-
ber of steps regardless of the suspension of other threads.

• Lock freedom guarantees that as long as some thread in the system takes steps, some (not
necessarily the same) thread will complete its operation onthe data structure.

• Obstructions freedom guarantees that any thread that continues taking steps will complete
its operation regardless of the suspension of other threads.

1cas(loc, old, new): atomically check if the current contents ofloc is old and if so set it tonew.
Return the contents ofloc that was read.
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Wait freedom, lock freedom and obstruction freedom thus provide successively weaker guaran-
tees. Various algorithms have been proposed for data structures with non-blocking guarantees,
such as lock free double-ended queues [Mic03] and their obstruction free variant [HLM03].
The primary difficulty with these designs is that they are limited to specific data structures and
algorithms. One of the motivators for early STMs was that they could be used to implement
any data structure with the needed non-blocking guarantee,starting from simple single-threaded
algorithms for that data structure.

2.2.2 Non-blocking STMs

Shavit et al.’s work spawned a number of STM designs that incorporated some form of non-
blocking guarantee. These were classified (in retrospect) into two primary classes.

The first class of STM designs comprises of lock-free ones. Asdescribed above an STM de-
sign is lock-free if some thread makes progress towards completing a transaction as long as
any thread is able to execute instructions. The underlying feature of lock-free STM designs is
“recursive helping”. A thread on encountering an obstruction in executing its transaction (pos-
sibly due to the obstructing thread being unable to run) helps the obstructing thread complete its
transaction before continuing execution of its transaction. Shavit et al.’s original proposal was
lock-free but could deal with only static sized transactions (where the set of reads and updates
were known a-priori). Also Shavit et al.’s proposal was evaluated on a simulator and thus left
some question about the practical applicability of lock-free STM designs. A more practical
STM for dynamic data structures that is also lock-free is Keir Fraser’s Object-Based Software
Transactional Memory (OSTM) [Fra03]. One of the key contributions of Fraser’s thesis was a
comparison of red-black tree and skiplist data structures on actual NUMA systems when built
using the best available fine grained locking mechanisms versus OSTM. He showed that OSTM
was able to outperform locks except at low thread counts, thus establishing the practical possi-
bilities for software transactional memory to scale general purpose code.

An alternative to lock freedom for software transactional memory is obstruction freedom. This
is a stronger guarantee than that provided by a simple lock since if any other thread holds a nec-
essary lock, suspending it will preclude any thread from completing. On the other hand this is a
weaker guarantee than lock freedom. There is no guarantee that any thread makes progression
towards completing its transaction: on encountering an obstruction, obstruction free implemen-
tations either choose to abort the current transaction or abort the obstructing transaction. It is
thus possible for transactions to abort each other indefinitely, leading to livelock. However, ob-
struction freedom admits substantially simpler implementations than lock-free STMs. One of
the earliest proposals for obstruction free STMs was Dynamic Software Transactional Memory
(DSTM) [HLMS03]. In addition to proposing obstruction freedom as a simpler non-blocking
guarantee, this was one of the first STMs to allow dynamicallyallocated objects to be accessed
transactionally, thus allowing concurrent versions of dynamic data structures such as linked lists
and trees to be implemented.

A key challenge in designing transactional memory with any kind of progress guarantee is
handling STM metadata. A fundamental building block in non-blocking STM designs is the ca-
pability to atomically switch the state of entire objects from the current to the next version when
a transaction modifying it commits. For example in the case of DSTM each object consisted of
a header that pointed to a transactional locator. The locator object consisted of a pointer to the
transaction that had last opened it for write, a pointer to anold version and pointer to a new ver-
sion. If the transaction pointed to had committed, then the new version was the correct version
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to use for transactions reading the object. On the other handif the transaction had aborted, then
the old version was the correct version to use. If the transaction was still running, DSTM (in
the spirit of obstruction freedom) allowed the accessing transaction to either wait or abort the
obstructing transaction. This double indirection is a source of significant overhead and hence
later obstruction free designs (such as Rochester SoftwareTransactional Memory [MSH+06])
reduced the number of indirections to one. Non-blocking Zero Indirection Software Transac-
tional Memory (NZSTM) [TWGM07] further reduced this overhead with a metadata design
that – in the common case of an uncontended object – required no indirection.

Another interesting challenge, specific to obstruction free STMs, is tackling livelock. The job
of deciding whether an obstructing transaction should be aborted or waited for was delegated to
a ‘contention manager’, which is responsible for ensuring progress in the system. Obstruction
free STMs spawned extensive research into contention management (a good example being that
in RSTM [SS05]), which could be plugged into the obstructionfree implementation, regardless
of the actual STM design. Contention managers usually employed randomised backoff with
some form of heuristic to decide when to abort an obstructingtransaction. The heuristics are
driven by feedback about commit and abort events and presenta rich design space. For ex-
ample, ‘timestamp’ based contention managers give precedence to older transactions. On the
other hand ‘karma’ style contention managers take into account the amount of work done by
competing transactions when deciding which one to abort.

2.2.3 Lock-based STMs

An alternative to STM systems that provide some kind of non-blocking guarantees arelock-
basedSTMs. Ennals [Enn05] argued that non-blocking guarantees were an unnecessary source
of overhead in STM design. He based his reasoning on two key observations. The first is
that a runtime could tailor the number of running threads to the number of cores (hardware
threads) available. This makes it unlikely that an operating system would swap out a thread
running a transaction thereby leading to an obstruction. The second is that thread failure still
remains a problem for non-transactional versions of the program or non-transactional parts of
the same program. Thus, guarding against thread failure with a non-blocking guarantee is
not very useful in the practical sense. The most important contribution of Ennals’ work was
however the comparison of his lock-based (blocking) STM design against non-blocking STMs.
For example, he showed that his algorithm consistently takes only around50%−60% of the time
taken by Fraser’s lock free implementation. As a consequence of avoiding object indirection,
he also showed that his algorithm incurred only around 50% ofthe cache misses and 22% of
the TLB misses of Fraser’s algorithm for red-black trees.

Lock-based STMs represented a low enough overhead to consider applying STMs to real world
programs and spawned much research into building and tuninglock-based STMs. Ennals’
work was followed up by Dice et al.’s Transactional Locking 2(TL2) [DSS06] algorithm that
made important advances on the practicality front over the original proposal. It proposed to
decouple metadata from data by using out-of-band metadata.This enabled the STM to be
applied “mechanically” through the insertion of read and write “barriers” without requiring
extensive data structure changes that would have been necessitated by Ennals’ or previous non-
blocking proposals. TL2 is also the basis for the STM design Ipresent in this dissertation and
hence I discuss the operation of the TL2 STM in some detail.

TL2 uses an out-of-band array of locks and associates each location in memory with a lock
in the array, using a straightforward hash function. Each lock is a simple counter that acts
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Algorithm 1 TL2 algorithms

TransactionBegin:
ReadVersion := GlobalClock

TransactionalWrite(loc, value):
Append (loc, value) to WriteSet

TransactionalRead(loc):
if (loc, value) in WriteSetthen

// Correctly handle read after write cases
Return most recent value from WriteSet

else
current_metadata := metadata for loc
value := contents of memory at loc
Check metadata for loc is still at current_metadata
Check metadata for loc is unlocked
Check metadata for loc is not greater than ReadVersion
Append loc to ReadSet
return value

Commit:
for all (loc, value)∈ WriteSetdo

lock metadata for loc, using bounded spinning to avoid deadlock
Atomically increment GlobalClock by 2, setting WriteVersion to post-increment value
for all loc∈ ReadSetdo

check metadata for loc is less than or equal to ReadVersion
for all (loc, value)∈ WriteSet in orderdo

set location loc to value
for all (loc, value)∈ WriteSet in orderdo

unlock metadata for loc setting it to WriteVersion

both as a version number and a write lock: if the least significant bit is set then the lock is
held. The rest of the bits represent the version number. The other globally shared entity is a
“timestamp counter” incremented every time a transaction commits. The timestamp counter is
used to ensure that speculating transactions see a consistent view of memory. This is referred to
as a global clock in the TL2 design. The key steps involved in executing a transaction are listed
in Algorithm 1 (if any of the checks listed at any stage fail, the transaction is aborted). Each
thread maintains a local read-set of addresses loaded and a local write-set of address-value pairs.
The transaction begins by callingTransactionBegin. Writes within the transaction call
TransactionalWrite while reads within the transaction callTransactionalRead.
At the end of the transactionCommit is called in order to commit changes back to shared
memory, atomically with respect to other transactions.

A number of optimisations are possible to TL2’s basic algorithm. Dice et al. themselves pro-
posed a few. For example, checking the local write-set for bypassing values to reads can be done
by first checking a bloom filter to filter out the common case where a read does not read any
previous write. A number of optimisations are also possibleto reduce contention for the global
clock. Dice et al. pointed out that incrementing the global clock was unnecessary for transac-
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tions that did not perform any writes. A more extensive analysis of commit sequences where an
expensive CAS to the globally shared clock could be avoided has also been done [ZBS08].

Another important set of variations to the basic TL2 design can be obtained by changing the
point at which locks on written locations are acquired. TL2 followed a lazy approach: locks
are acquired only at commit time. An alternative is eager or encounter time locking. In such
such a scheme, the lock is acquired when the first write to a location is encountered and writes
are performed directly to shared memory. Reads thus no longer need to indirect into the write-
set. There is also no need to acquire locks in the commit phasealthough locks do need to be
released. However with an eager scheme it is necessary to maintain an undo log where the old
value of locations are logged. On a transaction abort, the old values are restored from the undo
log.

The multi-core runtime STM (McRT-STM) [SATH+06] incorporates both eager and lazy lock-
ing but Saha et al. conclude that the eager approach performsbetter than the lazy one. On the
flip side, evaluation of both an eager as well as the original lazy versions of the original TL2
algorithm [CMCKO08] reveals that the lazy version can outperform the eager version on some
benchmarks. This is because the eager version is more prone to livelock between competing
transactions while the lazy version often allows one of the conflicting transactions to finish, thus
reducing the amount of wasted work. Other work has shown thatan eager STM suffers more
in high conflict scenarios due to the cost of applying the undo-log in order to roll back transac-
tions [DS07]. There is thus no clear consensus on which approach is better, with the accepted
conclusion being that no one size fits all benchmarks. Hence,considerations other than pure
performance typically drive the decision to pick between the approaches.

2.2.4 Word-based and object-based STMs

An important differentiator between STMs of both the non-blocking and lock-based variety is
whether they are word-based or object-based. Word-based STMs divide memory into fixed-size
chunks and associate external STM metadata with each chunk using a hash function. In contrast,
object-based STMs treat memory as composed of variable sized objects with the metadata either
embedded in an object or placed externally and associated with the base address of the object.
Fraser [Fra03] proposed both object-based and word-based non-blocking designs in his thesis.
RSTM [MSH+06] on the other hand is exclusively object-based. TL2 [DSS06] is a word-based
STM while McRT-STM [SATH+06] incorporates both an object-based and word-based STM.

Object-based STMs present both advantages and disadvantages over word-based STMs. A key
advantage is that the amount of STM metadata manipulated by atransaction decreases if mul-
tiple fields of the same object are accessed. On the other hand, object-based STMs require a
precise mapping of field accesses to their containing objects. This is not possible when auto-
matically inserting STM calls in code generated from unmanaged environments such as C/C++
unless there is some amount of source code information present to be taken into consideration
by the instrumentation system. In general word-based STMs are preferred in such unmanaged
environments.

There have been STM designs that try to combine the properties of word-based and object-
based STMs. Riegel et al. [RBdB08] proposed a data structureanalysis (DSA) pass in their
compiler, which could automatically identify object boundaries in compiled code. They then
used this information to associate external metadata with object bases rather than with individ-
ual fields. Roy et al. [RHH09b] proposed a word-based STM withvariable word size. Their
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proposal however depended on the programmer specifying theobject size and base address to
their library-based STM.

2.3 STM instrumentation

A key problem with practically applying software transactional memory at scale is that of in-
strumentation. Using software transactional memory in anyprogram involves at the very least
delimiting the start and end of a transaction and, more difficult, indirecting every shared mem-
ory access to the STM runtime system. There are two prevalentapproaches to the problem.
The first uses the STM runtime system as a library and inserts appropriate calls to it directly in
the source. The second approach makes use of an STM compiler and depends on annotations
in the code to delimit transactions; the compiler can then automatically insert instrumentation
for shared memory accesses. A third (not so widely used) option is to insert instrumentation at
runtime using a dynamic binary rewriting engine. I discuss these three alternatives next.

2.3.1 Library

Library-based STMs expose an API to the programmer to insertcalls at the start and end of a
transaction, as well as calls at every shared memory access.For example, Figure 2.3 shows how
the linked list example looks when using the TL2 STM API. The start and end of transactions
are delimited byTxStart andTxCommit calls while shared memory loads and stores are
indirected throughTxLoad andTxStore calls respectively.

Most of the early STM implementations were made available aslibrary-based STMs (since the
alternative of compilers was yet to mature). Library-basedSTMs suffer from two key problems.
The first is the large amount of tedious instrumentation thatmust be inserted by hand. This can
often be a source of errors that negates much of the supposed simplicity of using transactional
memory. The second problem with library-based STMs is of rolling back aborted transactions.
Library-based STMs usesetjmp andlongjmp calls in order to checkpoint and restore state.
While this restores registers, it does not restore variables on stack that are known to be thread-
private and not instrumented by the programmer. In Figure 2.3 for example, thepcur and
cur variables are changed in the transaction but are not restored on an abort. The programmer
is required to ensure that there are no live variables when entering the transaction that are not
indirected through the STM.

On the plus side however, library-based STMs empower the programmer to tweak and opti-
mise the instrumentation. For example, the programmer can avoid STM calls for data that is
known to be thread-private and not live when entering the transaction. The STAMP benchmark
suite [CMCKO08] contains a number of examples of such “programmer-driven optimisation”.
In Chapter 6 I discuss techniques by which some of the gap between automatically generated
instrumentation and this kind of optimised instrumentation can be closed.

2.3.2 Compiler

Compiler-based software transactional memory uses the compiler to insert STM instrumenta-
tion into programs.
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typedef struct node_st {
int value;
struct node_st *next;

} node_t;

node_t * head;

void add_node(node_t * new)
{

node_t **pcur;
node_t *cur;
TxStart(...); // TransactionBegin
pcur = &head;
while(1) {

cur = TXLoad(..., pcur); // TransactionalRead
if(cur == NULL) {

TxStore(..., pcur, new); // TransactionalWrite
break;

}
if(TxLoad(..., &cur->value) >= new->value) {

new->next = cur;
TxStore(pcur, new);
break;

}
pcur = &cur->next;

}
TxCommit(...); // Commit

}

Figure 2.3: Linked list using the TL2 library

Harris et al. were the first to integrate transactional memory support in a Java compiler [HF03].
Subsequently, Adl-Tabatabai et al. implemented transactional memory support in a Java com-
piler [ATLM +06] using the McRT-STM (discussed before). Their solution provides language
extensions to Java that allowed the programmer to delimit transactions. They used a com-
piler toolkit that translated these language extensions tolibrary calls into their STM. In the JIT
phase, they generated a transactional and a non-transactional version of each method and oper-
ated with the guarantee that the transactional version would be called only within a transaction.
The transactional version had STM-related instrumentation. An interesting aspect of their in-
strumentation was that they allowed both object-based and word-based software transactional
memory to be used on a type-by-type basis.

Harris at al. [HPST06] presented an STM compiler for the Common Intermediate Language
(CIL), meant to execute in a managed runtime similar to .NET.Their implementation was for
Bartok, an experimental compiler for CIL. The crucial focusof that work was in optimising
memory transactions. They showed that by properly decomposing the STM interface it was
possible to perform significant optimisations over a naive insertion of STM calls. For example,
with their object-based STM, opening an object for writing could be hoisted out of a loop, while
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leaving the actual updates to object fields within the body ofthe loop.

Tanger is a transactifying compiler for C/C++ developed by Felber et al. [FFM+07]. Tanger
is a not a compiler by itself but rather a pass in the LLVM [LA04] compiler infrastructure.
It instruments code in transactions to use a word-based STM.They showed that the compiler
was able to insert and optimise STM instrumentation to a level that was equivalent to hand
instrumented code, a major step in terms of automation from library based STMs.

Wang et al. [WCW+07] presented an optimising compiler for C/C++ code that supported trans-
actions. They used a variant of the McRT-STM and presented various optimisations that can be
done to mitigate the overhead of the STM. A key contribution of Wang et al.’s work however
is their focus onsafety. They showed that integrating an STM into an unmanaged environment
such as C/C++ that allowed pointer arithmetic and did not guarantee type safety is extremely
challenging. Some of the problems they pointed out, such as the added difficulties in support-
ing a programming construct called privatisation are also relevant to this dissertation. I return
to these problems later in this chapter.

2.3.3 Binary rewriting

A key problem with the compiler-based approach is that it is ineffective when source code is
not available. Such a situation occurs, for example, when a transaction calls a legacy library
function that has not been ‘transactified’. An alternative to compiler-based instrumentation is
to start with compiled code and insert instrumentation directly at the machine code level. Some
of the early work in using binary rewriting focused onsupportingSTM compilers.

Felber et al. [FFM+07] proposed using a static binary rewriting scheme to instrument such
legacy x86 libraries using a tool they called Tarifa (their LLVM module was called Tanger). Tar-
ifa uses a static rewriting scheme (along the lines of ATOM [SE94]) where the legacy library is
first disassembled, instrumentation is inserted and finallythe instrumented assembly code is as-
sembled back into machine code. Their conclusion was that, while using binary instrumentation
did not introduce any fundamental scalability limits, nevertheless it added significant overhead
to code generated and optimised by Tanger.

Wang et al. [WYW08] developed a tool called LDBTOM (Lightweight Dynamic Binary Trans-
lation and Optimization Module) to allow legacy x86 code to be called within a transaction
compiled with an STM capable compiler. LDBTOM was developedto complement the STM
compiler developed by the same authors. Wang et al. also report a significant overhead over
compiler generated code.

Olszewski et al. [OCS07] developed JudoSTM on top of their binary rewriting engine, Judo. Ju-
doSTM depended on marker functions being inserted in the source code to delimit transactions
and inserted transactional barriers automatically. Interesting aspects of their STM included the
use of value-based validation and generation of transaction-instance-specific commit sequences
– sequences of x86 instructions for each executed transaction – specific to the read and write
set. They obtained extremely efficient commit in return for the instruction cache miss costs.
JudoSTM reported comparable performance to RSTM (manuallyinstrumented) for counter,
linked list and hash table benchmarks.
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typedef struct node_st {
int value;
struct node_st *next;

} node_t;

node_t *head;

void add_node(node_t * new)
{

node_t **pcur;
node_t *cur;
atomic {

pcur = &head;
while(1) {

cur = *pcur;
if(cur == NULL) {

*pcur = new;
break;

}
if(cur->value >= new->value) {

new->next = cur;

*pcur = new;
break;

}
pcur = &cur->next;

}
}

}

Figure 2.4: Sorted linked list using atomic blocks

2.4 Atomicity specifications

Transactional memory is a way to execute sections of code atomically. While the previous
sections have surveyedmechanismsto execute transactionally this section focuses onpolicy i.e.
atomicity related synchronisation constructs used in programs. There have been two primary
constructs that assist programmers in specifying synchronisation using transactional memory.

2.4.1 Atomic block

The notion of building language-level atomic blocks using transactional memory was intro-
duced by Harris et al. [HF03] in the context of the Java programming language. They advocated
the atomic block for declarative concurrency control as a first class language feature.

Although Harris et al.’s original proposal for atomic blocks was in the context of Java, atomic
blocks are a popular means for expressing synchronisation when using transactional memory.
Both library-based STMs such as TL2 as well as compilers for unmanaged environments such
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int x=0

// Thread 1
lock(l1);

lock(l2);
x = 100;

unlock(l2);
do {

lock(l2);
t1 = x;

unlock(l2);
} while (t1 != 200);

unlock(l1);

// Thread 2
do {

lock(l2);
t2 = x;

unlock(l2);
} while (t2 != 100);
lock(l2);

x = 200;
unlock(l2);

Figure 2.5: A barrier for two threads

as Wang et al.’s compiler chose to expose transactional memory to the programmer through
atomic blocks. Figure 2.4 shows how the sorted linked list example of this chapter can be
expressed using atomic blocks.

Atomic blocks have the key advantage of composability when compared to the more imperative
style of expressing synchronisation using locks. Considerthe problem of removing a node from
a sorted linked list and reinserting the node into another, while making the operation appear
atomic. A concurrent thread searching both lists for the node (value) should be guaranteed
to find it. Thread-safe building blocks for the individual operations are available either using
atomic blocks or locks.

Using atomic blocks the solution would simply involve enclosing both operations in a larger
atomic block2, therebycomposingthe smaller fragments into a larger one. Using locks protect-
ing the individual lists on the other hand, one would have to worry about lock acquisition order
to avoid deadlock.

2.4.2 Lock elision

Despite the popularity of atomic blocks as a language level interface to transactional mem-
ory, researchers have explored lock elision as an alternative. Lock elision assumes that locks
continue to be the method of synchronisation. Transactional memory provides a best effort
execution of the enclosed critical section by eliding (not acquiring) the lock and hence not wait-
ing for it. If execution of the critical section using the lock fails for some reason, it can be
re-executed with the lock held, without using transactional memory. Lock elision has three
important advantages over atomic blocks.

The first advantage is that existing synchronisation constructs that use locks need not neces-
sarily have a straightforward transformation to atomic blocks. Starting from legacy code, one
might be tempted to simply remove the lock and unlock calls and instead enclose critical sec-
tions in atomic blocks. This is not always correct. Considera barrier between two threads, as

2Atomic blocks allow themselves to be nested.
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shown in Figure 2.5. The lockl2 protects the shared variablex that is used for synchronisation
between the threads. In the case ofThread 1 the entire barrier code is executed while holding
lockl1. If the locks were to be replaced with (nested) atomic blocksin a straightforward trans-
formation, no forward progress is possible since the atomicblocks cannot be serialised in a way
that allows forward progress3. On the other hand, the commonly used Single Lock Atomicity
(SLA) semantics of atomic blocks can be simulated with a single process-wide recursive lock.

The second reason is legacy code. In spite of much research focus on atomic blocks, locks
continue to be the most popular method of synchronisation for programmers. Lock elision
allows the scalability benefits of transactional memory to be obtained for legacy code without
requiring it to be be rewritten using atomic blocks. Even with an STM compiler and rewritten
source code, legacy libraries become a problem if they acquire locks.

A third reason for lock elision to be preferred is flexibility. With atomic blocks as the sole
means of synchronisation, every critical section must execute transactionally. This can be detri-
mental in some scenarios. For example, if a critical sectionincrements a shared counter, it will
inevitably suffer from a high conflict rate. Lock elision on the other hand decouples transac-
tional memory from synchronisation. It is possible to choose to elide some locks but not others
for either performance (as some researchers have shown) or (as I show in this dissertation) for
correctness reasons.

Hardware lock elision

The idea of lock elision was first proposed by Rajwar et al. [RG01] and described in detail by
Ravi Rajwar in his PhD thesis [Raj02]. Their proposal for speculative lock elision was imple-
mented using hardware transactional memory. Critical sections were detected by looking for
silent store pairs: two atomic updates to the same location whose cumulative effect was to leave
that location unchanged. The critical section itself was executed using hardware transactional
memory. The memory occupied by the lock variable was explicitly added to the read-set of the
transaction. Thus, any other thread could choose to acquirethe lock (writing to it) and execute
the critical section non-transactionally, and the system would ensure that any other transactional
executions were invalidated.

Another example of lock elision using hardware transactional memory is TxLinux [RHP+07].
In this work, the researchers replaced conventional spinlocks in the Linux kernel with a “co-
operative transactional spinlock” (cxspinlock) that could either be acquired transactionally
or acquired normally as a spinlock. Normal spinlocks were used when the critical section
protected by the spinlock did I/O.

Azul systems4 support lock elision using HTM in their proprietary systems. Lock elision is
aimed at accelerating code running in Java Virtual Machines. Since the system is proprietary,
few details are available about it.

Researchers working with hardware transactional memory inthe Rock Microprocessor also ex-
perimented with eliding locks [DLMN09]. They were motivated by the possibility of applying
their HTM to legacy software written to use locks and implemented Transactional Lock Elision
(TLE) for data structures in the C++ STL and Java. They showedthat far better scalability
resulted when using transactions to elide lock acquisitions although they had to modify the data

3This is a race-free variant of a similar example in [MBL06].
4http://www.azulsystems.com/events/vee_2009/2009_VEE.pdf
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structure implementations to get around some of the failings of the Rock HTM, as discussed
previously.

Software lock elision

Ziarek et al. [ZWAT+08] proposed a unification of Java’s monitors with transactional memory.
In their “unified execution environment” programmers couldchoose to synchronise using ei-
ther the Javasynchronized keyword or atomic blocks. Both kinds of critical sections were
executed using transactions. In the event that the criticalsection could not be executed transac-
tionally (eg. if it made native calls) execution would fall back to pessimistic locking along the
lines of traditional Java monitors.

Nakaike et al. proposed eliding the lock for read-only critical sections in Java [NM10]. They
implemented a sequence lock5 where the lock consisted of a counter, with an odd count indi-
cating that the lock is held. Readers simply took a snapshot of the counter and, if it was even,
proceeded into their critical section eliding lock acquisition. At the end of their critical section
and at various validation points they would ensure that the counter value remained unchanged
which guaranteed that no writer could have overwritten any data which has been read. For read-
mostly microbenchmarks they showed significant speedups over reader-writer locks since they
avoided an expensive atomic operation to acquire the lock inthe case of readers.

Roy et al. [RHH09b] proposed software lock elision for C/C++programs. They wrapped exist-
ing locks in a special elidable lock. The critical section was instrumented using a library-based
STM. Critical sections could execute either transactionally or after acquiring the lock. An inter-
esting feature of this work was the capability of threads that pessimistically acquired the lock to
make progress even if other threads might have speculated past it. This was achieved by using
an implementation of revocable locks [HF05] for the fine-grained locks in the underlying STM.

Usui et al. [USB09] proposed an adaptive lock design that could dynamically choose to exe-
cute the enclosed critical section using either a lock or a transaction. Their solution involves
extending the C language with anatomic(l) construct, allowing the enclosed compound
statement to be executed either by acquiring the lockl or by using a transaction. The choice
is based on dynamic (and changing) runtime information. Thekey focus of their work is on
deriving and efficiently implementing adynamiccost-benefit analysis of performance, focusing
on whether transactions or locks would be better for a particular critical section.

2.5 Weak vs strong atomicity

A traditional area of difficulty for transactional memory researchers is considering cases where
the same memory is accessed concurrently both within and outside a transaction. Depending on
the desired behaviour in such a situation Martin et al. [MBL06] classified transactional memory
as either providingstrong atomicityor weak atomicity6.

TM implementations that provide strong atomicity guarantee that the non-transactional access
is serialised either before or after any transaction that accesses the same memory. HTM im-
plementations by virtue of modifying existing cache coherence protocols automatically provide

5The authors attribute the idea to sequence locks used in the Linux kernel.
6Some researchers instead use the termsstrong isolationor weak isolationrespectively.
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// Thread 1
deleteNode(...) {

ListNode *node;
atomic {

...
node = ...;
...

}
node->value = 0;
free(node);

}

// Thread 2
updateNode(...) {

ListNode *node;
atomic {

...
node = ...;
...
r = 1/node->value;

}
}

Figure 2.6: Privatisation

strong atomicity. STM implementations on the other hand must pay a price in order to en-
force strong atomicity. One approach is to expand all non-transactional accesses into “mini-
transactions”. Shpeisman et al. [SMAT+07] implemented strong atomicity in a Java STM using
this technique. They used a static analysis to determine when objects are never accessed in
transactions and dynamic escape analysis to determine whenobjects never leave transactions in
order to reduce the number of STM barriers required (which would otherwise be prohibitive).
Abadi et al. [AHM09] present a strongly atomic STM for C# (a managed environment). Instead
of attempting to statically reduce barriers in non-transactional code, they used standard memory
protection hardware (paging) to detect when code outside transactions accesses data currently
being accessed transactionally and patched it into a mini-transaction.

On the other hand, TM implementations providing weak atomicity allow non-transactional ac-
cesses to interleave with transactional ones. Most STM implementations provide weak atom-
icity due to the cost and complexity of providing strong atomicity. Allowing such interleav-
ing however leads to a number of difficult issues from the perspective of the semantics pro-
vided to programs. One such problem that has caused concern for almost every weakly atomic
STM implementation isprivatisation. Privatisation has been extensively studied in STM liter-
ature [SMAT+07, SMDS07]. Privatisation represents the broad range of issues that arise when
objects move from being shared and accessed within transactions to being private to a single
thread and accessed without any synchronisation. This is illustrated in Figure 2.6

In this example,thread 1 privatises a node from a shared linked list by removing it from the
list. It next updates the value of the node and finally frees the memory belonging to the node
for further reuse. There are two privatisation related problems that arise here.

If the transaction onthread 2 commits before the transaction inthread 1, it might still be
in the process of writing back its changes whilethread 1 finishes its transaction and does an
unprotected write to the node. It might thus overwrite the update fromthread 1. The update
fromthread 2 might also come after the node has been freed fromthread 1 and possibly
used for a completely different data-type, which could leadto memory corruption.

The second class of problems arises if the transaction onthread 1 commits first. In this case
the transaction onthread 2 becomes azombietransaction – one that is doomed to abort –
since it is working on a node that has been removed from the linked list. Thread 2 might
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int published = 0, value =0;

// Thread 1
value = 1;
atomic {

...
published = 1
...

}

// Thread 2
atomic {

...
local_value = value;
local_published = published;

}
if(local_published == 1)

some_function(local_value);

// Impossible: local_published == 1 and local_value == 0

Figure 2.7: Publication

suffer an unanticipated arithmetic fault if it ends up reading the node’s value as 0 (as updated
by thread 1) for the division.

A variety of solutions have been proposed in STM designs for both kinds of privatisation related
problems. Explicit solutions to the privatisation probleminvolve requiring the programmer to
indicate when data moves from being shared to thread private[DSS06, DMS10, SMDS07]. On
the other hand, implicit solutions to the privatisation problem add a privatisation related fence
to the commit phase of the STM design [SMDS07, WCW+07].

A mirror to the privatisation problem is publication. Figure 2.7 illustrates this construct, where
thread 1 makes a location shared by publishing it. Consider the case where the access to
published in thread 2 occurs after the access topublished in thread 1 and thus
ends up withlocal_published == 1. In this case an STM needs to be careful that the
racing access tovalue in thread 2 not occur before the update inthread 1. Otherwise,
the undesired result will occur.

Instead of linking programming idioms to STM internals someresearchers have suggested Sin-
gle (Global) Lock Atomicity (SLA) as a semantic requirementfor STM implementations
[HLR10]. An STM exports SLA semantics to users if any execution can be mapped to one
where every transaction begins by acquiring a hypotheticalprocess-wide mutual exclusion lock
and ends by releasing it. SLA supports both privatisation and publication and presents easy
STM implementation-independent semantics to programmers. Menon et al. [MBS+08a] in-
vestigated an STM that supported SLA for Java. They concluded that this added significant
overhead to the STM and thus also investigated weakenings ofSLA that supported common
programming idioms (such as the two above) and incur lower overhead.

2.6 Single lock atomicity and memory consistency

Constructing an STM that supports single global lock atomicity requires establishing that every
execution can be mapped to one where transactions are delimited by the acquisition and release
of a hypothetical global lock. In addition, optimistic concurrency control must not result in ex-
ecutions that are forbidden by the underlying memory consistency model. For a weakly atomic
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int X = 0, Y = 0;

// Thread 1
atomic {

X = 10;
Y = 10;

}

//Thread 2

t1 = Y;
t2 = X;

C++: Catch fire due to data race, any result allowed
Java: Intra-thread reordering allowed
x86: No intra-thread reordering

Figure 2.8: Memory ordering differences

STM, transactions are atomic with respect to each other (andthus sequentially consistent with
respect to each other). However, interactions between non-transactional and transactional ac-
cesses can reveal the inner workings of the STM and a departure from the memory consistency
model if the STM is not carefully designed. Consider the simple example in Figure 2.8.

Under the C++ memory model,any result is allowed for this racy program. This is commonly
referred to as “catch-fire” semantics and the racing reads are allowed to return any arbitrary
value and the program to crash. In effect, the C++ memory model forbids data races. An STM
designed for use in C/C++ (such as TL2) thus simply need not care about such data races. Such
STMs usually focus only on preserving atomicity between transactions and correctly supporting
privatisation.

Under the Java memory model no out-of-thin air values shouldbe returned i.e. a read should
return either the initial value of a location or the value written by an executed write. This is
expressed as a requirement for causality in executions. Nevertheless an STM is still afforded
considerable flexibility. For example an STM working at a cache line granularity (such as
McRT-STM) could reorder the writes toX andY by virtue ofX being located later in a cache
line thanY and thus written out later in the commit phase. This is perfectly acceptable in the
Java memory model. Consequently the resultt1 == 10 andt2 == 0 is allowed.

The x86 memory model however is much stronger. The executionof all programs – including
those with data races – is precisely specified. In addition, there are intra-thread ordering con-
straints. In the example the writes toX andY cannotbe reordered and the resultt1 == 10
andt2 == 0 is forbidden.

One of the key results of this dissertation (Chapter 3) is that a weakly atomic STM providing
SLA for the x86 memory model is forced to serialise all transactions. I also show in the same
chapter how a practical STM can be built for the x86 memory model by relaxing the require-
ments that it be applicable to any arbitrary program.

2.7 Hybrid transactional memory

Software transactional memory in general imposes high overhead when compared to hardware
transactional memory due to the cost of adding instrumentation for shared memory accesses.
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On the other hand most proposals for hardware transactionalmemory recognise that structures
such as caches in hardware are always limited and thus hardware transactional memory can only
be “best-effort” and cannot guarantee atomic execution of large transactions. The unbounded
designs of Rajwar et al. that proposed virtualising transaction logs in order to solve this prob-
lem involve even more hardware complexity and thus represents an even bigger barrier to the
availability of hardware TM.

Motivated by these observations, Damron et al. proposedhybrid transactional memory: using a
combination of software transactional memory with hardware transactional memory [DFL+06].
The common case is execution of transactions entirely in hardware, representing the best pos-
sible performance. In the uncommon case where a transactioncannot be handled in hardware,
execution could fall back to software transactional memory. The key idea of Damron et al. was
to automatically add STM-related metadata to the read sets of hardware transactions. This en-
sured that hardware transactions were atomic with respect to software transactions that might
access the same locations.

Damron et al.’s proposal provided strong atomicity to the hardware transactions due to the
presence of a coherence mechanism that would detect non-transactional accesses. On the other
hand, it provided only weak atomicity to software transactions, allowing interleaving of non-
transactional accesses. Minh et al. [MTC+07] proposed a design for a hybrid transactional
memory system that used a weakly atomic STM (TL2) but still provided strong atomicity. This
was achieved by using a special bloom filter to encode the readand write sets of the software
transaction and checking coherence requests from non-transactional accesses on other threads
against it. On a match the software transaction is aborted.

2.8 Performance benefits of transactional memory

Transactional memory aims to bring the performance of fine-grained locking to programs writ-
ten with coarse-grained synchronisation, which is presumably easier and less prone to prob-
lems such as deadlock. Traditionally, data structures suchas red-black trees have been used
to demonstrate how transactional memory can improve scalability and hence performance over
coarse grained locking at higher thread counts.

In the process of examining the more general applicability of transactional memory, research
has focused on the conditions under which transactional memory can actually deliver better
performance than alternative methods of synchronisation such as locks.

Rossbach et al.’s work on TxLinux [RHP+07] used simulated hardware transactional memory
with no overhead for transactional accesses to replace locking in the Linux kernel. Surprisingly,
they obtained only a 5% speedup over the lock-based version of Linux. The reason for this is
that Linux is well-tuned enough that little time is wasted waiting for a lock: i.e. lock contention
is low. There was thus little advantage in allowing multiplethreads to execute critical sections
simultaneously since they rarely wanted to do so.

The amount ofdisjoint-access parallelism[IR94] is also an important determinant of transac-
tional memory performance. Transactions that increment a single shared counter will conflict.
On the other hand transactions that update a large red-blacktree are unlikely to conflict. A red-
black tree thus has a far larger amount of disjoint-access parallelism than a counter. Von Praun
et al. [vPBC08] studied the amount of disjoint-access parallelism available in programs by col-
lecting memory access traces from sequential execution andanalysing them to detect possible
conflicts.
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Some researchers have considered quantifying the benefit that transactional memory can bring
to programs using locks by combining measurements of lock contention and disjoint-access
parallelism. Roy et al. [RHH09a] built a tool that measured lock contention and disjoint-access
parallelism using dynamically instrumented programs. Porter et al. [PW10] built a similar tool,
but they used execution on a simulator for measurements. A key benefit of this approach is
that it can also be applied to operating system kernels whileRoy et al.’s techniques are limited
to application software. On the other hand Roy et al. used real execution, which yields more
accurate lock contention data.

Usui et al. [USB09] built dynamic adaptivity into their solution for software lock elision. They
measured lock contention and transaction conflicts to determine whether locks or transactions
were a better way to execute a particular critical section. Crucially they also considered the
overhead of software transactional memory in their cost-benefit analysis; previous approaches
had either ignored this overhead, or focused only on hardware transactional memory.

One of the key contributions of this dissertation is a profiler that accurately analyses and charac-
terises critical sections in x86 binaries. It uses the same infrastructure as that built for software
transactional memory. In addition to memory access characteristics of critical sections, it also
produces data related to possible conflicts and lock contention, which can be used to judge
possible performance gains from using transactional memory.

2.9 Software lock elision for x86 machine code

This dissertation focuses on building software lock elision for x86 machine code. There are a
number of decisions that I made in the design for SLE in relation to previous work.

I use word-based STM as the basis for software lock elision. This is because detecting object
boundaries in x86 machine code is not feasible. I use a weaklyatomic design. Using strongly
atomicity would require either hardware support or expensive insertion of barriers forall shared
memory accesses in the binary rather than only instrumentation of accesses in a critical section.
Previous weakly atomic STM designs had focused on providingsingle lock atomicity for lan-
guage level memory consistency models. In Chapter 3 I first solve the problem of designing an
STM that provides SLA for the stricter x86 memory consistency model.

I chose to use dynamic binary rewriting to insert instrumentation for the STM. Unlike a library-
based STM this is fully automatic; and unlike a compiler-based STM it is language, compiler
and debugger agnostic thus requiring no changes to the software development environment,
one of the stated goals of this dissertation. Unfortunatelydynamic binary rewriting adds large
amounts of overhead. In Chapter 4 I present the design for a lightweight binary instrumentation
infrastructure that avoids much of the overhead traditionally incurred when using heavyweight
dynamic binary rewriting engines.

The next two chapters discuss this work supporting efficientSLE. Chapter 5 discusses a profiler
that is built from the instrumentation infrastructure for SLE. It explains some of the performance
anomalies seen with SLE in Chapter 4. Also, since it operatesdirectly on lock-based binaries,
it can be used to evaluate the possible impact of transactional memory on programs in a TM
agnostic manner. In Chapter 6 I discuss a way to make SLE more efficient by eliminating
thread-private data from the STM logs. In Chapter 7, I discuss SLE in a more general setting in
terms of applicability before concluding.
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2. Background

For all the benchmarks in this dissertation, the hardware and toolchain used is available in
Appendix B.
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Chapter 3

x86-safe software transactional memory

The first step towards SLE for x86 machine code is to build software transactional memory that
preserves the x86 memory consistency model and can be used toreplace critical sections in x86
machine code with transactions. This chapter describes thedesign and construction of such an
STM, that I refer to as STM_x86. There are two subproblems that need to be solved for this.
The first is to build software transactional memory that preserves the x86 memory consistency
model and provides Single (Global) Lock Atomicity (SLA) to transactions. This is done in
Sections 3.1 to 3.5. The second subproblem, discussed in Section 3.6, is to show how critical
section execution can be mapped onto execution with SLA.

3.1 x86 memory consistency model

In order to describe the construction of an STM that preserves the x86 memory consistency
model (x86-MM) and provides SLA, it is important to use a well-defined model for x86-MM. I
use the recent model proposed by Owens et al. [OSS09] that casts the x86 as a total store order
machine. This model adequately considers the (informal) x86 manuals and formalises them to
a level that is usable for this dissertation.

Owens et al. describe the x86 microprocessor as essentiallya sequential machine with a write
buffer per hardware thread. I use the terms thread and processor interchangeably in this disser-
tation. In other words, they cast the x86 as a Total Store Order (TSO) machine. This means
that loads and stores execute in order. However, each threadhas a local write buffer that allows
writes to be visible to local reads before they are visible toother threads.

A TSO machine model is depicted in Figure 3.1. The registers in a processor are abstracted
in theComputation block. Each processor includes a write buffer and there is a globally
visible shared memory. An important addition to a simple write-buffered machine is thelock.
Exactly one processor can hold thelock at a time. A processor is said to beblockedif some
other processor holds the lock. This “TSO lock” is acquired by the processor before executing
a locked x86 instruction and released by the processor at theend of the locked instruction.

Any x86 processor can perform the following steps:

• A processor can read from a register.

• A processor that is not blocked can read from shared memory ifthere is no matching
location in its own write buffer.
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Figure 3.1: TSO machine

• A processor that is not blocked can read its own most recent write from its write buffer.

• A processor can write to a register.

• A processor can add a write to its own write buffer.

• A processor that is not blocked can move the oldest write fromits write buffer to memory.

• A processor can execute a barrier (mfence) if its write buffer is empty.1

• If a processor’s write buffer is empty then the processor canacquire alock (if it is
available), or release a lock (if the processor holds it).

I now define formal terms that I use in the rest of this chapter.This chapter is concerned with
programs executed on the TSO machine. Formally, a program can consist of the following
operations:

1. Read: A read, denoted asRead(p, x, Value), meaning that a read from locationx
by processorp returnsValue.

2. Write: A write, denoted asWrite(p, x, Value), meaning a write to locationx by
processorp of Value.

3. LockedRMW: A locked read-modify-write instruction denoted asLockedRMW(p, x,
Read, Write) meaning the Read and Write performed atomically on locationx by
processorp. This models locked x86 instructions aslock cmpxchg that atomically
read from and write to a memory location with the written value being a function of the
read value.

4. Fence:An mfence instruction on processorp denoted asmf(p).

1Thelfence andsfence x86 instructions are no-ops for the writeback memory type.
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Execution Trace: An execution trace of a multithreaded program is a sequence of operations
for each processor.

Execution of a program on the TSO machine results in events. An event generated by one
processor is “observable” by other processors. There are 4 kinds of events.

1. MemRead(p, x, Value) meaning that a read from memory of locationx returns
Value on processorp. This is generated by the execution of a read that does not geta
value from the local write buffer.

2. MemFlush(p, x, Value)meaning that a store leaves a write buffer and gets written
to shared memory. This does not necessarily correspond to execution of any instruction
(write buffer flushes are asynchronous).

3. ILock(p) Processorp acquires the lock. Again, the write buffer on that processormust
be empty.

4. IUnlock(p) Processorp releases the lock. Again, the write buffer on that processor
must be empty.

Event Trace: An event trace is a sequence of events.

Event Order ≺e: e1 ≺e e2 if e1 precedese2 in the event trace.

Eachstepof the TSO machine is a tuple consisting of an operation and anevent. Either the
operation or the event (but not both) can be empty. A step can be one of the following:

1. (Read(p, x, Value), MemRead(p, x, Value)): A processor reads a value from memory.

2. (Read(p, x, Value), None): A processor reads a value from its local write buffer generating
no event.

3. (Write(p, x, Value), None): A processor appends a value toits local write buffer generat-
ing no event.

4. (None, MemFlush(p, x, Value)): A processor flushes a writebuffer entry to memory.

5. A locked RMW operation generates a sequence of steps:
(None, Ilock(p))
(Read(p, x, Value1), MemRead(p, x, Value1))
(Write(p, x, Value2), None)
(None, MemFlush(p, x, Value2))
(None, IUnlock(p))

6. (mf(p), None): A processor executes a memory fence, generating no event

A valid executionon the TSO machine is simply a sequence of steps in accordancewith the
rules of the TSO machine specified at the beginning of the section. The term “execution”
always refers to a “valid execution” unless otherwise specified.
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Owens et al. also introduce a progress-related condition which restricts the allowable paths on
TSO such that: any entry in any write buffer is ultimately written back to memory. This means
that any execution must ultimately end in empty write buffers for all processors.

Single lock atomicity requires the notion of a software “lock” that is acquired at the start of
a transaction and released at the end of it. I model that lock (referred to as the SLA lock) as
a test and set lock that is acquired and released through x86 compare and swap instructions
(cmpxchg). SLA execution thus generatesILock(p) andIUnlock(p) events at both the
start and end of a transaction.

Finally, any practical STM design providing optimistic concurrency control needs to modify
program execution from that attained when using pessimistic SLA locking. The STM produces
“equivalent” executions from the perspective of the programmer. It is important to precisely
define what is meant by this equivalence.

Equivalent Execution: A valid execution is equivalent to another valid one if one can be
derived from the other by deleting events of the form (Read(p, x, Value), None) and by delaying
events of the form (Write(p, x, Value), None) up to a point before the corresponding (None,
MemFlush(p, x, Value)) is generated for it from the write buffer.

The notion of equivalent executions stems from the fact thatthese deletions and reorderings are
invisible to processors other than the one on which it is performed and leaves shared memory
untouched. For the processor on which reordering/deletionis performed, the STM machinery
ensures that the intermediate values of registers are as expected in the original execution for any
deleted memory reads.

Another important flexibility needed for STMs is the capability to introduce arbitrary reads and
writes to STM metadata locations. The execution when running with an STM would include
these “additional” steps. The programmer is concerned onlywith a subsequence of the execu-
tion that affects program locations (distinct from STM locations). This can be formalised as
follows.

Consider a partitioning of memory into “special” locationsand “general” locations and an exe-
cution which is a sequence of steps. Consider an execution formed by asubsequenceof this ex-
ecution such that it consists only of accesses to general locations (and possibly memory fences)
and there is no updating step (memory write or write buffer flush) to a general location in the
steps of the execution outside the subsequence. The subsequence is also restricted to contain all
steps originating from locked read-modify-write operations to general locations and must not
contain any steps originating from locked read-modify-write operations to special locations.

Theorem 1. The subsequence forms a valid execution.

Proof. Consider a TSO machine M executing all the steps in the sequence. I will show that
there exists a TSO machine M′ that executes the steps in the subsequence. The proof proceeds
by induction on the steps of the sequence. I also show that themachines maintain the inductive
invariants: 1) The write buffers of M′ consists of the write buffers of M with all writes to special
locations deleted 2) The main memory of M′ has the same values as the main memory of M for
all general locations 3) If a processor holds the TSO lock in M′ then that same processor holds
the TSO lock in M.

Clearly the invariants hold before any step is executed by either machine. If the current step in
the sequence is not part of the subsequence then M executes itwhile M′ takes no step. It must
be shown that the invariants are still preserved at the end ofthe step. If the step does not modify
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the write buffer or main memory or acquire the TSO lock, clearly the invariant is preserved.
The other possible steps are:

1. (Write(p, SpecialLoc, Value), None): Appends a write to aspecial location to the write
buffer. The invariants are preserved.

2. (None, MemFlush(p, SpecialLoc, Value)): Updates the value of SpecialLoc in memory.
The invariants are preserved.

3. (None, ILock(p)): The invariants are preserved since M’ takes no step. Note that the write
buffer for p must have been empty in both the machines due to the invariants holding
before the step is taken.

4. (None, IUnlock(p)): M′ takes no step. It is important to show that no processor in M′

can be holding the lock. Assume otherwise that some processor in M ′ were holding the
lock. This processor must bep otherwise the invariant would be violated before the step
(p must be holding the lock in M in order to release it).p can only acquire the lock in M′

due to a step from thesubsequencecorresponding to a locked RMW. Two locked RMWs
cannot be interleaved in the sequence and hence, this (None,IUnlock(p)) must belong to
a locked RMW to a general location, which would then require M′ to take a step.

5. (mf(p), None): M′ takes no step. The invariants are preserved. Note that the write buffer
of p must have been empty in both the machines due to the invariants holding before the
step is taken.

Next, consider a step that is part of the subsequence. Both M and M′ must be able to perform
the step. Further, the invariant must be preserved at the endof the step. The possible steps are:

1. (Read(p, GeneralLoc, Value), MemRead(p, GeneralLoc, Value)): Due to the invariant
both machines can perform the read. The invariants are preserved after the step.

2. (Read(p, GeneralLoc, Value), None): Same reasoning as above.

3. (Write(p, GeneralLoc, Value), None): Both machines perform the step. The invariants
are preserved.

4. (None, MemFlush(p, GeneralLoc, Value)): Since M can perform this step,p is not
blocked. Due to the invariant the same holds true for M′ that performs the step. The
invariants are preserved.

5. (None, ILock(p)): Again M′ can perform this step at the end of whichp holds the lock
for both M and M′. This lock acquisition must begin a locked RMW to a general location
that cannot be interleaved with any other locked RMW.

6. (None, IUnlock(p)): Both M and M′ release the lock in an identical fashion. The invari-
ants are preserved.

7. (mf(p), None): Both M and M′ take the step. The invariants are preserved. Note that the
write buffer ofp must have been empty in both the machines due to the invariants holding
before the step is taken.
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Initially: X == 0, Y == 0, done1 == false, done2 == false

// Thread 1
atomic {

3: Write(X, 100)
4: Write(done1, true)

}

// Thread 2
atomic {

5: Read(Y, 0)
6: Write(done2, true)

}

// Thread 3
1: Write(Y, 300)
2: Write(X, 300)

// Thread 4
Read(done1, true)
Read(done2, false)

// Forbidden by x86-MM: Finally X == 100

Figure 3.2: Loads must be ordered after earlier transactions

This theorem allows an STM to add operations to “special” STMlocations while ensuring
that a subsequence corresponding to the executed program remains a valid execution. Note
that the proof above does not say anything about the state of registers. Ensuring that register
read-writes and computation proceeds as expected from the perspective of a thread remains
the responsibility of the STM instrumentation machinery. Also, while the programmer can
ignore the STM when considering the execution of the program, other observers such as another
processor on the system bus or a debugger would see the effects of the STM.

3.2 Counterexamples

In this section, I consider the consequences of supporting the x86 memory consistency model
in a weakly atomic STM providing transactions with SLA semantics. My approach is to start
with the assumption that if two transactions running on different threads access disjoint sets of
memory locations, an STM providing optimistic concurrencycontrol is free to run them without
reference to each other. I then provide counterexamples to this assertion, which aim to show
that this leads to executions that violate the x86 memory consistency model. The result of these
counterexamples is that STM designs are constrained to run transactions in strictly serial order.

The examples illustrate executions abstracted as program operations. I use “atomic blocks” to
delimit sections of code to be run as transactions.

First, consider the example in Figure 3.2.Thread 4 observes thatThread 1 must have
acquired the SLA lock beforeThread 2. WhenThread 2 reads the value ofY as 0, the
flush to memory of the update toY followed by the flush to memory of the update toX by
Thread 3 is yet to happen. However at this point (due to SLA semantics)the update toX
by Thread 1 has already happened. Hence the update toX by Thread 1 must precede the
update toX by Thread 3. Hence the final value ofX cannot be 100.
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That this is an illegal execution can be formally shown as follows. Assume that the disallowed
execution were to occur; then each ofthread 1 andthread 2 must generate the following
events (recall locked instructions flush the write buffer):

ILock(thread 1) ≺e IUnlock(thread 1)

≺e MemFlush(thread 1, X, 100)

≺e MemFlush(thread 1, done1, true) ≺e ILock(thread 1)

≺e IUnlock(thread 1)

ILock(thread 2) ≺e IUnlock(thread 2) ≺e MemRead(thread 2, Y, 0)

≺e MemFlush(done2, true) ≺e ILock(thread 2) ≺e IUnlock(thread 2)

Furthermore,Thread 4 observesdone1 == true anddone2 == false. This is only
possible if

MemFlush(thread 1, done1, true)

≺e MemFlush(thread 2, done2, true)

In combination with the above, one can thus conclude:

MemFlush(thread 1, X, 100) ≺e MemRead(thread 2, Y, 0)

As the final value ofX is 100, this means that:

MemFlush(thread 3, X, 300) ≺e MemFlush(thread 1, X, 100)

Since the write buffer is ordered:

MemFlush(thread 3, Y, 300) ≺e MemFlush(thread 3, X, 100)

Hence I can conclude:

MemFlush(thread 3, Y, 300) ≺e MemRead(thread 2, Y, 0)

This is a violation of x86-MM, since the read fromY must see the write to it.

The transactions onThread 1 andThread 2 access completely disjoint sets of locations.
A weakly atomic STM executing the two transactions could easily allow the updates todone1
anddone2 to happen in the order indicated but allow the read toY to proceed early onThread
2. This would result in the illegal execution.

The next example is Figure 3.3. Stores from the same thread are ordered under the x86-MM.
The lock acquisition and release at the beginning and end of an SLA transaction must flush the
write buffer. Hence for SLA semantics either all stores onThread 2 must be ordered after all
stores onThread 1, or vice-versa. This leads to the assertion (which says thatThread 3
must not observe interleaved stores). This can again be formally shown as follows:

We immediately have, for any execution:
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// Initially: X == 0, Y == 0, Z == 0, W == 0

// Thread 1
atomic {

Write(X, 100)
Write(Y, 100)

}

// Thread 2
atomic {

Write(Z, 100)
Write(W, 100)

}

// Thread 3
Read(X, 100)
Read(Z, 0)
Read(W, 100)
Read(Y, 0)

// Execution not allowed by x86-MM and SLA

Figure 3.3: Stores must be ordered across atomic blocks

MemFlush(thread 1, X, 100) ≺e MemFlush(thread 1, Y, 100)

MemFlush(thread 2, Z, 100) ≺e MemFlush(thread 2, W, 100)

In order forthread 3 to observe the forbidden result:

MemFlush(thread 1, X, 100) ≺e MemFlush(thread 2, Z, 100)

MemFlush(thread 2, W, 100) ≺e MemFlush(thread 1, Y, 100)

Hence the write buffer flushes fromthread 1 andthread 2 must have been interleaved:

MemFlush(thread 1, X, 100) ≺e MemFlush(thread 2, Z, 100)

≺e MemFlush(thread 2, W, 100) ≺e MemFlush(thread 1, Y, 100)

If thread 1 executed its transaction first under SLA then it is required (reasoning through the
lock acquires and releases as in the previous example) that:

MemFlush(thread 1, X, 100) ≺e MemFlush(thread 1, Y, 100)

≺e MemFlush(thread 2, Z, 100) ≺e MemFlush(thread 2, W, 100)

On the other hand ifthread 2 acquires the SLA lock first, then:

MemFlush(thread 2, Z, 100) ≺e MemFlush(thread 2, W, 100)

≺e MemFlush(thread 1, X, 100) ≺e MemFlush(thread 1, Y, 100)

Hence the interleaved result is forbidden.

Again, the transactions access completely disjoint sets ofmemory locations. Running them on
a weakly atomic STM could end up interleaving the stores.

The two counterexamples have serious consequences for transaction execution. A load in a
transaction must wait until all concurrently executing transactions are finished to avoid the
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situation in the first counterexample. A store in a transaction must wait until all concurrently
executing transactions are finished to avoid the situation in the second counterexample. In short,
transaction execution must be serialised.

These examples illustrate the difficulty of building an STM that preserves x86-MM for all ex-
ecutions. The only way around this is to restrict the class ofprograms that can be handled, in
essence excluding difficult constructs that prevent the effective use of optimistic concurrency
control.

3.3 A serialising design: STM_x86_strict

In this section I present a design for STM_x86, which uses lazy version management, lazy
conflict detection, and a global version number. It is similar in principle to TL2 [DSS06]. It
aims to provide SLA and x86-MM forall programsand thus ends up serialising transactions. In
the next section I discuss an optimisation to this basic approach in order to recover scalability.

3.3.1 STM primitives

The rest of this chapter makes references to a set of STM primitives that I define below:

• Metadata(loc): Each location is mapped (many to one) to a metadata location, which
holds a simple sequence number.

• Threads: The set of threads in the system

• ReadLog(t): An ordered set of (location, value) pairs on thread t

• WriteLog(t): An ordered set of (location, value) pairs on thread t

• SnapshotSeqNo(t): A sequence number maintained locally by thread t

• Epoch(t): A sequence number updated only by thread t but readable by all others

• DirtyList(t): A set of metadata locations corresponding to locations in the Write
Log

• SLASeqNo: A globally shared sequence number

• NextSeqNo: Another globally shared sequence number

• StableSeqNo: Another globally shared sequence number

• NextSLAExec: Another globally shared sequence number

The STM primitives are held in memory and are only accessibleby the STM. Before any trans-
action can be executed,StableSeqNo and all metadata locations are initialised to zero. All
other shared sequence numbers that can be updated by more than one thread are initialised
to two. The value ofEpoch on every thread is initialised to zero at thread creation time.
Transactions operate in two phases. In the firstspeculation phase, the transaction is executed
speculatively and execution can be rolled back in the event of a conflict. In the secondcommit
phase, the effects of the transaction are applied atomically (with respect to other transactions)
and made visible through shared memory.
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3.3.2 Speculation phase

The fundamental task of the speculation phase in STM_x86 is to capture an execution of the
transaction. It aims to collect the set of steps representing the execution of the transaction.
This is conceptually achieved for the threadt in the ordered logsStepLogHead(t) and
StepLogTail(t). AppendingStepLogTail(t) to StepLogHead(t) produces a se-
quence of steps corresponding to the execution of the transaction (excluding the enclosing SLA
lock and unlock) on a TSO machine where the write buffer of processort is constrained to
flush writes to memory only at the end of the transaction. TheStepLog is abstract and for
illustration only; operations to it use italics in the algorithms. The actual implementation uses
an ordered read log where reads from shared memory are loggedand an ordered write log where
writes to shared memory are logged. No writes are actually performed to shared memory, thus
ensuring that no effects are leaked from the speculative transaction that might be seen by other
threads.

A threadt that begins a transaction calls Algorithm 2. A write ofValue to locationloc in
the transaction is appended to the write log by calling Algorithm 3. A read fromloc in the
transaction is accomplished by calling Algorithm 4. This first checks the local write log to see
if there is a write toloc, which is then forwarded to the read (lines 1–2). If this is not so, then
a read is made from shared memory and, after a series of STM-related checks (lines 5–8), the
result of the read is appended to the read log.

Algorithm 2 SpeculationBegin(t)

1: Epoch(t) := Epoch(t) + 1
2: Memory Fence
3: SnapshotSeqNo(t) := StableSeqNo
4: Initialise WriteLog(t) to empty
5: Initialise ReadLog(t) to empty
6: Initialise DirtyList(t) to empty
7: Initialise StepLogHead(t) to empty
8: Initialise StepLogTail(t) to empty

Algorithm 3 SpeculativeWrite(t, loc, Value)

1: DirtyList(t) := DirtyList(t) ∪ Metadata(loc)
2: Append (loc, Value) to WriteLog(t)
3: Append (Write(t, loc, Value), None) to StepLogHead(t)
4: Append (None, MemFlush(t, loc, Value)) to StepLogTail(t)

An implementation of the logging algorithms must take into account that the x86 allows ac-
cesses of different size and alignment that can lead to readspartially overlapping with writes.
Extensions to the logging algorithms that handle these cases are given later in this chapter.

3.3.3 Commit phase

At the end of a transaction the threadt executesCommit(t), described in Algorithm 5. The
algorithm makes use of two instructions native to x86:
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Algorithm 4 SpeculativeRead(t, loc)

1: if ∃ (loc, value)∈ WriteLog(t) then
2: get most recent (loc, result)∈ WriteLog(t)
3: Append (Read(t, loc, result), None) to StepLogHead(t)
4: else
5: result := contents of memory at loc
6: if Metadata(loc) is oddthen
7: abort
8: if Metadata(loc)> SnapshotSeqNo(t)then
9: abort

10: Append (loc, result) to ReadLog(t)
11: Append (Read(t, loc, result), MemRead(t, loc, result)) to StepLogHead(t)
12: return result

• x86FetchAdd(loc, increment): x86 mnemonicxadd, this atomically adds
increment to loc and returns the original value ofloc

• x86CAS(loc, old, new): x86 mnemoniccmpxchg, this atomically setsloc to
new if the current value isold; it also returns the current contents ofloc.

The core of the algorithm is straightforward: the transaction is assigned a global sequence
number (in SLA execution) fromSLASeqNo. This is the next unassigned even number (see
line 1), and is stored in the local variableticket. Lines 2–17 execute the standard two phase
commit associated with word based STMs (such as TL2). Metadata locations corresponding to
updated locations in shared memory are locked and for locations read, a check is made that both
the contents of the location and their metadata is unchanged.

The algorithm then proceeds tore-executethe critical section using SLA in lines 18–26. Rather
than re-executing the computation it aims to generate the steps from
StepLogHead(t) followed by the steps fromStepLogTail(t) on the TSO machine.
This assumes that the transaction is deterministic and memory writes are purely determined by
memory reads.

In an execution of the program using the STM I consider only the (unmodified by the weakly
atomic STM) steps outside any transaction and the steps fromlines 20–24 ofCommit. There
are no writes outside this subsequence to program locationsand STM locations (global and
thread-private) are not manipulated in this subsequence. Theorem 1 says that this is therefore a
valid execution and I focus only on this subsequence.

An execution where the critical section has been replaced bythe subsequence consisting of
the steps inStepLogHead(t) followed by the steps inStepLogTail(t) is equivalent
(definition in Section 3.1) to one where the bypassed reads are deleted and write operations
moved down till some point before the corresponding memory flushes. Such an execution can
be achieved by first replaying the read log (which does not contain bypassed reads) and then the
write log (performing the writes to shared memory) followedby explicitly flushing the write
buffer using the locked-RMW operation in line 26 ofCommit.

Being able to maintain a “trace” of the transaction in the separatedStepLogs depends on
there beingno mfence or x86 locked instruction in the transaction. Such an instruction would
necessitate the flushing of the write buffer and hence disallow the reordering of loads before the
stores. This leads to:
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Algorithm 5 Commit(t)

1: ticket := x86FetchAdd(SLASeqNo, 2)
2: while x86CAS(NextSeqNo, ticket, ticket)6= ticketdo
3: wait
4: for all metadata∈ DirtyList(t) do
5: if metadata is oddthen
6: abort
7: metadata := metadata + 1
8: x86FetchAdd(NextSeqNo, 2)
9: for all (loc, Value)∈ ReadLog(t) (in order)do

10: if Metadata(loc) is oddthen
11: if Metadata(loc)6∈ DirtyList(t) then
12: abort
13: if Metadata(loc)> SnapshotSeqNo(t)then
14: abort
15: if Contents of Memory at loc6= Valuethen
16: abort
17: Epoch(t) := Epoch(t) + 1

// SLA lock acquire
18: while x86CAS(NextSLAExec, ticket, ticket)6= ticket do
19: wait
20: for all (loc, Value)∈ ReadLog(t) (in order)do
21: if Contents of Memory at loc6= Valuethen
22: abort
23: for all (loc, Value)∈ WriteLog(t) (in order)do
24: set contents of loc := Value
25: StableSeqNo := ticket

// SLA lock release
26: x86FetchAdd(NextSLAExec, 2)
27: for all metadata∈ DirtyList(t) do
28: metadata := ticket
29: for all x ∈ Threadsdo
30: EpochOther := Epoch(x)
31: if EpochOther is oddthen
32: while EpochOther = Epoch(x)do
33: wait

Restriction 1: No LockedRMW or Fence can appear in the execution of the trans-
action.

The reason for this restriction can be illustrated by the example in Figure 3.4. The disallowed ex-
ecution can occur if the STM were to ignore themfence, since it could completeThread 1’s
read ofy beforeThread 2 can update it. Hence, on encountering either of the above instruc-
tions during speculation, the STM must abort the transaction and retry in a non-speculative
fashion (Section 3.6).
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// Initially: x == 0, y == 0

// Thread 1
atomic {

Write(x, 1)
mfence
Read(y, 0)

}

// Thread 2

Write(y, 1)
mfence
Read(x, 0)

// Execution not allowed by x86-MM and SLA

Figure 3.4:mfence in a transaction

Initially: go1 == false, go2 == false

// Thread 1
atomic {

Write(go2, true)
loop
while(Read(go1, false))

}

// Thread 2

loop
while(Read(go2, false))
Write(go1, true)

Figure 3.5: Visibility of writes from a transaction

3.3.4 SLA speculation

The STM needs to ensure that speculating threads see a view ofmemory that is consistent with
SLA execution. This is critical for my intended applications. Executing from an inconsistent
state (due to updates by other committing threads) can lead to a thread faulting, entering an
infinite loop or even corrupting STM state. Weakly atomic STMimplementations for managed
environments such as Java [ATLM+06] can use sandboxing, integration with a garbage collector
and other techniques to ensure that execution can recover from an inconsistent read set. This is
not an option for x86 machine code.

The first point to consider in this context is the effect of execution of a speculative thread on
the rest of the system. Since all writes are buffered, they donot leak out from a speculating
transaction. A speculating thread executes memory reads and writes from the execution trace in
order but buffers all writes. This is equivalent to a TSO execution where the write is held in the
write buffer until the end of the transaction. However this does not guarantee progress. When
executing with the STM, writes from a transaction are not visible until the end of the transaction.
As such, a transaction might stall waiting for a signal from another thread, or simply enter an
infinite loop. x86-MM dictates that all performed stores be ultimately visible to other threads.
This problem with progress leads to the second restriction on transactions that can be executed
with this STM:

Restriction 2: Execution cannot depend on stores in a transaction being made
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visible to other threads before the transaction completes.

This restriction is illustrated by the example code fragment in Figure 3.5:Thread 2 cannot
make progress until the write from the transaction inThread 1 is made visible.

The next point to consider is the effect that the rest of the system can have on a speculating
thread. In this STM, transactions commit in SLA order dictated by the assigned sequence
number. In addition, we desire that a speculating threadt executes with a read set consistent
with SLA sequence numberSnapshotSeqNo(t) + 2 (recall that the SLA sequence number
is always even).

First, I need to show that all SLA transactions with sequencenumber at most
SnapshotSeqNo(t) have made their writes visible.

Theorem 2. Consider a speculating threadt with sequence numberSnapshotSeqNo(t).
Consider another threadx 6= t that has successfully committed with sequence numberw ≤
SnapshotSeqNo(t). If x writes an update toloc through
MemFlush(x, loc, Value) andt readsStableSeqNo in line 3 of
SpeculationBegin generating the TSO event
MemRead(t, StableSeqNo, SnapshotSeqNo(t)) then:

MemFlush(x, loc, Value) ≺e

MemRead(t, StableSeqNo, SnapshotSeqNo(t))

Proof. StableSeqNo must have been updated by execution of line 25 ofCommit generat-
ing: MemFlush(x, StableSeqNo, w). We know thatw ≤ SnapshotSeqNo(t) and,
sinceStableSeqNo is monotonically increasing, this update must have preceded the read of
StableSeqNo by threadt, i.e.

MemFlush(x, StableSeqNo, w)

≺e MemRead(t, StableSeqNo, SnapshotSeqNo(t))

However, this memflush itself is preceded by the actual writeto loc:

MemFlush(x, loc, SomeValue) ≺e MemFlush(x, StableSeqNo, w)

≺e MemRead(t, StableSeqNo, SnapshotSeqNo(t))

The write is thus visible to the read.

Next, consider reads generated by speculating transactions in line 5 ofSpeculativeRead.
I now show that if this read receives a value from a transaction, it must be from a transaction
whose sequence number is at most the snapshot sequence number of the reading transaction.

Theorem 3. Consider a speculating threadt that generates a read event due to execution of
line 3 ofSpeculativeRead: MemRead(t, loc, Value). Assume that this read re-
turns the result of the write from a committed transaction onthreadx 6= t due to execution
of line 24 ofCommit generating the TSO event:MemFlush(x, loc, Value). Lets be
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the sequence number used by that instance ofCommit on threadx (i.e. the value held in its
ticket). Then we have:

s ≤ SnapshotSeqNo(t)

Proof. Consider the set of events generated along withMemFlush(x, loc, Value).
There must be updates to Metadata(loc). We thus have

MemFlush(x, Metadata(loc), OddValue) ≺e MemFlush(x, loc, Value)

≺e MemFlush(x, Metadata(loc), s)

Due to the serialisation in accessing metadata inCommit there can be no intervening updates to
the metadata from other threads until an even value is written to this metadata and made visible
to other threads.

Similarly from the perspective of the reader, theMemRead(t, loc, Value) is gener-
ated. The following checks in lines 5–8 ofSpeculativeReadmust generateMemRead(t,
Metadata(loc), k), wherek is some value for the metadata. We have

MemRead(t, loc, Value) ≺e MemRead(t, Metadata(loc), k)

Furthermore, the memread ofloc must see the memflush and hence the memread of
Metadata(loc) must follow the memflush that locks it. However,k must be even for the
checks on the reading transaction to succeed. There can be nointervening updates to the meta-
data from other threads while it is “locked” byCommit to an odd value. Hence the memread
of Metadata(loc)must occur after the Memflush that unlocks the metadata in order that an
even value be observed.

MemFlush(x, Metadata(loc), s) ≺e MemRead(t, Metadata(loc), k)

Metadata numbers are strictly increasing and sos≤ k. We also check inSpeculativeRead
thatk ≤ SnapshotSeqNo(t). Hence we have:s ≤ SnapshotSeqNo(t).

Finally if any thread executes a transaction with SLA sequence number more than the snapshot
sequence number of a speculating thread then it must not be allowed to generate any writes
including those outside the scope of a transactionthat may be visible to this speculating thread.
This safety property is the most difficult to provide since itinvolves constraining the visibility
of operations outside a transaction using only a weakly atomic STM (recall that weakly atomic
STMs cannot constrain execution outside a transaction). Inmy STM design, a thread that
commits with a later sequence number to a speculating threadstops at line 33 inCommit.
Updates made in the transaction are invisible to the speculating thread (by virtue of the previous
theorem). I only need to prove that the odd quantity in theEpoch of the speculating thread is
correctly observed by the thread that has just executed itsCommit.
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Theorem 4. Consider a speculating threadt and another threadx 6= t that has commit-
ted with a sequence number larger thanSnapshotSeqNo(t). It generatesMemRead(x,
Epoch(t), PossiblyOddValue) at line 30 ofCommit. At some point the speculating
thread has generatedMemFlush(t, Epoch(t), SomeOddValue). We then have:

MemFlush(t, Epoch(t), SomeOddValue) ≺e

MemRead(x, Epoch(t), PossiblyOddValue)

Proof. Due to the memory fence at line 2 ofSpeculationBegin, we have:

MemFlush(t, Epoch(t), SomeOddValue) ≺e

MemRead(t, StableSeqNo, SnapshotSeqNo(t))

Since the sequence number written by the committing transaction toStableSeqNo is larger
thanSnapshotSeqNo(t), we have:

MemFlush(t, Epoch(t), SomeOddValue) ≺e

MemRead(t, StableSeqNo, SnapshotSeqNo(t))≺e

MemFlush(x, StableSeqNo, SomeValue)

Due to the locked instruction at line 26 ofCommit, the write to StableSeqNo must be flushed
before the read from the speculating thread’s epoch is made at line 30. We thus have as an
extension to the event order above:

MemFlush(t, Epoch(t), SomeOddValue) ≺e

MemRead(t, StableSeqNo, SnapshotSeqNo(t))≺e

MemFlush(x, StableSeqNo, SomeValue) ≺e

MemRead(x, Epoch(t), PossiblyOddValue)

This completes the proof.

Privatisation safety

The need for safe speculation can be illustrated through theprogramming idiom of privatisation
(discussed in Chapter 2). Figure 3.6 replicates the examplefrom that chapter whereThread 1
privatises a node from a shared linked list and subsequentlyaccesses it directly. Consider the
two kinds of problems that can arise here.

Firstly, if Thread 2 commits first and is in the process of writing back its updates,Thread 1
might then commit and free the node leading to memory corruption. In my STM, this is not
possible since the updates fromThread 2 are explicitly ordered (throughNextSLAExec
in Commit) before the updates inThread 1. Otherwise, ifThread 1 commits first, this
leavesThread 2 as a “zombie” transaction (doomed to failure). However, I have just proved
thatThread 2 must operate on a consistent read set and henceThread 2 cannot see any
updates fromThread 1. In particular it cannot suffer an unanticipated arithmetic fault on
performing the division.
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// Thread 1
deleteNode(...) {

ListNode *node;
atomic {

...
node = ...;
...

}
node->value = 0;
free(node);

}

// Thread 2
updateNode(...) {

ListNode *node;
atomic {

...
node = ...;
...
r = 1/node->value;

}
}

Figure 3.6: Privatisation

3.4 Recovering scalability: STM_x86

In accordance with the conclusion of Section 3.2, Algorithm5 serialises SLA transaction exe-
cution. It includes an apparently redundant repetition of reads at line 15, since it is followed a
little later by the actual replay of reads at line 21. Howeverthe first batch of reads is performed
in parallel by committing threads while the second batch must be serialised. If, for a given
execution, both reads return the same value then the second set can be eliminated, reducing
the length of the serialised portion of commit and improvingscalability. This, however would
also mean that for executions where the reads differ, the STMcan lead to a divergence from
x86-MM. In this section I precisely identify the class of executions where this can occur.

I begin by first defining the notion of a data race [AH98] that I use in this chapter. This is based
on defining a partial order on operations in the execution trace of a program.

If an operationy follows an operationx on the same thread then I say thaty is
ordered in program order afterx: x →po y

If a LockedRMW operationy implementing the SLA lock acquire at line 18 of
Commit reads the result of a LockedRMW operationx implementing the SLA lock
release at line 26 ofCommit, I say thaty occurred in synchronisation order after
x: x→so y

Finally, the happens-before order is the transitive closure of these two:

→hb
def
= (→po ∪ →so)

+

Assume that in an execution with SLA, the result of the earlier read from locationloc in
Commit differs from the same read done later. Let the earlier read generate event
MemRead(t, loc, Value) during execution and the later read generate
MemRead(t, loc, OtherValue) during execution. This means that there must have
been an interveningMemFlush(x, loc, OtherValue) during execution from some
other thread (x 6= t), i.e.

MemRead(t, loc, Value) ≺e MemFlush(x, loc, OtherValue)

≺e MemRead(t, loc, OtherValue)
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Theorem 5. MemFlush(x, loc, OtherValue) cannot originate from a transaction.

Proof. Assume that the MemFlushdid originate from a transaction. First, consider the case
where the writing transaction executes in SLA order after the transaction that does the read. Its
writes are ordered through the operations onNextSLAExec and thus we have:

MemRead(t, loc, OtherValue)

≺e MemFlush(t, NextSLAExec, seq)

≺e MemRead(x, NextSLAExec, LaterSeq)

≺e MemFlush(x, loc, OtherValue)

which contradicts the required order.

Next, consider the case where the writing transaction executes in SLA order before the transac-
tion that does the read. The wait onNextSeqNo and the metadata checks establish:

MemRead(t, NextSeqNo, LaterSeq)

≺e MemRead(t, Metadata(loc), EvenValue)

≺e MemRead(t, loc, SomeValue)

≺e MemRead(t, loc, OtherValue)

From the perspective of the writing transaction we have:

MemFlush(x, Metadata(loc), OddValue)

≺e MemFlush(x, NextSeqNo, EarlierSeq)

≺e MemFlush(x, loc, OtherValue)

≺e MemFlush(x, Metadata(loc), SomeEvenValue)

As a consequence of ordering through the sequence number we have:

MemFlush(x, Metadata(loc), OddValue)

≺e MemRead(t, Metadata(loc), EvenValue)

≺e MemRead(t, loc, SomeValue)

≺e MemRead(t, loc, OtherValue)

There can be no updates to the metadata while the writing transaction has locked it. The reading
transaction sees an even value. Hence the unlock must precede it:

MemFlush(x, Metadata(loc), OddValue)

≺e MemFlush(x, loc, OtherValue)

≺e MemFlush(x, Metadata(loc), SomeEvenValue)

≺e MemRead(t, Metadata(loc), EvenValue)

≺e MemRead(t, loc, SomeValue) ≺e MemRead(t, loc, OtherValue)
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which again contradicts the required order.

There is another restriction in the execution onMemFlush(x, loc, OtherValue). It
should not be ordered using a happens-before relation to theread in the transaction. Let
Write(x, loc, OtherValue) be the originating write in the execution trace for the
eventMemFlush(x, loc, OtherValue) in the event trace. Similarly, letRead(t,
loc, OtherValue) be the originating read forMemRead(t, loc, OtherValue).

Theorem 6. Read(t, loc, OtherValue)→hb Write(x, loc, OtherValue)
does not hold.

Proof. Due to the definition of the happens-before order, an operation can be ordered before
an operation on another thread through a sequence that involves synchronisation operations
across threads. Thus, the ordering between the read and the write are established through such
a sequence:

Read(t, loc, OtherValue)→hb Write(x, NextSLAExec, v1)→hb

Read(t, NextSLAExec, v2)→hb Write(x, loc, OtherValue)

The corresponding event orders would then be:

MemRead(t, loc, OtherValue) ≺e MemFlush(x, NextSLAExec, v1) ≺e

MemRead(t, NextSLAExec, v2) ≺e MemFlush(x, loc, OtherValue)

which contradicts the required order.

Theorem 7. Write(x, loc, OtherValue)→hb Read(t, loc, OtherValue)
does not hold.

Proof. Assume that the happens-before relationsdoeshold. We have already shown that
Write(x, loc, OtherValue) cannot be in a transaction in the previous theorem.

Again, due to the definition of the synchronisation order we have:

Write(x, loc, OtherValue)→hb Write(x, NextSLAExec, v1)→hb

Read(t, NextSLAExec, v2)→hb Read(t, loc, OtherValue)

The write thus precedes a locked operation onNextSLAExec that flushes the write buffer on
threadx. This write must precede in TSO event order a later read fromNextSLAExec that in
turn is followed by a read fromloc.

Hence we have:

Write(x, loc, OtherValue) ≺e Write(x, NextSLAExec, v1) ≺e

Read(t, NextSLAExec, v2) ≺e Read(t, loc, OtherValue)

Now, sinceWrite(x, loc, OtherValue)→hb Write(x, NextSLAExec, v1)
and the write is not in a transaction means that it must precede the transaction in the program
execution trace (both are on the same thread). This also means that it precedes the operation on
NextSeqNo. We thus have:
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Figure 3.7: Optimisation trades generality for scalability

MemFlush(x, loc, OtherValue) ≺e MemFlush(x, NextSeqNo, v1) ≺e

MemRead(t, NextSeqNo, v2) ≺e MemRead(t, loc, SomeValue) ≺e

MemRead(t, loc, OtherValue)

This contradicts the required order.

The theorems in this section imply that eliminating the later set of reads (line 21 ofCommit)
to produce STM_x86 is safe (preserves the x86-MM) when the execution of the program with
SLA does not have a write that is outside any transaction and is not ordered (happens-before)
with a read in a transaction to the same location. Technically, this is a “data-race” between a
write outside any transaction and a read inside a transaction. For convenience, I refer to such a
race in an execution as a Transactional Read Unprotected Write race (TRUW) race. I thus have
the third restriction on programs that can be executed with the STM:

Restriction 3: The execution must not contain a TRUW race.

Given this restriction, I delete lines 20–22 fromCommit. Committing transactions no longer
need to replay their reads in SLA order. Note that this restriction excludes code such as Fig-
ure 3.2 early in this chapter, which I had used to show that an STM that preserves x86-MM
needs to serialise reads in a transaction after writes in earlier transactions. That example con-
tains a TRUW race between the read toY in Thread 2 and the write toY in Thread 3.

This optimisation improves scalability. Figure 3.7 shows how a later transaction spends less
time waiting for an earlier transaction with this change.

3.4.1 Publication safety

The previous theorems should not be taken to construe that TRUW races leading to a departure
from x86-MM are always fatal from a program perspective. Oneexample of this is thepubli-
cationconstruct from Chapter 2, which is the mirror of privatisation: data moves from being
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int published = 0, value =0;

// Thread 1
value = 1;
atomic {

...
published = 1
...

}

// Thread 2
atomic {

...
local_value = value;
local_published = published;

}
if(local_published == 1)

some_function(local_value);

// Impossible: local_published == 1 and local_value == 0

Figure 3.8: Publication

thread-private to being shared transactionally. An example of publication from that chapter is
replicated in Figure 3.8.

Consider the two possibilities that might occur. IfThread 1 commits first then STM_x86
correctly provides SLA and ensures thatvalue is read correctly (if it is not, the check at line 15
of Commit would fail). On the other hand, ifThread 2 commits first then there is a TRUW
race in the execution on accesses tovalue. STM_x86 no longer guarantees compliance with
x86 but in this case the race is benign since it still correctly readspublished as zero and
hence does not usevalue during execution.

3.4.2 Aborts

The references to the capability to abort a transaction thusfar have not formally specified an
abort. Aborts are accomplished through Algorithm 6. There is only one necessary step in abort,
to increment the epoch, since the thread is no longer speculating. Depending on where the
transaction aborts (such as after locking metadata inCommit) additional bookkeeping might
be necessary (such as unlocking metadata). The simplicity of Abort stems from the fact that
writes are buffered, and hence simply discarding the write log undoes all the effects of the
transaction.

Algorithm 6 Abort(t)

1: Epoch(t) := Epoch(t) + 1

3.5 Comparison with language level memory models

Language level memory models (such as those for C++ and Java)are weaker than the x86-MM.
The rigidity of the memory model has considerable impact on STM scalability. An STM aims
to execute all transactions concurrently without reference to each other. In order to ensure that
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STM Scalability

More Less Some None, Section 3.2

SequentialSTM_x86 x86-MMJavaC++

Memory Model

Figure 3.9: Memory consistency model vs weak atomicity

volatile int flag = 0;
volatile int value = 0;

// Thread 1
atomic {

value = 1;
flag = 1;

}

// Thread 2
while(!flag);
temp = value;

// Java Memory Model guarantees temp == 1

Figure 3.10: Memory consistency implications for an STM

transactions appear to execute as dictated by the memory model, STMs (such as the one pre-
sented above) are forced to introduce synchronisation between transactions running on different
threads even when the transactions do not conflict with one another in terms of their data ac-
cesses. The stricter the memory model, the more the synchronisation. Hence a continuum of
weakly atomic SLA STMs exists, as shown in Figure 3.9. STM_x86 gets around the complete
lack of scalability due to the strictness of the x86 memory model by providing weaker behaviour
to programs with TRUW races.

Even the weaker language level memory models impose restrictions on the interactions between
transactional and non-transactional accesses. Researchers building STMs for languages often
identify specific (named) programming idioms that illustrate these interactions. In this section
I cover some of these idioms, focusing on how STM_x86 handlesthem by virtue of being
designed for a stronger memory model.

3.5.1 Memory update consistency

Memory update inconsistencyarises when the STM does not update memory in the order ex-
pected by a programmer from the underlying memory consistency model. This term was intro-
duced by Shpeisman et al. in the context of STM design for Java[SMAT+07]. It is illustrated
by the code in Figure 3.10.

Declaring the global variable as volatile requires (at a Java language level) that the updates from
Thread 1 happen in order. An STM that buffers at large enough granularities (such as McRT-
STM that buffers at cacheline granularities) can write backupdates out of order inThread 1
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leading to a disallowed result.

There is no notion of volatile memory locations in x86, but x86-MM requires the same ordering
onThread 1 and this is provided by the ordered write log of STM_x86.

3.5.2 Speculation safety

Speculation safetyis a property referred to in more than one work on STM design [ZWAT+08,
MBS+08b, SMAT+07]. It reflects the fact that, fundamentally, STM designs allow speculative
executions to be rolled back on encountering conflicting accesses. Any updates made by a trans-
action that is yet to commit successfully must not be made visible to other threads, particularly
those not speculating since they cannot be rolled back. Any STM supporting speculation safety
must either use strong atomicity or disallow in-place updates. STM_x86, like many language
level STMs that provide speculation safety chooses to eschew in-place updates.

3.5.3 Dynamic separation

An STM that targets the C++ memory model is less restricted than that for Java. The C++
memory model explicitly gives no semantics to programs withdata races [BA08] and thus,
for example, the STM is free to do any re-ordering it wishes for the writes ofThread 1 of
Figure 3.10. STMs written for unmanaged C/C++ code [DSS06, RHH09b, WCW+07] often
simply assume aseparationof data into that which can be accessed transactionally and that
which cannot. Separation means that at any point during execution with single lock atomicity,
a data item can be accessed transactionally or non-transactionally, but not both. The rationale
for this is that a program that admits executions without such separation in the context of SLA
semantics for transactions would likely contain a data race.

Nevertheless STMs for the C++ memory model still need to dealwith concurrent transac-
tional and non-transactional accesses to the same data item. This is because separation can
be dynamic [ABH+08], where an object moves from being accessed transactionally to non-
transactionally and vice-versa (in a race-free manner). The privatisation and publication idioms
arose when studying STM designs supporting dynamic separation. I have already shown how
STM_x86 provides privatisation safety (Section 3.3.4) andpublication safety (Section 3.4.1).

3.6 Mapping critical sections to SLA

I now discuss the second part of the STM design problem for SLE: executing critical sections
protected by locks using transactions providing SLA semantics. A critical section is a subse-
quence of the execution trace of a program where at least one lock is held. I assume that lock
and unlock calls can be intercepted and elided (unlike [RG01] I do not attempt to identify them
speculatively). I also assume that the lock and unlock operations have no side-effect other than
serialising execution of critical sections protected by the same lockandadding a memory fence
at the beginning and end of the critical section.

The approach I follow is to execute all critical sections using SLA. From a correctness stand-
point there is no problem. An SLA execution can be mapped to one using locks where exactly
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bool go1, go2 = false;

// Thread 1
Lock(L1);
go2 = true;
while(go1 == false);

Unlock(L1);

// Thread 2
Lock(L2);

while(go2 == false);
go1 = true;

Unlock(L2);

Figure 3.11: Symmetric dependent visibility

one lock can be acquired at a time. Also STM_x86 is designed soas to insert a memory fence
at the beginning and end of the transaction.

From a progress standpoint however, there may not exist any possible SLA executions of a
given lock-based program. This happens when two or more critical sections depend on each
other to make progress. Ziarek et al. first encountered this when attempting to replace monitors
with transactions in Java [ZWAT+08]. They described such constructs as requiringsymmetric
dependent visibility, a simple example being illustrated by the code in Figure 3.11.

Execution of such lock-based programs using SLA falls underthe STM restriction already
discussed: execution must not depend on stores in a transaction being made visible to other
threads before the transaction completes.

I now examine each of the restrictions on execution using STM_x86 in the context of lock-
based programs. I first express the restriction in terms of executions of the lock-based program
withoutany STM in the picture (since SLA execution is one possible lock-based execution). I
then show that one of the following holds true:

1. The forbidden behaviour is detected when executing with STM_x86 and correct execution
is preserved by falling back to acquiring the lock (Section 3.7)

2. The forbidden behaviour implies possible executions of the lock-basedprogramwithout
STM_x86that should be considered buggy and hence unlikely to occur in practise.

Restriction 1: No lockedRMW or Fence in the execution trace of the transaction.

If the lock-based program does not admit any execution wherea locked instruction or memory
fence is executed in a critical section, then this restriction cannot be violated when executing
with SLA (which is just a particular locking schedule).

Detecting memory fences and locked instructions during execution is easy with appropriate
instrumentation, since these instructions can be statically identified. If any memory fence or
locked instruction is detected in a critical section then execution falls back to the lock.

Restriction 2: Execution cannot depend on stores in a transaction being made visible to other
threads until the transaction completes.

If the lock-based program does not admit any execution that depends on a store in a critical
section being made visible before the critical section endsthen this restriction is satisfied.

This restriction deals with critical sections that send signals to other threads (since that can be
the only reason why the write needs to be visible before the end of the critical section). If the
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bool go = false;

// Thread 1
atomic {

go = true;
while(true);

}

// Thread 2

while(go == false);

Figure 3.12: Buggy signalling

// gScript is shared

// Thread 1
EnterCriticalSection();
if(gScript == NULL) {

baseScript = default;
}
else {

baseScript = gScript;
}
ExitCriticalSection();
...
baseScript->Compile();

// Thread 2

gScript = NULL;

Figure 3.13: Type of asymmetric data race

transaction terminates then the signal will be visible and there is no problem. If the transaction
does not terminate, there are two possibilities: the transaction itself waits for a signal or the
transaction enters an infinite loop unrelated to any other thread.

If the transaction itself waits for a signal then in STM_x86,it generates a continuous sequence
of reads from the signal variable which ultimately leads to an overflow of the read buffer (which
must be finite in any implementation). On an overflow of any STMbuffer, execution falls back
to the lock. This leaves SLE vulnerable only to programs suchas Figure 3.12. I argue that such
program behaviour is buggy.

Restriction 3: The execution must not contain a TRUW race.

Extending the definition of synchronisation operations in Section 3.4 to include the operations
used to acquire and release the lock in the lock-based program; this holds if: the lock-based
program does not admit a race between a write outside any critical section and a read in a
critical section. If the lock-based program does not admit arace between a write outside any
critical section and a read in a critical section then SLA execution cannot have a TRUW race.

A race between an operation in a critical section and one outside any critical section is an
asymmetric data race (which is a subclass of all data races).The restriction refers to a further
subclass of asymmetric data races that involve a writer thataccesses a shared variable without
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holding a lock, while a reader accesses the same shared variable while holding a lock. I argue
that such a scenario likely originates from a program bug. Asymmetric data races have been
the subject of research by Ratanaworabhan et al [RBK+09] and Figure 3.13 shows an example
from that work2. It is an example of the type of racy behaviour not supported by STM_x86 and
is a program bug due tothread 2 not acquiring the needed lock when accessinggScript.
Ratanaworabhan et al. also design and implement a dynamic race detector called Tolerace that
can be used to detect such races. Tolerace can be used on all x86 binaries before SLE is applied.

Alternatively, a simple modification toCommit allows STM_x86_strict to serve the purpose
of a dynamic race detector that looks for TRUW races in SLA execution. The algorithm is
run without the optimisation of Section 3.4 since we are at this point not sure if there exist
executions with TRUW races. If in any execution, the metadata checks in lines 13-14 succeed
but the memory location is found to be modified in either line 15 or line 21, then we have a
racing write outside the control of the STM indicating a TRUWrace. Note that this kind of
dynamic race detection (as also Tolerace) produces no falsepositives but can produce false
negatives. Unlike static race detections techniques, it isnot perfectly sound and can miss races
in execution.

3.7 Mixing locking with transactions

Algorithm 7 Blacklist(t, L)

1: QuiesceList := QuiesceList∪ { L }
2: Memory Fence
3: for all x ∈ Threadsdo
4: EpochOther := Epoch(x)
5: if EpochOther is oddthen
6: while EpochOther = Epoch(x)do
7: wait
8: dummyticket := x86FetchAdd(SLASeqNo, 2)
9: while x86CAS(NextSeqNo, dummyticket, dummyticket)6= dummyticketdo

10: wait
11: x86FetchAdd(NextSeqNo, 2)
12: while x86CAS(NextSLAExec, dummyticket, dummyticket)6= dummyticketdo
13: wait
14: x86FetchAdd(NextSLAExec, 2)
15: BlackList := BlackList∪ {L}
16: QuiesceList := QuiesceList− {L}

A crucial feature of Software Lock Elision is the capabilityto acquire a lock and execute the
critical section directly without indirection into the STM. I refer to this aspessimistic locking
(as opposed to optimistic concurrency control).

Pessimistic locking is enabled through aBlackList of locks (note that the blacklist is a set
and not an ordered list, regardless of the name). A lock in theblacklist is always acquired and
never elided. Locks start off outside the blacklist and are added to it if STM_x86 encounters

2Taken from the Mozilla application suite.
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Algorithm 8 Elide(t, L)

1: while L ∈ QuiesceListdo
2: wait
3: if L ∈ Blacklist then
4: Pessimistic Locking
5: SpeculationBegin(t)

any condition (such as those discussed above) during execution that prevents optimistic con-
currency control. Locks cannot simply be added to theBlackList since there may be other
threads that have speculated past it. This requires a supporting QuiesceList. A lock in
theQuiesceList is in the process of being blacklisted. A threadt can blacklist a lockL
using Algorithm 7 after which the thread is free to acquire the lock. Any thread that is elid-
ing a lock uses Algorithm 8, which checks theBlacklist status of the lock before calling
SpeculationBegin.

Blacklistworks by first adding the lock to theQuiesceList. It then needs to ensure that
any speculating thread that has executed past line 1 ofElide for the same lock has finished
the transaction. It does so by first waiting for an epoch, ensuring that the speculating thread
has reached line 18 ofCommit. It then executes adummycommit, which ensures that specu-
lating threads have safely reached line 27 ofCommit and have thus finished accessing shared
memory or have aborted. It then adds the lock to theBlacklist and removes it from the
QuiesceList.

3.8 Implementation

The implementation of STM_x86 is contained in approximately 3000 lines of C code. Many of
the implementation details are the same as well known word-based STMs such as TL2 [DSS06].
I highlight here the specific aspects of the implementation that are relevant to x86 machine code.

3.8.1 Metadata and logging

I use a single aligned memory word of 4 bytes to store sequencenumbers. I use a metadata
table with220 or approximately 1 million entries. I associate metadata with memory locations
using the hash function:

Hash(s) = (s >> 4)&(220 − 1)

The representation uses C notation:>> is the rightshift operator and& is the bitwise-and
operator. It sequentially maps every 16 bytes of memory intothe metadata table wrapping
around after220 entries. The decision to treat 16 bytes of memory as one unit is guided by the
fact that all aligned x86 memory accesses up to and includingthe 16 bytes vector SSE2 accesses
would fit in 16 bytes. This minimises the possibility that an access needs to map to multiple
metadata words. The hash function and mapping unit is of course tunable through compile time
parameters.
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Figure 3.14: Bypassing writes to reads

An interesting difference between the STM design in this dissertation and TL2 is that I do
not need atomic operations to manipulate metadata inCommit. This trades off the latency of
atomic operations for the serialisation onNextSeqNo in Commit (Algorithm 5, line 2).

3.8.2 Arbitrary granularity logs

The logs are maintained as FIFO buffers implemented as singly linked lists. The key compli-
cation with logging in the STM is bypassing values from previous writes to later reads. This is
because the x86 architecture allows accesses of varying size to any alignment. Most word-based
STMs such as TL2 assume word-sized accesses aligned to word boundaries.

Consider the access pattern shown in Figure 3.14. First, a write from a transaction updates 2
bytes in memory (step 2). Next, a read from the same transactions reads those 2 dirty bytes
and thus can proceed by simply reading the results of the previous write (step 3). In order to
enable this, I maintain a dirty buffer consisting of aligned16 byte chunks of memory that have
been written to. I initialise the dirty buffer (step 1) from the clean contents of memory. If a
containing dirty buffer is found for a read, it receives its values out of the buffer.

The next read (step 4) however presents a significant complication since it reads partially from
a previous write and partially from shared memory. Both Owens et al.’s model as well as
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the architecture manuals [x8609] are silent about the behaviour of the write buffer under such
circumstances. I assume that the read receives part of its values from the write buffer and part
from shared memory (effectively executing a split read).

Implementing this feature however proved a challenge for the STM. One option is to track
which bytes of the dirty buffer are actually dirty. This means updating the data structure doing
the tracking on every write. Using some micro-benchmarks, Idetermined that this has an un-
acceptable cost, since it leads to an extra operation oneverywrite, while the actual number of
reads hitting a dirty buffer is relatively rare.

Instead, my solution uses the result bypassed from the dirtybuffer andsimultaneouslytreats
the whole read as being from clean data. To do this I maintain two versions of the dirty buffer.
The first version acts as normal while the second version (referred to as the clean copy) is never
changed after initialisation. I check that the memory contents are unchanged by comparing
the accessed portion in the clean buffer with memory. Then, Iperform STM metadata related
checks on the read. This ensures that I use the correct checksfor the clean portion of the read, if
any. The conservativeness means that abort rates can possibly increase since data that has been
forwarded can potentially be dirtied in memory, leading to an unnecessary abort. However, I
saw no such effect in practise.

The enhancements needed to the plainSpeculationWrite andSpeculationRead are
shown in Algorithm 9 and Algorithm 10 respectively. They nowtake an additionalsize pa-
rameter. The read and write logs are also enhanced to includethe size of the access in addition
to the location and value.

Algorithm 9 SpeculativeWriteEnhanced(t, loc, size, Value)

1: DirtyList = DirtyList(t) ∪ Metadata(loc)
2: Append (loc, size, Value) to WriteLog(t)
3: if ∃ (DirtyBuffer, CleanBuffer) containing loc in ByPassList(t) then
4: Apply update (loc, size, Value) to DirtyBuffer
5: else
6: Initialise DirtyBuffer, CleanBuffer containing loc from memory
7: if Metadata(loc) is oddthen
8: abort
9: if Metadata(loc)> SnapshotSeqNo(t)then

10: abort
11: Apply update (loc, size, Value) to DirtyBuffer
12: Append (DirtyBuffer, CleanBuffer) to ByPassList(t)

The implementation described thus far assumes that accesses do not cross 16 byte boundaries.
For some benchmarks I examined, a simplememcpy often causes misaligned accesses that
cross a slot boundary. Hence such split accesses must be handled. I handle such accesses as
follows:

1. Split the access into two partial accesses, one per slot

2. Make a recursive call for each partial access (for writes inhibit additions to the write log
for the partial access)

3. Add an entry to the appropriate read or write log for the actual access with the data
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Algorithm 10 SpeculativeReadEnhanced(t, loc, size)

1: memvalue := contents of Memory at loc
2: Append (loc, size, memvalue) to ReadLog(t)
3: if ∃ (DirtyBuffer, CleanBuffer) containing loc in ByPassList(t) then
4: result := contents of loc in DirtyBuffer
5: if memvalue6= contents of loc in CleanBufferthen
6: abort
7: else
8: result := memvalue
9: if Metadata(loc) is oddthen

10: abort
11: if Metadata(loc)> SnapshotSeqNo(t)then
12: abort
13: return result

The allows me to correctly add the read and write accesses as single accesses (as expected in
the TSO machine). It also cleanly handles metadata for each slot accessed. Finally, it adds
extra reads for split-reads but there is no correctness related issue there, since neither individual
split-read can fault given that the whole read does not.

The bypass list is a pair of singly linked lists of buffers, one for the dirty buffer and one for the
clean buffer. I use a pair of bloom filters to avoid unnecessary lookups in the linked list, which
is otherwise searched linearly. For large transactions, I switch to a hash index on the bypass
list. The physical memory requirements for the logs is capped at 4 MB of physical memory
per-thread.

3.8.3 Lock blacklists

TheBlacklist of locks is maintained as a 1024 entry hash table indexed by the lower 10
bits of the lock address. Each hash table entry is simply a integer that holds one of three values:
0 is the default value,1 means the lock is in theQuiesceList and2 means that the lock in
in theBlackList. The hash table size and function are configurable and I empirically chose
these settings based on the benchmarks I considered for thisdissertation.

I ignore conflicts in mapping locks to table entries, meaningit is possible for a blacklisted lock
to cause other locks to be acquired pessimistically. While it is possible to handle conflict using,
for example, a closed addressing scheme, I deemed this unnecessary. Lock blacklisting should
ideally be very rare (otherwise the program is probably not suitable for software lock elision).

One exception that can necessitate a re-examination of thisimplementation decision is dynam-
ically allocated locks that are also blacklisted. This can cause the hashtable to quickly fill up
with blacklisted entries, leading to the program executingwith pessimistic locking throughout.

3.9 Evaluation of STM_x86

In this section, I evaluate the performance of the STM runtime system presented in this chap-
ter. The STM has been designed for safety and transparency: it provides SLA and exactly
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Figure 3.15: STM performance on the STAMP benchmarks(1)

preserves the x86-MM for the targeted set of programs. In order to properly characterise the
price that must be paid for working with a strict memory model, I compare its performance
with TL2 [DSS06]. TL2 is built for scalability and performance, as well as being for use as a
library-based STM by a programmer who is familiar enough with its internals to understand its
implication for program safety. It is meant for programs with dynamic separation (only guaran-
teeing ordering between operations in transactions) and thus most suitable for the C++ memory
consistency model that forbids races. In addition, it does not guarantee privatisation safety to
speculating transactions. In a sense, the STM in this chapter and TL2 lie at opposite ends of the
safety/scalability scale.

Further, in order to properly characterise various aspectsof the STM design in this chapter, I
evaluate two different variants of it. The first is STM_x86_strict, that provides x86-MM toall
programs without exception. The next is STM_x86, obtained by applying the optimisation of
Section 3.4. This is also the STM used in the rest of this dissertation.

I use the STAMP benchmark suite [CMCKO08] for evaluation. The eight benchmarks in
the STAMP suite are: a gene sequencing program (“Genome”), abayesian learning network
(“Bayes”), a network intrusion detection algorithm (“Intruder”), a k-means clustering algo-
rithm (“KMeans”), a maze routing algorithm (“Labyrinth”),a set of graph kernels (“SSCA2”), a
client-server reservation system simulating SpecJBB (“Vacation”) and finally a Delaunay mesh
refinement algorithm (“Yada”). STAMP uses transactions forsynchronisation and shared mem-
ory reads and writes have beenmanually instrumented. STAMP has been built to exercise
STMs and includes a variety of transactions in terms of the time spent spent by the program in
a transaction and the length of the transactions. I use large(native) input sets for the STAMP
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Figure 3.16: STM performance on the STAMP benchmarks(2)

benchmarks (both for experiments in this chapter as well as for those in the later ones) shown
below.

BenchmarkInput
Vacation -n2 -q90 -u98 -r1048576 -t4194304
Kmeans -m40 -n40 -t0.00001 -i inputs/random-n65536-d32-c16.txt
Yada -a15 -i inputs/ttimeu100000.2
SSCA2 -s19 -i1.0 -u1.0 -l3 -p3
Bayes -v32 -r2048 -n10 -p40 -i2 -e8 -s1
Intruder -a10 -l128 -n262144 -s1
Genome -g16384 -s64 -n16777216
Labyrinth -i inputs/random-x512-y512-z7-n512.txt

I use a 48-core system for the evaluation (Appendix B: Tigger) The system configuration is
available in Appendix B. STAMP only allows thread counts that are a power of two. It also
includes a sequential version of each benchmark. I report the execution time for the sequential
version of the benchmark divided by the observed execution time for that same benchmark
running with the desired STM or lock. Any measured executiontime is the median of 5 runs.

The results are shown in Figures 3.15 and 3.16. For most of thebenchmarks, the relative perfor-
mance of the three STMs is as expected. STM_x86_strict is theslowest although surprisingly
it is occasionally able to perform better than a lock (such asin Vacation). This is likely due to
the transactions being computation heavy, which is performed in parallel. STM_x86 (the STM
for the rest of this dissertation) comes next. It performs better than STM_x86_strict by virtue
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Threads
Benchmark 1 2 4 8 16 32

labyrinth 0.0240.0060.0480.1310.1650.060
yada 0.0080.0470.0240.0140.0480.043
bayes 0.0010.0201.0300.2970.4030.174

vacation 0.0060.0760.0230.0310.0540.030
genome 0.0030.0550.0270.0510.0100.004
kmeans 0.0230.2880.4810.9960.5330.129
ssca2 0.0050.0990.0250.0040.0050.008

intruder 0.0030.0490.0210.0400.0250.208

Figure 3.17: TL2: Maximum variation in execution time as a fraction of the median

Threads
Benchmark 1 2 4 8 16 32

labyrinth NO NO YES* YES* YES* YES*
yada NO NO NO NO YES YES
bayes NO NO NO YES* NO YES*

vacation NO YES YES YES* YES* YES*
genome NO YES YES* YES* YES* YES*
kmeans NO NO NO NO NO NO
ssca2 NO NO YES YES NO NO

intruder NO YES YES YES YES YES

Figure 3.18: Is using STM_x86 better than using the lock ?(‘*’ means also better than sequential)

of the optimisation. Also, as expected, TL2 performs the best in general.

There are also some interesting exceptions to this orderingbetween the STMs. In the case of
Yada, Intruder and Bayes the STM in this dissertation performs better than TL2. This is likely
due to the fact these three benchmarks demonstrate a combination of long transactions and
high conflict rates [CMCKO08]. The STM in this dissertation avoids wasted work by detecting
conflicts early due to the strict insistence on a consistent read set compared to TL2. Another
important factor is the variance in runtimes. I use 5 runs of every benchmark, reporting the
median of the 5 runs. Figure 3.17 gives the maximum relative error from the reported median
in the case of TL2. The other STMs show similar behaviour. In the case of Kmeans, the close
performance of STM_x86 and STM_x86_strict coupled with thehigh variance explains why
the latter is faster than the former for some thread counts.

The final question of interest is whether STM_x86 (transparent optimistic concurrency control)
can improve performance when compared to locking. Figure 3.18 demonstrates that STM_x86
can indeed perform better than a lock in spite of being built for a strict memory model and
transparency.
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3.10 Discussion

Designing an STM that can be safely used at the level of x86 machine code is clearly a non-
trivial endeavour. I started this chapter with a set of examples showing that the strictness of the
x86 memory model is a significant challenge for an STM compared to the weaker language level
memory models. I showed that STM_x86 must trade off generality and presented the design for
an STM that only disallows programs that result in TRUW racesunder transactional execution.
I argue that this likely originates from buggy programs withincorrect synchronisation and thus
does not severely limit the applicability of SLE. Finally, Ipresented an evaluation showing
the scalability tradeoffs made in order to work at the lower level of the x86-MM. In spite of
the significant extra synchronisation needed to ensure transparency and applicability, STM_x86
can perform better than a lock.

The STM presented in this chapter has been used with manual source level instrumentation. In
order to be actually used with SLE, it needs to be applied automatically at machine code level.
This requires a means to automatically instrument machine code to intercept lock and unlock
calls and all memory accesses in a critical section, which isthe subject of the next chapter.
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Chapter 4

x86 machine code instrumentation

As chapter 3 showed, STM_x86 preserves x86-MM but by itself lacks the means to inter-
face with x86 machine code to provide software lock elision.This chapter presents the design
and implementation of a binary instrumentation system thatallows instrumentation of the lock
and unlock calls in a binary as well as instrumentation of allshared memory accesses within
the delimited critical sections. Together with STM_x86, the complete system (referred to as
SLE_x86) provides software lock elision for x86 machine code.

I begin this chapter by discussing the two prevalent approaches to instrumenting x86 machine
code: static and dynamic binary rewriting. I argue that neither of them alone is sufficient for
SLE_x86. Instead, I show how the best features of each can be combined into a special purpose
improved binary instrumentation system.

4.1 Approach

Research in the area of instrumenting machine code has been driven both by the need to build
profiling tools that operate at the binary level, such as [RHH09a] as well as tools that actively
modify execution: such as to eliminate dead code [BDA00] or even to apply software trans-
actional memory [OCS07]. Given x86 machine code contained in a program there are two
prevalent approaches to rewrite binary code into a form thatexecutes an instrumented version
of the machine code: a purely static (pre-execution) approach and the other is a purely dynamic
(runtime) approach. I discuss each of these approaches next, focusing on their strengths and
weaknesses with regard to my intended application of using it for software lock elision.

4.1.1 Static binary rewriting

Static binary rewriting modifies binaries before executionto produce an instrumented version.
An early example of static binary rewriting is the binary rewriting tool ATOM [SE94]. Other
examples are DIABLO [VPCDB+05] and PLTO [SDAL01].

Static binary rewriting has one key advantage: there is no overhead to insert instrumentation,
since this process happens before the binary is executed. From the perspective of SLE_x86
however, there are two key difficulties with using static binary rewriting.
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if(AnalysisOpaqueCondition())
pthread_mutex_lock(&lock);

pthread_mutex_lock(&possibly_nested_lock);
...

pthread_mutex_unlock(&possibly_nested_lock);
// Should the following be instrumented ?
...
if(AnalysisOpaqueCondition())

pthread_mutex_unlock(&lock);

Figure 4.1: Possibly nested locking

The first problem is indirect branches. Static binary rewriting needs to analyse the control flow
graph to decide which basic blocks1 in the binary need to be instrumented. For example, in the
case of software lock elision, the critical section is made up of all basic blocks reachable from
the basic block containing the lock call, but without encountering an unlock call. This cannot
(in general) be determined with static binary rewriting. ATOM, for example, uses understanding
of the manner in which case statements are complied (by a C compiler) to work out possible
targets of indirect branches. Since I wish to make SLE language agnostic, I cannot use this
technique.

The second problem, specific to SLE_x86, is demarcating critical sections in the presence of
nested locking. Consider the example in Figure 4.1. A purelystatic approach cannot determine
whether the portion of code after the first unlock call shouldbe instrumented since its inclusion
in a critical section is execution dependent.

4.1.2 Dynamic binary rewriting

Dynamic binary rewriting can be used to modify binaries at execution time in order to in-
sert instrumentation. Dynamic binary rewriting has recently gained popularity since it enables
extremely useful program analysis and optimisation tools to be built. A number of dynamic
binary rewriting engines have been produced, including PIN[LCM+05], FastBT [PG10], Dy-
namo [BDB00] and Valgrind [NS07]. They have formed the basisfor useful program analysis
tools such as Memcheck [SN05] and program optimisation [BDB00]. Since instrumentation
is inserted dynamically, it does not suffer from the problems with static rewriting mentioned
above. Dynamic binary rewriting however suffers from the problem of high overhead. There
are two primary sources of this overhead.

The first is the cost of inserting instrumentation. Code execution must be stopped in order
to rewrite it with instrumentation inserted. This happens every time new instrumentation is
inserted.

Another source of high overhead is maintenance of the ‘code cache’: a region of memory that
holds all executed (and possibly modified) basic blocks. Since the dynamic binary rewriting en-
gine cannot at any point guarantee that no new code requiringinstrumentation will be executed,
it executes all code out of a ‘code cache’. The code cache evencontains code that has not been
instrumented. This ensures that the dynamic binary rewriting engine maintains control of code
execution and is able to see all newly executed code. Unfortunately the ‘code cache’ imposes

1A single-entry single-exit sequence of machine code.
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significant overhead even for uninstrumented code. This stems from the cost of maintaining the
finitely sized code cache and taking care of events such as evictions. From the perspective of
software lock elision, the code cache is a completely unnecessary source of overhead. There
is no need to instrument code outside critical sections, andthus no need to put it into the code
cache, possibly displacing more useful instrumented blocks.

4.1.3 Combining static and dynamic techniques

The instrumentation system for SLE_x86 aims to combine the benefits of static and dynamic
binary rewriting while side-stepping their problems. At the heart of the instrumentation system
lies the Persistent Instrumentation Cache (PIC).

A PIC contains instrumented versions of basic blocks withincritical sections of its originat-
ing binary. It is persistent and held in an on-disk file. It thus represents the instrumentation
that would have been added by a static binary rewriting engine. A completePIC contains in-
strumented versions ofeveryreachable basic block withineverypossible critical section of the
binary. The completeness of a PIC is clearly undecidable in the presence of indirect branches
in the binary. I return to the problem of tolerating incomplete PICs during software lock elision
later in the dissertation.

The PIC is generated dynamically, as I depend on execution tolook past indirect branches.
I also depend on execution to properly handle nested critical sections (such as that shown in
Figure 4.1) by dynamically counting held locks. The PIC thuscontains code that would have
been generated by a dynamic binary rewriting engine.

4.2 x86 instrumentation modes and backends

Instrumented execution of x86 binaries begins with an emptyPIC. Execution can then happen
in one of two modes:active modeor passive mode. In active mode, new instrumentation
can be added to the PIC based on newly discovered basic blocks. In passive mode no new
basic blocks can be added to the PIC. However execution in passive mode is much faster since
the instrumentation system avoids any overhead associatedwith intercepting and examining
executed basic blocks to determine if they should be instrumented, as I show later in this chapter.

Crucially, active mode provides the capabilities of dynamic discovery normally associated with
dynamic binary rewriting while passive mode uses the (already built) PIC in a manner that
attains lower performance overheads more typical to staticbinary rewriting.

In both modes, the binary executes with instrumentation. The instrumentation system is oblivi-
ous to what the instrumentation does. It assumes a backend that provides functions to be called
for each instrumentation hook. The x86 instrumentation system provides the following hooks:

1. Elide: Called whenever a lock is acquired. In addition to the lock address,Elide takes
a set of parameters related to checkpoints (see Section 4.6).

2. SpeculativeRead(loc, size): Called on a memory read from locationloc of
sizesize, within a critical section. The instrumentation hook should return the (possibly
different) location from where the read is to be actually performed.
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Figure 4.2: Execution in active mode

3. SpeculativeWrite(loc, size, rmw_flag): Called on a memory write to lo-
cationloc of sizesize, within a critical section. Thermw_flag is a boolean that that
tells the backend if the write is an x86 read-modify-write rather a simple write. The in-
strumentation hook should return the (possibly different)location to which the operation
is to be actually performed.

4. Release: Called whenever a lock is released. Indicates on return whether any locks are
still held.

The backend must know the type and functionality of the locking being used in the program
in order to be able to fall back to pessimistic locking. For example, most of the evaluation
in this dissertation has been with backends written for the synchronisation operations in the
Pthreads library [DM05].

A simple backend used in this dissertation is thenull backend. The null backend simply ac-
quires and releases locks on theElide andRelease calls respective. For memory access
instrumentation it simply returns the location passed in. The null backend thus leaves execution
unchanged. In addition to being useful for debugging I also use it in this chapter to evaluate the
overhead of the binary instrumentation system itself without any of the costs associated with
STM_x86.

4.3 Active mode

Active mode executes the binary using a dynamic binary rewriting engine. Code is examined
when it is executed for the first time. If the code is being executed in the context of a critical
section, then it is instrumented and placed in the PIC. Otherwise, the code is executed uninstru-
mented.
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Dynamic binary rewriting engines are fairly complex to build and maintain and by itself can
form the topic for a PhD thesis [NS07]. I thus chose to leverage an existing dynamic binary
rewriting engine for this part of the instrumentation system. I use PIN [LCM+05], a widely
used and stable dynamic binary rewriting engine for x86 binaries. My decision to use PIN was
guided by two factors.

First, PIN provides an excellent high level interface to inspect and manipulate x86 code. It
provides a C++ API that can operate at various levels of abstraction: from whole images, down
to functions, basic blocks and individual instructions. PIN also includes a (not very widely
used) API called X86 Encoder Decoder(XED)to directly decode, manipulate and re-encode x86
instructions (complex due to their CISC nature) from and to machine code. I made extensive
use of XED to build the instrumentation system in this dissertation.

Second, PIN has a large community of users and is actively maintained. This is important
because the x86 ISA is actively changing (such as the addition of SSE3 instructions) and it is
important that the binary rewriting engine keep up with these additions to be useful for SLE
now and in the future.

Figure 4.2 details the key software blocks and their interactions when operating in active mode.
The first key point to note is that all components are in the same address space (1). The three
executable components (2) are the x86 binary, the backend and PIC (which is mapped into
memory for use). These are never executed natively and instead executed out of PINs code
cache (bottom).

The instrumentation system logic dealing with active mode exists as apintool (3). It is written
in C++ and compiled into a shared library. It is loaded with PIN and interacts with it at atrace
granularity – a trace is a single entry multiple exit contiguous sequence of basic blocks that is
begun at the target of any branch and ends at an unconditionalbranch. The pintool registers
a callback with PIN through theTRACE_AddInstrumentFunction call at initialisation
time (4). For every new trace encountered, PIN presents the trace for manipulation to the pintool
(5). If the trace originates from a critical section, the instrumentation system logic places an
instrumented version of the basic block(s) in the trace intothe PIC (6). It then modifies the trace
to branch to the instrumented version in the PIC. All executed code (other than that from PIN
or the pintool) is placed (after possible modification) intoPIN’s code cache (7) from where it is
actually executed.

Most of the heavy lifting of binary interception, analysis and synthesis is thus done through
PIN. The remaining sections focus on features of active modecontained in the pintool that are
relevant to SLE_x86.

4.3.1 Identifying critical sections

Active execution depends being able to determine whether a basic block belongs to a critical
section. Unfortunately this is not astaticcharacteristic of a basic block. Consider the example
in Figure 4.3. In that example, the string copy library function is called through a function
pointer twice, first outside any critical section and next inside a critical section. On the second
call, PIN no longer presents traces in string copy for instrumentation since it has already added
these instructions (without instrumentation) to its code cache after the first call. To solve this
problem I needed a way to communicate the different contextsof a basic block, such as for the
string copy code in the example, to PIN.
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char* (*fptr)(char *, char *) = strcpy;
fptr(a, b);
pthread_mutex_lock(&lock);
fptr(c, d);
pthread_mutex_unlock(&lock);

Figure 4.3: The same function in multiple contexts

To do this, I make use of a PIN facility calledtrace versioning. This allows a trace (and hence
basic blocks in it) to be assigned a version string. The same trace with two different version
strings is treated as two different traces by PIN. Traces areassociated with a NULL version
by default. After entering a critical section, I set the trace version to a special string indicating
critical section context, which is then propagated to traces executed by branches from that trace.
This ensures that executed code is presented for instrumentation even if it has been encountered
before (as in Figure 4.3). At the end of a critical section, I reset the trace version string to
NULL.

The next problem is to determine when execution enters or exits a critical section. To do this,
I first determine (using a tool, before the program is run) a translation from lock and unlock
function names to corresponding function addresses. For every instruction presented by PIN, I
check if it is a direct control transfer (direct x86jmp/jcc orcall) and if the target is the same
as one of these addresses. If so, I insert the appropriate instrumentation call. The actual lock and
unlock calls are deleted, leaving the backend to either elide or acquire the lock. The backend
is then responsible for indicating when critical sections are begun and ended (by maintaining a
count of held locks). On a critical section begin, I require acall to a specially named function
in the backend (cs_begin); similarly, on encountering the end of a critical section,I require
a call to another specially named function (cs_end). The instrumentation infrastructure looks
for execution of these functions (which can be empty “no-ops”) in order to learn when critical
sections begin and end. Traces branched to by a return fromcs_begin have their version set
to critical section context. On the other hand, traces branched to by a return fromcs_end have
their version set back to NULL. This allows dynamic handlingof nesting such as that required
for Figure 4.1.

4.3.2 Basic block discovery

Active execution aims to instrument every basic block that can be executed in critical section
context. One way to do this is to wait for execution to discover every possible trace in a critical
section and then instrument it. However, this makes building a complete PIC a function of
input and timing (in multithreaded execution) and in practise this leads to a large number of
program iterations being needed to build a complete PIC. Even worse, in the presence of indirect
branches it is impossible to decide if a PIC is complete.

However, the problemis tractable given only direct branches by simply traversing the control
flow graph starting from a lock call. I exploit this fact by extending dynamic code discovery
made available by PIN with static control flow graph traversal in the instrumentation logic of
the pintool. To do this, starting with a lock call, I traversethe control flow graph of basic blocks
using the depth first search (DFS) shown in Algorithm 11. The DFS does not look past indirect
branches and unlock calls. For direct conditional branchesit processes the fall-through basic
block immediately to avoid an unnecessary branch in the PIC.
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I thus depend on execution only to discover critical sectionboundaries and to look past indirect
branches. In the evaluation at the end of this chapter I demonstrate how this combination of
static traversal of the control flow graph (similar to that used in static binary rewriting tools
such as ATOM) and dynamic code discovery is effective in improving the rate at which basic
blocks are added to the PIC.

Algorithm 11 Depth-first search of control flow graph

1: while BasicBlockStack is not emptydo
2: bb = BasicBlockStack.pop()
3: Instrument bb and add to persistent instrumentation cache
4: ins = bb.LastInstruction()
5: /* ins must be a branch */
6: if ins ends a critical section (unlock call)then
7: continue
8: else
9: if ins is a direct branchthen

10: bb = BasicBlockAt(ins.target())
11: BasicBlockStack.push(bb)
12: if ins is a conditional branchthen
13: /* has a basic block at fall-through */
14: bb = BasicBlockAt(ins.next())
15: goto line 3

4.3.3 Basic block instrumentation

I now discuss how memory access instrumentation is added to those individual basic blocks
determined to be reachable in critical section context. To illustrate this, I use an example basic
block from one of the benchmarks considered in this dissertation: concurrent AVLtree. Fig-
ure 4.4 shows the original basic block on the left, with the instrumented version of the basic
block on the right.

The numbered instructions on the right correspond to the numbered instructions on the left.
For example, the first instruction accesses memory. This is converted into an instruction that
first loads the target address into theeax register. The next few instructions load the size of
access into theedx register and the rmw flag into theecx register. The size and rmw flag
are encoded such that the most common values (4 bytes and false) map to zero. This means
the registers can be set up with a two byte instruction (exclusive or-ing the register to itself),
keeping the size of instrumentation and hence instruction cache pressure down. The call to the
instrumentation hook returns the (possibly) different address to use ineax, which is then used
in the instrumented version of the basic block.

The first notable feature of the instrumentation is flag and register management. Since calls
to the instrumentation hooks are expected to destroy theeax, edx andecx registers as well
as the flags, these need to be saved and restored as appropriate. This is accomplished by the
un-numbered instructions in the instrumented version of the basic block. The save area is setup
on stack (the PIC is shared between threads) by the first instruction. Liveness analysis is done at
the level of the basic block to optimise away unnecessary save restores. For example, the fourth
instruction overwrites the x86 flags and thus the flags are notsaved.
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# Note: AT&T format-> operation src, dst

# Memory[8 + Reg[eax]] -= 1;
1. subl $0x1,0x8(%eax)

# Memory[12 + Reg[eax]] = Reg[esi];
2. mov %esi,0xc(%eax)

# Memory[4 + Reg[esp]] = Reg[eax];
3. mov %eax,0x4(%esp)
# Reg[ebx] = 0;
4. xor %ebx,%ebx
# Memory[Reg[esp]] = Reg[edi];
5. mov %edi,(%esp)

6. call 8048ba0 <rebalance_insert>

lea 0xfffffff0(%esp),%esp
mov %eax,0x0(%esp)

1.1 lea 0x8(%eax),%eax
mov %ecx,0x4(%esp)
mov %edx,0x8(%esp)

1.2 xor %edx,%edx
1.3 xor %ecx,%ecx
1.4 inc %ecx
# Call SpeculativeWrite
1.5 call 0xff6a4730
1.6 subl $0x1,(%eax)

mov 0x0(%esp),%eax
2.1 lea 0xc(%eax),%eax
2.2 xor %edx,%edx
2.3 xor %ecx,%ecx
2.4 call 0xff6a4730
2.5 mov %esi,(%eax)

mov 0x0(%esp),%eax
3. mov %eax,0x14(%esp)

4. xor %ebx,%ebx

5. mov %edi,0x10(%esp)
mov 0x8(%esp),%edx
mov 0x4(%esp),%ecx
lea 0x10(%esp),%esp

6.1 push $0x8048e12
6.2 jmp 0x123c4ba0

Figure 4.4: Shared memory instrumentation for a basic block

The second notable feature of the instrumentation is the treatment of memory accessed through
the stack pointer (registeresp). The stack is usually thread private and (due to the limited
number of registers on the x86) heavily accessed. If a location is known to be thread-private,
accesses to it (other than locked ones) can be re-ordered without any effects observable to other
threads and hence without any violation of x86-MM. This means that accesses to the stack can
be performed directly without indirection into STM_x86. This is turn removes a large number
of redundant calls toSpeculativeRead andSpeculativeWrite. This however means
that there must be some way to return stack locations to theiroriginal value if the executing
transaction aborts; I discuss how this is done in Section 4.6. Also, there must be some way
to detect the case where stack locations are shared between threads (although unlikely, this
is not impossible); I discuss how this is done in Chapter 6. Finally, from the perspective of
instrumentation, stack accesses need to be adjusted to account for the save area created on
stack. This can be seen in the example where the offset for instruction5 is adjusted upward by
16 bytes.

The final notable feature about the instrumentation is the handling of the call instruction that
terminates the basic block. The instrumented version pushes the return address before jumping
to the target. This is standard practise for binary rewriting engines and originates from the need
to leave return addresses unmodified on stack. In the example, the rebalance_insert
function would see the original native address rather than the address from the PIC were it to
query the return address of the function. A common occurrence of this kind of behaviour is in
position independent code, where a call is made to the immediately following instruction which
then queries the top of stack to discover the current instruction pointer (there is no direct way
on x86 in 32 bit mode to materialise the instruction pointer in any other register).
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The instrumentation of basic blocks is also complicated by the fact that the x86 ISA permits
complex instructions. Some instructions allow accessing more than one location (such as a
push of the contents of a memory location). Another complication arises from string operations
where the length of the access cannot be determined statically (it usually depends on the con-
tents of theecx register). I handle such cases by breaking them down into simpler RISC style
operations that are then instrumented.

4.3.4 PIC operations

There are four fundamental operations that active mode performs on the PIC. These are loading
the PIC into memory; appending instrumented basic blocks tothe PIC; executing from the PIC;
and querying the PIC.

I load the PIC into memory by doing a memory map (Unixmmap) from the disk file containing
it. This ensures that the disk file is upto-date with any additions to the PIC. Appending basic
blocks to the PIC simply consists of writing out instrumented versions of basic blocks to the
end of the PIC.

Executing from the PIC represents a problem due to special handling of self-modifying code by
PIN. In order to detect self-modifying code, PIN looks for pages that are being executed from
while being marked writable. It then marks these pages as read-only and traps any writes to it in
order to detect self-modifying code. This causes large slowdowns when executing instrumented
code out of PIC pages. To work around this problem, I map the same PIC page twice, once as
executable but read-only and once as read-write but not executable. Appending to the PIC is
done through the writable mapping while execution uses the executable read-only mapping.

The final thing that needs to be supported by the PIC are queries to map executable native ad-
dresses to instrumented basic block addresses in the PIC, ifpresent. The core of the logic that
handles queries is a mapf : native address→ PIC offset. Such a map is easy to set up and
maintain for a single run but difficult to persist across runs. The reason is that the native exe-
cutable address of the basic block in the PIC can change across runs. For example, the native
address might originate in a shared library that can change its load address on each active exe-
cution. To solve this problem, the map is persisted as
f : (native address relative to image base, image name) → PIC offset. It is loaded and turned
into the required form by querying the base of each loaded image (main binary or shared li-
brary). A similar technique is used by dynamic binary rewriting engines that persist instrumen-
tation across runs [RCCS07].

4.4 Passive mode

I now cover the operational details of execution in passive mode. Figure 4.5 provides an
overview of the software components involved in passive mode. All the components run in
the same address space (1). In addition to the x86 binary (2),the instrumentation system (3)
and the backend (4) are loaded as shared libraries (through the UnixLD_PRELOAD mecha-
nism). On initialisation the instrumentation system loadsthe PIC (5) by mapping the on-disk
version into memory (6). By virtue of being preloaded the instrumentation system is able to in-
tercept lock calls (7) at which point it can redirect execution into the PIC. There is no dynamic
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Figure 4.5: Execution in passive mode

binary rewriting engine (PIN) nor its code cache. Executionproceeds directly from the native
binary or the PIC.

The critical features of execution in passive mode are simplicity and low overhead. There is no
overhead to add instrumentation and – as I shortly show – no overhead when executing outside
a critical section.

4.4.1 Preparation

An offline tool needs to be run on the PIC before any passive execution that follows an active
execution. The job of this offline tool is effectively to “stitch” together basic blocks in the PIC
by patching branches across them, to target instrumented basic blocks in the PIC rather than in
the native binary. As an example, consider the call instruction at the end of Figure 4.4. During
active execution it targets the native binary and is intercepted and redirected via PIN. Its target
must have been added (being a direct branch) by the CFG Walk algorithm to the PIC. The offline
patching step patches the branch to point to the instrumented version of the target. Note that on
the x86 direct branches are instruction pointer relative and thus the patching is unaffected by
PIC relocation across different runs. The patching step is fast. For example, for a 5MB PIC it
takes barely a few seconds to run.

4.4.2 Intercept and dispatch

The heart of passive execution is the intercept and dispatchlogic. I illustrate this using the
example flow in Figure 4.6: dynamic execution would normallymove through the basic blocks
B0 through toBn+1. B0 ends in a call topthread_mutex_lock and thus begins a critical
section. Basic blockBn ends in a call topthread_mutex_unlock and thus ends a critical
section. The instrumented versions of the basic blocks in the critical section (B1 till Bn) are
shown on the right.

The first step is to intercept all lock calls. This is done through the UnixLD_PRELOADmecha-
nism by intercept logic which is specific to the type and functionality of the locking in use: the
example deals with thepthread_mutex_lock. Instead of acquiring the lock, executing the
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Figure 4.6: Intercept and dispatch

critical section and releasing the lock (as on the left), thedynamic linker in the system ensures
that the lock call transfers control to the interceptor. Theinterceptor then callsElide which
can decide to do one of two things. In the event that the lock isblacklisted (Section 3.7 of the
previous chapter), the interceptor returns control to the normal code flow path. Otherwise, the
lock is elided and control transfers to the dispatcher.

The dispatcher queries the PIC to determine the instrumented version of the basic block pointed
to by the return address of the original lock call. It thenmodifiesthe return address on the
stack to point to the instrumented version of the basic block(the PIC having been mapped
into memory). On exit from the dispatcher, control transfers into the PIC and executes the
instrumented version of the critical section (on the right). The unlock call is replaced with a
call toRelease which indicates on return if any locks are held. If no locks are held, control
returns to the native binary. Otherwise control returns to the dispatcher, which decides the next
basic block to branch to in the PIC.

The result is that no overhead exists for inserting instrumentation or for executing code that is
not in a critical section, since in that case execution proceeds from the native binary.

The dispatcher is also used to resolve indirect branches that cause a lookup in the PIC. If the
indirect branch cannot be resolved, an exception is raised.

4.5 Exceptions

The instrumentation system raises two kinds of exceptions to the backend:
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1. FlushWriteBuffer

2. ExitPIC

The first exception is raised when any locked instruction ormfence instruction is encountered.
As I have shown in the previous chapter, the x86-MM cannot be preserved in this case. The
backend implementing STM_x86 handles this by switching over to pessimistic locking. The
null backend does not care about the flush of the write buffer and simply continues executing
out of the PIC.

The second exception is raised when execution is forced to exit the PIC. There are two sit-
uations where this can arise: (i) During passive mode the PICis not complete and does not
contain the target of an indirect branch, (ii) A system call is made, the instrumentation system
cannot instrument the kernel. The STM_x86 backend handlesExitPIC exceptions by falling
back to pessimistic locking (none of the benchmarks studiedin this dissertation raise this ex-
ception, although I have simulated it in unit tests). The null backend handles this exception by
switching execution back to the native binary (since it already effectively executes native code
by acquiring locks and performing memory accesses directly).

4.6 Checkpoints

A complex requirement for SLE_x86 is the ability for transactional execution to be aborted
and its effects rolled back. The instrumentation system provides the capability to take athread
checkpoint and roll back execution of the thread to this checkpoint. A checkpoint is taken at the
beginning of a critical section and discarded at the end.

There are two effects that transactions can have on system state: they affect register state and
they affect memory. I first discuss checkpointing registersand then discuss checkpointing mem-
ory.

4.6.1 Registers

Like library-based STMs such as TL2, I use thesetjmp andlongjmp C library functions to
checkpoint and restore register state. Thesetjmp andlongjmp pair however, do not save
and restore floating point state for the x86 CPU and this needsto be done by the instrumentation
system. The calling ABI in use with the threading libraries Ihave built backends for (Pthreads
and OpenMP) mandate that the x86 floating point register stack is empty and the flags are reset
on entry and exit from the lock call. Hence, on a rollback I simply reset the floating point stack
and exception flags (using the x86emms instruction) to remove any effects from the aborted
transaction.

4.6.2 Memory

All memory accesses indirected into STM_x86 are automatically buffered but accesses to the
stack are performed without instrumentation under the assumption that they are thread private (I
return to the problem of detecting the case where the stack ofone thread is accessed by another
in Chapter 6).
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f()
{

   int f_v;
   g(&f_v);

}

g(int *p_f_v)

{
   int g_v;

}

   lock(L);
   h(p_f_v, &g_v);
   unlock(L);

h(int *p_f_v, int *p_g_v)

{

   *p_f_v = 1;

}
   *p_g_v = 1;

x86 stack grows to lower memory

h()

g()

Access directly without logging

g_v

f()

Must log and access indirectly

f_v

Copy frame into checkpoint

Figure 4.7: Checkpointing the stack

However, updates to the stack still need to be rolled back if the transaction aborts. Library-
based STMs such as TL2 that are used at a source level require the programmer to avoid up-
dating variables on the stack that are live-in to transactions. This is not possible with automatic
instrumentation. Hence the instrumentation system checkpoints the region of stack that might
be updated in the transaction.

One problem is to determine exactly how much of the stack to checkpoint. On the x86 ar-
chitecture, the stack grows downwards (towards lower addresses). Hence, when a memory
checkpoint is taken, all stack memory at addresses lower than esp on the stack are dead and
are not checkpointed. This leaves the portion of the stack fromesp upto the end of the stack.
Clearly this could be a large region. Instead of checkpointing it all, which would unacceptably
slow down execution with software lock elision, I only checkpoint a sub-region [esp, esp
+ checkpoint_size).

The checkpoint size needs to be large enough to capture all accesses to the live region of stack
made through the stack pointer during the transaction. I make the (reasonable) assumption
thatesp relative addressing is limited to the frame of the currentlyexecuting function and its
parameters. It thus suffices to:

1. Checkpoint only the portion of stack occupied by frame andparameters of the function
executing the lock call beginning a critical section

2. Raise an ExitPIC exception if control returns from this function before the critical section
(and hence the PIC) is exited

The instrumentation system (during the active phase) determines the checkpoint size by scan-
ning the function where the critical section is begun, looking for instructions that reserve space
on the stack and those that use an offset from the stack pointer (to access parameters). This is
used to conservatively estimate the frame size.

To illustrate how checkpointing works, consider the simpleC example in Figure 4.7. Execution
switches to the PIC at the critical section begun in functiong. Accesses through the stack
pointer during the execution of the critical section are limited to the frame ofg and the frame of
the called functionh. The frame ofh is dead from the perspective of the checkpoint if execution
is rolled back. Access to locations in the frame of the calleef can only be made through pointers
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#iterate
emacs program.c
gcc -O3 program.c -lpthread -o program
gdb program

#Generate PIC (iterate until no new basic blocks added)
active_exec.sh program <arguments>

#run without
./program <arguments>

# run with SLE
LD_PRELOAD=libslepassive.so ./program <arguments>

Figure 4.8: Putting it together: Using SLE

that are indirected into the STM. If control returns fromg before the critical section is exited,
pessimistic locking must be used (via raising the ExitPIC exception) since accesses to the stack
can be made inf through the stack pointer outside the checkpointed region.

It is also important to ensure, from the perspective of STM_x86 that locations on the stack that
can be accessed through the stack pointer within a transaction are never logged. For example,
in Figure 4.7, the write tog_v in functionh must not be logged in the write buffer because
a subsequent direct access through the stack pointer ing would not see the update. The STM
logging functionsSpeculativeRead andSpeculativeWrite are constructed to ensure
that locations on the stack at or below (in address terms)esp + checkpoint_size are
never logged. This ensures, in the example, thatf_v is correctly logged.

4.7 SLE_x86 in practise

The instrumentation system contained in the pintool, meantfor active execution is approxi-
mately 4000 lines of C++ code. The implementation supports 32 bit code only. The SLE_x86
backend excluding the STM code described in the previous chapter is approximately 2000 lines
of C code. The typical manner in which programs have been run for this dissertation is shown
in Figure 4.8. The first step is to write, compile and debug theprogram. There is no awareness
of SLE at this stage.2

The next step is to build the PIC. This is done by iteratively running the program under the
control of PIN in active instrumentation mode. I provide a script that abstracts away much
of the complexity of the PIN command line. The instrumentation system pintool prints the
number of basic blocks added to the PIC in the run. I assume that the PIC is complete when
2 consecutive runs add no new instrumented basic blocks. This is only a heuristic since PIC
completeness is undecidable in general. However it works well for the programs examined in
this dissertation. Once the PIC has been built, the program can be run in passive instrumentation
mode.

2Indeed, the fact that there is no transactional memory in thetoolchain made it easy to debug some of the issues
with the larger programs used in the evaluation.
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One of the interesting consequences of using aggressive static basic block discovery during
active instrumentation is that limited inputs can be sufficient to build the PIC. In the case of
the STAMP benchmarks that have been heavily used in this dissertation I used a small input set
(intended for simulators) to build the PIC. This meant I could build the PIC in under 2 minutes
for all benchmarks; while a full run of the benchmarks using the native input sets took to the
order of 18 minutes.

4.7.1 Backends

The backend is specific to the purpose (null or STM_x86) as well as the type of locking in
use. In this dissertation, I use the null backend and the STM_x86 backend, as well as a profiler
backend that I discuss in the next chapter; with both Pthreads as well as OpenMP. Each of these
six individual backends share most of their code and are built via different compile-time settings.
The OpenMP backend includes support for the Intel compiler OpenMP implementation that
in addition to standard OpenMP locking calls uses so-called“fast dispatch” calls (additional
parameters are passed to quickly locate thread private data3).

4.8 Evaluation of the instrumentation system

I now evaluate the instrumentation system alone. I use the null backend for this section in
order to eliminate any STM related effects. I use the same STAMP benchmarks that were
used in the previous chapter and the same 48-core system (Appendix B: Tigger). Instead of
using transactions declared and instrumented at source level, I replace the transactions with
critical sections that acquire a process-wide lock, thereby executing the transactions with single
lock atomicity. The manual instrumentation for shared memory accesses is redefined (through
macros) to no-ops i.e. direct access to shared memory. The compiled STAMP benchmark
binaries can thus be run either using locks, the null backend(equivalent to running with locks)
or (as I discuss in the next section) with software lock elision.

I begin with a static characterisation of the binaries from the perspective of binary instrumen-
tation in the table in Figure 4.9. The 32 bit ELF binaries generated range in size from 52k for
Kmeans to 196k for Yada. The number of critical sections (obtained by counting lock calls)
range from 6 to 18. The size of the PIC generated by active instrumentation is usually a quarter
of the size of the binary (since it does not include code outside critical sections). There are quite
a few indirect calls in critical sections (counted from the generated PIC), which would have
been a limitation for static techniques. A significant fraction of these are to shared libraries that
would have posed a problem for a transactional memory compiler, since these ‘legacy’ libraries
would have remained uninstrumented.

The next set of results focus on the active instrumentation phase when the PIC is built. The table
in Figure 4.10 shows the number of basic blocks added in each iteration. In accordance with
the heuristic, I stop when no basic blocks are added for two consecutive iterations. In contrast,
the table also shows what would happen were static exploration of the control flow graph not in
effect. Even after 3 iterations the PIC is missing basic blocks from critical sections for all the
benchmarks.

3ftp://download.intel.com/technology/itj/2004/volume08issue01/art02_
compilers/vol8iss1_art02.pdf
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BenchmarkBinary size (bytes)Critical sectionsPIC size (bytes)Indirect calls
Bayes 181603 18 61574 57

Genome 118334 8 18677 30
Intruder 153089 6 30722 26
Kmeans 52821 6 9241 15

Labyrinth 116384 6 20617 23
SSCA2 140156 13 19968 19
Vacation 143772 6 40887 29

Yada 196715 9 56246 50

Figure 4.9: STAMP: Static characteristics

With CFG walk Without CFG walk
BenchmarkExec 1Exec 2Exec 3 Exec 1Exec 2Exec 3

Bayes 1435 0 0 723 2 0
Genome 383 0 0 221 0 4
Intruder 629 0 0 452 2 4
Kmeans 178 0 0 91 4 0

Labyrinth 443 0 0 340 2 0
SSCA2 394 0 0 111 0 0
Vacation 853 0 0 464 0 0

Yada 1113 0 0 899 1 0

Figure 4.10: Basic blocks added to PIC in each active execution iteration

I now focus on the difference between active and passive mode. The entire objective of build-
ing a PIC is to execute without the overhead of interception by a dynamic binary rewriting
engine. Figure 4.11 shows the overhead of instrumentation (calling into the null backend). I
report the execution time of the instrumented binary divided by the execution time of thenative
binary (running with locks). The executions are with one thread only to focus on single thread
overheads. This reflects the cost of adding memory access instrumentation. The results in Fig-
ure 4.11 show that passive mode is much faster than active mode. The gains vary from 1.13X
faster in Labyrinth to 2.27X faster in Yada.

4.9 Evaluation of SLE_x86

I now turn my attention to the purpose for which the instrumentation system has been built: soft-
ware lock elision. I use the STM_x86 backend running in passive mode (with a pre-generated
PIC) for the experiments in this section. This is the complete SLE_x86 system. The results
(also on the 48-core machine), in addition to contrasting SLE_x86 with locks also repeat the
results from STM_x86 in the previous chapter. Note that manually applying the instrumentation
and then compiling it results in a substantially different program from that obtained by auto-
matically inserting the instrumentation in machine code. Thus STM_x86 and SLE_x86 are not
directly comparable, although one would ideally like them to be close in terms of performance.

The results are split across Figure 4.12 and Fig 4.13. For thefour benchmarks Vacation,
Kmeans, SSCA2 and Intruder, the performance of SLE_x86 closely approximates the perfor-
mance of STM_x86. It is interesting to note that in some casesautomatic instrumentation is
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Figure 4.11: Binary instrumentation overhead
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Figure 4.12: SLE on the STAMP benchmarks(1)
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Figure 4.13: SLE on the STAMP benchmarks(2)

Threads
Benchmark 1 2 4 8 16 32

labyrinth NO NO NO NO NO NO
yada NO NO NO NO NO NO
bayes NO NO NO NO NO NO

vacation NO YES YES YES YES* YES*
genome NO NO NO NO YES YES
kmeans NO NO NO NO NO NO
ssca2 NO NO YES YES NO NO

intruder NO NO NO YES YES YES

Figure 4.14: Is using SLE_x86 better than using the lock ?(‘*’ means also better than sequential)

able to outperform that inserted manually and optimised by the compiler. The remaining four
benchmarks however do not behave well with automatic instrumentation. In the case of Bayes
and Labyrinth, the number of accessed shared memory locations is so large that it overflows the
STM logs. This is not fatal for SLE_x86, which falls back to pessimistic locking. Hence, I label
them specially asSLE_x86(lock) in the graphs. In the case of Yada and Genome, automatic
instrumentation trails the manual one by a very large amount. The focus of the next chapter is
on building a profiler that can, among other applications, explain this anomaly. In Chapter 6 I
present an extension to the automatic instrumentation system that helps to solve this problem
and bring the performance of SLE_x86 closer to STM_x86.
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Finally, Figure 4.14 shows that automatic and transparent transactional memory can outperform
the lock.

4.10 Discussion

This chapter has described an instrumentation system that generates a persistent instrumentation
cache (PIC). The PIC is a file on disk holding instrumented x86machine code from critical
sections in the original binary. It is generated by executing the binary with instrumentation
enabled inactivemode. In active mode execution is intercepted by the PIN binary rewriting
engine that enables instrumentation and placement of basicblocks from critical sections into
the PIC. Once the PIC is (heuristically) complete, instrumentation can be executed inpassive
mode. Passive mode incurs far lower overhead than active mode and as I have shown, can be
close to the performance of manual instrumentation.

This chapter however, also throws up a set of interesting performance-related questions. Auto-
matic instrumentation lags manual instrumentation by a large amount for four of the STAMP
benchmarks. There are also interesting TM performance questions that arise here. For exam-
ple, why does Vacation benefit far more from transactional memory than SSCA2? In order to
answer these questions I have built a profiler, described in the next chapter, that uses the PIC
and passive instrumentation to produce a profile for x86 binaries. This profile identifies critical
sections and helps to explain their behaviour when executedwith transactional memory.
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Chapter 5

Critical section characterisation

One goal of my research is to separate mechanism from policy:software is written, compiled
and run without awareness of transactional memory which canautomatically be added if desired
at runtime. In this chapter I show that this decoupling can extend to profiling and performance
debugging. I show that x86 binaries can be profiled for suitability for transactional memory
without explicitly being written to use it.

Transactional memory works well as a replacement for a lock in the presence of two favourable
conditions. The first is the requirement for disjoint-access parallelism [IR94]. Informally, trans-
actions can be executed in parallel when they do not make conflicting accesses to the same
memory location. A good example would be critical sections manipulating red-black trees. Up-
dates are usually localised in subtrees and thus for a large enough tree are unlikely to conflict
with each other. An example with low disjoint-access parallelism is a shared integer counter:
all updates to it will conflict.

More recently, in the context of examining how existing lock-based applications can be adapted
to use transactional memory, researchers have come across asecond condition: lock contention.
A lock is a scalability bottleneck only if threads contend for it; if there is no contention there
are no scalability benefits gained via the use of transactional memory. This was highlighted by
TxLinux [RHP+07], where a meagre 5% speedup was obtained when spinlocks inthe Linux
kernel were replaced with transactions running on a hypothetical hardware transactional mem-
ory. The explanation is that Linux is a heavily optimised piece of software and there was very
little or no contention for locks. The problem is more acute with software transactional mem-
ory since its associated slowdown can significantly hurt overall performance when there is no
scalability benefit to compensate for it.

The profiler in this chapter measures the suitability of transactional memory for an x86 binary
by measuring each of these quantities. A lock-based execution of the binary is used to obtain the
profile. There is no assumption made about any underlying (hardware or software) TM system
as none is used.

5.1 Disjoint access parallelism

The only systematic attempt thus far toquantitativelydefine and measure disjoint-access paral-
lelism from actual program runs is Von Praun’s dependence analysis [vPBC08]. The objective
was to consider the possible speedups that could be obtained, were program execution to be
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limited only by data-flow dependencies. In order to do this Von Praun collected memory access
traces from program fragments that could be run in parallel (which he termed tasks) and defined
a metric called dependence density across them. I describe how dependence density is defined
and measured below.

Task t2 is defined asflow dependenton taskt1, if t2 reads from a location written to byt1,
expressed as the predicate flow_dep(t1, t2). Further let len(t) be the length of taskt using some
suitable metric (such as number of memory accesses).

Consider a set of tasksTp that can potentially run in parallel. The data dependence ofa task
t ∈ Tp on the rest of the tasks in the set is defined as:

dep_dens(t) =

∑

s∈(Tp−t)∧(flow_dep(s,t)∨flow_dep(t,s))

len(s)

∑

s∈Tp−t

len(s)

The dependence density represents the probability that thetaskt would see a conflict if executed
in parallel with another task inTp. Note that the dependence density takes into account the
length of a task. This means that a short running task is unlikely to create a conflict with a
longer running task even if the longer running task is flow dependent on it, since it may well
finish before the flow dependence manifests itself.

Von Praun used manual instrumentation of the source to discover which tasks could potentially
run in parallel. That work included looking at various sources of parallelism such as executing
loop iterations in parallel (e.g. thread level speculation). Von Praun used data from asingle
threadedrun of the binary.

In contrast I am concerned only with parallelism from contending instances of critical sections
executing in parallel and this admits a more automatic approach. I use an actual run of the binary
and place a total order on critical sections executed. I thenuse a sliding window on this total
order that includes one critical section from each thread. This approximates critical sections
that are likely to run together. It also takes into account that critical sections on the same thread
might be causally dependent on each other (such as if they were executed in a loop) and thus
should not be considered for parallelism. Any instance of the sliding window thus represents
the setTp in the equation above. To compute the dependence density I also trace all the memory
accesses in a critical section.

Tasks represent dynamic instances of static critical sections in the binary. It is thus useful to
also roll-up the dependence density computed for each task into a dependence density for the
static critical section that originates it. I do this using asimple average: IfTcs represents all the
dynamic tasks for a static critical section: cs, then its rolled up dependence density is:

dep_dens(cs) =

∑

t∈Tcs

dep_dens(t)

|Tcs|
(5.1)

Finally, I also compute the dependence density for the application as a whole. For every window
of tasksTp I compute the data dependence density for the window (Von Praun used the same
notion of dependence density for a set as a whole):
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5.2. Lock contention

dep_dens(Tp) =

∑

t∈Tp

dep_dens(t)

|Tp|

I then average this across all windows:

overall_dep_dens=

∑

Tp∈Windows

dep_dens(Tp)

|Windows|
(5.2)

The overall dependence density represents how much disjoint access parallelism is present in the
application as a whole. If one assumes a scheduler that picksdisjoint (non-data-flow dependent)
critical sections for execution, then the average number ofthreads that can be scheduled, given
n available threads is:

Average_Threads=
n−1∑

i=0

(1 − overall_dep_density)i (5.3)

The sum reflects the fact that with increasing threads the probability of encountering a depen-
dence increases. Note that the equation assumes for simplicity that the dependence density is
independent and thus adding threads does not increase the pairwise dependence density.

5.2 Lock contention

The two most direct metrics for lock contention are the amount of time spent waiting for a
lock and the number of waiting threads (waiters) seen on the average when a thread attempts
to acquire a lock. I measure both of these at runtime. The benefit of measuring both is that
for applications with transient lock contention (such as the Quake benchmark I examine in
Chapter 7), the waiter count reveals lock contention ratherthan the fraction of time spent waiting
for the lock.

There are three data structures that I use to measure lock contention. The first isCounters,
a per-thread array, each element of which is a set of four unsigned integer counters used to
accumulate the amount of time spent waiting for and executing in a critical section; the average
number of waiters seen (count of threads either waiting for or holding the lock); and the number
of times this critical section has been sampled. The second is the globally sharedWantCS array
each element of which is an integer counter. The third is the globally sharedGotCS array each
element of which is also an integer counter. Critical sections are mapped (many-to-one) to a
numerical index used to look up the first array, this is accomplished by hashing the program
address of the first instruction in the critical section. Theaddress of the lock protecting the
critical section is mapped to a numerical index used to look up the second and third array, by
hashing the lock address.

These arrays are thus essentially hash tables and this meansthat collisions can have an impact
on accuracy. If there are collisions in the per-thread hash table then data for multiple critical sec-
tions gets coalesced into one. I use a hash table size of 1024 for experiments in the dissertation
and I did not observe any collisions (there are far less than 1024 critical sections in the binaries
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I studied). On the other hand if there are collisions in the global hash table then the number of
waiters is incorrectly estimated: in essence multiple locks are treated as one. This can happen
in practise, particularly if the binary is using locks embedded in dynamically allocated data
structures in which case the number of active locks can be extremely large. Note that even in
this case, it is only when two simultaneously acquired locksmap to the same hash bucket that
inaccurate measurement results, since I depend on the difference between two quantities that
are updated within the lifetime of a dynamic instance of the critical section.

Instrumentation needs to be inserted before and after a lockacquire and before and after a lock
release. The instrumentation in pseudocode form is shown inAlgorithms 12, 13, 14 and 15.

Algorithm 12 PreAcquireLock(cs, L)

1: Counters[cs].Waiters += (-GotCS[L] + WantCS[L])
2: AtomicIncrement(WantCS[L])
3: Counters[cs].WaitTime -= Clock()

Algorithm 13 PostAcquireLock(cs, L)

1: Counters[cs].WaitTime += Clock()
2: Counters[cs].CSTime -= Clock()

Algorithm 14 PreReleaseLock(cs, L)

1: Counters[cs].CSTime += Clock()
2: Counters[cs].WaitTime -= Clock()

Algorithm 15 PostReleaseLock(cs, L)

1: Counters[cs].WaitTime += Clock()
2: AtomicIncrement(GotCS[L])
3: Counters[cs].samples++

An interesting subtlety is present in the algorithms due to the racing access to two quantities,
WantCS[L] andGotCS[L] in Algorithm 12. Both of these quantities are being updated by
racing acquisitions of the lock. Allowing the race ensures that I avoid any additional costly
locking protocols or atomic operations that would add instrumentation overhead. It is important
to note the ordering of reads to those two variables in line 1 of Algorithm 12. GotCS[L] is
read before readingWantCS[L]. Due to the order of updates to those two variables we always
haveGotCS[L] ≤ WantCS[L]. This ensures that the added quantity to the accumulation
variable is always positive in line 1 of Algorithm 12. This however means that I can slightly
overestimate the number of waiters due to a racing update toGotCS[L] that I miss. This error
is minimal since the window between the two reads is small; and is in any case far preferable to
reading them in the opposite order, which might result in a negative quantity leading to overflow
errors in the unsigned numbers used to represent counts.

In order to accurately measure timing, I use the CPU timestamp counter (accessed using the
rdtsc instruction) represented as the call toClock(). This provides an accurate fine-grained
time source. However it is entirely possible that there is a drift in the timestamp counters across
different processors. I bind threads to processors in orderto ensure that this does not affect
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timing measurements due to threads migrating across processors. Finally, for the experiments
using the profiler in this dissertation, I never use more threads than processors. This ensures
that multiprogramming does not play any significant role in the measured contention.

5.3 Profiler operation

The profiler operates in two steps. First, the binary is run with passive instrumentation. I use
a variant of the null backend that continues to acquire locksand perform memory accesses
directly. However, in addition, it dumps a trace of memory accesses in critical sections and
also measures lock contention using the algorithms in the previous section. The hash tables
containing lock contention measurements are dumped at the end of the run. In the second step a
post-profiling tool is run that analyses the data generated by the profiling run and generates the
final profile. I describe these two steps next.

5.4 Profiling

The profiler generates information from asingleexecution of the binary by sampling a subset
of the executed critical sections. The sampling is done by using a state machine. Each state
has a threshold associated with it. If the total count (across all threads) of critical sections exe-
cuted while in a particular state reaches its associated threshold, a state change occurs. Critical
sections are profiled only in particular states and thus the state machine picks (samples) critical
sections. The need for this state machine is explained below.

For the sampled critical sections, the profiler needs to generate lock contention information
and memory access traces. This straightforward, since lockand unlock calls are already in-
strumented in passive instrumentation mode and all shared memory accesses within a critical
section are instrumented due to execution out of the PIC. Thedifficult part is doing the two
together. Measuring lock contention requires accurate timing information and minimum instru-
mentation overhead. On the other hand, tracing memory accesses in a critical section requires
recording every memory access to file. This adds significant overhead to critical section execu-
tion.

In order to reconcile these conflicting requirements, the profiler uses a 4 state machine during
execution, shown in Figure 5.1.

In theTIMING phase critical section execution is done uninstrumented out of the native binary.
The dispatcher after executing theElide instrumentation call switches execution to the native
binary instead of the PIC. This is possible due to the flexibility of passive instrumentation that
allows direct execution of native code. The critical section thus executes uninstrumented and
imposes no extra overhead to lock contention measurements.

In theTRACING phase no lock contention measurement is done but critical section execution is
redirected by the dispatcher to execute out of the PIC. The backend writes accessed addresses
together with information about the access out to file. In addition to tracing individual critical
sections, this phase also imposes a total order on all critical sections (regardless of the protecting
lock) by incrementing a globally shared counter.

The twoSILENT phases serve to separate the timing and tracing phases (ensuring that timing
does not suffer from errors due to simultaneous tracing). Inaddition they also serve to impose
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Figure 5.1: Profiler phases

a sampling rate, since no instrumentation is performed during the silent phases. The number of
executed critical sections (measured as lock acquisitions) spent in each phase is configurable as
a runtime parameter to the profiler. For the runs in this dissertation, I used settings of 700 for
the timing phase, 100 for the tracing phase and 100 for each ofthe silent phases. This meant
timing was measured for the majority of the execution while 10% of the critical sections were
traced.

5.5 Post processing

The post processing tool takes as input the lock contention related hash tables and the memory
access traces, as well as debug information from the binary being profiled. It then produces a
profile for the binary, as shown in Figure 5.2 (which was generated from the Vacation bench-
mark in the STAMP suite). Each critical section profiled is identified by the source file and line
number. For each critical section, the fraction of total execution time (counting time on each
thread separately) spent in the critical section and waiting for the critical section is printed. The
profile also includes the average number of other threads, executing in or waiting for, the critical
section when an attempt is made to acquire the lock (theavg_q_length field).

Next memory access related statistics are printed for the critical section; these include the num-
ber of read and write operations seen (read-modify-writes are counted as both reads and writes)
as well as the unique locations that are read or written to. Finally the dependence density of
that static critical section across all the sample windows is computed (using equation 5.1) and
printed. The last two lines display application-wide summaries. The overall amount of time (as
a fraction of time counted across threads) spent waiting fora lock is displayed. Also displayed
is the overall dependence density (computed using equation5.2). This is converted to the num-
ber of threads that could be scheduled in parallel (assumingas many threads as were profiled is
available) using equation 5.3.

Computing the exact number of unique locations touched or determining whether any data-flow
exists between two accesses requires determining the exactset of bytes touched by the access.
One way to do this is to record the size of every access as additional information in the trace
files. Instead, I take as input to the post-processing tool a size parameter (which is a power of 2)
and assume that every access touches a set of bytes of that size with the starting address rounded
down to a multiple of the size. This saves space in the trace files and reflects the assumption that
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CS cs_frac wait_frac avg_q_length rd_ops rd_locs wr_ops wr_locs dep_dens
client.c:247 0.001 0.008 6.87 447.585 203.204 20.510 14.076 0.440
client.c:267 0.000 0.009 6.87 126.768 74.950 4.363 4.307 0.016
client.c:196 0.080 0.828 6.87 447.412 127.811 12.094 11.601 0.007

Overall_waiting Overall_dep_density Pred_AvgThreads
0.845409 0.011508 7.685098

Figure 5.2: Example profiling output

most modern compilers allocate data in multiples of four or eight bytes. It also allows exploring
the effect on dependence density of STMs that track conflict at coarser granularities, such as
16, 32 or 64 bytes.

Rolling up the lock contention related information from thedumped hash tables is straight-
forward, as shown in Algorithm 16. It involves rolling up data in hash buckets on file into
appropriate static critical sections. The per-thread hashtable buckets on file include their key
(the starting program address of the originating critical section). This is mapped to the static
critical section through debug information available fromthe binary.

Algorithm 16 ProcessTiming

1: for all thread t in profiled_threadsdo
2: for all bucket b in per-thread hash table for thread tdo
3: Locate static_cs for bucket b
4: static_cs.WaitTime += b.WaitTime
5: static_cs.CSTime += b.CSTime
6: static_cs.Waiters += b.Waiters
7: static_cs.samples += b.samples
8: for all static critical section static_csdo
9: static_cs.WaitFrac = static_cs.WaitTime/TotalTimeAcrossThreads

10: static_cs.CSFrac = static_cs.WaitTime/TotalTimeAcrossThreads
11: static_cs.AvgQLength = static_cs.Waiters/static_cs.samples

The next phase of the profiler computes the dependence density using the memory access traces
generated by the profiler. An abstraction of the steps to do this is shown in Algorithm 17.
The outermost loop walks all the dynamic critical sections traced (tasks in the terminology of
Section 5.1) in the total order generated. It updates the current window in line 3, as part of
which it also rolls up memory access statistics such as locations accessed and operations done.
It then does a pairwise comparison of tasks to determine whether a flow exists (this is done
by generating bloom filters from the accessed addresses for quick comparison against each
other). The dependence densities for individual tasks are then rolled up into the corresponding
static critical sections and the overall dependence density for the window is also computed.
This bookkeeping is straightforward and has been abstracted into line 7 of the pseudocode for
clarity.

Line 7 can clearly be an expensive step since it hasO(n2) cost withn threads. Traces can
be large, often ranging to hundreds of thousands of reads andwrites (Section 5.7). One way
to reduce this cost is to observe that all instances of it can be executed in parallel. In the
implementation of the post processing tool I spawn a number of threads to do exactly this.
Since I generally run post processing on the same system as onwhich I took the traces I spawn
as many threads as were actually profiled, bringing the sequential cost down toO(n). This helps
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keep post processing costs down to a reasonable level. Even for the largest traces discussed in
Section 5.7, post processing did not take more than five minutes.

Algorithm 17 ProcessDependences

1: for all dynamic task d in master trace filedo
2: t := profiled thread that generated d
3: window[t]:=d
4: Update memory access related statistics for critical section that generated d
5: for all thread t1 in profiled_threadsdo
6: for all thread t2 in profiled_threads such that t16= t2 do
7: consider flow from window[t1] to window[t2]

5.6 Characterising a Microbenchmark

In this section, I illustrate the application of the profiling tool by characterising a microbench-
mark: the red-black tree long studied by the STM community [Fra03, MSH+06, DSS06]. The
red-black tree is used to hold a set of key-value pairs, supporting lookup, updateanddeleteop-
erations. As is well known, red-black trees haveO(log n) costs for lookup, insert and delete for
a tree withn nodes. This fact can be verified by using the profiler on an x86 binary containing
the implementation of such a tree.

I used a simple red-black tree implementation, placing a coarse Pthreads reader-writer lock
around single-threaded implementations of the tree accessfunctions: update, delete and lookup.
Running this benchmark with eight threads, I obtained critical section memory footprints for
varying depths. The results shown in Figure 5.3 agree well with the analytically known prop-
erties of red-black trees. The lookup function does no writes but does perform reads that in
number are twice the depth of the tree plus a constant factor.The scale of two comes in because
both the key and the next child pointer are read while moving down the tree. The constant factor
is due to the initial access to obtain the root of the tree. Thenumber of reads for updates and
deletes follows a similar scaling (but incorporating additional constants to check keys and so
on). For updates and deletes, on the average, a constant number of writes are made to rebalance
the tree (regardless of depth) and this is reflected in the graph.

The experiment also confirms that tracing memory accesses through the PIC and the post-
profiling tool works properly. This is important since it forms a critical but complex part of
the profiler unlike the relatively simple measurement of lock contention.

5.7 Characterising STAMP

I now apply the profiler to the STAMP benchmarks that I have used thus far in the dissertation. I
profile a run with 8 threads for each benchmark, using the samePIC that was built for SLE_x86
in Chapter 4.

I first present per-critical section results from the STAMP benchmarks in Figure 5.4. Consider-
ing the largest of the read or write sets (indicated by read orwrite locations), in decreasing order
we have labyrinth (31427), bayes (1859), yada (729), genome(502), vacation (203), intruder
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Figure 5.3: Red-Black tree memory access characterisation

(95), kmeans (68) and ssca2 (20). Another important point that is brought out in the profile is
that the actual number of read or write operations is also of the same or larger order of magni-
tude and places the STAMP benchmarks in the same relative order: labyrinth (1376788), bayes
(747345), yada (7310), genome (4162), vacation (447), intruder (167), kmeans (100), ssca2
(38).

An important observation that can be made here is that the benchmarks reporting poor perfor-
mance with SLE_x86 are the ones that seem have the largest number of shared memory ac-
cesses. I confirmed using TL2 instrumentation that the number of memory accesses indirected
into the STM with manual source level instrumentation is farlower.

This anomaly can be explained by considering the way in whichSTM-related barriers1 are in-
serted in STAMP benchmarks. Consider the transaction generating the large number of reads
in Labyrinth (file router.c line 396, as identified by the profiler). The manually instrumented
code for that transaction is shown in Figure 5.5. The transaction in question is delimited by the
callsTM_BEGIN andTM_END. As theTM prefixes and lack of them suggest, only the func-
tionsTMGRID_ADDPATH andTM_LOCAL_WRITE are instrumented with STM barriers while
thegrid_copy andPdoExpansion functions do not. Thegrid_copy function accesses
the global shared grid (containing the maze to be routed through) contained in thegridPtr
array. Thegrid_copy function in fact, copies the whole array into a private copy accessed
by PdoExpansion and thus generates the large number of read and write accesses (since the
array is large, sized at 512x512x7 elements). None of this isknown to the instrumentation in-
frastructure, which generates instrumentation for all theaccesses, including those to update the
private copy.

This is a case where the programmer has used their knowledge of the program to appropriately
remove unnecessary barriers. This leads to a race conditionin the case of access to the global
grid in grid_copy. As the comment in the code indicates, not receiving the mostup-to-

1The instrumented read and write accesses when using an STM are often referred to as barriers.
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Source CS fracWait fracavg_q_len Read Ops Read LocsWrite Ops Write Locs
bayes

learner.c:1189 0.000 0.086 4.709 21.548 8.857 4.905 3.929
learner.c:1202 0.000 0.043 4.797 336.525 79.300 74.275 22.525
learner.c:1414 0.051 0.091 4.770 747345.2951859.068 97683.182 70.727
learner.c:1385 0.000 0.006 4.837 3.000 3.000 1.000 1.000
learner.c:1425 0.014 0.000 4.764 30144.953 119.116 3933.163 24.419
learner.c:1267 0.002 0.043 5.030 19121.933 178.267 2496.200 32.133
learner.c:1326 0.000 0.090 4.822 8825.474 150.737 1147.632 31.263
learner.c:1296 0.000 0.000 3.667 575.750 52.750 75.000 13.000
learner.c:1437 0.022 0.003 4.759 46043.571 272.524 6032.143 46.833
learner.c:1348 0.000 0.077 4.739 2141.200 75.600 278.650 17.950
learner.c:1317 0.000 0.000 3.667 2.000 2.000 1.000 1.000
learner.c:1288 0.000 0.000 5.091 2.000 2.000 1.000 1.000
learner.c:1451 0.000 0.000 4.907 41.447 25.026 4.000 4.000

genome
sequencer.c:395 0.010 0.171 6.767 81.706 56.289 4.000 4.000
sequencer.c:290 0.068 0.706 6.821 4162.933 502.357 0.003 0.003
sequencer.c:369 0.000 0.003 6.743 2.003 2.003 1.000 1.000
sequencer.c:408 0.000 0.003 6.768 8.140 7.378 4.000 4.000
sequencer.c:476 0.000 0.002 5.343 71.096 21.784 3.667 3.667

intruder
intruder.c:199 0.003 0.321 6.936 7.000 7.000 1.000 1.000
intruder.c:210 0.056 0.328 6.933 167.043 95.856 9.441 5.836
intruder.c:226 0.002 0.274 6.952 5.153 5.153 1.038 1.038

kmeans
normal.c:168 0.020 0.647 5.669 100.000 68.999 33.000 33.000
normal.c:182 0.002 0.177 5.728 2.000 2.000 1.000 1.000
normal.c:190 0.000 0.000 3.627 2.000 2.000 1.000 1.000

labyrinth
router.c:396 0.371 0.629 1.746 1376788.75031427.667172873.33328511.500
router.c:379 0.000 0.000 1.748 6.667 5.067 0.533 0.533

ssca2
computeGraph.c:4750.007 0.956 6.770 4.000 4.000 2.000 2.000

vacation
client.c:247 0.001 0.008 6.870 447.585 203.204 20.510 14.076
client.c:267 0.000 0.009 6.868 126.768 74.950 4.363 4.307
client.c:196 0.080 0.828 6.871 447.412 127.811 12.094 11.601

yada
yada.c:207 0.002 0.236 0.119 16.312 11.922 2.468 2.234
yada.c:215 0.000 0.212 0.119 2.000 2.000 0.000 0.000
yada.c:228 0.266 0.206 0.126 7310.245 729.703 1064.870 481.507
yada.c:246 0.001 0.046 0.127 11.827 8.874 1.701 1.283
yada.c:233 0.000 0.029 0.127 2.000 2.000 1.000 1.000

Figure 5.4: STAMP critical section memory operations
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TM_BEGIN();
/* ok if not most up-to-date */
grid_copy(myGridPtr, gridPtr);
if (PdoExpansion(routerPtr, myGridPtr,

myExpansionQueuePtr,
srcPtr, dstPtr)) {

pointVectorPtr = PdoTraceback(gridPtr, myGridPtr,
dstPtr, bendCost);

...
if (pointVectorPtr) {

TMGRID_ADDPATH(gridPtr, pointVectorPtr);
TM_LOCAL_WRITE(success, TRUE);

}
}

TM_END();

Figure 5.5: A fragment of code from the labyrinth benchmark

date copy is not a problem from the perspective of correctness. A similar problem occurs with
Genome and Yada. This naturally leads to large gaps in performance when using automatic
instrumentation. In Chapter 6 I discuss a technique that uses existing x86 memory management
hardware (the paging unit) to automatically identify thread private regions in order to reduce
this gap.

Finally, I classify the STAMP benchmarks from the perspective of potential benefits from the
use of transactional memory in Figure 5.6, which is a plot of the overall dependence density
for each benchmark. The lower right portion of the graph is the TM friendly region, which
includes almost all the benchmarks. This is not surprising given than STAMP is written with
transactional memory in mind. Yada shows the lowest disjoint access parallelism (and hence
the highest conflict rate as has been pointed out previously). Bayes has the lowest contention
and hence should show the least improvement over the lock-based version, a fact that is borne
out by the experiments in the previous chapters.

The plot in Figure 5.6 is useful to demonstrate the performance spectrum of x86 binaries with
respect to ideal transactional memory, such as that promised by hardware TM. Performance
with software transactional memory such as in this dissertation also needs consideration of the
overheads associated with software transactional memory.A sweet spot for an STM benchmark
is one that has sufficient disjoint access parallelism, highcontention for the critical section and
a sufficient number of accesses within the critical section to offset setup overheads. Vacation
falls within such a sweet spot and thus benefits more from using an STM compared to SSCA2,
which has the smallest critical sections among the STAMP benchmarks and is dominated by
transaction setup overheads. On the other hand Kmeans and Intruder have roughly similar read
and write set sizes and thus as predicted by Figure 5.6, Intruder outperforms Kmeans when
using an STM, since SLE_x86 manages to beat the performance of the lock-based version in
the case of the former but not the latter.
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Figure 5.6: STAMP critical section characteristics

5.8 Discussion

This chapter deals with the design and construction of a profiler for critical sections in x86
binaries. It measures lock contention and memory access related metrics of critical sections
such as the number of locations read and written. It also incorporates a metric determining the
amount of disjoint-access parallelism between critical sections. Transactional memory related
measurements are made without actually using it, which means that programs can be profiled for
TM suitability without rewriting them to use TM first. Furthermore, unlike other tools [PHW07]
that measure similar TM-related metrics for lock-based programs using simulators, this tool
runs programs at full speed on native hardware, thus making it practical for real-world programs
(such as the Quake benchmark I study in Chapter 7).

The profiler is useful to explain the performance with SLE seen thus far in the dissertation. It is
also decoupled from any specific TM implementation and thus is a useful performance profiling
tool for any transactional memory implementation. It is difficult to make specific speedup
predictions for a particular transactional memory system (that would require a detailed model
of the effects of an HTM or STM or both for a hybrid TM). Nevertheless, even in its current
form I believe that the profiler is useful for performance debugging when using transactional
memory.

The most immediate use of the profiler has been to identify deficiencies in automatic instrumen-
tation vis a vis instrumentation inserted and optimised by aprogrammer with knowledge of the
benchmark. In the next chapter I discuss a set of techniques by which this gap can be closed.
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Chapter 6

Thread-private data tags

The profiler described in the previous chapter identified a deficiency in the automatic instru-
mentation system: the inability to distinguish data that isprivate to a thread from that which
is not. Indiscriminate instrumentation can slow down the STM substantially or even overflow
its internal logs. Unlike STMs applied at a source level there is not enough information avail-
able through static analysis to eliminate some of these overheads. In this chapter I present a
dynamic technique that at runtime cansafelyeliminate much of the STM overhead for such
thread-private data.

This chapter is organised into two parts. The first part dealswith a set of generic modifica-
tions to the algorithms of Chapter 3. These modifications support the dynamic assignment of
tags to memory locations that indicate whether the locationis thread-private. Threads avoid
unnecessary STM overheads for accesses to such locations.

The second part of the chapter discusses a practical implementation of tagging. The implemen-
tation focuses on three key applications. The first is heap data that is known to be thread-private.
An example of this is OpenMP thread-private data that is allocated on the heap. The second ap-
plication is locations on the stack, that areusually thread-private, but might occasionally be
shared between threads. The third application is heap data that maybe thread-private, as ex-
hibited by some of the STAMP benchmarks. I discuss a dynamic means for detecting such
thread-private data at runtime.

6.1 Generic capabilities

In this section I discuss modifications to the logging algorithms of Chapter 3. There are four
location tags (the state of a location is its tag):
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1. Private(t): The location is private to thread t

2. SharedRO: The location is shared read-only

3. SharedRW: The location is shared read-write

4. Unavailable: The location in currently inaccessible pending a change ofstate

This section assumes that outside a transaction (critical section in lock-based programs):

• Locations markedPrivate(t) are not accessed by any thread other thant

• Locations markedSharedRO are not written to by any thread

The tagSharedRW is the default tag and is the only one that the logging algorithms in Chapter 3
support. I use the notationTag(loc) to identify the tag for a locationloc.

Another addition to the STM is theUndoLog maintained per-thread. This is an ordered list of
(location, value) pairs. It is used to record the old values of thread-private locations before they
are overwritten in order that they may be restored on a transaction abort. The enhanced logging
algorithms are Algorithms 18, 19 and 20.

The enhancements change the behaviour of the logging algorithm based on the tag. The en-
hanced algorithms can write to locations directly if owned by the thread and read from locations
directly if either owned by the thread or shared in read-onlymode. If an access is not possi-
ble the thread changes the state of the location to permit access (this involves first aborting the
currently running transaction and hence the call does not return). Note that on encountering an
unavailable location, the transaction is aborted. The abort algorithm is enhanced to undo the
effects of updates to thread-private memory.

The most important new algorithm from the perspective of supporting thread-private data is
Algorithm 22, for changing the tag of a location. It first marks the location as unavailable. This
ensures that any transaction that attempts to access the location is aborted. Next, it blacklists
a “dummy” lock using Algorithm 7 in Chapter 3. This ensures that all executing threads that
might have a reference to the location in their STM logs have finished (and thus no longer use
the old tag for the location). Finally it sets the new tag for the location. It is important to note
that the algorithms enforce a monotonic increase in sharingfor the location across the range:
[Private(t), SharedRO, SharedRW]. To enforce this in the case of aChangeTag to
SharedRO racing with aChangeTag to SharedRW for the same location, a check is made
(line 9 ofChangeTag) to detect the case where the location already permits read-write access.

6.2 Associating tags with locations

The foundation for any practical implementation of these capabilities is a way to associate tags
with locations. There are various design choices available.

For example, one could follow the same technique as used for assigning metadata to locations:
a hash function into a tag table. The problem with such an approach is that the many-to-one
mapping would cause location tagging to quickly drop to the lowest common denominator:
SharedRW, which is the dominant tag for the benchmarks I studied.
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Algorithm 18 SpeculationBegin(t)

1: Epoch(t) := Epoch(t) + 1
2: Memory Fence
3: SnapshotSeqNo(t) := Stable
4: Initialise WriteLog(t) to empty
5: Initialise ReadLog(t) to empty
6: Initialise DirtyList(t) to empty
7: Initialise UndoLog(t) to empty

Algorithm 19 SpeculativeWrite(t, loc, Value)

1: if Tag(loc) = Unavailablethen
2: abort
3: if Tag(loc) = SharedRWthen
4: DirtyList(t) = DirtyList(t) ∪ Metadata(loc)
5: Append (loc, Value) to WriteLog(t)
6: else ifTag(loc) = Private(t)then
7: oldvalue := contents of memory at loc
8: Prepend(loc, oldvalue) to UndoLog(t)
9: set contents of loc := Value

10: else
11: ChangeTag(t, loc, SharedRW)

Algorithm 20 SpeculativeRead(t, loc)

1: if Tag(loc) = Unavailablethen
2: abort
3: if Tag(loc) = SharedRWthen
4: if ∃ (loc, value)∈ WriteLog(t) then
5: result := most recent write to loc in WriteLog(t)
6: else
7: result := contents of memory at loc
8: if Metadata(loc) is oddthen
9: abort

10: if Metadata(loc)> Snapshot(t)then
11: abort
12: Append (loc, result) to ReadLog(t)
13: else ifTag(loc) = Private(t) or Tag(loc) = SharedROthen
14: result := contents of memory at loc
15: else
16: ChangeTag(t, loc, SharedRO)
17: return result

Algorithm 21 Abort(t)

1: for all (loc, Value)∈ UndoLog(t) (in order)do
2: set contents of loc := Value
3: Epoch(t) := Epoch(t) + 1
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Algorithm 22 ChangeTag(t, loc, newtag)

1: if Epoch(t) is oddthen
2: Abort(t) // Configured to return here
3: repeat
4: repeat
5: OldTag := Tag(loc)
6: until OldTag 6= Unavailable
7: until x86CAS(Tag(loc), OldTag, Unavailable) = OldTag
8: Blacklist(t, DummyLock)
9: if OldTag = SharedRWthen

10: NewTag = SharedRW
11: x86CAS(Tag(loc), Unavailable, NewTag)

Figure 6.1: Association of tag metadata with pages

Using a one-to-one mapping at a low granularity like severalbytes can lead to an overwhelming
amount of tag metadata. Instead I made the observation that in most cases thread-private data
either already has spatial locality (such as thread stacks)or can be forced to be so by using
special memory allocations for heap data (as I show later). Hence I chose to associate tags with
an entire page at a time (/ is used to represent ‘C-style’ integer division):

Tag(loc) = TagTable[loc/SystemPageSize]

The benchmarks in this dissertation were done on a system with a 4KB page size. The map-
ping to tag metadata is shown in Figure 6.1. Rather than a single tag word, the entry in the
TagTable itself points to a tag metadata structure, one of whose fieldsis the tag for the page.
The remaining fields contain other useful information that Iintroduce later in this chapter. The
tag metadata structure itself is 40 bytes long in the implementation and thus the space overhead
of tagging (including the pointer) is 44 bytes perphysicalpage used in the program which is
slightly under 1.08% overhead. In the implementation, tag metadata is usually shared by multi-
ple entries in the TagTable and thus that estimate is the worst case overhead. Finally, the pointer
is set to NULL if the page has tagSharedRW, this imposes minimum indirection overhead for
the common case.

6.3 Applications

I now discuss how extensions to the tagging infrastructure were used to solve three thread-
private data related problems in this dissertation. I extend the tagging infrastructure accordingly.
The first is the simplest: certain allocations from the heap can be statically identified to contain
thread-private data (Section 6.3.1). The next is slightly more complicated: locations on the
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#pragma omp threadprivate(host_frametime)
...
#pragma omp parallel shared(realtime ..)\
copyin(host_frametime ..)
-----------------------------
80693df: push $0x80bc6c8
80693e4: pushl 0x8098ff8
80693ea: push $0x80bf010
80693ef: push %ebx
80693f0: push $0x8098f9c
80693f5: call 8049748 <__kmpc_threadprivate_cached@plt>

Figure 6.2: Example of OpenMP ThreadPrivate from Quake

stack are assumed to be thread-private and this is the basis for not instrumenting accesses made
through the stack pointer. However I would like to try and detect the case where they are not and
execute the program correctly (Section 6.3.2). The third (discussed separately in Section 6.4)
is the most complicated and ambitious: to try to automatically replicate the optimisations done
manually by the programmer in the STAMP benchmarks.

6.3.1 OpenMP thread private data

The OpenMP specification allows the declaration of thread private data, an individual copy
of which is created for each OpenMP thread. If so specified, each thread’s copy is initialised
from the master copy every time an OpenMP parallel region is entered. An example from the
Quake benchmark that I examine in Chapter 7 is given in Figure6.2. Thehost_frametime
variable is declared as thread-private. It is initialised at the beginning of an OpenMP parallel
region through a compiler pragma that ensures every spawnedthread receives a private copy
initialised from the master one. In the x86 binary, every reference tohost_frametime is
indirected through__kmpc_threadprivate_cached. One of the key tasks performed by
this function is to allocate a copy for the calling thread (whose number in the example is held
in theebx register before being passed to the function as a stack parameter). In an interception
wrapper over this function I ensure, that during passive execution, allocations are done out of
specially allocated pages from the heap whose tag has been set to Private(t) if the calling
thread ist. The OpenMP specification forbids sharing between threads and the only accesses
to these locations outside transactions can be from the owning thread.

The effect of tagging OpenMP thread-private data in this manner is discussed in detail in the
benchmark results for Quake in Chapter 7. In summary, however, it leads to a performance
improvement of around 40%.

6.3.2 Stack data

The instrumentation system of Chapter 4 makes the assumption that accesses through the stack
pointer to locations on the stack are thread-private and hence does not instrument them. The
thread-stack is treated as thread-private and Section 4.6.2 provided a brief description of how
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accesses to the stack are specially handled. In this sectionI provide a more detailed description
in terms of extensions to the generic tagging algorithms.

First, stack pages1 are tagged as thread private:Private(t). This is done by checking the
value of the stack pointer at thread creation (this indicates the base of the stack), at transaction
begin time and at any instruction within a critical section that changes the value of the stack
pointer. These checks identify new stack pages as the stack grows and tags them appropriately.
I also use an additional flag in the tag metadata structure to indicate that this page belongs to a
thread stack.

Next, Algorithm 19 is modified to take into account that the stack is already checkpointed. It
does so by checking for the stack flag in the tag metadata structure. If set, it only undo-logs
updates if the location updated isabove(in address terms) the checkpointed region of stack
(recall that the region below is dead, as discussed in Section 4.6.2). Finally, some calls to
SpeculativeRead andSpeculativeWrite are statically filtered out by the instrumen-
tation system if they use the stack pointer for address generation.

I now turn my attention to what happens when a thread accessesanother’s stack. Imagine
that a thread accesses another thread’s stack in a transaction. Clearly this cannot happen
through the stack pointer on that thread and hence the accessmust be instrumented and call
one ofSpeculativeRead orSpeculativeWrite, which finally callsChangeTag. The
ChangeTag algorithm is modified to check whether the location whose tagis being changed
lies on a stack page (through the tag metadata structure). Ifso, it blackliststhe lock that has
been speculated past in the transaction that has generated this access.

Finally, I turn my attention to a basic assumption in the generic tagging algorithms:
for Private(t) tagged locations, no thread other thant should access it outside a transaction
(critical section). Unfortunately, there is no efficient way to implement this without instrument-
ing all memory accesses, including those outside a criticalsection. This would break one of the
basic principles of the instrumentation system: no overhead outside critical sections.

The leads to the fourth and final restriction on programs usedwith SLE:

Restriction 4: A location on a thread stack that is shared between threads can only be accessed
in critical sections protected by the same lock or always outside any critical section.

Any un-handled sharing would thus be detected and lead to theblacklisting of the lock. This
safely handles all accesses including those which are not instrumented by virtue of being made
through the stack pointer. Unfortunately there is no easy way to detect programs that violate
the restriction on sharing stack locations (although creative tools could be constructed). It is
interesting to note that STM compilers would also need to adda similar restriction to prevent
threads sharing (uninstrumented) locations on stack, thereby leaking evidence of transactional
behaviour (such as speculative writes that are rolled back).

One reason why this restriction is not too onerous is that sharing locations on stack is rare be-
haviour. Even in the case where they are shared, they would usually be synchronised through
locks (as required by the restriction). The only example that I have encountered of threads
sharing stacks in this dissertation is with the Bodytrack benchmark in the PARSEC suite (Chap-
ter 7). Code fragments from that benchmark are shown in Figure 6.3 illustrating how sharing of
locations on the thread stack happens. TheParticleFilterPthreadobject is instantiated
in the stack frame of functionmainPthreads. Methods of that object are executed concur-
rently by worker threads, all of which access theTicketDispenser attribute, which is itself

1The stack is page aligned.
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int mainPthreads(...)
{

...
ParticleFilterPthread<TrackingModel> pf(workers);
...
// Create threads and pass pointer to pf
...
for(int i = 0; i < frames; i++){

...
pf.Update((float)i);
pf.Estimate(estimate);

}
...

}

//Generic particle filter class templated on model object
template<class T>
class ParticleFilterPthread ... {

...
threads::TicketDispenser<int> particleTickets;
...

};

//get a ticket and increment counter (in that order)
template <typename T>
T TicketDispenser<T>::getTicket() {

T rv;

l->Lock();
rv = value;
value += inc;

l->Unlock();

return rv;
}

Figure 6.3: Sharing stack locations in the Bodytrack benchmark from PARSEC

an object whose attributes are also on the stack frame for functionmainPthreads. However
all TicketDispenser methods such as thegetTicket method shown in the example are
properly synchronised using the same lock and thus satisfy the conditions of Restriction 4.
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TM_BEGIN(); { // stamp/genome/sequencer.c:290
long ii_stop = MIN(i_stop, (i+CHUNK_STEP1));
for (long ii = i; ii < ii_stop; ii++) {
void* segment = vector_at(segmentsContentsPtr, ii);
TMHASHTABLE_INSERT(uniqueSegmentsPtr, segment,

segment);
} /* ii */
} TM_END();

ulong_t hash_sdbm (char* str) {
ulong_t hash = 0;
ulong_t c;
while ((c = *str++) != ’\0’) {

hash = c + (hash << 6) + (hash << 16) - hash;
}
return hash;
}

Figure 6.4: A fragment of code from the Genome benchmark

6.4 Adaptive tagging for STAMP

In this section, I discuss how tagging can be applied to allocations on the heap. Unlike the case
of thread-private OpenMP data I deal with a more complex problem here: there is noa priori
static way to classify an allocation as thread private. Instead I discuss how an adaptive algorithm
can automatically classify locations on the heap as thread private at runtime. The motivation for
this set of extensions to the tagging algorithms is the STAMPbenchmarks. As I have shown in
the previous chapter, there is a lot of potential in the instrumentation infrastructure to improve
performance by eliminating STM related overheads for such thread-private data. One example
has already been provided in the previous chapter, where a large chunk of memory is updated
exclusively by one thread. Another interesting example is illustrated in Figure 6.4 from the
Genome benchmark.

This shows a fragment of code from Genome. The code has been instrumented for use with
TL2 and consists of a loop that iterates over a large string and inserts hashes of substrings
into a shared hash table, using theTMHASHTABLE_INSERT call. The details of the hash
implementation are unimportant but it essentially involves iterating over the substring (acting
as a key) to compute a hash function, shown as the functionhash_sdbm in the example. The
hash function accesses the substring usinguninstrumentedaccesses. This reflects the knowledge
of the programmer that the string iterated over by any hashing calls is immutable.

6.4.1 Tag metadata and allocation sites

The general idea is to use an adaptive runtime technique. In addition to detecting when locations
become shared, we need some way to efficiently remember and propagate this information. A
key insight that helps make adaptive tagging efficient is that this history can be maintained
on a per-allocation site basis. An allocation site is the instruction pointer value at the call
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Figure 6.5: Extended tag metadata for adaptivity

to the memory allocator for allocating data from the heap. Allocation sites for thread-private
data are normally distinct from those for shared data and this is certainly true for the STAMP
benchmarks. Other researchers have used similar techniques for separating allocations [Akr10],
albeit for different purposes.

Adaptive tagging intercepts all memory allocation calls and handles them using a custom mem-
ory allocator. The memory allocator uses a different pool ofpages for each allocation site.
Adaptive tagging thus extends the tagging metadata as shownin Figure 6.5. That figure ex-
tends the previous example by showing the originating allocation site to whose pool the page
belongs. Memory pools in the implementation are extended in‘chunks’ of pages. All pages
in a chunk share the same tagging metadata structure to further reduce space usage and enable
quick switching of state for whole chunks of pages at a time. Once sharing is detected the entire
chunk moves over to the new state thereby minimising calls tochange tags. If memory is freed
from any of these pages it returns to the originating allocation site.

The allocation site includes metadata used by the memory allocator (my design uses a mem-
ory allocator with out-of-band metadata) and linked lists of available chunks. There are also
additional fields in the tag and allocation site metadata used by adaptive tagging that I describe
shortly.

6.4.2 The non-transactional access problem

The generic location tagging algorithms make the assumption that in the
Private(t) (SharedRO) state no non-transactional access (write) is made from a thread
other than the owning threadt (any thread). For the case of stack pages I sidestep this problem
by explicitly forbidding such accesses. This is reasonablesince such stacks are rarely shared.
Locations on the heap however are commonly shared across threads and can be accessed non-
transactionally (the privatisation example in Chapter 3 illustrates such a construct). I therefore
need to provide an explicit solution to this problem. There are two aspects to this: detecting
such accesses from other threads and triggering tag changeson such an access to ensure that
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it can be safely executed. My solution uses the existing page-level memory protection that is
provided by the hardware paging unit on the x86.

The SharedRO state

In theSharedRO state the only accesses allowed to the location, transactional or otherwise are
reads. I thus set the protection for all pages in the chunk (that share the tag state) to read-only.
This is easily accomplished through themprotect call.

The Private(t) state

This is considerably more complex. Any other thread is forbidden from makingany access.
However the owning thread can legitimately read or write thelocation. Unfortunately the
implementation of threading using a shared address space onUnix (and most operating sys-
tems) means that different access permissions cannot be provided to the same page for different
threads.

The first step towards a solution is to split up the state into two sub-states based on the value of
thetransactional flag (Figure 6.5). Iftrue the state can only be accessed in a transaction
by the owning thread. Iffalse the state can be accessed outside a transaction by the owning
thread.

ThePrivate(t), transactional=false state is handled by simply setting the page
access permissions to the most permissive, allowing all access by all threads. This might seem
counterintuitive but results in the system being unable to track sharing outside transactions.
However this is perfectlysafesince SLE is built on top of a weakly atomic STM and does not
care about simultaneous accesses to the same location if both are made outside transactions.

The Private(t), transactional=true state is handled by simply setting the page
access permissions to the least permissive: no access at all. This ensures that no other thread
can make a non-transactional access to the location satisfying the safety requirement of the
tagging-capable read and write algorithms. This however leads to a different problem, how
do SpeculativeRead andSpeculativeWrite themselves access the location if made
from the owning threadt ?

To solve this problem I use a technique that has been used elsewhere to implement strong
atomicity [AHM09]: multiple mappings for the same page. Figure 6.6 shows how this is ac-
complished. The figure takes the example of a page with virtual address (0xe000) in state
Private(t), transactional=true. It is mapped into the virtual address space twice,
once at virtual address (0xe000) and once more at virtual address
(0xe000 + mirror_offset). Both the mappings in the page table point to the same phys-
ical page (physical address0xa000). Crucially, the second mapping has liberal access permis-
sions and is used bySpeculativeRead andSpeculativeWrite. The double mapping
is achieved by usingmmap twice from the same backing file on disk (ramdisk in experiments
for this dissertation in order to reduce overhead).

Finally there are (not infrequent) examples where thread-private objects are created and fre-
quently accessed both within and outside transactions. Thecorresponding movement between
states leads to a large number of system calls to change page protections and becomes a severe
bottleneck to performance. To avoid this, I place a threshold of 10 state changes before such
locations become irrevocably tagged asSharedRW.
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Figure 6.6: Extended tag metadata with mirror mappings

ChangeTag modifications

There are two modifications that need to be made to ChangeTag in order to support these en-
hancements. The first is the capability to change memory protection accordingly. The second
enhancement is the capability to handle memory protection faults that arise due to accesses
that are not permitted from outside transactions. These arehandled by hooking the fault (Unix
SIGSEGV) handler, performing the appropriate state change(and memory protection changes),
and restarting the faulting instruction.

Another important task done by ChangeTag is to release the virtual address space occupied by
the mirror map of pages when the originating “chunk” moves toa tag other thanPrivate(t).
This preserves virtual address space on 32-bit machines (where it is relatively scarce), and is
particularly helpful for some of the STAMP benchmarks whichcan use as much as 1.5 GB of
physical memory.

6.4.3 Reducing undo-logging overheads

Within transactions, stores form a minority of accesses compared to loads. Nevertheless undo
logging for stores can be a significant source of overhead anda simple observation can serve to
eliminate much of this. Dragojevic et al. observed that manytransactions in STAMP perform
a significant fraction of their accesses to captured memory [DNAT09]: memory allocated and
released in the same transaction. Such accesses need not be undo-logged since their initial
contents are irrelevant to execution. To take advantage of this I track whether a chunk escapes
from a transaction: (i.e. allocated within it but not released by the end) in theescape_flag
field of the allocation site metadata. If theescape flag is not set thenSpeculativeWrite
does not perform any undo-logging for the access.
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6. Thread-private data tags

patch: jmp <next_instruction>
<Inlined tagging check>
<If success jump to access>
movl $patch, %eax
call fixup
<logging call>
access:

Figure 6.7: Inlined tag check

6.4.4 Inlining checks

Even if a location is identified as thread-private by tagging, I still need to pay the cost of the call
into the logging functions. Ideally one would like to inlinethat check in the PIC to avoid that
overhead for thread-private locations. At the same time onewould not want to pay the cost of
that inline check for locations that are not thread-private, since it is bound to fail and represents
an unnecessary overhead.

An important observation here is that most accesses in the PIC are either always to thread-
private locations or always to shared locations. I exploit this by enhancing the instrumentation
engine to inline the check as shown in the x86 level pseudocode (for simplicity) in Figure 6.7
in the form of “self-modifying” instrumentation. If the inlined tagging check succeeds, then
control jumps past the call to the logging function. If the check fails then the fixup proce-
dure changes the initial jump to the next instruction to jumppast the inlined tagging checks
(reflecting the fact that the location that was accessed is now tagged as shared).

6.5 Evaluation

The evaluation in this chapter focuses on the effectivenessof tagging in reducing instrumen-
tation overhead for the STAMP benchmarks. The evaluation therefore compares SLE_x86 to
SLE_x86 with private data tagging on (labeledSLE_x86 + PDT). The objective is to close
the gap with manual instrumentation and hence I also includethe performance of STM_x86
(from Chapter 3) as reference. I use the 48-core system (Appendix B: Tigger) for all the exper-
iments.

The results are shown Figure 6.8 and Figure 6.9. For the four benchmarks where automatic
instrumentation is close to the performance of the manual one: Vacation, SSCA2, Intruder and
Kmeans, private data tagging makes little difference. Thisis because private data tagging is
adaptiveand does not change the logging behaviour once a location is identified asshared.

In the case of Bayes, automatic instrumentation no longer adds an overwhelming amount of in-
strumentation, meaning that the STM no longer falls back to pessimistic locking. However the
cost of checking the data tags still adds a large amount of overhead. In the case of Genome, pri-
vate data tagging significantly improves performance. For Yada, private data tagging improves
performance but only marginally and in the case of Labyrinthexecution continues to fall back
to the lock due to an overflow of the STM logs.

In the case of Yada, the effectiveness of private data tagging is limited by the organisation of a
key data structure shown in Figure 6.10 (top half). In it theisGarbage andisReferenced
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Figure 6.8: SLE (with private data tagging) on the STAMP benchmarks(1)

fields can be updated after the object is created while the remaining fields are shared read-only.
This breaks the tagging algorithms, which are limited to tracking at an allocation granularity
and hence can’t look inside the allocated object. One solution to this is to break up the object
into a read-write and a read-only part as shown in the bottom half of the figure. This leads to
a change of only 26 lines in 4600 lines of code. On the other hand it has a dramatic impact
on performance, as shown in Figure 6.11. The remaining gap inperformance from manual
instrumentation is due to objects that are thread private but are frequently accessed both within
and outside transactions. The changes of thetransactional flag for them hits the imposed
rate limit and leads to them being classified as shared.

In the case of the Labyrinth benchmark on the other hand, datatagging cannot by itself guess
that a large data structure can be accessed in a racy manner (recall that the design must besafe
and thus cannot introduce races). This is interesting, since the programmer has identified an
algorithm specific opportunity for improving performance with an STM. The design goal of
SLE_x86 is transparency. However, this doesnot mean that the programmer cannot commu-
nicate such an optimisation to it. To demonstrate this with Labyrinth, I implemented a simple
mechanism for the programmer to provide ahint to the SLE runtime system that a region of
memory should be treated as tagged thread-private for a subset of the execution. Figure 6.12
shows how this is done by adding two lines to the source code ofLabyrinth (consisting of a total
of 3113 lines). The instrumentation system is configured to look for calls to a special “trapdoor”
functions that pass information to the private data taggingsystem. In the Labyrinth example,
the system is first informed that a region of memory should be temporarily taggedPRIVATE
and later informed that the tag should be withdrawn. This communicates the (racy) optimisation
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Figure 6.9: SLE (with private data tagging) on the STAMP benchmarks(2)

in Labyrinth to the tagging algorithms.

Figure 6.13 shows the results of this source code annotation. Execution no longer falls back to
pessimistic locking and scales well, capturing the algorithm specific optimisation in SLE_x86.

Finally, private data tagging also improves the absolute performance of SLE_x86 when com-
pared to locking. Figure 6.14 shows the cases where the absolute best performance of SLE_x86
alone and SLE_x86 with private data tagging can outperform the lock. The entries with empha-
sis show where SLE_x86 with private data tagging outperforms the lock, while SLE_x86 alone
does not.

6.6 Discussion

In this chapter I have discussed how memory locations can be tagged as thread-private and how
such tagging can be used to safely reduce STM logging overheads. I have discussed three means
of automatic tagging: 1) static identification of heap allocations that are thread-private due to
the specification of the allocator such as OpenMP thread-private data 2) data on the stack that
is usually thread private and 3) adaptively tagging allocations from the heap as thread-private.
These mechanisms include as a subset the thread-private data patterns identified thus far by
STM researchers: stack locations [WCW+07] and captured memory [DNAT09]. They also
capture various other patterns of thread-private data usage such as the read-only shared string
in the Genome benchmark of STAMP. Private data tagging is effective at closing the gap with
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6.6. Discussion

struct element {
coordinate_t coordinates[3];
long numCoordinate;
coordinate_t circumCenter;
double circumRadius;
double minAngle;
edge_t edges[3];
long numEdge;
coordinate_t midpoints[3]; /* midpoint of each edge */
double radii[3]; /* half of edge length */
edge_t* encroachedEdgePtr; /* opposite obtuse angle */
bool_t isSkinny;
list_t* neighborListPtr;
bool_t isGarbage;
bool_t isReferenced;

};

------------------------------------------------------
typedef struct {

bool_t isGarbage;
bool_t isReferenced;

} shared_part;

struct element {
coordinate_t coordinates[3];
long numCoordinate;
coordinate_t circumCenter;
double circumRadius;
double minAngle;
edge_t edges[3];
long numEdge;
coordinate_t midpoints[3]; /* midpoint of each edge */
double radii[3]; /* half of edge length */
edge_t* encroachedEdgePtr; /* opposite obtuse angle */
bool_t isSkinny;
list_t* neighborListPtr;
shared_part *shared;

};

Figure 6.10: Yada data structure: original (top) and separated (bottom)
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Figure 6.11: Performance of Yada after data structure decomposition

TM_BEGIN();
/* ok if not most up-to-date */
grid_copy(myGridPtr, gridPtr);

---------------------------------------------

void dbr_trapdoor(unsigned long a,
unsigned long b,
unsigned long c)

{
/* nothing .. will be intercepted

* by instrumentation system

*/
}

TM_BEGIN()
/* mark direct access to shared memory */
dbr_trapdoor(TAG_PRIVATE, gridPtr->points,

myGridPtr->width *
myGridPtr->height *
myGridPtr->depth);

/* ok if not most up-to-date */
grid_copy(myGridPtr, gridPtr);
dbr_trapdoor(UNTAG_PRIVATE, 0, 0);

Figure 6.12: Labyrinth source fragment: original (top) andannotated(bottom)
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Figure 6.13: Performance of Labyrinth with annotation

Threads
Benchmark 1 2 4 8 16 32

labyrinth NO NO NO NO NO NO
labyrinth-hint NO NO NO YES* YES* YES*

yada NO NO NO NO NO NO
yada-decomposedNO NO NO NO NO NO

bayes NO NO NO NO NO NO
vacation NO YES YES YES* YES* YES*
genome NO NO YES YES* YES* YES*
kmeans NO NO NO NO NO NO
ssca2 NO NO YES YES NO NO

intruder NO NO NO YES YES YES

Figure 6.14: Is using Best Of(SLE_x86, SLE_x86 with PDT) better than using the lock ?(‘*’
means also better than sequential)

manual instrumentation. One way to further reduce this gap is static analysis to identify thread-
private objects. This is still an evolving field. Usui et al [USB09] for example, chose to expose
the manual annotations in the STAMP benchmarks to their compiler, instead of depending on
static analysis to identify accesses to thread private data. Nevertheless, when STM compiler
designers choose to tackle this problem with static analysis it should be possible to bring some
of those techniques over into the SLE system.

The chapters in this dissertation thus far have focused on building up the SLE system as a
whole with the STAMP benchmarks on an 48-core machine as the driving motivator. In the
next chapter I examine SLE_x86 along three different dimensions: larger systems, comparison
to an automatic compiler-based STM and finally larger benchmarks that present interesting
issues such as condition variables.

125



6. Thread-private data tags

126



Chapter 7

Applicability

SLE_x86 is a mechanism to apply software transactional memory at the level of abstraction of
x86 machine code. Thus far, I have focused on the STAMP benchmarks on a specific system
to motivate the construction of STM_x86 and the binary instrumentation system. The objective
has been to consider SLE_x86 as an automatic and safe means toapply transactional memory
to these programs and evaluate the impact of the stricter x86memory consistency model and
automatic instrumentation.

In this chapter I move out to a more general setting and examine the following scenarios:

1. Scalability: Using SLE_x86 in a machine with a larger number of threads, I examine
whether it imposes any hard limits to scalability due to the strictness of the x86 memory
model. I also compare with an STM that only supports the much weaker C++ memory
model and thereby provides more scalability.

2. Impact on software development: I consider a large program implementing the Quake
multiplayer game server. I compare a version with a coarse-grained lock that is elided
at runtime using SLE_x86 with a version that uses language level software transactional
memory.

3. Condition Variables and Fine-grained locks: I consider alarge benchmark suite written
and optimised to use locks and condition variables. Condition variables have historically
been a source of difficulty for STM designs, which usually forbid them within source-
level transactions. SLE_x86 should seamlessly handle condition variables by falling
back to pessimistic locking. In addition, I consider the impact of applying SLE_x86
to programs using fine-grained locking, uncovering interesting implications on the use of
atomic blocks at a language level.

In this chapter I use SLE configured without support for private data tagging unless otherwise
specified. The reason is that none of the benchmarks (other than Quake) perform a significant
number of accesses to thread-private locations in their critical sections.

7.1 Scalability

SLE_x86 introduces significant synchronisation between concurrently executing transactions
due to the strict nature of the x86 memory consistency model.This section examines the impact
of this on scalability.
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CS cs_frac wait_frac avg_q_length rd_ops rd_locs wr_ops wr_locs dep_dens
avltree.c:346 0.023 0.576 6.656 37.795 36.933 0.000 0.000 0.000
avltree.c:268 0.005 0.187 6.647 47.843 39.083 3.410 1.765 0.000
avltree.c:209 0.004 0.187 6.661 39.892 37.038 2.855 1.611 0.000
Overall_waiting Overall_dep_density Pred_AvgThreads
0.950407 0.000062 7.997756
------------------------------------------------------------------------------------------
CS cs_frac wait_frac avg_q_length rd_ops rd_locs wr_ops wr_locs dep_dens
skiplist.c:209 0.054 0.529906 6.698 76.961 52.607 0.000 0.000 0.000
skiplist.c:176 0.009 0.190715 6.691 84.459 53.819 41.824 11.418 0.000
skiplist.c:136 0.009 0.186149 6.693 78.840 53.186 41.977 12.479 0.000
Overall_waiting Overall_dep_density Pred_AvgThreads
0.906770 0.000035 7.998725

Figure 7.1: Microbenchmark profiles(8 threads)

I use two simple microbenchmarks in this section: Skiplistsand AVLTrees. Skiplist and tree
benchmarks have long been used in the STM community because they offer enough disjoint-
access-parallelism at large data structure sizes to support scaling to large number of accessing
threads without any bottleneck in the data structure itself. The microbenchmarks perform a
mix of 75% lookups, 12.5% updates and 12.5% deletes to the data structure holding219 keys
(similar to Fraser’s dissertation [Fra03]). That there is sufficient disjoint access parallelism here
is illustrated by their profiles at 8 threads (generated by the profiler described in Chapter 5),
shown in Figure 7.1. Threads spend a majority of their time waiting to enter a critical section
with lots of disjoint-access parallelism (little dependence density).

I compare three different alternative implementations of the data structures. The three imple-
mentations are identical in terms of the concurrency oblivious algorithms used to implement the
data structure. They differ however, in their choice of synchronisation mechanism.

The first implementation uses a simple Pthreads reader-writer lock to protect the tree. The sec-
ond implementation is identical to the first except that at execution time, SLE_x86 is used the
elide the lock. The third version uses transactions insteadof a lock to protect the concurrent
accesses. I use the Intel 3.0 STM compiler [WCW+07, int] that provides language level atomic
blocks and automatic instrumentation of memory accesses. Of the three implementations the
lock is expected to be the least scalable. SLE_x86 should provide better performance than
the lock. The STM compiler implements software transactional memory for the C++ memory
model that attaches no semantics to data races. This admits very efficient STM designs, since
properly ordering accesses across transactions is sufficient without needing to worry about in-
terleaving non-transactional accesses that would be races. It is thus expected to provide the
best performance. All three versions are compiled using thesame (STM capable) compiler to
eliminate any differences due to compiler optimisations.

Finally, I use a system supporting a larger number of hardware threads for this section (Ap-
pendix B: COSMOS): an SGI Altix with 96 NehalemEX 2.67GHz (Core i7) cores (six cores on
a single multicore socket), connected by a cache coherent NUMA interconnect.

Figure 7.2 shows the results of running the benchmark on thissystem. The vertical axis in the
graph has been truncated for better visibility. The implementation with the worst scalability is,
as expected, the lock. The implementation with the best scalability is the C++ STM. SLE_x86
lies in between. I report the median of 5 runs and all the threebenchmarks show a roughly equal
amount of variation with a majority (more than80%) of points for each benchmark having a
variation of under 10% around the median. The variations primarily result from traffic due to
other programs running on the (shared batch-processing) system, on cores other than the 96 that
I reserved exclusively for this experiment.
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Figure 7.2: Scaling on a Corei7 NUMA system

A more fine-grained comparison of performance is given in thetable of Figure 7.3 that provides
the ratio of the time required to run a data structure access using a lock to that using a trans-
action (language level and SLE_x86) at intervals of 6 threads: representing each addition of a
multicore (6 core) socket to the system. At the maximum of 96 threads, SLE_x86 is about 16 to
20 times faster than a lock, while the language level STM is about 4 times faster than SLE_x86.

7.2 Impact on software development

In this section I consider the impact that different approaches to software transactional memory
(including SLE_x86) have on software development. There are three ways to go about using
transactional memory in a program. The first is to use a library based STM and manually insert
instrumentation in source code. The second is to use a compiler-based STM that requires an-
notation to delimit transactions and mark functions that can be called within a transaction. The
third is to write the program using a lock and use SLE_x86optionallyat runtime. Developers
on large scale software projects are usually concerned withmore than just performance. They
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AVLTree
Threadsx86 STM C++ STM

6 1.30 2.44
12 2.60 6.67
18 4.69 14.15
24 6.92 19.83
30 6.39 20.69
36 8.15 28.31
42 9.12 34.53
48 9.69 40.14
54 11.14 47.45
60 12.63 51.72
66 11.27 52.17
72 13.87 62.60
78 14.06 66.75
84 14.32 67.92
90 15.37 67.52
96 16.78 67.82

Skiplist
Threadsx86 STM C++ STM

6 2.13 2.93
12 3.60 7.71
18 6.35 16.97
24 8.11 22.42
30 8.40 25.48
36 9.73 29.70
42 11.14 41.45
48 11.67 36.05
54 12.46 54.60
60 14.02 53.00
66 11.46 49.07
72 16.33 60.98
78 17.62 67.28
84 17.96 63.68
90 19.74 78.07
96 20.93 76.65

Figure 7.3: Scalability at CPU socket intervals

also care about ease of use, the ability to use stable toolchains and being able to easily debug
multithreaded code. Library-based STMs thus are usually a non-option for large programs.

To illustrate these considerations, I use a reasonably large program: a server for the Quake
multiplayer game [GZU+09]. This is a multithreaded version of the Quake game serverthat can
be reconfigured (through source level macros) to either use acoarse-grained lock; or software
transactions throughatomic blocks. The gameserver spans 49 files containing 27600 linesof
C code and is written to use the OpenMP threading model. Both versions are compiled using
the Intel 3.0 STM compiler. For repeatability, the server was driven by client traces (simulating
gameplay) from another machine. The available version of Quake from the benchmark authors
supports a maximum of 8 threads and 16 clients. I use results at the maximum load of 16
clients, where neither the client nor the network are the bottleneck. A portion of the server code
that processes client requests and updates the game world isparallelised. As in Gajinov et al.’s
original work, I report on the “frame calculation time”, which is the average time to execute the
parallel portion of the benchmark. I use the 48-core AMD system (Appendix B: Tigger).

First, I focus on the performance of SLE_x86 alone. The Intelcompiler generates a number
of accesses to OpenMP thread-private locations. These can be filtered out using the technique
described in the previous chapter (Section 6.3.1). Figure 7.4 shows how this benefits SLE_x86.
The benefits (reduction in frame calculation time) range from 38% to 49%.

Next, I focus on comparing SLE_x86 (running with PDT) to the compiler-based STM solution
in Figure 7.5. SLE_x86 scalesbetterthan the STM and adds only 11% overhead to the STM at
8 threads. Neither however manages to beat the lock due to theintrinsic overheads of software
transactional memory.

It is interesting to note that SLE_x86 is able to scale while the compiler-based STM fails to
scale altogether, something that is contrary to expectation from the results of the previous sec-
tion. This can be explained by looking at the profile for the Quake server running at 8 threads,
shown in Figure 7.6. There is a significant amount of lock contention that is revealed by the
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Figure 7.4: Quake using SLE
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Figure 7.5: Quake using different implementations of critical sections

average queue length. The fraction of time spent waiting fora lock is low since threads spend
a large fraction of their time in packet IO. Although locks are contended there is very little
disjoint-access parallelism behind them: on the average only 3 threads out of 8 can execute
critical sections in parallel. This has a larger impact on the STM used in the Intel C++ com-
piler [WCW+07] since it uses eager locking and in-place updates making aborts expensive when
compared to the write buffering used in SLE_x86. The resultsare also at odds with Gajinov
et al. who reported positive scaling when using the STM version at 8 threads. This is likely a
consequence of the system in use. I repeated the experimentson an 8-core (older Intel Xeon,
Appendix B: Lander) system with four sockets on a frontside bus. The results are shown in
Figure 7.7. Once again SLE_x86 scales better than the STM. However unlike the other system,
the STM shows positive scaling at 8 threads.

I now turn my attention to software engineering considerations. Compared to a simple coarse-
grained lock, using software transactional memory at a language level required about 700 source
level annotations and in addition required porting some of the standard C library functions into
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CS cs_frac wait_frac avg_q_len rd_ops rd_locs wr_ops wr_locs dep_dens
sv_user.c:1954 0.000 0.001 5.340 2063.683 403.678 1230.270 918.078 0.795
sv_user.c:1641 0.001 0.003 5.236 1335.027 422.335 1473.582 936.901 0.742
sv_user.c:1718 0.000 0.003 5.670 268.454 92.301 18.596 5.876 0.048
sv_user.c:1728 0.001 0.003 5.605 3683.126 170.150 493.964 52.405 0.026
sv_user.c:1761 0.000 0.002 5.515 484.420 188.304 54.822 25.882 0.075
sv_user.c:1966 0.000 0.000 4.343 23621.500 2355.750 4623.750 2117.000 0.989
Overall_waiting Overall_dep_density Pred_AvgThreads
0.010843 0.316659 3.055371

Figure 7.6: Quake profile
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Figure 7.7: Quake using different implementations of critical sections (older Xeon system)

the source code. This is necessary because language-level STM compilers cannot deal well
with calls to legacy libraries (not instrumented to use STMs), something that is not a problem
when working at x86 machine code level. The effort to use a language-level STM with Quake
starting from a lock-based version is clearly non-trivial.In addition, debugging support for
STM is currently limited to research projects and is complicated by speculating transactions.
Gajinov et al. depended only on strategically placed print statements; a commendable effort but
difficult to convince mainstream programmers on large software projects to use.

In contrast SLE_x86 was added on to the lock-based version atzero effort. It requires no new
annotations and, being a runtime option, leaves the original program free to be debugged with
standard tools. Since software transactional memory does not lead to better absolute perfor-
mance compared to the lock for the examined thread counts, itis worth thinking whether the
effort to port the application to use STM was worth it in this case. This serves to illustrate why
operating at the level of machine code in a language, compiler and debugger agnostic manner
can be extremely useful, given that the value of porting a large program to use an STM may not
be evident.

7.3 Condition variables and fine-grained locks

Condition variables are a widely used mechanism for specifying synchronisation in multi-
threaded programs. Condition variables are usually manipulated within critical sections (such
as the pthread_cond related primitives in the Pthreads library). The semantics for condition
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7.3. Condition variables and fine-grained locks

variables is that a thread holds a lock before initiating a wait on a condition variable. Itatom-
ically releases the lock when initiating the wait (usually to avoidlost signal problems). On
being woken up, the thread continues with the lock held (re-acquired on a wakeup). In general
condition variables are difficult to reconcile with transactions. Attempts to integrate condition
variables with language level transactions either involvespecially designed transactional con-
dition variables [DS09], splitting transactions into a before and after transaction with respect
to the wait [SKBY07] or by allowing communication between memory transactions [LP11].
SLE_x86 on the other hand has been designed to safely handle programs with condition vari-
ables. The reason is that the underlying STM_x86 of Chapter 3falls back to pessimistic locking
on encountering locked instructions or systems calls that are usually a part of condition variable
implementations (this is true for the Pthreads condition variables). I verify this behaviour in this
section.

Another interesting aspect of multithreaded programs today is the usage of fine-grained locks.
Since transactional memory is not a mainstream programmingoption, developers carefully tune
their applications to avoid bottlenecks on coarse-grainedlocks. The do this through the use of
fine-grained locking, where threads a likely to require different locks and thus do not needlessly
wait on each other.

I use the PARSEC [BKSL08] benchmark suite to examine the behaviour of SLE_x86 when
presented with programs that display usage of well tuned contention-free locks and condition
variables. PARSEC is a set of benchmarks that aim to represent the next generation of work-
loads that will run on Chip Multi-Processing (CMP) systems.Another more immediate aim
is to replace the dated SPLASH [WOT+95] benchmark suite that is still in use for research
in general, including for software transactional memory. SPLASH benchmarks are too small
to evaluate real machines today (or those in the future) and some of the benchmarks in it use
algorithms that have been replaced by more modern versions.

PARSEC consists of 13 benchmarks all of which have been builtto scale well and take advan-
tage of threads. In addition to locking, PARSEC benchmarks also make use of ad-hoc synchro-
nisation [JT10] such as the construct that was discussed in Figure 3.10 where a thread spins on
a flag that indicates when another thread has published a value for consumption. When using an
STM at the x86 machine level, the STM must thus provide the x86memory consistency model,
something that STM_x86 does do.

I begin with a profile of the benchmarks using a slightly modified form of the profiler in Chap-
ter 5. The modification aims to detect the usage of locked instructions or systems calls in
critical sections that would necessitate pessimistic locking. This is easily done by emitting in
the traces a flag for when a locked instruction or memory fenceis executed. Any such critical
section is marked with an asterix (“*”) in the profile. Further the post-processing tool simulates
the blacklist used by STM_x86. The lock corresponding to execution of such critical sections
is blacklisted and any critical section acquiring the same lock is also marked similarly. The
profiler thus provides an accurate picture of which criticalsections need pessimistic locking
with SLE_x86. In the case of the PARSEC benchmarks all these critical sections (after manual
examination of the source code) were found to use condition variables.

Three of the 13 benchmarks in PARSEC: Blackscholes, Freqmine and Swaptions do not use
locks at all for synchronisation and thus I do not consider them here. The Vips benchmark
uses the Glib threading model, that is not as yet supported bySLE_x86. Of the remaining 9
benchmarks Canneal acquires exactly one lock at startup fora short period and thus is beyond
the scope of the profiler that depends on sampling (and also isuninteresting from the perspective
of lock elision). The profile for remaining 8 benchmarks (including lines of code) is shown in
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the table of Figure 7.8. As is evident from the profile, exceptfor Facesim and Fluidanimate all
the other benchmarks use critical sections only to protect condition variables. All of them are
executed purely using pessimistic locking when executing with SLE_x86 and their performance
is identical to that using locks. Crucially, SLE_x86 handles the condition variable seamlessly.
For the rest of this section I focus on the two benchmarks thatinclude conventional critical
sections unrelated to condition variables. I use the 48-core AMD system (Appendix B: Tigger)
for the experiments.

7.3.1 Facesim

At least some of the critical sections in Facesim are amenable to software lock elision. However,
the fraction of time spent waiting for or executing these critical sections is negligible. Since
SLE_x86 is built to execute code outside critical sections directly from the native binary, it
should have little impact on performance. This fact is confirmed by Figure 7.9 that shows the
performance of lock elision with SLE_x86 relative to running natively with the lock.

7.3.2 Fluidanimate

Fluidanimate represents an interesting benchmark since its critical sections are extremely short
but represent a non-negligible fraction of execution time.An examination of the source code
line number pointed to by the profiler reveals that it uses fine-grained locking and this explains
why lock contention is not an issue with Fluidanimate.

Running Fluidanimate with SLE_x86 however reveals an interesting performance anomaly,
shown in Figure 7.10. Scalability is reversed: increasing the thread count decreases perfor-
mance relative to running the native binary without lock elision.

Fluidanimate has been written to use fine-grained locking and scales well without SLE_x86 in
the picture. Using SLE_x86 on the other hand effectivelyincreaseslock contention since it
executes critical sections using Single Lock Atomicity semantics. Critical sections that were
previously unrelated (executed with different locks) now execute with SLA semantics requiring
system wide serialisation for some portions of the commit phase. On the other hand the baseline
lock-based version scales well since critical sections usedifferent locks and proceed in parallel.
This leads to the inversion in performance.

To confirm this, I used a specially constructed preloaded library that replaces all the different
Pthread locks with a single lock. Running Fluidanimate withthis library approximates the be-
haviour of using atomic blocks instead of critical sectionswith the atomic blocks implemented
using a single global lock. Figure 7.11 shows that relative to this implementation of single lock
atomicity SLE_x86 does indeed improve scalability. The initial drop in performance is due to
the overhead added to each critical section by SLE_x86 whichis balanced by the reduction
in time spent waiting at the lock. Increasing the number of threads increases the overhead of
SLE_x86 (due to the epoch). This is significant given the veryshort critical sections. Ultimately
however the time spent waiting for a lock becomes a larger factor leading to the improvement
in performance.

These results pose an interesting question from the perspective of language level atomic blocks.
Language level atomic blocks are essentiallyanonymousmeaning that they they do not reflect
that fact that some set of atomic blocks can bestatically determined as non-conflicting. On
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Source CS fracWait fracavg_q_lenRead OpsRead LocsWrite OpsWrite Locs
Bodytrack (10279 LOC)

Mutex.cpp:96* 0.297 0.002 0.141 10.342 7.871 4.384 3.287
Dedup (3689 LOC)

queue.c:65* 0.001 0.001 0.029 130.800 10.128 61.900 8.920
queue.c:35* 0.141 0.001 0.006 130.736 10.048 55.457 8.005

encoder.c:838* 0.000 0.000 0.000 501.301 191.863 0.644 0.644
encoder.c:889* 0.011 0.000 0.000 600.559 233.432 0.457 0.457
encoder.c:224* 0.032 0.236 3.021 426.692 160.231 26.433 10.257

queue.c:24* 0.000 0.000 0.000 7.000 3.000 3.000 2.000
encoder.c:118* 0.000 0.000 0.004 176.663 54.343 8.000 4.000

Facesim (29310 LOC)
taskQDistFixed.c:29 0.000 0.000 0.009 10.518 4.185 5.857 3.918

taskQDistCommon.c:81*0.000 0.000 6.353 15.933 6.982 10.952 4.982
taskQDistFixed.c:10 0.000 0.000 0.000 5.215 2.405 0.937 0.937

taskQDistCommon.c:92*0.018 0.000 0.586 18.401 9.189 9.382 5.311
taskQDistFixed.c:63 0.000 0.000 0.000 6.000 2.000 6.000 4.000

taskQDistCommon.c:70*0.166 0.001 3.898 19.184 10.197 10.239 5.611
taskQDistFixed.c:30 0.000 0.000 0.011 7.590 3.368 4.055 2.875

Ferret (9735 LOC)
semaphore.c:288* 0.000 0.000 0.000 990.274 6.651 495.017 8.887
semaphore.c:123* 0.000 0.000 0.000 377.069 4.228 183.556 3.843
semaphore.c:373* 0.010 0.000 0.000 438.077 4.455 215.030 4.319

ferret-parallel.c:176* 0.000 0.000 0.248 2109.749 10.008 1065.827 18.318
ferret-parallel.c:244* 0.237 0.000 0.332 20.000 5.000 10.000 3.000
ferret-parallel.c:258* 0.000 0.000 0.359 13.000 4.000 8.000 3.000
ferret-parallel.c:271* 0.239 0.000 0.339 20.000 6.000 10.000 3.000
ferret-parallel.c:283* 0.000 0.000 0.429 13.000 3.000 8.000 3.000
ferret-parallel.c:295* 0.191 0.000 0.425 19.967 4.995 9.985 2.997
ferret-parallel.c:320* 0.000 0.000 0.241 12.918 3.959 7.959 3.004
ferret-parallel.c:333* 0.105 0.000 0.425 19.695 5.946 9.848 2.992
ferret-parallel.c:364* 0.000 0.000 0.280 12.885 3.951 7.944 3.009
ferret-parallel.c:374* 0.045 0.000 0.000 19.728 5.946 9.864 2.996

Fluidanimate (1391 LOC)
pthreads.cpp:500 0.002 0.007 0.000 4.000 4.000 1.000 1.000
pthreads.cpp:685 0.014 0.054 0.000 5.000 3.522 3.000 1.522
pthreads.cpp:694 0.015 0.056 0.000 5.000 3.490 3.000 1.490
pthreads.cpp:603 0.019 0.075 0.000 3.000 3.000 1.000 1.000
pthreads.cpp:612 0.021 0.076 0.000 3.000 3.000 1.000 1.000

Raytrace (13302 LOC)
RTThread.hxx:167* 0.111 0.000 5.651 7.570 4.487 4.349 2.898

Streamcluster (1255 LOC)
streamcluster.cpp:893* 0.000 0.000 6.333 0.000 0.000 1.000 1.000
streamcluster.cpp:869* 0.000 0.000 5.765 0.000 0.000 1.000 1.000
streamcluster.cpp:843* 0.001 0.000 2.693 9.201 6.480 5.011 2.615

x264 (40393 LOC)
frame.c:880* 0.000 0.000 0.630 8.109 3.582 6.163 3.054
frame.c:888* 0.000 0.000 0.151 3.809 2.183 1.478 0.739

Figure 7.8: PARSEC critical section memory operations
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Figure 7.9: Using SLE on Facesim
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Figure 7.10: Using SLE on Fluidanimate

the other hand locks allow the programmer to easily express what they already know about
necessary synchronisation in the program. Even an efficiently implemented language level
STM would lead to slowdowns in Fluidanimate over the lock-based version due to the need to
preserve the language level memory model. An effort to port Fluidanimate to use language level
atomic blocks would clearly be wasted. SLE_x86 is a runtime option and reveals this without
the need to expend this effort. An interesting option worth exploring with language level STMs
as well as with SLE_x86 is the ability to statically determine which transactions cannot conflict
and exploit this information in the STM.

7.4 Discussion

This chapter examined the performance of SLE_x86 in a variety of application settings. The first
is on hardware (and benchmarks) that offer unlimited scalability (disjoint-access parallelism).
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Figure 7.11: Using SLE on Fluidanimate with Single Lock Atomicity

There is no fundamental bottleneck in the scalability of SLE_x86 and it performs better than a
lock. The second is a real-world multiplayer game server written to use the OpenMP threading
primitives. In this case SLE_x86 scales better than the C++ level STM. More importantly, it
illustrates how SLE_x86 demands no extra annotations in software and leaves the developer
free to use standard debuggers on their programs. The third application looked at programs
that make heavy use of condition variables and are otherwisetuned to perform well with locks.
SLE_x86 has no problem handling condition variables.

An interesting observation that comes out from the Fluidanimate benchmark in PARSEC is
that language level transactions may not allow adequate expression of opportunities for safe
parallel execution. Critical sections protected by different locks need not incur the cost of being
serialised by the same lock. One way to exploit this – and a possible direction for future work –
would be to look at forms of “multiple” lock atomicity, wherecritical sections can be mapped
to a (small) set of logical locks in the STM runtime system. This can be achieved, for example,
by replicating the STM data structures and algorithm for each lock, thus exploiting the fact that
fine-grained locking already specifies the available parallelism in such applications.
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Chapter 8

Conclusion

This dissertation presented SLE_x86: a safe and automatic way to apply software transactional
memory to x86 binaries that synchronise using locks. SLE_x86 leads to better scalability than
using a coarse-grained lock, when the lock is a bottleneck inthe program. The application of
optimistic concurrency control allows threads to speculate past locks leading to absolute better
performance than the lock-based version for many of the STAMP benchmarks and the AVLtree
and Skiplist microbenchmarks. In the case of the more real-world Quake multiplayer game it
leads to better scalability than the lock and is competitiveto a compiler-based STM. Finally,
SLE_x86 is widely applicable, even to critical sections with condition variables. In the rest of
this chapter I summarise my contributions and directions for future research.

8.1 Summary

In Chapter 1 I motivated the need to apply transactional memory at the level of abstraction of
x86 machine code. I presented my thesis that it is possible todo this automatically, transparently
and correctly to binaries not written to have any awareness of transactional memory.

In Chapter 2 I outlined research in the field of transactionalmemory in general and software
transactional memory in particular. I taxonomised the different kinds of STM designs possible
and in particular discussed why it is difficult to build an STMthat correctly handles the interac-
tion between transactional and non-transactional accesses. I also discussed the different ways to
apply software transactional memory: manually using an STMlibrary; automatically using an
STM compiler and source code annotations; and automatically using dynamic binary rewriting
alone.

In Chapter 3 I presented the first primary contribution of this dissertation: a software transac-
tional memory design (STM_x86) that provides single lock atomicity and preserves the x86
memory consistency model. I show that, given the strictnessof the x86 memory model, the
only way to build STM_x86 is to exclude programs that containa certain type of data race. I
argue that in the context of lock-based programs this race likely corresponds to buggy synchro-
nisation. The evaluation using the STAMP benchmarks in Chapter 3 examines the performance
of STM_x86 in comparison to the more scalable TL2 STM that provides a weaker memory
consistency model.

In Chapter 4 I presented a means to apply this STM automatically to x86 machine code syn-
chronising with locks. I use ahybrid form of binary rewriting that uses dynamic execution to
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discover code to be instrumented but places instrumentation in a static persistent instrumen-
tation cache for reuse. In general, the instrumentation system presented borrows some of the
best ideas from static and dynamic binary rewriting enginesin order to reduce instrumentation
overhead to acceptable levels. This leads to the complete SLE_x86 system that is competitive
to manual instrumentation for four of the STAMP benchmarks (Vacation, Kmeans, SSCA2 and
Intruder). For the remaining benchmarks, there is a large gap between the performance achieved
through manual instrumentation and that achieved through automatic instrumentation.

In Chapter 5 I presented a profiler that allows analysis of critical section characteristics that
are important for transactional memory. It uses the same instrumentation mechanism as in
the previous chapter but instead of software lock elision itsimply measures lock contention
and memory access related characteristics of critical sections. It allows the determination of
whether a binary contains a critical section that is in a “sweet spot” for transactional memory:
lots of lock contention and lots of disjoint-access parallelism (no data flow between simultane-
ously executing critical sections). In addition, the memory access profiles pinpoint the precise
reason for the performance gap in four of the STAMP benchmarks: the programmer has de-
liberately omitted STM instrumentation in the source code by exploiting an understanding of
which program locations are thread private.

In Chapter 6 I presented a generic mechanism for tagging program locations as thread-private
and then exploiting such tagging in the STM logging algorithms to eliminate STM overheads
for them. I explore three specific applications of this mechanism: the first is for locations on
the heap that are known statically to be thread-private; thesecond is for locations on the stack
that areusuallythread-private but it is necessary to detect when they are shared; and the third is
adaptive tagging that can classify thread-private heap data dynamically from that which is not.
I demonstrate that with adaptive tagging SLE_x86 provides better performance than the lock in
many of the STAMP benchmarks.

In Chapter 7 I explored the application of Software Lock Elision in more general settings. I
show that there is no fundamental scalability limit to SLE_x86 and it is able to beat the lock on
AVLTree and Skiplist micro-benchmarks on a large multicoresystem (up to 96 cores). Next, I
show how SLE_x86 is much easier to apply to the large Quake multiplayer game server and is
only 11% slower than a much harder to use STM compiler. Finally, I showusing the PARSEC
benchmarks that SLE_x86, by virtue of being designed for safety and transparency has no
problems with handling condition variables.

8.2 Future research

SLE_x86 allows the wide and transparent applicability of software transactional memory toall
programs. Mainstream adoption of transactional memory is thus no longer dependent on efforts
to either change the software development environment or rewrite legacy code.

The next step then is to build a complete hybrid transactional memory solution for x86 bina-
ries. There is already a proposal for best-effort hardware transactional memory support on the
x86 (Advanced Synchronisation Facility [CCD+10]) for which simulators are already available.
ASF can be easily integrated with SLE_x86 to maintain the read and write logs in hardware.
The common case (of short transactions) can be executed in hardware while the uncommon case
(longer transactions) can be executedcorrectlyon SLE_x86, leading to low overhead transac-
tions by Amdahl’s law. Evaluating large multithreaded programs on such a hybrid solution
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should provide enough impetus for actually adding ASF to mainstream x86 microprocessors
(and for other architectures). This will effectively breakthe deadlock that is currently impeding
progress in transactional memory.

Another interesting direction is to use the profiler described in Chapter 5 on a large represen-
tative set of real-world programs. This can help resolve ongoing debate in the transactional
memory community about whether critical sections in real-world code can truly benefit from
optimistic concurrency control.
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Appendix A: SLE_x86 restrictions

This dissertation includes a careful examination of the problems caused when applying software
transactional memory to the unmanaged environment of x86 machine code. Some these prob-
lems necessitate restrictions on the programs that can be used with SLE_x86. The complete set
of restrictions is listed below.

1. Restriction 1: The program must not admit an execution with a memory fence ora locked
instruction in a critical section (Section 3.6).

2. Restriction 2: Execution cannot depend on stores in a critical section being made visible
to other threads before the critical section completes (Section 3.6).

3. Restriction 3: The execution must not contain a race between a read in a critical section
and a write outside any critical section (Section 3.6).

4. Restriction 4: A location on a thread stack that is shared between threads can only be
accessed in critical sections protected by the same lock or always outside any critical
section (Section 6.3.2).

Of these, the first three are either detected and handled by avoiding the use of the STM for some
critical sections or map to program behaviour that is likelybuggy (Section 3.6). The last one
is necessary for efficient instrumentation and cannot be practically avoided without (as far as I
can see) undue addition of complexity and overhead.
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Appendix B: Experiment configurations

System:There are three systems that I have used in this dissertation.

1. Tigger (Medium-sized multicore NUMA): Consisting of 48 AMD cores and used for the
vast majority of experiments in this dissertation. The system consists of four AMD 6168
processors running at 1.9 Ghz connected by a Hypertransportinterconnect. Each pro-
cessor consists of two CMP dies connected by a faster inter-chip interconnect. Each die
consists of 6 processors sharing a 6MB L3 cache. The system has 64 GB main memory
distributed among the processors.

2. COSMOS (Large-scale multicore NUMA): An SGI Altix UV consisting of 768 cores
used for the experiments in Section 7.1. It is built around 128 Intel NehalemEX 7460
2.67GHz CPUs connected by the NUMAlink interconnect. Each CPU is a CMP die with
six cores sharing a 16MB L3 cache. The system has 2TB of main memory. I was able to
reserve 96 cores for my experiments but had no control over jobs running on other cores
on the shared system.

3. Lander (Small-scale SMP) : Four dual-core Intel 7130M Xeon processors (8 cores of the
old P4 microarchitecture) running at 3.2 Ghz. This system only features in Figure 7.7
in this dissertation although much of the development and test for SLE_x86 happened on
this system. Each CPU has two cores sharing an 8MB L3 cache. The CPUs are connected
by a frontside bus. Although each core is capable of supporting two hyperthreads the
experiments were done with hyperthreading off. The system has 8GB of main memory.

Compiler: gcc 4.4 except for Sections 7.1 and 7.2, which used the Intel 3.0 STM capable
prototype compiler. I use optimisation level 3 for all benchmarks.

PIN: I used PIN version 27887 for all experiments in this dissertation.

Benchmarks:

1. STAMP version 0.9.10http://stamp.stanford.edu/.

2. QuakeTM version 1.0http://www.bscmsrc.eu/software/quaketm

3. PARSEC version 2.0http://parsec.cs.princeton.edu/
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