Technical Report VA

Number 799

a5 UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

A separation logic framework for HOL

Thomas Tuerk

June 2011

15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom
phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2011 Thomas Tuerk

This technical report is based on a dissertation submitted
December 2010 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Downing
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Separation Logic Framework for HOL

Thomas Tuerk

Summary

Separation logic is an extension of Hoare logic due to O’Hearn and Reynolds. It was
designed for reasoning about mutable data structures. Because separation logic supports
local reasoning, it scales better than classical Hoare logic and can easily be used to reason
about concurrency. There are automated separation logic tools as well as several formal-
isations in interactive theorem provers. Typically, the automated separation logic tools
are able to reason about shallow properties of large programs. They usually consider just
the shape of datastructures, not their data-content. The formalisations inside theorem
provers can be used to prove interesting, deep properties. However, they typically lack
automation. Another shortcomming is that there are a lot of slightly different separa-
tion logics. For each programming language and each interesting property a new kind of
separation logic seems to be invented.

In this thesis, a general framework for separation logic is developed inside the HOL4
theorem prover. This framework is based on Abstract Separation Logic, an abstract,
high level variant of separation logic. Abstract Separation Logic is a general separation
logic such that many other separation logics can be based on it. This framework is
instantiatiated in a first step to support a stack with read and write permissions following
ideas of Parkinson, Bornat and Calcagno. Finally, the framework is further instantiated
to build a separation logic tool called Holfoot. It is similar to the tool Smallfoot, but
extends it from reasoning about shape properties to fully functional specifications.

To my knowledge this work presents the first formalisation of Abstract Separation Logic
inside a theorem prover. By building Holfoot on top of this formalisation, I could demon-
strate that Abstract Separation Logic can be used as a basis for realistic separation logic
tools. Moreover, this work demonstrates that it is feasable to implement such separation
logic tools inside a theorem prover. Holfoot is highly automated. It can verify Small-
foot examples automatically inside HOL4. Moreover, Holfoot can use the full power of
HOL4. This allows Holfoot to verify fully functional specifications. Simple fully func-
tional specifications can be handled automatically using HOL4’s tools and libraries or
external SMT solvers. More complicated ones can be handled using interactive proofs
inside HOL4. In contrast, most other separation logic tools can reason just about the
shape of data structures. Others reason only about data properties that can be solved
using SMT solvers.

Contents

1 Introduction 11
1.1 Introduction of Separation Logic, 11
1.2 Smallfoot 12
1.3 Short overview of Separation Logic Tools 13
1.4 Contributions of this work, 14

1.4.1 General overview 14
1.4.2 Capabilities of Holfoot 14
1.4.3 Contributions in Detail 15
1.4.4 Contributions to HOL4, 17
1.5 Structure of the thesis oo 17

2 Holfoot 19

2.1 Imput Language L 19
2.1.1 States 20
2.1.2 Pure Expressions 21
2.1.3 Predicates 22
2.1.4 Statements 26
2.1.5 Conditions 27
2.1.6 HOL4 Syntax 27
2.1.7 Programso 28
2.1.8 Specificationso 28

2.2 Introductory Exampleso 29
2.2.1 Recursive Implementation of List-Length 29

2.21.1 Localreasoning 30
2.2.1.2 Read/Write Permissions, 30
2.2.1.3 Internal Representation 31
2.2.1.4 Fully-Functional Specifications 32

4

2.2.2 Pointer Transferring Buffer Example 32

2.3 Annotating While-Loops 33
2.3.1 Loop Invariants 33
2.3.2 Loop Specifications 34
2.3.3 Examples 35

2.3.3.1 Array Increment Example 36
2.3.3.2 List Filtering Example 37
2.3.3.3 List Copy Example 38
2.3.3.4 Partial Datastructures 39
2.3.4 Unrolling Loops 41

2.4 Additional Constructs 42
241 assume /assert 43
24.2 diverge, failo 43
2.4.3 Block Specificationso 44
2.4.4 Annotating Memory Allocation 45
2.4.5 Assuming Procedures 45
2.4.6 Global Specification Variables 46

2.5 Imteractive Proofs 47
2.5.1 General Overviewo 47
2.5.2 Sum and Maximal Element of an Array Example 48
2.5.3 List Remove Example 0. 49
2.5.4 Mergesort Example oo 50
2.5.5 Circular List Example 52
2.5.6 Binary Search Tree Example 53
2.5.7 Insertion into Red-Black Tree Example 55

2.6 Extending Holfoot 56
2.6.1 Amortised Queue Example 57

2.7 Conclusion 58

3 Theoretical Foundation and Implementation 59

3.1 Notations 60
3.1.1 Sets . .. 60
3.1.2 Finite Maps 60
3.1.3 Multisets 61

3.1.4 Lists 61

3.2 Abstract Separation Logico 61

3.2.1 States and Predicates on States 61
3.2.1.1 Separation Combinators 62
3.2.1.2 Predicates 62
3.2.1.3 Separation Algebras 63
3.2.1.4 Product Separation Combinators 64
3.2.2 Actions 65
3.2.2.1 Semantic Hoare triples 65
3.2.2.2 Common Actions 66
3.2.2.3 Local Actions 67
3.2.2.4 Total Lattice of Local Actions 68
3.2.2.5 Best Local Action 69
3.2.2.6 Semaphore operations / Precise Predicates 70
3.2.2.7 Quantified Best Local Action 71
3.2.2.8 assume 71
3.2.3 Programs 72
3.2.3.1 Programs, Proto Traces, Traces 73
3.2.3.2 Semantics of Programs, Proto Traces, Traces 75
3.2.3.3 Comments on Semantics 76
3.2.4 Common Programming Constructs 7
3.2.4.1 Sequential Composition 7
3.2.4.2 Nondeterministic Choice 78
3.2.4.3 Conditional Execution / While Loops 78
3.2.4.4 Conditional Critical Regions 78
3.2.4.5 Infinite Nondeterministic Choice 79
3.2.5 Inference Rules 79
3251 FrameRule 80
3.2.5.2 Structural Rules 80
3.2.5.3 Basiccommands 81
3.2.5.4 Basic Program Compositions 82
3.2.5.5 Control Structures 82
3.2.5.6 Symbolic Execution 83
3.2.5.7 assume 84
3.2.6 Program Abstraction 85

3.2.7 Recursive Procedures 88

3.3

3.4

3.2.8 SUmMmMAary e 89

Variables as Resource oo 89
3.3.1 Stacks with Read / Write Permissions 90
3.3.2 Expressions 92
3.3.3 Predicates 93
3.3.3.1 Stack-Imprecise Predicates 93
3.3.3.2 Pure Predicates oo 95
3.3.3.3 Separating Conjunction on Lists 96
3.3.4 Normal Forms 97
3.3.5 Inference Rules 101
3.3.6 Program Constructs 102
3.3.6.1 Assume 103
3.3.6.2 Control Structures 104
3.3.6.3 Semaphore Operations 105
3.3.6.4 Procedure Calls, 105
3.3.6.5 Assignments 107
3.3.6.6 Local Variables 109
3.3.6.7 Quantified Best Local Actions 110
3.3.7 Frame Inference 110
3.3.7.1 Informal Discussion 110
3.3.7.2 Basic Definitions 111
3.3.7.3 Inference Rules 113
3.3.7.4 Solving Frame Inference Predicates 114
3.3.7.5 Frame Inference Algorithm 114
3.3.8 Implicit Information 0L 115
Holfoot o 116
3.4.1 States 116
3.4.2 Predicates 117
3.42.1 Points-To 118
3.4.2.2 Singly-Linked Lists 118
3423 Trees 119
3.4.2.4 Arrays . ..o ... 120
3.4.3 Program Constructs 121
3.4.3.1 Memory Allocation 122

3.4.3.2 Memory Deallocation 122

3.4.3.3 Heap Lookup L. 123

3.4.3.4 Heap Assignment L. 124

3.4.4 TImplicit Information 0L 124

3.4.5 Frame Inferenceo 126

3.5 Holfoot Implementation 129
3.5.1 Overview 129

3.5.2 Consequence Conversions 130

3.5.3 Quantifier Heuristics 131

4 Conclusion 133
4.1 Summaryo 133
4.2 Conclusion 134
4.3 Future Work 135
Bibliography 137
A Holfoot Installation 141
A.1 Imstallation of HOL4 141
A.2 Installation of Holfoot, 142
A.3 Testing Holfoot 143

B Example Specifications 145
B.1 Automatic Examples 145
B.1.1 General List Example 145

B.1.2 List Length o 146

B.1.3 List Reverse 147

B.1.4 List Copy e 147

B.1.5 List Append 148

B.1.6 List Allocation and Deallocation by Length 148

B.1.7 List Filter 149

B.1.8 Queue 150

B.1.9 Binary Tree Copy / Deallocate 151

B.1.10 Races 151

B.1.11 Bufferso 153

B.1.12 Memory Manager 153

B.1.13 Shape Property Versions of Interactive Examples 155

B.2 Interactive Examples 157

B.21 Tree Map 157
B.2.2 Tree Depth 157
B.23 List Remove 159
B.24 Circular List 161
B.2.5 List Filter 162
B.2.6 List Rotating 165
B.2.7 Factorial 166
B.2.8 TreeSum 167
B.2.9 Array Incremento 168
B.2.10 Array Copy 170
B.2.11 Array Reverse 172
B.2.12 Binary Searcho 173
B.2.13 Mergesort 175
B.2.14 Insertion Sort 176
B.2.15 Quicksort 178
B.2.16 Binary Search Tree 181
B.2.17 Red-Black Tree 184

B.3 VSTTE10 Competition 190
B.3.1 Problem 1 190
B.3.2 Problem 2 192
B.3.3 Problem 3 193
B.3.4 Problem4 194
B.3.5 Problem 5 198

C HOL4-Theorem Index 203
C.1 holfootTheory 203
C.2 separationLogicTheory 221

C.3 wvars_asresourceTheory 244

Chapter 1

Introduction

Separation logic [33] has become popular in recent years. In this work, a framework
for separation logic inside the HOL4 [13, 34| theorem prover is presented. The main
focus is generality. The framework is intended to be easily instantatiable for different
programming languages and different separation logics. As a case study a tool called
Holfoot is implemented in this framework. Holfoot is able to reason about the partial
correctness of programs written in a simple, low-level imperative language. It provides
a high level of automation. The main focus, however, is combining the automation of
separation logic with the power of interactive theorem provers. Holfoot can reason about
fully functional specifications using all the libraries and infrastructure provided by HOLA4.
Before going into any details, let’s have a look at separation logic in general:

1.1 Introduction of Separation Logic

Separation logic is an extension of Hoare logic. It was introduced by Reynolds [33] based on
previous work by Burstall [6] and O’Hearn et al. [30]. It aims at reasoning about mutable
data structures in combination with low level imperative programming languages that
use pointers and explicit memory management. Usually statements of a programming
language operate on a well defined part of the current state. Everything outside this
local state does not affect the execution of the statement and is itself not affected by the
statement. The main idea of separation logic is to exploit this locality.

Consider for example the statement x := [y] + 1, which looks up the value stored in
memory at the current value of variable y, increases it by one and stores the result in
variable x. This statement just needs to access the variables x and y as well as the
memory location [y]. All other variables as well as all other memory locations do not
influence the execution of the statement and remain unmodified. If the statement can
not access one of the resources x, y and [y], it fails. Therefore, whenever a Hoare triple
{P}x := [y] + 1{Q} holds, one knows that P somehow mentions x, y and [y] and that
the specification can be safely extended by a frame that is separate to P, i.e. describes a
separate part of the state.

In order to exploit such local reasoning, separation logic introduces a separating conjunc-
tion operator = and the frame inference rule:

Vprog, P, Q. {P} prog {Q} =
VR. {P = R} prog {Q = R}

11

12 CHAPTER 1. INTRODUCTION

The definition of the #-operator fixes the notion of separation. For different programming
languages, different representations of states, different verification goals, the concrete
definition of = changes considerably. The frame rule uses this notion of separation to
extend a specification with an unrelated part of the state. It is sound iff all statements of
the programming language are local with respect to the notion of separation used.

The idea of local reasoning extends to concurrency as well. For the simple case of non
interfering parallel composition the following rule can be used:

Vprogl, P17 Q17 prog,, PQ, QQ.
({P1} prog; {@1} A {P»} prog, {Q2}) =
{P1 = P2} prog; || progy {Q1 * Q2}

1.2 Smallfoot

The first separation logic tool was Smallfoot [2, 3]. Smallfoot uses a simple, imperative,
low level programming language. This language operates on a stack that maps variables
to values and a heap that maps locations to records of values. The entries in the record
are indexed by tags represented by strings, values are integers and locations are positive
integers. There are statements for assigning a value to a variable, lookup of a heap entry,
updating a heap entry and explicit allocation and deallocation of heap cells. As control
structures there are conditional execution and while-loops. Smallfoot supports procedures
that can use local variables, call-by-reference and call-by value parameters and recursion.
Concurrency is supported by parallel procedure calls as well as conditional critical regions,
which protect access to certain resources.

Smallfoot can automatically reason about shallow properties of programs written in this
simple language. It is mainly interested in the shape of datastructures in memory. Small-
foot does not prove termination, i.e. only partial correctness is considered. The speci-
fication is given in terms of pre- and postconditions for procedures. In order to prove
such specifications, Smallfoot requires programs to be annotated with loop invariants and
invariants for the resources used by conditional critical regions. Given such annotations,
Smallfoot works automatically.

Instead of using backwards analysis and the generation of verification conditions, Small-
foot uses symbolic execution. Moreover, local updates as well as an automatic method to
calculate frames were introduced by Smallfoot. A typical Smallfoot-example is the above
mentioned reversal of a singly-linked list:

list_reverse(i;) [list(i)] {

local p, x;

p = NULL;

while (i !'= NULL) [list(i) = list (p)] {
X = i->tl;
i->tl = p;
p =1
i=x;

by

i=p;
Y [list (i)]

1.3. SHORT OVERVIEW OF SEPARATION LOGIC TOOLS 13

This pseudocode algorithm in the syntax of Smallfoot takes an argument i that points to
the beginning of a singly-linked list and reverses this list in-place. In order to do that, an
auxiliary list is constructed that is pointed to by the local variable p, which is initialised
by the null-pointer. The loop then chops off the first element of the list starting at i and
adds it as the head of the list p. When the loop terminates the list pointed to by 1 is
empty and p contains the reversed list.

Notice, that the specification of this algorithm talks just about the shape of data struc-
tures. At the beginning there is a singly-linked list starting at i and at the end there
is still a list starting at i. Nothing is said about the data content or that the list gets
reversed by this algorithm. Similarly, the loop invariant just states that there are two
lists in separate parts of the memory.

1.3 Short overview of Separation Logic Tools

Since Smallfoot several other separation logic tools have been developed for various pur-
poses. One extension was to extend automation by infering loop invariants [11, 22].
Moreover, the simple pseudo-code language of Smallfoot was replaced by real-world pro-
gramming languages. Results are tools like Space Invader or SLAyer, which can auto-
matically reason about shallow properties of large C programs. Using a new technique
called abduction [8] the tool Space Invader Abductor is even able to discover procedure
specifications. Other tools focus on object orientation. Tools like JStar [10] can reason
about shallow properties of Java programs.

Smallfoot supports concurrent separation logic [5], which provides a parallel composition
operator and conditional critical regions. Locks for these critical regions have to be prede-
fined and annotated with a lock-invariant that describes the part of the state protected by
the lock. Interest in fine grained concurrency has led to the introduction of permissions by
Bornat, Calcagno, O’Hearn and Parkinson [4, 31]. Furthermore, Vafeiadis introduced a
marriage of rely/quarantee and separation logic [37] and implemented his ideas in the tool
SmallfootRG. This line of work has recently resulted in Deny-Guarantee reasoning [12].
Another approach by Gotsman et al. is to allow storeable locks, i.e. locks that can be
dynamically created at runtime, and fork-join primitives for parallel programs [14, 15].

Besides improving reasoning about concurrency, automatically infering specifications and
moving to real world programming languages, another focus of tool development are
deeper properties. Examples are the tools VeriFast [18, 19] and HIP [26]. Even using
powerful automated tools like external SMT solvers, it is very hard to prove deep proper-
ties automatically. Therefore, these tools are to varying degrees interactive. HIP allows
users to verify remaining proof obligations interactively with external provers. VeriFast
supports a very rich annotation language. Users can even add lemma-functions to the
program which act like interactive proof scripts. So, the distinction between automatic
and interactive tools becomes fuzzy as soon as deep properties are considered.

There are formalisations of separation logic inside theorem provers that go all the way and
are clearly interactive. There are several formalisations of separation logic in Coq [24].
Appel and Blazy [1], Tuch, Klein and Norrish [35] as well as McCreight [25] use for-
malisations of separation logic in Coq to reason about Cminor [21]; Marti, Affeldt and
Yonezawa [23] reason about programs in their own, low-level imperative language. A

14 CHAPTER 1. INTRODUCTION

formalisation of separation logic in Isabelle/HOL [27] by Kolanski and Klein [20] is able
to reason about a large subset of C. Another formalisation in Isabelle/HOL by Weber [38]
uses a simple while language. All these formalisations allow interactive reasoning about
deep properties. However, there is little automation. Another formalisation of separation
logic is YNot [9]. YNot extends Coq’s functional programming language with imperative
constructs and allows reasoning about these imperative constructs. Compared with the
other formalisations, there is a high level of automation.

1.4 Contributions of this work

1.4.1 General overview

I developed a separation logic framework inside the HOL4 [13,; 34] theorem prover. In
contrast to other formalisations in theorem provers, this framework is intended to be
usable for different programming languages and different flavours of separation logic. The
framework is based on Abstract Separation Logic [7], an abstract, high-level variant of
separation logic by Calcagno, O’Hearn and Yang. Reasoning about partial correctness and
concurrent separation logic [5] are built deep into Abstract Separation Logic. Termination
proofs and different concepts of concurrency like fork-join constructs are not supported.

I instantiated this framework to build Holfoot, a tool similar to Smallfoot [3]. This in-
stantiation consists of two steps: first a stack with with read / write permissions is added
following ideas of Parkinson, Bornat and Calcagno [31]. This still rather abstract layer al-
lows reasoning about most of the concepts needed by Holfoot. For example, local variables
and procedure calls with call-by-reference and call-by-value parameters can be handled
at this layer. Holfoot supports only pure expressions and conditions of control structures,
i.e. expressions and conditions that involve just the stack. Therefore, all the reasoning
about variable assignments and control structures like while-loops or conditional execu-
tion can be handled at this layer. Moreover, most of the frame computation rules can be
formalised here.

In the second step, a heap is added to the model. This allows defining commands like heap-
lookups and heap-assignments as well as commands for the allocation and deallocation of
heap-cells. Additionally, all the predicates involving the heap like predicates describing
a singly-linked list or a binary tree in the heap are defined at this layer. However, there
is comparably little effort needed at this layer. Most of the work is done at the upper
layers. Since this is the view a user of Holfoot gets of the system, there is a parser and a
pretty printer for this layer.

1.4.2 Capabilities of Holfoot

Holfoot is highly automated. It can verify most Smallfoot examples automatically inside
HOL4. However, it uses the infrastructure provided by HOL4 to go beyond the features
of Smallfoot. Holfoot allows reasoning about the content of data-structures instead of
just their shape. Thus, one can use Holfoot to verify fully functional specifications. Many
simple fully functional specifications can be handled automatically. More complicated
specifications, like a fully functional specification of quicksort or insertion into a red-black

1.4. CONTRIBUTIONS OF THIS WORK 15

tree, can be tackled interactively. The quicksort example also demonstrates that Holfoot
can — in contrast to Smallfoot — handle arrays and pointer arithmetic.

If Holfoot is used interactively, all the libraries and tools of HOL4 can be utilised. This
includes infrastructure for reasoning about datatypes like lists or sets, some support for
arithmetic reasoning or even support for calling external SMT solvers. Often using HOL4’s
infrastructure for introducing new definitions and the organisation of lemmata is useful
as well.

1.4.3 Contributions in Detail

To my knowledge this work presents the first formalisation of Abstract Separation Logic
inside a theorem prover. A formalisation inside a theorem prover increases the trust in
Abstract Separation Logic, i.e. it increases the trust that all the detailed definitions and
constructions of Abstract Separation Logic really fit together without problems. More
importantly though, by building Holfoot on top of this formalisation, I could demonstrate
the power and flexibility of Abstract Separation Logic. Smallfoot is a relatively simple
separation logic tool and therefore a good choice for a formalisation. Its programming
language has few instructions and there is a simple model of the state. Despite that, the
techniques used by Smallfoot are still at the core of more recent separation logic tools
like JStar or Space Invader. Building a formalisation of Smallfoot on top of Abstract
Separation Logic therefore demonstrates that the other tools can be based on it, too.

In order to build Holfoot, a lot of minor technical and theoretical problems had to be
solved. These problems and their solutions will be explained later in detail, here I will
just point out a few highlights. I extend Abstract Separation Logic slightly. The most
noticeable change is adding procedures. Ignoring some minor technical details, the for-
malisation of Abstract Separation Logic is otherwise close to its original presentation [7].

The second layer of abstraction, i. e. the introduction of a stack, follows ideas of Parkinson,
Bornat and Calcagno presented in Variables as Resource in Hoare Logics [31]. In contrast
to the Abstract Separation Logic layer this layer is only loosely related to the original
paper [31], because I adapted these ideas to Abstract Separation Logic. For example, I
had to express local variable declarations and call-by-value arguments of procedure calls
in the Abstract Separation Logic setting. I also extended the notion of stack-imprecise
predicates and formalised a notion of semantic substitutions. There are a lot of minor
problems that needed addressing. The most important one is how I address the frame
problem. By adding a context I eliminated the need to be extremely careful about the
order of steps taken. This technique has meanwhile been adapted by other tools like
JStar. Moreover, I use a continuation style that allows unifying the frame and entailment
problems.

The Holfoot layer is a formalisation of Smallfoot. I could use the syntax of the program-
ming language including parts of the grammar for the parser generator, some rough ideas
about the semantics and a general idea of high-level inference rules needed. A lot had to
be modified considerably, though. Other parts of Holfoot are hardly related to Smallfoot
at all. There are good reasons for these differences. One reason is that Smallfoot [2, 3] de-
fines the semantics of the programming language in terms of high-level inference rules for
symbolic execution. In contrast, Holfoot is using Abstract Separation Logic, which means

16 CHAPTER 1. INTRODUCTION

that an operational semantics is given for instructions like a heap-lookup. The high-level
inference rules are derived from these definitions and the semantics of Abstract Separation
Logic. In general, Smallfoot is mainly interested in reasoning about so called verification
conditions. These verification conditions consist of Hoare triples for straight-line code, i. e.
code without loops, procedures and local variable declarations and constructs for concur-
rency like parallel compositions or conditional critical regions. It is not well documented
how these verification conditions are generated, i.e. how loops, procedure calls and syn-
chronisation primitives are removed from the input. Holfoot replaces all procedure calls
during preprocessing with their specifications. Similarly, conditional critical regions are
abstracted. The result is similar to Smallfoot’s verification conditions. However, all these
steps are done by proof and the stack is an integral part of these transformations.

These differences in how the semantics are defined result in additional effort on the side of
Holfoot to come up with high-level inference rules. A much more important reason why
little of Smallfoot can be used for Holfoot is that Holfoot is interested in fully-functional
specifications and interactive proofs. In order to allow fully-functional specifications,
data-content was added to the predicates used by Smallfoot. Moreover, arbitrary HOL4
terms are allowed for describing this data-content and sideconditions. This data-content,
handling stack-variables explicitly and using a context for frame calculations require sig-
nificant modifications and extensions to Smallfoot’s inference rules. Moreover, Holfoot
supports additional constructs. There are arrays and pointer arithmetic. These require
generalisations of the heap allocation and deallocation statements as well as new predi-
cates and inference rules.

Interactivity is another important reason why Holfoot differs considerably from Smallfoot.
I assume an experienced, intelligent user. The philosophy of Holfoot is to give this user
all the power and as much information as possible, while of course trying to maintain
an as high level of automation as possible. In contrast, Smallfoot puts the emphasis on
automation. Holfoot’s philosophy results in simple things like preserving as much of the
structure of the input during proofs in order to allow the user to use its intuition about
the program. With the same goal comments are introduced that help understanding
the origin of proof obligations. More importantly though, Holfoot’s automation should
never do any guessing that might lead the verification process down a wrong track. The
inferences used are usually proper implications. When applying them, some information
is lost. Only inferences rules that are unlikely to loose important information should
be applied automatically. Effort has been spent to develop such inference rules. Good
examples are Smallfoot’s inferences for the frame and entailment problems. To avoid
problems, Smallfoot is applying two groups of inference rules in the right order. I was
able to avoid most of these problems by adding a context to the frame / entailment
calculations. Another example for Holfoot’s philosophy are case-splits. Sometimes a
case-split is necessary and there are a few heuristics about likely candidates for a case
split. For Smallfoot and Holfoot running automatically these case-splits are very useful.
Interactively, it is often much better to ask the user, who hopefully has some insight
in how the program is supposed to work, for help instead of trying possibly the wrong
case-split.

With the same motivation of empowering the user, I implemented additional annotations
in Holfoot. I added assume and assert statements to Holfoot. Assume statements are used
to model conditional execution and while-loops. They can be used on their own as well,
though. Assume statements are limited to assuming pure predicates, i. e. they can’t talk

1.5. STRUCTURE OF THE THESIS 17

about the heap. Asserts, on the other hand, can use arbitrary predicates. They trigger a
frame calculation and can easily be used to fold or unfold predicates manually or derive
facts that are only implicitly present. More interesting and useful are block-specifications,
though. They allow annotating a block of code with a pre- and a post-condition. This
code is then abstracted with this specification. A special case are block-specifications,
whose first statement is a while-loop. These loop-specifications are an alternative to loop-
invariants. They allow the user to exploit local reasoning for while-loops and lead often
to simpler, more natural specifications. I presented this idea at the VSTTE’10 Theory
workshop [36].

1.4.4 Contributions to HOL4

Besides this work on separation logic constructs, I worked on the general theorem proving
infrastructure of HOL4 as well. There are a lot of minor technical additions that proved
useful for Holfoot. For example, I extended HOL4’s pretty-printer in order to implement
syntax highlighting for Holfoot. Other noticeable additions include work on HOL4’s list
and pair libraries. Most prominent and by far the largest parts of my work on general
theorem proving infrastructure are however the consequence conversion and quantifier
heuristic libraries.

As mentioned above, most of the inferences used by Holfoot are implications. The au-
tomation mainly consists of applying these inference until either the problem is solved or
no further inference can be applied. This represents a kind of rewriting using implica-
tions instead of equalities. There was no infrastructure in HOL4 for this. My library for
consequence conversions provides the necessary infrastructure. It is at the very heart of
Holfoot’s automation as it is used to apply Holfoot’s inference rules.

The quantifier heuristics library is used to guess quantifier instantiations. Especially due
to considering data-content, many existential quantifiers occur during verification. HOL4
provides infrastructure for instantiating them in simple cases. Unfortunately, these simple
methods were not sufficient to achieve a high level of automation for Holfoot. Therefore,
[implemented a new library for quantifier instantiations. This library uses user-definable
heuristics to guess instantiations. It is much more powerful than previous tools available
in HOL4. In particular it is able to use consequence conversions in order to implement
guesses that it can not prove to be justified. Moreover, it is able to instantiate quantifiers
only partly. If, for example, it is searching for a list and it can be determined that the
list is not empty, then it can instantiate that list with a non empty list whose head and
tail are still quantified. The quantifier heuristics library is an essential part of Holfoot.
Especially partial instantiations are crucial for Holfoot’s automation.

1.5 Structure of the thesis

The rest of this thesis is separated into two main parts: Chapter 2 and Chapter 3. The first
part, i.e. Chapter 2, consists of a high-level presentation of Holfoot. No implementation
details and no theoretical background are discussed here. The reader does not need to
know HOL4 or separation logic.

I present the features of Holfoot using concrete example specifications. Many of these
specifications can be verified completely automatically. Thanks to the availability of

18 CHAPTER 1. INTRODUCTION

a precompiled command-line version of Holfoot, the user does not even need to know
that Holfoot is implemented using HOL4 for these automated examples. For interactive
examples, some exposure to HOL4 cannot be avoided. I try to explain the basic proof
ideas while avoiding HOL4 details as much as possible.

Chapter 3 contains the theoretical foundations of the framework and of Holfoot. These
foundations are presented in a mathematical style. Readers not familiar with HOL4 should
be able to read and understand it. Important definitions and lemmata are, however,
cross-referenced with their HOL4 counterparts. This should enable the interested reader
to check that the mathematical concepts are faithfully formalised in HOL4. Moreover,
this cross-referencing enables HOL4 developers to use the mathematical descriptions as
a documentation of the HOL4 theories. Besides the theoretical foundations, Chapter 3
also briefly mentions technical background, especially the consequence conversion and
quantifier heuristic libraries.

Chapter 4 contains conclusions and future work. The index of HOL4 theorems can be
found in the appendix. The appendix contains instructions on installing Holfoot and
additional Holfoot example specifications as well.

Chapter 2

Holfoot

Holfoot is a formalisation of Smallfoot [2, 3] inside the HOL4 [13, 34] theorem prover.
Smallfoot is an automated separation logic tool. It is able to reason about the par-
tial correctness of programs written in a simple, low-level imperative language, which is
designed to resemble C. This language contains pointers, local and global variables, dy-
namic memory allocation/deallocation, conditional execution, while-loops and recursive
procedures with call-by-value and call-by-reference arguments. Moreover, concurrency is
supported by conditional critical regions and a parallel composition operator. Smallfoot-
specifications are concerned with the shape of datastructures in memory. Their content
is not considered.

Smallfoot comes with a selection of example specifications. There are common algorithms
about singly-linked lists like copying, reversing or deallocating them. Another set of
examples contains similar algorithms for trees. There is an implementation of mergesort,
some code about queues, circular-lists, buffers and similar examples.

Holfoot is a formalisation of Smallfoot. Thus, it can verify most Smallfoot examples com-
pletely automatically (see Appx. B.1). However, it extends Smallfoot to reason about the
content of datastructures. Moreover, there is support for arrays and pointer arithmetic.
Being aware of the data-content allows Holfoot to reason about fully-functional specifi-
cations. Simple fully-functional specifications like reversal of a singly-linked list can be
verified automatically. For more complicated examples like a fully-functional specifica-
tion of mergesort or insertion into a red-black-tree, Holfoot supports user-interaction (see
Appx. B.2). In interactive mode, all the libraries and tools of HOL4 can be used.

This chapter contains a high level presentation of Holfoot. Many examples are used to
illustrate Holfoot’s features. This chapter does not explain Holfoot’s semantic foundation
or its implementation. Instead, the theoretical foundations and a few glimpses at its
implementation are presented in Chapter 3.

2.1 Input Language

Holfoot can reason about the partial correctness of programs written in a simple, low-
level imperative programming language. Its input consists of a list of specified procedures

19

20 CHAPTER 2. HOLFOOT

written in this language. A simple example, which can be verified automatically by
Holfoot, is a recursive implementation of determining the length of a singly-linked list
(see Appx. B.1.2).

list_length(r;c) [data_list(c,cdata)] {

local t;

if (c == NULL) {
r = 0;

} else {
t = c—->tl;

list_length(r;t);
r=r +1;
}
} [data_list (c,cdata) x (r == “LENGTH cdata”)]

Smallfoot uses a very similar input language. The languages differ mainly in the type
of specifications that are allowed. Holfoot allows talking about the data-content and
supports arrays. Moreover, Holfoot provides a richer annotation language. In contrast,
Smallfoot supports only predicates describing the shape of data-structures. However,
there are predicates for double- and XOR-linked lists that are not supported by Holfoot.

2.1.1 States

Holfoot’s programs operate on states that consist of a stack and a heap. Stacks are finite
maps from variables to values and permissions. Permissions are read- or write-permissions.
Values are natural numbers, i.e. non-negative integers including 0. Variables are just
identifiers, i. e. they are represented as strings.

Values & No

def

Perms {read, write}

Vars < 8 trings

Stacks < Vars 2 (Values x Perms)

A heap is a finite map from locations to named records of values. Locations are natural
numbers excluding 0. The named record is represented as a map from tags to values.
These tags are identifiers used to index the entry in the record. They are represented as
strings.

Locations % Values\{0} = N

Tags g trings

Heaps % Locations (Tags — Values)

Example 2.1.1. Figure 2.1 illustrates an example Holfoot state. There are stack variables
x,y and z with some given values. The stack contains read-permission for the variables x
and y and write-permission for z. The heap is allocated at four locations (22,65,34,12).
For each of these locations the stored record consists of entries for the tags 1, r and dta.

On the semantic level, the state contains a binary tree with root x. At each allocated
location of the heap one node of the tree is stored. These nodes contain a pointer to their

2.1. INPUT LANGUAGE 21

22 | |: 65 |r: 34| dta: 32
65 | I:0 |r: 12| dta: 45 34 | |I:0 | r: 0 | dta: 18

H x| 22

y 12 (r)
12 1:0 | r: 0 | dta: 2 7 24 (w)

Figure 2.1: Holfoot example state 1

left and right children and a data element. These parts of the nodes are labeled with
the tags 1, r and dta, respectively. Notice, that the arrows in the diagram are just for
illustration purposes.

2.1.2 Pure Expressions

All expressions supported by Holfoot are pure, i.e. they do not depend on the heap.
Therefore, pure expressions in Holfoot are partial functions from stacks to values. They
are partial, because the evaluation of a pure expression fails, if it can’t access all the
stack-variables it needs. Holfoot supports the following pure expressions:

x (variables)
A variable-expression x looks up the value of x in the stack. If the variable is present,
its value is returned. Otherwise the expression fails.

NULL, O, 1, ..., #c (constants)
A constant always returns its value. NULL is a synonym for 0. The expression #c
allows to use a specification variable ¢ as a constant.

_c (existentially quantified constant)
_c represents an existentially quantified constant c.

e; op ey (binary operations)
Binary operations like addition (+), monus (=), integer devision (/) and modulo (%)
are supported between expressions. Notice, that expressions evaluate to natural
numbers. Therefore monus and integer division are used.

“‘hol‘‘ (HOLA4 expression)
HOL4 quotations can be used to introduce additional expressions and especially ad-
ditional operations between expressions. hol has to be a HOL4 term that evaluates
to a natural number. Program variables that occur in hol are replaced with their
value. To express for example the maximum of two program variables x and y, the
expression ‘ ‘MAX x y‘‘ can be used.

0ld(x) (old value of a variable)
old can under certain circumstances be used to get the value of a variable before
some operation. It will be discussed later.

22 CHAPTER 2. HOLFOOT

Example 2.1.2. Let e=v denote that the expression e is evaluated to the value v in
the stack illustrated in Figure 2.1. Then the following pure expressions are evaluated as
follows:

X = 22 12 =12 Xx+w = fail
y =12 #c =c x-50 =0
W = fail x+1=23 2% (x+1) =46
NULL = 0 x+y=34 CMAX x y© = 22

2.1.3 Predicates

Predicates on states are sets of states. They can also be seen as functions that given
a stack and a heap return whether this state is accepted by the predicate. Some of
these predicates describe datastructures in the heap. For the data content of these data-
structures, data expressions are used. A data expression is either a constant data, an
existentially quantified constant _data or a HOL4-quotation ¢ ‘hol‘°.

emp (empty heap)
emp demands that the heap is empty, i.e. that no memory cell is allocated. The
stack does not need to be empty! Arbitrary stacks are accepted.

e; op ey (pure comparison)
These predicates compare the values of two expressions. All stacks that satisfy this
comparison are accepted; the heap has to be empty. Valid comparison operators
are == (equal), !'= (not equal), < (less), <= (less or equal), > (greater), >= (greater
or equal). For parsing purposes, e; has to be a simple expression, i.e. it has to be
either a variable or a constant.

“‘hol‘ ‘¢ (pure HOL4 predicate)
This predicate is similar to a pure comparison. It allows, however, using HOL4
predicates. The heap has to be empty again and the stack has to satisfy the predicate
described by hol. Notice, that hol may contain stack-variables. This predicate is
very useful for expressing Boolean sideconditions.

e |-> [ty:e],ty:e9,...] (points-to)
This predicate describes a single heap-cell. Any stack that is able to evaluate all
the expressions is accepted. The heap needs to consist of a single cell at location
e. The record stored at this location contains for tag t; the value of ey, for t, the
value of ey, etc. Notice, that the record contains additional tags as well, since by
definition it contains an entry for every tag.

For parsing purposes, e has to be a simple expression, i.e. it has to be either a
variable or a constant. Since this is sometimes inconvenient, there is the alternative
notation pointsTo(e, [t;:e;,ty:ey,...]) that supports all expressions.

Example 2.1.3. Consider the state shown in Figure 2.2. This state satisfies the
predicate x |-> [r:y,1:65]. The extended state shown in Figure 2.3 does not
satisfy this predicate, however.

2.1. INPUT LANGUAGE 23

X 22 (r)
22 | I: 65 |r: 12 | dta: 32 y 12 (r)
z 24 (w)

Figure 2.2: Holfoot example state 2

22 | 1: 65 |r: 12| dta: 32 X 22 (1)
y 12 (r)
24 dta: 2 z] 24w

Figure 2.3: Holfoot example state 3

p; * p, (separating conjunction) The separating conjunction operator * requires that
the state can be split into two separate parts such that one part satisfies the predicate
p; while the other satisfies p,. Heaps and stacks are split independently.

Splitting a heap h is easy. A subset of the locations of h form a new heap hy, the
remaining locations form the second heap hs.

Splitting stacks is more complicated, since permissions have to be taken into con-
sideration. Luckily, most of the time it is not necessary to split stacks. All predi-
cates used by Holfoot only need read permissions on stack variables. Since a read-
permission can be split into arbitrarily many read-permissions, the stack can be split
into arbitrarily many parts that are equivalent to the original stack with respect to
predicates. Thus, there is no need to split the stack. The original stack can be used
for p, and p,.

Example 2.1.4. Let’s consider the state shown in Figure 2.3. This state does not
satisfy the predicate x |-> [r:y,1:65], because the location z is not described
by this predicate. The state satisfies x |-> [r:y,1:65] * z |-> [dta:2]. Pure
predicates can be added as well, since pure predicates take an empty part of the
heap. So, x |-> [r:y,1:65] * z |-> [dta:2] * x != y is satisfied as well.

data_lseg(tag;e,,dtag:data,e,) (singly-linked list segment)
The predicate data_lseg(tag;e,,dtag:data,e,) describes a segment of a non-
cyclic singly-linked list. The first node of the list-segment is stored in the heap at
the location described by e;. Each node points to the next node via the tag tag.
The last node points to the value of e,. If e; and ey evaluate to the same value,
then the list-segment is empty. The list-segment contains the data data indexed by
tag dtag.

Singly-linked lists are very common in Holfoot. Therefore, there are many abbrevi-
ations and variants:

e tag can be omitted. It then defaults to t1.

e dtag can be omitted. It then defaults to dta.

e data_list(e,data) is an abbreviation of data_lseg(e,data,NULL). This
represents a null terminated singly-linked list.

24 CHAPTER 2. HOLFOOT

| v v

22 | tI: 65 | dta: 1 65 | tl: 12 | dta: 2 12 | tl: 81 | dta: 3
X 22 (r) ‘
y 12 (r) 24 | tl: 0 | dta:5 81 |tl: 334 | dta: 4
z 24 (w) f ‘

Figure 2.4: Holfoot example state 4

o lseg(e,,ey) describes a singly-linked list segment without specifying the data-
content.

e list(e) is an abbreviation of 1seg(e,NULL). So, it represents a null termi-
nated singly-linked list without data.

Example 2.1.5. Consider the state shown in Figure 2.4. This state satisfies the
predicate data_list(x, ‘‘[1;2;3;4;5]¢¢). The predicate 1list(x) that does not
specify the data-content of the list holds on this state as well. Moreover, the predi-
cate data_lseg(x,“‘[1;2]“‘,y) * data_list(y, ‘‘[3;4;5]°‘) is satisfied.

data_tree(tagl;e,dtagl:data) (n-array trees)
The predicate data_tree(tagL;e,dtagl:data) describes a tree. The root of the
tree is stored in the heap at the location described by e. Each node points to its
children via the tags in tagL. NULL is used to denote leaves. Each node contains the
data indexed by the tags in dtagL.

The argument data is a functional representation of the tree. It is either a leaf
leaf or a node node valuel treeL. The list valueL contains the values indexed
by dtagL. treeL is a list of functional representations of the trees, whose roots are
indexed by tagL.

Trees are common in Holfoot, especially binary ones. Therefore, there are many
abbreviations and variants:

e tagL can be omitted. It then defaults to [1,r].

e dtagL can be omitted. It then defaults to [dtal.

e tree(t;,ty,e) is a binary tree without data that uses that tags t; and ts to
point to child nodes.

e tree(e) is an abbreviation of tree(1,r,e).

Example 2.1.6. Consider the state shown in Figure 2.1. This state satisfies the
predicate tree(x). Considering the data-content, the state is as well described by

data_tree(x, ‘‘node [32] [node [45] [leaf; node [2] [leaf; leaf]];
node [18] [leaf; leaf]]‘‘)

2.1. INPUT LANGUAGE 25

22 | dta: 1l
X 22 (r)
23 | dta: 2 y 12 (r)
z 24 (w)
24 | dta: 3

Figure 2.5: Holfoot example state 5

data_array(e,,e,,dtag:data) (array)
The predicate data_array(e,,e;,dtag:data) describes an array. The expression
e; evaluates to the starting location [, the expression ey to the length n. The array
is stored in the heap at locations [, [+ 1, ...l + (n—1). The array contains the data
data in these heap-locations indexed by the tag dtag.

There are many abbreviations and variants of arrays:

e dtag can be omitted. It then defaults to dta.
e array(e,,ey) describes an array without specifying its data content.

e data_interval(e;,ey,dtag:data) uses the last location of the array instead
of its length. It is defined as data_array(e,, (e;+1)-e;,dtag:data).

e interval(e;,e,) describes an interval without specifying its data content.

Example 2.1.7. Consider the state shown in Figure 2.5. This state satisfies the
predicates data_array(x,3, ¢ “[1,2,3] ‘) and array(x,3). The state is described
by data_interval(x,z, ‘‘[1,2,3]¢¢) as well.

if (e; == ey) then pred; else pred, (conditional predicate)
This predicate checks whether the expressions e; and e, evaluate to the same value.
If this is the case the predicate pred; has to hold, otherwise pred, is required to
hold. If the else part is omitted, pred, defaults to emp.

if (e; !'= ey) then pred; else pred, (conditional predicate)
This predicate is equivalent to if (e; == ey) then pred, else pred,.
map (\v; ... v,. pred) data (separating map)

This predicate describes mapping the predicate pred over the list data and com-
bining all resulting predicates using the separating conjunction operator *.

Example 2.1.8. data_array(x,3,“‘[1,2,3]“¢) describes an array (see Fig. 2.5).

This array can also be described by pointsTo(x + 0, 1) * pointsTo(x + 1, 2)
* pointsTo(x + 2, 3) and therefore by

map (\n v. pointsTo(x + #n, #v)) ‘[(0,1);(1,2);(2,3)]¢¢

26 CHAPTER 2. HOLFOOT

2.1.4 Statements

Holfoot supports the following statements:

x = e (Assignment)
evaluates the expression e and stores the result in stack-variable x. The assignment
fails, if e cannot be evaluated or there is no write-permission for x.

x = e->t (Heap Look-Up)

e is evaluated and interpreted as a heap-location [. The value indexed by tag t at
this location [is looked up and stored in variable x. The execution of this statement
fails, if [is not allocated in the heap, the stack does not contain write permission
for x or the expression e cannot be evaluated.

e;—>t = ey (Heap Assignment)
e; is evaluated and interpreted as a heap-location [. The value indexed by tag t at
this location [is updated by the value of expression es. This statement fails, if e;
or e, cannot be evaluated or if [is not allocated in the heap.

x = new(e) (Memory Allocation)
The expression e is evaluated and interpreted as a size s. Then s consecutive heap
cells are allocated and the location of the first cell is stored in variable x. This
means that after the successful execution of this statement, the locations x, x + 1,
. x4+ (s — 1) have been added to the heap. This command fails, if e cannot be
evaluated or there is no write-permission for x.
x = new() (Memory Allocation of Single Cell)

shorthand for x = new(1)

dispose(e;, e2) (Memory Deallocation) e; and e, are evaluated. e; is interpreted
as a heap location [and e, as a size s. Then s consecutive heap cells starting at
location [are deallocated, i.e. the locations [,1 4+ 1,...1 + (s — 1) are removed from
the heap. This command fails, if e; or ey cannot be evaluated or if one of the
locations [, + 1,...01 4 (s — 1) is not allocated in the heap.

dispose(e) (Memory Deallocation of Single Cell)
shorthand for dispose(e, 1)

Remark 2.1.9. Notice that a statement of the form e;->t; = eys—>t, does not exist and
that for example e;=>t; + 1 is not a valid expression.

There are also constructs which are technically statements, but which are used for speci-
fication purposes. These constructs include:

assume (cond) (Assume)
assume (cond) assumes that the condition cond holds. If this condition holds in the
current state, assume (cond) skips. Otherwise it diverges.

assert(pred) (Assert)
assert(pred) asserts that a substate of the current state satisfies the predicate
pred. If this is the case, it skips. Otherwise it fails.

diverge, fail
diverge always diverges. fail fails.

2.1. INPUT LANGUAGE 27

2.1.5 Conditions

These statements are extended to programs by adding sequential composition, control
structures, procedure calls and conditional critical regions. Before these can be presented,
conditions for the control structures have to be introduced first.

Holfoot supports the following conditions:

true, false

the constant true and false conditions

e; op e (Comparison)

This condition compares the values of two expressions. Valid comparison operators
are == (equal), !'= (not equal), < (less), <= (less or equal), > (greater), >= (greater
or equal). For parsing purposes, e; has to be a simple expression, i.e. it has to be
either a variable or a constant. If either e; or e; cannot be evaluated, the evaluation
of the condition fails.

not(cond), cond; and conds, cond; or conds (Boolean Operators)

The Boolean operators not, and and or can be used to combine conditions.

“‘hol‘‘ (HOL4 Condition)

Quoted HOL4 terms that may contain program variables can be used as conditions.

2.1.6 HOL4 Syntax

Expressions, conditions and data expressions can contain quoted HOL4 terms. These
terms can use arbitrary HOL4 constructs. They may even contain user-defined functions.
An introduction to HOL4 and its libraries is outside the scope of this presentation. Here
just a few of the most common constructs are listed:

/\, \/, ~ and ==> denote the Boolean conjunction, disjunction, negation and impli-
cation operators.

Universal quantification is denoted by ’!’; existential quantification by ?’. The term
'x y. P x y for example means that P holds for all arguments x and y.

[] denotes the empty list, [el;e2;e3] the list with 3 element el, e2 and e3.
e::1 denotes the list consisting of an element e followed by a list 1.

EL n 1 denotes the n-th element of the list 1. As counting starts with 0 the term
EL 1 [0;1;2] evaluates to 1.

MEM e 1 denotes that e is an element of the list 1.

11 ++ 12 denotes appending the lists 11 and 12.

MAP f 1 denotes mapping the function f over the list 1.

EVERY P 1 denotes that the predicate P holds for all elements of 1.
PERM 11 12 denotes that 11 and 12 are permutations of each other.

SORTED $<= 1 denotes that 1 is sorted according to the less or equal relation.

28 CHAPTER 2. HOLFOOT

2.1.7 Programs

Holfoot supports the following programs:

s (single statements)
A statement is a program.

P15 Pys; --- P, (sequential composition)
The sequential composition of programs is a program.

if cond then prog, else prog, (conditional execution)
There is conditional execution. The else-clause is optional.

if (*) then prog, else prog, (non-deterministic choice)
A non-deterministic choice construct is available.

while cond prog (while loop)
There are while loops.

with r when cond prog (conditional critical region)
A conditional critical region waits until it can acquire the lock that protects resource
r and until the condition cond holds. Then program prog is executed and the lock
released.

procedureName (refArgs;valArgs) (procedure call)
Holfoot supports procedure calls. Procedures posses call-by-reference and call-by-
value arguments. Call-by-reference arguments have to be variables, call-by-value
arguments expressions. These expressions are evaluated and the procedure called
with the resulting values.

procName, (rargs,;vargs,) || procName, (rargs,;vargs,) (parallel procedure call)
Procedures can be called in parallel. The call-by-value arguments of both procedure
calls are evaluated before the concurrent execution starts.

2.1.8 Specifications

Programs provide control structures, procedure calls and operations for concurrency.
However, it remains to be seen, how to declare procedures and locks. Moreover, these
procedures need to be specified. Holfoot’s input are specifications. A specification consists
of a list of resource and procedure declarations. Procedure declarations are of the form:

assume procedureName(refArgs;valArgs) [w/r: rwvars] [precondition] {
local wars;

prog;
} [postcondition]

This declares a new procedure with the given name, arguments and local variables. The
local variable declaration, the explicit declaration of variable permissions and the qualifier
assume are optional. The procedure is specified by the pair of predicates precondition,
postcondition. Additionally, there is the implicit precondition that all call-by-reference

2.2. INTRODUCTORY EXAMPLES 29

arguments are distinct from each other. If the procedure is executed in a state satisfying
its precondition, this specification requires that it does not fail. The execution of the
procedure may diverge, but if it terminates, the resulting state has to satisfy the post-
condition. The procedure-name init is reserved. It is only used to initialise resource
invariants.

Resource-declarations are expressed by:
resource resName (varList) [invariant]
This declares a new resource/lock with the given name. The resource protects a state

that satisfies the given invariant and has exclusive access (write access) to the variables
in varList.

2.2 Introductory Examples

So far, the syntax and some rough ideas about the meaning of the input language have
been presented. However, the meaning of the top-level input, i. e. of specifications has not
been discussed in detail yet. In this section, examples are used to illustrate this meaning.

2.2.1 Recursive Implementation of List-Length

First, let’s consider a slightly simpler specification of the list-length algorithm used as an
introductory example (see Sec. 2.1 and Appx. B.1.2):

list_length(r;c) [list(c)] {

local t;

if (c == NULL) {
r = 0;

} else {
t = c->tl;

list_length(r;t);
r=r +1;
}
Y [list (¢)]

This specification can be handled by Smallfoot. It declares a single procedure. This
procedure list_length gets two arguments. r is a call-by-reference argument used as
the return value. c is a call-by-value argument. Moreover, the procedure declares a local
variable t.

The precondition states that c contains the start location of a null terminated singly-
linked list. This list is empty if and only if ¢ equals NULL. If ¢ equals NULL, O is assigned
to r. Otherwise, the location of the next node is stored in variable t via the heap-lookup
t = c¢->tl. Then, the procedure is called recursively to determine the length of the list
starting at t. Finally, the result of this recursive call is incremented using the assignment
r = r + 1. The postcondition guarantees that at the end there is still a list starting at c.
Implicitly it is also guaranteed that no faults like accessing an unallocated heap-location
occur. However, termination is not proved.

30 CHAPTER 2. HOLFOOT

2.2.1.1 Local reasoning

Looking closer, the specification of the list-length algorithm states even more. list(c)
describes a state that contains only a list starting at c. Except for this list, no other
locations are allocated in the heap. Therefore, the specification guarantees that no junk
is left by the list-length procedure on the heap.

However, this tight specification might be surprising with respect to the recursive proce-
dure call. For verification purposes, a procedure-call is abstracted by the procedure specifi-
cation. Before calling 1ist_length(r;t) in the running example, it was determined that
the list starting at c is not empty. Moreover, the location of the next node of the list was
assigned to the local variable t. Thus, the current state before the recursive procedure call
list_length(r;t) can be described by ¢ |-> t * list(t). According to the original
specification, this call satisfies the Hoare triple {1ist (t)} list_length(r;t) {list(t)}.
However, ¢ |-> t * 1list(t) does not imply the precondition 1ist (t) of this specifica-
tion. The heap is too large!

As a separation logic tool, Holfoot supports local reasoning. Any triple {P} prog {Q}
can be extended by a context R to {P * R} prog {Q * R}. Expressed differently, the
programming language of Holfoot is designed in such a way, that statements fail if they
cannot access all the resources, i.e. all the stack-variables and heap-locations, that might
influence their behaviour or might be influenced by them. This means that if {P} prog {Q}
holds, all the relevant resources are described by P. Any state separate to the one described
by P can safely be added as a context.

In the running example {list(t)} list_length(r;t) {list(t)} can be extended to
{list(t) * c |-> t} list_length(r;t) {list(t) * c |-> t}. This allows the pro-
cedure to be called recursively. Finding a frame R such that P = R implies () for given
predicates P and () is an essential operation in Holfoot. Besides other uses, it is used to
reason about procedure calls and conditional critical region.

2.2.1.2 Read/Write Permissions

I claimed before that most of the time one does not need to consider the exact semantics
of the spatial conjunction operator = on stacks (see introduction of * in Sec. 2.1.3). In
particular, I claimed that read and write-permissions can often be ignored. Here, they
are important. The frame R has to be separate from the original precondition. If this
precondition requires exclusive access to a stack-variable, i. e. a write permission, then the
frame is not allowed to mention this variable.

The condition that the frame is not allowed to mention variables with write-permissions
will be formally justified later. Here, lets just try to understand the intuition behind this
condition. If a procedure needs write-permission to a call-by-reference argument, it might
update this argument. Therefore, this variable has in general a different value before and
after the execution of the procedure. A frame describes an unmodified part of the state.
Because the variable is changing, it must not be used by the frame.

The necessary permissions on stack variables are usually not specified explicitly. Holfoot
is normally able to determine the necessary permissions automatically during parsing by
examining the body of the procedure. Permissions can, however, be explicitly specified
using a declaration of the form [w/r: write-var list; read-var list] before the
precondition.

2.2. INTRODUCTORY EXAMPLES 31

2.2.1.3 Internal Representation

Holfoot uses HOL terms as its internal representation. This internal representation con-
tains the necessary permissions on stack variables explicitly. Moreover, it contains other
information gathered during parsing. Most prominently, while call-by-value arguments
are handled like stack-variables in the input language, the internal representation regards
them as constants. In order to use them like variables in the procedure body, new local
variables are introduced and appropriately initialised. The internal representation also re-
moves the old construct by introducing new specification variables. Furthermore, implicit
arguments like tags are made explicit.

Otherwise, the internal representation looks similar to the input language. There are
some minor differences, though. The equality check ¢ == NULL is for example in the
internal representation written as ¢ = 0. These differences exist due to friction between
Smallfoot’s and HOL’s syntax. The input language is designed to be compatible with
Smallfoot. Therefore, it has to use ==. Since Holfoot is implemented inside HOL, the
internal representation is a HOL term. This term is pretty-printed to resemble the input
language. Using HOL’s infrastructure, it is much easier to pretty-print the equality check
asc = 0.

The internal representation of our running example is:

list_length(r; c_const) [w/r:r; | list (tl; #c_const)] {
local (c = c_const), t;

if (c = 0) {
r=20
} else {

t = ctl ; list_length(r; t); r = (r + 1);
}
Y [w/ror; | list (tl; #c_const)]

The first step in verifying this specification consists of eliminating recursive procedure calls
by replacing them with their specification. Similarly, the lock invariants are incorporated
into the program. This results in a conjunction of Hoare triples. Notice, that comments
get automatically introduced and maintained that show the origin of the Hoare triples.

[[w/r: r; | list (tl; #c_const)]]
/% list_length =/
local (c = c_const), t;

if (c = 0) {

r =20
} else {

t = c->tl; abstracted list_length(r; t) ; r = (r + 1);
}

[[w/r: r; | list (tl; #c_const)]]

During the process of verifying these Hoare triples, frame inference predicates are likely
to occur. The recursive procedure call in the running example triggers for example the
following frame inference calculation:

/* list_length — case (not (¢ = 0)) 3 — abstracted list_length (r; t) — final %/

[[w/r: t, ¢, Ir; |

(r = #r_const) x (c = #c_const) x (t = #c_const_tl) |

32 CHAPTER 2. HOLFOOT

#c_const |—> tl: #c_const_tl x list (tl; #c_const_tl) ——>
list (tl; #c_const_tl) | ...]]

c_const <> O

Let context be (r = #r_const) * (c = #c_const) * (t = #c_const_tl). Further,
let P denote #c_const |-> tl: #c_const_tl * list(tl; #c_const_tl) and @) be
list(tl; #c_const_tl). Then this statement searches for a frame R such that context
* P implies context * () * R. Furthermore, the state has write-permission to the vari-
ables t, ¢ and r. The exclamation mark before r denotes that the frame is not allowed
to refer to r.

2.2.1.4 Fully-Functional Specifications

The running example of recursively determining the length of a singly-linked list can au-
tomatically be verified using Smallfoot or Holfoot. Its specification is quite weak though.
It just guarantees that if there is a list at the beginning, there is a list at the end and no
errors occur during execution. It is not specified that the length of the list is calculated.
It is not even stated that the original list is preserved.

In order to write a fully-functional specification of the list-length procedure, one needs
to talk about the data-content of the list. This is not possible using Smallfoot. Holfoot
however, can automatically verify a fully-functional specification:

list_length(r;c) [data_list(c,cdata)] {

local t;

if (c == NULL) {
r = 0;

} else {
t = c->tl;

list_length(r;t);
r=r +1;
}
} [data_list (c,cdata) x (r == “LENGTH cdata”)]

Compared with the previous example, just the pre- and postcondition changed. The
precondition now states that the list starting at c contains some data cdata. Furthermore,
the postcondition states that the list contains still the same data and r now contains the
length of cdata. Thus, this is a fully-functional specification. Notice, how the value of r is
expressed. r == ‘‘LENGTH cdata‘‘ requires an empty heap. Therefore, it is combined
with the rest of the postcondition using spatial conjunction instead of normal conjunction
as one might expect. The HOL-quotation ‘ ‘LENGTH cdata‘‘ is used to calculate the
length of the list using the HOL function LENGTH. cdata is free specification variable.
Therefore, it is implicitly universally quantified. The specification holds for all possible
values of cdata.

2.2.2 Pointer Transferring Buffer Example

A good example to illustrate the usage of resources, conditional critical regions and
parallel procedure calls is a simple implementation of a pointer transferring buffer (see
Appx. B.1.11):

2.3. ANNOTATING WHILE-LOOPS 33

resource buf (c) [if c==NULL then emp else c|—>]

init() { ¢ = NULL; }

put(x) [x|—>] { with buf when (c==NULL) { ¢ = x; } } [emp]

get(y;) [emp] { with buf when (c!'=NULL) { y = ¢c; ¢ = NULL; } } [y|—>]
putter() [emp] { local x; x = new(); put(x); putter(); } [emp]
getter() [emp] { local y; get(y;); dispose(y); getter(); } [emp]
main() [emp] { putter() || getter(); } [emp]

The example declares a resource buf. This resource has write-access to a variable ¢ and
protects a part of the state that satisfies if c==NULL then emp else c |->. This means
that the heap is empty, if ¢ is 0. Otherwise the heap contains a single location c.

The special procedure init is used to initialise all lock-invariants. init has no arguments
and no explicit specification. Implicitly, its precondition states that it has write-access
to all variables used by locks and that the heap is empty. The postcondition is the
combination of all lock-invariants. There has to be a init procedure present if resources
are used.

Besides the init procedure there are the procedures put and get. put puts a heap-cell into
the buffer, get gets a cell out of the buffer. Towards this end, conditional critical regions
are used. get tries to acquire the resource buf when the buffer is not empty (condition
c != NULL). When the critical region is entered, access is granted to the protected state,
i.e. the state described by ¢ |-> . The value of variable c is copied to y and c is set
to NULL. When leaving the conditional critical region, the resource buf therefore protects
the empty heap. Access to the location that was stored in the buffer remains with get.
put works similarly. It acquires the resource buf when the buffer is empty and puts a
location into the buffer.

The procedures put and get are extended to procedures putter and getter which con-
stantly allocate new heap locations and put them into the buffer or get them out of the
buffer and deallocate them. Finally, the procedure main calls these procedures in parallel.
All three procedures putter, getter and main have very simple specifications. They need
to access only the empty heap and ensure that the heap stays empty.

Notice, that in this example the memory allocation and deallocation statements new and
dispose are used for the first time. Moreover, notice, that getter, putter and main do
not terminate. Smallfoot and Holfoot are just interested in partial correctness.

2.3 Annotating While-Loops

Until now, the examples did not contain loops. Holfoot requires while-loops to be anno-
tated in order to reason about them.

2.3.1 Loop Invariants

The most common annotation of loops is an invariant. Loop-invariants in Holfoot have
their common meaning. A loop-invariant has to hold before the loop and after each loop
iteration. When the loop is exited, one therefore knows that the invariant still holds and

34 CHAPTER 2. HOLFOOT

that the condition of the loop does not hold. Let’s consider an iterative implementation
of the list-length example (see Appx. B.1.2).
list_length(r;c) [list(c)] {
local t;
r =0; t=c;
while (t != NULL) [lseg(c, t) = list (t)] {
t =t->tl; r=1r + 1;

}
Y [list (c)]

In the concrete example, the loop is used to move through the list starting at t. The
variable t is initialised with c. It is then updated to point to the tail of the list, until
the list is empty. Therefore, the while-loop of this example can be annotated with the
invariant 1seg(c,t) * list(t). There is always a list-segment from c to t and a list
starting at t. At the beginning, t equals c. Thus the list-segment is empty and the list
describes the whole state. In each loop-iteration t is updated to point to the next node
of the list. Thus, one node is removed from the list and added to the list-segment. The
loop terminates, if t equals NULL, i.e. if the list starting at t is empty. Then the list is
empty and the whole state is described by the list-segment.

This loop-invariant is already complicated enough. It becomes even worse, if a fully-
functional specification is used:

list_length(r;c) [data_list(c,cdata)] {
local t;
r =0; t=c;
while (t != NULL)
[data_lseg (c, _cdatal, t) = data_list (t, _cdata2) x

(r == "LENGTH _cdatal”) x "cdata = _cdatal ++ _cdata2"'] {
t =t->tl; r=1r + 1;
}
} [data_list (c,cdata) x (r == “LENGTH cdata")]

Now the invariant states that there exists some data cdatal and cdata2 (existential
quantification is denoted by the underscore) such that the list-segment contains cdatal
and the list cdata2. The variable r contains the length of cdatal. Moreover, appending
cdatal and cdata?2 results in some list cdata. The existential quantification of cdatal
and cdata2 means that different values can be chosen for each iteration of the loop.
In contrast, cdata is a free specification variable and therefore implicitly universally
quantified. It can once be chosen, but then stays the same for all loop-iterations.

2.3.2 Loop Specifications

Remember the specification of a recursive implementation of the same algorithm (see
Sec. 2.2.1.4 or Appx. B.1.2). The recursive and the interactive implementation have
the same interface with exactly the same procedure specifications. However, while this
specification is sufficient for the recursive implementation, the iterative one needs to be
annotated with a complicated loop invariant. This invariant is not just lengthy and
complicated, it even needs additional concepts. Only the invariant needs to talk about list-
segments, a partial datastructure. The reason why the loop-invariant is so complicated is
that loop invariants in contrast to recursive procedure calls do not exploit local reasoning.

2.3. ANNOTATING WHILE-LOOPS 35

So, if procedure calls can exploit local reasoning, lets translate the loop into a recursive
function. A program while cond progl; prog2 can easily be translated in a new re-
cursive function whilefun with body if cond { progl; whilefun } else prog2. In
the running example, we can translate the loop into an recursive function with a much
simpler specification:

whilefun(t,r;) [data_list(t, data)] {
if (¢ != NULL) {
t=1t->tl; r=1r + 1;
whilefun(t,r;);
}
} [data_list (old(t), data) x (r == “LENGTH data + old(r)")]

list_length(r;c) [data_list(c,cdata)] {
local t;
r =0; t=c;
whilefun (t,r;);
} [data_list (c,cdata) = (r == “LENGTH cdata”)]

The recursive function has a similar specification as the main one. It just considers the list
starting at t and adds the length of this list to the value of r. The list-segment between
c and t disappears. It is implicitly handled by local reasoning.

Of course, one does not want to perform such transformations explicitly. Instead, the
ideas of this transformation are used to introduce a new annotation for while-loops. These
annotations are called loop-specifications. I presented this idea at the VSTTE’10 theory
workshop [36].

list_length(r;c) [data_list(c,cdata)] {
local t;
r=0; t =c;
loop_spec [data_list (t, data)] {
while (t !'= NULL) {
t =t->tl; r=1r + 1;

}
} [data_list (old(t), data) x (r == “LENGTH data + old(r)")]
} [data_list (c,cdata) = (r == “LENGTH cdata”)]

2.3.3 Examples

For the example of calculating the length of a singly-linked list loop-specifications are ad-
vantageous. There are similar results for reversing a singly-linked list (see Appx. B.1.3),
copying a singly-linked list (see Appx. B.1.4), appending two singly-linked lists (see Appx.
B.1.5), removing an element from a singly-linked list (see Appx. B.2.3), etc. These exam-
ples are all very similar to the list-length example. Therefore, they are just listed in the
appendix, but not discussed here in detail.

Instead of considering such examples that are all very similar, let’s discuss the general
properties of loop-specifications. Loop-specifications were introduced in order to exploit
local reasoning. However, even without local reasoning they are still useful. In contrast
to invariants, the pre- and post-condition specify the behaviour of the block containing

36 CHAPTER 2. HOLFOOT

the while loop. Therefore, loop-specifications are closely related to Eric Hehner’s specified
blocks [16]. Hehner uses single Boolean expressions instead of a pre- and postcondition.
Moreover, his work is much more general. However, he is not using local reasoning.
Allowing for these differences, his method of reasoning about loops is very similar to the
one proposed here.

2.3.3.1 Array Increment Example

Similar to Hehner’s specified blocks, loop specifications slightly change how to think about
loops. As a rule of thumb, loop invariants express what the loop has already done, whereas
loop specifications express what it will still do. Talking about what still needs doing in-
stead of what has already been done, often leads to more natural specifications. Even
without local reasoning, Hehner prefers loops specified as blocks to invariants. He claims
that it is simpler and more direct to say what’s left to be done, rather than to formu-
late an invariant [16]. This difference between loop invariants and loop specifications is
demonstrated by one of Hehner’s examples (see Appx. B.2.9):

inc(;a,n) [data.array(a,n,data)] {
local i, tmp;
i=20;
while (i < n) {
tmp = (a + i) -> dta; (a + i) -> dta = tmp + 1;
i=1+1;
}
} [data_array (a,n," MAP SUC data")]

This procedure increments every element of an array. The loop can be specified with the
following invariant:

data_array(a, n, _data2) x*
€e(lid. id < 1 ==> (EL id data2
(lid. i <= id /\ id < n ==> (EL id data2

SUC (EL id data))) /\
EL id data))*¢

This invariant states that there is an array of length n starting at a and containing
some existentially quantified data data2. For all indices up to i the array contains
the incremented value, for all other indices it still contains the original one. If a loop
specification is used, it is the other way round:

pre: data_array(a,n,data)

post:
data_array(a, n, _data2) x*
ce(rid. id < o0ld(di) ==> (EL id data2 = EL id data)) /\

(1id. 01d(i) <= id /\ id < n ==> (EL id data?2 SUC (EL id data))) ‘¢

This specification states that all the indices starting at the value of i will be updated,
while all smaller than i are not touched. Notice, that no local reasoning is involved here,
yet. Using local reasoning, the loop specification can however be simplified by implicitly
handling the part of the array that is not touched.

pre: data_array(a+i,n-i,data)
post: data_array(a+old(i), n-o0ld(i), ¢‘MAP SUC data‘‘)

2.3. ANNOTATING WHILE-LOOPS 37

This specification now states that given an array starting from a + i of length n — i —
i.e. just the part of the original array starting at index i — all elements of this array are
incremented. There is no need any more for some complicated expressions about indices.

2.3.3.2 List Filtering Example

The last example demonstrates that loop invariants usually specify what has already been
done, whereas loop specifications specify what will be done. However, both views were
easy to express. The following example of filtering a list (see Appx. B.1.7 and Appx. B.2.5)
demonstrates that it might be much simpler to express what the loop will still do. Notice
that this example is not exploiting local reasoning.

list_filter(1;x) [data_list(l,data)] {
local y, z, e;
y = 1; z = NULL;
while(y '= NULL) {

e = y—>dta;
if (e == x) {
if (y == 1) {
1 = y->tl; dispose y; y = 1;
} else {
e = y—>tl; z->tl = e; dispose y; y = z->tl;
}
} else {
z =y; y = y—>tl;
}
}

Y [data_list (I, "FILTER (\n:num. ~(n = x)) data) |

The loop invariant describes that parts of the list got already filtered. This partial filtering
is complicated to express:

if (y == 1) then
data_list(1l,_datal) x*
““?data_fc. (EVERY (\n. n = x) data_fc) /\
(data = data_fc ++ _datal) ‘¢
else
data_lseg(l, ‘FILTER (\n:num. “(n = x)) _datal‘‘,z) *
z |-> [tl:y, dta:_date] * (_date != x) * data_list(y,_data2) *
““?data_fc. (EVERY (\n. n = x) data_fc) /\
(data = _datal ++ _date::(data_fc++_data2)) ‘¢

If the filtering still happens at the beginning of the list (y equals 1), then there is a list
containing some datal. The original data data can be expressed as an arbitrary number
of x’s followed by datal. If the filtering currently happens inside the list, then there is a
list-segment from 1 to z that is already completely filtered. z is itself filtered, i.e. at this
location a different value than x is stored. Furthermore, z points to the still unfiltered
part of the list starting at y. The original data can be expressed as a part that when
filtered results in the data present in the list-segment from 1 to z, followed by the data
stored at location z, an arbitrary number of x’s and finally the data of the list starting

38 CHAPTER 2. HOLFOOT

at y. Not using Holfoot’s notation, the invariant can be described by:

if (y =1) then
ddatay. (data = (some xs) + datay) = list(1, datay)
else
ddatay, date, datay. (data = data; + date + (some xs) + datay) *
Iseg(1, filtered data;,z) = (z — [tl:y, dta: date]) =
date # x = list(y, datay)

In contrast to this complicated loop invariant, the loop specification is straightforward,
because it describes that the whole list starting at y will be filtered.

pre: data_list (y, data2) x
(if (y !'= 1) then data_lseg (1, data, z) * (z |-> tl:y,dta:#zdata))
post: if (old(y) == 0ld(1l)) then
data_list(l, ‘‘FILTER (\n. “(n = x)) data2‘‘)
else
(data_list(1l, ‘‘data ++ [zdata] ++
(FILTER (\n. "(n = x)) data2)‘‘))

2.3.3.3 List Copy Example

After considering examples for which loop specifications proved beneficial even without lo-
cal reasoning, let’s have a look at another example with local reasoning (see Appx. B.1.4):

list_copy(z;c) [data_list(c,data)] {
local x,y,w,d;
if (c == NULL) {
z=NULL;
} else {
z=new(); z->t1=NULL; x = c->dta; z->dta = x;
w=z; y=c->tl;
while (y!=NULL) {
d=new(); d->t1=NULL; x=y->dta; d->dta=x;
w->tl=d; w=d; y=y->tl;
}
}
} [data_list (c,data) = data_list (z,data)]

This procedure copies a singly-linked list that starts at ¢ and updates the call-by-reference
argument z such that z points to the copy after execution. The procedure first checks,
whether the list is empty. In this case, nothing needs to be copied. Otherwise, the first
element is copied and auxiliary variables w and y initialised. After this initialisation, z
points to the beginning of the copy, w points to its last element and y points to the part
of the original list that still needs to be copied. Then a while loop is used to copy the
remainder of the list by copying the element pointed to by y and then advancing y and w.

The while-loop can be specified with the following invariant:

data_lseg(c, ‘‘_datal++[_cdate] ‘‘,y) * data_list(y,‘‘_data2‘‘) *
data_lseg(z,_datal,w) * w |-> tl1:0,dta:_cdate *
‘‘data:num list = _datal ++ _cdate::_data2‘‘

2.3. ANNOTATING WHILE-LOOPS 39

This invariant states that the original data can be split into three parts: two lists datal,
data2 and a single element cdate. There is a list-segment from c to y containing datal
followed by cdate. This part of the original list has already been copied. The data datal
has been copied to a list-segment from z to w. The last entry cdate is stored at location
w. Finally, data2 still needs to be copied. It is stored in a list starting at y. Using a loop
specification simplifies reasoning about the loop significantly:

pre: w |-> [tl:0,dta:#date] * data_list (y, data2)
post: data_list(old(w), ‘‘date::data2‘‘) * data_list(old(y), data2)

This specification states that if before the loop is executed w points to some data date and
there is a list starting at y containing data2, then the list starting at y is copied such that
the old value of w points to a list containing date followed by data2 after the execution of
the loop. The part of the list that has already been copied, i. e. the list-segment from c to
y does not need to be mentioned explicitly. It is handled implicitly using local reasoning.

2.3.3.4 Partial Datastructures

Loop specifications can utilise local reasoning in order to implicitly handle some parts
of the state that loop invariants mention explicitly. These implicitly handled parts of
the state usually consist of partial datastructures. For the examples so far, these partial
datastructures are easy to express. For lists, the corresponding partial datastructure is a
list-segment and for arrays it is an array. Let’s now consider a slightly more complicated
datastructure: trees. For trees, the corresponding partial datastructure is a tree with
a hole for some other tree. This is difficult to express. Separation logic’s magic-wand
operator can be used, but reasoning about this additional operator is not straightforward
and Holfoot is not able to do it. Therefore, Holfoot usually can’t handle the invariants of
loops that operate on trees. However, loop specifications can be used to avoid the partial
datastructure. This allows Holfoot to reason about additional examples.

Deleting the Minimal Node of a Binary Search Tree Example Later, once inter-
active Holfoot proofs are discussed, the example of a binary-search tree will be discussed
in detail (see Sec. 2.5.6 and Appx. B.2.16). Let’s consider deleting the minimal element
of a binary search tree from the point of loop-specifications for now:

search_tree_delete_min (t,m;) [data_tree(t data) x
“ BIN.SEARCH.TREE.SET data keys /\ “(keys = EMPTY)"] {
local tt, pp, p;

p = t->1;

if (p == 0) {
m = t->dta; tt = t->r;
dispose (t); t = tt;

} else {
pp = t; tt = p—>1;
loop_spec [(pp |—> [I:p, r:#rc2,dta:#dc2]) *
(p |=> [I:tt, ri#rc, dta:#dc]) * (pp == #ppc) *
data_tree(tt ,data_l) * data_tree(#rc,data_r) *
¢ ‘BIN_SEARCH_TREE_SET (node [dc] [data_l;data_r]) keys‘‘] {
while (tt != NULL) {

40 CHAPTER 2. HOLFOOT

pp = p; p = tt; tt = p—>1;
}
m = p->dta; tt = p->r;
dispose (p); pp->1 = tt;
} [(m == mk) « (#ppc |—> [I-new.p,r:#1c2,dta:#dc2]) *
data_tree(_new_p,_data) *
“ ‘BIN_SEARCH_TREE_SET _data (keys DELETE _mk) /\
(_mk IN keys) /\ ('k. k IN keys ==> _mk <= k)]
}
} [data_tree (t,_data) x (m == _mk) x
“BIN_.SEARCH_TREE_SET data (keys DELETE mk) /\
(mk IN keys) /\ ('k. k IN keys ==> mk <= k)"|

This procedure deletes the minimal key from a non-empty binary search tree. The while-
loop is used to search for the node storing the minimal key. After the loop has been
executed, the original binary-search tree is unmodified and the variable p points to the
node holding the minimal key and pp to its parent node. However, expressing these prop-
erties of p and pp is complicated and would require some kind of partial tree datastructure.
Therefore, the code that deletes the minimal element is included in the loop specification.
Thus, the post-condition of the loop specification can state, that the minimal key of the
original tree has been deleted. In contrast to the corresponding loop invariant, the loop
specification does not need partial tree datastructures.

Besides demonstrating that loop specifications can be used to eliminate the need for
partial datastructures, the last example also demonstrates why it is useful that loop
specifications allow code after the while-loop. This code after the loop is the else part
in the corresponding recursive procedure. Code after the loop is not used by most of
the examples. However, as this example illustrates, it sometimes results in much simpler
post-conditions and enables Holfoot to handle additional problems.

Summing all Nodes of a Binary Tree Example Another example that demon-
strates the power of loop specifications is summing all the nodes of a binary tree (see
Appx. B.2.8). A recursive implementation is straightforward. The recursion provides an
implicit stack for traversing the tree:

tree_sum(r;t) [data_tree(t,data)] {

local i;
if (t == NULL) { r = 0; } else {
r = t->dta;
i =t->1; tree_sum(i;i); r =1 + 1i;
i = t->r; tree_sum(i;i); r = r + i;
}
} [data_tree (t,data) x (r == “TREE_.SUM data")]

An iterative implementation on the other hand, is quite complicated. Now, the user has
to keep track of the parts of the tree that still need processing. Essentially, one needs to
explicitly maintain a stack. Reasoning about this stack is tricky. There is the invariant
that all the trees on the stack combined with the partial trees that have already been
processed form the original tree. Most tools use complicated constructs like the magic-
wand operator. Holfoot can avoid this by using a loop specification and local reasoning:

2.3. ANNOTATING WHILE-LOOPS 41

assume pop(sp,r;) [w/r: sp,r;]

[data_list (sp,"v:vs")] [datalist (sp, vs) x (r == #v)]
assume push(sp;v) [w/r: sp;]

[data_list (sp,data)] [data_list (sp, “‘v:data”)]

tree_sum_depth (r;t) [data_tree(t, data)] {
local sp, c, i;
r = 0;
if (¢ !'=0) {
sp = 0; push(sp;t);
loop_spec [data_list (sp, trees) x “““(MEM 0 trees)"" x
“LENGTH trees_.data = LENGTH trees"
map (\t d. data_tree (t,d)) "ZIP (trees, trees.data)"] {
while (sp != 0) {
pop(sp,c;);
i = c->1; if (i != 0) push(sp;i);
i = c->r; if (i != 0) push(sp;i);
c->dta; r = r + i;

i
}

Y [map (\t d. data_tree (t,d)) *ZIP (trees, trees_data) x
(r == "old(r) + SUM (MAP TREE_SUM trees_data)")]

3
} [data_tree (t,data) x (r == “TREE_.SUM data")]

The procedures push and pop are standard and can easily be implemented and verified.
Therefore, they are omitted here. Instead the keyword assume is used to define these
push and pop operations on stacks. Notice, that the necessary variable permissions are
stated explicitly, because Holfoot can’t analyse the body of these procedures to figure out
the correct permissions.

The interesting part is the while-loop in procedure tree_sum_depth. The precondition
states that the stack contains a list trees. This list is a list of root nodes of binary trees
containing the data stored in the list trees_data. The separating map operator map is
used to establish this connection. None of these trees is empty, i.e. no root pointer is
NULL. As a technical side-condition the list trees_data has to have the same length as
trees. Given this precondition, the loop guarantees that the trees remain in the heap.
However, the stack is not mentioned in the postcondition, i.e. the stack is now empty.
Moreover, the sum of all nodes of all the trees in the stack has been added to r.

2.3.4 Unrolling Loops

So far two possibilities for annotating loops have been presented: loop invariants and
loop specifications. Sometimes, these annotations are complicated, because the first few
iterations of the loop have to be handled specially. A simple example is an implementation
of calculating the factorial (see Appx. B.2.7):

fact(r;n) {
local i;
r=1; i =1;
while (i < n) [(r=="FACT i) “(i <=n)\/(i = 1)"] {

i=1i+1;, r=1r%1i;

42 CHAPTER 2. HOLFOOT

}
} [r == “FACT n"]

This procedure calculates the factorial of n and stores it in r. This is done by initialising
r with 1 and then using a loop to multiply it with 2,3, ..., n. Let’s consider the invariant
of this loop. r holds the factorial of the counter i and i is either 1 or less or equal than
n. The special case i equals 1 is needed, because in the first iteration n might be 0, while
i equals 1. This is fine, since 0! = 1! = 1 holds. One can eliminate the need to consider
this special case by unrolling the loop once:

fact(r;n) {
local i;
r=1; 1 =1;
if (i <n) {
i=i+1; r=r1r % i;
while (i < n) [(r== "FACT ") x (i <=n)] {
i=i+1; r=1r % i;
}
}
} [r == “FACT n"]

This idea is used by the [unroll x] modifier for loop-invariants. It tells Holfoot to
unroll the loop x times and then use the given loop-invariant. Using this modifier, the
specification of factorial becomes:

fact(r;n) {
local i;
r=1; i=1;
while (i < n) ﬁunoﬂl] [r::::“EACT'W‘* (i<<::nﬂ {
i=1i+1; r=1r%1i;
}
} [r::::“EACTVf?

Unrolling can also be used with loop specifications:

fact(r;n) {
local i;
r=1;1=1;
loop_spec [unroll 1] [(r == “FACT i") = (i <=n)] {

while (i < n) {
i=i+1; r=r1r % i;
}
}[r::”HKTnV
} [r == “FACT n"]

Another example for unrolling loops is appending two singly-linked lists (see Appx. B.1.5).

2.4 Additional Constructs

By now all the important and frequently used constructs of Holfoot’s input language have
been introduced. There are, however, a few additional constructs that are useful in certain
situations. These are presented briefly in this section.

2.4. ADDITIONAL CONSTRUCTS 43

2.4.1 assume / assert

There are assume and assert statements available. assume (cond) skips, if the condition
cond holds. Otherwise, it diverges. Since Holfoot is reasoning about partial correctness,
this amounts to just considering states that satisfy cond.

assert (pred) is more complicated. It skips, if the predicate pred is satisfied by a substate
of the current state. Otherwise, it fails. This behaviour results in the need to show that
there is a substate satisfying pred. assert needs to consider substates, since it uses
predicates whereas assume uses conditions. Conditions are pure, they just talk about the
stack. In contrast, predicates can describe the heap as well.

Similar to a procedure call, the check, whether a substate satisfies the predicate pred, re-
quires searching a frame R such that the current state satisfies pred * R. If this search suc-
ceeds, the automation uses pred * R to describe the state after the execution of assert.
This behaviour of Holfoot’s automation allows assert to be for example used to roll and
unroll recursively defined datastructures like lists, trees or arrays.

An example is a fully functional specification of quicksort (see Appx. B.2.15). The while
loop operates on the interval except the first element. After the loop, assert is used to
reintroduce the first element into the interval representation.

quicksort(;b,e) [data_interval (b, e, data)] {
local piv, 1, r;
if (e > b) {
piv = b->dta; 1 =b + 1; r = e;
loop_spec [data_interval (I,r data) = (I <=r+ 1)] {

} [data_interval (old(1), old(r), _data2) x ..]
assert [data_interval (b, e, data3)];

}
} [data_interval (b, e, _rdata) x "(SORTED $<= _rdata) /\ (PERM data _rdata)"|

Often it is sufficient to use assert to derive additional information about the stack.
An example is the following program that allocates a new memory location and directly
deallocates it again. This deallocation looses the information that it was once allocated
and therefore is not equal to NULL. assert is used to preserve this information.
dummy (x;) [] {

x = new();

assert [x /= NULL]J;

dispose x;
} [x I= NULL]

2.4.2 diverge, fail

There are statements that always diverge and fail. These can be used for annotating
programs. Since Holfoot’s specifications state that the program will not fail, the statement
fail marks unreachable code. diverge marks code that should be ignored, i.e. once this
code is reached, the verification stops successfully. Thus, if (not(cond)) { fail }
is similar to an assertion, while if (not(cond)) { diverge } is similar to an assume
statement.

44 CHAPTER 2. HOLFOOT

2.4.3 Block Specifications

assume and assert operate on a single state. They either assume or assert that this
single state satisfies some property. In this sense they are similar to loop-invariants.
As seen with loop-invariants this concept of describing a single state does not mix well
with separation logic’s local reasoning. Instead it proved beneficial to use a pre- and a
postcondition, i.e. a pair of states.

Similarly, it is often beneficial to annotate a block of code with a pre- and a postcondition.
An example is getting the minimum and maximum depth of a tree (see Appx. B.2.2). This
example needs to calculate the maximum of two values. Since Holfoot does not support
this operation directly, conditional execution is used:

if (di1l < dj1) {
rl =dj1 + 1;
} else {
rl = dil + 1;
}

This looks complicated. It can be annotated with a block specification to state that it is
calculating the incremented maximum:

block_spec [emp] {
if (di1l < dj1) {
rl =dj1 + 1;

} else {
rl = dil + 1;
}
} [r1 == “(MAX dil dj1) + 1"]

This annotation states that this block of code does not access any locations on the heap
and after execution the value of r1 has been updated to contain the incremented maxi-
mum. Introducing the annotation helps structuring the code and understanding it. More-
over, it speeds up the verification process considerably, because the case split is now
contained inside the block.

Block specifications can also be used to forget unimportant information that would just
clutter the verification process. An example is the implementation of binary search (see
Appx. B.2.2).

binsearch(f;a,n,e) [array(a,n)] {
local 1, r, m, tmp;
1=0; r=mn; £f=20;
while ((f == 0) and (1 < r)) [array(a,n) x (r <=n)] {
block_spec [l < r] {
m=1+ ((r -1/ 2);
Y[l <=msxm<r]
tmp = (a+m)->dta;
if (tmp < e) {1 = m+1; } else
if (e < tmp) {r=m; }else {f=1; }
}
} [array(a,n)]

2.4. ADDITIONAL CONSTRUCTS 45

HOL4’s automation is not good at reasoning about integer devision. In fact, the external
SMT-solver Yices is used to verify this specification. The block specification allows hiding
the exact definition of m and just expose the fact that m lies between 1 and r.

Block specifications are closely related to loop specifications. A loop specification can be
seen as a block specification that starts with a while-loop.

2.4.4 Annotating Memory Allocation

According to the semantics of Holfoot’s programming language, at each location in the
heap there are values for all possible tags stored. Sometimes, it is convenient to make
this knowledge explicit for some tags when allocating new heap cells. This is especially
the case for allocating arrays.

Consider for example copying an array (see Appx. B.2.10).

copy(r;a,n) [data_array(a,n,data)] {
local i, tmp;
i=20;
r = new(n) [dtal;
while (i < n) [data.array(a,n,data) = data_array (r,n,_data_new) x (i <=n) %
“I'x. x < i ==> (EL x data = EL x _data_new)"'] {
tmp = (a + i) -> dta; (r + i) -> dta = tmp;
i=1+1;
+
} [data_array (a,n,data) = data_array (r, n, data)]

The memory allocation r = new(n) is annotated with the list of tags [dta]l. Without
annotation, the statement would allocate heap cells that satisfy the predicate array(r,n).
With the additional annotation, the data content of the array is explicitly represented. A
new specification variable tdata is introduced, such that data_array(r,n,dta:tdata)
holds.

The loop-invariant requires that there is some existentially quantified data data_new in
the array starting at r. If the specification variable tdata has been introduced, one has to
show that for all tdata a corresponding data_new exists. This is trivial, just set data_new
to tdata. If, however, this specification variable is not introduced, the automation ends
up in a bad state. Then one has to show that there exists a data_new that is valid for all
tdata. The quantifiers have swapped order and no such data_new can be found. This is
discussed in more detail in Sec. 3.3.7.5.

2.4.5 Assuming Procedures

Procedures can be annotated with the keyword assume. In this case, the specification of
the procedure is just assumed instead of proved. This mechanism can be used to define
new operations. An example can be found in the iterative implementation of summing
all the nodes of a tree (see Sec. 2.3.3.4 and Appx. B.2.8). There push and pop operations
are defined using assume. Notice, that the necessary write-permissions on the call-by-
reference arguments are stated explicitly.

46 CHAPTER 2. HOLFOOT

assume pop(sp,r;) [w/r: sp,r;]
[data_list (sp,"v:vs")] [datalist (sp, vs) x (r == #v)]

assume push(sp;v) [w/r: sp;]
[data_list (sp,data)] [data_list (sp, *‘v:data")]

2.4.6 Global Specification Variables

Normally, the scope of specification variables is limited to a pair of pre- and postcon-
ditions or even a single predicate. They get explicitly universally quantified inside this
scope. Most of the time, this behaviour is sensible. Sometimes, however, it is useful
to use global specification variables, i.e. specification variables whose scope is the entire
specification, spanning multiple procedure definitions and even the body of procedures.
An example is filtering a list (see Appx. B.1.7). The original problem removes all occur-
rences of some value x. However, the same algorithm can be used in order to filter with
respect to an arbitrary predicate. This can be expressed in Holfoot using a higher order
global specification variable P. Holfoot is even able to verify a recursive implementation
automatically.

global P;

list_filter(1;) [data_list(/, data)] {
local e, m;
if (1 == NULL) {
} else {
e = 1->dta; m = 1->tl;
list_filter(m;);
if (TP e) Ao
dispose 1; 1 = m;
} else {
1->t1 = m;
}
}
} [data_list (I, “FILTER P data”)]

Using global specification variables might be useful for determining the behaviour of
a procedure in the first place. Consider, for example, an implementation of reversing
a singly-linked list (see Appx. B.1.3). Assume, one could figure out the shape of the
needed datastructures, but not their content. In this case, one can introduce two global
specification variables f1 and £2 and run Holfoot on the following input:

global f1, £2;

list_reverse(i;) [data_list(i,data)] {
local p, x;
p = NULL;
loop_spec [data_list (i,data) = data_list (p, data2?)] {
while (i != NULL) {
x = 1i->tl; i->tl =p; p =1i; 1 = x;
}
Y [data_list (p, '‘fl data data2 ")]

2.5. INTERACTIVE PROOFS 47

i=rp;
} [data_list (i, f2 data)]

As this specification does not hold for arbitrary functions f1 and f2, Holfoot will fail.
However, the remaining proof obligations are interesting, because they describe a tail-
recursive implementation of reversing a list.

o VL L[]l = I
o Ve ly,lro. f1 (e ly) Iy = £11 (e ly)

o VI.£21 = f11]]

Sometimes this trick of using global specification variables to figure out the real speci-
fication is useful. However, at the current stage it is really just a trick that might or
might not give decent results. In combination with techniques for guessing the shape of
datastructures, it might be interesting to experiment with this technique. It could result
in semi-automatically translating low-level imperative programs into functional ones.

2.5 Interactive Proofs

Most Holfoot examples presented so far can be handled automatically. A collection of
such examples can be found in Appendix B.1. However, the full power of Holfoot is only
available when using it interactively inside HOL4 [13, 34].

To use Holfoot interactively, one needs to be familiar with HOL4, its user-interface and
libraries. Since an introduction to HOL4 would be lengthy and in any case outside the
scope of this thesis, I will try to explain some key ideas and observations on interactive
proofs without referring to too many HOL4 details. HOL4 proof scripts containing all
the details can be found in Appendix B.2 and B.3.

2.5.1 General Overview

HOL4 is implemented in ML [32]. The user interacts with HOL4 through an interactive
ML session. Holfoot provides commands to parse specification files, which are written in
the syntax described above. The result of this parsing is a HOL4 term that states the
validity of the specification. Holfoot provides a pretty-printer that prints this term in a
form similar to the input language. Details can be found in Section 2.2.1.3.

In order to verify the parsed specification, the term is send as a new goal to HOL4’s
goalstack. This goalstack is a HOL4 mechanism for backward proofs. A goal is proved
by repeatedly reducing it to a several subgoals using tactics until these subgoals become
simple enough to be proved directly. Holfoot provides tactics for proving specifications.
The most important tactic performs forward analysis on Hoare triples and evaluates frame
calculations. There are several versions of this tactic. The most common one tries to do
as much work as possible. It can solve many interesting examples automatically. In
fact, this tactic is used by the command-line and web-interface! of Holfoot and provides

http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org

48 CHAPTER 2. HOLFOOT

Holfoot’s automatic verification facilities. If this tactic can’t make any more progress it
stops and allows the user to call other tactics. Using such tactics, the user can for example
reason about pure side-conditions, perform case-splits or provide witnesses for existential
quantifiers.

Additionally, there are several versions of this tactic that just perform a certain number
of steps. The user can for example instruct Holfoot to just symbolically evaluate the
next statement or evaluate everything up to the next loop. Other customisations include
providing the automation with problem-specific rewrite rules or turning features like case-
splitting or arithmetic simplifications off.

Instead of discussing tactics and details of the proof-scripts, I will try to provide a high
level view of some interesting, interactive proofs.

2.5.2 Sum and Maximal Element of an Array Example

During the Verified Software: Theories, Tools and Fxperiments conference in August 2010
in Edinburgh there was an informal verification competition® organised by Natarajan
Shankar and Peter Mueller. Problem 1 from this competition (see Appx. B.3.1) is a good
first example to show the benefits of interactive proofs.

Given a simple program that calculates the sum sum and the maximal element mazx of
an array of size n, the competition challenges participants to prove sum < n = maz. In
Holfoot this specification can be written as:

vscompl(sum,max;a,n) [data_array(a,n,data)] {
local i, tmp;
sum = 0; max = 0; i = 0;
while (i < n) [data_array(a,n,data) x i <=nx (sum <= (i x max))] {
tmp = (a + i) -> dta;
if (max < tmp) { max = tmp; }
sum = sum + tmp,
i=1+1;
}
} [data_array (a,n,data) * (sum <= (n x max))]

After calling Holfoot’s automation, there are two remaining proof obligations:

e The first proof obligation is created by trying to show that the loop invariant still
holds after executing the body of the loop, if max was updated.

Vi, n, maz, sum,a. (i <n) A (sum<i=*mazr) A (max<ali]) =
(sum + ali] < (i + 1) = a[i])

e The second proof obligation arises from proving that the loop invariant implies the
postcondition of the procedure, once the loop is exited.

Vi, n, maz, sum. (n<i) A (i<n) A (sum <ixmaz) =
(sum < max = n)

2http://www.macs.hw.ac.uk/vsttel10/Competition.html

http://www.macs.hw.ac.uk/vstte10/Competition.html

2.5. INTERACTIVE PROOFS 49

The second proof obligation is trivial. In fact, it’s rather disappointing that it is not
solved automatically. In principle, HOL4’s automation is able to solve problems like this
automatically. However, for performance reasons Holfoot’s automation is only using a
carefully selected subset of HOL4’s automation.

However, the first proof obligation is more interesting. It is a rather simple arithmetic
property. However, it is not a linear problem. Therefore, SMT-solvers like Yices cannot
solve this problem automatically. However, it can be solved with a short HOL4 proof-
script (see Appx. B.3.1).

The specification shown answers the original challenge. However, it is rather weak. It
does not state that max contains the maximal element and that sum contains the sum of
all elements. Here, Holfoot can benefit for HOL4’s infrastructure. One can easily define
functions that compute the sum of all elements and the maximal element.

val LIST_SUM_def = Define ¢
(LIST_SUM [1 = 0) /\
(LIST_SUM (n::ns) = n + LIST_SUM ns) ¢;

val LIST_MAX_def = Define ¢
(LIST_MAX [] = 0) /\
(LIST_MAX (n::ns) = MAX n (LIST_MAX ns))°‘;

Then the main statement can be proved independently from the implementation as a
lemma on the semantics of LIST_MAX and LIST_SUM.

VI. LIST_SUM [< LENGTH/[= LIST_MAX

The new functions LIST_SUM and LIST_MAX can be used in an improved specification.

vscompl(sum,max;a,n) [data_array(a,n,data)] {
local i, tmp;
sum = O; max = 0; i = 0;
while (i < n) [data_array(a,n,data) * i <=n %
(max == "“LIST_MAX (FIRSTN i data)"’)
(sum == "LIST_SUM (FIRSTN i data)")] {
tmp = (a + i) -> dta;
if (max < tmp) { max = tmp; }
sum = sum + tmp,
i=1i+1;
}
} [data_array (a,n,data) = (sum <= (n x max)) x
(max == “LIST_MAX data") * (sum == “LIST_SUM data"’)]

The proof-script for this specification (see Appx. B.3.1) consists of calling Holfoot’s au-
tomation followed by some rewrites using the definitions of the new functions as well as
the proved lemma.

2.5.3 List Remove Example

Another simple example that shows the benefits of user defined functions is removing
the first occurrence of an element from a singly-linked list (see Appx. B.2.3). Unluckily,
HOL4’s list library does not contain a REMOVE function. However, it is easily defined:

20 CHAPTER 2. HOLFOOT

val REMOVE_def = Define ¢
(REMOVE x [1 = [1) /\
(REMOVE x (y::ys) = if (x = y) then ys else (y::REMOVE x ys))‘;

This new definition is used by the following specification. If Holfoot’s automation is
provided with the definition of REMOVE, it is able to prove this specification automatically.

list_remove(l;x) [data_list(l,data)] {
local v,t;
if (1 '= NULL) {
v = 1->dta;
if (v == x) {
t =1; 1 =1->tl; dispose(t);
} else {
t = 1->tl; list_remove(t;x); 1->tl = t;
}

}
} [data_list (I, "“REMOVE x data")]

2.5.4 Mergesort Example

A specification of mergesort that specifies only the shape of datastructures is one of
Smallfoot’s examples (see Appx. B.1.13). Smallfoot and Holfoot can verify such a specifi-
cation automatically. Let’s now consider a fully functional specification of mergesort (see

Appx. B.2.13).

merge(r;p,q) [data_list (p,pdata) = data_list (q,qdata) x
“SORTED $<= pdata /\ SORTED $<= qdata"] {
local t, g_date, p_date;
if (9 == NULL) { r = p; } else
if (p == NULL) { r = q; } else {
g_date = gq->dta; p_date = p->dta;
if (q_date < p_date) { t = q; q = g—>tl; } else
{t=p; p=p>tl; }
merge(r;p,q);
t->tl =r; r = t;
}
} [data_list (r, _rdata) = “(SORTED $<= _rdata) /\ (PERM (pdata ++ qdata) _rdata)"]

split(xr;p) [data_list (p,data)] {
local t1,t2;
if (p == NULL) { r = NULL; } else {
tl = p—>tl;
if (t1 == NULL) { r = NULL; } else {
t2 = t1->tl; split(r;t2);
p—>tl = t2; t1->tl = r; r = tl;
}

}
} [data_list (p,_pdata) = data_list (r, _rdata) x ‘*PERM (_pdata ++ _rdata) data"']

mergesort(r;p) [data_list(p,data)] {

2.5. INTERACTIVE PROOFS o1

local q,ql,pl;
if (p == NULL) { r = p; } else {
split(q;p);
mergesort(ql;q); mergesort(pl;p);
merge(r;pl,ql);
}
} [data_list (r, _rdata) x "(SORTED $<= _rdata) /\ (PERM data _rdata)"|

After calling Holfoot’s automation, one ends up with the following verification conditions:

e the procedure merge requires

— V1. PERM [[,
i.e. permutations are reflexive

— Ve, 1. SORTED (e :: [) —> SORTED |/,
i.e. if a non-empty list e :: [is sorted than its tail [is sorted as well.

- v€1,€2,11,127l3. SORTED (61 o ll) A SORTED (62 o l2) AN (62 < 61) AN
SORTED l3 A PERM (61 o (l1++l2)) lg —
SORTED (eq :: l3) A PERM (ey :: (l1++eg 2 lo)) (e = 13)

- V61,62,l1,l2,l3. SORTED (61 . ll) A SORTED (62 . lg) AN (61 < 62) AN
SORTED l3 A PERM (lj++eg i1 lp) I3 =
SORTED (61 . l3) A PERM (61 o (l1++€2 o 12)) (61 . lg)

e the procedure split requires

— Ve. PERM [e] [e],
i.e. permutations are reflexive for lists of length one

— V61,62,l1,l2,l3. PERM (l1++l2) lg —
PERM (e :: (li++eg 2) (e1 e :: l3)

e the procedure split requires

- Vll, lg, lg, lll, lé,lg PERM ll lll A PERM lg ll2 A
PERM (l3++l3) I3 A PERM (lj++0}) I =
PERM I3 [}

Most of these proof obligations are straightforward. Providing the automation with some
knowledge about sorted lists and permutations solves most of these obligations. Just
simplified versions of the last two merge proof-obligations remain.

L] vel,eg,ll,lg,lg. SORTED (61 o ll) A SORTED (62 o lg) A (62 < 61) A
SORTED l3 A PERM (61 b (l1++l2)) lg =4
SORTED (eq :: l3)

e Vey, ey, ly,ls,13. SORTED (eg ::l;) A SORTED (e ::l3) A (e1 < e3) A
SORTED l3 A PERM (l1++62 i lg) lg -
SORTED (e :: l3)

02 CHAPTER 2. HOLFOOT

These two proof obligations capture the essence of the algorithmic idea of merge. They
can be verified using just a few lines of proof-script. However, this verification requires
combining the concepts of sorted lists and permutations. That’s why they cannot be
easily discharged automatically. Informally, the first first one can be justified as follows.

If we want to show that ey :: I3 is sorted and we know that [3 is sorted, it remains to
show ey < e forall elements e of 3. We know that I3 is a permutation of (e :: (I1++3)).
Therefore, e is either e; or an element of I; or . ey < e is stated explicitly in the
precondition. Moreover, ey is not greater than any element of [, because e, :: l5 is sorted.
Finally, we know Ve € l;. e; < e, because e :: [is sorted. Combined with ey < ey this
results in ey < e.

The proof of the second proof obligation is very similar. I hope this simple proof on
high-level concepts of the algorithm convinces you that the proof obligations really talk
about the essence of the merge algorithm.

2.5.5 Circular List Example

The last few examples demonstrated the ideal case of using Holfoot interactively. The
automation takes care of the program structure and details of the memory layout. This
leaves the user to reason about a functional representation of the algorithm. There are
many examples that can be handled like that.

Other examples, however, require the user to provide manual case-splits or provide wit-
nesses to existential quantifiers in order to reason about the program structure. A simple
example is an implementation of circular lists (see Appx. B.2.4).

push(r) [rl—>_tf* Iseg(-tf,r)] { pop_dequeue(r)
local t, u; [r!=_tf % r|=>_tf x Iseg (_tf,r)] {
t = new(); local t, u;
u = r->tl; t = r->tl;
t->t1l = u; u = t->tl;
r->tl = t; r->tl = u;
Y [r|=>_bx _b|—>_tf x Iseg (_tf,r)] dispose t;

Y [r|—>_bx Iseg(-b,r)]

enqueue(r;) [rl—>_tf« Iseg(_tf,r)] { test(r;) [rl—>_tf* Iseg(_tf,r)] {
push(r); push(r);
r = r->tl; pop_dequeue(r) ;

Y [r|—>_tf % Iseg(_tf,_b) x _b|—>1] enqueue(r;);

pop_dequeue(r) ;
Y} [rl—>_ax Iseg(.a,r)]

The procedures push and pop_dequeue are straightforward and can be verified auto-
matically. enqueue looks trivial. However, it requires the user to provide an existential
witness. After the symbolic execution, the following Hoare triple remains to be proved.

[[w/r: r; | (r|—> tl: #tf) x Iseg (tl; #tf, #r_const) * (#r.const |—> tl: r)]]
/* enqueue 3 */

[[w/r: r; | (r|—> tl: #_tf) x Iseg (tl; #_tf, #_b) x (#_-b|—> tl:r)]]

2.5. INTERACTIVE PROOFS 23

Since the body of the Hoare triple is empty, this means that it has to be shown that the
precondition of this Hoare triple implies its postcondition. The pre- and postcondition
look very similar. For a human, it is trivial to instantiate the existentially quantified vari-
ables tf and b in the postcondition such that the pre- and postcondition become identical.
Holfoot is unluckily just able to figure out the instantiation for tf. The instantiation of
b with r_const needs to be provided by the user.

Similarly, the proof of the procedure test needs user guidance. After evaluating the first
three procedure calls, the following Hoare triple remains:
[[w/r: r; | Iseg (tl; #tf, #b)* (#b|—> tl: r) % (r |=> tl: #tf) = (r I= #b)]]

/* test 4 x/

abstracted pop_dequeue(; r)

[[w/r: r; | (r|=> tl: #.a)x Iseg(tl; #.a, r)]]

In order to call pop_dequeue the property r !'= #tf needs to be shown. Holfoot is not
able to do this automatically. The user needs to instruct Holfoot to perform a case-split on
whether tf and b are equal. If they are equal, then r != #tf holds trivially. Otherwise,
the list segment described by 1seg(#tf,#b) is not empty and therefore contains the heap-
location tf. Since the location r is contained in the separate heap described by r |->
#tf, it can be concluded that r is not equal to tf.

2.5.6 Binary Search Tree Example

An algorithmically more challenging problem is implementing binary search trees (see
Appx. B.2.16). Before specifying algorithms operating on binary search trees, a rep-
resentation of binary search trees needs to be introduced. Holfoot uses a two-layered
representation. First, Holfoot’s standard tree-predicate relates the concrete representa-
tion of a tree as a dynamic datastructure in memory to a functional representation of the
tree. Then, a user-defined predicate states that this functional tree represents a binary
search tree containing some set of keys.

For Holfoot, a functional tree is either a leaf leaf or a node node valuel treeL con-
taining a list of values and pointing to a list of subtrees. Let data be some functional
representation of a tree that satisfies for some state the predicate data_tree(t,data)
(or more verbosely the predicate data_tree([1,r];t, [dta]:data)). Then, all nodes of
data are of the form node [v] [1t; rt] where v is the value stored in the node (tag
dta in the heap), 1t is the left subtree (tag 1) and rt is the right subtree (tag r). In
order to reason about binary search trees, this functional representation of trees has to be
related to an abstract view of binary search trees containing a set of keys. This is done by
introducing a new predicate BIN_SEARCH_TREE_SET that satisfies the following equations:

BIN_SEARCH_TREE_SET leaf keys = (keys = &)
BIN_SEARCH_TREE_SET (node [k] [t1;t2]) keys =
Jkiko. (keys = {k} U k1 U ko) A
(VE' e k. K < k) A (YK €ko. K > k) A
BIN_SEARCH_TREE_SET #, ki A
BIN_SEARCH_TREE_SET t5 ko

Using this new predicate, it is easy to specify for example inserting a key into a binary
search tree (see Appx. B.2.16).

o4 CHAPTER 2. HOLFOOT

search_tree_insert(t;k) [data_tree(t,data) x ‘'BIN.SEARCH_-TREE_SET data keys"| {
local kO, tt;
if (t == NULL) { t = new(); t->1 = 0; t->r = 0; t->dta = k; } else {
k0 = t->dta;
if (k0 == k) { } else {
if (k < k0) {

tt = t->1; search_tree_insert(tt;k); t->1 = tt;
} else {
tt = t->r; search_tree_insert(tt;k); t->r = tt;
}
}

}
} [data_tree (t, _data) x " BIN.SEARCH_-TREE_SET data (k INSERT keys)"|

The precondition states that t is pointing to the root of a binary tree, whose functional
representation is data. It is further stated that this tree is a binary search tree containing
a set of keys keys. The postcondition demands that t points to the root of some modified
binary tree. The exact structure of this tree is not specified. However, it is stated that
this tree is a binary search tree containing the set of keys k INSERT keys. This means
that the key k has been added to the binary search tree.

Separating the layout of the datastructure in memory from its abstract interpretation is
important for Holfoot’s automation. Knowing about the concrete representation of the
tree in memory is sufficient to symbolically execute the body of search_tree_insert.
That the binary tree in question is a binary search tree is a pure side-condition that can
easily by passed around. The user can use this side-condition later to establish that the
modification of the concrete datastructure relates to changes in the abstract view.

In the running example of inserting a new key into a binary search tree, there are four
proof-obligations after running the automation. These correspond to the cases of inserting
a new node, doing nothing, because the key is already present, inserting the key into the
left subtree and inserting it into the right subtree.

o Vk, keys.
BIN_SEARCH_TREE_SET leaf keys =
BIN_SEARCH_TREE_SET (node [k] [leaf;leafl) ({k} U keys)

o Vi, r, k, keys.
BIN_SEARCH_TREE_SET (node [k] [I;r]) keys =
BIN_SEARCH_TREE_SET (node [k] [I;7]) ({k} U keys)

o Vi, r, k, k', keys.
BIN_SEARCH_TREE_SET (node [k] [I;r]) keys A (K <k) =
Jkeys’. V1’. BIN_SEARCH_TREE_SET [keys’ A
BIN_SEARCH_TREE_SET I’ ({k'} U keys’) =
BIN_SEARCH_TREE_SET (node [k] [I';r]) ({k'} U keys)

o Vi, r, k, k', keys.
BIN_SEARCH_TREE_SET (node [k] [I;7]) keys A (k' > k) =
dkeys’. Vr’. BIN_SEARCH_TREE_SET r keys’ A
BIN_SEARCH_TREE_SET 1’ ({k'} U keys’) =
BIN_SEARCH_TREE_SET (node [k]1 [I;7'1) ({k'} U keys)

2.5. INTERACTIVE PROOFS 25

Using the definition of BINARY_SEARCH_TREE_SET all these proof obligations can easily
be discarded. 1 hope this example convinces you that, thanks to the separation of con-
crete representation and abstract view, Holfoot is able to reason about even complicated
datastructures like binary search trees with a high level of automation. The user usually
just has to reason about the essence of the algorithm manually.

2.5.7 Insertion into Red-Black Tree Example

Another example that demonstrates the benefits of a two layered representation of high-
level datastructures is red-black trees (see Appx. B.2.17). Again, the standard tree-
predicate is used to connect the concrete representation in memory with a functional
representation of the tree. This time, a node of the tree stores three values: a key k, a
value v and a colour c¢. Using the functional tree representation a predicate RED_BLACK_-
TREE is defined such that RED_BLACK_TREE t f holds for a tree t and a finite map f,
iff

e t is a binary search tree representing the finite map f from keys to values.

e All nodes of the tree are well-formed, i. e. they are of the form node [k;v;c] [I;r].
As ¢ represents the colour of the node, there are only two choices. 0 denotes black
and 1 red.

e The root of t is a leaf or a black node.
e No red node has a red child.

e All paths through the tree contain the same number of black nodes.

Using this new predicate for red-black trees, inserting a new key/value pair into a red-
black tree can easily be specified.

rb_tree_insert (r; k, v) [data_tree(r,[k,v,c]:data) * ¢‘RED_BLACK_TREE data f‘‘] {
rb_tree_insert_r (r; k, v);
r->c = 0;

} [data_tree (r,[k,v,c]:_data) * ¢‘RED_BLACK_TREE _data (f |+ (k,v))‘‘]

Inserting a new key/value pair into a red-black tree is a complicated operation. Com-
pared to inserting it into a binary search tree, the tree needs to be rebalanced. The
implementation uses several auxiliary procedures for operations like balancing, rotating
or determining the colour of a tree (see Appx. B.2.17). In order to reason about red-black
trees new functions are defined in HOL4 that capture the behaviour of these auxiliary
procedures.

A simple example is the procedure rb_tree_is_red, which determines, whether a node is
red. A new HOL4 function RED_BLACK_TREE___IS_RED is defined to capture the behaviour
of this procedure.

val RED_BLACK_TREE___IS_RED_def = Define ¢
(RED_BLACK_TREE___IS_RED leaf = F) /\

(RED_BLACK_TREE___IS_RED (node [kv;c] [t1;t2]) = (c = 1)) /\
(RED_BLACK_TREE___IS_RED _ = F)¢;

o6 CHAPTER 2. HOLFOOT

rb_tree_is_red (r;t) [data_tree(t,[k,v,c]:data)] {

local x;
if (¢t ==0) {r=0; } else {
X = t->c¢;
if (x==1) {r=1; }else {r=0; }
X
} [data_tree (t,[k,v,c]:data) * (r == ¢‘BOOL_TO_NUM (RED_BLACK_TREE___IS_RED data)‘‘)]

Other procedures require an additional definition to capture the necessary precondition
as well. The procedure rb_tree_left_rotate requires, for example, that it operates on
a non-empty tree that has a non-empty right subtree.

val PROGRAM_PRED___can_left_rotate_def = Define ¢
PROGRAM_PRED___can_left_rotate t =
IS_RED_BLACK_TREE_NODE t /\
IS_RED_BLACK_TREE_NODE (RED_BLACK_TREE___RIGHT_SUBTREE t) ¢
val PROGRAM_FUN___left_rotate_def = Define ¢
PROGRAM_FUN___left_rotate
(node [kI;v1;cl] [a; node [k2;v2;c2] [b;c]1) =
(node [k2,v2;0] [node [k1;v1;1] [a;b]; c])¢

rb_tree_left_rotate (r;)
[data_tree (r,[k,v,c]:data) * ¢ ‘PROGRAM_PRED_
local s, x;

_can_left_rotate data‘‘] {

S =r->r; x = s8->1; r->r = x; s->1 = r;
r->c = 1; s=>c = 0; r = s;

} [data_tree (r,[k,v,c]: < ‘PROGRAM_FUN___left_rotate data‘‘)]

It is straightforward to define similar functions for all auxiliary procedures. Proving that
the procedures implement their functional representation is simple as well. It mainly
consists of calling Holfoot’s automation and rewriting with the definitions of the new
functions. This treatment of the auxiliary procedures essentially translates the program
into a functional representation inside HOLA4.

It remains to be shown that these operations on trees really implement inserting a key
into a red-black tree. This proof is completely independent of the concrete, low-level
implementation. Instead, it uses the functional representation of the auxiliary functions.
Therefore, it can concentrate on the essence of the algorithm, i.e. on the core of the
verification problem.

It might be interesting that introducing new definitions and showing their correspondence
with the auxiliary procedures was straightforward and took about one hour. In contrast,
the algorithm underlying inserting a key/value pair into a red-black tree is complicated.
Its verification took me about one week.

2.6 Extending Holfoot

Defining new HOL4 functions that are used in pure side-conditions is extensively used
in interactive proofs (see Sec. 2.5.6). Besides being used in pure side-conditions, i.e. in
predicates, such functions can also be used in conditions of control structures or in pure

2.6. EXTENDING HOLFOOT 57

expressions. Moreover, procedure declarations annotated with the keyword assume can
be used to simulate the effect of introducing new statements. These simple possibilities
to extend Holfoot’s input language are frequently used. Moreover, they are supported by
Holfoot’s automation.

It is, however, also possible to extend Holfoot at a deeper level. For example, one can add
real new statements instead of simulating them with procedures. New control structures or
predicates that describe datastructures in the heap can be added as well. It is even possible
to add new annotations that guide the verification process. Adding a new construct
requires defining it in HOL4 and adapting Holfoot’s parser such that the new construct
can easily be used. FExcept in the parser, there is no fixed set of constructs defined
anywhere in Holfoot. All constructs are shallowly embedded in HOL4. In the presence of
a new construct Holfoot’s automation will operate as usual as long as it does not need any
information about this new construct. If information about the new construct is required,
the automation stops. This allows the user to reason about it manually.

It is possible to extend Holfoot’s automation. There is a set of inference rules written in
ML. Simplified, the automation can be seen as a loop that applies the inferences rules
in this set. Holfoot’s automation can be extended by implementing new inference rules
in ML, and adding them to the set. Some of the existing inference rules also use certain
parameters that can be modified. It is for example possible to provide Holfoot with
additional rewrite-rules for user-defined predicates.

While Holfoot is in principle extensible in these ways, considerable knowledge of HOL4, its
libraries, ML, Holfoot and the separation logic framework is necessary to do it in practise.
It is, however, comparably easy to define new non-pure predicates in terms of existing
predicates. An example is problem 5 of the VSTTE’10 competition (see Appx. B.3.5).

2.6.1 Amortised Queue Example

Problem 5 of the VSTTE’10 competition (see Appx. B.3.5) is concerned with amor-
tised queues. In the implementation, an amortised queue consists of two singly-linked
lists called front and rear. The abstract data present in an amortised queue consists of
front ++ REVERSE rear. If the front is not empty, this allows efficient access to the first
element of the queue. Similarly, an element can easily be added at the end of the queue
by adding it in front of rear. One has to be careful though, that the front does not be-
come empty. Therefore, the competition problem enforces the invariant that rear is never
longer than front.

In Holfoot, an amortised queue at location q containing a list data can be described by
the following predicate:

q |-> [front:_f, rear:_r, front_length:_fl, rear_length:_rl]
data_list(_f, _f_data) * data_list(_r, _r_data) * (_rl <= _fl) x*

(_fl == “‘LENGTH _f_data‘‘) * (_rl == ‘‘LENGTH _r_data‘‘) =
‘‘data = _f_data ++ REVERSE (_r_data)‘‘

This predicate describes that at location q in the heap there are four values stored:
pointers to the front and rear lists indexed by the tags front and rear and the explicitly
stored lengths of these lists indexed by front_length and rear_length. It further states

o8 CHAPTER 2. HOLFOOT

that the rear list is not longer than the front one and that the data content of both lists
can be combined in the described way to form data.

This predicate can be used to define amortised lists in Holfoot. However, using this lengthy
form in procedure specifications is hard to read, error-prone and tiresome. Instead, the
proof script (see Appx. B.3.5) introduces new predicates for amortised queues. A strong
amortised queue is defined as above, a weak one lacks the condition that the front is not
shorter than the rear. Holfoot’s parser allows adding these new predicates. Similarly,
HOL4’s pretty printer can easily be made aware of them. In order to get Holfoot’s
automation to handle the new predicates decently, it also needs to be shown that they

are well-behaved with respect to expressions (a technical condition that is explained in
Sec. 3.3).

After introducing the new predicates, specifications like the following can be verified.

queue_length(re;q) [amortized_queue(q, data)] {

local rl,f1;
rl = g->rear_length; fl1 = gq->front_length;
re = rl + £f1;
} [amortized_queue(q, data) x (re == “LENGTH data")]

Since the new predicate is defined as an abbreviation for predicates known to the automa-
tion, the proof script mainly consists of expanding the definition of the new predicates
and calling Holfoot’s automation.

2.7 Conclusion

In this chapter Holfoot is presented from a user’s perspective. Its input language and
features are introduced using many example specifications. More examples can be found
in Appendix B or at Holfoot’s webpage®. In case you want to try out Holfoot, Appendix A
explains how to obtain and install it.

3http://holfoot.heap-of-problems.org

http://holfoot.heap-of-problems.org

Chapter 3

Theoretical Foundation and
Implementation

In Chapter 2 a high level view of Holfoot has been presented. This chapter explains the
theoretical foundation as well as technical details of its implementation.

Holfoot is built as an instantiation of a general separation logic framework based on
Abstract Separation Logic [7]. This framework is first instantiated to support a stack
with read / write permissions following ideas of Parkinson, Bornat and Calcagno [31].
Then, a heap is added in a second instantiation step. The presentation of the theoretical
foundations follows this structure.

Section 3.2 presents Abstract Separation Logic. The version of Abstract Separation Logic
used in this work is very close to its original presentation [7]. It has however been slightly
extended. Most noticeable and most important is the addition of procedures. This section
introduces many fundamental concepts. Abstract Separation Logic is important for the
understanding of the other parts of the theoretical foundations. Readers familiar with
Abstract Separation Logic might want to skip this section though, as it contains only
minor additions to the original work [7].

Section 3.3 presents a first instantiation of the Abstract Separation Logic framework. A
stack with read / write permissions is added. This allows reasoning about concepts like
pure expressions, assignments, local variables, procedures with call by reference and call
by value parameters. Moreover, the general infrastructure for Holfoot’s frame calculations
is provided at this level. This layers follows ideas of Parkinson, Bornat and Calcagno [31].
Readers familiar with this work will discover many connections, but should still read this
section, because the main ideas are adapted to an Abstract Separation Logic setting.
Moreover, they are extended and additional concepts are added.

Finally, Section 3.4 describes the final instantiation of the framework in order to build
Holfoot. This layer adds a heap to the model of states. This allows reasoning about
explicit memory allocation and deallocation, heap lookups and heap-assignments. More-
over, predicates for datastructures like singly-linked lists, trees and arrays are defined at
this layer.

These three sections (Sec. 3.2, 3.3 and 3.4) present Holfoot’s theoretical foundations. They
have been formalised using the HOL4 [13, 34| theorem prover. However, these sections do
not require the reader to be familiar with HOL4. All concepts are presented using general
mathematical notations. There are, however, often references to the corresponding HOL4

59

60 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

theorems. These references might be interesting for readers familiar with HOL4 that want
to understand the formalisation in detail. For the sake of such readers, there are also some
HOL4 remarks that describe implementation details in HOL4. Readers not familiar with
HOL4 are encouraged to skip these remarks. They assume knowledge about HOL4 and
are not important for the understanding of the theoretical foundations.

After the presentation of the theoretical foundations, some technical details are discussed
in Section 3.5. As this section does not assume any knowledge about HOL4, the details
are discussed at an abstract level. Therefore, this section mainly contains a discussion
about how Holfoot’s automation applies its inference rules and how Holfoot’s quantifier
instantiation heuristics work.

3.1 Notations

Before, the theoretical background is presented, some notations have to be introduced
briefly. Function application is written as either f(x) or f x. Often curried functions are
used. These are written as f(x)(y) or f x y, respectively. Sometimes, square brackets are
used for the first argument: f[x]|(y), f[x] y. Abstractions are written as Az. f(z) or with
multiple arguments as Az, y. f(x)(y). Several datatypes are used in the following. Some
of these need a short introduction.

3.1.1 Sets

Standard set notations are used in the following. ¢ denotes the empty set; {e1, es,...¢€,}
the set that contains the elements eq,...e,. Further, let {z | P(xz)} denote the set
containing all x for which P(x) holds. e € S denotes that e is an element of the set
S. Additional notations include union of sets &; U Ss, intersection of sets &1 N Sy and
the subset relation §; € Sy. Two sets are disjoint, iff they don’t share any elements, i.e.
ift S NSy = . The image of a set S under a function f is denoted by image f S. The
difference of two sets is denoted by S1\Ss.

3.1.2 Finite Maps

Finite maps are functions with a finite domain. A finite map m : « finy [is therefore a
function, that is only defined for a finite subset dom(m) of . & is used to denote empty
finite maps, i.e. finite maps m with dom(m) = . The disjoint union of two finite maps
my and my is given by

my () if x € dom(my) A x ¢ dom(ms)
(m1 [ma)(z) =< ma(z) if x ¢ dom(my) A € dom(ms)

undefined otherwise

The restriction of a finite map m by a set S is given by

m\S — { m(z) if x € dom(m) A z¢S

undefined otherwise

3.2. ABSTRACT SEPARATION LOGIC 61

That a finite map m is updated at entry x by an value v is denoted by

v if vy =2
m(z) otherwise

update[x,v](m)(xq) = {

3.1.3 Multisets

Multisets (also called bags) are sets that may contain multiple instances of an element.
Multisets can be seen as functions from the element type to natural numbers. F is used
to denote the empty multiset, i.e. ¢ = Ax. 0. Let {ej,...,e,} denote the multiset that
contains the elements eq, ..., e,. Notice, that if some elements are equal, they are multiple
times in the multiset. A set S can be interpreted as a multiset Az. if x € S then 1 else 0,
i.e. a multiset that contains each element of S once. A value x is an element of a multiset
S (denoted by = € S) iff S contains x at least once, i.e. iff S(z) > 0. Multiset union

is defined by (51 U 82) (x) := S1(z) + Sa(z). In contrast merging of two multisets takes
the maximum number of entries: (Sl L 52) (z) := maz(Sy(x), Sz(x)). Using the minimum

leads to intersection of multisets: (51 N 52) (x) := min(S1(z), Sa(z)). Two multisets S;
and Sy are disjoint, iff V. x ¢ S; v o ¢ S holds, i.e. iff S§ Sy = ¢ holds. & is a subset
of & (denoted by S; € Sy), iff V. S1(x) < Sa(x) holds. Multiset difference is defined by
(81\82) (x) := maz(0, S1(x) — Sa(z)). Finally, all elements of a multiset S are said to be
distinct, iff Vz. S(x) < 1 holds. A multiset S is finite iff the set {z | S(z) > 0} is finite.

3.1.4 Lists

The empty list is denoted by []. x :: zs denotes a list consisting of an element x followed
by a list xs. [x,...,2,] denotes the list consisting of the elements x,,,...,x,. The n-th
element of such a list [is denoted by el(n,[). Counting starts at 0, i.e. el(i, [zo, ... z,]) =
x;. The function length returns the length of a list. hd(l) denotes the head and ¢I(1) the tail
of alist, i.e. hd(x :: zs) = x and tl(x :: xs) = zs. Two lists are appended using the function
append. Sometimes, append(ly,ly) is also written as l; ++ ls. Mapping a function f over
a list [is denoted by map(f,1), i.e. map(f, [xo,...,zn]) = [f(x0),..., f(x,)]- Finally,
take(n,l) denotes the list consisting of the first n elements of the list [and drop(n,)
the list consisting of the remaining elements, i.e. take(i, [z, . .., 2,]) = [%0,...xi_1] and

drop(i, [zo, . .., x,]) = [xi, . . xp].

3.2 Abstract Separation Logic

Abstract Separation Logic as introduced by Calcagno, O’Hearn, and Yang [7] is the foun-
dation of the separation logic framework in HOL4. In the following, this foundation will

be described.

3.2.1 States and Predicates on States

As the name suggests, Abstract Separation Logic is an abstract version of separation
logic. It abstracts from both the concrete specification and the concrete programming

62 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

language. The programming language of Abstract Separation Logic manipulates some
abstract states, the specification language is based on predicates on these states.

3.2.1.1 Separation Combinators

Since nothing is known about these states, a partial function o, called the separation
combinator, is used to combine states and define whether two states are separate.

Definition 3.2.1 (Separation Combinator (HOL4-Thm 217)). A separation combinator
on a set of states X is a partially defined function o : ¥ x ¥ — 3 that satisfies the following
properties:

e o is partially associative, i.e.
Vs, S2, 83. Defined(s; o (sg053)) < Defined((s; 0s2) 0 s3) A
Vs, S2, 3. Defined(s; o (sg083)) = (510 (s3083) = ($1082) 053)

e o is partially commutative, i.e.
Vs1,89. Defined(s; 0s3) < Defined(s; o s1) A
Vsq, 9. Defined(sy 089) = (510 $3 = 89087)

e o is partially cancellative, i.e.
Vs, 82, 83. Defined(s; 0 s9) A Defined(s; 0 s3) A
(81 0S89 = 854 083) > (82 = 83)

o for all states s € X there exists a neutral element u, € X with u,0s = s

HOL4 remark 3.2.2. HOL4 supports only total functions. In order to formalise separation
combinators, which are only partially defined, option-types are used. The value NONE is
used to model undefined, whereas SOME (x) represents the defined value x.

Definition 3.2.3 (Separateness, Substates, Superstates (HOL4-Thms 132, 133)). The
definition of separation combinators induces notions of separateness (#), substates (<)
and superstates (>).

S1 #o So iff 81089 is defined

$1 <o 83 I dsy. 83 =510,

S3>.81 1ff s; <, s3

3.2.1.2 Predicates

Predicates over the set of states ¥ are as usual elements of the powerset P(X). The
separating conjunction operator #, on such predicates and its neutral element emp, are
defined as follows:

Definition 3.2.4 (x, emp (HOL4-Thms 183, 81)).

Ps+@Q = {s|3p,q (pog=5) A peP A qeQ}
emp, = {u|3s.uos=s}

3.2. ABSTRACT SEPARATION LOGIC 63

Most of the time it is clear from the context or does not matter which separation combi-
nator o is used. The additional argument in omitted for the sake of brevity in these cases.
An example are the following important properties of = and emp:

Lemma 3.2.5 ((HOL4-Thm 213)). For all separation combinators the separating con-
junction operator = forms together with emp a commutative monoid, i.e. the following

properties hold:
Psemp = P

P«Q = Q=P
(P+Q)+R = P+(Q+R)

Other standard separation logic constructs can be defined in a natural way as well. magic
wand —= and septraction —o can for example be defined as follows:

Definition 3.2.6 (Magic Wand / Septraction).
P—s,Q = {s|V¥p,q. (pos=q) A pe P = qeQ} (HOL4-Thm 134)
P—o,Q = {s|3p,q. (pos=q) A pe P A qeQ} (HOL4-Thm 177)

As usual, common Boolean operators are lifted to predicates:

Definition 3.2.7 (Lifted predicates).

true = {s| true} (HOL4-Thm 189)
false = {s| false} = & (HOL4-Thm 84)

P = {s|s¢P) (HOL4-Thm 135)
PA@Q = {s|sePnrse@} (HOL4-Thm 77)

Pv@ = {s|sePvse@} (HOL4-Thm 136)

c&P = {s|cArseP} (HOL4-Thm 188)
dz. P(x) = {s]|3z. se P(x)} (HOL4-Thm 83)
(HOL4-Thm 85)

Va. P(z) = {s|Vz.se P(x)}

Example 3.2.8. Heaps, modelled as finite partial functions, can be expressed in Abstract
Separation Logic. In this model X is the set of all heaps. Two heaps are separate, if their
domains are disjoint. The combination of two separate heaps is their disjoint union. Thus,
the separation combinator o for heaps (HOL4-Thms 220, 196) is given by

h1 t*-J hg iff dom(hl) M dOm(hg) = @

fuohs = {undeﬁned otherwise

The empty heap ¥ is the neutral element for all states, i.e. emp, = {} (HOL4-Thm 82).

3.2.1.3 Separation Algebras

Abstract Separation Logic [7] originally used separation algebras instead of the separa-
tion combinators presented here. Separation combinators are a minor generalisation of
separation algebras. While most instantiations like Holfoot use only separation algebras,
using the slightly weaker concept of separation combinators is sufficient. An example
illustrating the usefulness of using the weaker concept of separation combinators is given
below by the identity separation combinator.

64 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Definition 3.2.9 (Separation Algebra (HOL4-Thm 214)). A separation algebra is a can-
cellative, partial commutative monoid (X, o, u). This means that (X, e, u) is a separation

algebra iff e is a separation combinator and w is the neutral element with respect to e for
all states in 3 (HOL4-Thm 215).

The difference between separation algebras and combinators is smaller than one might
expect, because even the neutral elements of separation combinators satisfy properties
similar to the uniqueness demanded for algebras:

o Vs, 51,82. (s081 =8) A (s0sy=38) = (81 = s9), i.e. for each state s € X there
is exactly one neural element (HOL4-Thm 218). This element will be denoted by
u, in the following.

® Vs, 8. 81 # S = (us1 = Uy, = uslosg) (HOL4-Thm 219)

o Vs, 80. Uus, # S92 = <u32 = usl) (HOL4-Thm 222)

o Vz. u,ou, = u, (HOL4-Thm 221)

This implies that for a separation algebra (X, e, u) the neutral element emp with respect
to o evaluates to {u} (HOL4-Thm 80), which is the original definition of emp [7].

So, there is only a small difference between separation algebras and separation combi-
nators. However, it is sometimes useful to allow combinators as the following discussion
about products of separation combinators will demonstrate.

3.2.1.4 Product Separation Combinators

In this work Abstract Separation Logic is used as a basis for a general framework. For
such a framework it is useful to be able to construct separation combinators and states
from simpler components and reason about these components separately. For example, a
separation combinator for heaps was defined previously (Example 3.2.8). It is useful to
be able to use this definition and extend it to a larger state that contains a heap and for
example a stack. The following definition of Product Separation Combinators allows such
extensions:

Definition 3.2.10 (Product Separation Combinator (HOL4-Thm 224)). Let o; and o
be two separation combinators on Y; and Y, respectively. Then their product oy x oy is

defined as

o (sio1ty,s00ta) iff s1 #o, t1 A 52 #o, 1o
(s1,82) (o1 x 02) (t1,t2) = { undefined otherwise

01 X 09 I8 a separation combinator on ¥; x ¥y (HOL4-Thm 225). If (3, e1,u;) and
(325, 89, uy) are separation algebras, then (31 x Xy, o1 X &5, (uy, us)) is a separation algebra
as well (HOL4-Thm 226).

3.2. ABSTRACT SEPARATION LOGIC 65

As motivated before, the product of two separation combinators is used to build com-
binators on complicated states component-wise. A simple, but still useful example is
augmenting a state with a static component. This component could for example contain
some environment information like global constants or more interestingly definitions of
procedures. The following identity separation combinator & can be used in that way to
add arbitrary static data:

Definition 3.2.11 (Identity Separation Combinator (HOL4-Thm 207)). The identity
separation combinator @ is defined as:

S1 iff S1 = So
S1 @ So {

undefined otherwise

© is a separation combinator (HOL4-Thm 208) but in general not a separation algebra.

3.2.2 Actions

The elementary constructs of Abstract Separation Logic’s programming language are
actions. They are defined as follows:

Definition 3.2.12 (Action). An action act: ¥ — P(X)T is a function from a state to a
set of states or a special failure state T.

If an action act may fail when executed in a state s, the result of act(s) is T. Otherwise,
act(s) results in the set of all possible states after executing the action. The empty set
indicates that the action diverges.

HOL4 remark 3.2.13. In the HOL4 implementation, actions are shallowly embedded.
P(X)T is represented using option-types. NONE is used to model T, whereas SOME(P)
represents the state set P.

3.2.2.1 Semantic Hoare triples

Given this notion of actions and the previous definitions of predicates, Hoare triples for
actions are defined as follows:

Definition 3.2.14 (Semantic Hoare Triple (HOL4-Thm 206)). For predicates P, @ and
an action act, a Semantic Hoare triple {P)) act {Q) holds, iff for all states p that satisfy
the precondition P the action does not fail, i.e. Vp € P. act(p) # T, and leads to a state
that satisfies the postcondition Q, i.e. Vp € P. act(p) € Q. Notice, that this describes
partial correctness, since a semantic Hoare triple is trivially satisfied, if act does not
terminate, i.e. if act(s) = & holds.

These definitions of actions and semantic Hoare triples illustrate that Abstract Separation
Logic is used to verify the partial correctness of nondeterministic, imperative programs.
Its programming language is an abstraction of a concrete programming language with
this verification goal in mind. For example, it is not possible to express that an action
nondeterministically fails or succeeds. For verification purposes it is sufficient that it

66 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

might fail and therefore these cases are combined in a single failure state T. Divergence is
handled similarly. Since Abstract Separation Logic is concerned with partial correctness,
i.e. with statements about what happens if a program terminates, diverging means that
the verification effort succeeds. Therefore, diverging computations are not added to the
set of resulting states.

3.2.2.2 Common Actions

Even in this abstract setting without concrete states and a concrete separation combinator,
basic actions can be defined. The most basic ones are probably skip, diverge and fail:

Definition 3.2.15 (skip, diverge, fail).

skip(s) = {s} (HOL4-Thm 76)
diverge(s) = (HOL4-Thm 72)
fail(s) = T (HOL4-Thm 73)

Actions can be combined to form new actions. The most common combinations are
sequential composition and nondeterministic choice. In order to define these, it is handy
to extend the union and intersection of sets to operate on P(X)':

Definition 3.2.16. For a set S € P(X)" union and intersection with respect to T are
defined as:

T ifTeS

UrS = { US otherwise (HOL4-Thm 235)
T ifYPeS. P=T

e { N (S\{T}) otherwise (HOL4-Thm 212)

Definition 3.2.17 (Sequential composition (HOL4-Thm 75)).

‘ . T if acti(s) =T
(acti; acty)(s) = { Ut{acta(s') | s' € act1(s)} otherwise

So, the sequential composition act;; acty fails in a state s if the first action act; fails in
s. Otherwise, acty is executed on all the nondeterministic results. If act, fails on any of
those, the whole sequential composition fails. Otherwise, it returns nondeterministically
one of the results.

Definition 3.2.18 (Nondeterministic Choice (HOL4-Thm 71)).

<|_| act-set) (s) = |Jr {act(s) | act € act-set}

Since nondeterministic choice between two actions is a very common special case, special
syntax is introduced for it:

act; + acty = |_| {act, acty}

The nondeterministic choice between some actions fails, if any of these actions fails.
Otherwise, it nondeterministically returns one of the nondeterministic outcomes of one of
the actions.

3.2. ABSTRACT SEPARATION LOGIC 67

3.2.2.3 Local Actions

Local reasoning is an essential concept of separation logic. It is closely connected to
separation logic’s frame rule. This inference rule allows a semantic Hoare triple to be
extended with an arbitrary context:

Semantic Frame Rule

P act KQY
P+ R) act Q= R)

The idea is that the precondition P describes all the resources (like for example memory,
stack variables, locks) needed to execute act. If therefore, there are separate resources R
available as well, they don’t affect the execution of the action. Moreover, these additional
resources are not affected by the execution. The action operates locally on the state
described by P.

Most actions used by common programming languages satisfy this frame rule. In order
to provide local reasoning, Abstract Separation Logic allows only those actions. They are
called local actions.

Definition 3.2.19 (Local Actions (HOL4-Thm 128)). An action act is called local, iff it
satisfies the frame rule, i.e. iff

VP, Q, R. {P) act {Q) = (P k) act {Q = R))

This definition of local actions represents the intention of local actions. However, it is
difficult to use this definition directly. Another way of defining local actions is via safety
monotonicity and the frame property:

Lemma 3.2.20. (HOL4-Thm 223) An action act is local, iff it satisfies

safety monotonicity (HOL4-Thm 237):
Vsy, 89. 81 < 8o A act(sy) # T = act(sy) # T

frame property (HOL4-Thm 236):
Vsi, So, 83,t,1. s108y =83 A act(sy) # T A acl(ss) #T A teact(ss) =
.t € act(s)) A t'osy =t

Safety monotonicity states that if an action has enough resources to succeed in a state
s, then it will also succeed in any superstate of s, i.e. in any state that provides more
resources. The frame property states that the execution on the superstate keeps these
additional resources untouched.

There is an even more concise characterisation of locality:

Lemma 3.2.21. (HOL4-Thm 117) An action act is local, iff
Vs1,89. 81 # S2 = act(s1089) ST (act(sl) *T 52)
holds, where S+ and =t are extensions of € and = that respect the failure state set T:
Pcr@Q = (Q@Q=T)v(P#T AP<Q) (HOL4-Thm 203)

T fP=TorQ=T
P Q { PeO otherwise (HOL4-Thm 205)

68 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Notice, that this definition of local actions — like Abstract Separation Logic in general —
is with respect to partial correctness. A local action may diverge on the larger state while
it terminates on the smaller one. Similarly, operating on a larger state may reduce the
number of possible resulting states.

Lemma 3.2.22 (Basic local actions). The actions skip, diverge and fail are local actions
(HOL4-Thms 123, 120, 121) Moreover, the sequential combination a;;ay of two local
actions a; and as as well as the nondeterministic choice | |, iciocaiact-ser @Ct between a set
of local actions local-act-set are local actions themselves (HOL4-Thms 122, 119).

Example 3.2.23 (Example actions on heaps (HOL4-Thm 130)). Consider the model of
heaps from Example 3.2.8. In this model the action act; (k) := if h = & then {h} else T
is not a local action, because it violates safety monotonicity. It succeeds for the empty
heap but fails for all other heaps. The similar action acty(h) :=if h = J then {h} else {}
however is a local action. Instead of failing acty diverges, which is fine as Abstract
Separation Logic is just concerned with partial correctness.

3.2.2.4 Total Lattice of Local Actions

C+ is a partial order of P(X)T (HOL4-Thm 204), i.e. it is reflexive, antisymmetric and
transitive. It can be easily used to define an order of actions:

Definition 3.2.24 (Order of Actions (HOL4-Thm 201)). For two actions act; and act,
let act; E acty be defined by

act; E acty :=Vs. acti(s) S acty(2)

C is a partial order of actions (HOL4-Thm 200). If act; E act, holds, acty allows more
behaviour than acty, i.e. acty is an abstraction of act;. This is expressed formally by the
following lemma:

Lemma 3.2.25 ((HOL4-Thm 199)).

ach E acty < VP,Q. P) acty Q) = LP) acty LQ)

Lemma 3.2.26 (Lattice of local actions (HOL4-Thm 202)). The set of local actions
LocAct forms together with £ a complete lattice. This means that = is a partial order
on LocAct and for each non empty subset £ of LocAct there exists an infimum and a
supremuin.

sup(£) = UL = Xs. Ut {act(s) | acte L} (HOL4-Thms 234, 233, 232)
inf(C) = [1L£ = As. Nt {act(s) | acte L} (HOL4-Thms 211, 209, 210)

Let’s try to clarify the statement of this lemma. The supremum sup(L) is defined by
Vacte L. act = sup(L)

Vact. (VYacte L. act E act') = sup(L) E act’

3.2. ABSTRACT SEPARATION LOGIC 69

According to Lemma 3.2.25 E is closely related to semantic Hoare triples. Therefore, the
supremum sup(L) can also be characterised by

Vacte L, P, Q. {P) sup(L) K@) = «P) act Q)

Vact. (Vacte L, P,Q. {P) act Q) = (P act {Q)) =
VP, Q. {P) act Q) = P)) sup(L) Q)

So the supremum of £ is the most specific action that is more general than all action
in £. This explains, why the supremum of £ is the nondeterministic choice between the
actions in L.

Similarly, the infimum is the most general action that is more specific than any act e L:

Vacte L, P,Q. {P) act Q) = (P) inflL) Q)

Vact. (Vacte L, P,Q. {P) act {Q» = (P act Q) =
VP, Q. {P) inf(L) Q) = P act LQ)

3.2.2.5 Best Local Action

This lattice of local actions is used to define a best local action:

Definition 3.2.27 (Best Local Action (HOL4-Thm 195)). Given a precondition P and
a postcondition @) the best local action bla[P, Q)] is the supremum of the set of all local
actions act that satisfy the {P)) act {Q):

bla[P, Q] : |_| {act | actis local A (P act {QM}

As the supremum of a set of local actions £, the best local action is itself local and more
general than any action in £. Moreover, bla[P, Q] satisfies the semantic Hoare triple

P blalP, Q] LQ):

Lemma 3.2.28 (Best Local Action Properties (HOL4-Thm 194)). For two predicates P
and @, the best local action bla[P, Q] satisfies the following properties:

e bla| P, Q] is a local action

o (P) bla[P,Q] Q)
e Vact, P, Q. (act is local A {P) act {Q)) = act = bla[P, Q]

Since bla[P, @] is a local action, it can be safely used without violating the frame rule.
The triple {P) bla[P, Q] Q) provides a handle for reasoning about it. Finally, the last
property allows actions act that satisfy {P) act {Q) to be abstracted with bla[P, Q].

Similar to the definition of local actions, there is also a more concise characterisation of
best local actions:

Lemma 3.2.29. (HOL4-Thm 193) The best local action bla can also be defined by

bla[P, Q](s) = [|T{Q 7 {s0} | soos1 =5 A s1€P}

70 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.2.2.6 Semaphore operations / Precise Predicates

The best local action is frequently used to define new actions. Examples are the definition
of materialisation and annihilation which are used to handle semaphore operations.

Abstract Separation Logic supports simple semaphores. There are predefined locks with
the usual operations P and V for allocating and releasing a lock. However, since Abstract
Separation Logic uses an abstraction of a real programming language, their semantics is
unusual. Instead of updating and checking some lock and perhaps blocking the current
thread, they grant access to some part of the state protected by the lock. To this end,
each lock is annotated with a predicate called lock-invariant. Acquiring the lock grants
access to a part of the state that is described by this lock-invariant, releasing the lock
removes this access. To this end, the local actions materialisation and annihilation are
used:

Definition 3.2.30 (materialisation, annihilation (HOL4-Thms 74, 67, 129)). For a lock-
invariant I € P(X), the local actions materialisation and annihilation are defined by

materialisation[I] = bla[emp, I]
annihilation|I] = bla[l, emp]

This demonstrates nicely, that Abstract Separation Logic uses an abstraction of a pro-
gramming language and that it is sometimes hard to see that this abstraction is sound.
Even without considering the soundness of the abstraction, it is tricky to see that the new
actions have the intended semantics.

Consider for example the semantics of annihilation with an invariant I on a state s. Let
S, be the set of states that results from removing I from s, i.e.:

Ss={so|s1€l Ans=sp081}
It’s easy to describe the result of annihilation[I](s) using S; (HOL4-Thm 68):

T if[S] =0
annihilation[I](s) =3 S, if |Ss] =1
5 otherwise

The first two cases are as one would expect. If S, is empty, i. e. if no substate of s satisfies
I, the annihilation action fails. Otherwise one might expect Sy as the result. This is
however only true, if S; has exactly one element. Otherwise the action diverges. This
perhaps surprising behaviour is implied by the locality of annihilation.

In order to avoid such unintuitive behaviour, usually just precise predicates are used with
annihilation:

Definition 3.2.31 (Precise Predicates (HOL4-Thm 131)). A predicate P is called precise
iff for every state there is at most one substate that satisfies P, i.e. iff

Vs,81,80. (S1EP ASI<8) A ($2€P ASy<5s) = s =5

Using a precise invariant guarantees that the annihilation action does not diverge. How-
ever, the main reason for using precise invariants is, that the abstraction of semaphore
operations is unsound for arbitrary invariants. Instead, Brookes uses only precise pred-
icates as invariants to define the semantics of concurrent separation logic [5]. Showing
that the programming language used by Abstract Separation Logic is a sound abstraction
of a real programming language is outside the scope of this work, though. Therefore, the
notion of precise predicates occurs only infrequently in this work.

3.2. ABSTRACT SEPARATION LOGIC 71

3.2.2.7 Quantified Best Local Action

As shown with materialisation and annihilation, best local actions are used to define
new actions. Another usage is to abstract blocks of code. Especially for the later pur-
pose it is often useful to consider not just a single Hoare triple {P)) . @), but whole
families of triples {P1) . Q1), {Py)y . {Q2), Such families are represented by
Vi. {P(i)) . €Q(i)) using higher order quantlﬁcatlon and specification variables. The
lattice of actions as described by Lemma 3.2.26 provides concepts to extend best local
actions to families:

Definition 3.2.32 (Quantified Best Local Action (HOL4-Thm 228)). Given two functions
P; and @)y from an arbitrary argument type to predicates, i.e. given a family of pre- and
post-conditions, the quantified best local action gbla| Py, Q¢] is the infimum of the set of
best local actions with pre- and postconditions from this family:

qbla[Ps, Q¢ : |_| {bla| Ps(x),Q¢(x)] | = arbitrary}

gbla is an extended version of bla. It has very similar properties. While the definition
using the infimum is intuitive, definitions that are very similar to the definition of bla can
be used as well:

Lemma 3.2.33 ((HOL4-Thms 231, 229)).

¢bla[Pr, Q] = Ll{act]| actislocal A V. {(Ps(x)) act LQs(x))}
= As. NT{Qf(x) *1 {so} | soos1 =5 A s1€ Ps(x)}

Lemma 3.2.34 (Quantified Best Local Action Properties (HOL4-Thm 230)). For families
of pre- and post-conditions Py and @ the best local action gbla[Pf, Q)¢] satisfies the
following properties:

o gbla[Pr, Q] is a local action

o Vu. {Py(x)) qbla[Py, Qf] Qy(x))
o Vact, P,Q. (actis local A V. {Pr(x)) act {Qf(x))) = act = gbla[Py, Q]

3.2.2.8 assume

One important action of Abstract Separation Logic still needs to be introduced: assume. It
is used to define programming constructs that need conditions. Examples are conditional
execution or while loops. Given a predicate B, assume|B](s) should skip, if s € B holds
and diverge otherwise. However, assume should also be a local action. This means that
if assume|B] diverges for a state s, it has to diverge for all superstates s,. In order to
guarantee this, only special predicates are used with assume:

Definition 3.2.35 (Intuitionistic Predicate (HOL4-Thms 114, 116)). A predicate P is
called intuitionistic, iff P « true = P holds, i.e. iff

Vs1,89. 81 < So ASs1EP = s,€ P

72 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Intuitionistic predicates guarantee that once a predicate holds, it holds for all superstates.
To guarantee that if it does not hold, it holds for no superstate as well, ntuitionistic
negation is used.

Definition 3.2.36 (Intuitionistic Negation (HOL4-Thm 113)). The intuitionistic nega-
tion —; P of a predicate P holds in a state si, if P does not hold for any superstate sg
of sy:

S1 € =P = Vsy. 81 < 89 => (89 ¢ P)

This concept of intuitionistic predicates and negation allows the definition of a local
assume action with the intended semantics:

Definition 3.2.37 (assume (HOL4-Thms 69, 118)). For a predicate B € P(X) the action
assume is defined as follows:

{s} ifseB
assume[B|(s) =< & if se —;B
T otherwise

assume| B] is a local action for intuitionistic B.

There are three cases now. If B holds in all superstates assume|[B] skips. If it does not
hold in any superstate, assume[B] diverges. If — however — there are some superstates for
which P holds and some for which it does not hold, i. e. if there are not sufficient resources
to decide the intuitionistic predicate B, assume|B] fails.

Figuring out, whether assume[B] fails in a state or not is important. This motivates the
following definition:

Definition 3.2.38 (Decided Predicate (HOL4-Thm 137)). A predicate P is called decided
in a set of states S, iff Vse S. s€ P v s € —; P holds.

3.2.3 Programs

Now all the necessary actions have been presented to define the programming language of
Abstract Separation Logic. The basic constructs of this language are local actions. Besides
local actions, the language contains the usual control structures like conditional execu-
tion and while-loops. Additionally, nondeterminism, concurrency and simple semaphore
operations are supported.

The language of the original work [7] is extended with procedures here. While the seman-
tics still follow ideas from Brookes [5] about Concurrent Separation Logic, their presen-
tation differs from the original one. This is partly due to adding procedures and partly
due to the formalisation in HOLA4.

It is not obvious, whether to use shallow or deep embeddings for the HOL4 formalisation.
Actions are a good example: on the one hand, one would like to allow every HOL4 function
of the right type to be used as a primitive construct of the programming language. That
would provide a lot of flexibility and the possibility to extend the language very easily.
On the other hand, each primitive construct should be a local action. Given a suitable
definition of programs, the semantics of any program will then be a local action as well.

3.2. ABSTRACT SEPARATION LOGIC 73

So, it appears easiest to use a deep embedding and a fixed set of local actions. Similar
friction occurs on a higher level as well. In order to handle locks and procedure calls, it
is useful to have a deep embedding and a set of dedicated operations which are the only
ones that use locks and procedures. On the other hand, a shallow embedding with its
flexibility is useful.

In this work, programs are formalised in a mixture of deep and shallow embeddings in
order to combine the benefits of both. On the lowest level of the HOL4 formalisation,
there are primitive commands — a wrapper around a shallow embedding of local actions.
On the next layer there is a deep embedding of traces, which are sequences of primitive
commands as well as special actions to take care of interleaving and lock operations. One
layer up are proto traces which correspond to programs in the original work [7]. Proto
traces are translated to a set of traces. This translation eliminates procedure calls and
parallel composition. Finally, programs are shallowly embedded as sets of proto traces.

3.2.3.1 Programs, Proto Traces, Traces ...

Definition 3.2.39 (Proto-Trace). The set of proto-traces PTr is inductively defined to
be the smallest set with

e acte PTr for all local actions act

pt, ; pty € PTr (sequential composition) for pt,, pt, € PTr

pt, || pt, € PTr (parallel composition) for pt,, pt, € PTr

proccall(name, arg) € PTr (procedure call) for all procedure-names name and all
arguments arg

l.pt e PTr (lock declaration) for a lock [and pte PTr
e with | do pte PTr (critical region) for a lock | and pte PT'r

Definition 3.2.40 (Program). A program is a set of proto-traces. The set of all programs
is denoted by Prog.

HOLJ remark 3.2.41. The definition of proto traces uses local actions. As motivated,
these local actions are represented by a wrapper in HOL4 (HOL4-Thm 198). Given an
action act the wrapper returns the action itself if it is local and fail otherwise. As fail
is a local action (HOL4-Thm 121), this guarantees that the wrapper always returns a
local action (HOL4-Thm 127). Similarly, there is a wrapper for intuitionistic predicates
(HOL4-Thm 197). For a intuitionistic predicate B the wrapper returns B itself otherwise
it returns false. Moreover the wrapper allows intuitionistic negation, conjunction and
disjunction of predicates. All predicates returned by the wrapper are intuitionistic (HOL4-
Thm 115).

The semantics of programs and proto traces is given by translating them to traces, i.e.
to sequences of atomic actions.

Definition 3.2.42 (Atomic Action). An atomic action is either a local action, a check
check(acty, acty) for local actions acty, acty or a lock operation P(l) or V(1) for a lock [.

74 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Definition 3.2.43 (Trace). A trace is a list of atomic actions. Let e denote the empty
trace. The concatenation of two traces t;,t5 is denoted as t; - t5.

To define the traces of a program, an environment is needed that fixes the semantics
of procedure calls. The idea is, that the procedure environment provides a body for
each procedure call, i.e. for each procedure and all arguments the environment returns a
program. The procedure call is replaced by this program.

Definition 3.2.44 (Procedure Environment). A procedure environment is a finite map

fin .
penv : procedure-names — (arguments — Prog) from procedure-names to a function from
procedure arguments to programs.

There is support for mutual recursive procedures. However, traces are defined as lists and
are therefore finite. Thus, one has to be careful to avoid unfolding procedures infinitely
often which would result in infinite traces. This problem is solved by considering all traces
that need at most depth n of nested procedure calls and then uniting these sets of traces.
This results in an infinite set of finite traces. Traces that would need an infinite number
of procedure unfoldings can be ignored, since Abstract Separation Logic considers partial
correctness and these traces would not terminate.

Besides procedure calls, proto traces also take care of parallel composition. The parallel
composition of traces is the set of all traces resulting from interleavings of the original
traces. Besides just interleaving, check actions are inserted to enforce race-freedom. For
all local actions that might be executed in parallel, a check is inserted to guarantee that
these actions don’t interfere with each other.

Definition 3.2.45 (Interleaving Traces (HOL4-Thm 187)).

check(ay, as) -t if a; and ay are local actions
t otherwise

add-check(ay, as, t) = {
€ezipt = t zipe={t}
{add—check(al,aQ,t) |te {ay;u|uety zip (ag;ta)} U

(ay;t1) zip (ag;ts) = ,
{az;u [we (ai;ty) zip t2}}

Critical regions remain to be handled. Let remove-locks(l,t) (HOL4-Thm 185) remove all
atomic actions concerned with the lock [, i.e. P(I) and V (I), from the trace ¢. Finally, a
trace is [-synchronised (HOL4-Thm 184), iff the lock-actions P(l) and V() are properly
matched. This allows the set of traces of a proto trace and a program to be defined as:

Definition 3.2.46 (Traces of Proto-traces / Programs (HOL4-Thms 176, 175, 161)).
Given a procedure environment penv, the traces of a proto-trace that need at most nesting-

3.2. ABSTRACT SEPARATION LOGIC 75

depth n for procedure calls (denoted as T, (t)) are given by:

penv

" . (act) = {act}

penv

T];Lenv(ptl) pt2) = {tl " 1o | th € T;Lenv(ptl) Nt E T;Lenv(th)}
Tpeno(pty || pty) = U ty zip t
tlETz;rlenv(ptl)7tQET1§lenv(pt2)
{fail} if name ¢ dom(penv)
T (proccall(name, arg)) = %) - if name € dom(penv) Am =0
U Toon(pt) otherwise
ptepenv(name,arg)
Thp(l.pt) = {remove-locks(l;t) |t € Ty, (pt) A tis l-synchronised}

T;;m(wzth ldopt)y = {P()-t-V(I)|te Tgem)(pt)}

The traces of a proto-trace pt and a program p with respect to penv are defined as

Toenw (pt) = U T]:Lenv (pt)
neNg
Tpenv (p) = U Tpenv (pt)
plep

3.2.3.2 Semantics of Programs, Proto Traces, Traces ...

After defining how to translate programs into a set of traces, it remains to define the
semantics of traces in order to get a semantics for programs. Traces are sequences of local
actions, checks and lock operations. A sequential composition operator for local actions
as well as an informal semantics for checks is presented above. Moreover, it is discussed
in Section 3.2.2.6 that Abstract Separation Logic uses precise lock-invariants and that
the local actions materialisation and annihilation are used to model the semantics of
semaphore operations.

Let lenv : locks — P(X) be a lock-environment, i. e. a function that assigns a lock invariant
to each lock. Then the semantics of an atomic action with respect to lenv can be defined
by:

Definition 3.2.47 (Semantics of Atomic Actions (HOL4-Thms 78, 70)). The semantics
of an atomic action with respect to a lock-environment lenv : locks — P(X) is given by

[act]ieny = act
if 351,89. s=51083 A
[check(acty, acty)]iens(s) = s} acti(s1) # T A acly(sy) # T
T otherwise
[P(D])iens = materialise(lenuv(l))
IV(Dliene = annihilate(lenv(l))

This semantics is extended to the semantics of traces by using sequential composition and
to the semantics programs using nondeterministic choice.

Definition 3.2.48 (Semantics of Programs, Proto-Traces, Traces (HOL4-Thms 159,
186)). The semantics of a trace with respect to a lock-environment is the sequential

76 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

combination of the semantics of its atomic actions. The semantics of a proto-traces and
program is given by the nondeterministic choice between the semantics of its traces.

[[6]] lenv = Sklp
[a-theww = [alienv 5 [tDiens
[P] (peno,tenv) L {TtDieno | £ € Tpenu(pt)}
[[prog]] (penv,lenv) = |_| {[[t]] lenv | te Tpenv(pmg)}

Notice that the semantics of a program is a always a local action. This allows concepts
for actions to be easily lifted to programs:

Lemma 3.2.49 ((HOL4-Thm 125)). For all procedure- and lock-environments penv, lenv
and all programs prog, the semantics of the program [prog] peno,ieny) is a local action.

This is due to the construction. The semantics of an atomic action is a local action (HOL4-
Thm 124). Because sequential composition and nondeterministic choice of local actions

result in local actions (HOL4-Thms 122, 119) the semantics of traces (HOL4-Thm 126)
and finally the semantics of programs (HOL4-Thm 125) are local actions.

Definition 3.2.50 (Hoare triple (HOL4-Thm 138)). A Hoare triple =, {P} prog {Q}
holds, iff {P) [prog]en, Q) holds. If a Hoare triple holds for all environments, it is
written as {P} prog {Q}.

Definition 3.2.51 (Program Abstractions (HOL4-Thms 139, 140)). A program p, is an
abstraction of a program p; with respect to some environment env (denoted as p; Eepy p2),
iff [p1]eny E [p2] eny holds. Similar to Lemma 3.2.25, this can also be expressed as

P1 Eenv D2 =

VP, Q > env {P} b2 {Q} = Penw {P} h {Q}

p1 E po is used to denote that p, is an abstraction of p; for all environments.

3.2.3.3 Comments on Semantics

The definition of the semantics of programs shows clearly that Abstract Separation Logic
uses an abstraction of a programming language instead of an abstract programming lan-
guage. The most obvious example is semaphore operations. One would expect that a
simple real programming language acquires a lock before entering a critical section and
returns it at the end. Acquiring the lock may involve waiting. An abstract language might
model this in some way or, for example, just consider synchronised traces, i.e. traces that
acquire and release locks in the right order. One would not expect the behaviour of Ab-
stract Separation Logic, i. e. one would not expect some lock invariant magically appearing
and disappearing. This is a high level abstraction of the behaviour of a real programming
language. As discussed in section 3.2.2.6 it is not even obvious that this abstraction is
sound. Brookes [5] uses precise predicates in order to guarantee it.

The restriction to synchronised traces in the definition of the lock declaration of proto-
traces, which looks very sensible at first glance, might cause trouble as well. Imagine two
proto-traces pt,; and pf; such that pt; is not synchronised for the lock I and [pts;] eno fails
when executed in a state s. Consider further the proto-trace pt := (ptyy ; [.pt;). One
would expect [pt]eny to fail in s as well, because first the failing proto-trace is executed.

3.2. ABSTRACT SEPARATION LOGIC 7

However, this is not the case: [.pt; has no traces, i.e. Tpen(l.pt)) = &, and therefore
Tpenw(pt) = . This implies [pt]eny = diverge. The problem is empty sets of traces. This
may be caused by procedure calls and using the empty set as a program as well. The
problem is circumvented by a suitable definition of sequential composition of programs.

Abstract Separation Logic is general, flexible and powerful. It is a good basis for a
separation logic framework. However, the semantics of its programming language is far
from intuitive. Brookes [5] proves that this programming language is, with certain side-
conditions, a sound abstraction of a real programming language. In order to increase the
trust in the separation logic framework developed here, it might be worthwhile for future
work to formalise a programming language with an intuitive semantics inside HOL4 and
prove that the programming language of Abstract Separation Logic is a sound abstraction
of this language.

3.2.4 Common Programming Constructs

The programs introduced so far do not resemble the programs of standard imperative
languages. Common constructs like loops or conditional execution are missing. However,
these can be easily defined.

Every proto-trace pt can be regarded as the program {pt}. This immediately enriches the
programming language with procedure calls and local actions. In particular, one can use
skip, fail, assume, diverge, bla and gbla as programs. Since a shallow embedding of local
actions is used in the HOL4 formalisation, it is very easy to define additional actions as
well. Other constructs for proto-traces can be lifted to programs in the natural way:

Definition 3.2.52 (Parallel composition, Lock Declaration, Critical Region).

pillpe = {pt || pty [ptiepr A phep,} (HOL4-Thm 171)
l.p = {l.pt]| ptep} (HOL4-Thm 169)
with I dop = {withl do pt| pte p} (HOL4-Thm 166)

3.2.4.1 Sequential Composition

However, lifting sequential composition needs careful consideration. As discussed in Sec-
tion 3.2.3.3 one has to take care to avoid programs with an empty trace-set. This is
achieved by implicitly inserting diverge into the set of proto-traces:

Definition 3.2.53 (Sequential Composition of Programs (HOL4-Thm 173)).
prs pr = Aph s ply | ph € pr A ply € po U {diverge}}

Consider two programs p; and p, and an environment env such that Te,,(p2) = &. With-
out inserting diverge into the set of proto-traces of po, the set of traces Te,,(p1 ; p2) would
be empty as well, regardless of p;. This would prevent errors in p; showing. Adding diverge
is safe, because Abstract Separation Logic is for partial correctness. Moreover, it solves
the problem and leads to the desired semantics as the following lemma demonstrates:

Lemma 3.2.54 ((HOL4-Thm 160)). The semantics of the sequential composition of
two programs p; and ps in some environment env is the sequential composition of their
semantics:

[[pl ; p2]]em; = [[pl]]em; ; [[p?]]em;

78 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

As usual sequential composition is extended to repetition and Kleene star:

Definition 3.2.55 (Repetition, Kleene Star).

O = skip (HOL4-Thm 172)

P = prpt (HOLA-Thm 172)

p* = [Jp" (HOLAThm 168)
n€eNp

3.2.4.2 Nondeterministic Choice

The original work on Abstract Separation Logic [7] explicitly defines nondeterministic
choice as a command of the programming language. Here, nondeterministic choice is
handled implicitly. Programs are sets of proto-traces, which correspond to the programs
of the original work. The semantics of a program is the nondeterministic choice between
all it’s proto-traces. This allows the nondeterministic choice between two programs to be
defined as the union operation on sets:

Definition 3.2.56 (Binary Nondeterministic Choice (HOL4-Thm 162)).
D1+ P2 =p1Yp2

However, while the original work is limited to a finite number of nondeterministic choices,
the concept of programs as sets allows an infinite number. This is, for example, used
to define the Kleene star operation above. While the original work introduces a special
construct and a special semantics for Kleene star, this work can define it as nondetermin-
istically choosing a number of repetitions.

3.2.4.3 Conditional Execution / While Loops

The combination of nondeterministic choice with assume allows the standard conditional
execution and while-loops to be defined:

Definition 3.2.57 (Conditional Execution, While Loop (HOL4-Thms 165, 174)).

if B then p; else po := (assume(B);p1) + (assume(—;B);pz)
while B dop := (assume(B);p)* ; assume(—;B)

These definitions of conditional execution and loops might be surprising. Remember how-
ever, that Abstract Separation Logic is reasoning about partial correctness. If the wrong
branch of the conditional execution or the wrong number of iterations is chosen, a guard-
ing assume statement causes the execution to diverge. Because only partial correctness
is considered, diverging executions are ignored.

3.2.4.4 Conditional Critical Regions

Another control structure that can easily be defined is conditional critical regions. There
is built-in support for critical regions. These can easily be equipped with conditions using
assume:

Definition 3.2.58 (Conditional Critical Region (HOL4-Thm 164)).
with | when B do p := with | do (assume[B] ; p)

3.2. ABSTRACT SEPARATION LOGIC 79

3.2.4.5 Infinite Nondeterministic Choice

When Kleene star is defined above, it is argued that being able to nondeterministically
choose between an infinite number of choices is useful. Another example for this usefulness
are procedure calls with call-by-value parameters.

The semantics of a procedure call proccall(name, arg) in an environment penv is defined
by looking up the definition of the procedure in penv. The result of this lookup, i.e. the
body of the procedure is instantiated with the argument arg and the semantics of the
procedure call is defined by the semantics of the resulting program penv(name)(arg).

The argument arg can be considered as a call-by-reference argument. The procedure gets
the argument and can do with it whatever it likes. A call-by-value argument would be
evaluated before being passing to the procedure. This can be achieved by nondetermin-
istically choosing a value and assuming that the argument evaluates to this value:

Definition 3.2.59 (Choose Constants (HOL4-Thm 163)). Let ej,...,e, be a list of
functions that given a state either fail or returns some value. Then choose-constants for
a program prog that depends on a list of values ¢y, ..., ¢, is defined as:

choose-constants([ey, . . ., en])(A[c1s - - ., en]-prog([cr, ... cn])) =

U (assume[)\s. /\ v = €;(s)] ; pmg([vh---avn])>

V1 ,...,Un i=1,...,n

Wrapped around procedure calls this choose-constants construct is used to model call-by-
value parameters.

3.2.5 Inference Rules

Using the semantics of Abstract Separation Logic as presented above, high level inference
rules are proved. Instead of using the low-level semantics, these inference rules are used
to reason about larger programs.

An inference rule represents an implication. The program abstraction rule states, for
example, that if prog, is an abstraction of a program prog; and a Hoare triple >,
{P} prog, {Q} holds for this abstraction prog,, then the Hoare triple o, {P} prog, {Q}
holds as well for the original program prog,. This inference rule is denoted by

Prog; Eeny P0Gy >env {P} progs {Q}
> env {P} prog, {Q}

Many inference rules represent not only implications, but equivalences. Since the abstrac-
tion relation is reflexive, i.e. since prog; E .., prog; holds for all environments env and all
programs prog,, the program abstraction rule is really an equivalence. Instead of

Ven, prog,, prog,, P, Q. (prog, Seny progy A =ens {P} prog, {Q}) —
> env {P} progy {Q}

it can be written as

Ven, prog,, P, Q. (Iprog,. progy Sens progy A Sens {P} prog, {Q}) <=
> env {P} prog, {Q}

80 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

The inference notation presented above always represents an implication. A double line
is used to express that there is a similar equivalence.

Prog; Eeny PTOgGy >env {P} progs {Q}
>env { P} prog; {Q}

As shown on this simple example, the inference rule has usually to be modified slightly
in order to form a real equivalence. The double line notation is mainly used to alert the
reader to the fact, that this inference rule can (with care) safely be applied without losing
some information about the original problem. As such, the program abstraction rule is
written with a single line, because it is usually used in an unsafe way, i.e. its application
usally loses information.

3.2.5.1 Frame Rule

As motivated in Section 3.2.2.3 local reasoning is an important feature of separation logic.
Thanks to the careful construction of the programming language of Abstract Separation
Logic, the semantics of a program is a local action (Lemma 3.2.49) (HOL4-Thm 125).
Therefore, the frame rule for local actions can be lifted to the program level:

Frame Rule (HOL4-Thm 91)
>enw { P} prog {Q}
>enw \ P * R} prog {Q = R}

This frame rule captures the essence of Abstract Separation Logic’s local reasoning.
Whenever a Hoare triple &, {P} prog {Q} holds for some environment enwv, some pro-
gram prog and some pre- and postcondition P and @, this triple can safely be extended
by an arbitrary context R.

3.2.5.2 Structural Rules

Besides this high level frame rule, which depends on the semantics of Abstract Separation
Logic being carefully constructed, there are some simple structural inference rules, that
just follow from the definition of Hoare triples:

3.2. ABSTRACT SEPARATION LOGIC

81

Strengthen Rule
(HOL4-Thm 109)
Pch Q1 S Q2
>eno {P1} PTOg {Q1})

>env {PQ} prog {QQ}

(HOL4-Thm 86)
V. e {P(2)} prog {Q}

Seny {37, P()} prog {Q}

(HOL4-Thm 86)
3z, Sy {P} prog {Q(z)}

>eno { P} prog {3z. Q(x)}

(HOL4-Thm 90)
V’l >env {PZ} prOg {Qz}
> env {\/ PZ} prog {\/ QZ}

3.2.5.3 Basic commands

Program Abstraction Rule
(HOL4-Thm 140)

progy = env PT0Gs

> env {P} progs {Q}
> env {P} progy {Q}

(HOL4-Thm 86)
3z, e {P(2)} prog {Q}

Seny (V. P(2)} prog {Q}

(HOL4-Thm 86)
Va. e {P} prog {Q(z)}

> env {P} prog {VI‘ Q(Jf)}

(HOL4-Thm 89)
VZ >env {Pz} p7’09 {Qz}
> env {/\ R} prog {/\ Ql}

For the basic actions lifted to programs there are the following inference rules:

(HOL4-Thm 104)

Senw { P} skip {P}

(HOL4-Thm 87)
B is decided in P

>enw { P} assume(B) {P A B}

(HOL4-Thm 101)

>env {Pf(l‘)} qbla[Pfa Qf] {Qf(x)}

(HOL4-Thm 96)

e { P} diverge {Q}

(HOL4-Thm 194)

=en { P} bla[P, Q] {Q}

(HOL4-Thm 102)
Az, =eny {P} bla[Pr(), Qs (2)] {Q)

=eno { P} qbla[Py, Qf] {Q}

82 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.2.5.4 Basic Program Compositions

Sequential Composition Rule
(HOL4-Thm 103)

>eno { P} prog; {Q}

>eno {Q} prog, {1}
>enw {P} prog, ; prog, {R}

Nondeterministic Choice Rule

Parallel Composition Rule
(HOL4-Thm 99)

>env {Pl} prog, {Ql}
>env {P2} progs {QQ}

>eno {Pl * Pz} prog, || progy {Ql * Q2}

(HOL4-Thm 92)

(HOL4-Thm 170)
Vprog € prog-set. ., {P} prog {Q}

e {P} | prog-set {Q}

(HOL4-Thm 97)

Seno { P} prog { P}

Seno { P} prog® {P}
Most of these inference rules for basic program compositions are straightforward and hold
for arbitrary Hoare logics. However the parallel composition rule is specific to separa-
tion logic. It expresses that the local reasoning of Abstract Separation Logic extends to
parallelism.

>en 1P} prog; {Q}
>enw 1P} prog, {Q}

>env {P} prog, + progs {Q}

3.2.5.5 Control Structures

Conditional Execution Rule
(HOL4-Thm 93)
>eny { P} assume[B]; prog, {Q}
>eny { P} assume[—; B]; prog, {Q}
>enw { P} if B then prog, else prog, {Q}

Simple Loop-Invariant Rule
(HOL4-Thm 105)
B is decided in P
>enw {P A B} prog { P}
>eny { P} while B do prog {P A —;B}

Simple Loop-Specification Rule
(HOL4-Thm 107)
B is decided in P
V. >env {P(SL’) N _'ZB} progs {Q($)}
V2. e {P(x) A B} prog; 5 qbla[P, Q] {Q(z)}
V. e {P(x)} while B do prog,; prog, {Q(x)}

(HOL4-Thm 95)
lenv(l) is precise
> (penu,len) (P * lenv(l)} prog {Q = lenv(l)}

B> (penvienv) {F} With 1 do prog {Q}

3.2. ABSTRACT SEPARATION LOGIC 83

(HOL4-Thm 94)
lenv(l) is precise B is decided in P

= (peno,lenv) L (P * lenv(l)) A B} prog {Q = lenv(l)}
> (penuv,lenv) (P} with | when B do prog {Q}

(HOL4-Thm 98)
len’U(l) Is precise ™= (penwv,lenv) {P} prog {Q}

= (penu,tenv) 1L * lenv(l)} 1.prog {Q = lenv(l)}

(HOL4-Thm 111)

Vi<i<n,seP. els)=uv
V1 <i<n,s, 2. (€(s1) =v) A S1 < 59 = (e;(s2) = v;)
> (penv,lenv) {P} p?"Og(’Ul, S 7'Un) {Q}
> (penu,lenv) {F} choose-constants(eq, . .., e,)(Acy, ..., cn-prog(cy, ..., cn)) {Q}

(HOL4-Thm 100)
name € dom(penv) > (penv,lenv) {P} penv(name)(arg) {Q}

B (penu,lenv) {F} proccall(name, arg) {Q}

3.2.5.6 Symbolic Execution

All inference rules are presented in as concise a way as possible. In order to use these
rules to verify specifications of a larger program, they are usually combined with the
frame rule and the sequential composition rule (HOL4-Thm 103). The frame rule allows
local reasoning, i.e. it allows to extended the specification with an arbitrary context. The
sequential composition rule is essential for lifting the inference rules on single commands
to whole programs. As usual there are two directions for using the sequential composition
rule: forward and backward analysis. A classic tool for forward and backward analysis
are strongest post- and weakest preconditions:

Definition 3.2.60 (Weakest Liberal Precondition (HOL4-Thms 191, 190) / Strongest
Postcondition (HOL4-Thms 179, 178)). Given an environment env, a program prog and
a postcondition @ the weakest liberal precondition wlp,,,[prog, Q] is the weakest pre-
condition such that =, {wlp,,,[prog, Q]} prog {Q} holds. This means that it can be
characterised as follows:

>eny {WIP [PT0Y, QY prog {Q}
VP. e {P} prog {Q} = P < wip,,,[prog, Q]

Given enwv, prog and a precondition P, the strongest postcondition sp,,,|P, prog] is the
strongest postcondition such that o, {P} prog {sp.,.| P, prog]} holds. This means that
it can be characterised as follows:

>eny { P} PTG {8D 0| Py progl}
VQ Penv {P} pT’Og {Q} = Spenv[P7 pmg] - Q

Notice that if the program prog may fail when started from a state in P, then sp,,,, [P, prog]
is not defined. In contrast wlip,,, [prog, Q] exists for all prog, Q.

84 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Using these definitions there are the following inference rules that can be used for forward
and backwards analysis.

(HOL4-Thm 108) (HOL4-Thm 110)
SPomel P; PTOg | is defined
B> env {Spem;[P7 prOgl]} p7’0g2 {Q} B> env {P} progl {wlpem;[prog% Q]}
>en {P} prog, ; prog, {Q} >eno {P} prog, ; prog, {Q}

Besides these foundations and a few basic lemmata (HOL4-Thms 181, 182, 192), the
framework hardly uses weakest pre- and strongest post-conditions. Using weakest pre-
conditions introduces complicated constructs like separation logic’s magic-wand operator
as well as many quantifiers [17]. Therefore, it is difficult to build an automated reasoning
tool for separation logic that is using backward analysis.

Most tools use forward analysis and implement some kind of symbolic execution [2].
Inference rules for this forward analysis can be derived using strongest postconditions.
This is occasionally done in the HOL4-formalisation. An example is the inference rule for
assume:

Lemma 3.2.61 ((HOL4-Thms 180, 88)).

P A B iff Bis decided in P
undefined otherwise
ey { P} assume|[B] ; prog {Q} <= B is decided in P A ., {P A B} prog {Q}

SDenu| Ps assume|B]] =

For the purposes of the framework, it is not important most of the time to derive equiv-
alences; implications are sufficient. By not using strongest postconditions one can save
the effort to prove that a given postcondition is the strongest one. More importantly,
the framework supports arbitrary inferences, not just the ones resulting from strongest
postconditions. This includes inferences that modify the program as well as inferences
that are proper implications, i.e. inferences for which no equivalence could be proved.

3.2.5.7 assume

An example of an inference rule that modifies the program and represents a proper im-
plication is a specialised inference rule for the command assume[B; A Bs|. The inference
rule for assume presented above (HOL4-Thm 88) results in

ey { P} assume[By A Bs] ; prog {Q} —
(By A By) is decided in P A g, {P A (By A Bs)} prog {Q}

Usually, P A (B A Bs) will be converted into some kind of normal form after applying the
inference rule (see Sec. 3.3.4). For complicated predicates B; and By one might wish to
perform this conversion into a normal form stepwise. Similarly, it might be beneficial to
prove that both B; and B; are decided in P, which is a strictly stronger statement than
By A By is decided in P. To this end, one can use the following inference rule

Senw { P} assume|By] ; assume|Bs] ; prog {Q}
ey { P} assume[By A Bs| ; prog {Q}

3.2. ABSTRACT SEPARATION LOGIC 85

Instead of assuming B; A By one first assumes B; and then By. If Bj is decided in P
and B, is decided in P A Bj this inference represents an equivalence (HOL4-Thm 143).
Otherwise, assume[B1] ; assume[Bs] will fail for a state s € P and therefore the triple
ey { P} assume[B1] ; assume[Bs] ; prog {Q} does not hold. However, the original triple
might hold, if By A Bs is decided in P. Thus, this inference represents in general just an
implication.

This inference is proven by combining the program abstraction rule (HOL4-Thm 140)

pT’Ogl ;en@ p7’0g2
> env {P} progs {Q}

> env {P} prog, {Q}

with an abstraction lemma for assume[B; A By (HOL4-Thm 142). There are similar
program abstraction lemmata that can be used to break assumptions into smaller parts:

(HOL4-Thm 142)
assume| By A By| Eeny assume|Bi]; assume| Bs]

(HOL4-Thm 147)

assume[By v Ba| En, assume|B;]| + assume[Bs]

(HOL4-Thm 144)
assume|—;(By A Bs)] Eeny assume[(—;By) v (—iB2)]

(HOL4-Thm 146)
assume[—;(By v By)| Eeny assume[(—;By) A (—;Ba)]

(HOL4-Thm 145)
assume[—;(—;B)] Eeny assume[B]

Using the inferences rules resulting from these program abstractions is an essential part
of how the framework handles assume (see Sec. 3.3.6.1).

3.2.6 Program Abstraction

The example of program abstractions for assume shows that program abstractions can
be very useful. In order to gain this usefulness, abstractions for single actions or single
program statements need to be lifted to larger programs. There are a lot of inference
rules that achieve this lifting. The most essential ones are:

(HOL4-Thm 155)

Prog Zeny PTOg

(HOL4-Thm 156)

prog; Eems PTOY) PTogs Eeny PTOGy

(HOL4-Thm 157)

progy ;em; pTog, progy ;env pr0g3

p?"Ogl = env pmgs

(HOL4-Thm 149)

Prog; Seny DTOY) PTGy, Eeny DTOGh

Prog, ; progs Sems PTOg; ; progs

prog; + prog, =eny p?“og'1 + pTOgé

86 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

These inference rules can easily be combined to form inference rules for higher level
program constructs:

(HOL4-Thm 151)
prog, Eenv progs

* *
p7’091 = env pT’OQQ

(HOL4-Thm 150)
prog; S env pmg; progf Senv pmg}

if B then prog, else prog; Ecn, if B then prog, else pmg}

(HOL4-Thm 158)
p’f’Ogl Eenv pTOQQ

while B do prog, E.,, while B do prog,

(HOL4-Thm 153)

with | do prog = (penv,ieny) blalemp, lenv(l)] 5 prog ; bla[lenv(l), emp]

(HOL4-Thm 141)

lenv(l) is precise

1.pT0g = (penvyiens) bla[lenv(l), emp] ; prog ; bla[emp, lenv(l)]

As motivated before, there is a close connection between best local actions and abstraction.
The best local action bla[P, Q] is an abstraction of a program prog, if and only if prog
satisfies ., {P} prog {Q}:

(HOL4-Thm 154) (HOL4-Thm 148)
Vo, Son {Pr(2)} prog {Qs(¥)} =, {P} prog {Q}
prog Eeny qbla[Py, Q] prog Sen blalP,]

Abstracting a program with a best local action is often useful. When proving a Hoare
triple o, {P} prog, ; prog, {Q} using forward analysis, it is common that some family
of Hoare triples V. ., {Ps(x)} prog; {Q¢()} is known. In this case one needs to find
a member of the family of specifications, i.e. an argument z, and a frame R such that P
implies Pf(x)+ R. Using the frame rule as well as the strengthen rule, one can then derive
> { P} prog, {Qg(x) + R}. Finally, the sequential composition rule reduces the original
goal to B¢ny {Qf(x) * R} prog, {Q}. Using the connection between program abstractions
and best local actions as well as the definition of program abstractions (Def. 3.2.51), all
such cases can be reduced to the symbolic execution of best local actions:

Vr. Seny {Pf(x)} progs {Qf(x)}
prog, ; progy ; progs Sen, prog; ; qbla[Pr, Q] ; prog,

V. S {Pr(2)} prog, {Q(z)}
>eno { P} qbla[Py, Qg 5 prog, {Q}

> env {P} p7"091 ; p7"092 {Q}

3.2. ABSTRACT SEPARATION LOGIC 87

Remark 3.2.62. Using symbolic execution of best local actions whenever a frame needs
to be calculated simplifies automation considerably. This symbolic evaluation step is
one of the most important parts of the infrastructure. All program commands can be
abstracted by best local actions. The verification of a Hoare triple then reduces to the
symbolic execution of best local actions. For the sake of performance, the framework
often uses specialised inference rules for program commands, though. These specialised
rules, however, are proved using symbolic execution of best local actions.

One simple, but important example for such an abstraction by a best local action, is an
inference rule that is used for the forward analysis of while-loops. A simple rule using
loop-invariants has already been presented above:

(HOL4-Thm 105)
B is decided in P
>env {P A B} prog {P}
ey { P} while B do prog {P A —;B}
In order to modularise the verification effort and in order to facilitate forward analysis,

one can keep assume and abstract the while-loop by a best local action. This leads to the
following inference rule for while-loops:

Loop-Invariant Rule
(HOL4-Thm 106)

V. e {I5(x)} assume[B] ; prog, {I;(z)}
Sene { P} qbla[Is, If] i assume[—;B] ; prog, {Q}

>eno { P} while B do prog, ; prog, {Q}

Similarly, this leads to the following rule for loop-specifications:

Loop-Specification Rule
(HOL4-Thm 107)
V. e {Pp(2)} assume[—~B] ; prog, {Qf()}
Vo en {Py(2)} assume|B] ;5 prog, 5 qbla[Py, Qr] {Qy(x)}
Seno {7} qbla[Py, Qy] 3 progs {Q}

>eny { P} while B do prog, ; prog, ; progs {Q}

A more interesting example might be program abstraction for parallel composition. For
sequential composition and nondeterministic choice, program abstraction is nicely modu-
lar. Unfortunately, it is more complicated for parallel composition. The following parallel
composition rule was presented before:

Parallel Composition Rule
(HOL4-Thm 99)

>env {Pl} progy {Ql}
>env {PQ} prog, {Q2}

>eny {Pl * P2} brog, || progs {Ql * Q2}

Using best local actions and program abstractions, this rule can be rewritten to

(HOL4-Thm 152)
progy Eenw qbla[Pflanl] progs Eenv qbla[Pf27Qf2]
prog, || progy Seny qbla[A(w1, 22). Ppy(x1) * Pro(w2), M1, 72). Qf (71) * Qpo(72)]

88 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.2.7 Recursive Procedures

Till now inference rules for program constructs have been presented and extended in
order to perform forward analysis of programs. Moreover program abstractions have been
introduced. However, one important concept is still missing: reasoning about recursive
procedures. The following inference rule for procedure calls is presented above:

(HOL4-Thm 100)
name € dom(penv) > (penv,lenv) {P} pem}(name)(arg) {Q}

B (penu,lenv) {F} proccall(name, arg) {Q}

This rule is sufficient for non-recursive procedures. For recursive ones, using this rule
would lead to unrolling the body of the procedure over and over again. Instead, some
inductive argument is needed for recursive procedures. In order to handle mutually re-
cursive procedures, this inductive argument has to consider several procedures at once.
Combining the inference rule with an induction on the maximum nesting-depth of pro-
cedure calls during execution leads to the following lemma. For its validity it is essential
that Abstract Separation Logic is just concerned with partial correctness and that non-
terminating executions can therefore be ignored.

Lemma 3.2.63 ((HOL4-Thm 112)). In order to show that in a given environment
(lenv, penv) some set of procedures satisfies given specifications, i.e. in order to show
statements of the form

Yarg,, Ti. S(penviens) {FP1(arg;, x1)} proccall(namer, arg;) {Q1(arg;, x1)} A

Varg,, Tn. S(penviens) {Fn(arg,,,)} proccall(name,, arg,) {Qn(arg,,x,)}

it is sufficient to show that for any procedure environment pent/, such that these specifi-
cations hold for pent/, the procedure bodies in the original environment penv satisfy the
specifications:

Vpent'.
Yarg,, T1. S>(envpeny) 1F1(arg, x1)} proccall(namey, arg,) {Q1(argy, 1)} A
: —

Yarg,, Tn. S(envpeny) {Pn(arg,, x,)} proccall(name,, arg,) {Qn(arg,,z,)}
Yarg,, T1. S(envpenyy 1P1(arg, 21)} penv(namer)(arg,) {Q1(arg;, x1)} A

Varg,, Tn. ™ (ienv,penv') {P.(arg,,r,)} penv(name,)(arg,) {Qn(arg,,v,)}

When verifying a set of procedures, this lemma is usually applied as a first step. It is
however, slightly awkward to apply. After applying the lemma one might have to keep
track of a lot of preconditions stating that procedures satisfy their specifications. In or-
der to avoid this bookkeeping, the preconditions are used to abstract procedure calls. A
procedure call proccall(name;, arg;) is abstracted by its specification gbla[P;, Q;]. After
abstraction, the semantics of the programs do not depend on the procedure environment
pend/ any more. Therefore, the preconditions are unimportant and can be dropped. Sim-
ilarly, the lock environment lenv is removed by abstracting lock operations. After these
preprocessing steps it remains to verify a collection of Hoare triples that do not depend
on the environment any more.

3.3. VARIABLES AS RESOURCE 89

3.2.8 Summary

The most important concepts of Abstract Separation Logic have been introduced above.
First abstract states and separation combinators are presented. Combined with predicates
seen as sets of states, these are the foundation of Abstract Separation Logics specification
language.

Next, actions are presented and extended to a programming language. Compared to
the original work on Abstract Separation Logic [7] the programming language has been
extended by procedure calls. Another minor, but important extension is the generalisation
of best local actions to quantified best local actions. The semantics of this extended
programming language is, however, still given in terms of traces as defined by Brookes [5]
for concurrent separation logic.

Based on this definition of Abstract Separation Logic’s specification and programming
language high level inference rules are presented. Using the concepts of program abstrac-
tion and quantified best local actions these inference rules are used to perform forward
analysis on Hoare triples. In order to handle recursive procedure calls, a preprocessing
step is necessary, that eliminates procedure calls.

It remains to instantiate this Abstract Separation Logic framework with a concrete sepa-
ration combinator and concrete states. This allows programming constructs to be added
that operate on these concrete states.

3.3 Variables as Resource

In Section 3.2 Abstract Separation Logic is presented. This section presents its first
instantiation. A stack with explicit read / write permissions is added. This instantiations
follows ideas from Variables as Resource in Separation Logics by Parkinson, Bornat and
Calcagno [31]. However, these ideas are adapted to an Abstract Separation Logic setting.
Moreover, they are extended to be powerful enough to base Holfoot on top.

This section is structured as follows: In Sec. 3.3.1 the stack is introduced. Then, ex-
pressions and predicates on the resulting states are discussed in Sec. 3.3.2 and 3.3.3.
Well-formedness of expressions and predicates is an important topic in these sections.
Based on these concepts of well-formedness normal forms for predicates are introduced
in Sec. 3.3.4. This section also introduces special Hoare triples that implicitly guarantee
that their pre- and postcondition is well-formed and that the program does not modify
variable permissions. Sec. 3.3.5 shows that inference rules for standard Hoare triples can
easily be lifted to these new Hoare triples. Sec. 3.3.6 discusses program constructs. First,
it is discussed, how program constructs already introduced in Sec. 3.2 are used. Espe-
cially, the assume statement is discussed in detail. Then, a construct for local variable
declaration and a variable assignment statement are introduced. Additionally, for the
assignment statement semantic substitutions are defined. Sec. 3.3.7 discusses frame in-
ference calculations. A specialised frame inference predicate is introduced and inference
rules for the predicate presented. Finally, Sec. 3.3.8 presents, how to extend predicates
with information that is only implicitly present.

90 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.3.1 Stacks with Read / Write Permissions

This instantiation adds a stack with explicit read / write permissions to the Abstract
Separation Logic framework. The stack is a finite map from variables to values and
permissions. It is not yet defined, what exactly variables and values are. Further instan-
tiations can concretise variables and values. However, the type of permissions is fixed.

Definition 3.3.1 (Permissions (HOL4-Thm 254)). Let Perms be a set of permissions,
T € Perms a special permission and & : Perms x Perms — Perms a partial function such
that

® is partially associative, i.e.
Vp1,p2,ps. Defined(p1 ® (p2 ®ps)) < Defined((p1 ® p2) @ p3) A
Vp1,p2,ps. Defined(p1 @ (p2®@ps3)) = (11 ® (p2@ps) = (p1 @ p2) @ ps)

® is partially commutative, i.e.
Vp1, pa. Defined(p; ® ps) < Defined(ps ® p1) A
Vp1,p2. Defined(pr ®p2) = (01 ® p2 = p2 ® p1)

@ is partially cancellative, i.e.
Vp1, pa, p3. Defined(p; ® pa) A Defined(p; ®p3) A
(p1 ®p2 = p1 ®p3) = (p2 = ps3)

each permission can be split into two subpermissions, i.e.
Vp. Ap1,p2. (P11 ®pa) =p

T cannot be combined with any other permission, i.e.

Vp.—Defined(T ® p)

there is no unit element, i.e.
V1, p2. (P11 ®p2) # p1

The idea behind this abstract definition of permissions is that there are read and write
permissions. T represents the write permission, all other permissions are read permissions.
A permission can be split into arbitrary many read permissions that can be recombined

using .

Example 3.3.2 (Model of Permissions). The definition of permissions and & are abstract.
One model is, for example, obtained by setting:

e Perms:={reR|0<x <1}
o [:=1

D1+ P2 fpr+p2<1
undefined otherwise

® D1 ®po :={

Splitting permissions naturally leads to a concept of subpermissions:

Definition 3.3.3 (Subpermissions (HOL4-Thm 257)). A permission p; is a subpermission
of a permission py (denoted by p; < po), iff either p; equals ps or py can be split into p;
and another permission. This means:

p1<p2 = (pr=p2) vV Ips. p1®p3 =Dpo

3.3. VARIABLES AS RESOURCE 91

This concept of permissions allows stacks with explicit permissions and a separation com-
binator for these stacks to be introduced:

Definition 3.3.4 (Stacks). A stack is a finite map from variables to values and permis-
sions.

Stacks < Variables ™ (Values x Permissions)

When provided with a variable x in its domain a stack s returns a pair consisting of a
value and a permission (v,p). The functions perm and wval are used to denote just the
permission or the value, i.e. val(s,z) = v and perm(s,z) = p.

Notice, that the notions of variables and values are kept abstract. They can be concretised
by further instantiations. The notion of stacks is concrete enough, however, to define a
separation combinator for stacks.

Definition 3.3.5 (Combining Stacks (HOL4-Thms 395, 392)). Two stacks s; and s, are
separate (denoted by s1 #g; s2), if they agree on the values of the variables that are present
in both stacks and if the permissions of these variables are compatible. If s; and s, are
not separate, their combination (denoted by s; eg; s5) is undefined, otherwise it is defined
as the combination of the values and permissions of the two stacks.

S1#si 82 = Vax,p1,v1, P2, V. (x € dom(s1) A x € dom(ss) A
s1(z) = (v1,p1) A
s2(z) = (v2, p2) -
((vl = vy) A Defined(p; ® p2)
s1(x) if x € dom(s1) A x ¢ dom(ss)
so(x) if x ¢ dom(s1) A x € dom(ss)
stack-merge(sy, $2)(x) = (v1,pr ®p2) if x € dom(sy) A x € dom(sa) A
s1(x) = (vi,p1) A s2(x) = (v2,p2)

undefined otherwise

(51 051 52) stack_merge(sy, s2) 1if s1 #s¢ 2

LSt o2 undefined otherwise

Notice that stack-merge is only applied to separate stacks. This avoids problems in the
case that a variable is in the domain of both stacks.

Lemma 3.3.6 (Separation Algebra for Stacks (HOL4-Thms 394, 393)). The operation
e, is a separation combinator on stacks. The empty stack ¢F is the neutral element with
respect to eg;, i.e. Vs. s e, J = s holds. This means that (Stacks, eg;, J) is a separation
algebra.

Following Definition 3.2.3 this separation combinator induces a substate relation for
stacks. This relation will be useful in the following. It can be nicely characterised:

Lemma 3.3.7 (Substacks (HOL4-Thm 396)). A stack s; is a substack of a stack so, i.e.

51 <eg S2 holds, iff sy contains for each variable of s; the same value and a stronger

92 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

permission.

Vs1, S9. §1 <o, S2 = dom(sy) S dom(s2) A
YV € dom(sy),v1,p1, U2, Pa-
(31(v) = (v1,p1) A So(v) = (vz,pz)) =
(Ul =V2 N D1 Sp2)

States of common programming languages consist of more than just a stack. In the case
of Holfoot, for example, there is a heap as well. Therefore, the separation algebra for
stacks is normally used as part of a product separation combinator.

Definition 3.3.8 (Product Separation Combinator (HOL4-Thm 263)). Let o be a sep-
aration combinator on some set of states . Then ©, is defined as the product of this
separation combinator with the separation combinator for stacks:

@o:: ®g; X O

s, is a separation combinator on Stacksx > (HOL4-Thm 256). If e is a separation algebra,
then ®, is a separation algebra as well (HOL4-Thm 255).

3.3.2 Expressions

Definition 3.3.9 (Expressions). An expression is a partial function that given a stack
returns a value. The most basic expressions are constants (HOL4-Thm 301), variables
(HOL4-Thm 307) and function expressions (HOL4-Thms 303, 300). Constants always
return a constant value. Variables look-up a value in the stack. Function expressions
evaluate other expressions and apply a function to their results.

Const(c)(s) = c
N if x € dom(s) A s(z) = (v,p)
Var(z)(s) o { undefined otherwise
f([v1,..yvn]) if V1 <i<n. Defined(e;(s)) A
FunExp(f,[e1,...,en]) := ei(s) = v;

undefined otherwise

Since expressions are arbitrary functions from stacks to values, they may show arbitrary
behaviour. The intention is however, that expressions are used to look up the values of
some variables in the stack and perform some computation on these values. An expression
should therefore not be affected by permissions. Moreover, there should be a finite set of
variables that are used by the expression. The expression is defined, iff all these variables
are present in the stack. Additional variables do not effect the expression. This notion of
well-formed expressions is formalised as follows:

Definition 3.3.10 (Well-formed Expressions (HOL4-Thms 338, 339)). An expression e
is strongly well-formed with respect to a finite set of variables V), if the value of e in a

3.3. VARIABLES AS RESOURCE 93

stack s depends exactly on the value of the variables V in this stack.

isWellFormedStrong(e,V) := Vs. Defined(e(s)) < V < dom(s) A
Vsy, So. (YV < dom(sy) A V< dom(sa) A
Yo € V. val(sq,v) = val(ss, v)) —

e(s1) = e(s2)

Usually, an overapproximation of the set of used variables is sufficient. This leads to the
definition of well-formed expressions:

isWellFormed(e,V) = 3V < V. isWellFormedStrong(e, V")

All expressions presented so far are well formed. This can easily be shown using the
following inference rules.

(HOL4-Thm 340) (HOL4-Thm 340)
reVy
is WellFormed(Const(c), V) is WellFormed(Var(z), V)

(HOL4-Thm 341)
Vli<i<n. isWellFormed(ei, V)

is WellFormed(FunExp(f, [e1, ..., en]), V)

In the following, only well-formed expressions are considered. This is not a big restriction.
Notice, however, that a well-formed expression is defined, iff all its variables are present in
a stack. This means that undefined values can not be used to model failing computations
of FunFEuxp.

3.3.3 Predicates

As usual predicates on extended states Stacks x Y. are subsets of Stacks x ¥. However,
predicates that use the stack in a restricted way are of special interest. These restrictions
are closely related to well-formed expressions.

3.3.3.1 Stack-Imprecise Predicates

Given an extended state (s, h) € Stacksx ¥, a predicate is supposed to use the stack s only
to evaluate a finite set of well-formed expressions. This concept is captured syntactically
by the following definition of expression predicates:

Definition 3.3.11 (Expression Predicates (HOL4-Thm 302)). Given a state (s,h) €

Stacks x %, a list of well-formed expressions eq,...,e, and a predicate p that given n
values returns a subset of X, the expression predicate ExpPred(p, e, ..., e,]) is defined
as:

hep([vy,...,v,]) ifV1<i<n. Defined(e;(s)) A
(s,h) € ExpPred(p, [e1, ..., en]) := ei(s) = v
false otherwise

94 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

In principle all predicates used by this instantiation should be defineable using FExpPred.
However, a semantic characterisation is often more useful:

Definition 3.3.12 (Stack Imprecise Predicates (HOL4-Thm 344)). A predicate P on
Stacks x ¥ is called stack imprecise with respect to a set of variables V), iff

Vs1,89,h. (s1,h) € P A (dom(s1) nV < dom(sz)) A
(‘v’x € dom(s1) N V. val(sy,x) = val(SQ,x)) =
(82, h) eP

P is simply called stack imprecise if such a V exists.

When discussing Holfoot’s separating conjunction operator in Section 2.1.3 it was in-
formally argued that the stack does not need to be split. This is the case, because all
predicates used by Holfoot are stack imprecise:

Lemma 3.3.13 (Separating Conjunction of Stack Imprecise Predicates (HOL4-Thm 251)).
Let P, and P, be predicates on extended states Stacks x ¥. Then P; #g, P, evaluates to
(HOL4-Thm 227):

VP, Ps. Pl*QoP2=P1*(oSt><o)P2=
)\(S,h). 381,82,h1,h2. (81 0g; So = S) AN (hlohg = h) AN
(Sl,hl) € P1 A (82,h2) € PQ

So in general, the stack and the remainder of the state have both to be split. If, however,
P, and P, are stack imprecise, the stack does not need to be split (HOL4-Thm 251):

VP, P,. stack-imprecise(Py) A stack-imprecise(Py) =

P1*®oP2=>\(S,h). th,hg. (h10h2=h) A (S,hl)epl /\(S,hg)EPQ

Stack imprecise predicates are an important concept. As already motivated, expression
predicates are stack imprecise:

(HOL4-Thm 355)
Vli<i<n. z'sWellFormed(ei, V)

isStack[mprecise(ExpPred(p, [e1,...,en]), V)

Moreover, some basic predicates that have already been introduced are stack-imprecise

3.3. VARIABLES AS RESOURCE

95

and stack impreciseness is preserved by common operations on predicates:

(HOL4-Thm 352)

isStack[mprecz’se(true, V)

(HOL4-Thm 345)
18Stackl mprecz'seEPl, V;

1sStackImprecise| Py, V
isStack[mprecz’se(Pl A P, V)

(HOL4-Thm 351)
c= isStack[mprecise(P, V)

(HOL4-Thm 347)

isStack[mprecz'se(false, V)

(HOL4-Thm 349)
isStackImprecise

Py
P,V

1sStackl mprecz'se(Pl v P, V)

1sStackImprecise

(HOL4-Thm 346)
V. isStack[mprecz'se(P(x), V)

isStack[mprecz'se(c &P, V) isStack]mprecz’se(Elx. P(z), V)

(HOL4-Thm 350)
18Stackl mprecz'se(Pl, V)
isStack[mprecz’se(Pg, V)

isStackImprecise(Pl w Py, V)

(HOL4-Thm 348)
V. isStack[mprecise(P(x), V)

isStack[mprecz’se(Va:. P(z), V)

So, most connectives and most basic predicates are stack-imprecise. In the following,
only stack-imprecise predicates are used. Notice, that negation does not preserve stack-
impreciseness in general. Moreover, the predicate emp is not stack-imprecise. It demands
that the stack is empty (HOL4-Thm 238): emp,, = {(,h) | h € emp,}. Because emp is
not stack-imprecise, it is not used in the following. Instead a predicate stack-true is used
that demands that the second state-component is empty, but allows arbitrary stacks:

Definition 3.3.14 (stack-true (HOL4-Thm 376)).

stack-true, := {(s,h) | h € emp,}

stack-trueis stack-imprecise (HOL4-Thm 356), i.e. Yo, V. isStackImprecz’se(stack—trueo, V).
In general, stack-true, is not the neutral element with respect to =g . It is, however, for
stack-imprecise predicates P (HOL4-Thm 252), i.e.

VP. isStackImprecise(P) = (P @, stack-true, = P)

Notice, that emp in Holfoot’s input language (see Section 2.1.3) is implemented by stack-true.

3.3.3.2 Pure Predicates

Stack imprecise predicates use the stack in a restricted way. A further restriction is that
the second component of the state may not be considered. This leads to pure predicates.
Weak pure predicates accept any second component of the state, strong pure predicates
q demand that it is empty:

96 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Definition 3.3.15 (Pure Predicates (HOL4-Thms 369, 384)).

PurePredyea(p, €l) := ExpPred(\vl, h. p(vl), el)
PurePredgong(p, €l) 1= ExpPred(Avl, h. p(vl) A h e emp, el)

Strong pure predicates are useful to express side conditions in specifications. Weak pure
predicates are intuitionistic (HOL4-Thm 240). They can therefore be used as condi-
tions with assume or control structures like conditional execution and while-loops (see
Sec. 3.3.6.1). As pure predicates are defined in terms of expression predicates, they are
stack imprecise.

An important special case are Boolean predicates:

Definition 3.3.16 (Boolean Predicates (HOL4-Thm 262)). Boolean predicates are strong
pure predicates that do not depend on any expression, i.e. they do not depend on the
stack.

BoolPred(c) := PurePredgyong(AVl. ¢, [])

Boolean predicates do not depend on the state at all. It will be demonstrated later, that
they can therefore be removed from Hoare triples and frame calculations.

Constant arguments to pure predicates can be eliminated. This elimination frequently
leads to Boolean predicates, which can then be removed:

Lemma 3.3.17 (Constant Argument Elimination (HOL4-Thms 370, 371)).

PurePredgirong(p, [Const(c), 1, ..., e,]) = PurePredgyong(Avl p(c:: vl), [e1, ..., e,])
PurePredstrong(p, []) BoolPred(p[])

Other important special cases of pure predicates are predicates on two expressions and
especially equality checks:

Definition 3.3.18 ((HOL4-Thm 367)).

BinPurePredyea(0p, €1,e3) = PurePred e (Al. (el((), vl) op el(1, vl)), [e1, e2])
BinPurePredsirong(0p, €1, €3) = PurePredgyong(Avl. (el(O, vl) op el(1, vl)), [e1, e2])

Definition 3.3.19 (Equality Checks (HOL4-Thms 368, 377, 383, 386)).

e1 = es = BinPurePredsyong(=, €1, €2)

e1 # ey = BinPurePredsyony(#, €1, €2)
€1 =weak €2 = BinPurePred, e (=, €1, €3)
€1 Fweak €2 = BinPurePred e, (#, €1, €2)

3.3.3.3 Separating Conjunction on Lists

Common predicates have been presented above. These are usually combined using the
separating conjunction operator #. In order to simplify the syntax, the definition of star
is extended to lists:

3.3. VARIABLES AS RESOURCE 97

Definition 3.3.20 (Separating Conjunction on Lists (HOL4-Thm 260)).

k[= stack-true
k(P :pl) = Pxskpl

This operation is intended to combine stack imprecise predicates. Therefore, it uses
stack-true as base case instead of emp as one might expect (compare (HOL4-Thm 79)).
This guarantees that the following inference rule holds even for the empty list []:

(HOL4-Thm 354)
VP e pl isStack]mprecise(P, V)

isStack]mprecise(*pl, V)

Since the separating conjunction operator * is associative and commutative, the order of
the list elements does not matter. Therefore, the lists can be replaced by finite multisets:

Definition 3.3.21 ((HOL4-Thm 261)).
k¢ = stack-true
*({P}uP) = P=xP

(HOL4-Thm 353)
VPeS. isStack[mprecz’se(P, V)

isStack[mprecz’se(*S , V)

It is also often useful to map some function f over a list [before combining all the
predicates in the resulting list map(f,1). This leads to the separating map operator:

Definition 3.3.22 (Separating Map (HOL4-Thm 359)).

sk-map(f,1) := k(map(f,1))

3.3.4 Normal Forms

Stack imprecise predicates demand implicitly that the variables they access are present
in the stack, i.e. that they have read permissions for these variables. In order to specify
write permissions as well, the following normal form is used:

Definition 3.3.23 ((HOL4-Thm 375)). For sets of variables W, R, a list of variables
d and a predicate P, the predicate inputVRProp(W, R,d, P) checks for a state (s, h) €
Stacks x ¥ that

the stack s contains write permissions for the variables in W,
s contains read permissions for the variables in R,
all variables in d are distinct from each other and

P holds in (s, h).

98 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

inputVRProp(W, R,d, P) := X(s,h). WUR < dom(s) A
Ve eW. perm(xz,s) =T A
all-distinct(d) A
(s,h) e P

The sets W and ‘R allow to specify the necessary read and write permissions. It is usually
desirable to know that certain variables are distinct from each other; d can be used for
this purpose. This is often used to specify that all the variables given as call-by-reference
parameters to a procedure call are distinct. Finally, P is the main predicate.

P is usually a spatial conjunction of several predicates, i.e. P is of the form Py #...* P,,.
It is desirable that all predicates P; are stack imprecise. Furthermore, the variables
described by W and R should be the only ones needed. Combining this condition with
distinctiveness of the variables leads to an additional normal form.

Definition 3.3.24 ((HOL4-Thms 389, 387, 390)). For finite multisets of variables W, R
and a finite multiset of predicates P, the predicate VRProp(W,R,P) checks for a state
(s, h) € Stacks x ¥ that

e the stack s contains write permissions for the variables in W,
e read permissions for the variables in R and
e the separating conjunction of all the predicates in P holds in (s, h).

The function VRCond(W, R, P) checks that all the variables in YW u R are distinct and
that all predicates P € P are stack imprecise with respect to YW U R. This leads to the
following formal definitions:

VRPropOV, R, P) = A(s,h). WUR S dom(s) A
Ve eW. perm(xz,s) =T A
(s,h) € %P

VRCond(W,R,P) := all variables in the multiset W U R are distinct A
VP € P. isStackImprecise(P,V U R)

VRProp and VRCond are very important in the following. VRProp is usually used to
describe the pre- and postconditions of Hoare triples. A typical Hoare triple is of the
form { VRProp(W, R, Ppre)} prog { VRProp(W, R, Ppest)}. In rare cases the postcondition
may use different variable permissions than the precondition, though.

Unfortunately, these Hoare triples are not strong enough, yet. Consider the case of calling
a procedure that needs read access to a variable x. If the caller has write permission for
x, it should still have write permission after the procedure call. However, VR Prop allows
only to specify that if there is a read permission for x before the procedure call, then there
is a read permission afterwards. It is not guaranteed that the permission is not modified.

In order to preserve permissions, it is first defined when two stacks are equal with respect
to permissions.

Definition 3.3.25 ((HOL4-Thm 397)). A stack s; is equal with respect to permissions

to a stack sy (denoted by s; pezre s9), iff all variables that occur in both stacks have the

3.3. VARIABLES AS RESOURCE 99

same permissions and all other variables have write permissions.
s1 =" 8y = Va.xe dom(sl) Az e dom(ss) = (perm(sy,z) = perm(sy,x)) A
V. x € dom(sl) A x ¢ dom(sy) = (perm(s1,z) =T) A
V. x ¢ dom(sl) A x € dom(sy) = (perm(sq,z) =T)

This new definition is used to introduce Variable as Resource Hoare Triples:

Definition 3.3.26 (Variable as Resource Hoare Triples (HOL4-Thms 327)). Variable as
resource Hoare triples [P] prog [Q] are defined as follows:

[P] prog [Q] :=VS. {P A (A(s,h). s =195)}
prog
{Q A (M(s,h). s "="8)}

The idea of these Hoare triples is that programs cannot modify permissions. If they have
write permission to a variable, they can change the value of that variable and even remove
that variable from the stack. They can’t, however, somehow remove only a part of the
write permission. Similarly, if they introduce new stack variables these variables come
with write permissions.

Integrating well-formedness conditions into variable as resource Hoare triples leads to
Conditional Variable as Resource Hoare Triples.

Definition 3.3.27 (Conditional Variable as Resource Hoare Triples (HOL4-Thm 265)).

[Py, Bp)] prog [(Qn, @p)] = (B A Q) = [5,] prog [Qy]

Notation 3.3.28. Normally, variable as resource Hoare triples use VRProp for their condi-
tions. Sometimes, additional existential quantification is required. Let therefore W; R | P
denote either VRProp(W,R,P) or (VRCondW,R,P), VRProp(W,R,P)) depending
on context. Similarly, let W;R | Jz. P(z) denote either 3z.VRProp(W,R,P(x)) or
(Vx. VRCond(W, R, P(x)),3z. VRProp(W, R, P(x))) depending on context. This means

that for example the following notations are valid abbreviations:

[Wi; R1 | Pi] prog [Wa; Ry | Pl =
[VRProp(Wh, R1, P1)| prog [VRProp(Ws, Ra, Ps)]

Wi Ry | Pi] prog [Q] -
[VRProp(W, R1, P1)] prog [Q]

IWi; Ry | Pi] prog [Wa; Ry | 3. Pa(x)] =
[(VRCond(Wy, Ry, Py), VRProp(Wy, Ry, Py))]

prog
[(Vz. VRCond(Ws, Ra, Pa(x)),3z. VRProp(Wa, Ra, P2(x)))]

[Wi; Ry | Pi] prog [Q] =
[(VRCondW,, Ry, P1), VRProp(Wy, Ry, P1))] prog [Q]

100 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Remark 3.3.29. It might be surprising that conditional Hoare triples assume that both
the pre- and the postcondition are well-formed. The idea of conditional Hoare triples is
to carry as much information as possible. Holfoot uses general Hoare triples as input.
The pre- and postconditions of these Hoare triples use input VRProp. In a preprocessing
step, these general Hoare triples are transformed into conditional Hoare triples that use
VRProp. This transformation involves showing the well-formedness of predicates and the
distinctiveness of variables. These properties are shown once and then recorded using
conditional Hoare triples. This allows the verification to rely on these properties without
proving them over and over again.

As discussed above, best local actions are closely related to Hoare triples. There is for
example the following connection:

prog E bla|P,Q] <= {P} prog {Q} (HOL4-Thm 148)
prog = gbla[Py, Qf] <= Vz. {P(2)} prog {Q(x)} (HOL4-Thm 154)

In order to establish similar relationships for variables as resource Hoare triples, best local
actions corresponding to the Hoare triples are introduced:

Definition 3.3.30 (Best Local Action (HOL4-Thms 259, 391)).

_ qbla[Mt, (s, h). (s,h)e P A (s=1),
el P QL= N (). (s h) e Q A (5P)]

_gbla[A(z,t), (s, h).
qurblal Py, Qrl = B (s B). (.)€ Q)

—
»
=
s
3

> >
w

I
~
~

These new best local actions correspond to variables as resource Hoare triples:

Lemma 3.3.31.
prog = vrbla|P,Q)] <= [P] prog [Q] (HOL4-Thm 245)
prog = qurbla| Py, Qf] <= Vx. [P(x)] prog [Q(z)] (HOL4-Thm 250)

There are conditional versions as well. Notice however, that these do not correspond
directly to conditional Hoare triples. They serve the same purpose of encoding well-
formedness side-conditions.

Definition 3.3.32 (Conditional Best Local Action (HOL4-Thms 264, 298)).
curbla[(Py, By), (Qp, @p)] = if (B A Qp) then vrbla[P,, Q),] else diverge

qevrbla[Ax. (Py,(z), pr(:p)), if (Va. Py, (x) A Qp,(z)) then qubla[pr, pr]
Az (Qyy(2), Qp ()] else diverge

3.3. VARIABLES AS RESOURCE 101

3.3.5 Inference Rules
PZ" is an equivalence relation (HOL4-Thms 398, 399, 400). Moreover, it is compatible
with combining stacks:

Lemma 3.3.33 ((HOL4-Thm 401)).

Vs, 81,89, t,t1,ta. (S1 @5 5o =8) A (L1 egita=1) A (51 P t1) A (s2 berns ty) =

perms

sy

These properties of *=" guarantee that most of the inferences that hold for general Hoare
triples (see Sec. 3.2.5), hold for variable as resource Hoare triples as well. This includes
the following important inference rules:

Sequential Composition Rule Parallel Composition Rule
(HOL4-Thm 335) (HOL4-Thm 334)
[P] prog, [Q] [P1] prog, [Q1]
[Q] prog, [R] [P»] progy [Q-]
[P] prog, ; prog, [R] [P1 = Po] prog, || prog, [Q1+ Q2]
Program Abstraction Rule
Frame Rule (HOL4—Thm 332) (HOL4—Tbm 267)
[P] prog [Q] prog; & prog, [P] prog, [Q]

[P« R] prog [Q « R]

[P] prog, [Q]

(HOL4-Thm 256)
[P] prog, ; progs [Q] ([I;(])M‘T}E?] 333)
[P] prog, ; progs [Q)] %
[P] (prog, + prog,) ; progs [Q] [P] prog® [P]

To restore the normal form after applying the parallel composition rule, the following
lemma is useful.

Lemma 3.3.34 ((HOL4-Thm 253)).

VWi, Wa, R1, Ra, P1, P2.
disjoint(Wy, We U Ra) A disjoint(We, W U R1) A
VRCOHd(Wl, Rl, 7)1) AN VRCOTLOZ(WQ, RQ, 7)2) -
(VRPmp(Wl,Rl,Pl) = VRProp(Ws, R, P2) = VRProp(W; U Wa, R1 L1 Ra, Py U 792))

Other inference rules exploit the structure of variable as resource Hoare triples. The
strengthening rule can for example be instantiated to strengthen variable permissions:

(HOL4-Thm 292)
W1§W2 (W1UR1=W2UR2) (W{U’Rq:WéURQ)
Vi Ry | P prog [Wis Ry | P']

[Wa; Ry | P] prog [W5; R | P']

102 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

There are many similar inference rules. Here just a few interesting ones are listed:

(HOL4-Thm 297) (HOL4-Thm 297)
Wi R | P] prog [Q]
IW; R | {stack-true} o P] prog [Q] IWV; R | {false} v P] prog [Q]

(HOL4-Thm 270)
isStack[mprecz’se(Pl, Wu R)
isStack[mprecz’se(PQ, Wu R)

Wi R [{P1} o {P2} U P] prog [Q]

Wi R | {Pr+ P} U P] prog [Q]

(HOL4-Thm 269)
V. isStackImprecise(P(x), Wu R)
Vo Wi R | {P(x)} v P] prog [Q]

[WiR | {3z.P(z)} v P] prog [Q]

(HOL4-Thm 271) (HOL4-Thm 293)
c= [Wi;R [{P}uP] prog [(] c = [W;R | P] prog [Q]
[W:R | {c& P} L P] prog [Q] W; R | {BoolPred(c)} U P] prog [Q]

The last two inference rules move Boolean conditions out of the Hoare triple. They exploit
that Boolean depend only on context information like specification variables but not on
the current state. In contrast, general pure predicates are frequently used to connect
specification variables with the values in the stack. The following inference rule uses the
pure predicate e = Const(c) to introduce a specification variable ¢ that holds the value of
expression e:
Constant Introduction Rule (HOL4-Thm 272)
is WellFormed(e, Wu 72)

Ve. [W;iR | {e = Const(c)} u P] prog [Q]

Wi R | P] prog [Q]
If e uses only variables with read permissions, its value is not going to be changed.
Therefore, e = Const(c) can be added to the postcondition as well.

(HOL4-Thm 273)

18 WellFormed(e, R)
Ve. [Wi; R | {e = Const(c)} u Pi] prog [Wa; R | {e = Const(c)} U Ps]

Wi R | Pi] prog [Wa; R | Ps]

In general, there is a specialised frame rule that is aware of the normal forms. It allows
predicates that do not use variables with write permissions to be added. This inference
rule illustrates the semantics of read- and write-permissions:

(HOL4-Thm 276)
isStackImprecise(P, R)
[Wis R | PA] prog [Wei R | Po]
Wi, R [{P} v P1] prog [Wa; R | {P} L Ps]

3.3.6 Program Constructs

After discussing variable as resource Hoare triples and basic inference rules for these Hoare
triples, program constructs can now be considered.

3.3. VARIABLES AS RESOURCE 103

3.3.6.1 Assume

The assume statement is introduced in Sec. 3.2.2.8. It is stated there that assume is only
used with intuitionistic predicates (see Definition 3.2.37) in order to guarantee its locality.
However, no intuitionistic predicates are presented there. After extending the model with
a stack, it is now possible to discuss an interesting class of intuitionistic predicates: weak
pure predicates.

Lemma 3.3.35 ((HOL4-Thm 240)). Weak pure predicates are intuitionistic.

Vp,eq,...en. (Vl < n. stellFormed(el)) -
zs[ntuztzomstzc(PurePredweak(et sen)))

There is also a simple sufficient condition for showing that a weak pure predicate is decided
in a set of states.

Lemma 3.3.36 ((HOL4-Thm 244)). A weak pure predicate PurePredyeq(p, [e1, - - -, €n])
is decided in a set of states P, if all expressions eq, ..., e, are well-formed with respect to
a set of variables) such that the variables in V are present in all states in P.

Vp,eq,...ep, PV. (Vl < n. stellFormed(el,V) A Y(s,h) e P.V < dom(s)) —
PurePredweak(p, [e1, ..., e,]) is decided in P

In Sec. 3.2.37, the following inference rule for assume is presented:

(HOL4-Thm 88)
B is decided in P Sen {P A B} prog {Q}

Seny { PP} assume[B] 5 prog {Q}

Using weak pure predicates and Lemma 3.3.36 it can be instantiated to

Vi<i<n. is WellFormed(e,, W o R)
[VRProp(WV, R, P) A PurePredyear(p, [€1, - - -, en])] prog [Q]
[VRPropOW, R, P)| assume[PurePredye.(p, [€1,---,en])] ; prog [Q]

This inference rule destroys the normal form in the precondition. Replacing the weak
pure predicate with a strong one allows the normal form to be preserved:

(HOL4-Thm 284)
Vi<i<n. is WellFormed(e,, W o R)

IW:R | {PurePredstmng(p, [e1,...,en])} U P)] prog [Q]
IW; R | P] assume| PurePredyear(p, [€15 - - -, en])] 5 prog [Q]

Pure predicates have nice properties with respect to intuitionistic negation as well. The
intuitionistic negation of a decided weak pure predicate PurePredye.(p, [e1,---,€n]) can
be achieved by negating p (HOL4-Thm 239). This leads to the following inference rule:

(HOL4-Thm 282)
Vi<i<n. is WellFormed(e,, W u R)
W;R | {PurePredstmng(ﬂp, [e1,...,en])} U P)] prog [Q]
IW; R | P] assume|—; PurePredyeq(p, [€1, - - -, en])] ; prog [Q]

104 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

These inference rules allow the simple handling of assumptions using pure predicates.
Notice, that the list of expressions of a weak pure predicate might be empty. Therefore,
false and true are weak pure predicates as well (HOL4-Thm 385). Boolean combinations
of conditions can be handled using the abstractions presented in Sec. 3.2.5.7. They lead
to the following inference rules:

(HOL4-Thm 278) (H([[)Ifﬁ'mm 2‘?2] Q]
P assume|B1| ; assume|Bs| ; pro assumel b1l prog
[P] [B1] [B2] 5 prog [[P] assume[Bs] ; prog [Q]
[P] assume[By A Bs] ; prog [Q] [P] assume[By v Ba] ; prog [Q]
(HOL4-Thm 279) (HOL4-Thm 280)
[P] assume[(—;By) v (—:iB2)] ; prog [Q] [P] assume[B] ; prog [Q]
[P] assume[—;(By A Bs)] ; prog [Q] [P] assume[—i(—:B)] ; prog [Q]

(HOL4-Thm 281)
[P] assume[(=iB1) A (—iB2)] ; prog [Q]

[P] assume[—;(B1 v B2)] ; prog [Q]

3.3.6.2 Control Structures

Using these inference rules for assume, handling control structures is straightforward. The
inference rules presented in Sec. 3.2 can be lifted:

(HOL4-Thm 287)
[P] assume[B]; prog, [Q]
[P] assume[—:B]; prog; [€]
[P] if B then prog, else prog, [Q]

Loop-Invariant Rule (HOL4-Thm 289)
(1r = . (g (@), 15, ()
Py = V. I, (x)
Va. [1;(@)] assume[B] 5 prog, [1;(@)]
[(Py, By)] qevrblally, If] 5 assume[—=;B] ; prog, [Q]

[(Py,)] while B do prog, ; prog, []

Loop-Specification Rule (HOL4-Thm 277)
(Pr = e (Pr(a), Pr(e)) (@r = Av. (@py(2), Qp, (@)
Pb > VZL‘ be(ZL‘) AN be(l‘)
Va. [Ps(z)] assume[—;B] ; prog, [Qs(z)]
Vi [Py(a)] assumelB) ; prog, ; qevrblalPy, Q] [Q5(w)]
[(Py, Bp)] gevrblal Py, Qs] 5 progs [Q]

[(Fy,)] while B do prog, ; prog, ; progs [Q]

3.3. VARIABLES AS RESOURCE 105

3.3.6.3 Semaphore Operations

Semaphore operations require a little bit more attention. As motivated in Sec. 3.2.2.6
only precise predicates are used as lock invariants. Therefore, a new normal form for lock
invariants is used:

Definition 3.3.37 ((HOL4-Thm 358)). For a set of variables W and a predicate P, the
predicate VRLockInv(W, P) is defined by:

VRLockInoW, P) = A(s,h). (dom(s) =W) A (YxeW. perm(z,s) =T) A (s,h)eP

These lock invariants fix the set of variables. Moreover, they require write permission for
all the variables mentioned by the invariant. Using lock invariants of the given form, the
abstractions presented in Sec. 3.2.6 become (HOL4-Thms 153, 141, 246, 249):

Vienv, penv, [, W, prog, P.
(leno(l) = VRLockInu(W, P) A VRCondW,, {P})) —
with [do prog = (penv,ienv)
corbla[(&; & | &) , W D [{P})] ; prog;
curblal(W; & | {P}) , (&5 | D)]

Yienv, penv, 1, B, W, prog, P.
(lem)(l) = VRLockInv(W, P) A VRCond W, J, {P})) —
with [when B do prog = (penv,ienv)
corbla[(T; T | &) , W; & | {P})] ; assume[B] ; prog ;
corbla(W; & [{P}) , (D | D)]

Yienv, penv, [, W, prog, P.
(lenv(l) = VRLockInu(W, P) A VRCond(W,), {P})) —
l.prog = (penv,lenv)
corblalW; & [{P}) . (S | D)]; prog;
curbla[(& B | &), W T | {P})]

Using these abstractions, semaphore operations are removed from the program during a
preprocessing step. It remains to symbolically execute cvrbla.

3.3.6.4 Procedure Calls

In Sec. 3.2.4.5 choose-constants is introduced for the purpose of defining procedure calls
with call-by-value parameters. This setting is instantiated here. Procedure calls are
introduced that get a list of variables as call-by-value arguments and expressions as call-
by-value arguments.

A slight complication is that choose-constants evaluates its arguments on the whole state,
while expressions are just evaluated on the stack. Therefore, a wrapper is introduced first:

Definition 3.3.38 (eval-expressions (HOL4-Thm 363)).

eval-expressions expr-list prog; =
choose-constants (map (Xe, (s, h). e(s)) expr-list) prog;

106 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Definition 3.3.39 (Procedure Calls with call-by-value Arguments (HOL4-Thms 366,
167)).

ext-proccall(name, refArgs, valArgs) :=
eval-expressions valArgs (Avalues. proccall(name, (refArgs, values)))

As described in Sec. 3.2.7 procedures are abstracted in a preprocessing step in order to
handle recursive procedure calls. eval-expressions does not interfere with this abstraction,
because it is compatible with program abstraction:

(HOL4-Thm 247)
Vvalues. prog(values) Teny progy(values)

eval-expressions expr-list progy Sen, eval-expressions expr-list prog'f

eval-expressions is also used for parallel procedure calls:
Definition 3.3.40 (Parallel Procedure Calls (HOL4-Thm 365)).

ext-parallel-proccall(namey, refArgs,, valArgs,, names, refArgs,, valArgs,) 1=
eval-expressions valArgs, (Avalues; .
eval-expressions valArgs, (Avaluess.
proccall(namey, (refArgs,, valuesy)) || proccall(names, (refArgsy, valuesy))))

Notice, that all call-by-value arguments are evaluated before either of the procedures
is executed. Parallel procedure calls can be abstracted exploiting the compatibility of
eval-ezpressions with program abstraction and the parallel composition rule (HOL4-
Thm 248).

It remains to symbolically evaluate eval-expressions. If the list of expressions is empty,
eval-expressions can be dropped. Expressions, whose value is known, can be removed.
This leads to the following inference rules:

(HOL4-Thm 274)
[P] eval-expressions([])(prog;) [prog;]Q

[PT prog;([1) €]

(HOL4-Thm 275)
[W; R | P] eval-expressions(Const(c) :: el)(prog;) [Q]
[W;R | P] eval-expressions(el)(Avl. proge(c :: vl)) [Q]

(HOL4-Thm 275)
[W;R | {e = Const(c)} u P] eval-expressions(e :: el)(prog;) [Q]
[W;R | {e = Const(c)} U P] eval-expressions(el)(Avl. prog,(c :: vl)) [Q]

Expressions like e = Const(c) can be introduced into the precondition using the constant
introduction rule (see page 102). Combined with the inference rules above, this allows
the symbolic evaluation of eval-expressions.

3.3. VARIABLES AS RESOURCE 107

3.3.6.5 Assignments

Until now, only already presented program constructs have been instantiated. Now the
first new construct is presented: assigning the value of an expression to a stack variable.
Before it can be defined, variable updates on states need to be discussed.

Definition 3.3.41 (Variable Updates (HOL4-Thms 402, 309)). stack-var-update|v, c](s)
updates the value of variable v in stack s with c¢. If v is not present in the stack, it
is inserted. Similarly, state-var-update[v,c](s,h) updates the value of v in the stack s
belonging to the extended state (s, h). These functions are defined by:

o (e, T) ifx=vw
stack-var-update|v, c|(s)(z) = s(z) otherwise
state-var-update|[v, c|(s,h) := (stack-var-update[v,c](s), h)

Definition 3.3.42 (Assigment (HOL4-Thm 258)). For a variable v and a expression e
the assignment action assign|[v, €] is defined by

state-var-update|v, c|(s, h) if Defined(e(s)) A e(s) =c A
(assign|v,e])(s, h) := v e dom(s) A perm(v,s) =T
undefined otherwise

This means that assign[v, e](s, h) will fail, if s does not hold write permission for the
variable v or if the expression e cannot be evaluated. assign[v, e] is a local action (HOL4-
Thm 241) for well-formed e.

Inference rules for assign[v, e] need to refer to the value of e before the update of v. Usually
this uses some kind of syntactic substitution. Here, however, the syntax of expressions
and predicates is not fixed. They are just functions with certain properties. Therefore,
semantic substitution functions are defined:

Definition 3.3.43 (Semantic Substitution (HOL4-Thms 382, 308)). For a variable v,
a value ¢, an expression e and a predicate P, the semantic substitution operations
exp-var-update[v, c](e) and pred-var-update[v, c](P) that evaluate e and P on the state
that results from updating v with ¢ are defined by:

exp-var-update[v, c](e) := As. e(stack-var-update[v, c](s))
pred-var-update[v, c|(P) := \(s,h). state-var-update|v, c|(s, h) € P
exp-var-update can easily be evaluated on common expressions:

exp-var-update[v, c](Const(ca)) = Const(cs) (HOL4-Thm 304)

Const(c) if v = vy

Var(vy) otherwise (HOL4-Thm 305)

exp-var-update|v, c](Var(vy)) = {

exp-var-update|v, c|(FunExp(f, [e1, ..., e])) = (HOL4-Thm 306)
FunFEzp(f, map exp-var-updatel[v,c] [e1, ..., en])

isWellFormedStrong(e, V) = (HOL4-Thm 343)
is WellFormedStrong(exp-var-update|v, c|(e), V\{v})

isWellFormed(e,V) = (HOL4-Thm 342)
is WellFormed(exp-var-update[v, c](e), V)

108 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Similarly, pred-var-update can easily be evaluated for common predicates:

pred-var-update[v, c|(ExpPred(p, [e1, .. ., en])) = (HOL4-Thm 380)
EzpPred(P,map exp-var-update|[v,c]| [e1, ..., en])

isStackImprecise(P, {v} U V) = (HOL4-Thm 357)
isStackImprecise(P, V)

isStackImprecise(Py) A isStackImprecise(P,) => (HOL4-Thm 378)
pred-var-update[v, c|(Py = Py) =
pred-var-update[v, c|(Py) * pred-var-update|v, c|(Ps)

pred-var-update[v, c|(Py A Py) = (HOL4-Thm 379)
pred-var-update[v, c|(Py) A pred-var-updatelv, c|(Pz)

pred-var-update[v, c](3z. P(z)) = (HOL4-Thm 379)
Jz. pred-var-update|v, c|(P(z))

Since pure and Boolean predicates are defined in terms of expression predicates, semantic
substitutions can easily be evaluated for these as well (HOL4-Thms 381, 379).

Using these semantic substitutions, it can be shown that assignments can be abstracted
as follows (HOL4-Thm 361):

Ve, V,v,c. isWellFormedStrong(e,V) =
assignf[v, e] = corbla[{v} ; V\{v} | {Var(v) = Const(c)},
{v} ; W{v} | {Var(v) = exp-var-update[v, c|(e)}]

Combining this program abstraction rule with the inference rule for sequential composition
and the frame rule, leads to the following inference rule for assignments:

Variable Assignment Rule (HOL4-Thm 294)
is WellFormed(e, W o 72) veWwW
IW; R | {Var(v) = exp-var-update|v, c](e)} L image (pred-var-updatelv, c]) P] prog [Q]

W:R | { Var(v) = Const(c)} u P] assign[v,e] ; prog [Q]

Notice, that this inference rule heavily relies on the well-formedness of the precondition.
Because all elements of P are stack imprecise, the semantic substitution can be mapped
over the multiset P. This guarantees that no predicate in the resulting multiset depends
on the variable v. Therefore, this multiset of predicates can be added using the frame
rule. Notice moreover, that the predicate Var(v) = Const(c) can be introduced into the
precondition using the constant introduction rule (see page 102).

In general it is useful to propagate equality information. The following inference rule
allows the precondition of Hoare triples to be normalised:

Equality Propagation Rule (HOL4-Thms 388, 266)
IW; R | {Var(v) = Const(c)} v image (pred-var-update|v, c]) P] prog [Q]

IW; R | {Var(v) = Const(c)} v P] prog [Q]

3.3. VARIABLES AS RESOURCE 109

Both inference rules introduce semantic substitutions into the precondition. Their eval-
uation usually requires equality checks between stack variables. The well-formedness of
the precondition can be used for these equality checks. Exploiting that all variables in
W u R are distinct, is essential for the evaluation of the semantic substitutions.

3.3.6.6 Local Variables

Local variables are implemented using an action for introducing a new stack variable and
one for disposing stack variables.

Definition 3.3.44 (Initialising Stack Variables (HOL4-Thm 360)). Let e be an expression
and v a stack variable. Then the action var-init(v, e) tries to add the variable v with a
write-permission to the stack and initialise it with e. If e cannot be evaluated, the action
fails. If v is already in the stack, it diverges.

T if —Defined(e(s))
var-init(v,e)(s,h) := 3 I if Defined(e(s)) A v € dom(s)
stack-var-update[v, e(s)|(s,h) otherwise

Definition 3.3.45 (Disposing Stack Variables (HOL4-Thm 299)). If the stack contains
write permission for a variable v, the action var-dispose(v) removes v from the stack.
Otherwise, it fails.

(s\{v},h) if ve dom(s) A perm(s,v) =T

var-dispose(v)(s, h) := { T otherwise

Lemma 3.3.46 ((HOL4-Thms 242, 243)). varDisp(v) and varInit(v, e) are local actions
for well-formed expressions e.

Remark 3.3.47. One might expect that initialising a stack variable masks an existing def-
inition. Disposing this variable could then restore the original definition. These initialise
and dispose actions, however, would not be local.

Combining initialising and disposing of a stack variable with nondeterministic choice leads
to a local variable declaration action:

Definition 3.3.48 (Local Variables (HOL4-Thms 362, 364)). A local variable declaration
of a variable v that is initialised by some value ¢ consists of nondeterministically choosing
a variable, initialising it with ¢, executing the body of the local variable declaration and
then disposing the variable.

local-var-init, v. prog;(v) = | {var—z’m’t(v, Const(c)) ; prog(v) ; var—dz’spose(v)}

Local variable declarations without initialisation are defined as the nondeterministic choice
between all possible initial values:

local-var v. prog;(v) = | {local—var—z’m’tc v. progf(v)}}

110 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

So, local variable declarations nondeterministically choose a variable. If this variable is
already present in the stack, its initialisation diverges. Since Abstract Separation Logic
is only interested in partial correctness, this has the effect of not considering variables
that are already in the stack. Therefore, local variable declarations have the intended
semantics. This semantics is captured by the following inference rules:

(HOL4-Thms 285)
Yo. [{v} Wi R | {Var(v) = Const(c)} U Pi] prog;(v) [{v} 0 W;R | Ps]

Wi R | Pi] local-var-init, v. proge(v) [W;R | Ps]

(HOL4-Thms 288)
Vo. [{v} UW;SR | Pi] proge(v) [{v} W R | Pe]

[W; R | P1] local-var v. progs(v) [W;R | Pa]

3.3.6.7 Quantified Best Local Actions

Inference rules for constructs like procedure calls, critical regions or while loops reduce the
symbolic evaluation of these constructs to the symbolic evaluation of quantified best local
actions. A quantified best local action gcvrbla| Py, Q| satisfies the family of specifications
Va. [Pr(z)] qeorbla| Py, Qf] [Qr(x)]. A first step to evaluate such a quantified best local
action is choosing a member z of this family of specifications:

(HOL4-Thms 296)
dz. [P] corbla[Ps(x), Q¢(z)] ; prog [Q]

[P] gcurbla[Py, Qy] ; prog [Q]

This inference rule represents a real implication and has to be applied carefully. One
has to be sure that the precondition P contains enough information to choose x. As an
example consider a procedure that increments a variable v. In this case the parameter
x might be used to hold the value of the variable before the procedure is called. If the
inference rule is applied too early, one might need to show that there exists x such that
forall possible values c of v the value of v is x. Thus, one would need to show 3z. Ve. z = ¢
which does not hold in general. If however, the value ¢ is introduced into the precondition
before applying the inference rule, one needs to show Ve. 3z. (x = ¢), which is easy.

3.3.7 Frame Inference
In the previous section inference rules for the forward analysis of common program con-

structs are presented. One important construct is, however, still missing: best local
actions. In order to symbolically evaluate a best local action a frame needs to be infered.

3.3.7.1 Informal Discussion

Let’s first consider the frame inference problem informally. Assume there is some Hoare
triple {P} bla[Py, Q2] ; prog {Q}. In order to symbolically evaluate bla[P, Q2] one needs

3.3. VARIABLES AS RESOURCE 111

to find a frame F' such that P implies P, = F'. Given such a frame F' the following
reasoning is possible: By definition {P,} bla[Ps, Q2] {Q2} holds. Using the frame rule,
this can be extended to {P; = F'} bla[Py, Q2] {Q2 * F'}. Since P implies P, = F', the Hoare
triple {P} bla[Py, Q2] {Q2 = F'} holds as well. Finally, the sequential composition rule can
be used to show that {P} bla[P,, Q2] ; prog {Q} is implied by {Qs * F'} prog {Q}.

So, the frame inference problem can be described as follows: given P and @), a frame F
is searched such that P @ = F' holds. One of the most important rules separation logic
tools like Smallfoot [2] use for such entailments is the separating conjunction introduction
rule: VP, Py, Py. P P3 = Py * P, — P = P3. One has to be careful when to apply
this rule. Consider the following example in Holfoot syntax: x |-> [1 * x [-> []
x |=> [] does hold, because x |-> [1 * x |-> [] is unsatisfiable. However, applying
the separating conjunction introduction rule results in x [-> [] + emp, which does not
hold. In order to avoid such problems, I extend the frame inference problem with a context
C. The problem then becomes C'* P — C =) = F'. Instead of removing common parts of
P and @ they can be moved to C'. Thus, this context C allows storing information and
removes the need to pay close attention when to apply certain rules for entailments.

Once a frame F' is found, it is used in some way. In the case of symbolically executing
a best local action, F' is for example used in the precondition of a Hoare triple. It is
useful to include this further usage into the frame inference as a predicate framePred.
The problem then becomes: IF. C'« P - C = Q = F A framePred(F). This predicate
framePred should satisfy some properties that allow proving interesting inference rules. It
should be satisfiable and it should be compatible with existential quantification in some
sense that will be explained below.

3.3.7.2 Basic Definitions

This informal discussion of a frame inference leads to the following definition.

Definition 3.3.49 (Frame Inference Predicate (HOL4-Thms 310, 322)). Given multisets
of variables W, R, W', multisets of predicate C, P, Q and a set of multisets of predicates
fP, the frame inference predicate is defined by:

W, RW: C|P|Q|[fP] =
isFramePred W\W', R\W', fP) —
AF. (fP(F) A VRCondW\W', RAW', F)) A
VRCondW,R,CUPuU Q) =
VRProp(W,R,C uP) < VRPropW,R,C U QU .7-"))

The predicate isFramePred checks, whether fP is satisfiable and compatible with existen-
tial quantification.

isFramePred W, R, fP) =
(3F. fP(F) A VRCondW.R,F)) A
(VF. (YF e F. fP(F) A VRCondW,R,F)) —
JP{A(s, h). AF € F. (s,h) € % F})

112 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

As intended, this frame inference predicate can be used for symbolically executing best
local actions:
(HOL4-Thm 295)
Wew RcSWUR
W, RW G| PP AF. [WW) W R | P" L F] prog [Q]]

[WiR | P] curbla[W5 RY[P) . WS R PY)] 5 prog [Q]

If fP demands that the frame is empty, the frame inference predicate checks entailments.
One has to be careful, though, how to express that the frame is empty. Demanding F = J
causes problems, because isFramePred does not hold for this predicate. Instead of this
syntactic definition, a semantic one is needed:

Definition 3.3.50 (Pure Predicate Check (HOL4-Thm 336)). The following function
checks, whether a predicate P is a strong pure predicate.

isStrongPurePred(P) := V(s,h)€ P. h € emp
Notice, that isStrongPurePred(Pure Predgi ong(p, €l)) holds trivially (HOL4-Thm 337).

This definition leads to the following inference rule for Hoare triples with empty body:

(HOL4-Thm 268)
wew RcSWUR
IW, R, & &|P|P | \F.VP e F. isStrongPurePred(P)]

[W;R | P] skip [W; R | P']

The definition of isFramePred(fP) consists of two parts. The first part demands that
a frame exists that satisfies fP. Therefore, [W,R,W'; C | P | Q | fP] holds, if
VRProp(W,R,C u P) is unsatisfiable. This property allows inference rules like:

(HOL4-Thm 315)
c= W, RW; C|P|Q]| [P
WV, R, W', {BoolPred(c)} uC | P | Q] [P]

(HOL4-Thm 317)
c=[W,RW; C|P|Q|[F]
W, R, W' C | {BoolPred(c)} P | Q] fP]
The second part of isFramePred(fP) demands that fP is compatible with existential quan-

tification. It is a technical property designed to allow proving the following inference
rules:

(HOL4-Thm 313)

V. isStack[mprecise(P(x), Wu R)
Vo [W, R W' C[{P(x)} v P | Q| [F]
IW,RW'; C|{3z. P(x)} P | Q| fP]
(HOL4-Thm 311)

V. isStack[mprecz'se(P(x), Wu R)
Vo [W, R W' {P(2)} uC | P [Q[/fP]

W, RWS {Fz. P(x)} uC|P[Q]|[F]

3.3. VARIABLES AS RESOURCE 113

3.3.7.3 Inference Rules

Other important inference rules for frame inferences include:

(HOL4-Thm 312)
V. isStack[mprecise(P(x), Wu R)
Jz. [V, R W' CIP | {P(x)} v Q| fP]

W, RW; C|P[{Fz. P(x)} v Q| fP]

x-Introduction (HOL4-Thm 319)
W RW; {PYUC|P|Q]|[P]
W RW5 CI{P}UP [{P}u Q] [F]

Strong pure predicates are idempotent. This allows simplified separating conjunction
introduction inference rules for strong pure predicates.

(HOL4-Thm 321) (HOL4-Thm 320)

isStrongPurePred(P) isStrongPurePred(P)
W.R W' {P}uC [P | Q]| fP] V. RW, {PYuC|P|Q|[F]
W, RW'; C|{P}uP| Q] /P W, RW; {PYUC|P[{P}uQ][F]

Equations are strong pure predicates. Therefore, these inference rule allow moving equa-
tions to the context. It is useful to combine moving an equation to the context with
equality propagation. This allows using the context C to record which equalities have
already been propagated.

(HOL4-Thm 318)
eqprop = AS. image (pred-var-updatefv, c]) S
IW, R, W'; {Var(v) = Const(c)} U eqprop(C) | eqprop(P) | eqprop(Q) | fP]

W, RW'; C | {Var(v) = Const(c)} v P | {P}u Q| fP]

There are many other inference rules for frame inference predicates. Here, only a few
exemplary structural rules are listed:

(HOL4-Thm 314)
isStack[mprecise(Pl, W u R)
isStack[mprecz’se(Pg, Wu R)
W, RW, CI{P}u{P}uP|QlfF]
W.RW'; C[{P1= P}P | Q| fP]

(HOL4-Thm 316)
IW,R,W'; C| P |{BoolPred(c; A c2)} L Q | fP]
IV, R, W', C | P | {BoolPred(ci)} v {BoolPred(cs)} v Q | fP]

114 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.3.7.4 Solving Frame Inference Predicates

The inference rules for frame inference predicates can be used to simplify a frame inference
predicate [W, R, W'; C | P | Q | fP] stepwise until Q@ becomes empty. Informally, a frame
F has to be found then, such that P implies F and such that F does not use any variables
from W'. An obvious choice for F is P:
(HOL4-Thm 323)
VP eP. isStack[mprecise(P, W u R)\W')
fP(P)

V. RW: CIP || [

Q may even contain a Boolean predicate.

(HOL4-Thm 324)
VP eP. isStack[mprecise(P, W u R)\W')
c fP(P)

W, R,W'; C | P | BoolPred(c) | fP]

Usually, one is interested in strong frames, i.e. frames that contain as much information
as possible. An inference rule is presented above to move strong pure predicates to the
context. Before solving a frame inference predicate it is sensible to move as many strong
pure predicates from the C into P as possible. One should be careful though to move only
predicates that do not use any variable from W'.

(HOL4-Thm 321)

isStrongPurePred(P) isStackImprecise(P, W u R)\W')
W, RW: CI{PYOUP || [P]
W, RW: {PYUC|P || [P]

3.3.7.5 Frame Inference Algorithm

Above inference rules are presented that allow introducing, simplifying and finally solving
frame inference predicates. Compared to the frame inference used by tools like Smallfoot,
one does not need to be particularly careful about the order of applying inference rules,
because the context can be used to store additional information. However, one needs to
be careful about quantification.

Consider for example the frame inference predicate [W,R,W'; C | {3=.P(z)} u P |
{3y.Q(y)} v Q | fP]. Depending on the order the quantifiers are removed, one ends up
with either 3y .Va. W, R,W'; C | {P(x)} VP | {Q(y)} v Q| fP] or Yz Iy.[W,R,W'; C |
{P(x)}UP | {Q(y)}uQ | fP]. The latter is preferable, because it is the weaker statement.
Therefore, existential quantification in P and C should be removed before removing it from
Q. Notice, that the existential quantification may be implicit. It might for example be
introduced by rewriting some predicates or by applying inference rules. A simple example
of such an inference rule is a rule similar to the constant introduction rule:

veWUR
W, R,W'; C | {3c. Var(v) = Const(c)} b P | Q| fP]

W, RW CIP| QI[P

3.3. VARIABLES AS RESOURCE 115

A similar problem occurs when reducing quantified best local actions to best local actions.
Whenever, a frame inference predicate is introduced, one should try to move quantifiers
that lead to universal quantification out, before moving those that lead to existential
quantification. Frame inference predicates are usually introduced if there is a Hoare
triple, with empty body, with a quantified best local action as first statement or with a
best local action action as first statement. In these situations, the following steps should
be taken to introduce, simplify and solve frame inference predicates:

e Use the constant introduction rule to introduce constants for all variables into the
precondition of the Hoare triple. In addition, remove existential quantification from
the precondition.

Reduce a quantified best local action to a best local action if applicable.

Introduce a frame inference predicate [W, R, W'; C | P | Q| fP].

Remove quantification from Q.

Simplify the frame inference predicate until Q becomes empty or contains only a
single Boolean predicate.

e Move strong pure predicates from C to P.

e Solve the frame inference predicate.

3.3.8 Implicit Information

Often, it is important to make implicitly contained information explicit. For this purpose
the following definition is introduced that states that two normal forms are equivalent:

Definition 3.3.51 (Normal Form Equivalent (HOL4-Thm 373)).

VREquiv(W,R,C, P, P') := (VRoond(W,R,c UP) © VRCondW,R,Cu 73')) A
(VRPmp(W, R.CUP) = VRProp(W,R,Cu 73'))

Using this definition Hoare triples and frame inference predicates can be rewritten:

(HOL4-Thm 291) (HOL4-Thm 325)

VREquivOV, R, &, P, P') VREquivOW,R,C, P, P’)
ViR | P] prog [Q] WV, RW' C|P|Q][P]
ViR | P] prog [Q] V. RW5 CIP [Q[P

Usually, these inference rules are used to just add predicates that were previously only
implicitly contained in P. An important special case is adding pure strong predicates
that state that some expressions evaluate to different values. This leads to the following
definitions:

Definition 3.3.52. (HOL4-Thms 372, 328)
VRImp(W,R,C,P) := VREquivOWV,R,C,,P)

VRImpUnequal(C, ey, e3) := isWellFormed(e;) A isWellFormed(ey) =
(:kC < PurePredyea(#, €1, €2))

116 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

There are several inference rules for these definitions. However, most these definitions are
mainly used with the Holfoot formalisation.

(HOL4-Thm 329)
wsWellFormed(e;, W UR (HOL4-Thm 374)
isWellFormed(es, W U R VRImp(W,R,C,Pr)

VRImpUnequal(C, ey, e2) VRImp(W,R,C, Ps)
VR[mp(Wa Ra Ca Pl v PZ)
VR[mp(W7 Ra Ca €1 # 62)

(HOL4-Thm 330) (HOL4-Thm 331)
C1 # C (617’562)66
VRImp Unequal(C, Const(cy), Const(cz)) VRImpUnequal(C, ey, e3)
(HOL4-Thm 290) (HOL4-Thm 326)
VRImp(W, R, P, P') VRImp(W,R,C U P, P')
VR | P] prog [Q] W RW; CIP|Q][/]
[WiR P v P prog [Q] V. RW; CIPUP | Q[

3.4 Holfoot

In Section 3.3 a first instantiation of Abstract Separation Logic is presented. It introduces
a stack as a finite map from some variable type to some value type and permissions.
Moreover, there is a second component of the state that is still abstract. In this section,
this instantiation is further instantiated in order to build a formalisation of Smallfoot [3].
Variables are represented as strings, values are instantiated as natural numbers. Most
importantly though, the second component of the state is instantiated to become a heap.

All important concepts like normal forms or frame inference predicates are already intro-
duced in Section 3.3. Here, first the states used by Holfoot are discussed in Sec. 3.4.1.
Then predicates on these states are defined in Sec. 3.4.2. Many of these predicates describe
data-structures in the heap. There are, for example, predicates describing singly-linked
lists, trees or arrays. Sec. 3.4.3 introduces new program constructs. There are program
statements for explicit memory allocation or deallocation as well as statements that look-
up or store a value in the heap. Sec. 3.4.4 discusses how information that is implicitly
contained in predicates can be made explicit. Finally, Sec. 3.4.5 presents inference rules
for frame inference predicates. These inference rules are specific to the predicates defined
for Holfoot.

3.4.1 States

As described in Sec. 2.1 Holfoot uses heaps that are finite maps from locations to named
records of values. Locations are natural numbers excluding 0. Named record are maps
from tags to values. Tags are identifiers used to index the entry in the record. They are
represented as strings. Values are natural numbers.

3.4. HOLFOOT 117

Definition 3.4.1 (Heaps). A heap is a finite map from locations to a map from tags to
values.

Values & Ny
Locations < Values\{0} = N
Tags o Strings
Heaps % Locations (Tags — Values)

Notice, that named records are not finite maps. They are defined for every tag! This
means that if a location is in the domain of a heap h, then h contains values for all tags
at this location.

Definition 3.4.2 (Combining Heaps (HOL4-Thm 196)). Two heaps h; and hy are sepa-
rate if their domains are separate. The combination of two separate heaps h; and hs is
defined as their disjoint union.

hl H—J hg iff dom(hl) M dOm(hg) = @

i onhe = {undeﬁned otherwise

Remark 3.4.3. ey is one of the initial examples for separation combinators. It is discussed
in Example 3.2.8.

Lemma 3.4.4 ((HOL4-Thms 216, 220)). ey is a separation combinator for heaps. More-
over, the empty heap & is the neutral element for all states, i.e. emp, = {&} (HOL4-
Thm 82). Therefore, (Heaps, ey,) is a separation algebra.

Definition 3.4.5 (Stacks). Holfoot instantiates the stacks presented in Sec. 3.3. Variables
are represented by strings, values become natural numbers.

Values % Ny

f :
Vars = Strings
def fin

Stacks = Vars = (Values x Perms)
Definition 3.4.6 (Holfoot Separation Combinator (HOL4-Thms 49, 50, 51)). Holfoot
uses states that consist of a stack and a heap. The function ®., = (eg x ep) is a separa-
tion combinator on these states. Moreover, (Stacks x Heaps, O, (&, &)) is a separation
algebra (HOL4-Thm 50).

3.4.2 Predicates

Expressions and pure predicates as introduced in Section 3.3 are important concepts in
Holfoot as well. With values being instantiated to natural numbers, function expressions
can lift operations on natural numbers to expressions. Typical examples are addition and
subtraction on natural numbers (monus) expressions:

e1 + ey = FunFErp(+,e,e)
e1 — ey = FunFExp(—, ey, es)

Besides pure predicates, Holfoot uses predicates that describe data-structures in the heap.
There are predicates describing single heap-cells, non-cyclic singly-linked lists, trees and
arrays. These predicates are informally described in Sec. 2.1.3. Their formal definition is
presented here.

118 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.4.2.1 Points-To

Definition 3.4.7 (Single Heap Cell (HOL4-Thm 20)). Given an expression e and a finite
map from tags to expressions T, the predicate pointsTo(e, T') describes a single heap cell
at location e that contains the values described by T'.

(s,h) € pointsTo(e,T) := Defined(e(s)) A e(s) #0 A dom(h) = {e(s)} A
Vt € dom(T). Defined(T(t)(s)) A h(e(s))(t) =T(t)(s)

This predicate is stack imprecise and compatible with semantic substitution.
Lemma 3.4.8 ((HOL4-Thm 62)).

18 WellFormed(e, V)
Vt € dom(T). is WellFormed(T(t), V)

isStack[mprecz’se(points To(e,T), V)

Lemma 3.4.9 ((HOL4-Thm 66)).

pred-var-update|v, c| (pomts To(e, T)) =

points To(exp—var—update[v, cl(e), At. exp-var-update|v,] (T(t)))

3.4.2.2 Singly-Linked Lists

Definition 3.4.10 (Singly-Linked Lists (HOL4-Thm 11)). Given two expressions e, e,
a tag t/, a natural number n and a list data of pairs consisting of tags and lists of natural
numbers, the predicate data-lseg, (tl, e, data, e5) describes a non-cyclic singly-linked list
of length n starting at e;, ending at e,, containing the data described by data and using
the tag tl for linking.

isWellFormed(n, tl, data) := Y(t,l) € data. length(l) =n A t # tl A
all tags in data are pairwise distinct

—isWellFormed(n, tl, data) =
(data Iseg,, (U, e1, data, e3) : false)

isWellFormed(0, tl, data) =
(data—lsego(tl, e1, data, eg) = (e = 62)>

isWellFormed(n + 1, tl, data) =

(data—lsegnﬂ(tl, e1, data, eg) = (e1 # e3) * Ic. (
pointsTo(ey, (tl, Const(c)) :: (HD(data)))+
data-lseg, (tl, Const(c), TL(data), 62)>

3.4. HOLFOOT 119

If data is not well-formed, i.e. if not all data-lists have the correct length or if there are
multiple data-entries for one tag, then the list-predicate is false for all states. Otherwise,
the empty list demands that the expressions e; and ey evaluate to the same value and the
heap is empty. This is achieved using the strong pure predicate e; = e;. On the other
hand, if the list is not empty then e; is not allowed to be equal to ey, because the list
should not contain a cycle. Moreover, e; has to be a valid location in the heap such that
the first elements of the data lists (HD(data)) are stored at this location. Moreover, the
value for tag ¢l at this location is some constant c. At this location ¢ the tail of the list
has to start, containing the rest of the data lists (TL(data)).

Notice, that the notations HD(data) and TL(data) are informal. data is a list of pairs
consisting of tags and lists. HD(data) informally represents the finite map that maps
these tags to the head of the lists. Similarly, TL(data) represents the list that contains
the pairs consisting of the tags and the tails of the lists.

Usually, the length of a singly-linked-list is not expressed explicitly. Moreover, as discussed
in Sec. 2.1.3, several common list variants are defined:

In. data-lseg, (tl, e, data, e3) (HOL4-Thm 10)

data-lseqg(tl, e1, data, e3) (

data-lseg(tl, e, data, Const(0)) (HOL4-Thm 9)
(
(

data-list(tl, e, data)
Iseg(il, e1, e2)
list(tl, e)

data-lseg(tl, e1, [], e2) HOL4-Thm 19)
Iseg(tl, e, Const(0)) HOL4-Thm 18)

These list predicates are stack imprecise and compatible with semantic substitution.

Lemma 3.4.11 ((HOL4-Thm 59)).

18 WellFormed(el, V) 18 WellFormed(eg, V)

isStackImprecise(data-lseg(tl, e1, data, e3), V)
Lemma 3.4.12 ((HOL4-Thm 64)).

isWellFormed(ey) A isWellFormed(ey) =
(pred—var—update[v, c|(data-lseg(tl, eq, data, e5)) =

data-lseq(tl, exp-var-update[v, c](e1), data, exp-var-update|v, c| (62)))

3.4.2.3 Trees

Trees are a bit harder to define. The data-content of singly-linked lists in the heap can be
described using lists of natural numbers. For trees, some kind of tree structure is needed to
represent the data content. To this end, I defined an algebraic data-type for trees in HOLA4.
A tree in this definition is either a leaf leaf or a node node(data-list, subtree-list) containing
a list of natural numbers data-list as data-content and a list of subtrees subtree-list. Using
this data-type for trees, a predicate for trees can be defined.

Definition 3.4.13 (Tree Predicates (HOL4-Thms 15, 16, 17)). Let e be an expression,
tagL and dtagL lists of tags and data a tree. Then data-tree(tagL, e, dtagL, data) describes
a tree with root at location e that uses the tags in tagL to point to subtrees and the tags
in dtagL for data-entries. This tree corresponds to the tree described by data.

120 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

—isWellFormed(tagL, dtagL, data) =
(data-tree(tagL, e, dtagL, data) := false)

isWellFormed(tagL, dtagL, leaf) =
(data-tree(tagL, e, dtagL, leaf) := (e = Const(())))

isWellFormed([ty, ..., ta], [u1, .- um], node([cy, ... em], [S15- -, 8n])) =

(data—tree([tl, coatalye [un o um], node([en, - em], [S1 -2 8a))) =

Ady, ..., d,. pointsTo(e, [(tl, C’onst(dl)) , (tn, Const(dy,)), (u1,¢1), .- (U, cm)])*
data-tree([ty, ..., tn], Const(d),[ul,...,um],sl) koL
data-tree([t1, ..., t,], Const(d,), [u1, ..., Un], sn)>

It is lengthy to describe isWellFormed(tagL, dtagL, data) formally (HOL4-Thm 17). In-
formally it means that the tree described by data has the right number of data-entries
and subtrees in each node and that moreover all tags in tagl and dtagL are distinct to
each other.

For well-formed data, there are two cases. If the predicate data-tree(taglL, e, dtagL, data)
represents the empty tree (data = leaf), then the root has to be NULL. Otherwise, the
root has to point to the subtrees and the correct data-entries have to be stored in the heap.
The locations of the subtrees are described by dy, ..., d,; their data-content sq,...,s, is
already present in data.

Smallfoot uses binary trees without data. These can easily be defined:
tree(tagL,e) := 3data. data-tree(tagl, e, [], data) (HOL4-Thm 22)
bintree(l,r,e) = tree([l,r],e) (HOL4-Thm 6)

These tree predicates are stack imprecise and compatible with semantic substitution.

Lemma 3.4.14 ((HOL4-Thm 61)).

18 WellFormed(e, V)
isStackImprecise(data-tree(tagL, e, dtagL, data), V)

Lemma 3.4.15 ((HOL4-Thm 65)).

isWellFormed(e) =
(pred—var—update[v, c|(data-tree(tagL, e, dtagL, data)) =

data-tree(tagL, exp-var-updatelv, c|(e), dtagL, data))

3.4.2.4 Arrays

Arrays describe blocks of allocated heap locations. They can easily be defined using the
points-to predicate:

3.4. HOLFOOT 121

Definition 3.4.16 (Array Predicate (HOL4-Thm 7)). Let e, and e, be expressions and
data be a list of pairs consisting of tags and lists of natural numbers. Then the predicate
array(ey, €,, data) describes an array starting at e, of length e, containing data.

isWellFormed(n, [(t1,11), ..., (tm,lm)]) =
Vi<i<j<sm.t;#t; A VI<i<m. length(l;) =n

(s,h) € array(ey, €,, data) :=

((s,h) e (if Defined(en(s)) A (en(s) = 1) A
pointsTo(Const(b + 0),EL 0 data) * ... = Deﬁned(eb(s)) A (e(s) = b)A
{ pointsTo(Const(b + (n — 1)),EL (n — 1) data)) isWellFormed(n, data)

| false otherwise

Notice, that EL n data is a informal notation, similar to the ones used by the definition
of singly-linked list predicates. It denotes the finite map that for all (¢,1) € data maps the
tag t to Const(el(n,l)).

As discussed in Sec. 2.1.3 it is sometimes convenient to describe arrays by providing there
first and last location instead of their length. This leads to the following definition:

interval(ey, e, data) = array(ey, (e2 + 1) — ey, data) (HOL4-Thm 8)
array(ey, ea) = array(ey, ez, []) (HOL4-Thm 5)

These array predicates are stack imprecise and compatible with semantic substitution.

Lemma 3.4.17 ((HOL4-Thm 60)).
1sWel lFormed(eb, V) 1s Wel lFormed(en, V)

isStack]mprecz’se(array(eb, en, data), V)

Lemma 3.4.18 ((HOL4-Thm 63)).
isWellFormed(e,) A isWellFormed(e,) =

pred-var-update|v, c|(array(ey, e,, data)) =

array(exp-var-update|v, c|(ep), exp-var-update|v, c|(e,), data))

3.4.3 Program Constructs

In Section 3.3 program constructs like assignments, procedure calls, local variable declara-
tions and conditional critical regions have been discussed. Moreover, conditional execution
and while-loops were discussed and it was demonstrated that weak pure predicates can be
used as conditions with assume and control structures. Holfoot can easily use comparison
operators like <, >, >, < in these conditions, because values are instantiated to natural
numbers by Holfoot.

It remains to introduce program constructs that operate on the heap. This includes
explicit memory allocation and deallocation as well as heap-lookup and heap-assignment
operations.

122 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.4.3.1 Memory Allocation

Definition 3.4.19 (Memory Allocation (HOL4-Thm 48)). Given a variable v and an
expression e, the action newle, v] tries to allocate a new consecutive portion of the heap
of size e and stores the first location in the stack-variable v. The action fails, if e cannot
be evaluated or if there is no write permission for the variable v. Otherwise, memory
allocation always succeeds. This means that this action does not fail because there is
insufficient free memory.

neurj[e, v](s, h) :=

(stack-var-update|v,1](s), h') | if Defined(e(s)) A e(s) =n A
I#0 A VIS <l+n. 1" ¢ dom(h) A v e dom(s) A perm(s,v) =T
! dom(h)y=A{l,....,l+ (n—1)}udom(h) A

VI e dom(h). B(I') = h(z')}

T otherwise

\

This memory allocation action is a local action (HOL4-Thm 4). The following inference
rule can be used for its symbolic evaluation:

(HOL4-Thm 31)
18 WellFormed(e, W u R) veW
P’ = image (pred-var-update[v,c]) P € = exp-var-update[v, c](e)
Wi R | {array(Var(v), €,)} v P'] prog [Q]

IW; R | { Var(v) = Const(c)} v P] newle,v] ; prog [Q]

Notice, that this rule is very similar to the assignment rule presented in Sec. 3.3.6.5. This
rule also updates the value of a stack variable. Therefore, the old value of this variable
has to be propagated first. In the common case, that a single heap cell is allocated, i.e.
in the case e = Const(1), the array becomes a point-to predicate (HOL4-Thm 32).

3.4.3.2 Memory Deallocation

Definition 3.4.20 (Memory Deallocation (HOL4-Thm 33)). Given two expressions e,
and e;, the action dispose[e, ep] tries to deallocate a consecutive portion of the heap of
size e; starting at location e,. The action fails, if ¢; or ¢, cannot be evaluated or if one of
the locations is not allocated.

disposeley, ep| (s, h) :=

(T if —Defined(e(s))
(s,h) if Defined(e;(s)) A e/(s) =0
(s,A\{l,..., 1+ (n—1)}) if Defined(e;(s)) A e(s)=n A n#0 A
Deﬁned(eb(s)) A ep(s) =1 n
{l,....)1+ (n—1)} < dom(h)
T otherw1se

3.4. HOLFOOT 123

dispose|ey, ep] is a local action (HOL4-Thm 1) for well-formed expressions e, and ¢;. The
following inference rule can be used for its symbolic evaluation:

(HOL4-Thm 23)

18 WellFormed(el, W u 72) 18 WellFormed(eb, W u R)
ViR | P] prog [Q]

Wi R | {array(ey, e, data)} © P] disposele, ep] ; prog [Q]

In the common case, that a single heap cell is deallocated, i.e. in the case e, = Const(1),
the array becomes a point-to predicate (HOL4-Thm 24).

3.4.3.3 Heap Lookup

Definition 3.4.21 (Heap Lookup (HOL4-Thm 35)). For an expression e, a stack variable
v and a tag t, the action heap-lookup(v, e, t) tries to lookup the value stored in the heap at
location e indexed by the tag ¢ and store it in the variable v. The action fails, if e cannot
be evaluated, the location e is not allocated in the heap or if there is no write permission
for v.

heap-lookupl|v, e, t](s, h) =
(stack-var-update|v, c](s), h) if Defined(e(s)) A e(s) =1 A
l e dom(h) ~ h(l)(t) =c A
v e dom(s) A perm(s,v) =
T otherwise

heap-lookup[v, e, t] is a local action (HOL4-Thm 3) for well-formed expressions e. The
following inference rule can be used for its symbolic evaluation:

(HOL4-Thm 28)
t € dom(L) veWw
s WellFormed(e, Wu 72) i3 WellFormed(L(t), Wu R)
P’ = image (pred-var-update|v, c]) ({pointsTo(e, L)} U P)
¢ = exp-var-update|v, c|(L(t))
[WiR | {Var(v) = €'} 0 P'] prog [Q]
Wi R | { Var(v) = Const(c)} u {pointsTo(e, L)} v P] heap-lookup|v, e, t] ; prog [Q]

Arrays might need to be split such that the precondition of a Hoare triple contains
pointsTo(e, L). Since this is tedious, there is a specialised inference rule for arrays (HOL4-
Thm 29). Another minor problem might be, that the inference rule requires the expression
e to occur in the precondition. Often this is problematic, because expressions in the pre-
condition in contrast to those in the program get normalised. Therefore, the following
inference rule is useful. It rewrites e in the command using the precondition:

(HOL4-Thm 30)
18 WellFormed(e, W u R) 18 WellFormed(e', W u R)
Wi R | {e = €'} uP] heap-lookup|v, €' t] ; prog [Q]

IW;R | {e = €'} U P] heap-lookup|v, e, t] ; prog [Q]

124 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

3.4.3.4 Heap Assignment

Definition 3.4.22 (Heap Assignment (HOL4-Thm 34)). For two expressions ¢, e, and a
tag t, the action heap-assign(e;, t, e,) tries to store the value of expression e, in the heap
at location ¢; indexed by tag t. The action fails, if €; or e, cannot be evaluated or if the
location e; is not allocated in the heap.

heap-assignfe, t, e,](s, h) :=
(s, update[l, Mto. if to = t then v else h(l)(t)]h) if Defined(e;(s)) A es) =1 A
Defined(e,(s)) A ey(s) =v A
l € dom(h)
T otherwise

heap-assign|e;, t, e,] is a local action (HOL4-Thm 2) for well-formed expressions e, e,.
The following inference rule can be used for its symbolic evaluation:

(HOL4-Thm 25)

18 WellFormed(el, W o 72) 18 WellFormed(ev, Wu R)
isStack]mprecise(pomtsTo(el, update[t, e,| (L)), W u R)
IW; R | {pointsTo(e;, update[t, e,| (L))} v P] prog [Q]
IW; R | {pointsTo(e;, L)} v P] heap-assign|e;, t,e,] ; prog [Q]

Similar to heap lookups there are specialised inference rules for arrays (HOL4-Thm 26)
as well as an inference rule that allows rewriting the expression ¢; in the program (HOL4-

Thm 27).

3.4.4 Implicit Information

As discussed in Sec. 3.3.8 VRImp becomes more interesting with heaps present. If for
example the precondition of a Hoare triple contains the predicates pointsTo(ey,T;) and
pointsTo(ea, Tz), one can safely add the predicate e; # ey to the precondition as well.
The idea is, that if two location [; and [l are present in separate parts of a heap, one
can conclude [y # l5. Exploiting this as well as the fact that no heap contains location 0,
leads to the following definitions:

Definition 3.4.23 (Expressions in Heap (HOL4-Thms 42, 36, 37)). Given two mul-
tisets of predicates C and P and an expression e, the predicates in-heap(C,P,e) and
in-heapy(C, P, e) are defined as follows:

in-heap(C,P,e) := Vs,s' hh'. (s',1)e€ >l<C A (5, h)e kP A s<s§ =
Defined(e A (e(s) € dom(h) A e(s) # 0))
in-heapy(C,P,e) = Vs,s h,h. (s;h)e*kC A (s,h)e*P A s<35 =

(Deﬁned(e(s)) A (e(s) € dom(h) v e(s) = 0))

Informally, in-heap(C, P, e) states that if some state satisfies the separating conjunction
of all predicates in P, then the value of e in this state is in the domain of the heap.

3.4. HOLFOOT 125

in-heap,(C, P, e) is slightly weaker (VC,P,e. in-heap(C,P,e) = in-heap,(C, P,e) (HOL4-
Thm 45)). It allows e to evaluate to 0 as well. The multiset of predicates C can be used
to restrict the set of stacks under consideration.

These definitions have the intended effect: if two expressions are present in separate parts
of a heap, they do not evaluate to the same value.

(HOL4-Thm 43)
Pl U 7)2 - C
in-heap(C, Py, e1) in-heap(C, Pz, e3)

VRImpUnequal(C, ey, e3)

Notice, that Py, P, and C are multisets and that therefore the union and subset operations
of multisets are used.

Other interesting inference rules hold as well:

(HOL4-Thm 46) (HOL4-Thm 44)
PruPycC PcC
in-heap(C, P1, e1) in-heapy(C, Pa, e3) in-heap(C, P, e)
VRImpUnequal(C, ey, e3) VRImp Unequal(C, e, Const(0))
(HOL4-Thm 40) (HOL4-Thm 329)
PiruPycC is WellFormed(el, W u 72)
is WellFor’med(e, W u R) is WellFormed(eQ, W u 72)
in-heapy(C, Py, €) in-heapy(C, Pa, €) VRImpUnequal(C, ey, e3)
VRImp(W, R,C,{e = Const(0)}) VRImp(W,R,C, e # €5)

In order to add implicit information explicitly to a Hoare triple or a frame inference pred-
icate, one has to find P such that for given W, R and C the predicate VRImp(W,R,C,P)
holds. Holfoot searches for P’ < C and ¢’ such that in-heap(C, P’, ') or in-heap,(C,P’, ')
holds. Then, predicates of the form VRImp(W,R,C,P) are derived using the inference
rules presented above. Two such predicates VRImp(W, R,C,P;) and VRImp(W,R,C, Pz)
can be combined to VRImp(W,R,C, Py u Py) (HOL4-Thm 374).

It remains to present some inference rules for in-heap and in-heap,. There are the following
structural inference rules:

(HOL4-Thm 47) (HOL4-Thm 41)
PP in-heap(C, P, e) PcP in-heapy(C, P, e)
in-heap(C, P’ e) in-heap,(C, P, e)
(HOL4-Thm 38) (HOL4-Thm 39)
in-heapy(C, P, Const(0)) in-heapy(C, {e = 0},¢)

The predicate for single heap cells demands that its location is in the heap. Lists and
trees require that their root location is either in the heap or 0.

(HOL4-Thm 21)

in-heap(C, {pointsTo(e,T)}, €)

126 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

(HOL4-Thm 14)
isWellFormed(e)

in-heapy(C, {data-tree(tagL, e, dtagL, data)}, e)

(HOL4-Thm 13)
isWellFormed(e)

in-heapy(C, {data-list(tl, e, data)}, e)

For list-segments it is slightly more complicated. If the start and end location are unequal,
then the start location is in the heap.

(HOL4-Thm 12)

isWellFormed(e;) isWellFormed(es)
VRImpUnequal(C, ey, e3) C#J

in-heap(C, {data-lseg(tl, e1, data, e3)}, e1)

3.4.5 Frame Inference

It remains to present specialised inference rules to handle frame inference predicates that
utilise the newly introduced predicates. These inference rules are lengthy and complicated.
One problem is that singly-linked list and array predicates represent their data-contents as
lists of pairs consisting of tags and lists of natural numbers. These lists of pairs represent
finite maps from tags to lists of natural numbers. In the following finite map notations are
used for these lists. This informal notation allows expressing some inference rules more
concisely.

(HOL4-Thm 58)

L < dom(L") < dom(L)

Vt € dom(L')\L. L(t) = L'(¢)
is WellFormed(e, W o 72)
¥t e dom(L). is WellFormed(L(t), W U R)
Vte L. isWellFormed(L'(), W U R)
IW, R, W'; {pointsTo(e, L)} 0 C | P | (image (\t. L(t) = L'(t)) L) v Q | fP]
IW, R, W'; C | {pointsTo(e, L)} v P | {pointsTo(e, L")} U Q | fP]

This rule states that pointsTo(e, L) can be moved to the context, if pointsTo(e, L) occurs
in P and pointsTo(e, L) in Q. Besides checking that all relevant expressions are well-
formed, one has to be careful about L and L’. All the tags mentioned by L’ have to be
present in L as well. If for a tag ¢ € dom(L’) the expressions L(t) and L'(t) are not equal,
then an equality check has to be added to Q. The set of tags £ is used for this purpose.
It contains all tags ¢t € dom(L’) for which L(t) and L'(t) are not equal.

3.4. HOLFOOT 127

(HOL4-Thm 56)
tle dom(L) dom(data) < dom(L)
isWellFormed(e1, W U R
isWellFormed(ea, W U R
VRImpUnequal(C U {pointsTo(e1, L)} U P, eq,e2)
¥t e dom(L). is WellFormed(L(t), W UR)
Q.q = image (At. L(t) = Const(hd(data(t)))) dom(data)
P,¢ = BoolPred(not empty data A all distinct ({tl} U dom(data)))
Py, = data-lseg(tl, L(tl), TL(data), e5)
W, R W'; {pointsTo(er, L)} OC | P | Qeg U {Pus, Pu} v Q| fP]
IW, R, W' C | {pointsTo(e1, L)} v P | {data-lseg(tl, e1, data, e3)} U Q | fP]

If pointsTo(ey, L) is in P and data-lseq(tl, e1, data, es) in Q, one can try to move the first
node of the list-segment to the context. In order to do this, one has to be sure, that the list
segment is not empty. This is ensured by VRImp Unequal(C U {pointsTo(e1, L)} UP, €1, e3).
Notice, that this check succeeds trivially for lists, i.e. in case es = Const(0). Additionally,
all involved expressions have to be well-formed and L needs to contain all the tags needed
by the list-segment. If these conditions are satisfied, the first node of the list-segment
is moved to the context. A predicate describing the tail of the list (Py) remains in Q.
Moreover, a well-formedness check for the original list (P,y) is added to Q and it has to
be shown that L contains the proper data-entries (Q.,) described by data.

(HOL4-Thm 54)
dom(datas) < dom(datay) all distinct (dom(datas))
18 WellFormed(el, Wu 72) 18 WellFormed(eg, Wu R)
P., = BoolPred(Vt € dom(datay). data,(t) = datay(t))
W, R,W'; {data-lseq(tl, e1, datay,e2)} O C | P | {Pe} v Q| fP]
W, R, W' C | {data-lseg(tl, e1, datay, ex)} U P | {data-lseg(tl, e1, datag, e2)} U Q | fP]

This rule tries to move a list-segment data-lseq(tl, ey, datay, e5) to the context, if it is in
P and data-lseg(tl, e1, datay, e5) in Q, i.e. if a list-segment predicate is in Q that differs
only in its data-content. Besides checking some well-formedness conditions, one has to
be careful that data; contains an entry for all tags used by datay. If these conditions are
satisfied, data-lseg(tl, e, datay, e5) can be moved to the context. A check that datay uses
the same data as data; remains in Q.

This inference rule becomes much more complicated, if different end-points of the list-

128 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

segments are considered:

(HOL4-Thm 53)
in-heap,(C U P,C U P, e3)
dom(datay) < dom(data,)
all distinct ({tl} U dom(data;)) = all distinct (dom(datay))

18 WellFormed(el, W u R)
isWellFormed(ea, W U R

isWellFormed(es, W U R

P., = BoolPred(¥t € dom(datay). data;(t) = TAKE (LENGTH data,) datas(t))
Presit = data-lseg(tl, eo, DROP (LENGTH datay) datas, e3)
W, R, W', {data-lseg(tl, e1, datar, ea)} O C | P | {Peg, Prest} U Q | fP]
W, R, W' C | {data-lseg(tl, e1, datay, ex)} 0 P | {data-lseg(tl, e1, datag, e3)} U Q | fP]

Now, one has to check, whether the list-segment described by data-lseq(tl, ey, datay, e3) or
the one described by data-lseg(tl, e1, datay, e3) is longer. The condition in-heap,(CUP,C U
P, e3) guarantees that e is not present in the list-segment from e; to ey. Therefore, the
list-segment from e; to es is at least as long as the one ending with e;. Notice, that the
condition in-heap,(C U P,C U P, e3) holds trivially for lists, i.e. in case e3 = Const(0).
After moving data-lseqg(tl, e1, datay, e3) to the context, a list-segment from e, to ez remains
in Q. Moreover, Q contains the equality check on data known already from the previous
inference rule.

Inference rules similar to the ones presented for list-segments exist for trees and arrays as
well. The following rule, for example, moves the root node of a tree to the context. It is
similar to the inference rule that removes the first element of a list-segment.

(HOL4-Thm 57)
tagL v dtagL < dom(L) is WellFormed(e, Wu R)
¥t e dom(L). is WellFormed(L(t), W U R)
P = 3tl, dl, cl. BoolPred(data = node(dl, tl)) = Pe,(dl, tl, cl) » Pest(l, cl)
W, R, W'; {pointsTo(e, L)} uC | P |{P}u Q| [P]
W, R, W' C | {pointsTo(e, L)} U P | {data-tree(tagL, e, dtagL, data)} U Q | fP]

Again, it has to be shown that some expressions are well-formed and that L contains all the
tags needed by the tree. In contrast to the corresponding inference rule for list-segments,
one does not need to prove that the tree is not empty though. This corresponds to the
case of lists instead of list-segments. Similar to the rule for list-segments, a predicate
describing well-formedness conditions, one describing the remainder of the tree (Pes)
and one describing that L points to the proper values (P,.) remain in Q. Because a
formal definition of these predicates is lengthy and complicated, they are only informally
discussed here. The original symbolic tree data has to be a node containing some data-
entries dl and some subtrees tl. The root-nodes of these subtrees are cl. P, describes that
the values in dl and cl are stored in the heap at location e. P,.y describes the subtrees ¢l
with root nodes cl.

Inference rules that move predicates to the context that differ only in their data-content

3.5. HOLFOOT IMPLEMENTATION 129

are much easier. Only a check that the data is equivalent remains in Q:

(HOL4-Thm 55)
18 WellFormed(e, W u R)
Piree(data) = data-tree(tagL, e, dtagL, data)
W, RW'; {Piree(datay)} U C | P | {BoolPred(data; = datag)} v Q | fP]

IW, RW'; C | {Puee(datar)} O P | { Pyee(datag)} U Q | fP]

(HOL4-Thm 52)
dom(datas) < dom(datay) all distinct (dom(datas))
is WellFormed(e, W o 72)
P., = BoolPred(Vt € dom(datay). data,(t) = datay(t))
W, R, W'; {array(ep, en, data)} O C | P | {Pu} U Q| fP]
IW, R, W', C | {array(ey, e, datar)} U P | {array(ey, e, datag)} U Q | fP]

There are many more similar inference rules. In particular, there are further inference rules
for handling arrays. Thanks to Holfoot’s architecture, it is very easy to add additional
inference rules.

3.5 Holfoot Implementation

3.5.1 Overview

Holfoot can handle inputs in the language described in Sec. 2.1. These input specifications
are processed in three steps. First, the input is parsed. In a preprocessing step the
resulting term is then transformed into a conjunction of conditional variable as resource
Hoare triples. Finally, these triples are verified. The main method for verification is
applying inference rules for the forward analysis of programs and for frame inference
predicates.

During parsing, the program is analysed and additional information added. For exam-
ple, the necessary read and write permissions are determined by inspecting the bodies of
procedures. Moreover, the parsing step uses heuristics to distinguish between program
variables and specification variables or to determine the scope of specification variables.
Some concepts, like referring to the old value of call-by-reference arguments in the post-
condition of a procedure, are removed by reducing them to other concepts. The result of
parsing is a single HOL4 term describing a list of resources with their invariants and a
list of specified procedures (see Sec. 3.2.7). The semantics of this term is formally defined
in HOL4. However, neither the input language, nor the parser are handled formally.

A preprocessing step then abstracts procedure calls with their specifications as described
in Sec. 3.2.7. Similarly, conditional critical regions are abstracted using resource invari-
ants. The result is a conjunction of Hoare triples that do not depend on the environment
any more. Next, well-formedness conditions of the pre- and postconditions are proved.
This transforms the Hoare triples into conditional variable as resource Hoare triples.

In order to verify these conditional Hoare triples, inference rules are applied. Simplifying
slightly, there is a set of inference rules, containing the rules presented above for the

130 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

forward analysis of problems, plus frame inference rules and some additional rules not
mentioned above. There are calls of HOL4 tools in this set as well. These include
calls of HOL4’s simplifier with specialised rewrite rules as well as calling certain decision
procedures for list expressions and arithmetic problems. As discussed in Sec. 3.3.7.5 one
has to be careful, when introducing frame inference predicates. Otherwise, the inference
rules in this set can be applied in an arbitrary order. Holfoot’s automation tries to find an
inference rule to apply. If the problem is not solved yet, but no more inference rules can
be applied, the automation stops and the user can interactively work on the remaining
problem.

Holfoot’s automation heavily relies on consequence conversions and quantifier heuristics.
[implemented these concepts in HOL4 for Holfoot.

3.5.2 Consequence Conversions

In general, inference rules are implemented as consequence conversions, i.e. ML functions
that given a term P return a theorem of the form () = P. HOL4 provides infrastructure
for conversions, i.e. ML function that given P return theorems of the form P = Q.
However, there was no infrastructure for consequence conversions.

Similarly to the infrastructure for conversions, I implemented functions that sequentially
compose consequence conversions or that try a replacement consequence conversion in
case the first one failed. There are also consequence conversions that allow theorems to
be used as implicational rewrite rules, a reflexive consequence conversion and one that
always fails. Most importantly, though, I provide infrastructure for applying consequence
conversions repeatedly at subpositions.

Imagine, you need to show that isStackImprecz’se(data—lseg(tl, Var(x), data, Const(c)), {x})
holds. The following steps are performed to show this:

(HOL4-Thm 59)
(HOL4-Thm 340)
(HOL4-Thm 340)

isStack[mprecise(data-lseg(tl, Var(zx), data, Const(c)), {x})
is WellFormed(Var(x), {:c}) A S WellFormed(Const(c), {:c})

is WellFormed(Var(x), {:c}) A true

re{x} A true
true

(RN

The first application of an inference rule leads to a conjunction. Then, inference rules
need to be applied to the conjuncts. This application of inference rules at subpositions
exploits that P = @ implies PA R=—= Q A Rand RA P = R A Q.

Similar congruence rules exist for other operations like disjunction, negation, implica-
tion or existential and universal quantification as well. I implemented infrastructure for
applying consequence conversions at subpositions using these congruence rules. The re-
sulting depth consequence conversion is highly configurable. It supports top-down as well
as bottom-up search for subpositions. Moreover, there is support for caching results and
counting the number of applied consequence conversions.

The infrastructure for consequence conversions is an essential part of Holfoot. It is used to
prove well-formedness properties as demonstrated above. More importantly, it the used
to apply Holfoot’s inference rules for symbolic execution and frame inference predicates.

3.5. HOLFOOT IMPLEMENTATION 131

3.5.3 Quantifier Heuristics

Holfoot’s automation introduces many quantifiers, especially when reasoning about data-
content. A common source of quantifiers are procedure specifications that contain free
specification variables. These introduce universally quantified variables when verifying
the procedure specification and existential quantification for procedure calls. Quantifiers
might also be introduced by existential quantification in specifications or by expanding
definitions of predicates.

Whatever the cause, Holfoot frequently has to handle both universal and existential quan-
tification. HOL4 provides tools for instantiating simple cases. It can for example simplify
V. (r = y) = P(z) to P(y) by instantiating x with y. Such simple instantiations are
unfortunately not sufficient for Holfoot’s automation. Therefore, I implemented quantifier
heuristics that are more powerful.

My tools can handle more complicated Boolean connectives. Their main advantage,
however, is that they can utilise knowledge about data types. They can, for exam-
ple, simplify VI. =(I = []) = P(l) to Vi, l;. P(l :: l;) using the fact that the list
[is not empty, iff a head [, and a tail [, of [exist. Another advantage of my quan-
tifier heuristics is that they do not need to prove equality. Instead of finding an in-
stantiation y and prove (3z.P(x)) = P(y), it is often sufficient to come up with a
reasonable, but not formally justified guess y and use P(y) = 3Jx.P(z). A com-
mon situation, where such guesses are used are frame inference predicates of the form
Jz. W, R,W'; C(x) | P(x) | {BoolPred(x = y)} v Q(x) | fP]. In this case, the guess
y is used, which is usually sensible. If C and P do not depend on z, it can be formally
justified.

132 CHAPTER 3. THEORETICAL FOUNDATION AND IMPLEMENTATION

Chapter 4

Conclusion

4.1 Summary

In this work, a separation logic framework inside HOL4 is presented. This framework is
based on Abstract Separation Logic. The formalisation of Abstract Separation Logic (see
Sec. 3.2) follows the original work [7] closely. However, the original work is extended by
adding procedures, which may be mutually recursive. Moreover, concepts like nondeter-
ministic choice between an infinite number of choices and quantified best local actions are
added. There are additional inference rules like loop specifications (see Sec. 2.3.2) as well.

This formalisation of Abstract Separation Logic is instantiated by adding a stack with
explicit read / write permissions (see Sec. 3.3). This follows ideas presented in Variables
as Resource in Hoare Logics by Parkinson, Bornat and Calcagno [31]. These ideas have,
however, been adapted to an Abstract Separation Logic context. Moreover, a lot of effort
is spent defining well-formedness conditions and normal forms. The concept of stack
impreciseness is, for example, extended in this work to restrict the set of variables used
by a predicate. Moreover, Hoare triples are extended to carry well-formedness information
and to guarantee that the programs do not modify permissions.

Based on these normal forms and well-formedness properties a frame inference predicate
is introduced (see Sec. 3.3.7). In contrast to the frame inferences used by tools like Small-
foot, I extended the frame problem with a context. This context can store additional
information and thereby reduce the need to be careful about the order in which inference
rules are applied. This idea has meanwhile been adapted by JStar [10]. Besides adding a
context, predicates that describe how the frame is used are added to the frame inference
predicate as well. By demanding certain properties of these predicates, interesting addi-
tional inference rules can be proved for frame inference predicates. For example, it allows
moving quantifiers out of the frame calculation.

In an additional instantiation step, this model is extended by a heap (see Sec. 3.4). This
allows actions for explicit memory management, heap assignments and heap look-ups to
be defined. Moreover, predicates are added that describe datastructures in the heap like
singly-linked lists, trees or arrays.

This last instantiation is a formalisation of Smallfoot [2, 3] in HOL4. A parser as well
as specialised tactics are implemented. The resulting tool Holfoot (see Chapter 2) can

133

134 CHAPTER 4. CONCLUSION

reason about the partial correctness of programs written in a simple imperative language
similar to the one used by Smallfoot (see Sec. 2.1). In contrast to Smallfoot, Holfoot
can reason about the content of data structures instead of just their shape. This allows
verifying fully functional specifications. Simple specifications (see Appx. B.1) like the
original Smallfoot specifications can be verified automatically. More complicated specifi-
cations (see Appx. B.2 and Appx. B.3) can be verified interactively using all of HOL4’s
infrastructure.

Holfoot can for example verify fully functional specifications of sorting algorithms like
mergesort (see Appx. B.2.13) or quicksort (see Appx. B.2.15). Another interesting example
is the fully functional specification of insertion into a red / black tree (see Appx. B.2.17).

4.2 Conclusion

The framework developed in this work is to my knowledge the first formalisation of Ab-
stract Separation Logic. Building Holfoot as an instantiation of this framework demon-
strates the flexibility and power of the framework and thereby the flexibility and power
of Abstract Separation Logic.

Formalising Abstract Separation Logic itself was straightforward. Since large parts of
the instantiations originate in this work, the instantiations took more effort. Apparently
simple concepts sometimes caused trouble. Defining the semantics of local variable dec-
larations in terms of local actions was, for example, surprisingly difficult. Similarly, the
definition of procedure calls with call-by-value arguments turned out to be tricky. Some
technical problems do not even exist in the high level presentation. An example is express-
ing Lemma 3.2.63 in HOL4. This lemma allows handling mutually recursive procedures by
abstracting procedure calls with their specification. These procedure specifications usually
use free specification variables. Because the number and type of these free specification
variables differs between the procedures, it is hard to express Lemma 3.2.63 in HOL4
without typing problems. After first introducing a fixed type for specification variables,
which is a very significant restriction, I finally use program abstractions and quantified
best local actions to solve the typing problem. The free specification variables are hidden
inside the quantified best local actions. Other concepts, that feature prominently in Hol-
foot, turned out to be easily implementable. Loop specifications, for example, are very
easy to add.

The most significant theoretical contribution is probably the definition of frame inference
predicates (see Sec. 3.3.7). These predicates hide the existential quantification of the
frame by integrating a frame predicate. Moreover, a context has been added that allows
additional information to be preserved. It was tricky to define, which frame predicates
should be allowed. The well-formedness condition isFramePred is carefully designed such
that Boolean conditions as well as quantifiers can be moved out of the frame inference
predicate.

Implementing the framework resulted in contributions to the HOL4 system, particularly
the addition of libraries for consequence conversions and quantifier heuristics. More-
over, HOL4’s list and pair libraries were extended. As purely technical contributions,
HOLA4’s pretty printer was extended to allow Holfoot’s syntax highlighting. Additionally,
a HTML-backend was added to HOL4’s pretty-printer in order to implement Holfoot’s
web-interface.

4.3. FUTURE WORK 135

This work was started with the goal to build a formalisation of Smallfoot as an instanti-
ation of a general separation logic framework based on Abstract Separation Logic. This
goal has been achieved. Holfoot is able to parse Smallfoot specifications and verify most
of them automatically. Moreover, Holfoot can reason about the data-content of datastruc-
tures instead of just their shape. This allows fully functional specifications. Moreover,
Holfoot can reason about arrays and pointer arithmetic as well. It combines the automa-
tion of separation logic with the power of HOLA4.

Despite this success, I would do many things differently, if I started again. Abstract
Separation Logic is powerful and flexible. However, its semantics is far from intuitive,
especially with respect to concurrency. However, even the definitions of conditional exe-
cution and while-loops are not intuitive. Therefore, I would formalise intuitive semantics
as the foundation of the framework. These semantics should not be concerned with lo-
cal actions, race freedom, resource invariants or similar high level concepts. Semantics
similar to the ones used by Abstract Separation Logic that discuss these concepts should
be introduced as a sound abstraction of the intuitive semantics. Both semantics should
consider termination. Moreover, synchronisation primitives like fork / join parallelism
and storeable locks are worth considering.

Besides these changes to the semantic foundation, I would not implement a tool similar
to Smallfoot as a case study again. Smallfoot is a well known, relatively simple separation
logic tool. That makes it a good choice for a case study. Moreover, it comes with many
example specifications. However, I would try to implement a programming language that
is closer to real world languages. In particular, I would consider reasoning about errors
caused by expressions like arithmetic overflow or division by zero problems. The heap
used by this programming language should not contain entries for all tags. Similar to
locations, there should only be a finite number of tags allocated at each heap location.
With this change, memory allocations would need to explicitly allocate certain tags. In
general, memory allocation and deallocation operations should become more realistic.
Allocations should nondeterministically not be able to allocate memory. The deallocation
action should — following C conventions — not require an explicit argument of how much
memory to free.

4.3 Future Work

Holfoot uses a very simple C-like programming language. This language is powerful
enough to reason about interesting problems, though. All problems from the VSTTE’10
competition can, for example, be solved using Holfoot (see Appx. B.3). However, the
language is very restricted. Not even for-loops are available. Moreover, the language is
untyped. All values and locations are natural numbers. Since these are unbounded in size,
no arithmetic overflows occur. Similarly other real world problems like division by zero are
ignored. It would be interesting to use the framework with a more realistic programming
language. A good candidate might be a subset of C like CMinor [21]. I do not anticipate
any major problem when using the framework with a language closer to C. The essential
concepts are already there and many definitions and much of the automation should be
reusable. However, formalising an interesting subset of C is very time consuming [28, 29].

Another interesting future extension might be guessing specifications. Currently, Holfoot
requires all procedures and loops to be annotated. External tools could be used to guess

136 CHAPTER 4. CONCLUSION

loop invariants and specifications of auxiliary procedures. There is no need to trust these
external tools. The loop invariants or procedure specifications that these tools provide
can be verified formally using Holfoot.

Using the separation logic framework with real world programming languages as well as
automatically inferring loop annotations can be achieved relatively simply and quickly by
using the separation logic framework as a backend for existing tools. JStar [10] for example
parses Java programs and preprocesses them. This results essentially in an annotated
control flow graph with best local actions as the only operations. I'm currently working
on formalising these control flow graphs in the separation logic framework. Verifying these
annotated control flow graphs would be a compromise between building a trustworthy tool
and building a tool for real world programs quickly. On the one hand side, the semantics
of Java are not formalised, on the other a large part of the verification and especially
some tricky separation logic problems are handled formally in HOL4.

Bibliography

1]

[10]

A W. Appel and S. Blazy. Separation logic for small-step Cminor. In K. Schneider and
J. Brandt, editors, International Conference on Theorem Proving in Higher Order
Logics (TPHOL), volume 4732 of LNCS, pages 5-21, Kaiserslautern, Germany, 2007.
Springer.

J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation logic,
2005. URL citeseer.ist.psu.edu/berdine05symbolic.html.

J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO, pages 115-137, 2005.

R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting
in separation logic. SIGPLAN Not., 40(1):259-270, 2005. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1047659.1040327.

Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci.,
375(1-3):227-270, 2007. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2006.
12.034.

R.M. Burstall. Some techniques for proving correctness of programs which alter data
structures. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 7, pages
23-50. Edinburgh University Press, Edinburgh, Scotland., 1972.

C. Calcagno, P.W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In LICS °07: Proceedings of the 22nd Annual IEEE Symposium on Logic in
Computer Science, pages 366-378, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2908-9. doi: http://dx.doi.org/10.1109/LICS.2007.30.

Cristiano Calcagno, Dino Distefano, and Hongseok Yang. Compositional shape anal-
ysis by means of bi-abduction. In In Proceedings of POPL-36, 2009.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs. In ICFP
'09: Proceedings of the 14th ACM SIGPLAN international conference on Functional
programming, pages 79-90, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
332-7. doi: http://doi.acm.org/10.1145/1596550.1596565.

Dino Distefano and Matthew J. Parkinson J. jStar: towards practical verification
for Java. In OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications, pages 213226,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-215-3. doi: http://doi.acm.
org/10.1145/1449764.1449782.

137

citeseer.ist.psu.edu/berdine05symbolic.html

138

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[21]

22]

23]

Dino Distefano, Peter W. O’Hearn, Peter W. Ohearn, and Hongseok Yang. A local
shape analysis based on separation logic. In In TACAS, pages 287-302. Springer,
2006.

Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee
reasoning. In In ESOPO09: European Symposium on Programming, volume 5502 of
LNCS, pages 363-377. Springer, 2009.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Enuvi-
ronment for Higher Order Logic. Cambridge University, 1993.

Alexey Gotsman. Logics and analyses for concurrent heap-
manipulating programs. Technical Report UCAM-CL-TR-758, Uni-
versity of Cambridge, Computer Laboratory, October 2009. URL

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-758.pdf.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local reasoning for storable locks and threads. In Proceedings 5th Asian Symposium
on Programming Languages and Systems (APLAS07), 2007.

Eric C. R. Hehner. Specified blocks. In Bertrand Meyer and Jim Woodcock, editors,
VSTTE, volume 4171 of Lecture Notes in Computer Science, pages 384-391. Springer,
2005. ISBN 978-3-540-69147-1.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. SIGPLAN Not., 36(3):14-26, 2001. ISSN 0362-1340. doi: http:
//doi.acm.org/10.1145/373243.375719.

Bart Jacobs and Frank Piessens. The VeriFast program verifier. CW Reports
CW520, Department of Computer Science, K.U.Leuven, August 2008. URL
https://lirias.kuleuven.be/handle/123456789/197789.

Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the VeriFast program
verifier. In Programming Languages and Systems. Springer-Verlag, November 2010.
URL https://lirias.kuleuven.be/handle/123456789/275140.

Rafal Kolanski and Gerwin Klein. Types, maps and separation logic. In TPHOLs
'09: Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics, pages 276292, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-
3-642-03358-2. doi: http://dx.doi.org/10.1007/978-3-642-03359-9_20.

Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. SIGPLAN Not., 41(1):42-54, 2006. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1111320.1111042.

Stephen Magill and et al. Inferring invariants in separation logic for imperative
list-processing programs. In 3RD SPACE WORKSHOP, 2006.

N. Marti, R. Affeldt, and A. Yonezawa. Towards formal verification of memory
properties using separation logic. In 22nd Workshop of the Japan Society for Software
Science and Technology, Tohoku University, Sendai, Japan, September 13-15, 2005.
Japan Society for Software Science and Technology, Sep. 2005.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-758.pdf
https://lirias.kuleuven.be/handle/123456789/197789
https://lirias.kuleuven.be/handle/123456789/275140

BIBLIOGRAPHY 139

[24]

[25]

[26]

[31]

32]

[33]

The Coq development team. The Coq proof assistant reference manual, 2009. URL
http://coq.inria.fr. Version 8.3.

Andrew McCreight. Practical tactics for separation logic. In TPHOLs °09: Pro-
ceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, pages 343-358, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
03358-2. doi: http://dx.doi.org/10.1007/978-3-642-03359-9.24.

Huu Hai Nguyen and Wei-Ngan Chin. Enhancing program verification with lemmas.
In CAV 708: Proceedings of the 20th international conference on Computer Aided
Verification, pages 355-369, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-
540-70543-7. doi: http://dx.doi.org/10.1007/978-3-540-70545-1_34.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Michael Norrish. A formal semantics for C+4. Technical report, NICTA, 2008.

Michael Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-
453, University of Cambridge, Computer Laboratory, December 1998. URL
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf.

P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Proceedings of 15th Annual Conference of the Furopean
Association for Computer Science Logic, volume 2142 of Lecture Notes in Computer
Science, pages 1-19. Springer-Verlag, September 2001. ISBN 3-540-42554-3.

M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in hoare logics. In
LICS ’06: Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science, pages 137-146, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2631-4. doi: http://dx.doi.org/10.1109/LICS.2006.52.

Lawrence C. Paulson. ML for the working programmer (2nd ed.). Cambridge Uni-
versity Press, New York, NY, USA, 1996. ISBN 0-521-56543-X.

J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 5574, Washington, DC, USA, 2002. IEEE Computer Society. ISBN
0-7695-1483-9.

Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Ait Mo-
hamed, César Munoz, and Sofiene Tahar, editors, TPHOLs, volume 5170 of Lecture
Notes in Computer Science, pages 28-32. Springer, 2008. ISBN 978-3-540-71065-3.

H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In POPL "07:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 97-108, New York, NY, USA, 2007. ACM. ISBN
1-59593-575-4. doi: http://doi.acm.org/10.1145/1190216.1190234.

Thomas Tuerk. Local reasoning about while-loops. In R. Joshi, T. Margaria,
P. Miiller, D. Naumann, and H. Yang, editors, VSTTFE 2010 Workshop Proceedings,
pages 29-39. ETH Zurich, 2010.

http://coq.inria.fr
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf

140 BIBLIOGRAPHY
[37] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In Lus Caires and Vasco Thudichum Vasconcelos,

[38]

editors, CONCUR, volume 4703 of Lecture Notes in Computer Sci-
ence, pages 256-271. Springer, 2007. ISBN 978-3-540-74406-1. URL
http://dblp.uni-trier.de/db/conf/concur/concur2007 .html#VafeiadisP07.

Tjark Weber. Towards mechanized program verification with separation logic. In
Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic — 18th
International Workshop, CSL 2004, 15th Annual Conference of the EACSL, Karpacz,
Poland, September 2004, Proceedings, volume 3210 of Lecture Notes in Computer
Science, pages 250-264. Springer, September 2004. ISBN 3-540-23024-6.

http://dblp.uni-trier.de/db/conf/concur/concur2007.html#VafeiadisP07

Appendix A

Holfoot Installation

Holfoot is distributed as an example inside the HOL4 distribution. HOL4 is an open
source project with a BSD-style licence that allows its free use in commercial products.
Its available from Sourceforge (http://hol.sourceforge.net). The separation logic
framework and its instantiation Holfoot can be found in the examples/separationLogic
subdirectory.

Holfoot needs to be run from within HOL4 in order to allow interactive proofs. Auto-
mated proofs are available through a command line version as well. At Holfoot’s webpage
(http://holfoot.heap-of-problems.org) there are precompiled versions of this com-
mand line tool available. Moreover, a web-interface of Holfoot can be found at this site.
This web-interface might be sufficient to get a first impression of Holfoot or run Holfoot
on just a few selected examples.

A.1 Installation of HOL4

I recommend using HOL4 with Poly /ML 5.4 or newer (http://www.polyml.org) and the
experimental kernel. Holfoot works with Moscow ML as well, but there is trouble building
binaries and it is much slower. Holfoot works with the standard and the experimental
kernel of HOL4. However, the kernels differ slightly when introducing new variable names.
Holfoot’s interactive examples are written for the experimental kernel. In order to get
them working with the standard kernel, one needs to rename variables. Usually this
involves adding or removing priming, i.e. replacing a variable x with x’ or vice versa.

The current version of Holfoot is just available via the subversion repository of HOL4. This
documentation is written with respect to revision 8816. I recommend getting the newest
version, though. Documentation on how to install HOL4 is available from its webpage
(http://hol.sourceforge.net). In the following a short description is given that covers
the standard case. If you have problems, please refer to HOL4’s documentation.

First install Poly /ML 5.4 or newer (see http://www.polyml.org). Then download HOL4’s
sources from the subversion repository:

svn co https://hol.svn.sourceforge.net/svnroot/hol/HOL

141

http://hol.sourceforge.net
http://holfoot.heap-of-problems.org
http://www.polyml.org
http://hol.sourceforge.net
http://www.polyml.org

142 APPENDIX A. HOLFOOT INSTALLATION

You should now have the sources of HOL4 in a new directory called HOL. These sources
include Holfoot in subdirectory examples/separationlLogic/src/holfoot. Documenta-
tion can be found in subdirectory Manual. Especially the tutorial is good for beginners.
Its first chapter contains a detailed description of how to install HOL4.

To build HOL4 from this new source directory, change to the HOL directory and use the
following command to configure it:

poly < tools/smart-configure.sml

One common problem with smart-configure is, that it is sometimes not able to fig-
ure out the correct library directory. In this case, please create a file tools-poly/
poly-includes.ML to specify the library directory. This file should contain a line of
the following form:

val polymllibdir = "path-to-dir-containing-libpolymain.a";
After successful configuration, HOL4 needs to be build with the experimental kernel:
./bin/build -expk

On old machines, this build process might take several hours. Afterwards, the HOL4 bina-
ries should have been created in the directory HOL/bin. I recommend adding this directory
the PATH environment variable, such that the HOL4 binaries, in particular Holmake, can
easily be used.

There are several different methods to use HOL4. I recommend using HOL4’s Emacs-
mode. Documentation of this mode can be found in Manual/Interaction.

A.2 Installation of Holfoot

After installing HOL4 successfully, run Holmake in directory examples/separationLogic/
src/holfoot/poly. This should build Holfoot. As part of this process, several executa-
bles are created:

e holfoot is the command-line version of Holfoot. It can be used for examples that
can be handled automatically.

e holfoot-full is an extended command-line version. It allows interactive proof
scripts to be replayed.

e holfoot-web is used for step-wise proofs on Holfoot’s web-interface.

Precompiled versions of holfoot-full and holfoot are available at Holfoot’s web-page
(http://holfoot.heap-of-problems.org). This site also contains a web-interface to
Holfoot.

Holfoot is able to use the SMT-solver Yices through HOL4’s libraries for external SMT
solvers. In order to allow the command line version to use Yices, simply add the location
of the yices executable to the PATH environment variable. Holfoot has been tested with
Yices 1.0.27.

http://holfoot.heap-of-problems.org

A.3. TESTING HOLFOOT 143

A.3 Testing Holfoot

Holfoot comes with a collection of example specifications. These can be found in the
directory examples/separationLogic/src/holfoot/EXAMPLES (or just EXAMPLES when
using a precompiled version). There are four subdirectories:

automatic contains examples that can be verified automatically
interactive contains examples that need interactive proof scripts
not_solvable contains examples that contain errors

vstte contains solutions to the VSTTE’10 competition problems?

There are several different types of files in these directories:

.sf-files are Smallfoot specifications that can be verified with Smallfoot and Holfoot.
.sf-orig-files are Smallfoot specifications that cannot be verified with Holfoot,
usually because they contain errors that are not detected by Smallfoot.

.dsf- and .dsf2-files are Holfoot specifications.

.hol-files contain HOL4 proof scripts.

The examples in directory automatic can be verified with the command line version of
Holfoot. For a first test, call

./holfoot ../EXAMPLES/automatic/list_length.dsf

This verifies the list-length example. A call of holfoot without any parameters or with
the parameter -h prints all the available command line options. If you have trouble with
displaying Unicode, it can be turned off by the parameter -nu; the parameter -r disables
VT100-terminal specials. When processing multiple specifications, Holfoot’s quiet mode
(parameter -q) is useful. For a more extensive test, you can for example run

./holfoot -q ../EXAMPLES/automatic/*

All examples except binary_search-shape.dsf should be successfully verified. The bi-
nary search example requires arithmetic reasoning beyond the automatic capabilities of
HOL4. The external SMT-solver Yices can be used to verify it:

./holfoot --yices ../EXAMPLES/automatic/binary_search-shape.dsf

If you want to understand how Holfoot works or more interestingly, why certain examples
fail to be verified, you can use the Holfoot’s interactive mode. This interactive mode
allows stepping through the verification process. It does not provide real interaction. To
explore the full interactive capabilities of Holfoot, you have to run it inside HOL4. To
test the interactive mode, run

./holfoot -i ../EXAMPLES/automatic/list_length.dsf

After parsing the input specification, Holfoot stops and asks for commands. Pressing ?
(followed by enter) prints the list of available commands.

holfoot-full can be used to replay proof-scripts, i.e. especially the .hol-files in the
directories interactive and vstte. holfoot-full is just intended for quickly replaying

http://wuw.macs.hw.ac.uk/vsttel10/Competition.html

http://www.macs.hw.ac.uk/vstte10/Competition.html

144 APPENDIX A. HOLFOOT INSTALLATION

proof scripts. The full interactive capabilities of Holfoot can only be used inside an
interactive HOL4 session.

Proof scripts usually read several specification files from disc. Therefore, it is important to
start holfoot-full in directory examples/separationLogic/src/holfoot/EXAMPLES.

An example call is

../poly/holfoot-full -f interactive/mergesort.hol

Appendix B

Example Specifications

B.1 Automatic Examples

B.1.1 General List Example

This example is copied from Smallfoot. It contains several standard operations on singly-
linked lists. This example specifies just the shape of data-structures. Fully functional
specifications of several of the operations are provided as separate examples.

Listing B.1: automatic/list.sf while(x != NULL) [lseg(x,0)] {
t = x; x = x->tl; dispose t;
list_traverse(x) [list(x)] { }
local t; } [emp]
t = x;
/* lseg (x,t) should be framed =/ list_append (x;y) [list(x) * list (y)] {
while(t != NULL) [lseg(x,t) * list (t)] { local t, n;
t = t->tl; if (x == NULL) {
} X =y;
¥ [list (x)] } else {
t = x; n=t->tl;
lseg_traverse(x,y) [lseg(x,y)] { while (n != NULL) [lseg(x,t) * t |—> nx list(n)] {
local t; t = n; n=t->tl;
t = x; }
if(t !'=y) { t->tl = y;
t = t->tl; }
lseg_traverse (t,y); Y [list (x)]
} else {}
} [Iseg(x,y)] list_insert(1;x) [x|—> = list(l)] {
local s, t, u;
list_copy(p) [list(p)] { if (1 == NULL) {
local t; x->t1l = NULL; 1 = x;
t =p; q = NULL; } else {
while(t !'= NULL) [list(q) * Iseg(p,t) * list (t)] { s = x->hd; t = 1->hd;
sq = q; q = new(); g->tl = sq; if (s > t) {
t =t -> tl; u = 1->tl; list_insert(u;x); 1->t1 = u;
} } else {
} [list (p) = list (q)] x=>tl = 1; 1 = x;
}
list_reverse(o;i) [list(i)] { }
local t; Y [list (1)]
o = NULL;
while (i !'= NULL) [list(i) = list (0)] { list_remove (1;x) [list(1)] {
t = i->tl; i->tl = 0; o =1i; i = t; local t;
} if (1 !'= NULL) {
} [list (0)] if (1 ==1x) {
1 = 1->t1l; dispose(x);
list_deallocate (x) [lseg(x,0)] { } else {
local t; t = 1->tl;

145

146 APPENDIX B. EXAMPLE SPECIFICATIONS

list_remove (t;x); y
1->tl = t; Y [list (1)]
}

B.1.2 List Length

One of the introductory examples is calculating the length of a list recursively. A fully
functional specification of an iterative implementation needs a complicated loop invariant.
Using a loop-specification simplifies the specification considerably.

Listing B.2: automatic/list_length.dsf Listing B.3: automatic/list_length-iter.dsf

list_length(r;c) [data_list(c,cdata)] {

local t; list_length(r;c) [data_list(c,cdata)] {

if (c == NULL) { local t;
r = 0; r=0; t =c;

} else { while (t != NULL)
t = c—>tl; [data_lseg (c, _cdatal, t) * data_list (t, _cdata2)
list_length(r;t); (r == "“LENGTH _cdatal"’) x “‘cdata = _cdatal ++ _cdata2"] {
r=r+1; t =t->tl; r=1r + 1;

} }

} [data_list (c,cdata) * (r == “LENGTH cdata"’)] } [data_list (c,cdata) * (r == “LENGTH cdata“)]

Listing B.4: automatic/list_length-iter.dsf2

list_length(r;c) [data_list(c,cdata)] {
local t;
r=0; t=c;
loop_spec [data_list (t, data)] {
while (t != NULL) {
t=t->tl; r=1r + 1;
}
} [data_list (old(t), data) x (r == “LENGTH data + old(r)")]
} [data_list (c,cdata) * (r == “LENGTH cdata"’)]

B.1. AUTOMATIC EXAMPLES

147

B.1.3 List Reverse

Another introductory example is reversal of a singly-linked list. Again, there are two
specifications, one is using a loop-invariant and the other a loop-specification:

Listing B.5: automatic/reverse.dsf

list_reverse(i;) [data_list(i,data)] {
local p, x;
p = NULL;
while (i != NULL)
[data_list (i, _idata) * data_list (p,_pdata) x
““data = (REVERSE _pdata) ++ _idata*’] {
x = i->tl; i->tl = p; p =1i; 1 = x;
}
i=p;

} [data_list (i ," REVERSE data")]

B.1.4 List Copy

Listing B.6: automatic/reverse.dsf2

list_reverse(i;) [data_list(i,data)] {
local p, x;
p = NULL;
loop_spec [data_list (i,data) * data_list (p, data2)] {
while (i != NULL) {
x = i->tl; i->tl = p; p = 1i; 1 = x;
}
} [data_list (p, "(REVERSE data)++data2")]
i=p;
} [data_list (i ," REVERSE data")]

Copying a singly-linked list is another example that benefits from using loop-specifications:

Listing B.7: automatic/copy.dsf

list_copy(z;c) [data_list(c,data)] {

local x,y,w,d;

if (c == NULL) {
z=NULL;

} else {
z=new(); z->t1=NULL; x = c->dta; z->dta = x;
w=z; y=c—>tl;
while (y!=NULL)

[data_lseg (c ,** _datal++[_-cdate] “,y) *
data_list(y,‘‘_data2‘‘) *
data_lseg(z,_datal,w) *

w |-> tl:0,dta:_cdate *

‘‘data = _datal ++ _cdate::_data2‘‘] {
d=new(); d->t1=NULL; x=y->dta; d->dta=x;
w->tl=d; w=d; y=y->tl;

}
}
} [data_list (c,data) = data_list (z,data)]

Listing B.8: automatic/copy.dsf2

list_copy(z;c) [data_list(c,data)] {
local x,y,w,d;
if (¢ == NULL) {
z=NULL;
} else {
z=new(); z->t1l=NULL; x = c->dta; z->dta = x;
w=z; y=c->tl;
loop_spec [w |—> [t|:0, dta:#date] *
data_list (y, data2)] {
while (y != NULL) {
d=new(); d->t1=NULL; x=y->dta; d->dta=x;
w->tl=d; w=d; y=y->tl;
}
} [data_list (old(w), ‘‘date::data2"’) =
data_list (old(y), data2)]
}
} [data_list (c,data) = data_list (z,data)]

148 APPENDIX B. EXAMPLE SPECIFICATIONS

B.1.5 List Append

Appending two singly-linked lists is another example that uses loop-specifications.

Listing B.9: automatic/append.dsf

list_append(x;y) [data_list(x,xdata) = data_list (y,ydata)] {
local n,t;
if (x == NULL) {
X =7y;
} else {
t = x; n=t->tl;
while (n != NULL) [data_lseg(x,-xdatal,t) * t |—> [tl:n,dta: _tdate] *
data_list(n,_xdata2) * ‘‘xdata = _xdatal ++ _tdate::_xdata2‘‘] {
t =n; n=t->tl;
}
t->tl = y;
}
} [data_list (x, ‘‘xdata+-+ydata‘)]

Listing B.10: automatic/append.dsf2

list_append (x;y) [data_list(x,xdata) * data_list (y,ydata)] {
local n,t;
if (x == NULL) {
X =y;
} else {
t = x; n=t->tl;
loop_spec [t |—> [tl:n,dta:#tdate] * data_list(n,data2) * data_list(y, data3)] {
while (n != NULL) {
t =n; n=t->tl;

}
t->t1 = y;
} [data_list (old(t)," tdate ::(data2++data3)")]

}
} [data_list (x, ‘‘xdata+-+ydata‘)]

It can also be used to demonstrate unrolling loops. The loop that moves to the end of
the list starting at n has been modified in this example compared to the previous one.
The first look-up of the tail has been moved inside the loop. In order to get a nice
loop-specification, unrolling is used.

Listing B.11: automatic/append-unroll.dsf

list_append(x;y) [data_list(x,xdata) x data_list (y,ydata)] {
local n,t;
if (x == NULL) {
X =7y;
} else {
n = x;
loop_spec [unroll 1] [(t == #tc) * (t |—> tl:n,dta:#tdate) *+ data_list (n,data2) x data_list (y, data3)] {
while (n != NULL) {
t =n; n=t->tl;

}
t->tl = y;
} [data_list (#tc, ' tdate ::(data2++data3)"’)]

}
} [data_list (x, ‘‘xdata+-+ydata‘)]

B.1.6 List Allocation and Deallocation by Length

If the specification is restricted to shape descriptions, most Holfoot examples can be
handled by Smallfoot. This is an example that demonstrates that even for very simple
specifications, using the content of data-structures might be essential. This example
allocates a list of length n and then deallocates it again. The interesting point is that

B.1. AUTOMATIC EXAMPLES 149

the deallocation is using the length of the list. Therefore, the loop-specification has to be
able to reason about the length.

Listing B.12: automatic/list_alloc_dealloc_length.dsf

list_alloc_delete(;n) [emp] {
local t,i,c;
i = 0; ¢ = NULL;
loop_spec [i <= n x data_list(c,_data) * "“LENGTH data = "] {
while (i < n) {
t=new() [dta]; t->tl=c; c=t;
i=i+l;
}
} [data_list (c,-data) * “"LENGTH data = n* % (n ==)]

loop_spec [data_list (c,_data) = ‘“LENGTH data = i"] {
while (i != 0) {
t=c->tl; dispose c; c=t;
i=i-1;
}
Y [emp]
} [emp]

B.1.7 List Filter

Removing all occurrences of an element from a singly-linked list, i.e. filtering is one of
Smallfoot’s examples:

Listing B.13: automatic/filter.sf

list_filter(1;x) [list(1)] {
local y, z, e;

y=1;

z = NULL;

while (y !'= NULL) [if (y==I) then list(1) else Iseg(l,z) = z |—> tl:y = list (y)] {
e = y->dta;
if(e == x) { /* need to remove y */

if(y == 1) { /« first link */
1 = y->tl1; dispose y; y = 1;
} else { /x not first link */
e = y=>tl; z->tl = e; dispose y; y = z—>tl;
}
} else { /* don’t need to remove y */
z=y;y=y->tl;
}
}

¥ [list (1)]

Verifying a fully-functional specification of this procedure requires interaction and is pre-
sented in Appx. B.2.5. A recursive implementation can, however, be verified automati-
cally. Filtering is also a good example for demonstrating global specification variables.
Holfoot can verify filtering with respect to an arbitrary predicate P.

Listing B.14: automatic/filter_rec.dsf ¥
data_list (I, “FILTER (\e:num. (e = x)) data’’
list_filter(1;x) [data_list(l,data)] { M (a () Z
local e, m;
if (1 == NULL) {
} else {
e = 1->dta; m = 1->tl;
list_filter(m;x);
if (e == x) {
dispose 1; 1 = m;
} else {
1->t1 = m;
}

150 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.15: automatic/filter_rec-gen.dsf list_filter (m;);
if (““7(Pe)) o

lobal P;
g ’ dispose 1; 1 = m;
list_filter(1l;) [data_list(l, data)] { } else {_

local e, m; 1->tl = m;

if (1 == NULL) {) by

} else {

e = 1->dta; m = 1->t1; } [data_list (I, “FILTER P data")]

B.1.8 Queue

Smallfoot provides an example about queues. Holfoot can even handle a fully-functional
specifications of this example automatically.

Listing B.16: automatic/queue.dsf

/* queues represented as a linked list with front and back pointers
* queue(f,r) iff if f==NULL then emp else Iseg(f,;r) * r|—>NULL) */

/* insert new node at rear; without pointers into the stack, have to pass in f x/
insert (f,r;d) [if (f == NULL) then “data = []*¢ else
‘‘~“(data = [)¢¢ * data_lseg(f,‘ ‘FRONT data‘‘,r) *
r |-> [tI:NULL,dta:"LAST data‘]l1 {
local t;
t = new(); t->tl = NULL; t->dta = d;
if (f == NULL) {
f=1t; r=t;
} else {
r->tl = t; r = t;
}
} [f /= NULL « data_lseg(f," data ', r) * r|—>[tI:NULL,dta:d]]

/* delete node from front */
delete(f;r) [data_lseg(f, data, r) % r|—>[tl:NULL,dta:#data_last]] {
local t;
t =f; £ = f->tl; dispose t;
} [if f==NULL then emp else data_lseg(f,"/(TL data):num list ', r) = r|—>[tl:NULL,dta:#data_last]]

B.1. AUTOMATIC EXAMPLES 151

B.1.9 Binary Tree Copy / Deallocate

Smallfoot provides examples of copying a binary tree and deallocating it.

Listing B.17: automatic/tree.sf Listing B.18: automatic/parallel_tree_deal-

tree_copy(s;t) [tree(t)] { locate.dsf

local i, j, ii, jj;
B tree_deallocate (t) [tree(t)] {
if (v == NULL) { local i, j; frree(t)]

s = t; if (t == NULL) {

} else { } else {
i=1t->1; j = t->r; i=1t->1; j = t->r;
tree_copy(ii;1); tree_copy(jj;j); tree_deallocate(i) || tree_deallocate(j);
s = new(); s->1 = ii; s->r = jj; dispose t;

N ;

}
} [tree(s) * tree(t)] } [emp]

tree_deallocate (t) [tree(t)] {
local i, j;
if (¢ == NULL) {
} else {
i=t->1; j = t->r;
tree_deallocate(i); tree_deallocate(j);
dispose(t);
}
} [emp]

Holfoot can verify a fully-functional specification of copying a binary tree as well:

Listing B.19: automatic/tree_copy.dsf

tree_copy(s;t) [data_tree(t, data)] {
local i, j, k, ii, jj;
if (t == NULL) s = t;
else {
i=1t->1; j = t->r; k = t->dta;
tree_copy(ii;i); tree_copy(jj;j);
s = new(); s—>1 = ii; s->r = jj; s->dta = k;
}
} [data_tree ([I,r];s,[dta]:data) * data_tree(t,[dta]:data)]

B.1.10 Races

The following examples are intended to check, whether Smallfoot detects races. The first
example calls two procedures in parallel that both access the heap. As these accesses
happen at different heap locations, the program is race-free.

Listing B.20: automatic/businessl.sf

proc(x,y) [X—>] {
x->tl = y;
Y [X—> tl:y]

main(x,z;) [emp] {
x = new(); z= new(); x->t1=3; z->t1=3;
proc(x,4) || proc(z,5);

} [x|—>tl:4 x z|—> tI:5]

The next example is very similar. However, the parallel calls now try to access the same
heap location. This race is detected by Holfoot (and Smallfoot).

Listing B.21: not_solvable/business].sf

proc(x,y) [X—>] {
x->tl = y;

152 APPENDIX B. EXAMPLE SPECIFICATIONS

Y [X—> tl:y]

main(x;) [emp] {
x = new(); x->t1=3;
proc(x,4) || proc(x,5);
Y} [X—>tl:4]

A similar problem is calling two functions with the same call-by-reference argument. The
following example uses the variable x as a call-by-reference argument of two parallel calls
of a function that needs write access to x. It causes a stack-race.

Listing B.22: not_solvable/stack_race.sf

assign(x;y) {
X =y;

}

stack_race() {

local x;

assign(x;42) || assign(x;13);
}

If one of arguments is a call-by-value one, it is fine. This behaviour is debatable. It
depends on the exact semantics of parallel procedure calls. Holfoot evaluates the call-
by-value arguments before evaluating either of the parallel procedure calls. Therefore,
Holfoot accepts the following specification. Smallfoot in contrast, rejects it, because it
evaluates the parallel procedure calls separately.

Listing B.23: automatic/passive_stack_race.sf

assign(x;y) {
X =y;

}

stack_race() {
local x,y;
assign(x;42) || assign(y;x);

}

B.1. AUTOMATIC EXAMPLES

153

B.1.11 Buffers

This Smallfoot example demonstrates how resources and conditional critical regions can
be used to transfer ownership of parts of the state between threads running in parallel.

Listing B.24: automatic/pointer_transfering_buffer.sf

resource buf (c) [if c==NULL then emp else c|—>]

init() { ¢ = NULL; }
put(x) [x|]—>] { with buf when (c==NULL) { c
get(y;) [emp] { with buf when (c!=NULL) { y

putter() [emp] { local x; x = new(); put(x); putter();

x; } } [emp]
c; ¢ = NULL; } } [y|—>]

} [emp]

getter() [emp] { local y; get(y;); dispose(y); getter(); } [emp]

main() [emp] { putter() || getter(); } [emp]

Listing B.25: automatic/pointer_non_trans-
fering_buffer.sf

init() { ¢ = NULL; }
resource buf (c) [emp]

put(x) [x|—>] {

with buf when (c==NULL) { ¢ = x; }
Y KM=>]
get(y;) [emp] {

with buf when (c!=NULL) { y = ¢; }

} [emp]

putter() {
local x;
x = new(); put(x); dispose x;

}

getter) {
local y;
get(y;);
}

main() {
putter() || getter(Q);
}

Split binary semaphores can also be implemented.

Listing B.26:
semaphore.sf

automatic/split_binary -

C;
init() { b_free = new(); free = 1; busy = 0; }

resource free (free,b_free)

[if free==0 then emp else b_free|—>]
resource busy (busy,b_busy)

[if busy==0 then emp else b_busy|—>]

produce(m;) {}

producer () {
local m,b;
produce (m;) ;
with free when (free == 1) {
free = 0; b = b_free;
}

b->c = m;

B.1.12 Memory Manager

with busy when (busy == 0) {
busy = 1; b_busy =

}

producer () ;

}

consume (n) {}
consumer () {
local n,b;
with busy when (busy ==
busy = 0; b = b_busy;
}
n = b->c;
with free when (free
free = 1; b_free =
}
consume (n) ;
consumer () ;

}

oo

main() { producer() || consumer(); }

Smallfoot comes with several memory manager examples, which can be used with Holfoot

as well.

Listing B.27:
ager.sf
init() { £ = NULL; }

automatic/memory_man-

resource mm (f) [list(f)]

154

APPENDIX B. EXAMPLE SPECIFICATIONS

alloc(x;) {
with mm when(true) {
if (f == NULL) {x = new();} else
{x = f; £ = x->tl1;}
}
Y X—>]

dealloc(y) [y|—>] {
with mm when(true) { y->tl = £f; f = y; }
}

Listing B.28: automatic/mm_buf.sf
init() { £ = NULL; c¢ = NULL; }

resource mm (f) [list(f)]

alloc(x;) {
with mm when(true) {
if (f==NULL) x = new();
else { x = f; £ = x->t1; }}
} [X—>]
dealloc(y) [y|]—>] {
with mm when(true) { y->t1 = f; £ =y; }
}

resource buf (c) [if c==NULL then emp else c|—>]

put(x) [x|—>] {
with buf when (c==NULL) { ¢ = x; }

proc(y) {

local x;

alloc(x;); x->tl = y; dealloc(x);
}

main() {
proc(42) || proc(13);
}

Y [emp]

get(y;) [emp] {
with buf when (c!=NULL) { y = ¢c; ¢ = NULL; }

Y —>]

putter () {

local x;

alloc(x;); put(x); putter();
}

getter) {

local y;

get(y;); dealloc(y); getter();
}

main() {
putter() || getter();
}

Listing B.29: automatic/mm_non_blocking.sf

[k

+ This implements a version of malloc and free. Malloc uses a semi DCAS instruction
% ccr to ensure it is correct, while free is only uses atomic ccrs.

*
sokokok

init() { TOP = NULL; }

resource freelistl (TOP) [list(TOP)]

cas(status,location;original,o,nw) [Iocation::original] {

if (location == o) {
location = nw;
status = 1;

} else {
status = 0;
}
} [if (original == o) then (location == nw) % (status == 1) else (status == 0) * (location == original)]

mallocl(i;) [emp] {
local n,status,top,next;
status=0;

while (status == 0) [(if status == 0 then emp else i |—>)] {

with freelistl when (true) {
i = TOP;
}

if (i '= NULL) {
with freelistl when (true) {
if (TOP == i) {
n = i->tl;
} else {

/* n =1i—>tl; Can’t read as don’t have permission need emp read rule */

}
}

with freelistl when (true) {

/* Couldn’t be bothered to write a DCAS instruction, so hacked a CAS one. */

B.1. AUTOMATIC EXAMPLES 155

top = TOP;
cas(status,top;top,i,n);
if (status == 1) {

next = i->tl;

if (next == n) {

TOP = top;
} else {
status = 0;
}
¥
}
}
}
YLi|=>]

freel(Gb) [b|—>] {
local t,status,top;
status = 0;
while (status == 0) [(if status==0 then b |—> else emp)] {
with freelistl when (true) {
t = TOP;
}
b->tl = t;
with freelistl when (true) {
cas(status, TOP;TOP, t, b);
}
}
} [emp]

B.1.13 Shape Property Versions of Interactive Examples

Many interactive examples can be solved automatically, if they are restricted to shape
properties. Examples include mergesort, quicksort, copying an array and binary search.
Binary search is special in so far as it requires the external SMT solver Yices for automatic

verification.
Listing B.30: automatic/mergesort.sf else {
tl = p->tl1;
merge(r;p,q) [list(p) = list (q)] { if (t1 == NULL) r = NULL;
local t; else {
if (q == NULL) r = p; t2 = t1->tl; split(r;t2);
else if (p == NULL) r = q; p—>tl = t2; t1->tl = r; r = t1;
else { }
if(q < p) { }
t =q; q = gq->tl; Y [list (p) = list (r)]
} else {
t =p; p = p->tl; mergesort (r;p) [list(p)] {
} local q,ql,pl;
merge(r;p,q); if (p == NULL) r = p;
t->tl = r; r = t; else {
} split(q;p);
¥ [list (r)] mergesort (ql;q);
mergesort (pl;p);
split(xr;p) [list(p)] { merge (r;pl,ql);
local t1,t2; X
if (p == NULL) r = NULL; Y [list (r)]

Listing B.31: automatic/parallel_mergesort.sf
merge(r;p,q) [list(p) = list (q)] {...} [list(r)]

split(x;p) [list(p)] {...} [list(p) = list (r)]

mergesort (r;p) [list(p)] {
local q,ql,pl;

APPENDIX B. EXAMPLE SPECIFICATIONS

156
if (p == NULL) r = p;
else {
split(q;p);

mergesort(ql;q) || mergesort(pl;p);
merge (r;pl,ql);

}
¥ [list (r)]
Listing B.32: automatic/quicksort-shape.dsf

quicksort(;b,e) [interval(b, e)] {
local piv, 1, r;
if (e > b) {
piv = b->dta;

l=b+1; r=e;
(L <=1) [b<Ixl<=r+1%r<=exinterval (b,e)] {

while
c = 1->dta;
if (c <= piv) {
1=1+1;
} else {
tmpl=1->dta; tmp2=r->dta; 1l->dta = tmp2; r->dta = tmpl;
r=r - 1;
¥
}
= tmp2; b->dta = tmpl;

tmpl=r->dta; tmp2=b->dta; r->dta
quicksort (;b, r); quicksort (;1, e);

}
} [interval (b, e)]

B.2. INTERACTIVE EXAMPLES 157

Listing B.33: automatic/array_copy-shape.dsf

copy(r;a,n) [array(a,n)] {
local i, tmp;
i= 0;
r = new(n);
while (i < n) [array(a,n) * array(r,n)] {
tmp = (a + i) -> dta;
(r + i) -> dta = tmp;
i=d o+ 1
}
} [array(a,n) = array(r, n)]

Listing B.34: automatic/binary_search-shape.dsf

binsearch(f;a,n,e) [array(a,n)] {
local 1, r, m, tmp;
1=0; r=mn; f=0;
while ((f == 0) and (1 < r)) [array(a,n) x (r <= n)] {
block_spec [l < r] {
m=1+ ((r-1)/ 2);
Y[l <=msxm<i]
tmp = (a+m)->dta;
if (tmp < e) { 1 = mt+1; } else
if (e < tmp) { r =m; } else { £ =1; }

}
} [array(a,n)]

B.2 Interactive Examples

B.2.1 Tree Map

Applying a function on all data-nodes of a tree is a simple operation. Unfortunately,
Holfoot can’t verify it automatically, because by default, it does not know about the
function TREE_MAP. The proof-script for this example consists of just calling Holfoot’s
automation with a suitable rewrite for TREE_MAP.

Listing B.35: interactive/tree_map.dsf

tree_map(;t) [data_tree(t, data)] {
local i;
if (¢t !'= NULL) {
i t->dta; i = i+l; t->dta = i;
t->1; tree_map(;i);
t->r; tree_map(;i);

i
i

i
}
} [data_tree(t," TREE.MAP (\I. [SUC (HD I)]) data‘‘)]

Listing B.36: interactive/tree_map.hol

val file = concat [examplesDir, "/interactive/tree_map.dsf"];
val _ = holfoot_verify_spec file [add_rewrites [TREE_MAP_THM]];

B.2.2 Tree Depth

Determining the minimal and maximal depth of a binary tree is simple as well. Holfoot
can verify this problem automatically, if the right rewrite rules are provided. This example
is also used for showing the benefits of block-specifications and using HOL4-functions in
expressions. Implementing MIN and MAX via conditional execution is appropriate, but leads
to many case splits and therefore a slowdown during verification. Block-specifications can

158 APPENDIX B. EXAMPLE SPECIFICATIONS

be used to restrict these case-splits to the region of the program where they are really
needed. Finally, the HOL4 functions are used to replace the conditional execution.

Listing B.37: interactive/tree_depth.dsf

tree_depth(rl,r2;t) [data_tree(t, data)] {
local i, j, dil, di2, dji, dj2;
if (t == NULL) { r1 = 0; r2 = 0; } else {
i=1t->1; j = t->r;
tree_depth(dil, di2; i); tree_depth(djl, dj2; j);
if (dil < dj1) rl1 = djl + 1; else r1 = dil + 1;
if (di2 < dj2) r2 = di2 + 1; else r2 = 4j2 + 1;
}
} [data_tree (t,data) * (r1 == "MAX_DEPTH data") = (r2 == “MIN_DEPTH data*’)]

Listing B.38: interactive/tree_depth.dsf2

tree_depth(rl,r2;t) [data_tree(t, data)] {
local i, j, dil, di2, dj1, dj2;
if (t == NULL) { r1 = 0; r2 = 0; } else {
i=1t->1; j = t->r;
tree_depth(dil, di2; i);
tree_depth(djl, dj2; j);
block_spec [] {
if (dil < dj1) rl = dj1 + 1; else rl = dil + 1;
} [rl == “(MAX dil dj1) + 1]
block_spec [] {
if (di2 < dj2) r2 = di2 + 1; else r2 = dj2 + 1;
} [r2 == “(MIN di2 dj2) + 1"]
}
} [data_tree (t,data) x (r1 == “MAX_DEPTH data"’) x (r2 == “MIN_DEPTH data")]

Listing B.39: interactive/tree_depth-holexp.dsf2

tree_depth(rl,r2;t) [data_tree(t,data)] {
local i, j, dit, di2, dj1, dj2;
if (t == NULL) { r1 = 0; r2 = 0; } else {
i=1t->1; j = t->r;
tree_depth(dil, di2; i); tree_depth(djl, dj2; j);
ri = ‘‘MAX dil dj1¢‘ + 1;
r2 = ‘‘MIN di2 dj2¢‘ + 1;
}
} [data_tree (t,data) x (r1 == “MAX_DEPTH data*’) = (r2 == “MIN_DEPTH data‘’)]

B.2. INTERACTIVE EXAMPLES 159

Listing B.40: interactive/tree_depth.hol

val file = concat [examplesDir, "/interactive/tree_depth.dsf"];
val file2 = concat [examplesDir, "/interactive/tree_depth.dsf2"];
val file3 = concat [examplesDir, "/interactive/tree_depth-holexp.dsf2"];

val rewritelL = [MIN_MAX_DEPTH_THM, arithmeticTheory.MIN_DEF,
MIN_MAX_LIST_THM, arithmeticTheory.MAX_DEF, MIN_MAX_DEPTH_THM];

val _ = holfoot_verify_spec file [add_rewrites rewritel];
val _ = holfoot_verify_spec file2 [add_rewrites rewriteL];
val _ = holfoot_verify_spec file3 [add_rewrites rewriteL];

B.2.3 List Remove

Removing the first occurrence of an element is a simple algorithm on singly-linked lists.
Many similar programs can be verified automatically. Remove needs user-interaction,
though, because no REMOVE function is defined in the HOL4 list libraries. Holfoot allows
defining REMOVE using HOL4’s infrastructure:

val REMOVE_def = Define ¢
(REMOVE x [] = [/\
(REMOVE x (y::ys) = if (x = y) then ys else (y::REMOVE x ys))‘;

Then Holfoot’s automation can prove the following specification automatically:

Listing B.41: interactive/remove.dsf

list_remove(l;x) [data_list(/,data)] {
local v,t;
if (1 '= NULL) {
v = 1->dta;
if (v == x) {
t =1; 1 =1->tl; dispose(t);
} else {
t = 1->t1l; list_remove(t;x); 1->tl = t;
}
}
} [data_list (I, ““REMOVE x data")]

An iterative implementation is much more complicated and harder to verify. The neces-
sary loop-invariant is lengthy and even a loop-specification is still complicated. However,
Holfoot can verify the recursive as well as the interactive implementation automatically,
if it is provided with the definition of REMOVE and some rewrite rules.

160 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.42: interactive/remove-iter.dsf
list_remove(l;x) [data_list(/,data)] {
local p, t, £, v;
p =NULL; t =1; £ = 0;
while (t != NULL and (f == 0)) [
data_list (t, _data2) x
(if p == 0then ((t == 1) * "“_data2 = data"’) else
(data_lseg (I, _datal, p) = (p!=1) =
p |—> [tl:t,dta:_pdate] *
¢¢~(MEM x datal) /\ ~“(x = pdate) /\
(data = _datal ++ (_pdate::_data2))‘‘)) =*
Lt =0)) /N (C(f =0))) ==> (HD data2 = x)‘‘] {
v = t->dta;
if (v==x) {
f=1;
} else {
p=1t; t=1t->tl;
}
}
if (¢ != NULL) {
v = t->tl; dispose(t);
if (p == NULL) {
1=v;
} else {
p—>tl = v;
}

}
} [data_list (I, ““REMOVE x data"’)]

Listing B.43: interactive/remove-iter-loopspec.dsf
list_remove(l;x) [data_list(/,data)] {
local p, t, £, v;
p =NULL; t =1; £ = 0;
loop_spec [data_list (t, tdata) =
“(("(t =0)))\ ("(f =0))) ==> (HD tdata = x)**
(if p !=0then (p |—> [tl:t,dta:#pdate]) else (t == 1))] {
while (t != NULL and (f == 0)) {
v = t->dta;
if (v==x) {
f =1;
} else {
p
t
}
}
if (¢ != NULL) {
v = t->tl;
dispose(t);
if (p == NULL) {
1l =v;
} else {
p—>tl = v;
}
}

} [if old(p) == 0 then data_list (I, '‘REMOVE x tdata") else

((I == old(l)) = data_list (old(p), ‘‘'pdate: (REMOVE x tdata)"))]
} [data_list (I, ‘“REMOVE x data")]

t;
t->t1;

B.2. INTERACTIVE EXAMPLES 161

Listing B.44: interactive/remove.hol

(st ok ook ko o o sk sk s oo sk sk s sk ook ook s sk ok ok s s ko sk s ko sk ok sk sk ok sk ok sk ko ok sk ok sk sk ok)
(* New Definition for the Specification *)
(kkakokakok ko sk ko ok ok ok ok ook ook ok ko ok ok sk ok ook ok stk ok ok sk ok ok sk ok ok sk ok ok ok ok sk ok ko ok ok ok ok ok ok)
val REMOVE_def = Define ¢

(REMOVE x [1 = [1) /\

(REMOVE x (x’::xs) = if (x = x’) then xs else (x’::REMOVE x xs))°‘;

val REMOVE_ID = prove (

““1x 1. (REMOVE x 1 = 1) = "(MEM x 1)¢°,

Induct_on ‘1¢ THEN

ASM_SIMP_TAC list_ss [REMOVE_def, COND_RAND, COND_RATOR]);

val REMOVE_APPEND = prove (
“1x 11 12. REMOVE x (11 ++ 12) =
if (MEM x 11) then
(REMOVE x 11) ++ 12
else
11 ++ (REMOVE x 12)°‘¢,
Induct_on ‘11¢ THEN
ASM_SIMP_TAC list_ss [REMOVE_def] THEN
REPEAT STRIP_TAC THEN
Cases_on ‘x = h‘ THEN ASM_SIMP_TAC std_ss [] THEN
ASM_SIMP_TAC list_ss [COND_RAND, COND_RATORI]);

(koK ok koK ok KoK KoK KK KKK KoK KoK KK KK KKK oK oK oK KK KKK oK K o KoK KK ok KK oK KK ok KK oK K Kok K oK K)
(x Verify specification *)
(kKooK oK KKK KKK KKK oK KoK KK KK KKK KK KK KKK KKK KK KKK oK KoK oK K KKK ok K)
val file = concat [examplesDir, "/interactive/remove.dsf"];

val _ = holfoot_verify_spec file [add_rewrites [REMOVE_def] 1;

val file2 = concat [examplesDir, "/interactive/remove-iter.dsf"];
val _ = holfoot_verify_spec file2 [add_rewrites [REMOVE_def, REMOVE_APPEND, REMOVE_ID] 1];

val file3 = concat [examplesDir, "/interactive/remove-iter-loopspec.dsf"];
val _ = holfoot_verify_spec file3 [add_rewrites [REMOVE_def] 1;

B.2.4 Circular List

The circular list example can be verified automatically by Smallfoot. However, it can
not automatically be verified by Holfoot. The reason is that Holfoot is less aggressive
with case-splits and guessing instantiations. To verify the circular list example inside
HOL4 a little bit of user-interaction is needed to perform the necessary case-splits and
instantiations of existential quantifiers.

162 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.45: interactive/circular-list.sf pop_dequeue (r) [rl=_tf x fl—>_tf % Iseg(_tf,r)] {

push(z) [rl—>_tf * Iseg(_tf,r)] { local t, wu;
local t, u; t o= ro>tl;
t = new(); u = t->tl;
u = r->tl; r->tl = u;
t->t1 = u; dispose t;

r->tl = t; } [r|=>-b * Iseg(_b,r)]

} [r|—>_b % _b|—>_tf * Iseg(_tf,r)] vest(rs) [i—>_tf x lseg(_tf,r)] {

enqueue(r;) [r|—>_tf x Iseg(_tf,r)] { push(r); .
push(r); pOp_deque1'1e .(r) ;
r = r->tl; enqueue(r;);

Y [r|—>_tf * Iseg(-tf,_b) x _b|—>r]) I}i‘p__iec;u:u;e(gr();a ")

Listing B.46: interactive/circular-list.hol

(st feskfoe s oe s oke s ok ko o o sk sk s o o sk sk s oe s ok sk s s sk ok sk sk ok sk s ko sk sk s sk ok sk ok sk ko sk ok sk sk ok)
(x Verify specification *)
(st ook ko ok s sk sk s oo sk sk sk ks sk s sk ok sk s sk ko sk sk ko sk sk s sk ok sk ok sk ko sk ok sk sk ok)
val file = concat [examplesDir, "/interactive/circular_list.sf"];

val enqueue_TAC =
HF_CONTINUE_TAC THEN REPEAT STRIP_TAC THEN
Q.EXISTS_TAC ‘r_const’‘ THEN HF_CONTINUE_TAC;

val test_TAC =
HF_SOLVE_TAC THEN REPEAT STRIP_TAC THEN
Cases_on ‘b’ = tf¢ THEN HF_SOLVE_TAC;

val _ = holfoot_tac_verify_spec file (SOME []) [
("enqueue", enqueue_TAC),
("test", test_TAC)];

B.2.5 List Filter

A recursive implementation of filtering a list can be verified automatically (see exam-
ple B.1.7). An iterative implementation requires a complicated loop invariant. While
Holfoot is able to verify a specification of an iterative implementation with a shape spec-
ification automatically, the verification of a fully-functional implementation needs user
guidance. The user has to provide several instantiations of existential quantifiers. Using
a loop-specification instead of an invariant simplifies the specification and its proof.

B.2. INTERACTIVE EXAMPLES 163

Listing B.47: interactive/filter.dsf

list_filter(1;x) [data_list(/,data)] {
local y, z, e;
y = 1; z = NULL;
while(y !'= NULL) [if (y ==) then
data_list (I, _datal) x
“? data_fc. (EVERY (\n. n = x) data_fc) /\
(data:num list = data_fc 4+ _datal)"
else
(data_lseg (1 ," FILTER (\n:num. “(n = x)) _datal"’,z) x
z |—> [tl:y, dta:_date] *
data_list(y,_data2) *
‘‘?data_fc. (EVERY (\n. n = x) data_fc) /\
(data:num list = _datal ++ _date::(data_fc++_data2)) /\
(“(_date = x)))] {
e = y->dta;
if (e == x) { /* need to remove y */
if (y == 1) { /= first link =/
1 = y->tl; dispose y; y = 1;
} else { /x not first link */
e = y=>tl; z->tl = e; dispose y; y = z—>tl;
}
} else { /* don’t need to remove y */
z =y; y = y->tl;
}
}
} [data_list (I, “FILTER (\n:num. ~(n = x)) data*")]

Listing B.48: interactive/filter.dsf2

list_filter(1;x) [data_list(l,data)] {
local y, z, e;
y=1;
z = NULL;
loop_spec [data_list (y, data2) x
(if (y !=1) then data_lseg (I, data, z) x (z |—> tl:y,dta:#zdata))] {
while (y != NULL) {
e = y->dta;
if(e == x) { /* need to remove y */
if(y == 1) { /* first link =*/
1 = y->tl; dispose y; y = 1;
} else { /* not first link */
e = y=>tl; z->tl = e; dispose y; y = z—>tl;
}
} else { /* don’t need to remove y */
z=7y;y=y->tl;
}
}
} [if (old(y) == old(l)) then
data_list (I, "FILTER (\n. “(n = x)) data2*)
else
(data_list (I, ‘‘data ++ [zdata] ++ (FILTER (\n. "(n = x)) data2)‘‘))]
} [data_list (I, “FILTER (\n. “(n = x)) data*’)]

164 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.49: interactive/filter.hol

(kKK oK KoK KKK KKK KKK KKK KK KK KK KK KKK KKK KKK KKK KoK KoK KKK KoK K)
(* Recursive implementation *)

(koK Kok koK KKK K KoK KK KKK K KKK KK KoK KK KoK KKK KKK oK KK KKK koK K o KK KK o KK oK KK ok KK ok K Kok KoK K)
val file_rec = concat [examplesDir, "/automatic/filter_rec.dsf"];

val _ = holfoot_auto_verify_spec file_rec;

(koo ok ook ok o s sk sk s oo sk sk s sk ook sk s sk o sk s s ko sk s ko sk ok s sk ok sk sk sk ko sk ok sk sk ok)
(x Verify specification *)

(kkakokakok ko sk ok ok ok ok ook ook ook ok stk ok sk ko ok ook ok stk ok ok sk ok sk ok ok sk ok ok ok sk ok ko ok ok ok ok ok ok)
val file = concat [examplesDir, "/interactive/filter.dsf"];

val filter_TAC =
xHF_SOLVE_TAC [add_rewrites [NULL_EQ, FILTER_EQ_NIL]] THEN
REPEAT STRIP_TAC THENL [
Q.EXISTS_TAC ‘data_fc‘ THEN
HF_SOLVE_TAC,

Q.EXISTS_TAC ‘datal‘ THEN
HF_SOLVE_TAC,

Q.EXISTS_TAC ‘datal ++ [date] ++ data_fc‘ THEN
xHF_SOLVE_TAC [add_rewrites [FILTER_APPEND, FILTER_EQ_NIL]],

Q.EXISTS_TAC ‘[]¢ THEN
HF_SOLVE_TAC THEN
SIMP_TAC list_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_EXISTS_AND_THM,
GSYM LEFT_FORALL_IMP_THM, FILTER_APPEND, NULL_EQ, FILTER_EQ_NIL] THEN
xHF_SOLVE_TAC [add_rewrites [FILTER_EQ_NIL]]
13

val _ = holfoot_tac_verify_spec file NONE [("list_filter", filter_TAC)];

(st ok ook ko o s sk sk s oo sk sk sk ook sk s sk ok ok sk ko sk s ko sk sk s ks ok sk ok sk ko sk ok sk sk ok ok)
(* Using loop specs *)
(st ook ko o o sk sk s oo sk sk s sk ook sk s s ok ok s ko sk s ko sk sk s ks ok sk ok sk ko sk ok sk sk ok)
val file2 = concat [examplesDir, "/interactive/filter.dsf2"];

val filter2_TAC =
HF_SOLVE_TAC THEN
REPEAT STRIP_TAC THEN
Q.EXISTS_TAC ‘data++[zdata]‘ THEN
xHF_SOLVE_TAC [no_case_splits];

val _ = holfoot_tac_verify_spec file2 NONE [("list_filter", filter2_TAC)]

B.2. INTERACTIVE EXAMPLES

165

B.2.6 List Rotating

Verifying a fully functional specification of rotating a list requires defining the ROTATE

function and proving rewrite rules.

Listing B.50: interactive/rotate.dsf

list_replace_last (i;k) [data_list(i,data) * k |—> [tl:#n, dta:#d]1 {
local 1;
if (1 ==0) {
i=k;
} else {
1=i->tl; list_replace_last(l;k); i->tl=1;
}
} [data_lseg (i,data, k) = k |—> [tl:#n, dta:#d]]

list_rotate(i;n) [data_list(i,data) * (i !=0)] {
local k, c;
c = 0;
while (c < n) [data_list(i," ROTATE c data’) * (i 1= 0) x (c <=n)] {
k = i->tl; i->tl = O;
list_replace_last (k;i);
i=%k; c=c+1;
}
} [data_list (i ,"" ROTATE n data")]

Listing B.51: interactive/rotate.hol

(**)
(* Some definitions *)
(**)
val SINGLE_ROTATE_def = Define ¢

(SINGLE_ROTATE [] = [1) /\

(SINGLE_ROTATE (x::xs) = SNOC x xs)°

val SINGLE_ROTATE_REWRITE = prove (
€0 < LENGTH 1 ==> (SINGLE_ROTATE 1 = SNOC (HD 1) (TL 1))°°,
Cases_on ‘1¢ THEN SIMP_TAC list_ss [SINGLE_ROTATE_def]);

val ROTATE_def = Define ¢
(ROTATE 0 1 = 1) /\
(ROTATE (SUC n) 1 = SINGLE_ROTATE (ROTATE n 1))°

val LENGTH_SINGLE_ROTATE = prove (
¢ ‘LENGTH (SINGLE_ROTATE 1) = LENGTH 1°¢°,
Cases_on ‘1¢ THEN SIMP_TAC list_ss [SINGLE_ROTATE_defl])

val LENGTH_ROTATE = prove (
¢ ‘LENGTH (ROTATE n 1) = LENGTH 1°°¢,
Induct_on ‘n¢ THEN ASM_SIMP_TAC std_ss [ROTATE_def, LENGTH_SINGLE_ROTATE]);

val NULL_ROTATE = prove (
¢‘NULL (ROTATE n 1) = NULL 1°°¢,
SIMP_TAC std_ss [NULL_LENGTH, LENGTH_ROTATE]);

166 APPENDIX B. EXAMPLE SPECIFICATIONS

(ks sk bk ok o ook o ko o ok ok o ok o ko o ook o ok o sk ok ko o sk ok ko o ok ko o sk ok ok o sk ok o ok ok sk ok o ok ok Kok ok)
(x Verify specification *)
(ks sk sk ok o ko o ko o ook o ok o ko o ok ok ok ok o ok ok ko o sk ok ko o o ko o sk ok o ok o sk ok o ok ok sk ok o ok ok ok ok)
val file = concat [examplesDir, "/interactive/rotate.dsf"];
val list_rotate_TAC =
xHF _CONTINUE_TAC [add_rewrites [ROTATE_def]] THEN
REPEAT STRIP_TAC THENL [
SIMP_TAC list_ss [NULL_DROP, LENGTH_ROTATE, LENGTH_TL,
GSYM arithmeticTheory.ADD1, ROTATE_def,
SINGLE_ROTATE_REWRITE, SNOC_APPEND,
TAKE_APPEND1, FIRSTN_LENGTH_ID_EVAL,
BUTFIRSTN_APPEND2] THEN
Cases_on ‘i’_const’ = 0¢ THEN HF_SOLVE_TAC,
‘c_lc = n_const‘ by DECIDE_TAC THEN HF_SOLVE_TAC
1

val _ = holfoot_tac_verify_spec file (SOME []) [("list_rotate", list_rotate_TAC)];

B.2.7 Factorial

The following example does not manipulate any dynamic data-structures. Instead it
demonstrates the different possibilities of specifying a while-loop.

Listing B.52: interactive/fact.dsf i=i+i;r=r1oi;
}
fact_recursive(r;n) { } [r == “FACT n"]
if (n > 1) {
fact_recursive(r;n-1); r = r * n; fact_loopspec2(r;n) {
} else { local i;
r=1; r=1; 1i=1;
} loop_spec [(r == "FACT i*') =
} [r == “FACT n"] “(i <=n)\/(i=1)"] {
while (i < n) {
fact_invariant (r;n) { i=1i+1;r=r1rx*i;
local i; }
r=1; i = n; } [r == “FACT n"]
while (i > 1) [“r* FACT i = FACT n"] { } [r == “FACT n"]
r=r*xi; i=1 - 1;
} fact_invariant3 (r;n) {
} [r == “FACT n"] local ij;
r=1; i=1;
fact_loopspec (r;n) { while (i < n) [unroll 1]
local ij; [r == “FACT i" % (i <=n)] {
r=1; i = n; i=1i+1; r=r % ij;
loop_spec [emp] { }
while (i > 1) { } [r == "FACT n"]

r=r % i; i =1 - 1;

} fact_loopspec3(r;n) {
} [r == "old(r) * FACT (old i)"] local ij;
} [r == “FACT n"] r=1; i=1;
loop_spec [unroll 1]
fact_invariant2 (r;n) { [(r == “FACT i) x (i <=n)] {
local ij; while (i < n) {
r=1; 1i=1; i=3i+1; r=r % 1ij;
while (i < n) }
[(r == “FACT i"') [r == “FACT n"]

¥
“(i<=n)\/(i=1)"]{ } [r == “FACT n']

B.2. INTERACTIVE EXAMPLES 167

Listing B.53: interactive/fact.hol

val GREATER_1 = prove (‘‘!n. (1 < n) ==> ?m. n = SUC n‘‘,

Cases_on ‘n‘ THEN SIMP_TAC arith_ss [1);
val LESSEQ_1 = prove (‘‘!n:num. (n <= 1) ==> ((n = 0) \/ (n = 1))“‘, DECIDE_TAC);
val FACT_DEF = CONJ FACT numeral_fact;

(skskesk sk ok s ok oo ko o o sk ok s oo sk sk sk ook sk s sk ok ok s sk ko sk s ko sk sk s sk ok sk ok sk ko sk ok sk sk ok)
(x Verify specification *)

(st o ko ok o s sk sk s oo sk sk sk ook sk s sk sk sk s sk ok sk s ko sk ok s sk ok sk ok sk ko sk ok sk sk ok)
val file = concat [examplesDir, "/interactive/fact.dsf"];

val fact_TAC =

HF_CONTINUE_TAC THEN

HF_VC_TAC THEN

REPEAT STRIP_TAC THEN (
MAP_EVERY IMP_RES_TAC [GREATER_1, LESSEQ_1] THEN
FULL_SIMP_TAC arith_ss [FACT_DEF]

);

val fact2_TAC =

HF_CONTINUE_TAC THEN

SIMP_TAC arith_ss [FACT_DEF, GSYM ADD1] THEN

HF _CONTINUE_TAC THEN

HF_VC_TAC THEN

REPEAT STRIP_TAC THENL [
METIS_TAC [LESS_EQUAL_ANTISYM],
‘(n_const = 1) \/ (n_const = 0)¢ by DECIDE_TAC THEN
FULL_SIMP_TAC arith_ss [FACT_DEF]

1;

val fact3_TAC =
HF_CONTINUE_TAC THEN
SIMP_TAC arith_ss [FACT_DEF, GSYM ADD1] THEN
HF_CONTINUE_TAC THEN
HF_VC_TAC THEN
REPEAT STRIP_TAC THENL [
IMP_RES_TAC LESSEQ_1 THEN
FULL_SIMP_TAC arith_ss [FACT_DEF],

METIS_TAC [LESS_EQUAL_ANTISYM]
1;

val thm = holfoot_tac_verify_spec file NONE
[("fact_loopspec", fact_TAC),
("fact_invariant", fact_TAC),
("fact_recursive", fact_TAC),
("fact_invariant2", fact2_TAC),
("fact_loopspec2", fact2_TAC),
("fact_invariant3", fact3_TAC),
("fact_loopspec3", fact3_TAC)]

B.2.8 Tree Sum

Verifying a recursive implementation of summing all the nodes of a tree is easy. A function
TREE_SUM is defined and a rewrite rule proven. With this rewrite rule, the recursive
implementation can be automatically verified by Holfoot.

Listing B.54: interactive/tree_sum.dsf

tree_sum(r;t) [data_tree(t,data)] {

local ij;

if (¢ == NULL) { r = 0; } else {
r = t->dta;
i = t->1; tree_sum(i;i); r = r + i;
i = t->r; tree_sum(i;i); r = r + i;

}
} [data_tree (t,data) x (r == "“TREE_.SUM data‘’)]

168 APPENDIX B. EXAMPLE SPECIFICATIONS

However, an iterative implementation is much more interesting, because it needs to ex-
plicitly maintain a stack of all the parts of the tree that still need processing. It is tricky
to reason about this stack. Most tools use complicated constructs like the magic-wand
operator. Holfoot can avoid this by using a loop-specification:

Listing B.55: interactive/tree_sum-iter.dsf

assume pop(sp,r;) [w/r:sp,r]

[data_list (sp,""v:vs*)] [data_list (sp, vs) x (r == #v)]
assume push(sp;v) [w/r: sp;]

[data_list (sp,data)] [data_list (sp, “‘v:data®)]

tree_sum_depth (r;t) [data_tree(t, data)] {
local sp, c, i;
r = 0;
it (¢ 1=0) {
sp = 0; push(sp;t);
loop_spec [data_list (sp, trees) x “‘“(MEM O trees)"* x
“LENGTH trees_data = LENGTH trees"’
map (\t d. data_tree(t,d)) *‘ZIP (trees, trees_data)"’] {
while (sp !'= 0) {
pop(sp,c;);
i = ¢->1; if (i !'= 0) push(sp;i);
i = c->r; if (i != 0) push(sp;i);
i=c>dta; r=r + i;

}
} [map (\t d. data_tree(t,d)) ‘‘ZIP (trees, trees_data)" *
(r == "old(r) + SUM (MAP TREE_SUM trees_data)"’)]
}
} [data_tree (t,data) = (r == “TREE_SUM data")]

Listing B.56: interactive/tree_sum.hol

(**)

(* Some useful REWRITES *)
(skskeskfeskfeoesoes okes okoe ko o o sk sk s oo sk sk sk ook ook s sk ok ok s ko sk s ok sk sk s ks ok sk ok sk ko sk ok sk sk ok)

val TREE_SUM_def = Define ‘TREE_SUM = TREE_FOLD (O:num, \v vL. (FOLDL (\a b. a + b) 0 ((HD v)::vL)))¢

val TREE_SUM_REWRITE = prove (‘¢
(TREE_SUM leaf = 0) /\ (TREE_SUM (node v tL) = SUM ((HD v)::(MAP TREE_SUM tL)))‘‘,
SIMP_TAC (std_ss++boolSimps.ETA_ss) [TREE_SUM_def, TREE_FOLD_def, SUM_FOLDL]);

(kKooK KoK KKK KKK KKK KKK KK KK KKK KKK KK KKK oK KK KKK KKK KoK oK KKK oK K)
(x Verify specification *)
(kKoK oK KKK K KKK K KKK oK KKK KK KK KK KK KKK oK KK KKK KK oK KoK oK KKK KK K)
val file = concat [examplesDir, "/interactive/tree_sum.dsf"];

val _ = holfoot_verify_spec file [add_rewrites [TREE_SUM_REWRITE] 1;

val file2 = concat [examplesDir, "/interactive/tree_sum_iter.dsf"];
val tree_sum_depth_TAC =
xHF_CONTINUE_TAC [add_rewrites [TREE_SUM_REWRITE, LENGTH_EQ_NUM_compute]] THEN
REPEAT GEN_TAC THEN
Cases_on ‘NULL trees‘ THEN1 HF_SOLVE_TAC THEN
xHF_CONTINUE_TAC [use_asms, add_rewrites[LENGTH_EQ_ADD_CONST_compute]] THEN
REPEAT STRIP_TAC THEN (
Q.EXISTS_TAC ‘1’¢ THEN
xHF_CONTINUE_TAC [use_asms, add_rewrites [TREE_SUM_REWRITE]]
);
val _ = holfoot_tac_verify_spec file2 (SOME []1) [("tree_sum_depth", tree_sum_depth_TAC)]

B.2.9 Array Increment

Another example illustrating loop-specifications is incrementing each element of an array.
This is one of Eric Hehner’s examples of specified blocks [16]. For comparison, there are
three specifications: incl uses a loop-invariant, inc2 a loop-specification similar to the
work of Hehner and inc3 uses a loop-specification and exploits local reasoning.

B.2. INTERACTIVE EXAMPLES

169

Listing B.57: interactive/array-inc.dsf
inc1(;a,n) [data_array(a,n,data)] {
local i, tmp;
i= 0;
while (i < n) [data_array(a, n, _data2) x

“(tid. id < i ==> (EL id data2 = SUC (EL id data))) /\
(lid. i <=id /\ id < n ==> (EL id data2 = EL id data))"] {
tmp = (a + i) -> dta; (a + i) -> dta

= tmp + 1;
i=1+ 1
}
} [data_array (a,n," MAP SUC data")]
inc2(;a,n) [data_array(a,n,data)] {
local i, tmp;
i= 0;
loop_spec [data_array (a,n,data)] {
while (i < n) {
tmp = (a + i) -> dta; (a + i) -> dta = tmp + 1;
=1+ 1;

}
} [data_array(a, n, _data2) x
“(lid. id < old(i) ==> (EL id data2 = EL id data)) /\
(lid. old(i) <=id /\ id < n ==> (EL id data2 = SUC (EL id data)))"]
} [data_array (a,n," MAP SUC data")]

inc3(;a,n) [data_array(a,n,data)] {
local i, tmp;
i= 0;
loop_spec [data_array (a+i,n—idata)] {
while (i < n) {
tmp

= (a + 1) -> dta; (a + i) -> dta = tmp + 1;
i=1i+ 1;
}

} [data_array (a+old(i), n—old(i),

“MAP SUC data®)]
} [data_array(a,n," MAP SUC data*)]

170 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.58: interactive/array-inc.hol

val incl_TAC =
HF_VC_SOLVE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THENL [
Cases_on ‘i_const = id‘ THEN ASM_SIMP_TAC arith_ss [],

Q.EXISTS_TAC ‘data‘ THEN

SIMP_TAC list_ss [] THEN

REPEAT STRIP_TAC THEN

MATCH_MP_TAC LIST_EQ THEN

ASM_SIMP_TAC list_ss [EL_MAP]
1;

val inc2_TAC =
HF_SOLVE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THENL [
Cases_on ‘old_i = id‘ THEN ASM_SIMP_TAC arith_ss [],
MATCH_MP_TAC LIST_EQ THEN ASM_SIMP_TAC list_ss [EL_MAP]
1

val inc3_TAC =
HF_SOLVE_TAC THEN
REPEAT STRIP_TAC THENL [
‘n_const - old_i = 0‘ by DECIDE_TAC THEN HF_SOLVE_TAC,
Cases_on ‘data = []‘ THEN HF_SOLVE_TAC
1

val file = concat [examplesDir, "/interactive/array-inc.dsf"];
val _ = holfoot_tac_verify_spec file NONE

[("inc1", incl1_TAC),

("inc2", inc2_TAC),

("inc3", inc3_TAC)];

B.2.10 Array Copy

This example program copies an array. While its shape-specification can be verified
automatically, the fully-functional one needs a short interactive proof. The user needs to
add some reasoning about lists and a manual case-split.

Listing B.59: interactive/array_copy-full.dsf

copy(r;a,n) [data_array(a,n,data)] {
local i, tmp;
i= 0;
r = new(n) [dta];
while (i < n) [data_array(a,n,data) x data_array(r,n,_data_new) x (i <=n)
“I'x. x < i ==> (EL x data = EL x _data_new)"] {
tmp = (a + i) -> dta; (r + i) -> dta = tmp;
i=d o+ 1

}
} [data_array (a,n,data) = data_array(r, n, data)]

If a loop specification instead of an invariant is used, the specification becomes slightly
simpler. However, the interactive effort increases, because the array-boundaries are now
changing.

B.2. INTERACTIVE EXAMPLES 171

Listing B.60: interactive/array_copy-full-loopspec.dsf

copy(r;a,n) [data_array(a,n,data)] {
local i, tmp;
i = 0; r = new(n) [dta];
loop_spec [(i == #ic) * data_array(a+#ic,n—#ic,data)
array (r+#ic,n—#ic)] {
while (i < n) {
tmp = (a + i) -> dta; (r + i) -> dta = tmp;
=i+ 1;
}
} [data_array (a+#ic,n—#ic,data) =
data_array (r+#ic,n—#ic,data)]
} [data_array(a,n,data) = data_array (r, n, data)]

Listing B.61: interactive/array_copy.hol

(koK ok koK ok KK KoK KK KoK KK KKK KoK oK KK KKK KKK KKK oK KK KKK koK K o KoK KKK ok KK oK KK ok KK oK K Kok KK oK K)
(* Just the shape works automatically *)

(koK ok koK Kok K KKK KoK KK K KKK KK KoK KK KoK KKK oK K KKK KKK koK K o KoK KKK ok KK oK KK ok KK oK K Kok KoK K)
val file = concat [examplesDir, "/automatic/array_copy-shape.dsf"];

val thm = holfoot_auto_verify_spec file;

(koK ok koK Kok KoK KK KoK KK KoK KK KK oK KK KKK KKK KKK oK KK oK KK koK K o KoK KKK ok KK oK KK ok KK ok K Kok KoK K)
(* Verify specification / Manual Case split and reasoning about list needed *)
(kKK ok KoK KKK KKK K KKK KKK KK KK KK KK KK KKK oK KK KKK KK oK KoK Kok KKK oK K)
val file = concat [examplesDir, "/interactive/array_copy-full.dsf"];

val copy_TAC =

HF_SOLVE_TAC THEN

HF_VC_TAC THEN

REPEAT STRIP_TAC THENL [
Cases_on ‘x’’ = ic‘ THEN ASM_REWRITE_TAC[] THEN
FULL_SIMP_TAC arith_ss [],

ASM_SIMP_TAC arith_ss [LIST_EQ_REWRITE]
1;
val _ = holfoot_tac_verify_spec file NONE [("copy", copy_TAC)];

(koo ook koo o ook ko ook sk ok ook i o ook ook ok ok ook koK o kb Kook Rk R Rk ok)
(* with loop-spec *)
(koo ook ko ook sk bk o ook sk ok ook i o ook ook ok ko ook Rk o ook ko ook R ok KK Rk ok)
val file2 = concat [examplesDir, "/interactive/array_copy-full-loopspec.dsf"];

val copy2_TAC =

HF_CONTINUE_TAC THEN

REPEAT STRIP_TAC THENL [
‘n_const - ic = 0¢ by DECIDE_TAC THEN
ASM_REWRITE_TAC[] THEN
HF_SOLVE_TAC,

Cases_on ‘data‘ THEN1 HF_SOLVE_TAC THEN
Cases_on ‘data_dta‘ THEN1 HF_SOLVE_TAC THEN
SIMP_TAC list_ss [REPLACE_ELEMENT_compute] THEN
HF _CONTINUE_TAC
1;
val _ = holfoot_tac_verify_spec file2 NONE [("copy", copy2_TAC)];

172 APPENDIX B. EXAMPLE SPECIFICATIONS

B.2.11 Array Reverse

Another array-example is reversing the data-content of an array. Again using a loop
specification leads to a simpler specification but increases the interactive effort needed.

Listing B.62: interactive/array_reverse.dsf

reverse2(;a,n) [data_array(a,n+1,data)] {
local i, j, tmp_i, tmp_j;
i=20;j=mn;
while (i < j) [data_array(a, n+1, _data2) x (j ==n — i) %
“Ix. x <=n ==> (EL x _data2 = EL (
if i <=x/\ x<=jthen x else (n—x)) data)"'] {
tmp_i = (a + i) -> dta; tmp_j = (a + j) -> dta;
(a + i) -> dta = tmp_j; (a + j) -> dta = tmp_i;
i=i+1;j=3-1;
}
} [data_array (a,n+1,""REVERSE data"')]

reverse5(;a,n) [data_array(a,n+1,data)] {
local i, j, tmp_i, tmp_j;
i=20;j=mn;
loop_spec [data_interval (a+i, a+j, data)] {
while (i < j) {
tmp_i = (a + i) -> dta; tmp_j = (a + j) -> dta;
(a + i) -> dta = tmp_j; (a + j) -> dta = tmp_i;
i=i+1;j=3-1;
}} [data_interval (a+old(i), a+old(j), ‘‘REVERSE data")]
} [data_array (a,n+1,""REVERSE data*')]

Listing B.63: interactive/array_reverse.hol

val file = concat [examplesDir, "/interactive/array_reverse.dsf"];

(* holfoot_set_goal_procedures file ["reverse2"] *)
val reverse2_TAC =

HF_SOLVE_TAC THEN

REPEAT STRIP_TAC THENL [

HF_VC_TAC THEN
ASM_SIMP_TAC (arith_ss++boolSimps.LIFT_COND_ss) [COND_EXPAND_IMP],

Q.EXISTS_TAC ‘data‘ THEN
HF_SOLVE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC LIST_EQ THEN
ASM_SIMP_TAC list_ss [] THEN
REPEAT STRIP_TAC THEN
‘PRE (n_const + 1 x) = n_const - x‘ by DECIDE_TAC THEN
ASM_SIMP_TAC (list_ss++boolSimps.LIFT_COND_ss) [EL_REVERSE, COND_EXPAND_IMP] THEN
REPEAT STRIP_TAC THEN
‘(n_const = 2*i_const) /\ (x = i_const)‘ by DECIDE_TAC THEN
ASM_SIMP_TAC arith_ss []
1

(* holfoot_set_goal_procedures file ["reverseb5"] *)
val reverse5_TAC =
xHF_SOLVE_TAC [simple_prop_simps] THEN
REPEAT STRIP_TAC THENL [
HF_VC_TAC THEN
¢ (LENGTH data = 0) \/ (LENGTH data = 1) ¢ by DECIDE_TAC THEN
FULL_SIMP_TAC list_ss [LENGTH_EQ_NUM_computel],

HF_VC_TAC THEN

‘old_j (old_i + 1) = LENGTH data - 2¢ by DECIDE_TAC THEN

‘old_j old_i = LENGTH data - 1¢ by DECIDE_TAC THEN

ASM_REWRITE_TAC[] THEN

Q.PAT_ASSUM ‘MIN 1 X = 1¢ MP_TAC THEN

REPEAT (POP_ASSUM (K ALL_TAC)) THEN

SIMP_TAC arith_ss [MIN_EQ, BUTFIRSTN_BUTFIRSTN, LENGTH_REPLACE_ELEMENT,
LENGTH_REVERSE] THEN

CONSEQ_REWRITE_TAC ([LIST_EQ], [1, []) THEN

ASM_SIMP_TAC arith_ss [LENGTH_DROP, LENGTH_REVERSE, LENGTH_REPLACE_ELEMENT,

B.2. INTERACTIVE EXAMPLES 173

EL_BUTFIRSTN, EL_REVERSE, LENGTH_TAKE, EL_REPLACE_ELEMENT,
EL_FIRSTN, MIN_EQ] THEN

REPEAT STRIP_TAC THENL [
‘PRE (1 - x) = 0° by DECIDE_TAC THEN
ASM_SIMP_TAC list_ss [1,

AP_THM_TAC THEN AP_TERM_TAC THEN DECIDE_TAC,

‘x = 0¢ by DECIDE_TAC THEN
ASM_SIMP_TAC arith_ss [COND_RAND, COND_RATOR] THEN
REPEAT STRIP_TAC THEN
‘PRE (LENGTH data) = 0‘ by DECIDE_TAC THEN
ASM_SIMP_TAC list_ss []

1,

HF_VC_TAC THEN

FULL_SIMP_TAC std_ss [MIN_EQ, NULL_DROP] THEN

‘n_const + 1 = LENGTH data‘ by DECIDE_TAC THEN

ASM_SIMP_TAC list_ss [FIRSTN_LENGTH_ID_EVAL]
1;

val _ = holfoot_tac_verify_spec file NONE
[("reverse2", reverse2_TAC), ("reverseb", reverse5_TAC)];

B.2.12 Binary Search

Binary search is used to demonstrate the benefits of using an external SMT solver. The
shape specification can be verified automatically using Yices.

Listing B.64: automatic/binary_search-shape.dsf

binsearch(f;a,n,e) [array(a,n)] {
local 1, r, m, tmp;
1=0; r=mn; f=0;
while ((f == 0) and (1 < 1)) [array(a,n) * (r <=n)] {
block_spec [I < r] {
m=1+ ((r-1)/ 2);
Y[l <=msxm<i]
tmp = (a+m)->dta;
if (tmp < e) { 1 = mt+1; } else
if (e < tmp) { r =m; } else { £ =1; }

}
} [array(a,n)]

174 APPENDIX B. EXAMPLE SPECIFICATIONS

A fully functional specification needs interactive effort though.

Listing B.65: interactive/binary_search-full.dsf

binsearch(f;a,n,e) [data_array(a,n,data) + ‘“SORTED $<= data‘] {
local 1, r, m, tmp;
1=0; r=mn; f=0;
while ((f == 0) and (1 < 1)) [
data_array (a,n,data) = (r <=n) x
“IS.BOOL_-TO_NUM f /\ SORTED $<= data /\
(MEM e data = ((f=1)\/ (7. | <=i/\i<r/\ (ELi data =¢))))"] {
block_spec [I < r] {
m=1+ ((r-1)/ 2);
Y[l <=mxm<ir]
tmp = (a+m)->dta;
if (tmp < e) {
1 = m+1;
} else if (e < tmp) {
T =m;
} else {
f =1;
}
}
} [data_array(a,n,data) * (f == “BOOL-TO_-NUM (MEM e data)"’)]

Listing B.66: interactive/binary_search.hol

(kKooK oK KKK KKK KKK KK KK KK KK KKK KK KKK KKK KKK KKK KoK oK KKK oK K)
(* Just the shape works automatically (with Yices) *)
(kKoK KoK KKK KKK K KKK oK KKK KK KK KK KK KKK KKK KKK KKK KKK KoK KKKk K)
(*xturn yices on*) set_trace "holfoot use Yices" 1;

val file = concat [examplesDir, "/automatic/binary_search-shape.dsf"];

val _ = holfoot_auto_verify_spec file;

(**)

(x Verify the fully functional spec now *)
(st ook ok o s sk sk s oo sk sk sk oo sk s sk sk sk s sk ko sk s ko sk sk sk sk ok sk ok sk ko sk ok sk sk ok)
val _ = set_trace "holfoot use Yices" 0; (*turn yices off againx)

val file_full = concat [examplesDir, "/interactive/binary_search-full.dsf"];

(* holfoot_set_goal file_full *)

val binsearch_full_TAC =

HF_SOLVE_TAC THEN

REPEAT STRIP_TAC THENL [
HF_VC_TAC THEN YICES_TAC,

HF_VC_TAC THEN

DEPTH_CONSEQ_CONV_TAC (K EXISTS_EQ___CONSEQ_CONV) THEN

SIMP_TAC (std_ss++EQUIV_EXTRACT_ss) [] THEN

REPEAT STRIP_TAC THEN

EQ_TAC THEN ASM_SIMP_TAC arith_ss [] THEN

REPEAT STRIP_TAC THEN

MP_TAC (Q.SPECL [‘data’‘, ‘m_const‘, ‘i‘] SORTED_EL_LESS_EQ) THEN
ASM_SIMP_TAC arith_ss [],

HF_VC_TAC THEN

DEPTH_CONSEQ_CONV_TAC (K EXISTS_EQ___CONSEQ_CONV) THEN

SIMP_TAC (std_ss++EQUIV_EXTRACT_ss) [] THEN

REPEAT STRIP_TAC THEN

EQ_TAC THEN ASM_SIMP_TAC arith_ss [] THEN

REPEAT STRIP_TAC THEN

MP_TAC (Q.SPECL [‘data’‘, ‘i‘, ‘m_const‘] SORTED_EL_LESS_EQ) THEN
ASM_SIMP_TAC arith_ss [],

HF_VC_TAC THEN
Q.EXISTS_TAC ‘m_const‘ THEN
ASM_SIMP_TAC arith_ss [],

HF_VC_TAC THEN CONJ_TAC THEN1 METIS_TAC[MEM_EL] THEN
HF_CONTINUE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THEN (

FULL_SIMP_TAC arith_ss [IS_BOOL_TO_NUM_def, BOOL_TO_NUM_REWRITE]
) THEN

B.2. INTERACTIVE EXAMPLES 175

CCONTR_TAC THEN
FULL_SIMP_TAC arith_ss []
1;

val _ = holfoot_tac_verify_spec file_full NONE [("binsearch", binsearch_full_TAC)];

B.2.13 Mergesort

Mergesort is one of Smallfoot’s examples. Its shape specification can be verified automat-
ically (see Appx. B.1.13). Verifying a fully functional specification is also straightforward
using HOL4 libraries for permutations and orders.

Listing B.67: interactive/mergesort.dsf

merge(r;p,q) [data_list(p,pdata) = data_list (q,qdata) *
“SORTED $<= pdata /\ SORTED $<= qdata"] {
local t, gq_date, p_date;
if (q == NULL) { r = p; } else
if (p == NULL) { r = q; } else {
q_date = gq->dta; p_date = p->dta;
if (g_date < p_date) { t = q; q = g->tl; } else
{t=p; p=p>tl; }
merge(r;p,q);
t->tl =r; r = t;
}
} [data_list (r,_rdata) = "(SORTED $<= _rdata) /\ (PERM (pdata ++ qdata) _rdata)"’]

split(r;p) [data_list(p,data)] {
local t1,t2;
if (p == NULL) { r = NULL; } else {
tl = p—>tl;
if (t1 == NULL) { r = NULL; } else {
t2 = t1->tl; split(r;t2);
p~>tl = t2; ti1->tl = r; r = ti;
}

}
} [data_list (p,_pdata) = data_list (r,_rdata) = ‘‘PERM (_pdata ++ _rdata) data"’]

mergesort (r;p) [data_list(p,data)] {
local q,ql,pl;
if (p == NULL) { r = p; } else {
split(q;p);
mergesort(ql;q); mergesort(pl;p);
merge (r;pl,ql);
}
} [data_list (r, _rdata) « "(SORTED $<= _rdata) /\ (PERM data _rdata)"]

176 APPENDIX B. EXAMPLE SPECIFICATIONS

Listing B.68: interactive/mergesort.hol

val file = concat [examplesDir, "/interactive/mergesort.dsf"];

val merge_TAC_O =

HF_ELIM_COMMENTS_TAC THEN

REPEAT STRIP_TAC THENL [
IMP_RES_TAC SORTED_CONS_IMP,

FULL_SIMP_TAC arith_ss [SORTED_EQ, transitive_LE] THEN

‘ly. MEM y rdata = MEM y (pdata_h::(pdata_t ++ gdata_t))°‘ by
METIS_TAC[PERM_MEM_EQ] THEN

ASM_SIMP_TAC list_ss [DISJ_IMP_THM, FORALL_AND_THM] THEN

REPEAT STRIP_TAC THEN

RES_TAC THEN

DECIDE_TAC,

IMP_RES_TAC SORTED_CONS_IMP,

FULL_SIMP_TAC arith_ss [SORTED_EQ, transitive_LE] THEN
‘ly. MEM y rdata = MEM y (qdata_h::(pdata_t ++ gdata_t))°‘ by
METIS_TAC[PERM_MEM_EQ] THEN
ASM_SIMP_TAC list_ss [DISJ_IMP_THM, FORALL_AND_THM] THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN
DECIDE_TAC
1

val mergesort_gen_step_opt = combined_gen_step_tac_opt [
add_rewrites [SORTED_DEF, PERM_REFL],
add_ssfrags [permLib.PERM_ss] 1;

val merge_TAC =
xHF_CONTINUE_TAC [mergesort_gen_step_opt, generate_vcs] THEN
merge_TAC_O;

val _ = holfoot_tac_verify_spec file
(SOME [careful, generate_vcs, mergesort_gen_step_opt])
[("merge", merge_TAC)]

B.2.14 Insertion Sort

Another straightforward sorting example is insertion sort:

Listing B.69: interactive/insertionsort.dsf

min(m;i) [data_list (i,data)] {
local ih, it;
if (i == NULL) {} else {
ih = i->dta;
it = i->tl;
if (ih < m) {
m = ih;
}
min (m;it);
}
} [data_list (i,data) « "“‘(MEM m (old(m)::data)) /\ (EVERY (\n. m <= n) (old(m)::data))"]

delete(i,j;m) [data_list(i,data) * ““MEM m data"] {
local ih, it;
ih = i->dta; it = i->tl;
if (ih == m) {

j = 1i; 1 = 1it;
} else {
delete(it,j;m); i->tl = it;

}
} [data_list (i ," REMOVE m data“) x (j |—> dta:m)]

sortlist(i;) [data_list(i, data)] {
local m, j;

B.2. INTERACTIVE EXAMPLES 177

if (i == NULL) {} else {
m = i->dta;
min(m;i);
delete(i,j;m);
sortlist(i;);
j—>tl = 1i;
i=13;

}

} [data_list (i, _idata) « "(SORTED $<= _idata) /\ (PERM data _idata)"’]

Listing B.70: interactive/insertionsort.hol

val SORTED_CONS_IMP = prove (‘‘!R x xs. (SORTED R (x::xs) ==> SORTED R xs) ‘¢,
Cases_on ‘xs‘ THEN SIMP_TAC list_ss [SORTED_DEF])

val transitive_LE = prove (‘‘transitive (($<=): num -> num -> bool)‘‘,
SIMP_TAC arith_ss [relationTheory.transitive_def]);

val REMOVE_def = Define ¢
(REMOVE x [1 = [1) /\
(REMOVE x (x’::xs) = if (x = x’) then xs else (x’::REMOVE x xs))°

val MEM_REMOVE_IMP = prove (
““1y x 1. MEM y (REMOVE x 1) ==> MEM y 1¢¢,
Induct_on ‘1°¢ THEN SIMP_TAC list_ss [REMOVE_def, COND_RAND, COND_RATOR] THEN METIS_TAC[]);

val PERM_REMOVE = prove (
‘“1x xs. MEM x xs ==> (PERM (x::REMOVE x xs) xs) ‘¢,
Induct_on ‘xs‘ THEN
SIMP_TAC list_ss [REMOVE_def] THEN
REPEAT GEN_TAC THEN
Cases_on ‘x = h¢ THEN (
ASM_SIMP_TAC (std_ss++permLib.PERM_ss) []
));

(st ok ook ko o o sk sk s oo sk sk s sk o sk s sk sk ok s sk ko sk s ko sk ok sk ks ok sk ok sk ko sk ok sk ok sk ok ok)
(x Verify specification *)
(st oo ok ok o sk ok sk oo sk sk s sk ook sk s sk ok sk s s ko sk s ko sk ok s sk ok sk ok sk ko ok sk ok sk sk ok)
val file = concat [examplesDir, "/interactive/insertionsort.dsf"];

(* holfoot_set_goal_procedures file ["delete"] *)

val delete_TAC =
HF_CONTINUE_TAC THEN REPEAT STRIP_TAC THEN
Cases_on ‘i’_const = 0¢ THEN1 xHF_CONTINUE_TAC [use_asms] THEN
xHF_CONTINUE_TAC [use_asms, add_rewrites [REMOVE_def], generate_vcs] THEN
HF_VC_TAC THEN FULL_SIMP_TAC list_ss []

(* holfoot_set_goal_procedures file ["min"] *)
val min_TAC =

HF_CONTINUE_TAC THEN HF_VC_TAC THEN

REPEAT STRIP_TAC THEN ASM_SIMP_TAC arith_ss []

(* holfoot_set_goal_procedures file ["sortlist"] *)
val sortlist_TAC =
xHF_CONTINUE_TAC [add_rewrites [SORTED_DEF, SORTED_DEF],
add_ssfrags [permLib.PERM_ss]] THEN
xHF_SOLVE_TAC [generate_vcs,
add_rewrites [SORTED_EQ, transitive_LE, EVERY_MEM, SORTED_DEF],
add_ssfrags [permLib.PERM_ss]] THEN
SIMP_TAC (std_ss++boolSimps.CONJ_ss) [GSYM FORALL_AND_THM] THEN
REPEAT GEN_TAC THEN HF_ELIM_COMMENTS_TAC THEN
Cases_on ‘m’_const = data_h‘ THEN ASM_SIMP_TAC (std_ss++permLib.PERM_ss) [REMOVE_def] THEN
REPEAT STRIP_TAC THENL [
METIS_TAC [PERM_MEM_EQ],

‘MEM y (data_h::REMOVE m’_const data_t)‘ by METIS_TAC [PERM_MEM_EQ] THEN
FULL_SIMP_TAC list_ss [] THEN
METIS_TAC [MEM_REMOVE_IMP],

Q.PAT_ASSUM ‘PERM X Y‘ (ASSUME_TAC o ONCE_REWRITE_RULE [PERM_SYM]) THEN
ASM_SIMP_TAC (std_ss++permLib.PERM_SIMPLE_ss) [] THEN
METIS_TAC [PERM_REMOVE]

178 APPENDIX B. EXAMPLE SPECIFICATIONS

1;

val _ = holfoot_tac_verify_spec file NONE
[("sortlist", sortlist_TAC),
("delete", delete_TAC),
("min", min_TAC)];

B.2.15 Quicksort

Quicksort is harder to verify, because it operates on arrays. Again, there are two specifi-
cations, one using a loop-invariant and one using a loop-specification.

Listing B.71: interactive/quicksort-full.dsf

quicksort (;b,e) [data_interval(b, e, data)] {
local piv, 1, r;
if (e > b) {
piv = b->dta; 1 =b + 1; r = e;
while (1 <= r) [data_interval(b,e, _data) x
(b<)x (Il <=r+1)*(r<=e)=*
"““PERM org_data _data’' x ‘"HD org_data = HD _data"’
“I'n. (0 <n)/\ (n<!|—b)==> (EL n _data <= piv)"" *
“I'n. (r —b<n)/\ (n<=e— b) ==> (piv< EL n _data)”] {
c = 1->dta;
if (c <=piv) {1 =1+ 1; } else {
tmpl=1->dta; tmp2=r->dta; 1l->dta = tmp2; r->dta = tmpl;
r=r - 1;
}
}
tmpl=r->dta; tmp2=b->dta; r->dta = tmp2; b->dta = tmpl;
quicksort (;b, r);
quicksort (51, e);
}
} [data_interval (b, e, _rdata) =
“(SORTED $<= _rdata) /\ (PERM data _rdata)"’]

Listing B.72: interactive/quicksort-full-loopspec.dsf

quicksort (;b,e) [data_interval(b, e, data)] {
local piv, 1, r;
if (e > b) {
piv = b->dta;
l1=b+1; r=e;
loop_spec [data_interval (I, r,data) = (I <=r+ 1)] {
while (1 <= 1) {
c = 1->dta;
if (c <= piv) {1 =1+ 1; } else {
tmpl=1->dta; tmp2=r->dta; 1l->dta = tmp2; r->dta = tmpl;
r=r-1;
}
}
} [data_interval (old(1),old(r), -data2) x
(I >=old(l)) x (r <= old(r)) x (I ==r+ 1) =
““PERM data data2 /\ (In. (n < LENGTH data2) ==> ((piv < EL n data2) = (I — old(l) <= n)))"]
assert [data_interval (b, e, data3)];
tmpl=r->dta; tmp2=b->dta; r->dta = tmp2; b->dta = tmpl;
quicksort (;b, r);
quicksort (51, e);

}
} [data_interval (b, e, _rdata) x "(SORTED $<= _rdata) /\ (PERM data _rdata)"’]

Listing B.73: interactive/quicksort.hol

val quicksort_opt = combined_gen_step_tac_opt [
add_rewrites [SORTED_DEF, PERM_REFL],
add_ssfrags [permLib.PERM_ss] 1;

B.2. INTERACTIVE EXAMPLES 179

(kKooK KoK KKK KKK KKK KKK KK KK KK KK KK KKK KKK KKK KK KoK KKKk K)
(x Verify specification / loop invariant *)
(kKoK oK K KKK KKK KKK KKK KK KK KK KK KKK oK KK KKK KKK KoK KK KKKk K)

val file2 = concat [examplesDir, "/interactive/quicksort-full.dsf"];

val quicksort_TAC =
xHF_SOLVE_TAC [quicksort_opt] THEN
REPEAT STRIP_TAC THENL [
HF_VC_TAC THEN REPEAT STRIP_TAC THEN
Cases_on ‘n = 1l_const - b_const‘ THEN ASM_SIMP_TAC arith_ss [],

HF_VC_TAC THEN
REWRITE_TAC [GSYM SWAP_ELEMENTS_def] THEN

MATCH_MP_TAC (ONCE_REWRITE_RULE [PERM_SYM] PERM_SWAP_ELEMENTS) THEN
DECIDE_TAC,

Q.EXISTS_TAC ‘data‘ THEN
xHF_CONTINUE_TAC [quicksort_opt] THEN
REPEAT STRIP_TAC THEN
Q.EXISTS_TAC f‘rdata ++ rdata’‘ THEN
HF_SOLVE_TAC THEN HF_VC_TAC THEN
Q.ABBREV_TAC ‘rdata_len = 1_const - b_const’‘ THEN
‘rdata_len > 0 /\
(r_const + 1 - b_const’ = rdata_len) /\
(r_const - b_const’ = PRE rdata_len) /\
('n. ((r_const < b_const’ + n /\ 0 < n) /\ n <= (e_const’ - b_const’)) =
(PRE rdata_len < n /\ n < LENGTH data’))‘ by ALL_TAC THEN1 (
UNABBREV_ALL_TAC THEN
‘LENGTH data’ = LENGTH data‘ by METIS_TAC [PERM_LENGTH] THEN
POP_ASSUM MP_TAC THEN
ASM_SIMP_TAC arith_ss []
) THEN
FULL_SIMP_TAC std_ss [GSYM SWAP_ELEMENTS_def, GSYM EL] THEN
NTAC 3 (POP_ASSUM (K ALL_TAC)) THEN
REPEAT STRIP_TAC THENL [
MATCH_MP_TAC sortingTheory.SORTED_APPEND THEN
FULL_SIMP_TAC arith_ss [relationTheory.transitive_def, EL] THEN
REPEAT STRIP_TAC THEN
Tactical .REVERSE (¢ (x <= HD data’) /\ (HD data’ < y)‘ by ALL_TAC) THEN1 (
ASM_SIMP_TAC arith_ss []
) THEN
‘MEM y (DROP rdata_len (SWAP_ELEMENTS (PRE rdata_len) O data’)) /\
MEM x (TAKE rdata_len (SWAP_ELEMENTS (PRE rdata_len) O data’))‘ by
METIS_TAC [PERM_MEM_EQ] THEN
NTAC 2 (POP_ASSUM MP_TAC) THEN
SIMP_TAC list_ss [MEM_EL,
SWAP_ELEMENTS_def, REPLACE_ELEMENT_SEM, GSYM LEFT_FORALL_IMP_THM,
EL_REPLACE_ELEMENT, EL_FIRSTN, EL_BUTFIRSTN] THEN
REPEAT STRIP_TAC THENL [
Cases_on ‘PRE rdata_len = 0° THEN1 (
‘n’ = 0 by DECIDE_TAC THEN
ASM_SIMP_TAC list_ss []
) THEN
Cases_on ‘n’ = 0° THEN1 ASM_SIMP_TAC arith_ss [] THEN
ASM_SIMP_TAC arith_ss [COND_RAND, COND_RATOR],

Q.PAT_ASSUM ‘!n. X n ==> (HD data < EL n data)‘ MATCH_MP_TAC THEN
ASM_SIMP_TAC arith_ss []
1,

MAP_EVERY (fn x => Q.PAT_ASSUM (‘PERM X‘ @ x) (ASSUME_TAC o
ONCE_REWRITE_RULE [PERM_SYM])) [‘data‘, ‘rdata’‘, ‘rdata‘]l THEN
ASM_SIMP_TAC (std_ss++permLib.PERM_SIMPLE_ss) [] THEN
ONCE_REWRITE_TAC [PERM_FUN_APPEND] THEN
SIMP_TAC list_ss [] THEN
MATCH_MP_TAC (ONCE_REWRITE_RULE [PERM_SYM] PERM_SWAP_ELEMENTS) THEN
‘LENGTH data’ = LENGTH data‘ by
METIS_TAC [PERM_LENGTH] THEN
UNABBREV_ALL_TAC THEN
ASM_SIMP_TAC arith_ss []

180 APPENDIX B. EXAMPLE SPECIFICATIONS

HF_VC_TAC THEN
Q.ABBREV_TAC ‘len = e_const’ + 1 - b_const’‘ THEN
‘(len = 0) \/ (len = 1)°¢ by (UNABBREV_ALL_TAC THEN DECIDE_TAC) THEN (
FULL_SIMP_TAC std_ss [LENGTH_EQ_NUM_compute, SORTED_DEF]
)
1

val _ = holfoot_tac_verify_spec file2 NONE [("quicksort", quicksort_TAC)];

(kKo koK ok KKK KKK KoK KK KoK KK oK oK KoK KK KoK KKK oK K KKK oK KK koK K o KoK KKK ok KK oK KK ok KK oK K Kok KoK K)
(* Verify specification - loop spec *)

(koK Kok KoK Kok K K KKK KoK KK K KKK KK KoK KK KoK KKK KKK oK K KKK koK K o KoK KKK o KK oK KK ok KK oK K Kok KoK K)
val file3 = concat [examplesDir, "/interactive/quicksort-full-loopspec.dsf"];

val quicksort_loopspec_TAC =
xHF_SOLVE_TAC [quicksort_opt, no_expands, simple_prop_simps] THEN
REPEAT STRIP_TAC THENL [

HF _SOLVE_TAC,

Q.EXISTS_TAC ‘(HD data)::data2‘ THEN
HF_SOLVE_TAC THEN HF_VC_TAC THEN
Cases_on ‘data‘ THEN (

FULL_SIMP_TAC list_ss [PERM_CONS_IFF]
) THEN
REPEAT STRIP_TAC THENL [

METIS_TAC [PERM_SYM],

Cases_on ‘n‘ THEN FULL_SIMP_TAC list_ss []
]’

ASM_SIMP_TAC arith_ss [] THEN
xHF_SOLVE_TAC [simple_prop_simps, no_expands, quicksort_opt] THEN
Cases_on ‘old_1 = 0¢ THEN1 xHF_SOLVE_TAC [quicksort_opt, simple_prop_simps] THEN
Cases_on ‘o0ld_1 = old_r‘ THEN1 (
xHF_SOLVE_TAC [quicksort_opt] THEN HF_VC_TAC THEN
ASM_SIMP_TAC std_ss [GSYM EL, REPLACE_ELEMENT___REPLACE_ID, PERM_REFL]
) THEN
‘0ld_1 < old_r‘ by DECIDE_TAC THEN FULL_SIMP_TAC arith_ss [] THEN
REPEAT GEN_TAC THEN
Q.EXISTS_TAC ‘data2 ++ DROP (old_r - old_1) (SWAP_ELEMENTS O (old_r - old_1l) data)‘ THEN
ASM_SIMP_TAC list_ss [SWAP_ELEMENTS_INTRO] THEN
HF_SOLVE_TAC THEN
HF_VC_TAC THEN REPEAT STRIP_TAC THENL [
Q.PAT_ASSUM ‘PERM X data2‘ (ASSUME_TAC o ONCE_REWRITE_RULE [PERM_SYM]) THEN
ASM_SIMP_TAC (std_ss++permLib.PERM_SIMPLE_ss) [] THEN
MATCH_MP_TAC (ONCE_REWRITE_RULE [PERM_SYM] PERM_SWAP_ELEMENTS) THEN
FULL_SIMP_TAC arith_ss [LENGTH_SWAP_ELEMENTS],

Cases_on ‘n < LENGTH data2‘ THEN (
FULL_SIMP_TAC list_ss [EL_APPEND1, EL_APPEND2, LENGTH_SWAP_ELEMENTS,
EL_BUTFIRSTN, EL_SWAP_ELEMENTS, LENGTH_SWAP_ELEMENTS]

1,

HF_SOLVE_TAC THEN
REPEAT STRIP_TAC THEN
Q.EXISTS_TAC ‘HD (data)::data2‘ THEN
REPEAT STRIP_TAC THEN
‘?dh dtl. data = dh::dtl¢ by (Cases_on ‘data‘ THEN FULL_SIMP_TAC list_ss []) THEN
FULL_SIMP_TAC list_ss [] THEN
HF_SOLVE_TAC THEN
REPEAT STRIP_TAC THEN
Q.EXISTS_TAC f‘rdata ++ rdata’‘ THEN
FULL_SIMP_TAC list_ss [SWAP_ELEMENTS_INTRO] THEN
HF_SOLVE_TAC THEN
STRIP_TAC THEN
REPEAT (Q.PAT_ASSUM ‘LENGTH Y = X (ASSUME_TAC o GSYM)) THEN
‘r_const b_const’ = PRE (LENGTH rdata)‘ by DECIDE_TAC THEN
FULL_SIMP_TAC list_ss [MIN_EQ] THEN
HF_VC_TAC THEN
REPEAT STRIP_TAC THENL [
MATCH_MP_TAC sortingTheory.SORTED_APPEND THEN
FULL_SIMP_TAC arith_ss [relationTheory.transitive_def, EL] THEN

B.2. INTERACTIVE EXAMPLES 181

REPEAT STRIP_TAC THEN
Tactical .REVERSE (‘“(dh < x) /\ (dh < y)‘ by ALL_TAC) THEN1 DECIDE_TAC THEN
‘MEM x (TAKE (LENGTH rdata) (SWAP_ELEMENTS (PRE (LENGTH rdata)) O (dh::data2))) /\
MEM y (DROP (LENGTH rdata) (SWAP_ELEMENTS (PRE (LENGTH rdata)) O (dh::data2)))‘ by
METIS_TAC [PERM_MEM_EQ] THEN
NTAC 2 (POP_ASSUM MP_TAC) THEN
Q.SUBGOAL_THEN ‘LENGTH rdata <= SUC (LENGTH data2)‘ MP_TAC THEN1 DECIDE_TAC THEN
SIMP_TAC list_ss [MEM_EL, NOT_LESS, GSYM LEFT_FORALL_IMP_THM,
SWAP_ELEMENTS_def , REPLACE_ELEMENT_SEM, LENGTH_REPLACE_ELEMENT,
EL_FIRSTN, EL_BUTFIRSTN] THEN
REPEAT STRIP_TAC THENL [
Cases_on ‘PRE (LENGTH rdata)‘ THEN1 ASM_SIMP_TAC list_ss [] THEN
Cases_on ‘n‘ THEN ASM_SIMP_TAC list_ss [GSYM NOT_LESS] THEN
ASM_SIMP_TAC arith_ss [COND_RAND, COND_RATOR],

Cases_on ‘n’ + LENGTH rdata‘ THEN ASM_SIMP_TAC list_ss []
1,

ASM_SIMP_TAC (std_ss++permLib.PERM_SIMPLE_ss) [] THEN
MATCH_MP_TAC PERM_SWAP_ELEMENTS THEN
ASM_SIMP_TAC list_ss []

]3

HF_SOLVE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THEN
Q.ABBREV_TAC ‘len = e_const’ + 1 - b_const’‘ THEN
‘(len = 0) \/ (len = 1) by (UNABBREV_ALL_TAC THEN DECIDE_TAC) THEN (
FULL_SIMP_TAC std_ss [LENGTH_EQ_NUM_compute, SORTED_DEF]
)
]

val _ = holfoot_tac_verify_spec file3 NONE [("quicksort", quicksort_loopspec_TAC)]

B.2.16 Binary Search Tree

This is an example about binary search trees seen as sets. It contains procedures for
membership test, inserting elements and deleting elements as well as a procedure for
copying the content of a search tree into a sorted singly-linked list.

Listing B.74: interactive/binary_search_tree.dsf

search_tree_init (r;) {
r = 0;
} [data_tree(r,_data) x ‘‘BIN.SEARCH_TREE_SET data EMPTY"]

search_tree_insert (t;k) [data_tree(t,data) + “BIN.SEARCH_TREE_SET data keys"] {
local kO, tt;
if (t == NULL) {
t = new(); t->1 = 0; t->r = 0; t->dta = k;
} else {
kO = t->dta;
if (kO == k) { } else {
if (k < k0) {
tt = t->1;
search_tree_insert (tt;k);
t->1 = tt;
} else {
tt = t->r;
search_tree_insert (tt;k);
t->r = tt;
}
}
}
} [data_tree (t,_data) = ““BIN.SEARCH_TREE_SET data (k INSERT keys)*]

search_tree_delete_min (t,m;) [data_tree(t,data) x
“ BIN.SEARCH.TREE_SET data keys /\ ~(keys = EMPTY)"] {
local tt;
tt = t->1;

182 APPENDIX B. EXAMPLE SPECIFICATIONS

if (¢t !'= NULL) {
search_tree_delete_min (tt,m;);
t->1 = tt;

} else {
m = t->dta; tt = t->r; dispose (t); t = tt;

}

} [data_tree (t,_data) = (m == _mk) *

“BIN_.SEARCH_-TREE_SET data (keys DELETE mk) /\

(mk IN keys) /\ ('k. k IN keys ==> mk <= k)"]

search_tree_delete (t;k) [data_tree(t,data) + “BIN.SEARCH_TREE_SET data keys"] {

local kO, tt_1l, tt_r;
if (t == NULL) { } else {
kO = t->dta; tt_1l = t->1; tt_r = t->r;
if (k < k0) {
search_tree_delete (tt_1;k);
t->1 = tt_1;
} else if (k > k0) {
search_tree_delete (tt_r;k);
t->r = tt_r;
} else {
if (tt_1 == 0) {
dispose(t); t = tt_r;
} else if (tt_r == 0) {
dispose(t); t = tt_1;
} else {
search_tree_delete_min (tt_r,k0;);
t->dta = k0; t->r = tt_r;
¥
}
}
} [data_tree (t,_data) = ““BIN.SEARCH_TREE_SET _data (keys DELETE k)]

search_tree_lookup (r;t,k) [data_tree(t,data) «+ “BIN.SEARCH_TREE_SET data keys"] {

local kO, tt;
if (¢ == NULL) { r = 0; } else {
k0 = t->dta;
if (k == k0) { r = 1; } else
if (k < k0) { tt = t->1; search_tree_lookup (r;tt,k); } else
{ tt = t->r; search_tree_lookup (r;tt,k); }

}
} [data_tree (t,data) * ‘“BIN_.SEARCH_TREE_SET data keys'’ x
(r == “BOOL_TO_NUM (k IN keys)")]

search_tree_to_list___rec (r;t) [data_tree(t,data_t) x
data_list (r, data_l) = "‘BIN.SEARCH_TREE_SET data_t keys"] {
local n, tt;
if (t == NULL) { } else {
tt = t->r; search_tree_to_list___rec (r;tt);
n =new(); n->tl =r; r = n;
tt = t->dta; n->dta = tt;
tt = t->1; search_tree_to_list___rec (r;tt);
}
} [data_tree(t,data_t) = data_list (r,"" _data_lt ++ data_l"’) =
“(BIN.SEARCH_TREE_SET data_t keys) /\ (LIST_.TO_SET data_lt = keys) /\
(SORTED $< data_lt)"]

search_tree_to_list (r;t) [data_tree(t,data_t) *
“BIN_SEARCH_TREE_SET data_t keys"] {
r = 0; search_tree_to_list___rec (r;t);
} [data_tree (t,data_t) = data_list (r, _data_lt) x
“(BIN.SEARCH_TREE_SET data_t keys) /\ (LIST_-TO_SET data_lt = keys) /\

(SORTED $< data_It)"]
For lookup and deleting the minimal node, there are iterative versions as well:

Listing B.75: interactive/binary_search_tree.dsf2

search_tree_delete_min (t,m;) [data_tree(t,data) *
“BIN_SEARCH.TREE.SET data keys /\ ~(keys = EMPTY)"] {
local tt, pp, p;
p = t—>1;
if (p == 0) {

B.2. INTERACTIVE EXAMPLES 183

m = t->dta; tt = t->r;
dispose (t); t = tt;

} else {
pp = t; tt = p->1;
loop_spec [

(pp |—> [I:p, r:#rc2,dta:#dc2]) *
(p |=> [l:tt, r:i#rc, dta:#dc]) * (pp == #ppc) *
data_tree(tt ,data_l) * data_tree(#rc,data_r) =*
¢ ‘BIN_SEARCH_TREE_SET (node [dc] [data_l;data_r]) keys‘‘] {
while (tt !'= NULL) {
pp = p; p = tt; tt = p->1;

m = p->dta; tt = p->r; dispose (p); pp—>1 = tt;

} [(m == _mk) = (#ppc |—> [l:_new_p,r:#rc2,dta:#dc2]) *
data_tree(_new_p,_data) *
¢ ‘BIN_SEARCH_TREE_SET _data (keys DELETE _mk) /\

(_mk IN keys) /\ ('k. k IN keys ==> _mk <= k)‘‘]
}
} [data_tree (t,_data) = (m == _mk) *
“BIN_.SEARCH_TREE_SET data (keys DELETE mk) /\
(mk IN keys) A\ (1k. k IN keys ==> mk <= k)"]

search_tree_lookup (r;t,k) [data_tree(t,data) «+ “BIN.SEARCH_TREE_SET data keys"] {
local kO, tt;

tt = t; r = 0;
loop_spec [(k == #kv) x (r == #rc) = (tt == #tc) *
data_tree (tt,data) * ‘‘BIN.SEARCH_TREE_SET data keys /\ (rc IN {0;1:num})"] {
while (““7(tt = 0) /\ (r =0 {
kO = tt->dta;
if (k == k0) { r = 1; } else
if (k < k0) { tt = tt->1; } else { tt = tt->r; }

}
} [(k == #kv) * data_tree(#tc,data)
(r == "BOOL_TO_NUM ((rc = 1:num) \/ (kv IN keys))")]
} [data_tree (t,data) * ‘“BIN_.SEARCH_TREE_SET data keys'’ x
(r == “BOOL_TO_NUM (k IN keys)")]

184 APPENDIX B. EXAMPLE SPECIFICATIONS

Due to the large number of procedures, the proof-script is lengthy. Therefore, just an
excerpt is shown here:

Listing B.76: interactive/binary_search_tree.hol

(**)
(x Definitions of search trees *)
(**)
val BIN_SEARCH_TREE_SET_def = Define
¢ (BIN_SEARCH_TREE_SET leaf keys = (keys = EMPTY)) /\
(BIN_SEARCH_TREE_SET (node [k] [t1; t2]) keys =
7k1 k2. (keys = k INSERT (k1 UNION k2)) /\
('k?:num. k’ IN ki ==> k> < k) /\
('k?:num. k’ IN k2 ==> k> > k) /\
(BIN_SEARCH_TREE_SET t1 k1) /\
(BIN_SEARCH_TREE_SET t2 k2)) /\
(BIN_SEARCH_TREE_SET _ _ = F)°;

(kKooK oK KKK KKK KKK oK KKK K KK KK KK KKK KKK oK KK KKK KK oK KoKk KKK KoK K)
(x Verify specification / here just insert *)
(kKoK KoK KKK KKK KKK KKK KK KK KK KK KK KKK oK KK KKK KK oK KoK KKK KKK KoK K)
val file = concat [examplesDir, "/interactive/binary_search_tree.dsf"];

val search_tree_insert_TAC =
(* search_tree_insert x)
xHF_CONTINUE_TAC [generate_vcs] THEN
REPEAT STRIP_TAC THENL [
HF_ELIM_COMMENTS_TAC THEN
FULL_SIMP_TAC std_ss [BIN_SEARCH_TREE_SET_BIN_THM, IS_LEAF_REWRITE, UNION_EMPTY, NOT_IN_EMPTY],

HF _ELIM_COMMENTS_TAC THEN
Tactical .REVERSE (‘k_const’ IN keys‘ by ALL_TAC) THEN1 (
‘k_const’ INSERT keys = keys‘ by ALL_TAC THEN1 (
ASM_SIMP_TAC (std_ss++boolSimps.EQUIV_EXTRACT_ss) [EXTENSION, IN_INSERT]
) THEN
FULL_SIMP_TAC std_ss []
) THEN
FULL_SIMP_TAC std_ss [BIN_SEARCH_TREE_SET_BIN_THM, IN_INSERT],

HF_ELIM_COMMENTS_TAC THEN

FULL_SIMP_TAC std_ss [BIN_SEARCH_TREE_SET_BIN_THM] THEN

Q.EXISTS_TAC ‘k1‘ THEN

ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘k_const’ INSERT k1¢ THEN Q.EXISTS_TAC ‘k2¢ THEN

ASM_SIMP_TAC (std_ss ++ boolSimps.EQUIV_EXTRACT_ss) [IN_INSERT, EXTENSION, IN_UNION, DISJ_IMP_THM],

HF_ELIM_COMMENTS_TAC THEN

FULL_SIMP_TAC std_ss [BIN_SEARCH_TREE_SET_BIN_THM] THEN

Q.EXISTS_TAC ‘k2°‘ THEN

ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘k1¢ THEN Q.EXISTS_TAC ‘k_const’ INSERT k2¢ THEN

ASM_SIMP_TAC (std_ss ++ boolSimps.EQUIV_EXTRACT_ss) [IN_INSERT, EXTENSION, IN_UNION, DISJ_IMP_THM] THEN
DECIDE_TAC

B.2.17 Red-Black Tree

The red-black tree example is similar to the binary search tree example. First a predicate
is defined that captures the relation of the abstract data structure with the representation
in the heap. In comparison to the binary search tree example, the algorithm for inserting
an element into a red-black tree is much more complicated, because the invariants of the
data structure need to be maintained.

Listing B.77: interactive/red_black_tree.dsf

rb_tree_init (r;) {

B.2. INTERACTIVE EXAMPLES 185

r = 0;
} [data_tree (r,[k,v,c]:_data) * ¢‘RED_BLACK_TREE _data FEMPTY®‘]

rb_tree_mk_node (r; k, v) {
r = new(); r->k = k; r->v = v; r->c = 1; r->1 = 0; r->r = 0;

} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___mk_node k v‘‘)]

rb_tree_is_red (r;t) [data_tree(t,[k,v,c]:data)] {

local x;
if (t ==0) { r=0; } else {
X = t->c;
if (x==1) {r=1; Yelse {r=0; }
}
} [data_tree(t,[k,v,c]:data) * (r == ‘‘BOOL_TO_NUM (RED_BLACK_TREE___IS_RED data)‘‘)]

rb_tree_left_rotate (r;) [data_tree(r,[kv,c]:data) * ¢‘PROGRAM_PRED___can_left_rotate data‘‘] {
local s, x;
s = r->r; x = s->1; r->r = x; s=>1 =r; r->c = 1; s=>c = 0; r = s;

} [data_tree (r,[k,v,c]: ‘PROGRAM_FUN___left_rotate data‘‘)]

rb_tree_left_double_rotate (r;) [data_tree(r,[k,v,c]:data) * °‘PROGRAM_PRED___can_left_double_rotate data‘‘] {
local x;
X = r->r;
rb_tree_right_rotate (x;);
r->r = X;
rb_tree_left_rotate (r;);
} [data_tree(r,[k,v,c]: ‘PROGRAM_FUN___left_double_rotate data‘‘)]

rb_tree_right_rotate (r;) [data_tree(r,[k,v,c]:data) * °‘PROGRAM_PRED___can_right_rotate data‘‘] {
local s, x;
s =r>l; x = s->r; r->1 = x; s=>r =r; r->c = 1; s=>c = 0; r = s;

} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___right_rotate data‘‘)]

rb_tree_right_double_rotate (r;) [data_tree(r,[k,v,c[:data) * ¢‘PROGRAM_PRED___can_right_double_rotate data‘‘] {
local x;

X = r->1;
rb_tree_left_rotate (x;);
r->1 = x;

rb_tree_right_rotate (r;);
} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___right_double_rotate data‘‘)]

rb_tree_color_flip (r;) [data_tree(r[k,v,c]:data) * ¢‘PROGRAM_PRED___can_color_flip data‘‘] {
local x;
r->c = 1;
x = r->1; x->c = 0;
X = r->r; x->c = 0;
} [data_tree(r,[k,v,c]: ¢ ‘PROGRAM_FUN___color_flip data‘‘)]

186 APPENDIX B. EXAMPLE SPECIFICATIONS

rb_tree_left_balance (r;) [data_tree(r [k,v,c]:data) * ¢ ‘PROGRAM_PRED___can_left_balance data‘‘] {

local rl, rr, x, y;
X = r->C;
if (x == 0) {
rl = r->1;
rr = r->r;
rb_tree_is_red (x; rl);
if (x == 1) {
rb_tree_is_red (x; rr);
if (x == 1) {
rb_tree_color_flip (r;);
} else {
y = rl->1;
rb_tree_is_red (x; y);
if (x == 1) {
rb_tree_right_rotate (r;);
} else {
y = rl->r;
rb_tree_is_red (x; y);
if (x == 1) {
rb_tree_right_double_rotate (r;);
}

}

}
} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___left_balance data‘‘)]

rb_tree_right_balance (r;) [data_tree(r,[k,v,c]:data) * ¢ ‘PROGRAM_PRED___can_right_balance data‘‘] {

local rl, rr, x, y;

X = r->C;

if (x == 0) {
rl = r->1;
rr = r->r;

rb_tree_is_red (x; rr);
if (x == 1) {
rb_tree_is_red (x; rl);
if (x == 1) {
rb_tree_color_flip (r;);
} else {
y = rr->r;
rb_tree_is_red (x; y);
if (x == 1) {
rb_tree_left_rotate (r;);
} else {
y = rr->1;
rb_tree_is_red (x; y);
if (x == 1) {
rb_tree_left_double_rotate (r;);
}

}

}
} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___right_balance data‘‘)]

B.2. INTERACTIVE EXAMPLES 187

rb_tree_insert_r (r; k, v) [data_tree(r,[k,v,c]:data) * ¢‘PROGRAM_PRED___can_insert_r data‘‘] {
local rk, rl, rr, rlc, rrc;
if (r == NULL) {
rb_tree_mk_node (r;k,v);
} else {
rk = r->k;
if (rk == k) {
r->v = v;
} else {
rl = r->1;
rr = r->r;
if (k < rk) {
rb_tree_insert_r (rl;k,v);

r->1 = rl;

rb_tree_left_balance (r;);
} else {

rb_tree_insert_r (rr;k,v);

r->r = rr;

rb_tree_right_balance (r;);

}
}

}
} [data_tree (r,[k,v,c]:‘ ‘PROGRAM_FUN___insert_r data k v‘‘)]

rb_tree_insert (r; k, v) [data_tree(r,[k,v,c]:data) * ¢‘RED_BLACK_TREE data f‘‘] {
rb_tree_insert_r (r; k, v);
r->c = 0;

} [data_tree(r,[k,v,c]:_data) * ¢‘RED_BLACK_TREE _data (f |+ (k,v))‘‘]

rb_tree_lookup(r,v;t,k) [data_tree(t,[k,v,c]:data) * ¢ ‘BIN_SEARCH_TREE data f‘¢ * (v == #vc)] {
local kO, tt;
if (¢ == NULL) {
r = 0;
} else {
k0 = t->k;
if (k == k0) {
r =1;
v = t->v;
} else if (k < k0) {
tt = t->1;
rb_tree_lookup (r,v;tt,k);
} else {
tt = t->r;
rb_tree_lookup (r,v;tt,k);
}
}
} [data_tree (t,[k,v,c]:data) *
(r == “‘BOOL_TO_NUM ((k:num) IN FDOM (f:num |-> num))‘‘) *
(v == ““if (k IN FDOM (f:num |-> num)) then f ’ k else vc‘‘)]

The proof of this specification introduces specific predicates for auxiliary procedures. This
translates the algorithm implemented in Holfoot’s imperative programming language into
a functional representation inside HOL4. Verifying the correctness of this translation is
straightforward. Proving the correctness of the functional representation is, however, com-
plicated. Thanks to the translation into a functional representation, these complicated,
lengthy proofs are, however, only concerned with the essence of the algorithm. Low level
implementation details are handled automatically during the translation.

Listing B.78: interactive/red_black_tree.hol

(**)
(* First, get the necessary HOL definitions in place *)
(**)
val BIN_SEARCH_TREE_def = Define
¢ (BIN_SEARCH_TREE leaf f = (f = FEMPTY)) /\
(BIN_SEARCH_TREE (node [k;v;c] [t1; t2]) f =
7f1 £2. (f = (FUNION f£1 £2)|+(k,v)) /\
('k’:num. k’ IN FDOM f1 ==> k’> < k) /\
('k’:num. k’ IN FDOM f2 ==> k’> > k) /\
(BIN_SEARCH_TREE t1 f1) /\

188 APPENDIX B. EXAMPLE SPECIFICATIONS

(BIN_SEARCH_TREE t2 £2)) /\
(BIN_SEARCH_TREE _ _ = F)¢;
val RED_BLACK_TREE___IS_BLACK_def = Define ¢
(RED_BLACK_TREE___IS_BLACK leaf = T) /\
(RED_BLACK_TREE___IS_BLACK (node [k;v;c] [t1;t2]) = (c = O:num)) /\
(RED_BLACK_TREE___IS_BLACK _ = F)°;

val RED_BLACK_TREE___IS_RED_def = Define ¢
(RED_BLACK_TREE___IS_RED leaf = F) /\
(RED_BLACK_TREE___IS_RED (node [k;v;c] [t1;t2]) = (c=1:num)) /\
(RED_BLACK_TREE___IS_RED _ = F)¢;

val RED_BLACK_TREE___PROP_NO_RED_RED_def =

Define ‘RED_BLACK_TREE___PROP_NO_RED_RED t =

't> t’’. (¢’ IN SUBTREES t /\ t’’ IN DIRECT_SUBTREES t’) ==>
~(RED_BLACK_TREE___IS_RED t’ /\ RED_BLACK_TREE___IS_RED t’’)°¢

val RED_BLACK_TREE___PROP_BLACK_BALANCED_def =
Define ‘RED_BLACK_TREE___PROP_BLACK_BALANCED n t =
'p. p IN TREE_PATHS t ==> (LENGTH (FILTER (\t. (EL 2 t) = O:num) p) = n)°

val IS_RED_BLACK_TREE_NODE_THM = prove (

¢“IS_RED_BLACK_TREE_NODE t =
7k v ¢ t1 t2. (t = node [k;v;c] [t1;t2]) /\ (c IN {0;1})‘¢,

Cases_on ‘t‘ THEN

SIMP_TAC (list_ss++CONJ_ss) [IS_RED_BLACK_TREE_NODE_def, tree_distinct,
tree_11, LENGTH_EQ_NUM_compute, GSYM RIGHT_EXISTS_AND_THM,
GSYM LEFT_EXISTS_AND_THM] THEN

METIS_TAC[1);

val RED_BLACK_TREE___NODES_OK_def =
Define ‘RED_BLACK_TREE___NODES_OK t =
't>. t’ IN SUBTREES t /\ ~(IS_LEAF t’) ==> IS_RED_BLACK_TREE_NODE t’°‘;

val RED_BLACK_TREE_def = Define ¢

(* a red-black tree representing the finite map f, *)

RED_BLACK_TREE t f =

((x is a binary search tree containing f *)
(BIN_SEARCH_TREE t f) /\
(* has well-formed nodes all containing key, value and color *)
(RED_BLACK_TREE___NODES_OK t) /\
(* has a black root *)
(RED_BLACK_TREE___IS_BLACK t) /\
(* no red node has a red child *)
(RED_BLACK_TREE___PROP_NO_RED_RED t) /\
(* all paths through the tree have the same number of black nodes (n ones) *)
(?n. RED_BLACK_TREE___PROP_BLACK_BALANCED n t))°¢

(x - - %)
(* Predicates and functions that describe exactly the behavior of the code *)
(*x with the tactics that proof the correspondence with the code *)

C* -—- -—- *)
val file = concat [examplesDir, "/interactive/red_black_tree.dsf"];

(* holfoot_set_goal_procedures file ["rb_tree_is_red"] *)
val rb_tree_is_red _TAC =
xHF_CONTINUE_TAC [add_rewrites [RED_BLACK_TREE___IS_RED_BLACK___REWRITE]]

& - - %)

val PROGRAM_PRED___can_left_rotate_def = Define
‘PROGRAM_PRED___can_left_rotate t =

IS_RED_BLACK_TREE_NODE t /\
IS_RED_BLACK_TREE_NODE (RED_BLACK_TREE___RIGHT_SUBTREE t) ¢

val PROGRAM_PRED___can_left_rotate___REWRITE = prove (
¢ ‘PROGRAM_PRED___can_left_rotate t =

B.2. INTERACTIVE EXAMPLES

189

7k v ¢ k2 v2 c2 t1 t2 t3. (t = node [k;v;c] [tl; node [k2;v2;c2] [t2;t3]]) /\
(c IN {0;1}) /\ (c2 IN {0;1})¢¢,
SIMP_TAC (list_ss++CONJ_ss) [PROGRAM_PRED___can_left_rotate_def, tree_11, tree_distinct,
IS_RED_BLACK_TREE_NODE_THM, GSYM RIGHT_EXISTS_AND_THM,
GSYM LEFT_EXISTS_AND_THM, RED_BLACK_TREE___RIGHT_SUBTREE_def] THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC list_ss [tree_11]);

val PROGRAM_FUN___left_rotate_def = Define °¢
PROGRAM_FUN___left_rotate
(node [ki1l:num;vi;cl] [a; node [k2;v2;c2] [b;cl]) =
(node [k2;v2;0] [node [ki;v1i;1] [a;bl; cl)°

(* holfoot_set_goal_procedures file ["rb_tree_left_rotate"] *)
val rb_tree_left_rotate_TAC =
HF_CONTINUE_TAC THEN
REPEAT STRIP_TAC THEN
FULL_SIMP_TAC std_ss [PROGRAM_PRED___can_left_rotate___REWRITE] THEN
xHF_CONTINUE_TAC [add_rewrites [PROGRAM_FUN___left_rotate_def]]

(x - - -—= %)
(* After translating the program into a functional spec, the reasoning about *)

(* red black trees happens inside HOL4 using this functional representation. *)

(* It results in the following lemma, which captures the essense of why *)

(* the procedure rb_tree_insert is correct *)

(* == == --- %)
val RED_BLACK_TREE___WEAK___insert_r = prove (

‘““tk v t £ n.

RED_BLACK_TREE___WEAK n T t f ==>
RED_BLACK_TREE___WEAK n (" (RED_BLACK_TREE___IS_RED t)) (PROGRAM_FUN___insert_r t k v) (f

190 APPENDIX B. EXAMPLE SPECIFICATIONS

B.3 VSTTE’10 Competition

During the Verified Software: Theories, Tools and Fxperiments conference in August 2010
in Edinburgh there was an informal verification competition! organised by Natarajan
Shankar and Peter Mueller. I participated with Holfoot in this competition. Afterwards,
I cleaned up my solutions and completed the missing problems. Here are the solutions to
the competition problems:

B.3.1 Problem 1

This problem determines the sum and the maximum of all elements in an array [. It is to
show that sum(l) < length(l) = maxz(l) holds. A short interactive proof is needed to reason
about the arithmetic properties of a straightforward implementation.

Listing B.79: vstte/vscompl-simple.dsf

vscompl (sum,max;a,n) [data_array(a,n,data)] {
local i, tmp;
sum = 0; max = 0; i = 0;
while (i < n) [data_array(a,n,data) x i <= n* (sum <= (i * max))] {
tmp = (a + i) -> dta;
if (max < tmp) { max = tmp; }
sum = sum + tmp;
i=1i+1;
}
} [data_array(a,n,data) x (sum <= (n x max))]

val filel = concat [examplesDir, "/vstte/vscompl-simple.dsf"];
val vscompl_simple_TAC =
(*run automation and then remove comments *)
HF_CONTINUE_TAC THEN HF_VC_TAC THEN

(* only some arithmetic verification conditions remain proof them interactively *)
SIMP_TAC arith_ss [GSYM ADD1, MULT_CLAUSES] THEN
REPEAT STRIP_TAC THENL [

MATCH_MP_TAC LESS_EQ_TRANS THEN

Q.EXISTS_TAC ‘i_const * max’_const‘ THEN

ASM_SIMP_TAC arith_ss [],

‘n_const = i_const‘ by DECIDE_TAC THEN
ASM_SIMP_TAC arith_ss []
13

val thml = holfoot_tac_verify_spec filel NONE [("vscompl", vscompl_simple_TAC)];

Using HOL4 one can define functions for the maximum element and the sum of all ele-
ments. These definitions allow a simple, but strong specification of the problem. More-
over, the interesting part of the problem sum(l) < length(l) » maz(l) can be shown indepen-
dently from the implementation. As usual, there is a specification using a loop-invariant
and one using a loop-specification.

Listing B.80: vstte/vscompl-invariant.dsf

vscompl (sum,max;a,n) [data_array(a,n,data)] {
local i, tmp;
sum = 0; max = 0; i = 0;
while (i < n) [data_array(a,n,data) = i <=n x
(max == “LIST.MAX (FIRSTN i data)") x
(sum == “LIST_.SUM (FIRSTN i data)")] {
tmp = (a + i) -> dta;

http://wuw.macs.hw.ac.uk/vsttel10/Competition.html

http://www.macs.hw.ac.uk/vstte10/Competition.html

B.3. VSTTE’10 COMPETITION

191

if (max < tmp) { max = tmp; }
sum = sum + tmp;
i=i+ 1

+
} [data_array (a,n,data) = (sum <= (n * max)) *
(max == "“LIST_MAX data") * (sum == "“LIST_.SUM data"’)]

Listing B.81: vstte/vscompl-loopspec.dsf

vscompl (sum,max;a,n) [data_array(a,n,data)] {

local i, tmp;

sum = 0; max = 0; i = 0;

loop_spec [data_array (a,n,data)] {

while (i < n) {

tmp = (a + i) -> dta;
if (max < tmp) { max = tmp; }
sum = sum + tmp;
i=1i+ 1

}
} [data_array(a,n,data) x
(max == “MAX (old(max)) (LIST-MAX (BUTFIRSTN (old(i)) data))") «

(sum == old(sum) + “LIST_.SUM (BUTFIRSTN (old(i)) data)*")]
} [data_array(a,n,data) * (sum <= (n * max)) *
(max == "LIST-MAX data") + (sum == “LIST_.SUM data")]

Listing B.82: vstte/vscomp]l.hol

val LIST_SUM_def = Define ¢
(LIST_SUM ([]:num list) = 0) /\
(LIST_SUM (n::ns) =n + LIST_SUM ns)‘

val LIST_MAX_def = Define
(LIST_MAX ([]:num list) = 0) /\
(LIST_MAX (n::ns) = MAX n (LIST_MAX ns))°

(* Proof the goal as a lemma *)
val LIST_MAX_SUM_THM = prove (
€“11. LIST_SUM 1 <= (LENGTH 1) * LIST_MAX 1°°¢,
Induct_on ‘1¢ THENL [
SIMP_TAC list_ss [LIST_SUM_def],

ASM_SIMP_TAC list_ss [LIST_SUM_def, LIST_MAX_def,
MULT_CLAUSES, MAX_DEF] THEN

REPEAT STRIP_TAC THEN

Cases_on ‘h < LIST_MAX 1¢ THEN (
ASM_SIMP_TAC arith_ss []

) THEN

‘LIST_MAX 1 <= h‘ by DECIDE_TAC THEN

METIS_TAC [MULT_SYM,LESS_EQ_TRANS,LESS_MONO_MULT]

;

val LIST_SUM_SNOC = prove (‘‘!n ns. LIST_SUM (SNOC n ns) = LIST_SUM (n
Induct_on ‘ns‘ THEN ASM_SIMP_TAC list_ss [LIST_SUM_def]);

val LIST_MAX_SNOC = prove (‘‘!m ns. LIST_MAX (SNOC n ns) = LIST_MAX (n
Induct_on ‘ns‘ THEN ASM_SIMP_TAC list_ss [LIST_MAX_def] THEN
SIMP_TAC (arith_ss++boolSimps.COND_elim_ss) [MAX_DEF]);

(**)

(* Verify specification using these definitions and a loop invariant

(**)

val file2 = concat [examplesDir, "/vstte/vscompl-invariant.dsf"];
val vscompl_invariant_TAC =

::ns) ‘¢,

i:ns) ‘¢,

*)

(* run automation and concentrate on remaining VCs i.e. remove comments *)

HF_VC_SOLVE_TAC THEN HF_VC_TAC THEN

(* solve vcs using the simplifier *)
SIMP_TAC arith_ss [GSYM ADD1,
LIST_SUM_def, LIST_MAX_def,
LIST_MAX_SUM_THM,
GSYM SNOC_EL_FIRSTN, MAX_DEF,
LIST_SUM_SNOC, LIST_MAX_SNOC]

192 APPENDIX B. EXAMPLE SPECIFICATIONS

val thm2 = holfoot_tac_verify_spec file2 NONE [("vscompl", vscompl_invariant_TAC)];

(ks ko s ok sk sk ks ok sk sk s ok sk ko s ok sk o sk o sk s ke sk s o sk sk sk sk ke ks s sk ok e ks ok ks s ok sk sk ke kok ok)
(* Verify specification using these definitions and a loop spec *)
(ko ko s sk sk ks ok sk sk s ok sk ko s sk o sk o sk sk ke sk s o sk s sk sk ke ks s sk ok e ok sk o sk sk s ok sk sk ke ok ok)
val file3 = concat [examplesDir, "/vstte/vscompl-loopspec.dsf"];
val vscompl_loopspec_TAC =
(*run automation and concentrate on remaining VCs i.e. remove comments *)
HF_SOLVE_TAC THEN HF_VC_TAC THEN

(* solve vcs using the simplifier *)

SIMP_TAC arith_ss [BUTFIRSTN_LENGTH_LESS, GSYM ADD1,
BUTFIRSTN_CONS_EL, LIST_SUM_def, LIST_MAX_def,
LIST_MAX_SUM_THM, MAX_DEF]

val thm3 = holfoot_tac_verify_spec file3 NONE [("vscompl", vscompl_loopspec_TAC)];

B.3.2 Problem 2

This problem is about inverting an array. It is again solved using a new HOL4 definition
that captures the semantics of the procedure. Then the interesting properties are shown
for this newly introduced function instead directly for the implementation.

Listing B.83: vstte/vscomp2.dsf

vscomp2(;a,b,n) [data_array(a,n,data) x data_array (b, m,data2) = ““EVERY (\x. x < m) data"] {
local i;
i= 0;
loop_spec [data_array (a,n,data) * data_array (b, m,data2) x “"EVERY (\x. x < m) data“’] {
while (i < n) {
tmp = (a + i) -> dta;
(b + tmp) -> dta = i;
=i+ 1;
}
} [data_array (a,n,data) = data_array (b,m,
“VSCOMP2_FUN data2 (old(i)) (BUTFIRSTN (old(i)) data)")]
} [data_array (a,n,data) = data_array (b,m," VSCOMP2_FUN data2 0 data‘’)]

Listing B.84: vstte/vscomp2.hol

val VSCOMP2_FUN_def = Define ¢
(VSCOMP2_FUN 1 i [1 = 1) /\
(VSCOMP2_FUN 1 i (n::mns) =
VSCOMP2_FUN (REPLACE_ELEMENT i n 1) (SUC i) ns)°¢

val LENGTH_VSCOMP2_FUN = prove (

‘11 i ns. LENGTH (VSCOMP2_FUN 1 i ns) = LENGTH 1°°¢,

Induct_on ‘ns‘ THEN

ASM_SIMP_TAC std_ss [VSCOMP2_FUN_def, LENGTH_REPLACE_ELEMENT]);

(kskakkakok ko sk ko ok ok ok ook ook ook ok ko ok ok ko ok ook ok stk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ko ok ok ok ok ok ok)
(* Verify the spec that the program implements VSCOMP2_FUN *)

(kskakokak ook ko ko ok ok ok ok ook ook ok ko ok ok ok ok ook ok stk ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok)
val file = concat [examplesDir, "/vstte/vscomp2.dsf"];

(* holfoot_set_goal_procedures file ["vscomp2"] *)
val vscomp2_TAC =
(*simplify the EVERY into something easier for the automation *)
SIMP_TAC std_ss [EVERY_MEM, MEM_EL,GSYM LEFT_FORALL_IMP_THM] THEN
(*run automation *)
HF_SOLVE_TAC THEN
(* clean up the goal a bit and the prove VCs on VSCOMP2_FUN *)
REPEAT STRIP_TAC THEN HF_VC_TAC THENL [
ASM_SIMP_TAC std_ss [BUTFIRSTN_LENGTH_LESS, VSCOMP2_FUN_def],
FULL_SIMP_TAC list_ss [LENGTH_VSCOMP2_FUN, LENGTH_REPLACE_ELEMENT,
GSYM ADD1, BUTFIRSTN_CONS_EL, VSCOMP2_FUN_def]
1;

B.3. VSTTE’10 COMPETITION 193

val final_thm = holfoot_tac_verify_spec file NONE [("vscomp2", vscomp2_TAC)];

(kokeok ke ek sk ok ok ok ok ok ok ok ok ok sk ok sk ok sk s sk ok sk sk sk ok ok sk sk o sk sk sk ok ok sk s ok ok sk sk s ok sk ok sk sk sk ok ok ok sk ok sk ok sk ok ok)
(* So far, the program was reduced to a functional implementation as a HOL 4 *)
(* function VSCOMP2_FUN. Now show some interesting properties of VSCOMP2_FUN *)
(koo ks sk sk o ok ok ok ok ok ok ok ok o ok o oK o oK o oK ok o ok ok o ok o o ok o ok o ok ok K ok o ok ook o K ok o oK ok ok ok ok oK ok ok ok oK ok oK ok oK ok K ok ok ok ok ok K oK)

val EL_VSCOMP2_FUN___NOT_IN = prove (¢‘!11 i 12 n.
n < LENGTH 11 /\ “(MEM n 12) ==>
(EL n (VSCOMP2_FUN 11 i 12) = EL n 11)¢¢, ...);

val EL_VSCOMP2_FUN___IN = prove (‘‘!11 i 12 n.
(n < LENGTH 11 /\ (MEM n 12)) ==> (EL n (VSCOMP2_FUN 11 i 12) >= i)¢¢, ...)

(* proving B[A[i]] = i %)
val VSCOMP2_FUN___EL = prove (‘‘!11 i 12.

EVERY (\x. x < LENGTH 12) 11 /\ ALL_DISTINCT 11 ==
(In. n < LENGTH 11 ==> (EL (EL n 11) (VSCOMP2_FUN 12 i 11) = n+i))‘‘, ...);

(* proving B is injective *)

val VSCOMP2_FUN___INJ1 = prove (¢‘!11 i 12 n m.
(EVERY (\x. x < LENGTH 12) 11 /\
(EL n (VSCOMP2_FUN 12 i 11) = EL m (VSCOMP2_FUN 12 i 11)) /\
MEM n 11 /\ MEM m 11) ==> (n =m) ‘¢, ...)

val VSCOMP2_FUN___INJ = prove (
€111 i 12 n m. (EVERY (\x. x < LENGTH 12) 11 /\ ('n. n < LENGTH 12 ==> MEM n 11)) ==>
ALL_DISTINCT (VSCOMP2_FUN 12 i 11)¢, ...)

B.3.3 Problem 3

This example searches for the first occurrence of 0 in a singly-linked list.

Listing B.85: vstte/vscomp3-loopspec.dsf

vscomp3(i;11) [data_list(Il ,data)] {
local found, jj, tmp;
jj = 11; found = 0; i = 0;
loop_spec [data_list (jj,data2) = *“("(found = 0)) ==> (HD data2 = 0)"] {
while ((jj != NULL) and (found == 0)) {
tmp = jj -> dta;
if (tmp == 0) { found = 1; } else { jj = jj -> tl; i =1 + 1; }
}
} [data_list (old(jj), data2) « (old(i) <=1i)
(i <= old(i) + “LENGTH data2") x
“I'n. n < (i —old(i)) ==> ~(EL n data2 = 0)"* *
“((i — old(i)) < LENGTH data2) ==> (EL (i — old(i)) data2 = 0)"]
} [data_list (Il ,data) x*
“(i <= LENGTH data) /\ (In. n < i ==> “(EL n data = 0)) /\
(i < LENGTH data ==> (EL i data = 0))"]

This specification looks complicated, because of the lengthy characterisation of the first
index of 0. Introducing a new definition and generalising the search to find an element
that satisfies some predicate P leads to the following, simpler specification.

Listing B.86: vstte/vscomp3-loopspec2.dsf

global P;

vscomp3(i;11) [data_list(Il ,data)] {
local found, jj, tmp;
jj = 11; found = 0; i = O;
loop_spec [data_list (jj,data2) = *“("(found = 0)) ==> (P (HD data2))"] {
while ((jj !'= NULL) and (found == 0)) {
tmp = jj —-> dta;
if (‘P tmp‘‘) { found = 1; } else { jj = jj —> tl; i =i +1; }
}

194 APPENDIX B. EXAMPLE SPECIFICATIONS

} [data_list (old(jj), data2) = (i == “old(i) + (FIRST-INDEX P data2)")]
Y [data_list (Il data) % (i == “FIRST_INDEX P data")]

The verification of both specifications is straightforward.

Listing B.87: vstte/vscomp3.hol

val file = concat [examplesDir, "/vstte/vscomp3-loopspec.dsf"];

(* holfoot_set_goal_procedures file ["vscomp3"] *)
val vscomp3_loopspec_TAC =
(*run automation and clean up *)
HF_CONTINUE_TAC THEN REPEAT STRIP_TAC THEN HF_VC_TAC THEN

(* a bit of arithmetic reasoning and a case split *)

‘i_const - old_i = SUC (i_const (old_i + 1))‘ by DECIDE_TAC THEN
ASM_SIMP_TAC list_ss [] THEN

Cases_on ‘n‘ THEN FULL_SIMP_TAC list_ss []

val thml = holfoot_tac_verify_spec file NONE [("vscomp3", vscomp3_loopspec_TAC)];

(**)

(* Introduce special search predicates *)
(kKoK KoK KKK KKK K KKK oK KKK KK KKK KKK KK KKK oK KK KKK KK oK KoK KoK KKK KoK K)

val FIRST_INDEX_def = Define ¢

FIRST_INDEX P 1 = LEAST n. (n = LENGTH 1) \/ P (ELn 1)°¢

val FIRST_INDEX_THM = prove (

1P 1 n. (FIRST_INDEX P 1 = n)
(n <= LENGTH 1) /\ ('i. i < n ==> ~(P (EL i 1))) /\
((n < LENGTH 1) ==> P (EL n 1)) ‘¢,

L)

val FIRST_INDEX_REWRITE = prove (
¢“(FIRST_INDEX P [1 = 0) /\
(FIRST_INDEX P (e::es) =
if (P e) then O else SUC (FIRST_INDEX P es))‘‘, ...)

val file4 = concat [examplesDir, "/vstte/vscomp3-loopspec2.dsf"];
val vscomp3_loopspec2_TAC =

(*run automation *)

HF_SOLVE_TAC THEN HF_VC_TAC THEN

(* use definition of FIRST_INDEX *)
SIMP_TAC (1ist_ss++boolSimps.CDNJ_SS) [FIRST_INDEX_REWRITE] THEN
Cases_on ‘data2‘ THEN SIMP_TAC list_ss [FIRST_INDEX_REWRITE]

val thm4 = holfoot_tac_verify_spec file4 NONE [("vscomp3", vscomp3_loopspec2_TAC)];

B.3.4 Problem 4

Problem 4 searches for a solution of the n-queens problem, i.e. of the problem of placing
n queens on a chess-board of size n x n.

Listing B.88: vstte/vscomp4.dsf

isConsistent (r; board, p) [data_array(board,#m,data) « (p < #m)] {
local q, b_q, b_p;
r=1; q = 0; b_p = (board + p) -> dta;
while ((q < p) and (r == 1)) [
data_array (board,#m,data) x (q <= p) x (q < #m) x (p < #m) *
“(r = BOOL_-TO_NUM (IS.-CONSISTENT_-BOARD_REC q p data)) /\ (b-p = EL p data)] {
b_q = (board + q) -> dta;
if (‘“(b_q = b_p) \/
(b_.q -bp=p-q \V
(bp-bg=p-9°) 1

B.3. VSTTE’10 COMPETITION

195

r =0;

}
q=9+1;
}
} [data_array (board,#m,data)
“r = BOOL_.TO_NUM (IS_.CONSISTENT_BOARD_REC p p data)"]

search(r; board, p, m) [data_array(board,m," ‘datal++data2*)
“(p = LENGTH datal) /\ (m = LENGTH datal + LENGTH data2)"] {
local i, c;
r = 0;
if (p==m) {r=1; } else {
i=0;
while ((i < m) and (r == 0)) [
data_array (board,m,"‘datal+-+_data2")
“IS.BOOL_TO_NUM r" x (i<=m) % (p < m) * (p == “LENGTH datal") x
“if (r =1) then
((EVERY (\x. x < m) _data2) /\
(Ipp. (p <= pp /\ pp < m) ==> IS_.CONSISTENT_-BOARD_REC pp pp
(datal ++ _data2)))
else
(i’ data3.
(i" <) N\
(SUC (LENGTH data3) = LENGTH _data2) /\
(EVERY (\x. x < m) data3) ==> 7pp.
((p<=pp /\ Pp < m)/\
“(IS.CONSISTENT_BOARD_REC pp pp (datal ++ i’::data3))))"] {
(board + p) -> dta = i;
isConsistent (c; board, p);
if (¢ == 1) { search (r;board, p+1, m); }
=i+ 1;
}
}
} [data_array (board,m,*‘datal++_data2"’) =
“IS.BOOL_TO_NUM r** x
“if (r = 1) then
((EVERY (\x. x < m) _data2) /\
(!'pp. (p <=pp /\ pp < m) ==> IS_CCONSISTENT_BOARD_REC pp pp
(datal ++ _data2)))
else
(!data3.
(EVERY (\x. x < m) data3) /\
(LENGTH datal + LENGTH data3 = m) ==>
(?pp. (p <=pp /\ pp < m) /\
“(IS_.CONSISTENT_BOARD_REC pp pp (datal ++ data3))))"]

find(r, b; m) [J {
b = new(m) [dta];
search(r; b, 0, m);
} [data_array (b, m, _data) x
if (r == 1) then
“IS.CONSISTENT_BOARD _data"*
else
“I'data. (LENGTH data = m) ==> “(IS_.CONSISTENT_BOARD data)"]

Listing B.89: vstte/vscomp4.hol

(**)
(*x Define a predicates for boards *)
(**)
val IS_CONSISTENT_BOARD_REC_def = Define ¢
IS_CONSISTENT_BOARD_REC (n:num) (p:num) 1 =
!g. g < n ==
("(EL q 1 = EL p 1) /\
“((ELql1-ELp1l) =(p-q) /\
“"((ELpl-ELql)=(-ad)N;

val IS_CONSISTENT_BOARD_def = Define ¢
IS_CONSISTENT_BOARD 1 =
(('p. p < (LENGTH 1) ==> IS_CONSISTENT_BOARD_REC p p 1) /\
(EVERY (\x. x < LENGTH 1) 1))°;

val IS_CONSISTENT_BOARD_REC___REWRITE = prove (

196 APPENDIX B. EXAMPLE SPECIFICATIONS

¢ ¢(IS_CONSISTENT_BOARD_REC 0 p 1) /\
(IS_CONSISTENT_BOARD_REC (SUC n) p 1 =
(IS_CONSISTENT_BOARD_REC n p 1 /\
("(EL n 1 =EL p 1) /\
“"((ELnl1-ELp1l)=(p-mn))/\
“"((ELpl-ELn1l)=(p-n))),
SIMP_TAC std_ss [IS_CONSISTENT_BOARD_REC_def] THEN
‘Inm. n < SUCm = ((n<m \/ (n=m))° by DECIDE_TAC THEN
ASM_SIMP_TAC std_ss [DISJ_IMP_THM, FORALL_AND_THM]);

val IS_CONSISTENT_BOARD_REC___JUST_FIRSTN = prove (

““in p 1. (n<=p) /\ (p < LENGTH 1) ==>
(IS_CONSISTENT_BOARD_REC n p 1 =
IS_CONSISTENT_BOARD_REC n p (FIRSTN (SUC p) 1))°¢¢,

SIMP_TAC arith_ss [IS_CONSISTENT_BOARD_REC_def,
EL_FIRSTN]);

val IS_CONSISTENT_BOARD_REC___JUST_FIRSTN_MP = prove (

““inpl1l’. (n<=p) /\ (p < LENGTH 1) /\ (p < LENGTH 1’) /\
IS_CONSISTENT_BOARD_REC n p 1 /\
(FIRSTN (SUC p) 1 = FIRSTN (SUC p) 1) /\
IS_CONSISTENT_BOARD_REC n p 1 ==
IS_CONSISTENT_BOARD_REC n p 1°°¢¢,

METIS_TAC [IS_CONSISTENT_BOARD_REC___JUST_FIRSTN]);

val IS_CONSISTENT_BOARD___REWRITE = prove (
¢ ¢IS_CONSISTENT_BOARD 1 =
((EVERY (\x. x < LENGTH 1) 1) /\
(i1 i2. (i1 < i2 /\ i2 < (LENGTH 1)) ==>
(“(EL i1 1 = EL i2 1) /\
“((EL i1 1 - EL i2 1) = (i2 - i1)) /\
“((EL i2 1 - EL i1 1) = (i2 - i),

SIMP_TAC std_ss [IS_CONSISTENT_BOARD_def,
IS_CONSISTENT_BOARD_REC_def ,
FORALL_AND_THM, IMP_CONJ_THM,
AND_IMP_INTRO,
GSYM RIGHT_FORALL_IMP_THM,
EVERY_MEM, MEM_EL, GSYM LEFT_FORALL_IMP_THM] THEN
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN (
ASM_SIMP_TAC std_ss []
));

(koK ok koK Kok KoK KK KoK KK K KKK KoK oK KK KoK KKK oK KoK oK K KKK koK K o KoK KK ok KK oK KK ok KK oK K Kok KoK K)
(x Verify specification *)
(kKooK oK KKK KKK KKK KKK KK KK KK KK KK KKK oK KK KK KKK KoK KKK KKK Kok K)
val file = concat [examplesDir, "/vstte/vscomp4.dsf"];

(* holfoot_set_goal_procedures file ["isConsistent"] *)
val isConsistent_TAC =

(*run automation *)

HF_VC_SOLVE_TAC THEN HF_VC_TAC THEN

(* simplify and instantiate loop invariantx)

SIMP_TAC std_ss [GSYM ADD1, IS_CONSISTENT_BOARD_REC___REWRITE] THEN
REPEAT STRIP_TAC THEN

Q.EXISTS_TAC ‘data‘ THEN Q.EXISTS_TAC ‘LENGTH data‘ THEN

(* generate VCs *)
HF_VC_SOLVE_TAC THEN HF_VC_TAC THEN
REPEAT STRIP_TAC THENL [
‘p_const = g_const‘ by DECIDE_TAC THEN
ASM_REWRITE_TACI[],

Q.PAT_ASSUM ¢~ (IS_CONSISTENT_BOARD_REC q_const p_const data)‘ MP_TAC THEN
FULL_SIMP_TAC std_ss [IS_CONSISTENT_BOARD_REC_def] THEN

GEN_TAC THEN STRIP_TAC THEN

ASM_SIMP_TAC list_ss []

(* holfoot_set_goal_procedures file ["search"] x)
g p

B.3. VSTTE’10 COMPETITION 197

val search_TAC =
(*run automation *)
HF_SOLVE_TAC THEN
REPEAT STRIP_TAC THENL [
(* while loop *)
CONV_TAC SWAP_EXISTS_CONV THEN
Q.EXISTS_TAC ‘LENGTH datal + LENGTH data2‘ THEN
xHF_SOLVE_TAC [add_rewrites [REPLACE_ELEMENT_APPEND2]] THEN
REPEAT STRIP_TAC THENL [
(* is consistent *)
‘?data2_hd data2_tl. data2 = data2_hd::data2_tl‘ by
(Cases_on ‘data2‘ THEN FULL_SIMP_TAC list_ss []) THEN
Q.EXISTS_TAC ‘datal ++ [i_const]‘ THEN
Q.EXISTS_TAC ‘data2_t1°¢ THEN
ASM_SIMP_TAC list_ss [REPLACE_ELEMENT_DEF] THEN
HF_VC_SOLVE_TAC THEN HF_VC_TAC THEN
CONJ_TAC THENL [
FULL_SIMP_TAC (list_ss++CONJ_ss) [GSYM ADD1] THEN
REPEAT STRIP_TAC THEN
Cases_on ‘pp = LENGTH datal¢ THENL [
MATCH_MP_TAC IS_CONSISTENT_BOARD_REC___JUST_FIRSTN_MP THEN
Q.EXISTS_TAC ‘datal ++ i_const::data2_t1°‘ THEN
ASM_SIMP_TAC list_ss [FIRSTN_APPEND2, GSYM ADD1],

FULL_SIMP_TAC arith_ss [GSYM APPEND_ASSOC, APPEND]
1,

FULL_SIMP_TAC (list_ss++CONJ_ss) [GSYM ADD1] THEN
REPEAT STRIP_TAC THEN
Cases_on ‘i’ < i_const‘ THEN1 (
METIS_TAC[]
) THEN
‘i’ = i_const‘ by DECIDE_TAC THEN
FULL_SIMP_TAC arith_ss [GSYM APPEND_ASSOC, APPEND] THEN
Q.PAT_ASSUM ‘!data3’. X¢ (MP_TAC o Q.SPECL [‘data3‘]) THEN
Q.PAT_ASSUM ‘LENGTH data2’ = X¢ ASSUME_TAC THEN
FULL_SIMP_TAC arith_ss [] THEN
STRIP_TAC THEN
Q.EXISTS_TAC ‘pp‘¢ THEN
ASM_SIMP_TAC arith_ss []
1,

(* is not consistent *)
HF_VC_TAC THEN
REPEAT STRIP_TAC THEN
Cases_on ‘i’ < i_const‘ THEN1 (
METIS_TAC[]
) THEN
‘i’ = i_const‘ by DECIDE_TAC THEN
Q.EXISTS_TAC ‘LENGTH datal‘ THEN
ASM_SIMP_TAC arith_ss [] THEN
REPEAT STRIP_TAC THEN
Q.PAT_ASSUM ¢~ (IS_CONSISTENT_BOARD_REC X X Y)‘ MP_TAC THEN
SIMP_TAC std_ss [] THEN
MATCH_MP_TAC IS_CONSISTENT_BOARD_REC___JUST_FIRSTN_MP THEN
Q.EXISTS_TAC ‘datal ++ i_const::data3‘ THEN
Cases_on ‘data2‘ THEN (
FULL_SIMP_TAC list_ss [REPLACE_ELEMENT_DEF,
FIRSTN_APPEND2, GSYM ADD1]

]’

(* at the very end *)

Q.EXISTS_TAC ‘datal‘ THEN

Q.EXISTS_TAC ‘data2_h::data2_t‘ THEN

HF_SOLVE_TAC THEN HF_VC_TAC THEN

REPEAT STRIP_TAC THEN

FULL_SIMP_TAC std_ss [] THEN

‘?data3_hd data3_tl. data3 = data3_hd :: data3_tl¢ by ALL_TAC THEN1 (
Cases_on ‘data3‘ THEN FULL_SIMP_TAC list_ss []

) THEN

Q.PAT_ASSUM ‘!'i’ data3’. X i’ data3’‘ (MP_TAC o Q.SPECL [

198 APPENDIX B. EXAMPLE SPECIFICATIONS

‘data3_hd‘, ‘data3_t1°‘]) THEN
FULL_SIMP_TAC list_ss [GSYM ADD1]
1

(* holfoot_set_goal_procedures file ["find"] *)

val find_TAC =
HF_SOLVE_TAC THEN HF_VC_TAC THEN
SIMP_TAC (std_ss++CONJ_ss) [IS_CONSISTENT_BOARD_def] THEN
METIS_TAC[]

(* put everything together *)

val final_thm = holfoot_tac_verify_spec file NONE
[("isConsistent", isConsistent_TAC),
("search", search_TAC),
("find", find_TAC)];

B.3.5 Problem 5

This problem is about amortised queues. In this implementation, an amortised queue
consists of a front and a rear singly-linked list. Enqueing an element inserts the element
as head of the rear list. Dequeing removes the first element of the front list. Moreover,
the invariant is maintained that the rear list is at most as long as the front list.

The verification of this problem is simple. In order to provide readable specifications, new
predicates for amortised queues are introduced. The interactive proof mainly consists of
expanding this definition and calling Holfoot’s automation.

B.3. VSTTE’10 COMPETITION 199

Listing B.90: vstte/vscompb.dsf

list_create(1;) [] {
1 = NULL;
} [data_list (1 ,“[]<]

list_cons(1;d) [data_list(l,data)] {

local t;

t =new(); t->t1 = 1; t->dta =d; 1 = t;
} [data_list (1 ,""d::data’’)]

list_dest(re,l;) [data_list(],' d::data)] {
local t;
re = 1->dta; t = 1->tl; dispose(l); 1 = t;
} [data_list (I, data) x (re == #d)]

list_concat (x;y) [data_list(x,xdata) * data_list (y,ydata)] {
local n,t;
if (x == NULL) { x = y; } else {
t = x; n=t->tl;
loop_spec [(t |—> tl:n,dta:#tdate) = data_list (n,data2) * data_list (y, data3)] {
while (n != NULL) {
t =n; n=t->tl;

}
t->tl = y;
} [data_list (old(t)," tdate ::(data2++data3)")]

}
} [data_list (x, ‘‘xdata+-+ydata‘)]

list_reverse(i;) [data_list(i,data)] {
local p, x;
p = NULL;
loop_spec [data_list (i,data) = data_list (p, data2)] {
while (i != NULL) {
X = i->tl; i->tl = p; p = i; i = x;
}
} [data_list (p, ‘‘(REVERSE data)++data2")]
i=p;
} [data_list (i, REVERSE data")]

queue_create(q;) [] {

q = new();

q->front = NULL; g->front_length = O; g->rear = NULL; q->rear_length = O;
} [amortized_queue(q, “‘[]¢)]

queue_length(re;q) [amortized_queue(q, data)] {
local rl,fl;
rl = g->rear_length; fl = g->front_length;
re = rl + fl;
} [amortized_queue(q, data) x (re == “LENGTH data"’)]

queue_normalise(;q) [weak_amortized_queue(q, data)] {
local r,rl,f,fl;
r = gq->rear; rl = gq->rear_length; f = g->front; fl1 = g->front_length;
if (f1 < rl) {
list_reverse(r;); list_concat(f;r);
q->rear = NULL; g->rear_length = 0;
gq->front = f; q->front_length = fl + rl;
}
} [amortized_queue(q, data)]

queue_front (re;q) [amortized_queue(q, ‘‘d::data)| {
local f;
f = g->front; re = f->dta;

} [amortized_queue(q, ‘‘d::data’’) x (re == #d)]

queue_dequeue (re;q) [amortized_queue(q, “‘d::data)] {
local rl,f,fl;
rl = g->rear_length; f = gq->front; fl = g->front_length;
list_dest(re,f;);
fl = f1 - 1; g->front = f; g->front_length = f1;
if (f1 < rl) { queue_normalise(;q); }
} [amortized_queue(q, data) x (re == #d)]

200 APPENDIX B. EXAMPLE SPECIFICATIONS

queue_enqueue (;q,d) [amortized_queue(q, data)] {
local r,rl,fl;
r = gq->rear; rl = gq->rear_length; fl = gq->front_length;
list_cons(r;d); rl = rl + 1;
q->rear = r; g->rear_length = rl;
if (f1 < rl) { queue_normalise(;q); }
} [amortized_queue(q, ‘‘SNOC d data*)]

Listing B.91: vstte/vscomp5.hol

(kb ok sk ok ok sk ok o sk ook ok sk ok ok ok sk ok ok ok ok o sk ko ok ok sk sk ok ok ko sk sk ok ok ok ok ok o sk sk ok ok o sk sk ok ok ok o sk sk ok sk ko sk ok ok ok)
(* Define a predicate for amortized queues *)
(koo ok sk ko ok sk ok ok sk ook ok sk ok ok ok sk ok ok ok o sk ko ok ok sk sk ok ok o ok sk ok ok ok ok ok o sk sk ok ok o sk sk ok ok ok o sk sk ok sk ko sk ok ok ok)
val holfoot_ap_amortized_queue_def = Define ¢
holfoot_ap_amortized_queue strong tl q dta data =
asl_exists f r f_data r_data. asl_bigstar_list holfoot_separation_combinator
[holfoot_ap_points_to q (LIST_TO_FMAP [
(holfoot_tag "front", var_res_exp_const f);
(holfoot_tag "rear", var_res_exp_const r);
(holfoot_tag "front_length", var_res_exp_const (LENGTH f_data));
(holfoot_tag "rear_length", var_res_exp_const (LENGTH r_data))l);
holfoot_ap_data_list tl (var_res_exp_const f) [(dta, f_data)];
holfoot_ap_data_list tl (var_res_exp_const r) [(dta, r_data)l;
var_res_bool_proposition DISJOINT_FMAP_UNION
((data = f_data ++ (REVERSE r_data)) /\
(strong ==> (LENGTH r_data <= LENGTH f_data)))]‘

val holfoot_ap_amortized_queue REWRITE = save_thm ("holfoot_ap_amortized_queue_REWRITE",
SIMP_RULE std_ss [asl_bigstar_list_REWRITE,
asl_star_holfoot_THM] holfoot_ap_amortized_queue_def);

val holfoot_ap_amortized_queue REWRITE2 = save_thm ("holfoot_ap_amortized_queue REWRITE2",
SIMP_RULE list_ss [LIST_TO_FMAP_THM, holfoot_separation_combinator_def]
holfoot_ap_amortized_queue_REWRITE) ;

(skokkokesk ek sk sk sk ok sk ok ok ok ok ok ok ok sk sk sk sk sk ok sk o skok ok o)
(* add the new predicate to the parser *)
(skokkokesk ek ek sk sk ok sk ok ok ok ok ok ok ok sk sk sk sk sk ok ek sk ok ok o)
val holfoot_ap_amortized_queue_term = Term ‘holfoot_ap_amortized_queue ‘;
fun mk_holfoot_ap_amoritized_queue_absyn (strong, tag, exp, dtag, data) =
Absyn.list_mk_app (Absyn.mk_AQ holfoot_ap_amortized_queue_term, [
Absyn.mk_AQ (if strong then T else F), tag, exp, dtag, datal);

(* amortized_queue (q,data) *)
val _ = add_genpred ("amortized_queue", [Aspred_arg_ty_exp, Aspred_arg_ty_comma, Aspred_arg_ty_hol],
fn [expl,datal => mk_holfoot_ap_amoritized_queue_absyn (true,
Absyn.mk_AQ (string2holfoot_tag (!'list_link_tag)), expl,
Absyn.mk_AQ (string2holfoot_tag (!data_list_tag)), data));

(* weak_amortized_queue (q,data) *)
val _ = add_genpred ("weak_amortized_queue", [Aspred_arg_ty_exp, Aspred_arg_ty_comma, Aspred_arg_ty_hol],
fn [expl,data] => mk_holfoot_ap_amoritized_queue_absyn (false,
Absyn.mk_AQ (string2holfoot_tag (!'list_link_tag)), expl,
Absyn.mk_AQ (string2holfoot_tag (!'data_list_tag)), data));

(skokkokesk sk ke sk ok sk ok sk ok ok ok ok sk ok ok sk sk sk sk ok ok ek sk ok o)
(*x add it to the pretty printer *)
(kokok ok ook ook o sk ok ok ok ok ok ok ok ok ok o ok o ok o ok ok ook ok ok ok ok Kok k)
fun amortized_queue_printer Gs sys (ppfns:term_pp_types.ppstream_funs) gravs d pps t = let
open Portable term_pp_types
val {add_string,add_break,begin_block,end_block,
add_ann_string,add_newline,begin_style,end_style,...} = ppfns
val (op_term,args) = strip_comb t;
in
if (same_const op_term holfoot_ap_amortized_queue_term) then (
let
val is_strong = same_const (el 1 args) T;
val desc = if is_strong then "amortized_queue" else "weak_amortized_queue";
in
begin_block INCONSISTENT O0;
add_string desc; add_string "(";
add_break (0, 'holfoot_pretty_printer_block_indent);
sys (Top, Top, Top) (d - 1) (el 2 args);

B.3. VSTTE’10 COMPETITION

201

add_string ";";
add_break (1,'holfoot_pretty_printer_block_indent);
sys (Top, Top, Top) (d - 1) (el 3 args);
add_string ",";add_break (1,'holfoot_pretty_printer_block_indent);
sys (Top, Top, Top) (d - 1) (el 4 args);
add_string ":";
sys (Top, Top, Top) (d - 1) (el 5 args);
add_string ")";
end_block ()
end
) else (
raise term_pp_types.UserPP_Failed
)
end;
val _ = add_user_printer ("amortized_list_printer", ‘‘x:’a set‘‘, amortized_queue_printer);
(koK Kok koK KoK KK KKK KKK KKK KKK KKK KK KKK KKK)
(* prove thms needed for basic automation *)
(koK Kok KKK KKK KKK AR KKK KA K KKK KKK KKK)

val VAR_RES_IS_STACK_IMPRECISE___USED_VARS___holfoot_ap_amortized_queue = prove (
€“1tl st q dta data vs.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET vs q ==
VAR_RES_IS_STACK_IMPRECISE___USED_VARS vs

(holfoot_ap_amortized_queue st tl q dta data)‘‘, ...);

val var_res_prop_varlist_update___holfoot_ap_amortized_queue = prove (

““lycL st tl q dta data.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS q) ==
(var_res_prop_varlist_update vcL (holfoot_ap_amortized_queue st tl q dta data) =

holfoot_ap_amortized_queue st tl (var_res_exp_varlist_update vcL q) dta data)‘‘, ...);
holfoot_prover_extras_2 := [VAR_RES_IS_STACK_IMPRECISE___USED_VARS___holfoot_ap_amortized_queue];
holfoot_varlist_rwts := [var_res_prop_varlist_update___holfoot_ap_amortized_queuel];

update_var_res_param() ;

(koo ok sk ko ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok o sk ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok ok o sk sk ok ok o sk sk ok sk ok o sk sk ok ok ko sk ok ok ok)
(x Verify specification *)
(kokokokok sk ok ok ok sk ok ok ok o ok ok ook oK ok ok ok oK ok oK ok ok o koK ok oK ok ok ook o ok o ok ok o sk oK ok ok ok ok ook ok o ok ok o oK Kok oK sk ok ok ok ok ok ok o kK ok ok ok)
val file = concat [examplesDir, "/vstte/vscomp5.dsf"];
val thml = prove (parse_holfoot_file file,

(* use the definition for rewriting *)

REWRITE_TAC [holfoot_ap_amortized_queue_REWRITE2] THEN

(* Call automation *)

HF_SOLVE_TAC THEN

(* one manual case split needed *)

REPEAT STRIP_TAC THEN

Cases_on ‘f_data = [1¢ THEN (

HF_SOLVE_TAC
)

202 APPENDIX B. EXAMPLE SPECIFICATIONS

Appendix C

HOL4-Theorem Index

C.1 holfootTheory

(1) ASL_IS LOCAL ACTION _ holfoot diSpose aCtiOneeoeeeniuonarnenenannennn. 123
— IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ne) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =

ASL_IS_LOCAL_ACTION holfoot_separation_combinator
(holfoot_dispose_action ne e)

(2) ASL_IS LOCAL ACTION _holfoot field assigh actionmoeeeeerouarnennn.. 124
 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ¢;) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e3) =

ASL_IS_LOCAL_ACTION holfoot_separation_combinator
(holfoot_field_assign_action e; t e3)

(3) ASL IS LOCAL ACTION _ holfoot field 1ooKup actiomoeveieirirananenanns 123

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
ASL_IS_LOCAL_ACTION holfoot_separation_combinator
(holfoot_field_lookup_action v e t)

(4) ASL_IS LOCAL ACTION _ holfoot DeW aCEION'vuvuerete e ettt 122

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ne) =
ASL_IS_LOCAL_ACTION holfoot_separation_combinator
(holfoot_new_action ne v tL)

(5) holfoot ap array defutn ittt e 121

 holfoot_ap_array e n = holfoot_ap_data_array e n []

(6) holfoot ap bimtree defo ettt 120

 holfoot_ap_bintree (lt,rt) startEzp =
holfoot_ap_tree [lt; rt] startExp

203

204 APPENDIX C. HOL4-THEOREM INDEX

(7) holfoot ap data array defoeeniuonee e 121

I holfoot_ap_data_array e ne data =
var_res_exp_prop ne
(An.
asl_trivial_cond

(EVERY (Atl. LENGTH (SND #) = n) data A

ALL_DISTINCT (MAP FST data))

(var_res_map DISJOINT_FMAP_UNION
(Mel. holfoot_ap_points_to (FST el) (SND el))
(holfoot_ap_data_array_MAP_LIST e n data)))

(8) holfoot ap data interval defeninerieni i 121
I holfoot_ap_data_interval e; ex data =

holfoot_ap_data_array e;
(var_res_exp_binop (=) (var_res_exp_add e; 1) e1) data

(9) holfoot ap data 1ist defottt 119

I holfoot_ap_data_list ¢l startEzp data =
holfoot_ap_data_list_seg tl startFxp data (var_res_exp_const 0)

(10) holfoot ap data 1ist seg def o.uuiu ettt 119

I holfoot_ap_data_list_seg tl startEzrp data endFxp =
asl_exists n.
holfoot_ap_data_list_seg_num n tl startExp data endExp

(11) holfoot ap data list seg num REWRITEoouenin ettt

I (holfoot_ap_data_list_seg_num O tl startExp data endEzp =

if
EVERY (Az. NULL (SND z)) data A ALL_DISTINCT (¢l::MAP FST data)

then
var_res_prop_equal DISJOINT_FMAP_UNION startEzp endEzxp
else

asl_false) A
(holfoot_ap_data_list_seg_num (SUC n) tl startEzp data endFEzp =
if

EVERY (\z.

then
asl_and (var_res_prop_weak_unequal startEzp endFExp)

—NULL (SND z)) data A ALL_DISTINCT (¢l::MAP FST data)

(asl_exists n'.
asl_star holfoot_separation_combinator

(holfoot_ap_points_to startExp
(LIST_TO_FMAP
(z1P
(tl: :MAP FST data,

MAP var_res_exp_const
(n'::MAP (Axz. HD (SND z)) data)))))

(holfoot_ap_data_list_seg_num n ¢l (var_res_exp_const n’')
MAP (M (t,D). (¢,TL 1)) data) endExp))

else
asl_false)

(12) holfoot ap data list seg implies in heap COMPUTEoeuiuirneninannn..

I var_res_implies_unequal DISJOINT_FMAP_UNION B e; e =

B # A A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e;) A

IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e3) =
holfoot_implies_in_heap B {lholfoot_ap_data_list_seg tl e; data esl}

€1

(13) holfoot ap data list implies in heap or mull COMPUTEc.ovininnnn...

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ¢;) =

holfoot_implies_in_heap_or_null B
{holfoot_ap_data_list_seg tl e; data (var_res_exp_const 0)|} e

(14) holfoot ap data tree implies in heap or mull COMPUTE

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =

holfoot_implies_in_heap_or_null B
{holfoot_ap_data_tree tagL e datal} e

206

APPENDIX C. HOL4-THEOREM INDEX

(15) holfoot ap data tree REWRITE'eninenenei e ae e 119

— IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
(holfoot_ap_data_tree tagL e (dtagL,data) =
asl_or
(asl_trivial_cond (ALL_DISTINCT (tagL ++ dtagL) A IS_LEAF data)
(var_res_prop_equal DISJOINT_FMAP_UNION e
(var_res_exp_const 0)))
(asl_exists_list dtagL
Av.
asl_exists_list taglL
(MNIL.
asl_exists_list taglL
(A tL.
asl_trivial_cond
((NULL tagL = ALL_DISTINCT dtaglL) A
(data = node v tL))
(asl_bigstar_list
holfoot_separation_combinator
(holfoot_ap_points_to e
(LIST_TO_FMAP
(z1P
(tagl ++ dtaglL,
MAP var_res_exp_const
(L ++ v))))::
MAP
(Alt.
holfoot_ap_data_tree tagL
(var_res_exp_const (FST [t))
(dtagL,SND [t))
(ZIP (IL,t0)))))))))

(16) holfoot ap data tree TREE PROPSueeettee et e eee e 119

 —holfoot_ap_data_tree___WELL_FORMED_DATA tagL (dtagL,t) =
(holfoot_ap_data_tree tagL startEzp (dtagL,t) = asl_false)

(17) holfoot ap data tree WELL FORMED DATA defo.oiiiinirininann.. 119, 120
- holfoot_ap_data_tree___WELL_FORMED_DATA tagl data <<=

TREE_EVERY (Awv. LENGTH v = LENGTH (FST data)) (SND data) A
NARY (SND data) (LENGTH tagL) A ALL_DISTINCT (tagL ++ FST data)

(18) holfoot ap 1St defttt ettt e e 119

 holfoot_ap_list tl startExp =
holfoot_ap_list_seg tl startEzp (var_res_exp_const 0)

(19) holfoot ap 1ist seg defottt 119

I holfoot_ap_list_seg tl startExp endEzp =
holfoot_ap_data_list_seg tl startExp []1 endFxp

(20) holfoot ap Points £ def\ttt e 118

I holfoot_ap_points_to e; L =
() state .
(let stack = FST state in
let heap = SND state in
let loc_opt = e; stack
in
IS_SOME loc_opt A
(let loc = THE loc_opt
in
loc # 0 A (FDOM heap = {loc}) A
FEVERY
(A (tag, exp) .
IS_SOME (exp stack) A
(THE (exp stack) = heap ° loc tag)) L)))

(21) holfoot ap points to implies in heap COMPUTEoeernineranneninanann.s 125

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap B {lholfoot_ap_points_to e L[} e

(22) holfoot ap tree def\ttt 120

I holfoot_ap_tree tagL startEzp =
asl_exists dataTree.
holfoot_ap_data_tree tagL startExzp ([1,dataTree)

(23) HOLFOOT COND INFERENCE PTOg diSPOSE - . . v e eveteteeteeeeee e e e e e e 123

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mb)) n =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb) sfb)
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (holfoot_ap_data_array e n data) sfb))
(asl_prog_block (holfoot_prog_dispose n e::progl)) @

(24) HOLFOOT COND_INFERENCE Prog diSPOSE Levenineneeee e 123

— VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb) sfb)
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (holfoot_ap_points_to e L) sfb))
(asl_prog_block
(holfoot_prog_dispose (var_res_exp_const 1) e::progl)) @

208 APPENDIX C. HOL4-THEOREM INDEX

(25) HOLFOOT COND_INFERENCE_ _prog field assign

— VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w b)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w 1pb)) e2 A
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
(holfoot_ap_points_to e; (L |+ (f,e2))) =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (holfoot_ap_points_to e; (L |+ (t,e2))) sfb))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (holfoot_ap_points_to e; L) sfb))
(asl_prog_block (holfoot_prog_field_assign e; t ey::progl)) @

(26) HOLFOOT COND INFERENCE prog field assign array

Fds < e Ae<ds+ dl =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)

(BAG_INSERT
(holfoot_ap_data_array (var_res_exp_const ds)

(var_res_exp_const dl)
((t,REPLACE_ELEMENT ¢ (e — ds) tdata)::data)) sfb))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)

(BAG_INSERT
(holfoot_ap_data_array (var_res_exp_const ds)

(var_res_exp_const dl) ((t¢,tdata)::data)) sfb))
(asl_prog_block
(holfoot_prog_field_assign (var_res_exp_const e) ¢
(var_res_exp_const ¢)::progl)) @

(27) HOLFOOT COND INFERENCE _ prog field assign exp rewrite

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ¢;) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e]) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e3) =
(VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (var_res_prop_equal DISJOINT_FMAP_UNION e; ef)

sfb))
(asl_prog_block (holfoot_prog_field_assign e; ¢ ex::progl)) @ <

VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (var_res_prop_equal DISJOINT_FMAP_UNION e; ef)

sfb))
(asl_prog_block (holfoot_prog_field_assign e t ex::progl)) Q)

(28) HOLFOOT COND INFERENCE prog field L0OKUDvvvvnvneteeeeniaaneeeaennn.

— v e: wpb At € FDOM L A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) (L ’ t) =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_varlist_update [(v,c)] (L ’ ¢)))
(BAG_IMAGE (var_res_prop_varlist_update [(v,c)])
(BAG_INSERT (holfoot_ap_points_to e L) sfb))))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_const ¢))
(BAG_INSERT (holfoot_ap_points_to e L) sfb)))
(asl_prog_block (holfoot_prog_field_lookup v e t::progl)) @

(259) HOLFOOT COND INFERENCE
Fds <ene<ds+dl =
v €: wpb A MEM (t,tdata) data =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_const (EL (e — ds) tdata)))
(BAG_IMAGE (var_res_prop_varlist_update [(v,c)])
(BAG_INSERT
(holfoot_ap_data_array (var_res_exp_const ds)
(var_res_exp_const dl) data) sfb))))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_const ¢))
(BAG_INSERT
(holfoot_ap_data_array (var_res_exp_const ds)
(var_res_exp_const dl) data) sfb)))
(asl_prog_block
(holfoot_prog_field_lookup v (var_res_exp_const e) t::progL))

Q

prog field lookup array oL

APPENDIX C. HOL4-THEOREM INDEX

210
123

(30) HOLFOOT COND_INFERENCE prog field lookup exp rewrite
 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS ¢') =

(VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)

(BAG_INSERT (var_res_prop_equal DISJOINT_FMAP_UNION e ¢)
sfb))
(asl_prog_block (holfoot_prog_field_lookup v e t::progl)) @ <

VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (var_res_prop_equal DISJOINT_FMAP_UNION e ¢)

sfb))
(asl_prog_block (holfoot_prog_field_lookup v €' t::progl)) Q)

(31) HOLFOOT COND INFERENCE _ prog new

v e: wpb A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w mpb)) n =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)

(BAG_INSERT
(holfoot_ap_data_array (var_res_exp_var v)

(var_res_exp_varlist_update [(v,c)] n) [1)
(BAG_IMAGE (var_res_prop_varlist_update [(v,c)]) sfb)))

(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_const ¢)) sfb))

(asl_prog_block (holfoot_prog_new n v tL::progL)) @

(32) HOLFOOT COND_INFERENCE prog new 1

v e: wpb =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION

(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT (holfoot_ap_points_to (var_res_exp_var v) FEMPTY)

(BAG_IMAGE (var_res_prop_varlist_update [(v,c)]) sfb)))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE DISJOINT_FMAP_UNION
(var_res_prop DISJOINT_FMAP_UNION (wpb,rpb)
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION (var_res_exp_var v)
(var_res_exp_const ¢)) sfb))

(asl_prog_block
(holfoot_prog_new (var_res_exp_const 1) v tL::progl)) @

(33) holfoot dispose action defc.'iueenern et 122

 holfoot_dispose_action me e s =
(let loc_opt = e (FST s) in
let m_opt = me (FST s)
in
if IS_NONE m_opt then
NONE
else
(let m = THE m_opt
in
if m = 0 then
SOME {s}
else if IS_NONE loc_opt then
NONE
else
(let loc = THE loc_opt
in
if
—(IMAGE (An'. loc + n’) (count m) C FDOM (SND s)) v
(loc = 0)
then
NONE
else
SOME
{ (FST s,
DRESTRICT (SND s)
(COMPL (IMAGE (An’. loc + n/) (count m)))) })))

(34) holfoot field assign action defeeiuiuienini i 124

 holfoot_field_assign_action e ¢ ex § =
(let el_opt = e; (FST s) in
let e2_opt = es (FST s)
in
if IS_NONE el_opt v IS_NONE e2_opt then
NONE
else
(let el_v = THE el _opt in
let e2_v = THE e2_opt
in
if e1_v ¢ FDOM (SND s) v (el_v = 0) then
NONE
else
SOME
{(FST s,SND s |+ (el_v,(t =+ e2_v) (SND s ’ el_v)))}))

APPENDIX C. HOL4-THEOREM INDEX

212
(35) holfoot field lookup action defe.ieeuieinitin e 123
 holfoot_field_lookup_action v e ¢ s =
(let loc_opt = e (FST s)
in
if
—var_res_sl___has_write_permission v (FST s) v IS_NONE loc_opt
then
NONE
else
(let loc = THE loc_opt
in
if loc ¢ FDOM (SND s) v (loc = 0) then
NONE
else
SOME {var_res_ext_state_var_update (v,SND s ’ loc t) s}))
(36) holfoot implies in heap defo.outeen ittt 124
 holfoot_implies_in_heap =
holfoot_implies_in_heap_pred (A X z. z # 0 A z € X)
(37) holfoot implies in heap or mull defoeiriuin i, 124
F holfoot_implies_in_heap_or_null =
holfoot_implies_in_heap_pred (A X z. (x = 0) v z € X)
125

(38) holfoot implies in heap or mull comst mulloteiein et

 holfoot_implies_in_heap_or_null B b (var_res_exp_const 0)

(39) holfoot implies in heap or mull equal mulloerninirnreianannennn.

(VB e sfb.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap_or_null B
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION
(var_res_exp_const 0) e) sfb) e) A
(VB e sfb.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap_or_null B
(BAG_INSERT
(var_res_prop_equal DISJOINT_FMAP_UNION e
(var_res_exp_const 0)) sfb) e) A
(VB e sfb.
B # {}
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap_or_null B
(BAG_INSERT (var_res_prop_weak_equal (var_res_exp_const 0) e)
sfb) e) A
VB e sfb.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap_or_null B
(BAG_INSERT (var_res_prop_weak_equal e (var_res_exp_const 0))

sfb) e

(40) holfoot implies in heap or null implies equaleueuerenenenennnn..

F b1 w by < sfb A holfoot_implies_in_heap_or_null sfb b; e A
holfoot_implies_in_heap_or_null sfb by e =
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w mpb)) e =
var_res_prop_implies DISJOINT_FMAP_UNION (wpb,rpb) sfb
{lvar_res_prop_equal DISJOINT_FMAP_UNION e (var_res_exp_const 0)|}

(41) holfoot implies in heap or mull SUB BAGoeueuieiei e,

= osfbr < sfba =
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
holfoot_implies_in_heap_or_null B sfb; e =
holfoot_implies_in_heap_or_null B sfby e

(42) holfoot implies in heap pred defuiuieirin i

 holfoot_implies_in_heap pred p B b ¢ <
Y st StQ hl hQ.
VAR_RES_STACK_IS_SUBSTATE sty st A
(st,h;) € var_res_bigstar DISJOINT_FMAP_UNION B A
(sta,he) € var_res_bigstar DISJOINT_FMAP_UNION b =
IS_SOME (e st) A p (FDOM hy) (THE (e st))

214 APPENDIX C. HOL4-THEOREM INDEX
125

(43) holfoot implies in heap implies unequal

F b w by < sfb A holfoot_implies_in_heap sfb b3 €1 A

holfoot_implies_in_heap sfb by e =
var_res_implies_unequal DISJOINT_FMAP_UNION sfb e; e

(44) holfoot implies in heap implies unequal null

F b < sfb A holfoot_implies_in_heap sfb b e =
var_res_implies_unequal DISJOINT_FMAP_UNION sfb e

(var_res_exp_const 0)

(45) holfoot implies in heap implies or mull

I holfoot_implies_in_heap B b e =
holfoot_implies_in_heap_or_null B b e

(46) holfoot implies in heap or mull implies unequal

F b1 w by < sfb A holfoot_implies_in_heap sfb b1 €1 A

holfoot_implies_in_heap_or_null sfb by e; =
var_res_implies_unequal DISJOINT_FMAP_UNION sfb e; e

(47) holfoot implies in heap SUB BAG

F osfhy < sfbe =
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =

holfoot_implies_in_heap B sfb; e =
holfoot_implies_in_heap B sfby e

(48) holfoot new action def

 holfoot_new_action me v tagL s

if
—var_res_sl___has_write_permission v (FST s) v

—IS_SOME (me (FST s))

then
NONE
else
(let m = THE (me (FST s))
in
SOME
(\s'.
dn XL.
n #0 A
Wm'. n<m' Am'" <n+m = m'¢ FDOM (SND s5)) A
(LENGTH XL =

(s" =
(FST s |+ (v,n,var_res_write_permission),

m) A

SND s |++
MAP (Am'. (n + m',EL m’ XL)) (COUNT_LIST m)))))

(49) holfoot separation combinator defe.ieiuiiin i 117

F holfoot_separation_combinator =
VAR_RES_COMBINATOR DISJOINT_FMAP_UNION

(50) IS SEPARATION ALGEBRA holfoot separation COMDINALOTeveenenerarnenennn. 117

I IS_SEPARATION_ALGEBRA holfoot_separation_combinator (FEMPTY,FEMPTY)

(51) IS SEPARATION COMBINATOR holfoot separation COmDINAtOTo.oo... 117

— IS_SEPARATION_COMBINATOR holfoot_separation_combinator

(52) VAR RES FRAME SPLIT data array data array SAME EXP LENGTH 129
— set (MAP FST dataz) < set (MAP FST data;) A

ALL_DISTINCT (MAP FST dataz) A

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mb)) n =

(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfo_context
(BAG_INSERT (holfoot_ap_data_array e n data;) sfb_split)
(BAG_INSERT (holfoot_ap_data_array e n dataz) sfb_imp)
sfo_restP «—

VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_data_array e n data;) sfb_context)
sfb_split
(BAG_INSERT

(var_res_bool_proposition DISJOINT_FMAP_UNION
(EVERY (Az. MEM z data;) dataz)) sfo_imp) sfb_restP)

216 APPENDIX C. HOL4-THEOREM INDEX

(53) VAR RES FRAME SPLIT data list seg REMOVE STARTe.ieieiiininannnnnnnn. 128

 holfoot_implies_in_heap_or_null (sfb_split w sfb_context)
(sfb_split w sfb_context) es =
set (MAP FST dataz) < set (MAP FST data;) A
(ALL_DISTINCT (tl::MAP FST data;) = ALL_DISTINCT (MAP FST dataz)) A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e2 A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e3 =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfb_context
(BAG_INSERT (holfoot_ap_data_list_seg tl e; data; ez) sfb_split)
(BAG_INSERT (holfoot_ap_data_list_seg tl e; dataz e3) sfb_imp)
sfo_restP «—
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_data_list_seg tl e; data; e3)
sfb_context) sfb_split
(BAG_INSERT
(var_res_bool_proposition DISJOINT_FMAP_UNION
(EVERY
\z.
MEM (FST z,TAKE (LENGTH (SND (HD data;))) (SND z))
datay) datag))
(BAG_INSERT
(holfoot_ap_data_list_seg tl es
(MAP
(Az. (FST z,DROP (LENGTH (SND (HD data;))) (SND z)))
datas) e3) sfb_imp)) sfb_restP)

(54) VAR RES FRAME SPLIT data list seg SAME START END REMOVE 127

— (set (MAP FST datay) < set (MAP FST data;) A
ALL_DISTINCT (MAP FST datas)) A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) ey =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfo_context
(BAG_INSERT (holfoot_ap_data_list_seg tl e; data; ez) sfb_split)
(BAG_INSERT (holfoot_ap_data_list_seg tl e; datas ez) sfb_imp)
sfo_restP <
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_data_list_seg tl e; data; e3)
sfo_context) sfb_split
(BAG_INSERT
(var_res_bool_proposition DISJOINT_FMAP_UNION
(EVERY (Az. MEM z datay) datag)) sfo_imp) sfo_restP)

(55) VAR RES FRAME SPLIT data tree SAME EXP REMOVEoeeieininninnnannnnns 129

I VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfb_context
(BAG_INSERT (holfoot_ap_data_tree tagl e (dtagL,data;))
sfb_split)
(BAG_INSERT (holfoot_ap_data_tree tagL e (dtagL,dataz)) sfb_imp)
sfo_restP «—
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpbd’
(BAG_INSERT (holfoot_ap_data_tree tagl e (dtagL,data;))
sfb_context) sfb_split
(BAG_INSERT
(var_res_bool_proposition DISJOINT_FMAP_UNION
(datay = dataz)) sfo_imp) sfb_restP)

(56) VAR RES FRAME SPLIT _ points to data 1iSt Segeveenenenerneninanannennn. 127

I var_res_implies_unequal DISJOINT_FMAP_UNION

(sfb_contexrt w BAG_INSERT (holfoot_ap_points_to e; L) sfb_split)
e e =

tl € FDOM L A set (MAP FST data) © FDOM L A

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e A

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e2 A

FEVERY

\z.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w mpb)) (SND z)) L =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfo_context (BAG_INSERT (holfoot_ap_points_to e; L) sfb_split)
(BAG_INSERT (holfoot_ap_data_list_seg tl e; data ex) sfbo_imp)
sfo_restP <
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_points_to e; L) sfb_context) sfb_split
(LIST_TO_BAG
(MAP

Az.
var_res_prop_equal DISJOINT_FMAP_UNION (L ’> (FST z))

(var_res_exp_const (HD (SND z)))) data) w
BAG_INSERT
(var_res_bool_proposition DISJOINT_FMAP_UNION
(EVERY (Az. —NULL (SND z)) data A
ALL_DISTINCT (tl::MAP FST data)))
(BAG_INSERT
(holfoot_ap_data_list_seg tI (L ’ tl)
(MAP (Az. (FST z,TL (SND z))) data) ex) sfb_imp))
sfb_restP)

218 APPENDIX C. HOL4-THEOREM INDEX

(57) VAR RES FRAME SPLIT _points to_ data tree

- set (tagL ++ dtagl) < FDOM L A —NULL taglL A

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A

FEVERY

\z.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___

(SET_OF_BAG (wpb w tpb)) (SND z)) L =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfo_contexrt (BAG_INSERT (holfoot_ap_points_to e L) sfb_split)
(BAG_INSERT (holfoot_ap_data_tree tagL e (dtagL,data)) sfb_imp)
sfo_restP <
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_points_to e L) sfb_context) sfb_split

(BAG_INSERT
(asl_exists_list dtagl
Av.
asl_exists_list tagL
(MIL.
asl_exists_list taglL

(AtL.
asl_trivial_cond (data = node v tL)

(asl_bigstar_list
holfoot_separation_combinator
(MAP
Az.
var_res_prop_equal
DISJOINT_FMAP_UNION
(L > (FST z))
(var_res_exp_const (SND z)))
(ZIP (tagL ++ dtagL,IL ++ v)) ++

MAP
(Alit.
holfoot_ap_data_tree tagL
(var_res_exp_const (FST It))
(dtagL,SND It))
(ZIP (IL,tL)))))))) sfb_imp)

USED_VARS_SUBSET

sfb_restP)

(58) VAR RES FRAME SPLIT points to points to SUBMAPoeeiuirnininennn.. 126

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e A
FEVERY
Az.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___
(SET_OF_BAG (wpb w mpb)) (SND z)) L A

USED_VARS_SUBSET

FEVERY
Az.
—MEM (FST z) I’ v
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w rpb)) (SND z)) L' A
FEVERY (A (t,a). t € FDOM L A (MEM t I’ v C(a =L > t))) L' A
EVERY (\t. t € FDOM L) I =
(VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
sfb_context (BAG_INSERT (holfoot_ap_points_to e L) sfb_split)
(BAG_INSERT (holfoot_ap_points_to e L') sfb_imp) sfo_restP <—
VAR_RES_FRAME_SPLIT DISJOINT_FMAP_UNION sr (wpb,rpb) wpb’
(BAG_INSERT (holfoot_ap_points_to e L) sfb_context) sfb_split
(BAG_INSERT
(asl_bigstar_list holfoot_separation_combinator
(MAP
(\t.
var_res_prop_equal DISJOINT_FMAP_UNION (L ’)
(L2) U ++
[var_res_prop_stack_true DISJOINT_FMAP_UNION])) sfb_imp)

sfo_restP)
(59) VAR _RES IS STACK IMPRECISE _ USED VARS data list seg.......................... 119, 130
 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
startExp A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
endbExp =

VAR_RES_IS_STACK_IMPRECISE___USED_VARS ws
(holfoot_ap_data_list_seg tl startFxp data endEzp)

(60) VAR RES IS STACK IMPRECISE _ USED VARS holfoot ap data array 121

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET vs e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET vs n =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ws

(holfoot_ap_data_array e n data)

(61) VAR RES IS STACK IMPRECISE _ USED VARS holfoot ap data tree 120

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
startErp =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ws
(holfoot_ap_data_tree tagL startEzrp data)

220 APPENDIX C. HOL4-THEOREM INDEX

(62) VAR RES IS STACK IMPRECISE _ USED VARS DOIDES O . vevvvveeeieeeeeeaiaenennns 118
 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET vs e; A
FEVERY
Az.

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs

(8ND z)) L =
VAR_RES_IS_STACK_IMPRECISE___
(holfoot_ap_points_to e; L)

USED_VARS ws

(63) var _res prop varlist update holfoot ap data arrayoooiiiiiiiii... 121

— IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS n) =
(var_res_prop_varlist_update vcL (holfoot_ap_data_array e n data) =
holfoot_ap_data_array (var_res_exp_varlist_update vcL e)

(var_res_exp_varlist_update vcL n) data)

(64) var res prop varlist update holfoot ap data 1iSt Segc.eueriininenannen.s 119
 IS_SOME
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS startFxp) A
IS_SOME

(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS endEzp) =
(var_res_prop_varlist_update wvcL

(holfoot_ap_data_list_seg tl startExp data endEzp) =
holfoot_ap_data_list_seg tl

(var_res_exp_varlist_update vcL startEzp) data

(var_res_exp_varlist_update vcL endEzp))

(65) var res prop varlist update holfoot ap data treeoiiiiiiiiiiia... 120

 IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
(var_res_prop_varlist_update wvcL
(holfoot_ap_data_tree tagL e data) =
holfoot_ap_data_tree tagl (var_res_exp_varlist_update vcL e) data)

(66) var res prop varlist update holfoot ap points £0oeiiiiiiiii i 118

I var_res_prop_varlist_update vcL (holfoot_ap_points_to e L) =
holfoot_ap_points_to (var_res_exp_varlist_update vcL e)
(var_res_exp_varlist_update vcL o_f L)

221

C.2 separationLogicTheory

(67) asla annihilation defouin it 70

I asla_annihilation f p = best_local_action f p (asl_emp f)

(68) asla_annihilation PRECISE IN STATE THMotntnittt ettt 70

— IS_SEPARATION_COMBINATOR f =
(asla_annihilation f P ¢q =
(let v so = 3s1. s1 € P A (SOME ¢q = f (SOME sy) (SOME s1))
in
if v = J then NONE else if SING v then SOME v else SOME (F))

(69) asla assume defttt 72

I asla_assume f P =
(\s.

if s € P then
SOME {s}

else if s € ASL_INTUITIONISTIC_NEGATION f P then
SOME ¥

else
NONE)

(70) @sla_check def u ettt et 75

 asla_check f a3 ay =
(As.
if
381 52.
(SOME s = f (SOME s1) (SOME s2)) A IS_SOME (a; $1) A
IS_SOME (az $92)
then
SOME {s}
else
NONE)

(71) asla_choice REWRITEottt ettt e e e et 66

I asla_choice actions =
(Ax. SUP_fasl_order (IMAGE (\f. f xz) actions))

(72) asla_diverge def uiu ettt e e 66

- asla_diverge = (As. SOME &)

(73) asla fail defottt e e e 66

 asla_fail = (As. NONE)

222 APPENDIX C. HOL4-THEOREM INDEX

(74) asla materialisation defiuiutunn it 70

I asla_materialisation f p = best_local_action f (asl_emp f) p

(75) @812 860 def . o\ ottt ettt e 66

- asla_seq a1 ag =
(As.
if a7 s = NONE then
NONE
else
SUP_fasl_order (IMAGE ap (THE (a; $))))

(76) asla_skip defottt et e et 66

 asla_skip = (As. SOME {s})

(T7) asland defottt e 63

 asl_and = (AP Q s. s€ P A s € Q)

(78) ASL_ATOMIC_ACTION SEM def\t e 75

 (ASL_ATOMIC_ACTION_SEM (f,lock_env) (asl_aa_pc pc) =
EVAL_asl_prim_command f pc) A
(ASL_ATOMIC_ACTION_SEM (f,lock_env) (asl_aa_check pcy pce) =
asla_check f (EVAL_asl_prim_command f pci)

(EVAL_asl_prim_command [pcp)) A

(ASL_ATOMIC_ACTION_SEM (f,lock_env) (asl_aa_prolaag [)
asla_materialisation f (lock_env 1)) A
(ASL_ATOMIC_ACTION_SEM (f,lock_env) (asl_aa_verhoog [)
asla_annihilation f (lock_env [))

(79) asl bigstar 1ist REWRITEottt ettt e e 97

— (Vf. asl_bigstar_list f []
Y hl.
asl_bigstar_list f (h::l)

asl_emp f) A

asl_star f h (asl_bigstar_list f)

(80) asl emp ALGEBRAottt et e e e 64

I IS_SEPARATION_ALGEBRA f u = (asl_emp f = {u})

(81) asl_emp defot 62

 asl_emp f = (Auw. Jz. f (SOME u) (SOME z) = SOME z)

(82) asl _emp DISIOINT FMAP UNIONot 63, 117

I asl_emp DISJOINT_FMAP_UNION = {FEMPTY}

223

(83) 8L @XISES QeF + .o\ttt et e 63

— (asl_exists) = (AP s. dx2. s € P x)

(84) asl false defottt e 63

- asl_false = J

(85) @Sl £orall def ut ittt e et 63

— (asl_forall) = (AP s. Vz. s € P z)

(86) ASL_INFERENCE Sl QUADT e e e e e 81

 (ASL_PROGRAM_HOARE_TRIPLE zenv penv (asl_exists z. P z) p Q' <—
Vz. ASL_PROGRAM_HOARE_TRIPLE zenv penv (P z) p Q') A
(ASL_PROGRAM_HOARE_TRIPLE zenv penv P’ p (asl_forall z. Q 1) <
Vz. ASL_PROGRAM_HOARE_TRIPLE zenv penv P’ p (Q z)) A
((3z. ASL_PROGRAM_HOARE_TRIPLE zenv penv (P z) p Q') =
ASL_PROGRAM_HOARE_TRIPLE zenv penv (asl_forall z. P z) p Q') A
((3z. ASL_PROGRAM_HOARE_TRIPLE zenv penv P’ p (Q z)) =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P’ p (asl_exists z. Q z))

(87) ASL_INFERENCE @SSUIE v vvete et et ettt e e e et et e e e e e e e 81

 IS_SEPARATION_COMBINATOR (FST zenv) A
asl_predicate_IS_DECIDED (FST zenv) P c¢ =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P

(asl_prog_prim_command (asl_pc_assume c))
(asl_and P (EVAL_asl_predicate (FST zenv) c¢))

(88) ASL_INFERENCE assume seq STRONGo vneenet et e e e et e 84, 103

— IS_SEPARATION_COMBINATOR (FST zenv) =
(ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_seq (asl_prog_prim_command (asl_pc_assume c)) prog)
Q =
asl_predicate_IS_DECIDED (FST zenv) P c¢ A
ASL_PROGRAM_HOARE_TRIPLE zenv penv
(asl_and P (EVAL_asl_predicate (FST zenv) c¢)) prog Q)

(89) ASL_INFERENCE COMBINE INTERo e 81

(VP Q. (P,Q) € PQ = ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @) A
PQ #+ & =
ASL_PROGRAM_HOARE_TRIPLE zenv penv (BIGINTER (IMAGE FST PQ)) prog
(BIGINTER (IMAGE SND P@))

224 APPENDIX C. HOL4-THEOREM INDEX

(90) ASL_INFERENCE COMBINE UNIONt e

(VP Q. (P,Q) € PQ = ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog Q) =
ASL_PROGRAM_HOARE_TRIPLE zenv penv (BIGUNION (IMAGE FST PQ)) prog

(BIGUNION (IMAGE SND PQ@))

(91) ASL_INFERENCE FRAMEttt et et 80
 IS_SEPARATION_COMBINATOR (FST xzenv) A
ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @ =
V.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (asl_star (FST xzenv) P x) prog
(asl_star (FST zenv) @ x)
(92) ASL_INFERENCE prog choice STRONGueen ettt eeas 82
 ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_choice p; p3) @ <
ASL_PROGRAM_HOARE_TRIPLE zenv penv P p1 @ A
ASL._PROGRAM_HOARE_TRIPLE zenv penv P ps @
(93) ASL_INFERENCE Prog CONA ... v v vttt et ettt e e et e et e 82
I ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_seq (asl_prog_assume c¢) pTrue) @ A
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_seq (asl_prog_assume (asl_pred_neg c¢)) pFualse) @ =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_cond c¢ pTrue pFulse)
Q
(94) ASL_INFERENCE prog cond critical SECEIOM vv't vt et ettt 83
 IS_SEPARATION_COMBINATOR f A (lock_env | = R) A
asl_predicate_IS_DECIDED f (asl_star f P R) ¢ A
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv
(asl_and (asl_star f P R) (EVAL_asl_predicate f ¢)) p
(asl_star f @@ R) A ASL_IS_PRECISE f R =
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv P
(asl_prog_cond_critical_section [¢ p) @
(95) ASL_INFERENCE prog critical SECEIONt.ueueentntt et 82
— IS_SEPARATION_COMBINATOR f A (lock_env | = R) A
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv (asl_star f P R) p
(asl_star f @ R) A ASL_IS_PRECISE f R =
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv P
(asl_prog_critical_section [p) ()
81

(96) ASL_INFERENCE Prog iVeTEE v ettt et et et e et et

 ASL_PROGRAM_HOARE_TRIPLE zenv penv P asl_prog_diverge @)

225

(97) ASL_INFERENCE prog kleene star STRONGououuunenit et et 82

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_kleene_star p) P <+
ASL_PROGRAM_HOARE_TRIPLE zenv penv P p P

(98) ASL_INFERENCE prog 10ck declarabionc.ouunenenareeeeataeneaaenenns 83

 IS_SEPARATION_COMBINATOR f A
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv P p Q A
(lock_env | = R) A ASL_IS_PRECISE f R =
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv (asl_star f P R)
(asl_prog_lock_declaration ! p) (asl_star f @ R)

(99) ASL_INFERENCE prog paralleleueenoeineinee e, 82, 87

— IS_SEPARATION_COMBINATOR (FST zenv) A
ASL_PROGRAM_HOARE_TRIPLE zenv penv P; p1 Q1 A
ASL_PROGRAM_HOARE_TRIPLE zenv penv Ps ps @ =
ASL_PROGRAM_HOARE_TRIPLE zenv penv (asl_star (FST xzenv) P1 Ps)

(asl_prog_parallel p; po) (asl_star (FST zenv) @1 @2)

(100) ASL_INFERENCE prog procedure Calleeeoronenenananenenanannnn. 83,

 name € FDOM penv =
(ASL_PROGRAM_HOARE_TRIPLE zenv penv P (penv ’ mame arg) @ <
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_procedure_call name arg) @)

(101) ASL_INFERENCE prog quant best 10al aCtiONoeeueueneneneneneneaanananannn.

— IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_HOARE_TRIPLE zenv penv (gP arg)
(asl_prog_quant_best_local_action ¢P ¢Q) (gQ arg)

(102) ASL_INFERENCE prog quant best 1ocal aCtiOn2euenunrnraranananananenenss

I IS_SEPARATION_COMBINATOR (FST zenv) =
(Jarg.
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_best_local_action (¢P arg) (gqQ arg)) Q) =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_quant_best_local_action ¢P ¢Q) @

(103) ASL_INFERENCE prog seq STRONG e et 82, 83

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_seq p1 p2) R <
3Q.
ASL._PROGRAM_HOARE_TRIPLE zenv penv P p1 Q A
ASL_PROGRAM_HOARE_TRIPLE zenv penv @ p2 R

226 APPENDIX C. HOL4-THEOREM INDEX

(104) ASL_INFERENCE Prog SKIDo eteeete et et ettt e

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P asl_prog_skip P

(105) ASL_INFERENCE prog While'oeooe e

I asl_predicate_IS_DECIDED (FST zenv) P ¢ A
IS_SEPARATION_COMBINATOR (FST zenv) A
ASL_PROGRAM_HOARE_TRIPLE zenv penv

(asl_and P (EVAL_asl_predicate (FST zenv) ¢)) p P =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_while c¢ p)

(asl_and P (EVAL_asl_predicate (FST zenv) (asl_pred_neg c)))

(106) ASL_INFERENCE prog while fTameoeueninenannenenanannenanannns

- IS_SEPARATION_COMBINATOR (FST zenv) A
Vz.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (I x)
(asl_prog_seq (asl_prog_assume c¢) p) (I z)) A
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_block
(asl_prog_quant_best_local_action [[::
asl_prog_assume (asl_pred_neg c¢)::pl)) @ =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P
(asl_prog_block (asl_prog_while ¢ p::pL)) @

(107) ASL_INFERENCE prog while frame 100D SPEC ... «uvvveneeeaataaaaanenss

 IS_SEPARATION_COMBINATOR (FST zenv) A
Vz.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (P x)
(asl_prog_block (asl_prog_assume (asl_pred_neg c)::pL))
(Q) A
Vz.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (P x)
(asl_prog_block
[asl_prog_assume c¢; p;
asl_prog_quant_best_local_action P Q1) (Q z)) =
Va.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (P x)
(asl_prog_block (asl_prog_while ¢ p::pL)) (Q z)

(108) ASL_INFERENCE SP e vve e et e e e e e e e e e e

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_seq p; p2) @ <

dsp.
(asl_sp_opt zenv penv P p; = SOME sp) A
ASL_PROGRAM_HOARE_TRIPLE zenv penv sp pz @

(109) ASL_INFERENCE STRENGTHENo\ttt ettt e e e e e

H P, € P A 1 © @2 A ASL_PROGRAM_HOARE_TRIPLE zenv penv Py prog Q1 =

ASL._PROGRAM_HOARE_TRIPLE zenv penv Ps prog o

227

(110) ASL_INFERENCE HIDt ee et e et e e e e e e e e e 84

 ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_seq p1 p2) @ <
ASL_PROGRAM_HOARE_TRIPLE zenv penv P p; (asl_wlp zenv penv py @)

(111) ASL_INFERENCE Ch0OSE COSTAILS . ..o v vttt et et e et e e e et e et aee e 83
 IS_SEPARATION_COMBINATOR f A (LENGTH cL = LENGTH L) A
EVERY
(A(Ce,0).
(Vs. se P = (e s =S0ME ¢)) A
V51 59.

(e s = SOME ¢) A ASL_IS_SUBSTATE f s; s = (e s; = SOME ¢))
(ZIP (L,cl)) =
(ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv P
(asl_prog_seq (asl_prog_choose_constants prog L) prog) @ <
ASL_PROGRAM_HOARE_TRIPLE (f,lock_env) penv P
(asl_prog_seq (prog cL) progs) @)

(112) ASL_INFERENCE _ PROCEDURE SPEC DIRECT''erreoesneeeee e, 88

— ASL_PROCEDURE_SPEC___wellformed_spec penv specs A
(V penv’.
ASL_PROCEDURE_SPEC zenv penv’ specs =
VY name abst.
MEM (name,abst) specs =
Yarg.
ASL_PROGRAM_IS_ABSTRACTION zenv penv’ (penv > name arg)
Cabst arg)) =
ASL_PROCEDURE_SPEC zenv penv specs

(113) ASL_INTUITIONISTIC NEGATION defeeet ittt et e 72

- ASL_INTUITIONISTIC_NEGATION f P =
(As. Vs'. ASL_IS_SEPARATE f s s/ = THE (f (SOME s) (SOME s')) ¢ P)

(114) ASL IS INTUITIONISTIC def v vttt ettt e e e e e e et 71

 ASL_IS_INTUITIONISTIC f P <= (asl_star f P U(:a) = P)

(115) ASL_IS INTUITIONISTIC EVAL @Sl Predicateo.eenenenerneninenanannenanannns 73

 IS_SEPARATION_COMBINATOR f =
ASL_IS_INTUITIONISTIC f (EVAL_asl_predicate f p)

(116) ASL IS INTUITIONISTIC. REWRITE@\oteo e 71

 IS_SEPARATION_COMBINATOR f =
VP.
ASL_IS_INTUITIONISTIC f P <«—
V51 S2. 8 € P A ASL_IS_SUBSTATE f 81 S9 = 82 € P

228 APPENDIX C. HOL4-THEOREM INDEX

(117) ASL TS LOCAL ACTION 6f\t 67
I ASL_IS_LOCAL_ACTION f op <
V51 59.
ASL_TIS_SEPARATE f s s =

fasl_order (op (THE (f (SOME s;) (SOME s2))))
(fasl_star f (op s1) (SOME {s3}))

(118) ASL_IS LOCAL ACTION aS1a @SSUME . ..« evvenenetete e e et e et e e e e e 72

— IS_SEPARATION_COMBINATOR f A ASL_IS_INTUITIONISTIC f P =
ASL_IS_LOCAL_ACTION f (asla_assume f P)

(119) ASL IS LOCAL ACTION aS1a CROICE .t vvvve ettt et et e e e et e e e 68, 76

 (Vop. op € OP = ASL_IS_LOCAL_ACTION f op) =
ASL_IS_LOCAL_ACTION f (asla_choice OP)

(120) ASL_IS LOCAL ACTION aS1a diVETEE . . « v v veveee ettt ettt e e e e e e 68

 ASL_IS_LOCAL_ACTION f asla_diverge

(121) ASL TS LOCAL ACTION _asla failoeeesee e 68, 73

 ASL_IS_LOCAL_ACTION f asla_fail

(122) ASL_TS LOCAL ACTION _ @S12. 860 .. v o vnee e e e e 68, 76

— ASL_IS_LOCAL_ACTION f a; A ASL_IS_LOCAL_ACTION f ay =
ASL_TS_LOCAL_ACTION f (asla_seq a1 a2)

(123) ASL_IS LOCAL ACTION aS1a SKID .+ vt vvetet ettt e ettt e e et 68

 ASL_IS_LOCAL_ACTION f asla_skip

(124) ASL 1S LOCAL ACTION _ ASL ATOMIC ACTION SEMoooieeiie .. 76

 IS_SEPARATION_COMBINATOR f =
ASL_TIS_LOCAL_ACTION f (ASL_ATOMIC_ACTION_SEM (f,lock_env) aa)

(125) ASL_TS LOCAL ACTION _ ASL PROGRAM SEM oot 76, 80

— IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_TS_LOCAL_ACTION (FST zenv) (ASL_PROGRAM_SEM zenv penv prog)

(126) ASL_TS LOCAL ACTION _ ASL TRACE SEMt 76

 IS_SEPARATION_COMBINATOR f =
ASL_IS_LOCAL_ACTION f (ASL_TRACE_SEM (f,lock_env) t)

229

(127) ASL_IS LOCAL ACTION _ EVAL asl prim COMMANAeuunenenanaeeenannenennnn. 73

 ASL_IS_LOCAL_ACTION f (EVAL_asl_prim_command f c¢)

(128) ASL_TS LOCAL ACTION _HOARE TRIPLE e 67
— ASL_IS_LOCAL_ACTION f a <—
VP Q.

HOARE_TRIPLE P a Q =
Vx. HOARE_TRIPLE (asl_star f P z) a (asl_star f @ x)

(129) ASL_IS LOCAL ACTION materialisation amnihilationc.oeviniuennnn.. 70
— IS_SEPARATION_COMBINATOR f =

ASL_IS_LOCAL_ACTION f (asla_materialisation f p) A
ASL_IS_LOCAL_ACTION f (asla_annihilation f p)

(130) ASL_IS LOCAL ACTION simple heap €XAmPLESeneneneneeineanaeneanannns 68
 —ASL_IS_LOCAL_ACTION DISJOINT_FMAP_UNION
(Ah. if h = FEMPTY then SOME {h} else NONE) A

ASL_IS_LOCAL_ACTION DISJOINT_FMAP_UNION
(Ah. if h = FEMPTY then SOME {h} else SOME ¢¥)

(131) ASL_IS PRECISE defottt ettt ettt et ettt e e et 70

I ASL_IS_PRECISE [p «—

Ve y ye.
Y1 EP A Yo € p A ASL_IS_SUBSTATE f 1 = A
ASL_IS_SUBSTATE f y» = =

(1 =)
132) ASL IS SEPARATE def . .ottt e e e e 62
(I8 X

- ASL_IS_SEPARATE f z; 22 <= IS_SOME (f (SOME z;) (SOME x3))

(133) ASL_IS SUBSTATE defo e e e e e e e e 62

- ASL_IS_SUBSTATE f sy s <= 3ds1. f (SOME sp) (SOME s1) = SOME so

134) asl magic wand def . .. oottt 63
(_magic_wand_

 asl_magic_wand f P @ =
(As. Vs s9. (SOME s, = f (SOME s1) (SOME s)) A s € P = s € Q)

135) a8l MeE et . oottt 63
(_neg_

- asl_neg = (AP s. s ¢ P)

230 APPENDIX C. HOL4-THEOREM INDEX

(136) @S1 0T def ..ottt 63

 asl_or = (AP @ s. se€ P v se Q)

137) asl predicate IS DECIDED def ooven ettt e e e e e 72
(P I8 i

I asl_predicate_IS_DECIDED f P ¢ <=
Vs.
s € P =>
s € EVAL_asl_predicate f ¢ v
s € EVAL_asl_predicate f (asl_pred_neg c)

(138) ASL_PROGRAM HOARE TRIPLE Gef''eeers e 76

 ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @ <
HOARE_TRIPLE P (ASL_PROGRAM_SEM zenv penv prog) Q

(139) ASL PROGRAM IS ABSTRACTION def '''eee ettt e 76

 ASL_PROGRAM_IS_ABSTRACTION zenv penv prog; progs <=
fasl_action_order (ASL_PROGRAM_SEM zenv penv progi)
(ASL_PROGRAM_SEM zenv penv progs)

(140) ASL_PROGRAM IS ABSTRACTION _ ALTERNATIVE DEFeninininininanannnn. 76, 81, 85

— ASL_PROGRAM_IS_ABSTRACTION zenv penv progy progs <
VP Q.
ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog, @Q =
ASL_PROGRAM_HOARE_TRIPLE zenv penv P progi @

(141) ASL PROGRAM IS ABSTRACTION asl prog lock declaration 86, 105

 IS_SEPARATION_COMBINATOR (FST zenv) A
ASL_IS_PRECISE (FST zenv) (SND zenv [) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_lock_declaration [p)
(asl_prog_block
[asl_prog_prim_command
(asl_pc_shallow_command
(Af. asla_annihilation f (SND zenv 1))); p;
asl_prog_prim_command
(asl_pc_shallow_command
(Af. asla_materialisation f (SND zenv 1)))])

(142) ASL_PROGRAM IS ABSTRACTION — @SSUME AN ... +.vvvvntetet e e et e e eeeaes 85

— IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_assume (asl_pred_and P; P;))
(asl_prog_seq (asl_prog_assume P;) (asl_prog_assume P5))

231

(143) ASL_PROGRAM IS ABSTRACTION _ assume and LOST INFORMATIONooivninenn... 85

 IS_SEPARATION_COMBINATOR (FST xzenv) A
asl_predicate_IS_DECIDED_IN_STATE (FST zenv) s P; A
(s € EVAL_asl_predicate (FST zenv) P; =
asl_predicate_IS_DECIDED_IN_STATE (FST zenv) s P2) =
(ASL_PROGRAM_SEM zenv penv
(asl_prog_seq (asl_prog_assume P;) (asl_prog_assume P3)) s =
ASL_PROGRAM_SEM zenv penv (asl_prog_assume (asl_pred_and P; P»))
s)

(144) ASL_PROGRAM TS ABSTRACTION _ aSSURe DEE andoo'woeeee e 85

— IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_assume (asl_pred_neg (asl_pred_and P; P)))
(asl_prog_assume
(asl_pred_or (asl_pred_neg P;) (asl_pred_neg P>)))

(145) ASL_PROGRAM IS ABSTRACTION — aSSUME DEE MO « .« v vovvee et eee e e e et et eeeeeeeeee e 85

I IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_assume (asl_pred_neg (asl_pred_neg P)))
(asl_prog_assume P)

(146) ASL_PROGRAM IS ABSTRACTION — @SSUME DEE OF ..o e vvveeteeeee e e et et e e eeeeeeees 85

 IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_assume (asl_pred_neg (asl_pred_or P; P3)))
(asl_prog_assume
(asl_pred_and (asl_pred_neg P;) (asl_pred_neg P3)))

(147) ASL_PROGRAM IS ABSTRACTION @SS OFo''voeeee s e e 85

 IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_assume (asl_pred_or P; P»))
(asl_prog_choice (asl_prog_assume P;) (asl_prog_assume P5))

(148) ASL PROGRAM IS ABSTRACTION _ best local aCbiOnooeeernneeeeineo.... 86, 100

— IS_SEPARATION_COMBINATOR (FST zenv) =
(ASL_PROGRAM_IS_ABSTRACTION zenv penv prog
(asl_prog_best_local_action P)) <
ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog Q)

232 APPENDIX C. HOL4-THEOREM INDEX

(149) ASL PROGRAM IS ABSTRACTION CROICE « .ot vveeet ettt e e e e e e eeeees

 ASL_PROGRAM_IS_ABSTRACTION zenv penv progi prog; A
ASL_PROGRAM_IS_ABSTRACTION zenv penv progs progs =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_choice prog; progs)

(asl_prog_choice prog; progh)

(150) ASL_PROGRAM IS ABSTRACTION _ COMA .. v vvevs et e e et e e e ee e

 ASL_PROGRAM_IS_ABSTRACTION zenv penv prog; prog, =
ASL_PROGRAM_IS_ABSTRACTION zenv penv progs progs =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_cond c progy progs)
(asl_prog_cond c prog, progh)

(151) ASL_PROGRAM IS ABSTRACTION — K1€EDE STAT « ... vevevstee e aaeaeeeannns

 ASL_PROGRAM_IS_ABSTRACTION zenv penv prog prog’ =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_kleene_star prog)
(asl_prog_kleene_star prog’)

(152) ASL PROGRAM IS ABSTRACTION _ parallelceeeeeeueeeeeeeinn...

- IS_SEPARATION_COMBINATOR (FST zenv) A
ASL_PROGRAM_IS_ABSTRACTION zenv penv pi
(asl_prog_quant_best_local_action ¢P; q@1) A
ASL_PROGRAM_IS_ABSTRACTION zenv penv p2
(asl_prog_quant_best_local_action ¢Py ¢@o) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_parallel p; p3)
(asl_prog_quant_best_local_action
(A (ay,a2). asl_star (FST zenv) (qPy a1) (gPs a2))
(A (ay,a2). asl_star (FST zenv) (q@Q1 a1) (¢Q2 a2)))

(153) ASL PROGRAM IS ABSTRACTION prog critical section 2o.oeeuen...

I IS_SEPARATION_COMBINATOR (FST zenv) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_critical_section [p)
(asl_prog_block
[asl_prog_prim_command
(asl_pc_shallow_command
(Af. asla_materialisation f (SND zenv 0))); p;
asl_prog_prim_command
(asl_pc_shallow_command
(Af. asla_annihilation f (SND zenv 1)))])

(154) ASL_PROGRAM_IS ABSTRACTION _ quant best local action

— IS_SEPARATION_COMBINATOR (FST zenv) =
(ASL_PROGRAM_IS_ABSTRACTION zenv penv prog
(asl_prog_quant_best_local_action P @) <
Y arg. ASL_PROGRAM_HOARE_TRIPLE zenv penv (P arg) prog (Q arg))

233

(155) ASL_PROGRAM IS ABSTRACTION ~ REFL ... o\ttt ettt e e e 85
— ASL_PROGRAM_IS_ABSTRACTION zenv penv p p
(156) ASL PROGRAM IS ABSTRACTION S8o e e e e e e e e e 85
- ASL_PROGRAM_IS_ABSTRACTION zenv penv progy prog; A
ASL_PROGRAM_IS_ABSTRACTION zenv penv proga progs =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_seq progi progz)
(asl_prog_seq prog; progh)
(157) ASL_PROGRAM IS ABSTRACTION TRANSITIVE''oeeeee e, 85
 ASL_PROGRAM_IS_ABSTRACTION zenv penv p1 p2 =
ASL_PROGRAM_IS_ABSTRACTION zenv penv pa p3 =
ASL_PROGRAM_IS_ABSTRACTION zenv penv p1 p3
(158) ASL_PROGRAM_IS ABSTRACTION _ Whileeinettt et 86
 ASL_PROGRAM_IS_ABSTRACTION zenv penv prog prog’ =
ASL_PROGRAM_IS_ABSTRACTION zenv penv (asl_prog_while c¢ prog)
(asl_prog_while ¢ prog’)
(159) ASL PROGRAM SEM def 75
I ASL_PROGRAM_SEM zenv penv prog =
ASL_TRACE_SET_SEM zenv (ASL_PROGRAM_TRACES penv prog)
7

(160) ASL_PROGRAM_SEM__ prog seq

I ASL_PROGRAM_SEM zenv penv (asl_prog_seq progy progs) =
asla_seq (ASL_PROGRAM_SEM zenv penv prog;)
(ASL_PROGRAM_SEM zenv penv progs)

(161) ASL_PROGRAM TRACES defttt ettt ettt 74
 ASL_PROGRAM_TRACES penv prog =
BIGUNION (IMAGE (ASL_PROTO_TRACES_EVAL penv) prog)
78

(162) asl prog choice def

I asl_prog_choice = (U)

234 APPENDIX C. HOL4-THEOREM INDEX

(163) asl prog_choose constants defenineneen i 79

I asl_prog_choose_constants prog expL =
asl_prog_ndet
(IMAGE
(A constL.
asl_prog_seq
(asl_prog_prim_command
(asl_pc_assume
(asl_pred_bigand
(MAP
A\z.
asl_pred_prim
(Mf s. FST z s = SOME (SND z)))
(ZIP (expL,constl)))))) (prog constL))
(AIl. LENGTH [= LENGTH ezpL))

(164) asl prog_cond critical section defiuieiininiii 78
- asl_prog_cond_critical_section [¢ p =

asl_prog_critical_section [
(asl_prog_seq (asl_prog_prim_command (asl_pc_assume c)) p)

(165) asl prog cond defottt 78
 asl_prog_cond c¢ pTrue pFalse =
asl_prog_choice
(asl_prog_seq (asl_prog_prim_command (asl_pc_assume c)) pTrue)
(asl_prog_seq

(asl_prog_prim_command (asl_pc_assume (asl_pred_neg c)))
pFalse)

(166) asl prog critical section defeeiuiu et 7

I asl_prog_critical_section [p = IMAGE (asl_pt_critical_section [) p

(167) asl prog ext procedure call defc.iniriuinn i 106

- asl_prog_ext_procedure_call name (ref_argL,val_argl) =
asl_prog_choose_constants
(X constL. asl_prog_procedure_call name (ref_argL,constL))
val_argL

(168) asl prog kleene SEar defcuoninreee e 78

I asl_prog_kleene_star p = (Apt. In. pt € asl_prog_repeat_num n p)

(169) asl prog lock declaration defeieouenen o 7

- asl_prog_lock_declaration [p = IMAGE (asl_pt_lock_declaration [) p

235

(170) asl prog ndet HOARE TRIPLE \outttte ettt ettt e et 82

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P (asl_prog_ndet pset) (@ <
VY prog. prog € pset = ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @

(171) asl prog parallel defou ittt e e e 7

 asl_prog_parallel p; py =
(A pt.
Ipty pta. (pt = asl_pt_parallel pt; pte) A ply € p1 A pta € p2)

(172) asl prog repeat Mum deft .iuut ettt 78

— (Vp. asl_prog_repeat_num O p = asl_prog_skip) A
Vn p.
asl_prog_repeat_num (SUC n) p =
(A pt.
E|pt1 ptg.
(pt = asl_pt_seq pt; pla) A pt1 € p A
pty € asl_prog_repeat_num n p)

(173) asl Prog Seq Aefttt ettt e e e e 7

 asl_prog_seq p; p2 =
(A pt.
3pt1 th.
(pt = asl_pt_seq pt; pta) A pti € p1 A
pte € asl_pt_diverge INSERT ps)

(174) asl prog while defottt e 78

 asl_prog_while ¢ p =
asl_prog_seq
(asl_prog_kleene_star
(asl_prog_seq (asl_prog_prim_command (asl_pc_assume c¢)) p))
(asl_prog_prim_command (asl_pc_assume (asl_pred_neg c)))

(175) ASL_PROTO TRACES EVAL def ..ot 74

— ASL_PROTO_TRACES_EVAL penv prog =
(At. dn. t € ASL_PROTO_TRACES_EVAL_PROC n penv prog)

236 APPENDIX C. HOL4-THEOREM INDEX

(176) ASL_PROTO_TRACES EVAL PROC_THM\ttt e

I (ASL_PROTO_TRACES_EVAL_PROC n penv (asl_pt_prim_command pc) =
{[asl_aa_pc pcl}) A
(ASL_PROTO_TRACES_EVAL_PROC n penv (asl_pt_seq p; p2) =
{th ++ & |
t1 € ASL_PROTO_TRACES_EVAL_PROC n penv p; A
t, € ASL_PROTO_TRACES_EVAL_PROC n penv pa}) A
(ASL_PROTO_TRACES_EVAL_PROC n penv (asl_pt_parallel p; p2) =
BIGUNION
{ASL_TRACE_ZIP #; t»
t1 € ASL_PROTO_TRACES_EVAL_PROC n penv p; A
t, € ASL_PROTO_TRACES_EVAL_PROC n penv pa}) A
(ASL_PROTO_TRACES_EVAL_PROC n penv (asl_pt_lock_declaration ! p)
IMAGE
(At.
ASL_TRACE_REMOVE_LOCKS {[}

([asl_aa_verhoog [] ++ t ++ [asl_aa_prolaag []))
(ASL_PROTO_TRACES_EVAL_PROC 7 penv p N
ASL_TRACE_IS_LOCK_SYNCHRONISED [)) A

(ASL_PROTO_TRACES_EVAL_PROC n penv (asl_pt_critical_section [p)
IMAGE (At. [asl_aa_prolaag l] ++ t ++ [asl_aa_verhoog [])
(ASL_PROTO_TRACES_EVAL_PROC n penv p)) A
(ASL_PROTO_TRACES_EVAL_PROC O penv
(asl_pt_procedure_call name arg) =
if name ¢ FDOM penv then {[asl_aa_faill} else &) A
(ASL_PROTO_TRACES_EVAL_PROC (SUC n) penv
(asl_pt_procedure_call name arg) =
if name ¢ FDOM penv then
{[asl_aa_faill}
else
ASL_PROGRAM_TRACES_PROC n penv (penv ’ name arg))

(177) asl septraction def o.ie ittt

- asl_septraction f P @ =
(As. 381 s3. (SOME sy = f (SOME s1) (SOME s)) A s1 € P A 59 € Q)

(178) @Sl 8P 0Pt Qef . oottt ettt e

I asl_sp_opt zenv penv P prog =
(let @Qset () = ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @
in
if Qset = ¢ then NONE else SOME (BIGINTER Qset))

(179) asL 8P 0Pt THM . . ottt ettt e e e et e e e e e

I ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog sp A

(V Q. ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog Q = sp C Q) <—

(SOME sp = asl_sp_opt zenv penv P prog)

237

(180) asl Sp 0Pt PrOg @SSUME . .. v vttt e et ettt e et e e e e e 84

I IS_SEPARATION_COMBINATOR (FST zenv) =
(asl_sp_opt zenv penv P (asl_prog_assume c¢) =
if asl_predicate_IS_DECIDED (FST zenv) P c¢ then
SOME (asl_and P (EVAL_asl_predicate (FST zenv) c¢))

else
NONE)
(181) asl Sp opt_ Prog MAET « .o v vttt ettt ettt e et e 84

- asl_sp_opt zenv penv P (asl_prog_ndet pset) =
if Vprog. prog € pset = IS_SOME (asl_sp_opt zenv penv P prog) then
SOME
(BIGUNION
(IMAGE (Aprog. THE (asl_sp_opt zenv penv P prog)) pset))
else
NONE

(182) @SL SP Pt PrOZ SBQ -« v v v v et e ettt e e et e e e e e e 84

— IS_SEPARATION_COMBINATOR (FST zenv) =
(asl_sp_opt zenv penv P (asl_prog_seq p1 p2) =
(let P1_opt = asl_sp_opt zenv penv P p;
in
if IS_SOME PI_opt then
asl_sp_opt zenv penv (THE PI_opt) po
else
NONE))

(183) asl_Star defttt e e e 62

 asl_star =
(A\f P Qx. 3dp q. (SOME z = f (SOME p) (SOME ¢)) A p € P A g€ Q)

(184) ASL TRACE_IS LOCK SYNCHRONISED defot 74
— ASL_TRACE_IS_LOCK_SYNCHRONISED [¢t <—

LIST_STAR [asl_aa_prolaag l; asl_aa_verhoog []
(ASL_TRACE_GET_LOCKS {l} ¢)

(185) ASL_TRACE REMOVE_LOCKS defot 74

I ASL_TRACE_REMOVE_LOCKS L =
FILTER (Az. —ASL_IS_LOCK_ATOMIC_ACTION L z)

(186) ASL_TRACE SEM QBTot e e e e 75

— ASL_TRACE_SEM zenv t =
asla_big_seq (MAP (ASL_ATOMIC_ACTION_SEM zenv) t)

238 APPENDIX C. HOL4-THEOREM INDEX

(187) ASL_TRACE ZIP REWRITE\ttt e e e e e 74

 (ASL_TRACE_ZIP [1 ¢t = {t}) A (ASL_TRACE_ZIP ¢ [1 = {t}) A
(ASL_TRACE_ZIP (aai::t1) (aag::ty) =
(let z7 = IMAGE (Az. aay::x) (ASL_TRACE_ZIP #; (aag::t2)) in

let zo = IMAGE (\z. aas::z) (ASL_TRACE_ZIP (aa;::t1) t2) in
let z3 = 21 U 2
in

if

ASL_IS_PRIM_COMMAND_ATOMIC_ACTION aa; A
ASL_IS_PRIM_COMMAND_ATOMIC_ACTION aag

then

IMAGE

\z.
asl_aa_check (ASL_GET_PRIM_COMMAND_ATOMIC_ACTION aa;)
(ASL_GET_PRIM_COMMAND_ATOMIC_ACTION aas)::z) =23

else

23))

(188) asl trivial cond defouinint ettt 63

— asl_trivial_cond = (Ac¢ P. if ¢ then P else asl_false)

1R9) asl trUe def ... ottt e e e 63
(_true_

— asl_true = U(:)

(190) sl WIp_def .. oottt et 83

F asl_wlp zenv penv prog @ =
BIGUNION (A P. ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog @)

(191) sl ulp THY . . oottt e e e e e e e 83

 ASL_PROGRAM_HOARE_TRIPLE zenv penv wlp prog Q A
(VY P. ASL_PROGRAM_HOARE_TRIPLE zenv penv P prog Q@ = P C wlp) <—
(wlp = asl_wlp zenv penv prog @)

(192) @SLWID_ PIOZ SEY -+« e vv ettt et et et e e et e e e e 84

— IS_SEPARATION_COMBINATOR (FST zenv) =
(asl_wlp zenv penv (asl_prog_seq p1 p2) @ =
asl_wlp zenv penv p; (asl_wlp zenv penv py @))

(193) best local aCtion defein ittt et 69

 best_local_action f P; Py s =
(let set p =
350 S51.
(SOME s = f (SOME sp) (SOME s1)) A s € P1 A
(p = fasl_star f (SOME P») (SOME {so}))
in
INF_fasl_order set)

239

194) best local action THMt 69, 81
(Local action_

 IS_SEPARATION_COMBINATOR f =
ASL_IS_LOCAL_ACTION f (best_local_action f P; P3) A
HOARE_TRIPLE P; (best_local_action f Py P3) Py A
Yg.
ASL_IS_LOCAL_ACTION f g A HOARE_TRIPLE P; g P> =
fasl_action_order g (best_local_action f P; Ps)

(195) best local action ALTERNATIVE DEFoiuinttnttt et 69

 IS_SEPARATION_COMBINATOR f =
(BIGSUP fasl_action_order U (:« asl_action)
(Ag. ASL_IS_LOCAL_ACTION f g A HOARE_TRIPLE P, g Pp) =
SOME (best_local_action f P; Ps))

(196) DISJOINT FMAP UNION defttt ettt e et et 63, 117

— DISJOINT_FMAP_UNION =
BIN_OPTION_MAP () (Am; mg. DISJOINT (FDOM m;) (FDOM mg))

(197) EVAL asl predicate defoutntuee e e 73

 (Vf pp.
EVAL_asl_predicate f (asl_pred_prim pp) =
if ASL_IS_INTUITIONISTIC f (pp f) then pp f else asl_false) A
(Vf. EVAL_asl_predicate f asl_pred_true = asl_true) A
(Vf. EVAL_asl_predicate f asl_pred_false = asl_false) A
~fop.
EVAL_asl_predicate f (asl_pred_neg p) =
ASL_INTUITIONISTIC_NEGATION f (EVAL_asl_predicate f p)) A
~Vf p1op2.
EVAL_asl_predicate f (asl_pred_and p; p2) =
asl_and (EVAL_asl_predicate f p;) (EVAL_asl_predicate f p2)) A
VI p1op.
EVAL_asl_predicate f (asl_pred_or p; p2) =
asl_or (EVAL_asl_predicate f p;) (EVAL_asl_predicate f p3)

(198) EVAL asl prim command defuiutn ittt e 73

 EVAL_asl_prim_command f (asl_pc_shallow_command s¢) =
if ASL_IS_LOCAL_ACTION f (sc f) then sc f else asla_fail

(199) fasl action order defc.ouiuini it 68

I fasl_action_order f ¢ <
VP (. HOARE_TRIPLE P ¢g () = HOARE_TRIPLE P f @

(200) fasl action order IS WEAK ORDERouintntt ettt 68

- WeakOrder fasl_action_order

240 APPENDIX C. HOL4-THEOREM INDEX

(201) fasl action order POINTWISE DEF\ttt ettt e 68

— fasl_action_order a; as <= Vs. fasl_order (a; s) (as S)

(202) fasl action order IS COMPLETE LATTICE\uinin it 68

 IS_SEPARATION_COMBINATOR f =
IS_COMPLETE_LATTICE fasl_action_order (ASL_IS_LOCAL_ACTION f)

(203) fasl order defoouu i 67
 (fasl_order NONE NONE < T) A
(fasl_order (SOME 15) NONE < T) A

(fasl_order NONE (SOME z) <= F) A
(fasl_order (SOME z) (SOME y) <= = S ¥)

(204) fasl order IS WEAK ORDER\ttt ettt e et e e e e 68

I WeakOrder fasl_order

(205) fasl star DIRECT DEF outttt ettt ettt e e e e e e e e 67

 (fasl_star f NONE Qopt = NONE) A (fasl_star f Popt NONE = NONE) A
(fasl_star f (SOME P) (SOME)) = SOME (asl_star f P @Q))

(206) HOARE TRIPLE REWRITEttt ettt ettt et e e e e e e e e ea 65

 HOARE_TRIPLE P f Q <= Vs. s€ P = 35. (f s =SOME S) A S € Q@

(207) ID SEPARATION COMBINATOR def eee ettt et e 65

I ID_SEPARATION_COMBINATOR = BIN_OPTION_MAP (Az' ¢'. z') (=)

(208) ID_SEPARATION COMBINATOR. THMS\t e 65

 IS_SEPARATION_COMBINATOR ID_SEPARATION_COMBINATOR A
(asl_emp ID_SEPARATION_COMBINATOR = U(:3)) A
(asl_star ID_SEPARATION_COMBINATOR = (n)) A
(ASL_IS_SEPARATE ID_SEPARATION_COMBINATOR = (=)) A
(ASL_IS_SUBSTATE ID_SEPARATION_COMBINATOR = (=)) A
(ASL_IS_PRECISE_IN_STATE ID_SEPARATION_COMBINATOR = K (K T)) A
(ASL_IS_PRECISE ID_SEPARATION_COMBINATOR = K T)

(209) INF fasl action order LOCALuu ittt ettt e e e et e 68

— IS_SEPARATION_COMBINATOR f A
(Yop. op € OP = ASL_IS_LOCAL_ACTION f op) =
ASL_TIS_LOCAL_ACTION f (INF_fasl_action_order OP)

241

(210) INF fasl action order REWRITEouiue ettt 68

I INF_fasl_action_order actions =
(As.
if 3a. a € actions A IS_SOME (a s) then
SOME
(BIGINTER (IMAGE THE (IS_SOME N IMAGE (MAa. a s) actions)))
else
NONE)

(211) INF fasl action order THMottt ettt e et e 68

I IS_INFIMUM fasl_action_order U(:« asl_action) M
(INF_fasl_action_order M)

(212) INF fasl order defuou ittt et e e e 66
- INF_fasl_order M =
if Vz. 2 € M = (2 = NONE) then
NONE

else
SOME (BIGINTER (IMAGE THE ((Az. IS_SOME z) n M)))

(213) IS COMM MONOID @SL SAT P . . vvvvveee et ettt e e et e e e e et e e e ae s 63

 IS_SEPARATION_COMBINATOR f = COMM_MONOID (asl_star f) (asl_emp f)

214) IS _SEPARATION ALGEBRA defo .o e 64
(: _ALGEBRA_
- IS_SEPARATION_ALGEBRA [u <=

(Vxz. f NONE z = NONE) A (Vz. f (SOME) (SOME z) = SOME z) A
COMM f A ASSOC f A OPTION_IS_LEFT_CANCELLATIVE f

(215) IS_SEPARATION ALGEBRA COMBINATOR DEFec'''ereeeeeeiieeaeeeino., 64

I IS_SEPARATION_ALGEBRA f u <
IS_SEPARATION_COMBINATOR f A Vz. f (SOME u) (SOME z) = SOME z

(216) IS_SEPARATION ALGEBRA _ FINITE MAP''oeeeeeee e, 117

 IS_SEPARATION_ALGEBRA DISJOINT_FMAP_UNION FEMPTY

(217) IS_SEPARATION COMBINATOR def eeeet ettt e et 62

 IS_SEPARATION_COMBINATOR f <
(Vz. f NONE z = NONE) A (Yz. Ju. f (SOME u) (SOME z) = SOME z) A
COMM f A ASSOC f A OPTION_IS_LEFT_CANCELLATIVE f

242 APPENDIX C. HOL4-THEOREM INDEX

(218) IS_SEPARATION COMBINATOR NEUTRAL ELEMENT FUNCTION 11ooeeeeeeinnneean... 64
 IS_SEPARATION_COMBINATOR f A

IS_SEPARATION_COMBINATOR_NEUTRAL_ELEMENT_FUNCTION f ufi A
IS_SEPARATION_COMBINATOR_NEUTRAL_ELEMENT_FUNCTION f ufy =

(ufi = ufz)

(219) IS_SEPARATION COMBINATOR NEUTRAL ELEMENT FUNCTION EQScceooereeeeeeenn.. 64

— IS_SEPARATION_COMBINATOR f A
IS_SEPARATION_COMBINATOR_NEUTRAL_ELEMENT_FUNCTION f uf A
(f (SOME s;) (SOME s,) = SOME s3) =
(uf s1 = uf s2) A (uf s1 = uf s3) A (uf s2 = uf s3)

(220) 1S_SEPARATION COMBINATOR_ FINITE MAP'o'ooees e 63, 117

 IS_SEPARATION_COMBINATOR DISJOINT_FMAP_UNION

(221) IS_SEPARATION COMBINATOR NEURAL ELEMENT IDEMPOTENTceoeininininnnnannn.. 64

— IS_SEPARATION_COMBINATOR f =
V2 u.
(f (SOME u) (SOME z) = SOME z) = (f (SOME u) (SOME u) = SOME u)

(222) 1S_SEPARATION COMBINATOR__ NEURAL ELEMENT IS NEUTRALoooeeeeeeneneeni., 64

 IS_SEPARATION_COMBINATOR f =
Vo, @0 23 u.

(f (SOME u) (SOME ;) = SOME 1) A
(f (SOME u) (SOME 23) = SOME z3) =
(Ig = IQ)
(223) LOCALITY CHARACTERISATION . . oottt e e e e e e e 67

 ASL_IS_LOCAL_ACTION f op <=
TRANS_FUNC_SAFETY_MONOTONICITY f op A
TRANS_FUNC_FRAME_PROPERTY f op

(224) PRODUCT SEPARATION COMBINATOR defttt ettt e 64

 (PRODUCT_SEPARATION_COMBINATOR f; f> NONE NONE = NONE) A
(PRODUCT _SEPARATION_COMBINATOR f; f> NONE (SOME wg) = NONE) A
(PRODUCT_SEPARATION_COMBINATOR fi fo (SOME (wi1,v12)) NONE =
NONE) A
(PRODUCT_SEPARATION_COMBINATOR f; fo (SOME (z1,12))

(SOME (y1,42)) =
(let z; = f; (SOME z;) (SOME %) in
Iet Zo = f2 (SDME IQ) (SOME yg)
in
if IS_SOME 2; A IS_SOME 2 then
SOME (THE z ,THE 2)
else
NONE))

243

(225) PRODUCT SEPARATION COMBINATOR THMottt ettt e e e e 64

- IS_SEPARATION_COMBINATOR f; A IS_SEPARATION_COMBINATOR f, =
IS_SEPARATION_COMBINATOR (PRODUCT_SEPARATION_COMBINATOR f; f2)

(226) PRODUCT SEPARATION COMBINATOR ALGEBRA THM''eeeeeeeieeeenn.. 64

I IS_SEPARATION_ALGEBRA fi u; A IS_SEPARATION_ALGEBRA fo uy =
IS_SEPARATION_ALGEBRA (PRODUCT_SEPARATION_COMBINATOR fi fo) (uq,us)

(227) PRODUCT SEPARATION COMBINATOR aSL STAT « . o' vvvetete e et e ee e e e 94

I asl_star (PRODUCT_SEPARATION_COMBINATOR f; f») P, P, =
A (z,y).
dm 22 Y1 Y2
(fi (SOME z;) (SOME z2) = SOME z) A
(f2 (SOME y1) (SOME yg) SOME y) AN P1 (xl,yl) AN PQ (IQ,yQ))

(228) quant best 1ocal aCtion defeeit ittt 71

 quant_best_local_action f ¢P; ¢Ps =
INF_fasl_action_order
(Ag. 3z. g = best_local_action f (gP; z) (gP2 z))

(229) quant best local action REWRITEuouin ittt 71

 quant_best_local_action f ¢qP; ¢Ps s =
(let set p =
dx sy s1.
(SOME s = f (SOME sp) (SOME s1)) A s1 € ¢P1 7 A
(p = fasl_star f (SOME (¢P> z)) (SOME {sy}))
in
INF_fasl_order set)

(230) quant best local action THMttt ettt et 71

— IS_SEPARATION_COMBINATOR f =

ASL_TS_LOCAL_ACTION f (quant_best_local_action f ¢P; qP3) A

Vz.
HOARE_TRIPLE (¢gP; z) (quant_best_local_action f ¢P; ¢P2)

(¢P2 2)) A

Yg.
ASL_IS_LOCAL_ACTION f g A (Vx. HOARE_TRIPLE (¢P; z) g (¢Ps z)) =
fasl_action_order g (quant_best_local_action f ¢P; qPs)

(231) quant best local action ALTERNATIVE DEFouininiiintii i, 71

— IS_SEPARATION_COMBINATOR f =
(BIGSUP fasl_action_order U(:« asl_action)
(Ag.
ASL_IS_LOCAL_ACTION f g A
V2. HOARE_TRIPLE (¢P; z) g (¢P2 z)) =
SOME (quant_best_local_action f ¢P; ¢P3))

244 APPENDIX C. HOL4-THEOREM INDEX

(232) SUP_fasl action 0rder defoueenininat it 68

- SUP_fasl_action_order M = (Az. SUP_fasl_order (IMAGE (Af. f z) M))

(233) SUP_fasl action order LOCALttt ettt et et e e e e e 68

— (Vop. op € OP = ASL_IS_LOCAL_ACTION f op) =
ASL_IS_LOCAL_ACTION f (SUP_fasl_action_order OP)

(234) SUP_fasl action order THM\ttt et ettt e 68

— IS_SUPREMUM fasl_action_order U(:« asl_action) M
(SUP_fasl_action_order M)

(235) SUP_fasl order defuout ittt e 66

 SUP_fasl_order M =
if NONE € M then NONE else SOME (BIGUNION (IMAGE THE M))

(236) TRANS_FUNC_FRAME_PROPERTY def\ '\ttt e et 67

— TRANS_FUNC_FRAME_PROPERTY f op <—
V51 S 83 U1 Us t.
(f (SOME s1) (SOME s3) = SOME s3) A (op sy = SOME 1) A
(op s3 = SOME w3) At € v3 =
3¢'. (SOME t = f (SOME t') (SOME s3)) A t' € v

(237) TRANS_FUNC SAFETY MONOTONICITY defottt e e 67

- TRANS_FUNC_SAFETY_MONOTONICITY f op
Vs1 So. ASL_IS_SUBSTATE f s; s A IS_SOME (op s1) = IS_SOME (op s2)

C.3 vars_as resourceTheory

(238) asl_emp_ VAR RES COMBINATOR e et 95

- asl_emp (VAR_RES_COMBINATOR f) =
(As. (FST s = FEMPTY) A SND s € asl_emp f)

(239) ASL_INTUITIONISTIC NEGATION weak rop @XPreSSione.eeeeneneeenannennn. 103

 IS_SEPARATION_COMBINATOR f A
EVERY
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(FDOM (FST 5))) el =
(ASL_INTUITIONISTIC_NEGATION (VAR_RES_COMBINATOR f)
(var_res_prop_weak_expression p el) s <
var_res_prop_weak_expression (Al. —p [) el s)

(240) ASL_IS_INTUITIONISTIC Weak €XPTeSSION e'eeeueeeneneneee e, 96, 103

 IS_SEPARATION_COMBINATOR f A
EVERY
(Me.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e))
el =
ASL_IS_INTUITIONISTIC (VAR_RES_COMBINATOR f)
(var_res_prop_weak_expression p el)

(241) ASL IS LOCAL ACTION _ var res assigh aChiome.eeouiranananananenenenss 107

I IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
ASL_TIS_LOCAL_ACTION (VAR_RES_COMBINATOR f)
(var_res_assign_action v e)

(242) ASL IS LOCAL ACTION _ var res diSpose VAT aCtIONe.eeeuenenenenrananannn. 109

 ASL_IS_LOCAL_ACTION (VAR_RES_COMBINATOR f)
(var_res_dispose_var_action v)

(243) ASL IS LOCAL ACTION _ var res mew var init actionoeoeeeeninanns 109

I IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e) =
ASL_TIS_LOCAL_ACTION (VAR_RES_COMBINATOR f)
(var_res_new_var_init_action v e)

(244) asl predicate IS DECIDED Var TeS Predeuenenrneneieat et eaaenenen. 103

 IS_SEPARATION_COMBINATOR f A
EVERY (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET ws)
el A (Vs. s € P = vs € FDOM (FST s)) =
asl_predicate_IS_DECIDED (VAR_RES_COMBINATOR f) P

(var_res_pred p el)

(245) ASL_PROGRAM IS ABSTRACTION var res best local actionoeninennn.. 100

— IS_VAR_RES_COMBINATOR (FST zenv) =
(ASL_PROGRAM_IS_ABSTRACTION zenv penv prog
(var_res_prog_best_local_action P @) <
VAR_RES_HOARE_TRIPLE zenv penuv P prog @)

(246) ASL PROGRAM IS ABSTRACTION _ var res prog aquire 10CKeeeuenenenen... 105

 IS_SEPARATION_COMBINATOR f =
ASL_PROGRAM_IS_ABSTRACTION (VAR_RES_COMBINATOR f,lenv) penv
(var_res_prog_aquire_lock f ¢ wpb sfb)
(asl_prog_seq
(var_res_prog_cond_best_local_action
(var_res_prop f ({},{[}> {}}) (var_res_prop f Cwpb,{[}) s/b))

(asl_prog_assume c))

246 APPENDIX C. HOL4-THEOREM INDEX

(247) ASL_PROGRAM_IS ABSTRACTION _ var res prog eval eXpresSions

— (V constL.
ASL_PROGRAM_IS_ABSTRACTION zenv penv (prog constL)
(prog’ constl)) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv
(var_res_prog_eval_expressions prog expL)
(var_res_prog_eval_expressions prog’ explL)

(248) ASL PROGRAM IS ABSTRACTION _ var res prog parallel procedure call

— IS_VAR_RES_COMBINATOR (FST zenv) =
VP qP2 qQ1 qQ2.
(Yarg.

ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_procedure_call name; arg)
(var_res_prog_quant_best_local_action (¢P; arg)

(qQr arg))) A
(Yarg.

ASL_PROGRAM_IS_ABSTRACTION zenv penv
(asl_prog_procedure_call namez arg)
(var_res_prog_quant_best_local_action (¢Ps arg)

(qQ2 arg))) =
ASL_PROGRAM_IS_ABSTRACTION zenv penv

(var_res_prog_parallel_procedure_call name; argy namez args)

(var_res_prog_eval_expressions
(X constLy .

var_res_prog_eval_expressions
() constLsy .
var_res_prog_quant_best_local_action
(X Cargy , args) .
asl_star (FST zenv)
(gPy (FST argy,constLy) arg))
(qPy (FST args,constLs) arg)))
(X Cargy , argh) .
asl_star (FST zenv)
(qg@1 (FST argy,constLy) arg))
(qQ2 (FST arge,constLs) argy))) (SND arge))
(SND arg1))

(249) ASL_PROGRAM IS ABSTRACTION _ var res prog release 10CKoouueoen..

I IS_SEPARATION_COMBINATOR f =
ASL_PROGRAM_IS_ABSTRACTION (VAR_RES_COMBINATOR f,lenv) penv
(var_res_prog_release_lock f wpb sfb)
(var_res_prog_cond_best_local_action

(var_res_prop f (upb, {}) sft) (var_res_prop f (. {1

(250) ASL PROGRAM IS ABSTRACTION _ var res quant best local action

— IS_VAR_RES_COMBINATOR (FST zenv) =
(ASL_PROGRAM_IS_ABSTRACTION zenv penv prog
(var_res_prog_quant_best_local_action ¢P ¢@) <
Y arg. VAR_RES_HOARE_TRIPLE zenv penv (qP arg) prog (qQ arg))

247

(251) asl star VAR RES IS STACK IMPRECISE

— VAR_RES_IS_STACK_IMPRECISE P; A VAR_RES_IS_STACK_IMPRECISE Py =
(asl_star (VAR_RES_COMBINATOR f) Py Py =
(As.

des; esy.

(f (SOME es;) (SOME esy) = SOME (SND s)) A (FST s,es1) € P1 A
(FST 8,652) € Pg))

(252) asl star _ var res prop stack true STACK IMPRECISE

 IS_SEPARATION_COMBINATOR f =
VP.

VAR_RES_IS_STACK_IMPRECISE P =

(asl_star (VAR_RES_COMBINATOR f) (var_res_prop_stack_true f) P =
P)

(253) asl star _ var res prop _ PROP

- BAG_DISJOINT wpb; wpbs A BAG_DISJOINT wpb, rpbs A
BAG_DISJOINT wpby rpby A var_res_prop___COND f (wpbi,rpbi) sfby A
var_res_prop___COND f (wpbs,rpbe) sfbe =
(asl_star (VAR_RES_COMBINATOR f)

(var_res_prop___PROP f (wpby,rpb1) sfb1)
(var_res_prop___PROP f (wpba,rpby) sfbe) =

var_res_prop___PROP f (wpby w wpby ,BAG_MERGE rpb; r1pbs)
(sfbr w sfb2))

(254) IS_PERMISSION STRUCTURE def

 IS_PERMISSION_STRUCTURE (f,total_perm) <—

ASSOC f A COMM f A OPTION_IS_LEFT_CANCELLATIVE f A
(VC. f NONE C = NONE) A

(Ve. d¢1 co. f (SOME ¢;) (SOME c¢3) = SOME c¢) A
(Ve. f (SOME total_perm) (SOME ¢) = NONE) A
Ver ca. f (SOME ¢1) (SOME cp) # SOME ¢

(255) IS_SEPARATION ALGEBRA VAR RES COMBINATOR

 IS_SEPARATION_ALGEBRA f u =
IS_SEPARATION_ALGEBRA (VAR_RES_COMBINATOR f) (FEMPTY,u)

(256) IS_SEPARATION COMBINATOR__ VAR RES COMBINATOR

.. 92
 IS_SEPARATION_COMBINATOR f =
IS_SEPARATION_COMBINATOR (VAR_RES_COMBINATOR f)
(257) IS VAR RES SUBPERMISSION defottt ettt e e et 90

 IS_VAR_RES_SUBPERMISSION p; p2 <—
(p1 = p2) v
Ip. var_res_permission_combine (SOME p;) (SOME p) = SOME po

APPENDIX C. HOL4-THEOREM INDEX

248
(258) var res assign action defi.ii it 107
 var_res_assign_action v e s =
(let ev_opt = e (FST s)
in
if
var_res_sl___has_write_permission v (FST s) A IS_SOME ev_opt
then
SOME {var_res_ext_state_var_update (v,THE ev_opt) s}
else
NONE)
(259) var res best local action defeiiit it 100
- var_res_best_local_action f P @ =
quant_best_local_action f (Az s. s € P A (s = z))
Az s.
s € @ A VAR_RES_STACK___IS_EQUAL_UPTO_VALUES (FST z) (FST s))
(260) var res bigstar 1ist REWRITEo\ttt ettt et 97
F (Vf.
IS_SEPARATION_COMBINATOR f =
(var_res_bigstar_list f [] = var_res_prop_stack_true f)) A
Yf p pL.
IS_SEPARATION_COMBINATOR f =
(var_res_bigstar_list f (p::pL) =
asl_star (VAR_RES_COMBINATOR f) p (var_res_bigstar_list f pL))
97

(261) var res bigstar REWRITE

= (Vf.
IS_SEPARATION_COMBINATOR f =
(var_res_bigstar [{|[} = var_res_prop_stack_true f)) A

Vf p pL.
IS_SEPARATION_COMBINATOR f =

(var_res_bigstar f (BAG_INSERT p pL) =
asl_star (VAR_RES_COMBINATOR f) p (var_res_bigstar f pL))

(262) var res bool proposition deft 96
I var_res_bool_proposition f ¢ =
var_res_stack_proposition f T (As. ¢)
92

(263) VAR_RES COMBINATOR deft e e e e

I VAR_RES_COMBINATOR f =
PRODUCT_SEPARATION_COMBINATOR VAR_RES_STACK_COMBINE f

(264) var res cond best local action def

- var_res_cond_best_local_action f P @ =
if =FST P v —FST Q then

asla_diverge

else
var_res_best_local_action f (SND P) (SND @)

(265) VAR_RES_COND HOARE TRIPLE def

- VAR_RES_COND_HOARE_TRIPLE f P prog Q <>

IS_SEPARATION_COMBINATOR f A FST P A FST Q =
VAR_RES_HOARE_TRIPLE (VAR_RES_COMBINATOR f,K asl_false) FEMPTY

(SND P) prog (SND @)

(266) VAR_RES_COND HOARE TRIPLE__COND PROP_STRONG IMP

 COND_PROP___STRONG_IMP P; P, =
VAR_RES_COND_HOARE_TRIPLE f P» prog Q =

VAR_RES_COND_HOARE_TRIPLE f P; prog Q

(267) VAR RES COND HOARE TRIPLE _ PROGRAM_ABSTRACTION

 (IS_SEPARATION_COMBINATOR f =
VAR_RES_PROGRAM_IS_ABSTRACTION f progi proga A

VAR_RES_COND_HOARE_TRIPLE [P progs Q) =
VAR_RES_COND_HOARE_TRIPLE f P prog; Q

(268) VAR RES COND HOARE TRIPLE _ SOLVE

- SET_OF_BAG wpb’ C SET_OF_BAG wpb A
SET_OF_BAG rpb’ C SET_OF_BAG (wpb w rpb) =

VAR_RES_FRAME_SPLIT f sr (wpb,rpb) {[} {} sfb sfb’
(BAG_EVERY (VAR_RES_IS_PURE_PROPOSITION f)) =

VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block [1) (var_res_prop f (wpb',rpb’) sfb’)

(269) VAR RES COND INFERENCE asl exists pre

F (Vy.
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))

Py =

(VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT (asl_exists y. P y) sfb))

prog Q@ <
Vy.

VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT (P y) sfb)) prog @)

250 APPENDIX C. HOL4-THEOREM INDEX

(270) VAR RES COND INFERENCE aSL SEAT PIeeoventnenanet e ataeieeaeaenennnn 102

- IS_VAR_RES_COMBINATOR f’ A (GET_VAR_RES_COMBINATDR‘W =f) A
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
P1 AN
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
P2 =
(VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT (asl_star f' Py P3) sfb))
prog @@ <—
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT P; (BAG_INSERT P sfb)))

prog Q)

(271) VAR_RES_COND INFERENCE asl trivial COndcoeeeeeinneeeeinneeeni., 102

— VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (asl_trivial_cond ¢ P) sfb)) prog post <
c =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT P sfb)) prog post

(272) VAR_RES_COND INFERENCE CONST INTRO'''eeree e, 102

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET

(SET_OF_BAG (wpb w mpb)) e =

(VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog
post

Ve.
VAR_RES_COND_HOARE_TRIPLE f

(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_prop_equal f e (var_res_exp_const ¢))
sfb)) prog post)

(273) VAR_RES_COND INFERENCE_ CONST INTRO READ''eoonneeee e 102

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG rpb) e =
(VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog
(var_res_prop [(wpb’,rpb) sft’)
Ve.
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_prop_equal f e (var_res_exp_const c))
sfb)) prog
(var_res_prop f (wpb’,rpb)
(BAG_INSERT (var_res_prop_equal f e (var_res_exp_const ¢))
sfo')))

(274) VAR RES COND INFERENCE eval expressions NIL

 VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (var_res_prog_eval_expressions prog []::progL))
Q =
VAR_RES_COND_HOARE_TRIPLE f P (asl_prog_block (prog [1::progl)) Q

(275) VAR RES COND INFERENCE eval expressions ONE.............oeiinieienininanannnn.n. 106

(e = var_res_exp_const ¢) Vv
var_res_prop_equal f e (var_res_exp_const c) €: sfb =
(VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block
(var_res_prog_eval_expressions prog (e::L)::progl)) @ <=
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block
(var_res_prog_eval_expressions (AL. prog (c::L)) L::progl))
@)

(276) VAR_RES_COND INFERENCE FRAMEo\ 102

— VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG rpb) P A
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog
(var_res_prop f (wpb’,rpb) sft’) =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (BAG_INSERT P sfb)) prog
(var_res_prop f (wpb’,rpb) (BAG_INSERT P sfb’'))

(277) VAR RES COND INFERENCE 1oop spec GENERALeueuerennin e, 104

— (FST P = Vax. FST (pre z) A FST (post x)) =
Vz.
VAR_RES_COND_HOARE_TRIPLE f (pre z)
(asl_prog_block (asl_prog_assume (asl_pred_neg c)::prog;))
(post z)) A
Vz.
VAR_RES_COND_HOARE_TRIPLE f (pre z)
(asl_prog_block
[asl_prog_assume c¢; p;
var_res_prog_cond_quant_best_local_action pre post])
(post z)) A
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(var_res_prog_cond_quant_best_local_action pre post::progs))
Q =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_block (asl_prog_while ¢ p::progi)::proge)) @

252 APPENDIX C. HOL4-THEOREM INDEX

(278) VAR RES COND INFERENCE Drog assume andc.eenenenenanannenanannenns 104

 VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume P;::asl_prog_assume Ps::progL))
Q =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume (asl_pred_and P; Ps)::progl)) @

Prog assume Neg andttt 104

(279) VAR RES COND_INFERENCE

I VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_assume
(asl_pred_or (asl_pred_neg P;) (asl_pred_neg P»))::progl))
Q =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_assume (asl_pred_neg (asl_pred_and P; Ps))::progL))

Q

(280) VAR RES COND INFERENCE Drog asSUle DIE TIEE . .. v e v ovvveteneeeeeeeeeeeeaee s 104

I VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume p::progl)) @ =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_assume (asl_pred_neg (asl_pred_neg p))::progl)) @

(281) VAR RES COND INFERENCE Prog assume MEE OTeeeueunnenanaeee e, 104

 VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_assume
(asl_pred_and (asl_pred_neg P;) (asl_pred_neg P>))::progl))
Q =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(asl_prog_assume (asl_pred_neg (asl_pred_or P; P5))::progl)) @

(282) VAR RES COND INFERENCE prog assume MEg PTedeenenenenanaennnenannns 103

 EVERY
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb))) el =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_prop_expression f T (Al. —p) el) sfb))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block
(asl_prog_assume (asl_pred_neg (var_res_pred p el))::progl)) @

(283) VAR RES COND INFERENCE DrOg SSWME OFeeovneneneenteataeaeaaaeennnn 104

— VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume P;::progl)) @ A
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume Ps::progl)) @ =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume (asl_pred_or P; Ps)::progl)) @

(284) VAR RES COND INFERENCE Drog aSSUme PIede.eueneouneanananananananenss 103

— EVERY
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 71pb))) el =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_prop_expression f T p el) sfb))
(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block (asl_prog_assume (var_res_pred p el)::progl)) @

(285) VAR RES COND INFERENCE prog call by Valtue aTfeurerenananananenenennn. 110

F (Vo.
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (BAG_INSERT v wpb,rpb)
(BAG_INSERT
(var_res_prop_equal f (var_res_exp_var v)
(var_res_exp_const ¢)) sfb)) (body v)
(COND_PROP___STRONG_EXISTS
(\z'. var_res_prop f (BAG_INSERT v wpb,rpb) (sft’ 2')))) =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(var_res_prog_call_by_value_arg body c)
(COND_PROP___STRONG_EXISTS
(A z'. var_res_prop f (wpb,rpb) (sfb’ z')))

(286) VAR RES COND INFERENCE Prog ChOICE v v ettt e et e e eeeee e 101

I VAR_RES_COND_HOARE_TRIPLE f P (asl_prog_block (pi::prog)) @ A
VAR_RES_COND_HOARE_TRIPLE f P (asl_prog_block (py::prog)) @ =
VAR_RES_COND_HOARE_TRIPLE f P

(asl_prog_block (asl_prog_choice p; po::prog)) @

287) VAR RES COND INFERENCE DLOZ CODA ... oo oo 104
(_RES_COND_ ___prog_

I VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume c::pTrue::prog)) Q A
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_assume (asl_pred_neg c)::pFualse: :prog))
Q =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_cond c pTrue pFalse::prog)) @

254 APPENDIX C. HOL4-THEOREM INDEX

(288) VAR RES COND INFERENCE prog 10CAl VALe'eeoneenenanananaeananaenennn. 110

F (V.
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (BAG_INSERT v wpb,rpb) sfb) (body v)
(COND_PROP___STRONG_EXISTS
(\z'. var_res_prop f (BAG_INSERT v wpb,rpb) (sft’ 2')))) =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(var_res_prog_local_var body)
(COND_PROP___STRONG_EXISTS

(\z’. var_res_prop f (wpb,rpb) (sfb’ z')))

(289) VAR _RES_COND INFERENCE prog while GENERALoeoeeennneeeeeeeennno., 104

— (FST P = Vz. FST (Inv 2)) =
Vz.
VAR_RES_COND_HOARE_TRIPLE f (Inv z)
(asl_prog_block (asl_prog_assume c::pL)) (Inv z)) A
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block
(var_res_prog_cond_quant_best_local_action Inv Inv::
asl_prog_assume (asl_pred_neg c)::prog)) @ =
VAR_RES_COND_HOARE_TRIPLE f P
(asl_prog_block (asl_prog_while ¢ (asl_prog_block pL)::prog)) @

(290) VAR RES COND INFERENCE Prop imPLieseeeeoreneneeeeeeet e, 116

I var_res_prop_implies f (wpb,rpb) sfb sft’ =
(VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog
post
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb) (sfb w sfb')) prog post)

(291) VAR RES COND INFERENCE prop implieS € ... «.vevveranetetate e, 115

- var_res_prop_implies_eq f (wpb,rpb) {|} sfb sft’ =
(VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog

post
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb’) prog
post)
(292) VAR RES COND INFERENCE STRENGTHEN PERMS oo 101

F Vv, v €: wpby = v €: wpby) A (wpby w rpby = wpby w TPby) A
(wpb] w rpby = wpby w rPba) A
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpbi,rpbi) sfby) prog
(var_res_prop f (wpb],rpb) sfby) =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpby,rpby) sfb1) prog
(var_res_prop f (wpbl,rpbs) sfba)

(293) VAR RES COND INFERENCE var res bool proposition

 VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_bool_proposition f c¢) sfb)) prog post <—

c =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog

post

(294) VAR RES COND INFERENCE _ var res prog assign

v e: wpb A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w mpb)) e =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)

(BAG_INSERT
(var_res_prop_equal f (var_res_exp_var v)

(var_res_exp_varlist_update [(v,c)] e))
(BAG_IMAGE (var_res_prop_varlist_update [(v,c)]) sfb)))

(asl_prog_block progl) @ =
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)

(BAG_INSERT
(var_res_prop_equal f (var_res_exp_var v)

(var_res_exp_const ¢)) sfb))
(asl_prog_block (var_res_prog_assign v e::progl)) @

(295) VAR RES COND INFERENCE var res prog cond best local action VAR CHANGE

I SET_OF_BAG wpb’ & SET_OF_BAG wpb A
SET_OF_BAG rpb’ C SET_OF_BAG (wpb w rph) =
VAR_RES_FRAME_SPLIT f rfc (wpb,rpb) wpb’ {|} sfb sft’

()\ s nm .
VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop [(wpb — wpb' w wpb”,rpb) (sfb” w sfb"))
(asl_prog_block progl) @) =
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb)
(asl_prog_block
(var_res_prog_cond_best_local_action
(var_res_prop f (wpbd’,rpb’) sfb’)
(var_res_prop [(wpb”,rpb’) sfb”)::progl)) @

(296) VAR RES COND INFERENCE _ var res prog cond quant best local action

 (Jx.
VAR_RES_COND_HOARE_TRIPLE(f P

(asl_prog_block
(var_res_prog_cond_best_local_action (¢P z) (qQ z)::progL))

Q@ =
VAR_RES_COND_HOARE_TRIPLE f P

(asl_prog_block
(var_res_prog_cond_quant_best_local_action ¢P ¢Q::progl)) @Q

256 APPENDIX C. HOL4-THEOREM INDEX

(297) VAR RES COND INFERENCE var res prop SEack BTUEoeninereunenenanannns 102

 VAR_RES_COND_HOARE_TRIPLE f
(var_res_prop f (wpb,rpb)
(BAG_INSERT (var_res_prop_stack_true f) sfb)) prog post <—
VAR_RES_COND_HOARE_TRIPLE f (var_res_prop f (wpb,rpb) sfb) prog
post

(298) var res cond quant best local action defiiiiiiiiiiiii 100

I var_res_cond_quant_best_local_action f ¢P ¢@ =
if = (Vz. FST (¢gP 2)) v —Vaz. FST (¢Q z) then
asla_diverge
else
var_res_quant_best_local_action f (Az. SND (¢P =z))
(Az. SND (qQ x))

299) var res dispose var action defottt 109
(_res_dispose_var action_

I var_res_dispose_var_action v s =
if —var_res_sl___has_write_permission v (FST s) then
NONE
else
SOME { (FST s \\ v,SND s)}

(300) var res exp binop defttt 92

I var_res_exp_binop bop e e =
var_res_exp_op (Al. bop (EL 0) (EL 1 D) [er; el

(301) var res exp const defttt 92

I var_res_exp_const ¢ = K (SOME c¢)

(302) var res exp full Prop defttt 93
I var_res_exp_full_prop P el =
(X state .
(let e_optL = MAP (Ae. e (FST state)) eL
in

EVERY IS_SOME e_optL A P (MAP THE e_optL) (SND state)))

(303) var res exp 0P defottt 92
- var_res_exp_op f el =
(As.
(let el’ = MAP (M\e. e 8) el
in

if EVERY IS_SOME el’ then SOME (f (MAP THE el’)) else NONE))

(304) var res exp varlist update const EVALooiiinin i 107

I var_res_exp_varlist_update vl (var_res_exp_const c¢) =
var_res_exp_const c

(305) var res exp varlist update var EVALooioini 107

I var_res_exp_varlist_update ((v;,c)::vL) (var_res_exp_var wp) =
if v17 = vy then
var_res_exp_const c
else
var_res_exp_varlist_update vl (var_res_exp_var)

(306) var res exp varlist update var res exp op EVALo.iuiiiiiiii 107

I var_res_exp_varlist_update vl (var_res_exp_op f el) =
var_res_exp_op f (MAP (var_res_exp_varlist_update vL) el)

(B07) var res exp Var defttt 92

 var_res_exp_var var =
(\ stack .
if var € FDOM stack then SOME (FST (stack °> war)) else NONE)

(308) var res exp var update def 107

I var_res_exp_var_update vc e =
(As. e (var_res_state_var_update (FST wc) (SND wvc) s))

(309) var res ext state var update def 107

I var_res_ext_state_var_update vc s =
(var_res_state_var_update (FST wc) (SND wvc) (FST s),SND s)

(310) VAR RES FRAME SPLIT defottt ettt ettt e et e e e e 111

~ VAR_RES_FRAME_SPLIT f rfc (wpb,rpb) wpb’ sfb_context sfb_split
sfo_imp sfo_restP <—
VAR_RES_FRAME_SPLIT___sfb_restP_OK f (wpb — wpb’,rpb — wpb')
sfbo_restP =
3 sfb_rest.
sfo_restP sfb_rest A
var_res_prop___COND f (wpb — wpb’,rpb — wpb’) sfb_rest A
(var_res_prop___COND f (wpb,rpb)
(sfb_context w (sfb_split w sfo_imp)) =
Vs.
var_res_prop___PROP f (wpb,rpb) (sfo_split w sfb_context) s =
var_res_prop___PROP f (wpb,rpb)
(sfb_imp w (sfb_rest w sfb_context)) s)

258 APPENDIX C. HOL4-THEOREM INDEX

(311) VAR RES FRAME SPLIT asl eXiStS_ COMLEXEvvvnenenetetnieataeeieenenn, 112
F (Vy.
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w mpb))
(P y) =
Vy.

VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT (P y) sfb_context) sfo_split sfo_imp sfbo_restP) =
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT (asl_exists y. P y) sfo_context) sfb_split sfo_imp

sfo_restP
(312) VAR RES FRAME SPLIT _ asl €XiStS_ Pvvvvvetnttet et e e eeeae e 113
F (Vy.
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
(P y) =
Jy.

VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
(BAG_INSERT (P y) sfb_imp) sfb_restP) =
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
(BAG_INSERT (asl_exists y. P y) sfo_imp) sfb_restP

(313) VAR RES FRAME SPLIT _ asl exiSts_ SPLibeeoveneneneneeniiaaniiaannenns 112
F (Vy.
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
(P y) =

(VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context
(BAG_INSERT (asl_exists y. P y) sfb_split) sfo_imp sfo_restP <—
Vy.
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context
(BAG_INSERT (P y) sfb_split) sfb_imp sfb_restP)

(314) VAR RES FRAME SPLIT @Sl SEAT WP ... ovsteeet et et ettt e e e e aeeees 113

— IS_VAR_RES_COMBINATOR f A (GET_VAR_RES_COMBINATOR f = f/) A

VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
P1 A

VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w rpb))
P2 =

(VAR_RES_FRAME_SPLIT f’ sr (wpb,rpb) wpb’ sfb_context sfb_split
(BAG_INSERT (asl_star f Pi; P3) sfo_imp) sfb_restP <—

VAR_RES_FRAME_SPLIT f’ sr (wpb,rpb) wpb’ sfb_context sfb_split
(BAG_INSERT P; (BAG_INSERT Py sfb_imp)) sfb_restP)

(315) VAR RES FRAME SPLIT bool proposition COMEXteeenineninrnrananann.. 112

 VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT (var_res_bool_proposition f c¢) sfb_context) sfb_split
sfo_imp sfo_restP <—
c =
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
sfo_imp sfb_restP

(316) VAR RES FRAME SPLIT _ bool proposition Ie.eeeeienininanannennn.

 VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
(BAG_INSERT (var_res_bool_proposition f ¢1)
(BAG_INSERT (var_res_bool_proposition f c3) sfo_imp))
sfo_restP <—
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context sfb_split
(BAG_INSERT (var_res_bool_proposition f (¢1 A ¢2)) sfo_imp)
sfb_restP

(317) VAR RES FRAME SPLIT _ bool proposition SPLiteoeireronenananenen.s

 VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context
(BAG_INSERT (var_res_bool_proposition f ¢) sfb_split) sfo_imp
sfo_restP <—
c =
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context sfb_split
sfo_imp sfbo_restP

(318) VAR_RES FRAME SPLIT _equal comst SINGoooreeeeee e

- VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT
(var_res_prop_equal f (var_res_exp_var v)
(var_res_exp_const ¢))

(BAG_IMAGE (var_res_prop_var_update (v,c)) sfb_context))
(BAG_IMAGE (var_res_prop_var_update (v,c)) sfb_split)
(BAG_IMAGE (var_res_prop_var_update (v,c)) sfo_imp) sfo_restP =

VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context
(BAG_INSERT
(var_res_prop_equal f (var_res_exp_var v)
(var_res_exp_const ¢)) sfb_split) sfo_imp sfbo_restP

(319) VAR RES FRAME SPLIT FRAMEt

 VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context
(BAG_INSERT sf sfb_split) (BAG_INSERT sf sfbo_imp) sfb_restP <—
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ (BAG_INSERT sf sfb_context)
sfo_split sfb_imp sfb_restP

(320) VAR_RES_FRAME_SPLIT _PURE PROPOSITION _ CONTEXT FRAMEo......

— VAR_RES_IS_PURE_PROPOSITION f sf =
(VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT sf sfb_context) sfb_split (BAG_INSERT sf sfb_imp)
sfo_restP <
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT sf sfb_context) sfo_split sfb_imp sfb_restP)

260 APPENDIX C. HOL4-THEOREM INDEX

(321) VAR _RES_FRAME SPLIT _ PURE PROPOSITION TO CONTEXTccoeooo... 113, 114

 VAR_RES_IS_PURE_PROPOSITION f sf =
(VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context
(BAG_INSERT sf sfbo_split) sfo_imp sfb_restP <—
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’
(BAG_INSERT sf sfb_context) sfb_split sfo_imp sfb_restP)

(322) VAR RES FRAME SPLIT _ sfb restP OK defoooeee s 111

 VAR_RES_FRAME_SPLIT___sfb_restP_OK f (wpb,rpb) sfo_restP <—
(A sfb. sfb_restP sfb A var_res_prop___COND f (wpb,rpb) sfb) A
Y sfbS.
(V sfb.
sfb € sfbS =
var_res_prop___COND f (wpb,rpb) sfo A sfo_restP sfb) =
sfo_restP {{(As. Asfb. sfb € sfbS A s € var_res_bigstar f sfb)|}

(323) VAR RES FRAME SPLIT SOLVE WEAK'ooeee oo 114

I~ BAG_EVERY
(VAR_RES_IS_STACK_IMPRECISE___USED_VARS
(SET_OF_BAG (wpb w mpb — wpb’))) sfo_split =
sfo_restP sfb_split =
VAR_RES_FRAME_SPLIT f rfc (wpb,rpb) wpb’ sfb_context sfbo_split {||}
sfb_restP

(324) VAR RES_FRAME SPLIT _ SOLVE WEAK _ BOOL PTOP - ..« v vee e e 114

- BAG_EVERY
(VAR_RES_IS_STACK_IMPRECISE___USED_VARS
(SET_OF_BAG (wpb w mpb — wpb’))) sfo_split =
b A (b = sfo_restP sfb_split) =
VAR_RES_FRAME_SPLIT f rfc (wpb,rpb) wpb’ sfb_context sfb_split
{lvar_res_bool_proposition f b|} sfb_restP

(325) VAR RES FRAME SPLIT _ var res prop implies eq Splitoeviniririenen... 115

- var_res_prop_implies_eq f (wpb,rpb) sfb_context sfb_split
sfb_split’ =
(VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
sfo_imp sfo_restP <—
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context sfb_split’
sfo_imp sfb_restP)

(326) VAR RES FRAME SPLIT _ var res prop implies SPLitc.oevriininanannonnn. 116

 var_res_prop_implies f (wpb,rpb) (sfb_context w sfo_split) sfo =
(VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb’ sfb_context sfb_split
sfo_imp sfo_restP <—
VAR_RES_FRAME_SPLIT f sr (wpb,rpb) wpb' sfb_context
(sfb w sfb_split) sfo_imp sfb_restP)

261

(327) VAR RES HOARE TRIPLE efttt ettt et ettt e e e e e 99

 VAR_RES_HOARE_TRIPLE zenv penv P prog @@ <
V.
ASL_PROGRAM_HOARE_TRIPLE zenv penv (As. s € P A (s = z)) prog
(As.
s E€EQ A
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES (FST z) (FST s))

(328) var res implies unequal defl 115

I var_res_implies_unequal f b e e <<
Vs.
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e;) A
IS_SOME (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e3) A
IS_SEPARATION_COMBINATOR f A s € var_res_bigstar f b =
$ € var_res_prop_weak_unequal e; e

(329) var res implies unequal prop imMPLieseeturnrritata s 116, 125

- var_res_implies_unequal f sfb e; e; =
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET
(SET_OF_BAG (wpb w 1pb)) e =
var_res_prop_implies f (wpb,rpb) sfb {|var_res_prop_unequal f e esf}

(330) var res implies unequal _ trivial COMLEXTvvvvner v ettt 116

oo # =
var_res_implies_unequal f b (var_res_exp_const c;)
(var_res_exp_const c¢)

(331) var res implies unequal _ trivial UNEQUALe.etiiiii e 116

I var_res_prop_unequal f e e €: b =
var_res_implies_unequal f b e; ey

(332) VAR RES INFERENCE FRAME e 101

- IS_SEPARATION_COMBINATOR f A (FST zenv = VAR_RES_COMBINATOR f) A
VAR_RES_HOARE_TRIPLE zenv penv P prog Q =
VAR_RES_HOARE_TRIPLE zenv penv
(asl_star (VAR_RES_COMBINATOR f) P R) prog
(asl_star (VAR_RES_COMBINATOR f) @ R)

(333) VAR RES INFERENCE prog K1eeme SEATeeoeornenenananieanneenannn. 101

— VAR_RES_HOARE_TRIPLE zenv penv P prog P =
VAR_RES_HOARE_TRIPLE zenv penv P (asl_prog_kleene_star prog) P

262 APPENDIX C. HOL4-THEOREM INDEX

(334) VAR RES INFERENCE prog parallele.eneeonnenenananae e, 101

- IS_SEPARATION_COMBINATOR f A

VAR_RES_HOARE_TRIPLE (VAR_RES_COMBINATOR f,lock_env) penv Py p;
Q1 A

VAR_RES_HOARE_TRIPLE (VAR_RES_COMBINATOR f,lock_env) penv Py py
@2 =

VAR_RES_HOARE_TRIPLE (VAR_RES_COMBINATOR f,lock_env) penv
(asl_star (VAR_RES_COMBINATOR f) P; P5) (asl_prog_parallel p; po)
(asl_star (VAR_RES_COMBINATOR f) Q1 Q2)

(335) VAR RES INFERENCE PTOZ SEQ -+« « vt v veveueee et et ettt e et e e 101

 VAR_RES_HOARE_TRIPLE zenv penv P p;1 @ A
VAR_RES_HOARE_TRIPLE zenv penv @ ps R =
VAR_RES_HOARE_TRIPLE zenv penv P (asl_prog_seq p1 p2) R

(336) VAR RES IS PURE PROPOSITION def vvetete ettt e ettt e e et e 112

 VAR_RES_IS_PURE_PROPOSITION f P <= Vs. s € P = SND s € asl_emp f

(337) VAR RES IS PURE PROPOSITION pure propositione.eeeuinenineaeanann.. 112

 VAR_RES_IS_PURE_PROPOSITION f (var_res_stack_proposition f T p)

(338) VAR RES_IS STACK IMPRECISE EXPRESSION _ USED VARS REL REWRITE 92

— VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_REL e vs <—
FINITE vs A (Vst. IS_SOME (e st) <= ws < FDOM st) A
Vst1 Stg.
vs € FDOM sty A vs © FDOM st A

(Vv. v € vs = (FST (st > v) = FST (st > v))) =
(e st1 = e st3)

(339) VAR_RES_IS_STACK INPRECISE EXPRESSION _USED VARS SUBSET REWRITE 92

I VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET vs ¢ <
Jwvs’.
vs' C vs A
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_REL e vs’

(340) VAR RES_IS STACK IMPRECISE EXPRESSION _USED VARS SUBSET VAR CONST EVAL 93, 130

F (Vus c.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
(var_res_exp_const ¢)) A
Vous v.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
(var_res_exp_var v) <= v € vs

263

(3111) VAR RES IS STACK IMPRECISE EXPRESSION _ USED VARS SUBSET var res exp op 93
I EVERY
(Ne.
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs e)
el =

VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
(var_res_exp_op f el)

(342) VAR RES_IS_STACK INPRECISE EXPRESSION _USED VARS SUBSET _var res exp var update 107

 VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs e =
VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs
(var_res_exp_var_update vc e)

(343) VAR_RES_IS_STACK INPRECISE EXPRESSION _USED VARS var res exp var update 107

 (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e = SOME vs) =
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS
(var_res_exp_var_update vc e) =
SOME (ws DELETE FST wvc))

(§§44) VAR RES IS STACK IMPRECISE USED VARS ALTERNATIVE DEF 94
— VAR_RES_IS_STACK_IMPRECISE___USED_VARS vs P <—
Vs sy.
s9 € P A (SND sy = SND s) A FDOM (FST s3) n ws € FDOM (FST s) A
Vo.

v € FDOM (FST $3) A v € vs =
(FST (FST s ’> w) = FST (FST s ’ v))) =
s € P

(345) VAR_RES_IS_STACK INPRECISE _ USED VARS asl andcoeeeeeimneeeeinn... 95

- VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS P; A
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezxS P =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezxS (asl_and P; Ps)

(346) VAR_RES IS STACK INPRECISE _USED VARS asl exists direct 95

 (Vz. VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (P z)) =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (asl_exists z. P z)

(347) VAR_RES_IS_STACK INPRECISE _USED VARS _asl falSeooveeeeineeeeini., 95

 VAR_RES_IS_STACK_IMPRECISE___USED_VARS vs asl_false

(348) VAR_RES IS STACK INPRECISE USED VARS asl forallooeeemeeeeinen... 95

 (Vz. VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (P z)) =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (asl_forall z. P z)

264 APPENDIX C. HOL4-THEOREM INDEX

(349) VAR RES IS STACK IMPRECISE _ USED VARS @SL OF . vvteeeneeeei e aeieeaaenennnn 95
 VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS P; A

VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezxS P =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (asl_or P; P»)

(350) VAR RES IS STACK IMPRECISE _ USED VARS @Sl SEALeovoririninieiiianannennn. 95
 VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS P; A
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS P, =

VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS
(asl_star (VAR_RES_COMBINATOR f) P; Ps)

(351) VAR RES IS STACK IMPRECISE _ USED VARS asl trivial condevvneuennnn... 95

(¢ = VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS P) =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (asl_trivial_cond ¢ P)

(352) VAR_RES IS STACK IMPRECISE _ USED VARS _ asl BIUEoeeennneeeeinneenn.. 95

 VAR_RES_IS_STACK_IMPRECISE___USED_VARS vs asl_true

(353) VAR RES IS STACK IMPRECISE _USED VARS var res bigstarocoeeieninnn.. 97

 IS_SEPARATION_COMBINATOR f A
BAG_EVERY (VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS) sfb =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS exS (var_res_bigstar f sfb)

(354) VAR RES IS STACK IMPRECISE _ USED VARS var res bigstar 1istc.oouion.. 97

 IS_SEPARATION_COMBINATOR f A
EVERY (VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS) L =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ezS
(var_res_bigstar_list f L)

(355) VAR_RES IS STACK INPRECISE _USED VARS var res exp full prop 94

— EVERY (VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS_SUBSET wvs)
el =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS wvs
(var_res_exp_full_prop P el)

(356) VAR RES IS STACK IMPRECISE _ USED VARS var res prop stack true 95

— VAR_RES_IS_STACK_IMPRECISE___
(var_res_prop_stack_true f)

USED_VARS ws

(357) VAR_RES_IS_STACK INPRECISE _USED VARS _var res prop var update INSERT 108

— VAR_RES_IS_STACK_IMPRECISE___USED_VARS (FST wc INSERT wvs) P =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS ws
(var_res_prop_var_update vc P)

(358) var res lock invariant defiiiiiii 105

I var_res_lock_invariant f wp P =
(As.
(FDOM (FST s) = wp) A
(VYv. v € wp = (SND (FST s ’ v) = var_res_write_permission)) A
s €
asl_star (VAR_RES_COMBINATOR f) (var_res_prop_stack_true f) P)

(359) var Tes map def 97

- var_res_map f P | = var_res_bigstar_list f (MAP P [)

(360) var res new var init action defo 109

- var_res_new_var_init_action v e s =
(let e_opt = e (FST s)
in
if IS_NONE e_opt then
NONE
else if v € FDOM (FST s) then
SOME ¢
else
SOME {var_res_ext_state_var_update (v,THE e_opt) s})

(361) VAR RES PROGRAM IS ABSTRACTION _ var res Prog aSSighleeenenenernenenennnn. 108

 IS_SEPARATION_COMBINATOR f A
(VAR_RES_IS_STACK_IMPRECISE_EXPRESSION___USED_VARS e = SOME vs) =
VAR_RES_PROGRAM_IS_ABSTRACTION f (var_res_prog_assign v e)

(var_res_prog_cond_best_local_action
(var_res_prop f ({v|},BAG_OF_SET (vs DELETE v))
{var_res_prop_equal f (var_res_exp_var v)
(var_res_exp_const ¢)[})
(var_res_prop f ({|v|},BAG_OF_SET (vs DELETE v))
{var_res_prop_equal [(var_res_exp_var v)
(var_res_exp_var_update (v,c) e)|}))

(362) var res prog call by value arg defuuirininii 109

- var_res_prog_call_by_value_arg prog_body c =
asl_prog_forall
Mz.
asl_prog_seq
(var_res_prog_new_var_init z (var_res_exp_const c))
(asl_prog_seq (prog_body z) (var_res_prog_dispose_var z)))

(363) var res prog eval expressions defo.i.iiii i 105

I var_res_prog_eval_expressions prog expL =
asl_prog_choose_constants prog (MAP (Ae s. e (FST s)) expl)

266 APPENDIX C. HOL4-THEOREM INDEX

(364) var res prog local var def

I var_res_prog_local_var prog_body =
asl_prog_ndet
(Ap. d¢. p = var_res_prog_call_by_value_arg prog_body c)

(365) var res prog parallel procedure call THYourninerini i 106

I var_res_prog_parallel_procedure_call name; (refi,expLi) names
(refy,expls) =
var_res_prog_eval_expressions
(X constLy .
var_res_prog_eval_expressions
() constLs .
asl_prog_parallel
(asl_prog_procedure_call name; (ref,constLi))
(asl_prog_procedure_call names (refy,constls))) expLs)
exply

(366) var res prog procedure call def

I var_res_prog_procedure_call name (ref,expl) =
asl_prog_ext_procedure_call name (ref ,MAP (Ae s. e (FST s)) expl)

(367) var res prop binexpression ALTERNATIVE DEFiuinieniniiiniiannnnnnn. 96

I var_res_prop_binexpression f emp p e; e =
var_res_prop_expression f emp (Al. p (HD [) (HD (TL 0))) [e1; e2]

(368) var res prop equal def 96

I var_res_prop_equal f p; po =
var_res_prop_binexpression f T (=) p; p2

(369) var res prop expression _ ALTERNATIVE DEF

I var_res_prop_expression f emp p el =
var_res_exp_full_prop (Avl s. p vl A (s € asl_emp f v —emp)) el

(370) var_res prop expression CONS CONSTottt 96

I var_res_prop_expression f emp p (var_res_exp_const c::el) =
var_res_prop_expression f emp (Al. p (c::D)) el

(371) var res prop expression NILttt 96

I var_res_prop_expression f emp p [1 =
if emp then var_res_bool_proposition f (p [1) else K (p [1)

(372) var res prop implies defottt 115

I var_res_prop_implies f (wpb,rpb) sfb st/ <
var_res_prop_implies_eq f (wpb,rpb) sfb {|} sft’

(373) var res prop implies eq defttt 115

I var_res_prop_implies_eq f (wpb,rpb) sfb sfby sfb; <
(var_res_prop f (wpb,rpb) (sfb w sfby) =
var_res_prop f (wpb,rpb) (sfb w sfb]))

(374) var res prop implies UNIONoutntn ittt 116, 125

I var_res_prop_implies f (wpb,rpb) sfb sft’ A
var_res_prop_implies f (wpb,rpb) sfb sfb” =
var_res_prop_implies f (wpb,rpb) sfb (sfb’ w sfb”)

(375) var_res prop imput ap distinct def 97

- var_res_prop_input_ap_distinct f (wp,mp) d P =
asl_and (K (ALL_DISTINCT d))
(var_res_prop_internal___PROP f ({|}.{[) Cwp,r») {} P)

(376) var res prop stack true REWRITEouiuteit ettt 95

- var_res_prop_stack_true f = (\state. SND state € asl_emp f)

(377) var res prop unequal defiitt e 96

I var_res_prop_unequal f p; p2 =
var_res_prop_binexpression f T (Any ng. np # ng) p1 po

(378) var res prop varlist update asl SEATiiiiii e 108

 VAR_RES_IS_STACK_IMPRECISE p; A VAR_RES_IS_STACK_IMPRECISE py =
(var_res_prop_varlist_update vL
(asl_star (VAR_RES_COMBINATOR f) p; po) =
asl_star (VAR_RES_COMBINATOR f)
(var_res_prop_varlist_update vL p;)
(var_res_prop_varlist_update vL p2))

268 APPENDIX C. HOL4-THEOREM INDEX

(379) var res prop varlist update BOOLovutnetee e 108

I (var_res_prop_varlist_update vcL (asl_and p; p3) =
asl_and (var_res_prop_varlist_update vcL pp)
(var_res_prop_varlist_update vcL p2)) A
(var_res_prop_varlist_update vcl (asl_or p; p3) =
asl_or (var_res_prop_varlist_update wvcL p;)
(var_res_prop_varlist_update vcL p2)) A
(var_res_prop_varlist_update vcL (asl_cond p; p2 p3) =
asl_cond (var_res_prop_varlist_update vcL p;)
(var_res_prop_varlist_update vcL po)
(var_res_prop_varlist_update vcL p3)) A
(var_res_prop_varlist_update vcL (K cp) =K cp) A
(var_res_prop_varlist_update vcL asl_false = asl_false) A
(var_res_prop_varlist_update vcl (var_res_prop_stack_true f) =
var_res_prop_stack_true f) A
(var_res_prop_varlist_update vcl (var_res_bool_proposition f cp) =
var_res_bool_proposition f ¢p) A
(var_res_prop_varlist_update vcl (asl_exists z. p z) =
asl_exists z. var_res_prop_varlist_update vclL (p z))

(380) var _res prop varlist update var res exp full Propoeiuiniiininiiinn... 108

I var_res_prop_varlist_update vcL (var_res_exp_full_prop P el) =
var_res_exp_full_prop P (MAP (var_res_exp_varlist_update vcL) el)

(381) var res prop varlist update var res prop eXpressionoo.o.... 108
I var_res_prop_varlist_update wvcL
(var_res_prop_expression f emp p el) =

var_res_prop_expression f emp p
(MAP (var_res_exp_varlist_update vcl) el)

(382) var res prop var update def 107

I var_res_prop_var_update vc P =
(As. var_res_ext_state_var_update vc s € P)

(383) var res prop weak equal deft 96

I var_res_prop_weak_equal = var_res_prop_weak_binexpression (=)

(384) var res prop weak expression defiiii i 96

I var_res_prop_weak_expression p el =
var_res_prop_expression ARB F p el

(385) var res prop weak expression TFitn ettt 104

I (var_res_prop_weak_expression (K T) [] = asl_true) A
(var_res_prop_weak_expression (K F) [] = asl_false)

269

(386) var res prop weak unequal defi.i i 96

 var_res_prop_weak_unequal =
var_res_prop_weak_binexpression (An; ng. ny # ng)

(387) var res prop COND _ REWRITEottt et e 98

- var_res_prop___COND f (wpb,rpb) sfb —
FINITE_BAG sfb A IS_SEPARATION_COMBINATOR f A
BAG_ALL_DISTINCT (wpb w mpb) A
Vsf.
sf €: sfb =
VAR_RES_IS_STACK_IMPRECISE___USED_VARS (SET_OF_BAG (wpb w 7pb))
sf

(388) var res prop equal COMSE\t u ettt ettt ettt et e e e 108

 COND_PROP___STRONG_IMP
(var_res_prop f (wpb,rpb)
(var_res_prop___var_eq_const_BAG f vcL w sfb))
(var_res_prop f (wpb,rpb)
(var_res_prop___var_eq_const_BAG f vcL w

BAG_IMAGE (var_res_prop_varlist_update vcLl) sfb))

389) var res prop PROP REWRITEottt e e e e 98
(_res_prop__ PROP___

 IS_SEPARATION_COMBINATOR f =
(var_res_prop___PROP f (wpb,rpb) sfbo =
(As.
(Vv. v €: wpb = var_res_sl___has_write_permission v (FST s)) A
(Vv. v €: rpb = var_res_sl___has_read_permission v (FST s)) A
s € var_res_bigstar [sfb))

(390) var res prop REWRITEo\ttt ettt et e e et e 98

- var_res_prop f (wpb,rpb) sfb =
(var_res_prop___COND f (wpb,rpb) sfb,
if var_res_prop___COND f (wpb,rpb) sfb then
var_res_prop___PROP f (wpb,rpb) sfb
else
asl_false)

(391) var res quant best local action defooieiuieinir i 100

I var_res_quant_best_local_action f ¢P ¢q@Q =
quant_best_local_action f (Az s. s € gP (FST) A (s = SND z))
Az s.
s € qQQ (FST z) A
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES (FST (SND z)) (FST s))

270 APPENDIX C. HOL4-THEOREM INDEX

(392) VAR RES STACK COMBINE def eout ettt et e ettt e et e 91

~ VAR_RES_STACK_COMBINE =
BIN_OPTION_MAP (FMERGE VAR_RES_STACK_COMBINE___MERGE_FUNC)
VAR_RES_STACK_IS_SEPARATE

(393) VAR RES STACK COMBINE IS SEPARATION ALGEBRA'tninirineeiaaniiaaenes 91

 IS_SEPARATION_ALGEBRA VAR_RES_STACK_COMBINE FEMPTY

(394) VAR RES STACK COMBINE IS SEPARATION COMBINATOR'eniniraniiananannennnn. 91

 IS_SEPARATION_COMBINATOR VAR_RES_STACK_COMBINE

(395) VAR RES STACK IS SEPARATE def \'eeetee ettt e e 91

 VAR_RES_STACK_IS_SEPARATE s1 s <=
Va.
r € FDOM sy A = € FDOM s, =
(FST (51 >) =FST (s9 > z)) A
IS_SOME
(var_res_permission_combine (SOME (SND (s; ’ z)))
(SOME (SND (s2 ’ z))))

(396) VAR_RES_STACK_IS_SUBSTATE REWRITE @@t 91

- VAR_RES_STACK_IS_SUBSTATE st; sty <
FDOM st; © FDOM sto A
Yo.
v € FDOM st; =
(FST (st; > v) = FST (sty > v)) A
IS_VAR_RES_SUBPERMISSION (SND (st; ’> w)) (SND (sty > w))

(397) VAR RES STACK IS EQUAL UPTO VALUES defuentntt et 98
— VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st; sty <=
Vz.
r € FDOM sty A x € FDOM st = (SND (sty >) = SND (sto > x))) A
Vz.

z € FDOM st; A z ¢ FDOM sty =

(SND (st} ’ x) = var_res_write_permission)) A
Vz.

z ¢ FDOM st; A z € FDOM sty =

(SND (st ’ x) = var_res_write_permission)

(398) VAR RES STACK__ IS EQUAL UPTO VALUES REFLeeoeeieeeeiieien, 101

 VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st st

(399) VAR RES STACK IS EQUAL UPTO VALUES _ SYM
 VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st; Sty <=
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES sty sty

(400) VAR RES_STACK IS EQUAL UPTO VALUES _ TRANS

— VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st; st2 A
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES sty st3 =

VAR_RES_STACK___IS_EQUAL_UPTO_VALUES sf; sts3

(401) VAR RES STACK IS EQUAL UPTO VALUES VAR RES STACK COMBINE

= SOME st;) A

— (VAR_RES_STACK_COMBINE (SOME st;;) (SOME st19)
= SOME sty) A

(VAR_RES_STACK_COMBINE (SOME stp;) (SOME stag)
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st;1 sto1 A

VAR_RES_STACK___IS_EQUAL_UPTO_VALUES sf1a Sto2 =
VAR_RES_STACK___IS_EQUAL_UPTO_VALUES st st

(402) var res state var update def

 var_res_state_var_update v ¢ s
s |+ (v,c,var_res_write_permission)

	Introduction
	Introduction of Separation Logic
	Smallfoot
	Short overview of Separation Logic Tools
	Contributions of this work
	General overview
	Capabilities of Holfoot
	Contributions in Detail
	Contributions to HOL4

	Structure of the thesis

	Holfoot
	Input Language
	States
	Pure Expressions
	Predicates
	Statements
	Conditions
	HOL4 Syntax
	Programs
	Specifications

	Introductory Examples
	Recursive Implementation of List-Length
	Local reasoning
	Read/Write Permissions
	Internal Representation
	Fully-Functional Specifications

	Pointer Transferring Buffer Example

	Annotating While-Loops
	Loop Invariants
	Loop Specifications
	Examples
	Array Increment Example
	List Filtering Example
	List Copy Example
	Partial Datastructures

	Unrolling Loops

	Additional Constructs
	assume / assert
	diverge, fail
	Block Specifications
	Annotating Memory Allocation
	Assuming Procedures
	Global Specification Variables

	Interactive Proofs
	General Overview
	Sum and Maximal Element of an Array Example
	List Remove Example
	Mergesort Example
	Circular List Example
	Binary Search Tree Example
	Insertion into Red-Black Tree Example

	Extending Holfoot
	Amortised Queue Example

	Conclusion

	Theoretical Foundation and Implementation
	Notations
	Sets
	Finite Maps
	Multisets
	Lists

	Abstract Separation Logic
	States and Predicates on States
	Separation Combinators
	Predicates
	Separation Algebras
	Product Separation Combinators

	Actions
	Semantic Hoare triples
	Common Actions
	Local Actions
	Total Lattice of Local Actions
	Best Local Action
	Semaphore operations / Precise Predicates
	Quantified Best Local Action
	assume

	Programs
	Programs, Proto Traces, Traces ...
	Semantics of Programs, Proto Traces, Traces ...
	Comments on Semantics

	Common Programming Constructs
	Sequential Composition
	Nondeterministic Choice
	Conditional Execution / While Loops
	Conditional Critical Regions
	Infinite Nondeterministic Choice

	Inference Rules
	Frame Rule
	Structural Rules
	Basic commands
	Basic Program Compositions
	Control Structures
	Symbolic Execution
	assume

	Program Abstraction
	Recursive Procedures
	Summary

	Variables as Resource
	Stacks with Read / Write Permissions
	Expressions
	Predicates
	Stack-Imprecise Predicates
	Pure Predicates
	Separating Conjunction on Lists

	Normal Forms
	Inference Rules
	Program Constructs
	Assume
	Control Structures
	Semaphore Operations
	Procedure Calls
	Assignments
	Local Variables
	Quantified Best Local Actions

	Frame Inference
	Informal Discussion
	Basic Definitions
	Inference Rules
	Solving Frame Inference Predicates
	Frame Inference Algorithm

	Implicit Information

	Holfoot
	States
	Predicates
	Points-To
	Singly-Linked Lists
	Trees
	Arrays

	Program Constructs
	Memory Allocation
	Memory Deallocation
	Heap Lookup
	Heap Assignment

	Implicit Information
	Frame Inference

	Holfoot Implementation
	Overview
	Consequence Conversions
	Quantifier Heuristics

	Conclusion
	Summary
	Conclusion
	Future Work

	Bibliography
	Holfoot Installation
	Installation of HOL4
	Installation of Holfoot
	Testing Holfoot

	Example Specifications
	Automatic Examples
	General List Example
	List Length
	List Reverse
	List Copy
	List Append
	List Allocation and Deallocation by Length
	List Filter
	Queue
	Binary Tree Copy / Deallocate
	Races
	Buffers
	Memory Manager
	Shape Property Versions of Interactive Examples

	Interactive Examples
	Tree Map
	Tree Depth
	List Remove
	Circular List
	List Filter
	List Rotating
	Factorial
	Tree Sum
	Array Increment
	Array Copy
	Array Reverse
	Binary Search
	Mergesort
	Insertion Sort
	Quicksort
	Binary Search Tree
	Red-Black Tree

	VSTTE'10 Competition
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

	HOL4-Theorem Index
	holfootTheory
	separationLogicTheory
	vars_as_resourceTheory

