
Technical Report
Number 797

Computer Laboratory

UCAM-CL-TR-797
ISSN 1476-2986

Interpretational overhead
in system software

Boris Feigin

April 2011

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2011 Boris Feigin

This technical report is based on a dissertation submitted
September 2010 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Homerton
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Interpreting a program carries a runtime penalty: the interpretational overhead. Tradi-
tionally, a compiler removes interpretational overhead by sacrificing inessential details of
program execution. However, a broad class of system software is based on non-standard
interpretation of machine code or a higher-level language. For example, virtual ma-
chine monitors emulate privileged instructions; program instrumentation is used to build
dynamic call graphs by intercepting function calls and returns; and dynamic software
updating technology allows program code to be altered at runtime. Many of these frame-
works are performance-sensitive and several efficiency requirements—both formal and
informal—have been put forward over the last four decades. Largely independently, the
concept of interpretational overhead received much attention in the partial evaluation
(“program specialization”) literature. This dissertation contributes a unifying under-
standing of efficiency and interpretational overhead in system software.

Starting from the observation that a virtual machine monitor is a self-interpreter for
machine code, our first contribution is to reconcile the definition of efficient virtualization
due to Popek and Goldberg with Jones optimality, a measure of the strength of program
specializers. We also present a rational reconstruction of hardware virtualization support
(“trap-and-emulate”) from context-threaded interpretation, a technique for implementing
fast interpreters due to Berndl et al.

As a form of augmented execution, virtualization shares many similarities with pro-
gram instrumentation. Although several low-overhead instrumentation frameworks are
available on today’s hardware, there has been no formal understanding of what it means
for instrumentation to be efficient. Our second contribution is a definition of efficiency for
program instrumentation in the spirit of Popek and Goldberg’s work. Instrumentation
also incurs an implicit overhead because instrumentation code needs access to interme-
diate execution states and this is antagonistic to optimization. The third contribution is
to use partial equivalence relations (PERs) to express the dependence of instrumentation
on execution state, enabling an instrumentation/optimization trade-off. Since program
instrumentation, applied at runtime, constitutes a kind of dynamic software update, we
can similarly restrict allowable future updates to be consistent with existing optimiza-
tions. Finally, treating “old” and “new” code in a dynamically-updatable program as
being written in different languages permits a semantic explanation of a safety rule that
was originally introduced as a syntactic check.

3

Acknowledgements

I am grateful to my supervisor, Alan Mycroft, for stimulating discussions, encouragement
and persistence. I thank members and friends of the CPRG, and in particular Anton,
Ben, Bjarki, Chris, Derek, Kathy, Magnus, Sriram, Thomas, and Viktor, for conversations
both on-topic but especially off.

I am indebted to the referees for PEPM 2008 and RV 2010 and the attendees of PLID
2008 for valuable feedback on some of the material appearing in this dissertation.

I thank the EPSRC for keeping me clothed and fed during my studies, Homerton
College for the excellent accommodation and the Computer Lab for making it a pleasure
to come to the office every morning (or afternoon).

Finally, I thank my family (Алла, Гриша, Марина, Матвей, Юля и Тоби) for their
love and support.

4

Contents

1 Introduction 9
1.1 Non-standard interpretation in system software 10

1.1.1 Hardware virtualization . 10
1.1.2 Program instrumentation . 10
1.1.3 Dynamic software updating . 11

1.2 Reducing interpretational overhead . 11
1.3 The illusion of interpreted execution . 12
1.4 Related work . 13
1.5 Dissertation contributions & outline . 14

2 Technical background 17
2.1 Programs as data . 17

2.1.1 Full abstraction . 18
2.1.2 Dependent types and the phase distinction 19
2.1.3 Program staging . 20

2.2 Partial evaluation . 20
2.2.1 Jones optimality . 21

2.3 AL . 22
2.3.1 Semantics . 22
2.3.2 Traces . 23
2.3.3 Update points . 24

2.4 Computational reflection and self-modifying code 24
2.4.1 External observations and optimization 26

2.5 Writing interpreters in C and ML . 26
2.5.1 Well-typed interpreters . 26
2.5.2 while/switch interpreters . 27
2.5.3 Threading . 28

2.6 Non-standard interpretation of AL . 29
2.6.1 Program instrumentation . 29
2.6.2 Hardware virtualization . 31
2.6.3 Dynamic software updating . 32

2.7 Partial equivalence relations . 32

3 Jones optimality and efficient virtualization 35
3.1 Virtualization versus emulation . 36
3.2 From threaded code to trap-and-emulate 37
3.3 Self-interpretation in AL . 39
3.4 Trace simulation . 40

5

3.4.1 Trace simulation modulo privileged instructions 42
3.5 Virtualization assists . 43

3.5.1 AL/STEP . 43
3.5.2 AL/EXEC . 44

3.6 An application of full abstraction to VMMs 45
3.7 Related work . 47
3.8 Conclusions and further work . 47

4 Formally efficient program instrumentation 49
4.1 IL . 50

4.1.1 Semantics . 51
4.1.2 Instrumenting AL programs . 51

4.2 Faithful instrumentation . 52
4.3 Breakpoints: AL/BRK . 53

4.3.1 Semantics . 54
4.3.2 A rationale for the design of AL/BRK 55
4.3.3 IL instrumentation with AL/BRK 56
4.3.4 AL/BRK vs. AL/EXEC . 56
4.3.5 Efficiency is bounded overhead . 56

4.4 From super-instructions to language boundaries 57
4.4.1 Lexical vs. dynamic scoping of boundaries 58
4.4.2 Multi-IL . 59
4.4.3 Multi-AL/BRK . 60

4.5 Optimization of dynamically instrumented code 60
4.5.1 From dynamic instrumentation to software updating 62

4.6 Related work . 62
4.7 Conclusions and further work . 63

4.7.1 Further work . 64

5 Dynamic typing, boundaries and con-freeness 65
5.1 Preliminaries: con-freeness . 66
5.2 HL . 67

5.2.1 Runtime type analysis . 68
5.2.2 Dynamic semantics . 68

5.3 Dynamic updates . 70
5.3.1 Applying an update . 70
5.3.2 HL language boundaries . 71

5.4 Semantic con-freeness . 71
5.4.1 Definition of semantic con-freeness 72
5.4.2 Runtime enforcement . 72

5.5 The con-free check as a type system . 73
5.6 Interpretational overhead of DSU . 75
5.7 Equivalence of updatable programs . 75

5.7.1 Optimization . 77
5.7.2 Deoptimization in HLANF . 78
5.7.3 Other semantics for updating . 79

5.8 Related work . 80
5.8.1 Dynamic typing . 80
5.8.2 Con-freeness and dependency . 80

6

5.8.3 Optimization . 81
5.9 Conclusions and further work . 81

6 Information flow and (de)compilation 85
6.1 Normalization and decompilation . 86

6.1.1 Motivation: non-interference and full abstraction 86
6.1.2 Secure information flow for a compiler 87

6.2 Applications . 88
6.2.1 Superoptimization . 88
6.2.2 Randomized compilation . 88
6.2.3 Adaptive compilation: a proposal 89

6.3 An operational view of debug tables . 90
6.3.1 Language boundaries . 91

6.4 Related work . 92
6.5 Conclusions . 92

7 Conclusions and further work 95
7.1 Common-case performance . 95
7.2 Indirection without a performance penalty 96
7.3 Architectural support motivated by optimization 97
7.4 Further work . 97

A Notation 99

B Applications of PERs 101
B.1 Types . 101
B.2 Non-interference . 102
B.3 Static analyses . 103

7

8

Chapter 1

Introduction

Most programming languages in widespread use—C, Haskell, Python among others—lack
a formal mathematical semantics. The meaning of C and Haskell programs is specified
in English prose by the relevant ISO document or technical report. Python, on the other
hand, is defined by its standard implementation, CPython1. This makes CPython a defi-
nitional interpreter, with Python as the defined language and C as the defining language.
Any interpreter for Python that does not agree with CPython on every user-visible detail
of a program’s behaviour is non-standard. A non-standard interpreter for a language de-
fines a new language that is substantially the same as the original, modulo small variations
in the meaning of some language phrases. For instance, a non-standard interpreter might
cause all print commands to write their arguments to a file instead of displaying them
on screen; another interpreter might keep track of the number of arithmetic operations
performed and display the total on program termination; a custom interpreter intended
to help debug programs might stop periodically to allow the user to alter the program
code. It is convenient to reason about many low-level system applications in terms of non-
standard interpreters. However, interpretation is not a viable implementation strategy for
performance-sensitive software. Interpreters, while easy to write, are slow, because for
every unit of useful work in the program, an interpreter does a lot of extra housekeeping:
parsing, dispatch, encoding/decoding of values. The term “interpretational overhead”
informally refers to the penalty of interpreting a program. David Gries famously said:
“never put off until run time what you can do at compile time”. Optimizing compil-
ers avoid computation that does not contribute to the final result and do as much as
possible of what remains statically. Since the differences between the standard and non-
standard interpretations are often perceived as minor, there is an expectation that (a) the
toolchain, including the optimizing compiler, can be reused, and (b) that performance of
programs will not degrade significantly under the non-standard interpretation. There is
an abundance of point solutions and folklore on the performance and program structuring
issues posed by non-standard interpretation. Our thesis is that a unifying approach to
the problem can help inform the design of future hardware and software systems.

Outline. The ideas in this dissertation apply to a broad class of software. Chapters 3
to 5 respectively deal with hardware virtualization, program instrumentation and dynamic
software updating. (Notice that these systems are essentially more elaborate versions of
the three non-standard interpreter examples given above.) The remainder of this chapter
provides brief introductions to these areas and sets our efforts in the context of existing

1http://www.python.org

9

http://www.python.org

literature—technical details are postponed until the next chapter. The full dissertation
outline is included at the end of this chapter.

1.1 Non-standard interpretation in system software

1.1.1 Hardware virtualization

A Universal Turing Machine (UTM) can be set up to run arbitrarily many input Turing
Machines (TMs) by interleaving their executions. The basic premise of hardware vir-
tualization is that—modulo their finite nature—general-purpose computer architectures
are Turing-complete. A virtual machine monitor (VMM, cf. UTM) manages allocation
of the hardware resources of the “host” machine between several concurrently executing
“guest” virtual machines (VMs, cf. simulated TMs), each of which is a software likeness
of the host. This analogy suggests that a VMM should be thought of as an interpreter
for machine code. We further argue that a VMM is a non-standard interpreter because
the emulated environment of a VM differs from host hardware in the number and types
of available I/O devices, amount of memory, etc. For example, say executing a particular
sequence of instructions displays a pixel on the screen at position (0, 15). The VMM
will likely project the virtual screen onto a smaller part of the real screen, say starting at
position (200, 200). Now the same sequence of instructions results in a pixel being dis-
played at (200, 215). Indeed, the VMM may alternatively emulate the screen by writing
the pixel values to a file or network socket. In either case, the observable behaviour of the
program differs depending on whether it is executed directly on the host or inside a VM.

Popek and Goldberg’s [102] efficiency requirement states that non-privileged instruc-
tions (those that do not affect the operation of the CPU itself or other hardware) must
be executed by the host with no intervention on the part of the VMM. The VMM must
always be allowed to handle privileged instructions: this is necessary to enforce isolation
between individual VMs, and maintain the illusion of virtual hardware which is not phys-
ically present on the host. The technology for implementing efficient VMMs was first
developed by IBM in the 1960s and 70s. The last few years have seen renewed interest in
virtualization: VMware Workstation2 and Xen3 are two popular VMM implementations,
but there are many others.

1.1.2 Program instrumentation

The term “instrumentation” refers to modification of a program or its runtime envi-
ronment to make hidden details of execution visible. A dynamic binary instrumentation
(DBI) framework can be used to gather statistics about a program run: “dynamic” means
that instrumentation code can be added and removed at runtime, and “binary” implies
that the program is instrumented after compilation. Just like a VMM, a DBI frame-
work can be thought of as a non-standard interpreter for machine code and, implemented
naively, instrumentation can severely compromise program execution speed: the impact
of instrumentation on performance is often a sticking point in the adoption of a DBI
framework. Development of practical methods for low-overhead instrumentation of pro-
duction systems is an active area of research (see §1.2). DTrace [22], first introduced in
the Solaris kernel, and later ported to FreeBSD and Mac OS X, is a well-known industrial

2http://www.vmware.com
3http://www.xen.org

10

http://www.vmware.com
http://www.xen.org

implementation. Its authors, Cantrill et al. [22], claim that “when DTrace is not in use,
the system is just as if DTrace were not present at all.” In other words, instrumentation
may be switched on or off at certain designated points throughout the program and, when
instrumentation is off, the instrumented program incurs no additional overhead. Unfortu-
nately, an “implicit” overhead remains because optimization opportunities are lost when
compilation has to preserve internal detail of program execution rather than just the
input/output behaviour. For example, suppose that we instrument function-call (CALL)
and -return instructions (RET) in order to build a dynamic call graph. For this to work,
the compiler must forego inlining and tail-call elimination, as both of these optimizations
remove CALLs and RETs. The reasoning applies to many other transformations: e.g. for
instrumentation code to be able to access the arguments of a function, a frame pointer
must often be maintained. Thus, in practice, it is often the case that when a program is
compiled for instrumentation, all optimizations are disabled.

1.1.3 Dynamic software updating

A dynamic update is an update to a program’s code, variable and type definitions that
is applied at runtime. Microsoft’s hotpatching [85] is probably the most widely-used
implementation of dynamic software updating (DSU). Although the mechanics of altering
the image of a running program are straightforward, at least on a von Neumann machine,
what constitutes a valid update and when it may be applied is up for debate. At the same
time, anecdotal evidence suggests that dynamic updates coexist poorly with program
optimization. This is hardly surprising—a dynamic update makes implicit assumptions
about the intermediate state of the program at the time it is applied, which in turn limit
the compiler’s scope for optimization. The greater the dependence of an update on the
original program, the more disruptive it is.

1.2 Reducing interpretational overhead

A VMM, a DBI framework and a DSU system must perform their respective functions
without imposing undue overhead. In particular, each must arrange to regain control at
certain points of interest during a program run and neither can afford to resort to naive,
line-by-line interpretation of the program. The alternatives are (i) optimizing compila-
tion or binary translation, and (ii) cooperation from the hardware. Modern hardware
has native architectural support for virtualization, as well as hardware breakpoints and
performance counters to aid instrumentation and debugging. A virtual machine monitor
can direct the CPU to intercept required instructions and pass control to the VMM (this
processor feature is known as “trap-and-emulate execution”). On architectures without
trap-and-emulate, a VMM has to perform binary analysis and rewriting in order to lo-
cate privileged instructions and redirect execution to the emulation code. Thus, a binary
translation VMM implements a full program transformation toolchain for the platform’s
machine code including a disassembler which is already a tricky proposition on the x86
due to the possibility of self-modifying code. Unsurprisingly, many more x86 VMMs have
emerged since both Intel and AMD implemented trap-and-emulate virtualization exten-
sions, even though hardware assists do not necessarily result in better performance over
a well-written binary translation VMM [5]. Binary instrumentation frameworks often use
both binary rewriting and modest hardware support: breakpoint instructions are placed
at relevant sites throughout the program and a custom breakpoint handler is installed.

11

Indeed, binary translation and hardware assists are means to a common end: reduction
of interpretational overhead. We will show in Chapters 3 to 4 that definitions (and in-
tuitions) for interpretational overhead that were developed independently in the partial
evaluation, virtualization and instrumentation literature are closely related. In the spirit
of parsimony, we also present a post-hoc rationalization for the design of hardware vir-
tualization assists. This work is conceptually related to the efforts of Danvy [35], Ager
et al. [7] and others to explain the structure of abstract machines for functional languages
starting with semantics of the languages themselves. Our eventual aim (outside the scope
of this dissertation) is to derive hardware extensions starting from optimizing program
transformations for a simple base assembly language.

Dynamic software updating and dynamic instrumentation systems conflict with static
program optimization because optimizing compilers are written with the standard inter-
pretation of the language in mind. In many implementations, optimizations are either
disabled outright (e.g. gcc -O0) or incidentally (e.g. taking the address of a function in
C will most likely prevent inlining of the function). This is not so much a problem for
VMMs, because (i) the non-standard interpretation is not any more invasive than the
standard one (i.e the emulation code for PRINT 42 is unlikely to examine the contents of
registers), and (ii) programs in low-level languages are not optimized as aggressively, so
we never expect a compiler to optimize away a privileged instruction.

1.3 The illusion of interpreted execution

Folk wisdom has it that after a good optimizing compiler is done with a program it bears
little resemblance to the original code, and this is particularly true of compilers that
perform whole-program optimization. However, for some applications it is necessary to
maintain an illusion of naive, interpreted execution for optimized programs (much as an
internally-parallel CPU might pretend to execute instructions sequentially). In general, we
can distinguish between observations on program state that the language itself is capable
of expressing and those from “without” (e.g. made with the help of a debugger), but
close scrutiny of either kind provably hinders optimization (see Chapter 2). For example,
tail-call optimization in languages with security by stack inspection [143] is awkward
because the call stack needs to be occasionally examined at runtime. But the problem
is most conspicuous with debugging because a debugger grants unconditional access to
intermediate execution states: i.e. a debugger only supplies a mechanism for interacting
with the running program and it is then up to the user to determine what observations and
modifications to make. Crucially, the user’s expectations about the values of variables,
the contents of the call stack, etc. are borne out of a view of program execution as a
sequential “line-by-line” activity. The compiler on the other hand is constrained only
by the “end-to-end” behaviour of programs and is not obliged to preserve internal detail.
The antagonism between source-level debugging and program optimization is well-known.
There is a single concept behind references in the literature to “interrupt points” [66],
“[on-stack-replacement] points” [47], “points of interest” [132] and “update points” [126].
These are points in execution where the state of the optimized program must be made
to match what it would have been had the program not been optimized. As an example,
consider that in C the use of the volatile qualifier is a deliberate barrier to optimization,
since the compiler has to assume that the value of a volatile-qualified variable can be
observed and modified at any time. Draft WG14/N1124 reads (p. 109):

12

“An object that has volatile-qualified type may be modified in ways unknown
to the implementation or have other unknown side effects. Therefore any
expression referring to such an object shall be evaluated strictly according
to the rules of the abstract machine, as described in 5.1.2.3. Furthermore,
at every sequence point the value last stored in the object shall agree with
that prescribed by the abstract machine, except as modified by the unknown
factors mentioned previously.”

As a testament to the difficulty of implementing an “interpreted” feature as part of an op-
timizing compiler, Eide and Regehr [39] show that many compilers miscompile volatile.

Thankfully, the requirements of a DBI framework or DSU system are much more
limited than those of a fully-fledged debugger: the unoptimized state of the program
only needs to be reconstructed rarely and then only partially. Further, unlike debugging,
instrumentation code and dynamic updates can be restricted by fiat when this leads to
profitable optimization. In Chapters 4 and 5 we show how such linguistic constraints
enable static optimization. Dynamic deoptimization [66], a technique pioneered in the
Self programming language for recovering the interpreter state from the state of an
optimized program, can be used to lift restrictions in some cases.

1.4 Related work

Our contributions are set in context of prior work on the intersection of virtualization,
DBI, DSU and partial evaluation (PE). However, the interplay between these topics is
often overlooked—our goal is to make it explicit here and throughout the rest of the
dissertation. The sampling of literature in the figure below circumscribes the space of
problems this dissertation is concerned with.

[21, 22]

[27]

[65]

[43]

[72,
77]

PE

VMM

DBI

DSU

Bungale and Luk [21] incorporate a DBI framework into Xen (with VT-x support), making
it possible to instrument an unmodified guest operating system4. Chen et al. [27] describe
a virtualization-based mechanism for dynamically updating a guest operating system.
Hicks et al. [65] developed a general-purpose DSU framework for C programs which, as a
special case, can be used to add instrumentation to a running program. Instrumentation
can have a negative impact on the performance of the instrumented program: Cantrill
et al.’s [22] informal statement of efficiency for DTrace (quoted in §1.1.2) closely resembles
Popek and Goldberg’s efficiency requirement for VMMs [102]. We previously showed [43]
that Popek and Goldberg’s criterion is itself a close relative of Jones optimality, a measure

4VMware Workstation, a popular VMM, also supports debugging of guest operating systems.

13

of the strength of program specializers (see Chapter 3). Program specialization is one
way of removing interpretational overhead: Jones [72] describes practical considerations
of writing interpreters that are intended for specialization rather than execution. In
Kishon and Hudak’s “monitoring semantics” [77], a standard interpreter is specialized
with respect to a monitor specification and the resulting instrumented (i.e. non-standard)
interpreter is specialized with respect to the program to obtain an instrumented program.

1.5 Dissertation contributions & outline

Chapter 2 contains a recap of various items of necessary technical background. After that,
the rest of the dissertation addresses the following five interesting problems that, to the
best of our knowledge, are not satisfactorily resolved in the literature.

Interpretational overhead in virtualization and partial evaluation

The virtualization and partial evaluation communities use different, independently for-
mulated definitions of interpretational overhead. Chapter 3 relates the two approaches
of limiting interpretational overhead in virtualization: specialization and hardware trap-
and-emulate assists. We propose a natural, but apparently novel view of a VMM as a
self-interpreter for machine code and reconcile Popek and Goldberg’s efficiency criterion
for VMMs with Jones optimality [71] using a new version of Jones optimality, which
we call “Jones optimality for traces”. (This part of the chapter is based on our PEPM
2008 paper [43].) Each virtualization mode has its own advantages and disadvantages.
In principle, parts of a guest program may be naively interpreted by the VMM, others
may run with trap-and-emulate support enabled and yet others may be executed na-
tively having had privileged instructions replaced with calls into the VMM. We show how
trap-and-emulate execution can be rationally explained starting from context threading,
a technique for implementing efficient interpreters due to Berndl et al. [18].

Formally efficient program instrumentation

Although modern DBI frameworks like DTrace and VProbes (VMware) offer practical
ways of addressing performance concerns, there has been no formal understanding of
what it means for instrumentation to be efficient. Similarly, no distinction is drawn
between lightweight DBI (DTrace etc.) and more invasive, heavyweight instrumentation
frameworks such as Valgrind [99]. In Chapter 4, we adapt Jones optimality for traces
to fill this role. The instrumentation code is written in a domain-specific language; we
use partial equivalence relations to describe the “observational power” of instrumentation
code. (Appendix B contains a more thorough introduction to partial equivalence relations
with a survey of some of their applications.) Restricting possible future instrumentation
enables more aggressive static optimization of dynamically instrumented programs.

Multi-language semantics for low-level code

A virtualized program, an instrumented program and an updated program each contain a
mixture of code units which are interpreted differently. For a VMM, an example would be
mixing native, trap-and-emulate and fully interpreted execution. In DBI, different parts
of the program are instrumented in different ways under different sets of instrumentation.
In DSU, the “old” and “new” code that is part of an updated program can be seen as

14

written in different languages. As part of their work on type safety for dynamically-
updatable programs, Stoyle et al. proposed a novel syntactic check on the runtime state
of a program at the point of update: the con-free check verifies that old code will never
use values of updated types concretely, i.e. in a way that may cause a type error. The
associated property—which those runtime states that pass the check satisfy—is called con-
freeness. The key contribution of Chapter 5 is a reconstruction of con-freeness starting
from a multi-language (“old code”/“new code”) semantics for updatable programs.

Optimization of dynamically-updatable programs

Dynamic instrumentation is a special case of DSU in which the updates are derived by
specialization of an instrumented interpreter with respect to the original code. Opti-
mization of dynamically-updatable programs is considered problematic. Chapter 5 con-
tains a proposal for optimizing dynamically-updatable programs by restricting the con-
tent of future updates. We note that tagging and untagging operations performed by
dynamically-updatable programs are analogous to those in residual programs that result
from specialization of interpreters written in strongly-typed languages.

Information flow in (de)compilation

Finally, Chapter 6 is a tentative presentation of decompilation as a form of attack on
the program in the sense of information-flow security. We draw parallels between the
normalizing effect of optimizing compilation and the notion of non-interference, and give
a definition of secure information flow for program transformations. (This view naturally
accommodates superoptimization and randomized compilation.) It is immediately ap-
parent that the impossibility of perfectly optimizing compilation precludes construction
of compilers with zero information flow. In an idealized setting of a compiler from an
simple high-level language to a stack machine code, we formalise the idea of debug tables
as boundaries between compiled and interpreted code. In conclusion, we speculate on
possible applications to software protection measures such as obfuscation and watermark-
ing. Early ideas relating to this chapter were presented at the Programming Language
Interference and Dependence (PLID) Workshop in 2008 [42].

Chapter 7 concludes and also puts forward several recommendations for future hard-
ware systems. We recap the main recurring themes of the dissertation and describe a
“language-centric” approach to low-level system software: in particular, we argue for ar-
chitectural support for non-standard interpretation that is directly motivated by program
optimization.

15

16

Chapter 2

Technical background

The aim of this chapter is to introduce essential concepts used throughout the rest of the
dissertation. The chapter presents a diverse set of topics, but the material is intended to be
accessible to readers from both typed functional programming and systems backgrounds.

Outline. We begin by recalling in §2.1 that programs are data; we briefly cover program
staging (quasi-quoting) and the phase distinction. A review of the main definitions of
partial evaluation follows in §2.2. In §2.3 we introduce a CISC-style assembly language
(“AL”) for a Harvard architecture machine. We discuss computational reflection and
self-modifying code (§2.4), their negative impact on program optimization and several
theoretical and practical workarounds that are used to counter this. There are many
ways of writing an interpreter for AL; we include examples in C and OCaml (§2.5). Next,
§2.6 is a more thorough guide to non-standard interpretation in AL focusing on program
instrumentation as the most obvious instance, but also covering virtualization (emulation,
trap-and-emulate and binary translation) and dynamic software updating. Virtualization
and DSU are dealt with in more detail in Chapters 3 and 5 respectively. The relevance
of multi-language interoperability becomes apparent when we consider applying different
sets of instrumentation to different parts of the program simultaneously. In Chapters 4
and 5 we will use partial equivalence relations (PERs), a basic tool used to give semantics
to types and static analyses: §2.7 introduces PERs (some example applications of PERs
are given in Appendix B).

2.1 Programs as data

The word “program” is usually used to refer to a syntactic object such as a string gen-
erated by a context-free grammar. A programming language semantics gives meaning to
programs in terms of some existing well-understood structure or formalism. Various styles
of semantic definition have been proposed over the years: for example, a Scott-Strachey
denotational semantics is a mapping from programs to continuous functions over complete
partial orders (CPOs), whereas an operational semantics defines an evaluation relation be-
tween consecutive program execution states called “configurations”. The language used to
define the semantics is called the meta-language; the language that programs are written
in is called the object-language. We identify a programming language with its semantics
rather than its syntax: so two languages with the same syntax but differing semantics are
considered distinct.

17

One important difference between denotational and operational approaches is that the
latter treats non-interactive program inputs as part of the program itself by making them
part of the starting configuration (the very first execution state). Let Val be a set of
first-order1 input values common to all languages (Lisp-style S-expressions, for example)

and let Ω
def
= Val⊥ be a CPO of results. A denotational semantics is usually defined as a

function [[·]] : prog → (Val → Ω) from programs to denotations. An operational semantics,
on the other hand, is a reduction relation between configurations: 〈p, s〉 〈p′, s′〉 where
p, p′ ∈ prog and s, s′ ∈ Val contain execution state (which in this case is a single value).
A terminal configuration is a configuration that cannot be reduced any further: we will
take terminal configurations to be values. The definition of [[·]] in terms of the reduction
relation is a straightforward application of Kleene’s s-m-n theorem (cf. currying):

[[p]] v =

{
⊥ 〈p, v〉 diverges
v′ 〈p, v〉 . . . v′ .

If we take the meta-language to be a conventional programming language (C, ML, etc.),
it becomes apparent that the operational style of definition produces interpreters while
the denotational style closely resembles compilation. Indeed, some of the same techniques
(e.g. using monads [90, 139, 63]) can be used to write denotational semantics, interpreters
and compilers. The diagrams below summarize the relationships between a compiler C
from language L to language M ; D, a decompiler; [[·]]L and [[·]]M , the semantic functions;
evalL and evalM , the interpreters; and mixL and mixM , the program specializers.

progL

[[·]]L

}}zz
zz

zz
zz

zz
zz

zz
zz

C

��

progL × Val

evalL

}}{{
{{

{{
{{

{{
{{

{{
{

progL progL × Val
mixL

oo

Val → Ω progM
[[·]]M

oo

D

bb

Ω progM × Val
evalM

oo progM progM × Val
mixM

oo

We assume that it is possible to define an injection from multiple values to a single value
(e.g. a list or tuple constructor), so that programs can take arbitrarily many inputs. A
further auxiliary function b·c : prog → Val is used to map a program to a data value
(an encoding of the program’s abstract syntax tree), so that programs can be given as
input to other programs; b·c must be injective. The function mix , the object of study in
the field of partial evaluation, is discussed fully in §2.2 below, but its basic purpose is to
exploit advanced knowledge about one or more of the inputs to optimize the program.

2.1.1 Full abstraction

Recall that two expressions are said to be contextually equivalent (e1 ∼ e2) if both exhibit
identical behaviour in all contexts Ctx such that Ctx[e1] and Ctx[e2] are closed terms:

e1 ∼ e2 ⇐⇒ ∀Ctx[−]. Ctx[e1] ≈ Ctx[e2] where ≈ is e.g. convergence . (2.1)

The definition takes into account the internal observational power of the language: the
ability of language contexts to distinguish different terms. The relation ≈ is usually
defined using an operational semantics (e.g. let e1 ≈ e2 iff e1, e2 either both diverge or

1The first-order restriction applies to program inputs only, not the values that programs manipulate.

18

both converge to the same value). A denotational semantics [[·]] is fully abstract with
respect to an operational semantics if operationally-equivalent terms are assigned the
same denotation and, vice versa, terms that have the same denotation are operationally-
equivalent: [[e1]] = [[e2]] ⇐⇒ e1 ∼ e2. Abadi [1] suggested that a safe language translation
must also be fully abstract (i.e. preserve and reflect term equality) in the following sense:
given a compiler C from L toM and relations∼L and∼M (contextual equivalence relations
over L and M respectively), it should be the case that

e1 ∼L e2 ⇐⇒ C(e1) ∼M C(e2) . (2.2)

Intuitively, the definition says that translation does not permit an adversarial M -context
to glean more information than any L-context might. In particular, there is a danger that
a low-level target language might distinguish phrases equivalent in the source language:
Abadi points out several cases where the then-current Java to bytecode compiler fails
to be fully abstract; Kennedy [76] identifies similar issues in the C# to CIL compiler.
In practical terms, failure of full abstraction means that the programmer cannot rely
on source-level reasoning in C# and must be aware of the intricacies of the bytecode
language and the compiler. Note that given some expression e and the output of the
compiler C(e), it is not possible to tell whether C is fully abstract (indeed, the question
itself is meaningless). Full abstraction is a relational property, not an attribute of any
particular compilation run.

2.1.2 Dependent types and the phase distinction

Dependent types (or types indexed by terms) can be used to capture the type system
of an embedded language in the type system of the host language. For instance, the C
library function printf interprets its arguments according to a format string (e.g. "%s%d")
written in a small domain-specific language. Intuitively, the value of the format string
determines the type of printf. In the dependently-typed language Cayenne [12], printf
can be assigned a meaningful type. A similar effect can be achieved with static analysis
in languages that do not support dependent types: for example, Christensen et al. [29]
approximate the runtime values of string variables in Java by regular languages allowing
the syntax of dynamically-generated SQL queries to be checked at compile-time.

Cardelli [23] coined the term “phase distinction” to refer to the traditional separation
of that which happens at compile-time from that which happens at runtime. Cardelli
notes that although type-checking is usually done at compile-time (i.e. during the static
phase), strict separation fails for languages with dependent types. Because type equality
in dependently-typed languages is parameterized over term equality, the type-checker will
generally need to evaluate terms. This poses an immediate problem for Turing-complete
languages: the implementer can either (i) restrict the set of terms that are allowed to
index types to a decidable subset [149], (ii) accept the possibility of non-termination
in the type-checker, or (iii) delay type-checking in part until runtime. Ou et al. [101]
combine simple and dependent types in a single language, and check at runtime that
values flowing into dependently-typed code have the correct types. Flanagan [48] insert
runtime checks where a theorem prover is not able to establish type-safety statically: their
calculus, λH is the simply-typed λ-calculus enhanced with refinement types, i.e. types of
the form {x : τ | e} where e is a term. The key point is that it is occasionally either
necessary or beneficial to delay traditionally compile-time activities until runtime. One
of these activities is synthesis of new program code.

19

2.1.3 Program staging

Many useful optimizations require the ability to generate code at runtime. In extreme
cases, we can separate execution into two distinct stages: during the first stage, the
program manipulates fragments of syntax to produce its output, which is another program.
During the second stage, this newly-generated program is executed. For example, in C,
the pre-processor makes possible rudimentary program staging—although the language of
pre-processor directives is meager compared to C itself. C++ templates and Lisp macros
are much more interesting and powerful facilities, but unfortunately outside the scope
of this chapter. Fine-grained program staging annotations, like those found in Lisp or
MetaML [128], allow the programmer to (i) delay the evaluation of a term (i.e. quote), (ii)
splice a delayed term into another delayed term, (iii) splice the result of evaluating a term
into a delayed term (i.e. quasi-quote), and (iv) evaluate a delayed term (run or eval).
The effect of the first three primitives, apart from run, can be achieved by ad-hoc string
or S-expression manipulation in languages without support for staging; implementing run

as an interpreter function is not practicable for performance reasons.

2.2 Partial evaluation

Staging is a useful technique which can bring substantial performance benefits, but manual
staging does require forethought. A partial evaluator, or “program specializer”, uses
known program inputs to automatically optimize the program. Inputs whose values are
known at partial evaluation time are called static; the other inputs are dynamic. The
output of mix is called the residual (or specialized) program. Let [[·]] be an evaluation
function, p a program with two inputs2 and mix a partial evaluator:

[[p]](v1, v2) = [[[[mix]](p, v1)]](v2) . (2.3)

Aggressive constant propagation, function inlining and loop unrolling are the hallmarks
of program specialization. But it is easy to define a valid specializer that does no useful
work and merely splices its inputs p and v1 into a set program template. For example, in
Emacs Lisp:

(defun mix (p v1)

‘(lambda (v2)

(funcall ,p ,v1 v2)))

The Futamura projections. There are a few startling consequences of the equation
for mix above. Let intLM be an interpreter for language M written in L, i.e.:

∀p ∈ progM . ∀v ∈ Val . [[intLM]]L(p, v) = [[p]]M(v) . (2.4)

Then specializing intLM with respect to an M -program translates the program into L:

∀p ∈ progM . [[mix]](intLM , p) ∈ progL . (2.5)

This is known as the first Futamura projection. Many program transformations can be
derived by specializing specially-crafted interpreters [72, 37]: for example, specializing an

2Partial evaluation can be used for single-input programs when something is known about the possible
values of the input (odd, even, positive, negative, etc.).

20

instrumented interpreter with respect to a program “inlines” the instrumentation code
(see §2.6). Specializing the specializer itself with respect to an interpreter produces a
compiler:

CLM = [[mix]](mix , intLM) . (2.6)

This is the second Futamura projection and mix must be a self-applicable partial evaluator.
Finally, specializing the specializer with respect to itself produces a compiler generator:

cogen = [[mix]](mix , mix) . (2.7)

This is the third Futamura projection, which is included here for completeness: we will
refer only to the first two projections in the rest of the dissertation.

2.2.1 Jones optimality

Jones optimality is a measure of the strength of program specializers due to Neil Jones [71].
Let sint range over self-interpreters (a self-interpreter is an interpreter written in the
same language that it interprets), then a mix is Jones-optimal (“strong enough” in Jones’
original nomenclature) iff

∃sint . ∀p. [[mix]](sint , p) =α p (2.8)

where =α is α-equivalence or a similar decidable syntactic equality relation. Intuitively,
this means that mix is capable of removing a layer of interpretational overhead. A side-
condition is usually added to the effect that mix may not “cheat” by comparing the value
of sint against a known self-interpreter and returning p on success:

mix cheat(sint , p)
def
= if sint = MAGIC_SINT then p else [[mix triv]](sint , p) . (2.9)

The cheating specializer is Jones-optimal for a single self-interpreter whose text is hard-
coded (MAGIC_SINT) into the definition of the specializer; mix cheat resorts to trivial spe-
cialization for all other values of sint . To paraphrase Orwell, “some self-interpreters are
more equal than others”. An expectation of fairness (cf. continuity) applies to many pro-
gram transformations and static analyses: a minor change in the input should produce a
minor change in the output. But whether a given change is minor or major is arguable
because there are no accepted definitions of distance for program text.

We generalise the definition of Jones optimality in the manner of Glück [56]. Let R be
a binary relation on programs capturing some equivalence or ordering, and define JoptR
as follows:

JoptR(mix , sint)
def
= ∀p. [[mix]](sint , p) R p

JoptR(mix)
def
= ∃sint . JoptR(mix , sint) .

(2.10)

We say that mix is “R-strong with respect to sint” if JoptR(mix , sint) holds, and that
mix is simply “R-strong” if JoptR(mix) holds. Equation 2.8 is equivalent to Jopt=α(mix).

The original definition of Jones optimality disallows potential optimizations that mix
might be able to perform, since, e.g. 1+2 6=α 3. For this reason, a subsequent version of
Jones optimality [73, Definition 6.4] uses a weaker relation defined over the running times
of the computations:

p′ ≤time p
def
= ∀v. timep′(v) ≤ timep(v) (2.11)

21

insn ::= MOV rdst, asrc | LOAD rdst, (asrc) | STORE (adst), asrc a ::= v | r
| NOP | HLT | ALU(op) rdst, asrc1, asrc2 | CALL aloc | RET | JMP aloc | JE aloc, a1, a2

| JZ aloc, a | OUT < aport >, asrc | IN rdst, < aport > | PUSH a | POP rdst | UPDATE

Figure 2.1: Syntax of AL.

where timep(v) is the execution time of running p on input v. Under a very reasonable
assumption that α-equivalent programs consume equal execution time, this definition sub-
sumes the original. The crucial change is that an intensional, static notion of equivalence
used in Equation 2.8 is replaced with an extensional, dynamic one.

2.3 AL

In Chapters 3 and 4 we will consider virtualization and instrumentation of programs
written in an assembly language called AL (Figure 2.1). The underlying CISC machine has
a Harvard architecture: instructions and data are stored separately. The code store cannot
be read or written to and the data store cannot be executed. Similar restrictions versus a
von Neumann machine are often imposed on x86 code to allow reliable disassembly: for
example, in Google’s Native Client sandbox [150]. We will come back to the problem of
self-modifying code in the next section. The AL machine is finite, but we do not stipulate
its size, i.e. the amount of code and data memory, word size and number of registers.
For given values of these parameters, the grammar of AL can be expanded completely to
produce the set of all valid instructions. As in Intel x86 syntax, the destination operand
comes before the source operand(s). There are two special-purpose registers: L (for “link”)
contains the return address on function call, and S holds the stack pointer. The instruction
set is mostly standard; various arithmetic and relational operators are ranged over by op;
OUT prints the contents of a register or an immediate value; IN reads an externally-supplied
value; HLT terminates the program. The IN and OUT instructions are the only means of
interacting with a running program: in particular, the internal machine state is discarded
on termination. In order to preserve the state, the program must terminate by executing
the special UPDATE instruction described in §2.3.3.

The assembler function 〈|·|〉 maps AL surface syntax to AL values. A single in-
struction maps to four words: an opcode and up to three operands. For example,
〈|ADD r0, r1, 42|〉 = opcode(ADD, rri) 0 1 42 . The second argument to opcode
selects the opcode variant according to the types of operands: here the first two are reg-
isters (r), and the last one is an immediate value (i). Every label is replaced with the
address of the labelled instruction. The function 〈|·|〉 is bijective modulo label names; the
inverse 〈|·|〉−1 is the disassembler.

2.3.1 Semantics

The machine state is a tuple containing the program counter, the register file, and the
data and code memories. We let Loc ⊆ Val be the set of allowable memory locations,

and State
def
= (Loc, Reg → Val , Loc ⇀ Val , Loc ⇀ Val). The data memory and registers

are zeroed at program start. Reading or writing to an out-of-range data memory address
aborts execution; so does branching to a misaligned or out-of-range code memory address

22

If the instruction is: then the machine configuration becomes:
MOV rdst, asrc (pc + 4, R[rdst 7→ V (asrc)], D, C)

LOAD rdst, (asrc) (pc + 4, R[rdst 7→ D(V (asrc))], D, C)
STORE (adst), asrc (pc + 4, R, D[V (adst) 7→ V (asrc)], C)

ALU(op) rdst, asrc1, asrc2 (pc + 4, R[rdst 7→ op(V (asrc1), V (asrc2))], D, C)
CALL aloc (V (aloc), R[L 7→ pc + 4], D, C)
RET (R(L), R, D, C)
JMP aloc (V (aloc), R, D, C)
JE aloc, a1, a2 (pc′, R, D, C) where pc ′ = (V (a2) = V (a2)) =⇒ V (aloc) | pc + 4
JZ aloc, a (pc′, R, D, C) where pc ′ = (V (a) = 0) =⇒ V (aloc) | pc + 4

OUT < aport >, asrc Print V (asrc) to port V (aport); (pc + 4, R, D, C)
IN rdst, < aport > Read value v from port V (aport); (pc + 4, R[rdst 7→ v], D, C)

PUSH asrc (pc + 4, R[S 7→ R(S) + 1], D[R(S) 7→ V (asrc)], C)
POP rdst (pc + 4, R[rdst 7→ D(s′), S 7→ s′], D, C) where s′ = R(S)− 1

UPDATE upd (pc, R, D, C)
HLT ok

A convenient shorthand: V (v) ≡ v and V (r) ≡ R(r).

Figure 2.2: Semantics of AL with range checks omitted.

or attempting to execute an invalid instruction. A program that “falls off the end”
terminates normally: i.e. there is an implicit HLT instruction following the last instruction
in the program.

The small-step semantics of AL is shown in Figure 2.2: every machine instructions
takes exactly one cycle (reduction) to complete. The current machine state (pc, R, D, C)
is in scope in the right-hand column of the table. The reduction relation → (“reduces
to”) is defined between machine configurations : a non-terminal configuration is a ma-
chine state; the contents of a terminal configuration (the answer) depend on how the
machine was stopped: the values ok and err are returned on normal (HLT) and abnormal
termination respectively. The UPDATE instruction terminates the machine exposing the
intermediate execution state to an external observer.

Answer
def
= {ok , err} ∪ {upd(s) | s ∈ State} .

2.3.2 Traces

A state trace is a possibly-infinite sequence of program states: (s1s2 . . .) such that ∀i. si →
si+1; or (s1s2 . . . sna) such that ∀i < n. si → si+1 and sn → a where a ∈ Answer . Similarly,
an operation trace is the sequence of instructions executed together with their data-flow
inputs and outputs. Since our aim is to identify unnecessary operations (i.e. overhead),
we will use operation traces in preference to the more traditional state traces, and so take
“trace” to mean “operation trace” unless otherwise stated; we let T [[p]] denote the trace
of p. Outputs are enclosed in square brackets and the letters following the values (r or i)
identify the opcode variant used. We further define an erasure map E(·) for traces which
discards the operand encoding information, and replaces register names, port numbers
and memory addresses (including target addresses of jumps and calls) with a wild card

23

symbol. A program to calculate the factorial of 5 and excerpts of its original and erased
traces are shown below.

Program Trace Erased trace

fac5: MOV r1, 5 MOV [5]/r1, 5/i MOV [5], 5

MOV r2, 1 MOV [1]/r2, 1/i MOV [1], 1

loop: JZ done, r1 JZ 24/i, 5/r1 JZ *, 5

MUL r2, r1, r2 MUL [5]/r2, 5/r1, 1/r2 MUL [5], 5, 1

SUB r1, r1, 1 SUB [4]/r1, 5/r1, 1/i SUB [4], 5, 1

JMP loop JMP 8/i JMP *

done: OUT <1>, r2 JZ 24/i, 4/i JZ *, 4

.
OUT <1/i>, 120/r2 OUT <*>, 120

Nethercote and Mycroft [98] argued that a dynamic data dependence graph built from a
program trace represents the “essence” of a computation. The erased trace is an attempt
to capture the same intuition with a more lightweight formalism.

2.3.3 Update points

Every occurrence of UPDATE is an update point (we borrow the phrase from dynamic
software updating). Intuitively, the instruction suspends execution with the possibility of
later restart: UPDATE can be thought of as a transfer of control to the operating system,
a debugger breakpoint or a checkpoint [147]. The same basic idea is also familiar from
denotational semantics of I/O using resumptions.

Consider a mini-language of expressions with syntax exp ::= read | exp op exp | n ∈ N.
The two possible outcomes of running a program in this language are termination with
either (i) a value or (ii) a resumption, i.e. a value-consuming continuation. The pre-CPO
(CPO with no bottom element) of results can be defined as Ω ∼= (N + (N→ Ω)) and the
semantics is straightforward:

[[·]] : (N→ Ω)→ Ω
[[n]] k = k n

[[e1 op e2]] k = [[e1]] (λv.[[e2]] (λv′. k (v op v′)))
[[read]] k = λv. k v .

Taking the initial continuation to be the identity function, we have that [[read+42]] (λv.v)
is equivalent to λv. (v + 42). Operationally speaking, the expression read+42 terminates
with a continuation pending further input: the continuation must be applied to an input
value to restart the program. Notice that the means by which the value is obtained prior
to being supplied to the resumption is completely orthogonal to the language semantics.
By the same token, the virtue of UPDATE is that it provides a mechanism for dynamically
updating a program, but does not specify policy, i.e. what an allowable update contains,
and when and how one can be applied. The choice of Harvard architecture together
with UPDATE rather than a von Neumann machine also has important implications for
optimization of AL programs, and these are discussed below.

2.4 Computational reflection and self-modifying code

The state of an interpreted program is held in a number of “registers” in the interpreter:
e.g. the code register, the data register and the program counter. Computational reflec-

24

tion [123, 50, 145] is a language feature allowing programs to examine and modify the
contents of these registers. The values in the registers are made available to the program
by reification, i.e. encoding into a form that the program can manipulate directly; for
example, call/cc reifies the program continuation. New values are installed into the reg-
isters by reflection; eval, a staging primitive discussed in §2.1.3, is a form of reflection.
Computational reflection is well-known to be antagonistic to program optimization: for
instance, most literature on static analysis of Java uses a subset of the language that does
not include its already limited computational reflection facilities.

A von Neumann architecture computer does not enforce segregation between code and
data and thus readily supports reification of program text and eval at the machine code
level. This poses two serious problems for program analysis and transformation. First,
reification of program code is closely related to Gödelization, which, as a language feature,
is provably harmful to optimization; and second, ad-hoc runtime code generation makes
finding all reachable instructions statically undecidable. A context Ctx[−] is a Gödelizing
context iff for all expressions e such that Ctx[e] is a closed term, Ctx[e] evaluates to bec, a
value that uniquely identifies e (see §2.1). There are no such contexts in the λ-calculus as
a straightforward consequence of Church-Rosser theorem [57]. However, in Lisp, Ctx[−]
can be defined simply as quote [−]. Indeed, some variants of Lisp support F-expressions
(FEXPRs): FEXPRs are similar to macros in that they receive their arguments unevaluated
(the calling convention is known as “call-by-text”), so the Gödelization is performed im-
plicitly at the call site. Wand [144] showed that in a λ-calculus with FEXPRs and eval,
contextual equivalence coincides with α-equivalence. This does not necessarily mean
that no interesting optimizations are possible in this language—optimization relies on
determining whether two terms are equivalent in a particular context, whereas contextual
equivalence is defined over all contexts—but it does indicate that more sophisticated static
analysis is likely to be required. Mitchell [88] introduced “abstraction-preserving reduc-
tions” as a means of comparing the expressiveness of programming languages and proved
that there are no abstraction-preserving reductions to Lisp with FEXPRs: for languages
with high-level notions of data abstraction, there exist no fully abstract translations to
Lisp with FEXPRs. This holds for any language with a contextual equivalence that dis-
tinguishes terms up to syntactic equality, and, in particular, the machine code language
of a stored-program computer. Binary program analysis tools for x86 executables often
rule out the possibility of self-modifying code by fiat: e.g. Yee et al. [150] give a list of
conditions that input code for their sandbox must meet, in effect recovering a Harvard
architecture. Recent x86 processors support a per-page “no-execute” (NX) flag, which
allows an operating system to mark parts of memory as non-executable. There are also
practical workarounds that detect self-modification at runtime and invalidate optimiza-
tions that may have ceased to be sound (the implementation of the x86 architecture by the
Transmeta Crusoe processor [78] is an interesting example of the use of this technique).

We chose to make both Gödelization and eval meta-linguistic operations in AL:
UPDATE does not reify the machine state but makes it available to an outside observer.
Similarly, eval can only be implemented in AL by self-interpretation because, although
an AL program can trivially generate AL code at runtime, there is no way for it to “jump”
into the new code. Instead, a program must rely on an external entity—the user or the
operating system—to execute generated code on its behalf. To draw an analogy with
program staging: program stages in AL are separated by termination.

25

2.4.1 External observations and optimization

Tolmach and Appel [132] note that “debuggers must expose the internal behavior of the
original program, which may be altered by optimization”. This is another manifesta-
tion of the general principle that allowing fine-grained observations hinders optimization,
but in this case the observations are made “from without” rather than within (by a lan-
guage context). For example, tail-call optimization in languages with security by stack
inspection [143] is challenging because the call stack must be examined at certain points
during execution. One particularly interesting strategy for balancing optimization versus
observability is to recover the unoptimized program state—the state of the program as it
would have been, had the program not been optimized—from the state of the optimized
program on demand at certain program points. This is known as dynamic deoptimization
and was originally proposed and implemented by Hölzle et al. [66] for the Self program-
ming language, an influential precursor of Java. Although dynamic deoptimization is
used in practice (e.g. Sun’s HotSpot virtual machine), there is no general, formal account
of this technique. Veldhuizen and Lumsdaine [134] introduced the property of “guaran-
teed optimization” for compilers by defining “deoptimizing” rewrites and proving that a
given compiler can undo any sequence of these. The authors’ aim was to show that an
additional layer of indirection (due to data abstraction in this case) can be completely
removed. Dually, we may ask for “guaranteed dynamic deoptimization”—an assurance
that the effects of a sequence of optimizations can be undone at runtime.

2.5 Writing interpreters in C and ML

In the functional programming community, the focus has traditionally been on encod-
ing the static semantics of the object-language in the type system of the meta-language.
The systems community, on the other hand, is largely concerned with the performance of
interpreters. The emphasis in the literature is on minimizing the branch mis-prediction
rate—the penalties of a mis-predicted branch on a deeply pipelined CPU are severe [41].
The common goal is to match the static and dynamic semantics of the object-language
closely to the meta-language in order to maximally benefit from the meta-language im-
plementation.

2.5.1 Well-typed interpreters

Consider writing an interpreter for a typed language. Object-language values are repre-
sented in the meta-language as values of a universal datatype. In untyped (also called
“uni-typed”) languages, every expression is assigned a universal datatype (e.g. Dynamic):

9 : Dynamic
"abc" : Dynamic

[1, 2, 3] : Dynamic .

Every values carries a tag describing its contents: number, string, list, etc. Language
primitives, such as addition, string concatenation and consing, that operate on values
of a particular type must check the tags of their arguments at runtime. A failed tag
check indicates a type error and usually leads to abnormal termination. Under reasonable
assumptions, an interpreter written in an untyped language aborts due to a type error iff

26

the input program is ill-typed (intuitively, this follows from the “progress” result for the
type system and operational semantics of the interpreted language).

The runtime tag checks are made explicit (as coercions) when the language that the
interpreter is written in is typed. Abadi et al. [2] add type Dynamic and the pair dynamic
(introduction) and typecase/else (elimination) to the simply-typed λ-calculus (STLC).
STLC itself is strongly-normalizing, but the authors remark that STLC+Dynamic can
express the call-by-value Y-combinator. This is unsurprising semantically: Gunter [61,
Chapter 8] describes a similar model for the untyped λ-calculus. We can easily write
an interpreter for STLC in STLC+Dynamic, representing STLC values in the program
as values of type Dynamic in the interpreter. However, although a well-typed STLC
term cannot “go wrong”, a well-typed interpreter written in STLC+Dynamic must still
consider this possibility in the else-branch of each typecase because the STLC+Dynamic
type system is not sophisticated enough to track the STLC type of Dynamic values. Shields
et al. [119] show how, in a language with staged computation, type inference can also be
staged: quoting a term defers both its evaluation and type inference. When the term is
to be evaluated its type is inferred and, if it does not match the expected type, a special
“exception” term is evaluated instead. As the authors point out, the net effect of this is
similar to a typecase with two branches, one which executes if the deferred term has the
expected type, and the other containing the exception term.

In languages with more expressive type systems (e.g. dependent types—see §2.1.2), the
meta-language type of an object-language term can be used to encode the object-language
type of that term. In Haskell, generalized algebraic data types (GADTs) can often be
used to model the type structure of the object-language in this way. For example, Expr τ
is the meta-language type of expressions whose object-language type is τ . Ramsey [104]
and Benton [16] use type-indexed embedding-projection pairs to mediate flow of values
between an untyped embedded language and a typed interpreting host language. An
embedding-projection pair between two CPOs D and E is a pair of continuous functions
ι : D → E and π : E → D such that ∀d ∈ D. (π ◦ ι)(d) = d and ∀e ∈ E. (ι ◦ π)(e) v e. A
universal type is defined in the host language, e.g.

datatype U = Pair of U * U | Fun of U -> U | Int of int .

Expressions of the embedded language are interpreted in this universal type. For each type
T of the host language, two functions are defined: an embedding (T -> U), which allows
values of the host language to be embedded in the embedded language, and a projection
(U -> T), which allows values of the embedded language to be projected to the host.
Matthews and Findler [84] extend these ideas to a symmetric setting via a combined
union language and provide a further refinement by using contracts. Contracts [46] can
be thought of a kind of coercion. Contracts provide a structured way of defining function
pre- and post-conditions together with an algorithm for assigning blame when the checks
fail. Findler and Blume [45] show a connection between contracts and Scott’s projections3.

2.5.2 while/switch interpreters

The simplest way of implementing an interpreter is to dispatch directly on the abstract
syntax tree (AST). For an assembly language this takes the form of a switch statement

3This takes us full circle: domain isomorphisms (embedding/projection), universal types and coercions,
contracts, and back again.

27

C OCaml
S

im
p

le
d

is
p

a
tc

h

#define ADDrrr 0

extern word_t pc, R[], D[], C[];

while(1) {

switch(C[pc++]) {

case ADDrrr:

dst = C[pc++];

src1 = C[pc++];

src2 = C[pc++];

R[dst] = R[src1] + R[src2];

break;

}

}

type word = int

and loc = word

and opcode = ADDrrr

and code = loc -> icell

and icell = O of opcode | W of word

let eval (pc, r, d, c) =

match (c pc, ..., c (pc+3)) with

| (O ADDrrr, W dst, W src1, W src2) ->

let r’ i = if i == dst

then r(src1) + r(src2)

else r(i)

in eval (pc+4, r’, d, c)

D
ir

e
c
t-

th
re

a
d

e
d

c
o
d

e

doADDrrr:

dst = C[pc++];

src1 = C[pc++];

src2 = C[pc++];

R[dst] = R[src1] + R[src2];

goto *C[pc++];

type icell = K of kont | W of word

and kont = state -> answer

let doADDrrr (pc, r, d, c) =

match (c (pc+1), ..., c (pc+4)) with

| (W dst, W src1, W src2, K k) ->

let r’ i = ...

in k (pc+4, r’, d, c)

Figure 2.3: Instruction dispatch.

with a case for each opcode. The functional language implementation mimics the opera-
tional semantics: instead of the outer loop, tail recursion is used, and instead of a switch,
we rely on pattern matching. The outlines of both kinds of implementations are shown
in Figure 2.3. Interpreters written in this way tend to perform poorly [41]. The compiler
converts the switch statement to an indirect jump, and because the target of the indirect
jump depends on the next instruction to be executed, branch-prediction hardware is likely
to mis-predict the branch.

2.5.3 Threading

In direct-threaded code, each opcode is first replaced by the address of the routine in the
interpreter that implements the opcode. The result of this process is a direct threading
table (DTT). The interpreter dispatch loop is replaced with indirect branches through the
DTT. Because every doXXX routine contains an indirect branch instruction, prediction has
a better chance of succeeding. The threaded dispatch code (goto *C[pc++]) is not legal
ANSI C, but must rely on either inline assembly or compiler extensions. There is no
immediate functional analogue to direct threading. However, despite the name “direct”
threading, this implementation technique is close to continuation-passing style: every
instruction receives the continuation to call once it is complete. Context threading [18], a
technique based on subroutine threading, is arguably the culmination of the line of work on
threaded interpretation—see Chapter 4. Note that although threading delivers a tangible
speed-up, a threaded interpreter still has to perform most of the same administrative
operations as a while/switch interpreter.

28

2.6 Non-standard interpretation of AL

We will assume from now on that a non-standard interpretation augments the semantics
of a language. The standard behaviour of programs is subsumed by the custom behaviour.
This implies that, in some sense, a non-standard interpreter does at least as much work
as a standard one. Program instrumentation is the best-known example of non-standard
interpretation.

2.6.1 Program instrumentation

Recall that “instrumentation” refers to the modification—by addition of instrumentation
code—of a program or its runtime environment to make some hidden details of the pro-
gram’s execution visible: e.g. a count of the number of times a particular system call
is made. In contrast to a fully-fledged debugger, instrumentation code is passive in the
sense that it only observes the program state and does not modify it. Instrumentation
code also does not interfere with the program: an instrumented program produces the
same final answer as the original in addition to any statistics gathered by the instrumen-
tation code. Since the meaning of a program is usually determined by its input/output
behaviour, anything else is an implementation detail, and so an instrumented semantics
can be thought of as a model of a particular implementation. For example, assume a

variable store Σ
def
= Var → Val and a semantic function [[·]] : comm → Σ → Σ⊥. In an

instrumented semantics that keeps track of the number of times the variable x is assigned
to, the answer domain is augmented to include the counter. Thus the semantic function
is I[[·]] ∈ comm → Σ → (Σ × N)⊥. The definitions of assignment and sequencing are
changed accordingly:

I[[x := v]]σ = let σ′ = σ[x 7→ v] in (if x = "x" then (σ′, 1) else (σ′, 0))
I[[c1; c2]]σ = let (σ′, n1) = [[c1]]σ in (let (σ′′, n2) = [[c2]]σ′ in (σ′′, n1 + n2)) .

Note that, because we chose to identify a language with its semantic function, an in-
strumented semantics for a base language L defines a new, instrumented language I(L)
with the same syntax as L. Irrespective of how the instrumented semantics is de-
fined, it is sensible to prove that it agrees with the standard semantics in the obvi-
ous sense. Let T be the domain constructor for the instrumented answer domain and
define function F ∈ T (D) → D to discard the contribution of instrumentation code.
The relation =F between the original and instrumented answer domains is defined as
{(d, d′) | F d′ = d} ∪ {(⊥, ⊥)}. We expect that ∀c. ∀σ. [[c]]σ =F I[[c]]σ.

A modular semantics for the base language makes it easier to define an instrumented
semantics since the modifications necessary are relatively minor and do not usually war-
rant a separate set of definitions. Monads were originally proposed by Moggi [89] as a way
of structuring semantic definitions and later applied by Wadler [139] and Steele, Jr. [125]
for writing modular interpreters and by Harrison and Kamin [63] for compilers. The corre-
spondence between monads and various programming language constructs (continuations,
non-determinism, imperative features) was exploited by Steele, Jr. [125] and Liang et al.
[80] for building language interpreters in a modular fashion (for the counting example
above, we need a single value’s worth of state and partiality).

29

Implementation

There are several ways of obtaining fine-grained observations about the execution of a
program. The simplest is to insert custom code to make the values explicitly observable
(“debugging with printf”). This approach has several downsides: (i) the process is te-
dious and error-prone, and (ii) many observations cannot be made within the language
itself (e.g. the contents of the call stack in Haskell). An alternative is to write a separate
instrumented interpreter to keep track of the necessary statistics. For example, the im-
plementation of CALL might inspect the target address and update a counter accordingly:

switch(C[pc++]) {

case CALLr:

target = C[pc++];

if(R[target] == 80) counter++;

...

}

The interpreter can be implemented using any of the techniques described in the previ-
ous section. Specializing an instrumented interpreter—i.e. an interpreter for I(L)—with
respect to a program translates the program from the instrumented language into the
base language L. Jones [72, Section 2.3.3] points out that “specialising an instrumented
self-interpreter to a source program has the effect of inserting instrumentation code into
the body of the source program”. Kishon and Hudak [77] detail one instance of this
approach. First, a simple functional language is extended with special label commands; a
base interpreter for the language is written using open recursion, to allow later extension
with execution monitors that implement different behaviours for the label commands. A
partial evaluation step combines the base interpreter and an execution monitor into a
single instrumented interpreter; the instrumented interpreter is specialized with respect
to user programs. The efficiency of this approach depends entirely on the strength of the
program specializer used which, for a given specializer, can vary widely between input
interpreters. Even a Jones-optimal specializer (already a difficult proposition [82]) does
not guarantee good performance of the residual programs—the Jones optimality criterion
(Equation 2.8) requires the existence of a single self-interpreter for which the specializer
is able to remove an entire layer of interpretational overhead, but says nothing about the
variability of results produced by the specializer from one interpreter to the next.

Other authors have used ad-hoc source-to-source transformation to expose internal
execution details in languages for which no good specializers exist. Allwood et al. [8] add
an extra argument to Haskell functions describing where the function was called from; this
is used to construct a stack back-trace for the purposes of debugging a runtime exception
(e.g. as in head []). Wallach and Felten [143] implement security by stack inspection in
Java by transforming programs into “security-passing style”; in this representation, every
function accepts an extra parameter containing enough security context to allow privilege
checks to be implemented. Tolmach and Appel [132] built a debugger for Standard ML
that adds automatically-generated instrumentation code to the program before it is com-
piled. The biggest advantage of a source-to-source transformation is that the standard
toolchain (including an optimizing compiler, if one is available) can be used to compile
the output program. However, the decision on whether to include or exclude instrumen-
tation code must be taken at compile-time and cannot be reversed during the program
run. Tracing code is usually enclosed in a pre-processor conditional (“#ifdef DEBUG”);
a language conditional (“if(debug)”) can be used instead, but will degrade the perfor-

30

Guest OS

VMM Para-VMM

Host

Program

Guest OS

Host

Program

Figure 2.4: Classical virtualization vs. paravirtualization.

mance of the program even when debug is false4. In a development setting, a significant
performance penalty in exchange for detailed instrumentation may be acceptable: Val-
grind [99] instrumentation, described by its authors as “heavyweight”, can slow down a
program by orders of magnitude. By analogy, we could call DTrace [22] “lightweight”
instrumentation. There is often—certainly for virtual machine monitors and lightweight
instrumentation—an expectation that the program, run under the non-standard interpre-
tation, will not perform much worse than under the original interpretation.

2.6.2 Hardware virtualization

A virtual machine monitor (VMM) oversees the concurrent execution of several guest
virtual machines, each of which is a software likeness of the host, the physical machine
that the VMM itself runs on. A guest program is a program that executes on a guest
virtual machine. A virtual machine monitor is also referred to as a hypervisor. The
virtual hardware of each guest may differ substantially from host in the number and
types of devices, amount of RAM, disk space and so on. The CPU architecture of the
guests is the same as that of the host, though the number of apparent virtual CPUs
may be greater or smaller than the number of physical CPUs. If the total number of
virtual CPUs across all guests exceeds the number of physical CPUs, guest execution is
interleaved.

A simple interpreter would not make a good VMM: the overhead of interpreting each
instruction (i.e. emulation) cripples performance. Popek and Goldberg [102, p. 417] sug-
gest it should be the case that “all innocuous instructions are executed by the hardware
directly, with no intervention at all on the part of the [VMM].” The host hardware may
provide assistance to the VMM by trapping those instructions that must be handled by
the VMM and passing control to it. For example: the VMM may emulate the OUT in-
struction that writes directly to video memory by displaying a pixel in a window instead.
This “trap-and-emulate” technology was first used in the 60s and 70s.

Early x86 VMMs relied exclusively on binary translation (replacing privileged instruc-
tions in the program code with calls into the VMM) because some virtualization-critical

4This is known as “the disabled probe effect”.

31

instructions did not raise an exception even in the lowest privilege mode [109]. After
two decades of neglect by x86 processor vendors, recent chips from both Intel and AMD
implement trap-and-emulate in two different and incompatible ways (“VT-x” and “SMV”
respectively). Finally, in paravirtualization, the guest operating system kernel is modified
to explicitly call the VMM when it needs to perform a privileged operation. The imme-
diate downside of paravirtualization is that it does not work with unmodified machine
code—the source code must be ported to the VMM and re-compiled. The advantage is
potentially better performance, since there is no need to involve the expensive trap-and-
emulate mechanism.

2.6.3 Dynamic software updating

A dynamic software updating (DSU) system allows program code and data type definitions
to be modified at runtime when execution reaches one of special update points. In other
words, a DSU system is a non-standard interpreter that allows its “program text” register
to be overwritten every so often when an update command is executed. Dynamic program
instrumentation can be thought of as a dynamic software update, one where the original
code is replaced with an instrumented version (or vice versa, to disable instrumentation).

On the one hand, a particular kind of static analysis for updatable programs—namely,
type checking—is now well-understood thanks to the work of Hicks et al. [65], Stoyle et al.
[126], Neamtiu et al. [94] and others; on the other hand, Bierman et al. [19] remark that
“dynamic rebinding or update primitives invalidate general use of standard optimisa-
tions”. In current systems (e.g. [27, 127, 11, 85]), updates are applied at the granularity
of functions. To preserve function boundaries, some implementations disable problem-
atic optimizations by introducing a layer of indirection into the program: i.e. functions
are called through function pointers rather than directly. The key point of Popek and
Goldberg’s efficiency requirement for VMMs is that the common case (execution of un-
privileged instructions) must not be penalised by virtualization. A program compiled for
DSU incurs spurious interpretational overhead between dynamic updates (the common
case) and hence runs slower than a program compiled in the usual manner.

2.7 Partial equivalence relations

Given any equivalence relation P over X, the notation [x]P (the equivalence class of x
with respect to P) stands for {x′ | x P x′}. It will be convenient to define the following
two equivalence relations over a set X: AllX = X ×X and IdX = {(x, x) | x ∈ X}.

A partial equivalence relation (PER) is a binary relation that is symmetric and tran-
sitive. Let P be a PER over X, then the domain of P is the subset of X where P is
reflexive: |P | = {x ∈ X | x P x}. We will write x : P to mean that x ∈ |P |. Every
equivalence relation is a PER and every PER is an equivalence relation on its domain. If
P and Q are PERs over X and Y respectively, then (P +Q), (P ×Q) and (P ⇒ Q) are
PERs over X + Y , X × Y and X → Y respectively:

inl x (P +Q) inl x′ iff x P x′

inr y (P +Q) inr y′ iff y Q y′

(x, y) (P ×Q) (x′, y′) iff x P x′ and y Q y′

f (P ⇒ Q) g iff x P x′ =⇒ (f x) Q (g x′) .

32

Although AllX and IdY are equivalence relations, AllX ⇒ IdY is not: the domain of this
PER is the set of constant functions from X to Y . Whenever we refer to a PER over a
CPO or pre-CPO, we mean a PER over its underlying set—ignoring the structure. If P
is a PER over a pre-CPO X, then P⊥ = P ∪ {(⊥, ⊥)} is a PER over the CPO X⊥.

33

34

Chapter 3

Jones optimality and efficient
virtualization

Many academic and commercial hardware virtualization offerings have emerged in the last
few years. But the three basic requirements that a virtual machine monitor must satisfy
were set out formally by Popek and Goldberg [102] in a seminal paper in 1974. First,
the VMM must not impose undue overhead; second, a guest virtual machine must not
be allowed to take direct control of the host’s hardware resources; and third, a program
run inside a virtual machine must, with caveats, produce the same result—or, exhibit
the same behaviour—as when run directly on the host. These three criteria are called:
“efficiency”, “resource control” and “equivalence”. The caveat in the equivalence criterion
is there because the program may take longer to run in a virtual machine, and because
the virtual hardware may differ from the physical: for example, the amount of available
memory is likely to be smaller in the virtual machine, and the frame buffer of the virtual
machine may be mapped onto a single window on the screen of the physical machine. In
this chapter we take a language-centric approach to virtualization: our key observation is
that a virtual machine monitor is, in essence, a self-interpreter for machine code. We hope
that the discussion will encourage wider exchange of ideas between the virtualization and
partial evaluation communities.

Outline. First, in §3.1 we introduce the main VMM implementation strategies and
argue that partial evaluation naturally accounts for several kinds of virtual machine mon-
itors. We reconstruct trap-and-emulate execution starting from context-threaded inter-
pretation [18] in §3.2. A self-interpreter for a RISC subset of AL is presented in §3.3.
The main payload of this chapter is contained in §3.4 where we define a version of Jones
optimality over program traces which is intermediate between Jopt=α and Jopt≤time

, and
show that Popek and Goldberg’s efficiency criterion can be expressed as a special case. A
naive self-interpreter for AL fails to be an efficient VMM, so in §3.5 we extend AL with
virtualization assists (AL/EXEC) and show that an interpreter for AL written in AL/EXEC
is efficient in the sense above. Finally, we argue that full abstraction (described in §2.1.1)
is a desirable property for VMMs (§3.6) and that it neatly captures the folklore notion
of VMM transparency, i.e. whether or not a program can determine if it is running in a
virtual machine. References to related work are given in §3.7. We conclude in §3.8 with
directions for further work.

35

Preliminaries: privileged instructions in AL. Recall that an AL program commu-
nicates with the outside world using ports : the instruction IN reads a value from a port
and OUT writes a value to a port. For example, IN r1, <r0> reads a value from the device
attached to the port identified by register r0 and stores it in r1. Let ξ ∈ Port ⊆ Val
range over port numbers; in process calculus notation, the small-step reductions for IN

and OUT are as follows. The labels on the transitions indicate that a value v is being read
from (ξ?v) or written to (ξ!v) port ξ.

IN rdst, < aport > (pc, R, D, C)
ξ?v−→ (pc + 4, R[rdst 7→ v], D, C)

where ξ = V (aport)

OUT < aport >, asrc (pc, R, D, C)
ξ!v−→ (pc + 4, R, D, C)

where v = V (asrc) and ξ = V (aport)

The IN, OUT, HLT and UPDATE instructions are privileged. For practical reasons, our
virtualization setup is basic and does not deal with memory virtualization, interleaved
virtual machine execution and other aspects that a VMM for real, networked x86 hardware
must address. However, the essential component of virtualization as a non-standard
interpretation for selected machine instructions is preserved.

3.1 Virtualization versus emulation

Let [[·]]L and [[·]]M be the evaluation functions for machine code languages L and M as
implemented by the hardware. Let p be an M -machine program and v and v′ range over
the inputs and outputs of p respectively. An L/M-emulator is an L-program emuLM used
to run M -machine code on an L-machine: the following equalities, which correspond to
direct and emulated execution, hold by definition:

v′ = [[p]]M(v) = [[emuLM]]L(p, v) . (3.1)

DIGITAL FX!32 [28], Apple Rosetta1 and QEMU2 are examples of hardware emulators:
all three can execute code for an architecture different from the host. Due to the diffi-
culty of analysing low-level machine code (discussed in §2.4), an emulator must be highly
conservative in its assumptions about the behaviour of emulated programs. In general,
the emulator is forced to alternate between binary translation and interpreted execution,
since, on a machine with data execution capability, the set of all reachable instructions
cannot be determined statically. Indeed, since the instruction sets of L and M may differ
substantially, there is no reason to suppose that the performance of the program under
emulation will be comparable to native execution. But for some emulators, like Bochs3,
the host (emulating) and the guest (emulated) machines coincide. What makes a VMM
different from an L/L-emulator is Popek and Goldberg’s efficiency criterion which limits
the overheads that a program may incur to those for privileged instructions only—i.e.
those instructions that must be intercepted for the VMM to meet the resource control
requirement. The criterion is an expression of the principle “optimize for the common
case” familiar from optimizing compilers: the majority of instructions executed during
a program run are—for reasonable programs—not privileged. One way of meeting the

1http://www.apple.com/rosetta/
2http://wiki.qemu.org/Main_Page
3http://bochs.sourceforge.net/

36

http://www.apple.com/rosetta/
http://wiki.qemu.org/Main_Page
http://bochs.sourceforge.net/

requirement relies on hardware support (“assists”) for trap-and-emulate execution where
privileged instructions (e.g. reading from a device) are intercepted and their handling is de-
ferred to the VMM. Binary translation gives a means of implementing efficient VMMs on
hardware architectures that do not provide virtualization assists; the translation replaces
instances of privileged instructions with invocations of the VMM. Paravirtualization is
an alternative: however, as the name suggests, paravirtualization does not qualify as
virtualization in the classical sense, because a paravirtualization VMM presents a high-
level hyper-call interface to its guest operating systems. A paravirtualization VMM is
not an emulator, but rather an “an operating system for operating systems”. Paravir-
tualization has a similar net effect to binary translation, albeit binary translation is a
fully automatic process that works on compiled machine code whereas paravirtualization
necessitates manual modification of the guest operating system’s source code (followed
by recompilation) to use the hyper-call interface. For example, the first versions of the
Xen [14] hypervisor used paravirtualization exclusively: the kernel of each guest OS had
to be modified to use Xen’s hyper-call API (“domU”). In programming language terms,
a paravirtualization VMM can be thought of as an interpreter for the language of unpriv-
ileged instructions & hyper-calls. We mention paravirtualization here for completeness:
we will be primarily concerned with trap-and-emulate VMMs.

Consider an emulator fragment shown below: the code is written in a C-like language
only for conciseness and should be thought of as the equivalent code in AL. Intuitively,
the virtualized program on the right can be obtained by specializing the emulator (on the
left) with respect to the original program.

switch(C[pc++]) {
case OUTir:

i_port = C[pc++];

r_src = C[pc++];

doOUTir(i_port, r_src);

break;

}

Original program Virtualized program

MOV r1, 3 MOV r1, 3

ADD r2, r1, 5 ADD r2, r1, 5

OUT <0>, r2 PUSH 0

PUSH 2

CALL doOUTir

The central argument of this chapter is that hardware virtualization can usefully be
thought of in terms of interpreter specialization: i.e. [[mix]](vmm, guest). Although the
partial evaluation function mix has no immediate analogue in the virtualization litera-
ture, the choice of mix for the first Futamura projection gives us both naive emulators
(when using a trivial specializer) as well as binary translation for stronger mixes. One
important aspect of virtualization by binary translation is that unprivileged instructions
“pass through” the translator unaltered which suggests a link to Jones optimality (recall
from §2.2.1 that a Jones optimal specializer produces a residual program that is syn-
tactically equal to the input program when a particular self-interpreter is specialized).
Notice also that, in the figure, the call to doOUTir has not been inlined: this is important
because it means that the virtualized program can be run under different VMMs each
providing its own implementation of doOUTir and other do-procedures. This slightly un-
usual “semi-specialized” program structure can be adequately explained with the help of
context-threaded interpretation.

3.2 From threaded code to trap-and-emulate

A context-threaded (CT) interpreter [18] replaces every non-branch instruction in its input
program with a call to the procedure in the interpreter that implements the opcode. Once

37

the resulting context threading table (CTT) is constructed, the interpreter jumps to the
first instruction in the table. Notice that (i) a CT interpreter is a staged program, and
(ii) it cannot be implemented on a machine with no data execution (eval) capability.
Instruction operands are retained in a separate table in data memory:

Original CTT (Operands) Partially inlined (Operands)

MOV r1, 3 CALL doMOVri 1, 3 MOV r1, 3 N/A
ADD r2, r1, 5 CALL doADDrri 2, 1, 5 ADD r2, r1, 5 N/A
OUT <0>, r2 CALL doOUTir 0, 2 CALL doOUTir 0, 2

Having a CALL instruction for every opcode in the program allows the interpreter to exploit
return address prediction hardware—this is the original rationale for context threading.
But the CTT is also an interpretation-agnostic form of the program; it can be readily
executed—without parsing- or instruction-dispatch overhead—under a non-standard in-
terpretation defined by a collection of do-procedures. For a set of do-procedures defining a
self-interpreter, inlining and constant propagation can reasonably be expected to recover
the original program (cf. a Jones-optimal specializer). Note that the OUT instruction is
privileged and its implementation depends on the specific VMM used to run the program.
Therefore, calls to doOUTir, doOUTrr etc. must not be inlined, but all the other do calls
must (to satisfy Popek and Goldberg’s requirement). Thus, the program in the right
table column above executes in a mixed compiled/interpreted mode [151]—the bulk of the
program runs natively, but the OUT instruction is interpreted.

Intriguingly, as a program transformation, virtualization can be thought of as selec-
tive un-inlining of do-procedures, a “de-optimization” in the words of Veldhuizen and
Lumsdaine [134]. For a realistic example, consider the way paravirtualization is imple-
mented in the Linux kernel. The hypervisor fills in a pv_cpu_ops structure with pointers
to functions (clts, write_cr0, etc.) that emulate privileged instructions:

struct pv_cpu_ops {

/* hooks for various privileged instructions */

unsigned long (*get_debugreg)(int regno);

void (*set_debugreg)(int regno, unsigned long value);

void (*clts)(void);

unsigned long (*read_cr0)(void);

void (*write_cr0)(unsigned long);

...

}

Instead of executing a privileged instruction directly (e.g. to disable IRQs), the kernel calls
the corresponding function through the structure. The code of the kernel can be thought
of as a CTT where all instructions apart from the privileged ones have been perfectly
inlined. The default, native pv_cpu_ops implementation acts directly on the hardware—
i.e. it defines a self-interpreter! Notice that a paravirtualized kernel is forbidden from
executing privileged instructions by convention only; there is no enforcement mechanism
to prevent this.

Written in Haskell, pv_cpu_ops would be a type class and each hypervisor, an instance;
dictionary passing replaces a global pv_cpu_ops variable. Dictionary passing allows for
the possibility of multiple simultaneously active hypervisors. As far as we are aware,
there are no current systems that support this, and the use of a global variable is another

38

example of a common-case optimization known as “globalization” [116]. As an aside, it
is interesting to observe that this view of non-standard interpretation through context
threading is closely related to Carette et al.’s [24] “final tagless” style. Carette et al. use
functions rather than data constructors to represent terms of object-language programs:
i.e. “add (const 1) (const 2)” vs. “ADD (CONST 1) (CONST 2)”. This allows object-
language code to benefit from static safety guarantees provided by the type system of
the meta-language. The move from one representation to the other corresponds to a shift
from an abstract syntax tree and a switch-based interpreter to context threading. (Note
that in context threading, program state is kept in a collection of global variables, rather
than being threaded through the CTT as an explicit argument to every do function call.)
In solving different sets of problems, both the typed functional programming and the
systems communities separately developed techniques based on partial evaluation.

Finally, note that, by analogy with lexical vs. dynamic scoping for variables, trap-
and-emulate execution resolves the interpretation dynamically depending on the value
of a CPU mode flag4. In the default CPU mode, the OUT instruction executes in the
native hardware interpretation; once a VMM puts the CPU into virtual machine mode,
subsequent occurrences of OUT are dispatched to the VMM-installed handler. We will
return to this idea in the next chapter on instrumentation (see §4.4), where the different
modes will correspond to different sets of instrumentation.

3.3 Self-interpretation in AL

Figure 3.1 shows an excerpt of a self-interpreter for a RISC subset of AL: with the excep-
tion of MOV and JE which can accept an immediate value as the first operand, operands of
all other instructions must be registers. Instructions that perform useful work are shown
on a grey background in the listing. For readability, we have omitted range checks on
address operands. The self-interpreter uses an array of memory cells to hold the contents
of the interpreted program’s registers. For convenience, and due to the relative poverty of
the interpreted instruction set, we choose to place this array at location zero in the data
memory of the interpreter. Registers r0 and r1 hold useful constants; r30 and r31 hold
the offsets of the program’s code and data memories respectively; the program counter is
kept in r2; registers r3 to r6 hold the opcode and the operands of the currently-executing
instruction; registers r10, r11 etc. contain instruction opcodes. Instructions are fetched,
decoded and dispatched sequentially. Note that the IN and OUT instructions are issued
by the interpreter in the same order and with the same operands as would be the case
had the program been executed directly. Interpreting a program produces the same I/O
behaviour—the same sequence of port/value tuples ξ?v and ξ!v—as running the program
directly. However, the handling of UPDATE results in a discrepancy between direct and
interpreted execution. Recall that UPDATE exposes the entire machine state which, for the
program being interpreter, includes the interpreter as well. On a von Neumann machine,
it may be possible for the interpreter to overwrite itself with the code of the interpreted
program on UPDATE.

Our self-interpreter is clearly not viable as a VMM. To improve its efficiency, we
can either (i) leave the self-interpreter as is and build a good specializer for AL, or (ii)
settle for a trivial specializer and achieve good performance by introducing trap-and-

4In the presence of recursive virtualization, the mode is not a boolean flag, but a number indicating
the VMM nesting level. See §3.4.1.

39

MOV r2, pc
MOV r10, opcode(NOP)
. . . ; Load remaining opcode values
dispatch: LOAD r3, (r2)

ADD r2, r1, r2

. . . ; Load operands into r4, r5, r6
JE doUPDATE, r3, r10

JE doHLT, r3, r11

JE doNOP, r3, r12

. . . ; Dispatch remaining opcodes
doUPDATE: UPDATE

doHLT: HLT

doNOP: NOP

JMP dispatch

doMOVri: MOV r7, r5

STORE (r4), r7

JMP dispatch

doMOVrr: LOAD r5, (r5)

MOV r7, r5

STORE (r4), r7

JMP dispatch

doLOADrr: LOAD r5, (r5)

ADD r5, r31, r5

LOAD r5, (r5)

STORE (r4), r5

JMP dispatch

doSTORErr:LOAD r4, (r4)

ADD r4, r31, r4

LOAD r5, (r5)

STORE (r4), r5

JMP dispatch

doJMPi: ADD r2, r30, r4

JMP dispatch

doJEirr: LOAD r5, (r5)

LOAD r5, (r6)

JE doJMPi, r5, r6

JMP dispatch

doADDrrr: LOAD r5, (r5)

LOAD r6, (r6)

ADD r7, r5, r6

STORE (r4), r7

JMP dispatch

doINrr: LOAD r5, (r5)

IN r7, <r5>

STORE (r4), r7

JMP dispatch

doOUTrr: LOAD r4, (r4)

LOAD r5, (r5)

OUT <r4>, r5

JMP dispatch

Figure 3.1: Interpretation of selected AL instructions.

emulate assists to AL. The latter path is the one taken by the virtualization community
and is explored in §3.5. But first we define an efficiency criterion for trap-and-emulate
virtualization that is directly inspired by Jones optimality.

3.4 Trace simulation

Let T [[p]](v) be the trace of program p on input v (this includes interactive input) and
define trace-equivalence of programs (=trace) as follows:

p =trace p
′ ⇐⇒ ∀v. T [[p]](v) = T [[p′]](v) . (3.2)

Intuitively, an interpreter always executes at least those instructions that a program would
on its own (cf. the highlighted instructions in Figure 3.1). Let us say that a trace tr is
simulated by tr ′, written tr � tr ′, iff tr is a subsequence of tr ′, i.e. there exists a strictly
increasing function f on sequence indices such that ∀i. tr(i) = tr ′(f(i)). Note that a
subsequence need not be a substring: the characters of a substring occur consecutively
in the string, but the elements of a subsequence merely occur in the same relative order.
Define trace-simulation of programs (≤trace) accordingly by lifting � to programs:

p ≤trace p
′ ⇐⇒ ∀v. T [[p]](v) � T [[p′]](v) . (3.3)

40

While Jones optimality in its original definition (Jopt=α) is akin to the principle of “spatial
locality” in that instructions that were close together in the original program must remain
close together in the residual one. Jones optimality for traces (Jopt=trace

), on the other
hand, corresponds to “temporal locality”: instructions that were close together in time
in executions of the original program remain so in the residual program.

We observe that, for reasonable interpreters, the trace of the interpreter contains
operations performed by the program as well as those that constitute interpretational
overhead. An extreme case is a meta-circular self-interpreter 5 like that in the previous
section, which implements each phrase of the language in terms of itself (an ADD with an
ADD, a MOV with a MOV, etc.)

Instruction
Trace

Direct execution Self-interpreter

MUL r3, r1, r2 MUL [42]/r3, 42/r1, 1/r2 LOAD [42]/r5, 1/r5

LOAD [1]/r6, 2/r6

MUL [42]/r7, 42/r5, 1/r6

STORE 2/r4, 42/r7

JMP dispatch

However, it is not true to say that the trace of the interpreter simulates the original pro-
gram trace: for example, the register names for the MUL instruction differ between the
two traces. Therefore, we will use erased traces (as defined in §2.3.2): the corresponding
erased trace-equivalence and erased trace-simulation relations (=erased and ≤erased) pur-
posely conflate immediate and register operands. In particular, programs equivalent up
to renaming have the same erased trace. Recall that time(p, v) is the execution time of
program p on input v and =time and ≤time are defined in the obvious way. Assume that
trace-equivalent programs consume equal execution time, the diagram below summarises
the relationships between trace-equivalence, trace-simulation and program execution time,
from strongest (top) to weakest:

=trace

oooooo

≤trace =erased

pppppp

≤erased =time

pppppp

≤time

Erased trace simulation is deliberately a loose relation in the sense that it does not rely
on an exact matching (as would a bisimulation) between the execution states under the
standard and non-standard interpretations. Thus, erased trace simulation can be used
uniformly with all reasonable self-interpreters, irrespective of their internal structure:

∀p. p ≤erased [[mix]](sint , p) . (3.4)

In particular, we match up the IN and OUT instructions in the two traces, that is the inter-
active inputs/outputs of the program. Note that if sint accepts multiple input programs
p1 to pn and alternates their execution, then p′ = [[mix]](sint , (p1, . . . , pn)) simulates each:

∀i ∈ {1, . . . , n}. ∀v. T [[pi]](v) �erased T [[p′]](. . . , v, . . .) . (3.5)

5The term “meta-circular interpreter” is due to Reynolds [107].

41

These equations are statements of correctness rather than efficiency. The essential point
is that when there is no interpretational overhead, [[mix]](sint , p) executes at most those
operations that p would on its own. Thus, Jopt=erased

is an intermediate criterion that sits
between the established definitions of Jones optimality Jopt=α and Jopt≤time

.

3.4.1 Trace simulation modulo privileged instructions

Jones optimality in its original definition is only applicable to self-interpreters; but VMMs
are “mostly self-interpreters”. More precisely, a VMM behaves like a self-interpreter for
unprivileged instructions (the common case), but implements a custom behaviour for
privileged operations. A VMM is considered efficient provided “all innocuous instructions
are executed by the hardware directly, with no intervention at all on the part of the
[VMM]” [102]. That is, no overhead should be incurred when executing non-privileged
instructions such as register movements and ALU operations. Privileged instructions are
exempt from this requirement as their implementation may need to emulate devices which
are not physically present in the machine: it is possible that a privileged instruction may
be emulated entirely by non-privileged instructions. Therefore, a privileged operation in
the native execution trace of a program corresponds to a sequence of possibly-privileged
operations in the trace of the virtualized program. Note that although execution of non-
privileged instructions is performed by the CPU directly, they are handled differently in
virtual machine mode. For example, both code and data memory addresses are offset with
the base address of the virtual machine’s memory with respect to the host’s memory, e.g.:

Instruction
Trace

Native execution Trap-and-emulate VM

LOAD r1, (42) LOAD [3]/r1, (42/i) LOAD [3]/r1, (1046/i)

ADD r2, r1, 5 ADD [8]/r2, 3/r1, 5/i ADD [8]/r2, 3/r1, 5/i

OUT <0>, r2 OUT 0/i, 8/r2 . . .; VMM handler prologue

OUT 27/i, 8/r2

. . .; Cleanup

A trace always corresponds to actual hardware operations executed (“microcode”): in
other words, a VM trace is not a trace of the virtual machine but a trace of the host
running the virtual machine. In the trap-and-emulate VM trace above, the VM’s data
memory is located at offset 1024 in the host’s data memory (1024 + 42 = 1046), and we
have assumed that the virtual registers are mapped onto the hardware registers. Note the
difference between the VM trace above and the trace of a self-interpreter on p. 41.

Several VMMs may be nested forming a tower of interpreters, and so we annotate every
operation in the trace of a program with a natural number n indicating the virtualization
nesting level at which the operation was issued: n = 0 corresponds to direct execution on
hardware. The current nesting level is incremented on entry into a virtual machine and
decremented when control is transferred into the VMM to handle a privileged instruction.

Define a trace projection πn which discards emulation of privileged instructions from
the trace of a virtualized program. Assume the VMM is executing at nesting level n, then
πn(tr) is the subtrace of tr consisting of only those operations executed at levels greater
than n, i.e. those that must be attributed to the guest program. A second complementary
projection (·)unpriv removes all privileged operations from a trace. Applying π0 to the VM
trace and (·)unpriv to the native execution trace we recover our intuitions from the previous
section:

42

Projections for traces on p. 42

(·)unpriv Native π0 VM

LOAD [3]/r1, (42/i) LOAD [3]/r1, 1046/i

ADD [8]/r2, 3/r1, 5/i ADD [8]/r2, 3/r1, 5/i

Let tr and tr ′ be shorthand for the erased traces of VM and native execution respectively.
We say that p′ virtualizes p correctly iff ∀v. (tr)unpriv � π0(tr ′). This definition applies to
a VMM that runs directly on hardware (virtualization nesting level zero). Conversely, p′

virtualizes p efficiently iff ∀v. π0(tr ′) � (tr)unpriv. Efficiency requires that, modulo emu-
lation of privileged instructions, every operation in the trace of the virtualized program
can be accounted for. Finally, define trace-equivalence between original and virtualized
programs (p =virt p

′) as follows:

p =virt p
′ ⇐⇒ ∀v. (tr)unpriv � π0(tr ′) � (tr)unpriv . (3.6)

To pinpoint the emulation code in the trace of the virtualized program, the definitions
above rely on the virtualization nesting level annotation being present. Equivalently,
we require an indication in the trace where execution passes into and out of the virtual
machine monitor (in the next section we extend AL with a virtualization-assist instruction
for this purpose). However, this means that the definitions only work for trap-and-emulate
VMMs: for binary translation VMMs, the projection π0 must be constructed manually.

3.5 Virtualization assists

In this section we consider two alternative designs for virtualization assists in AL.

3.5.1 AL/STEP

Volume 3B of the Intel 64 and IA-32 Architectures Software Developer’s Manual6 states
that (p. 18-12): “The processor generates a single-step debug exception if (while an
instruction is being executed) it detects that the TF flag in the EFLAGS register is set.
[. . .] the exception is generated after the instruction is executed.” To speed up the self-
interpreter on non-privileged instructions without relinquishing control over execution of
privileged ones, we add a STEP instruction to AL with allows single-stepping through
guest program code. The sole operand of STEP is a register containing the address in
data memory of a Virtual Machine Control Block (VMCB). The layout of the VMCB is
shown on the right in Figure 3.2. Recall that our self-interpreter of Figure 3.1 uses the
first thirty-two locations in data memory to store the registers of the interpreted program.
The VMCB duplicates this structure and plays a role similar to a process control block
in an operating system kernel: a VMCB contains the state of a virtual machine including
the program counter, register values, the code and data memories and their sizes. STEP

executes a single non-privileged instruction at the location identified by the program
counter field of the VMCB, taking care to offset all memory accesses (including branch
targets) performed by the instruction. The instruction is executed as if the state of the
VMCB were the real machine state. For example, given “JMP 8” the effect of STEP is to
set the program counter field of the VMCB to 8; given “LOAD r1, (24)”, and assuming
the data memory of the virtual machine starts at offset 32, the value is loaded from

6 http://www.intel.com/products/processor/manuals/index.htm

43

MOV r31, 0 ; offset of VMCB
MOV r10, opcode(HLT)
MOV r11, opcode(UPDATE)
MOV r12, opcode(IN)
MOV r13, opcode(OUT)

dispatch: . . . ; Load PC field of VMCB into r2

. . . ; Check PC is in range
LOAD r3, (r2)

JE doHLT, r3, r10

JE doUPDATE, r3, r11

JE doIN, r3, r12

JE doOUT, r3, r13

STEP r31

. . . ; Check status field of VMCB
JMP dispatch

doHLT: . . . ; Emulation of HLT
doUPDATE: . . . ; Emulation of UPDATE
doIN: . . . ; Emulation of IN
doOUT: . . . ; Emulation of OUT

r0

r1

r2

Code mem. size

Code

Data

Program counter

Status

Data mem. size

Figure 3.2: An interpreter in AL/STEP and the VMCB.

physical data memory address 56 into the r1 field of the VMCB. The STEP instruction
populates the status field of the VMCB with an error value if execution of the virtual
machine aborts (e.g. the instruction makes an out-of-range memory access). Note that
the special interpretational encoding of the program state in the meta-circular interpreter
is now uniformly captured (and more likely to be implemented efficiently) by STEP. An
interpreter in AL/STEP is shown in Figure 3.2: it relinquishes some control over execution
but has a much simpler implementation. However, this interpreter fails to be efficient due
to the overhead of instruction dispatch. To eliminate this overhead, we now introduce an
alternative instruction, closer to the spirit of trap-and-emulate virtualization.

3.5.2 AL/EXEC

AL/EXEC is an extension of AL with the EXEC instruction which has a single register
operand indicating the location of a VMCB. Unlike STEP, EXEC executes any number
of instructions rather than just a single one: when a privileged instruction is encoun-
tered, execution continues at the instruction following EXEC which may then determine
the opcode and operands of the offending instruction via the program counter field of the
VMCB. EXEC increments the virtualization nesting level on entry and decrements it on
exit. Thus, in the trace, instructions that are executed by EXEC are marked with the cor-
rect level. Note that the sections of interpreter code which are responsible for emulating
the privileged instructions are executed at a level one lower that those of the program
being interpreted. Recall (Equation 3.6) that the π0 projection strips out the emulation.

44

MOV r31, 0 ; offset of VMCB
dispatch: EXEC r31

. . . ; Check status field of VMCB

. . . ; Load opcode and operands from VMCB
JE doHLT, r3, r10

JE doUPDATE, r3, r11

JE doIN, r3, r12

JE doOUT, r3, r13

doHLT: . . . ; Emulation of HLT
doUPDATE: . . . ; Emulation of UPDATE
doIN: . . . ; Emulation of IN
doOUT: . . . ; Emulation of OUT

Figure 3.3: An interpreter in AL/EXEC.

An interpreter in AL/EXEC is shown in Figure 3.3. To draw a functional program-
ming analogy, in AL/STEP the VMM is supplied with the hardware implementation of
unprivileged instructions. In AL/EXEC the instruction dispatch loop is inverted and the
hardware, rather than the interpreter, is responsible for dispatch. Let st = State, and
unpriv and priv be states where the instruction pointed to by the program counter is
unprivileged or privileged, respectively:

AL/STEP AL/EXEC

vmm : st -> (unpriv -> st) -> st vmm : priv -> st

hw : unpriv -> st hw : st -> (priv -> st) -> st

Uses of the STEP instruction correspond to invocations of hw (on the left), and the “call-
backs” to the VMM which EXEC makes for privileged instructions correspond to invo-
cations of vmm (on the right). Assuming that the majority of operations in any given
program are unprivileged, the AL/EXEC setup results in a smaller number of calls.

3.6 An application of full abstraction to VMMs

A guest program should not be able to detect that it is executing inside a virtual ma-
chine. In the period before virtualization became popular, a similar requirement was often
applied to system-level debuggers. Various methods of debugger detection and circum-
vention, collectively known as “anti-debugging” techniques, were proposed7, and some
viruses are known to become actively hostile when executed under a debugger. Anti-
debugging tricks are also used by content-protection schemes to actively resist analysis
and reverse-engineering.

Programmatic tests to detect the presence of a virtual machine monitor rely on observ-
able discrepancies between two expressions or code blocks known to be equivalent when
executed directly on hardware but behave differently in a virtual machine. Garfinkel et al.
[54] define VMM transparency as “making virtual and native hardware indistinguishable
under close scrutiny by a dedicated adversary”. They argue on pragmatic grounds that
transparency is not an achievable or desirable goal on real-world hardware. Indeed, some

7E.g.: http://www.symantec.com/connect/articles/windows-anti-debug-reference

45

http://www.symantec.com/connect/articles/windows-anti-debug-reference

VMMs (and debuggers) do not attempt to hide their presence at all, and many of those
that do are unsuccessful [44, 103]. While full transparency may not be practically at-
tainable, we argue that it is nevertheless a useful guiding principle for VMM design and
potentially hardware design as well. Extensionally, transparency is covered by the “equiv-
alence” requirement for VMMs, analogous to the self-interpreter correctness equation, i.e.
that ∀v. [[p]](v) = [[sint]](p, v). Intuitively, whether p does or does not detect the presence
of sint is irrelevant as long as it produces the same final answer. However, the definition
of equivalence is very coarse-grained.

Suppose the attacker is allowed to submit arbitrary terminating programs for execution
on a “black box” computer of a given architecture which may be a physical machine or a
VM. The attacker wants to determine which it is, based on the output and the running
times of the programs. Consider a setup where programs must be submitted one by
one: i.e. each program is executed on a randomly-chosen black box. The equivalence
requirement for VMMs guarantees that the output of the program executed by a VM is
identical to its output when executed natively. The running time of the program cannot
be used as a distinguishing criterion either: even if the running time is excessively large,
there is no way for the attacker to be sure that the program was executed on a VM rather
than a very slow physical machine. Suppose instead that the attacker is allowed to submit
two programs at a time: the programs are run consecutively on the same black box. In
this case, the attacker can compare the running times of two programs : e.g. p1 (with
lots of privileged instructions) is likely to run significantly slower than p2 (with none) on
a VM vs. a physical machine. We argue that transparency is a relational concept that
cannot be attributed to a given run of the VMM, and Abadi’s full abstraction for language
translations (§2.1.1) is a natural formalism for this.

Let V be a translation from AL to “virtualized AL” which has the same syntax, but a
different interpretation of certain instructions. The translation is not semantics-preserving
since, in general, V(p) does not exhibit the same I/O behaviour as p (for example, the
ports read and written to may be different—see p. 42). Recall that a translation C is
fully abstract whenever e ∼L e′ ⇐⇒ C(e) ∼M C(e′) where ∼L and ∼M are equivalence
relations over languages L and M respectively. Let us call V transparent with respect to
R iff

p R p′ ⇐⇒ V(p) R V(p′) . (3.7)

First, take R to be contextual equivalence on AL and V to be identity (recall that in
classical virtualization a program does not need to be modified to run in a VM).

Consider an extreme example of the failure of full abstraction caused by the VMM
revealing its presence. Suppose the VMM makes the first data memory cell read-only
and places a special marker (e.g. the value 57) there. Let p1 and p2 be the instruction
sequences below and note that p2 is obtained from p1 by eliminating a redundant LOAD.

p1 p2

MOV r1, 57 MOV r1, 57

STORE (0), r1 STORE (0), r1

LOAD r1, (0) —
OUT <0>, 29 OUT <0>, 29

With the exception of contexts that jump into the middle of the term8, there are no
contexts in AL that can distinguish p1 and p2. But under virtualization we have

Ctx[−] = “[−]; JE p2,r1,57; OUT <0>,1; HLT; p2: OUT <0>,2; HLT; .

8For example, Ctx[−] = “[−]; JMP 0; . . . ”.

46

Of course, a realistic VMM will not break the semantics of the language so egregiously.
However, it may fail to preserve finer relations on programs which cannot be expressed as
internal language observations (an AL program cannot measure the execution time of one
of its subprograms). Therefore, we will now take R to capture an external observation
that the adversary is able to perform. For example, by letting R be ≤time (note that
≤time is non-symmetric), we ensure that V preserves the relative speed of programs: an
external observer cannot determine whether it is observing virtualized or native executions
by running p and p′ and comparing their running times with ≤time.

3.7 Related work

We give a few pointers to relevant material on virtualization and Jones optimality.
A VMM has to address some of the same scheduling and process isolation problems as

an operating system kernel, and the similarities and differences between VMMs and ker-
nels are a source of some friction [110]. The landmark paper of Popek and Goldberg [102]
(see also discussion of same in [124, Chapter 8]) establishes architectural requirements for
virtualization in a formal manner. Robin and Irvine [109] investigate the feasibility of
secure virtual machines on the Intel Pentium. Intel’s VT virtualization extensions for the
x86 architecture and the Itanium are described by Neiger et al. [97]. Adams and Agesen
[5] discuss the pros and cons of these hardware assists compared with previously used
techniques for x86 virtualization.

Makholm [82] has a good introduction to Jones optimality. More recently, Danvy
and López [36] established a link between Jones-optimal specialization and higher-order
abstract syntax. Glück [56] showed that for any Jones-optimal specializer in a particular
class, for any given translation, there exists an interpreter which, under specialization,
will yield programs “no worse” than the translation. Gade and Glück [53] give a formal
argument of Jones optimality for the specializer Unmix.

Full abstraction is best known as a notion of agreement between the denotational and
operational semantics of a particular language (see §2.1.1 and [148]). Notice that full
abstraction captures a notion of “continuity” in compilation: a malicious compiler, such
as that of Thompson [131], must either miscompile all programs in an equivalence class or
none at all. (Thompson’s trojan compiler inserts spurious malicious code when compiling
either itself or the login program.)

3.8 Conclusions and further work

We have described our efforts to relate well-established concepts from partial evaluation
with an important practical application: virtualization. Applying familiar programming
language theory to virtualization gives a unifying account of the two main definitions
of interpretational overhead: Jones optimality for program specializers and Popek and
Goldberg’s VMM efficiency. We introduced AL, an assembly language for an idealized
machine with I/O devices. We showed a self-interpreter for AL as well as interpreters
for two alternative extensions of AL with hardware virtualization assists: AL/STEP and
AL/EXEC. Finally, we showed a possible formalization of VMM transparency in terms of
full abstraction.

We are intrigued about the possibility of typed assembly languages with first-class
support for privileged instructions, as a first step towards formalizing a minimal trusted

47

virtual machine, much in the spirit of the work on proof-carrying code [95, 10].
Existing VMM implementations tend to conflate policy (e.g. how a virtual device is

emulated) with mechanism (i.e. how privileged instructions are intercepted and the VM
state maintained), but each mechanism has its downsides: binary translation VMMs are
difficult to implement, simple emulation gives poor performance, and trap-and-emulate
virtualization requires hardware support. Irrespective of the implementation mechanism,
we still expect the VMM to have the same properties (such as transparency). What
is lacking is a means of specifying the behaviour of the VMM from which a concrete
implementation (based on either emulation, trap-and-emulate, binary translation or a
combination of all three) can be instantiated. We speculate that partial evaluation could
play an important role in allowing this to happen since the Futamura projections (§2.2)
already give us the means to derive program transformations from interpreters. Instantiate
Equation 3.7 for an interpreter vmm and a program specializer mix :

p ∼ p′ ⇐⇒ [[mix]](vmm, p) ∼ [[mix]](vmm, p′) . (3.8)

We intuit that full abstraction may prove to be a useful notion in designing specializers
for virtualization as well as CPU instruction sets.

48

Chapter 4

Formally efficient program
instrumentation

In the last chapter we showed how Popek and Goldberg’s efficiency requirement for vir-
tual machine monitors can be reconciled with Jones optimality. Program instrumentation
is another form of augmented execution where performance can be important. There is
a wealth of literature on the subject of program instrumentation, and many tools are
used in practice. Implementation methods range from manually adding printf calls to
purpose-built frameworks with virtual machines and just-in-time compilers. Historically,
instrumentation was seen as a debugging aid, unsuitable for use in production systems
primarily because the runtime overhead of instrumentation can slow down a program by
orders of magnitude. This traditional view is challenged by modern, lightweight dynamic
binary instrumentation frameworks—of which DTrace (developed by Sun Microsystems)
is perhaps the best-known example—that allow instrumentation code to be selectively
enabled and disabled at runtime. The performance implications of an instrumentation
framework largely determine its adoption. Although there is broad informal agreement
that only those parts of the program that are being instrumented should incur a perfor-
mance penalty, no formal criteria exist. The key contribution of this chapter is a proposal
for such a criterion. We also attempt to clarify the relation of lightweight instrumentation
to Jones-optimal specialization and Popek&Goldberg-efficient virtualization.

Outline. In §4.1 we introduce IL, an instrumentation language loosely based on DTrace’s
“D”. An IL script associates AL instructions with instrumentation code to be run when the
corresponding instruction is executed. An instrumenting function combines an IL script
with the AL program to be instrumented. We define what it means for an instrumenting
function to be faithful in §4.2. There are many reasonable choices of instrumenting func-
tion, some clearly better than others. In §4.3 we add a breakpoint instruction (BRK) to
AL and give a definition of efficient instrumentation inspired by Popek and Goldberg’s
definition of efficiency for VMMs. Next, in §4.4, we consider scoping of instrumentation
code: i.e. allowing multiple IL scripts to be simultaneously applied to the same program.
Since each IL script implicitly defines an instrumented language, we borrow some ideas
from the multi-language interoperability literature. In particular, we recover the notion of
boundaries between languages by reversing a super-instruction optimization on the com-
bined instrumentation language. Note that §4.2 and §4.3 deal with explicit overheads of
instrumentation, but “implicit” overheads remain because code optimization opportuni-
ties are lost to allow potential instrumentation. Therefore, in §4.5, we describe linguistic

49

exp ::= val | var | opvar | pc | reg(exp) | code(exp) | data(exp) | op exp+

comm ::= comm; comm | if exp then comm | var ← exp | print exp+

pat ::= opcode opvar ? rule ::= pat { comm } script ::= rule+

Figure 4.1: Syntax of IL.

restrictions on IL scripts to recover such lost ground. Related work is covered in §4.6. We
conclude (§4.7) with an outlook to further work.

4.1 IL

Although it is more conventional to instrument programs written in high-level languages,
we will continue to use the same assembly language (introduced in Chapter 2) as in the
last chapter in order to emphasize the similarities between virtualization and instrumen-
tation. Like a conditional breakpoint in a debugger, instrumentation code in principle can
be triggered by an arbitrary set of runtime conditions. Indeed, an instrumentation script
serves a similar purpose to a debug script (a small program that drives the execution of
another program under a debugger). For example, the GNU debugger gdb can be set
up to invoke a script every time a specific breakpoint is reached and the script is then
free to perform any operation on the program being debugged. Since the performance
implications of this are severe, debug scripts are not a good way of obtaining insight
into running production applications. Consequently, compared to debug scripts, instru-
mentation scripts are significantly restricted in how they interact with the instrumented
program and when they can be invoked. For obvious reasons, instrumentation scripts
must always terminate. IL is a instrumentation language in the spirit of “D” [22] with
syntax shown in Figure 4.1. We restrict our attention to instrumentation of individual
AL instructions. An example IL script is shown below:

STORE (rdst), rsrc { x ← data(12345678); print x ; }
JZ rloc, r { if code(reg(rloc)) = opcode(NOP) then y ← y + 1; print y ; }

IL rules pattern-match on AL syntax constructors: the operand variables (opvars) are
bound to the operands of the trigger instruction. For example, in the script above, if the
rule for STORE is triggered by the instruction “STORE (r1), r0”, then rdst and rsrc would
be bound to 1 and 0 respectively. We do not enforce any particular naming convention for
operand variables, but we do require that opvars be syntactically distinct from ordinary
variables: this is necessary to prevent assignments to opvars (see below). The order of
the rules is not important; each opcode can only be instrumented once. Instrumentation
code is run before the corresponding instruction takes effect. The pc, reg, code and data
primitives give instrumentation code access to the program’s state. The value of pc is set
to the address of the triggering instruction.

Scripts are composed by catenation with capture-avoiding renaming of variables. For
example, let t1 be the sample script on the previous page and t2 be the script

STORE (rdst), rsrc { x← reg(rsrc); print x; } .

The combined script t1 ⊕ t2 is obtained by appending (i) the rules of t2 to those of t1,
and (ii) the commands in the rule for STORE in t2 to those in the corresponding rule in

50

[[e]]expIL : State × VEnv → Val

[[v]]expIL sπ = v
[[x]]expIL sπ = π(x)

[[pc]]expIL sπ = pcs
[[reg(x)]]expIL sπ = Rs(π(x))

[[code(x)]]expIL sπ = Cs(π(x))
[[data(x)]]expIL sπ = Ds(π(x))

[[op x1, x2]]expIL sπ = op(π(x1), π(x2))

[[c]]comm
IL : State × VEnv → VEnv ×Output

[[c1; c2]]comm
IL sπ = let (π′, o1) = [[c1]]comm

IL sπ in
let (π′′, o2) = [[c2]]comm

IL sπ′ in
(π′′, o1 ++ o2)

[[if x then c]]comm
IL sπ = if π(x) then [[c]]comm

IL sπ
else (π, {})

[[x← e]]comm
IL sπ = (π[x 7→ [[e]]expIL sπ], {})

[[print x]]comm
IL sπ = (π, π(x))

Figure 4.2: Semantics of ILANF.

t1, taking care to rename x to a fresh variable name z:

STORE (rdst), rsrc { x ← data(12345678); print x ; z ← reg(rsrc); print z; }
JZ rloc, r { if code(reg(rloc)) = opcode(NOP) then y ← y + 1; print y ; } .

Note that the operator ⊕ is not commutative, but, since opvars cannot be assigned to
and all other variables are subject to capture-avoiding renaming, there is no danger of
interference between the scripts.

4.1.1 Semantics

Recall from §2.3 that the state of an AL program is a tuple s = (pc, R, D, C) consisting of
the program counter pc, register file R and data and code memories D and C. Figure 4.2
shows the semantics of expressions and commands of an A-normal form (ANF) subset of

IL, where all intermediate results are explicitly named. The environment VEnv
def
= Var →

Val holds bindings of IL variables; Output is a sequence of port/value pairs. The functions
R, D and C are total: given an out-of-range argument they return the special error value
err ∈ Val . If err arises at any point during evaluation of a script, the behaviour of the
instrumented program is undefined.

4.1.2 Instrumenting AL programs

Figure 4.3 shows a possible translation of IL expressions and commands to AL. The
symbol table VEnv# maps variable names to locations in data memory; the “state” holds
addresses of four functions used to retrieve the values of the program counter, registers,
and code and data memory cells of the instrumented program (i.e. State# is an interface
to an interpreter). It is easy to see how the AL code produced by this translation can be
inserted into a self-interpreter for AL (e.g. Figure 3.1 on p. 40 in the previous chapter)
to yield an instrumented interpreter. We therefore assume the existence of an auxiliary
function I(t) that maps an IL script t to an instrumented interpreter for AL which is
itself written in AL. An instrumenting function Ct(p) augments an AL program p using
script t, producing an instrumented AL program. Given any specializer mix for AL, one
possibility is to define Ct(p) as [[mix]](I(t), p).

Dynamic instrumentation is the ability to add and remove instrumentation at runtime.
Notice that dynamic instrumentation is a form of dynamic software updating, and every

51

〈|e|〉expIL : State# × VEnv# → AL

〈|v|〉expIL sπ = MOV r0, v
〈|x|〉expIL sπ = LOAD r0, (π(x))
〈|pc|〉expIL sπ = CALL pcs

〈|reg(x)|〉expIL sπ = 〈|x|〉expIL sπ; CALL Rs

〈|code(x)|〉expIL sπ = 〈|x|〉expIL sπ; CALL Cs
〈|data(x)|〉expIL sπ = 〈|x|〉expIL sπ; CALL Ds

〈|op x1, x2|〉expIL sπ = LOAD r1, (π(x1))
LOAD r2, (π(x2))
ALU(op) r0, r1, r2

〈|c|〉comm
IL : State# × VEnv# → AL

〈|c1; c2|〉comm
IL sπ = 〈|c1|〉comm

IL sπ; 〈|c2|〉comm
IL sπ

〈|if x then c|〉comm
IL sπ = 〈|x|〉expIL sπ

JZ `, r0

〈|c|〉comm
IL sπ

`: where ` is fresh.
〈|x← e|〉comm

IL sπ = 〈|e|〉expIL sπ
STORE (π(x)), r0

〈|print x|〉comm
IL sπ = 〈|x|〉expIL sπ

OUT <0>, (r0)

Figure 4.3: Translation of ILANF to AL.

UPDATE instruction marks an update point. Somewhat counter-intuitively, we treat run-
time instrumentation (and later dynamic updating) as a meta-linguistic operation which
can be performed only when the program reaches an UPDATE instruction and terminates.
This requires an instrumentation and a “de-instrumentation” function for program states :
CStatet and DState

t where the former instruments a program state and the latter projects the
program state from a state of instrumented execution. For example, suppose a program
p instrumented with script t1 executes UPDATE and terminates with result upd s where s
is a complete execution state (pc, R, D, C). To instrument the program with script t2,
execution is restarted with state (CStatet2

◦ DState
t1

) s. For the self-interpreter of Figure 3.1,
the injection CState from a machine execution state into an interpreted state is defined in
the figure below; the definition of DState is analogous.

CState given input state s = (pc, R, D, C).

pc ′ = 0
R′ = 0 0 0 pc + 4 + offset of C . . . offset of C offset of D . . .

D′ = R(0) R(1) . . . C(0) C(1) . . . D(0) D(1) . . .
C ′ = Code in Figure 3.1.

Figure 4.4: CState for the self-interpreter in Figure 3.1.

4.2 Faithful instrumentation

An instrumented interpreter is not a self-interpreter, so Jones optimality, in its original
formulation, does not apply. But we argue that it is still useful to define—explicitly and in-
dependently of the interpreter—the relation between instrumented and non-instrumented
(“plain”) computations.

Jones [72] notes that original and specialised computations can (for reasonable special-
izers) be related by “execution order”-preserving maps. In the previous chapter we showed
that a version of Jones optimality built on this observation—which we called “Jones op-
timality for traces”—can capture Popek and Goldberg’s [102] efficiency criterion. Recall

52

that, to provide isolation between individual virtual machines, a virtual machine moni-
tor must emulate privileged instructions (roughly, those that affect the operation of the
CPU itself or other hardware) in software, and the efficiency requirement states that non-
privileged instructions must be executed directly by the hardware with no intervention by
the VMM. This mirrors Cantrill et al.’s [22] claim that “when DTrace is not in use, the
system is just as if DTrace were not present at all”. The key point is that common-case
performance—i.e. execution of unprivileged instructions for VMMs and non-instrumented
execution for DTrace—should not degrade. For example, instrumentation by naive inter-
pretation is clearly not “good” because for every unit of useful work in the program, the
interpreter executes many housekeeping instructions.

Let tr and tr ′ be the erased traces of programs p and p′ respectively. Then p is erased
trace-simulated by p′ (p ≤erased p

′) iff tr is a subsequence of tr ′, i.e. ∃f. ∀i. tr(i) = tr ′(f(i))
where f is a strictly increasing function (see §3.4). For many reasonable instrumenting
functions C, the instrumented program Ct(p) executes all the instructions that p does,
interspersed with instrumentation code. We call C a faithful instrumenting function iff

∀t. ∀p. p ≤erased Ct(p) . (4.1)

The advantage of erased trace simulation over stronger orderings is that it admits various
implementations of the instrumenting function: although faithfulness does limit the choice
of instrumenting function because of the intensional nature of ≤erased, we argue that
the restrictions are reasonable. For example, consider naive interpretation, i.e. Ct(p) =
[[mix triv]](I(t), p) where mix triv is the trivial specializer for AL. The simplest interpreter
implements every instruction in terms of itself: an ADD with an ADD, a MOV with a MOV,
etc. It is easy to see that when this is the case Equation 4.1 is satisfied. The dispatch
mechanism used by the interpreter—a switch statement or threading—is not important
here. But one could argue that interpretation is not a viable implementation strategy for
a variety of reasons: DTrace and many other frameworks use in-place binary patching to
substitute instrumented instructions with jumps into the framework or breakpoints.1 The
breakpoint instruction provides rudimentary support for what the virtualization literature
calls “trap-and-emulate” execution.

4.3 Breakpoints: AL/BRK

Recall that AL programs run on a finite CISC-style Harvard architecture: instructions
and data are stored separately. The code store cannot be read or written to and the data
store cannot be executed. In AL/BRK, we extend AL with a new mode of execution and
four new instructions: BRK which invokes a breakpoint handler residing at a well-known
address inaccessible by means of a jump; BRET used to return from the handler; UEXEC
(for “user execute”) which executes instructions displaced by BRKs; and UREAD which
gives instrumentation code access to the program state. All four instructions are part
of the instrumentation mechanism and may not occur in user programs. As we are not
considering recursive instrumentation (i.e. “instrumentation of instrumentation code”)
the breakpoint handler is not re-entrant, and to execute BRK while in handler mode is
an error that causes abnormal machine termination. Note that BRK cannot simply be
inserted into the program text before the instruction of interest, as this causes the layout

1The breakpoint instruction is usually one byte long (e.g.: 0xCC on the x86) so that it can fit into the
space occupied by any other instruction.

53

BRK (pcuser, Ruser, Duser, Cuser) ∗ (0, Rinstr, Dinstr, Cinstr)

BRET (pcuser + 4, Ruser, Duser, Cuser) ∗ (pcinstr, Rinstr, Dinstr, Cinstr)

UREAD rdst, x [, ri] match x with

PC =⇒ suser ∗ (pcinstr + 4, Rinstr[rdst 7→ pcuser], Dinstr, Cinstr)

R =⇒ suser ∗ (pcinstr + 4, Rinstr[rdst 7→ Ruser(Rinstr(ri))], Dinstr, Cinstr)

. . . ; the cases for D and C are analogous.
UEXEC rloc Execute an instruction at rloc in user mode.

Figure 4.5: Semantics of BRK, BRET, UREAD and UEXEC.

of code in memory to change, upsetting computed jumps. (And, in general, the problem
of determining the target of a computed jump is undecidable.) One might imagine an
implementation strategy along the following lines: prior to the program run, each potential
instrumentation site is padded with NOPs which are later replaced with BRKs or calls into
the instrumentation framework when necessary. However, the NOPs would constitute
unacceptable overhead as they are executed even when instrumentation is off.

4.3.1 Semantics

To support BRK, a secondary program counter, register file and code and data memories
are necessary in addition to a flag indicating whether the processor is executing in user or
breakpoint handler mode. The additional code memory holds the instrumentation code
and the data memory holds the variables. The star notation suser ∗ sinstr borrowed from
separation logic [108] signals that the two states are disjoint, and the shading indicates
the active (currently executing) state. The table in Figure 4.3.1 shows the semantics
of the new instructions. The modifications to the semantics of other instructions are
elided. The important point is that the instructions BRET, UREAD and UEXEC above are
only accessible in breakpoint handler mode. The UREAD and UEXEC instructions implement
reification and reflection of user program state. The UEXEC instruction executes in user
mode an instruction held in the data memory of the handler. This setup mimics real-
world implementations which copy out the instruction at the instrumentation site into a
“scratch” buffer; when instrumentation code is triggered, the overwritten instruction is
executed from this buffer.

The new instructions can be thought of as an asymmetric inter-process communication
mechanism between the user process and the more privileged breakpoint handler process.
The user program state is an implicit argument to the the BRK instruction accessible by
reification. We may ask whether the BRK instruction is necessary at all: since AL uses
fixed-length encoding for instructions, we could just as easily use a CALL to jump into
the instrumentation framework. The immediate problem with this setup is that CALL

clobbers the register L; but, more importantly, the modes—much as memory protection
hardware—enforce separation between the code and data memories of the program and
the instrumentation code. Certainly, if isolation between user code and instrumentation
can be proved statically, there is no need to enforce it in the semantics. (This is the
approach to memory protection taken in the Singularity [67] operating system—see §4.6.)

54

4.3.2 A rationale for the design of AL/BRK

Suppose we want to instrument an AL interpreter written in an ML-like language:

let eval (pc, r, d, c) =

match (c pc, ..., c (pc+3)) with

| (O ADDrrr, W dst, W src1, W src2) ->

let r’ i = if i == dst then (r(src1) + r(src2)) else r(i)

in eval (pc+4, r’, d, c)

Consider instrumenting eval, and let brk be a “callback” function that contains instru-
mentation code, then the simplest solution is to pass brk to eval as an argument, and to
propagate the accumulated instrumentation statistics:

let eval (pc, r, d, c) acc brk =

let acc’ = brk (pc, r, d, c) acc in

match (c pc, ..., c (pc+3)) with

| (O ADDrrr, W dst, W src1, W src2) ->

let r’ i = if i = dst then (r(src1) + r(src2)) else (r i)

in eval (pc+4, r’, d, c) acc’ brk

Suppose that we known that ADD is the only instruction that will ever be instrumented:
i.e. brk behaves as the identity function in all other cases. An obvious optimization is to
“push” the call to brk under the pattern-match:

let eval (pc, r, d, c) acc brk =

match (c pc, ..., c (pc+3)) with

| (O ADDrrr, W dst, W src1, W src2) ->

let acc’ = brk (pc, r, d, c) acc in

let r’ i = if i = dst then (r(src1) + r(src2)) else (r i)

in eval (pc+4, r’, d, c) acc’ brk

Now, put brk in a tail-call position, passing it the continuation to invoke:

let eval (pc, r, d, c) acc brk =

match (c pc, ..., c (pc+3)) with

| (O ADDrrr, W dst, W src1, W src2) ->

brk (pc, r, d, c) acc (fun acc’ ->

let r’ i = if i = dst then (r(src1) + r(src2)) else (r i)

in eval (pc+4, r’, d, c) acc’ brk)

Finally, note that the continuation (the last argument to brk) closes over the program
state and the operands of ADD; there is no need for this since brk already receives the
program state as an argument. Let eval’ be the base evaluation function (which does
not call brk) and perform a transformation similar to closure conversion:

let eval (pc, r, d, c) acc brk =

match (c pc) with

| O ADDrrr -> brk (pc, r, d, c) acc eval’ (fun s acc -> eval s acc brk)

Note that brk receives the state (cf. UREAD), the accumulated instrumentation statistics
(cf. data memory Dinstr), the original non-instrumented evaluation function (cf. UEXEC)
and the continuation to call.

55

4.3.3 IL instrumentation with AL/BRK

In this scenario, to instrument a program, every opcode of interest is replaced with the
BRK instruction and the original instruction is placed in the instrumentation data memory
Dinstr for later execution with UEXEC. Note the similarity with context threading (see §3.2)
where instructions are replaced by calls into the interpreter (cf. BRK) and their operands
are stored in a separate table in memory (cf. Dinstr). The prologue of the breakpoint
handler (in Cinstr) determines which instruction caused the breakpoint by reifying the
user program counter with UREAD. The handler then binds opvars and transfers control
to appropriate rule for that instruction. The implementation of the code primitive should
satisfy accesses to instrumented addresses from the scratch buffer containing displaced
instructions (in Dinstr) rather than by UREAD, because otherwise we would always have
code(pc) = opcode(BRK).

4.3.4 AL/BRK vs. AL/EXEC

Both AL/BRK and AL/EXEC from the previous chapter provide support for non-standard
interpretation. AL/EXEC is a basic but faithful model of the trap-and-emulate virtualiza-
tion assists commonly implemented by hardware. AL/BRK is similar to AL/EXEC in many
respects: both allow certain instructions to be intercepted and control to be transferred
to emulation or instrumentation code, and both provide mechanisms for isolating the
latter from the user program. The most obvious difference between the two languages is
that AL/BRK has only a single trapping instruction. Thus instrumentation using AL/BRK
also requires a pre-processing step to place breakpoints prior to execution. Further, in
AL/EXEC the state of a guest virtual machine is contained in a VMCB (of which there
can be many), whereas in AL/BRK the state of the instrumented program (of which there
can be only one) is a separate part of a configuration in the operational semantics. A
VMM written in AL/EXEC can, in principle, read in code for new guest virtual machines
at runtime using AL’s port I/O facility.

4.3.5 Efficiency is bounded overhead

The requirement that the instrumented program simulate the original places a lower
bound on the number of instructions executed by the instrumented program. Efficient
instrumentation is also bounded from above. Define dom(t), the domain of script t, as the
set of opcodes for which there is a rule in t. For example, the domain of the sample script
on p. 50 is dom(t) = {STORErr, JZrr} where the suffix rr selects a particular version of
the opcode. Note that BRK and BRET serve as mode switch indicators in the trace where
execution passes from the original code into the instrumentation code and vice versa.
Define a predicate h on sequence indices such that h(tr , i) is true iff the instruction at
index i in tr is bracketed by a BRK/BRET pair. Using h enables us to define the script-
specific relation ≤t that disregards instrumentation code: i.e. p ≤t p′ means the same as
p ≤ p′ modulo the contribution of t; note that ≤t does not depend on the instrumenting
function used. Recall (§3.4.1) that for a VMM, no requirements are placed on the part of
the trace containing emulation code. However, instrumentation code must always execute
the original instruction at some point. Let tr and tr ′ be the traces (not erased) of the
instrumented program and non-instrumented computations respectively. For a strictly
increasing function f we have

tr �t tr ′ ⇐⇒ ∃f. ∀i s.t. ¬h(tr , i) or tr(i+ 1) = BRET, we have tr(i) = tr ′(f(i)) .

56

Notice that we have assumed that the instrumentation code will UEXEC the original in-
struction immediately prior to returning (BRET). We call C an efficient instrumenting
function iff ∀s. ∀p. Ct(p) ≤t p. Finally, we call C a good instrumentation function iff it is
both faithful and efficient:

∀t. ∀p. p ≤erased Ct(p) ≤t p . (4.2)

Notice the universal quantification over IL scripts compared to existential quantification
over self-interpreters used in the definition of Jones optimality. Defining good instru-
mentation in two parts (faithfulness and efficiency) has advantages over straightforward
erased trace equality because the efficiency relation can be independently refined. Un-
fortunately, our definition suffers from the same drawback as the original statement of
Jones optimality: it does not allow C to optimize the program. To satisfy equation 4.2,
the trace of instrumentation code must be contained within well-bracketed BRK/BRET
pairs. For example, consider the program “MOV r0, 10; OUT <3>, r0; HLT” and the
script OUT < vport >, rsrc { if reg(0) = 9 then print 1; }. Instrumented, the instruction
sequence becomes “MOV r0, 10; BRK; HLT”. But the then-branch of the rule will never
be executed since r0 always holds 10, and the trace of the instrumented program con-
tains unnecessary handler invocations. This is not necessarily a deficiency since it could
be argued that a distinct boundary between program and instrumentation is desirable.
We leave a detailed examination of this issue to further work and for now assume that
programs are optimized prior to being instrumented (which is often the case in practice).

4.4 From super-instructions to language boundaries

Given IL scripts ti for i ∈ {1, . . . , n}, every script defines an instrumented language AL(i)
with the same syntax as AL. So far we assumed that instrumentation is program-wide.
This choice also dictated the semantics of AL/BRK where a single additional code memory
holds the compiled code of a single instrumentation script. Consider instead allowing
different scripts to be applied to different parts of the program at the same time. A
program instrumented in this way can reasonably be seen as a “multi-language” program
because its behaviour is determined by the combination of several instrumented languages.
Consider this example:

procA: MOV r3, 27 procB: ADD r3, r3, 10

STORE (r8), 94 STORE (40), r3

CALL procB RET

The handling of the CALL instruction may differ depending on the calling convention used:
whether procB expects to find its argument in register r3 or on a stack pointed to by r8.
The instrumentation code must be different in each case if it is to retrieve the value of
the argument correctly. For our base language AL, let us call the individual instrumented
languages AL(1), AL(2) etc. and the combined language AL(*). In traditional multi-
language interoperability work (e.g. Matthews and Findler [84]) the position of boundaries
between languages where execution flows from one language to another can be easily
determined visually, since the constituent high-level (e.g. Scheme and ML) languages
have different syntax. In an instrumentation setup, however, the constituent languages
have exactly the same syntax (the syntax of the base language), and so the placement
of boundaries is not manifest. The interpretation of a given opcode in the combined
language AL(*) depends both on the opcode itself and the currently active language: the
two ways of selecting the currently active language are discussed in §4.4.1 below.

57

4.4.1 Lexical vs. dynamic scoping of boundaries

The boundaries can be scoped lexically or dynamically by analogy with lexical vs. dynamic
variable binding. Define a family of AL(*) instructions LEXLANG/n where n is a number
corresponding to one of the constituent language; LEXLANG/n specifies that all instructions
up to the next lexical occurrence of LEXLANG are to be interpreted according to language n.
Lexical scoping generalizes the familiar concept of instruction prefixes (a prefix modifies
the behaviour of the single instruction which it precedes).

Lexical boundaries Prefixes

LEXLANG 1

MOV r1, r2 1/ MOV r1, r2

MUL r3, r2, r5 1/ MUL r3, r2, r5

LEXLANG 2

ADD r3, r1, r2 2/ ADD r3, r1, r2

The mapping between LEXLANG and prefixes is an example of a super-instruction opti-
mization. A super-instruction combines the effects of two or more instructions: e.g. an
ADD/STORE super-instruction might write the result of an addition to memory2. Super-
instruction optimization is a well-known technique in the implementation of interpreters
and language virtual machines. Alternatively, LEXLANG can be thought of as an annotation
on the program syntax tree.

Let us define another group of instructions: DYNLANG/n. Executing DYNLANG/n sets
the currently active language so that all instructions up to the next runtime occurrence
of DYNLANG are interpreted according to language n. Dynamic scoping is comparable
to processor modes such as 16- vs. 32-bit or the virtual machine mode of the previous
chapter (§3.2); indeed, processors with ARM Jazelle extensions are capable of executing
both Java bytecode and the native instruction sets. The mode setting affects execution of
all instructions from the time the mode is set to when it is changed. Instruction dispatch
with DYNLANG is analogous to virtual dispatch where each derived class provides its own
implementation of AL opcodes (LEXLANG corresponds to static dispatch):

Instructions Dispatch pseudo-code (I is global)

DYNLANG/1 I = get_I(1);

MOV r1, r2 I. MOV(r1, r2)

MUL r3, r2, r5 I. MUL(r3, r2, r5)

ADD r3, r1, r2 I. ADD(r3, r1, r2)

Indeed, the pseudo-code on the right can be read as a context threading table (§3.2). The
negative performance impact of virtual calls is well-known in the literature. A virtual
call can be replaced with a static call when the receiver class is known (cf. rewriting

I. MOV into a prefixed instruction n/ MOV). However, note that in languages that support
dynamic class loading, a guard must be placed around the optimized static call which
checks that the class hierarchy has not changed in a way that invalidates the optimization.
For instrumentation, this optimization corresponds to conversion from DYNLANG dynamic
dispatch to LEXLANG static dispatch:

2So, very loosely, one might claim that CISC is a super-instruction version of RISC.

58

A DYNLANG basic block Guarded LEXLANG dispatch (r31 holds I)

I. MOV(r1, r2) JE tt, 1, r31

I. MUL(r3, r2, r5) . . .; Original code using virtual dispatch

I. ADD(r3, r1, r2) tt: 1/ MOV r1, r2

I. JMP(128) 1/ MUL r3, r2, r5

1/ ADD r3, r1, r2

1/ JMP 128

The guard on entry to the basic block (on the right), ensures that the optimization remains
sound should the value of I change. The static calls can be inlined in the usual way. For
instance, if instrumented language “1” does not instrument MOV—and therefore behaves
as a self-interpreter for MOV—then 1/ MOV can be replaced with MOV.

4.4.2 Multi-IL

In Multi-IL we allow the scoping of individual instrumentation rules to be defined by
extending IL patterns with an annotation which specifies the range of instructions to
which the pattern applies: range ::= address [〈count〉] and pat ′ ::= pat [@ range?]. For
example, “20〈5〉” specifies a range of five instructions starting at address 20; a range with
a missing count includes just the instruction at the start address. A pattern with a missing
range applies to the entire program. Multi-IL is lexically scoped: which instrumentation
rule is triggered by a given instruction is determined by its opcode and the value of the
program counter only. Scripts are merged by catenation in the same way as before, but
with the added condition that instrumentation ranges for a given opcode must not overlap.
This requirement is easy to satisfy by splitting the ranges, as in the following example:

Individual scripts Combined script

MOV r, v { print reg(r); } @ 0〈3〉 MOV r, v { print reg(r); } @ 0, 8
MOV r, v { x← v; } @ 4 MOV r, v { print reg(r); x← v; } @ 4

The example above is not representative: in general, we assume that there will be many
rules with the same range, corresponding to a “set” of instrumentation. One part of
the program should not incur additional overhead due to instrumentation applied to
another part (e.g. it may be acceptable from a performance point of view to instrument
a rarely-used code module in minute detail, but this instrumentation must not negatively
affect the “hot path”). The value of the user program counter pcuser on entry to the
breakpoint handler uniquely identifies the rule to be executed, and therefore Multi-IL can
be implemented using AL/BRK. However, in this setup the handler performs two dispatch
steps, first to select the correct language (determined by the range) and then the rule:

Script Language

MOV r, v { print reg(r); } @ 0〈3〉
L1

STORE (r), v { x← data(reg(r)); } @ 0〈3〉
MOV r, v { z ← v} @ 12〈2〉 L2

59

Breakpoint handler prologue (example)

UREAD r0, pc ; Read the user PC
GTE r1, r0, 12 ; Is it greater than or equal to 12?
JZ L1, r1 ; If not, one of the first two rules applies
LTE r1, r0, 16 ; Is it less than or equal to 16?
JZ err, r1 ; If not, the handler was called in error

L2: . . . ; Dispatch an L2 rule
L1: . . . ; Dispatch an L1 rule

Of course, optimized implementations of the prologue are possible. However, a more
natural solution, which also avoids having to hard-code the ranges into the prologue code,
is to introduce LEXLANG-style prefixed breakpoint instructions (as per §4.4.1).

4.4.3 Multi-AL/BRK

Multi-AL/BRK is an extension of AL/BRK with prefixes for the BRK instruction: the seman-
tics of BRK selects one of many breakpoint handlers based on the value of the prefix. The
handler then selects the appropriate rule using the value of pcuser. In an extreme case,
every Multi-IL rule can be split into a sequence of rules each of which applies to a single-
instruction range: i.e. every instrumented instruction becomes a separate language. Then
n/ BRK directly invokes the IL rule for the displaced instruction. Compare this static
dispatch to the virtual dispatch which is used in virtualization trap-and-emulate where
the CPU must inspect the processor mode (host execution vs. VM execution) in order to
select the opcode implementation (native vs. VMM emulation).

4.5 Optimization of dynamically instrumented code

Debugging is well-known to be antagonistic to program optimization. Optimization in
the presence of dynamic instrumentation is challenging for much the same reasons: IL
scripts can distinguish previously equivalent programs. Even removing a spurious NOP

instruction may have an effect on the result of an instrumented run. Worse still, the
compiler must forego profitable optimization in deference to potential future instrumen-
tation which may never materialize. In the general case, the unoptimized execution state
must be preserved or reconstructed (see §2.4.1) both at UPDATE points and prior to en-
tering instrumentation code. We are interested in static, common-case optimization of
dynamically instrumented programs, exploiting these observations: (i) instrumentation
can only be applied at UPDATE points, (ii) instrumentation is applied rarely (i.e. most
of the time an UPDATE is a no-op), and (iii) only a small proportion of instructions are
instrumented at any given time. The trade-offs for instrumentation of production systems
and debugging are different: rather than attempt to undo the effect of arbitrary program
transformations on the execution state (a costly procedure) at runtime, we propose to
selectively ban overly invasive instrumentation. As an example, consider the programs
and script below:

Program Optimized

MOV r9, 3 —
MOV r9, 5 MOV r9, 5

MOV r7, 1 —
OUT <1>, r9 OUT <1>, r9

Instrumentation script

MOV r, v { print reg(r); }
OUT < v >, r { print “r7 holds ”, reg(7); }

60

The optimized program is obtained from the original by eliminating two dead assignments:
the first and third MOVs. Running either program produces the output “5”. But when
instrumented this is preceded by “0 3 0 1” in the original program, and “0 0” in the opti-
mized (disregarding port numbers and assuming the machine initializes registers to zero).
The basic issue is that the optimizer is semantics-preserving with respect to the standard
AL interpretation, but not the non-standard interpretation defined by the script. Various
authors have proposed adding instrumentation to the program prior to optimization (see
related work below) to overcome this problem. However, our proposed efficiency criterion
requires a strict separation between program and instrumentation code.

The user program execution state on entry into the breakpoint handler, and con-
sequently into the instrumentation code proper, is altered as a result of optimization.
Because every instruction is a potential candidate for instrumentation, the optimizer can-
not perform even the simplest peephole rewrites. A possible workaround is to declare
certain instructions—e.g. all arithmetic instructions—as exempt from instrumentation.
We note that instrumentation code introduces additional dependencies not present in the
program itself (for instance, the rule for OUT in the script above makes r7 “live” in the
usual data-flow sense). Therefore, by limiting the dependence of instrumentation code
on the execution state of the program, further optimizations become possible. To this
end we will ascribe types to IL expressions and commands to capture their observational
power (i.e. ability to distinguish execution states) as a partial equivalence relation (PER).
The approach closely follows Benton’s work [15] on program transformation for imper-
ative languages using PERs to model the context in which a command or expression is
executed. A PER is a binary relation that is symmetric and transitive, but, unlike a
proper equivalence relation, not necessarily reflexive. Recall (§2.7) that if P and Q are
PERs over X and Y respectively, then (P ×Q) and (P ⇒ Q) are PERs over X × Y and
X → Y respectively:

(x, y) (P ×Q) (x′, y′) iff x P x′ and y Q y′

f (P ⇒ Q) g iff x P x′ =⇒ (f x) Q (g x′) .

Further, given function Γ (which should be thought of as a typing context) from elements
of X to PERs over Y , by a slight abuse of notation we will treat Γ as a relation over
X → Y defined as follows: f (Γ) g ⇐⇒ ∀x ∈ dom(Γ). f(x) Γ(x) g(x).

Recall that [[e]]expIL ∈ State×VEnv → Val is the evaluation function for IL expressions.
Let P and Q be PERs over (State × VEnv) and Val respectively and define equivalence
of expressions like so: e1 ∼P⇒Q e2 ⇐⇒ [[e1]] (P ⇒ Q) [[e2]]. We will write e : P ⇒ Q
as shorthand for e ∈ |P ⇒ Q|. Intuitively, the relation P reveals the dependence of
the expression on the program state and the IL variable environment; Q describes how
the value computed by the expression is going to be used by the surrounding context.
Note that every expression e such that e : AllState×VEnv ⇒ IdVal necessarily conflates all
execution states and variable environments, e.g. 42, reg(7) ∗ 0. Such expressions have the
least impact on program optimization because they are extensionally constant. Suppose
that, like in the example above, the compiler optimizes away a dead MOV to r7. In that
case, no guarantee can be made about the contents of the target register, since it may
have been written to by a preceding MOV or STORE. The optimization remains sound in
the presence of instrumentation expression e so long as e does not depend on the value:
this is easily modelled by a register context ΓR such that ΓR(r7) = All .

Further refinement is possible: for example, if a command treats r7 as a boolean
(“if reg(7) then . . .”), only the truth (or falsity) of the value needs to be preserved by

61

optimization. Recall that [[c]]comm
IL : State × VEnv → VEnv × Output is the evaluation

function for IL commands. Equivalence of commands is defined similarly to equivalence
of expressions, taking care to handle print: we consider two commands equivalent only if
they produce exactly the same output (i.e. the same values in the same order), and so the
PER over Output is always taken to be Id .

We posit per-program syntactic (or “type system”-like) restrictions on instrumentation
code to enforce partial independence from the program state. We plan to explore this
direction in further work.

4.5.1 From dynamic instrumentation to software updating

Both dynamic software updating and dynamic binary instrumentation modify a running
program. Like instrumentation, a dynamic update can only take place at certain points
in the program. Like instrumentation, there is anecdotal evidence that dynamic updates
co-exist poorly with (static) program optimization. Further, switching instrumentation
on is patently a kind of dynamic update since the non-instrumented code is replaced with
instrumented code (“dynamic binary patching”). Whereas with DSU it is clear that the
update applies to the object program itself, in the case of instrumentation it is reasonable
to argue that it is the interpreter that is updated—the program text remains unchanged
but the behaviour of some instructions (like CALL) is altered. But we can use partial
evaluation to derive the updated code from the original code and the updated interpreter:
(i) annotate every basic block with the instrumentation set that applies to the instructions
in the block (so the boundaries between languages correspond to basic block boundaries),
(ii) specialise instrumented interpreter with respect to the appropriate basic blocks based
on the annotations, and finally (iii) update the program by replacing the original basic
blocks with the instrumented basic blocks.

4.6 Related work

Kishon and Hudak [77] use partial evaluation first to instrument a standard interpreter
with the instrumentation actions and then specialize the resulting instrumented inter-
preter with respect to the program (thereby instrumenting the program statically). The
authors use benchmarking to quantify the performance impact of instrumentation.

Instrumentation code often relies on compilation details (e.g. arguments residing at
specific locations on the stack, having a valid stack pointer so that a stack trace can be
built, etc.) that the compiler must take care to preserve. The problem is less pronounced
if, instead of a compiler, a specializer is used together with an instrumented interpreter
(as in Kishon and Hudak’s work above). In the absence of good specializers for most
languages, a practical alternative is to insert instrumentation code into the program before
compilation (see §2.6). Doing so also means that the instrumented program benefits form
the optimizations that the compiler might be able to perform. This approach is taken by
Tolmach and Appel [132], Wallach and Felten [143] and Allwood et al. [8] among others.

Siskind and Pearlmutter’s [122] map-closure construct which allows identifiers in the
environment of a closure to be rebound, thus enabling a kind of non-standard inter-
pretation. The relationship of map-closure to non-standard interpretation techniques
developed by the partial evaluation community is, to our knowledge, unexplored.

DTrace was originally developed for Solaris by Cantrill et al. [22], and has since been
ported to FreeBSD and Mac OS X. VMware’s VProbes [136] framework is similar in

62

many respects. As far we are aware, neither system has a formal semantics. Cantrill
et al. [22] note in passing the similarity between aspect weaving and instrumentation.
Indeed, the “Hello, world” example of aspect-oriented programming (the logging aspect)
is a form of program instrumentation. However, the payload of the aspect is written in the
same general-purpose programming language as the rest of the program. Unlike aspects,
instrumentation is not intended as a generic execution augmentation mechanism; most
conspicuously, instrumentation code is “passive” and must not modify the program state.
These implied restrictions are made explicit in special-purpose instrumentation languages
like IL.

Tamches and Miller [129] describe KernInst, a dynamic instrumentation framework
for Solaris on UltraSPARC, and one of the first of its kind. The paper includes a detailed
quantitative analysis of the overheads of KernInst. In their system, an instrumented
instruction is replaced with a jump to a “code patch” which contains the instrumentation
code followed by the displaced instruction and a jump back to the original code path.
KernInst perform a liveness analysis on the kernel binary to find registers that are dead
at the instrumentation point; dead registers can be used by instrumentation code without
needing to be saved and later restored. In AL/BRK the instrumentation and user states
are architecturally distinct: intuitively, the save/restore functionality is implemented in
hardware. However, it is interesting to note that translating AL/BRK to plain AL (so
that BRK becomes JMP) would require a similar analysis to be performed. This is an
expression of an extremely general idea familiar from type checking, that runtime checks
(e.g., checking that instrumentation code does not write to registers or data memory
belonging to the user program) can often be replaced by static verification. For example,
the Singularity operating system [67] introduced the concept of a Software Isolated Process
(SIP). Static verification guarantees that SIPs occupying the same address space will
not interfere with one another. This means that memory protection hardware can be
“switched off”.

Typed assembly languages were popularised by Morrisett et al. [91]. Necula [95] intro-
duces proof-carrying code and, with Lee, certifying compilation [96]. Shao [118] presents a
common language, based on Fω, explicitly as a substrate for language integration. Rudiak-
Gould et al. [111] propose an intermediate language to study interaction between CBV
(ML-like) and CBN (Haskell-like) computation. Trifonov and Shao [133] describe R, an
intermediate language also designed to support interoperability between HOT languages.
In R, expressions (e) require machine resources (ρ) to produce effects (ε). The typing
judgement has the form ρ; ∆; Γ `e e : τ ; ε. Resources modularise the computational mod-
els of the languages: some use stack-allocated activation records—others heap-allocated,
some have a mutable store—others do not. (For example, the “mutable store” resource
is required for an expression to write to the store.) The authors give the language an
operational semantics, but note in concluding that a monadic semantics would also be
appropriate in view of the known similarities between effects and monads [140]. It would
be interesting to see whether a similar setup can be used to give semantics to a family of
instrumented languages, all compiled to the same monadic base language.

4.7 Conclusions and further work

This chapter has started to apply programming language theory to an emerging class
of instrumentation tools—like DTrace and VProbes—where the instrumentation code is
written in a domain-specific language. We have specifically focused on performance guar-

63

antees, proposing a definition for efficient instrumentation adapted from a well-known
virtualization efficiency criterion. We do not claim that our proposed criterion is appli-
cable to all instrumentation frameworks and under all circumstances. Rather, it is a first
attempt to capture a property that has hitherto received little attention in the literature.
In the latter part of the chapter, we used partial equivalence relations to make explicit
the dependence of instrumentation code on intermediate program execution states—the
finer the relation, the greater the extent to which the script impedes optimization.

4.7.1 Further work

Certified instrumentation code together with a verified framework would allow the con-
sumer to check both the performance and security impact of untrusted third-party in-
strumentation. This is important because malicious or incompetent instrumentation code
can compromise security by—directly or indirectly—leaking values of secret variables.
DTrace has a very coarse-grained capability system governing what a given UNIX user
can instrument rather than properties of the instrumentation code. In addition to per-
formance guarantees, we believe that pervasive instrumentation of production systems
will require a finer, language-based permissions model. We speculate that robust de-
classification [152]—an idea developed in information-flow security—may prove to be a
useful concept in limiting the security impact of instrumentation and debugging code.
Zdancewic and Myers [152] require that an active attacker not be able to trick the pro-
gram into revealing any more information than it already does by declassification. Myers
et al. [93] model active attack by allowing the attacker to fill holes (cf. instrumentation
sites) in the original program with his/her own code. The language used for the these
hostile code fragments is a subset of the language the program itself is written in.

64

Chapter 5

Dynamic typing, boundaries and
con-freeness

A dynamically-updatable program is a program whose code and data type definitions can
be changed at runtime. Every so often a dynamically-updatable program reaches an up-
date point, usually by virtue of executing a special “update” command. If no update
is pending, the program continues as if nothing happened (the “update ≡ skip” case).
However, when an update is available, a decision has to be taken on whether or not it
can be applied safely and, if so, exactly how it should be applied: the updated program
contains a mixture of “old” and “new” code and type definitions. The problem of keeping
dynamically-updatable programs type-safe in spite of dynamic updates has received con-
siderable attention in recent years [65, 126, 94]. Unfortunately, the mechanics of applying
an update, along with definitional, syntactic safety checks like con-freeness (described
below), have been built directly into the semantics of current dynamic software updating
(DSU) calculi. A progress-and-preservation soundness result follows but does not reveal
what semantic properties hold at a “safe” update point. As a consequence of this, to our
knowledge there are no DSU calculi amenable to proofs of program equivalence of the
kind necessary to enable correct optimizing compilation. For instance, consider these two
commands:

(update; x:=f(0)+42)
?
= (update; x:=42) .

The commands are equivalent as long as (i) f(0) always returns zero (e.g. f could be
the identity function) and (ii) we promise never to apply an update containing an f

that violates (i). In the previous chapter we described how the possibility of future
instrumentation impedes static compiler optimizations. Similarly, in DSU there is a clear
trade-off here between optimizability vs. updatability. We argue that to avoid a priori
restrictions on optimization, the semantics of a DSU language should remain standard
and largely orthogonal to the mechanism by which updates are separated into “good” and
“bad”, and applied. We will focus on Stoyle et al.’s approach [126] to safety of updates
in particular as it is both unusual (compared with a traditional type system) and quite
well-known. A brief summary follows (see §5.1 for details). Take the state of a program
at an update point together with a pending update. Their combination (which includes
code, data and type definitions and so is, in effect, a continuation) is con-t-free if old code
never relies concretely (by e.g. accessing fields of a labelled record) on the definition of
data type t. It is then safe to change the definition of t at a con-t-free point: the semantics
of Proteus (Stoyle et al.’s DSU calculus) rejects an update if it fails a runtime con-free
check.

65

Contributions & outline. Throughout this chapter, we will use a language called HL,
a simple imperative language with an update command. Borrowing from Matthews and
Findler’s work on multi-language interoperability [84], we split the semantics of HL into
separate evaluation functions for old and new code (§5.2). To accept a pending update,
a HL program terminates exposing its entire intermediate execution state: this allows us
to keep the language semantics largely free of the details of updating. Once an update is
applied, the program is restarted. HL supports definition of named types and a restricted
form of runtime type analysis. (The definition of a named type does not change in the
course of normal execution, but only due to an update.) Every named type is interpreted
as a universal type analogous to Dynamic [2]; runtime type analysis allows code that uses
named types to remain well-typed following an update. We identify an extensional (“se-
mantic”) counterpart to con-freeness of which the original is an over-approximation (§5.4).
Doing so makes explicit the relationship between con-freeness and familiar dependency-
based program properties: liveness and secrecy. We show that there are no runtime
execution monitors that are complete with respect to semantics con-freeness. In place of
the con-free check, we define a type system, closely based on Volpano et al.’s typing rules
for secure information flow (§5.5). We argue that cont and abst contribute to interpre-
tational overhead and draw a connection to the tag-elimination problem encountered in
specializing interpreters for strongly-typed languages (§5.6). Finally, con-t-freeness can
be seen dually as either a restriction on runtime states (i.e. only those where old code does
not rely on t) or as a restriction on updates (i.e. those that do not change the definition of
t). We sketch an approach to program optimization of dynamically-updatable programs
(a problem not addressed in existing DSU calculi) based on restricting updates that can
be applied at a given point (§5.7). Equivalence of dynamically-updatable programs is a
bisimulation in a labelled transition system where states are programs and transitions
are dynamic updates. Restrictions that are too onerous can be relaxed using a variant of
dynamic deoptimization, a technique due to Hölzle et al. [66] for source-level debugging
of optimized programs. Conclusions (§5.9) follow a survey of related work (§5.8).

5.1 Preliminaries: con-freeness

The Proteus calculus of Stoyle et al. allows named data types to be defined: a definition
of the form type t = τ introduces a named type t whose representation type is τ . Such
definitions are generative, i.e. t and τ are not type synonyms and values of the two types
cannot be used interchangeably. To this end, the coercions abst : τ → t and cont : t→ τ
are provided for each named type t. An expression e of type t is wrapped with a coercion
cont if the value of e is used “concretely”, i.e. if the use depends on the representation
type of t. For example, suppose a variable x has type pair which is a type of labelled
tuples with fields “fst” and “snd”, i.e. type pair = {fst : int, snd : int}. By projecting
out a field, the expression (conpair x).fst relies on the underlying representation type of
x, therefore x must be wrapped with conpair. Expressions of type τ are injected into t by
abst; for example, abspair {fst : 20, snd : 9} has type pair. Note that, via its argument,
abst implicitly depends on the representation type of t

A point in the execution of a program is con-t-free with respect to an update if no old
code that may execute from that point onwards contains occurrences of cont; “con-free”
is shorthand for “con-t-free for all named types t”. To preserve type safety, updates to
the definition of t are only permitted at con-t-free points. Occurrences in old code of
abst for updated types t are wrapped in a user-supplied “typed transformer function”.

66

prog ::= tdef ∗ vdef ∗ fdef ∗ comm; [out var+] tnam, var , fun drawn from
tdef ::= type tnam = typ (and tnam = typ)∗ countable sets of names.
val ′ ::= val | mk-tnam val ′

vdef ::= var typ var := val ′

fdef ::= fun tnam fun(tnam var) { vdef ∗; comm; return exp; }
typ ::= int | sum(typ, typ) | prod(typ, typ) | tnam

scheme ::= ∗ | int | sum(scheme, scheme) | prod(scheme, scheme) | tnam
exp ::= val | var | op exp+ | fst/snd exp | inl/inr exp | (exp, exp) | mk-tnam exp

comm ::= comm; comm | while exp do comm | skip | var := exp | var := fun(exp)
| if exp then comm else comm | crash | update n
| case exp of { inl var ⇒ comm; inr var ⇒ comm }
| reprcase exp of { (scheme var ⇒ comm)+ } [else comm]

Further syntactic restrictions: (i) names of global variables, functions and types must be
unique and (ii) global variables must have named types.

Figure 5.1: Syntax of HL.

(The authors use an operational semantics, so the program continuation is explicit.) The
rationale behind this definition is intuitively appealing: old code, written without any
knowledge about future updates, makes assumptions about the definitions of types which
may become invalid. For example, consider the following code:

type t = int in
fun inc(x : t) : int = (cont x) + 1 in
let x = update in . . .

Any dynamic update which changes the representation of t but not the definition of inc
will fail the con-free check at update. However, the syntactic con-free check, which is
part of the operational semantics of Proteus, is definitional: there is no independent
statement of what it means for an update point to be con-free other than passing the
check. The check applies to old code only: new code may use both old and new named
types freely. The program is, in effect, partitioned into two “modules”: old code with old
type definitions and new code with both old and new type definitions.

Note: Stoyle et al. also define a static updatability analysis that locates con-free pro-
gram points (as opposed to runtime states). Whenever we refer to con-freeness, we mean
the former notion defined by the runtime con-free check.

5.2 HL

HL is a simple imperative language with support for dynamic updates and runtime type
analysis. The syntax of HL is shown in Figure 5.1. A program consists of a series of type,
variable and function definitions. Functions are single-entry single-exit: return is always
the last command in a function body. (Note that a function call is a command rather
than an expression; expression evaluation always terminates.) There is a single base type
(integers) and type constructors for binary sums and products. HL’s booleans are C-like,
a special case of integers: zero is falsity, any other integer is truth. As in Proteus,
types can be given a name: a definition like type t = τ introduces a new named type t

67

with type τ as the underlying representation type. The expression (mk-t e), analogous to
(abst e), makes a new value of the named type out of a value of its representation type.
The reprcase command, which is more general that cont, eliminates values of named
types; reprcase is described below. Named types may occur on the right hand side of a
named type definition, as in:

type t1 = sum(int, int) and t2 = prod(int, t1)

Note that this is not merely a notational convenience: t2 as defined above is not equivalent
to prod(int, sum(int, int)). Type equality is nominal rather than structural. Recursive
definition of named types is allowed.

5.2.1 Runtime type analysis

The reprcase command allows the representation type of a named type to be scrutinised.
The representation type of a value is matched against one or more “type schemes”, types
with possible wild-cards; reprcase executes the earliest branch where a match is found,
binding a variable to a value of the representation type. For example,

type t1 = int and t2 = prod(int, int);

fun t2 f(t1 x) {

var t2 z:=mk-t2(0,0)

reprcase x of {

int y => z:=mk-t2(y,y);

}

return z;

}

Each named typed t is modelled as a separate universal type like Dynamic (see §2.5.1).
Over the course of the program run, the representation of the type may be altered by
updates; using reprcase, these changes can be handled gracefully by existing code. In-
deed, in dynamically-typed languages, it is standard practice for a function to accept
arguments of different types: read might accept a file name (string) or file descriptor
(integer). HL’s reprcase is more powerful than a cont coercion but simpler than Abadi
et al.’s [2] typecase: the latter can bind type variables, whereas we use a single wild-card
symbol. Assuming we have an expression e of type t with representation τ , cont e can
be approximated as reprcase e of { τ _ => skip; * _ => crash; }. Intuitively, a
program that passes the syntactic con-free check is guaranteed not to crash. Note that
cont is part of the internal syntax of Proteus, has a very specific purpose and cannot be
used for general runtime type analysis. Syntactic con-t-freeness in Proteus specifically
checks for the presence of cont coercions in old code, whereas semantic con-freeness (§5.4)
does not treat reprcase specially. Finally, of the two constructs (cont and typecase),
typecase is the better-known [2, 62].

5.2.2 Dynamic semantics

The small-step operational semantics of HL is shown in Figure 5.4. The pre-domain of
values contains enough elements to interpret the types of HL:

Val ∼= Z + (Val + Val) + (Val × Val) + {tyerr} .

68

If an operator is applied to arguments of the wrong type, the result is the special value
tyerr which belongs to no type. The program as a whole does not become stuck: a type
error which does not contribute to the final result of the program is semantically harmless
(even though many type systems will reject programs which might encounter such type
errors). Similarly, fst e and snd e evaluate to tyerr if e evaluates to anything other than
a product; the case and reprcase commands do nothing when applied to a value of the
wrong type (sum for case and named type for reprcase); if and while treat any value
other than zero, including non-integer values, as truth.

When referring to a HL “program”, we mean a combination of command, state and
function and type environments. The mutable state s ∈ State = Mem × Stack of a

running program consists of a global memory Mem
def
= Var ⇀ (Val × Typ) and a stack

Stack
def
= N ⇀ Mem. Every variable carries a tag identifying its type. The stack is a list

of activation frames, each containing bindings for local variables, with the bottom-most
(currently active) frame at the head. We let mg and m` (“global” and “local”) range over
Mem and k over Stack .

In addition to the state, the evaluation function receives the command to execute
and two environments—the function environment and the named type environment map
between the names and definitions of functions and named types respectively—and returns
an answer in Ω⊥ (see below):

[[c]]comm
HL : State → FunEnv → TypEnv → Ω⊥ .

Both crash and update terminate the program. By analogy with debugger breakpoints,
and as in the previous chapters’ language AL, update preserves the entire intermediate
execution state; crash only signals that the program terminated abnormally and can
be thought of as putting the program into a “stuck state”. For normal termination,
the notation out x1, . . . , xn indicates which global variables are live at the end of the
program. (Other variables are “dead” and their final values are undefined.) The pre-
domain of answers is defined as follows:

Ω ∼= Mem + 1 + U where U
def
= (N× comm × State × TypEnv × FunEnv) .

HL programs can thus exhibit three possible behaviours apart from non-termination:

Termination mode Cause Summand of Ω

Normal — Mem
Crash crash 1
Update point update U

The numeric argument of the update command identifies the program point corresponding
to the update point; update commands should therefore be uniquely numbered, but this
is not a formal requirement. We call an element of U a reified configuration and write it as
Un〈c, (mg, k), T, F 〉. The comm component of a reified configuration is the continuation
of the program after the update point. Note that a named type environment is sufficient
to determine which branch will be taken by a reprcase. Since the type environment
changes infrequently—ordinary execution between updates can only modify the memory
and stack—we would like to optimize away the dead branches of reprcase statements, in
effect specializing the program with respect to its type environment. We will come back
to this observation in §5.6, but first we describe dynamic updates in HL and how they
are applied.

69

5.3 Dynamic updates

Our goal is to understand dynamic updating as “analysis + transformation” of programs
in as standard a semantics as possible: in existing DSU calculi, including Proteus, the
mechanics of updating are built into the definition of the language. In HL, an update is
applied by modifying the intermediate state of a program that is exposed when an update
point is reached; execution then continues from the new, updated state. We believe
this design offers several advantages over a “hard-coded” semantics for update. First,
keeping update policy separate from the language makes it possible to compare different
DSU proposals (the language is a controlled variable); second, the essential content of
analyses like the con-free check is easier to grasp when these are formulated over a standard
semantics; finally, an optimizing compiler written for the standard semantics is guaranteed
to work with all possible current and future update policies.

For the purposes of this chapter we make the following basic assumptions about up-
dates which are in line with prior work: (i) an update can add, change and remove
definitions of named types, global variables and functions, (ii) an update to a function
definition takes effect when the function is next invoked (a function active at the time of
the update continues to execute its old code), and (iii) a pending update is applied when
the program reaches an update point by executing update (when no update is pending,
update is a no-op). Note that the second requirement is easily satisfied by an imple-
mentation that copies (“clones”) function bodies immediately on call. Alternatively, the
implementation may also choose to copy the definition if and when it is updated. The
trade-offs mirror those of implementing a fork system call: the memory of the parent pro-
cess can be either copied immediately on fork (wasteful if fork is followed immediately
by exec) or lazily by Copy-on-Write.

5.3.1 Applying an update

Applying an update is a meta-level operation. Suppose we have a program with func-
tion environment Fold and type environment Told that has reached an update point and
terminated with the result (i, c, s). If no update is pending, the program is restarted
with the old function and type environments: [[c]] s Fold Told (update is then equivalent to
skip). Suppose that an update is pending and that the update defines (or redefines) the
functions in Fnew and the named types in Tnew. Define the operator] which combines
and old function or type environment with a new one:

(fnew] gold)(x) =

{
inl fnew(x) x ∈ dom fnew

inr gold(x) otherwise .

By slight abuse of notation we shall disregard the constructors inl and inr in most cases.
Recall that global variable types and function argument and return types must all be

named. To change the type of a global variable, the underlying representation is changed.
Similarly, if, say, function f now takes two arguments instead of one, its argument type t

is changed accordingly: from (e.g.) type t = int to type t = prod(int, int).
Variables in memory and in frames on the stack which have a type in Tnew must

be converted to the new representation. Let UState : State → State be the conversion
function that replaces all values of types in Tnew in memory and in the stack frames with
the corresponding values in the new representation1.

1UState must perform a deep conversion.

70

Though existing values of update named types are converted to the new representation
by UState , old code that constructs values of an update type is now ill-typed. This is
because it still attempts to mk-t values of each updated named type t using the old
representation of t. Stoyle et al.’s original approach is to replace occurrences of (abst e)
in old code, wrapping the expression e with a user-provided function that maps values
from the old representation of the type t to the new. We follow a similar approach:
to keep old code well-typed, every (mk-t e) where e is in the old representation of t is
replaced with (mk-t e′) such that e′ is in the new representation. The conversion from e
to e′ is necessarily simpler than Stoyle et al.’s since a function call in HL cannot be part
of an expression. Let Ucomm and UFunEnv be the corresponding conversion functions for
commands and function environments respectively. The function environment and the
type environment of the new, updated program are, respectively, (Fnew] (UFunEnv Fold))
and (Tnew] Told). The result of the updated program is

[[Ucomm c]] (UState s) (Fnew] (UFunEnv Fold)) (Tnew] Told) .

5.3.2 HL language boundaries

The Proteus con-free check (described in §5.1) treats old and new code in a program
differently. The new code is privileged, in the sense that it can use values of any of
the updated named types concretely. In HL, we make the boundaries between old and
new code explicit: as will become clear in the next section, the distinction between old
and new code is semantically important. We split the valuation function [[·]]HL into two
mutually-recursive functions [[·]]old

HL and [[·]]new
HL for old and new code respectively. This

setup is intended to resemble Matthews and Findler’s “Operational Semantics for Multi-
Language Programs” [84]. Note that after an update execution always starts in the old
code immediately following the update command: in Matthews and Findler’s terminology,
the “top-level context” belongs to the old-code language.

5.4 Semantic con-freeness

The relationship between a semantic notion of con-freeness and the original syntactic
definition is best illustrated by analogy with semantic versus syntactic liveness of vari-
ables. In the λ-calculus, recall that a variable x is semantically dead in expression e and
environment ρ ∈ Var ⇀ Val if its value has no bearing on the result of evaluating e in ρ:

∀v, v′ ∈ V. [[e]] ρ[x 7→ v] = [[e]] ρ[x 7→ v′] . (5.1)

On the other hand, x is syntactically dead in e if there are no program paths in e that
contain a use of x that is not dominated by a definition. Syntactic liveness is a computable
(dataflow) over-approximation of semantic liveness. Semantic liveness is conveniently
expressed using partial equivalence relations, binary relations that are symmetric and
transitive but, unlike proper equivalence relations, not necessarily reflexive (see §2.7).
For a variable x, let [[e]]x ρ = λv. [[e]] ρ[x 7→ v]; then x is dead iff ([[e]]x ρ) : AllVal ⇒ IdΩ⊥

where Ω⊥ is the domain of results. This can be extended straightforwardly to a set of
variables X ⊆ Var . Let Φ ∈ Var ⇀ Per(V) map a variable to a PER over values; Φ can
be used to define a relation over environments: ρ Φ ρ′ ⇐⇒ ∀x ∈ dom Φ. ρ(x) Φ(x) ρ′(x).
Now, define a Φ as follows:

Φ
def
= x 7→

{
AllV , x ∈ X
IdV , otherwise .

71

The variables in X are semantically dead iff [[e]] : Φ⇒ IdΩ⊥ .

5.4.1 Definition of semantic con-freeness

Let Φ : TNam ⇀ Per(Typ) map the name of a type to a PER over types. This is
also a PER: two type environments T, T ′ ∈ TypEnv are related by Φ when they are
pointwise-related:

T Φ T ′ ⇐⇒ ∀t ∈ dom Φ. T (t) Φ(t) T ′(t) . (5.2)

New code can examine the representation of both new and old named types freely, so let
us introduce another argument to the evaluation functions giving

[[c]]new
HL , [[c]]old

HL : State → FunEnv → TypEnv → TypEnv → Ω⊥ . (5.3)

The first and second type environments are used by [[c]]new
HL (new code evaluation function)

and [[c]]old
HL (old code evaluation function) respectively to look up the representation of a

named type. A command c is semantically con-free for named types in Tnew iff

E[[Ucomm c]] (UState s) (Fnew] (UFunEnv Fold)) (Tnew] Told) : Φ⇒ IdΩ⊥ (5.4)

where

Φ(t) =

{
AllTyp t ∈ dom Tnew

EqTold(t) otherwise .

Varying the representations of the new named types in old code (while keeping those of
old ones the same) has no effect on the final result of a con-free program. Note that,
although old code cannot inspect the representation of a new named type directly, it can
do so indirectly by calling out to new code instead.

5.4.2 Runtime enforcement

Gray et al. [59] and later Matthews and Findler [84] used contracts to control value
flow across the boundary between a statically-typed and a dynamically-typed language.
Consider Matthews and Findler’s notation (e1 (τMS e2)) where an ML expression e1 is
applied to the result of evaluating a Scheme expression e2. We have an outwardly similar
notion of a “mixed” program where boundaries are drawn between old and new code
rather than code written in different languages, and a natural question to ask is whether
semantic con-freeness can be checked using contracts. The contract we want to enforce is
that old code should not depend on new named type definitions.

Since we are in an imperative setting, we consider predicates on program states. Intu-
itively, contracts are a form of execution monitoring : the decision about whether or not
a violation has occurred is taken solely based on the history of execution so far, i.e. a
finite prefix of the program trace. Neither execution monitors, nor contracts have a way
of divining future possible executions. Volpano [137] showed that there are no sound and
complete execution monitors for secrecy, and we follow a similar argument for semantic
con-freeness. The key point is that observations are made on the final result of the pro-
gram. To illustrate, consider a command z:=f(x) where z is a global variable of type t2

and f is a function defined as follows:

fun t2 f(t1 x) {

var t2 r:=mk-t2 0;

72

update 0;

reprcase x of {

prod(int, int) _ => r:=mk-t2 1;

}

return r;

}

Suppose type t1 was defined as prod(int, int) to begin with, but we now want to
redefine it as int at the update point. Syntactic con-freeness forbids the update at
update point 0 because of the presence in the continuation of a reprcase on x (which
has type t1). However, if the variable z, which gets the return value of f, is semantically
dead, then the change in the representation of t1 at the update point has no effect on
the result of the program. In other words, the program after the update is semantically
con-free but not syntactically con-free.

Consider implementing an execution monitor for semantic con-freeness. The set of
traces of an execution monitor must be prefix-closed. Thus, a monitor which disallows
the assignment z:=f(x) is incomplete (because z might be dead), and, conversely, a
monitor which allows the assignment is unsound (e.g. z:=f(x) is the last statement in
the program). Therefore we conclude that no runtime monitor is sound and complete
with respect to semantic con-freeness.

5.5 The con-free check as a type system

In the previous section, we noted that con-freeness, like semantic liveness and non-
interference, is a dependency property. There are many type systems in the literature
that enforce secrecy, i.e. are sound with respect to non-interference: a well-typed program
is guaranteed not to leak information about the values of high-security variables. In this
section we introduce a type system intended to generalize the con-free check, and whose
rules are based closely on Volpano et al.’s [137] type system for secure information flow.

A typing context Γ gives variables, functions and named types a security level, which
is either “low” or “high” for variables and named types, or an arrow between security
levels for functions:

Γ ::= x : `, Γ | f : `→ `′, Γ | t : `, Γ | ε ` ∈ {L, H} .

The judgment Γ ` x : ` means that Γ(x) = ` and similarly for functions and named types.
Judgement for expressions and commands have the form Γ ` e : ` exp and Γ ` c : ` comm
respectively. Informally, the judgement Γ ` e : L exp means that e does not access any
high-security information. Conversely, the judgement Γ ` c : H comm means that c does
not assign to any low-security variables (and therefore can be trusted with high-security
information). This simple formulation relies on expressions being side-effect free: in HL,
a function call is not an expression (see grammar on p. 67).

For example, if x is high-security variable, the command “if x then z:=1 else z:=0”
introduces a flow from x to z. If z is a low-security variable, this is a downward flow :
information about the value of a high-security variable is communicated to an attacker
through a low-security variable, thereby violating secrecy.

There are therefore three straightforward sub-typing rules:

Γ ` t : L

Γ ` t : H

Γ ` e : L exp

Γ ` e : H exp

Γ ` c : H comm

Γ ` c : L comm
.

73

Expressions:

Γ ` x : `

Γ ` x : ` exp Γ ` z : ` exp

Γ ` e1 : ` exp, e2 : ` exp

Γ ` e1 op e2 : ` exp

Γ ` e : ` exp

Γ ` inl e : ` exp

Γ ` e : ` exp

Γ ` inr e : ` exp

Γ ` e1 : ` exp, e2 : ` exp

Γ ` (e1, e2) : ` exp

Γ ` e : ` exp

Γ ` fst e : ` exp

Γ ` e : ` exp

Γ ` snd e : ` exp

Γ ` e : ` exp

Γ ` mk-t e : ` exp

Commands:

Γ ` e : ` exp, c : ` comm

Γ ` while e do c : ` comm

Γ ` e : ` exp, c1 : ` comm, c2 : ` comm

Γ ` if e then c1 else c2 : ` comm

Γ ` c1 : ` comm, c2 : ` comm

Γ ` c1; c2 : ` comm

Γ ` x : `, e : ` exp

Γ ` x := e : ` comm

Γ ` x : `′, e : ` exp, f : `→ `′

Γ ` x := f(e) : `′ comm

Γ ` e : ` exp, x1 : `, x2 : `, c1 : ` comm, c2 : ` comm

Γ ` case e of { inl x1 ⇒ c1; inr x2 ⇒ c2; } : ` comm

Γ ` t : `, e : ` exp e has type t ∀i. ∀τ ∈ insts(σi). Γ[xi → `] ` ci : ` comm Γ ` c : ` comm

Γ ` reprcase e of { σ1 x1 ⇒ c1; . . . ; σn xn ⇒ cn; } else c : ` comm

Auxiliary function (instantiations of a type scheme): insts ∈ scheme → P(typ).

Figure 5.2: Con-freness typing for HL.

The skip command can be assigned either security level, but both update and crash

are low-security commands, since both implicitly assign to a low-security pseudo-variable
(the program result) whose value is visible to the user, and therefore:

Γ ` update : L comm Γ ` crash : L comm Γ ` skip : H comm
.

For example, assume e is an expression of high-security named type t. The command
“reprcase e of { . . . } else crash” is ill-typed because crash is a low-security com-
mand. Note that because type representations are not first-class entities, there are no
explicit (lo:=hi) flows for named types, only implicit flows via reprcase. The remaining
rules are shown in Figure 5.2. To simplify presentation, the type system tracks only se-
curity levels, and not data types (int, prod, etc.). For a well-typed program, varying the
representations of high-security types will not affect the values of low-security variables.

The con-free check can be recovered as a type-check. Unusually, in this case type
checking must be done at runtime, when an update point is reached. First, types that are
part of a dynamic update are assigned the high-security label. Second, global variables,
old types and old functions (and their local variables) are given low-security labels. Third,
new functions are not type-checked and are assigned a low-security label (L → L). This
last condition is necessary to allow old code to examine new named types “by proxy” by
calling new functions (this would not be permissible in a conventional non-interference
setup, since it constitutes a downward flow). The effect of these requirements is to forbid
occurrences in old code of reprcase e of { ... } where e belongs to a new named type.

74

5.6 Interpretational overhead of DSU

When an interpreter is written in a typed language, a universal data type is commonly
used to represent values of the interpreter language (see §2.5.1), for example:

type valu = I of int | F of (valu -> valu)

A type constructor in the object language becomes a data constructor for the universal
type. An interpreter injects values into the universal type by notionally tagging each value
with its object-language type. For example, consider fragments of an OCaml interpreter
for call-by-value λ-calculus shown below.

let rec eval exp env = match exp with

| Const n -> I n

| Var x -> env x

| Lambda (x, e’) -> F (fun v -> eval e’ (update env (x, v)))

A value is untagged by projecting it back into the meta-language type:

| App (e’, e’’) ->

(match eval e’ env with

| F f -> f (eval e’’ env)

| _ -> failwith "Type error.")

Untagging may fail in general, in the sense that the value is not of the expected object-
language type, causing the program to become stuck due to a type error. When the
interpreted language is strongly-typed, its type system guarantees the absence of such
errors. But if the type system of the meta-language is not expressive enough to encode
the types of object-language terms, the interpreter must still carry out needless tagging
and untagging. Further, when the interpreter is specialized with respect to the program
by means of conventional partial evaluation, the specialized program will also inherit
the tagging and untagging code. Immediately, this means that achieving Jones-optimal
specialization for strongly-typed language is problematic (see [82]); for our purposes,
it is enough to observe that tagging and untagging operations in the residual program
constitute interpretational overhead. However, a useful side-effect is that untagging occurs
in the residual program in places where the value is used concretely in Stoyle et al.’s
sense. We have already remarked that, in a given HL program, the branch taken by every
reprcase command is known statically: removing the other branches has no effect on the
final result of the program, so tagging (mk) and untagging (reprcase) ostensibly amount
to overhead added to permit updates.

5.7 Equivalence of updatable programs

Software for embedded devices must be both updatable and optimized for speed and size
to fit in the limited compute and storage capacity of the device. However, optimizing
compilation of dynamically-updatable programs presents numerous challenges: Bierman
et al. [19] remark that “dynamic rebinding or update primitives invalidate general use
of standard optimisations”. Establishing the correctness of optimizing program transfor-
mations in the presence of updates is also a prerequisite for verifying compilers and any
other program manipulation tools.

75

One immediate problem is that updates are applied at the granularity of functions.
So, for example, long-running loops must be manually converted into tail-recursive func-
tions and the compiler somehow prevented from doing tail-call elimination. In practice,
performing the tail-call through a function pointer rather than directly is usually sufficient
to foil the compiler. Further—to improve availability of a program to updates, update
points need to be placed in parts of the program that are executed frequently, even though
this is precisely where they will preclude the most effective of optimizations.

Optimizing a dynamically-updatable program using a specific type and function en-
vironment may also alter its behaviour with respect to future updates, so the soundness
of the optimizations must be reconsidered at each update point. Recall that any given
update command behaves as skip most of the time. But, consider the effect of replacing
skip with update in the following sequence of commands:

x:=5; skip; y:=f(z)

Assume that global variable x is dead in the remainder of the program. Two transforma-
tions can be applied to the code as it stands: dead assignment elimination to get rid of
x:=5 and inlining of f. However, if update is substituted for skip, neither optimization
is sound because an update may introduce uses of x and/or alter the definition of f. By
the same token, if a tail-recursive function is optimized to a loop, the semantics of the
program with respect to updating changes. With tail-recursion, an update to the function
definition takes effect on the next recursive invocation. In the loop-based program, the
call site no longer exists and the update will never take effect. Therefore, it is necessary
to first define what it means for two dynamically-updatable programs to be equivalent.

As a starting point, consider the general problem of defining equivalence of programs
that perform input (see 2.3.3). Let the domain of results be Ω ∼= (Val + (Val → Ω))⊥
and [[·]] : prog → Ω. Let L be a labelled transition system (S, Λ,) where states are
program results (S = Ω) and the actions ranged over by α are input values (Λ = Val). A
transition from one state to another is possible as long as the state is a resumption (i.e.

a continuation, capable of accepting input): ω
v
 ω′

def
= (ω = inr κ) ∧ (κ v = ω′). Recall

that a relation R ⊆ S × S is a bisimulation iff

∀t, s ∈ S. ∀α ∈ Λ.

∀s′. s α
 s′ ⇒ ∃t′. t α

 t′ ∧(s′, t′) ∈ R ∧
∀t′. t α

 t′ ⇒ ∃s′. s α
 s′ ∧(t′, s′) ∈ R .

(5.5)

Bisimulation is a convenient notion of equivalence for communication-centric languages [87].
However, bisimulation is too coarse-grained if we want to treat states as functions and
actions as inputs (rather than the other way round) and to encode assumptions about the
input values. We generalize equation 5.5 slightly by making it parametric with respect to
a secondary relation P ⊆ Λ× Λ over actions. The relation R(P) is defined as follows:

∀t, s ∈ S. ∀(α, α′) ∈ P .

∀s′. s α
 s′ ⇒ ∃t′. t

α′
 t′ ∧(s′, t′) ∈ R ∧

∀t′. t α
 t′ ⇒ ∃s′. s

α′
 s′ ∧(t′, s′) ∈ R .

(5.6)

Notice that this definition closely mirrors that of PERs for functions (2.7):

s (P ⇒ R) t iff α P α′ =⇒ (s α) R (t α′) .

76

γ1

γ2

γ3

α1

α2

α3

run
m

run
Un Um

m

γ�
1

γ�
2

run

α�
1

α�
2

. . .

. . .()

cra
sh

Figure 5.3: Update transition system.

Since, intuitively, a dynamic update is a particular kind of input, we extend this notion
of equivalence to dynamically-updatable programs by letting the set of actions be the set
N × Update; the first component of an action is the number of the update point where
the update—the second component—can be applied.

A reified configuration Un〈c, (mg, k), T, F 〉 (see Figure 5.4) consisting of a continu-
ation, program state and type and function environments, transitions to a non-terminal
configuration by accepting an update (n, u) ∈ Λ. This is represented by a transition of

the form Un〈. . .〉
(n, u)
 γ. A non-terminal configuration γ transitions to a program answer

(in Ω⊥) by accepting the action “run”. E.g.

Un〈. . .〉
(n, u)
 γ

run
 Um〈. . .〉

(m,u′)
 . . .

run
 m .

A pseudo-action m is only accepted by the terminal configuration m; similarly for the
action “crash” (Figure 5.3). The transition system does not capture the operational
semantics of HL itself, and only models updates. The special empty update (n, ∅), reserved
for the situation where no updates are pending, reinstates the configuration unmodified,

i.e. Unγ
(n, ∅)
 γ. An HL compiler is free to optimize the program so long as the semantics

of the program are preserved: this includes behaviour with respect to future updates,
i.e. the optimized and original programs are bisimilar (it is not be possible to distinguish
between the original and optimized programs by applying updates).

5.7.1 Optimization

Disregarding safety checks (like con-freeness) for the moment, any update can potentially
be applied at any update point. This burden on the compiler can be lessened by restricting
the possible updates. These restrictions are captured in the relation P in Equation 5.6.
But it need not be necessary to restrict updates if the optimization can be undone when
an update point is reached. At runtime, when an update is pending, we have two options:
either (1) reject the update if it would invalidate the optimizations or (2) undo the effect of
the optimizations on the program state. (For the example on the previous page, updates
that do not change the definition of f and do not introduce uses of x are acceptable.) For

77

example, consider the optimization below which exploits knowledge of the representation
type of named type t to unbox x:

Original Optimized

type t = int;

var t x:=mk-t 5, int z:=3; var int x:=5, int z:=3;

update; update;

reprcase x of { int y => z:=y; } z:=x;

Previously-dead branches of reprcase can be re-inserted at an update point if an update
is applied that changes the definitions of the affected named types.

We adopt deoptimization [66], a technique from the debugging literature, to relax
update restrictions without sacrificing optimizability. (Despite widespread adoption, dy-
namic deoptimization has, to our knowledge, never been formalized.) At each update point
n we introduce a function δ that maps from a configuration of an optimized program to
a partially unoptimized configuration, allowing more updates to be applied. Let Unγ0 be
the reified configuration of the unoptimized program at update point n and Unγopt be
the corresponding configuration in the optimized program, then δ is a deoptimization iff
Unγ0 and Unδ(γopt) are bisimilar.

There are are no computational reflection facilities in HL, so δ cannot be implemented
in HL itself. Operationally, this means that δ is a low-level assembly subroutine in the
interpreter (or virtual machine) that is executing the HL program. Alternatively, δ can
be thought of as a debugging table that contains enough information to recover the in-
terpreted state (see §6.3). The function δn for each update point n is constructed at the
time the program is optimized, which may be either prior to the program start or at an
update point. We rule out the “cheating” δ functions that ignore their input and re-run
the original program up to the update point (cf. a cheating specializer, §2.2).

To give an intuition of how this works, suppose that a one-time assignment z:=42 to
a dead global variable z is eliminated at compile-time. This limits the updates applicable
at an update point that occurs after the assignment to those that do not contain uses of
z. We can define a deoptimization to undo the effects on memory of this optimization:

δ 〈c, (mg, m` :: k), T, F 〉 = 〈c, (mg[z 7→ (42, int)], m` :: k), T, F 〉 .

Here, we will consider deoptimization in a small subset of HL (called HLANF) without
functions or named types with the following syntax (which enforces A-normal form).

5.7.2 Deoptimization in HLANF

The syntax of HLANF is shown below:

triv ::= val | var exp ::= triv | op triv+

comm ::= comm; comm | while triv do comm | skip | var := exp
| if triv then comm else comm | update n

prog ::= comm; out triv+

Let −→ (“reduces to”) be a small-step reduction relation for the language: that is γ → γ′

where γ is a non-terminal configuration while γ′ is either another non-terminal configu-
ration or a result in Ω. A non-terminal configuration is a pair 〈c, m〉 of command c and

memory m ∈ Mem
def
= Var → Val . A result ω ∈ Ω is either a memory, or a reified config-

uration Un〈c, m〉 or Unm where n is the number of the update point. A configuration is

78

reified by the update command; a reified configuration cannot be reduced further. The
semantics of update is shown below:

〈update n, m〉 −→ Unm
〈c1; c2, m〉 −→ Un〈c′1; c2, m

′〉 if 〈c1, m〉 −→ 〈c′1, Unm
′〉

〈c1; c2, m〉 −→ Un〈c2, m
′〉 if 〈c1, m〉 −→ Unm

′

The valuation function [[·]] : prog → Mem → Ω⊥ is defined as follows:

[[c; out (x1, . . . , xn)]] m =


m′|{x1, ..., xn} 〈c, m〉 −→∗ m′
Unm

′ 〈c, m〉 −→∗ Unm
′

Un〈c′, m′〉 〈c, m〉 −→∗ Un〈c′, m′〉
⊥ 〈c, m〉 ↑ .

Now, let T ∈ prog → prog be an optimization; then δ ∈ U → U is the corresponding
dynamic deoptimization iff [[p]] = (δ)∗ ◦ [[T (p)]] where the lifting (δ)∗ : Ω⊥ → Ω⊥ acts as
identity on all normal results, i.e.

(δ)∗(ω) =

{
δ(ω) if ω = Un〈c, m〉 or ω = Unm
ω otherwise.

The deoptimization is specific to both the optimization and the program. For example,
consider the program p = “x:=7; y:=9; update 1;” and let transformation T be dead
assignment elimination. Assuming m0 is an initial memory that maps every variable to
zero, we have:

[[p]] m0 = U1 m0[x 7→ 7, y 7→ 9]
[[T (p)]] m0 = [[update 1]] m0 = U1 m0 .

Then δ(x) = match x with U1m =⇒ U1m[x 7→ 7, y 7→ 9]. In general, the deoptimization
must not only reconstruct the state, but also the continuation. We assume that the
original program code is always available.

5.7.3 Other semantics for updating

The update command is conveniently defined in a continuation semantics (see §2.3.3); an
example is given below (assuming [[·]]exp is a valuation function for both trivial expressions
a and ordinary expressions e):

[[·]] : comm → (Mem → Ω⊥)→ Mem → Ω⊥
[[while a do c]] = λk. fixMem→Ω⊥

λf.λm. if m([[a]]exp m) 6= 0 then ([[c]] f m) else (k m)
[[if a then c1 else c2]] = λk.λm. if m([[a]]exp m) 6= 0 then ([[c1]] k m) else ([[c2]] k m)

[[x := e]] = λk.λm. k(m[x 7→ [[e]]exp m])
[[skip]] = λk.λm. k(m)

[[update n]] = λk.λm. Un(k, m)

[[c1; c2]] = [[c1]] ◦ [[c2]] .

However, in this semantics the continuation k is an opaque object: the only thing we can
do with a continuation is apply it to a value. An operational semantics exposes the con-
tinuation as program text. Another semantics may use a different internal representation
of the continuation and memory: e.g. a flow-chart interpreter holds the entire control flow
graph in memory. The continuation is then identified with the current execution location,

79

a pair of basic block number and an offset into the basic block. An operational semantics
arguably exposes too much internal detail, whereas a denotational continuation semantics
like that above does not provide enough. In future work, we plan to investigate definition
of software updating that is independent of the underlying semantics.

5.8 Related work

5.8.1 Dynamic typing

Abadi, Cardelli, Pierce, and Rémy [3] further discuss technical issues which arise when
Dynamic is used in various contexts and in conjunction with other type-systemic fea-
tures. They consider: ML (a language with implicit prenex-quantified polymorphism),
the second- and higher-order polymorphic λ-calculi (System F and Fω, respectively), ab-
stract datatypes, and subtyping. The development revolves around correct scoping and
binding rules for pattern variables in the typecase construct.

More recently, Siek and Taha [120] describe the calculus λ?
→, a simply-typed λ-calculus

with a syntactically optional Dynamic type (?). Coercions (casts) are added by translation
to the intermediate calculus λ〈τ〉→ . The approach is termed gradual typing. The authors
recover the untyped λ-calculus and the simply-typed λ-calculus in the annotation-free
and fully-annotated cases respectively. Siek and Taha [121] extend these ideas to the
Abadi-Cardelli object calculus. Gray et al. [59] describe an approach to interoperability
between Java and Scheme (a dynamically-typed language) by adding a dynamic type to
Java and using inferred contracts to preserve type-safety. The application of contracts is
structured using mirrors, a construct proposed by Bracha and Ungar [20]. Of practical
necessity, language implementations provide means to perform cross-language calls by
way of a Foreign Function Interface (FFI). Furr and Foster show how to statically verify
type-safety of calls between OCaml and C [51] and Java and C [52], in both cases via a
unified type system.

In their work on soft typing, Cartwright and Fagan [25] take the view that a type-
checker should never reject a program. The authors augment a purely applicative subset
of ML with union types2 and recursive types and present a type reconstruction algorithm.
Coercions are inserted to restore well-typedness of badly-typed programs.

Washburn and Weirich [146] use information-flow annotations at the type system
level in a language with runtime type analysis with the goal of recovering some form of
parametricity (data abstraction). Their type system is significantly more sophisticated
and interesting than HL’s, but their language does not support DSU.

5.8.2 Con-freeness and dependency

Two excellent surveys—[112] and [114]—give an overview of the recent research in language-
based information-flow security. Hicks et al. [64] considered the impact of dynamic updates
to the information-flow policy of programs written in a language with security types. (The
code of the programs is not updated.) The authors remark that Stoyle et al.’s con-free
check is analogous to dynamic checking of permission tags. We have explained why we
should expect enforcement mechanisms for secure information flow and con-freeness to
be similar (because the underlying semantic properties are). Our imperative language is

2For instance, λx.if x = 42 then true else 0 : int→ int + bool.

80

quite different from Hicks et al.’s security-typed functional language: e.g. HL has named
types, runtime type analysis and a notion of a security level for a type.

PERs are often used to capture a notion of dependency: some example applications
of PERs are given in Appendix B. Benton [15] built an equational theory (DDCC) to
support proofs of optimizing program transformations on top of a PER semantics for a
simple imperative language.

5.8.3 Optimization

Source-level debugging of optimized programs poses similar challenges as that of updating
them (see §2.4.1). Tolmach and Appel [132] observe: “Optimizing compilers may make
any changes to a program so long as the observable behavior of the program remains the
same. Unfortunately, debuggers must expose the internal behavior of the original program,
which may be altered by optimization”. Their solution is to add instrumentation code to
the program prior to compilation. Although standard optimizations can be used on the
instrumented program, runtime overheads remain substantial.

Virtual methods in object-oriented (OO) languages that support dynamic class loading
provide a simple DSU facility. Virtual method inlining [38] in this setting causes similar
problems to those discussed above. If Class Hierarchy Analysis (CHA) indicates that the
receiver of a virtual call is always known, then it is safe to inline the method at the call
site. This optimization is speculative in nature: dynamic class loading may invalidate
the results of CHA. (See also the discussion in §4.4.1). HotSpot implements dynamic
deoptimization to cope with this scenario. Dynamic class loading is part of the language
definition in languages like Java and must be supported by the implementation (both
compiler and runtime). In contrast, HL does not define what constitutes a valid update,
leaving an implementation free to allow some updates but not others.

Subramanian et al. [127] described an extension of Jikes (a Java VM) called Jvolve
that supports dynamically updatable programs. Jvolve cannot update a method if the
method itself is active or if any method that has it inlined is active, something which
Hölzle et al.’s [66] dynamic deoptimization proposal for Self can handle. Interestingly,
the implementation of Self clones the code of the function when creating an activation
frame, so when a function definition is changed, those functions that are already active
continue to execute old code—which exactly matches DSU behaviour.

5.9 Conclusions and further work

We have presented a rational reconstruction of con-freeness, a property introduced by
Stoyle et al. [126] in their work on type-safety for dynamically-updatable programs. In
the setting of a simple imperative language with runtime type analysis, we identified an
extensional (“semantic”) counterpart of the original property that is independent of any
particular updating mechanism. In order to formalize it, we found it necessary to split
the semantics of our language into separate evaluation functions for old and new code in
a program, suggesting a possible connection with Matthews and Findler’s [84] work on
multi-language interoperability. In contrast to previous calculi for dynamic updating, the
mechanics of updating are not part of the semantics of our language. We argue the benefits
of this approach for program optimization (well-known to be antagonistic to updatability)
and propose an observational equivalence for updatable programs. We defined a non-
interference type system inspired by the original con-free check: old code may perform

81

runtime type analysis on values of new types provided this does not introduce downward
flows to observable program results. This is useful for typing e.g. instrumentation code.

In future work, we plan to investigate a notion of “blame” [46, 141] which arises
naturally in dynamically-updatable programs: old code that is part of a con-t-free program
cannot be blamed for dependencies on t of the program as a whole, as all such dependencies
ultimately originate in new code. As far as we are aware, there is no accepted formal
definition of dynamic deoptimization: it would be interesting to extend and generalize
the definitions in §5.7.2.

82

C
o
n
fi

g
u
ra

ti
o
n 〈c, Command

mg, Global memory
m` :: Current activation frame
k, Call stack
T, Type environment
F 〉 Function environment M

e
m

.
lo

o
k
u

p (mg, m`)(x) =

{
m`(x) x ∈ dom(m`)
mg(x) otherwise

(mg, m`)[x 7→ v] =

{
(mg, m`[x 7→ v]) x ∈ dom(m`)
(mg[x 7→ v], m`) otherwise

Shorthands:
• ≡ mg, m` :: k, T, F

•[x 7→ v] ≡ m′g, m
′
` :: k, T, F such that (m′g, m

′
`) = (mg, m`)[x 7→ v]

〈while e do c, •〉 −→ • if [[e]]HL • = (0, int)
〈while e do c, •〉 −→ 〈c; while e do c, •〉 otherwise

〈if e then c1 else c2, •〉 −→ 〈c2, •〉 if [[e]]HL • = (0, int)
〈if e then c1 else c2, •〉 −→ 〈c1, •〉 otherwise

〈skip, •〉 −→ •
〈case e of { inl x1 ⇒ c1; . . . }, •〉 −→ 〈c1, •[x1 7→ (v, τ1)]〉 [[e]]HL • = (inl v, sum(τ1, τ2))
〈case e of { . . . ; inr x2 ⇒ c2 }, •〉 −→ 〈c2, •[x2 7→ (v, τ2)]〉 [[e]]HL • = (inr v, sum(τ1, τ2))

〈case e of { . . . }, •〉 −→ • otherwise
〈x := e, •〉 −→ •[x 7→ [[e]]HL •]

〈reprcase e of
{ σ1x1 ⇒ c1; . . . ; σnxn ⇒ cn; } else c, •〉 −→ 〈ci, •[xi 7→ (v, T (t))]〉

where [[e]]HL • = (v, t)
and i = min match(σ1, . . . , σn, T (t))

〈reprcase e of { . . . } else c, •〉 −→ 〈c, •〉 otherwise
〈c1; c2, •〉 −→ 〈c′1; c2, •′〉 if 〈c1, •〉 −→ 〈c′1, •′〉
〈c1; c2, •〉 −→ 〈c2, •′〉 if 〈c1, •〉 −→ •′

〈crash; c, •〉 −→ ()
〈update n; c, •〉 −→ Un〈c, (mg, m` :: k), T, F 〉
〈return e, •〉 −→ mg, m`[$ret 7→ v] :: k, T, F

where v = [[e]]HL •
〈pop-frame x, mg, m

stale
` :: (m` :: k), T, F 〉 −→ m′g, m

′
` :: k, T, F

where (m′g, m
′
`) = (mg, m`)[x 7→ mstale

` ($ret)]
〈x := f(e), •〉 −→ 〈c; pop-frame x, mg, m

′
proto :: (m` :: k), T, F 〉

where F (f) = (xarg, mproto, c)
and mproto[xarg 7→ [[e]]HL •]

N
o
te

s

pop-frame is internal syntax to pop the activation frame of a function that has returned
$ret is a local variable which holds the return value
Un〈c, (mg, m` :: k), T, F 〉 is a reified configuration (see §5.7.2)

Figure 5.4: Operational semantics of HL commands.

83

84

Chapter 6

Information flow and
(de)compilation

In both dynamic software updating and dynamic instrumentation, the dependence of
future updates or instrumentation code on intermediate program execution states is a
limiting factor for static optimization. In Chapter 4, we used PERs to gauge the “in-
vasiveness” and potential optimization impact of instrumentation code, and similarly, at
the end of Chapter 5, we considered restricting allowable dynamic updates to enable more
aggressive static optimization. We showed that deoptimization can be used to lift or relax
some of the restrictions. Recall that deoptimization, originally due to Hölzle et al. [66], is
a program state transformation that reconstructs an unoptimized program state from an
optimized program state. In this chapter, which is more speculative than the preceding
ones, we frame a related problem, decompilation, in terms of information-flow security.
Recall (§2.1) that decompilation is the process of recovering the source code of a program
from its machine code. We will ignore the problem of disassembling machine code, i.e.
turning machine code into a human-readable assembly listing [79].

Optimizing compilation has a normalizing effect: many semantically equivalent but
syntactically distinct expressions are translated to the same assembly code. Therefore,
intuitively, the better the compiler is at its job, the more difficult it will be for an adversary
to recover the original source code. For instance, if the compiler implements constant
propagation and folding, an instruction like “MOV r0, 4” could correspond to a number
of source language phrases: e.g., assuming register r0 holds the value of variable x, we
could have “x:=4”, “x:=2+2” or “y:=5; x:=y-1”. We will assume that the source code
is a secret, but the machine code is made publicly available. The information flow from
the input source code to the output machine code is characterized by transformations the
compiler performs.

In the second part of the chapter, we look at a possible semantics for debug tables :
data generated by the compiler to help a debugger map from the optimized execution
state back to the source-level state.

Outline. In §6.1 we define what it means for a compiler to have secure information
flow. This view naturally accommodates randomized compilation [49] and gives a novel
perspective on superoptimization [83] as a security-enhancing transformation (§6.2). No
compiler for a Turing-complete language has zero information flow: this is a trivial result.
In §6.3, we consider translation from the previous chapter’s HLANF language to a stack
assembly language called SAL. We propose an operational model of debug tables as

85

“boundaries” between optimized (compiled) and unoptimized (interpreted) code. Related
work is discussed in §6.4, and §6.5 concludes.

6.1 Normalization and decompilation

For a compiler C from language L to language M (both Turing-complete), define the
kernel of C as the induced equivalence relation on L-programs1:

ker(C) = {(p, p′) | C(p) =α C(p′)} . (6.1)

Better-optimizing compilers are more normalizing and therefore have bigger kernels2.
Analyses that underlie optimizing program transformations are expected to be sound,
but, as a consequence of Rice’s theorem, they are almost never complete, so no perfectly
optimizing compilers for Turing-complete languages can exist: see, for example, p. 378
of Appel’s textbook [9]. Therefore, for any given C, it must be the case that ker(C) ⊂ ∼L
where ∼L is the observational equivalence relation on L-programs (note strict inclusion).
Most sensible compilers produce the same output for inputs that are equivalent up to
renaming, so therefore =α ⊆ ker(C).

A decompiler D (§2.1) is a translation from M back to L which recovers a program
semantically equivalent to the compiler’s input:

∀p ∈ L. (D ◦ C)(p) ∈ [p]∼L . (6.2)

Although decompilation can be thought of and implemented as “reverse compilation”, this
leads to trivial solutions: for example, D(p) = [[mix triv]](intLM , p) where mix triv is a trivial
specializer (§2.2) and intLM is an interpreter for the target language M written in the
source language L. In practice, decompilers exploit knowledge of the compiler’s internal
structure. However, even the best possible decompiler can only recover the original source
code up to the kernel relation of the compiler:

∀p ∈ L. (D ◦ C)(p) ∈ [p]ker(C) . (6.3)

Further selection between equivalent source programs should be left to the user, since the
decompiler’s choice will necessarily be arbitrary, reflecting the internal structure of the
decompiler rather than the program. Equations 6.2 and 6.3 have a natural interpretation
in terms of information-flow security which we examine below.

6.1.1 Motivation: non-interference and full abstraction

Non-interference is usually defined as zero information flow from high-security inputs to
low-security outputs. Suppose we partition the variables of a program into low-security
and high-security. Let =low be a be a binary relation on states such that s1 =low s2 iff the
low-security parts of s and s′ are the same:

s1 =low s2 iff ∀x. slow
1 (x) = v ⇐⇒ slow

2 (x) = v .

1Note that C ∈ |R| where R is the PER (ker(C)⇒ =α).
2We assume C is implemented on a finite machine, the set of input programs is finite and therefore

ker(C) is also finite.

86

The “observational power of an attacker” [112] is captured by a relation =att on program
results. For example, if the attacker is able to observe the low-security part of the output,
we would define =att to coincide with =low. Intuitively, an attacker should remain oblivious
to variations in high-security inputs. Non-interference for command c is defined as follows:

s1 =low s2 =⇒ ([[c]] s1) =att ([[c]] s2) . (6.4)

Full abstraction for language translations [1] expresses a similar idea to non-interference:
recall (§2.1.1) that a compiler C from L to M is fully abstract iff

e1 ∼L e2 ⇐⇒ C(e1) ∼M C(e2) (6.5)

where ∼L and ∼M are contextual equivalence relations over L and M . Abadi [1] notes
that the forward implication “means that the translation does not introduce information
leaks”. Let us rewrite Equation 6.4 and the forward implication of Equation 6.5 in PER
notation:

[[c]] : =low ⇒ =att C : ∼L ⇒ ∼M .

The correspondence ([[c]], =low, =att) ↔ (C, ∼L, ∼M) is immediate. Note that full ab-
straction concerns internal observations of the target language, whereas non-interference
usually deals with external observations. The distinction becomes less pronounced if the
target language can make very fine-grained observations. For example, if the target lan-
guage M has a Gödelizing context (see §2.4), then, without loss of generality, we can
represent a decompiler as an M -context, i.e. D[−] ∈ CtxM . Consider decompilation as
a form of attack in the sense of Equation 6.4: the low-security part of the compiler’s
input is the extensional (I/O) meaning of the program and the high-security part is the
program text. The relation =att encodes the degree of access that the attacker has to the
program’s machine code as well as the degree of sophistication of the attacker. Even if
direct access is not possible (e.g. the machine code is part of a tamper-proof embedded
system), the attacker may still be able to recover traces of individual program runs: for
example, Vermoen et al. [135] obtain the bytecode trace of a Java program by power anal-
ysis. Similarly, in most web applications, parts of the program reside on the web server,
while others run on the client. It is usually safe to assume that a would-be attacker cannot
scrutinize server-side code.

6.1.2 Secure information flow for a compiler

A program that obeys an information flow policy is said to have secure information flow.
A compiler C has secure information flow with respect to an adversary defined by =att iff

C : ∼L ⇒ =att . (6.6)

Less normalizing compilers are in principle more susceptible to attack. Assuming a de-
compiler that can distinguish all target programs, we instantiate =att to textual equality.
A compiler C has zero information flow iff

C : ∼L ⇒ =α . (6.7)

A compiler that has zero information flow leaks only the equivalence class of its input
programs: from the output of C an attacker can recover the original program to within a

87

semantic equivalence class. However, this requires a perfectly optimizing compiler C. We
conclude that no compiler can have zero information flow.

The power of the attacker lies in the kinds of program analyses and transformations
that decompiler is capable of performing. This can be rendered by substituting an ap-
propriate relation for =att: by definition, the compiler C can “withstand” an attacker
represented by the relation R as long as C : ∼L ⇒ R. The obvious downside of this
approach is its reliance on assumptions about the attacker3. Following Clark et al. [31],
given function f and a relation R over its co-domain, define the relation f−1(Q) (the
kernel of f with respect to R) as follows:

x f−1(R) x′ ⇐⇒ (f x) R (f x′) . (6.8)

Note that, by definition (Equation 6.1), ker(C) = C−1(=α) and so

p1 C−1(=α) p2 ⇐⇒ C(p1) =α C(p2) .

For a naive non-optimizing compiler, C−1(=α) coincides with =α. We are ultimately
interested in finding a characterization for the implicitly-defined relation C−1(R) given
an attacker relation R. However, defining R requires a relational model of decompilation
(describing which machine code fragments the decompiler considers to be equivalent),
rather than the more practical operational approach favoured in the literature. We leave
this to future work.

6.2 Applications

6.2.1 Superoptimization

Given a sequence of assembly instructions, “superoptimization” [83] finds, by exhaustive
search, the shortest sequence of instructions that has the same effect. Let sopt(·) be a
superoptimizer and let ∼term relate semantically equivalent straight-line terminating pro-
grams, then sopt : ∼term ⇒ =α. Massalin [83] notes that a superoptimizer frequently
comes up with sequences of instructions that exploit the instruction set of the target
machine in unexpected ways which a human programmer is unlikely to consider or im-
mediately comprehend. In this light, superoptimization could be thought of as a kind of
program obfuscation: a deliberate attempt to obscure the workings of the program.

6.2.2 Randomized compilation

Software diversity [49] techniques are used to counter this. Randomized compilation [32,
49] gives a measure of protection against software exploits. Much like with non-deterministic
encryption schemes, the idea here is to thwart learning by the adversary. Since each bi-
nary of a program compiled with a randomizing compiler is slightly different, knowledge
gained from another binary and hard-coded into the exploit becomes useless.

As a simplification, assume that an exploit either applies to a given program, causing it
to misbehave in some way, or fails to apply. An exploit implicitly defines a relation (=exp)
on binary programs which relates the intended target program ptgt only to itself and all
remaining programs to each other, i.e. ptgt =exp ptgt and p =exp p

′ for all p, p′ such that
p 6= ptgt and p′ 6= ptgt. This means that the equivalence class of ptgt is a singleton. Even

3Similar in spirit to the probabilistic-polynomial-time (PPT) restriction usually made in cryptography.

88

a minor change in the compilation process is enough to produce a sufficiently altered
program p′tgt outside the equivalence class. Of course, if the exploit targets a widely-
used library function, every program using the function is potentially vulnerable. Let
E ∈ prog → B be a function which attempts to apply an exploit to its argument program,
returning truth (tt) on success and falsity (ff) on failure. Then the exploit relation is
induced by E , i.e.:

p =E p
′ iff E(p) = E(p′) = tt

p =E p
′ iff E(p) = E(p′) = ff .

Compare randomized compilation with Joshi and Leino’s equational characterization
of non-interference [74]. Let HH be the “havoc on high” function that randomizes the
high-security portion of its argument. Non-interference for a program S is captured by
the following equation (where

·
= is semantic equivalence):

HH ; S; HH
·

= S; HH . (6.9)

The occurrences of HH on the right-hand side of S conceal the final values of high-
security variables. Intuitively, this means that the values of low-security outputs remain
the same when the high-security inputs are set to arbitrary values. If S does not have
any high-security outputs, we can rewrite the equation to

HH ; S
·

= S . (6.10)

For example, semantic “deadness” of a variable x can be expressed by letting HH ran-
domize the value of x. Assuming S implements a compiler, we let HH randomize the
program text (a high-security input) without changing its meaning: i.e. for an L-program

p, we have HH (p) ∼L p. For a compiler C such that HH ; C ·
= C, the effect of random-

izing compilation cannot be achieved by randomizing the input source code. Intuitively,
this is because the compiler is required to “undo” the randomizing rewrites. There is an
antagonism between normalization and randomization.

6.2.3 Adaptive compilation: a proposal

In an equational theory, expressions of a language are related at a particular type, i.e.
we say that “1 = 5 : bool” (read as “one is equal to five at type bool”), but, of course,
“1 6= 5 : int”. Benton [15] espouses this style of relational reasoning for program analyses
and transformations since whether (and how) a phrase may be optimized usually depends
on the surrounding context. Specifically, Benton notes that many optimizations are only
valid in a particular context; similarly, Benton and Zarfaty [17] stress the importance of
being able to “link soundly with code compiled from other high-level languages” as well
as “library routines that are written directly in a low-level language”. Recall (§2.1.1) that
expressions e and e′ are contextually equivalent (e ∼ e′) whenever

∀Ctx[−]. Ctx[e] ∼= Ctx[e′]

where Ctx[−] ranges over contexts of the language and ∼= is some observation (say, con-
vergence). Let us generalize the definition of zero information flow for a compiler C from
L to M from the previous section with respect to a particular M -context Ctx[−]:

C : ∼L ⇒ ∼Ctx[−] . (6.11)

89

〈|x|〉 = LOAD x
〈|v|〉 = IMM v

〈|e1 op e2|〉 = 〈|e1|〉; 〈|e2|〉; op
〈|x := e|〉 = 〈|e|〉; STORE x
〈|skip|〉 = NOP

〈|if a then c1 else c2|〉 = 〈|a|〉; JZ `; 〈|c1|〉; JMP `′; :̀ 〈|c2|〉; `′:
〈|while a do c|〉 = :̀ 〈|a|〉; JZ `′; 〈|c|〉; JMP `; `′: where `, `′ fresh.

〈|c1; c2|〉 = 〈|c1|〉; 〈|c2|〉
〈|out a1, . . . , an|〉 = OUT a1, . . . , an

Figure 6.1: Translation from HLANF to SAL.

Writing e ∼Ctx[−] e
′ simply means that Ctx[e] ∼= Ctx[e′]. Expanding Equation 6.11 gives:

∀e, e′. e ∼L e′ =⇒ Ctx[C(e)] ∼= Ctx[C(e′)] .

If we view contexts as types, the original definition is polymorphic in the sense that we
quantify over all possible types/contexts. In a compositional semantics, the meaning of a
phrase depends solely on the meanings of its sub-phrases, i.e. the result of the translation
is independent of any possible surrounding M -context. A natural question to ask is
whether, in compilation, the translation should be parameterised by the target context,
allowing the compiler to adapt its optimization effort to the attacker’s capabilities. In
some respects this is already the case in practice, since command-line options (like GCC’s
-fomit-frame-pointer) change the output of the compiler in a way that is observable
with a debugger. However, to our knowledge, this behaviour is not formalised to any
extent, and accounts in the literature assume, as we have until now, that a compiler is
simply a function from source programs to target programs.

6.3 An operational view of debug tables

SAL is a stack assembly in the spirit of Java bytecode or PostScript, with syntax shown
below; we omit the straightforward semantics.

insn ::= IMM val | DUP | POP | op | LOAD var | STORE var | JZ lbl | JMP lbl | NOP
prog ::= insn?; OUT triv 1, . . . , trivn where triv ::= val | var .

We leave the base type of values unspecified. The OUT instruction outputs the values
of its arguments—which can be either variables or immediate values—at the end of the
program run; for a variable argument, it can be thought of as declaring the variable live.
The translation from HLANF (a generic first-order imperative language from §5.7.2) to SAL
is shown in Figure 6.1. For simplicity, we assume that HLANF and SAL share the same
base type of values and support the same family of operators. The translation is naive
(sometimes known as “compilation by macro-expansion”), and optimization is possible
both in the front- and back-end of the compiler. We will consider constant propagation
in HLANF and replacement of repeated LOADs with a DUP (a peephole rewrite) in SAL.
The optimizations add debug information to their output which includes a mapping from
assembly to source line number as well as debug tables. A debug table entry usually takes
the form of a triplet: a variable, function or type name, metadata (e.g. variable x is

90

stored in register r0) and the scope of the entry. Our particular design for debug tables
is described below.

Consider the program “x:=7; if x then y:=12 else y:=13; out y;”. Following
constant propagation, the assignment x:=7 becomes dead, and so we have:

{x:7}
IMM 7; JZ ff; -- if x

IMM 12; STORE y; -- then y:=12

JMP done

ff: IMM 13; STORE y; -- else y:=13

done: OUT y -- out y

In the example above, the debug table {x:7} consists of the single entry x:7 which gives

the value of x at that point in the program. The notation x:? is used when the value of
x cannot be statically determined; the notation x:y means that variable x contains the
value of some other variable y. The contents of the stack can also optionally be described
by treating stack locations as pseudo-variables with names beginning with the letter “s”,
e.g. s0:42 means that the top of the stack contains the literal value 42, and s1:z means
that the first element from the top holds the value of variable z.

Note that the translation in Figure 6.1 preserves variables names: an HLANF variable
x is mapped to a SAL variable x. After removing the dead else-branch and propagating
the value of y to the out instruction, we have:

{x:7, y:12} ; OUT 12;

Debug tables of this kind are traditionally seen as passive and declarative: they constitute
additional information that may be interpreted by a debugger or a program comprehension
tool. Here, we suggest an alternative operational interpretation.

6.3.1 Language boundaries

In many ways the effect of debug tables is similar to deoptimization at update points
(§5.7.2). Unsurprisingly, the semantics of simple table entries—entries of the form x:v —
can be defined as a relation over values, with the semantics of the whole table built up in
the usual way (as a map from variable names and stack positions to relations over values).
Let xi range over variable names and stack locations, then

[[{x1:v1, x2:v2, . . . , xn:?}]] = {x1 7→ Eq(v1), x2 7→ Eq(v2), . . . , xn 7→ All} .

So, for example, [[{x:7}]] = {x 7→ Eq(7)} and [[{x:?, y:12}]] = {x 7→ All , y 7→
Eq(12)}. However, entries like s0:x do not define a relation between two states in any
obvious way but rather supply auxiliary information showing where on the stack the value
of a given variable may be found. The trick is to define s0:x as a relation over an abstract

state, i.e. program state under an abstract interpretation: {s0:x} = {0 7→ Eq(x)}.
We have already come across the idea of language boundaries in §4.4 and §5.3.2.

Suppose that we now want to mix execution of optimized SAL code and naively-compiled
HLANF code; in this setup, a debug table becomes the boundary where execution can
transfer between SAL and HLANF. Consider the table {x:7, y:12} in the example
above: intuitively, it encodes the pre-conditions for the optimizations that were performed
by the compiler. Any HLANF or SAL code can be spliced at the site of the debug table
so long as, on exit, x can be assumed to contain 7 and y the value 12. Now, suppose we
have the following SAL code for the command x:=x+x:

91

LOAD x; {s0:x} ; DUP; {s0:x, s1:x} ; ADD; {s0:x} ; STORE x;

Intuitively, each table defines a mapping from the SAL program state to an HLANF pro-
gram state. The table is sufficient to generate prologue and epilogue “thunks” to be
inserted at the point of the debug table: the thunks map from the optimized to the un-
optimized program state (prologue) and back (epilogue). The prologue can be thought of
as a de-instrumentation (§4.1.2) or a de-optimization (§5.7.2) function, but here, rather
than being meta-language operations, the implementation is in SAL. For example, con-
sider splicing the command x:=4 just before the ADD in the example above: the pro-
logue, body code and epilogue are, respectively, “LOAD x; POP;”, “IMM 4; STORE x;”
and “LOAD x; DUP;”. Thus, a debug table can be thought of as defining a calling con-
vention between optimized and unoptimized code.

6.4 Related work

Shamir and van Someren [117] suggested that

“Given suitable tools we can present the [cryptographic] key as a constant
in the computation which is carried out using that key and then we can op-
timise the code given that constant. This will cause the key to be intimately
intertwined with the code which uses it.”

The last sentence above we find particularly intriguing: to what extent is data “intimately
intertwined with the code” by optimizing compilation? Though we are not aware of any
existing work on information-flow security for program transformations, several authors
have published on closely-related problems. Recent work by Dalla Preda and Giacobazzi
[33] on shows that program obfuscation and program optimization are related phenomena.

It is well-known in folklore that low-level languages are more difficult to analyse than
higher-level language. Logozzo and Fähndrich [81] describe a “precision loss” when
analysing low-level bytecode versus source code, but existing literature on decompila-
tion [6, 26, 30, 75, 86, 92, 58] tends to focus on specific techniques likely to be effective
in practice as opposed to the fundamental limitations of decompilers.

We are also not aware of any formal account of the uses (and, more importantly, lim-
its) of dynamic analysis—which instrumentation enables—for reverse engineering. Dalla
Preda et al. [34] proposed a theoretical framework for the obfuscation vs. static analysis
arms race. The observational power of the attacker attempting to reverse-engineer an
obfuscated binary is determined by the static analyses at the attacker’s disposal.

6.5 Conclusions

We have considered a notion of non-interference for compilers. The normalizing behaviour
of optimizing compilers fits neatly into a model of information flow based on partial equiv-
alence relations. It is immediate that any compiler for a Turing-complete language leaks
more than just the equivalence class of its input programs. Decompilation—a translation
which recovers the source of a program given its binary—provided a motivating exam-
ple. In future work, we also plan to investigate application of information-flow security
to program transformations used in software protection, such as obfuscation [13] and
watermarking.

92

We have implicitly assumed that the attacker is interested in recovering the original
source program. In practice, however, this is rarely the case: an attacker would be con-
tent with any “readable” source program. In their work on optimizing compilation, Tate
et al. [130] introduced the Program Expression Graph (PEG), an intermediate program
representation that captures equivalences between programs. Compiler passes “saturate”
the PEG with equalities, before a final selection is made based on a “profitability heuris-
tic”. This appears to be a sensible approach to decompilation as well: the “profitability
heuristic” is readability and the final selection can be deferred to the user (equipped with
a PEG manipulation tool).

Many non-trivial programs are language processors. Indeed, it was shown4 that send-
mail rewriting rules are Turing-complete! We conjecture that work on information-flow
security for program transformations and translations could be applicable to many other
kinds of programs.

4http://okmij.org/ftp/Computation/index.html#sendmail-Turing

93

94

Chapter 7

Conclusions and further work

The main contributions of this dissertation are: (i) a unified approach to efficiency in
hardware virtualization and program instrumentation, based on Jones optimality, (ii)
a scheme for static optimization of dynamically instrumented and dynamically updated
programs by constraining the dependence of future instrumentation or updates on inter-
mediate program states, and (iii) a semantic exposition of con-freeness, Stoyle et al.’s
safety property for dynamically updatable software. We do not see these problems in
isolation but as different facets of the concept of interpretational overhead.

Outline. In this chapter, we revisit the key themes of the dissertation (§7.1, §7.2 and
§7.3) and suggest directions for future work (§7.4).

7.1 Common-case performance

Good performance is critical for many kinds of low-level software. Many such systems—
hardware virtualization, program instrumentation and dynamic software updating among
others—are most directly understood in terms of non-standard interpretation. For ex-
ample, the similarity between the operation of a VMM and an instrumented interpreter
are apparent: both alter the meaning of specific language phrases. Several performance
requirements have been proposed for system software, but both the formal criterion for
VMMs due to Popek and Goldberg [102], and the informal assurance given by Cantrill
et al. [22] for their DTrace instrumentation framework emphasize the common case:

Application Common case

Virtualization Execution of unprivileged instructions
Program instrumentation Instrumentation is disabled
Dynamic software updating No updates are applied

For a VMM, execution of unprivileged instruction is the common case, whereas privileged
instructions occur rarely in reasonable programs, so it is acceptable to penalise execution
of privileged instructions if this leads to better performance for the rest. Similarly, it is
reasonable to make the process of adding and removing instrumentation or applying a
dynamic software update costly, if this improves performance in the common case. The
non-standard interpretation matches the standard one most of the time, and therefore
we would like to maximally exploit the hardware which was built with the standard
interpretation in mind.

95

7.2 Indirection without a performance penalty

There is arguably little difference between a language and a programming interface of a
library or the system call interface of an operating system kernel: indeed, domain-specific
languages are frequently designed to enforce the usage requirements of a programming
interface (e.g. open must be called before close). This similarity is especially apparent
with the aid of the context threading table (CTT), a program representation used by
context-threaded interpreters [18] (see 3.2), which substitutes instructions in the program
with calls to interpreter routines that implement those instructions:

AL code CTT (Operands)

MOV r1, 3 CALL doMOVri 1, 3

ADD r2, r1, 5 CALL doADDrri 2, 1, 5

OUT <0>, r2 CALL doOUTir 0, 2

A collection of do procedures constitutes the programming interface of an interpreter.
Therefore, a CTT can be thought of simply as client code, making use of this interface,
or, alternatively, as a domain-specific embedded language (DSEL): not a separate language
in its own right, but rather a “sub-language” of the host (AL, in this case) whose programs
have a particular structure. In host languages with more sophisticated type systems, this
structure can often be enforced with types, as in the printf typing example in §2.1.2.
Engler et al. [40] similarly use programmer-written compiler extensions to enforce domain-
specific constraints in system code. However, the focus in the literature has been primarily
on correctness rather than performance guarantees.

In practice, a programming language is intimately tied to its optimizing compiler. Ab-
straction features in high-level languages (virtual dispatch, function pointers) are often
perceived as costly, because in many cases they impede optimization. Indeed, program-
mers are liable to avoid using these features, to the detriment of readability, code quality
etc. However, the programmer’s intuitions and expectation about the compiler’s abil-
ity to, e.g., optimize virtual calls into static calls, are borne out of experience rather
than any formal assurance. Veldhuizen and Lumsdaine [134] came up with the idea of
guaranteed optimization: the compiler promises that some abstraction mechanisms are
“free”, i.e. the indirection is always optimized away. Since a non-standard interpretation
introduces a layer of indirection, we can draw a parallel from this line of work to ours.
The common-case requirements that have been proposed—by Popek and Goldberg and
Cantrill et al.—stipulate that the overhead of indirection must be eliminated, whether by
optimization (as in binary translation VMMs) or through additional hardware support.
Documentation for the VProbes [136] instrumentation framework uses the telling phrase
“free when disabled”. Serendipitously, this is very much in the spirit of the Jones opti-
mality criterion in partial evaluation. Recall from Chapter 2 that a program specializer
is called Jones-optimal if it is capable of removing a layer of interpretational overhead
completely:

∃sint . ∀p. [[mix]](sint , p) =α p .

In other words, if we have a Jones-optimal specializer, we can introduce a layer of interpre-
tation for “free” as long as we use a self-interpreter that does not implement any custom
behaviour like, for example, instrumentation (the “disabled” case). We have generalised
and extended the definitions to handle partial removal of overhead (“most of the time”):
remember that a VMM must still emulate some instructions.

96

7.3 Architectural support motivated by optimization

Programming language design is often dictated by architectural constraints of the target
machine. Conversely, machine designs and instruction sets expand to provide better sup-
port for important language features: for example, virtualization extensions, Transmeta’s
Code Morphing [78] technology and branch-prediction buffers all provide hardware sup-
port for non-standard interpretation, albeit in slightly different ways. Co-evolution of
language and machine is clearly beneficial to the end-user (at least in terms of raw perfor-
mance improvement) but does not necessarily lead to an optimal design for either language
or machine in the long run: seen as an optimisation process, it is more likely to lead to a
local rather than a global maximum. In the functional programming languages commu-
nity there is a tradition of deriving abstract machines from the semantics of a higher-level
language [35, 7] and we have attempted to emulate this approach in several places in
this dissertation (§3.2, §4.3.2, §4.4) to recover trap-and-emulate support, breakpoints and
super-instructions from a more basic setup.

7.4 Further work

There are two broad areas of further work that follow on naturally from this dissertation.

First, modern runtime environments use a mixture of interpretation and direct exe-
cution. This includes emulators, language virtual machines (like the JVM or .NET), in-
strumentation and runtime verification tools, and virtual machine monitors. However, we
believe that semantics and, perhaps more importantly, the design, of low-level languages
(and low-level domain-specific languages) is an area that has not received sufficient atten-
tion. As an example of a worthwhile goal, consider a dedicated typed assembly language,
with support for program staging, specifically intended for writing virtual machines. Cru-
cially, the compiler, aware of the meaning of the special primitives in the language, can do
a better job at optimizing the resulting code. For communication-centric hardware, the
devices are as much part of the language as the CPU. The meaning of an IN r1, <42> in-
struction depends on what device is attached to I/O port 42. Indeed, it is not uncommon
to have a processor on-board a system device that is no less important than the CPU:
e.g. GPUs, specialised network and RAID processors, FPGAs and even general-purpose
CPUs (on the SunPCi series of x86 coprocessor cards1).

Virtualization, instrumentation and sandboxing are all special cases of a general class
of systems that function by “slightly” modifying the way a program is executed. Im-
plementation of such tools is especially challenging (see e.g. [109, 99, 150]) on x86 pro-
cessors due to presence of self-modifying code (von Neumann vs. Harvard architecture)
exacerbated by a CISC instruction set (vs. fixed-length encoding RISC), where merely
disassembling the binary is a difficult problem due to possibly-overlapping instruction se-
quences. At the same time, hardware support for non-standard interpretation of this kind
is meagre and, where it exists at all, is highly specialised: such as, for example, Intel’s VT
virtualization assists [97] (or even Virtual 8086 mode!). Indeed, some opcodes are already
executed differently depending on the mode the machine is in: 32-bit vs. 64-bit mode
or real vs. protected mode. Virtualization assists and single-step execution support are
point solutions to the general problem of providing hardware support for non-standard
interpretation. Unified architectural support for non-standard interpretation has many

1http://www.sun.com/desktop/products/sunpcipro/

97

http://www.sun.com/desktop/products/sunpcipro/

benefits over and above that of simplifying implementation of debuggers, virtual machines
and other similar tools.

98

Appendix A

Notation

MOV AL instruction (§2.3)
x variable
e expression
c command
p program
t IL script (§4.1)
I(t) AL interpreter with instrumentation according to t
v value
s state
pc program counter (instruction pointer)
k continuation
=α α-equivalence
∼L a semantic equivalence relation for language L
Ctx[−] a one-hole context (§2.1.1)
[[·]]L valuation function for L
I[[·]]L instrumented valuation function for L (§2.6)
intLM interpreter for M written in L (§2.2)
sintL self-interpreter for L
mix partial evaluator
C, D compiler and decompiler
P, Q, . . . partial equivalence relations (PERs) over X, Y, . . . (§2.7)
P ×Q PER over X × Y
P +Q PER over X + Y
P ⇒ Q PER over X → Y

99

100

Appendix B

Applications of PERs

B.1 Types

A semantics of types is said to be extrinsic if it is defined over an untyped model of the lan-
guage1. One approach is to interpret types as PERs over the universal domain. This works
for both the simply-typed and polymorphic λ-calculi among others—see Gunter’s [61, pp.
266 and 374] and Reynolds’ [106, pp. 327 and 390] textbooks for details. We will briefly
recap the simply-typed case here: suppose we have types τ ::= unit | int | bool | τ → τ and
a call-by-value pre-CPO V ∼= 1 + Z + (V → V⊥). With injections omitted, the meaning
[[τ]] of a type τ is a PER on V defined as follows:

[[unit]] = {((), ())}
[[int]] = IdZ

[[bool]] = {(z, z′) | z 6= 0 and z′ 6= 0} ∪ {(0, 0)}
[[τ1 → τ2]] = [[τ1]]⇒ [[τ2]]⊥.

The denotation of an expression e is [[e]] ∈ Env → V⊥ where Env = Var → V is
the CPO of variable environments. Two environment ρ, ρ′ ∈ Env are related under a
typing context Γ, written ρ ∼Γ ρ′, iff ∀x ∈ dom Γ. ρ(x) [[Γ(x)]] ρ′(x). An equational
typing judgement Γ ` e = e′ : τ is valid iff [[e]] (∼Γ ⇒ [[τ]]) [[e′]]. A relational semantics
of types is more directly useful to the compiler writer than a syntactic type discipline
with a “progress and preservation” result. To see why, consider that the expression e1 =
λx.if x > 0 then 42 else 0 can replaced by e2 = λx.x in a program context where its
value is used as a boolean but not when it is used as an integer. This is directly reflected
in the PER semantics: in any typing context Γ the two expressions are equivalent at type
int → bool, i.e. Γ ` e1 = e2 : int → bool, but not at int → int. It is also worth pointing
out now that PERs which are not interpretations of any of the types in the language are
often the more interesting ones: e.g. True = {(z, z′) | z > 0 and z′ > 0}. For instance,
[[e1]] (∼Γ ⇒ (True ⇒ [[int]])) [[λx.42]], so in a program context where we know that x is
true (say, “e1 7”) the if -expression is semantically equivalent to its then-branch.

For polymorphic calculi, Wadler demonstrated the utility of Reynolds’ abstraction the-
orem [105] in “Theorems for Free!” [138]. In a nutshell, expressions inhabiting a particular
type obey certain algebraic laws the validity of which can be proved using the relational
semantics of the type alone. The same approach works equally well in an imperative
setting2. Benton [15] built an equational theory to support proofs of optimizing program

1Versus intrinsic where the language only assigns meaning to well-typed terms.
2And why shouldn’t it? The meta-language (continuous functions over CPOs) is still the same.

101

transformations on top of a relational semantics for a While language. In the same paper,
Benton also introduces relational Hoare logic. Recall that, in Hoare logic,

[[{p} c {q}]] = ∀s ∈ State. [[p]] s =⇒ ([[c]] s = ⊥ ∨ [[q]] ([[c]] s))

where s ∈ State is a state, [[p]], [[q]] ∈ s → B the meanings of pre- and post- conditions p
and q respectively, and [[c]] ∈ s→ s⊥ the denotation of command c. For some given p and

q we can construct relations P
def
= {(s, s′) | [[p]] s ∧ [[p]] s′} and Q (analogously), and see

that {p} c {q} iff [[c]] : P ⇒ Q⊥.

So far we have looked at cases where use of PERs—to give a “static semantics on
steroids”—is convenient but not essential. Milner famously noted that “well-typed pro-
grams don’t go wrong”. The traditional approach is then to define “wrong” as a stuck
state in the dynamic semantics of the language and prove a syntactic “progress and
preservation” theorem that guarantees that no well-typed program ever gets stuck. A
type system like this captures a safety property that corresponds to a set of program
traces and can be enforced by an execution monitor. Volpano [137] and Schneider et al.
[115] show that secrecy cannot be defined in this way. Indeed secrecy is just one example
of a host of similar properties all of which share a notion of dependency. Abadi et al.
[4] developed the Dependency Core Calculus (DCC) as a common language capable of
expressing all of these. The semantics of DCC is given in a category where the objects
are CPOs and relations over them and a morphism f : A→ B must be in the domain of
(RA ⇒ RB).

B.2 Non-interference

In information-flow security, non-interference is usually defined as as zero information
flow from high-security inputs to low-security outputs. Let c be a command and s1, s2

be starting states consisting of bindings for low- and high-security variables. Let [[·]] :
State → State⊥ be the evaluation function. Non-interference is satisfied whenever

s1 P s2 =⇒ [[c]] s1 Q [[c]] s2 (B.1)

where two states are equivalent up to P when their low-security parts are equal. The
relation Q captures the “observational power of an attacker” [112]. Sabelfeld and Sands
[113] gave a presentation of non-interference in terms of PERs (including non-deterministic
information flow using PERs over power-domains) and formalized its relationship to Joshi
and Leino’s [74] equational characterization (§6.2.2). For example, let [[c]] : (Z × Z) →
(Z × Z)⊥ where the first element of each pair is the value of the single low-security
variable and the second element the value of the high-security variable. Then c has zero
information flow iff

[[c]] : (Id × All)⇒ (Id × All)⊥ .

Hunt and Mastroeni [69] compare the PER model of non-interference to abstract non-
interference of Giacobazzi and Mastroeni [55], which is a generalization of non-interference
based on abstract interpretation.

102

B.3 Static analyses

We will describe the use of CPO projections and PERs for formalizing strictness and
binding-time analyses. Recall that a continuous function α : D → D on a CPO D is

a retraction iff α ◦ α = α,
a projection iff α ◦ α = α and α v idD .

Given a function f = [[e]], a denotation of some expression e, the goal of projection (or
context) analysis is to solve the equation α ◦ f ◦ β = α ◦ f for projections α and β. The
intuition here is that β describes the way f uses its arguments in a context α. The idea is
due to Wadler and Hughes [142] who first applied it to strictness analysis: recall that, in
a lazy language, an expression e is said to be “strict” in its (sole) argument iff [[e]] ⊥ = ⊥.
Hunt [68] showed that PERs subsume projections for strictness analysis.

Let e be an expression with type τ1 → . . .→ τn. Each formal argument to e is further
annotated with S (for “static”) or D (for “dynamic”). A binding-time analysis (BTA)
determines whether the value of e is independent of the values of its dynamic arguments.
For example, let e = λx : intS. λy : intD. x and note that ∀x. ∀y, y′. e x y = e x y′, that
is, e : IdZ ⇒ AllZ ⇒ IdZ. Hunt and Sands [70] observed the correspondence between Id
and static arguments and All and dynamic ones and gave a PER semantics to an abstract
interpretation for binding-time analysis. A concretisation map at type τ , γτ , assigns to
each point a in the abstract domain a PER D#

τ over the concrete domain Dτ . Soundness
is expressed as:

[[e]]# a1 . . . an = b =⇒ [[e]] : γτ1(a1)⇒ . . .⇒ γτn(an)⇒ γτ (b) .

For instance, the PER corresponding to the top (dynamic) element of D#
int→int is AllDint→int

,
whereas that for the bottom (static) is AllDint

⇒ IdDint
.

The authors also note the similarity of binding-time analysis to live variable analysis,
a classical data flow analysis [100] usually presented as a backwards analysis: given a set
of variables that are live at the end of the program (observable outputs), the analysis
determines, for every statement, a conservative approximation of the set of variables that
are live at the end of it. Suppose we restrict the state of our programs to two integer
variables: [[·]] ∈ Z× Z → (Z× Z)⊥. When c terminates the first variable will contain its
output. The second variable is auxiliary and we do not care about its value, so we can
optimize c to c′ as long as [[c]] (IdZ ⇒ (IdZ × AllZ)⊥) [[c′]].

103

104

Bibliographical abbreviations

APLAS Asian Symposium on Programming Languages and Systems
ASPLOS International Conference on Architectural Support for

Programming Languages and Operating Systems
CC International Conference on Compiler Construction
CGO Symposium on Code Generation and Optimization
ECOOP European Conference on Object-Oriented Programming
ENTCS Electronic Notes in Theoretical Computer Science
ESOP European Symposium on Programming
FPCA Conference on Functional Programming Languages and Computer Architecture
HotOS Workshop on Hot Topics in Operating Systems
ICALP International Colloquium on Automata, Languages and Programming
ICFP International Conference on Functional Programming
LFP ACM Conference on LISP and Functional Programming
LICS Symposium on Logic in Computer Science
LNCS Lecture Notes in Computer Science
OOPSLA Conference on Object-Oriented Programming Systems,

Languages, and Applications
OSDI Symposium on Operating Systems Design and Implementation
PEPM Symposium/Workshop on Partial Evaluation and

Semantic-Based Program Manipulation
PLDI Conference on Programming Language Design and Implementation
POPL Symposium on Principles of Programming Languages
PPDP International Conference on Principles and Practice of Declarative Programming
SAS Static Analysis Symposium
SOSP Symposium on Operating System Principles
TOPLAS Transactions on Programming Languages and Systems
VEE International Conference on Virtual Execution Environments

105

106

Bibliography

[1] Mart́ın Abadi. Protection in programming-language translations. In Proceedings of
ICALP, volume 1443 of LNCS, pages 868–883. Springer, 1998.

[2] Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon Plotkin. Dynamic typing
in a statically typed language. TOPLAS, 13(2):237–268, 1991.

[3] Mart́ın Abadi, Luca Cardelli, Benjamin C. Pierce, and Didier Rémy. Dynamic typing in
polymorphic languages. Journal of Functional Programming, 5(1):111–130, 1995.

[4] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In Proceedings of POPL, pages 147–160. ACM, 1999.

[5] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for x86
virtualization. In Proceedings of ASPLOS, pages 2–13. ACM, 2006.

[6] Mads Sig Ager, Olivier Danvy, and Mayer Goldberg. A symmetric approach to compilation
and decompilation. In The Essence of Computation, volume 2566 of LNCS, pages 296–331.
Springer, 2002.

[7] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From interpreter
to compiler and virtual machine: A functional derivation. Technical Report RS-03-14,
BRICS, March 2003.

[8] Tristan O. R. Allwood, Simon Peyton Jones, and Susan Eisenbach. Finding the needle:
stack traces for GHC. In Proceedings of ACM Symposium on Haskell, pages 129–140.
ACM, 2009.

[9] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press,
1998.

[10] Andrew W. Appel. Foundational proof-carrying code. In Proceedings of LICS. IEEE
Computer Society, 2001.

[11] Jeff Arnold and M. Frans Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proceedings of EuroSys, pages 187–198. ACM, 2009.

[12] Lennart Augustsson. Cayenne — a language with dependent types. In Proceedings of
ICFP, pages 239–250. ACM, 1998.

[13] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Proceedings
of the International Cryptology Conference, volume 2139 of LNCS, pages 1–18. Springer,
2001.

107

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of SOSP, pages 164–177. ACM, 2003.

[15] Nick Benton. Simple relational correctness proofs for static analyses and program trans-
formations. In Proceedings of POPL, pages 14–25. ACM, 2004.

[16] Nick Benton. Embedded interpreters. Journal of Functional Programming, 15(4):503–542,
2005.

[17] Nick Benton and Uri Zarfaty. Formalizing and verifying semantic type soundness of a
simple compiler. In Proceedings of PPDP, pages 1–12. ACM, 2007.

[18] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke Brown. Context
threading: A flexible and efficient dispatch technique for virtual machine interpreters. In
Proceedings of CGO, pages 15–26. IEEE Computer Society, 2005.

[19] Gavin M. Bierman, Michael W. Hicks, Peter Sewell, Gareth Stoyle, and Keith Wans-
brough. Dynamic rebinding for marshalling and update, with destruct-timeλ. In Proceed-
ings of ICFP, pages 99–110. ACM, 2003.

[20] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level facilities of
object-oriented programming languages. In Proceedings of OOPSLA, pages 331–344. ACM,
2004.

[21] Prashanth P. Bungale and Chi-Keung Luk. PinOS: a programmable framework for whole-
system dynamic instrumentation. In Proceedings of VEE, pages 137–147. ACM, 2007.

[22] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumentation
of production systems. In Proceedings of the USENIX Annual Technical Conference, pages
15–28. USENIX Association, 2004.

[23] L. Cardelli. Phase distinctions in type theory. Manuscript, 1988. http://lucacardelli.
name/Papers/PhaseDistinctions.pdf.

[24] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially eval-
uated: tagless staged interpreters for simpler typed languages. Journal of Functional
Programming, 19(5):509–543, 2009.

[25] Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of PLDI, pages 278–292.
ACM, 1991.

[26] Bor-Yuh Evan Chang, Matthew Harren, and George C. Necula. Analysis of low-level
code using cooperating decompilers. In Proceedings of SAS, volume 4134 of LNCS, pages
318–335. Springer, 2006.

[27] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew. Live updating
operating systems using virtualization. In Proceedings of VEE, pages 35–44. ACM, 2006.

[28] Anton Chernoff and Ray Hookway. DIGITAL FX!32: Running 32-bit x86 applications
on Alpha NT. In Proceedings of the USENIX Workshop on Windows NT, pages 9–16.
USENIX Association, 1997.

[29] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis
of string expressions. In Proceedings of SAS, volume 2694 of LNCS, pages 1–18. Springer,
2003.

108

http://lucacardelli.name/Papers/PhaseDistinctions.pdf
http://lucacardelli.name/Papers/PhaseDistinctions.pdf

[30] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to high-level language
translation. In Proceedings of the International Conference on Software Maintenance,
pages 228–237. IEEE, 1998.

[31] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative information flow,
relations and polymorphic types. J. Log. Comput, 15(2):181–199, 2005.

[32] Frederick B. Cohen. Operating system protection through program evolution. Computers
& Security, 12(6):565–584, 1993.

[33] Mila Dalla Preda and Roberto Giacobazzi. Semantic-based code obfuscation by abstract
interpretation. In Proceedings of ICALP, volume 3580 of LNCS, pages 1325–1336. Springer,
2005.

[34] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya K. Debray. A
semantics-based approach to malware detection. In Proceedings of POPL, pages 377–388.
ACM, 2007.

[35] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. Technical Report
RS-03-33, BRICS, October 2003.

[36] Olivier Danvy and Pablo E. Mart́ınez López. Tagging, encoding, and Jones optimality. In
Proceedings of ESOP, volume 2618 of LNCS, pages 335–347. Springer, 2003.

[37] Søren Debois. Imperative-program transformation by instrumented-interpreter specializa-
tion. Higher-Order and Symbolic Computation, 21(1-2):37–58, 2008.

[38] David Detlefs and Ole Agesen. Inlining of virtual methods. In Proceedings of ECOOP,
volume 1628 of LNCS, pages 258–278. Springer, 1999.

[39] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about it. In
Proceedings of the International Conference on Embedded Software, pages 255–264. ACM,
2008.

[40] Dawson R. Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In Proceedings of OSDI,
pages 1–16. USENIX Association, 2000.

[41] M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In Proceedings of PLDI, pages 278–288. ACM, 2003.

[42] Boris Feigin and Alan Mycroft. Decompilation is an information-flow problem, 2008. URL
http://clip.dia.fi.upm.es/Conferences/PLID08/slides/boris.pdf. Presented at
the International Workshop on Programming Language Interference and Dependence, Va-
lencia, Spain.

[43] Boris Feigin and Alan Mycroft. Jones optimality and hardware virtualization: a report
on work in progress. In Proceedings of PEPM, pages 169–175. ACM, 2008.

[44] Peter Ferrie. Attacks on virtual machine emulators. Symantec Advanced Threat
Research, 2006. URL http://www.symantec.com/avcenter/reference/Virtual_

Machine_Threats.pdf.

[45] Robert Bruce Findler and Matthias Blume. Contracts as pairs of projections. In Proceed-
ings of the International Symposium on Functional and Logic Programming, volume 3945
of LNCS, pages 226–241. Springer, 2006.

109

http://clip.dia.fi.upm.es/Conferences/PLID08/slides/boris.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf

[46] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Proceedings of ICFP, pages 48–59. ACM, 2002.

[47] Stephen J. Fink and Feng Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In Proceedings of CGO, pages 241–252. IEEE
Computer Society, 2003.

[48] Cormac Flanagan. Hybrid type checking. In Proceedings of POPL, pages 245–256. ACM,
2006.

[49] Stephanie Forrest, Anil Somayaji, and David H. Ackley. Building diverse computer sys-
tems. In Proceedings of HotOS, pages 67–72. IEEE Computer Society Press, 1997.

[50] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without metaphysics. In
Proceedings of LFP, pages 348–355. ACM, 1984.

[51] Michael Furr and Jeffrey S. Foster. Checking type safety of foreign function calls. In
Proceedings of PLDI, pages 62–72. ACM, 2005.

[52] Michael Furr and Jeffrey S. Foster. Polymorphic type inference for the JNI. In Proceedings
of ESOP, volume 3924 of LNCS, pages 309–324. Springer, 2006.

[53] Johan Gade and Robert Glück. On Jones-optimal specializers: A case study using Unmix.
In Proceedings of APLAS, volume 4279 of LNCS, pages 406–422. Springer, 2006.

[54] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility is not
transparency: VMM detection myths and realities. In Proceedings of HotOS. USENIX
Association, 2007.

[55] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: parameterizing
non-interference by abstract interpretation. In Proceedings of POPL, pages 186–197. ACM,
2004.

[56] Robert Glück. The translation power of the Futamura projections. In Perspectives of
Systems Informatics, volume 2890 of LNCS, pages 133–147. Springer, 2003.

[57] Mayer Goldberg. Gödelization in the lambda calculus. Inf. Process. Lett, 75(1-2):13–16,
2000.

[58] Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla. Improving the decompilation
of Java bytecode to Prolog by partial evaluation. ENTCS, 190(1):85–101, 2007.

[59] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability
through mirrors and contracts. In Proceedings of OOPSLA, pages 231–245. ACM, 2005.

[60] David Gries. Compiler Construction for Digital Computers. John Wiley, 1971.

[61] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques. Foun-
dations of Computing Series. The MIT Press, 1992.

[62] Robert Harper and J. Gregory Morrisett. Compiling polymorphism using intensional type
analysis. In Proceedings of POPL, pages 130–141. ACM, 1995.

[63] William L. Harrison and Samuel N. Kamin. Modular compilers based on monad trans-
formers. In Proceedings of the International Conference on Computer Languages, pages
122–131. IEEE, 1998.

110

[64] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-flow
policies. In Proceedings of the Workshop on Foundations of Computer Security, 2005.
URL http://www.cse.chalmers.se/~andrei/FCS05/.

[65] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating.
In Proceedings of PLDI, pages 13–23. ACM, 2001.

[66] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with dynamic
deoptimization. In Proceedings of PLDI, pages 32–43. ACM, 1992.

[67] Galen C. Hunt and James R. Larus. Singularity: rethinking the software stack. SIGOPS
Oper. Syst. Rev., 41(2):37–49, 2007.

[68] Sebastian Hunt. PERs generalise projections for strictness analysis (extended abstract).
In Proceedings of Glasgow Workshop on Functional Programming. Springer, 1991.

[69] Sebastian Hunt and Isabella Mastroeni. The PER model of abstract non-interference. In
Proceedings of SAS, volume 3672 of LNCS, pages 171–185. Springer, 2005.

[70] Sebastian Hunt and David Sands. Binding time analysis: A new PERspective. In Pro-
ceedings of PEPM, pages 154–165. ACM, 1991.

[71] Neil D. Jones. Challenging problems in partial evaluation and mixed computation. New
Generation Comput., 6(2&3):291–302, 1988.

[72] Neil D. Jones. Transformation by interpreter specialisation. Science of Computer Pro-
gramming, 52:307–339, 2004.

[73] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

[74] Rajeev Joshi and K. Rustan M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1–3):113–138, 2000.

[75] Shin-ya Katsumata and Atsushi Ohori. Proof-directed de-compilation of low-level code.
In Proceedings of ESOP, volume 2028 of LNCS, pages 352–366. Springer, 2001.

[76] Andrew Kennedy. Securing the .NET programming model. Theoretical Computer Science,
364(3):311–317, 2006.

[77] Amir Kishon and Paul Hudak. Semantics directed program execution monitoring. Journal
of Functional Programming, 5(4):501–547, 1995.

[78] Alexander Klaiber. The technology behind Crusoe processors. Technical report, Transmeta
Corporation, 2000.

[79] Christopher Krügel, William K. Robertson, Fredrik Valeur, and Giovanni Vigna. Static
disassembly of obfuscated binaries. In Proceedings of USENIX Security Symposium, pages
255–270. USENIX Association, 2004.

[80] Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and modular inter-
preters. In Proceedings of POPL, pages 333–343. ACM, 1995.

[81] Francesco Logozzo and Manuel Fähndrich. On the relative completeness of bytecode
analysis versus source code analysis. In Proceedings of CC, volume 4959 of LNCS, pages
197–212. Springer, 2008.

111

http://www.cse.chalmers.se/~andrei/FCS05/

[82] Henning Makholm. On Jones-optimal specialization for strongly typed languages. In Pro-
ceedings of the International Workshop on Semantics, Applications, and Implementation
of Program Generation, volume 1924 of LNCS, pages 129–148. Springer, 2000.

[83] Henry Massalin. Superoptimizer – a look at the smallest program. In Proceedings of
ASPLOS, pages 122–126. ACM, 1987.

[84] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language
programs. In Proceedings of POPL, pages 3–10. ACM, 2007.

[85] Microsoft Corporation. Using hotpatching technology to reduce servicing reboots, 2010.
URL http://technet.microsoft.com/en-us/library/cc787843(WS.10).aspx. Ac-
cessed on 19 March 2010.

[86] Jerome Miecznikowski and Laurie J. Hendren. Decompiling Java bytecode: problems,
traps and pitfalls. In Proceedings of CC, volume 2304 of LNCS, pages 111–127. Springer,
2002.

[87] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, 1999.

[88] John C. Mitchell. On abstraction and the expressive power of programming languages.
Science of Computer Programming, 21(2):141–163, 1993.

[89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of LICS,
pages 14–23. IEEE Computer Society, 1989.

[90] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93
(1):55–92, July 1991.

[91] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. In Proceedings of POPL, pages 85–97. ACM, 1998.

[92] Alan Mycroft. Type-based decompilation (or program reconstruction via type reconstruc-
tion). In Proceedings of ESOP, volume 1576 of LNCS, pages 208–223. Springer, 1999.

[93] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassifica-
tion and qualified robustness. Journal of Computer Security, 14(2):157–196, 2006.

[94] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Contextual
effects for version-consistent dynamic software updating and safe concurrent programming.
In Proceedings of POPL, pages 37–49. ACM, 2008.

[95] George C. Necula. Proof-carrying code. In Proceedings of POPL, pages 106–119. ACM,
1997.

[96] George C. Necula and Peter Lee. The design and implementation of a certifying compiler.
In Proceedings of PLDI, pages 333–344. ACM, 1998.

[97] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel Virtualization
Technology: Hardware support for efficient processor virtualization. Intel Technology
Journal, 10(3):167–177, 2006. http://dx.doi.org/10.1535/itj.1003.01.

[98] Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow tracer. ENTCS, 89
(2), 2003.

112

http://technet.microsoft.com/en-us/library/cc787843(WS.10).aspx

[99] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of PLDI, pages 89–100. ACM, 2007.

[100] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[101] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In Proceedings of IFIP TC1 3rd International Conference on Theoretical
Computer Science, pages 437–450. Kluwer, 2004.

[102] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421, 1974.

[103] Thomas Raffetseder, Christopher Krügel, and Engin Kirda. Detecting system emulators.
In Proceedings of 10th International Conference on Information Security, volume 4779 of
LNCS, pages 1–18. Springer, 2007.

[104] Norman Ramsey. Embedding an interpreted language using higher-order functions and
types. In Proceedings of the ACM SIGPLAN Workshop on Interpreters, Virtual Machines
and Emulators, pages 6–14. ACM, 2003.

[105] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A. Ma-
son, editor, Information Processing 83, Paris, France, pages 513–523, Amsterdam, 1983.
Elsevier Science Publishers B. V. (North-Holland).

[106] John C. Reynolds. Theories of programming languages. Cambridge University Press, 1998.

[107] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprint of a 1972 paper.

[108] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS, pages 55–74. IEEE Computer Society, 2002.

[109] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s ability to sup-
port a secure virtual machine monitor. In Proceedings of USENIX Security Symposium.
USENIX Association, 2000.

[110] Timothy Roscoe, Kevin Elphinstone, and Gernot Heiser. Hype and virtue. In Proceedings
of HotOS. USENIX Association, 2007.

[111] Ben Rudiak-Gould, Alan Mycroft, and Simon Peyton Jones. Haskell is not not ML. In
Proceedings of ESOP, volume 3924 of LNCS, pages 38–53. Springer, 2006.

[112] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

[113] Andrei Sabelfeld and David Sands. A Per model of secure information flow in sequential
programs. In Proceedings of ESOP, volume 1576 of LNCS, pages 40–58. Springer, 1999.

[114] Andrei Sabelfeld and David Sands. Declassification: dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2009.

[115] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-based approach
to security. In Informatics. 10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages
86–101. Springer, 2001.

113

[116] Peter Sestoft. Replacing function parameters by global variables. In Proceedings of FPCA,
pages 39–53. ACM, 1989.

[117] Adi Shamir and Nicko van Someren. Playing ‘hide and seek’ with stored keys. In Proceed-
ings of Financial Cryptography, volume 1648 of LNCS, pages 118–124. Springer, 1999.

[118] Zhong Shao. Typed common intermediate format. In Proceedings of the Conference on
Domain-Specific Languages, pages 89–102. USENIX, 1997.

[119] Mark Shields, Tim Sheard, and Simon L. Peyton Jones. Dynamic typing as staged type
inference. In Proceedings of POPL, pages 289–302. ACM, 1998.

[120] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Proceedings
of Scheme and Functional Programming Workshop, pages 81–92, 2006.

[121] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Proceedings of ECOOP,
volume 4609 of LNCS, pages 2–27. Springer, 2007.

[122] Jeffrey Mark Siskind and Barak A. Pearlmutter. First-class nonstandard interpretations
by opening closures. In Proceedings of POPL, pages 71–76. ACM, 2007.

[123] Brian Cantwell Smith. Reflection and semantics in Lisp. In Proceedings of POPL, pages
23–35. ACM, 1984.

[124] James E. Smith and Ravi Nair. Virtual machines: versatile platforms for systems and
processes. Morgan Kaufmann, 2005.

[125] Guy L. Steele, Jr. Building interpreters by composing monads. In Proceedings of POPL,
pages 472–492. ACM, 1994.

[126] Gareth Stoyle, Michael W. Hicks, Gavin M. Bierman, Peter Sewell, and Iulian Neamtiu.
Mutatis mutandis: safe and predictable dynamic software updating. In Proceedings of
POPL, pages 183–194. ACM, 2005.

[127] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates:
a VM-centric approach. In Proceedings of PLDI, pages 1–12. ACM, 2009.

[128] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In
Proceedings of PEPM, pages 203–217. ACM, 1997.

[129] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation of commodity
operating system kernels. In Proceedings of OSDI, pages 117–130. USENIX Association,
1999.

[130] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a new
approach to optimization. In Proceedings of POPL, pages 264–276. ACM, 2009.

[131] Ken Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–
763, 1984.

[132] Andrew P. Tolmach and Andrew W. Appel. A debugger for standard ML. Journal of
Functional Programming, 5(2):155–200, 1995.

[133] Valery Trifonov and Zhong Shao. Safe and principled language interoperation. In Pro-
ceedings of ESOP, volume 1576 of LNCS, pages 128–146. Springer, 1999.

114

[134] Todd L. Veldhuizen and Andrew Lumsdaine. Guaranteed optimization: Proving nullspace
properties of compilers. In Proceedings of SAS, volume 2477 of LNCS, pages 263–277.
Springer, 2002.

[135] Dennis Vermoen, Marc F. Witteman, and Georgi Gaydadjiev. Reverse engineering Java
Card applets using power analysis. In Proceedings of the First IFIP TC6 / WG 8.8 / WG
11.2 International Workshop on Information Security Theory and Practices, volume 4462
of LNCS, pages 138–149. Springer, 2007.

[136] VMware, Inc. VProbes programming reference, 2010. URL http://www.vmware.com/

pdf/ws7_f3_vprobes_reference.pdf. Accessed on 23 August 2010.

[137] Dennis M. Volpano. Safety versus secrecy. In Proceedings of SAS, volume 1694 of LNCS,
pages 303–311. Springer, 1999.

[138] Philip Wadler. Theorems for free! In Proceedings of FPCA, pages 347–359. ACM, 1989.

[139] Philip Wadler. The essence of functional programming. In Proceedings of POPL, pages
1–14. ACM, 1992.

[140] Philip Wadler. The marriage of effects and monads. In Proceedings of ICFP, pages 63–74.
ACM, 1998.

[141] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
Proceedings of ESOP, volume 5502 of LNCS, pages 1–16. Springer, 2009.

[142] Philip Wadler and R. J. M. Hughes. Projections for strictness analysis. In Proceedings of
FPCA, volume 274 of LNCS, pages 385–407. Springer, 1987.

[143] D. S. Wallach and E. W. Felten. Understanding Java stack inspection. In Proceedings of
IEEE Symposium on Security and Privacy, pages 52–65. IEEE Computer Society, 1998.

[144] Mitchell Wand. The theory of fexprs is trivial. Lisp and Symbolic Computation, 10(3):
189–199, 1998.

[145] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A non-
reflective description of the reflective tower. In Proceedings of LFP, pages 298–307. ACM,
1986.

[146] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity using information-
flow. In Proceedings of LICS, pages 62–71. IEEE Computer Society, 2005.

[147] John Whaley. System checkpointing using reflection and program analysis. In Metalevel
Architectures and Separation of Crosscutting Concerns, Third International Conference,
REFLECTION 2001, Kyoto, Japan, September 25-28, 2001, Proceedings, volume 2192 of
LNCS, pages 44–51. Springer, 2001.

[148] Glynn Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993.

[149] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceed-
ings of POPL, pages 214–227. ACM, 1999.

[150] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: a sandbox for portable,
untrusted x86 native code. Communications of the ACM, 53(1):91–99, 2010.

115

http://www.vmware.com/pdf/ws7_f3_vprobes_reference.pdf
http://www.vmware.com/pdf/ws7_f3_vprobes_reference.pdf

[151] Mathew Zaleski, Marc Berndl, and Angela Demke Brown. Mixed mode execution with
context threading. In Proceedings of the Conference of the Centre for Advanced Studies
on Collaborative Research, pages 305–319, Toronto, Ontario, Canada, October 2005. IBM.

[152] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings of the
14th IEEE Computer Security Foundations Workshop, page 15. IEEE Computer Society,
2001.

116

	797.pdf
	Introduction
	Non-standard interpretation in system software
	Hardware virtualization
	Program instrumentation
	Dynamic software updating

	Reducing interpretational overhead
	The illusion of interpreted execution
	Related work
	Dissertation contributions & outline

	Technical background
	Programs as data
	Full abstraction
	Dependent types and the phase distinction
	Program staging

	Partial evaluation
	Jones optimality

	AL
	Semantics
	Traces
	Update points

	Computational reflection and self-modifying code
	External observations and optimization

	Writing interpreters in C and ML
	Well-typed interpreters
	while/switch interpreters
	Threading

	Non-standard interpretation of AL
	Program instrumentation
	Hardware virtualization
	Dynamic software updating

	Partial equivalence relations

	Jones optimality and efficient virtualization
	Virtualization versus emulation
	From threaded code to trap-and-emulate
	Self-interpretation in AL
	Trace simulation
	Trace simulation modulo privileged instructions

	Virtualization assists
	AL/STEP
	AL/EXEC

	An application of full abstraction to VMMs
	Related work
	Conclusions and further work

	Formally efficient program instrumentation
	IL
	Semantics
	Instrumenting AL programs

	Faithful instrumentation
	Breakpoints: AL/BRK
	Semantics
	A rationale for the design of AL/BRK
	IL instrumentation with AL/BRK
	AL/BRK vs. AL/EXEC
	Efficiency is bounded overhead

	From super-instructions to language boundaries
	Lexical vs. dynamic scoping of boundaries
	Multi-IL
	Multi-AL/BRK

	Optimization of dynamically instrumented code
	From dynamic instrumentation to software updating

	Related work
	Conclusions and further work
	Further work

	Dynamic typing, boundaries and con-freeness
	Preliminaries: con-freeness
	HL
	Runtime type analysis
	Dynamic semantics

	Dynamic updates
	Applying an update
	HL language boundaries

	Semantic con-freeness
	Definition of semantic con-freeness
	Runtime enforcement

	The con-free check as a type system
	Interpretational overhead of DSU
	Equivalence of updatable programs
	Optimization
	Deoptimization in HLANF
	Other semantics for updating

	Related work
	Dynamic typing
	Con-freeness and dependency
	Optimization

	Conclusions and further work

	Information flow and (de)compilation
	Normalization and decompilation
	Motivation: non-interference and full abstraction
	Secure information flow for a compiler

	Applications
	Superoptimization
	Randomized compilation
	Adaptive compilation: a proposal

	An operational view of debug tables
	Language boundaries

	Related work
	Conclusions

	Conclusions and further work
	Common-case performance
	Indirection without a performance penalty
	Architectural support motivated by optimization
	Further work

	Notation
	Applications of PERs
	Types
	Non-interference
	Static analyses

