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Abstract

In this report, we consider the task of automated assessment of English as a Sec-
ond Language (ESOL) examination scripts written in response to prompts eliciting
free text answers. We review and critically evaluate previous work on automated
assessment for essays, especially when applied to ESOL text. We formally define
the task as discriminative preference ranking and develop a new system trained and
tested on a corpus of manually-graded scripts. We show experimentally that our
best performing system is very close to the upper bound for the task, as defined by
the agreement between human examiners on the same corpus. Finally we argue that
our approach, unlike extant solutions, is relatively prompt-insensitive and resistant
to subversion, even when its operating principles are in the public domain. These
properties make our approach significantly more viable for high-stakes assessment.

1 Introduction

The task of automated assessment of free text passages or essays is distinct from that
of scoring short text or multiple choice answers to a series of very specific prompts.
Nevertheless, since Page (1966) described the Project Essay Grade (PEG) program, this
has been an active and fruitful area of research. Today there are at least 12 programs
and associated products (Williamson, 2009), such as the Educational Testing Service’s
(ETS) e-Rater (Attali and Burstein, 2006), PearsonKT’s KAT Engine / Intelligent Essay
Assessor (IEA) (Landauer et al, 2003) or Vantage Learning’s Intellimetric (Elliot, 2003),
which are deployed to assess essays as part of self-tutoring systems or as a component of
examination marking (e.g. Kukich, 2000). Because of the broad potential application of
automated assessment to essays, these systems focus as much on assessing the semantic
relevance or ‘topicality’ of essays to a given prompt as on assessing the quality of the
essay itself.
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Many English as a Second Language (ESOL) examinations include free text essay-style
answer components designed to evaluate candidates’ ability to write, with a focus on
specific communicative goals. For example, a prompt might specify writing a letter to a
friend describing a recent activity or writing an email to a prospective employer justifying
a job application. The design, delivery, and marking of such examinations is the focus
of considerable research into task validity for the specific skills and levels of attainment
expected for a given qualification (e.g. Hawkey, 2009). The marking schemes for such
writing tasks typically emphasise use of varied and effective language appropriate for the
genre, exhibiting a range and complexity consonant with the level of attainment required
by the examination (e.g. Shaw and Weir, 2007). Thus, the marking criteria are not
primarily prompt or topic specific but linguistic. This makes automated assessment for
ESOL text (hereafter AAET) a distinct subcase of the general problem of marking essays,
which, we argue, in turn requires a distinct technical approach, if optimal performance
and effectiveness are to be achieved.

Nevertheless, extant general purpose systems, such as e-Rater and IEA have been de-
ployed in self-assessment or second marking roles for AAET. Furthermore, Edexcel, a
division of Pearson, has recently announced that from autumn 2009 a revised version of
its Pearson Test of English Academic (PTE Academic), a test aimed at ESOL speakers
seeking entry to English speaking universities, will be entirely assessed using “Pearson’s
proven automated scoring technologies”1. This announcement from one of the major
providers of such high stakes tests makes investigation of the viability and accuracy of
automated assessment systems a research priority2. In this report, we describe research
undertaken in collaboration with Cambridge ESOL, a division of Cambridge Assessment,
which is, in turn, a division of the University of Cambridge, to develop an accurate and
viable approach to AAET and to assess the appropriateness of more general automated
assessment techniques for this task.

Section 2 provides some technical details of extant systems and considers their likely effi-
cacy for AAET. Section 3 describes and motivates the new model that we have developed
for AAET based on the paradigm of discriminative preference ranking using machine
learning over linguistically-motivated text features automatically extracted from scripts.
Section 4 describes an experiment training and testing this classifier on samples of man-
ually marked scripts from candidates for Cambridge ESOL’s First Certificate of English
(FCE) examination and then comparing performance to human examiners and to our
reimplementation of the key component of PearsonKT’s IEA. Section 5 discusses the im-
plications of these experiments within the wider context of operational deployment of
AAET. Finally, section 6 summarises our main conclusions and outlines areas of future
research.

1www.pearsonpte.com/news/Pages/PTEAcademiclaunch.aspx
2Williamson (2009) also states that e-Rater will also be used operationally from mid-2009 for assessing

components of ETS’s TOEFL exam, but in conjunction with human marking.
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2 Technical Background

A full history of automated assessment is beyond the scope of this report. For recent re-
views of work on automated essay or free-text assessment see Dikli (2006) and Williamson
(2009). In this section, we focus on the ETS’s e-Rater and PearsonKT’s IEA systems as
these are two of the three main systems which are operationally deployed. We do not
consider IntelliMetric further as there is no precise and detailed technical description of
this system in the public domain (Williamson, 2009). However, we do discuss a number of
academic studies which assess and compare the performance of different techniques and
as well as that of the public domain prototype system, BETSY (Rudner and Lang, 2002),
which treats automated assessment as a Bayesian text classification problem, as this work
sheds useful light on the potential of approaches other than those deployed by e-Rater
and IEA.

2.1 e-Rater

e-Rater is extensively described in a number of publications and patents (e.g. Burstein,
2003; Attali and Burstein, 2006; Burstein et al, 2002, 2005). The most recently described
version of e-Rater uses 10 broad feature types extracted from the text using NLP tech-
niques, 8 represent writing quality and 2 content. These features correspond to high-level
properties of a text, such as grammar, usage (errors), organisation or prompt/topic-
specific content. Each of these high-level features is broken down into a set of ground
features; for instance, grammar is subdivided into features which count the number of
auxiliary verbs, complement clauses, and so forth, in a text. These features are extracted
from the essay using NLP tools which automatically assign part-of-speech tags to words
and phrases, search for specific lexical items, and so forth. Many of the feature extrac-
tors are manually written and based on essay marking rubrics used as guides for human
marking of essays for specific examinations. The resulting counts for each feature are
associated with cells of a vector which encodes all the grammar features of a text. Similar
vectors are constructed for the other high-level features.

The feature extraction system outlined above, and described in more detail in the refer-
ences provided, allows any text to be represented as a set of vectors each representing a
set of features of a given high-level type. Each feature in each vector is weighted using
a variety of techniques drawn from the fields of information retrieval (IR) and machine
learning (ML). For instance, content-based analysis of an essay is based on vectors of
individual word frequency counts drawn from text. Attali and Burstein (2006) transform
frequency counts to weights by normalising the word counts to that of the most frequent
word in a training set of manually-marked essays written in response to the same prompt,
scored on a 6 point scale. Specifically, they remove stop words which are expected to
occur with about equal frequency in all texts (such as the), then for each of the score
points, the weight for word i at point p is:

Wip = (
Fip

MaxFp

) ∗ log(
N

Ni

) (1)

where Fip is the frequency of word i at score point p, MaxFp is the maximum frequency
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of any word at scope point p, N is the total number of essays in the training set, and
Ni is the total number of essays having word i in all score points in the training set 3.
For automated assessment of the content of an unmarked essay, this weighted vector is
computed by dropping the conditioning on p and the result is compared to aggregated
vectors for the marked training essays in each class using cosine similarity. The unmarked
essay is assigned a content score corresponding to the most similar class. This approach
transforms an unsupervised weighting technique, which only requires an unannotated
collection of essays or documents, into a supervised one which requires a set of manually-
marked prompt-specific essays.

Other vectors are weighted in different ways depending on the type of features extracted.
Counts of grammatical, usage and style features are smoothed by adding 1 to all counts
(avoiding zero counts for any feature), then divided by essay length word count to nor-
malise for different essay lengths, then transformed to logs of counts to avoid skewing
results on the basis of abnormally high counts for a given feature. Rhetorical organisation
is computed by random indexing (Kanerva et al, 2000), a modification of latent semantic
indexing (see section 2.2), which constructs word vectors based on cooccurrence in texts.
Words can be weighted using a wide variety of weight functions (Gorman and Curran,
2006). Burstein et al (2005) describe an approach which calculates mean vectors for words
from training essays which have been manually marked and segmented into passages per-
forming different rhetorical functions. Mean vectors for each score point and passage type
are normalised to unit length and transformed so they lie on the origin of a graph of the
transformed geometric space. This controls for differing passage lengths and incorporates
inverse document frequency into the word weights. The resulting passage vectors can now
be used to compare the similarity of passages within and across essays, and, as above, to
score essays for organisation via similarity to mean vectors for manually-marked training
passages.

The set of high-level feature scores obtained for a given essay are combined to give an
overall score. In earlier versions of e-Rater this was done by stepwise linear regression to
assign optimal weights to the component scores so that the correlation with manually-
assigned overall scores on the training set was maximised. However, Attali and Burstein
(2006) advocate a simpler and more perspicuous approach using the weighted average
of standardised feature scores, where the weights can be set by expert examiners based
on marking rubrics. Williamson (2009) in his description of e-Rater implies a return to
regression-based weighting.

2.2 Intelligent Essay Assessor (IEA)

The IEA like e-Rater assesses essays in terms of a small number of high-level features
such as content, organisation, fluency, and grammar. The published papers and patent
describing the techniques behind IEA (e.g. Landauer et al, 2000, 2003; Foltz et al, 2002)

3Burstein et al (2002) patent a different but related weighting of these counts using inverse document
frequency (i.e. the well-known tf/idf weighting scheme introduced into IR by Sparck-Jones, 1972). Inverse
document frequency is calculated from a set of prompt-specific essays which have been manually marked
and assigned to classes. Presumably this was abandoned in favour of the current approach based on
experimental comparison.
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focus on the use of latent semantic analysis (LSA), a technique originally developed in IR
to compute the similarity between documents or between documents and keyword queries
by clustering words and documents so that the measurement of similarity does not require
exact matches at the word level. For a recent tutorial introduction to LSA see Manning
et al (2008:ch18). Landauer et al (2000) argue that LSA measures similarity of semantic
content and that semantic content is dominant in the assessment of essays.

As for the content analysis component of e-Rater, LSA represents a document as a vector
of words and requires a training set of prompt-specific manually-marked essays. However,
instead of computing the cosine similarity directly between aggregated or mean vectors
from the training set and the essay to be assessed, LSA deploys singular value decompo-
sition (SVD) to reduce the dimensions of a matrix of words by essays to obtain a new
matrix with reduced dimensions which effectively clusters words with similar contexts
(i.e. their distribution across essays) and clusters essays with similar words. Words can
be weighted to take account of their frequency in an essay and across a collection of essays
before SVD is applied. LSA can be used to measure essay coherence as well by comparing
passages within an essay and passages of similar rhetorical type from other essays. In
this respect, there is little difference between e-Rater and IEA, because random indexing
is simply a computationally efficient approximation of SVD which avoids construction of
the full word-by-essay cooccurrence matrix.

Though it seems clear that IEA uses LSA to assess content and organisation (Foltz et
al, 2002), it is unclear which other high-level features are computed this way. It is very
unlikely that LSA is used to assess grammar or spelling, though there is no published
description of how these features are assessed. On the other hand, it is likely that fea-
tures like fluency are assessed via LSA, probably by using training annotated sets of text
passages which illustrate this feature to different degrees so that a score can be assigned
in the same manner as the content score. IEA, by default, combines the score obtained
from each high-level feature into an overall score using multiple regression against human
scores in a training set. However, this can be changed for specific examinations based, for
example, on the marking rubric (Landauer et al, 2000).

2.3 Other Research on Automated Assessment

2.3.1 Text Classification

Both e-Rater and IEA implicitly treat automated assessment, at least partly, as a text
classification problem. Whilst the roots of vector-based representations of text as a basis
for measuring similarity between texts lie in IR (Salton, 1971), and in their original form
can be deployed in an unsupervised fashion, their use in both systems is supervised in
the sense that similarity is now measured relative to training sets of premarked essays
(along several dimensions), and thus test essays can be classified on a grade point scale.
Manning et al (2008:ch13) provides a tutorial introduction to text classification, an area
of ongoing research which lies at the intersection of IR and ML and which has been given
considerable impetus recently by new techniques emerging from ML.

Leakey (1998) explicitly modelled automated assessment as a text classification problem
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comparing the performance of two standard classifiers, binomial Naive Bayes (NB) and
kNN, over four different examination datasets. He found that binomial NB outperformed
kNN and that the best document representation was a vector of lemmas or stemmed
words rather than word forms. Rudner and Liang (2002) describe BETSY (the Bayesian
Essay Test Scoring sYstem), which uses either a binomial or multinomial NB classifier and
represents essays in terms of unigrams, bigrams and non-adjacent bigrams of word forms.
A full tutorial on NB classifiers can be found in Manning et al (2008:ch13). Briefly,
however, a multinomial model will estimate values for instances of the defined feature
types from training data for each class type, which in the simplest case could be just
‘pass’ and ‘fail’, by smoothing and normalizing frequency counts for each feature, F , for
example, for bigrams:

P (Fbigram−i) =
Freq(Wj, Wk) + 1

Freq(Wj) + N
(2)

where N is the total bigram frequency count for this portion of the training data. To
predict the most likely class for new unlabelled text, the log class-conditional probabilities
of the features found in the new text are summed for each (C, e.g. pass/fail)

log(P (C)) +
∑

i

log(P (Fi | C)) (3)

and added to the prior probability of the class, typically estimated from the proportion
of texts in each class in the training data. Taking the sum of the logs assumes (‘naively’)
that each feature instance, whether unigram, bigram or whatever, is independent of the
others. This is clearly incorrect, though suffices to construct an accurate and efficient
classifier in many situations. In practice, within the NB framework, more sophisticated
feature selection or weighting to handle the obvious dependencies between unigrams and
bigrams would probably improve performance, as would adoption of a classification model
which does not rely on such strong independence assumptions.

BETSY is freely available for research purposes. Coniam (2009) trained BETSY for
AAET on a corpus of manually-marked year 11 Hong Kong ESOL examination scripts.
He found that non-adjacent bigrams or word pairs provided the most useful feature types
for accurate assessment. Both approaches use regression to optimise the fit between the
output of the classifiers, which in the case of the Bayesian classifiers can be interpreted
as the degree of statistical certainty or confidence in a given classification, to the grade
point scales used in the different examinations.

Text classification is a useful model for automated assessment as it allows the problem
to be framed in terms of supervised classification using machine learning techniques, and
provides a framework to support systematic exploration of different classifiers with differ-
ent representations of the text. From this perspective, the extant work has only scratched
the surface of the space of possible systems. For instance, all the approaches discussed so
far rely heavily on so-called ‘bag-of-words’ representations of the text in which positional
and structural information is ignored, and all have utilised non-discriminative classifiers.
However, there are strong reasons to think that, at least for AAET, grammatical compe-
tence and performance errors are central to assessment, but these are not captured well
by a bag-of-words representation. In general discriminative classification techniques have
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performed better on text classification problems than non-discriminative techniques, such
as NB classifiers, using similar feature sets (e.g. Joachims, 1998), so it is surprising that
discriminative models have not been applied to automated essay assessment.

2.3.2 Structural Information

Page (1994) was the first to describe a system which used partial parsing to extract syn-
tactic features for automated assessment. e-Rater extended this work using hand coded
extractors to look for specific syntactic constructions and specific types of grammatical
error (see section 2.1 and references therein). Kanejiya et al (2003) describe an exten-
sion to LSA which constructs a matrix of words by essays in which words are paired
with the part-of-speech tag of the previous word. This massively increases the size of
the resultant matrix but does take account of limited structural information. However,
their comparative experiments with pure LSA showed little improvement in assessment
performance.

Lonsdale and Krause (2003) is the first application of a minimally-modified standard
syntactic parser to the problem of automated assessment. They use the Link Parser
(Sleator and Temperley, 1993) with some added vocabulary to analyse sentences in ESOL
essays. The parser outputs the set of grammatical relations which hold between word pairs
in the sentence, but also is able to skip words and output a cost vector (including the
number of words skipped and the length of the sentence), when faced with ungrammatical
input. The system scored essays by scoring each sentence on a five point scale, based on
its cost vector, and then averaging these scores.

Rosé et al (2003) directly compare four different approaches to automated assessment on
a corpus of physics essays. These are a) LSA over words, b) a NB text classifier over
words, c) bilexical grammatical relations and syntactic features, such as passive voice,
from sentence-by-sentence parses of the essays, and d) a model integrating b) and c).
They found that the NB classifier outperformed LSA, whilst the model-based on parsing
outperformed the NB classifier, and the model integrating parse information and the NB
classifier performed best.

This body of work broadly supports the intuition that structural information is relevant to
assessment but the only direct comparison of LSA, word-based classification and classifica-
tion via structural information is on physics essays and may not, therefore, be comparable
for ESOL. Lonsdale and Krause show reasonable correlation with human scoring using
parse features alone on ESOL essays, but they conduct no comparative evaluation. The
experimental design of Rosé et al is much better but a similar experiment needs to be
conducted for ESOL essays.

2.3.3 Content Analysis

IEA exploits LSA for content analysis and e-Rater uses random indexing (RI). Both tech-
niques are a form of word-by-essay clustering which allow the systems to generalise from
specific to distributionally related words as measured by their occurrence in similar es-
says. However, there are many other published techniques for constructing distributional

9



semantic ‘spaces’ of this general type (see e.g. Turney and Pantel (2010) for a survey).
Both probabilistic LSA (PLSA) and Latent Dirichlet Allocation (LDA) have been shown
to work better than LSA for some IR applications. Kakkonen et al (2006) compare the
performance of both to LSA on a corpus of graded Finnish essays on various topics. They
found that LDA performed worse than LSA and that PLSA performed similarly.

There are many further possibilities in the area of content analysis that remain to be tried.
Firstly, there are more recent approaches to constructing such distributional semantic
spaces which have been shown to outperform RI and SVD-based techniques like LSA
on the task of clustering words by semantic similarity, which is arguably central to the
content analysis component of automated assessment. For example, Baroni et al (2007)
show that Incremental Semantic Analysis (ISA) leads to better performance on semantic
categorisation of nouns and verbs. ISA is an improvement of RI. Initially each word w
is assigned a signature, a sparse vector, sw, of fixed dimensionality d made up of a small
number of randomly distributed +1 and -1 cells with all other cells assigned 0. d is
typically much smaller than the dimensionality of the possible contexts (cooccurrences)
of words given the text contexts used to define cooccurrence. At each occurrence of a
target word t with a context word c, the history vector of t is updated as follows:

ht+ = i(mchc + (1−mc)sc) (4)

where i is a constant impact rate and mc determines how much the history of one word
influences the history of another word – the more frequent a context word the less it will
influence the history of the target word. The m weight of c decreases as follows:

mc =
1

exp(Freq(c)
Km

)
(5)

where Km is a parameter determining rate of decay. ISA has the advantage that it is
fully incremental, does not rely on weighting schemes that require global computations
over contexts, and is therefore efficient to compute. It extends RI by updating the vector
for t with the signature and history of c so that second order effects of the context word’s
distribution are factored into the representation of the target word.

As well as exploring improved clustering techniques over LSA or RI such as ISA, both the
weighting functions used for modelling cooccurrence (e.g. Gorman and Curran, 2006),
and the contexts used to assess cooccurrence (e.g. Baroni and Lenci, 2009), which has
been exclusively based on an entire essay in automated assessment work, should be varied.
For instance, the best models of semantic similarity often measure cooccurrence of words
in local syntactic contexts, such as those provided by the grammatical relations output
by a parser. Finally, though prompt-specific content analysis is clearly important for
assessment of many essays types, it is not so clear that it is a central aspect of ESOL
assessment, where demonstration of communicative competence and linguistic variety
without excessive errors is arguably more important than the specific topic addressed.

2.4 Evaluation

The evaluation of automated assessment systems has largely been based on analyses of
correlation with human markers. Typically, systems are trained on premarked essays for
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a specific exam and prompt and their output scaled and fitted to a particular grade point
scheme using regression or expert rubric-based weighting. Then the Pearson correlation
coefficient is calculated for a set of test essays for which one or more human gradings are
available. Using this measure, both e-Rater, IEA and other approaches discussed above
have been shown to correlate well with human grades. Often they correlate as well as
the grades assigned by two or more human markers on the same essays. Additionally, the
rates of exact replication of human scores, of deviations by one point, and so forth can
be calculated. These may be more informative about causes of larger divergences given
specific phenomena in essays (e.g. Williamson, 2009; Coniam, 2009).

A weakness of the above approach is that it is clear that it is relatively easy to build
a system that will correlate well with human markers under ideal conditions. Even the
original PEG (Page, 1966) obtained high correlations using very superficial textual fea-
tures such as essay, word and sentence length. However, such features are easily ‘gamed’
by students and by instructors ‘teaching to the exam’ (assessment regime) once it is
public knowledge what features are extracted for automated assessment. As automated
assessment is not based on a full understanding of an essay, the features extracted are
to some extent proxies for such understanding. The degree to which such proxies can be
manipulated independently of the features that they are intended to measure is clearly
an important factor in the analysis of systems, especially if they are intended for use in
high-stakes assessment. Powers et al (2002) conducted an experiment in which a variety
of experts were invited to design and submit essays that they believed would either be
under- or over-scored by e-Rater. The results showed that e-Rater was relatively robust to
such ‘gaming’, though those with intimate knowledge of e-Rater were able to trick it into
assigning scores deviating from human markers, even by 3 or more points on a 6-point
scale.

A further weakness of comparison with human markers, and indeed with training such
systems on raw human marks, is that human markers are relatively inconsistent and show
comparatively poor correlation with each other. Alternatives, have been proposed such
as training and/or testing on averaged or RASCH-corrected scores (e.g. Coniam, 2009),
or evaluating by correlating system grades on one task, such essay writing, with human
scores on an independent task, such as spoken comprehension (Attali and Burstein, 2006).
Finally, many non-technical professionals involved in assessment object to automated
assessment, arguing, for example, that a computer can never recognise creativity. In the
end, this type of philosophical objection tends to dissipate as algorithms become more
effective at any given task. For example, few argue that computers will never be able to
play chess properly now that chess programs regularly defeat grand masters, though some
will argue that prowess at chess is not in fact a sign of ‘genuine intelligence’.

Nevertheless, it is clear that very thorough evaluation of assessment systems will be re-
quired before operational, especially high stakes, deployment and that this should include
evaluation in adversarial scenarios and on unusual ‘outlier’ data, whether this be highly
creative or deviant. From this perspective it is surprising that Powers et al (2002) is
the sole study of this kind, though both e-Rater and IEA are claimed to incorporate
mechanisms to flag such outliers for human marking.
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3 AAET using Discriminative Preference Ranking

One of the key weaknesses of the text classification methods deployed so far for automated
assessment is that they are based on non-discriminative machine learning models.

Non-discriminative models often embody incorrect assumptions about the underlying
properties of the texts to be classified – for example, that the probability of each fea-
ture (e.g. word or ngram) in a text is independent of the others, in the case of the NB
classifier (see section 2.3). Such models also weight features of the text in ways only
loosely connected to the classification task – for example, possibly smoothed class condi-
tional maximum likelihood estimates of features in the case of the NB classifier (see again
section 2.3).

In this work, we apply discriminative machine learning methods, such as modern variants
of the Large Margin Perceptron (Freund and Schapire, 1998) and the Support Vector
Machine (SVM, Vapnik, 1995) to AAET. To our knowledge, this is the first such applica-
tion to automated essay assessment. Discriminative classifiers make weaker assumptions
concerning the properties of texts, directly optimize classification performance on training
data, and yield optimal predictions if training and test material is drawn from the same
distribution (see Collins (2002) for extended theoretical discussion and proofs).

In our description of the classifiers, we will use the following notation:

N number of training samples
ν avg. number of unique features / training sample

X ∈ PRD real D-dimensional sample space
Y = {+1,−1} binary target label space
xi ∈ X vector representing the ith training sample
yi ∈ {+1,−1} binary category indicator for ith training sample
f : X → Y classification function

3.1 Support Vector Machine

Linear SVMs (Vapnik, 1995) learn wide margin classifiers based on Structural Risk Min-
imization and continue to yield state-of-the-art results in text classification experiments
(e.g. Lewis et al, 2004). In its dual form, linear SVM optimization equates to minimizing
the following expression:

−
∑

i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (6)

subject to the constraint
∑

i αiyi = 0 where the α’s are the weight coefficients. The
prediction is given by:

f(x) = sign(
∑

i

αiyixi · x + b) (7)

where b is the bias and sign(r) ∈ {−1, +1} depending on the sign of the input.

The practical use of the SVM model relies on efficient methods of finding approximate
solutions to the quadratic programming (QP) problem posed by (6). A popular solution is
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implemented in Joachims’ SVMlight package (Joachims, 1999), in which the QP problem
is decomposed into small constituent subproblems (the ‘working set’) and solved sequen-
tially. This yields a training complexity at each iteration of O(q2 ·ν) where q is the size of
the working set. The efficiency of the procedure lies in the fact that q � N . The number
of iterations is governed by the choice of q which makes it difficult to place a theoretical
complexity bound on the overall optimization procedure, but experimental analysis by
Yang et al (2003) suggests a super-linear bound of approximately O(N1.5) with respect to
the number of training samples, though in our experience this is quite heavily dependent
on the separability of the data and the value of the regularization hyperparameter.

The per sample time complexity for prediction in the SVM model is O(M · ν) where M
is the number of categories, as a separate classifier must be trained for each category.

3.2 Timed Aggregate Perceptron

We now present a description of a novel variant of the batch perceptron algorithm, the
Timed Aggregate Perceptron (TAP, Medlock, 2010). We will first introduce the ideas
behind our model and then provide a formal description.

The online perceptron learning model has been a mainstay of artificial intelligence and
machine learning research since its introduction by Rosenblatt (1958). The basic principle
is to iteratively update a vector of weights in the sample space by adding some quantity in
the direction of misclassified samples as they are identified. The Perceptron with Margins
(PAM) was introduced by Krauth and Mezard (1987) and shown to yield better gener-
alisation performance than the basic perceptron. More recent developments include the
Voted Perceptron (Freund and Schapire, 1998) and the Perceptron with Uneven Margins
(PAUM), applied with some success to text categorization and information extraction (Li
et al, 2005).

The model we present is based on the batch training method (e.g. Bos and Opper,
1998) where the weight vector is updated in the direction of all misclassified instances
simultaneously. In our model an aggregate vector is created at each iteration by summing
all misclassified samples and normalising according to a timing variable which controls
both the magnitude of the aggregate vector and the stopping point of the training process.
The weight vector is then augmented in the direction of the aggregate vector and the
procedure iterates. The timing variable is responsible for protection against overfitting;
its value is initialised to 1, and gradually diminishes as training progresses until reaching
zero, at which point the procedure terminates.

Given a set of N data samples paired with target labels (xi, yi) the TAP learning procedure
returns an optimized weight vector ŵ ∈ RD. The prediction for a new sample x ∈ RD is
given by:

f(x) = sign(ŵ · x) (8)

where the sign function converts an arbitrary real number to +/−1 based on its sign.
The default decision boundary lies along the unbiased hyperplane ŵ · x = 0, though a
threshold can easily be introduced to adjust the bias.

At each iteration, an aggregate vector ãt is constructed by summing all misclassified
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samples and normalising:

ãt = norm(
∑

xi∈Qt

xiyi , τ) (9)

norm(a, τ) normalises a to magnitude τ and Qt is the set of misclassified samples at
iteration t, with the misclassification condition given by:

wt · xiyi < 1 (10)

A margin of +/−1 perpendicular to the decision boundary is required for correct classifi-
cation of training samples.

The timing variable τ is set to 1 at the start of the procedure and gradually diminishes,
governed by:

τt = τt−1 −
{

0 Lt−1 > Lt

t(Lt − Lt−1)β otherwise
(11)

The class-normalised empirical loss, Lt, falls within the range (0, 1) and is defined as:

Lt =
1

2

[
|Q+

t |
N+

+
|Q−

t |
N−

]
(12)

with N+/− denoting the number of class +/−1 training samples respectively. β is a measure
of the balance of the training distribution sizes:

β =
min(N+, N−)

N
(13)

with an upper bound of 0.5 representing perfect balance. Termination occurs when ei-
ther τ or the empirical loss reaches zero. How well the TAP solution fits the training
data is governed by the rapidity of the timing schedule; earlier stopping leads to a more
approximate fit.

In some cases, it may be beneficial to tune the rapidity of the timing schedule to achieve
optimal performance on a specific problem, particularly when cross validation is feasible.
In this instance we propose a modified version of expression (11) that includes a timing
rapidity hyperparameter, r:

τt = τt−1 −
{

r − 1 Lt−1 > Lt

rt(Lt − Lt−1)β otherwise
(14)

Note that this expression is equivalent to (11) in the case that r = 1.

An overview of the TAP learning procedure is given in Algorithm 1.

The timing mechanism used in our algorithm is motivated by the principle of early stop-
ping in perceptron training (Bos and Opper, 1998), where the procedure is halted before
reaching the point of minimum empirical loss. In our formulation, τ also governs the
length of the aggregate vector, which is analogous to the learning rate in the standard
perceptron. τ is decreased only when the class-normalised empirical loss increases. An
increase in emprical loss is an indication either that the model is beginning to overfit or
that the learning rate is too high, and a consequent decrease in τ works to counter both
possibilities. The scale of the decrease is governed by three heuristic factors:
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Algorithm 1 – TAP training procedure

Require: training data {(x1, y1), . . . , (xN , yN)}
τ = 1

for t = 1, 2, 3 . . . do
if τt = 0 ∨ Lt = 0 then

terminate and return wt

else
wt+1 = wt + ãt

end if
compute τt+1

end for

1. how far the algorithm has progressed (t)

2. the magnitude of the increase in empirical loss (Lt − Lt−1)

3. the balance of the training distributions (β)

The motivation behind the third heuristic is that in the early stages of the algorithm,
unbalanced training distributions lead to aggregate vectors that are skewed toward the
dominant class. If the procedure is stopped too early, the empirical loss will be dispropor-
tionately high for the subdominant class, leading to a skewed weight vector. The effect
of β is to relax the timing schedule for imbalanced data which results in higher quality
solutions.

The TAP optimisation procedure requires storage of the input vectors along with the
feature weight and update vectors, yielding space complexity of O(N) in the number
of training samples. At each iteration, computation of the empirical loss and aggregate
vector is O(N · ν) (recall that ν is the average number of unique features per sample).
Given the current and previous loss values, computing τ is O(1) and thus each iteration
scales with time complexity O(N) in the number of training samples. The number of
training iterations is governed by the rapidity of the timing schedule which has no direct
dependence on the number of training samples, yielding an approximate overall complexity
of O(N) (linear) in the number of training samples.

3.3 Discriminative Preference Ranking

The TAP and SVM models described above perform binary discriminative classification,
in which training exam scripts must be divided into ‘pass’ and ‘fail’ categories. The
confidence margin generated by the classifier on a given test script can be interpreted as
an estimate of the degree to which that script has passed or failed, e.g. a ‘good’ pass or
a ‘bad’ fail. However, this gradation of script quality is not modelled explicitly by the
classifier, rather it relies on emergent correlation of key features with script quality.

In this section, we introduce an alternative ML technique called preference ranking which
is better suited to the AAET task. It explicitly models the relationships between scripts by
learning an optimal ranking over a given sample domain, inferred through an optimisation
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procecure that utilises a specified ordering on training samples. This allows us to model
the fact that some scripts are ‘better’ than others, across an arbitrary grade range, without
necessarily having to specify a numerical score for each, or introduce an arbitrary pass/fail
boundary.

We now present a version of the TAP algorithm that efficiently learns preference ranking
models. A derivation of similar equations for learning SVM-based models, and proof of
their optimality is given by Joachims (2002).

The TAP preference ranking optimisation procedure requires a set of training samples,
x1,x2, . . . ,xn, and a ranking <r such that the relation xi <r xj holds if and only if
a sample xj should be ranked higher than xi for a finite, discrete partial or complete
ranking or ordering, 1 ≤ i, j ≤ n, i 6= j. Given some ranking xi <r xj, the method
only considers the difference between the feature vectors xi and xj as evidence, known
as pairwise difference vectors. The target of the optimisation procedure is to compute
a weight vector ŵ that minimises the number of margin-separated misranked pairs of
training samples, as formalised by the following constraints on pairwise difference vectors:

∀(xi <r xj) : ŵ · (xi − xj) ≥ µ. (15)

where µ is the margin, given a specific value below.

The derived set of pairwise difference vectors grows quickly as a function of the number
of training samples. An upper bound on the number of difference vectors for a set of
training vectors is given by:

u = a2 ∗ r(r − 1)/2 (16)

where r is the number of ranks and a is the average rank frequency.

This yields intractable numbers of difference vectors for even modest numbers of training
vectors, eg: r = 4, a = 2000 yields 24, 000, 000 difference vectors.

To overcome this, the TAP optimisation procedure employs a sampling strategy to reduce
the number of difference vectors to a manageable quantity. An upper bound is specified
on the number of training vectors, and then the probability of sampling an arbitrary
difference vector is given by u′/u where u′ is the specified upper bound and u is given
above.

The optimisation algorithm then proceeds as for the classification model (Algorithm 1),
except we have a one-sided margin. The modified procedure is shown in Algorithm 2.

The misclassification condition is:

wt · (xj − xi) > 2 (17)

and the aggregate vector ãt is constructed by:

ãt = norm(
∑

xi<rxj∈Qt

xj − xi , τ) (18)
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Algorithm 2 – TAP rank preference training procedure

Require: training data {(x1 <r x2), . . . , (xN <r xN+1)}
τ = 1

for t = 1, 2, 3 . . . do
if τt = 0 ∨ Lt = 0 then

terminate and return wt

else
wt+1 = wt + ãt

end if
compute τt+1

end for

Note that the one-sided preference ranking margin takes the value 2, mirroring the two-
sided unit-width margin in the classification model.

The termination of the optimisation procedure is governed by the timing rapidity hyper-
parameter, as in the classification case, and training time is approximately linear in the
number of pairwise difference vectors, upper bounded by u′ (see above).

The output from the training procedure is an optimised weight vector wt where t is
the iteration at which the procedure terminated. Given a test sample, x, Predictions
are made, analogously to the classification model, by computing the dot-product wt · x.
The resulting real scalar can then be mapped onto a grade/score range via simple linear
regression (or some other procedure), or used in rank comparison with other test samples.
Joachims (2002) describes an analogous procedure for the SVM model which we do not
repeat here.

As stated earlier, in application to AAET, the principal advantage of this approach is that
we explicitly model the grade relationships between scripts. Preference ranking allows us
to model ordering in any way we choose; for instance we might only have access to pass/fail
information, or a broad banding of grade levels, or we may have access to detailed scores.
Preference ranking can account for each of these scenarios, whereas classification models
only the first, and numerical regression only the last.

3.4 Feature Space

Intuitively AAET involves comparing and quantifying the linguistic variety and complex-
ity, the degree of linguistic competence, displayed by a text against errors or infelicities in
the performance of this competence. It is unlikely that this comparison can be captured
optimally in terms of feature types like, for example, ngrams over word forms. Variety
and complexity will not only be manifested lexically but also by the use of different types
of grammatical construction, whilst grammatical errors of commission may involve non-
local dependencies between words that are not captured by any given length of ngram.
Nevertheless, the feature types used for AAET must be automatically extracted from text
with good levels of reliability to be effectively exploitable.

We used the RASP system (Briscoe et al 2006; Briscoe, 2006) to automatically annotate
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Type Example

TFC:

lexical terms and / mark
lexical bigrams dear mary / of the
part-of-speech tags NNL1 / JJ
part-of-speech bigrams VBR DA1 / DB2 NN1
part-of-speech trigrams JJ NNSB1 NP1 / VV0 PPY RG

TFS:
parse rule names V1/modal bse/+- / A1/a inf
script length numerical
corpus-derived error rate numerical

Table 1: Eight AAET Feature Types

both training and test data in order to provide a range of possible feature types and their
instances so that we could explore their impact on the accuracy of the resulting AAET
system. The RASP system is a pipeline of modules that perform sentence boundary de-
tection, tokenisation, lemmatisation, part-of-speech (PoS) tagging, and syntactic analysis
(parsing) of text. The PoS tagging and parsing modules are probabilistic and trained on
native English text drawn from a variety of sources. For the AAET system and experi-
ments described here we use RASP unmodified with default processing settings and select
the most likely PoS sequence and syntactic analysis as the basis for feature extraction.
The system makes availalble a wide variety of output representations of text (see Briscoe,
2006 for details). In developing the AAET system we experimented with most of them,
but for the subset of experiments reported here we make use of the set of feature types
given along with illustrative examples in Table 1.

Lower-cased but not lemmatised lexical terms (i.e. unigrams) are extracted along with
their frequency counts, as in a standard ‘bag-of-words’ model. These are supplemented by
bigrams of adjacent lexical terms. Unigrams, bigrams and trigrams of adjacent sequences
of PoS tags drawn from the RASP tagset and most likely output sequence are extracted
along with their frequency counts. All instances of these feature types are included with
their counts in the vectors representing the training data and also in the vectors extracted
for unlabelled test instances.

Lexical term and ngram features are weighted by frequency counts from the training data
and then scaled using tf · idf weighting (Sparck-Jones, 1972) and normalised to unit
length. Rule name counts, script length and error rate are linearly scaled so that their
weights are of the same order of magnitude as the scaled term/ngram counts.

Parse rule names are extracted from the phrase structure tree for the most likely analysis
found by the RASP parser. For example, the following sentence from the training data,
Then some though occured to me., receives the analysis given in Figure 1, whilst the
corrected version, Then a thought occurred to me. receives the analysis given in Figure 2.
In this representation, the nodes of the parse trees are decorated with one of about 1000
rule names, which are semi-automatically generated by the parser and which encode quite
detailed information about the grammatical constructions found. However, in common
with ngram features, these rule names are extracted as an unordered list from the analyses
for all sentences in a given script along with their frequency counts. Each rule name
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T/frag

Tph/nphhhhhhhhhhhh

((((((((((((
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Then RR

NP/det a1-r
XXXXXX
������

some DD A1/advp ppart-r
PPPPP

�����
AP/a1

A1/a

though RR

occur+ed VVN

PP/p1

P1/p np-pro
H
HH

�
��

to II I+ PPIO1

Figure 1: Then some though occured to me

T/txt-sc1

S/adv shhhhhhhhh
(((((((((

AP/a1

A1/a

Then RR

S/np vphhhhhhhhh
(((((((((

NP/det n1
aaaa

!!!!
a AT1 N1/n

thought NN1

V1/v pp
XXXXX

�����
occur+ed VVD PP/p1

P1/p np-pro
HHH
���

to II I+ PPIO1

Figure 2: Then a thought occurred to me

together with its frequency count is represented as a cell in the vector derived from a
script. The script length in words is used as a feature less for its intrinsic informativeness
than for the need to balance the effect of script length on other features. For example,
error rates, ngram frequencies, etc will tend to rise with the amount of text, but the
overall quality of a script must be assessed as a ratio of the opportunities afforded for the
occurrence of some feature to its actual occurrence.

The automatic identification of grammatical and lexical errors in text is far from trivial
(Andersen, 2010). In the existing systems reviewed in section 2, a few specific types of
well-known and relatively frequent errors, such as subject-verb agreement, are captured
explicitly via manually-constructed error-specific feature extractors. Otherwise, errors
are captured implicitly and indirectly, if at all, via unigram or other feature types. Our
AAET system already improves on this approach because the RASP parser rule names
explicitly represent marked, peripheral or rare constructions using the ‘-r’ suffix, as well

19



as combinations of extragrammatical subsequences suffixed ‘frag’, as can be seen by com-
paring Figure 2 and Figure 1. These cues are automatically extracted without any need
for error-specific rules or extractors and can capture many types of long-distance gram-
matical error. However, we also include a single numerical feature representing the overall
error rate of the script. This is estimated by counting the number of unigrams, bigrams
and trigrams of lexical terms in a script that do not occur in a very large ‘background’
ngram model for English which we have constructed from approximately 500 billion words
of English sampled from the world wide web. We do this efficiently using a Bloom Filter
(Bloom, 1970). We have also experimenented with using frequency counts for smaller
models and measures such as mutual information (e.g. Turney and Pantel, 2010). How-
ever, the most effective method we have found is to use simple presence/absence over
a very large dataset of ngrams which unlike, say, the Google ngram corpus (Franz and
Brants, 2006) retains low frequency ngrams.

Although we have only described the feature types that we used in the experiments
reported below, because they proved useful with respect to the competence level and
text types investigated, it is likely that others made available by the RASP system, such
as the connected, directed graph of grammatical relations over sentences, the degree of
ambiguity within a sentence, the lemmas and/or morphological complexity of words, and
so forth (see Briscoe 2006 for a fuller description of the range of feature types, in principle,
made available by RASP), will be discriminative in other AAET scenarios. The system
we have developed includes automated feature extractors for most types of feature made
available through the various representations provided by RASP. This allows the rapid
and largely automated discovery of an appropriate feature set for any given assessment
task, using the experimental methodology exemplified in the next section.

4 The FCE Experiments

4.1 Data

For our experiments we made use of a set of transcribed handwritten scripts produced by
candidates taking the First Certificate in English (FCE) examination written component.
These were extracted from the Cambridge Learner Corpus (CLC) developed by Cambridge
University Press. These scripts are linked to metadata giving details of the candidate, date
of the exam, and so forth, as well as the final scores given for the two written questions
attempted by candidates (see Hawkey, 2009 for details of the FCE). The marks assigned
by the examiners are postprocessed to identify outliers, sometimes second marked, and the
final scores are adjusted using RASCH analysis to improve consistency. In addition, the
scripts in the CLC have been manually error-coded using a taxonomy of around 80 error
types providing corrections for each error. The errors in the example from the previous
section are coded in the following way:

<RD>some|a</RD> <SX>though|thought</SX> <IV>occured|occurred</IV>

where RD denotes a determiner replacement error, SX a spelling error, and IV a verb
inflection error (see Nicholls 2003 for full details of the scheme). In our experiments, we

20



used around three thousand scripts from examinations set between 1997 and 2004, each
about 500 words in length. A sample script is provided in the appendix.

In order to obtain an upper bound on examiner agreement and also to provide a better
benchmark to assess the performance of our AAET system compared to that of human
examiners (as recommended by, for example, Attali and Bernstein, 2006), Cambridge
ESOL arranged for four senior examiners to remark 100 FCE scripts drawn from the 2001
examinations in the CLC using the marking rubric from that year. We know, for example,
from analysis of these marks and comparison to those in the CLC that the correlation
between the human markers and the CLC scores is about .8 (Pearson) or .78 (Spearman’s
Rank), thus establishing an upper bound for performance of any classifier trained on this
data (see section 4.3 below).

4.2 Binary Classification

In our first experiment we trained five classifier models on 2973 FCE scripts drawn from
the years 1999–2003. The aim was to apply well- known classification and evaluation
techniques to explore the AAET task from a discriminative machine learning perspective
and also to investigate the efficacy of individual feature types. We used the feature types
described in section 3.4 with all the models and divided the training data into pass (mark
above 23) and fail classes. Because there was a large skew in the training classes, with
about 80% of the scripts falling into the pass class, we used the Break Even Precision
(BEP) measure, defined as the point at which average precision=recall, (e.g. Manning
et al, 2008) to evaluate the performance of the models on this binary classification task.
This measure favours a classifer which locates the decision boundary between the two
classes in such a way that false positives / negatives are evenly distributed between the
two classes.

The models trained were naive Bayes, Baysian logistic regression, maximum entropy,
SVM, and TAP. Consistent with much previous work on text classification tasks, we
found that the TAP and SVM models performed best and did not yield significantly
different results. For brevity, and because TAP is faster to train, we report results only
for this model in what follows.

Figure 3 shows the contribution of feature types to the overall accuracy of the classifier.
With unigram terms alone it is possible to achieve a BEP of 66.4%. The addition of
bigrams of terms improves performance by 2.6% (representing about 19% relative error
reduction (RER) on the upper bound of 80%). The addition of an error estimate feature
based on the Google ngram corpus further improves performance by 2.9% (further RER
about 21%). Addition of parse rule name features further improves performance by 1.5%
(further RER about 11%). The remaining feature types in Table 1 contribute another
0.4% improvement (further RER about 3%).

These results provide some support for the choice of feature types described in section 3.4.
However, the final datapoint in the graph in Figure 3 shows that if we substitute the error
rate predicted from the CLC manual error coding for our corpus derived estimate, then
performance improves a further 2.9%, only 3.3.% below the upper bound defined by
the degree of agreement between human markers. This strongly suggests that the error
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Figure 3: Contribution of Feature Types

estimate is a critical feature and that there is room for significant improvement in its
method of estimation (see section 4.5 below).

4.3 Preference Ranking

As discussed earlier, a better way of modelling the AAET task is to use the preference
ranking paradigm. Here we describe experiments carried out using the TAP implementa-
tion described in section 3.3.

We trained the TAP preference ranking model with the feature types described in sec-
tion 3.4 as described in section 3.3, and compared the correlation of the predicted values
with that of the four senior examiners and with the CLC scores for the test data. The
results are given using Pearson’s correlation coefficient in Table 2 and using Spearman’s
Rank correlation in Table 3.

CLC Rater 1 Rater 2 Rater 3 Rater 4 Auto-mark
CLC 0.82 0.77 0.73 0.78 0.78
Rater 1 0.82 0.85 0.85 0.88 0.79
Rater 2 0.77 0.85 0.78 0.79 0.77
Rater 3 0.73 0.85 0.78 0.78 0.76
Rater 4 0.78 0.88 0.79 0.78 0.71
Auto-mark 0.78 0.79 0.77 0.76 0.71
Average: 0.77 0.84 0.79 0.78 0.79 0.76

Table 2: Correlation (Pearson’s CC)

We also compared the performance of the preference ranking TAP model to a binary
TAP classifier trained using the same feature types on the same data divided into pass/fail
scripts. The correlation with the CLC scores on this test data was worse by 0.05 (Pearson)
and 0.07 (Spearman) using classification as compared to preference ranking with the same
underlying TAP model.

22



CLC Rater 1 Rater 2 Rater 3 Rater 4 Auto-mark
CLC 0.80 0.79 0.75 0.76 0.80
Rater 1 0.80 0.81 0.81 0.85 0.74
Rater 2 0.79 0.81 0.75 0.79 0.75
Rater 3 0.75 0.81 0.75 0.79 0.75
Rater 4 0.76 0.85 0.79 0.79 0.73
Auto-mark 0.80 0.74 0.75 0.75 0.73
Average: 0.78 0.80 0.78 0.77 0.78 0.75

Table 3: Correlation (Spearman’s Rank)

These results suggest that the AAET system we have developed is able to achieve levels
of correlation similar to those achieved by the human markers both with each other and
with the RASCH-adjusted marks in the CLC. To give a more concrete idea of the actual
marks assigned and their variation, we give marks assigned to a random sample of 10
scripts from the test data in Table 4 (fitted to the appropriate score range by simple
linear regression).

Auto-mark Rater 1 Rater 2 Rater 3 Rater 4
26 26 23 25 23
33 36 31 38 36
29 25 22 25 27
24 23 20 24 24
25 25 22 24 22
27 26 23 30 24
5 12 5 12 17
29 30 25 27 27
21 24 21 25 19
23 25 22 25 25

Table 4: Sample predictions (random ten)

4.4 Temporal Sensitivity

The training data we have used so far in our experiments is drawn from examinations both
before and after the test data. In order to investigate both the effect of different amounts
of training data and also the effect of training on scripts drawn from examinations at
increasing temporal distance from the test data, we divided the data by year and trained
and tested the correlation (Pearson) with the CLC marks. Figure 4 shows the results –
clearly there is an effect of training data size, as no result is as good as those reported
using the full dataset for training. However, there is also a strong effect for temporal
distance between training and test data, reflecting the fact that both the type of prompts
used to elicit text and the marking rubrics evolve over time (e.g. Hawkey, 2009; Cecil and
Weir, 2007).
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4.5 Error Estimation

In order to explore the effect of different datasets on the error prediction estimate, we
have gathered a large corpus of English text from the web. Estimating error rate using
a 2 billion word sample of text sampled from the UK domain retaining low frequency
unigrams, bigrams, and trigrams we were able to improve performance over estimation
using the Google ngram corpus by 0.09% (Pearson) in experiments which were otherwise
identical to those reported in section 4.3

To date we have gathered about a trillion words of sequenced text from the web. We expect
future experiments with error estimates based on larger samples of this corpus to improve
on these results further. However the results reported here demonstrate the viability of
this approach, in combination with parser-based features which implicitly capture many
types of longer distance gramatical error, compared to the more labour intensive one of
manually coding feature extractors for known types of stereotypical learner error.

4.6 Incremental Semantic Analysis

Although, the focus of our experiments has not been on content analysis (see section 2.3.3),
we have undertaken some limited experiments to compare the performance of an AAET
system based primarily on such techniques (such as PearsonKT’s, IEA, see section 2) to
that of the system presented here.

We used ISA (see section 2.3.3) to construct a system which, like IEA, uses similarity to an
average vector constructed using ISA from high scoring FCE training scripts as the basis
for assigning a mark. The cosine similarity scores were then fitted to the FCE scoring
scheme. We trained on about a thousand scripts drawn from 1999 to 2004 and tested
on the standard test set from 2001. Using this approach we were only able to obtain a
correlation of 0.45 (Pearson) with the CLC scores and and average of 0.43 (Pearson) with
the human examiners. This contrasts with scores of 0.47 (Pearson) and 0.45 (Pearson)
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training the TAP ranked preference classifier on a similar number of scripts and using
only unigram term features.

These results, taken with those reported above, suggest that there isn’t a clear advantage
to using techniques that cluster terms according to their context of occurrence, and com-
pute text similarity on the basis of these clusters, over the text classification approach
deployed here. Of course, this experiment does not demonstrate that clustering tech-
niques cannot play a useful role in AAET, however, it does suggest that a straightforward
application of latent or distributional semantic methods to AAET is not guaranteed to
yield optimal results.

4.7 Off-Prompt Essay Detection

As discussed in section 2.4, one issue with with the deployment of AAET for high stakes
examinations or other ‘adversarial’ contexts is that a non-prompt specific approach to
AAET is vulnerable to ‘gaming’ via submission of linguistically excellent rote-learned
text regardless of the prompt. To detect such off-prompt text automatically does require
content analysis of the type discussed in section 2.3.3 and explored in the previous section
as an approach to grading.

Given that our approach to AAET is not prompt-specific in terms of training data, ideally
we would like to be able to detect off-prompt scripts with a system that doesn’t require
retraining for different prompts. We would like to train a system which is able to compare
the question and answer script within a generic distributional semantic space. Because
the prompts are typically quite short we cannot expect that in general there will be much
direct overlap between contentful terms or lemmas in the prompt and those in the answer
text.

We trained an ISA model using 10M words of diverse English text using a 250-word stop
list and ISA parameters of 2000 dimensions, impact factor 0.0003, and decay constant 50
with a context window of 3 words. Each question and answer is represented by the sum of
the history vectors corresponding to the terms they contain. We also included additional
dimensions representing actual terms in the overall model of distributional semantic space
to capture cases of literal overlap between terms in questions and in answers. The resulting
vectors are then compared by calculating their cosine similarity. For comparison, we built
a standard vector space model that measures semantic similarity using cosine distance
between vectors of terms for question and answer via literal term overlap.

To test the performance of these two approaches to off-prompt essay detection, we ex-
tracted 109 passing FCE scripts from the CLC answering four different prompts:

1. During your holiday you made some new friends. Write a letter to them saying how
you enjoyed the time spent with them and inviting them to visit you.

2. You have been asked to make a speech welcoming a well-known writer who has come
to talk to your class about his/her work. Write what you say.

3. “Put that light out!” I shouted. Write a story which begins or ends with these
words.
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4. Many people think that the car is the greatest danger to human life today. What
do you think?

Each system was used to assign each answer text to the most similar prompt. The accuracy
(ratio of correct to all assignments) of of the standard vector space model was 85%,
whilst the augmented ISA model achieved 93%. This preliminary experiment suggests
that a generic model for flagging putative off-prompt essays for manual checking could
be constructed by manual selection of a set of prompts from past papers and the current
paper and then flagging any answers that matched a past prompt better than the current
prompt. There will be some false positives, but these initial results suggest that an
augmented ISA model could perform well enough to be useful. Further experimentation
on larger sets of generic training text and on optimal tuning of ISA parameters may also
improve accuracy.

5 Conclusions

In this report, we have introduced the discriminative TAP preference ranking model
for AAET. We have demonstrated that this model can be coupled with the RASP text
processing toolkit allowing fully automated extraction of a wide range of feature types
many of which we have shown experimentally are discriminative for AAET. We have
also introduced a generic and fully automated approach to error estimation based on
efficient matching of text sequences with a very large background ngram corpus derived
from the web using a Bloom filter, and have shown experimentally that this is the single
most discriminative feature in our AAET model. We have also shown experimentally
that this model performs significantly better than an otherwise equivalent one based on
classification as opposed to preference ranking. We have also shown experimentally that
text classification is at least as effective for AAET as a model based on ISA, a recent and
improved latent or distributional semantic content-based text similarity method akin to
that used in IEA. However, ISA is useful for detecting off-prompt essays using a generic
model of distributional semantic space that does not require retraining for new prompts.

Much further work remains to be done. We believe that the features assessed by our
AAET model make subversion by students difficult as they more directly assess linguistic
competence than previous approaches. However, it remains to test this experimentally.
We have shown that error estimation against a background ngram corpus is highly infor-
mative, but our fully automated technique still lags error estimates based on the manual
error coding of the CLC. Further experimentation with larger background corpora and
weighting of ngrams on the basis of their frequency, pointwise mutual information, or
similar measures may help close this gap. Our AAET model is not trained on prompt-
specific data, which is operationally advantageous, but it does not include any mechanism
for detecting text lacking overall inter-sentential coherence. We believe that ISA or other
recent distributional semantic techniques provide a good basis for adding such features to
the model and plan to test this experimentally. Finally our current AAET system simply
returns a score, though implicit in its computation is the identification of both negative
and positive features that contribute to its calculation. We plan to explore methods for
automatically providing feedback to students based on these features in order to facilitate
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deployment of the system for self-assessment and self-tutoring.

In the near future, we intend to release a public-domain training set of anonymised FCE
scripts from the CLC together with an anonymised version of the test data described
in section 4. We also intend to report the performance of preference ranking with the
SVMlight package (Joachims, 1999) based on RASP-derived features, and error estimation
using a public domain corpus trained and tested on this data and compared to the per-
formance of our best TAP-based model. This will allow better replication of our results
and facilitate further work on AAET.
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Appendix: Sample Script

The following is a sample of a FCE script with error annotation drawn from the CLC and
converted to XML. The full error annotation scheme is described in Nicholls (2003).
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<head title="lnr:1.01" entry="0" status="Active" url="571574"
sortkey="AT*040*0157*0100*2000*01">
<candidate>
<exam>
<exam_code>0100</exam_code>
<exam_desc>First Certificate in English</exam_desc>
<exam_level>FCE</exam_level></exam>
<personnel>
<ncode>011</ncode>
<language>German</language>
<age>18</age>
<sex>M</sex></personnel>
<text>
<answer1>
<question_number>1</question_number>
<exam_score>34.2</exam_score>
<coded_answer>
<p idx="15576">Dear Mrs Ryan<NS type="MP">|,</NS></p><p idx="15577">Many
thanks for your letter.</p><p idx="15578">I would like to travel in July
because I have got <NS type="MD">|my</NS> summer holidays from July to
August and I work as a bank clerk in August. I think a tent would suit
my personal <NS type="RP">life-style|lifestyle</NS> better than a log
cabin because I love <NS type="UD">the</NS> nature.</p><p idx="15579">I
would like to play basketball during my holidays at Camp California
because I love this game. I have been playing basketball for 8 years and
today I am a member of an Austrian <NS type="RP">basketball-team|
basketball team</NS>. But I have never played golf in my life <NS
type="RC">but|though</NS> with your help I would be able to learn how to
play golf and I think this could be very interesting.</p><p
idx="15580">I <NS type="W">also would|would also</NS> like to know how
much money I will get from you for <NS type="RA">those|these</NS> two
weeks because I would like to spend some money <NS type="RT">for|on</NS>
clothes.</p><p idx="15581">I am looking forward to hearing from you
soon.</p><p idx="15582">Yours sincerely</p>
</coded_answer></answer1>
<answer2>
<question_number>4</question_number>
<exam_score>30.0</exam_score>
<coded_answer>
<p idx="15583">Dear Kim</p><p idx="15584">Last month I enjoyed helping
at a pop concert and I think you want to hear some funny stories about
the <NS type="FN">experience|experiences</NS> I <NS type="RV">made|
had</NS>.</p><p idx="15585">At first I had to clean the three private
rooms of the stars. This was very boring but after I left the third room
I met Brunner and Brunner. These two people are stars in our country...
O.K. I am just <NS type="IV">kiding|kidding</NS>. I don’t like <NS
type="W">the songs of Brunner and Brunner|Brunner and Brunner’s
songs</NS> because this kind of music is very boring.</p><p
idx="15586">I also had to clean the <NS type="RN">washing rooms|
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washrooms</NS>. I will never ever help anybody to <NS type="S">organice|
organise</NS> a pop concert <NS type="MY">|again</NS>.</p><p
idx="15587">But after this <NS type="S">serville|servile</NS> work I met
Eminem. I think you know his popular songs like "My Name Is". It was one
of the greatest moments in my life. I had to <NS type="RV">bring|
take</NS> him something to eat.</p><p idx="15588">It was <NS
type="UD">a</NS> hard but also <NS type="UD">a</NS> <NS type="RJ">funny|
fun</NS> work. You should try to <NS type="RV"><NS type="FV">called|
call</NS>|get</NS> some experience <NS type="RT">during|at</NS> such a
concert<NS type="RP"> you|. You</NS> would not regret it.</p><p
idx="15589">I am looking forward to hearing from you soon.</p>
</coded_answer></answer2></text></head>
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