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Abstract

It is shown how a category of Petri nets can be viewed as a subcategory of two sorted
algebras over multisets. This casts Petri nets in a familiar framework and provides a useful
idea of morphism on nets different from the conventional definition—the morphisms here
respect the behaviour of nets. The categorical constructions which result provide a useful
way to synthesise nets and reason about nets in terms of their components; for example
various forms of parallel composition of Petri nets arise naturally from the product in the
category. This abstract setting makes plain a useful functor from the category of Petri
nets to a category of spaces of invariants and provides insight into the generalisations
of the basic definition of Petri nets—for instance the coloured and higher level nets of
Kurt Jensen arise through a simple modification of the sorts of the algebras underlying
nets. Further, it provides a smooth formal relation with other models of concurrency
such as Milner’s Calculus of Communicating Systems (CCS) and Hoare’s Communicating
Sequential Processes (CSP).

Introduction.

The purposes of this paper are threefold. Firstly there is a lot of interest in how
to combine Petri nets to make reasoning with them simpler and more structured. An
approach to this is offered here. Secondly there are many different kinds of Petri nets
around and it is not always clear how they relate to each other. Thirdly it is not often
clear how Petri net models of processes relate to other models like the interleaving models
of Milner’s CCS and Hoare’s CSP. This paper demonstrates, I believe, that by casting
Petri nets in a more abstract algebraic framework their features and relations to other
models can be appreciated better.

The graphical representation of Petri nets has been a mixed blessing. For small ex-
amples a graphical representation has undeniable, immediate appeal. For larger examples .
graphical representations are hard to comprehend. This is despite some success in finding
abbreviated ways to describe Petri nets such as the predicate~transition nets of Genrich and
Lautenbach and the coloured nets of Jensen. A graphical notation can sometimes obscure
the more abstract treatment necessary to advance our understanding. This happened with
flow diagrams where Floyd’s rules were fairly complicated compared with Hoare’s rules for
while-programs, and it seems to have happened with Petri nets too. What is simple graph-
ically may be awfully difficult logically when it comes to reasoning about the behaviour of
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programs or systems. Worse still, constructions that are meaningful on graphs may fail to
make sense in terms of the behaviour they are intended to convey. I believe one can see an
example of this in the old definition of morphism on Petri nets, given in [Br], which does
not preserve the dynamic behaviour of nets. :

Tt is commonly accepted that we require ways to combine Petri nets and to structure
and direct our reasoning. The work of Hoare on CSP [H| and Milner on CCS [M] and
earlier Campbell, Lauer and Habermann on path expressions [CL] has thrown light on
useful combinators for parallel processes. So has the work of the Polish school (notably
Mazurkiewicz [Maz]) and Hungarian school (notably [GKR]) on ways of combining pro-
cesses modelled as sets of traces. It seems sensible to incorporate these ideas into the
theory of Petri nets.

Of course, there are many ways to attempt this. One is that of Boudol, Roucairol and
de Simone [BRS] which essentially translates every finite Petri net into a Meije process,
and thus inherits compositionality from Meije, a descendent of the CCS and CSP family
of languages. In a sense their approach implements Petri nets as Meije processes. The
approach in this paper is different. It is founded on the view that Petri nets are a fun-
damental mathematical model of computation, like finite and infinite state machines, say,
but in which the concurrency structure is given explicitly. As such, the theory of Petri nets
should be developed to the point where it is easy to model and reason about a wide range
of languages for parallel processes, including CCS, CSP and Meije. So, in this paper the
combinators on nets are not derived from any other calculus but rather are consequences
of their mathematical structure.

To establish the correct mathematical structure of nets we must look beyond their
graphical representation which can be deceptive. Here we advocate the view that Petri
nets are special kinds of algebras, and so are objects of a well-known mathematical nature.
As algebras they support a notion of homomorphism on which we base the definition of
morphism between Petri nets. The morphisms on Petri nets proposed are significantly
different from the morphisms defined in |Br], and do preserve the dynamic behaviour of
nets. Extended in this way Petri nets form a category. One pay—-off is that now several
combinators arise naturally as categorical constructions. In the category the product is
a2 construction which takes two nets and introduces events of synchronisation between
them, and the coproduct (in fact in a subcategory) is a construction which is a form of
nondeterministic disjunction of nets, like Milner’s sum. Incidentally, our use of category
theory will be light; good references are [AM] and [Mac].

There are several important consequences of this mathematical set-up. Each cate-
gorical construction comes equipped with-n\lorphisms which relate it to its components.
These furnish proof methods to reason about the construction in terms of its components.
Another consequence is the way in which invariants in the domain of a morphism of nets
are inherited from invariants of the codomain, giving a contravariant functor from the
category of Petri nets to the category of spaces of invariants. The approach generalises to
higher level nets like those introduced by Jensen. Fortunately a similar approach works

2



for a variety of different models of computation. In them too familiar constructions, like
parallel compositions, turn out to be significant categorically. In many cases models, Petri
nets among them, can be related by a pair of functors forming a coreflection, a special
kind of adjunction, between the two associated categories. Because of the way in which
coreflections preserve categorical constructions, they form a bridge translaiing between the
different models, and in fact many models can be embedded in the model of Petri nets
in this way. Consequently, it can be seen how semantics expressed in terms of one model
translates to semantics in terms of another. This is an extra benefit to a more abstract
approach to Petri nets than is usual. It will only be skefched in this paper and the reader
is referred to [W4] for more details.

1. Petri nets.

Petri nets model processes in terms of how the occurrence of events incur changes in
local states called conditions. This is expressed by a causal dependency (or flow) relation
between sets of events and conditions, and it is this structure which determines the dynamic
behaviour of nets once the causal dependency relation is given its natural interpretation.
The most well-known definition of Petri nets has the following form. We refer the reader
to the appendix for a detailed treatment of multisets, though for the moment we do not
require much.

Definition. A Petri net is a 4-tuple (B, E, F, M) where
B is a non—null set of conditions,
FE is a disjoint set of events,
F is a multiset of (B x E) U (E x B), called the causal dependency
relation,
My is a non—null multiset of conditions, called the initial marking,
which satisfy the restrictions:

(i) Vee EIbeB.F,, >0 and Vec EJbe B. Fop >0 and
(i) My#0 or (3e€E. F,p, #0) or (Je€ E. F}, o #0).

Thus we insist that each event causally depends on at least one condition and has
at least one condition which is causally dependent on it. For technical reasons which will
become clear in section 3 it is convenient to also insist that safe nets have no isolated
conditions t.e. that a condition is either marked initially or the pre or post condition of .
some event. This restriction is no handicap because, according to the dynamic behaviour
of nets, an isolated condition can never hold.

Such nets are often called place-transition nets though here we do not attribute a
capacity to each condition (or place). Also like [J1,2], though unlike [R], we do not allow
markings with infinite multiplicity. This does not seem to be a limitation in practice,
though the work here could be generalised to such kinds of markings.
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Nets have a well-known graphical representation in which events are represented as
boxes and conditions as circles with directed arcs between them, weighted by positive
integers, to represent the flow relation. The initial marking is represented by placing
“tokens” to the appropriate multiplicity on each weighted condition.

1

Example. i 1
b i

SN 5

7

By convention we understand an arc which carries no label to stand for an arc with weight
1. Sometimes we mark a condition by an integer, e.g. &), to represent its multiplicity.

We have yet to formalise the well-known “token game” on Petri nets through which
they are equipped with a dynamic behaviour. This we postpone till we have presented
another view of nets which casts them in more traditional algebraic framework. It is
useful to regard a Petri net as a 2-sorted algebra on multisets. This view underlies the
techniques for finding invariants of nets by linear algebra [Pe, Br, R]. We shall use some
basic definitions and notation of multisets, and later of vectors and modules, which is
introduced in the appendix. Because we want to deal with infinite Petri nets, and not
just finite nets, we must take some trouble over operations on multisets and vectors which
become a little more complicated when over infinite bases. This is tackled in detail in the
appendix, though a casual reader can understand the main ideas without much reference
to it.

2. Nets viewed as algebras.

It is useful, both notationally and conceptually, to regard a Petri net as a 2-sorted
algebra on multisets. It provides notation for describing the dynamic behaviour of nets
(the “token game”) and prompts us in the direction of a useful definition of morphisms on
Petri nets.

From classical mathematics we are familiar with algebras over sets, whether they are
single-sorted like groups, rings or fields, or two-sorted like vector spaces or modules. It
is noteworthy that nets can be viewed in this traditional setting and that when we do
familiar constructions on nets reappear as well-known algebraic constructions.

Proposition. A Petri net (B, E, F, M) determines a 2-sorted algebra over multisets:
It has sorts pB and pE, with operations a constant, My € uB and two unary operations
*(): E —, B, with matrix (Fy ¢ )scB,eccE, 2nd ()* : B —, B, with matrix (Fep)oeB,ccE-
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Conversely, a 2-sorted algebra over multisets with sorts uB and pE, with a constant
M, € B and two unary operations *{ },( )* : E —, B, which satisfies

(i) My#0and (*PA=0 or A*=0)=>A=0and

(i) Yb€eB.M,#0 or (JecE. (e*)s #0) or (Je € E. (*e)p #0
determines a Petri net (B, E, F, My) by taking

Fb,e = ('e);, and Fe,b = (e')b.

This gives a 1-1 correspondence between Petri nets and 2—sorted algebras over multisets

which satisfy (i) and (ii).

Remark. This view of Petri nets, and more generally of predicate transition nets, as
algebras was advocated by W. Reisig in [R1]. In future it will sometimes be convenient to
describe a Petri net as a structure (B, E,*(),()*, Mo).

Of course it is possible to view many structures as algebras. What is not always so
clear is the use of doing so. Our first piece of evidence that it is useful comes from the fact
that homomorphisms on Petri nets preserve the dynamic behaviour of nets.

3. The dynamic behaviour of nets.

As is well-known, states of a net are represented as markings which are simply mul-
tisets of conditions. You can think of a condition as a resource and its multiplicity as the
amount of the resource. As an event occurs it consumes certain resources and produces
others. What and how much is specified by the relation F'. Continuing this interpretation,
if there are enough resources then more than one event can occur concurrently, and it is
even allowed that an event can occur to a certain multiplicity. This leads us to the follow-
ing account of the “token game” on Petri nets—it differs from some others in that we do
not play the token game by firing only one event at a time but allow instead transitions
in which finite multisets of events fire.

Let N = (B, E, F, M;) be a Petri net.

A marking M is a multiset of conditions, t.e. M € uB.

Let M, M' be markings. Let A be a finite multiset of events. Define
MA - Mo*A<M & M =M-°"A+A°.

This gives the transition relation between markings. When we wish to stress the net IV in
which the transition M —A— M’ occurs we write

N:M -2 M.



A reachable marking of N is a marking M for which

A,
M, Ao My A L M, =M
for some markings and finite multisets of events.

The reason for only allowing finite multisets of events to occur as transitions is in
order that the occurrence of an event only depends on a finite set of event occurrences,
and so exclude such processes as lead to the paradoxes of Zeno. It has many technical
advantages too, especially when relating Petri nets to other models, though this will not
be so evident from the work here.

Now we make precise the sense in which homomorphisms of Petri nets (or strictly
speaking their associated algebras) preserve their dynamic behaviour. Let’s spell out what
it means to be a homomorphism between 2-sorted algebras of the type associated with
nets. Recall 2 homomorphism of 2-sorted algebras over a suitable category consists of a
pair of sort-respecting morphisms of the category which preserve the operations of the
algebras.

Definition. Let N = (B, E,F, M) and N’ = (B', E', F', M") be nets. A homomorphism
from N to N' is a pair of multirelations (7, 8) with n : E —, E' and f: B —, B’ such
that

BM=M' & YA€ pE. *(nd) = B(*A) & (nA)® = p(4°).

Say a homomorphism is finitary when ne is a finite multiset for all events e.

You can see a homomorphism of nets preserves initial markings and the environments
of events.

Theorem. Let (n,8) : N — N’ be a finitary homomorphism of Petri nets. Then
preserves the initial marking and if M A, M' in N then M 2 gM' in N'.

Proof. Directly from the definition we see that f preserves the initial marking. Assume
N : M -2 M'. As the homomorphism is finitary we see nA is a finite multiset. Also
*A< M,so*nA=p("A) <BM, and

M =(M-"*4)+ A"
Now applying 3,

BM' = p((M —*A) + A*)
= M — B(*A) + B(A°®) by linearity
=M —*(nA) + (nA)* by the defn. of h’morphism.

But these facts express that N’ : fM "4 gM'. g

6



Corollary. Finitary homomorphisms preserve reachable markings 1.e. if M is a reachable
marking of a net N and (n,[) is a finitary homomorphism from N to N' then SM is a
reachable marking of N'.

Proof. By repeated apblication of the theorem above. §
If (n,8) is a homomorphism from N to N, as a computation
M, Ao M, Ar, . Anst  pp Aa
is traced—out in N so the computation

ﬁMO—”A—O,_’ﬁMl nAy , . nAn_xﬁ\ﬁMn nA. .

is traced—out in N'.

Thus finitary homomorphisms preserve the behaviour of nets. They do this in a local
way by expressing how the occurrence of an event in one net induces the a finite multiset
of occurrences in the other and the holding of a condition in one net induces a multiplicity
of condition holdings in the other. Still, this is not to say that such homomorphisms are
the natural morphisms to take on Petri nets from all points of view. Here is one example
which one can argue runs counter to intuitions about the nature of events in Petri nets.

Example. A finitary homomorphism: it Ao

There is a problem with the interpretation of the homomorphism in this example. The
occurrence of a single event in the domain of the homomorphism induces the simultaneous
or coincident occurrence of two events ¢y and e; in its range. This goes against a view
of Net theory, expressed by Petri, that events which are coincident are the same event.
It seems that morphisms should be homomorphisms which preserve events, in the sense
that n should be a partial function, thus forbidding the example above. Our argument
is based, in addition, on the kinds of homomorphisms that arise naturally from familiar
constructions on Petri nets and the fact that by making the suggested restriction we obtain
many useful categorical constructions and a smooth relationship between Petri nets and
other models of paraliel computation.

For emphasis:

Definition. A morphism on Petri nets N — N’ is a homomorphism (n,8) : N — N’,
on the nets viewed as algebras, in which 7 is a partial function (recall we identify partial
functions with their linear extensions to multirelations) t.e. the matrix of n satisfies

Neer <1 and
e e! = 1 & Ne, e’ = 1=e =¢"
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for events e, ¢ and €. Say a morphism (n,f) of nets is synchronous when 5 is a total
function on events.

Remark. This definition of morphism generalises those in [W3] for safe nets and in [GR]
from causal nets to Petri nets. '

Because morphisms on Petri nets are finitary homomorphisms it is obvious that

Theorem. Let (n,0) : N — N' be a morplnsm of Petri nets. Then f3 preserves the
initial marking and if M <4 M’ in N then M %> GM' in N'.

It is not obvious straightaway that Petri nets with finitary homomorphisms and Petri
nets with morphisms form categories because the composition of multirelations might yield
an co-multirelation. However because we insist that nets do not have isolated conditions,
it turns out that composition of finitary homomorphisms is a finitary homomorphism, and
consequently the composition of morphisms on Petri nets always exists.

Proposition.  Petri nets with finitary homomorphisms form a category in which the
composition of two finitary homomorphisms (no,B0) : No — Ny and (n1,1) : Ny — Ny
is (71710, B8180) : No — Ny and the identity morphism for a net N has the form (1, 1p)
where 1 and 1 are the identities on the spaces of event-multisets and condition—multisets
respectively.

Petri nets with morphisms, and Petri nets with synchronous morphisms form subcat-
egories of the category of nets with finitary homomorphisms.

Proof. We only check that finitary homomorphisms are closed under composition. It is
easy to verify the other properties required of a category.

Let (10,080) : No — Ny and (n1,51) : Ny — N3 be finitary homomorphisms between
nets N; for ¢ = 1,2,3 with conditions, events and initial markings B;, E;, M;. Clearly
n1no(e) is a finite multlset over E; and f1f8y : By =3 B;. By the properties of homomor-
phisms we obtain

B1BoMy = f1 M, = M,,
B1Bo("e) = f1(*noe) = *(ninoe),
)31,30(6') = (’71’706)'-

As each condition b of Ny is not isolated, for ¢ a condition of Ny, either
(ﬁlﬂo)

< (M.
(B1Bo)e < (° (nmoe)) < oo or
(B1B0)ep < ((mimo€)*)e < 0.

2)e < or

Thus in any case (8100)cp # oo. Hence 818y : By —, B; making the composition
(n1n0,B1P0) : No — N3 a finitary homomorphism of nets.
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As the composition of partial functions on events gives a partial function on events,
and the composition of total functions is total, it is now easy to see that nets with net-
morphisms, and synchronous morphisms, form subcategories.  §

This result has significance now we turn to consider some constructions on nets and
the role of morphisms in their definition and characterisation.

4. Some constructions on Petri nets.

Perhaps the most interesting construction is a generalisation of the product-machine
construction from Automata theory. A restricted form of it was presented in the early work
of Lauer and Campbell when they were giving a Petri net semantics to path expressions
in [LC]. This construction arises naturally when modelling concurrent processes, like those
associated with CCS or CSP programs, which synchronise at certain events. Precisely
which events depends on their nature and this is generally captured in the net model by
adding extra structure in the form of labels attached to the events. The construction we
give allows arbitrary synchronisations—unwanted synchronisations can be removed using
an operation of restriction which we present later.

The product of Petri nets:

Let Ny = (Bo, Eo, Fo, My) and Ny = (By, E1, F1, M) be nets. Disjoint copies of the
two nets Ny and N; are juxtaposed and extra events of synchronisation of the form (eo, e)
are adjoined, for ey an event of Ny and e; an event of IV;; an extra event (eo,€1) has as
preconditions and postconditions those of its components in the obvious way, which we
shall make precise in a moment. It is useful to think of the copies of the original events,
those which are not synchronised with any companion event of the the other process as
having the form (e, *) in the copy of Ny and the form (x,e,) in the copy of Ny. Then the
events of the product have the form

E = {(e0,*) | €0 € Eo} U {{e1,%) | eo € Ex} U{(e0,e1) | €0 € Eo & ¢, € E,}.

There is an obvious partial function from the events of the product to the events of a
component. Define mg : £ — Ey by mo(eo,e1) = eo—this will be undefined if ¢y = *.
Define m,; similarly. To be more precise about the conditions we can assume that they
have the form B = By & B, the disjoint union of By and B,. Define po to be the opposite
relation to the injection py°? : By — B. This projects conditions in the product back to
the component. Define p, similarly. Take po°? My + p,°? M, as the initial marking of the .
product. Now we can define the flow relation F' in the product by

Fbe:

Ll

Fipb ne if prband me are defined,
0 otherwise

Forge, pob if moe and pob are defined,
Fe,b -

{ Fopob, noe 1 pob and moe are defined,

Fine pp if mpe and pyb are defined,
0 otherwise.
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The product of Ny and Ny:

— —— —— — — — - —

— e . o . . - — -
P emm e av . o o

Write Ny x N, for the product of the nets Ny and N;.

To understand the construction we must understand the behaviour of the product of
two nets in terms of the behaviour of the original nets. For this we need to project the
behaviour of the product net to the behaviour of a component net. There are two parts
to such a projection, the event part m;, and the condition part p;. The projection (g, pi)

from Ny x Ny to N; is a morphism of nets.

Now with the help of the projections we can describe the behaviour of Ng X N;.

Theorem. The behaviour of a product of nets Ny X N, is related to the behaviour of
its components Ny and N; by

N()XN1 :M—-A—*M, iff (NoipoM—lrﬁ—*poM’ & Nl Zle—llﬁ;——)le,).
A marking M is reachable in No x N, iff po M is reachable in Ny and py M is reachable in
N,.

Proof. Let the net Ny have multirelations *( )o and ( )o®, and N have *( ); and ( );°. It
is easy to see that the projection (my,p;) : No x Ny — N;, for1=10,1,is a morphism t.e.
it preserves initial markings and

Il

pi("A) = *(m;A);,
pi(A*) = (m: A):*

for a multiset of events A of the product.
Clearly
M<M & poM < poM' & poM < pyM'  and
M=M & ng = pQM, & le: le’,
By definition, M —2— M’ in the product iff
A<M & M =M-"A+A".
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MNow
*A<ME po("A) < poM & pi(*A)<pM

o *(mgA)o < poM & °*(mA) <M

as the projections are morphisms. Also
M =M-"A+ A" & poM =p(M-"A+A%) & pM' =p, (M -"A+ A%).

However

po(M — * A+ A%) = poM — po* A) + po(A")
= poM — *(mgA)o + (o A)o®

by linearity and the fact that (mo, po) is a morphism. Similarly
pr(M—A+A")=p M —*(mA) + (my A)d®.
It follows directly that
Ny x Ny : M A5 M iff (No:poM -T2 poM' & Ny :pyM 4 p, M)

Because projections are morphisms and so preserve initial markings, repeated application
of this result ensures a marking M is reachable in the product iff poM and p; M are
reachable in the components. 1§

Intuitively the behaviour of the product is precisely that allowed when we project
into the components. The pair of maps (7o, po) specifies how the dynamic behaviour of
the product of nets, Ny X Nj, projects to the dynamic behaviour in the component Nj.
The pair (7, p;) plays the same role but for the component N;. They are essential in
describing the behaviour of the product of nets. The proposition above could be turned
into a proof rule enabling us to reason about a product of nets in terms of its components.

The name “product” of nets is well-chosen because it is in fact the product in the
category of nets with our definition of morphism. Recall the definition of product in
a category. A product of two objects Ny and N; consists of an object Ng x Ny with
projection morphisms Iy : No x N} — Ny and 11, : Ny x N; — N; which satisfy the
universal property that given any pair of morphisms fo : N — Np and f; : N — N,
there is a unique morphism [fo, fi] : N — No x N; such that fo = Ilp o [fo, f1] and

f1 =My o [fo, fi]-

The proof of this characterisation of the product of nets can be seen to rely on the
nature of products in two more elementary categories, the category of sets with partial
functions, to deal with the event part of the morphisms between nets, and the category of
sets with multirelations, to deal with the condition part. The product of two sets Eo and
E, in the category of sets with partial functions has the form

{(60,*) | €p GE()}U{(el,*) l €o EEl}U{(eo,Cl) l €y © EO & € EEl}
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with the partial functions mg, m; as projections onto the components. The product of two
sets By and B in the category of sets with multirelations has the form By & B; with
projections the multirelations po and p;, opposite to the obvious injections.

Theorem. The pfo&uct Ny x Ny, with morphisms (7, po) and (my, p1}, is a2 product in
the category of Petri nets.

Proof. We use the notation introduced in the definition of product. Clearly the product
of safe nets is safe. The projections were shown to be morphisms in the previous theorem.

I, f"‘ 1,
\
B)
|
\
|

{n,

m %1

Consider the above diagram in the category of Petri nets morphisms on nets. Take

n(e) = (mo(e), m1(e))

for e an event of N, with the understanding that undefined is represented by *. Take

B = po°"Bo + p1°"B1.

Then (7, ) is a morphism which makes the diagram commute. The partial function # is
uniquely determined by 7o and #;. The 8 is the unique multirelation such that poff = Bo
and pf = B;. Thus the product of nets with projections is a categorical product in the
category of nets with net morphisms. |

The fact that parallel composition is so closely related to a product adds mathematical
substance to the intuition that parallelism is a form of orthogonality.

The product construction corresponds to a very liberal form of parallel composition of
nets in which arbitrary synchronisations are allowed. Obviously in general some synchro-
nisations are possible and others are not. The operation of restriction allows only certain
events to occur. It can be modelled simply by “deleting” the forbidden events from the
net and then removing all the conditions which become isolated.

Restriction:

Let N = (B, E, F,M,) be a net. Let E' C E. Define the restriction of N to E' to be
N[E' = (B',E',F', M) where

B'={beB| My #0 or Jec E". F,,#0 or F.;# 0},

12



{Le remaining nonisolated conditions, and F' is F restricted to (B’ x E') U (E' x B') t.e.
Fly.=F,,and Flop =Fopforee E' and be B'.

Ixample. Here is a net with its restriction to a subset of events

2 & e, €

8 r{ei} -

The behaviour of a net restricted to a set of events is a restriction of the behaviour of
the original net.

Proposition. Let N = (B, E, F, M) be a net. Let E' C E. Let M and M' be markings
of N. Then
N[E:MA-M & N:M-2->M & AcpE.

The product and restriction constructions are useful for modelling as nets a wide range
of parallel compositions in the literature (see [W1,2,3]). Then it is generally necessary
to have some extra labelling structure on the events in the net. The two propositions
characterising the behaviour of the product and restriction in terms of their component
nets reduce reasoning about a parallel composition to reasoning about its components and
the synchronisation discipline. ’

Synchronous product:

Another important construction can be derived from the product construction with
restriction, that of synchronous product. It is the restriction of the product of two nets to
events of the form (e, e;) where both e; and e, must be proper, non-x events. Thus there
is a tight synchronisation between the components of a synchronous product; in order to
occur within a synchronous product every event of one component must synchronise with
an event from the other.

Let No = (Bo, Eo, Fo, M) and N, = (By, Ey, F1,M,) be nets. Define their syn-
chronous product Ny ® Ny to be the restriction Ny X N, [(Eo x Ey). There are obvious
projections got by restricting the projections of the product.

Example. One can represent a ticking clock as the following simple net, call it {2:

*

Given an arbitrary net N it is a simple matter to serialise, or interleave, its event
occurrences; just synchronise them one at a time with the ticks of the clock. This amounts
to forming the synchronous product N ® {2 of N with 1.
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The synchronous product of a net with (1.

[

I T . S I

It is easy to check that the synchronous product N ® {2 does serialise the event occur-

rences of N.

Proposition. M is a reachable marking of N ® {1 and MA MinNeQif M—p
is a reachable marking of N and Je. A = (e,t) & N :(M —p) 4> (M' —pj.

Proof. Use the properties of restriction and product. 1

Again the synchronous product has a categorical characterisation; it is the categorical
product in the subcategory of nets with synchronous morphisms, where the event part of

morphisms corresponds to a total function.

Theorem. The synchronous product Ny ® Ny, with the restrictions of the projections
is a product in the subcategory of nets in which all the morphisms are synchronous.

Proof. Like that for product. K
On the coproduct of nets:
I am not sure of the most useful sum construction on Petri nets in general. This is

partly because there is not always a coproduct in the category of all nets, as the following
counterexample shows. Recall coproduct is the dual notion to that of product got by

reversing the arrows.

Proposition. The category of Petri nets does not have coproducts in general.

Proof. Let N, be the net consisting of just the conditions a and b both in its initial
marking. Let Ny be an isomorphic net with conditions ¢ and d, both marked. We show

N, and N, do not have a coproduct.

Assume they did. Then any marked condition of the coproduct is represented by an
element of the set

S = {(ma + nb, pc +qd) € pBo x pBy |0 <m +n =p+q}

14



where the pair (ma+nb, pc+qd) represents a condition s marked with multiplicity m-+n =
p + q related to conditions of the components by these multirelations:

a@\ /@c
ng p
m q
b@/ \@d

The set S is closed under scalar multiplication and addition given by

m(/\o,/\l) = (m)\o,mAl)
(Xo, A1) + (vo,v1) = (Ao + vo, A1 +v1).

From the characterising property of coproduct the marked conditions of the coproduct
must be represented as a subset B C § such that any s € S can be writtenasa unique linear
combination of elements of B. Thus certainly B must contain all the pairs (a,c), (a,d),
(b,c), (b,d) because they are all irreducible—expressible as only one linear combination.

However
(a+b,c+d)=(a,c) +(b,d) = (a,d) + (b, c),

so (a + b, ¢+ d) is not uniquely expressible as a linear combination of elements of B. This
contradicts the existence of a coproduct for Ny and N;.

Illustration of the counterexample—the two forms of dotted line represent the two
different ways to express (a + b, ¢+ d):

Despite this negative result, there are coproducts in the more restricted category of
safe nets as we shall see in the next section.
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The category of Petri nets can be made to work to construct recursively defined nets
though we shall not describe the details here. Such nets can be defined in the standard
way one builds—up sets by inductive definitions (see [Ac]); one must however take a little
care to ensure that the operations on nets are monotonic with respect to the ordering
of coordinatewise inclusion on nets, but this is not hard (see [Stu], [GM} though the
latter is unnecessarily complicated because they work with equivalence classes of nets).
Alternatively, recursion can be handled in a categorical setting using the notion of w-
limits of chains of net-embeddings and w—continuous functors (though at present I have
only done this for safe nets).

Projections on nets are examples of a more general notion of morphism between nets.
Note how natural is the additional requirement we have imposed on the event part of ho-
momorphisms. Note we do not want morphisms to “preserve conditions” in the sense that
G should be a partial function; to do so would rule out the injections used to characterise
the behaviour of our sum construction on safe nets in next section.

We remark that the categorical constructions seem to be rather uninteresting in the
broader category of Petri nets with finitary homomorphisms. For example the coproduct
does not always exists—for the same reasons it does not in the smaller categories—and
the product is given simply by the disjoint juxtaposition of nets.

One important consequence of the constructions being categorical is that each comes
accompanied by a characterisation to within isomorphism. This means that we need not
worry about the details of the concrete and ad hoc construction we chose to build-up our
product, synchronous product and sum of safe nets. But more important perhaps is the
use, which we shall describe briefly later, to translate between different models including
Petri nets.

5. Safe nets.

Now we define an important subclass of Petri nets—the safe nets. Some of the results
only apply to this subclass. In particular, properties of safe nets can be described with
reasonable convenience using just the notation of sets, without using multisets and mul-
tirelations (as was done in [W3] when I didn’t know the simpler definition for Petri nets
in general).

Definition. Say a Petri net N = (B, E, F, M,) is safe iff
F<i and M<K1
for all reachable markings M. For safe nets we can write zF'y instead of F;, = 1.

For safe nets a condition only holds or fails to hold and an event either occurs or does
not occur; they do not happen with multiplicities. For these nets the term “condition” is
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consistent with its more usual use where it is imagined to assert a state of affairs which
either holds or does not hold. In fact, often people go to the extent of using different terms,
like “place” and “tramsition”, for the conditions and events of the general nets. (I'm not
convinced the distinction is worthwhile.)

The behaviour of safe nets is particularly simple and can be expressed just with sets,
without the use of multisets. Recall we identify sets with those multisets in which the
multiplicity is 1 at greatest.

Proposition. Let N = (B, E, F, M) be a safe net.

Let A be a set of events. Then * A and A® are sets too.

Any reachable marking is a set.

Let M be a reachable marking. Let M’ be a marking of N and A a finite multiset of
its events. Then M —4— M’ iff A is a set and

(Ve€ Ate C M) & (Ve,e' € A.%en®e =0) & M’ =(M\*A)UA".

For a safe net N, an event e is said to have concession at a reachable marking M
if *e C M. If two events e and ¢’ have concession at a reachable marking M and share
a common precondition, so *e N e’ # 0, the events e, e’ are sald to be in conflict at M
because if one occurs at M then the other does not. On the other hand, if M AL M
the events in A are said to occur concurrently.

Although when working with safe nets it is fairly easy to use only the notation of set
theory, a little care is needed in translating between multiset notation and set notation. In
this section we need to distinguish notationally between the usual set theoretic application
of a relation to a set and multirelation application.

Notation. Let 8 be a relation from X to Y. Let Z C X. Define the image of the Z
under the relation § to be the set

fZ ={y| 3z € Z. 2py}.

Recall we use 8° for the opposite relation to §. It is useful to observe that if
B : X — Y is a relation such that §°7 : Y — X is a partial function then the multirelation
application §(Z) of B, regarded as a multirelation, to X, regarded as a multiset, is equal
to the set image §“X.

When nets are safe, just as their behaviour can be described using sets and relations

instead of multisets and multirelations, so can morphisms be characterised in a more
elementary manner.
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Proposition. Let Ng = (By, Eg, Fo, M) and Ny = (B,, Ei, F1, M) be safe nets. A
pair (n,B) is a morphism Ny — Ny iff nis a partial function from Ey tc Ey, and f is a
relation between Bo and B, such that:

(i)  B°P restricts to a total function M; — My,
(ii) If n{eq) = ey then

B°P restricts to a total function ®e; — "eo and

[P restricts to a total function e,* — €0,
(iii) If n(eo) is undefined then f“*eq = @ and [feo® = 0.
Proof.

“f”: A pair (9, ), where n is a partial function on events and B is a relation between
conditions, which satisfies (i), (i) and (iii) above, does form a morphism on nets because:

(i) above ensures f regarded as a multirelation preserves the initial marking—that
each condition in M, is the image of a unique condition in My ensures M, is a set with
BM, = M, so they are equal as multisets,

(ii) ensures that if ne is defined then the multisets *(ne) and B("e) are sets and are
equal, and similarly that (ne)* = B(e®), while

(iii) ensures that if ne is undefined then the multisets *(ne) and P(*e) are both equal
to the null multiset 0, and that (ne)* = f(e®) = 0.

Thus by linearity (5, 8) does indeed form a morphism.

“only if”: Now suppose (1,8) : No — N is a morphism on safe nets. By definition # is a
partial function on events while f is a relation by the following simple argument. Suppose
By > 0. Recall we assume that the condition b is not isolated, so either b is in the initial
marking My or is a pre or post condition of some event e. Accordingly c¢ is in the initial
marking M, or is the pre or post condition of an event ne in N;. Consider one case, when
b € *e. Because (77, 8) is a morphism §(*e) = *(ne). Hence

Bep < (B(%€))e = ("ne)e =1
as.’ne is a set. Thus £ is a relation.

The remaining properties (i), (i) and (iii) above express that (1, §) is 2 homomorphism
and take account of multiplicities. @

Note, it is only because we insist there are no isolated conditions that multirelations
on safe nets can be represented as relations.

We showed that morphisms on Petri nets preserved their dynamic behaviour. For safe
nets, in the language of sets this becomes:
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Proposition. Let(n,f): Ny — N, bea morphism between safe nets Ny and N,. Then
M is a reachable marking of Ny and Ny : M -4, M’ impﬁec
(B“M is a reachable marking of Ny and N, : f*M ——— T fEMT

Proof. Suppose M is a reachable marking of Ny and Ny : M A, M’. Then we know

the multiset M is is a reachable marking of N; and M —/—— 1L BM’ in N;. However,
just because SM is reachable in a safe net, it is a set and thus M = f“M. Because
fM -T2, BM' in a safe net Ny, nA must be a set. Hence nA =n"A. 1§

Thus a morphism (n,8) : No — N; between safe nets expresses how the occurrence
of an event e of Ny induces either a single or no occurrence of an event in Ny, and how a
condition holding in N, induces the holding of a set of conditions in Nj.

The product of safe nets is a safe net, and remains as the categorical product in the
subcategory of safe nets. As before its behaviour is expressed in terms of the behaviour
of the components. However the statement is slightly different when using set instead of
multiset notation.

Proposition. Let Ny x Ny, Ily = (mo,po) and I} = (1r1,p1) be a product of safe nets
No, Ny. Then M is a reachable marking of No x Ny and M -4 M'iff

po“M is a reachable marking of Ny and

po“M "B, po“M' & Ve, € AVey € Ey. empeq & e'moeq = e = ¢’ and
p1“M is a reachable marking of Ny and

p1M LA 5 “M' & Ve, e € AVe, € Ey. emie; & e'me; > e=c¢.

Proof. The proof follows from the more general theorem of the last section. For the “only
if” direction of the proof, use the fact that e.g. Ve,e' € AVeq € Ey. empep & e moey =
e = ¢’ implies 1“4 = 1o A. W

Theorem. The product of safe nets is safe and is a product in the category of safe nets.

Proof. By the theorem above the product of safe nets is safe, and the categorical properties
follow from the corresponding theorem of the last section. B

The operation of restriction clearly preserves safeness. Consequently, the construc-
tion of the synchronous product of the last section always produces a safe net from safe
components.

Theorem. The synchronous product of safe nets is safe and with its projections is the
product in the category of safe nets with synchronous morphisms.

Proof. Obvious B
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Unlike the larger category of all nets the subcategory of safe nets does have a coprod-
uct.

Let Ny = (Bo, Eo, Fo, M) and N, = (By, Ey, Fi, M) be safe nets. The two nets Ny
and N, are laid side by side and then a little surgery is performed on their initial markings.
For each pair of conditions bg in the initial marking of Ny and b; in the initial marking of
N, 2 new condition (bg,b;) is created and made to have the same pre and post events as bo
and b; together. The conditions in the original initial markings are removed and replaced
by a new initial marking consisting of these newly created conditions.

The sum of two nets:

|

|

|

M, !
..-.,.....'
i

|

{

o l \

Notice a condition in the initial marking of one component is generally represented
by more than one condition in the initial marking of the sum.

Example. The sum of two safe nets:

The set of events of the sum E is the disjoint union Ey & E; of the events of the
components. There are the obvious injections ng : Eo — E and tn, : E; — E on events.
The initial marking of the sum can be represented by

M = M, x M,
and its set of conditions by
B = {(bo,*) | bo € Bo \ Mo} U {(,b1) | by € By \ M} U M.
Then there are the obvious injection relations ¢ and ¢; where

bobob <~ 361 c B, U {*} b= (bo,bl),
bllllb = ab() = B() U {*} b= (b(),bl).

Thus the injection relations on conditions are opposite to the obvious partial functions
taking a condition in B to its first or second component. Together the injections on
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events and the injections on conditions provide injection morphisms I, = (tng,to) and
I, = (iny,t1) from the component nets to their sum. Using the injections we can express
the behaviour of the sum in terms of the behaviour of its components (using multiset
notation).

Theorem. Let Ny + N, be the sum of safe nets with injections Iy = (tng, o) and
I, = (iny,1;). Then X is a reachable marking of No + N, and X AL XN

3 reachable marking X, Ao, X§.
No:Xo 220 X, & A=1ingAo & X=1Xo & X' =10X]
or
3 reachable marking X, A;, X].
N X, A X & A=A & X=uX; & X' =4, X].

Proof. Let Ny = (By, Eo, Fo, My) and N, = (B1, Ey, Fy, M,) be safe nets. It is obvious
that the injections are morphisms I = (tnk,tx) : N — No + N, for k = 0,1. From this
the “if” part of the proof follows directly.

To show the converse (“only if”), we first show the following fact:
If X, is a reachable marking of Ny and No + Ny : ¢9Xo ~A_, X' then either
A=1ingAy & X' =10X}y & No:Xo -2 X| (1)
for some subset A, of events and marking X{, of Ny or
A=imA & Xo=My, & X' =4y, X, & Ny : M, 45 X (2)
for some subset of events A; and marking X| of N;.

To show this assume Xp is a reachable marking of Ny and Ny + Ny : 19X AL X
There are two cases to consider: when A contains the image of an event of Ny and when
it does not.

Suppose first that A contains the event in,e; for some e; € E;. Then, as A is conflict-
free, A must have the form A = in; A, for some events A; C F). As in particular e, has

concession at 19 Xy we see
MO X .61 = 'inlel - LoXo.

Hence My C X,. Because Ny is safe M; = Xo—otherwise a repeat of the behaviour
which led to the reachable marking X, will cause the conditions in Xy \ Mp to hold with
multiplicity greater than 1. Thus 1o Xo = My x Mj, the initial marking of the sum. Take
X| = M; —*A,; + A;". Then by linearity, and as the injection (in, t1) is a morphism, we
obtain

X,-_—‘M() X Ml —.A"(—A. :L]_(Ml —.A1 ‘i—Al.):LlX;.
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Thus in this case (2) holds.

Now suppose ANtn; E = 0. Then A has the form 4 = tng Ao for some Ay C E;. Take
X§ = Xo —*Ao + Ao®. Then using the fact that (ing,to) is a morphism and the linearity
of 1, one obtains X’ = 19 X}. Hence in this case we satisfy (1) above.

The analogous result holds for Ny in place of No. Using these two results we argue
by induction on the number of transitions to the reachable marking X of Ny + Ny, to

complete the proof of the theorem. 1

Example. The result above does not necessarily hold for the sum of nets which are not

safe. Consider p

+ _

Those familiar with Milner’s work may be a little bothered by our definition of sum.
For the + of CCS and SCCS once a component has been selected nondeterministically
the choice is stuck to, which is not true in general for our sum—consider the example
above. However our construction will agree with Milner’s on those safe nets for which
Vb € M, Ae. eFb i.e. no event leads into the initial marking. If one were to systematically
give a net semantics to the languages like CCS, SCCS and CSP, all the nets constructed
would be safe and satisfy this property.

This time the sum construction is the coproduct in the category of safe Petri nets.
Theorem. The sum No + N; with injections Iy and I, is a coproduct in the category
of safe Petri nets with morphisms on nets and also in the category of safe nets with

synchronous morphisms.

Proof. By the above theorem the sum of safe nets is safe and as we observed in its proof
the injections are morphisms. We use the notation introduced in the definition of sum.

NO (fl;ﬂ) Nl

(ﬂo;ﬂo) \]/ (ﬂlaﬁl)



Consider the above diagram in the category of safe Petri nets with morphisms on nets.
Assume N = (B, E,F, M).

Take

n(e) = {no(eo) if e = ing(ep),

noleo) if e = tng(eg)
for e an event of Ny + N,. Note n is the unique function such that n iny = no and

ning =1.

Take # to be the relation between conditions of Ny + Ny and conditions of N given
by
bﬁc i=4 (Vbo bQLob = boﬁoC) & (Vbl bll'lb = blﬂlc))

where b is a condition of Ny + Ny, and ¢ is condition of N. Then considering considering
the three different kinds of condition in the sum, the multirelation composition fBig is a
relation with Bio = fo. For the same reasons, fi; = f;. Indeed, again considering the
nature of conditions in the sum, 3 is the unique relation such that fiy = fy and B¢y = Bi.

Hence, using the properties of morphisms, we see
B(Mo x My) = B(toMo) = fo(Mo) = M,
the initial marking of N, and that for an event e = tnpeg of the sum

B(°e) = B(*ingeo) = Bl1oe0) = Po(*eo) = *(noeo) = *(ne).

In the same manner we can show B("e) = *(ne) and S(e®) = (ne)*® for any event ¢ in the
sum.

Thus (7, 8) is 2 morphism, and by our earlier remarks it is the unique morphism which
makes the diagram commute. This shows that the sum with injections is a coproduct in the
category of safe nets with net morphisms. A similar proof goes through in the subcategory
with synchronous morphisms; simply note the injections are synchronous and that in this
case 1o and n; will be total so # will be total too.

23



6. A look at coloured mets.

Kurt Jensen introduced coloured nets in [J1] and higher level nets in [J2]. The only
difference is that higher level nets are a little more general in that their incidence relation
is split into a positive and negative part so they can handle side conditions. The two kinds
of net are so similar we shall call both coloured nets. Like predicate transition nets before
them they were designed as an abbreviated form of Petri net description in a sense we
shall make precise here. The relation nets of [R] are a special kind of coloured net with
an extra capacity function associated with the places. Here we see how, formally at least,
coloured nets are an obvious generalisation of Petri nets.

The idea of coloured nets is best explained through the use of products of spaces uC,
an idea familiar from products of vector spaces and of modules.

Definition. Let C(p) be a set for each p € P. Define the product of multisets

MuperClp) = u{(p,c) |p€ P & c€ Cp)}.

Proposition. The set Tlu,cp C{p) is in 1-1 correspordence with the set

F={f:P— | nCk) | f(p) € uC(p)}

peP

under the maps 6, ¢ given by

8 : Mup,ep C(p) — F where ((89)p)c = Gp,c
and

¢ : F— Hﬂ’pEPC(p) where (d’f)p,c = (fp)c-

Thus the product of spaces Iuye pC(p) which was defined to be the space of multisets
of the set {(p,c) | ¢ € C(p)} can be identified with the set consisting of P-tuples of
multisets of colours.

It is useful to describe coloured nets as being built out of places and transitions rather
than conditions and events because they have a higher level nature, standing for sets of
conditions and sets of events, respectively. In a coloured net each place is associated with a
set of colours. You can think of each such colour of a place as standing for a condition of the
form used in Petri nets, so a place stands for a set of conditions, one for each of its colours.
Thus naturally, in a coloured net instead of a marking associating each condition with a
non-negative integer each place is associated with a multiset of colours. In coloured nets,
you can, if you like, think of the tokens as being coloured. A transition too is associated
with a set of colours. It really stands for a set of events one for each of its colours. Thinking
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of it this way it is natural to allow a transition to fire with various multiplicities for each of
‘ts colours i.e. to allow it to fire with value a multiset of its colours. Then in analogy with
Petri nets, when a transition fires in such a way it consumes a certain number of tokens of
various colours at various places and similarly produces a distribution of tokens of various
colours at various places.

Thus coloured nets are like Petri nets but with the difference that now we must account
for the fact that places stand for sets of conditions and transitions stand for sets of events.

Definition. A coloured net is a structure (P,T,C,*( ),( )*, Mo) where
P is a non-null set of places,
T is a disjoint set of transitions,
C is a colour function associating each place p with a non—null set C(p)
and each transition ¢ with a non-null set C(t),

‘() () :{tbe) [teT & ceC(t)y —u{(pc) [pEP & ceClp)}

and
My € TupepC(p), the initial marking
which satisfy the restrictions:

() My#0 and(*A=0 or A®*=0)=> A=0and
(i) My#0 or (Je€E. Fop,#0) or (Je€E. Fyp.# 0).

Now this is not quite the way that K. Jensen defined coloured or high level nets.
Some differences are trivial, like the fact that we insist the initial marking is non—null and
that there are no isolated conditions. The main difference in presentation is that Jensen
describes the multirelations *( ),( )* by means of the matrices

I, : C(t) —u C(p),
I, : C(t) =, C(p)

on the p and t coordinates which clearly determine and are determined by *()and ()* by
linearity.

It is now a simple matter to define the behaviour of coloured nets. (We use the
identification mentioned above.) Just like Petri nets we define

M A MS*A<M & M =M-"A+A4A°

where M, M’ € Tlu,cpC(p) are markings and A € Iucer C(¢) is a finite multiset, as firing
value.

We said coloured nets were an abbreviated way of describing Petri nets, and it is easy
to see how because a coloured net is so closely associated with a 2-sorted algebra over
multisets.
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Proposition. A coloured net (P, T,C,*( ),( )*, Mo) determines a Petri net with condi-
tions B = {(p,c) | p € P & c € C(p)}, events E = {(t,c) |t € T & c € C(t)}, initial
marking My and multirelations *( ),()* : E —, B.

Thus a coloured net can be viewed as arising from a Petri net simply by regrouping
the elements of the bases of the space of multisets of conditions and events, and it is a
simple matter to recover the underlying Petri net by going back to the bases. Of course
many different coloured nets have the same underlying Petri net because there are many
different ways in which the bases can be regrouped.

What should we take as the definition of morphism on coloured nets? It is desirable
that a morphism between coloured nets should induce a morphism between the underlying
Petri nets. A very general candidate is the following.

Definition.  (Tentative) A morphism between coloured nets is a morphism between
their underlying Petri nets.

However it is not so clear whether or not morphisms should respect the extra colour
structure C on coloured nets. 1 leave this open—my intuition about colours is not sharp.
The above definition would be appropriate if coloured nets were no more than representa-
tions of Petri nets

I have not looked very closely at the many other generalisations of Petri nets; maybe
many of their definitions too are obtained as slight variants of that of the original Petri
nets, got by varying the sorts of the associated algebra.

7. Net invariants.

The use of the technique of invariants to obtain properties of nets was discovered
by Kurt Lautenbach. Here we examine the sense in which finitary homomorphisms and
morphisms preserve invariants of nets. Recall the definition of condition invariant of a net
(called an S-invariant in [R]). We add some further restrictions to the usual definition in
order to cope with infinite nets, so we can make sense of invariants which form infinite
matrices.

Definition. Let N = (B, E,F,M,) be a Petri net. A condition invariant of N is a
matrix I : B —, 1 such that
(i) I(M,) is defined and I(*e) and I(e*) are defined for all events e, and
(i) I(M) is defined and I(M) = I(M,) for every reachable marking M.
Write Inv N for the set of invariants of N.

Note that the condition (i) is trivially true and, in (ii), /(M) is always defined for
finite Petri nets.
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Invariants can be characterised in a more local way when the Petri net satisfies the
restriction that every event can occur sometime, as expressed in the following proposition.
ts proof is easy and well-known, see e.g. [R].

Proposition. Assume N is a net In which every event can occur, t.e. for all events e
there is some reachable marking M for which *e < M. Then I € InvN iff I{M,) is defined
and I(*¢) and I{e®) are both defined and equal for all events e.

Also well-known, and easy to show, is the fact that invariants form a Z-module.
Recall a Z-module M is an Abelian group with composition + and identity 0, together
with an operation, called scalar product, Z x M — M, which satisfies

(i) n(u+v)=nutny,

(i) (m+n)v=mv+ny,

(iii) (mn)v = m(nv),

(iv) lv=w
forallm,ne€ Z, u,v € M.
Recall too that a morphism between Z-modules M and N is a function o : M — N which
is linear in the sense that a(nv) = n(av) and a(u+v) = autavforallu,v € Mand n € Z.
Note Z-modules correspond to Abelian groups and their morphisms to homomorphisms
on Abelian groups.

Proposition. Let N be a net. Then InvN form a Z-module under matrix addition and
scalar multiplication.

Let us see what the relation is between the categories of Petri nets with finitary
homomorphisms and morphisms and the category of Z-modules. Assume (n, ) : No — N,
be a morphism of nets. The natural way to form the image of an invariant I of Ny would
seem to be by taking (F(I°7))°7. However it is easy to produce examples where the image
(B(I°P))°P of an invariant I of Ny is not an invariant of Ny. Invariants are not preserved in
the direction of homomorphisms but rather in the opposite direction by the dual map *
given by f*(I) = IB. The image B*(I) of an invariant I of N, is an invariant of Ny, and
this is true not just for morphisms but for finitary homomorphisms as well. Consequently
there is a contravariant functor from the category of nets with net finitary homomorphisms
to the category of Z—-modules, which cuts down to a functor from the category of nets with
net morphisms. (It is contravariant because it switches the direction of the arrows.)

Lemma. Let (n,8): Ny — N, be a finitary homomorphism of nets. Then I € InvN,
implies I is defined and I € InvNy.

Proof. Let Ny = (By, Ey, Fo, M) and N, = (By, E, Fy, M;). Suppose I € InvN;.
We must first show that I3 is defined. Let b € By. Either
(Mo), >0 or (%e)p >0 or (e*)p > 0.

If (My)y, > O then
{y l 1.1/ ’ ﬁy,b # O} C {y | Iy : (Ml)y 7é O}
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which is finite as I(M;) is defined. If (*e), > O then

{y| Iy'ﬁy‘b#o} C{y| Iy'(.’le)y # 0}

which is finite as ryé is a finite multiset. The remaining case (e*), > O is sintilar, so in all
cases {y | I - By.» # 0} is finite. Consequently If is defined and equals the finite sum

EUEBLIU 'ﬁy.b-

We need to establish that (I8)M,, (IB)(*e) and (If)(e*) are defined for all e € Ey.
In fact let M be any reachable marking of Ny, not just My. Then we see that

{(Iay) l Iy‘ﬁy,I'MI #0} C {(I,y) | Iy(ﬁM)y #0 & :By,z'Mz7é0}

which is finite as {y | I, - (BM)y} is finite (because I{8M) is defined) and the sets

{2 | By M, # 0} are finite for all y € By. Therefore (/f)M is defined and equals the
finite sum T, y)eB,x B, fy - Py,z - Mz # 0. Similarly (I6)("¢€) and (IP)(e*) are defined for
all e € EQ.

Let M be a reachable marking of Ny. Then (If)M is defined and equals I(AM) =
I(M,) = I(fMo) = (IB)(My). Thus If is an invariant of No. 1§

Remark. Note how simple the proof is when the Petri nets are finite; then all the
verification of definedness is unnecessary.

Theorem. There is a contravariant functor from the category of Petri nets with finitary

homomorphisms to the category of Z—modules with linear maps; on objects it acts as
N — InvN, and it takes a finitary homomorphism (n,8) : No — N, on nets to the linear
map B* : InvN, — InvN, on Z-modules given by g*(I) = If .

Proof. Because of the lemma above, the proof is now a simple matter of checking the
functor laws hold. Clearly if (1g,1p) is the identity homomorphism on a net N with
conditions B then (13)* : InvN — InvN is the identity on InvN. And, if (n¢,00) :
Ny — N, and (n(,B:) : N1 — N, are finitary homomorphisms on nets Ny, Ny, Ny then
(B1Bo)* = pF5py : InvNy — InvNg. B

This shows the general relationship between nets and their spaces of invariants. How-
ever much more can be done with the interplay between homomorphisms and invariants.
For example, it is easy to show that the space of invariants of the product of two nets is
just the product space of the spaces of invariants of the two nets, and that I € Inv Ny + N,
iff Tio € InvNy and Ity € InvN; where ¢y and ¢; are the condition parts of the injection
functions for the coproduct of nets. Following this kind of idea, Mogens Nielsen and I have
produced a little calculus for building up invariants of larger nets using constructions like
product, synchronous product, restriction, sum, and a loop construct not mentioned here,
in terms of their component nets [NW]. The calculus and its proof of completeness make
essential use of morphisms and homomorphisms on Petri nets.
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8. Formalising the relation of Petri nets with other models.

We indicate briefly how other models can be embedded in the category of nets. More
details can be found in [W4].

Many other models of computation, occurrence nets, event structures, synchrenisation
trees and transition systems, can be made into categories. In them too parallel composi-
tions are obtained by restricting the product, and the sum of processes will be modelled
as a coproduct. Often the categories can be related by coreflections, pairs of functors ina
kind of “embedding” adjunction, passing back and forth, so that the categorical construc-
tions are preserved as well. I present one example, the relation betiseen safe Petri nets
and occurrence nets, to give the idea.

I use “occurrence net” in the sense in which it was initially used in [NPW1, NPW,
W]; its later use in [Br] to mean a more restricted class of net, what were formerly called
“causal nets”, is unforfunate.

Nets are rather complex objects with an intricate behaviour which so far has been
expressed in a dynamic way. We would like to know when two nets have essentially the same
behaviour and [NPW1, NPW, W] proposed a “static” representation of their behaviour
as a certain kind of net, a net of condition and event occurrences. This generalised the
familiar unfolding of a state-transition system to a tree. The theorems we shall mention
only work for the the class of safe nets, though something similar should go through for
nets in general. The occurrence net we associate with a safe net will be built—up essentially
by unfolding the net to its occurrences. This unfolding is a canonical representative of the
behaviour of the original net. Rather than give any formal definitions the main ideas can
be seen in the following example which illustrates a safe net together with its occurrence
net unfolding—see the references above for details.

The occurrence net unfolding of a safe net:

Think of the unfolding operation as taking a model of a computation as a Petri net to
a model as an occurrence net. Occurrence nets have product and sum constructions given
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by the categorical product and coproduct. Clearly we would like products and sums to be
preserved and this almost follows from an adjunction relation between them. Occurrence
nets form a subcategory of safe Petri nets so there is an inclusion functor from occurrence
r-ts to safe nets. It has the unfolding operation, extended to a functor, as its right adjoint,
and the fact that unfolding twice is the same as unfolding once makes the adjunction a
corefiection. Because right adjoints preserve products we know for abstract reasons (once
we've shown unfolding really is a right adjoint) that unfolding preserves product, and
with labelled nets this gives us that parallel compositions are preserved. Right adjoints
preserve limits like products but not necessarily colimits like coproduct and it is easy to
find examples where the unfolding of the sum of two nets is not isomorphic to the sum of
their unfoldings (such examples were in mind when we discussed the sum of Petri nets in
section 4). However for a wide subclass of nets sum is preserved too.

The same general scheme is true for other models as well. For example, there is
an interleaving, or serialising, functor from nets to a category of trees, which can be
obtained as is to be expected from the synchronous product (— ® ). The product in the
category of trees is that expected from Milner’s expansion theorem and the coreflection
provides a bridge between the Petri net model of computation and the interleaving models
of Robin Milner, C.A.R. Hoare and others [M1, M2, H, HBR|. The paper [W2] spells out

the structure of the appropriate categories of trees and transition systems.

0. Conclusion.

A case has been made for a new concept of morphism on Petri nets. The new definition
supports a compositional approach to describe and reason about nets, it ties in nicely with
the view of nets as algebras which underpins the use of linear algebra in net theory, and
provides a formal translation with other models. Here there are some loose ends to tidy up
such as the categorical relation between general Petri nets and occurrence nets. Then there
is the relationship between invariants of compound nets and those of their components,
studied in [NW]. The way is set to analyse the way in which properties are preserved by
finitary homomorphisms, morphisms, more restricted kinds of morphism, or their opposite
morphisms in the dual category as is the case for invariants. More speculatively, the general
view proposed here may offer some new leads to future directions in net theory, perhaps
by choosing some radically different structures for the sorts in formulation of another kind
of net as a form of algebra, for example to model probabilistic computation. There are
certainly some connections with the work of Main and Benson [MB}], though it is not clear
how fruitful they are.

I think the tangible results here stand up rather well against the old definition of
morphism in [Br]; the definition there does not even respect the behaviour of nets. It also
generalises the definition in [W3] and the morphisms of processes in [GR]. Of course no
one could quarrel with the uses proposed for the old net morphisms. What is far from
clear is how the definition there meets any nontrivial formal requirement. I do not claim
the morphisms on Petri nets advocated Lere do everything one might wish of morphisms.
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They do not for instance enable you to collapse a closed subset to a single compound event,
one task proposed for morphisms in [Br]. Maybe the definition here can be extended to
do this too—1I don’t know. A complete treatment would carefully relate our defirition to
the old definition in [Br|. Perhaps someone more committed to the old definition would

like to try.
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Appendix: Vectors, matrices, multisets and multirelations.
Vectors and multisets
We first define vectors of integers and operations on them.

Let X be a set. A vector over X is a function from X to Z, the positive and negative
integers. Write f, for f(z), the z—component of f. Write v X for the set of vectors over
X. Call vX the space of vectors over X, and X its basis. A vector is finite if all but finitely
many components are 0.

We use 1 to represent a set with a single element; so vectors over 1 are isomorphic to

A multiset over a set X is a vector over X in which all the components are nonnegative,
and so is a vector f : X — N, associating a natural number, possibly zero, with each z € X.
Write pX for the set of multisets over X. Call pX the space of multisets over X and X
its basis.

Let n € N. Define n of X to be the multiset n : z + n for all z € X. In particular,
the null multiset 0 of X is the function 0: z + 0 for any z € X.

Let z € X. Define the singleton multiset % to be the function
By { 1 ifz=1y
o 0 otherwise.

Say a multiset is a singleton if it has this form. It is convenient to write z for %.

By convention, we shall identify subsets of X with those multisets of f € pX such
that f < 1.

Operations on vectors and multisets

Useful operations and relations on vectors are induced pointwise by operations and
relations on integers. These generally restrict to give operations and relations on multisets.

Let f, g € vX. Define
(f+g)x = fz + Gz,
(f—9)z=fz—9x
for z € X. Define
f<gevVzeX fi <o

Clearly multisets are closed under + but not necessarily under —. Of course, if ¢ < f, for
two multisets f and g, then their difference f — ¢ is a2 multiset.
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Let n € Z and f € vX. Define the scalar multiplication nf to be the vector given by
(nf)e = nfy forze X.

Let f,g be vectors over X. Define their inner product f - g to be
f-9=2zexfz 9
when the set {z € X | f - g» # 0} is finite, and to be undefined otherwise.
Matrices and multirelations

Let X and Y be sets. A Z-matrix from X to Y is a vector @ : Y x X — Z which
associates an integer, a, » with each pair (y,z), y€ Y,z € X. We write a : X —, Y, and
sometimes (@ y)zex.yey, to mean « is a Z-matrix from X to Y. Because matrices are
vectors we can e.g. form sums and scalar products of matrices.

A multirelation from X to Y is a matrix o from X to Y in which all entries o, , are
nonnegative. So a multirelation from X to Y is a function & : X x Y — N. We write
a:X —, Y tomean  is a multirelation from X to Y.

By convention, we shall identify the relations between a set X and a set Y with those
multirelations § : X —, Y for which 6, ; < 1. In particular, we shall identify functions and
partial functions with their extensions to multirelations. We shall use standard notation
for relations and functions e.g. writing Ry when = and y are in relation R.

Given a matrix 8 : X —, Y it is sometimes useful to consider a matrix §°? : Y —, X
in the opposite direction specified as the matrix (%%, )zex yey which is the transpose of 4,
so 057 = 0y 5 for all z € X,y € Y. Clearly, if § : X —, Y, a multirelation, then so is §°¥
a multirelation §°? : ¥ —, X. For a relation R the notation R°? represents the converse
or opposite relation zRPy 4.5 yRz.

Infinite sums of nonnegative integers

The definition of inner product illustrates a problem we have to face because we do
not insist vectors and multisets are only over finite sets. We quickly run into infinite sums
of integers. This obliges us to consider infinite sums of integers and how to deal with
the fact that such sums do not converge in general. Fortunately for sums of nonnegative
integers, at least, the treatment of nonconvergence is simple. We extend the nonnegative .
integers N by the new element co, so co represents nonconvergence. Write

N =N U {co}.
Extend addition and multiplication on integers to the element co by defining
co+n=n-+ 0o = 00,
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for all n € N°°, and
0O n=n-00 =00,

for all n € N*° \ {0}, but where
| 00-0=0-00=0.

More precisely the extended operations + and - are the smallest operations which behave
like addition and multiplication on the integers and satisfy the above laws involving oco.

Now we can define sums of arbitrary subsets of N in the following way. Let
{f: | i € I} be an indexed set of N*°. Say such an indexed set is finite precisely in the
case where each f; # oo, for ¢ € I, and the set {+ € I'| f; # 0} is finite. In the case where
{fi | i € I} is finite in this sense define e fi to be the usual sum and otherwise to be
0. This notation generalises that for finite sums of integers. It is easy to check that rules
hold for generalised sums, such as partition associativity, a name used in [AM1] to mean
if {I; |7 € J}is a partition of the set I then

Sierfi = Bje s (Tier; fi)-

Notice this rule, and other natural rules like distributivity of multiplication over sum, do
not hold for infinite sums of positive and negative integers Z in general; this is why we
choose a different appproach for sums of infinite subsets of Z.

oco—Multisets and co—multirelations

We generalise multisets and multirelations so they can take the value co. Let X be a
set. A co—multiset over X is a function f: X — N, which associates f;, a nonnegative
integer or co, with each z € X. Let p® X denote the set of co-multisets over X. Let X
and Y be sets. A co—multirelation from X to Y is a N®-matrix a : ¥ x X - N*®°. We
write o : X —%° Y to mean a is a co—multirelation from X to Y.

Through the introduction of co we can avoid niggling considerations like whether the
application of a multirelation to a multiset exists or not.

Multirelation composition and application

Let f € p™X. Let o : X —3° Y. Define the application of a to f to be the co—multiset
af € p®Y which satisfies

(af)y = Bzexoyz - fa

where the sums may be infinite.

Leta: X —» Yand §:Y — Z. Define their composition f§ o a (often written as
just Ba) to be the matrix foa: X —7° Z given by

(ﬁ o a)z,x = EyEY.Bz,y c Oy oy
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where the again the sums may be infinite. Notice that multirelation application is a
special case of composition if we make the natural identification of multisets 1> X with
multirelations 1 —7 X.

Note the composition of multirelations o : X —, ¥ and §:Y —, Z need not give a
multirelation fo : X —, Z, and specifically the application of a multirelation §: Y —, Z
to a multiset @ € pY need not yield a multiset fa € pZ. This is easily seen in the following
example. Let f be the multiset over B = {bo,b1,...,bn,.. .} given by fp = 1forall b € B,
and let § : B —, {c} be the muitirelation given by B.» = 1 for all 6 € B. Then ff is
the multiset over {c} with (8f). = oo ¢ p{c}. Of course such situations cannot occur for
finite multirelations and multisets.

Multirelation composition and application are linear in the sense that

f(n o) =n-(fa) and
B(Eicra(r)) = LicsBal)

where o, at) : X - Y, fori € I, neN”and f:Y - Z.

In fact, co-multirelations X —° Y are in 1-1 correspondence with linear functions
p® X — p®Y; such a linear function § : p*© X — p*Y determines and is determined by
the co-multirelation with components ay . = (fz),, for z € X,y € Y. Note however, it is
not the case that an arbitrary multirelation o : X —, Y, with no co—components, gives a
map pX — uY.

Notice that as a consequence of linearity if « : X —, Y and f — ¢ € pX then
o(f—g) = af —ag: take h = f—g then h+g = f so, by linearity, alh+g) = ah+ag=oaf
so ah = af — ag.

We identify sets and relations with special kinds of multisets and multirelations,
though be aware that the multiset application of a relation R to a set X does not al-
ways yield a set because more than one element of X may have the same image under
R, and similarly that the multirelation composition of relations does not always yield a
relation for essentially the same reason.

Infinite sums of vectors

In our treatment of invariants of infinite nets we shall use infinite sums of vectors.
The treatment of convergence and nonconvergence of sums. of infinite sets of integers in .
Z is considerably more subtle than that of integers in IN; whether such a sum converges
or not and to what value can depend on how it is grouped, and partition associativity
is lost. This means that were we to extend Z by co and define the matrix operations
correspondingly we would lose many pleasant properties such as associativity of matrix
composition. A way to preserve such properties as partition associativity and distribution
of multiplication over sums is to take indexed sum of positive and negative integers to be
a partial operation, only defined when the sum is finite.
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Let {f: | 1 € I} be an indexed set of integers in Z. The sum X fi is only defined
when the indexed set {f; | i € I} is finite, when it is the usual sum; otherwise the sum is
undefined.

Thus, in general, indexed sum is a partial operation. This possibility of a result being
undefined affects vector and matrix operations too. For instance we can define a partial
sum operation on an indexed sets of vectors {f(4) | ¢ € I'} over X by taking

(Tier f(1))z = Tier f(1)z
provided each sum ;e f(4), is finite, and taking it as undefined otherwise.

Matrix composition and application

Let f € vX. Let o : X —, Y. Define the application of a to f to be the vector
af € vY which satisfies

(af)y = Lzexayz- fa

for all y € Y, provided each indexed sum of integers {ay,. - fz | = € X} is finite; otherwise
take af to be undefined.

Let o : X —, Y and 8 :Y —, Z. Define their composition § o o (often written as
just fa) to be the matrix foa : X —, Z given by

(IB © a)zaz = EyEYﬂz,y c Oy

for z € X,z € Z, provided each such sum is defined; otherwise take the matrix composition

to be undefined. Again application is a special case of composition once we identify v X
with 1 —, X.

Let v:W —, X,8:X —, Y,a:Y —, Z. There are unfortunately examples where
the composition (A7) is defined and yet (af)y is not, and wvice versa, so in this sense
associativity is still lost. However in the case where {(z,y) | 02,y - By,z - Vo,w 7# 0} is finite
for all w € W,z € Z we do have a(f7) and (af)y are both are defined and equal.

Matrix composition and application are linear in the sense that

B(n-a)=n-(fa) and
B(Ticra(r)) = ierPo(s),

with one side being defined iff the other is, where o, (i) : X —, Y, for 1 € I a finite
indexing set, n€ Z and f:Y —, 2.

The fact that operations can be partial has caused us some trouble. Fortunately in
almost all of our treatment of Petri nets we are able to avoid partial operations and the
value co; the extra structure present in Petri nets will define subspaces on which all the
operations we shall consider will be defined for vectors, and never yield the value oo for
multisets.
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