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Summary

Petri nets are a widely-used model for concurrency. By modelling the effect of events
on local components of state, they reveal how the events of a process interact each other
with whether they can occur independently of each other by operating on disjoint regions
of state.

Despite their popularity, we are lacking systematic syntax-driven techniques for defin-
ing the semantics of programming languages inside Petri nets in an analogous way that
Plotkin’s Structural Operational Semantics defines a transition system semantics. The
first part of this thesis studies a generally-applicable framework for the definition of the
net semantics of a programming language.

The net semantics is used to study concurrent separation logic, a Hoare-style logic
used to prove partial correctness of pointer-manipulating concurrent programs. At the
core of the logic is the notion of separation of ownership of state, allowing us to infer that
proven parallel processes operate on the disjoint regions of the state that they are seen to
own. In this thesis, a notion of validity of the judgements capturing the subtle notion of
ownership is given and soundness of the logic with respect to this model is shown. The
model is then used to study the independence of processes arising from the separation
of ownership. Following from this, a form of refinement is given capable of changing the
granularity assumed of the program’s atomic actions.

Amongst the many different models for concurrency, there are several forms of Petri
net. Category theory has been used in the past to establish connections between them
via adjunctions, often coreflections, yielding common constructions across the models and
relating concepts such as bisimulation. The most general forms of Petri net have, however,
fallen outside this framework. Essentially, this is due to the most general forms of net
having an implicit symmetry in their behaviour that other forms of net cannot directly
represent.

The final part of this thesis shows how an abstract framework for defining symmetry in
models can be applied to obtain categories of Petri net with symmetry. This is shown to
recover, up to symmetry, the universal characterization of unfolding operations on general
Petri nets, allowing coreflections up to symmetry between the category of general Petri
nets and other categories of net.
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Chapter 1

Introduction

The development of computer processors over the past four decades has been described
and, in a sense, led by Moore’s Law [Moo65, Moo05] which predicts that the average
number of transistors on CPUs being manufactured doubles approximately every two
years. The law has broadly held over the the past forty-five years and is predicted to hold
for some time into the future. Roughly speaking, in the past this increase in the number
of transistors has allowed chip designers to increase the sophistication of the processor
so that it can perform primitive instructions more rapidly. Broadly, this means that
programs written years ago run faster when compiled to run on modern processors, and
has allowed more complex programs to be developed that run in acceptable time. However,
though Moore’s Law is expected to continue to hold, this will be through new processors
having multiple cores; essentially, through CPUs having several separate sub-processors
each running their own program on the system’s shared memory. Successive generations
of CPU will have more cores. At present, commonly-available CPUs are either dual- or
quad-core, and in the future it is expected that CPUs will have several hundreds of cores.
The computational power of each core will not, however, be substantially greater than
that of the previous generation. It follows that the programs of the future will have to run
concurrently if they are to harness the power of future CPUs, and programming language
systems will have to change to accommodate this.

The difficulty of writing correct concurrent programs has been appreciated for several
decades. Critically, the inadequacy of the standard development cycle of coding, testing
and debugging becomes severe when writing all but the most trivial concurrent programs.
This is due to there possibly being many ways in which concurrent processes might interact
with each other depending on the order in which they are scheduled to run, so each such
interaction might not be seen during the testing phase.

The failure of the traditional development cycle of coding, testing and debugging means
that the development of complex concurrent programs requires new techniques. One ap-
proach is to use compilers that extract a degree of concurrency from sequential code. In
many situations, though, programmers will wish to exercise more control of how their
code is run concurrently. New programming languages might well be of use in the future
[Pey08, Myc07]. Yet, at the moment, the most commonly-encountered way of program-
ming for parallelism is through programmers designing their own imperative programs in
familiar languages such as C and Java, with concurrency obtained through the execution
of concurrent ‘threads’ of programs. The threads may interact either through operation
on a shared memory or through sending messages to each other, an idea taken to the limit
in languages such as Occam and Esterel where the only form of interaction is by sending
and receiving messages.
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If programmers are to have direct control over the concurrency of their programs, they
will need techniques to prove that their programs are correct and, if not, to help them
determine where they are wrong. Generally, to prove that a program is correct we must
have a formal model to represent the behaviour of the program — called its semantics —
and then prove that the model has some particular property. The correctness property
established might not be a full specification of the whole program since it might well be
the case that a full specification is as complex as the program itself. It might instead
be some form of safety property, that no ‘bad’ state is ever encountered (such as a state
where a race occurs or that whenever the program terminates the correct result is given),
or some form of liveness property, asserting that the process eventually makes some form
of progress.

There are many ways in which the proof may be obtained: by some form of ‘push-
button’ analysis such as a program analysis or model-checking a formula of temporal logic;
establishing the correctness property directly by a proof on the model, perhaps in a formal
system; or by applying a set of rules to the syntax of the program that establish that the
model satisfies the property.

All these approaches rely on models of programs, i.e. formal structures that represent
(in some level of abstraction) the behaviour of the program. The centre of this thesis is the
development of the models themselves. One approach to modelling concurrent processes
is through interleaving. This regards concurrency solely as a nondeterministic choice of
which concurrent process to execute, for example regarding the program

x := 1 ‖ x := 2

which has two concurrent assignments to the variable x , one giving it value 1 and the
other 2, as being indistinguishable from the process

(x := 1; x := 2) + (x := 2; x := 1).

This process represents the nondeterministic choice of the parallel composition, that either
the assignment of 1 to x occurs and then the assignment of 2 or the assignments occur in
the other order.

By adopting an interleaved semantics for programs, we lose information on what is
perhaps the most important feature of the programs: the concurrency of their actions. For
example, the interleaved semantics given to the program above does not represent that
the program has a race, a concurrent assignment to the same variable. Problems with
giving an interleaved semantics have been long-understood. The foundational work of
Hoare on parallel programming [Hoa72] identified the fact that attributing an interleaved
semantics to parallel languages is problematic. Three areas of difficulty were isolated,
quoted directly:

• That of defining a ‘unit of action’.

• That of implementing the interleaving on genuinely parallel hardware.

• That of designing programs to control the fantastic number of combinations involved
in arbitrary interleaving.

The first two of these problems relate to the fact that an interleaved semantics can fail
to correspond to the way in which concurrent programs run. The final problem relates to
the fact that arbitrary interleaving naturally gives rise to intractably-large state spaces,
and so to reason about concurrent programs it is necessary to constrain their interaction.
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As Hoare went on to explain, a feature of concurrent systems in the physical world is
that they are often spatially separated, operating on completely different resources and not
interacting. When this is so, the systems are independent of each other and therefore it is
unnecessary to consider how they interact. Spatial separation of programs can be made
explicit through the use of structures such as semaphores [Dij68] or monitors [Bri72] to
provide an explicit representation of the points where processes may interact. Programs
should then be designed so that, for example, they only access a shared memory location
when they are inside a critical region protecting that location [Hoa72]. As such, interaction
is limited only to the points of synchronization. This embodies Dijkstra’s principle of loose
coupling [Dij68]:

...we have stipulated that the processes should be connected loosely; by this we
mean that apart from the (rare) moments of explicit intercommunication, the
individual processes themselves are to be regarded as completely independent of
each other.

The independence of programs motivates the use of the other broad class of models
for concurrency, called independence models. These are sometimes called non-interleaving
models or, more provocatively, ‘true concurrency’ models. Their common core is that
they record the independence (which we might think of as ‘allowed concurrency’) of events.
There are many forms of independence model such as Petri nets [Pet62, Rei85], event struc-
tures [NPW81, Win86], Mazurkiewicz trace languages [Maz89, Maz77] and asynchronous
transition systems [Bed88, Shi85].

Petri nets are a widely-used independence model. They play a fundamental role anal-
ogous to that of transition systems, but, by capturing the effect of events on local com-
ponents of state called conditions, it becomes possible to describe how events might occur
concurrently, how they might conflict with each other and how they might causally depend
on each other. In the form of Petri net that we shall consider first, conditions either hold
a token, in which case they are said to hold, or they do not. The ability of an event to
occur depends on and affects the holding of conditions. Conditions are an entirely ab-
stract representation of components of state: they might correspond to a particular value
being held in a location in a memory or they might correspond to a program being at a
particular control point. As such, Petri nets make an excellent candidate for defining the
semantics of programming languages.

Remarkably, though Petri nets and other independence models have been used success-
fully to give the semantics of several particular systems, they are lacking a comprehensive
account of systematic ways of defining the semantics of programming languages in them.
The first component of this thesis develops a net semantics for a programming language.
This involves identifying the structure that the nets formed have, such as splitting the con-
ditions into those that represent the control point of the program and those that represent
the state, and establishing that the nets have particular control properties that ensure
that they have the desired behaviour. The techniques developed indicate what appears to
be a general method (an alternative to Plotkin’s structural operational semantics [Plo81])
for giving a structural Petri net semantics to a variety of languages.

The development of the net semantics was motivated by the emergence of concur-
rent separation logic [O’H07, O’H04]. This extends Owicki and Gries’ rules for shared-
variable concurrency [OG76], themselves an extension of Hoare logic for sequential pro-
grams [Hoa69], to concurrent pointer-manipulating programs. Reasoning about such pro-
grams has traditionally proved difficult due to the problem of variable aliasing. For in-
stance, Owicki and Gries’ system essentially requires that the programs operate on disjoint
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collections of variables, thereby allowing judgements to be composed. In the presence of
pointers, the same syntactic condition cannot be imposed to yield a sound logic since
distinct variables may point to the same memory location, allowing arbitrary interaction
between the processes. To give a specific example, Owicki and Gries’ system would allow
a judgement of the form

{x 7→ 0 ∧ y 7→ 0}x := 1 ‖ y := 2{x 7→ 1 ∧ y 7→ 2},

indicating that the result of assigning 1 to the program variable x concurrently with
assigning 2 to y from a state where x and y both initially hold value 0 is a state where
x holds value 1 and y holds value 2. The judgement is sound because the variables x
and y are distinct. If pointers are introduced to the language, however, it is not sound to
conclude that

{[x ] 7→ 0 ∧ [y ] 7→ 0}[x ] := 1 ‖ [y ] := 2{[x ] 7→ 1 ∧ [y ] 7→ 2},

which would indicate that assigning 1 to the location pointed to by x and 2 to the location
pointed to by y yields a state in which x points to a location holding 1 and y points to a
location holding 2, since x and y may both point to the same location.

At the core of separation logic [Rey00, IO01], initially presented for non-concurrent
programs, is the separating conjunction, ϕ ⋆ ψ, which asserts that the state in which
processes execute may be split into two parts, one part satisfying ϕ and the other ψ. The
separating conjunction was used by O’Hearn to adapt Owicki and Gries’ system to provide
a rule for parallel composition suitable for pointer-manipulating programs [O’H07].

As we shall see, the rule for parallel composition is informally understood by splitting
the initial state into two parts, one owned by the first process and the other by the second.
Ownership can be seen as a dynamic constraint on the interference to be assumed: parallel
processes always own disjoint sets of locations and only ever act on locations that they own.
As processes evolve, ownership of locations may be transferred using a system of invariants.
A consequence of this notion of ownership is that the rules discriminate between the
parallel composition of processes and their interleaved expansion. For example, the logic
does not allow the judgement

{x 7→ 0}x := 1 ‖ x := 1{x 7→ 1},

which informally means that the effect of two processes acting in parallel which both
assign the value 1 to x from a state in which x holds 0 is to yield a state in which x
holds 1. However, if we adopt the usual rule for the nondeterministic sum of processes,
the corresponding judgement is derivable for their interleaved expansion,

{x 7→ 0}(x := 1; x := 1) + (x := 1; x := 1){x 7→ 1}.

One would hope that the distinction that the logic makes between concurrent processes
and their interleaved expansion is captured by the semantics; the Petri net model that we
give does so directly.

The rules of concurrent separation logic contain a good deal of subtlety, and so lacked
a completely formal account until the pioneering proof of their soundness due to Brookes
[Bro07]. The proof that Brookes gives is based on a form of interleaved trace semantics.
The presence of pointers within the model alongside the possibility that ownership of
locations is transferred means, however, that the way in which processes are separated
is absolutely non-trivial, which motivates strongly the study of the language within an
independence model. We therefore give a proof of soundness using our net model and then

12



characterize entirely semantically the independence of concurrent processes in Theorem
5.5.

It should be emphasized that the model that we present is different from Brookes’ since
it provides an explicit account of the intuitions behind ownership presented by O’Hearn.
This is no criticism of Brookes’ more abstract model. The model here involves taking
the original semantics of the process being reasoned about and embellishing it to capture
the meaning of the judgement. The proof technique that we employ defines validity of
assertions in a way that captures the rely-guarantee reasoning [Jon83] emanating from
ownership in separation logic directly, and in a way that might be applied in other situa-
tions.

In [Rey04], Reynolds argues that the separation of parallel processes that concurrent
separation logic enforces allows store actions that were assumed to be atomic, in fact, to
be implemented as composite actions (seen as a change in their granularity) with no effect
on the validity of the judgement. Interleaving models do not permit simple techniques
for studying the atomicity of actions [Lam86] since they assume atomicity of actions.
Independence models, however, can be read without making this assumption [Pra86].
We introduce a novel form of refinement, inspired by that of [vGG89], and show how
this may be applied to address the issue of granularity using our characterization of the
independence of processes arising from the logic.

In the final part of this thesis, we move in a related but different direction to consider
the semantics of Petri nets. In particular, we show how a general framework for defining
symmetry on models can be applied to enrich nets with symmetry.

Without doubt symmetry is important and plays a role, at least informally, in many
models, and often in the analysis of processes. It is, for instance, present in security
protocols due to the repetition of essentially similar sessions [DGT07, FHG98, CW01a],
can be exploited to increase efficiency in model checking [Sis04], and is present whenever
abstract names are involved [GP01].

There is a wide array of models for concurrency. In [WN95], it is shown how cat-
egory theory can be applied to describe the relationships between them by establishing
adjunctions between their categories; the adjunctions often take the form of coreflections.
This leads to uniform ways of defining constructions on models and provides links between
concepts such as bisimulation in the models [JNW95].

Only partial results have been achieved in relating Petri nets to other models for
concurrency since, in general, there is no coreflection between occurrence nets, a class of
net suited to connecting nets to other models for concurrency, and more general forms of
net that allow transitions to deposit more than one token in any condition or in which
a condition can initially hold more than one token. The reason for this, as we shall see,
is that the operation of unfolding such a net to form its associated occurrence net does
not account for the symmetry in the behaviour of the original net due to conditions being
marked more than once. We shall define the symmetry in the unfolding and use this to
obtain a coreflection between general nets and occurrence nets up to symmetry.

Of course, there are undoubtedly several ways of adjoining symmetry to nets. The
method we use was motivated by the need to extend the expressive power of event struc-
tures and the maps between them [Win07a, Win07b]. Roughly, a symmetry on a Petri
net is described as a relation between its runs as causal nets, the relation specifying when
one run is similar to another up to symmetry; of course, if runs are to be similar then
they should have similar futures as well as pasts. Technically and generally, a relation of
symmetry is expressed as a span of open maps which form a pseudo-equivalence.

This general algebraic method of adjoining symmetry is adopted to define symmetry
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in (the paths of) nets, which we use to relate the categories of general nets with symmetry
and occurrence nets with symmetry. Another motivation for this work is that Petri nets
provide a useful testing ground for the general method of adjoining symmetries. For
example, the present work has led us to drop the constraint in [Win07a, Win07b] that
the morphisms of the span should be jointly monic, in which case the span would be
an equivalence rather than a pseudo-equivalence. (A similar issue is encountered in the
slightly simpler setting of nets without multiplicities — see Section 8.5.) Motivated by
the categories of nets encountered, the method for adjoining symmetry is also extended
to deal with more general forms of model such as those without all pullbacks.

Overview

In Chapter 2, we give some background material on Petri nets. The net semantics of a
programming language is developed in Chapter 3. We then give an overview of concurrent
separation logic in Chapter 4 followed by the formal semantics of the logic and proof of
its soundness in Chapter 5. In the same chapter, we capture the independence of events
obtained from the logic and use this in Chapter 6 to define the refinement operation.
These chapters expand the journal paper [HW08a]. Unfoldings of general Petri nets are
described in Chapter 7 followed by application of symmetry in Chapter 8 to obtain an
abstract characterization of the unfolding. These chapters expand [HW08c, HW08b]. We
then conclude, discussing related work and directions for further research.
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Chapter 2

Categories of Petri nets

In this chapter, we review some basic definitions describing Petri nets. We shall begin by
defining basic Petri nets. These will form the basis of the net semantics to be presented
in the following chapter. There are many good introductions to Petri nets such as [Rei85,
BRR87], to which the reader is referred for a fuller account. Since we wish to deal with
categories of Petri nets, the account presented here shall follow that in [WN95].

2.1 Petri nets

Petri nets can be thought of as being a generalization of transition systems, where the
ability of events to occur depends on local components of the distributed state called condi-
tions. This allows a derived notion of independence of events; two events are independent
if their neighbourhoods of conditions do not intersect.

Formally, nets are built only from these conditions to represent the local components
of state and events. Petri nets have an appealing graphical interpretation where conditions
are drawn as circles and events as rectangles. In the basic form of net to be introduced in
this chapter, local state is represented by conditions either holding or not. If a condition
holds, it is drawn containing a token and is said to be marked. The local components
of state that must hold for an event to occur are called its preconditions; the conditions
that an event causes to hold are called its postconditions. The precondition relation is
indicated by drawing an arrow from a condition to an event if it is a precondition, and
the postcondition relation is indicated by drawing arrows from events to conditions. The
complete definition of a Petri net is:

Definition 2.1.1 (Basic Petri net). A Petri net is a five-tuple,

(B,E, •(−), (−)•,M0)

where

• B is the set of conditions of the net,

• E is the set of events of the net, disjoint from B,

• •(−) is the precondition map, •(−):E → Pow(B),

• •(−) is the postcondition map, (−)•:E → Pow(B), and

• M0 is the initial marking of the net, M0 ⊆ B.
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A marking is a set of conditions, representing the global state of a net by indicating
which conditions hold. As seen, Petri nets are defined with an initial marking. This is the
set of conditions that hold in the initial state.

The set of preconditions of an event e is written •e and its set of postconditions is e•.
Its neighbourhood is the union of these two sets,

•e• = •e ∪ e•.

It is convenient to further restrict nets so that they contain no isolated conditions,
which are conditions that are neither in the initial marking of the net nor are they in the
neighbourhood of any event.

Action within nets is defined according to a token game which defines how the marking
of the net changes according to the occurrence of the events. An event e can occur if all
its preconditions are marked and, following their un-marking, all the postconditions are
not marked. That is, in marking M ,

(1) •e ⊆M

(2) (M \ •e) ∩ e• = ∅.

Such an event is said to have concession or to be enabled. The marking following the
occurrence of e is obtained by removing the tokens from the preconditions of e and placing

a token in every postcondition of e. We write M
e
−։ M ′ where

M ′ = (M \ •e) ∪ e•.

Let π be a sequence of events, so π = (e1, . . . , en). The transition relation M
e
−։ M ′

can be extended to sequences:

M
π
−։ M ′ ⇐⇒ there exist M0, . . . ,Mn such that M = M0 & M ′ = Mn

& ∀i s.t. 0 < i ≤ n : Mi−1
ei
−։ Mi.

When we wish to make clear that the sequence occurs in netN , we shall writeN :M
π
−։ M ′.

We sometimes write M
∗
−։ M ′ to mean that there exists π such that M

π
−։ M ′.

A marking M is said to be reachable if there is a sequence of events from the initial
marking that yields M . That is, M is reachable iff

N :M0
∗
−։ M,

where M0 is the initial marking of N .

Lemma 2.1.1. Any path gives rise to a unique marking: For any basic net N , markings
M , M ′

1 and M ′
2 and sequence π:

M
π
−։ M ′

1 & M
π
−։ M ′

2 =⇒ M ′
1 = M ′

2.

Proof. A straightforward induction on the length of π.

Contact and safety

If constraint (2) in the definition of the token game above does not hold but constraint (1)
does, so the preconditions are all marked (have a token inside) but following removal of
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the tokens from the preconditions there is a token in some postcondition, there is said to
be contact in the marking and the event cannot fire. The idea that the occurrence of an
event should be inhibited by one of its postconditions already holding can be reconciled
with the account above by thinking that an event can occur when its preconditions hold
and must begin the holding of its postconditions. We shall give an example of a net with
contact shortly. After that, we shall move on to consider morphisms of nets. In [WN95],
two kinds of morphism are described: one restricted kind, not so useful for us, that is
appropriate for all basic nets, and the one that we shall describe that is only suitable for
basic nets without contact.

Definition 2.1.2. A basic net is safe if there is no contact in any reachable marking.

2.2 Behaviour of nets and examples

Through specifying events by their action on local components of state, the behaviour of
nets gives rise to several phenomena.

Contact

In the following net, the event e1 in the net N1 cannot occur in the marking drawn due to
contact: one of its postconditions still holds a token once its preconditions are un-marked.
The event e2 in the net N2 does not have contact since the event can occur according to
the definition.

e1

e2

N1 N2

Conflict

Conflict describes how the occurrence of one event can inhibit the occurrence of another in
a marking. There are two forms of conflict: forwards and backwards. Backwards conflict
occurs where events compete to consume a condition. In the following net, only one of
the events can occur from the marking drawn since the occurrence of one will consume
the only token, causing the other not to have concession.

17



Forwards conflict is where events compete to place a token in a condition — they
compete on their postconditions. In the following net, only one of the events can occur.
The other will not be able to occur in the resulting marking due to contact.

Causality

The causal relationships between the occurrences of events can also be extracted from
nets. For example, in the net below the event e2 can only occur once the event e1 has
occurred. This is due to the requirement that the condition b be marked for the occurrence
of e2, and b can only be marked through the occurrence of e1.

e e′b

Concurrency

The final important concept in the behaviour of processes represented by nets is that
independent events are allowed to occur concurrently. Independence of events is derived
from their operation on non-overlapping sets of conditions. For events e and e′, we write
eIe′ defined as:

eIe′ ⇐⇒ •e• ∩ •e′
•

= ∅.

For example, the events e and e′ drawn below are independent:

e e′

This gives rise to the ‘diamond property’ for independent events. The first part de-
scribes that if two independent events occur consecutively then the occurrence of the
second event does not depend on the occurrence of the first event, and the order in which
they occur has no effect on the resultant marking. The second part describes that if two
independent events can both occur in a marking then the occurrence of one does not
inhibit the occurrence of the other. They both describe how the following diamond of
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independent events may be derived:

M

e1
??������

e2 ��?
??

??
? I

M1
e2

��?
??

??

M2

e1

??�����

M ′

Lemma 2.2.1. Let M be a marking of a net N and e1 and e2 be independent events.

• If M
e1
−։ M1

e2
−։ M ′ then there exists M2 such that M

e2
−։ M2

e1
−։ M ′.

• If M
e1
−։ M1 and M

e2
−։ M2 then there exists M ′ such that M1

e2
−։ M ′ and M2

e1
−։ M ′.

Since the events e1 and e2 are independent, we can see the net as allowing them to
occur concurrently in any marking.

2.3 Morphisms

A morphism from net N to net N ′ expresses how the structure of N embeds into N ′ in a
way that preserves the behaviour of N . We shall use them later when we show that the
net semantics corresponds to an operational semantics and when we consider unfoldings of
nets in Chapters 7 and 8 (where a more general morphism accompanies the more general
nets used there). If just interested in the definition of the net semantics and separation
logic, the reader may safely proceed directly to Chapter 3.

The form of morphism that we now give, presented in [WN95], is suited to safe nets,
and relies on a little notation. Morphisms of nets as presented here were first introduced
in [Win84].

Let N = (B,E, •(−), (−)•,M0) and N ′ = (B′, E′, •(−), (−)•,M ′
0) be safe Petri nets.

The morphism shall consist of a partial function η from E to E′. If the partial function
is undefined on the event e, we write η(e) = ∗. The notation for preconditions and
postconditions is extended to ∗ so that

•∗ = ∅ ∗• = ∅.

To emphasize the role of ∗ in describing partiality, we write η:E →∗ E
′.

The morphism shall also consist of a relation β ⊆ B × B′. For any subset X ⊆ B of
conditions of N , we write βX for the result of applying β to X:

βX = {b′ | b′ ∈ B′ & ∃b ∈ X : β(b, b′)}

We also write ∃! to mean “there exists unique”.

Definition 2.3.1. A morphism (η, β):N → N ′ consists of a partial function η:N →∗ N
′

and a relation β ⊆ B ×B′ that jointly satisfy:

• βM0 ⊆M
′
0 and ∀b′ ∈M ′

0 : ∃!b ∈M0 : β(b, b′),

• for any e ∈ E: β•e ⊆ •η(e) and ∀b′ ∈ •η(e) : ∃!b ∈ •e : β(b, b′), and

• for any e ∈ E: βe• ⊆ η(e)• and ∀b′ ∈ η(e)• : ∃!b ∈ e• : β(b, b′).

The morphism is synchronous if η is a total function.
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The constraint ∀b′ ∈ •η(e) : ∃!b ∈ •e : β(b, b′) asserts that the morphism is locally
injective on the preconditions of e. Generally, we say that a relation R ⊆ A×B is locally
injective on a set X ⊆ B if

∀y ∈ RX : ∃!x ∈ X : R(x, y).

Taking composition of morphisms to be the composition of partial functions on events
and the composition of relations on conditions, we obtain a category Safe of safe Petri
nets with no isolated conditions.

Any morphism (η, β):N → N ′ preserves the token game described earlier. As shown in
Section 10.3.2 of [WN95], it need not be the case that morphisms preserve the independence
relation on events. An example of this is the representation of the following folding as a
morphism:

Example 2.3.1. The following dashed blue lines represent the β component of a morphism
(η, β):N → N ′. On events, the morphism sends the event ei to e for all i.

N

N

e1 e3e2

e

This morphism represents that the net representing the sequence of events e1, e2, e3 can
be folded into the net with a single event e that can occur repeatedly. Tthe events e1 and
e3 are independent (they operate on disjoint neighbourhoods) but their image under the
morphism, e, is trivially not independent of itself.

However, importantly morphisms do preserve the concurrency of events. For any two
events e1 and e2 of N , define e1 co e2 iff there exists a reachable marking M such that

M
{e1,e2}
−։ M ′. This means that the events are independent and both have concession in

some reachable marking.
The preservation of the token game and of independence is captured in the following

lemma.

Lemma 2.3.1. If M
e
−։ M ′ then βM

η(e)
−։ βM ′. If e1 co e2 then η(e1) co η(e2).

Proof. Straightforward calculation.

As seen, the occurrence of an event in a marking entails the possible occurrence of
the image of the event in the image of the marking. The morphism is still a morphism
between the resulting nets.

Lemma 2.3.2. Let N and N ′ be safe Petri nets with no isolated conditions with N =
(B,E, •(−), (−)•,M0) and N ′ = (B′, E′, •(−), (−)•,M ′

0), and let (η, β):N → N ′ be a

morphism. For any event e such that M0
e
−։ M and hence M ′

0

η(e)
−։ βM , the following

holds:
∀b′ ∈ βM : ∃!b ∈M : β(b, b′)
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Hence the pair (η, β) is a morphism

(η, β):(B,E, •(−), (−)•,M)→ (B′, E′, •(−), (−)•, βM).

Proof. The first part is a straightforward calculation. The second part follows immediately.

2.4 Open maps

One of the key reasons for studying categories of models for concurrency is to provide an
abstract setting in which concepts such as process equivalence may be studied. For exam-
ple, an account of bisimulation in models for concurrency is described in [JNW95] based
on open maps. In any model for concurrency, given an interpretation of the computational
paths of the model, the abstract framework can be applied to obtain a form of equivalence
called open map bisimulation.

A proper account of the rich theory of open maps is provided in [JNW95]. It shall not
be repeated fully here, but we shall for completeness give the essential definitions.

Abstractly, the definition can be applied to obtain a form bisimulation in any category
C that has a subcategory of path objects P. For instance, by taking paths of labelled
transition systems to be sequences of labels, we obtain Milner and Park’s standard form
of bisimulation [JNW95].

The first part of the definition of open map bisimulation is the definition of open maps.
These are morphisms that represent ‘functional’ bisimulations. The full relational defini-
tion of bisimulation is then obtained regarding these as the legs of a span of morphisms.

According to the definition there, a morphism f :X → Y is said to be P-open if it
satisfies the following path lifting condition:

For any objects P and P ′ and morphism s:P → P ′ in P and morphisms
p:P → X and p′:P ′ → X ′ in C such that the following diagram commutes

P

s

��

p // X

f
��

P ′
p′

// X ′,

i.e. f ◦ p = p′ ◦ s, there is a morphism h:P ′ → X such that the two triangles
in the following diagram commute

P

s

��

p // X

f
��

P ′
p′

//

h
==||||||||
X ′,

i.e. p = h ◦ s and f ◦ h = p′.

In general, objects Y and Y ′ are P-open map bisimilar if there exists a span of P-open
maps relating them. That is, if there exists an object X of C and P-open morphisms
f :X → Y and f ′:X → Y ′:

X
f

~~~~
~~

~~
~~ f ′

  A
AA

AA
AA

A

Y Y ′

21



Spans of open maps compose by taking pullbacks as demonstrated in [JNW95]. This
yields a bisimulation since the pullback of open maps is open [JNW95, Proposition 3].

Open maps and labelled nets

The particular equivalence that we shall be interested in later will be on labelled Petri
nets. A labelled Petri net is just a standard Petri net with a function attaching a label
to each event. Morphisms between labelled nets are required to be label-preserving, so it
follows that the ensuing form of open map bisimilarity shall be label-preserving.

We must choose a path category with respect to which we draw open maps. There
are two well-known choices of path for nets. The first form of path is causal nets, which
shall be covered in Section 7.4, and the second form is pomsets [Pra86] (an abbreviation
of ‘partially ordered multisets’). In the following two chapters, we shall consider pomsets
as paths.

Fundamentally, a pomset path is just a multiset of the events to occur alongside an
order to indicate the order in which the occurrences happened.

Definition 2.4.1. A pomset over the labelling set Lab is a tuple (X,≤, λ) comprising:

• a finite set of occurrences X,

• a partial order ≤ on X, and

• a labelling function λ:X → Lab.

The elements of a pomset X can be thought of via λ as labelled occurrences of events.
Where two occurrences are unrelated through the order ≤, they can be thought of as
occurring concurrently. (Event structures have not yet been defined in this thesis, but the
reader familiar with them might find it useful to note that a pomset is just a labelled ele-
mentary event structure [Win86] — i.e. a labelled event structure that has empty conflict
relation.)

For example, consider the following Petri net:

e

e′

One run of this net is for the event e to occur twice, one time after the other, and the
event e′ also to occur. The pomset is drawn below, with dots representing occurrences
drawn with their label. Note that there are two occurrences of the event e with the order
indicating that one occurs after the other. There is also an occurrence of the event e′.
This is independent of the occurrences of the event e and so is unrelated to them through
the order.

≤

e′e

e
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As described in [NW96], pomsets can be regarded as Petri nets. In the category Safe, a
pomset P = (X,≤, λ) embeds into a net N through a morphism p:P → N if P represents
a path of the net N in which x ∈ X represents the occurrence of the event p(x).

A morphism in the category Pom of pomsets from (X,≤, λ) to (X ′,≤′, λ′) is a label-
preserving function f from X to X ′ such that if f(x) ≤′ f(y) then x ≤ y. As such,
morphisms show how paths can be extended by adding more events or allowing more
concurrency.

It is shown in [NW96] that taking pomsets as paths yields a form of open map bisimu-
lation that corresponds to a strengthening of a known equivalence on nets, namely history
preserving bisimulation [vGG89, RT88]. Giving a span of Pom-open morphisms is, there-
fore, just a way of exhibiting a bisimulation and a Pom-open map simply exhibits a
functional bisimulation.

With the categories Pom and Safe now defined, the abstract definition of open map
bisimulation can now be applied. Pom-openness of a morphism in the category Safe can
be characterized as follows:

Lemma 2.4.1 (Proposition 16 in [NW96]). Let N = (B,E, •(−), (−)•,M0) and N ′ =
(B′, E′, •(−), (−)•,M ′

0) be safe Petri nets with labelling function |−|. A morphism (η, β):N →
N ′ is Pom-open if for any marking M reachable from M0 in N :

• η is total and label preserving,

• if βM
e′

−։ M ′′ in N ′ then there exist e and M ′ such that M
e
−։ M ′ in N and

η(e) = e′ and βM ′ = M ′′, and

• (η, β) reflects the independence of consecutive events in the sense that whenever

M
e1
−։ M1

e2
−։ M2 for some M1 and M2 and η(e1)Iη(e2) in N ′ then e1Ie2 in N .
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Chapter 3

Structural net semantics

In this chapter, we introduce a Petri net semantics for a simple concurrent programming
language. The semantics shall be used in the following chapter to give a semantics to (an
interpretation of the judgements derivable in) concurrent separation logic. We therefore
introduce the net semantics for the programming language with the specific features which
will be important to the logic, such as that the programs operate on a heap and may enforce
mutual exclusion through the use of critical regions, though the techniques for defining
the net semantics have wider applicability.

3.1 Terms and states

Concurrent separation logic is a logic for programs that operate on a heap. A heap is
a structure recording the values held by memory locations that allows the existence of
pointers as well as providing primitives for the allocation and deallocation of memory
locations. A heap can be seen as a finite partial function from a set of locations Loc to a
set of values Val:

Heap , Loc ⇀fin Val

We will use ℓ to range over elements of Loc and v to range over elements of Val. As
stated, a heap location can point to another location, so we require that Loc ⊆ Val. We
shall say that a location is current (or allocated) in a heap if the heap is defined at that
location. The procedure of making a non-current location current is allocation, and the
reverse procedure is called deallocation. If h is a heap and h(ℓ) = ℓ′, there is no implicit
assumption that h(ℓ′) is defined. Consequently, heaps may contain dangling pointers.

Example 3.1.1. The partial function {ℓ0 7→ (0, ℓ1), ℓ1 7→ (1, ℓ2), ℓ2 7→ (2, ℓ3)} represents
the heap

1 20

ℓ0 ℓ1 ℓ2

which is a list with a dangling pointer to ℓ3 at location ℓ2.

In addition to operating on a heap, the programs that we shall consider shall make
use of critical regions [Dij68] protected by resources. The syntax for declaring a critical
region is

with r do t od.

The mutual exclusion property that critical regions provide is that no two parallel processes
may be inside critical regions protected by the same resource. For example, there is no
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Terms:

t ::= ε nil process
| α heap action
| alloc(ℓ) heap allocation
| dealloc(ℓ) heap disposal
| t1; t2 sequential composition
| t1 ‖ t2 parallel composition
| α1.t1 + α2.t2 guarded sum
| while b do t od iteration
| resource w do t od resource declaration
| with re do t od critical region.

re ::= r resource value
| w local resource variable

Figure 3.1: Syntax of terms

run of

with r do t1 od ‖ with r do t2 od,

the parallel composition of two critical regions, to a state where both t1 and t2 are active.
We will write Res for the set of resource values and use r to range over its elements.

Critical regions are straightforwardly implemented by recording, for each resource, whether
the resource is available or unavailable (assuming the existence of atomic operations to
make the resource available or unavailable). A process may enter a critical region protected
by r only if r is available; otherwise it is blocked and may not resume execution until the
resource becomes available. The process makes r unavailable upon entering the critical
region and makes r available again when it leaves the critical region.

To accompany the syntax for critical regions, there is also a syntax for defining new
resources local to a particular subprocess. The term resource w do t od has the resource
variable w bound within t, asserting that a resource is to be chosen that is local to t and
used for w. Consequently, in the process

(resource w do with w do t1 od od) ‖ (resource w do with w do t2 od od)

the sub-processes t1 and t2 may run concurrently since they must be protected by different
resources, one local to the process on the left and the other local to the process on the
right.

The semantics of this is obtained in the standard way by substitution, in the normal
way for any syntax with abstraction. We shall say that the construct resource w do t od
binds the variable w within t, and the variable w is free in with w do t od. We write
fv(t) for the free variables in t and say that a term closed if it contains no free resource
variables; we shall restrict attention to such terms. We write [r/w]t for the term obtained
by substituting r for free occurrences of the variable w within t. Free variables and
substitution are formally defined in Figure 3.2. As standard, we will identify terms ‘up
to’ the standard alpha-equivalence induced by renaming bound occurrences of variables.
The notation res(t) is adopted to represent the resources occurring in t. As standard, the
semantics will be defined in such a way to ensure that free variables never occur in actions
that occur.
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fv(ε) = ∅
fv(α) = ∅

fv(alloc(ℓ)) = ∅
fv(dealloc(ℓ)) = ∅

fv(t1; t2) = fv(t1) ∪ fv(t2)
fv(t1 ‖ t2) = fv(t1) ∪ fv(t2)

fv(α1.t1 + α2.t2) = fv(t1) ∪ fv(t2)
fv(while b do t od) = fv(t)

fv(resource w do t od) = fv(t) \ {w}
fv(with r do t od) = fv(t)
fv(with w do t od) = fv(t) ∪ {w}

res(ε) = ∅
res(α) = ∅

res(alloc(ℓ)) = ∅
res(dealloc(ℓ)) = ∅

res(t1; t2) = res(t1) ∪ res(t2)
res(t1 ‖ t2) = res(t1) ∪ res(t2)

res(α1.t1;α2.t2) = res(t1) ∪ res(t2)
res(while b do t od) = res(t)

res(resource w do t od) = res(t)
res(with r do t od) = res(t) ∪ {r}
res(with w do t od) = res(t)

[r/w] ε = ε
[r/w] α = α
[r/w] alloc(ℓ) = alloc(ℓ)
[r/w] dealloc(ℓ) = dealloc(ℓ)
[r/w] t1; t2 = ([r/w] t1); ([r/w] t2)
[r/w] t1 ‖ t2 = ([r/w] t1) ‖ ([r/w] t2)
[r/w] α1.t1 + α2.t2 = α1.([r/w] t1) + α2.([r/w] t2)
[r/w] while b do t od = while b do [r/w] t od
[r/w] resource w′ do t od = resource w′ do [r/w] t od if w 6= w′

[r/w] resource w do t od = resource w do t od
[r/w] with r′ do t od = with r′ do [r/w] t od

[r/w] with w′ do t od =

{

with r do [r/w] t od if w = w′

with w′ do [r/w] t od otherwise

Figure 3.2: Free variables, free resources and substitution

The syntax of the language that we will consider is presented in Figure 3.1. We write
ε for the nil process, which can perform no action and is considered to have terminated
whenever it is in its initial state. The symbol α is used to range over heap actions, which
are actions on the heap that might change the values held at locations but do not affect the
domain of definition of the heap. That is, they neither allocate nor deallocate locations.
We reserve the symbol b for boolean guards, which are heap actions that may only proceed,
without changing the heap, if the boolean b holds.

Provision for allocation within our language is made via the alloc(ℓ) primitive, which
makes a location current (sometimes said to be ‘allocated’, i.e. part of the active heap),
giving it an initial value, and sets ℓ to point at this location. It is worth repeating that
the location ℓ is not itself being allocated; the location ℓ must initially be current and will
end up pointing to the newly-allocated location. Consequently, some locations must be
assumed to be allocated (current) before the process starts running. The justification for
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this rather subtle definition is to avoid having to introduce program variables. By restrict-
ing attention just to heap locations, we avoid some untidiness in the original presentation
of concurrent separation logic; in a sense, the semantics presented here abstracts away the
difference between stack and heap locations (see the introduction to Chapter 4 on page
61 for a slightly fuller account).

For symmetry, the command dealloc(ℓ) makes the location pointed to by ℓ non-
current. Writing a heap as the set of values that it holds for each allocated location,
the effect of the command alloc(ℓ) on the heap {ℓ 7→ 0} might be to form a heap
{ℓ 7→ ℓ′, ℓ′ 7→ 1} if the location ℓ′, not ℓ itself, is chosen to be allocated and is assigned
initial value 1. The effect of the command dealloc(ℓ) on the heap {ℓ 7→ ℓ′, ℓ′ 7→ 1} would
be to form the heap {ℓ 7→ ℓ′}.

The guarded sum α.t + α′.t′ is a process that executes as t if α takes place or as t′ if
α′ takes place. We refer the reader to Section 3.3 for a brief justification for disallowing
non-guarded sums.

The semantics of the term resource w do t od will involve first picking a ‘fresh’
resource r and then using r for w in t, so running [r/w]t. It will therefore be necessary
to record during the execution of processes which resources are current (i.e. not fresh) as
well as which current resources are available (i.e. not held by any process).

The way in which we shall formally model the state in which processes execute is
motivated by the way in which we shall give the net semantics to closed terms. We begin
by defining the ‘constructor’ curr which takes either a location ℓ or resource r to give an
element curr(ℓ) or curr(r) to represent that the location or resource is current. Now define
the following sets:

D , Loc×Val

L , {curr(ℓ) | ℓ ∈ Loc}

R , Res

N , {curr(r) | r ∈ Res}.

A state, ranged over by σ, is defined to be a tuple

(D,L,R,N)

where D ⊆ D represents the values held by locations in the heap; L ⊆ L represents the
set of current, or allocated, locations of the heap; R ⊆ R represents the set of available
resources; and N ⊆ N represents the set of current resources. The sets D, L, R and N are
disjoint, so no ambiguity arises from writing, for example, (ℓ, v) ∈ σ to mean (ℓ, v) ∈ D.

The interpretation of a state for the heap is that (ℓ, v) ∈ D if ℓ holds value v and
that curr(ℓ) ∈ L if ℓ is current. For resources, r ∈ R if the resource r is available and
curr(r) ∈ N if r is current. It is clear that only certain such tuples of subsets are sensible.
In particular, the heap must be defined precisely on the set of current locations, and only
current resources may be available.

Definition 3.1.1 (Consistent state). The state (D,L,R,N) is consistent if we have:

• the sets D, L, R and N are all finite,

• D is a partial function: for all ℓ, v and v′, if (ℓ, v) ∈ D and (ℓ, v′) ∈ D then v = v′,

• L represents the locations current consistent with the domain of D: L = {curr(ℓ) |
∃v : (ℓ, v) ∈ D}, and

• all available resources are current: R ⊆ {r | curr(r) ∈ N}.
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It is clear to see that the L component of any given consistent state may be inferred
from the D component. It will, however, be useful to retain this information separately
for when the net semantics is given. We shall call D ⊆ D a heap when it is a finite
partial function from locations to values, and write Heap for the set of all heaps. (Partial
functions are identified here with their graphs, i.e. pairs of locations and values.) The
notation ℓ 7→ v is used for elements of heaps rather than (ℓ, v). We shall frequently make
use of the standard definition of the domain of a heap D regarded as a partial function:

dom(D) , {ℓ | ∃v.(ℓ 7→ v) ∈ D}.

3.2 Process models

The definition of state that we have adopted permits a net semantics to be defined. Before
doing so, we shall define how heap actions are to be interpreted and then give a transition
semantics to closed terms.

Actions

The earlier definition of state allows a very general form of heap action to be defined that
forms a basis for both the transition and net semantics. We assume that we are given the
semantics of primitive actions α as A JαK comprising a set of heap pairs:

A JαK ⊆ Heap ×Heap

The interpretation is that α can proceed in heap D if there are (D1,D2) ∈ A JαK such
that D has the same value as D1 wherever D1 is defined. The resulting heap is formed by
updating D to have the same value as D2 wherever it is defined. It is significant that this
definition allows us to infer precisely the set of locations upon which an action depends.

We require that whenever (D1,D2) ∈ A JαK, the heaps D1 and D2 have the same
domain. This means that the primitive actions ranged over by α will not allow allocation
or deallocation, though the generality of the construction does allow them to represent
abstractions over procedures. This requirement on the domains of D1 and D2 ensures that
actions preserve consistent markings (Proposition 3.3).

As an example, we introduce some syntax to show how assignment of some very simple
expressions might be defined.

Example 3.2.1 (Assignment). For any location ℓ and value v that is not a location, the
action ℓ := v assigns the value v to location ℓ. Its semantics is:

A Jℓ := vK ,
{({ℓ 7→ v′},
{ℓ 7→ v}) | v′ ∈ Val}

if v 6∈ Loc

If we wish to assign a particular location, we use the syntax ℓ := &ℓ′. Its semantics is:

A
q
ℓ := &ℓ′

y
,
{({ℓ 7→ v′},
{ℓ 7→ ℓ′}) | v′ ∈ Val}

The syntax ℓ := ℓ′ represents the action that copies the value held at location ℓ′ to location
ℓ. Its semantics is as follows:

A
q
ℓ := ℓ′

y
,
{({ℓ 7→ v, ℓ′ 7→ v′},
{ℓ 7→ v′, ℓ′ 7→ v′}) | v, v′ ∈ Val}
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The syntax ℓ := [ℓ′] represents the action that copies the value at the location pointed to
by ℓ′ to ℓ.

A
q
ℓ := [ℓ′]

y
,
{({ℓ 7→ v, ℓ′ 7→ ℓ′′, ℓ′′ 7→ v′′},
{ℓ 7→ v′′, ℓ′ 7→ ℓ′, ℓ′′ 7→ v′′}) | ℓ ∈ ℓ′ & v, v′′ ∈ Val}

Finally, the syntax [ℓ] := v indicates that the value v is assigned to the location pointed to
by ℓ.

A J[ℓ] := vK ,
{({ℓ 7→ ℓ′, ℓ′ 7→ v′},
{ℓ 7→ ℓ′, ℓ′ 7→ v}) | v′ ∈ Val}

Other forms of assignment such as [ℓ] := &ℓ′ and [ℓ] := [ℓ′] can also be defined straight-
forwardly.

We can also define booleans as special kinds of guard action within this framework.

Example 3.2.2 (Booleans). Boolean guards b are actions that wait until the boolean
expression holds and may then take place; they do not update the state. A selection of
literals may be defined. For example:

A Jℓ = vK , {({ℓ 7→ v}, {ℓ 7→ v})} if v 6∈ Loc

A
q
ℓ = &ℓ′

y
, {({ℓ 7→ ℓ′}, {ℓ 7→ ℓ′})}

A
q
ℓ = ℓ′

y
, {({ℓ 7→ v, ℓ′ 7→ v}, {ℓ 7→ v, ℓ′ 7→ v}) | v ∈ Val}

The first gives the semantics of an action that proceeds only if ℓ holds value v, the second
gives the semantics of an action that proceeds only if ℓ points to ℓ′, and the third gives the
semantics of an action that proceeds only if the locations ℓ and ℓ′ hold the same value.

Since boolean actions shall not modify the heap, they shall possess the property that:

if (D1,D2) ∈ A JbK then D1 = D2.

This is preserved by the operations defined below. For heaps D and D′, we use D ↑ D′

to mean that D and D′ are compatible as partial functions. This means that their union
D ∪ D′ must also be a partial function. Otherwise, i.e. if they disagree on the values
assigned to a common location, we write D 6 ↑D′.

A JtrueK , {(∅, ∅)}

A JfalseK , ∅

A Jb ∧ b′K , {(D ∪D′,D ∪D′) | D ↑ D′ and (D,D) ∈ A JbK
and (D′,D′) ∈ A Jb′K}

A Jb ∨ b′K , A JbK ∪ A Jb′K
A J¬bK , {(D,D) | D is a ⊆-minimal heap s.t.

∀D′ if (D′,D′) ∈ A JbK then D 6 ↑D′}

By insisting on minimality in the clause for ¬b, we form an action that is defined at as
few locations as possible to refute all grounds for b (i.e. show that b cannot hold in the
given heap).

Transition semantics

As an aid to understanding the net model, and in particular to give a model with respect to
which we can prove its correspondence, a transition semantics for closed terms (terms such
that fv(t) = ∅) is given in Figure 3.3. A formal relationship between the two semantics
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is presented in Theorem 3.4. The transition semantics is given by means of a labelled

transition relation of the form 〈t, σ〉
λ
−→ 〈t′, σ′〉 indicating that t performs an action

labelled λ in the state σ to yield a resumption t′ and a state σ′.
Labels in the transition semantics form a set Lab ranged over by λ following the

grammar

λ ::= act(D1,D2) heap action
| bool(D0) boolean
| alloc(ℓ, v, ℓ′, v′) heap allocation
| dealloc(ℓ, ℓ′, v) heap disposal
| decl(r) resource declaration
| end(r) end of resource scope
| acq(r) resource acquisition (critical region entry)
| rel(r) resource release (critical region exit).

The label act(D1,D2) indicates that an action, α say, with (D1,D2) ∈ A JαK occurs.
Recalling how actions are specified, this means that D1 and D2 have the same domain
and the resulting state is obtained by removing the subheap D1 from the initial heap and
replacing it withD2. The label bool(D0), representing a boolean action, is considered to be
synonymous with act(D0,D0) (it is only included in the grammar above for clarity in later
reference). The label alloc(ℓ, v, ℓ′, v′) represents the location ℓ′ being chosen to become
current, initially receiving value v′, with a pointer to the new location being placed in
ℓ which previously held value v. The label dealloc(ℓ, ℓ′, v′) indicates that the location ℓ′,
which initially holds value v′, pointed to by ℓ is deallocated. The other labels are hopefully
easily understood.

We write σ⊕σ′ for the union of the components of two states where they are disjoint and
impose the implicit side-condition in the transition semantics that this is defined wherever
it is used. For example, this implicit side-condition means, in the rule (Alloc), that for
a transition from 〈t, σ〉 labelled alloc(ℓ, v, ℓ′, v′) to take place we must have curr(ℓ′) 6∈ σ,
and hence ℓ′ was initially non-current. Similarly, the rule (Res) can only be applied to
derive a transition labelled decl(r) if the resource r was not initially current.

In the transition semantics, recalling that the nil process is written ε, we have 〈t, σ〉
λ
−→

〈ε, σ′〉 if the process t can perform an action labelled λ to terminate, leaving the state σ′.

For actions α1 and α2, using the rule (Seq) and (Act), we might derive 〈α1;α2, σ〉
λ1−→

〈ε;α2, σ1〉 for appropriate λ, σ and σ1. To remove the leading ε from the resumption in
order to derive a subsequent transition, we introduce equivalence on terms.

Definition 3.2.1 (Structural equivalence). Equivalence on closed terms ≡ is the least
equivalence relation satisfying the usual rules for the associativity of ;, + and ‖ and for
the commutativity of ‖ and +, along with the following axioms and congruence rules:

ε; t ≡ t ε ‖ t ≡ t

if t1 ≡ t2 then































t1; t ≡ t2; t
t; t1 ≡ t; t2
t1 ‖ t ≡ t2 ‖ t

α.t1 + α0.t0 ≡ α.t2 + α0.t0
while b do t1 od ≡ while b do t2 od
with r do t1 od ≡ with r do t2 od

If there exists r such that t1[r/w] ≡ t2[r/w] and r 6∈ res(t1) ∪ res(t2) then

resource w do t1 od ≡ resource w do t2 od

31



The syntax of terms is extended temporarily to include rel r and end r which are spe-
cial terms used in the rules (Rel) and (End) in Figure 3.3 to follow. These, respectively,
are attached to the ends of terms protected by critical regions and the ends of terms in
which a resource was declared.

For conciseness, we do not give an error semantics to situations in which non-current
locations or resources are used; instead, the process will become stuck. We show in Section
5.4 that such situations are excluded by concurrent separation logic.

It is worth repeating a couple of points on the operational semantics:

• In the rule (Act), if α is a boolean guard b then D = D′.

• The notation {ℓ 7→ v} is used to represent the state (D,L,R,N) where R = N = ∅
and D = {ℓ 7→ v} and L = {curr(ℓ)}. Similarly, {r} represents the state (D,L,R,N)
where D = L = N = ∅ and R = {r}, and so on.

3.3 Net semantics

Before giving the formal definition of the net semantics of closed terms, by means of an
example we shall illustrate how our semantics shall be defined. First, we shall draw the
semantics of an action toggle(ℓ, 0, 1) that toggles the value held at a location ℓ between
0 and 1.

ℓ 7→ 0 ℓ 7→ 1

i t

initial conditions terminal conditions

ℓ 7→ 0 ℓ 7→ 1

i t

state conditions

control conditions

terminal conditionsinitial conditions

evolves to

Notice that in the above net, as in general, there are conditions to represent the shared
state in which processes execute, including for example the values held at locations (here
ℓ; in diagrams, we shall tend only to draw conditions that are actually used by events in
the net). There are also conditions to represent the control point of the process. The net
pictured on the left is in its initial marking of control conditions and the net on the right
is in its terminal marking of control conditions, indicating successful completion of the
process following the toggle of the value; the marking of the net initially had the state
condition ℓ 7→ 0 marked and finished with the condition ℓ 7→ 1 marked. There is an event
present in the net for each way that the action could take place: one event for toggling
the value from 0 to 1 and another event for toggling the value from 1 to 0. Only the first
event could occur in the initial marking of the net on the left, and no event can occur in
the marking on the right since the control conditions are not appropriately marked.

The parallel composition toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1) can be formed by taking two
copies of the net toggle(ℓ, 0, 1) and forcing them to operate on disjoint sets of control
conditions.
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(Act) :

(D1, D2) ∈ A JαK
D1 ⊆ D D′ = (D \D1) ∪D2

〈α, (D,L,R,N)〉
act(D1,D2)
−→ 〈ε, (D′, L,R,N)〉

(Alloc) : 〈alloc(ℓ), σ ⊕ {ℓ 7→ v}〉
alloc(ℓ,v,ℓ′,v′)
−→

〈ε, σ ⊕ {ℓ 7→ ℓ′, ℓ′ 7→ v′, curr(ℓ′)}〉

(Dealloc) : 〈dealloc(ℓ), σ ⊕ {ℓ 7→ ℓ′, ℓ′ 7→ v′, curr(ℓ′)}〉
dealloc(ℓ,ℓ′,v′)
−→
〈ε, σ ⊕ {ℓ 7→ ℓ′}〉

(Seq) :
〈t1, σ〉

λ
−→ 〈t′1, σ

′〉

〈t1; t2, σ〉
λ
−→ 〈t′1; t2, σ

′〉

(Par-1) :
〈t1, σ〉

λ
−→ 〈t′1, σ

′〉

〈t1 ‖ t2, σ〉
λ
−→ 〈t′1 ‖ t2, σ

′〉

(Sum-1) :
〈α1, σ〉

λ
−→ 〈ε, σ′〉

〈α1.t1 + α2.t2, σ〉
λ
−→ 〈t1, σ

′〉

(While) :
〈b, σ〉

λ
−→ 〈ε, σ〉

〈while b do t od, σ〉
λ
−→ 〈t; while b do t od, σ〉

(While′) :
〈¬b, σ〉

λ
−→ 〈ε, σ〉

〈while b do t od, σ〉
λ
−→ 〈ε, σ〉

(With) : 〈with r do t od, σ ⊕ {r})〉
acq(r)
−→ 〈t; rel r, σ〉

(Rel) : 〈rel r, σ〉
rel(r)
−→ 〈ε, σ ⊕ {r}〉

(Res) : 〈resource w do t od, σ〉
decl(r)
−→ 〈[r/w]t; end r, σ ⊕ {r, curr(r)}〉 (r 6∈ res(t))

(End) : 〈end r, σ ⊕ {r, curr(r)}〉
end(r)
−→ 〈ε, σ〉

(Equiv) :
t ≡ t0 〈t0, σ〉

λ
−→ 〈t′0, σ

′〉 t′0 ≡ t
′

〈t, σ〉
λ
−→ 〈t′, σ′〉

Symmetric rules (Par-2) and (Sum-2) omitted.

Figure 3.3: Transition semantics
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ℓ 7→ 0 ℓ 7→ 1

1 : t

2 : t

1 : i

2 : i

initial conditions

state conditions

control conditions

terminal conditions

An example run of this net would involve first the top event changing the value of ℓ from
0 to 1 and then the bottom event changing ℓ back from 1 to 0. The resulting marking of
control conditions would be equal to the terminal conditions of the net, so no event would
have concession in this marking.

The net representing the sequential composition

(toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1)); (toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1))

is formed by a ‘gluing’ operation that joins the terminal conditions of one copy of the net
for toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1) to the initial conditions of another copy of the net for
toggle(ℓ, 0, 1) ‖ toggle(ℓ, 0, 1). (In this example net, for clarity we shall not show the
state conditions.)

“gluing”

terminal conditionsinitial conditions

The set of ‘glued’ conditions can only all be marked once the left hand side of the sequential
composition has terminated. It is only at this point that the net on the right hand side
can begin.

Net structure

As outlined above, within the nets that we give for processes we distinguish two forms of
condition, namely state conditions and control conditions. The markings of these sets of
conditions determine the state in which the process is executing and the its control point,
respectively.

The marking of state conditions shall correspond to a state introduced earlier as a
tuple (D,L,R,N) where D represents the heap, L represents the set of current locations,
R represents the set of available resources and N represents the set of current resources.
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When we give the net semantics of a term, we will make use of the closure of the set
of control conditions under various operations. The use of the following definition will
hopefully become clear as the semantics is given. Roughly, we use the ability to pair
control conditions to define the gluing operation above. We use the ability to tag control
conditions to force the sub-nets representing components of the term to be disjoint (for
example, to separate the control conditions used by t1 from those used by t2 in the net
for t1 ‖ t2).

Definition 3.3.1 (Conditions). Define the set of state conditions S to be D∪L∪R∪N.
Define the set of control conditions C, ranged over by c, to be the least set such that:

• C contains distinguished elements i and t, standing for ‘initial’ and ‘terminal’, re-
spectively.

• If c ∈ C and c′ ∈ C then (c, c′) ∈ C to allow the ‘gluing’ operation.

• If c ∈ C then a : c ∈ C for a ‘tag’

a ::= seq 1 | seq 2
| par 1 | par 2
| sum 1 | sum 2
| body

| res r for any r ∈ Res

A state σ = (D,L,R,N) corresponds to the markingD∪L∪R∪N of state conditions in
the obvious way. Similarly, if C is a marking of control conditions and σ is a state, the pair
(C, σ) corresponds to the marking C ∪ σ. We therefore use the notations interchangeably.

The nets that we form shall be extensional in the sense that two events are equal if
they have the same preconditions and the same postconditions. An event can therefore
be regarded as a tuple

e = (C, σ,C ′, σ′)

with preconditions •e , C ∪ σ and postconditions e• , C ′ ∪ σ′. To obtain a concise
notation for working with events, we write Ce for the pre-control conditions of e:

Ce , •e ∩C.

We likewise define notations eC, De, Le etc., and call these the components of e by virtue
of the fact that it is sufficient to define an event through the definition of its components.
The pre-state conditions of e are Se = De ∪ Le ∪ Re ∪ Ne, and we define the post-state
conditions eS similarly.

Two markings of control conditions are of particular importance: those marked when
the process starts executing and those marked when the process has terminated. We call
these the initial control conditions I and terminal control conditions T , respectively. We
shall call a net with a partition of its conditions into control and state with the subsets
of control conditions I and T an embedded net. For an embedded net N , we write Ic(N)
for I and Tc(N) for T , and we write Ev(N) for its set of events. Observe that no initial
marking of state conditions is yet specified.

The semantics of a closed term t shall be an embedded net, written N JtK. No con-
fusion arises, so we shall write Ic(t) for Ic(N JtK), and Tc(t) and Ev(t) for Tc(N JtK) and
Ev(N JtK), respectively. The nets formed shall always have the same sets of control and
state conditions; the difference shall arise in the events present in the nets. It is a trivial
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matter to restrict to the conditions that are actually used, and we specify these after we
give the semantics.

As we give the semantics of closed terms, we will make use of several constructions on
nets. For example, we wish the events of parallel processes to operate on disjoint sets of
control conditions. This is conducted using a tagging operation on events. For a tag a as
defined in Definition 3.3.1, we define a : e to be the event e changed so that

C(a : e) , {a : c | c ∈ Ce} (a : e)C , {a : c | c ∈ eC}

but otherwise unchanged in its action on state conditions. The notations are extended
pointwise to sets of events:

a : E , {a : e | e ∈ E}

Another useful operation is what we call gluing two embedded nets together. For
example, when forming the sequential composition of processes t1; t2, we want to enable
the events of t2 when t1 has terminated. This is done by ‘gluing’ the two nets together at
the terminal conditions of t1 and the initial conditions of t2, having made them disjoint on
control conditions using tagging. Wherever a terminal condition c of Tc(t1) occurs as a
pre- or a postcondition of an event of t1, every element of the set {seq 1:c} × (seq 2:Ic(t2))
would occur in its place. Similarly, the events of t2 use the set of conditions (seq 1:Tc(t1))×
{seq 2:c′} instead of an initial condition c′ of Ic(t2). A variety of control properties that the
nets we form possess (Lemma 3.5.1), such as that all events have at least one pre-control
condition, allows us to infer that it is impossible for an event of t2 to occur before t1 has
terminated, and thereon it is impossible for t1 to resume. An example follows shortly.

Assume a set P ⊆ C×C. Useful definitions to represent gluing are:

P ⊳ C , {(c1, c2) | c1 ∈ C and (c1, c2) ∈ P}
∪ {c1 | c1 ∈ C and ∄c2.(c1, c2) ∈ P}

P ⊲ C , {(c1, c2) | c2 ∈ C and (c1, c2) ∈ P}
∪ {c2 | c2 ∈ C and ∄c1.(c1, c2) ∈ P}

The first definition, P ⊳ C, indicates that an occurrence of c1 in C is to be replaced by
occurrences of (c1, c2) for every c2 such that (c1, c2) occurs in P . The second definition,
P ⊲ C, indicates that an occurrence of c2 in C is to be replaced by occurrences of (c1, c2)
for every c1 such that (c1, c2) occurs in P .

Lemma 3.3.1. For any C,C ′ ⊆ C, any P ⊆ C×C and any tag a, the following hold:

a : C ⊆ a : C ′ ⇐⇒ C ⊆ C ′

P ⊳ C ⊆ P ⊳ C ′ ⇐⇒ C ⊆ C ′

P ⊲ C ⊆ P ⊲ C ′ ⇐⇒ C ⊆ C ′

Proof. Straightforward calculation.

The notation is extended to events to give an event P ⊳e in the following way, recalling
that gluing will only affect the control conditions used by an event and in particular not
its state conditions:

C(P ⊳ e) , P ⊳ (Ce) (P ⊳ e)C , P ⊳ (eC)
S(P ⊳ e) , Se (P ⊳ e)S , eS

The notation P⊲e is defined similarly, and it is also extended to sets of events in the obvious
pointwise manner. For any marking M = (C, σ), we will write P ⊳ M for (P ⊳ C, σ) and
similarly write P ⊲M for (P ⊲ C, σ).
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To give an example, consider the gluings P ⊳ C1 and P ⊲ C2 where C1 = {a, b} and
C2 = {c, d} are joined at P = C1 ×C2. Applying P ⊳ C1 to the left net and P ⊲ C2 to the
right net below, this indicates how gluing is used to sequentially compose embedded nets:

a c

b d

(b, c)

(a, d)

e2

e3

e4

P ⊳ e1

P ⊳ e2

P ⊲ e3

P ⊳ e4(b, d)

(a, c)

glue to form

e1

The operations of gluing and tagging affect only the control flow of events, not their
effect on the marking of state conditions.

Lemma 3.3.2. Let N be an embedded net with control conditions C. Suppose that P ⊆
C×C. For any marking M of N and tag a:

• M
e
−։ M ′ iff a : M

a:e
−։ a : M ′.

• M
e
−։ M ′ iff P ⊳M

P⊳e
−։ P ⊳M ′, and

• M
e
−։ M ′ iff P ⊲M

P⊲e
−։ P ⊲M ′.

Furthermore:

• if a : M
a:e
−։ M ′

1 then M ′
1 = a : M ′ for some M ′,

• if P ⊳M
P⊳e
−։ M ′

1 then M ′
1 = P ⊳M ′ for some M ′, and

• if P ⊲M
P⊲e
−։ M ′

2 then M ′
2 = P ⊲M ′ for some M ′.

Proof. The first and fourth items are straightforward to prove. The remaining proper-
ties may be shown using the following easily-demonstrated equations, along with their
counterparts for ⊲, for any subset of control conditions C:

1. C = ∅ iff P ⊳ C = ∅,

2. P ⊳ (C \ C ′) = (P ⊳ C) \ (P ⊳ C ′),

3. P ⊳ (C ∪ C ′) = (P ⊳ C) ∪ (P ⊳ C ′), and

4. P ⊳ (C ∩ C ′) = (P ⊳ C) ∩ (P ⊳ C ′).

Semantics of processes

The net semantics that we now give for closed terms is defined by induction on the size
of terms, given in the obvious way. The reason why it is not given by induction on terms
themselves is that the semantics of resource w do t od is given according to the semantics
of [r/w]t for all resources r.

Nil process The nil process has no events, Ev(ε) = ∅, and just one condition which is
both initial and terminal:

Ic(ε) = Tc(ε) = {(i, t)}.
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Heap action Let α be an action and recall that A JαK is a set of pairs such that if
(D1,D2) ∈ A JαK and D1 is a subheap of the initial state then the occurrence of α
may change the values held in locations within this subheap from those recorded in
D1 to those recorded in D2.

Let act(C,C′)(D1,D2) denote an event e with

Ce = C eC = C ′ De = D1 eD = D2

and all other components empty, i.e. Le = eL = Re = eR = Ne = eN = ∅. For an
action α, we define:

Ic(α) , {i}

Tc(α) , {t}

Ev(α) , {act({i},{t})(D1,D2) | (D1,D2) ∈ A JαK}.

There is an event representing each way that α can occur. The occurrence of any of
these changes the marking of control conditions from the initial marking {i} to the
terminal marking {t}.

Example 3.3.1 (N Jℓ := 5K). Recall that

A Jℓ := 5K = {({ℓ 7→ v}, {ℓ 7→ 5}) | v ∈ Val},

so

Ev(ℓ := 5) = {act({i},{t})({ℓ 7→ v}, {ℓ 7→ 5}) | v ∈ Val}.

The definitions give the net N Jℓ := 5K:

i

ℓ 7→ 0

t

act({i},{t})({ℓ 7→ 1}, {ℓ 7→ 5})

ℓ 7→ 1 ℓ 7→ 5
state conditions

control conditions

Ic(ℓ := 5) Tc(ℓ := 5)

act({i},{t})({ℓ 7→ 0}, {ℓ 7→ 5})

So, no matter what value ℓ initially holds, providing that there is some such value
(i.e. ℓ is current), the condition ℓ 7→ 5 will become marked.

Allocation and deallocation The command alloc(ℓ) activates, by making current and
assigning an arbitrary value to, a non-current location and sets ℓ to point at it. For
symmetry, dealloc(ℓ) deactivates the current location pointed to by ℓ.

We begin by defining two further event notations. First, the notation alloc(C,C′)(ℓ, v, ℓ
′, v′)

represents the event e such that Ce = C and eC = C ′ and

De = {ℓ 7→ v} eD = {ℓ 7→ ℓ′, ℓ′ 7→ v′} Le = ∅ eL = {curr(ℓ′)},
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and otherwise empty components, which changes ℓ′ from being non-current to cur-
rent, gives it value v′ and changes the value held at ℓ from v to ℓ′. If the condition
curr(ℓ′) is marked before the event takes place, contact occurs, so the event has con-
cession only if the location ℓ′ is not initially current. Second, dealloc(C,C′)(ℓ, ℓ

′, v′) is
the event e such that Ce = C and eC = C ′ and

De = {ℓ 7→ ℓ′, ℓ′ 7→ v′} eD = {ℓ 7→ ℓ′} Le = {curr(ℓ′)},

which does the converse of allocation. The location ℓ is left with a dangling pointer
to ℓ′. The two events may be drawn as:

alloc(C,C′)(ℓ, v, ℓ
′, v′): dealloc(C,C′)(ℓ, ℓ

′, v′):

curr(ℓ′)

ℓ 7→ v ℓ 7→ ℓ′

C C′

ℓ′ 7→ v′

ℓ 7→ ℓ′

C C′

curr(ℓ′)

ℓ 7→ ℓ′

ℓ′ 7→ v′

The semantics of allocation is given by:

Ic(alloc(ℓ)) , {i}

Tc(alloc(ℓ)) , {t}

Ev(alloc(ℓ)) , {alloc({i},{t})(ℓ, v, ℓ
′, v′) | ℓ′ ∈ Loc and v, v′ ∈ Val}.

Note that there is an event present for every value that ℓ might initially hold and
every value that ℓ′ might be assumed to take initially.

The semantics of disposal is given by:

Ic(dealloc(ℓ)) , {i}

Tc(dealloc(ℓ)) , {t}

Ev(dealloc(ℓ)) , {dealloc({i},{t})(ℓ, ℓ
′, v′) | ℓ′ ∈ Loc and v′ ∈ Val}.

Sequential composition The sequential composition of terms involves gluing the termi-
nal marking of the net for t1 to the initial marking of the net for t2. The operation
is therefore performed on the set

P = seq 1:Tc(t1)× seq 2:Ic(t2).

Following the intuitive account earlier, we take

Ic(t1; t2) , P ⊳ seq 1:Ic(t1)

Tc(t1; t2) , P ⊲ seq 2:Tc(t2)

Ev(t1; t2) , (P ⊳ seq 1:Ev(t1)) ∪ (P ⊲ seq 2:Ev(t2)).

The formation of the sequential composition on control conditions may be drawn
schematically as:
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=;Ev(t1)

Ic(t1) Tc(t1)

Ev(t2)

Ic(t2) Tc(t2) Ic(t1; t2)

P ⊳ seq 1:Ev(t1) P ⊲ seq 2:Ev(t2)

P = seq 1:Tc(t1) × seq 2:Ic(t2)

Tc(t1; t2)

Note that this diagram is slightly simplified since the sets Ic(t1) and Tc(t1) might
not be disjoint, and similarly for t2.

Parallel composition The control flow of the parallel composition of processes is au-
tonomous; interaction occurs only through the state, so we have a form of ‘disjoint
union’ of nets albeit with interaction allowed on shared state conditions. We there-
fore force the events of the two processes to work on disjoint sets of control conditions
by giving them different tags:

Ic(t1 ‖ t2) , par 1:Ic(t1) ∪ par 2:Ic(t2)

Tc(t1 ‖ t2) , par 1:Tc(t1) ∪ par 2:Tc(t2)

Ev(t1 ‖ t2) , par 1:Ev(t1) ∪ par 2:Ev(t2).

Iteration To form the net for while b do t od, we tag the net for t as the ‘body’ of the
loop and add events exhibiting the satisfaction of b from the terminal conditions of
the body to its initial conditions along with events exhibiting the failure of b from
the terminal conditions of the body to a newly introduced terminal condition, t. The
net is in its initial control state when the body has terminated.

Ic(while b do t od) , body:Tc(t)

Tc(while b do t od) , {t}

Ev(while b do t od) , body:Ev(t)

∪{act(body:Tc(t),body:Ic(t))(D1,D1) | (D1,D1) ∈ A JbK}
∪{act(body:Tc(t),{t})(D0,D0) | (D0,D0) ∈ A J¬bK}

The loop formed can be visualized in the following way (in which we only present
one event, eb, for the boolean b and one event, e¬b, for the boolean ¬b):

eb

te¬b

body:Ev(t)

body:Ic(t)body:Tc(t)

Guarded sum Let t be the term α1.t1 + α2.t2. The sum is formed by prefixing the
actions onto the tagged nets representing the terms and then gluing the sets of
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terminal conditions. Let P = (sum 1:Tc(t1))× (sum 2:Tc(t2)). Define:

Ic(t) , {i}

Tc(t) , P

Ev(t) , {act({i},P ⊳sum 1:Ic(t1))(D1,D2) | (D1,D2) ∈ A Jα1K}
∪ {act({i},P ⊲sum 2:Ic(t2))(D1,D2) | (D1,D2) ∈ A Jα2K}
∪ P ⊳ (sum 1:Ev(t1)) ∪ P ⊲ (sum 2:Ev(t2)).

The net may be pictured schematically as follows, in which we have drawn only one
representative event for each of α1 and α2, and have elided the effect of these events
on state conditions.

Pi

α2

α1

P ⊳ sum 1:Ev(t1)

P ⊲ sum 2:Ev(t2)

P ⊳ sum 1:Ic(t1)

P ⊲ sum 2:Ic(t2)

On a technical point, one may wonder why the syntax of the language requires
that sums possess guards. This is seemingly curious since the category of safe
Petri nets, which intuitively underlies a category of embedded nets, has a coprod-
uct construction. The definition of the unguarded sum N Jt1 + t2K arising from
this construction would be similar to that above, apart from also gluing at the set
sum 1:Ic(t1)× sum 2:Ic(t2).

However, as remarked in Section 5 of [Win87], there are cases where the coproduct
of nets does not coincide with the usual interpretation of nondeterministic sum. In
Section 3.3 of [Win86], this is explained as the occurrence net unfolding (the ‘be-
haviour’) of the coproduct of two nets not being equal to the coproduct of their
respective unfoldings. To repeat an example given there, letting + represent co-
product in the category of safe nets, we have:

e′

e

e

e′

+
=

Consequently, using this coproduct as a definition of general sum, the (finite) runs
of the net representing α+ (while true do α′) would consist of some finite number
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of executions of α′ followed, possibly, by one of α. Quite clearly, this does not cor-
respond to the normal understanding of nondeterminism presented in the transition
semantics.

The restriction of processes to only use guarded sums allows us to recover the stan-
dard interpretation of sums (hence allowing the standard structural operational rule
for sums). As stated in [Win87, Win86], another alternative would be to ensure that
no event has a postcondition inside the initial conditions of the net. This would
necessitate a different semantics for while loops, possibly along the lines of [vGV87]
which would unfold one iteration of the loop.

Critical regions The net for with r do t od begins with an event that activates the
body t by marking its initial control conditions. The event can proceed only if the
resource r is initially available, and its occurrence makes the resource unavailable.
The events of with r do t od also include the events of t and an event that releases
the resource when the body has terminated. We force the events of the body t to be
distinct from the other events by tagging them with body.

Formally, we introduce the following notations for critical region events:

acq(C,C′)(r):
Re = {r}

rel(C,C′)(r): eR = {r}

These all have Ce = C and eC = C ′, and the components other than those listed are
empty. We define

Ic(with r do t od) , {i}

Tc(with r do t od) , {t}

Ev(with r do t od) , {acq({i},body:Ic(t))(r)} ∪ body:Ev(t)

∪ {rel(body:Tc(t),{t})(r)}.

The net semantics of the special term rel r, charged with releasing the resource r,
introduced when giving the transition semantics, is:

Ic(rel r) , {i}

Tc(rel r) , {t}

Ev(rel r) , rel({i},{t})(r).

Local resource The semantics of resource w do t od involves nondeterministically
choosing some non-current resource, say r, to be used locally for w within t. All the
resources free in t are assumed to be initially current in addition to the resources
made current by other processes. When the process [r/w]t terminates, the resource
r is made available for other processes to use again.

We introduce the following notations for choosing the local resource and for making
it non-current.

decl(C,C′)(r): eR = {r} and eN = {curr(r)}
end(C,C′)(r):

Re = {r} and Ne = {curr(r)}
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These all have Ce = C and eC = C ′, and the components other than those listed are
empty. Observe that the event decl(C,C′)(r) will avoid contact, and thus be able to
occur, only if the resource r is initially non-current.

The net N Jresource w do t odK is defined as:

Ic(resource w do t od) , {i}

Tc(resource w do t od) , {t}.

Ev(resource w do t od) , {decl({i},res r:Ic([r/w]t))(r) | r ∈ Res \ res(t)}

∪
⋃

{res r:Ev([r/w]t) | r ∈ Res \ res(t)}

∪{end(res r:Tc([r/w]t),{t})(r) | r ∈ Res \ res(t)}

The net formed can be drawn as:

i t

decl(r)

decl(r′)

r

curr(r)

r′

curr(r′)

end(r)

end(r′)

res r:Ev([r/w]t)

res r′:Ev([r′/w]t)

As such, the semantics of resource variable binding is a representation of the non-
deterministic choice of resource to be selected to be used for the variable. Only one
resource shall be chosen for the variable, and it will initially have been non-current
due to the constraint in the token game for nets (contact) that for an event e to have
concession in a marking M it must be the case that M \ •e ∩ e• = ∅. Note that the
semantics is invariant under alpha-equivalence.

The semantics of the special term end r, introduced in the transition semantics, is
simply an event that releases makes the resource r non-current. Its initial control
condition is i and its terminal control condition is t.

Ic(end r) , {i}

Tc(end r) , {t}

Ev(end r) , {end({i},{t})(r)}

Note that we do not give a semantics to with w do t od, only to the term with r do t od,
since substitutions are used in the semantics for the term resource w do t od above.

Used conditions

It was mentioned earlier that the semantics of any closed term could be restricted to the
set of control conditions that actually occurred as a pre- or postcondition to some event
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Cond(ε) , {(i, t)}

Cond(α) , {(i, t)}

Cond(alloc(ℓ)) , {(i, t)}

Cond(dealloc(ℓ)) , {(i, t)}

Cond(t1; t2) , (seq 1:Cond(t1) ∪ seq 2:Cond(t2))

\(seq 1:Tc(t1) ∪ seq 2:Ic(t2))

∪(seq 1:Tc(t1)× seq 2:Ic(t2))

Cond(t1 ‖ t2) , par 1:Cond(t1) ∪ par 2:Cond(t2)

Cond(α1.t1 + α2.t2) , {i} ∪ (sum 1:Cond(t1) ∪ sum 2:Cond(t2))

\(sum 1:Tc(t1) ∪ sum 2:Tc(t2))

∪(sum 1:Tc(t1)× sum 2:Tc(t2))

Cond(while b do t od) , {t} ∪ body:Cond(t)

Cond(resource w do t od) , {i, t} ∪
⋃

{res r:Cond([r/w]t) | r ∈ Res \ res(t)}

Cond(with r do t od) , {i, t} ∪ body:Cond(t)

Figure 3.4: Used conditions, Cond(t)

or were initial or terminal. For reference, this set, written Cond(t), is defined inductively
on the size of closed terms in Figure 3.4. To show that this definition has the required
property, that Cond(t) is precisely the set of conditions used by events in Ev(t) with the
initial and terminal conditions of t, we need a lemma about the structure of embedded
nets representing terms:

Lemma 3.3.3. For any closed term t:

∀c ∈ Ic(t) : c ∈ Tc(t) or ∃e ∈ Ev(t) : c ∈ Ce
∀c ∈ Tc(t) : c ∈ Ic(t) or ∃e ∈ Ev(t) : c ∈ eC

Proof. The proof is by induction on the size of terms. The first property is similar to the
second, so we shall only show the first. The only two interesting cases are where t = t1; t2
or t = α1.t1 + α2.t2, and the first of these two cases is representative of the other.

Suppose that c ∈ Ic(t1; t2). Let P = seq 1:Tc(t1) × seq 2:Ic(t2). From the definition
of Ic(t1; t2) as P ⊳ seq 1:Ic(t1), we have either c = seq 1:c1 for c1 ∈ Ic(t1) \ Tc(t1) or
c = (seq 1:c1, seq 2:c2) for c1 ∈ Ic(t1) ∩ Tc(t1) and c2 ∈ Ic(t2).

If c = seq 1:b1, since c1 6∈ Tc(t1), from the induction hypothesis there must exist
e1 ∈ Ev(t1) such that c ∈ Ce1. Hence seq 1:c1 ∈

C(P ⊳ seq 1:e1), and this is an event in
Ev(t1; t2).

If c = (seq 1:c1, seq 2:c2) then either c ∈ Tc(t1; t2) and the case is complete or c2 6∈
Tc(t2) from the definition of Tc(t1; t2). Therefore, from the induction hypothesis applied
to t2, there exists e2 ∈ Ev(t2) such that c2 ∈

Ce2. Hence c ∈ C(P ⊲ seq 2:e2), and this is
an event in Ev(t1; t2).

We are now able to prove the main result about Cond(t):

Proposition 3.1. For any closed term t and control condition c:
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c ∈ Cond(t) iff either c ∈ Ic(t) ∪ Tc(t) or there exists e ∈ Ev(t) such that
c ∈ CeC.

Proof. The proof is by induction on the size of terms. Again, the interesting cases are for
t = t1; t2 and t = α1.t1 + α2.t2, and the sequential composition is representative.

It is easy to see that Cond(t1; t2) contains all the conditions in Ic(t1; t2) and Tc(t1; t2)
and pre- and postconditions of events in Ev(t1; t2).

Suppose that c ∈ Cond(t1; t2). Either c ∈ (seq 1:Cond(t1)∪seq 2:Cond(t2))\(seq 1:Tc(t1)∪
seq 2:Ic(t2)) or c ∈ P where P = seq 1:Tc(t1)× seq 2:Ic(t2).

In the first case, without loss of generality, suppose that c = seq 1:c1 for c1 ∈ Cond(t1).
By assumption, c1 6∈ Tc(t1). By induction, either c1 ∈ Ic(t1) or there exists e1 ∈ Ev(t1)
such that c1 ∈

CeC. If c1 ∈ Ic(t1) then seq 1:c1 ∈ Ic(t1; t2) since Ic(t1; t2) = P ⊳ seq 1:Ic(t1)
and c 6∈ Tc(t1). If c1 ∈

Ce1
C then seq 1:c1 ∈

C(P ⊳ seq 1:e1)
C, and P ⊳ seq 1:e1 is an event

in Ev(t1; t2) by definition.
In the second case, suppose that c = (seq 1:c1, seq 2:c2) for c1 ∈ Tc(t1) and c2 ∈ Ic(t2).

By Lemma 3.3.3, either c1 ∈ Ic(t1) or there exists e1 ∈ Ev(t1) such that c1 ∈ e1
C. In the

first case, c ∈ (P ⊳ seq 1:Ic(t1)) = Ic(t1; t2). In the second case, c ∈ (P ⊳ seq 1:e1)
C, and

(P ⊳ seq 1:e1) is an event in Ev(t1; t2) by definition.

3.4 Control net

Now that we have defined the semantics of terms as nets, we need to prove that the
nets formed have the expected behaviour. For example, when we later come to consider
separation logic, we will need to know how runs of the net N Jt1; t2K can be formed from
runs of N Jt1K followed by runs of N Jt2K.

Often when we consider the behaviour of embedded nets, we need to ignore the par-
ticular markings of state conditions encountered. For example, an important property
that the net semantics of a term t possesses is that in any reachable marking, if all of the
terminal conditions of t are marked then no other condition is marked. Formally:

Terminal marking property : For any marking of state conditions σ, any mark-
ing (C, σ′) reachable from (Ic(t), σ) in N JtK such that Tc(t) ⊆ C satisfies
C = Tc(t).

This is essential in being able to prove that an event of t1 in the net N Jt1; t2K cannot occur
after some event of t2 has occurred. The terminal marking property is naturally proved by
induction on the size of terms. When attempting the proof, a sticking-point is encountered
when the parallel composition is considered since the induction hypotheses are too weak:
all the runs of the net N Jt1 ‖ t2K from state σ need not be captured by N Jt1K and N Jt2K
running from suitable initial states. To see this, consider the two nets in Figure 3.5. These
two nets satisfy what would be the induction hypotheses for t1 and t2 (though note that
the net N does not in fact represent any real term — the problem is that the induction
hypothesis is too weak, not that the property fails to hold). As usual, the events of the
nets are drawn with their labels and we neglect to draw the state conditions. Both of these
nets satisfy the terminal marking property given above. The first net, N , only satisfies it
because any initial state that allows the event labelled bool({ℓ 7→ 0}) to occur precludes
the subsequent occurrence of the event labelled bool({ℓ 7→ 1}). The second net N ′ has the
effect of changing the value held at ℓ from 0 to 1. When the nets N and N ′ are placed
in parallel, the terminal marking property is not satisfied: this can be seen by considering
the run in which the first event of N occurs, then the event of N ′, and finally the second
event of N .
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Tc(N)Ic(N)

bool({ℓ 7→ 1})

bool({ℓ 7→ 0})

(a) Net N

Ic(N ′) Tc(N ′)

act({ℓ 7→ 0}, {ℓ 7→ 1})

(b) Net N ′

Figure 3.5: Nets satisfying the terminal marking property

To get around this problem, we can observe that the terminal marking property for
N JtK above remains valid if we consider only the control part of the net — in considering
runs of N JtK, we can completely ignore the markings of state conditions, assuming them
to be completely arbitrary at all times. As such, examples like the net N in Figure
3.5a, which represents no actual term, will be seen not to satisfy the new, strengthened
property: the old property, that every reachable marking of control conditions containing
the terminal conditions of N was equal to the terminal marking, critically relied on the
encountered markings of state conditions.

More explicitly, when considering control properties such as that above, we will wish
to consider the control net associated with a closed term. The control net is formed in
just the same way as the net N JtK apart from the following points:

• C JtK has no state conditions, only control conditions. We also restrict to Cond(t),
the control conditions that are actually used by the net, though this is of little
importance.

• In the net N JtK, events are regarded as tuples of their pre-control, pre-state, post-
control and post-state conditions. The events of C JtK are also tuples of pre-control,
pre-state, post-control and post-state conditions. The preconditions of events in
C JtK are the pre-control conditions of the corresponding event in N JtK, and their
postconditions are the post-control conditions of the corresponding event in N JtK.

• The events of C JtK, denoted Ev∗(t), are defined in the same inductive way as the set
of events Ev(t) is in the net N JtK. The only difference is that we ensure that every
action has at least one event by adding into the definition of Ev∗(α), for any action
α, an event which we write act({i},{t})(∗, ∗). This event has one condition, i, and one
condition, t. Formally:

Ev∗(α) = Ev(α) ∪ {act({i},{t})(∗, ∗)}.

• The other constructions of the events Ev∗(t) are exactly the same as they were for
N JtK. The additional event in Ev∗(α) passes through the inductive constructions
described for N JtK, so for example the net C Jα1;α2K has two events which are not
present in N JtK, namely:

act({seq 1:i},{(seq 1:t,seq 2:i)})(∗, ∗) act({(seq 1:t,seq 2:i)},{seq 2:t})(∗, ∗)

• The net C JtK is a labelled net. Every event e in Ev∗(t) has a label |e|, which is
just the corresponding label from the operational semantics. The label of any event
act(C,C′)(∗, ∗) is act(∅, ∅). This gives rise to a labelling function | − |.
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For a closed term t, the control net is defined to be the labelled net

C JtK , (Cond(t),Ev∗(t),
C(−), (−)C, Ic(t), | − |).

Note that the control net C JtK need not be extensional: there might be two events, with
different labels, in the net with the same pre- and post-control conditions.

Since the net N JtK is extensional and the set of pre- and post-state conditions of any
event can be inferred from its label, it is clearest to regard the events of a control net
as a three-tuple e = (Ce, eC, |e|). We extend the earlier notations to this setting, so that
for example P ⊳ (Ce, eC, |e|) = (P ⊳ Ce, P ⊳ eC, |e|). Note that, just as when performed on
events of N JtK the operations did not affect the pre- or post-state conditions of the event,
the operations do not affect the labels of events in C JtK.

The net C JtK simulates the operation of the net N JtK on control conditions. That is:

Lemma 3.4.1. For any C,C ′, σ and σ′, if (C, σ)
e
−։ (C ′, σ′) in N JtK then C

e
−։ C ′ in

C JtK. Hence, for any σ0, if (C, σ) is reachable from (Ic(t), σ0) in N JtK then C is reachable
from Ic(t) in C JtK.

Proof. The first part is immediate from the definition of the token games in the two nets.
The second part follows a straightforward induction on the length of path to C.

The terminal marking property for the net N JtK therefore follows from the following
property for C JtK:

Any marking C reachable from Ic(t) in C JtK such that Tc(t) ⊆ C satisfies
C = Tc(t).

However, before we can prove properties such as this, we still need to establish some facts
about the structure of C JtK and understand how runs of C JtK are related to runs of the
nets of subterms of t. The details, though necessary, are quite technical, and the reader
may wish to ignore many of the detailed proofs or, indeed, skip straight to the key result:
Theorem 3.4. It is important, however, that we show that the techniques for introducing
the net semantics are amenable to such an analysis.

3.5 Structural properties

We begin with some fairly straightforward properties about the initial and terminal mark-
ings of the nets formed and show that the sets of pre- and postconditions of each event
are nonempty. The first and second items of the lemma below could even be seen as part
of the definition of embedded nets since non-emptiness is necessary for the constructions
above to result in nets with the expected behaviours. With the final property, they can
be used to show that no event has concession in the terminal marking of the net.

Lemma 3.5.1. For any closed term t and event e ∈ Ev∗(t):

1. Ic(t) 6= ∅ and Tc(t) 6= ∅,

2. Ce 6= ∅ and eC 6= ∅, and

3. Ce ∩ Tc(t) = ∅.

Proof. A simple induction on the size of terms.
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The following very simple property, that any event occurring from the initial marking
of a net has a precondition in the set of initial conditions (and the corresponding property
that any event into the terminal marking of the net has a postcondition inside the terminal
conditions), follows immediately from the previous lemma. It will be used frequently; for
instance, to show that in the net N Jt1; t2K if e1 is an event from N Jt1K and e2 is an event
from N Jt2K and e2 immediately follows e1 in some run, then there is a control condition
that occurs in both the postconditions of e1 and the preconditions of e2 and therefore the
events are not independent. This property is used in Theorem 5.5.

Lemma 3.5.2. For any closed term t, event e ∈ Ev∗(t) and marking C of C JtK:

• If Ic(t)
e
−։ C in C JtK then •e ∩ Ic(t) 6= ∅.

• If C
e
−։ Tc(t) in C JtK then e• ∩ Tc(t) 6= ∅.

Proof. From Lemma 3.5.1, every event e in the net N JtK has non-empty pre-control con-
ditions and non-empty post-control conditions. The result follows immediately.

It will be useful to know that the initial conditions of a term are equal to the terminal
conditions of a term if, and only if, the term is equivalent to ε.

Lemma 3.5.3. For any closed term t,

Ic(t) = Tc(t) ⇐⇒ t ≡ ε.

Proof. The key observation is that t ≡ ε iff either t = ε or if there exist t1 and t2 such
that t1 ≡ ε and t2 ≡ ε and either t = t1; t2 or t = t1 ‖ t2. The result follows by a
straightforward induction on terms.

We return briefly to the terminal marking property described above. This property,
which will turn out to be very important in understanding the behaviour of the nets,
expresses part of the special nature of the terminal marking of conditions: that no other
part of the process remains active when the terminal marking is reached.

Definition 3.5.1 (Well-termination). Say that a control net C JtK is well-terminating if,
for any marking C that is reachable from Ic(t), if Tc(t) ⊆ C then Tc(t) = C.

Here we arrive at a slightly awkward technical issue: When characterizing the runs
of the net C JtK in terms of runs of the nets representing the subterms of t (or, more
accurately, in terms of nets representing terms of smaller size), we shall assume that the
nets of the subterms are well-terminating. Some care is necessary since the proof that,
for any closed term t, the net C JtK is well-terminating itself requires understanding of the
markings reachable in the net C JtK. To resolve this apparent ‘circularity’, whereby the
characterizations require that nets representing terms are well-terminating and the proof of
well-termination depends on the characterizations of the runs, when proving the properties
required of the net C JtK required to show that the net is well-terminating we shall assume
that the nets representing the subterms of t are well-terminating. We shall then prove
that any net C JtK is well-terminating, allowing us to use elsewhere the properties relating
runs of the net C JtK to the runs of the nets of subterms of t. In effect, we will be proving
well-termination and the structural properties simultaneously, by induction on the (size
of) terms.
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3.6 Runs of nets

Now that we have a handle on properties like termination, we can to prove that the nets
formed properly represent the normal meaning of terms. In this section, we will show that
the runs of the nets are as we would expect; these results shall go on to form the basis of
a correspondence result with the earlier operational semantics.

The technique that we use to relate the runs of the net for a term t to the runs of
the nets of its subterms is to establish a suitably strong invariant relating the markings
arising before and after the occurrence of any event present in C JtK and then perform an
induction on the length of the run.

Sequential composition

For sequential composition, we begin by proving the following lemma characterizing the
runs of the net C Jt1K.

Lemma 3.6.1. Let P = seq 1:Tc(t1) × seq 2:Ic(t2). Assume that C Jt1K and C Jt2K are
well-terminating (Definition 3.5.1), and consider the net C Jt1; t2K. For any event e ∈
Ev∗(t1; t2):

• Suppose that C1 is reachable from Ic(t1) in C Jt1K. If P ⊳ seq 1:C1
e
−։ C ′ in C Jt1; t2K

then either C1 = Tc(t1) or there exist C ′
1 and e1 such that C1

e1
−։ C ′

1 in C Jt1K and
C ′ = P ⊳ seq 1:C ′

1 and e = P ⊳ seq 1:e1.

• Suppose that C2 is reachable from Ic(t2) in C Jt2K. If P ⊲ seq 2:C2
e
−։ C ′ in C Jt1; t2K

then there exist C ′
2 and e2 such that C2

e2
−։ C ′

2 in C Jt2K and C ′ = P ⊲ seq 2:C ′
2 and

e = P ⊲ seq 2:e2.

Proof. We show only the first item; the second is easier (requiring Lemma 3.5.1 to show
that no event of t1 has concession in the marking P ).

Suppose that C1 is reachable from Ic(t1) in C Jt1K and that P ⊳ seq 1:C1
e
−։ C ′ in

C Jt1; t2K. From the definition of Ev∗(t1; t2), there are two cases: either e = P ⊳ seq 1:e1 for
some e1 ∈ Ev∗(t1) or e = P ⊲ seq 2:e2 for some e2 ∈ Ev∗(t2).

First, suppose that e = P ⊳ seq 1:e1 for e1 ∈ Ev∗(t1). From Lemma 3.3.2, we obtain

C ′ = P ⊳ seq 1:C ′
1 for some C ′

1 and furthermore that C1
e1
−։ C ′

1, as required.
Now suppose that e = P ⊲ seq 2:e2 for some e2 ∈ Ev∗(t2). By Lemma 3.5.1, there exists

c2 ∈
Ce2. If c2 6∈ Ic(t2) then seq 2:c2 ∈ P ⊳ seq 1:C1, but this is not possible according

to the definition. Hence we must have c2 ∈ Ic(t2) and therefore (seq 1:c1, seq 2:c2) ∈
Ce

for all c1 ∈ Tc(t1). It follows from e having concession in P ⊳ seq 1:C1 that c1 ∈ C1 for
all c1 ∈ Tc(t1). The net C Jt1K is assumed to be well-terminating, so C1 = Tc(t1) as
required.

Using this result, it can be shown that any state reached in C Jt1; t2K is reached either
as a run of C Jt1K or as a run of C Jt1K to a terminal marking followed by a run of C Jt2K.
Here, we extend the notations for gluing and tagging to sequences of events in the obvious
way.

Lemma 3.6.2. Suppose that the nets C Jt1K and C Jt2K are well-terminating. If Ic(t1; t2)
π
−։

C in C Jt1; t2K then either:

• there exist C1 and π1 such that C = P ⊳seq 1:C1 and π = P ⊳seq 1:π1 and Ic(t1)
π1
−։ C1

in C Jt1K, or
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• there exist C2, π1 and π2 such that C = P ⊲ seq 2:C2 and π = (P ⊳ seq 1:π1) · (P ⊲

seq 2:π2) and Ic(t1)
π1
−։ Tc(t1) in C Jt1K and Ic(t2)

π2
−։ C2 in C Jt2K,

where P = seq 1:Tc(t1)× seq 2:Ic(t2).

Proof. A straightforward induction on the length of π using Lemma 3.6.1.

The above lemma can be extended straightforwardly using Lemma 3.4.1 to obtain the
following result involving states, using the fact that the operations of prefixing and tagging
do not affect the action of events on state conditions:

Lemma 3.6.3. Suppose that the nets C Jt1K and C Jt2K are well-terminating. If (Ic(t1; t2), σ0)
π
−։

(C, σ) in N Jt1; t2K then either:

• there exist C1 and π1 such that C = P⊳seq 1:C1 and π = P⊳seq 1:π1 and (Ic(t1), σ0)
π1
−։

(C1, σ) in N Jt1K, or

• there exist C2, σ
′, π1 and π2 such that C = P ⊲ seq 2:C2 and π = (P ⊳ seq 1:π1) ·

(P ⊲ seq 2:π2) and (Ic(t1), σ0)
π1
−։ (Tc(t1), σ

′) in N Jt1K and (Ic(t2), σ
′)

π2
−։ (C2, σ) in

N Jt2K,

where P = seq 1:Tc(t1)× seq 2:Ic(t2).

The converse result, that runs of the nets N Jt1K and N Jt2K, with appropriate interme-
diate states, give rise to runs of the net N Jt1; t2K is an immediate consequence of Lemma
3.3.2

We shall now pass quickly through the other constructs of the language. The main
detail is in the statements of the lemmas. The reader may wish to pass to Section 3.7 if
now broadly content with how runs of nets are characterized.

Parallel composition

We now characterize the runs of the net C Jt1 ‖ t2K. As for the sequential composition, the
first step is to obtain a characterization of how single events might occur. The proof of
the lemma is an easy analysis of the two forms of event in C Jt1 ‖ t2K.

Lemma 3.6.4. If par 1:C1 ∪ par 2:C2
e
−։ C ′ in C Jt1 ‖ t2K then either:

1. there exist e1 and C1 such that e = par 1:e1 and C ′ = par 1:C ′
1∪par 2:C2 and C1

e1
−։ C ′

1

in C Jt1K, or

2. there exist e2 and C2 such that e = par 2:e2 and C ′ = par 1:C1∪par 2:C ′
2 and C2

e2
−։ C ′

2

in C Jt2K.

With this lemma, we can obtain the required characterization.

Lemma 3.6.5. Let π be a sequence of events such that Ic(t1 ‖ t2)
π
−։ C in C Jt1 ‖ t2K.

Every event of π is of the form par 1:e1 or par 2:e2; let π1 represent π restricted to events of
the form par 1:e1 and π2 represent π restricted to events of the form par 2:e2. There exist

C1 and C2 such that C = par 1:C1 ∪ par 2:C2 and Ic(t1)
π1
−։ C1 in C Jt1K and Ic(t2)

π2
−։ C2

in C Jt2K.

Proof. A simple induction on the length of π applying the previous lemma, noting that
Ic(t1 ‖ t2) = par 1:Ic(t1) ∪ par 2:Ic(t2).
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Note that this lemma characterizes the markings reachable in the control net for t1 ‖ t2
directly in terms of the markings reachable in the control nets for t1 and t2. For the reasons
outlined above, we do not obtain an analogous result for the net N Jt1 ‖ t2K running from
a particular initial state, so there is no analogue of Lemma 3.6.3 here.

Nondeterministic sum

As before, we first characterize how single events can occur in markings of the net
C Jα1.t1 + α2.t2K.

Lemma 3.6.6. Let P = sum 1:Tc(t1) × sum 2:Tc(t2) and let t = α1.t1 + α2.t2. For any
event e ∈ Ev∗(t):

• If Ic(t)
e
−։ C ′ in C JtK then either e = act({i},P ⊳sum 1:Ic(t1))(D1,D2) for some (D1,D2) ∈

A Jα1K and C ′ = P ⊳ sum 1:Ic(t1),
or e = act({i},P ⊲sum 2:Ic(t2))(D1,D2) for some (D1,D2) ∈ A Jα2K and C ′ = P ⊲
sum 2:Ic(t2).

• If P ⊳ sum 1:C1
e
−։ C ′ in C JtK then there exist e1 and C ′

1 such that e = P ⊳ sum 1:e1

and C ′ = P ⊳ sum 1:C ′
1 and C1

e1
−։ C ′

1 in C Jt1K.

• If P ⊲ sum 2:C2
e
−։ C ′ in C JtK then there exist e2 and C ′

2 such that e = P ⊲ sum 2:e2

and C ′ = P ⊲ sum 2:C ′
2 and C2

e2
−։ C ′

2 in C Jt2K.

We can now describe the runs of the net C Jα1.t1 + α2.t2K by a simple induction on the
length of run.

Lemma 3.6.7. Let P = sum 1:Tc(t1) × sum 2:Tc(t2) and let t = α1.t1 + α2.t2. Suppose

that Ic(t)
π
−։ C in C JtK. Either π is empty or:

1. there exist D1, D2, C1 and π1 such that (D1,D2) ∈ A Jα1K and

π = act({i},P ⊳sum 1:Ic(t1))(D1,D2) · (P ⊳ sum 1:π1)

and C = P ⊳ sum 1:C1 and Ic(t1)
π1
−։ C1 in C Jt1K, or

2. there exist D1, D2, C2 and π2 such that (D1,D2) ∈ A Jα2K and

π = act({i},P ⊲sum 2:Ic(t2))(D1,D2) · (P ⊲ sum 2:π2)

and C = P ⊲ sum 2:C2 and Ic(t2)
π2
−։ C2 in C Jt2K.

Iteration

To obtain a concise account of what events can occur in markings of the net while b do t0 od,
we assume that the net C Jt0K is well-terminating.

Lemma 3.6.8. Let t = while b do t0 od and suppose that C Jt0K is well-terminating. For
any event e ∈ Ev∗(t0):

• If Ic(t) = body:Tc(t0)
e
−։ C ′ in C JtK then either

C ′ = body:Ic(t0) and e = act(body:Tc(t0),body:Ic(t0))(D0,D0) for some D0 such that
(D0,D0) ∈ A JbK, or
C ′ = Tc(t) and e = act(body:Tc(t0),Tc(t))(D0,D0) for some D0 such that (D0,D0) ∈
A J¬bK.
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• If C0 is reachable from Ic(t0) in C Jt0K and C0 6= Tc(t0) and body:C0
e
−։ C ′ in C JtK

then there exists e0 ∈ Ev∗(t0) such that e = body:e0 and C0
e0
−։ C ′

0 in C Jt0K for some
C ′

0 such that C ′ = body:C ′
0.

Proof. A straightforward analysis of the events present in the net C JtK. The second part
makes use of the fact that C Jt0K is well-terminating to show that Tc(t0) 6⊆ C0 since
C0 6= Tc(t0), thereby ruling out the possibility of an event representing one of the tests of
the boolean b occurring.

We now show that any run of the net C Jwhile b do t0K is either empty or consists of
some number of positive tests of b followed by runs of t0, possibly followed either by a
negative test of b or a positive test of b followed by a run of t0.

Lemma 3.6.9. Let t = while b do t0 od and suppose that C Jt0K is well-terminating.

Suppose that π is a sequence of events of C JtK such that Ic(t)
π
−։ C in C JtK. Either:

• π is empty,

• there exist D1 . . . Dn satisfying (Di,Di) ∈ A JbK and there exist π1, . . . , πn such that

π = act(body:Tc(t0),body:Ic(t0))(D1,D1) · (body:π1) ·

. . .

·act(body:Tc(t0),body:Ic(t0))(Dn,Dn) · (body:πn)

and Ic(t0)
πi
−։ Tc(t0) in C Jt0K for all i < n and Ic(t0)

πn
−։ C0 for some C0 such that

C = body:C0, or

• C = Tc(t) and there exist D1 . . . Dn satisfying (Di,Di) ∈ A JbK, there exists D0 such
that D0 ∈ A J¬bK and there exist π1, . . . , πn such that

π = act(body:Tc(t0),body:Ic(t0))(D1,D1) · (body:π1) ·

. . .

·act(body:Tc(t0),body:Ic(t0))(Dn,Dn) · (body:πn)

·act(body:Tc(t0),Tc(t))(D0,D0)

and Ic(t0)
πi
−։ Tc(t0) in C Jt0K for all i ≤ n.

Proof. Induction on the length of π using Lemma 3.6.8.

Though its statement perhaps appears a little long, the lemma above is useful and
expresses precisely that the while loop behaves as expected. It can be applied, for
example, with Lemma 3.4.1, to show that any run to a terminal marking of the net
N Jwhile b do t0 odK from an initial state σ gives rise to a series of runs of the net N Jt0K
running from appropriate intermediate states that satisfy b, followed by a run of N Jt0K to
a state that satisfies ¬b.

Resource

For the resource w do t0 od construct, we must relate the occurrence of events in this
net to events in [r/w]t0, dependent on the choice of resource r that the variable w might
take.
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Lemma 3.6.10. Let t = resource w do t0 od and suppose that C J[r/w]t0K is well-
terminating for every r ∈ Res. For any event e ∈ Ev∗(t):

• if Ic(t)
e
−։ C ′ then there exists r ∈ Res \ res(t0) such that C ′ = res r:Ic([r/w]t0) and

e = decl(Ic(t),res r:Ic([r/w]t0))(r),

• if C0 is reachable from Ic([r/w]t0) in C J[r/w]t0K and res r:C0
e
−։ C ′ in C JtK but

C0 6= Tc([r/w]t0) then there exists e0 such that e = res r:e0 and there exists C ′
0 such

that C ′ = res r:C ′
0 and C0

e0
−։ C ′

0 in C J[r/w]t0K, and

• if res r:Tc([r/w]t0)
e
−։ C ′ in C JtK then e = end(res r:Tc([r/w]t0),Tc(t))(r) and C ′ = Tc(t).

Proof. Follows a simple analysis of the events in Ev∗(resource w do t0 od) alongside
the observation that res r:Tc(t0) 6⊆ res r:C0 if C0 6= Tc(t0) due to well-termination of
C J[r/w]t0K and that no event of t0 has concession in res r:Tc(t0) due to Lemma 3.5.1.

We can now characterize the runs of the net resource w do t0 od by inductively
applying the previous lemma.

Lemma 3.6.11. Let t = resource w do t0 od and suppose that C J[r/w]t0K is well-

terminating for every r ∈ Res. Suppose that π is a sequence of events π such that Ic(t)
π
−։

C in C JtK. Either π is empty or there exists a resource r ∈ Res\res(t0), a sequence π0 and

marking of control conditions C0 such that Ic([r/w]t0)
π0
−։ C0 in C J[r/w]t0K and either:

• π = decl(Ic(t),res r:Ic([r/w]t0))(r) · (res r:π0) and C = res r:C0, or

• π = decl(Ic(t),res r:Ic([r/w]t0))(r) · (res r:π0) · end(res r:Tc([r/w]t0),Tc(t))(r) and C = Tc(t).

Critical regions

The final construct to be considered, with r do t0 od, is relatively straightforward. The
occurrence of events in C Jt0K is characterized as follows.

Lemma 3.6.12. Let t = with w do t0 od and suppose that C Jt0K is well-terminating. For
any event e ∈ Ev∗(t):

• if Ic(t)
e
−։ C ′ then e = acq(Ic(t),body:Ic(t0))(r) and C ′ = body:Ic(t0);

• if C0 is reachable from Ic(t0) in C Jt0K and body:C0
e
−։ C ′ but C0 6= Tc(t0) then there

exists an event e0 and marking of control conditions C ′
0 such that e = body:e0 and

C ′ = body:C ′
0 and C0

e0
−։ C ′

0 in C Jt0K; and

• if body:Tc(t0)
e
−։ C ′ then e = end(body:Tc(t0),Tc(t))(r) and C ′ = Tc(t).

Proof. Like Lemma 3.6.10, this follows a simple analysis of the events in Ev∗(with r do t0 od)
and uses the assumption that the net C Jt0K is well-terminating.

Using this lemma, a straightforward induction characterizes the paths of the control
net C Jwith r do t0 odK as follows:

Lemma 3.6.13. Let t = with w do t0 od and suppose that C Jt0K is well-terminating.

Suppose that π is a path such that Ic(t)
π
−։ C in C JtK. Either π is empty or there exist a

path π0 and a marking of control conditions C0 such that Ic(t0)
π0
−։ C0 in C Jt0K and either:
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• π = acq(Ic(t),body:Ic(t0))(r) · (body:π0) and C = body:C0, or

• π = acq(Ic(t),body:Ic(t0))(r) · (body:π0) · end(body:Tc(t0),Tc(t))(r) and C = Tc(t).

3.7 Well-termination

We are now able to show that the net semantics of any term is well-terminating in the
sense of Definition 3.5.1.

Lemma 3.7.1. For any closed term t, the net C JtK is well-terminating.

Proof. The proof proceeds by induction on the size of terms. We shall show only two
interesting cases for the term t.

Parallel composition: Suppose that C is reachable in C Jt1 ‖ t2K from Ic(t1 ‖ t2). By
induction, the nets C Jt1K and C Jt2K are well-terminating. According to Lemma 3.6.5,
we therefore have C = par 1:C1 ∪ par 1:C2 for C1 reachable from Ic(t1) in C Jt1K and
C2 reachable from Ic(t2) in C Jt2K. Suppose that Tc(t1 ‖ t2) ⊆ C. We must have
Tc(t1) ⊆ C1 and Tc(t2) ⊆ C2. Since, by induction, the nets C Jt1K and C Jt2K are
well-terminating, we have C1 = Tc(t1) and C2 = Tc(t2) and hence C = Tc(t1 ‖ t2).

Sequential composition: Suppose that C is reachable in C Jt1; t2K from Ic(t1; t2). There

exists a path Ic(t1; t2)
π
−։ C. Let P = seq 1:Tc(t1) × seq 2:Ic(t2). By induction, the

nets C Jt1K and C Jt2K are well-terminating, so according to Lemma 3.6.2 there are two
cases for the path π.

C = P ⊳ seq 1:C1 for some C1 6= Tc(t1) and π = P ⊳ seq 1:π1 for some π1 such that

C Jt1K :Ic(t1)
π1
−։ C1. Recall that Tc(t1; t2) = P ⊲ seq 2:Tc(t2). We shall show

that Tc(t1; t2) 6⊆ P ⊳ seq 1:C1. Suppose, for contradiction, that Tc(t1; t2) ⊆ P ⊳
seq 1:C1. It is easy to show that Tc(t2) ⊆ Ic(t2) since otherwise P ⊲seq 2:Tc(t2) 6⊆
P ⊳seq 1:C1. Since C Jt2K is well-terminating, we have Tc(t2) = Ic(t2). We cannot
have Tc(t1) ⊆ C1 since otherwise C1 = Tc(t1) by well-termination of C Jt1K, con-
tradicting the earlier assumption, so there exists b1 ∈ Tc(t1) such that b1 6∈ C1.
It follows that (seq 1:b1, seq 2:b2) ∈ P but (seq 1:b1, seq 2:b2) 6∈ P ⊳ seq 1:C1. How-
ever, since b2 ∈ Tc(t2) we have (seq 1:b1, seq 2:b2) ∈ P ⊲ seq 2:Tc(t2) = Tc(t1; t2).
It follows immediately that Tc(t1; t2) 6⊆ C, giving the required contradiction.

C = P ⊲ seq 2:C2 for some C2 and π = (P ⊳ seq 1:π1) · (P ⊲ seq 2:π2) for some π1, π2

such that C Jt1K :Ic(t1)
π1
−։ Tc(t2) and C Jt2K :Ic(t2)

π2
−։ C2.

Suppose that Tc(t1; t2) ⊆ C. We have, by definition,

P ⊲ seq 2:Tc(t2) ⊆ P ⊲ seq 2:C2.

By Lemma 3.3.1, it follows that Tc(t2) ⊆ C2 and therefore C2 = Tc(t2) by well-
termination of C Jt2K. It follows immediately that C = Tc(t1; t2), as required to
complete the case.

Since we have now shown that the control net of any closed term is well-terminating,
in what follows we can ignore the assumption in Lemmas 3.6.2, 3.6.5 etc. that the control
nets of subterms are well-terminating when we apply these lemmas.
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3.8 Safety

We have now established that the net C JtK is well-terminating for any term t and have
characterized the reachable markings of the net C JtK in terms of the reachable markings
of nets of terms of smaller size. With this understanding of the reachable markings, we
are able to show that the net C JtK is a safe net. This is in contrast with the net N JtK
running from a marking of state conditions; we saw earlier that the net N JtK need not
be safe since, for example, it might use contact to inhibit allocation of an already-current
location. The proof that C JtK is safe will rely on the constructions forming the control net
preserving safety.

Proposition 3.2. The net C JtK is a safe labelled Petri net.

Proof. By induction on the size of terms. We consider three cases for t; the rest follow
the same pattern.

t = t1 ‖ t2: Let C be a reachable marking in C Jt1 ‖ t2K and suppose, for contradiction,
that there exists e ∈ Ev∗(t1 ‖ t2) such that Ce ⊆ C but C \ Ce ∩ eC 6= ∅. Without
loss of generality, since e ∈ Ev∗(t1 ‖ t2), suppose that e = par 1:e1 for some e1 ∈
Ev∗(t1). From Lemma 3.6.5, we have C = par 1:C1 ∪ par 2:C2 for some C1 and C2

such that C Jt1K :Ic(t1)
∗
−։ C1 and C Jt2K :Ic(t2)

∗
−։ C2. We must have Ce1 ⊆ C but

C1 \
Ce1 ∩ e1

C 6= ∅. Hence the net C Jt1K is not safe, contradicting the induction
hypothesis.

t = t1; t2: Let C be a reachable marking in C Jt1 ‖ t2K and suppose, for contradiction,
that there exists e ∈ Ev∗(t1 ‖ t2) such that Ce ⊆ C but C \ Ce ∩ eC 6= ∅. Let
P = seq 1:Tc(t1)× seq 2:Ic(t2). There are two cases for e.

First, if e = P ⊳ seq 1:e1 for some e1 in Ev∗(t1), it follows from the fact that Ce ⊆ C

and Lemma 3.6.2 that C = P ⊳ seq 1:C1 for some C1 such that C Jt1K :Ic(t1)
∗
−։ C1.

Consequently, from Lemma 3.3.1, we must have Ce1 ⊆ C1 and C1 \
Ce1 ∩ e1

C 6= ∅.
Thus C Jt1K is not safe, contradicting the induction hypothesis.

Second, if e = P ⊲ seq 2:e2 for some e2 in Ev∗(t2), it follows from the fact that Ce ⊆ C

and Lemma 3.6.2 that C = P ⊲ seq 2:C2 for some C2 such that C Jt2K :Ic(t2)
∗
−։ C2.

As before, it follows from Lemma 3.3.1 that Ce2 ⊆ C2 and C2
Ce2 ∩ e2

C 6= ∅. Thus
C Jt2K is not safe, contradicting the induction hypothesis.

t = while b do t0 od: Let C be a reachable marking in C Jwhile b do t0 odK and suppose,
for contradiction, that there exists e ∈ Ev∗(while b do t0 od) such that Ce ⊆ C but
C \ Ce∩ eC 6= ∅. According to Lemma 3.6.9, there are three cases for the marking C.

First, if C = body:Tc(t0) (i.e. C = Ic(while b do t0 od)), it cannot be the case that
e = body:e0 for some e0 ∈ Ev∗(t0). Otherwise, since Ce ⊆ C, from Lemma 3.5.1
(2) there would exist a condition c such that c ∈ Ce and c ∈ Tc(t0), contradicting
Lemma 3.5.1 (3). Therefore, from the definition of Ev∗(while b do t0 od), we must
have Ce = body:Tc(t0) and so C \ Ce = ∅. It is therefore trivially the case that
C \ Ce ∩ eC = ∅.

Second, we might have C = body:C0 for some C0 6= Tc(t0) such that C Jt0K :Ic(t0)
∗
−։

C0. From Lemma 3.7.1, the net C JtK is well-terminating and therefore Tc(t0) 6⊆ C0.
From the definition of Ev∗(while b do t0 od), there must therefore exist e0 ∈ Ev∗(t0)
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such that e = body:e0. From this, it is easy to see that the net C Jt0K is not safe,
contradicting the induction hypothesis.

The final case is C = {t}. There is clearly no event in Ev∗(while b do t od) such that
Ce ⊆ {t}.

3.9 Terminality

It will sometimes be useful to regard the net C JtK as just a (labelled) safe net, for example
to apply constructions defined in the category of safe nets such as pullbacks. Since safe
nets have an initial marking, in doing so we lose no information on the initial conditions
of the net C JtK. However, by avoiding adding extra structure to safe nets, we do lose the
explicit representation of the terminal marking. We require an alternative characterization
of the terminal marking of the net C JtK.

Lemma 3.9.1. For any closed term t, the marking Tc(t) is the unique marking reachable
from all markings reachable from Ic(t) in C JtK for which there exists no e ∈ Ev∗(t) with
concession in Tc(t).

Proof. The proof proceeds by induction on the size of terms. We show only only two
representative cases for t.

t = t1 ‖ t2: Suppose that C is reachable from Ic(t1 ‖ t2) in C Jt1 ‖ t2K. According to
Lemma 3.6.5, we have C = par 1:C1 ∪ par 2:C2 for some control markings C1 and C2

such that C Jt1K :Ic(t1)
∗
−։ C1 and C Jt2K :Ic(t2)

∗
−։ C2. By induction, the markings

Tc(t1) and Tc(t2) are reachable from C1 and C2 in C Jt1K and C Jt2K, respectively. It

is easy to see from that that C Jt1 ‖ t2K :C
∗
−։ par 1:Tc(t1) ∪ par 2:Tc(t2).

To see that no event has concession in Tc(t1 ‖ t2), suppose for contradiction that
e ∈ Ev∗(t1 ‖ t2) is an event with concession in Tc(t1 ‖ t2). Without loss of generality,
suppose that e = par 1:e1 for some e1 ∈ Ev∗(t1). Since Tc(t1 ‖ t2) = par 1:Tc(t1) ∪

par 2:Tc(t2), we clearly have Tc(t1)
e1
−։, contradicting the induction hypothesis for t1.

Now suppose that there exists a marking C reachable from Ic(t1 ‖ t2) in C Jt1 ‖ t2K in
which no event has concession. We shall show that C = Tc(t1 ‖ t2), demonstrating
the required uniqueness property. By Lemma 3.6.5, there exist C1 and C2 such that

C Jt1K :Ic(t1)
∗
−։ C1 and C Jt2K :Ic(t2)

∗
−։ C2 and C = par 1:C1 ∪ par 2:C2. Suppose

that C1 6= Tc(t1). Then, by induction, there exists e1 such that C1
e1
−։ and hence

par 1:C1 ∪ par 2:C2

par 1:e1
−։ , contradicting the assumption that no event has concession

in C. We therefore have C1 = Tc(t1) and a similar argument shows C2 = Tc(t2), and
so C = par 1:Tc(t1) ∪ par 2:Tc(t2) = Tc(t1 ‖ t2) as required.

t = t1; t2: Let P = seq 1:Tc(t1)×seq 2:Ic(t2). We first show that the marking Tc(t1; t2) =
P ⊲ seq 2:Tc(t2) is reachable from any marking C reachable from Ic(t1; t2) = P ⊳
seq 1:Ic(t1).

By Lemma 3.6.2, since C is reachable from Ic(t1; t2), either C = P ⊳ seq 1:C1 for some
C1 reachable from Ic(t1) in C Jt1K or C = P ⊲ seq 2:C2 for some C2 reachable from
Ic(t2) in C Jt2K.
In the first case, by induction Tc(t1) is reachable from C1 so P ⊳ seq 1:Tc(t1) is
reachable from C according to Lemma 3.3.2. Also by induction, Tc(t2) is reachable
from Ic(t2) and hence P ⊲ seq 2:Tc(t2) is reachable from P ⊲ seq 2:Ic(t2) in C Jt1; t2K.
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Since P ⊳seq 1:Tc(t1) = P ⊲seq 2:Ic(t2) = P and Tc(t1; t2) = P ⊲seq 2:Tc(t2), it follows
that Tc(t1; t2) is reachable from C in C Jt1; t2K.
In the second case, by induction Tc(t2) is reachable from C2 and hence P ⊲seq 2:Tc(t2)
is reachable from P ⊲ seq 2:C2, thus demonstrating that Tc(t1; t2) is reachable from
any reachable marking in C Jt1; t2K.
Now suppose, for contradiction, that an event e has concession in Tc(t1; t2). There are
two kinds of event present in C Jt1; t2K. It cannot be the case that e = P ⊳ seq 1:e1 for
some e1 ∈ Ev∗(t1), since according to Lemma 3.5.1 there would exist c ∈ •e \ Tc(t1),
and hence seq 1:c ∈ •e. It is easy to see that seq 1:c 6∈ P ⊲ seq 2:Tc(t2), making it
impossible for the event e to have concession. It must therefore be the case that

e = P ⊲ seq 2:e2 for some e2 ∈ Ev∗(t2). We have P ⊲ seq 2:Tc(t2)
P⊲seq 2:e2
−։ , so by

Lemma 3.3.2 we also have Tc(t2)
e2
−։, contradicting the induction hypothesis for t2.

Considering the uniqueness of Tc(t1; t2), suppose that C is reachable from Ic(t1; t2)
and that no event has concession in C. There are two cases to consider for C according
to Lemma 3.6.2; we shall show that in each case C = Tc(t1; t2).

First, if C = P ⊳ seq 1:C1 for some C1 such that C Jt1K :Ic(t1)
∗
−։ C1 then C1 = Tc(t1)

since otherwise the induction hypothesis would yield an event e1 such that C1
e1
−։ and

hence C
P⊳seq 1:e1
−։ . We therefore have

C = P ⊳ seq 1:C1 = P ⊳ seq 1:Tc(t1) = P = P ⊲ seq 2:Ic(t2).

If Ic(t2) 6= Tc(t2) then by induction there exists an event e2 such that Ic(t2)
e2
−։ and

hence C
P⊲seq 2:e2
−։ by Lemma 3.3.2, contradicting the assumption that no event has

concession in C. Hence, in this case, we must have C = Tc(t1; t2).

In the second case, there exists C2 such that C = P ⊲ seq 2:C2 and C Jt2K :Ic(t2)
∗
−։

C2. If C2 6= Tc(t2), by induction there exists e2 such that C2
e2
−։ and hence, by

Lemma 3.3.2, we have C
P⊲seq 2:e2
−։ . This contradicts the assumption that no event

has concession in C, so we must have C2 = Tc(t2) and hence C = P ⊲ seq 2:Tc(t2) =
Tc(t1; t2) as required.

3.10 Preservation of consistent markings

We have now developed quite a comprehensive understanding of the net C JtK. This turns
out to be necessary to show that any marking of state conditions σ = (D,L,R,N) reach-
able in N JtK from a consistent initial marking of state conditions σ0 is itself consistent.
The challenge here will be showing that if r ∈ R then curr(r) ∈ N , which shall require
some understanding of the nature of the critical regions present in our semantics; the
other requirements for consistency are straightforwardly shown to be preserved through
the occurrence of the events present in N JtK.

We shall first show that any release of a resource is dependent on the prior acquisition
of that resource: for any sequence π and any resource there exists an injection f that
associates any occurrence of a release event to a prior occurrence of an acquisition event of
that resource, and between the two occurrences there are no other actions on that resource.

Lemma 3.10.1. Let π be a sequence of events, π = (e1, . . . , en). For any closed term t,

resource r and marking of control conditions C such that C JtK :Ic(t)
π
−։ C, there exists a

partial function f :N ⇀ N satisfying, for all i, j ∈ N:
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• f is injective,

• if there exist sets of control conditions C1, C2 such that ei = rel(C1,C2)(r) then f(i)
defined, and

• if f(i) defined then f(i) < i and there exist sets of control conditions C1, C2 such
that ef(i) = acq(C1,C2)(r).

Moreover, if there exist markings of state conditions σ0, . . . , σn and markings of control

conditions C0, · · · , Cn such that σi is consistent for all 0 ≤ i < n and N JtK :(Ci−1, σi−1)
ei
−։

(Ci, σi) for all i with 0 < i ≤ n and C0 = Ic(t), then there exists an f satisfying the above
constraints and such that, for all k with f(i) < k < i, there exist no C ′ and C ′′ such that
either ek = acq(C′,C′′)(r) or ek = rel(C′,C′′)(r).

Proof. The first part of the lemma about runs of C JtK is shown, using the control properties
of sequences established above, straightforwardly by induction on the size of terms.

The second part of the lemma follows from the first part along with the observation
that if ei = acq(Ci,C′

i)
(r) and ej = acq(Cj ,C′

j)
(r) for i < j then there must exist k such that

i < k < j and ek = rel(Ck ,C
′
k
)(r). Otherwise, the resource r would not be available in state

σj−1. This relies on consistency of all σk.

We are now able to show that the nets formed preserve the consistency of the markings
of state conditions.

Proposition 3.3 (Preservation of consistent markings). For any closed term t and se-

quence of events π′, if (Ic(t), σ0)
π′

−։ (C, σ) in the net N JtK and the marking σ0 of state
conditions is consistent then σ is consistent.

Proof. It is easy to see that the events present in that net N JtK are all of one of the
following forms:

act(C,C′)(D,D
′) alloc(C,C′)(ℓ, v, ℓ

′, v′) decl(C,C′)(r) acq(C,C′)(r)

dealloc(C,C′)(ℓ, ℓ
′, v′) end(C,C′)(r) rel(C,C′)(r)

It is readily shown that each form of event preserves the consistency of the marking of
state conditions, apart from showing that if r ∈ σ then curr(r) ∈ σ.

Suppose, for contradiction, that π′ is a path such that N JtK :(Ic(t), σ0)
π′

−։
∗

(C, σ) and
that r ∈ σ but curr(r) 6∈ σ. Assume, furthermore, and without loss of generality, that any
other marking of state conditions σ′ along π′ has the property that if r ∈ σ then curr(r) ∈ σ,
and is therefore consistent. It must be the case that π′ = π · rel(K1,K ′

1)
(r) for some K1,K

′
1

and π. By Lemma 3.10.1, there exist K2,K
′
2, π1 and π2 such that π = π1 ·acq(K2,K ′

2)
(r) ·π2

and no event in π2 is an acq(r) or rel(r) event. Let (C1, σ1) be the marking obtained

by the path N JtK :(Ic(t), σ0)
π1
−։

∗
(C1, σ1). We must have r ∈ σ1, and by assumption

curr(r) ∈ σ1. It can be seen that we must have curr(r) ∈ σ′ and r 6∈ σ′ for all states σ′

reached along acq(D2,D′
2)

(r) · π2 from (C1, σ1) since no end(r) event can have concession
in such markings. Consequently, we must have curr(r) ∈ σ2 for σ2 obtained by following

the path N JtK :(Ic(t), σ0)
π
−։ (C2, σ2), and therefore curr(r) ∈ σ — a contradiction, as

required.

It will also be useful to know that the structure of processes ensures that any resource
initially current remains current through the execution of the net. The same property
working backwards from the terminal marking of the net also holds.
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Lemma 3.10.2. Let σ, σ′ be a consistent markings of state conditions. For any markings
of control conditions C,C ′:

1. If (Ic(t), σ)
∗
−։ (C ′, σ′) in N JtK and curr(r) ∈ σ then curr(r) ∈ σ′.

2. If (C, σ)
∗
−։ (Tc(t), σ′) in N JtK and curr(r) ∈ σ′ then curr(r) ∈ σ.

Proof. We shall only show (1) since (2) is similar. An induction on the size of terms using
the control properties above gives the following:

• If there exists a sequence π such that

C JtK :Ic(t)
π·end(C1,C2)(r)

−։ C

for some C1, C2 then there exists an event decl(C′
1,C

′
2)(r) in π for some C ′

1, C
′
2.

Let π′ be a sequence N JtK :(Ic(t), σ)
π′

−։ (C ′, σ′) and assume that curr(r) ∈ σ. Without
loss of generality, suppose that (C ′, σ′) is the earliest marking along π′ from (Ic(t), σ) such
that curr(r) 6∈ σ′; otherwise, we can take the initial segment of π′ with this property.
Examination of the events given by our semantics reveals that the last event in π′ is an
end(C1,C2)(r) event, since otherwise curr(r) is not in the state prior to σ′. Now, applying
the result above informs that there is an event decl(C′

1,C
′
2)(r) in π′ and this must occur

before end(C1,C2)(r). Now, the event decl(C′
1,C

′
2)

(r) can only occur in a marking σ0 of state
conditions such that curr(r) 6∈ σ0, but this contradicts our assumption that σ′ was the first
marking of state conditions reachable along π′ from (Ic(t), σ) with curr(r) 6∈ σ′.

3.11 Net equivalence and correspondence

As well as the net semantics for the programming language, we gave a corresponding
operational semantics. The proof of their correspondence is helped by having a form of
bisimulation on nets that is a congruence on terms. Standard bisimulation on the net
N JtK is not a congruence: it involves the initial marking of state conditions σ0 and relates
configurations (C, σ) comprising a marking of control conditions with a marking of state
conditions.

Example 3.11.1. Let σ0 = {ℓ 7→ 0} and consider the nets N Jℓ = 1K and N Jℓ = 2K.
Recalling that the action ℓ = 1 is a boolean guard that can proceed only if ℓ holds value 1,
and similarly for ℓ = 2, neither net has an event that can occur from its initial marking
of control conditions in the state σ0. We therefore have

(N Jℓ = 1K , Ic(ℓ = 1), σ0) bisimilar to (N Jℓ = 2K , Ic(ℓ = 2), σ0).

If we place the processes in parallel with ℓ := 1 which assigns value 1 to location ℓ, the
resulting processes are not bisimilar. That is, the two nets

(N Jℓ = 1 ‖ ℓ := 1K , Ic(ℓ = 1 ‖ ℓ := 1), σ0)
(N Jℓ = 2 ‖ ℓ := 1K , Ic(ℓ = 2 ‖ ℓ := 1), σ0).

are not bisimilar.
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Instead, we shall consider an equivalence on control nets. An equivalence on the nets
C JtK and C Jt′K shall be exhibited by a span of Pom-open morphisms from a safe net
N to C Jt1K and C Jt′K as described in Section 2.4. It shall therefore be a Pom-open
map bisimulation, so a (strong) history preserving bisimulation on nets [NW96] — see
Section 2.4. Essentially, this can be thought-of as a form of bisimulation that preserves
independence.

The proof that the net and operational semantics correspond is interesting but unfor-
tunately rather technical. We therefore present the full development in Appendix E. Since
many readers will not be familiar with open map bisimulation on nets, we shall weaken
the result presented in the appendix to give a more accessible version based on standard
bisimulation here:

Theorem 3.4. Let t0 be a closed term and σ0 be a consistent state. There exists a
relation R between markings (C, σ) of the net N Jt0K from σ0 and configurations 〈t, σ〉 of
the operational semantics such that R((Ic(t0), σ0), 〈t0, σ0〉) and whenever R((C, σ), 〈t, σ〉):

• if (C, σ)
e
−։ (C ′, σ′) then there exists t′ such that 〈t, σ〉

|e|
−→ 〈t′, σ′〉 and R((C ′, σ′), 〈t′, σ′〉),

and

• if 〈t, σ〉
λ
−→ 〈t′, σ′〉 then there exist e and C ′ such that (C, σ)

e
−։ (C ′, σ′) and |e| = λ.

Furthermore, R respects terminality and states in the sense that:
if R((C, σ), 〈t, σ′〉) then σ = σ′ and if C = Tc(t0) then t ≡ ε.

Proof. Immediate from Theorem E.2.

In Appendix E, we show that this result means that the net semantics is adequate
with respect to the operational semantics.
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Chapter 4

Concurrent separation logic

As discussed in the introduction, concurrent separation logic provides a system for reason-
ing about concurrent heap-manipulating programs. At the core of the logic is the notion
of separation of ownership, which can be thought of as meaning that parallel processes
each own a separate part of the heap and may only access the part that they own. This
allows the unconstrained forms of interaction described in the introduction due to aliasing
to be discounted, allowing a compositional logic to be developed.

We now give an account of separation logic focusing on ownership. A semantics for the
logic will be given by defining an interpretation of validity for judgements of concurrent
separation logic. The rules for the judgement ⊢ {ϕ}t{ψ} derivable according to the logic
will be proved sound (though an example of their incompleteness will be shown).

For a fuller introduction of separation logic than that to be presented here, we refer the
reader to [O’H07]. On a related point, the logic that we consider is be slightly different
from that in [O’H07] in that we shall not have program variables inside the language.
Instead, as in the net semantics presented earlier, programs directly access heap locations.
In examples, we assume the existence of conveniently-named locations to make them
readable. It would be very easy to adapt this work to deal with variables, but we shall
refrain from adapting them here since they introduce untidiness into the logic that is
orthogonal to the issues that we wish to investigate.

4.1 Heap formulae

Concurrent separation logic establishes partial correctness assertions about concurrent
heap-manipulating programs; that whenever a given program running from a heap sat-
isfying a heap formula ϕ terminates, the resulting heap satisfies a heap formula ψ. The
semantics of the heap logic arises as an instance of the logic of Bunched Implications
[OP99, Pym02]. At its core are the associated notions of heap composition and the sep-
arating conjunction of heap formulae. Two heaps may be composed if they are defined
over disjoint sets of locations:

D1 ·D2 , D1 ∪D2 if dom(D1) ∩ dom(D2) = ∅.

A heap satisfies the separating conjunction ϕ1 ⋆ ϕ2 if it can be split into two parts, one
satisfying ϕ1 and the other ϕ2:

D |= ϕ1 ⋆ ϕ2 iff there exist D1,D2 such that D1 ·D2 defined and

D = D1 ·D2 and D1 |= ϕ1 and D2 |= ϕ2.
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The full syntax and semantics of the heap logic is given in Figures 4.2 and 4.1. The
heap logic augments the standard logical connectives ∧, ∨ and →, negation ¬ and truth
values ⊤ and ⊥ with primitives for describing the structure of the heap. We adopt the
usual binding precedences, and ⋆ binds more tightly the standard logical connectives. In
addition to the separating conjunction, there is a formula empty to assert that the heap is
empty (has no locations in its domain). There is also a formula eloc 7→ e′ to assert that the
heap consists of a single location represented by the location expression eloc that holds a
value represented by the expression e′. According to the syntax of the logic, there are two
kinds of expression: location expressions eloc, which are either a fixed location or a variable
of the logic representing a location, ranged over by xloc, and value expressions eval, which
may be either a constant value or a variable representing a value of arbitrary kind, ranged
over by xval. The logic has existential and universal quantifiers which bind variables, giving
rise to the standard definition of closed formula as being a formula with no free variables.
By restricting the syntax of expressions in this way, we rule out meaningless formulae such
as

v 7→ v′

for a value v that is not a location, and do not have to give a semantics to them. We
define the shorthand notation ℓ 7→ for ∃xval.(ℓ 7→ xval).

Example 4.1.1. Let D = {ℓ 7→ 0, ℓ′ 7→ 1}. We have D |= ℓ 7→ 0 ⋆ ⊤ since D = {ℓ 7→
0} · {ℓ′ 7→ 1} and {ℓ 7→ 0} |= ℓ 7→ 0 and {ℓ′ 7→ 1} |= ⊤. From the semantics, we therefore
have D |= ∃xloc.(xloc 7→ 0 ⋆⊤).

We do not, however, have D |= ℓ 7→ 0 since the semantics of this assertion would
require that D = {ℓ 7→ 0}. The heap logic is therefore not intuitionistic in the sense of
[Rey02, Rey00, O’H07].

Unlike the heap logic presented in [Bro07], we do not allow arithmetic on memory
locations; this is just to simplify the presentation, and such arithmetic could easily be
added. Alongside the definition of satisfaction of a formula given in Figure 4.2, there is
the associated definition of validity, written |= ϕ, meaning that D |= ϕ for all heaps D.
Logical entailment is written as ϕ =⇒ ψ, equivalent to |= ϕ→ ψ.

4.2 Ownership

Concurrent separation logic as presented in [O’H07] is a system of proof rules forming
a judgement. In preparation for the formal definition of validity for judgements, Γ |=
{ϕ}t{ψ}, to be presented in Chapter 5 and the subsequent proof of soundness, we present
the intuition for what the key judgement of concurrent separation logic, Γ ⊢ {ϕ}t{ψ},
means. Here, ϕ and ψ are formulae of the heap logic, and Γ is a environment of resource
invariants of the form r1 : χ1, · · · , rn : χn, associating heap formulae χi called invariants
with resource constants ri.

In any run from a heap satisfying ϕ and the environment of invariants Γ, the
process t never accesses locations that it does not own, and if the process t
terminates then it does so in a heap satisfying ψ and the invariants Γ.

Central to this understanding is the notion of ownership, which we capture formally
in the Chapter 5. Initially the process t is considered to own that part of the heap which
satisfies ϕ, and accordingly to own the locations in that subheap.

62



Variables: x ::= xloc Location variable
| xval Value variable

Location expressions: eloc ::= xloc Location variable
| ℓ Location, ℓ ∈ Loc

Expressions: e ::= eloc Location expression
| xval Value variable
| v Value, v ∈ Val

Formulae: ϕ ::= eloc 7→ e heap location
| ϕ ⋆ ϕ separating conjunction
| empty empty heap
| ϕ ∧ ϕ conjunction
| ϕ ∨ ϕ disjunction
| ϕ→ ϕ implication
| ¬ϕ negation
| ∃x.ϕ existential quantification
| ∀x.ϕ universal quantification
| e = e equality
| ⊤ true
| ⊥ false

Figure 4.1: Syntax of the heap logic

Semantics of closed formulæ:

D |= ℓ 7→ v iff D = {ℓ 7→ v}
D |= ϕ1 ⋆ ϕ2 iff there exist D1,D2 such that D1 ·D2 defined and

D = D1 ·D2 and D1 |= ϕ1 and D2 |= ϕ2

D |= empty iff D = ∅
D |= ϕ1 ∧ ϕ2 iff D |= ϕ1 and D |= ϕ2

D |= ϕ1 ∨ ϕ2 iff D |= ϕ1 or D |= ϕ2

D |= ϕ1 → ϕ2 iff D |= ϕ1 implies D |= ϕ2

D |= ¬ϕ iff not D |= ϕ
D |= ∃xloc.ϕ iff there exists ℓ ∈ Loc such that D |= [ℓ/xloc]ϕ
D |= ∃xval.ϕ iff there exists v ∈ Val such that D |= [v/xval]ϕ
D |= ∀xloc.ϕ iff for all ℓ ∈ Loc: D |= [ℓ/xloc]ϕ
D |= ∀xval.ϕ iff for all v ∈ Val: D |= [v/xval]ϕ
D |= v = v′ iff v = v′

D |= ⊤ always
D |= ⊥ never

Figure 4.2: Semantics of the heap logic
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Ownership plays a key role in making the judgements of concurrent separation logic
compositional: a judgement Γ ⊢ {ϕ}t{ψ} should hold even if other (unknown) processes
are to execute in the same heap. It is therefore necessary to make certain assumptions
about the ways in which these other processes might interact with the process t. This
is achieved through ownership, by assuming that each process owns, throughout its exe-
cution, a part of the heap disjoint from that owned by other processes. The part of the
heap that each process owns must not be accessed by any other process, and moreover a
process must not access locations that it does not own. Essentially, this gives rise to a
form of rely-guarantee reasoning, taken further in [VP07], where the judgement relies on
the fact the other processes to execute do not access the locations that t is said to own
and, dually, guarantees that t only accesses locations that it owns.

There is some subtlety, to be teased-out in our model, due to the fact that as t runs
the locations it owns may change. This will be through the acquisition and release of
resources, when it will gain and relinquish ownership of the locations used in justifying
their invariants. Ownership will also be affected by the allocation of resources, when it
will gain ownership of the newly-allocated location, and by deallocation.

The inference rules of concurrent separation logic are presented in Figures 4.3 and 4.4
in the style of [Bro07]. The only significant difference between the two systems is that we
omit the rules for auxiliary variables and for existential quantification. Both are omitted
for simplicity since they are peripheral to the focus of our work.

As a first example, the rule for heap actions (L-Act) would allow the judgement

Γ ⊢ {ℓ 7→ 0}ℓ := 1{ℓ 7→ 1}.

When considering this judgement, we see the process as owning the part of the heap, and
this part satisfies the formula ℓ 7→ 0. The part owned by the process therefore consists
of the location ℓ which holds value 0. Following execution of the assignment, the part of
the heap that we see as owned by the process satisfies ℓ 7→ 1. It should be emphasized
that ownership is not assumed to be actually present in the semantics of processes; it is
overlaid to understand the judgements made by the logic.

Following the account above, the assignment will not access any location that we do
not see it as owning. The judgement

Γ ⊢ {ℓ 7→ 0 ⋆ k 7→ 0}ℓ := 1{ℓ 7→ 1 ⋆ k 7→ 0}

is therefore valid since the location k will not be accessed. More generally, for any formula
ϕ the judgement

Γ ⊢ {ℓ 7→ 0 ⋆ ϕ}ℓ := 1{ℓ 7→ 1 ⋆ ϕ}

is valid since the part of the heap satisfying ϕ is disjoint from the part of the heap satisfying
ℓ 7→ 0 according to the semantics of the separating conjunction ⋆, and the earlier judgement
Γ ⊢ {ℓ 7→ 0}ℓ := 1{ℓ 7→ 1} ensures that the process does not access any locations used
to satisfy ϕ. It follows that the execution of the process does not affect the holding of
ϕ, so whenever the process terminates the resulting state satisfies ℓ 7→ 1 ⋆ ϕ. This is
generalized to form the important frame rule (L-Frame), which depends critically upon
the hypothesis that the process can only ever access locations that we see it as owning,
called the ownership hypothesis.

To see how the proof system would collapse if we were to allow the ownership hypothesis
to be broken, suppose that we have the judgement

Γ ⊢ {⊤}ℓ := 2{⊤}.
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(L-Nil) : Γ ⊢ {ϕ}ε{ϕ}

(L-Act) :

for all D |= ϕ and (D1, D2) ∈ A JαK :
dom(D1) ⊆ dom(D)

and
D1 ⊆ D implies (D \D1) ∪D2 |= ψ

Γ ⊢ {ϕ}α{ψ}

(L-Alloc) : Γ ⊢ {ℓ 7→ }alloc(ℓ){∃xloc.(ℓ 7→ xloc ⋆ xloc 7→ )}

(L-Dealloc) : Γ ⊢ {∃xloc.(ℓ 7→ xloc ⋆ xloc 7→ )}dealloc(ℓ){∃xloc.(ℓ 7→ xloc)}

(L-Seq) :
Γ ⊢ {ϕ}t1{ϕ′} Γ ⊢ {ϕ′}t2{ψ}

Γ ⊢ {ϕ}t1; t2{ψ}

(L-Sum) :
Γ ⊢ {ϕ}α1{ϕ1} Γ ⊢ {ϕ}α2{ϕ2}
Γ ⊢ {ϕ1}t1{ψ} Γ ⊢ {ϕ2}t2{ψ}

Γ ⊢ {ϕ}α1.t1 + α2.t2{ψ}

(L-While) :
Γ ⊢ {ϕ}b{ϕ′} Γ ⊢ {ϕ}¬b{ψ}

Γ ⊢ {ϕ′}t{ϕ}
Γ ⊢ {ϕ}while b do t od{ψ}

(L-Res) :
Γ, r:χ ⊢ {ϕ}[r/w]t{ψ}

Γ ⊢ {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ}

(

χ precise — see p67
r 6∈ dom(Γ)

)

(L-CR) :
Γ, r:χ ⊢ {ϕ ⋆ χ}t{ψ ⋆ χ}

Γ, r:χ ⊢ {ϕ}with r do t od{ψ}

(L-Par) :
Γ ⊢ {ϕ1}t1{ψ1} Γ ⊢ {ϕ2}t2{ψ2}

Γ ⊢ {ϕ1 ⋆ ϕ2}t1 ‖ t2{ψ1 ⋆ ψ2}

Figure 4.3: Syntax-directed rules of concurrent separation logic

(L-Frame) :
Γ ⊢ {ϕ}t{ψ}

Γ ⊢ {ϕ ⋆ ϕ′}t{ψ ⋆ ϕ′}

(L-Consequence) :
ϕ =⇒ ϕ′ Γ ⊢ {ϕ′}t{ψ′} ψ′ =⇒ ψ

Γ ⊢ {ϕ}t{ψ}

(L-Conjunction) :
Γ ⊢ {ϕ1}t{ψ1} Γ ⊢ {ϕ2}t{ψ2}

Γ ⊢ {ϕ1 ∧ ϕ2}t{ψ1 ∧ ψ2}

(L-Disjunction) :
Γ ⊢ {ϕ1}t{ψ1} Γ ⊢ {ϕ2}t{ψ2}

Γ ⊢ {ϕ1 ∨ ϕ2}t{ψ1 ∨ ψ2}

(L-Expansion) :
Γ ⊢ {ϕ}t{ψ}

Γ,Γ′ ⊢ {ϕ}t{ψ}

(L-Contraction) :
Γ,Γ′ ⊢ {ϕ}t{ψ}

Γ ⊢ {ϕ}t{ψ}
(res(t) ⊆ dom(Γ))

Figure 4.4: Logical rules of concurrent separation logic
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This breaks the ownership hypothesis since the process might initially own no part of the
heap (since the empty heap satisfies the heap assertion ⊤) but accesses the location ℓ.
Using the frame rule, we could then derive

Γ ⊢ {⊤ ⋆ ℓ 7→ 0}ℓ := 2{⊤ ⋆ ℓ 7→ 0}.

This clearly spurious judgement implies that, running from a heap in which part of that
owned by the process is the location ℓ holding value 0, whenever the assignment completes,
part of the resulting heap owned by the process is the location ℓ holding value 0.

As an aside, note that the judgement

Γ ⊢ {⊥}ℓ := 1{⊥}

is derivable using the rule (L-Act). This is consistent with the informal account earlier,
which only applies to runs from states of which the part owned by the process initially
satisfies ⊥; there are, of course, no such states.

Another instance of the separating conjunction is seen in the rule for parallel compo-
sition, (L-Par):

Γ ⊢ {ϕ1}t1{ψ1} Γ ⊢ {ϕ2}t2{ψ2}
Γ ⊢ {ϕ1 ⋆ ϕ2}t1 ‖ t2{ψ1 ⋆ ψ2}

Informally, the rule is sound because the part of the initial heap that is owned by the
process t1 ‖ t2 can be split into two parts, one part satisfying ϕ1 owned by t1 and the
other satisfying ϕ2 owned by t2; as the processes execute the subheaps that we see each
as owning remain disjoint from each other and end up separately satisfying ψ1 and ψ2.

It is vital to the soundness of the rule (L-Par) that the logic enforces the requirement
that processes only act on locations that they own. If this requirement were not imposed,
so that the judgement

Γ ⊢ {⊤}ℓ := 2{⊤}

were derivable, then the rule for parallel composition could be applied with the other
judgement above to conclude that

Γ ⊢ {ℓ 7→ 0 ⋆⊤}ℓ := 1 ‖ ℓ := 2{ℓ 7→ 1 ⋆⊤}.

This flawed assertion would imply that whenever the process ℓ := 1 ‖ ℓ := 2 runs from a
state in which ℓ holds value 0, the location ℓ always holds value 1 in the resulting state,
which is obviously wrong.

To allow the logic to make judgements beyond those applicable to the almost ‘disjointly
concurrent’ programs outlined so far, further interaction is allowed through a system of
invariants. The judgement environment Γ records a formula called an invariant for each
resource in its domain, which contains all the resources occurring in the term. The intuition
(as presented in [O’H07]) is that whenever a resource r with an invariant χ is available,
there is part of the heap unowned by any other process and protected by the resource that
satisfies χ. In such a situation, we shall say that the locations used to satisfy χ are ‘owned’
by the invariant for r. Processes may gain ownership of these locations, and thereby the
right to access them, by entering a critical region protected by the resource. When the
process leaves the critical region, the invariant must be restored and the ownership of the
locations used to satisfy the invariant is relinquished. This is reflected in the rule (L-CR).
As an example, we have the following derivation:

(L-Act)
r:ℓ 7→ 0 ⊢ {ℓ′ 7→ ⋆ ℓ 7→ 0}ℓ′ := ℓ{ℓ′ 7→ 0 ⋆ ℓ 7→ 0}

(L-CR)
r:ℓ 7→ 0 ⊢ {ℓ′ 7→ }with r do ℓ′ := ℓ od{ℓ′ 7→ 0}
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The process initially owns the location ℓ′ and the location ℓ is protected by the resource
r. We reason about the process inside the critical region running from a state with
ownership of the locations governed by the invariant in addition to those that it owned
before entering the critical region since no other process can be operating on them; that is,
we reason about ℓ′ := ℓ with locations ℓ and ℓ′ owned by the process. However, when the
process leaves the critical region, ownership of the locations used to satisfy the invariant
is lost, indicated by the conclusion ℓ′ 7→ 0 in the judgement rather than ℓ′ 7→ 0 ⋆ ℓ 7→ 0.

An invariant is required to be a precise heap logic formula.

Definition 4.2.1 (Precision). A heap logic formula χ is precise if for any heap D there
is at most one subheap D0 ⊆ D such that D0 |= χ.

We leave discussion of the role of precision to the conclusion, though it might be seen
to be of use since it identifies uniquely the part of the heap that is owned by the invariant if
the resource is available. Formally, Γ ranges over finite partial functions from resources to
precise heap formulae. We write dom(Γ) for the set of resources on which Γ is defined, and
write Γ,Γ′ for the union of the two partial functions, defined only if dom(Γ)∩dom(Γ′) = ∅.
We write r:χ for the singleton environment taking resource r to χ, and we allow ourselves
to write r:χ ∈ Γ if Γ(r) = χ.

The final remark to be made on the rules of the logic is that (L-Res) allows invariants
to be established for newly declared resources. We reason about the closed term [r/w]t, for
an arbitrary ‘fresh’ resource r; it is sufficient to consider only one such resource, as shall be
seen in Lemma 5.3.8. The resource r is known not to occur in the domain of Γ and hence
does not occur in the term t thanks to the following lemma, proved straightforwardly by
induction on the judgement.

Lemma 4.2.1. If Γ ⊢ {ϕ}t{ψ} then res(t) ⊆ dom(Γ).

4.3 Examples

For the reader unfamiliar with concurrent separation logic, we now give some more sub-
stantial examples to show the kind of process that can be verified. The most important
example is the second one, which shows how the logic allows the transfer of ownership
between processes.

Message passing example

First, we shall implement a simple form of channel for synchronous message passing. The
implementation will make use of conditional critical regions, having the syntax

with r when b do t od.

We shall see this as an abbreviation for the following process, which repeatedly acquires
the resource r until the boolean b holds:

flag := true; %% local variable

while flag = true do %% repeat until flag set

with r do %% acquire resource

if b then %% set repeat flag to false and run body

flag := false;
t

else ε fi %% try again

od

od
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Here, we have written if b then t else t′ fi to represent the guarded sum b.t + ¬b.t′.
The location denoted flag should be local to the process being considered. The best way
to implement this would be to define a local variable if we had variables in the language.
Since we do not, we regard the conditional critical region as being parameterized by the
choice of this location

with r when b do t odflag .

In [O’H07], conditional critical regions are used in place of the critical regions used
here. The normal interpretation of conditional critical regions is slightly different from
that above in that the process waits until both the resource is available and the boolean
holds before entering the conditional critical region, whereas the process above enters the
critical region and then checks the boolean — normally called a ‘busy-wait’. For the
purpose of reasoning about partial correctness, it is entirely sufficient to regard the two
implementations as being the same.

Moving on to the implementation of the synchronous channel, a channel will be imple-
mented using a collection of locations recording its status. Access to these locations will
be protected by conditional critical regions depending on the resource c. The locations
protected by the resource are free to indicate whether or not the channel is in use, val
to record the value being transmitted, and received to indicate that the value has been
received. The invariant to describe the channel is:

Chan =

(

free 7→ true ⋆ received 7→ false ⋆ val 7→
∨ free 7→ false ⋆ received 7→ ⋆ val 7→

)

The first process that we shall define shall be the sender, which outputs a value v on
the channel. The channel must be free before the process can send the message. Upon
updating the channel, the process waits until the status of the channel is updated by the
receiver before it resumes. We annotate the code with the heap logic assertions that can
be derived to hold of the heap owned by the process at each point.

{flag1 7→ }
with c when free = true do

{flag1 7→ ⋆ free 7→ true ⋆ received 7→ false ⋆ val 7→ }
%% write value and record that the channel is in use

val := v;
free := false

{flag1 7→ ⋆ free 7→ false ⋆ received 7→ false ⋆ val 7→ }
{flag1 7→ ⋆ Chan}

odflag1 ;
{flag1 7→ }
%% wait for value to be received

with c when received = true do

{flag1 7→ ⋆ free 7→ false ⋆ received 7→ true ⋆ val 7→ }
%% restore channel to unused state

received := false;
free := true

{flag1 7→ ⋆ free 7→ true ⋆ received 7→ false ⋆ val 7→ }
{flag1 7→ ⋆ Chan}

odflag1

{flag1 7→ }

The process that receives on the channel is somewhat simpler. It waits for the location
called free to be set to false, indicating that a process is ready to send to the channel, and
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then reads the value sent to the location input .

{input 7→ ⋆ flag2 7→ }
%% wait until sender sets free to false

with c when free = false do

{input 7→ ⋆ flag2 7→ ⋆ free 7→ false ⋆ received 7→ false ⋆ val 7→ }
%% get channel input and set received flag

input := val ;
received := true

{input 7→ ⋆ flag2 7→ ⋆ free 7→ false ⋆ received 7→ true ⋆ val 7→ }
{input 7→ ⋆ flag2 7→ ⋆ Chan}

odflag2

{input 7→ ⋆ flag2 7→ }

The two processes can be placed in parallel to yield the judgement

c:Chan ⊢ {flag1 7→ ⋆ flag2 7→ ⋆ input 7→ }
Sender ‖ Receiver

{flag1 7→ ⋆ flag2 7→ ⋆ input 7→ }

This example establishes that whenever the resource protecting the channel is available
(i.e. whenever neither the sender nor the receiver are inside a critical region), the values
held in locations for the channel are consistent. It also demonstrates that the processes
only access these locations when inside their critical regions.

What if we wanted to establish other properties of the channel? For example, how can
we show that the location input always ends up holding value v? Since this is a global
judgement, that requires understanding of both the receiver and the sender, it has to be
reflected in the invariant for the channel. The new invariant would be

Chanv =

(

free 7→ true ⋆ received 7→ false ⋆ val 7→
∨ free 7→ false ⋆ received 7→ ⋆ val 7→ v

)

With this invariant, the proofs above can be modified straightforwardly to give the judge-
ment

c:Chanv ⊢ {flag1 7→ ⋆ flag2 7→ ⋆ input 7→ }
Sender ‖ Receiver

{flag1 7→ ⋆ flag2 7→ ⋆ input 7→ v}
.

Of course, in itself, this is not an awfully useful kind of judgement. The principle will be
extended later to see how, in fact, ownership can be transferred over channels.

Transfer of ownership

The notion of ownership is subtle since the collection of locations that a process owns
may change as the process evolves. As seen in the rule (L-Alloc), the intuitive reading
is that, after an allocation event has taken place, the process owns the newly-current
location. Similarly, deallocation of a location leads to loss of ownership. For example, it
is possible to make the judgement

Γ ⊢ {ℓ 7→ }alloc(ℓ){∃xloc.ℓ 7→ xloc ⋆ xloc 7→ }.

If the new location were ℓ′ which initially held value v, this would mean that in the the
(fragment of the) resulting heap {ℓ 7→ ℓ′, ℓ′ 7→ v}, the locations ℓ and ℓ′ would be owned
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by the process. Consequently, the action [ℓ] := 0 which assigns 0 to the location pointed
to by ℓ resulting in the heap {ℓ 7→ ℓ′, ℓ′ 7→ 0} allows the judgement

Γ ⊢ {∃xloc.ℓ 7→ xloc ⋆ xloc 7→ }[ℓ] := 0{∃xloc.ℓ 7→ xloc ⋆ xloc 7→ 0}

by (L-Act) since both locations would be owned by the process. The rule (L-Seq) can
now be applied to obtain

Γ ⊢ {ℓ 7→ }alloc(ℓ); [ℓ] := 0{∃xloc.ℓ 7→ xloc ⋆ xloc 7→ 0},

indicating that the process has ownership of the location ℓ′, seen in the ability to write to
ℓ′, once it has been allocated.

A rather more subtle point is that the rules allow ownership of locations to be trans-
ferred through invariants. Consider the invariant χ defined as ℓ′ 7→ 0∨ (ℓ′ 7→ 1⋆ ℓ 7→ 0). If
the resource is available, the invariant is satisfied: it either protects the location ℓ′, which
has value 0, or it protects location ℓ′, which has value 1, as well as location ℓ. A process
can acquire ownership of ℓ across a critical region by changing the value of ℓ′ from 1 to 0
and may leave ownership of ℓ inside the invariant by changing the value of ℓ′ from 0 to 1.
This gives rise to separation logic being able to support daring concurrency in the sense
of [O’H07], where concurrent processes can access some common location whilst outside
critical regions but without causing a race to occur.

Assume, for example, that the process owns location ℓ. The only way in which the
invariant χ can be satisfied disjointly from the locations that the process owns is for ℓ′ to
hold value 0. That is, we have

ℓ 7→ 0 ⋆ (ℓ′ 7→ 0 ∨ (ℓ′ 7→ 1 ⋆ ℓ 7→ 0)) =⇒ ℓ 7→ 0 ⋆ ℓ′ 7→ 0

which is implicitly used in the instance of the rule (L-Consequence) below. Conse-
quently, as the process enters a critical region protected by r, it gains ownership of location
ℓ′. If the process sets the value of ℓ′ to 1, when the process leaves the critical region it
must restore the invariant to the resource, and so relinquish ownership of both ℓ′ and ℓ.
This is seen in the derivation of the following judgement, in which we take Γ = r:χ.

(L-Act)
Γ ⊢ {ℓ 7→ 0 ⋆ ℓ′ 7→ 0}ℓ′ := 1{ℓ 7→ 0 ⋆ ℓ′ 7→ 1}

(L-Consequence)
Γ ⊢ {ℓ 7→ 0 ⋆ χ}ℓ′ := 1{empty ⋆ χ}

(L-CR)
Γ ⊢ {ℓ 7→ 0}with r do ℓ′ := 1 od{empty}

It is also possible to acquire ownership of locations through an invariant. Let the action
diverge have the same semantics as that of the boolean guard false, which is an action
that can never occur i.e. the process is stuck. We have the following derivation:

Γ ⊢ {χ} ℓ′ = 0 {ℓ′ 7→ 0}
Γ ⊢ {ℓ′ 7→ 0} diverge {ℓ′ 7→ 0 ⋆ ℓ 7→ 0}
Γ ⊢ {χ} ℓ′ = 1 {ℓ′ 7→ 1 ⋆ ℓ 7→ 0}
Γ ⊢ {ℓ′ 7→ 1 ⋆ ℓ 7→ 0} ℓ′ := 0 {ℓ′ 7→ 0 ⋆ ℓ 7→ 0}

(L-Sum)
Γ ⊢ {χ}(ℓ′ = 0.diverge) + (ℓ′ = 1.ℓ′ := 0){ℓ 7→ 0 ⋆ ℓ′ 7→ 0}

(L-Conseq.)
Γ ⊢ {empty ⋆ χ}(ℓ′ = 0.diverge) + (ℓ′ = 1.ℓ′ := 0){ℓ 7→ 0 ⋆ χ}

(L-CR)
Γ ⊢ {empty}with r do (ℓ′ = 0.diverge) + (ℓ′ = 1.ℓ′ := 0) od{ℓ 7→ 0}

The undischarged hypotheses at the top of the derivation are all proved by the rule
(L-Act). Let t0 denote the process (ℓ′ = 0.diverge) + (ℓ′ = 1.ℓ′ := 0). Observe that
the process with r do t0 od is considered to own no part of the initial heap. As the
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Γ ⊢

{ℓ 7→ 2}
{ℓ 7→ 2} {empty}
ℓ := 0; with r do
{ℓ 7→ 0} ℓ′ = 0. diverge
with r do + ℓ′ = 1. ℓ′ := 0
ℓ′ := 1 od;

od {ℓ 7→ 0}
{empty} ℓ := 1

{ℓ 7→ 1}
{ℓ 7→ 1}

Figure 4.5: Program transferring ownership

process enters the critical region, it is considered to take ownership of the part of the heap
satisfying the invariant for r, namely χ = ℓ′ 7→ 0 ∨ (ℓ′ 7→ 1 ⋆ ℓ 7→ 0). There are two ways
in which χ might be satisfied:

1. It may be that the process gains ownership of the location ℓ′ which holds value 0. In
this case, only the guard ℓ′ = 0 of t0 can pass, so the process must evolve to diverge

and therefore never terminates.

2. The process might have taken control of the locations ℓ, holding value 0, and ℓ′,
holding value 1. Inside the critical region, only the guard ℓ′ = 1 can pass so the
process t0 can be seen to change the value of ℓ′ from 1 to 0. The only way that
the invariant χ can then be satisfied is by the location ℓ′ holding 0, so ownership of
ℓ′ is lost as the process leaves the critical region. Importantly, the process retains
ownership of location ℓ.

Either way, whenever the process terminates, it owns location ℓ since it can only terminate
in case (2).

Using the derivations given above, in Figure 4.5 we give an example of ownership of
ℓ, as exhibited by the right to write to ℓ, being transferred (we have annotated internal
assertions arising from the proofs above inside the program). We also see that in any
terminating run of this process, it must be the case that the process on the left terminates
strictly before the process on the right begins.

Ownership transmission

Before we move on to the formal semantics of the logic, we shall go through one more
example of the logic at work, combining the two examples above to show how ownership
may be transferred across synchronous channels.

This time, rather than holding a value, processes pass a reference to a location along a
channel along with ownership of the location pointed to. This example can be generalized
to allow the introduction of channels that allow transfer of any kind of structure, such as
a list, rather than just a single location.

The invariant to represent a channel capable of transferring ownership of a single
location is as follows: Chan′ =





free 7→ true ⋆ received 7→ false ⋆ val 7→
∨ free 7→ false ⋆ received 7→ false ⋆ ∃xloc.(val 7→ xloc ⋆ xloc 7→ )
∨ free 7→ false ⋆ received 7→ true ⋆ val 7→




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{flag1 7→ ⋆ p 7→ }
alloc(p);
{flag1 7→ ⋆ ∃xloc.(p 7→ xloc ⋆ xloc 7→ )}
with c when free = true do

{flag1 7→ ⋆ ∃xloc.(p 7→ xloc ⋆ xloc 7→ )⋆
free 7→ true ⋆ received 7→ false ⋆ val 7→ }

%% write value and record that the channel is in use

val := p;
free := false

{flag1 7→ ⋆ ∃xloc.(p 7→ xloc ⋆ val 7→ xloc ⋆ xloc 7→ )⋆
free 7→ false ⋆ received 7→ false}
{flag1 7→ ⋆ p 7→ ⋆ Chan}

odflag1 ;
{flag1 7→ ⋆ p 7→ }
%% wait for value to be received

with c when received = true do

{flag1 7→ ⋆ p 7→ ⋆ free 7→ false ⋆ received 7→ true ⋆ val 7→ }
%% restore channel to unused state

received := false;
free := true

{flag1 7→ ⋆ p 7→ ⋆ free 7→ true ⋆ received 7→ false ⋆ val 7→ }
{flag1 7→ ⋆ p 7→ ⋆ Chan}

odflag1

{flag1 7→ ⋆ p 7→ }

Figure 4.6: Process sending ownership over a channel

The first disjunct represents no value being sent along the channel. The second disjunct
represents a sender having assigned a pointer to the location represented by xloc to val but
the message not yet having been received. The final disjunct represents the case where the
receiver has received the message, allowing the sender to resume. Note how ownership of
the location pointed to by val will be transferred to the invariant in proceeding from the
first disjunct to the second and how it will be transferred from the invariant in proceeding
from the second disjunct to the third.

The proofs of the earlier Sender and Receiver processes can be modified to give the
following judgements with respect to the environment c:Chan′. The sender process is
modified as shown in Figure 4.6, first allocating a location and then sending it along the
channel. Recall that flag1 is a location used to implement the conditional critical region.

The proof for the receiver process, presented in Figure 4.7 is changed to account for
acquiring ownership of the location passed along the channel prior to its deallocation.
Together, the two processes demonstrate how a location can be allocated by the sender,
its ownership transferred, and then it be deallocated by the receiver.
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{input 7→ ⋆ flag2 7→ }
%% wait until sender sets free to false

with c when free = false ∧ received = false do

{input 7→ ⋆ flag2 7→
⋆free 7→ false ⋆ received 7→ false ⋆ ∃xloc.(val 7→ xloc ⋆ xloc 7→ )}

%% get channel input and set received flag

input := val ;
received := true

{∃xloc.(input 7→ xloc ⋆ val 7→ xloc ⋆ xloc 7→ ) ⋆ flag2 7→
⋆free 7→ false ⋆ received 7→ true}
{∃xloc.(input 7→ xloc ⋆ xloc 7→ ) ⋆ flag2 7→ ⋆ Chan}

odflag2 ;
{∃xloc.(input 7→ xloc ⋆ xloc 7→ ) ⋆ flag2 7→ }
dealloc(input)
{input 7→ ⋆ flag2 7→ }

Figure 4.7: Process receiving ownership over a channel
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Chapter 5

Net semantics of separation logic

We now progress to give a formal interpretation of the rules presented in the previous
chapter. The key results are:

• Theorem 5.2 on page 94, where the rules of concurrent separation logic are proved
sound with respect to the model to be developed,

• Corollary 5.3 on page 94, where the soundness proof is connected to the standard
net semantics,

• Proposition 5.4 on page 95, where it is shown that proved processes avoid faults such
as accessing non-allocated memory locations, and

• Theorem 5.5 on page 97, where the separation of proved processes is captured.

The key idea is that the judgement Γ ⊢ {ϕ}t{ψ} is robust against the operation of
other ‘external’ processes (which have themselves been subject to a judgement in the logic)
on the state, so that the rule for parallel composition is valid. From the account presented
earlier, external processes may act on the heap providing they do not access the locations
that we see as ‘owned’ by the process t, and they may act to acquire and release resources
providing they respect the invariants in Γ. External processes may also make non-current
resources current through the instantiation of a local resource variable. The semantics
of judgements (i.e. the model with respect to which validity shall be considered) must
therefore keep a record of how each current location in the heap and each current resource is
owned: whether the process being considered is allowed to access the location, whether the
location forms part of an invariant protected by a resource, or whether external processes
might act on that location, along with a similar record for resources. The semantics of
judgements will include interference events to represent such forms of action by external
processes. We shall see shortly how the events of the process correspond to interference
events and shall specify precisely how they affect the distribution of ownership, but we
focus first on the interference events themselves.

5.1 Interference nets

Capturing the requirements above, we construct an interference net with respect to the
environment Γ to represent the execution of suitable external processes proved against Γ.
This involves creating mutually exclusive ownership conditions (conditions in the Petri
net sense) which we denote ωproc(ℓ), ωinv(ℓ) and ωoth(ℓ) for each location ℓ. The intuition
is that ωproc(ℓ) is marked if ℓ is owned by the process, ωinv(ℓ) is marked if ℓ is used to
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satisfy the invariant for an available resource, and ωoth(ℓ) is marked if ℓ is current but
owned by another process.

To give an example, suppose that we have the judgement

Γ ⊢ {k 7→ 1}k := 0{k 7→ 0}.

The proof can be composed with the judgement Γ ⊢ {ℓ 7→ 0}ℓ := 0{ℓ 7→ 1} to obtain

Γ ⊢ {k 7→ 1 ⋆ ℓ 7→ 0}k := 0 ‖ ℓ := 1{k 7→ 0 ⋆ ℓ 7→ 1}.

The first proof, that the assignment k := 0 changes the value at k from 1 to 0, must
take into account the possibility that the values held at other locations may change. In
particular, it must take into account the possibility that the value at ℓ (not to equal k)
changes from 0 to 1. (It is, of course, obvious that the assignment to ℓ does not affect
the judgement about the assignment to k; we shall come to a more interesting example
shortly.) We therefore reason about the net N Jk := 0K in the presence of the following
interference event which changes the value held at ℓ from 0 to 1:

ωproc(ℓ)

ωinv(ℓ)

ωoth(ℓ)

ℓ 7→ 0

ℓ 7→ 1

act({ℓ 7→ 0}, {ℓ 7→ 1})

ωproc(ℓ)

ωinv(ℓ)

ωoth(ℓ)

ℓ 7→ 0

ℓ 7→ 1

evolves to

Notably, the above event requires that the location ℓ is owned by an external process, i.e.
that the condition ωoth(ℓ) is marked.

Since we do not know a priori with which other judgements Γ ⊢ {k 7→ 1}k := 0{k 7→ 0}
may be composed, there are interference events present in the net for all the forms of in-
terference permissible according to the notion of ownership. For instance, the interference
event where another process changes the value of k from 0 to 1

act({k 7→ 0}, {k 7→ 1})

ωproc(k)

ωinv(k)

ωoth(k)

k 7→ 0

k 7→ 1

is present in the net. However, the judgement asserts that k is owned by the process, so
this interference event (and indeed any other interference event that affects k) will not be
able to occur because the condition ωproc(k) will be marked, not ωoth(k).

As mentioned above, we introduce interference events to mimic the action of external
processes on resources. The notion of ownership is therefore extended in this setting to
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resources, for example so that an external process cannot be allowed to release a resource
held by the current process. It is important to make a distinction between resources in
the domain of the environment Γ, called open resources, and those that are not, called
closed resources: open resources have invariants associated with them, so the ownership
of the heap is affected by events that acquire or release them as presented earlier in the
last chapter; this is not the case for closed resources. Closed resources are those resources
made current to instantiate a local resource variable. They may either be used by the
process being considered if it declared the resource or be used by some external process
if some external process declared the resource. We shall introduce conditions ωproc(r),
ωinv(r) and ωoth(r) for each resource r. The condition ωproc(r) will be marked if either the
resource is closed and was made current by the process or if the resource is open and is
held by the process. The condition ωinv(r) will be marked if r is open and available. The
condition ωoth(r) will be marked if either the resource is closed and was made current by
an external process or if the resource is both open and the external process holds it.

Interference and critical regions

We now consider the effect of interference on a process that modifies part of the heap
protected by an open resource. Let the invariant for the resource r in the environment Γ
be k 7→ 0 ∨ k 7→ 1. We shall explain why the Hoare triple

{ℓ 7→ 0}with r do k := 1 od; with r do l := k od{ℓ 7→ 1}

is not valid with respect to Γ.
Informally, the reason for this is that some external process might acquire the resource

r between the two critical regions and change the value of k to 0. In more detail, suppose
that the process starts in a state in which the resource r is available. The location k
will be protected by the invariant, so the condition ωinv(k) will be marked. Following the
account above, since the resource r is open and available, the condition ωinv(r) will also be
marked. As the process enters the critical region, it gains ownership of r and k resulting in
ωproc(r) and ωproc(k) becoming marked instead of ωinv(r) and ωinv(k). The process changes
the value at k to 1 and then leaves the critical region. As it does so, it records that it
no longer owns the resource r by switching the marking of ownership conditions back to
ωinv(r) and ωinv(k). Hence, between the two critical regions, the marking is:

{ℓ 7→ 0, k 7→ 1, r, ωproc(ℓ), ωinv(k), ωinv(r)}.

The account above explains that external processes might enter and leave critical regions.
For example, we might later wish to compose this judgement with the (derivable) judge-
ment

Γ ⊢ {empty}with r do k := 0 od{empty}.

To mimic the behaviour of this process, the interference net contains the following inter-
ference events:

ωoth(r)

ωoth(k)

ωinv(r)

ωinv(k)

r

ωoth(k)

k 7→ 0

r

ωinv(r)

ωinv(k) ωoth(k)

ωoth(r)

k 7→ 1

k 7→ 1

k 7→ 0
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(The interference net contains events to represent all forms of possible interference; these
shall be specified in the following section.) The first of these events represents that the
second process above, of which we were not specifically aware when reasoning about the
first process above, might acquire the resource r. In doing so, this other process takes
ownership of the location k since the invariant is satisfied through k. The process also
takes ownership of the resource r. The second event represents that the other process can
change the value of k providing it owns the location k. The third event represents that
the other process can release the resource r providing it restores the invariant and returns
ownership of the locations satisfying the invariant.

We can see that these three events in succession have concession from the intermediate
marking given above. Their effect is to change the value of k from 1 to 0. It is clear that
the second critical region of the process that we were originally considering

with r do ℓ := k od

now results in the value 0 being copied to ℓ, invalidating the original Hoare triple.

5.2 Synchronization and the ownership net

We now formally specify the interference net and show how this is used to form an own-
ership net. The ownership net models how processes, both the process being considered
and external processes, affect the distribution of ownership as they run.

Both the interference net and the ownership net augment the original net semantics
with ownership conditions. The set of ownership conditions is denoted W:

W , {ωproc(ℓ), ωinv(ℓ), ωoth(ℓ) | ℓ ∈ Loc}

∪{ωproc(r), ωinv(r), ωoth(r) | r ∈ Res}.

We use W to range over markings of ownership conditions and introduce the notations
We and eW for the sets of pre-ownership conditions of e and post-ownership conditions of
e, respectively. For a set of locations L, we define the notation

ωproc(L) , {ωproc(ℓ) | ℓ ∈ L},

and define ωinv(L) and ωoth(L) similarly. Only certain markings of ownership conditions
are consistent with a state σ:

Definition 5.2.1 (Consistent marking). The marking of state and ownership conditions
(σ,W ) is consistent if:

1. σ is a consistent state in N JtK,

2. for each z ∈ Loc ∪Res, at most one of {ωproc(z), ωinv(z), ωoth(z)} is marked,

3. for each z ∈ Loc ∪ Res, the ownership condition curr(z) is in σ iff precisely one of
{ωproc(z), ωinv(z), ωoth(z)} is in W ,

4. if r ∈ dom(Γ) and r ∈ R then ωinv(r) ∈W ,

5. if r ∈ dom(Γ) and r 6∈ R then either ωproc(r) ∈W or ωoth(r) ∈W , and

6. if curr(r) ∈ σ and r 6∈ dom(Γ) then either ωproc(r) ∈W or ωoth(r) ∈W .
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A marking of the control, state and ownership conditions (C, σ,W ) is consistent if (σ,W )
is consistent.

It shall be shown in Proposition 5.1 on page 83 that consistency of markings is pre-
served. Requirements (2) and (3) assert that W is essentially a function from the set of
current locations and resources to ownership. Requirement (4) states that any available
open resource is owned as an invariant: it can be accessed either by the process being
considered or by an external process, and there is an invariant associated with r. Require-
ment (5) states that any unavailable open resource is either held by the process or by an
external process. Requirement (6) asserts that any closed resource is owned either by the
current process or by an external process.

Table 5.1 defines a number of notations for events corresponding to the permitted
interference described. To summarize, there will be interference events to represent the
following kinds of action by external processes:

• act(D1,D2): Arbitrary action on the heap (excluding allocation or deallocation)
owned by external processes.

• alloc(ℓ, v, ℓ′, v′): Allocation of a new location ℓ′ by an external process, storing the
result in the location ℓ. The location ℓ must be owned by an external process.
Ownership of the new location ℓ′ is taken by the external process.

• dealloc(ℓ, v, ℓ′, v′): Disposal of the location ℓ′ pointed to by ℓ. Both locations are
initially owned by external processes, so ωoth(ℓ) and ωoth(ℓ

′) are preconditions to the
event.

• decl(r): Declaration of a resource r. The condition curr(r) is marked by the event,
so the resource was not initially current. Ownership of r is taken by the external
process, so ωoth(r) is in the postconditions of the event.

• end(r): End of scope of a resource r, only permissible if the resource was initially
declared by an external process and therefore ωoth(r) is marked.

• acq(r): For a closed resource r, the external process may acquire the resource if it
is not local to the process being considered and therefore ωoth(r) is marked.

• rel(r): For a closed resource r, the external process may release the resource if it is
not local to the process being considered and therefore ωoth(r) is marked.

• acq(r,D0): For an open resource r with an invariant χ in Γ, if D0 |= χ and D0

is part of the current heap then ownership of the locations in the domain of D0

is changed from being protected by the resource to being owned by the external
process, i.e. unmarking ωinv(ℓ) and marking ωoth(ℓ) for each location ℓ ∈ dom(D0).
The ownership of r also changes from ωinv(r) being marked to ωoth(r) being marked.

• rel(r,D0): The corresponding release action.

Definition 5.2.2 (Interference net). The interference net for Γ has conditions S, the
state conditions, and W, the ownership conditions. It has the following events called
interference events:

• act(D1,D2) for all D1 and D2 forming partial functions with the same domain

• alloc(ℓ, v, ℓ′, v′) and dealloc(ℓ, ℓ′, v′) for all locations ℓ and ℓ′ and values v and v′
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Preconditions Postconditions

u Su Wu uS uW

act(D1, D2) D1 ωoth(dom(D1)) D2 ωoth(dom(D2))

alloc(ℓ, v, ℓ′, v′) {ℓ 7→ v} {ωoth(ℓ)} {curr(ℓ′)}∪ {ωoth(ℓ), ωoth(ℓ
′)}

{ℓ 7→ ℓ′, ℓ′ 7→ v′}

dealloc(ℓ, ℓ′, v′) {curr(ℓ′)}∪ {ωoth(ℓ), ωoth(ℓ
′)} {ℓ 7→ ℓ′} {ωoth(ℓ)}

{ℓ 7→ ℓ′, ℓ′ 7→ v′}

decl(r) {} {} {curr(r), r} {ωoth(r)}

end(r) {curr(r), r} {ωoth(r)} {} {}

acq(r) {r} {ωoth(r)} {} {ωoth(r)}

rel(r) {} {ωoth(r)} {r} {ωoth(r)}

acq(r,D0) D0 ∪ {r} ωinv(dom(D0))∪ D0 ωoth(dom(D0))∪
{ωinv(r)} {ωoth(r)}

rel(r,D0) D0 {ωoth(r)}∪ D0 ∪ {r} {ωinv(r)}∪
ωoth(dom(D0)) ωinv(dom(D0))

Table 5.1: Notation for interference events

• decl(r) and end(r) for all closed resources r

• acq(r) and rel(r) for all closed resources r

• acq(r,D0) and rel(r,D0) for all r ∈ dom(Γ) and D0 such that D0 |= χ, for χ the
unique formula such that r:χ ∈ Γ

We use the symbol u to range over interference events.

The interference events illustrate how the ownership of locations is dynamic and how
this constrains the possible forms of interference. The rule for parallel composition requires
that the behaviour of the process being reasoned about itself conforms to these constraints,
allowing its action to be seen as interference when reasoning about the other process.
This requirement may be captured by synchronizing the events of the process with those
from the interference net. Sycnhronization of events is a general operation, introduced in
[Win82]. In the case of the framework for concurrent separation logic here, synchronization
is restricted to complementary events:

• The process event act(C,C′)(D,D
′) synchronizes with act(D,D′)

• The process event alloc(C,C′)(ℓ, v, ℓ
′, v′) synchronizes with alloc(ℓ, v, ℓ′, v′)

• The process event dealloc(C,C′)(ℓ, ℓ
′, v′) synchronizes with dealloc(ℓ, ℓ′, v′)

• The process event decl(C,C′)(r) synchronizes with decl(r)

• The process event end(C,C′)(r) synchronizes with end(r)

• The process event acq(C,C′)(r) synchronizes with acq(r) for any closed resource r,
i.e. for any r 6∈ dom(Γ)
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• The process event rel(C,C′)(r) synchronizes with rel(r) for any closed resource r

• If r is an open resource with r:χ ∈ Γ, the process event acq(C,C′)(r) synchronizes
with every acq(r,D0) such that D0 |= χ. Similarly, rel(C,C′)(r) synchronizes with

every rel(r,D0) such that D0 |= χ.

Suppose that two events synchronize, e from the process and u from the interference net.
The event u is the event that would fire in the net for the other parallel process to simulate
the event e; it is its dual. Let e · u be the event formed by taking the union of the pre-
and postconditions of e and u, other than using ωproc(ℓ) in place of ωoth(ℓ) and similarly
ωproc(r) in place of ωoth(r).

•(e · u) , {b | b ∈ •e ∪ •u and 6 ∃z.b = ωoth(z)} ∪ {ωproc(z) | ωoth(z) ∈
•u}

(e · u)• , {b | b ∈ e• ∪ u• and 6 ∃z.b = ωoth(z)} ∪ {ωproc(z) | ωoth(z) ∈ u
•}

Example 5.2.1 (Synchronization of heap actions). Define the events e and u as

e = act(C,C′)({ℓ 7→ 0}, {ℓ 7→ 1}) u = act({ℓ 7→ 0}, {ℓ 7→ 1}).

The events e and u are drawn as follows along with the result of synchronizing them, e ·u:

C C′

ℓ 7→ 1ℓ 7→ 0

C C′

ℓ 7→ 1

ωproc(ℓ)

ℓ 7→ 0

e = act(C,C′)({ℓ 7→ 0}, {ℓ 7→ 1})

ℓ 7→ 0 ℓ 7→ 1

ωoth(ℓ)

u = act({ℓ 7→ 0}, {ℓ 7→ 1}) e · u

The event e is an event inside the process net, with pre-control conditions C and post-
control conditions C ′, that changes the value of ℓ from 0 to 1. It synchronizes with only
one event, u, which performs the corresponding interference action. For the event u to
occur, the condition ωoth(ℓ) must be marked i.e. the location ℓ must be seen as owned by
an ‘external’ process. The event formed by synchronizing e and u is e · u, which requires
the location ℓ to be owned by the current process for it to occur.

Example 5.2.2 (Synchronization of critical regions). Assume that e (drawn below) is an
event inside the process net, with pre-control conditions C and post-control conditions C ′,
that acquires the open resource r.

Suppose that the invariant for r is ℓ′ 7→ 0∨(ℓ′ 7→ 1⋆ℓ 7→ 0). There are two heaps, D1 =
{ℓ′ 7→ 0} and D2 = {ℓ′ 7→ 1, ℓ 7→ 0} that satisfy this formula. There are correspondingly
two interference events u1 and u2 that synchronize with e: the event u1 acquires the
resource r and transfers the ownership of ℓ′ and r to the external process from the invariant,
whereas the event u2 acquires the resource r and transfers ownership of ℓ, ℓ′ and r to the
external process from the invariant. The event u1 requires that the heap initially has value
0 at ℓ′; the event u2 requires that the heap initially has value 1 at ℓ′ and 0 at ℓ.

The synchronized events e · u1 and e · u2 are similar, transferring ownership from the
invariant to the process being considered.

81



r ωoth(ℓ
′)

ωinv(ℓ
′)

ωinv(r)
ωoth(r)

r

ωinv(ℓ
′) ωoth(ℓ

′)

ωoth(ℓ)ωinv(ℓ)

ωinv(r)
ωoth(r)

C

r ωproc(ℓ
′)

C′

ωinv(ℓ
′)

ωinv(r) ωproc(r)

C′

r

ωinv(ℓ
′)

ωinv(ℓ) ωproc(ℓ)

ωproc(ℓ
′)

C

ωinv(r)

ωproc(r)

r

C′C

u1 = acq(r,D1)

ℓ′ 7→ 0

u2 = acq(r,D2)

ℓ′ 7→ 1

ℓ 7→ 0

ℓ′ 7→ 0

s1 = e · u1

ℓ′ 7→ 1

ℓ 7→ 0

s2 = e · u2

e = acq(C,C′)(r)

Even though there are two synchronized events corresponding to e in the example
above, namely e ·u1 and e ·u2, in Lemma 5.2.1 we shall see that the precision of invariants
means that in any reachable marking only one of these can occur. First, though, we shall
give the formal definition of the nets formed with interfererence and synchronized events.

The semantics of judgements made using the rules of concurrent separation logic will
consider a netW JtKΓ with interference events to represent external processes running and
synchronized events to represent the process t.

Definition 5.2.3 (Ownership net). The ownership net for t in Γ, denoted W JtKΓ, is the
net formed with the previous definitions of control conditions C, state conditions S and
ownership conditions W, and events:

• Every event u from the interference net for Γ, and

• Every event e · u where e is an event of N JtK and u from the interference net such
that e and u synchronize.

We shall continue to use the symbol e to refer to any kind of event in ownership nets,
but shall reserve the symbol s for those events known in particular to be synchronized
events.

Behavioural properties of ownership nets

We now turn to some behavioural properties of ownership nets. We begin with Lemma
5.2.1, an important property meaning that, because invariants are precise formulae, there
is never any choice in runs of the ownership net of how ownership is transferred once
it is known which corresponding event of the net N JtK is to occur. We then relate the
behaviour of ownership nets to the original nets in Lemmas 5.2.2 and 5.2.3, which rely on
an important characterization of markings (called violating markings) in which the extra
requirements due to ownership prevent the occurrence of the a synchronized event.

A consequence of requiring invariants to be precise is that at most one of the synchro-
nized events corresponding to an event in N JtK may be enabled in any marking of the
ownership net W JtKΓ.

Lemma 5.2.1. For any marking σ of state conditions, let (C, σ,W ) and (C ′, σ,W ′) be
consistent markings of the net W JtKΓ. For any event e in N JtK and any interference
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events u and u′ in W JtKΓ, if e · u has concession in (C, σ,W ) and e · u′ has concession in
(C ′, σ,W ′) then u = u′.

Proof. Straightforwardly seen to follow from precision by an analysis of the possible forms
of the event e.

The occurrence of a synchronized event e · u in a marking (C, σ,W ) of the net W JtKΓ
clearly gives rise to the occurrence of the event e in N JtK in the marking (C, σ) and
hence to the occurrence of e in C JtK in the marking C. The earlier results describing
the behaviour of C JtK in terms of the behaviour of the nets representing its subterms can
therefore be applied to the net W JtKΓ.

Lemma 5.2.2. If M = (C, σ,W ) and M ′ = (C ′, σ′,W ′) are markings of W JtKΓ and

M
e
−։ M ′ then either e is an interference event and C = C ′ or e = e1 · u for an event e1

of N JtK and an interference event u and (C, σ)
e1
−։ (C ′, σ′) in N JtK.

Proof. The events of W JtKΓ are, by definition, only interference events or synchronized
events. If e is an interference event, C = C ′ because Ce = ∅ and eC = ∅. For a synchronized
event e1 · u, observe that C(e1 · u) = Ce1 and that (e1 · u)

C = e1
C, and similarly for Le1,

Re1,
Ne1, e1

L, e1
R and e1

N. The only cases where either D(e1 · u) 6=
De1 or (e1 · u)

D 6= e1
D

are acquisition or release of an open resource, but in these cases De1 = ∅ = e1
D and

D(e1 · u) = (e1 · u)
D. The result follows as a straightforward calculation.

It is now straightforward to show that the consistency of markings is preserved by the
events in W JtKΓ. In fact, the proof is slightly easier than that for the net N JtK presented
in Proposition 3.3 due to the additional requirements imposed by ownership.

Proposition 5.1 (Preservation of consistent markings). For any closed term t and envi-

ronment Γ, if W JtKΓ :(Ic(t), σ0,W0)
∗
−։ (C, σ,W ) and (σ0,W0) is consistent then (σ,W )

is consistent.

Proof. A straightforward analysis of the possible cases of the events in W JtKΓ.

The formulation of the ownership net permits a fundamental understanding of when a
process acts in a way that cannot be seen as any form of interference from the perspective
of another process; that is, when the process has violated its guarantees.

Definition 5.2.4 (Violating marking). Let (C, σ,W ) be a consistent marking of W JtKΓ.
We say that M is violating if there exists an event e of N JtK that has concession in
marking (C, σ) but there is no event u from the interference net that synchronizes with e
such that e · u has concession in (C, σ,W ).

We shall give two examples of violating markings. The first shall be an example of
action on an unowned location and the second shows how release of an open resource will
cause a violation if the invariant is not restored.

Example 5.2.3. Let (σ,W ) be a consistent state with heap component {ℓ 7→ 0} and
ωoth(ℓ) ∈ W . The event e = act({i},{t})({ℓ 7→ 0}, {ℓ 7→ 1}), drawn below, has concession
in the marking (Ic(ℓ := 1), σ) of N Jℓ := 1K but the only corresponding synchronized event
e · act({ℓ 7→ 0}, {ℓ 7→ 1}), also drawn below, does not have concession in the marking
(Ic(ℓ := 1), σ,W ) of W JtKΓ. The marking is therefore violating, representing the fact that
the process acts on a location that it does not own.
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ℓ 7→ 1ℓ 7→ 0

ωproc(ℓ)

ωoth(ℓ)

ωinv(ℓ)

i t

e · act({ℓ 7→ 0}, {ℓ 7→ 1})

i t

ℓ 7→ 1ℓ 7→ 0

e

Example 5.2.4. Let r be an open resource with the invariant χ = ℓ′ 7→ 0∨(ℓ′ 7→ 1⋆ℓ 7→ 0)
and let (C, σ,W ) be a consistent marking of W JtKΓ,r:χ with {ℓ 7→ 1, ℓ′ 7→ 1} ⊆ σ and
ωproc(ℓ), ωproc(ℓ

′) ∈ W . Suppose further that the event e = rel(C1,C2)(r) has concession in
(C, σ) in the net N JtK. The only two interference events in W JtKΓ,r:χ that synchronize
with e are

u1 = rel(r, {ℓ′ 7→ 0})

u2 = rel(r, {ℓ′ 7→ 1, ℓ 7→ 0}),

corresponding to the two ways in which χ can be satisfied. The invariant is not satisfied
in the heap component of σ, so the preconditions of the two events

•(e · u1) = C ∪ {ℓ′ 7→ 0, ωproc(ℓ
′)}

•(e · u2) = C ∪ {ℓ′ 7→ 1, ℓ 7→ 0, ωproc(ℓ
′), ωproc(ℓ)}

are not contained in the marking (C, σ,W ), which is therefore therefore a violating marking
because there was no part of the owned heap that satisfied the invariant yet the resource
was released.

For any environment of invariants Γ, if no violating marking is ever encountered, the
behaviour of W JtKΓ encapsulates all that of N JtK.

Lemma 5.2.3. For any consistent marking (C, σ,W ) of the net W JtKΓ and any event

e ∈ Ev(t), if (C, σ)
e
−։ (C ′, σ′) in N JtK then either (C, σ,W ) is violating or there exists a

marking of ownership conditions W ′ and an interference event u that synchronizes with e

such that (C, σ,W )
e·u
−։ (C ′, σ′,W ′) in W JtKΓ.

Proof. Immediate from the definition of violating marking and the fact that, for any e and
u that synchronize and any state σ

C(e · u) = Ce (e · u)C = eC σ \ S(e · u) ∪ (e · u)S = σ \ Se ∪ eS

which is easily proved by inspection of the forms that e · u may take.

5.3 Soundness and validity

Proving soundness of the logic deriving Γ ⊢ {ϕ}t{ψ} will involve showing that, whenever
such a judgement is derivable, it is valid: that any run of W JtKΓ from a state in which
the process owns part of the heap that satisfies ϕ and the invariants are satisfied is such
that no violating marking is reachable and that whenever a terminal marking is reached,
the part of the heap owned by the process satisfies ψ.
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The key to the proof of soundness is to show that any run of the net W Jt1 ‖ t2KΓ

running from an appropriate initial state can be obtained by combining runs of W Jt1KΓ

and W Jt2KΓ running from suitable initial states. For example, suppose that we derive the
judgement ∅ ⊢ {ℓ 7→ 0 ⋆ k 7→ 0}ℓ := 1 ‖ k := 1{ℓ 7→ 1 ⋆ k 7→ 1} from ∅ ⊢ {ℓ 7→ 0}ℓ :=
1{ℓ 7→ 1} and ∅ ⊢ {k 7→ 0}k := 1{k 7→ 1}. The runs that we will consider for validity of
the judgement made about ℓ := 1 ‖ k := 1 will assign ownership of ℓ and k to the parallel
process. Soundness shall be shown by rule induction, so the induction hypotheses shall be
the validity of the judgements made for ℓ := 1 and k := 1. Consequently, we shall need to
relate runs of the process ℓ := 1 ‖ k := 1 from states in which the process owns ℓ and k
to runs of ℓ := 1 from states in which the process owns ℓ and runs of k := 1 from states
in which the process owns k.

The rule for parallel composition permits the view that the ownership of the heap is
initially split between the two processes, so that what one process owns is seen as owned
by an external process by the other.

Definition 5.3.1 (Ownership split). Let W be a marking of ownership conditions. Mark-
ings of ownership conditions W1 and W2 form an ownership split of W if for all z ∈
Loc ∪ Res:

• ωoth(z) ∈W iff ωoth(z) ∈W1 and ωoth(z) ∈W2,

• ωinv(z) ∈W iff ωinv(z) ∈W1 and ωinv(z) ∈W2, and

• ωproc(z) ∈W iff either ωproc(z) ∈W1 and ωoth(z) ∈W2,
or ωproc(z) ∈W2 and ωoth(z) ∈W1.

If W1 and W2 form an ownership split of W , then fewer locations and resources are
owned by the process in W1 than in W , and similarly for W2. As one would expect, a
process can act in the same way without causing a violation if it owns more, and more
interference can occur if the process owns less. This is the essence of the frame property
referred to earlier.

Lemma 5.3.1. Consider consistent markings of the net W JtKΓ. Let W1 and W2 form an
ownership split of W .

• For any synchronized event s = e · u, if (C, σ,W1)
s
−։ (C ′, σ′,W ′

1) then there exist

W ′ and W ′
2 such that (C, σ,W )

s
−։ (C ′, σ′,W ′) and (C, σ,W2)

u
−։ (C, σ′,W ′

2), and
furthermore W ′

1 and W ′
2 form an ownership split of W ′.

• For any interference event u, if (C, σ,W )
u
−։ (C, σ′,W ′) then there exist W ′

1 and W ′
2

such that (C, σ,W1)
u
−։ (C, σ,W ′

1) and (C, σ,W2)
u
−։ (C, σ′,W ′

2), and furthermore
W ′

1 and W ′
2 form an ownership split of W ′.

Proof. Straightforward to verify by going through the possible forms that s and u may
take.

Following Brookes’ lead, we are now able to prove the key lemma upon which the proof
of soundness lies. The effect of this lemma is that the terminal states of parallel processes
may be determined simply by observing the terminal markings of the net of each parallel
process running in isolation if we split the ownership of the initial state correctly. The
technique is inspired by Brookes’ proof, though it is also very different. Brookes’ proof
is based on a more abstract, less direct consideration of a local enabling relation which,
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essentially, defines the semantics over partial representations of the heap. We do not define
such an additional semantics: instead, we use the embellishment of the original semantics
for processes with interference and ownership to obtain the proof almost automatically.

For convenience, the lemma is stated without intimating the particular event that takes
place on the net transition relation.

Lemma 5.3.2 (Parallel decomposition). Let M = (par 1:C1 ∪ par 2:C2, σ,W ) be a consis-
tent marking of the net W Jt1 ‖ t2KΓ, and let W1 and W2 form an ownership split of W .
The markings M1 = (C1, σ,W1) and M2 = (C2, σ,W2) are consistent, and furthermore:

• If the marking M is violating in W Jt1 ‖ t2KΓ then either M1 is violating in W Jt1KΓ

or M2 is violating in W Jt2KΓ.

• If neither M1 nor M2 is violating and (par 1:C1 ∪ par 2:C2, σ,W ) −։ (par 1:C ′
1 ∪

par 2:C ′
2, σ

′,W ′) in W Jt1 ‖ t2KΓ then there exist W ′
1 and W ′

2 forming an ownership
split of W ′ such that (C1, σ,W1) −։ (C ′

1, σ
′,W ′

1) in W Jt1KΓ and (C2, σ,W2) −։
(C ′

2, σ
′,W ′

2) in W Jt2KΓ.

Proof. It is straightforward from Definition 5.2.1 to see that Mi is a consistent marking
for both i ∈ {1, 2}.

1. Suppose that the marking M is violating inW Jt1 ‖ t2KΓ. Without loss of generality,
assume that this is because there exists an event par 1:e1 of N Jt1 ‖ t2K that has
concession in marking (par 1:C1∪par 2:C2, σ) but there is no event interference event
u such that par 1:e1 synchronizes with u and (par 1:e1) · u has concession in M .
Assume, for contradiction, that the marking M1 is non-violating in W Jt1KΓ. The
event e1 has concession in marking (C1, σ) of N Jt1K by the first part of Lemma 3.3.2,
so there must exist u1 an interference event ofW Jt1KΓ such that e1 ·u1 has concession
in M1. The interference events of W Jt1KΓ are precisely the interference events of
W Jt1 ‖ t2KΓ and the tagging of control conditions has no effect on whether events
may synchronize, so the event (par 1:e1) · u1 is in W Jt1 ‖ t2KΓ. From Lemmas 5.3.1
and 3.3.2, the event par 1:e1 ·u1 has concession in marking M , which is therefore not
violating — a contradiction.

2. It is a straightforward consequence of Lemma 5.3.1 that the second property holds
if the transition (par 1:C1 ∪ par 2:C2, σ,W )−։ (par 1:C ′

1 ∪ par 2:C ′
2, σ

′,W ′) is induced
by the occurrence of an interference event. Suppose instead that it is induced by a
synchronized event. Without loss of generality, suppose that inW Jt1 ‖ t2KΓ we have

M
(par 1:e1)·u
−։ M ′ forM ′ = (par 1:C ′

1∪par 2:C ′
2, σ

′,W ′), for some event e1 in N Jt1K. We

shall show that M1
e1·u
−։ (C1, σ

′,W ′
1) in W Jt1KΓ and M2

u
−։ (C ′

2, σ
′,W ′

2) in W Jt2KΓ

for some W ′
1,W

′
2 such that W ′

1 and W ′
2 form an ownership split of W ′. Since we

have M
(par 1:e1)·u
−։ M ′ in W Jt1 ‖ t2KΓ, it is easy to see that we have (par 1:C1 ∪

par 2:C2, σ)
par 1:e1
−։ (par 1:C ′

1 ∪ par 2:C ′
2, σ

′) in N Jt1 ‖ t2K and C2 = C ′
2. Hence in

N Jt1K we have (C1, σ)
e1
−։ (C ′

1, σ
′). By assumption, the marking (C1, σ,W1) is

not a violating marking of W Jt1KΓ, so there exists an interference event u1 that

synchronizes with e1 such that (C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′′

1 ) for some W ′′
1 inW Jt1KΓ,

so in W Jt1 ‖ t2KΓ we therefore have (par 1:C1∪ par 2:C2, σ,W1)
(par 1:e1)·u1

−։ (par 1:C ′
1 ∪

par 2:C2, σ
′,W ′′

1 ). By Lemma 5.2.1, we have u1 = u and therefore W ′′
1 = W1 because

the occurrence of an event in a marking yields a unique marking. Now, by Lemma
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5.3.1 there exist W ′′ and W ′
2 such that W ′

1 and W ′
2 form an ownership split of W ′′

and (par 1:C1 ∪ par 2:C2, σ,W )
(par 1:e1)·u
−։ (par 1:C ′

1 ∪ par 2:C2, σ
′,W ′′) and (par 1:C1 ∪

par 2:C2, σ,W2)
u
−։ (par 1:C1 ∪ par 2:C2, σ

′,W ′
2). The occurrence of an event in a

marking leads to a unique marking, soW ′′ = W ′. It is easy to see that (C1, σ,W1)
e1·u
−։

(C ′
1, σ

′,W ′
1) in W Jt1KΓ and that (C2, σ,W2)

u
−։ (C2, σ,W

′
2) in W Jt2KΓ, so the proof

is complete.

The ownership semantics described above has been carefully defined to explicitly take
into account the intuitions behind the rule for parallel composition, resulting in the short
proof of the parallel decomposition lemma above. The remaining complexity in the proof
of soundness lies in the rule for establishing an invariant associated with a resource:

(L-Res) :
Γ, r:χ ⊢ {ϕ}[r/w]t{ψ}

Γ ⊢ {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ}

(

χ precise
r 6∈ dom(Γ)

)

It is quite easy to see why this rule follows the intuitive semantics for judgements
presented above: Any complete run of the net W Jresource w do t odKΓ to a terminal
marking from a state with the heap owned by the process initially satisfying ϕ ⋆ χ can
be seen, in conjunction with Lemma 3.6.11, as consisting first of an event that declares a
fresh resource r current, then a run ofW J[r/w]tKΓ, followed by an event that makes r non-
current (thereby excluding the possibility that the run starts or ends with an interference
event). The run of W J[r/w]tKΓ from a state where the part of the heap that the process
owns satisfies ϕ ⋆ χ is simulated by a run of W J[r/w]tKΓ,r:χ along which the locations
satisfying χ are owned by the invariant χ in an environment where r is an open resource.
The run of W J[r/w]tKΓ,r:χ obtained has no interference on the resource r or the locations
that it protects and r is available in the terminal state of the run. Assuming the validity
of the judgement Γ, r:χ ⊢ {ϕ}[r/w]t{ψ}, the resulting state owned by the process is
therefore seen to satisfy the formula ϕ ⋆ χ. Similarly, if there were a reachable marking
in W Jresource w do t odKΓ where the process accesses a location or resource that it does
not own then there would be a reachable marking in W J[r/w]tKΓ,r:χ where the process
accesses an unowned location or resource. The more formal presentation of this intuition
follows. However, before doing so, we introduce a little notation that will be of significant
use later. The first is a notation for all the available resources.

Definition 5.3.2 (Conjunction of available resource invariants, inv(Γ, R)). Write inv(Γ, R)
for the formula χ1 ⋆ . . . ⋆ χn formed as the separating conjunction of the invariants of all
the available, according to R, open resources. It is defined by induction on the size of the
domain of Γ:

inv(∅, R) , empty

inv((Γ, r:χ), R) ,

{

inv(Γ, R), if r 6∈ R
χ ⋆ inv(Γ, R), if r ∈ R.

The second is notation for restricting the heap to its parts that are owned by the current
process, protected by invariants for available resources, and owned by other processes.

Definition 5.3.3 (Heap restriction by ownership). Define the notations

D ↾W proc , {ℓ 7→ v ∈ D | ωproc(ℓ) ∈W}

D ↾W inv , {ℓ 7→ v ∈ D | ωinv(ℓ) ∈W}

D ↾W oth , {ℓ 7→ v ∈ D | ωoth(ℓ) ∈W}
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to represent the heap at locations owned by the process, invariants and other processes,
respectively.

In the states that we consider, we often expect and correspondingly demonstrate that
D ↾W inv |= inv(Γ, R).

Technical results on resources

On first reading, if happy with the intuitive explanation above, the reader may wish to
pass quickly through this rather technical account to Definition 5.3.5. We shall begin
by explicitly characterizing the runs of the net W Jresource w do t0 odKΓ, analogously
to Lemma 3.6.11 which characterizes the runs of C Jresource w do t0 odK. Its formal
statement is rather long, but it says nothing more than that any run comprises some
number of interference events, then an event that declares w to be r for some resource r,
then a run of W J[r/w]t0KΓ, and finally an event that records the end of the declaration of
w followed by some interference events.

Lemma 5.3.3. Suppose that σ0 and W0 form a consistent marking of state and ownership
conditions and let t = resource w do t0 od. For a resource r, define the synchronized
events

sr = decl({i},res r:Ic([r/w]t0))(r) · decl(r)

s′r = end(res r:Tc([r/w]t0),{t})(r) · end(r)

For any path π such that W JtKΓ :(Ic(t), σ0,W0)
π
−։ (C, σ,W ), either:

• C = Ic(t) and π consists only of interference events, or

• there exist r, C ′, σ′,W ′, π0 and π1 such that π0 comprises only interference events,
C = res r:C ′ and

π = π0 · sr · (res r:π1)

and

W JtKΓ : (Ic(t), σ0,W0)
π0·sr

−։ (res r:Ic([r/w]t0), σ
′,W ′) and

W J[r/w]t0KΓ : (Ic([r/w]t0), σ
′,W ′)

π1
−։ (C ′, σ,W ), or

• C = Tc(t) and there exist r, σ′, σ′′,W ′,W ′′, π0, π1, π2 such that π0 and π2 comprise
only interference events,

π = π0 · sr · (res r:π1) · s
′
r · π2,

and

W JtKΓ : (Ic(t), σ0,W0)
π0·sr

−։ (res r:Ic([r/w]t0), σ
′,W ′),

W J[r/w]t0KΓ : (Ic([r/w]t0), σ
′,W ′)

π1
−։ (Tc([r/w]t0), σ

′′,W ′′), and

W JtKΓ : (res r:Tc([r/w]t0), σ
′′,W ′′)

s′r·π2

−։ (Tc(t), σ,W ).

Proof. A straightforward argument that follows from Lemmas 3.7.1, 3.6.11, 3.4.1 and
5.2.2.

It can be shown, as a consequence of the preceding lemma, that during any run of the
net following the declaration event, the resource r chosen for w is owned by the process
until it is made non-current at the end of the variable w’s scope.
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Lemma 5.3.4. Let t = resource w do t0 od. If (res r:C ′, σ,W ) is reachable from
(Ic(t), σ0,W0), which is a consistent marking of W JtKΓ, then ωproc(r) ∈W .

Proof. Let π ·e be the pathW JtKΓ :(Ic(t), σ0,W0)
π·e
−։ (res r:C ′, σ,W ). Suppose, for contra-

diction, that ωproc(r) 6∈W . Without loss of generality, we may assume that (res r:C ′, σ,W )
is the earliest marking along π · e such that ωproc(r) 6∈W .

According to the second clause of Lemma 5.3.3, there exists a path π1 such that

W J[r/w]t0KΓ :(Ic([r/w]t0), σ
′,W ′)

π1
−։ (C ′, σ,W )

and there exists a path π0 such that

W JtKΓ :(Ic(t), σ0,W0)
π0·sr

−։ (res r:Ic([r/w]t0), σ
′,W ′)

for sr the synchronized event that declares the new local resource r as defined in Lemma
5.3.3. Hence curr(r) ∈ σ′ and ωproc(r) ∈ W

′. Furthermore, π · e = π0 · sr · (res r:π1). It
follows that there exist an event e1 and a path π′1 such that e = res r:e1 and π1 = π′1 · e1
and

W J[r/w]t0KΓ :(Ic([r/w]t0), σ
′,W ′)

π′
1
−։ (C ′′, σ′′,W ′′)

e1
−։ (C ′, σ,W ).

The resource r does not occur in the domain of Γ since the event sr occurs in a consistent,
by Proposition 5.1, marking ofW JtKΓ. Since we have ωproc(r) ∈W

′′ but ωproc(r) 6∈W , the
only form of event that e1 can take is that of a synchronized event that ends the resource
r; that is, there exist C1 and C ′

1 such that e1 = end(C1,C′
1)(r) · end(r). Let π′′1 be the path

obtained by stripping away the interference events from π′1; it is easy to see that

C J[r/w]t0K :Ic([r/w]t0)
π′′
1
−։ C ′′

end(C1,C′
1
)(r)

−։ C ′.

It can be shown, in a manner similar to that in Section 3.10, that there must exist an event
that declares the resource r inside π′′1 , so there exist C2, C

′
2 such that decl(C2,C′

2)
(r) is in π′′1 .

It follows that the event decl(C2,C′
2)

(r) · end(r) is in π1. For this event to have concession,
the condition ωproc(r) cannot be marked, but we earlier assumed that (res r:C ′, σ,W )
was the earliest marking on which ωproc(r) was not marked, so we arrive at the required
contradiction.

When considering validity of the judgement

Γ ⊢ {ϕ ⋆ χ}resource w do t0 od{ψ ⋆ χ},

we will have by induction validity of Γ, r:χ ⊢ {ϕ}[r/w]t0{ψ}. A marking of the netW Jt0KΓ

can be converted to a marking of W Jt0KΓ,r:χ by, if r is available, regarding ownership of
the locations satisfying the invariant χ as being owned by the invariant rather than by the
process.

Definition 5.3.4. Suppose that χ is a precise heap formula. Suppose that the consistent
marking M = (C, (D,L,R,N),W ) of W JtKΓ is such that if r ∈ R then there exists
(necessarily unique) D0 ⊆ D ↾W proc such that D0 |= χ. Define the projection of M into
the net W JtKΓ,r:χ to be

toInvχr (M) , (C, (D,L,R,N),W ′),

where:
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• if r 6∈ R: W ′ = W

• if r ∈ R:
W ′ = {ωoth(ℓ) |ωoth(ℓ) ∈W}

∪ {ωoth(r
′) |ωoth(r

′) ∈W}
∪ {ωinv(ℓ) |ωinv(ℓ) ∈W or ℓ ∈ dom(D0)}
∪ {ωinv(r

′) |ωinv(r
′) ∈W or r′ = r}

∪ {ωproc(ℓ) |ωproc(ℓ) ∈W and ℓ 6∈ dom(D0)}
∪ {ωproc(r

′)|ωproc(r
′) ∈W and r′ 6= r}

It is clear that if M is a consistent marking of W JtKΓ then toInvχr (M) is a consistent
marking of W JtKΓ,r:χ. They key lemma representing the account above is that behaviour
in the net where a resource is closed is simulated by the net where the resource is open.

Lemma 5.3.5. Let r be a resource such that r 6∈ dom(Γ) and let χ be a precise heap logic
formula. Let M = (C, (D,L,R,N),W ) be a consistent marking of W JtKΓ such that:

• ωproc(r) ∈W ,

• D ↾W inv |= inv(Γ, R), and

• if r ∈ R then there exists D0 ⊆ D ↾W proc such that D0 |= χ.

Then

1. If M is a violating marking in W JtKΓ then toInvχr (M) is a violating marking in
W JtKΓ,r:χ.

2. For any event u of W JtKΓ that is an interference event, if M is a non-violating

marking and M
u
−։ M ′ where M ′ = (C ′, (D′, L′, R′, N ′),W ′) and ωproc(r) ∈ W ′

then:

• toInvχr (M)
u
−։ toInvχr (M

′) in W JtKΓ,r:χ and:

– D′ ↾W ′ inv |= inv(Γ, R′)

– if r ∈ R′ then there exists D0 ⊆ D
′ ↾W ′ proc such that D0 |= χ.

3. For any synchronized event s = e1 ·u of W JtKΓ, if M is not a violating marking and

M
s
−։ M ′ where M ′ = (C ′, (D′, L′, R′, N ′),W ′) and ωproc(r) ∈W

′ then either:

• toInvχr (M) is violating in W JtKΓ,r:χ, or

• there exists u′ such that toInvχr (M)
e1·u′

−։ toInvχr (M
′) in W JtKΓ,r:χ and:

– D′ ↾W ′ inv |= inv(Γ, R′)

– if r ∈ R′ then there exists D0 ⊆ D
′ ↾W ′ proc such that D0 |= χ.

Proof. We show (1), (2) and (3) in turn.

1. Let σ = (D,L,R,N) and suppose that M = (C, σ,W ) is a violating marking of

W JtKΓ. There exists an event e such that N JtK :(C, σ)
e
−։ but there is no interference

event u that synchronizes with e in W JtKΓ such that W JtKΓ :(C, σ,W )
e·u
−։. We wish

to show that there is no u′ that synchronizes with e inW JtKΓ,r:χ that has concession
in toInvχr (M).
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For contradiction, suppose that there exists such a u′. There are only two events that
u′ might be that are not inW JtKΓ. These are acq(r,D0) and rel(r,D0). In these two
cases, however, the event e synchronizes with acq(r) and rel(r), respectively, which
are the corresponding interference events since the resource r 6∈ dom(Γ), and the
synchronized event clearly has concession in M .

2. The event u cannot be equal to acq(r), rel(r), decl(r) or end(r) since, by assumption,
ωproc(r) ∈W . The result is easily seen to follow from a case analysis of the possible
other forms that u might take.

3. The case is shown by an analysis of the forms that e1 and u may take. The important
cases will be for action, where it will be shown that the marking toInvχr (M) being
non-violating implies that the process does not act on the locations in D0 if r is
available, and for release of the resource r, where it will be shown that toInvχr (M)
being non-violating ensures that there is part of the heap that satisfies the invariant.
All the other cases are straightforward. In more detail:

e1 = act(C1,C2)(D1,D2) and u = act(D1,D2): We have R = R′. Let L1 = dom(D1).

The definition of actions requires that D1 and D2 have the same domain, so
dom(D1) = dom(D2). Suppose that toInvχr (M) is non-violating in W JtKΓ,r:χ.
First, assume that r 6∈ R. Since toInvχr (M) is non-violating, there is no ℓ ∈ L1

such that ωinv(ℓ) ∈ W . Hence D′ ↾W ′ inv = D ↾W inv and therefore D′ ↾W ′

inv |= inv(Γ, R′), as required to complete the case. Now assume that r ∈ R.
By assumption, there exists D0 ⊆ D such that D0 |= χ. Since toInvχr (M) is
non-violating, there is no ℓ ∈ L1 such that ωinv(ℓ) ∈ W or ℓ ∈ dom(D0). It
follows immediately that D ↾W inv = D′ ↾W ′ inv, and so D′ ↾W ′ inv |= inv(Γ, R′),
and that D0 ⊆ D

′ as required to complete the case.

e1 = rel(C1,C2)(r
′) and u = rel(r′): The case is straightforward unless r′ = r. Since

we have M
e1·u
−։ M ′ in W JtKΓ, it is easy to see that (C, (D,L,R,N))

e1
−։

(C ′, (D′, L′, R′, N ′)) in N JtK. The marking toInvχr (M) is a non-violating mark-

ing ofW JtKΓ,r:χ, so there exists an interference event u1 such that toInvχr (M)
e1·u1
−։

toInvχr (M
′). Since the resource r is open in Γ, r:χ and u1 synchronizes with e1,

there must exist D0 such that u1 = rel(r,D0) and D0 |= χ. Since the event
e1 ·u1 has concession in toInvχr (M), we have D0 ⊆ D and ωproc(dom(D0)) ⊆W .
We also have R′ = R ∪ {r} and D′ = D and W ′ = W . It follows that
D′ ↾W ′ inv = D ↾W inv, so D′ ↾W ′ inv |= inv(Γ, R′), completing the case.

Validity and soundness

All the pieces are now in place for us to turn to validity. We shall say that a state σ
with an ownership marking W satisfies the formula ϕ and the invariants in Γ if the heap
restricted to the owned locations satisfies ϕ and the invariants are met for all the available
resources. The rest of the heap, seen as owned by external processes, is unconstrained.

Definition 5.3.5. Let σ = (D,L,R,N). A marking (C, σ,W ) of W JtKΓ satisfies ϕ in Γ
if:

• the marking (C, σ,W ) is consistent,

• D ↾W proc |= ϕ, and
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• D ↾W inv |= inv(Γ, R).

Graphically, we have:

|= ϕ

D ↾W
′ proc

|= inv(Γ, R)

D ↾W inv

D ↾W oth

We now attach a notion of validity to judgements Γ ⊢ {ϕ}t{ψ}. It shall assert that no
violating marking is ever reached and that whenever the process t runs to completion from
a state where the part of the heap that it owns satisfies ϕ then the part of the resulting
heap that it owns satisfies ψ.

Definition 5.3.6 (Validity). Let t be a closed term. Define Γ |= {ϕ}t{ψ} if, for any σ
and W such that the marking (Ic(t), σ,W ) satisfies ϕ in Γ:

• any marking reachable in W JtKΓ from (Ic(t), σ,W ) is non-violating, and

• for any σ′ and W ′, if the terminal marking (Tc(t), σ′,W ′) is reachable in W JtKΓ
from the initial marking (Ic(t), σ,W ) then (Tc(t), σ′,W ′) satisfies ψ in Γ.

It is useful to note that the occurrence of an interference event does not affect whether
a marking satisfies ϕ in Γ or whether it is violating. Visually, this is because enabled
interference events only connect to parts of the heap owned by ‘other’ processes. Conse-
quently, when considering validity it is unnecessary to account for runs of the net W JtKΓ
that start or end with an interference event.

Lemma 5.3.6. Let M be a consistent marking of W JtKΓ that satisfies ϕ in Γ and is

non-violating. If u is an interference event and M
u
−։ M ′ then M ′ satisfies ϕ in Γ and is

non-violating.

Proof. Straightforward from the definition of satisfaction of ϕ in Γ by considering the
possible forms of u.

In the rule (L-Res) which allows invariants to be established, only one resource con-
stant is considered for substitution for the variable, whereas the semantics allows any
resource to be chosen. The following lemma shows that this is sufficient; that judgements
are unaffected by the choice of resource. In the terminology of nominal sets [GP01], this
states that the property is equivariant.

Lemma 5.3.7. For any two resources r and r′, define the operation (r r′) · t on terms as
swapping any occurrences of r and r′ in t. Define an operation (r r′) · Γ on environments
similarly, interchanging any occurrences of r and r′ in Γ. Then

Γ ⊢ {ϕ}t{ψ} ⇐⇒ (r r′) · Γ ⊢ {ϕ}(r r′) · t{ψ}.
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Proof. An induction on the proof tree of the judgement ⊢ shows that

Γ ⊢ {ϕ}t{ψ} =⇒ ∀r, r′. (r r′) · Γ ⊢ {ϕ}(r r′) · t{ψ},

from which the result follows (the reverse direction as a consequence of (r r′) ·(r r′) ·Γ = Γ
and (r r′) · (r r′) · t = t).

The only interesting case in the proof is for resource w do t od, so suppose that
Γ ⊢ {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ} because there exists r0 6∈ dom(Γ) such that
Γ, r0:χ ⊢ {ϕ}[r0/w]t{ψ}. By induction, (r r′) · (Γ, r0:χ) ⊢ {ϕ}(r r′) · [r0/w]t{ψ}. Suppose
that r0 = r (or, symmetrically, r0 = r′) — if neither equality holds, the proof is easier.
We have (r r′) · (Γ, r0:χ) = ((r r′) · Γ), r′:χ and (r r′) · [r0/w]t = [r′/w](r r′) · t. Since
r′ 6∈ dom((r r′) · Γ) because r = r0 6∈ dom(Γ), we can apply the rule (L-Res) to obtain

(r r′) · Γ ⊢ {ϕ ⋆ χ}(r r′) · t{ψ ⋆ χ},

as required.

The insensitivity of the logic to permutation of resources is matched in the validity of
judgements.

Lemma 5.3.8. For any resources r and r′

Γ |= {ϕ}t{ψ} ⇐⇒ (r r′) · Γ |= {ϕ}(r r′) · t{ψ}.

Proof. The net W JtKΓ is clearly isomorphic to W J(r r′) · tK(r r′)·Γ through interchanging
the conditions

r ↔ r′ curr(r)↔ curr(r′)
ωproc(r)↔ ωproc(r

′) ωinv(r)↔ ωinv(r
′) ωoth(r)↔ ωoth(r

′).

The result follows from the definition of validity being insensitive to such permutations.

We are now in a position where we the rules of concurrent separation logic can be
proved sound. Before we do so, we note that the use of the rules (L-Contraction) and
(L-Expansion) can be eliminated from the derivation of any judgement. It will therefore
be unnecessary to consider them in the proof of soundness.

Lemma 5.3.9. Let ⊢0 denote the judgement formed with the rules of separation logic de-
fined in Figures 4.3 and 4.4 excluding the rules (L-Contraction) and (L-Expansion).
Then Γ ⊢ {ϕ}t{ψ} iff Γ ⊢0 {ϕ}t{ψ}.

Proof. The ‘if’ direction is an immediate consequence of the fact that any proof in the
system ⊢0 translates immediately into a proof in the system ⊢.

The ‘only if’ direction follows from the following two properties:

1. If Γ, r:χ ⊢0 {ϕ}t{ψ} and r 6∈ res(t) then Γ ⊢0 {ϕ}t{ψ}.

2. If Γ ⊢0 {ϕ}t{ψ} and Γ,Γ′ well-defined then Γ,Γ′ ⊢0 {ϕ}t{ψ}.

Property (1) is shown by a straightforward induction on the judgement ⊢0. Property (2) is
shown similarly, with all cases being straightforward apart from that for (L-Res), which
we now show:

Suppose that Γ ⊢0 {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ} because Γ, r:χ ⊢0 {ϕ}[r/w]t{ψ}
for some resource r such that r 6∈ dom(Γ).
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If r 6∈ dom(Γ′) then Γ, r:χ,Γ′ is well-defined and, by induction, Γ, r:χ,Γ′ ⊢ {ϕ}[r/w]t{ψ}.
According to the rule (L-Res), we may conclude that Γ,Γ′ ⊢ {ϕ⋆χ}resource w do t od{ψ⋆
χ}, as required.

If r ∈ dom(Γ′), there exists an environment Γ′
0 and formula χ′ such that Γ′ = Γ′

0, r:χ
′.

Let r′ be a resource such that r′ 6= r and r′ 6∈ dom(Γ,Γ′
0) — such a resource must

exist because environments are finite. By induction, the judgement Γ, r:χ, r′:χ′,Γ′
0 ⊢

{ϕ}[r/w]t{ψ} is derivable. Hence Γ, r′:χ′,Γ0 ⊢ {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ}. By
Lemma 5.3.7, (r r′) · (Γ, r′:χ′,Γ′

0) ⊢ {ϕ ⋆ χ}(r r
′) · resource w do t od{ψ ⋆ χ}. Since

r, r′ 6∈ dom(Γ,Γ′
0) and res(resource w do t od) ⊆ dom(Γ) by Lemma 4.2.1, we may

conclude that

Γ, r:χ′,Γ′
0 ⊢ {ϕ ⋆ χ}resource w do t od{ψ ⋆ χ},

as required.

Key result

Theorem 5.2 (Soundness). For any closed term t, if Γ ⊢ {ϕ}t{ψ} then Γ |= {ϕ}t{ψ}.

We defer the proof of soundness until Section 5.7, when it shall be shown alongside
two other important properties that we now proceed to define: that all runs are race-free
and do not have any ‘faults’ such as accessing a non-current location. The following result
connects the definition of validity to the execution of processes without interference or
ownership.

Corollary 5.3 (Connection). Let t be a closed term with res(t) = ∅ and let σ = (D,L, ∅, ∅)
be a consistent marking of state conditions for which D |= ϕ. If ∅ |= {ϕ}t{ψ} then
whenever a terminal marking (Tc(t), σ′) is reachable from (Ic(t), σ) in N JtK, the resulting
heap D′ satisfies ψ, where σ′ = (D′, L′, R′, N ′).

Proof. A consequence of soundness and Lemma 5.2.3.

5.4 Fault-avoidance

When introducing the net semantics, it was mentioned that the logic will ensure that
processes, running from suitable initial states, only access current locations. The syntax
of the language ensures that processes only access current resources and that they are never
blocked when releasing a resource through it already being available. We shall now prove
that processes avoid such ‘faults’, in which we shall say that an event e is control-enabled

in a marking C of control conditions if there exists a marking C ′ such that C JtK :C
e
−։ C ′.

Definition 5.4.1 (Fault). There is a fault in a marking M = (C, σ) of the net N JtK if
there exists a control-enabled event e in N JtK with Ce = C1 and eC = C2 for some C1, C2

such that either:

1. there exist D,D′ such that e = act(C1,C2)(D,D
′) and there exists ℓ ∈ dom(D) with

curr(ℓ) 6∈ σ,

2. there exist ℓ, v, ℓ′, v′ such that e = alloc(C1,C2)(ℓ, v, ℓ
′, v′) and curr(ℓ) 6∈ σ,

3. there exist ℓ, v, ℓ′, v′ such that e = dealloc(C1,C2)(ℓ, v, ℓ
′) and either curr(ℓ) 6∈ σ or

curr(ℓ′) 6∈ σ,
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4. there exists r such that either e = acq(C1,C2)(r) or e = rel(C1,C2)(r) and curr(r) 6∈ σ,
or

5. there exists r such that e = rel(C1,C2)(r) and r ∈ σ.

This definition also applies to markings (C, σ,W ) of W JtKΓ by ignoring the marking
of ownership conditions W and considering synchronized events e · u.

Proposition 5.4 (Fault-avoidance). Suppose that Γ ⊢ {ϕ}t{ψ} and that the initial mark-
ing (Ic(t), σ0,W0) satisfies ϕ in Γ. If (C, σ,W ) is reachable from (Ic(t), σ0,W0) then
(C, σ,W ) is fault-free.

Proof. Deferred until Section 5.7.

From this result and Lemma 5.2.3, clearly if ∅ ⊢ {ϕ}t{ψ} then no fault is reachable
from an initial marking of N JtK if the heap initially satisfies ϕ.

5.5 Separation

As mentioned in the introduction, the logic discriminates between the parallel composition
of processes and their interleaved expansion. In Brookes’ trace semantics [Bro07], this
was accounted for by making the notion of a race primitive within the semantics: when
forming the parallel composition of processes, if two processes concurrently write to the
same location, a special ‘race’ action occurs and the trace proceeds no further. The net
model retains information on the concurrency of actions, so our approach when defining
the semantics can be been different; we shall not regard a race as ‘catastrophic’ and do
not embellish our semantics with special race states. Instead, we shall prove, using the
semantics directly, that races do not occur for proved processes running from suitable
initial states. This is a form of ‘well-typed programs do not go wrong’, only here we mean
well-proved programs.

Generally, a race can be said to occur when two interacting heap actions occur con-
currently. Recall that a heap action is represented in the net semantics by a set of events,
with common pre- and post-control conditions, representing each way in which the action
can affect the heap. According to the net model, two actions might be scheduled to run
concurrently if their events do not overlap on their pre- or post-control conditions. In such
a situation, where Ce1

C ∩ Ce2
C = ∅, we shall say that e1 and e2 are control-independent.

One way of capturing the race freedom of a process running from an initial state is to
show that there is no reachable marking in the net where two control-independent events
are control-enabled but access a common heap location. We, however, shall prove a result
based on the behaviour of processes; that whenever two events are control-independent
and can occur, then they are independent overall, and in particular on the shared state.
In fact, the situation is more subtle since, for example, two concurrent processes might be
ready to allocate a new heap location. In this situation, the two processes cannot allocate
the same location, and this manifests itself in the race-freedom property.

Definition 5.5.1 (Separation of synchronized events). Let M be a marking of W JtKΓ and
let s1 = e1 · u1 and s2 = e2 · u2 be control-independent synchronized events of W JtKΓ. The
separation property of s1 and s2 at M is defined as:

1. If M
s1
−։ M1 and M

s2
−։ M2 and s1 and s2 are not independent then either:
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• s1 and s2 compete to allocate the same location:
e1 = alloc(C1,C′

1)(ℓ, v, ℓ
′, v′) and e2 = alloc(C2,C′

2)(k,w, ℓ
′, w′) for some ℓ, ℓ′, k, v, v′, w′;

• s1 and s2 compete to make the same resource current:
e1 = decl(C1,C′

1)(r) and e2 = decl(C2,C′
2)(r) for some r; or

• s1 and s2 compete to acquire the same resource:
e1 = acq(C1,C′

1)
(r) and e2 = acq(C2,C′

2)(r) for some r.

2. If M
s1
−։ M1

s2
−։ M2 and s1 and s2 are not independent then either:

• s1 deallocates a location that s2 allocates:
e1 = dealloc(C1,C2)(ℓ, v, ℓ

′, v′) and e2 = alloc(C2,C′
2)

(k,w, ℓ′, w′) for some ℓ, ℓ′, k, v, v′, w′;

• s1 makes a resource non-current that s2 makes current:
e1 = end(C1,C′

1)
(r) and e2 = decl(C2,C′

2)(r) for some r; or

• s1 releases a resource that s2 takes:
e1 = rel(C1,C′

1)
(r) and e2 = acq(C2,C′

2)(r) for some r.

3. The symmetric statement for M
s2
−։ M2

s1
−։ M1.

This is a formulation of Dijkstra’s principle of separation.
The first part of the property above tells us how the enabled events of parallel processes

conflict with each other in a state: the way in which one parallel process can prevent the
other acting in a particular way on the global state. The second part dictates how the
event occurrences of parallel processes causally depend on each other: the way in which
the ability of one process to affect the global state in a particular way is dependent on
events of the other process.

Importantly, whenever the two events s1 and s2 arise from heap actions, they neither
conflict nor causally depend on each other. This is our net analogue of race freedom.
Theorem 5.5 shows that processes proved by the logic are race-free when running from
suitable initial states. We shall make use of the following rather technical lemmas in the
proof.

Firstly, in Lemma 5.3.8, we showed that validity was unaffected by switching resources
round in an environment and a term. An analogous result for the separation property
holding in any reachable marking also holds, proved by considering the same bijection as
used in the proof of Lemma 5.3.8.

Lemma 5.5.1 (Equivariance of reachability and the separation property). For any envi-
ronment Γ, term t, markings M and M ′, sequence of events π and resources r, r′:

W JtKΓ :M0
π
−։ M iff W

q
(r r′) · t

y
(r r′)·Γ

:(r r′) ·M0

(r r′)·π
−։ (r r′) ·M

Furthermore, M satisfies the separation property iff (r r′) · M satisfies the separation
property.

For a synchronized event s and an interference event u, define the separation property
for s and u at M similarly to that above, recalling that any synchronized event is trivially
control-independent from any interference event because CuC = ∅ for any interference
event u. It is always the case that a synchronized event and an interference event satisfy
the separation property in any consistent marking.

Lemma 5.5.2. If M is a consistent marking of W JtKΓ and s is a synchronized event and
u is an interference event then s and u satisfy the separation property in M .
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Proof. A simple case analysis of the events s and u.

The following lemma relates independence from an interference event to independence
from any corresponding synchronized event and will be used in the proof of the separation
property for parallel compositions. Recall that we write eIe′ if e and e′ are independent.

Lemma 5.5.3. Let s be any synchronized event of W JtKΓ and u be an interference event
of W JtKΓ. Suppose that M is a consistent marking in which they both have concession.
If e1 is an event of N JtK that synchronizes with u and sIu and s is control-independent
from e1 then sI(e1 · u).

Proof. It is easy to see that the preconditions of e1 · u are simply the preconditions of u
along with the pre-control conditions of e1 apart from replacing ωoth(ℓ) with ωproc(ℓ) and
replacing ωoth(r) with ωproc(r). The postconditions of e1 · u are obtained similarly.

Suppose, for contradiction, that ¬(sI(e1 ·u)). Since sIu and s is control-independent of
e1, it follows that there must exist z ∈ Loc∪Res such that ωproc(z) ∈

•s•∩•(e1 · u)
•. From

the definition of synchronization, we therefore have ωoth(z) ∈
•u•. The proof is completed

by analysis of the cases for how ωproc(z) ∈
•s•; we shall show only one illustrative case,

that where z is a location ℓ such that ωproc(ℓ) ∈
•s but ωproc(ℓ) 6∈ s

•.
In this case, the event s must either deallocate the location ℓ or must release a resource

r with r ∈ dom(Γ) and ℓ forms part of the heap used to satisfy the invariant for r. As the
event s has concession in M , we have ωproc(ℓ) ∈ M . By assumption, u has concession in
M and ωoth(ℓ) ∈

•u•. We cannot have ωoth(ℓ) ∈
•u since ωproc(ℓ) ∈ M , so ωoth(ℓ) ∈ u

•.
Therefore, the event u is an interference event that either allocates the location ℓ or
acquires an open resource r and ℓ is part of the heap that satisfies the invariant for r.
If u is an event that acquires r, it must be the case that ωinv(ℓ) ∈

•u so ωinv(ℓ) ∈ M ,
contradicting that M is a consistent marking with ωproc(ℓ) ∈ M . Consequently, u must
in fact be an event that allocates the location ℓ, so therefore curr(ℓ) 6∈M . We then arrive
at another contradiction since it must then be the case that ωproc(ℓ) 6∈ M because M is
consistent.

We may now show that the separation property does indeed hold for any two events s1
and s2 inW JtKΓ for any term t and environment Γ such that Γ ⊢ {ϕ}t{ψ} in any marking
M = (C, σ,W ) reachable from an initial marking of t that satisfies ϕ in Γ. The proof is
most interesting in the case where t = t1 ‖ t2 and s1 is an event of t1 and s2 is an event of
t2. The case proceeds by establishing, as in Theorem 5.2, that there exists an ownership
split W1 and W2 of W for which s1 has concession in (C1, σ,W1), where C1 is the marking
of control conditions in C for t1, and there exist e2 and u2 such that s2 = (par 2:e2) · u2

and u2 also has concession in the marking (C1, σ,W1) of W Jt1KΓ. By Lemma 5.5.2, the
separation property therefore holds for s1 and u2 in the marking (C1, σ,W1). It follows
that the separation property holds for s1 and s2 in M since, by Lemma 5.5.3, if the events
s1 and u2 are independent then so are s1 and s2.

Theorem 5.5 (Separation). Suppose that Γ ⊢ {ϕ}t{ψ} and that (Ic(t), σ0,W0) satisfies
ϕ in Γ. For any events s1 and s2 in W JtKΓ and any marking (C, σ,W ) reachable from
(Ic(t), σ0,W0), the separation property holds for s1 and s2 at (C, σ,W ).

Proof. Deferred until Section 5.7.

The result can be applied, using Lemma 5.2.3 and the observation that e1 · u1Ie2 ·
u2 implies that e1Ie2, to obtain a similar result for the net semantics of terms without
ownership.
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Corollary 5.6. Let t be a closed term. Suppose that ∅ ⊢ {ϕ}t{ψ} and that σ0 =
(D0, L0, ∅, ∅) is a state for which D0 |= ϕ. If M is a marking reachable from (Ic(t), σ0) in
N JtK and e1 and e2 are control-independent events then:

• If M
e1
−։ M1

e2
−։ M ′ then either e1 and e2 are independent or e1 releases a resource

or a location that e2 correspondingly takes or allocates, or e1 makes non-current a
resource that e2 makes current.

• If M
e1
−։ M1 and M

e2
−։ M2 then either e1 and e2 are independent or e1 and e2

compete either to make current the same resource, acquire the same resource or to
allocate the same location.

5.6 Incompleteness

The separation result highlights an important form of possible interaction between con-
current processes.1 Observe that, although there is neither conflict nor causal dependence
arising from heap events (and hence the processes are race-free in the sense of Brookes),
there may be interaction through the occurrence of allocation and deallocation events. It
is therefore possible to give judgements for parallel processes that interact without using
critical regions. Suppose, for example, that we have a heap

D = {ℓ0 7→ ℓ1, ℓ1 7→ 1, ℓ2 7→ 2, ℓ3 7→ 3, ℓ4 7→ 4}.

For any processes t1 and t2 such that t1 does not deallocate ℓ1, if we place the process

t1; dealloc(ℓ0)

in parallel with

alloc(ℓ2); while ℓ2 6= &ℓ1 do alloc(ℓ2) od; t2,

the process t2 can only take place once t1 has terminated. This arises from the fact
that the loop in the second process will only exit when location ℓ1 is allocated by the
command alloc(ℓ2); this can only occur once dealloc(ℓ0) makes ℓ1 non-current and
therefore available for allocation by alloc(ℓ2). Denote this process seq(t1, t2).

We can use this to show that concurrent separation logic is incomplete with respect to
our definition of validity: Let t1 be the assignment ℓ3 := 1 and t2 be ℓ3 := 2. Define the
formula

δ , ℓ0 7→ ℓ1 ⋆ ℓ1 7→ ⋆ ℓ2 7→ ⋆ ℓ3 7→ ⋆ ℓ4 7→ .

We have ∅ |= {δ}seq(t1, t2){ℓ3 7→ 2 ⋆⊤} since, whenever seq(t1, t2) terminates, the assign-
ment ℓ3 := 2 always occurs after the assignment ℓ3 := 1. The separation property holds
in any marking reachable from any heap initially satisfying δ. Since the location ℓ3 is
assigned-to on both sides of the parallel composition, it can be seen that there is no way
to derive

∅ ⊢ {δ}seq(t1, t2){ℓ3 7→ 2 ⋆⊤},

so the logic is incomplete, even for processes satisfying the separation property.
Though the example above satisfies the separation property, both components can

assign a value to ℓ3 — the process is daringly-concurrent without there being any crit-
ical regions in the process. One might wonder whether the separation property can be

1Thanks to Peter O’Hearn for suggesting this example.
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strengthened to obtain completeness. In particular, does strengthening it to account for
ownership of heap locations yield completeness? Unfortunately, the answer in this case ap-
pears to be negative: there are examples of incompleteness where neither process accesses
a common heap location along any run. Let

t′1 = alloc(ℓ3); while ℓ3 6= &ℓ5 do alloc(ℓ3) od

t′2 = alloc(ℓ4); (ℓ4 = &ℓ5).skip+ (ℓ4 6= ℓ5).diverge,

for the previous definition of diverge and the obvious definition of skip. Since the location
ℓ5 is always current following termination of t′1 from D, process t′2 always diverges. We
have

∅ |= {δ}seq(t′1, t
′
2){⊥}.

However, there are no δ1, δ2 such that δ is logically equivalent to δ1⋆δ2 and ∅ |= {δ2}t
′
2{⊥},

which would be necessary if it were possible to prove ∅ ⊢ {δ}seq(t′1, t
′
2){⊥}.

Instead, this form of incompleteness seems to stem from allowing processes that are
sensitive to the particular locations to be allocated. Since any form of completeness result
would be highly intricate, we shall not proceed further with this at present.

5.7 Proof of soundness, separation and fault-avoidance

It is convenient to prove soundness of the logic, the separation property and that proved
processes avoid faults all at the same time. To give the proof, we must have a compositional
understanding of the runs of W JtKΓ. This arises from the earlier results on runs of C JtK,
using the following lemma — extending Lemma 3.4.1 to ownership nets (as defined in
Definition 5.2.3 on page 82).

Lemma 5.7.1. For any C,C ′, σ, σ′,W and W ′, if (C, σ,W )
e·u
−։ (C ′, σ′,W ′) in W JtKΓ

then C
e
−։ C ′ in C JtK.

A path π of an ownership netW JtKΓ therefore yields a path π̂ of the net C JtK obtained
by removing all interference events from π and replacing any synchronized event e ·u with
just e.

In the proof to come, which will we occupy the remainder of this chapter, we use the
following notations for synchronized events:

act(C,C′)(D1,D2) , act(C,C′)(D1,D2) · act(D1,D2),

alloc(C,C′)(ℓ, v, ℓ
′, v′) , alloc(C,C′)(ℓ, v, ℓ

′, v′) · alloc(ℓ, v, ℓ′, v′),

dealloc(C,C′)(ℓ, ℓ
′, v′) , dealloc(C,C′)(ℓ, ℓ

′, v′) · dealloc(ℓ, ℓ′, v′),

decl(C,C′)(r) , decl(C,C′)(r) · decl(r)

end(C,C′)(r) , end(C,C′)(r) · end(r)

acq(C,C′)(r) , acq(C,C′)(r) · acq(r)

rel(C,C′)(r) , rel(C,C′)(r) · rel(r)

acq(C,C′)(r,D0) , acq(C,C′)(r) · acq(r,D0)

rel(C,C′)(r,D0) , rel(C,C′)(r) · rel(r,D0)

With the notation now defined, we now prove the main theorem.
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Theorem 5.7. Let t be a closed term. If Γ ⊢0 {ϕ}t{ψ} then for any marking M =
(C, σ,W ) reachable from an initial marking M0 = (Ic(t), σ0,W0) that satisfies ϕ in Γ:

• there is no fault in (C, σ,W ),

• (C, σ,W ) is non-violating,

• if C = Tc(t) then (C, σ,W ) satisfies ψ in Γ, and

• the separation property holds in (C, σ,W ) for any pair of synchronized events.

Let σ = (D,L,R,N) and σ0 = (D0, L0, R0, N0). The proof will proceed by rule induc-
tion on the judgement ⊢. Recall that we do not need to consider runs from (Ic(t), σ0,W0)
that start with interference events according to Lemma 5.3.6.

(L-Nil)

Suppose that Γ ⊢0 {ϕ}ε{ϕ}. As an easy starting case, the only marking reachable from
(Ic(ε), σ0,W0) inW JεKΓ by a path that does not start or end with any interference events
is, of course, (Ic(ε), σ0,W0). Since Ev(ε) = ∅, the marking is trivially non-violating, fault-
free and satisfies the separation property. We have Tc(ε) = Ic(ε), so the third requirement
is also met.

(L-Act)

Suppose that Γ ⊢0 {ϕ}α{ψ} for some action α because for all D such that D |= ϕ and
(D1,D2) ∈ A JαK we have dom(D1) ⊆ dom(D) and if D1 ⊆ D then D \ D1 ∪ D2 |=
ψ. The only synchronized events in W JαKΓ are of the form act({i},{t})(D1,D2) where
(D1,D2) ∈ A JαK, so dom(D1) = dom(D2). The initial marking M0 satisfies ϕ in Γ, so
D0 ↾W0

proc |= ϕ. The first premise of the rule (L-Act) gives dom(D1) ⊆ dom(D0), so a
fault does not occur in the marking M0.

To see that M0 is non-violating, suppose that the event act({i},{t})(D1,D2) has conces-
sion in N JαK in the marking (Ic(α), σ0). From the rule, we have dom(D1) ⊆ dom(D) for
any D such that D |= ϕ. It follows that D1 ⊆ D0 ↾W0

proc since D0 ↾W0
proc |= ϕ because

M0 satisfies ϕ in Γ. It is easy to see from this and the fact that dom(D1) = dom(D2) that
the event act({i},{t})(D1,D2) has concession in the marking M0, so it is a non-violating
marking.

The marking following act({i},{t})(D1,D2) in M0 is M ′ = (Tc(α), σ′,W0) where σ′ =
(D′, L0, R0, N0) and D′ = D0 \ D1 ∪ D2. In particular, since D1 ⊆ D0 ↾W0

proc and
dom(D1) = dom(D2), we have D′ ↾W0

proc = (D0 ↾W0
proc) \D1 ∪D2 and D′ ↾W0

inv =
D0 ↾W0

inv. From the second premise of (L-Act), we have D′ ↾W0
proc |= ψ, so the

marking M ′ satisfies ψ in Γ. The marking M ′ is fault-free and non-violating because no
event is control-enabled in the control marking Tc(α).

The separation property trivially holds because there are no two synchronized events
in W JαKΓ that are control-independent.

(L-Alloc)

Suppose that Γ ⊢0 {ℓ 7→ }alloc(ℓ){∃xloc.(ℓ 7→ xloc ⋆ xloc 7→ )} for some location ℓ.
Assume that M0 satisfies ℓ 7→ in Γ; it follows that D0 ↾W0

proc = {ℓ 7→ v0} for some

v0 ∈ Val. Now, any synchronized event inW Jalloc(ℓ)KΓ is equal to alloc({i},{t})(ℓ, v, ℓ
′, v′)

for some ℓ′, v, v′. The marking M0 is consistent, so curr(ℓ) ∈ M0 and therefore there is
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no fault in M0. The marking M0 is not violating since we have ωproc(ℓ) ∈ W0 because
D0 ↾W0

proc = {ℓ 7→ v0}. Observe also that the separation property trivially holds because
there are no two control-independent synchronized events.

Suppose that alloc({i},{t})(ℓ, v, ℓ
′, v1) has concession in M0. It follows that v = v0 and

curr(ℓ′) 6∈ L0. As M0 is consistent, this implies that there is no ownership condition for ℓ′

in W0. The resulting marking M ′ has:

R′ = R0

N ′ = N0

C ′ = Tc(alloc(ℓ))

D′ = D0 \ {ℓ 7→ v0} ∪ {ℓ 7→ ℓ′, ℓ′ 7→ v1}

L′ = L0 ∪ {curr(ℓ′)}

W ′ = W0 ∪ {ωproc(ℓ
′)}.

Hence D′ ↾W ′ inv = D0 ↾W inv and D′ ↾W ′ proc = {ℓ 7→ ℓ′, ℓ′ 7→ v1}. Thus

D′ ↾W ′ proc |= ∃xloc.(ℓ 7→ xloc ⋆ xloc 7→ ),

and so M ′ satisfies ψ in Γ as required. Again, the marking M ′ is fault-free and non-
violating because no event has concession on its control conditions in the terminal marking.

(L-Dealloc)

Suppose that Γ ⊢0 {∃xloc.(ℓ 7→ xloc ⋆ xloc 7→ )}dealloc(ℓ){∃xloc.ℓ 7→ xloc)} for some
location ℓ. Assume that M0 satisfies ∃xloc.(ℓ 7→ xloc⋆xloc 7→ ) in Γ, so D0 ↾W0

proc = {ℓ 7→
ℓ0, ℓ0 7→ v0} for some location ℓ0 and value v0. Any synchronized event inW Jdealloc(ℓ)KΓ

is equal to dealloc({i},{t})(ℓ, ℓ
′, v′) for some ℓ′ and v′. The marking M0 is consistent, so

curr(ℓ0) ∈M0 and therefore there is no fault in M0. Since we have ωproc(ℓ), ωproc(ℓ
′) ∈W0,

the marking M0 is non-violating. Observe also that there are no two control-independent
synchronized events in the net so the separation property trivially holds in all markings.

Now, suppose that dealloc({i},{t})(ℓ, ℓ
′, v′) has concession in M0. It follows that ℓ′ = ℓ0

and v′ = v0. The marking M ′ following the occurrence of the event in M has

R′ = R0

N ′ = N0

C ′ = Tc(dealloc(ℓ))

D′ = D0 \ {ℓ0 7→ v0}

L′ = L0 \ {curr(ℓ0)}

W ′ = W0 \ {ωproc(ℓ0)}.

Hence D′ ↾W ′ inv = D ↾W inv and D′ ↾W ′ proc = {ℓ 7→ ℓ0}. Furthermore, D′ ↾W ′ proc |=
∃xloc.(ℓ 7→ xloc), and so M ′ satisfies ψ in Γ. As in (L-Alloc), it is trivially the case that
M ′ is fault-free and non-violating because C ′ is the terminal marking of control conditions.

(L-Seq)

Suppose that Γ ⊢0 {ϕ}t1; t2{ψ} because Γ ⊢0 {ϕ}t1{ϕ
′} and Γ ⊢0 {ϕ

′}t2{ψ}. Let M be
reached in W Jt1; t2KΓ from (Ic(t1; t2), σ0,W0) by path π. From Lemma 5.7.1, we have
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C Jt1; t2K :Ic(t1; t2)
π̂
−։ C. Let P = seq 1:Tc(t1)× seq 2:Tc(t2). There are two cases accord-

ing to the sequential path lemma, Lemma 3.6.2 (alongside the proof of well-termination,
Lemma 3.7.1):

1. C 6= P and there exist C1 and π′1 such that π̂ = P ⊳ seq 1:π′1 and C = P ⊳ seq 1:C1

and C Jt1K :Ic(t1)
π1
−։ C1

2. there exist C2, π
′
1 and π′2 such that π̂ = (P ⊳ seq 1:π′1) · (P ⊲ seq 2:π′2) and C =

P ⊲ seq 2:C2 and C Jt1K :Ic(t1)
π′
1
−։ Tc(t1) and C Jt2K :Ic(t2)

π′
2
−։ C2.

First suppose that (1) is the case. By induction on the length of π, it can be shown
that there must exist a sequence π1 of events of W Jt1KΓ such that π = P ⊳ seq 1:π1 and

W Jt1KΓ :(Ic(t1), σ0,W0)
π1
−։ (C1, σ,W ).

If M is a violating marking then there must exist an event e of N Jt1; t2K that has
concession in marking (C, σ) but there is no interference event u of W Jt1; t2KΓ that syn-
chronizes with e such that e · u has concession in M . It follows from Lemma 3.6.1 that
there is an event e1 of N Jt1K such that e = P ⊳ seq 1:e2 that has concession in the marking
(C1, σ). The interference events ofW Jt1KΓ are precisely the same as those ofW Jt1; t2KΓ, so
it follows that the marking (C1, σ,W ) is a violating marking of W Jt1KΓ. This contradicts
the induction hypothesis for the judgement Γ ⊢0 {ϕ}t1{ϕ

′}. It can be shown similarly
that there is no fault in the marking M .

It is easy to see that C 6= Tc(t1; t2) because C 6= P , so all that remains to show in

this case is that the separation property holds. Firstly, suppose that M
s
−։ M ′ s′

−։ M ′′

in W Jt1; t2KΓ and that s and s′ are control-independent synchronized events. It follows
from Lemmas 3.6.1 and 3.5.2 that there exist synchronized events s1 and s′1 of W Jt1KΓ

and markings M ′
1 and M ′′

1 with (C1, σ,W )
s1
−։ M ′

1

s′1
−։ M ′′

1 and s = P ⊳ seq 1:s1 and
s′ = P ⊳seq 1:s′1. This follows in particular from Lemma 3.5.2, which ensures that s′ cannot
correspond to an event inW Jt2KΓ because then there would exist a condition inside P that
would cause s and s′ to fail to be control-independent. If s1 and s′1 are independent, it is
easy to see that this is reflected into the independence of s and s′. Otherwise, if s1 and
s2 are not independent, it is readily seen from the induction hypothesis for the judgement
Γ ⊢0 {ϕ}t1{ϕ

′} and Definition 5.5.1 that s1 and s′1 must be one of the distinguished kinds
of causally dependent events (e.g. s′1 allocates a location that s1 deallocates), and so s
and s′ also follow the same pattern. Hence the second and third requirements for the
separation of M according to Definition 5.5.1 are met. The other requirements for the
separation property to hold for all pairs of synchronized events at M are proved similarly.

Now suppose that the (2) is the case. Let s2 be the synchronized event in π corre-
sponding to the first event of π′2 unless π′2 is empty. By induction on the length of π up to,
but not including s2 (or the length of π if π′2 is empty), it can be shown that there exist

a path π′1 and markings σ′ and W ′ such that W Jt1KΓ :(Ic(t1), σ0,W0)
π′
1
−։ (Tc(t1), σ

′,W ′).
By induction on the length of π from s2, it can be show that there exists a path π′2 such

that W Jt2KΓ :(Ic(t2), σ
′,W ′)

π′
2
−։ (C2, σ,W ).

The induction hypothesis for judgement Γ ⊢0 {ϕ}t1{ϕ
′} ensures that the marking

(Tc(t1), σ
′,W ′) satisfies ϕ′ in Γ. The arguments for M being non-violating, fault-free

and satisfying the separation property follow the arguments above, being a little simpler
because it follows immediately from Lemma 3.6.1 that any two events occurring sequen-
tially from M both correspond to events in W Jt2KΓ. It follows from Lemma 3.6.1 that if
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C = Tc(t1; t2) then C2 = Tc(t2). Hence, from the induction hypothesis for the judgement
Γ ⊢0 {ϕ

′}t2{ψ}, it must be the case that M satisfies ψ in Γ, as required.

(L-Sum)

Suppose that Γ ⊢0 {ϕ}α1.t1 + α2.t2{ψ} because Γ ⊢0 {ϕ}αi{ϕi} and Γ ⊢0 {ϕi}ti{ψ}
for i = 1, 2. In the manner of the previous case, this time using Lemma 3.6.7 which
characterizes runs of C Jα1.t1 + α2.t2K, it can be shown that there are three distinct cases
for the run

W Jα1.t1 + α2.t2KΓ :(Ic(α1.t1 + α2.t2), σ0,W0)
π
−։ (C, σ,W )

Let P be the set of conditions where the nets for t1 and t2 are joined, P = sum 1:Tc(t1)×
sum 2:Tc(t2). The first case is that the path π is empty. In this case, C = Ic(α1.t1+α2.t2) =
{i}. From the definition of the events of the net, it is easy to see that the only events with
concession on their control conditions are either of the form act({i},P ⊳sum 1:Ic(t1))(D1,D

′
1) for

(D1,D
′
1) ∈ A Jα1K or act({i},P ⊳sum 2:Ic(t2))(D2,D

′
2) for (D2,D

′
2) ∈ A Jα2K. It is easy to see

from the induction hypotheses for the judgements Γ ⊢0 {ϕ}α1{ϕ1} and Γ ⊢0 {ϕ}α2{ϕ2}
that the marking (C, σ0,W0) cannot be violating and is fault-free. The marking of control
conditions C cannot possibly equal Tc(α1.t1 + α2.t2), so all that remains is to show that
the separation property holds. Firstly, no two events that can occur in the initial marking
are control-independent. Secondly, from Lemma 3.6.7 and Lemma 3.5.2, if s is an event
such that in the net W Jα1.t1 + α2.t2KΓ there is a marking M ′ such that

(Ic(α1.t1 + α2.t2), σ0,W0)
act({i},P⊳sum 1:Ic(t1))(D1,D′

1)

−։ (C ′, σ′,W ′)
s
−։ M ′,

then Cs ∩ P ⊳ sum 1:Ic(t1) 6= ∅. Hence s and act({i},P ⊳sum 1:Ic(t1))(D1,D
′
1) are not control-

independent, so (with the symmetric argument for t2) the separation property holds.
The second case (symmetric to the third for t2) for the path π is that it is equal to

act({i},P ⊳sum 1:Ic(t1))(D1,D1) · (P ⊳ sum 1:π1) for some path π1. In this case, there exist σ1,
W1 and C1 such that C = P ⊳ sum 1:C1,

W Jα1KΓ : (Ic(α1), σ0,W0)
act({i},{t})(D1,D′

1)

−։ (Tc(α1), σ1,W1), and

W Jt1KΓ : (Ic(t1), σ1,W1)
π1
−։ (C1, σ,W ).

From the induction hypothesis for Γ ⊢0 {ϕ}α1{ϕ1}, the marking (Ic(t1), σ0,W0) satisfies
ϕ1 in Γ. From the induction hypothesis for Γ ⊢0 {ϕ1}t1{ψ}, the marking (C1, σ,W )
of W Jt1KΓ is fault-free, non-violating and satisfies the separation property. It is easy
to see from this, using Lemma 3.6.7, that the marking (C, σ,W ) is a fault-free, non-
violating marking of W J(α1.t1 + α2.t2)KΓ that also satisfies the separation property. We
have C = Tc(α1.t1+α2.t2) iff C1 = Tc(t1) by Lemma 3.3.1. If C1 = Tc(t1) then (C1, σ,W )
satisfies ψ in Γ according to the induction hypothesis. It follows immediately that if
C = Tc(α1.t1 + α2.t2) then (C, σ,W ) satisfies ψ in Γ, as required to complete the case.

(L-While)

Let t = while b do t0 od. Suppose that we have Γ ⊢0 {ϕ}t{ψ} because:

Γ ⊢0 {ϕ}b{ϕ
′} Γ ⊢0 {ϕ}¬b{ψ} Γ ⊢0 {ϕ

′}t0{ϕ}.
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Assume that the marking M is reachable in W Jwhile b do t0 odKΓ. Recalling that
(Ic(t), σ0,W0) is the initial marking of W JtKΓ being considered, as above, but now using
Lemma 3.6.9, it can be shown that there exists a natural number n ≥ 0 and σ1, . . . , σn
and W1, . . . ,Wn such that, for all 0 ≤ i < n:

W JbKΓ : (Ic(b), σi,Wi)−։ (Tc(b), σi,Wi)

W Jt0KΓ : (Ic(t0), σi,Wi)
∗
−։ (Tc(t0), σi+1,Wi+1)

Furthermore, either:

1. the loop is in its initial control state: C = body:Tc(t0) and σ = σn and W = Wn,

2. the loop has exited: C = {t} and

W J¬bKΓ :(Ic(¬b), σn,Wn)−։ (Tc(¬b), σ,W ),

or

3. the body of the loop is being executed: C = body:C0 for some marking C0 6= Tc(t0)
of W Jt0KΓ with

W JbKΓ : (Ic(b), σn,Wn)−։ (Tc(b), σn,Wn)

W Jt0KΓ : (Ic(t0), σn,Wn)
∗
−։ (C0, σ,W )

By induction on n, applying the induction hypotheses for Γ ⊢0 {ϕ}b{ϕ
′} and Γ ⊢0

{ϕ′}t0{ϕ}, we may infer that σn with Wn satisfies ϕ in Γ. We now consider the cases
(1), (2) and (3) separately:

1. If C = body:Tc(t0), we have C 6= Tc(t). We first show that the marking M =
(C, σ,W ) is non-violating. Assume that the boolean b holds in σn = σ; the case for
¬b is similar. According to Lemma 3.6.9, the event act(body:Tc(t0),body:Ic(t0))(D1,D2)

that has concession in marking (C, σ) of N JtK but act(body:Tc(t0),body:Ic(t0))(D1,D2)

does not have concession in M . It follows that inW JbKΓ the event act({i},{t})(D1,D2)
does not have concession in marking (Ic(b), σ,W ) but act({i},{t})(D1,D2) does have
concession in marking (Ic(b), σ). Now, as the marking (Ic(b), σ,W ) satisfies ϕ in
Γ, we may conclude that a violating marking is immediately reached in W JbKΓ,
contradicting the induction hypothesis for Γ ⊢0 {ϕ}b{ϕ

′}. It can be shown similarly
that the marking M is fault-free.

All that remains is to show the separation property. It follows from Lemmas 5.2.2

and 3.6.9 that if s1 and s2 are synchronized events such that M
s1
−։ M1 and M

s2
−։

M2 then s1 and s2 are tests of the boolean b. Hence s1 and s2 are not control-

independent. Furthermore, if M
s1
−։ M1

s2
−։ M2 for synchronized events s1 and s2

then by Lemmas 3.6.9 and 3.5.2 we have s1 = act(body:Tc(t0),body:Ic(t0))(D1,D2) for
some (D1,D2) ∈ A JbK and s2 = body:s0 for some event s0 that can occur from
the initial control marking Ic(t0) of W Jt0KΓ. By Lemma 3.5.2, there is a control
condition b such that b ∈ Cs0 and b ∈ Ic(t0). It follows that body:b ∈ s1

• ∩ •s2, and
therefore the events are not control-independent.

2. If C = {t}, we have C = Tc(t). By Lemmas 5.2.2 and 3.6.9, no event has concession
on its control conditions in this marking, so all that we must check is that the
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marking M satisfies ψ in Γ. We know that (body:Tc(t0), σn,Wn) satisfies ϕ in Γ,
and therefore (Ic(¬b), σn,Wn) also does. Now,

W J¬bKΓ :(Ic(¬b), σn,Wn)−։ (Tc(¬b), σn,Wn)

by (2). The induction hypothesis for Γ ⊢0 {ϕ}¬b{ψ} allows us to infer that the
marking (Tc(¬b), σ,W ) satisfies ψ in Γ. Hence M also satisfies ψ in Γ since σ = σn
and W = Wn.

3. We have C = body:C0 where C0 is a marking of W Jt0KΓ not equal to Tc(t0). We
know that (Ic(b), σn,Wn) satisfies ϕ in Γ, so, because

W JbKΓ :(Ic(b), σn,Wn)−։ (Tc(b), σn,Wn),

from the induction hypothesis for Γ ⊢0 {ϕ}b{ϕ
′} we may infer that (Ic(t0),Wn, σn)

satisfies ϕ′ in Γ.

Suppose, for contradiction, that the marking M = (C, σ,W ) is violating. By defi-
nition, there is an event e that has concession in marking (C, σ) in N JtK but there
is no interference event u such that e · u has concession in M . Since e has conces-
sion in (C, σ), by Lemmas 3.6.9 and 5.2.2 there is an event e0 with e = body:e0
which has concession in the marking (C0, σ) of N Jt0K. By assumption, the marking
(C0, σ,W ) is reachable from (Ic(t0),Wn, σn) inW Jt0KΓ. From the induction hypoth-
esis, (C0, σ,W ) is non-violating, so there exists an interference event u′ such that
e0 ·u

′ has concession in (C0, σ,W ). Now, the interference events ofW Jt0KΓ are equal
to the interference events of W JtKΓ, so u′ is an interference event of W JtKΓ. The
events e and e0 differ only on their control conditions and e has concession on its
control conditions in M , so the event e ·u′ is present in the netW JtKΓ and moreover
has concession in marking M . This contradicts M being a violating marking. It can
be shown similarly that M is fault-free.

The separation property on synchronized events of W JtKΓ straightforwardly holds:

Let s1 and s2 be synchronized events present in the net. If M
s1
−։ M1 and M

s2
−։ M2

then, using Lemma 3.6.9, we can see that there are events s′1 and s′2 and markings

M ′
1 and M ′

2 such that (C0, σ,W )
s1
−։ M ′

1 and (C0, σ,W )
s′2
−։ M ′

2 in W Jt0KΓ, and
furthermore s1 = body:s′1 and s2 = body:s′2. If s1 and s2 are control-independent, it
is clear to see that so are s′1 and s′2. If s′1 and s′2 are independent then so are s1 and
s2. Hence, if s1 and s2 are not independent then neither are s′1 and s′2, so by the
induction hypothesis for Γ ⊢0 {ϕ

′}t0{ϕ} we see that s′1 and s′2 are of the particular
forms specified in the third clause of the definition of separation, and therefore so
are s1 and s2.

Now suppose that M
s1
−։ M1

s2
−։ M2 in W JtKΓ and that s1 and s2 are control-

independent synchronized events. Let the marking of control conditions in M1 be
C1. It cannot be that C1 = body:Tc(t0): We have, by assumption, C 6= body:Tc(t0)
so, if it were, there would exist a control condition b with b ∈ Cs1

C ∩ body:Tc(t0).
By Lemmas 5.2.2 and 3.6.9, s2 would have to correspond to an action testing the
boolean b, so Cs2 = body:Tc(t0). This contradicts the assumption that s1 and s2 are
control independent. The remainder of the case is similar to the preceding argument.

(L-Res)

Let t = resource w do t0 od and assume that Γ ⊢0 {ϕ ⋆ χ}t{ψ ⋆ χ} because Γ, r0:χ ⊢0

{ϕ}[r0/r]t0{ψ} for some r0 6∈ dom(Γ).

105



Assume that σ0, W0 satisfies ϕ ⋆ χ in Γ. Recall that Ic(t) = {i}, and that σ0 is equal
(D0, L0, R0, N0). Let π be the path to the marking M from (Ic(t), σ0,W0) in W JtKΓ.
Lemma 5.3.3 on page 88 identifies the three possible cases for the path π:

The first case has C = Ic(t) and π is empty. The only synchronized events with
concession on their control conditions are to declare a resource. It follows immediately
that no fault can occur in the marking and that the marking M is non-violating because
the marking is consistent. In addition, there are no two control-independent events that
may occur either both in marking M or sequentially from marking M , so the separation
property is also satisfied.

Now consider the second case, where C = res r:C ′ for some resource r. There exist
paths π0 and π1 such that:

π = π0 · sr · (res r:π1)

and

W JtKΓ : (Ic(t), σ0,W0)
π0·sr

−։ (res r:Ic([r/w]t0), σ
′,W ′) and

W J[r/w]t0KΓ : (Ic([r/w]t0), σ
′,W ′)

π1
−։ (C ′, σ,W ).

In addition, the path π0 consists only of interference events.
From Lemma 5.3.4, we have ωproc(r) ∈ W1 for every marking of ownership conditions

W1 reachable from (Ic([r/w]t0), σ
′,W ′) along the path π1.

The resource r is not in dom(Γ) because the event sr has concession in a marking, which
must be consistent according to Proposition 5.1, that is reachable from (Ic(t), σ0,W0).
Since the marking (Ic(t), σ0,W0) satisfies ϕ ⋆ χ in Γ and interference events preserve this
property, it is therefore the case that the marking (res r:Ic([r/w]t0), σ

′,W ′) therefore satis-
fies ϕ in Γ. Let σ′ = (D′, L′, R′, N ′). We have r ∈ R′. Interference and resource declaration
events do not affect the heap owned by the process, so D0 ↾W0

proc = D′ ↾W ′ proc. Since
the marking D0 satisfies ϕ ⋆ χ in Γ, there exists Dr ⊆ D0 ↾W0

proc such that Dr |= χ. All
the assumptions to apply Lemma 5.3.5 are met. Since r ∈ R′, it can be seen from Defi-
nition 5.3.4 that toInvχr (Ic([r/w]t0), σ

′,W ′) satisfies ϕ in Γ, r:χ. By induction, the judge-
ment Γ, r0:χ ⊢0 {ϕ}[r0/w]t0{ψ} is valid. From Lemma 5.3.8, recalling that r 6∈ dom(Γ), we
therefore have Γ, r:χ |= {ϕ}[r/w]t0{ψ}. An induction on the length of π1 applying Lemma
5.3.5 shows that the marking toInvχr (C

′, σ,W ) is reachable in W J[r/w]t0KΓ,r:χ from the
marking toInvχr (Ic([r/w]t0), σ0,W0). Hence, from the definition of validity, the marking
toInvχr (C

′, σ,W ) is non-violating and therefore so is (C ′, σ,W ) in W J[r/w]t0KΓ by Lemma
5.3.5. It can also be seen that the marking (C ′, σ,W ) is fault-free as a consequence of
toInvχr (C

′, σ,W ) being fault-free. From Lemma 3.6.11, if C ′ 6= Tc([r/w]t0) then the mark-
ing (C, σ,W ) of W JtKΓ is non-violating and fault-free because any synchronized event
s with concession on its control conditions in (C, σ,W ) corresponds to an event s0 with
s = res r:s0 that has concession on its control conditions in (C ′, σ,W ). If C ′ = Tc([r/w]t0),
it follows from the earlier remark that Γ, r:χ |= {ϕ}[r/w]t0{ψ} that toInvχr (C

′, σ,W ) sat-
isfies ψ in Γ, r:χ. By Lemma 3.6.11, it can be seen that the only events with concession on

their control conditions in this marking are equal to end(res r:Tc([r/w]t0),Tc(t))(r,Di) for some
Di such that Di |= χ. The marking is easily seen to be fault-free, so all that we must show
is that it is non-violating. If the event end(res r:Tc([r/w]t0),Tc(t))(r) has concession in (C, σ)
in the net N JtK then r ∈ σ. Let σ = (D,L,R,N). From the definition of toInvχr (C

′, σ,W ),
it follows that there exists Dj ⊆ D ↾W proc such that Dj |= χ. It is easily seen, therefore,

that the event end(res r:Tc([r/w]t0),Tc(t))(r,Dj) has concession in the marking (C, σ,W ), so
the marking is non-violating.

We now consider the separation property for marking (C, σ,W ). First suppose that
there are synchronized events s and s′ that both have concession in (C, σ,W ). If C =
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res r:Tc([r/w]t0) then, by Lemma 5.3.3, the events s and s′ are not control indepen-
dent. Otherwise, if C 6= res r:Tc([r/w]t0), observe that the separation property holds
in the marking toInvχr (C

′, σ,W ) from the induction hypothesis for Γ, r0:{ϕ}[r0/w]t0{ψ}
and Lemma 5.5.1 because (r r0) · (Γ, r0:χ) = Γ, r:χ and (r r0) · [r0/w]t0 = [r/w]t0 since
fv([r0/w]t0) ⊆ dom(Γ, r0:χ) by Lemma 4.2.1 — in essence, because Lemma 5.5.1 allows us
to infer that the separation property holds in the run of W J[r/w]t0KΓ,r:χ because it holds
in the corresponding run of W J[r0/w]t0KΓ,r0:χ according to the induction hypothesis.

It follows straightforwardly from Lemma 5.3.3 and Lemma 5.3.5 that the marking M
satisfies part (1) of the separation property. Parts (2) and (3) of the separation property,
which consider the occurrence of s and s′ in consecutive markings, are demonstrated
similarly.

Finally, consider case the third case for the path π according to Lemma 5.3.3 on page
88, where C = Tc(t). Recall that there exist π0, π1 and π2 such that

π = π0 · sr · (res r:π1) · s
′
r · π2,

and

W JtKΓ : (Ic(t), σ0,W0)
π0·sr

−։ (res r:Ic([r/w]t0), σ
′,W ′),

W J[r/w]t0KΓ : (Ic([r/w]t0), σ
′,W ′)

π1
−։ (Tc([r/w]t0), σ

′′,W ′′), and

W JtKΓ : (res r:Tc([r/w]t0), σ
′′,W ′′)

s′r ·π2

−։ (Tc(t), σ,W ).

The paths π0 and π2 consist only of interference events.
The marking M = (Tc(t), σ,W ) is clearly non-violating and fault-free since no syn-

chronized event in W JtKΓ has concession on its control conditions. For the same reason,
the separation property trivially holds in this marking. All that remains is to show that
M satisfies ψ ⋆ χ in Γ.

As argued in the previous case, the marking toInvχr (Tc([r/w]t0), σ
′′,W ′′) satisfies ψ in

Γ, r:χ. We have r ∈ σ′′ since the event s′r has concession in (Tc([r/w]t0), σ
′′,W ′′). From

the definition of toInvχr (Tc([r/w]t0), σ
′′,W ′′), it is simple to see that (Tc([r/w]t0), σ

′′,W ′′)
satisfies ψ⋆χ in Γ, as required. The disposal of the resource by the event s′r yields a marking
satisfying ψ ⋆ χ in Γ. Since the events of π2 are only interference events, Lemma 5.3.6
ensures that every marking along π2 satisfies ψ ⋆ χ in Γ. Hence the marking (Tc(t), σ,W )
satisfies ψ ⋆ χ in Γ, as required.

(L-CR)

For brevity, let t = with w do t0 od. Suppose that Γ, r:χ ⊢0 {ϕ}t{ψ} because Γ, r:χ ⊢0

{ϕ ⋆ χ}t0{ψ ⋆ χ}. Let π be a path such that W JtKΓ :(Ic(t), σ0,W0)
π
−։ (C, σ,W ) for some

σ0 and W0 that satisfy ϕ in Γ. According to Lemma 5.3.6, we may assume that π starts
with no interference events and that no interference event occurs if the terminal control
conditions are marked. Just as Lemma 5.3.3 on page 88 uses Lemma 3.6.11 to characterize
the runs of the net W Jresource w do t0 odKΓ, Lemma 3.6.13 can be used to show that π
follows one of the three following cases:

1. C = Ic(t), σ = σ0, W = W0 and π = ().

2. There exist D1, C0, π0, σ
′ and W ′ such that C = body:C0 and D1 |= χ and π =

s · body:π0 and

W JtKΓ,r:χ : (Ic(t), σ0,W0)
acq(Ic(t),body:Ic(t0))(r,D1)

−։ (body:Ic(t0), σ
′,W ′)

W Jt0KΓ,r:χ : (Ic(t0), σ
′,W ′)

π0
−։ (C0, σ,W ).
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3. C = Tc(t) and there exist D1, D2, π0, σ
′, σ′′,W ′ and W ′′ such that D1 |= χ and

D2 |= χ, and

π = acq(Ic(t),body:Ic(t0))(r,D1) · body:π0 · rel(body:Tc(t0),Tc(t))(r,D2)

and

W JtKΓ,r:χ : (Ic(t), σ0,W0)
acq(Ic(t),body:Ic(t0))(r,D1)

−։ (body:Ic(t0), σ
′,W ′),

W Jt0KΓ,r:χ : (Ic(t0), σ
′,W ′)

π0
−։ (Tc(t0), σ

′′,W ′′),

W JtKΓ,r:χ : (body:Tc(t0), σ
′′,W ′′)

rel(body:Tc(t0),Tc(t))(r,D2)

−։ (Tc(t), σ,W )

Case (1): According to Lemma 3.6.13, the only synchronized events with concession on their

control conditions are of the form acq(C1,C2)(r,D
′
1) for some D′

1 such that D′
1 |= χ, so

the initial marking must be fault-free. The marking (Ic(t), σ0,W0) is assumed to be
consistent, so if r ∈ R we must have ωinv(r) ∈ W and there exists (unique) D1 ⊆ D
such that D1 |= χ with ωproc(dom(D1)) ⊆ W . It is straightforward to see from this
that the marking is non-violating. The separation property is readily seen to be met
since if two synchronized events occur sequentially from (Ic(t0), σ0,W0) then they
cannot be control-independent according to Lemmas 5.2.2 and 3.6.13.

Case (2): We now consider case (2), where C = body:C0, which will be the most substantial
part of the proof for (L-CR). Let σ0 = (D0, L0, R0, N0) and σ′ = (D′, R′, N ′, L′). We
must have r ∈ R0 and R′ = R0 \ {r}, but D = D′ and L = L′ and N = N ′. From the
definition of acq(Ic(t),body:Ic(t0))(r,D1), we have ωinv(dom(D1)) ⊆W0 and

W ′ = W0 \ ωinv(dom(D1)) ∪ ωproc(dom(D1)).

Since (σ0,W0) satisfies ϕ in Γ, r:χ, it follows from χ being precise that (σ′,W ′) satisfies
ϕ ⋆ χ in Γ, r:χ. It follows from the induction hypothesis that (C0, σ,W ) is a non-
violating, fault-free marking ofW Jt0KΓ,r:χ, and if C0 = Tc(t0) then (C0, σ,W ) satisfies
ψ ⋆ χ in Γ, r:χ.

If there is a fault in the marking (C, σ,W ) in the netW JtKΓ,r:χ and C0 6= Tc(t0) then
it follows from Lemmas 3.6.13 and 5.2.2 that there is a fault in the marking (C0, σ,W ),
from which we derive a contradiction. If, instead, C0 = Tc(t0), then according to Lem-

mas 3.6.13 and 5.2.2, it is because there exists D2 such that rel(body:Tc(t0),Tc(t))(r,D2)
has concession on its control conditions but r ∈ R. However, a simple induction on
the length of π0, applying Lemma 3.10.1, allows us to see that ωproc(r) ∈ W and
r 6∈ σ. It follows that the marking (C, σ,W ) is fault-free.

We now show that the marking (C, σ,W ) is non-violating. Let e be any event of N JtK
that has concession in the marking (C, σ) of N JtK. First suppose that C0 6= Tc(t0).
From Lemmas 3.4.1 and 3.6.13, there exists an event e0 such that e = body:e0 and
so e0 has concession in the marking (C0, σ) of N Jt0K. The marking (C0, σ,W ) is
non-violating from the induction hypothesis, so there exists u0 such that e0 · u0 has
concession in (C0, σ,W ). The interference events of W Jt0KΓ,r:χ and W JtKΓ,r:χ are the
same, and so e·u0 is an event inW JtKΓ,r:χ. Moreover, the event e·u0 has concession in
(C, σ,W ), so the marking is non-violating. Now suppose, instead, that C0 = Tc(t0).
It now follows from Lemmas 3.4.1 and 3.6.13 that e = rel(body:Tc(t0),Tc(t))(r). From the
induction hypothesis, (C0, σ,W ) satisfies ψ ⋆ χ in Γ, r:χ. The event e has concession,
so r ∈ σ, and there exists D2 ⊆ D ↾W proc such that D2 |= χ because (C, σ,W )
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satisfies ϕ ⋆ χ in Γ. It follows that the event e · rel(r,D2) has concession in (C, σ,W ),
and therefore the marking is non-violating.

The final part of this case is to consider the separation property for the marking
(C, σ,W ). Let s and s′ be control-independent synchronized events in W JtKΓ,r:χ,
and suppose first that both s and s′ have concession in (C, σ,W ). If C0 6= Tc(t0)
then, from Lemmas 5.2.2 and 3.6.13, there exist s0 and s′0 such that s = body:s0 and
s′ = body:s′0. The events s0 and s′0 have concession in (C0, σ,W ). Since the separation
property holds in (C0, σ,W ) according to the induction hypothesis, either the events
s0 and s′0 are independent, in which case so are s and s′, or s0 and s′0 compete to
allocate the same location, in which case so do s and s′, etc. If, instead, C0 = Tc(t0),
it follows from Lemmas 5.2.2 and 3.6.13 that the events s and s′ cannot be control
independent.

For the second part of the separation property, suppose that there exists a marking

(C ′′, σ′′,W ′′) such that W JtKΓ :(C, σ,W )
s
−։ (C ′′, σ′′,W ′′)

s′

−։ for s and s′ that are
control-independent. It follows from Lemmas 5.2.2 and 3.6.13 that C 6= body:Tc(t0)
and C ′′ 6= body:Tc(t0) since otherwise s and s′ would not be control independent.
According to these lemmas, there exist s0 and s′0 such that s = body:s0 and s′ =

body:s′0. We have W Jt0K: (C0, σ,W )
s0
−։ (C ′′

0 , σ
′′,W ′′)

s′0
−։ for some C ′′

0 such that
C ′′ = body:C ′′

0 . The separation property holds in (C0, σ,W ), so either s0 and s′0
are independent, in which case so are s and s′, or s0 deallocates a location that s′0
allocates, etc. The separation property in the marking (C, σ,W ) is therefore met.

Case (3): In this case, we have C = Tc(t) and

W JtKΓ,r:χ : (Ic(t), σ0,W0)
acq(Ic(t),body:Ic(t0))(r,D1)

−։ (body:Ic(t0), σ
′,W ′),

W Jt0KΓ,r:χ : (Ic(t0), σ
′,W ′)

π0
−։ (Tc(t0), σ

′′,W ′′), and

W JtKΓ,r:χ : (body:Tc(t0), σ
′′,W ′′)

rel(body:Tc(t0),Tc(t))(r,D2)

−։ (Tc(t), σ,W )

It follows from Lemmas 5.2.2 and 3.6.13 that no synchronized event has concession
on its control conditions in the marking (C, σ,W ), so the marking is non-violating,
fault-free and the separation property trivially holds. All that we must show is that
the marking (Tc(t), σ,W ) satisfies ϕ in Γ, r:χ. From the analysis in the previous case,
the marking (Tc(t0), σ

′′,W ′′) satisfies ϕ ⋆ χ in Γ, r:χ and r 6∈ σ′′. From the definition

of rel(body:Tc(t0),Tc(t))(r,D2), we have D2 |= χ and

σ = σ′′ ∪ {r} and W = W ′′ \ ωproc(dom(D2)) ∪ ωinv(dom(D2)).

Note that σ′′ = (D,L,R ∪ {r}, N). Since D ↾W ′′ proc |= ψ ⋆ χ, it follows that D ↾W

proc |= ψ because the formula χ is precise. We have D ↾W ′′ inv |= inv(Γ, r:χ, R′′),
so D ↾W inv |= inv(Γ, r:χ, R′′) ⋆ χ, and therefore D ↾W inv |= inv(Γ, r:χ, R). It is
therefore the case that (Tc(t), σ,W ) satisfies ϕ in Γ, r:χ, as required.

(L-Par)

Suppose that Γ ⊢0 {ϕ1⋆ϕ2}t1 ‖ t2{ψ1⋆ψ2} because Γ ⊢0 {ϕ1}t1{ψ1} and Γ ⊢0 {ϕ2}t2{ψ2}.
Assume that the marking (Ic(t1 ‖ t2), σ0,W0) satisfies ϕ1 ⋆ ϕ2 in Γ. It can be seen from
the definitions that there exist W01 and W02 forming an ownership split of W0 such that
the marking (Ic(t1), σ0,W01) satisfies ϕ1 in Γ and (Ic(t2), σ0,W02) satisfies ϕ2 in Γ. The
marking (C, σ,W ) is reachable from (Ic(t1 ‖ t2), σ0,W0). A simple induction along the
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path to this marking (using Lemmas 3.6.5 and 5.2.2 to show that there exist C1 and C2

such that C = par 1:C1 ∪ par 2:C2) using Lemma 5.3.2 shows that there exist W1 and W2

forming an ownership split of W such that

W Jt1KΓ : (Ic(t1), σ0,W01)
∗
−։ (C1, σ,W1) and

W Jt2KΓ : (Ic(t2), σ0,W02)
∗
−։ (C2, σ,W2).

From the induction hypotheses, the markings (C1, σ,W1) and (C2, σ,W2) are fault-
free, non-violating, satisfy the separation property and are such that if C1 = Tc(t1) then
(Tc(t1), σ,W1) satisfies ϕ1 in Γ, and if C2 = Tc(t2) then (Tc(t2), σ,W2) satisfies ϕ2 in
Γ. It is easy to see, as a consequence, that the marking (C, σ,W ) is fault-free, and, from
Lemma 5.3.2, that it is non-violating. Suppose that C = Tc(t1 ‖ t2); it is easy to see that
C1 = Tc(t1) and C2 = Tc(t2). It follows from the fact that W1 and W2 form an ownership
split of W1 and W2 that the marking (C, σ,W ) satisfies ϕ1 ⋆ ϕ2 in Γ.

We now consider the separation property in the marking (C, σ,W ). Let s1 and s2
be control-independent synchronized events in W Jt1 ‖ t2KΓ. If s1 = (par 1:e1) · u1 and
s2 = (par 1:e2) · u2 for some e1, e2 ∈ Ev(t1) and interference events u1 and u2 in W Jt1KΓ,
the result follows routinely from the induction hypothesis, and similarly if s1 and s2 both
arise from events of N Jt2K. Suppose instead that there exist e1 ∈ Ev(t1), e2 ∈ Ev(t2) and
interference events u1 and u2 such that s1 = (par 1:e1) · u1 and s2 = (par 2:e2) · u2.

First, suppose that in the net W Jt1 ‖ t2KΓ we have

(C, σ,W )
s1
−։ (par 1:C ′

1 ∪ par 2:C ′
2, σ

′,W ′)
s2
−։ (par 1:C ′′

1 ∪ par 2:C ′′
2 , σ

′′,W ′′).

Applying the parallel decomposition lemma (Lemma 5.3.2) twice shows that

(C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′

1)
u2
−։ (C ′′

1 , σ
′′,W ′′

1 )

in W Jt1KΓ for some W ′
1,W

′′
1 for W1 the marking of ownership conditions obtained above.

By Lemma 5.5.2, the separation property holds for e1 · u1 and u2 in (C1, σ,W1); consider
how it might hold. If e1 · u1 deallocates a location that u2 allocates then s1 deallocates a
location that s2 allocates, so the separation property holds for s1 and s2. The argument
is similar for all the other cases where e1 ·u1 and u2 are not independent. Suppose instead
that e1 · u1Iu2. The event u2 has concession in the marking (C1, σ,W1) by virtue of the
fact that the occurrence of independent events in a run can be interchanged (Proposition
2.2.1). Consider the marking (par 1:C1 ∪ par 2:C2, σ,W1) of W Jt1 ‖ t2KΓ. The event s1
is readily seen using Lemma 3.3.2 to have concession in this marking, as does u2. The
event par 2:e2 is control-independent from par 1:e1, so by Lemma 5.5.3 we have s1Is2, as
required.

Now suppose that in the net W Jt1 ‖ t2KΓ we have

(C, σ,W )
s1
−։ (par 1:C ′

1 ∪ par 2:C ′
2, σ

′,W ′)

and (C, σ,W )
s2
−։ (par 1:C ′′

1 ∪ par 2:C ′′
2 , σ

′′,W ′′).

Applying the parallel decomposition lemma, we have

(C1, σ,W1)
e1·u1
−։ (C ′

1, σ
′,W ′

1) and (C1, σ,W1)
u2
−։ (C ′′

1 , σ
′′,W ′′

1 )

in W Jt1KΓ for some W ′
1,W

′′
1 . By Lemma 5.5.2, the separation property holds for e1 · u1

and u2 in (C1, σ,W1); consider how it might hold. If e1 · u1 allocates a location that u2

also allocates, then s1 allocates a location that s2 allocates, so the separation property
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holds for s1 and s2. The argument is similar for all the other cases where e1 · u1 and u2

are not independent. Suppose instead that e1 · u1Iu2. Consider the marking (par 1:C1 ∪
par 2:C2, σ,W1) of W Jt1 ‖ t2KΓ. The event s1 has concession in this marking as does u2.
The event par 2:e2 is control-independent from par 1:e1, so by Lemma 5.5.3 we have s1Is2,
as required.

(L-Frame)

Suppose that Γ ⊢0 {ϕ ⋆ ϕ
′}t{ψ ⋆ ϕ′} because Γ ⊢0 {ϕ}t{ψ}. By the rule (L-Nil), we

have Γ ⊢0 {ϕ
′}ε{ϕ′}. We therefore have Γ ⊢0 {ϕ ⋆ ϕ

′}t ‖ ε{ψ ⋆ ϕ′}. Let M ′ = (Ic(t ‖
ε), σ0,W0) be a marking that satisfies ϕ in Γ. Applying the argument above for parallel
composition to the induction hypothesis, we see that every marking reachable from M ′ is
fault-free, non-violating, satisfies the separation property and, if terminal, satisfies ψ⋆ϕ′ in
Γ. The very close relationship betweenW JtKΓ andW Jt ‖ εKΓ, that the nets are isomorphic
but for the isolated marked control condition par 2:(i, t) in W Jt ‖ εKΓ, ensures that any
marking reachable from (Ic(t), σ0,W0) in W JtKΓ is also non-violating, fault-free, satisfies
the separation property and, if terminal, satisfies ψ ⋆ ϕ′ in Γ.

(L-Conjunction)

Suppose that we have Γ ⊢0 {ϕ1 ∧ ϕ2}t{ψ1 ∧ ψ2} because Γ ⊢0 {ϕ1}t{ψ1} and Γ ⊢0

{ϕ2}t{ψ2}. Suppose that the initial marking (Ic(t), σ0,W0) satisfies ϕ1 ∧ ϕ2; it therefore
satisfies ϕ1 and also satisfies ϕ2 from the definition of satisfaction and the definition of
conjunction in the heap logic. From the induction hypothesis of Γ ⊢0 {ϕ1}t{ψ1}, we may
conclude that every marking reachable fromM0 = (Ic(t), σ0,W0) inW JtKΓ is non-violating
and fault-free, that the separation property holds for all reachable markings, and that any
terminal marking satisfies ψ1. From the induction hypothesis of Γ ⊢0 {ϕ2}t{ψ2}, we may
further conclude that any terminal marking reachable from (Ic(t), σ0,W0) satisfies ψ2.
Consequently, by the definition of a marking satisfying a formula, any terminal marking
reachable from M0 satisfies ψ1 and ψ2. By the definition of conjunction in the heap logic,
any terminal marking reachable from M0 therefore satisfies ψ1 ∧ ψ2.

(L-Disjunction)

Suppose that we have Γ ⊢0 {ϕ1 ∨ ϕ2}t{ψ1 ∨ ψ2} because Γ ⊢0 {ϕ1}t{ψ1} and Γ ⊢0

{ϕ2}t{ψ2}. Suppose that the initial marking M0 = (Ic(t), σ0,W0) satisfies ϕ1 ∨ ϕ2. It
therefore either satisfies ϕ1 or ϕ2. Suppose first that it satisfies ϕ1. From the induction
hypothesis for Γ ⊢0 {ϕ1}t{ψ1}, we may conclude that any reachable marking is non-
violating, fault-free and satisfies the separation property. Furthermore, any reachable
terminal marking satisfies ψ1 and, consequently, any reachable terminal marking satisfies
ψ1∨ψ2. The case if M satisfies ϕ2 is similar, so any terminal marking satisfies ψ1∨ψ2.
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Chapter 6

Refinement

When we consider concurrent programs, the atomicity assumed of their primitive actions,
called their granularity, is of significance. For example, suppose that the concurrent pro-
gram

ℓ := ℓ′ + 1
‖ (ℓ′ 6= ℓ).diverge+ (ℓ′ = ℓ).skip

runs from the heap {ℓ 7→ 0, ℓ′ 7→ 1}. Given the prior interpretations of skip and diverge,
we might conclude that the program never terminates since the assignment ℓ := ℓ′ + 1
maintains the property through execution that ℓ and ℓ′ hold different values. Consequently,
the left branch of the guarded sum is always chosen so the right-hand parallel process
always diverges.

It may not, however, be reasonable to assume that the assignment is executed atomi-
cally. For instance, the processor on which the process runs might have primitive actions
for copying the values held in memory locations and for incrementing them, but not for
copying and incrementing in one clock step. The process ℓ := ℓ′ + 1 might therefore be
compiled to execute as ℓ := ℓ′; ℓ := ℓ+ 1. Quite clearly, the process

ℓ := ℓ′; ℓ := ℓ+ 1
‖ (ℓ′ 6= ℓ).diverge+ (ℓ′ = ℓ).skip

may terminate, so we failed to exhibit a proper degree of caution when asserting that it
would fail to terminate.

An important observation in [Rey04] is that changes in the granularity of actions
are permissible in the absence of races. The absence of races excludes interference of
the form in the example above. Since processes subjected to a judgement in concurrent
separation logic are race-free (when running from suitable initial states), it follows that
proved processes are not susceptible to changes in granularity.

In this section, we will begin to show how the net model might be applied to provide
a formal basis for this intuitive account. We will provide a framework for refinement (an
operation on the semantics) that allows the granularity of actions to be changed. We then
provide a constraint on refinement called non-interference that is sufficient to demonstrate
that the refinements do not affect the big-step semantics of processes. As we shall discuss
at the end of this chapter, this refinement operation may form the basis of an attempt to
prove Reynolds’ conjecture.
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6.1 Contexts for refinement

We showed earlier that programs were race-free by proving in Theorem 5.5 the separation
property for proved processes. Within our net model we can provide a form of refinement,
similar to that of [vGG89] but suited to processes executing in a shared environment, that
begins to capture these ideas. The property required to apply the refinement operation
may be captured directly in terms of independence, with no changes to our semantics.
This concurs with the point made in [Pra86] and [CMP87] that independence models are
well-suited to such refinement operations.

We will relate the nets representing processes with different levels of atomicity by
regarding them as alternative substitutions into a context. We will then give a condition
on substitutions led by Theorem 5.5 to show that any partial correctness assertion made
for one of the nets also holds for the other.

In this section, when we draw contexts the hole will be drawn using a hollow rectangle:

As an example, a change in granularity of the command ℓ := ℓ′ + 1 to become ℓ := ℓ′; ℓ :=
ℓ + 1 in the term ℓ := ℓ′ + 1 ‖ k := 0 shall be represented by considering the two nets
N Jℓ := ℓ′ + 1K and N Jℓ := ℓ′; ℓ := ℓ+ 1K

Ic(ℓ := ℓ′ + 1) Tc(ℓ := ℓ′ + 1)

act({ℓ 7→ 0, ℓ′ 7→ 0}, {ℓ 7→ 1, ℓ′ 7→ 0})

act({ℓ 7→ 0, ℓ′ 7→ 1}, {ℓ 7→ 2, ℓ′ 7→ 1})

Tc(ℓ := ℓ′; ℓ := ℓ + 1)

act({ℓ 7→ 0}, {ℓ 7→ 1})

act({ℓ 7→ 1}, {ℓ 7→ 2})

Ic(ℓ := ℓ′; ℓ := ℓ + 1)

act({ℓ 7→ 0, ℓ′ 7→ 0}, {ℓ 7→ 0, ℓ′ 7→ 0})

act({ℓ 7→ 0, ℓ′ 7→ 1}, {ℓ 7→ 1, ℓ′ 7→ 1})

as alternative substitutions into the context representing their parallel composition with
k := 0

act({k 7→ 1}, {k 7→ 0})

act({k 7→ 0}, k 7→ 0})

Ic([−] ‖ k := 0) Tc([−] ‖ k := 0)

(we omit the state conditions from both diagrams but do give the labels of events).
Formally, a context K will be an embedded net with a special event [−] to represent

the ‘hole’. The event [−] has no effect in the state conditions, which represent the values
held in memory locations, so it has no pre-state or post-state conditions; it only has effect
on control conditions (note that in this chapter we no longer include ownership conditions
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or interference events). We shall require the net K and any net N substituted into the
hole to be well-terminating (Lemma 3.5.1) and to satisfy all the constraints of Lemma
3.5.1. The definitions become a little technically-involved, so to simplify matters we shall
also assume that •[−] and [−]• are disjoint and also that Ic(N) and Tc(N) are disjoint,
though these requirements could be dropped.

Definition 6.1.1 (Context). Define a context K to be a embedded net with a distinguished
event [−]. The event [−] is such that •[−]• ⊆ C and its pre- and postconditions form
disjoint, nonempty sets.

We may now construct the net representing the substitution of a net N for the hole in
a context K. We shall assume that, as in the semantics for terms, the two nets are formed
with the same sets of conditions. As the nets are extensional (we regard an event simply
as its set of preconditions paired with its set of postconditions), all that we need to specify
is the events of the net and its initial and terminal markings of control conditions.

In the net K[N ], for conditions c from the context K we add a prefix to form inK : c,
and similarly conditions from N shall be of the form inN : c. At the boundary of the
substitution, we shall write conditions as pairs (inK : c, inN : c′) so that we can use the
gluing operation defined earlier (on page 36).

Definition 6.1.2 (Substitution). Let K be a context and N an embedded net. Define the
sets

Pi , inK : •[−]× inN : Ic(N) Pt , inK : [−]• × inN : Tc(N).

The substitution K[N ] is defined to be the embedded net with:

Ev(K[N ]) , (Pi ∪ Pt) ⊳ inK :(Ev(K) \ {[−]}) ∪ (Pi ∪ Pt) ⊲ inN : Ev(N)

Ic(K[N ]) , (Pi ∪ Pt) ⊳ inK : Ic(K)

Tc(K[N ]) , (Pi ∪ Pt) ⊳ inK : Tc(K)

To see the definition at work, we give the following example.

Example 6.1.1. Let K be the context which has two concurrent events, e1 and e2, which
can occur concurrently in the initial marking before the substituend is activated:

e1

c1

c2

e2

a1

a2

x
[−]

KIc(K) Tc(K)

Suppose that we insert the following net, which runs e3 and e4 concurrently:

i1

i2

t1

t2

e4

e3

Ic(N) N Tc(N)
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We obtain the following net, representing the sequential composition of e1 ‖ e2 followed by
e3 ‖ e4. We elide details of the action of events on state conditions, which is unaffected
by the substitution operation.

inK : c1

inK : c2

(inK :x, inN : t1)

(inK :x, inN : t2)

(inK : a1, inN : i2)
(inK : a2, inN : i1)

(inK : a2, inN : i2)

P ⊲ inN : e3

P ⊲ inN : e4

(inK : a1, inN : i1)

P ⊳ inK : e2

P ⊳ inK : e1

Ic(K[N ]) K[N ] Tc(K[N ])

Suppose that N1 and N2 are nets representing a change in granularity of an action.
We wish relate runs of the net K[N1] to runs of the net K[N2].

Definition 6.1.3. Let π be a (finite) sequence of events of the net N . Sequence π is said
to be complete from σ to σ′ if

N :(Ic(N), σ)
π
−։ (Tc(N), σ′).

Write N :σ ⇓σ′ if there exists a complete sequence from σ to σ′ in N .

Using this definition, we can define a notion of complete trace equivalence ≃ as:

N1 ≃ N2 iff (∀σ, σ′)N1:σ ⇓σ
′ ⇐⇒ N2:σ ⇓σ

′.

We wish to constrain K, N1 and N2 appropriately so that if N1 ≃ N2 then for all suitable
initial states σ0

(∀σ′)K[N1]:σ0 ⇓σ
′ ⇐⇒ K[N2]:σ0 ⇓σ

′.

As an example, the context introduced at the start of this section for ℓ := ℓ′ + 1 does
not give rise to nets with this property.

Example 6.1.2. Write, in the obvious way, “−” for the action term that will be inter-
preted as forming the hole of a context. Define

K , N
q
− ‖ (ℓ′ 6= ℓ).diverge+ (ℓ′ = ℓ).skip

y

N1 , N
q
ℓ := ℓ′ + 1

y

N2 , N
q
ℓ := ℓ′; ℓ := ℓ+ 1

y
.

We have N1 ≃ N2 and

K[N1]:{ℓ 7→ 0, ℓ′ 7→ 1} 6⇓{ℓ 7→ 2, ℓ′ 7→ 1}

but

K[N2]:{ℓ 7→ 0, ℓ′ 7→ 1}⇓{ℓ 7→ 2, ℓ′ 7→ 1}.

The problem here is that the context K interferes with the execution of N1 and N2.
We wish to find a constraint that rules this out.
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6.2 Contextual interference

Return to the general case for a substitution K[N ]. Intuitively, if the substituend N were
an atomic event, it would start running only if the conditions Pi were marked and Pt were
not. There are two distinct ways in which the context K can affect the execution of N .
Firstly, it might affect the marking of conditions in Pi or Pt whilst N is running. Secondly,
it might change the marking of state conditions in a way that affects the execution of
N . An instance of the latter form of interference is seen in the preceding example. We
now define a form of constrained substitution, guided by Theorem 5.5, so that N is not
subject to these forms of interference. The development is slightly different from that in
[HW08a] (here, we impose ‘control non-interference’) in order to obtain a conceptually
clearer framework.

Say that a control condition c of K[N ] is internal to N if c = inN : c2 where c2 is a
pre- or a postcondition of an event of N that is not in Ic(N) or Tc(N). It is useful to
classify the markings of K[N ] according to whether they support the occurrence of N - or
K-events on the conditions Pi and Pt:

Definition 6.2.1. A marking C of control conditions of K[N ] is an N -marking if for all
a, a′ ∈ •[−], x, x′ ∈ [−]•, i ∈ Ic(N) and t ∈ Tc(N):

• if (inK : a, inN : i) ∈ C then (inK : a′, inN : i) ∈ C, and

• if (inK :x, inN : t) ∈ C then (inK : x′, inN : t) ∈ C.

A marking C of control conditions of K[N ] is a K-marking if there is no N -internal
condition marked, and furthermore, for all a ∈ •[−], x ∈ [−]•, i, i′ ∈ Ic(N) and t, t′ ∈
Tc(N):

• if (inK : a, inN : i) ∈ C then (inK : a, inN : i′) ∈ C, and

• if (inK :x, inN : t) ∈ C then (inK : x, inN : t′) ∈ C.

For example, the marking on the left is an N -marking, the marking on the right is a
K-marking and the middle marking is both a K- and an N -marking.

K

N

(inK : a, inN : i′)

(inK : a′, inN : i)

K

N

(inK : a′, inN : i)

(inK : a, inN : i′)

K

N

(inK : a, inN : i′)

(inK : a′, inN : i)

(inK : a, inN : i) (inK : a, inN : i) (inK : a, inN : i)

(inK : a′, inN : i′) (inK : a′, inN : i′) (inK : a′, inN : i′)

It is straightforward to prove, using Lemma 3.3.2, that any K-event occurring from a K-
marking gives rise to another K-marking and, similarly, N -events preserve the property
of being an N -marking. Given a marking C of control conditions of K[N ], say that N is
active if it is an N -marking such that Pt 6⊆ C.

The first stage in showing that there is no interference between K and N in K[N ]
is to capture the property that the context K does not affect the control conditions in
Pi ∪ Pt whilst the subnet N is active; we call this property control non-interference. In
an analogous manner to the definition in Section 3.4 of the control net of a term, we
denote by C(N) the (labelled) net obtained by stripping away the state conditions from
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the embedded net N . This net represents the control features of N and will be used to
describe its control properties. As in Lemma 3.4.1, it is easy to see that

N :(C, σ)
e
−։ (C ′, σ) =⇒ C(N):C

e
−։ C ′.

We shall say that the net K[N ] represents a control-noninterfering substitution if
whenever the net C(N) is active in C(K[N ]) and an event from C JKK has concession, the
event is disjoint from the conditions in Pi ∪ Pt. In addition, it must be the case that the
subnet N is initialized only if none of its terminal conditions are marked.

Definition 6.2.2. The net C(K[N ]) is a control-noninterfering substitution if, for any
marking C reachable from Ic(K[N ]) in C(K[N ]), the following two properties are satisfied:

• if N is active in C, any event e that is an event of C(K) (i.e. there exists e0 6= [−]
in C(K) such that e = (Pi ∪ Pt) ⊳ inK : e0) and has concession in C satisfies

CeC ∩ (Pi ∪ Pt) = ∅

• if Pi ⊆ C then Pt ∩ C = ∅

We can now express when the net K[N ] is a non-interfering substitution.

Definition 6.2.3. For a given marking of state conditions σ, we say that K[N ] is a
non-interfering substitution if C(K[N ]) is a control-noninterfering substitution and, for all
markings M reachable from (Ic(K[N ]), σ):

if M
e1
−։ M1

e2
−։ M ′, one of e1 and e2 is from N and the other is from K and

N is active in M and M1, then e1 and e2 are independent.

Note that the definition of non-interfering substitution is from a particular initial
marking of state conditions. This corresponds to the race freedom result, which asserts
that processes are race-free only from particular states.

We wish to show that if K[N1] and K[N2] are non-interfering substitutions from some
initial state then their sets of reachable terminal states are equal. The reason why this is
so is that the independence obtained from the non-interference property ensures that the
events in any complete run of K[N1] can be reordered to give a run consisting only of K
events, followed by a sequence of events forming a run of N1, then K events, and so on.
We now proceed to formalize this. The details are quite technical, so the reader may wish
to skip directly to Theorem 6.1.

A sequence of events π = (e1, . . . , en) considered from a marking M gives rise to

markings M1, . . . ,Mn such that M
e1
−։ M1 . . .

en
−։ Mn. To describe the structure of such

sequences, we shall say that π from marking M is of the form Π1 ·Π2 if there exist π1 and
π2 such that π = π1 ·π2, where · denotes the concatenation of sequences, and π1 is of form
Π1 from marking M and π2 is of form Π2 from the marking obtained by following π1 from
M . Sequence π is of form Π∗ if it is the concatenation of a finite number of sequences,
each of form Π.

Throughout the remainder of this section, when we consider the substitution K[N ] let
Pi and Pt be defined as in Definition 6.1.2:

Pi , inK : •[−]× inN : Ic(N)

Pt , inK : [−]• × inN : Tc(N).
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Any reachable marking of control conditions of the net K[N ] can be partitioned into two
sets: conditions that occur solely within K and conditions that are either N -internal or
in Pi or Pt. Formally, a condition c is a K-condition if c = inK : c1 for some condition c1
of K not in •[−]•. A condition c is an N -condition if either c ∈ Pi ∪ Pt or c = inN : c2
for some condition c2 of N not in Ic(N) ∪ Tc(N). Recall that we call inN : c2 an N -
internal condition. It is easy to see that from the marking Ic(K[N ]) in C(K[N ]) only
K- or N -control conditions may be marked: If C is a reachable marking of C(K[N ]),
we have C = CN ∪ CK for some marking CN of N -conditions and some marking CK of
K-conditions. We shall frequently use the notation (CN , CK) for a marking of control
conditions, where CN comprises only N -conditions and CK comprises only K-conditions.

When considering a substitution K[N ], we shall refer to an event e as being an N -event
if it is equal to (Pi ∪ Pt) ⊲ inN : e2 for some e2 in N . Otherwise, it is a K-event. A little
care is necessary since an event in the net K[N ] might arise from both K and N if there
are events e of N and e′ 6= [−] of K with the same effect on state conditions such that:

Ce = Ic(N), eC = Tc(N)
Ce′ = •[−], e′C = [−]•.

Throughout the remainder of this section, for simplicity we shall require that the substi-
tution K[N ] has no such events. This restriction may be lifted with little effect on the
development so-far by allowing the net formed to be non-extensional, or by considering
this as a special case when demonstrating properties of the net K[N ]

We now define operations to relate markings of the nets N , K and K[N ].

N

θN
&&
K[N ]

ρN

dd K

θK
&&
K[N ]

ρK

dd

From a marking of control conditions (CN , CK) of the net K[N ], we can extract markings
of control conditions for the nets N and K. We shall define ρN (CN ) to be the marking of
N obtained from (CN , CK), which is not dependent on the marking CK of K-conditions,
and ρK(CN , CK) for the marking of K obtained from (CN , CK), which is dependent on
the marking of N -conditions (namely, the marking of N -conditions in Pi ∪ Pt).

For a marking C of the context K, we define θK(C) to be the corresponding marking
of K[N ]. For a marking C ′ of the net N , we shall define θN (C ′) to be the marking of
N -conditions in the net C JK[N ]K corresponding to C ′.

Definition 6.2.4. Let K[N ] be any substitution. For any marking CN of N -conditions
and CK of K-conditions, define

ρK(CN , CK) , { a ∈ •[−] | ∀i ∈ Ic(N).(inK : a, inN : i) ∈ CN }
∪{ x ∈ [−]• | ∀t ∈ Tc(N).(inK : x, inN : t) ∈ CN}
∪{ c 6∈ •[−] ∪ [−]• | inK : c ∈ CK }

ρN (CN ) , { i ∈ Ic(N) | ∀a ∈ •[−].(inK : a, inN : i) ∈ CN }
∪{ t ∈ Tc(N) | ∀x ∈ [−]•.(inK : x, inN : t) ∈ CN }
∪{ c 6∈ Ic(N) ∪ Tc(N) | inN : c ∈ CN }.

For any marking C of control conditions of the net K and marking C ′ of control conditions
of the net N , define

θK(C) , P ⊳ inK :C

θN (C) , P ⊲ inN :C.
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For an event e of K[N ], define ρN (e) = e′ for the unique e′ such that e = (Pi∪Pt)⊲ inN : e′.
For an event e of N , define θN(e) = (Pi ∪ Pt) ⊲ inN : e. Define ρK(e) and θK(e) similarly,
apart from having θK([−]) undefined.

Lemma 6.2.1. For any marking C of control conditions of K, the marking θK(C) is a
K-marking in K[N ]. For any marking C ′ of control conditions of N , the marking θN (C ′)
is an N -marking in K[N ].

Proof. Immediate from the definitions.

It is clear that ρN and θN form a bijection between N -events and Ev(N). It is also
clear that ρK and θK form a bijection between K-events and Ev(K)\{[−]}. On markings,
the situation is a little more intricate:

Lemma 6.2.2. Let K[N ] be a substitution. For any marking of control conditions CK∪CN
of K[N ] that is a K-marking and any marking C of control conditions of K:

θK(ρK(CK ∪ CN )) = CK ∪ CN and ρK(θK(C)) = C.

For any marking of control conditions CK ∪ CN of K[N ] that is an N -marking and any
marking C of control conditions of N :

θN (ρN (CN )) = CN and ρN (θN (C)) = C.

Proof. First, let C be any marking of control conditions of K. We shall show that
ρK(θK(C)) = C. Let c be any control condition of the net K. We earlier assumed
that •[−] ∩ [−]• = ∅, so there are three distinct cases: c 6∈ •[−]•, c ∈ •[−] or c ∈ [−]•.
The first case is straightforward since the operation of θK on such conditions is to add a
‘inK :’-tag which is removed by ρK . Now consider c ∈ •[−]; the case for c ∈ [−]• will be
similar. By the definition of θK , since Ic(N) is nonempty (by Lemma 3.5.1):

c ∈ C iff ∀i ∈ Ic(N).(inK : c, inN : i) ∈ θK(C).

From the definition of ρK , we have ∀i ∈ Ic(N).(inK : c, inN : i) ∈ θK(C) iff c ∈ ρK(θK(C)).
So c ∈ C iff c ∈ ρK(θK(C)).

Now suppose that (CK , CN ) is a K-marking of the substitution K[N ]. Let c be any
condition of the net K[N ]. There are three distinct possible cases: c 6∈ Pi ∪ Pt, c ∈ Pi or
c ∈ Pt. First, suppose that c 6∈ Pi ∪ Pt:

c ∈ CN ∪ CK iff c ∈ CK (def. of K-marking)
iff ∃c1.(c1 ∈ ρK(CN , CK) and c = inK : c1) (def. of ρK)
iff c ∈ θK(ρK(CN ∪ CK)) (def. of θK)

Now suppose that c ∈ Pi, so c = (inK : a, inN : i) for some a ∈ •[−] and i ∈ Ic(N):

c ∈ CN ∪ CK iff ∀i′ ∈ Ic(N). (inK : a, inN : i′) ∈ CN ∪ CK
(def. of K-marking)

iff a ∈ ρK(CN ∪ CK) (def. of ρK)
iff c ∈ θK(ρK(CN ∪ CK)) (def. of θK)

We have a similar analysis if c ∈ Pt. Hence (CK , CN ) = θK(ρK(CK , CN )).
For any marking of control conditions C of the net N and any N -marking (CK , CN ),

θN (ρN (CN )) = CN and ρN (θN (C)) = C

are shown similarly, this time with the first analysis considering conditions in Ic(N), Tc(N)
and conditions not in either set.
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The operations also relate the behaviour of the nets K, N and K[N ]. We first show
how behaviour in C(K[N ]) gives rise to behaviour in C(K) and C(N). For our purposes,
it will be sufficient to consider only the cases where K-events occur in K-markings and
N -events occur in N -markings, and not for example K-events occurring in N -markings.

Lemma 6.2.3. Let (CK , CN ) and (C ′
K , C

′
N ) be markings of C(K[N ]). Suppose that e is

an event such that (CK , CN )
e
−։ (C ′

K , C
′
N ).

1. If e is a K-event and (CK , CN ) and (C ′
K , C

′
N ) are K-markings then ρK(CK , CN )

ρK(e)
−։

ρK(C ′
K , C

′
N ) in C(K).

2. If e is an N -event and (CK , CN ) and (C ′
K , C

′
N ) are N -markings then CK = C ′

K and

ρN (CN )
ρN (e)
−։ ρN (C ′

N ) in C(N).

Proof. First consider (1). The event e is a K-event, so there is an event e1 of K such that
e1 6= [−] and e = (Pi ∪ Pt) ⊳ inK : e1. We have

(CN , CK)
e
−։ (C ′

N , C
′
K)

in C(K[N ]). By Lemma 6.2.2, we have θK(ρK(CN , CK)) = (CN , CK) and θK(ρK(C ′
N , C

′
K)) =

(C ′
N , C

′
K). From the definition of θK , we therefore have

(Pi ∪ Pt) ⊳ inK : ρK(CN , CK)
(Pi∪Pt)⊳inK : e1
−։ (Pi ∪ Pt) ⊳ inK : ρK(C ′

N , C
′
K).

Using Lemma 3.3.2, we may therefore conclude that

ρK(CN , CK)
e1
−։ ρK(C ′

N , C
′
K)

in C(K). The proof of (2) is similar.

Next, we show how behaviour in K and N gives rise to behaviour in K[N ].

Lemma 6.2.4. 1. Let C and C ′ be markings of control conditions of K. If C
e
−։ C ′

in C(K) then θK(C)
θK(e)
−։ θK(C ′) in C(K[N ]).

2. Now let C and C ′ be markings of control conditions of N . If C
e
−։ C ′ in C(N) then

(θN (C), CK)
θN (e)
−։ (θN (C ′), CK) in K[N ] for any marking CK of K-conditions.

Proof. First consider (1). Suppose that C
e
−։ C ′ in C(K) for some event e 6= [−]. By

Lemma 3.3.2, we have

(Pi ∪ Pt) ⊳ inK :C
(Pi∪Pt)⊳inK : e
−։ (Pi ∪ Pt) ⊳ inK :C ′

in C(K[N ]). Since θK(C) = (Pi ∪ Pt) ⊳ inK :C, and similarly for C ′ and e, we therefore
have

θK(C)
θK(e)
−։ θK(C ′),

as required. The proof of (2) is similar.

We are now able to characterize the runs of the net C(K[N ]) when a control non-
interfering substitution is formed, thereby gaining an understanding of the control flow of
the net K[N ] when a non-interfering substitution is formed.

121



Lemma 6.2.5. Let C(K[N ]) be a control non-interfering substitution. Any complete se-
quence π from Ic(K[N ]) in C(K[N ]) is of the form Π0 · (Π1 ·Π0)

∗, where:

• Π0 ranges over sequences consisting of K-events between K-markings.

• Π1 ranges over nonempty sequences π1 of K- and N -events between N -markings. If
CN ∪ CK and C ′

N ∪ C
′
K are the initial and final markings of π1, respectively, then

CN = Pi and C ′
N = Pt. The first event of π1 is an N -event and the final event of

π1 is also an N -event. Every marking reached along π1 is N -active apart from the
final marking.

Proof. We first show that any sequence π in C(N) from Ic(K[N ]) is of the form Π0·(Π1·Π0)
∗

or Π0 · (Π1 · Π0)
∗ · Π′

1 by induction on the length of sequence, where a sequence π1 is of
form Π′

1 if:

• it is a nonempty sequence of K- and N -events between N -markings,

• every marking reached along π1 is N -active, and

• if (CN , CK , σ) is the initial marking of π1 then CN = Pi, and the first event of π1 is
an N -event.

The base case of the induction is trivial since Ic(K[N ]) is a K-marking. For the
inductive case, suppose that π · e is a path such that

C(K[N ]):Ic(K[N ])
π
−։ (CN , CK)

e
−։ (C ′

N , C
′
K).

By induction, the path π is either of the form Π0 · (Π1 ·Π0)
∗ or Π0 · (Π1 ·Π0)

∗ ·Π′
1.

First suppose that π is of the form Π0 · (Π1 ·Π0)
∗. The marking (CN , CK) is therefore

a K-marking and K-events preserve K-markings, so, if e is a K-event, the path π · e is
also of the form Π0 · (Π1 · Π0)

∗. Now suppose that e is an N -event; there exists e0 such
that e = (Pi ∪ Pt) ⊲ inN : e0. The event e0 has a precondition not in Tc(N) according
to Lemma 3.5.1. Hence e has a precondition c, and this cannot be N -internal since
(CN , CK) is a K-marking. According to the definition of •e as (Pi ∪ Pt) ⊲ inN : •e0, it
must therefore be the case that c = (inN : i, inK : a) for some i ∈ Ic(N) and a ∈ •[−].
Again according to the definition of •e, we have (inN : i, inK : a′) ∈ •e for all a′ ∈ •[−].
Recalling that •e ⊆ (CN , CK) and that (CN , CK) is a K-marking, we must therefore have
Pi ⊆ (CN , CK). We assumed that K[N ] was control non-interfering, so in fact CN = Pi. It
follows that (CN , CK) is also an N -marking, and N -events preserve the property of being
an N -marking. If the marking (C ′

N , C
′
K) is an N -active marking, the path π ·e is therefore

of the form Π0 · (Π1 · Π0)
∗ · Π′

1. Otherwise, if the marking (C ′
N , C

′
K) is not N -active, we

have Pt ⊆ C ′
N . By Lemma 6.2.3, in the net C(N) we have Ic(N)

e0
−։ ρN (C ′

N ). It follows
from the requirement that N should be well-terminating (Definition 3.5.1) that we must
therefore have C ′

N = Pt. The path π ·e is then readily seen to be of the form Π0 ·(Π1 ·Π0)
∗.

Now suppose that π is of the form Π0 ·(Π1 ·Π0)
∗ ·Π′

1. The marking (CN , CK) is therefore
an N -active marking. First suppose that e is a K-event. We have •e• ∩ (Pi ∪ Pt) = ∅
since K[N ] is control non-interfering. It follows that the marking CN = C ′

N and therefore
(C ′

N , C
′
K) is N -active. The path π · e is therefore of the form Π0 · (Π1 · Π0)

∗ · Π′
1. Now

suppose that e is an N -event. The marking (C ′
N , C

′
K) is an N -marking since N -events

preserve N -markings. If (C ′
N , C

′
K) is N -active, the path π · e is easily seen to of the form

Π0 · (Π1 · Π0)
∗ · Π′

1. Suppose instead that (C ′
N , C

′
K) is not N -active. Let π1 be the path

for which there exists π0 such that π = π0 · π1 and π0 is of the form Π0 · (Π1 ·Π0)
∗ and π1
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is of the form Π′
1. By stripping away the K-events from π1, using Lemma 6.2.3 it is easy

to see that we obtain a path in C(N) from Ic(N) to C ′
N . By definition, since (C ′

N , C
′
K)

is not N -active, we must have Pt ⊆ CN . From well-termination of N , we therefore have
C ′
N = Pt and so the path π · e will be of the form Π0 · (Π1 ·Π0)

∗.
We conclude the proof by showing that any complete run π of the form Π0 ·(Π1 ·Π0)·Π

′
1

is also of the form Π0 · (Π1 · Π0). Let (CN , CK) be the marking of control conditions
reached by π. We have Tc(K[N ]) = (CN , CK) because the run is complete, and this is a
K-marking. It is easy to see that there are four cases for CN that could make (CN , CK)
both an N - and a K-marking, viz.

CN = Pi CN = Pt CN = Pi ∪ Pt CN = ∅.

We saw earlier that ρN (CN ) is reachable from Ic(N) in N . Since the net N is assumed
to be well-terminating, we must therefore have CN 6= Pi ∪ Pt. From the requirements on
N in Lemma 3.5.1, it is also easy to see that CN 6= ∅. If we had CN = Pi, we would also
have •[−] ⊆ Tc(K), contradicting the requirements for K in Lemma 3.5.1. It follows that
CN = Pt and therefore that the path π is of the form Π0 · (Π1 · Π0), thus completing the
proof.

Having now dealt with the control structure of contexts, we return to the idea that,
given a net K[N1] which is a non-interfering substitution from state σ, the events in any
sequence may be reordered in a way that ensures that events of N1 occur consecutively
and form a “complete run” of the net N1. As N1 ≃ N2, the net K[N2] will therefore have
a path between the same sets of state conditions.

To formalize this, let π be any sequential run of a non-interfering substitution K[N ]
from marking M . The set PK[N ](π,M) is defined to be the least set of sequences from
marking M of K[N ] closed under the operation of swapping consecutive independent

events that contains the sequence π. It is easy to see that if M
π
−։ M ′ and π′ ∈

PK[N ](π,M) then M
π
−։ M ′ for any paths π and π′. Define the order ≺ on PK[N ](π,M)

as follows:

Definition 6.2.5. Let π, π′ ∈ PK[N ](π0,M). Define ≺ to be the transitive closure of ≺1,
where π ≺1 π

′ iff there exist sequences π1 and π2, an N -event e and a K-event e′ such
that eIe′ and π = π1 · e · e

′ · π2 and π′ = π1 · e
′ · e · π2.

It is clear that the order ≺ is well-founded since any sequence is, by definition, of finite
length.

Definition 6.2.6. Say that a sequence π of K[N ] from marking M is N -complete if
M = (Pi, CK , σ) for some CK and σ, every event of π is an N -event, and

(Pi, CK , σ)
π
−։ (Pt, CK , σ

′).

Lemma 6.2.6. Let K[N ] be a non-interfering substitution from state σ0 and let M0 =
(Ic(K[N ]), σ0). Suppose that π0 is a complete sequence of K[N ] from M0. The ≺-minimal
elements of PK[N ](π0,M0) are of the form

Π0 · (ΠN · Π0)
∗,

where ΠN matches N -complete paths and Π0 is as in Lemma 6.2.5.
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Proof. Suppose that π is a ≺-minimal element of PK[N ](π0,M0) but not of the form above.
The sequence π is of the form of Lemma 6.2.5 because π is a complete path of K[N ].
Consequently, there are π1, π2 and π3 such that π = π1 · π2 · π3 and π2 = (e · e′) where

e is a K-event and e′ is an N -event. Furthermore, the marking M1 such that M0
π1
−։ M1

is N -active. Now, from the definition of non-interfering substitution, the events e and e′

are independent. Hence the sequence π1 · e
′ · e · π3 is in PK[N ](π0,M0) and is beneath π,

contradicting its minimality.

This gives us the ability to prove the key result by induction on paths of K[N1].

Theorem 6.1. If K[N1] and K[N2] are non-interfering substitutions from σ0 and N1 ≃ N2

then, for all states σ′:

K[N1]:σ0 ⇓σ
′ ⇐⇒ K[N2]:σ0 ⇓σ

′.

Proof. Suppose that π is a complete sequence of K[N1] from σ0 to σ′. We shall show
that, for all π1 ∈ PK[N1](π, (Ic(K[N1]), σ0)), if π1 is a complete sequence from σ0 to σ′

then there exists a complete sequence π2 of K[N2] from σ0 to σ′. The proof shall proceed
by induction on the well-founded order ≺. In particular π ∈ PK[N1](π, (Ic(K[N1]), σ0)),
so, with the symmetric proof for the other direction, this will complete the proof of the
required property.

π1 minimal: The sequence π1 is minimal within PK[N1](π, (Ic(K[N1]), σ0)), so, by Lemma
6.2.6, there exists an n ∈ N such that there exist sequences π0, π01, π11, . . . π0n, π1n

with

π1 = π0 · π11 · π01 . . . π1n · π0n.

Furthermore, for each i ≤ n, the sequence π0i is of the form Π0 defined in Lemma
6.2.5, as is the sequence π0; and, for each i ≤ n, the sequence π1i is of the form ΠN1 ,
which matches N1-complete subpaths of K[N1] as defined in Definition 6.2.6. Define:

P
(1)
i , inK : •[−]× inN1 : Ic(N1) P

(2)
i , inK : •[−]× inN2 : Ic(N2)

P
(1)
t , inK : [−]• × inN1 : Tc(N1) P

(2)
t , inK : [−]• × inN2 : Tc(N2).

Let ρ
(1)
K be ρK from Definition 6.2.4 for K[N1] and let ρ

(2)
K be ρK from Definition

6.2.4 for K[N2], and similarly for ρ
(1)
N1

, ρ
(2)
N2

, θ
(1)
K , etc. We shall show, by induction on

n, that if π1 is a sequence of this form in K[N1] from (Ic(K[N1]), σ0) to the marking
(C ′

1, σ
′) then there exists a path π2 from (Ic(K[N2]), σ0) to (C ′

2, σ
′) for some C ′

2 such

that ρ
(1)
K (C ′

1) = ρ
(2)
K (C ′

2).

• n = 0: Then π1 is of the form Π0. Let π1 = (e1 · . . . · em) and suppose that in
K[N1] we have

(Ic(K[N1]), σ0)
e1
−։ (C1, σ1)

e2
−։ . . .

em
−։ (Cm, σm).

By assumption, π1 is a sequence from (Ic(K[N1]), σ0) to (C ′
1, σ

′), so C ′
1 = Cm

and σ′ = σm. Now, Ic(K[N1]) is a K-marking, and, since π1 is of the form Π0,
for every i such that 0 < i ≤ m, the marking Ci is a K-marking and ei is a
K-event. By Lemma 6.2.3, in the net K we have

(ρ
(1)
K (Ic(K[N1])), σ)

ρ
(1)
K

(e1)
−։ (ρ

(1)
K (C1), σ1)

ρ
(1)
K

(e2)
−։ . . .

ρ
(1)
K

(em)
−։ (ρ

(1)
K (Cm), σm).
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In the net K[N2], by Lemma 6.2.4, we therefore have

(θ
(2)
K ρ

(1)
K (Ic(K[N1])), σ)

θ
(2)
K ρ

(1)
K (e1)
−։ (θ

(2)
K ρ

(1)
K (C1), σ1)

θ
(2)
K ρ

(1)
K (e2)
−։ . . .

θ
(2)
K ρ

(1)
K (em)
−։ (θ

(2)
K ρ

(1)
K (Cm), σm).

Let C ′
2 = θ

(2)
K ρ

(1)
K (Cm). From Lemma 6.2.1, θ

(2)
K generates K-markings of K[N2]

from markings of K. By Lemma 6.2.2, we therefore have ρ
(2)
K (C ′

2) = ρ
(1)
K (C ′

1)
since C ′

1 = Cm, which is a K-marking. It is an easy calculation to show that

ρ
(1)
K (Ic(K[N1])) = Ic(K) and θ

(2)
K (Ic(K)) = Ic(K[N2]). There therefore exists

a path from the marking (Ic(K[N2]), σ0) to (C ′
2, σm) in K[N2] and ρ

(2)
K (C ′

2) =

ρ
(1)
K (C ′

1), which is all that is required since σm = σ′.

• n > 0: Assume that π1 = π11 · π12 · π13 for some sequence π11 of form Π0 · (ΠN1 ·
Π0)

n−1, some sequence π12 of form ΠN1 and some sequence π13 of form Π0. Let
(C ′

1, σ
′) be the marking obtained by following π1 from (Ic(K[N1]), σ0) in K[N1].

We wish to show that there is a path π2 of K[N2] from (Ic(K[N2]), σ0) to (C ′
2, σ

′)

for some C ′
2 such that ρ

(1)
K (C ′

1) = ρ
(2)
K (C ′

2).

Let (C11, σ1) be the marking obtained by following path π11 from (Ic(K[N1]), σ0).
Since π12 follows π11 and π12 is of form ΠN1 , it must be the case that C11 =

(P
(1)
i , CK) for some marking CK of K-conditions.

By induction, there is a path π21 in K[N2] from (Ic(K[N2]), σ0) to (C21, σ1) for

some C21 such that ρ
(1)
K (C11) = ρ

(2)
K (C21). Now, C11 = (P

(1)
i , CK), so ρ

(1)
K (C11) =

•[−] ∪ {c | inK : c ∈ CK}. From the definition of ρ
(2)
K , we must therefore have

C21 = (P
(2)
i , CK). Hence

(Ic(K[N2]), σ0)
π21
−։ (P

(2)
i , CK , σ1).

Suppose that in K[N1] we have (P
(1)
i , CK , σ1)

π12
−։ (C ′

N1
, C ′

K , σ2). Since π12 is of

the form ΠN1 , it is an N1-complete path, so C ′
N1

= P
(1)
t . The events of π12 are

all N1-events. Using Lemma 6.2.3, a simple induction shows that CK = C ′
K and

that there is a path from (ρ
(1)
N1

(P
(1)
i ), σ1) to (ρ

(1)
N1

(P
(1)
t ), σ2) in N1. Observe that

ρ
(1)
N1

(P
(1)
i ) = Ic(N1) and ρ

(1)
N1

(P
(1)
t ) = Tc(N1), so N1:σ1 ⇓σ2. As N1 ≃ N2, there

is therefore a path of N2 from (Ic(N2), σ1) to (Tc(N2), σ2). By Lemma 6.2.4, a
simple induction on the length of this sequence shows that there is a sequence

π22 from (θ
(2)
N2

(Ic(N2)), CK , σ1) to (θ
(2)
N2

(Tc(N2)), CK , σ2) in K[N2]. Observe that

θ
(2)
N2

(Ic(N2)) = P
(2)
i and θ

(2)
N2

(Tc(N2)) = P
(2)
t , so

(P
(2)
i , CK , σ1)

π22
−։ (P

(2)
t , CK , σ2).

As π13 follows path π12 in π1, the sequence π13 is from (P
(1)
t , CK , σ2) to (C ′

1, σ
′)

and contains onlyK-events because it is of form Π0. Using Lemma 6.2.3, a simple

induction on the length of π13 shows that there is a path from (ρ
(1)
K (P

(1)
t , CK), σ2)

to (ρ
(1)
K (C ′

1), σ
′) in K. A simple induction on the length of this path using Lemma

125



6.2.4 shows that there is a path π23 of K[N2] such that (θ
(2)
K ρ

(1)
K (P

(1)
t , CK), σ2)

π23
−։

(θ
(2)
K ρ

(1)
K (C ′

1), σ
′). From the definition of ρ

(1)
K , we have ρ

(1)
K (P

(1)
t , CK) = [−]•∪{c |

inK : c ∈ CK}. From the definition of θ
(2)
K , we have θ

(2)
K ([−]• ∪ {c | inK : c ∈

CK}) = P
(2)
t ∪CK . Hence

(P
(2)
t , CK , σ2)

π23
−։ (θ

(2)
K ρ

(1)
K (C ′

1), σ
′).

Take C ′
2 = (θ

(2)
K ρ

(1)
K (C ′

1), σ
′). By Lemma 6.2.2, we have ρ

(2)
K (C ′

2) = ρ
(1)
K (C ′

1).
Consequently, the path π2 = π21 · π22 · π23 satisfies

(Ic(K[N2]), σ0)
π2
−։ (C ′

2, σ
′),

for some C ′
2 such that ρK(C ′

1) = ρK(C ′
2), which is all that is required to complete

this inner induction.

Now, recall that π1 is a complete sequence of K[N1], so

(Ic(K[N1]), σ0)
π1
−։ (Tc(K[N1]), σ

′).

From the immediately preceding induction, there exists a path π2 of K[N2] such that

(Ic(K[N2]), σ0)
π2
−։ (C ′

2, σ
′) for some C ′

2 s.t. ρ
(1)
K (Tc(K[N1])) = ρ

(2)
K (C ′

2). Now, clearly

ρ
(1)
K (Tc(K[N1])) = Tc(K) by the definitions of ρ andK[N1]. Hence Tc(K) = ρ

(2)
K (C ′

2),

so by Lemma 6.2.2 we have θ
(2)
K (Tc(K)) = C ′

2. The definition of K[N2] and θ gives

θ
(2)
K (Tc(K)) = Tc(K[N2]). Hence

(Ic(K[N2]), σ0)
π2
−։ (Tc(K[N2]), σ

′),

as required.

π1 not minimal: Suppose that the path π1 is not minimal and that π1 is a complete

path of K[N1] with (Ic(K[N1]), σ0)
π1
−։ (Tc(K[N1]), σ

′). It is easy to see that the
order ≺ is irreflexive, so there exists a path π′1 such that π′1 ≺1 π1. Hence there exist
paths π2 and π3 and a K-event e and an N -event e′ such that π1 = π2 · e · e

′ · π3 and
π′1 = π2 · e

′ · e · π3. Furthermore, the events e and e′ are independent, so π′1 must

also be a path (Ic(K[N1]), σ0)
π′
1
−։ (Tc(K[N1]), σ

′). By induction, there exists a path

(Ic(K[N2]), σ0)
π′
2
−։ (Tc(K[N2]), σ

′), as required to complete the case.

Hence, if K[N1]:σ0 ⇓σ
′, there exists a path

K[N1]:(Ic(K[N1]), σ0)
π
−։ (Tc(K[N1]), σ

′).

From what we have just shown, since π ∈ PK[N1](π, σ0), we have a path

K[N2]:(Ic(K[N2]), σ0)
π2
−։ (Tc(K[N2]), σ

′),

so K[N2]:σ0 ⇓σ
′. The proof for the reverse implication is symmetric.
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6.3 Refinement for granularity

We can think of the definitions of net contexts and substitutions as giving a semantic
way of interpreting the subprocesses of a net: a net N is a subprocess of the net N0 if
there exists a context K for which N0

∼= K[N ], where ∼= represents net isomorphism. For
example, the definition of the while loop construction while b do t0 od in Section 3.3 is
the same (up to net isomorphism) as the result of substituting N Jt0K into the hole in the
following context. (We draw the net without the state conditions and only draw one event
for the tests of b and ¬b.)

b

¬b

Ic(while b do − od) Tc(while b do − od)

Similarly, following a slight generalization to allow contexts to have multiple holes, the
net N Jt1; t2K can be obtained, up to isomorphism, by substitution of N Jt1K into the hole
labelled 1 and N Jt2K into the hole labelled 2 in the following context:

−2

Ic(−1;−2) Tc(−1;−2)

−1

We have seen how the net semantics allows us to define the refinement operation for
changing the granularity of actions providing they form non-interfering substitutions. It
places us in a position where an attempt may be made to prove Reynold’s’ conjecture by
showing proved processes are not susceptible to changes in granularity, in a way which we
now outline.

Suppose that we have the net semantics N JtK and wish to change the granularity of
the subprocess represented by N within N JtK to N ′. There exists a context K such that
N JtK ∼= K[N ]. To be able to apply the refinement operation described above, and in
particular Theorem 6.1, we must show that the net K[N ] forms a non-interfering sub-
stitution. If N is a just a heap action, this follows from Theorem 5.5. In tackling the
more general case, though, it is here that we encounter some difficulty in developing a
workable understanding of how contexts span across the terms of the language. A general
account may be developed by showing that, for any nets K1[N1] and K2[N2] such that
K1[N1] ∼= K2[N2] there exists a net N3 and contexts K ′

1 and K ′
2 such that N1

∼= K ′
1[N3]

and N2
∼= K ′

2[N3]. Furthermore, any condition that is both an N1- and N2-condition in
K1[N1] ∼= K2[N2] is an N3-condition in K1[K

′
1[N3]] ∼= K2[K

′
2[N3]]. This may be drawn as:
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Ic(t) Tc(t)

K ′
1

K1[N1]

K ′
2

K2[N2]

N3

For example, recalling that the sequential composition can be considered to be obtained
by substitution as above, this will allow us to describe how substitutions spread across the
sequential composition shown below:

seq 1:Tc(t1) × seq 2:Ic(t2)

N Jt1; t2K N Jt2K

K

N

N Jt1K N Jt2K

parallel composition

N split across

If we wish to prove that all subprocesses form non-interfering substitutions by induction
on terms, this decomposition will be necessary.

Unfortunately, this result has proven difficult to obtain due to the rather complicated
definition of substitution, in particular on the conditions of the net, so we must leave it
for future work.
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Chapter 7

Petri nets and unfolding

In the previous two chapters, we have shown how a Petri net semantics can be given to
a simple programming language. It is worth considering how the net N JtK representing
a term t can be infinite. The first obvious way is that t might contain an action α which
can act in infinitely many ways, so that the set A JαK is infinite. This can be overcome
by working with slightly more abstract nets, where places can hold values — perhaps by
using Jensen’s coloured Petri nets [Jen96]. More subtly, recall that the semantics for the
term resource w do t od involves making an arbitrary choice between the (assumedly
infinitely many) non-current resources.

i t

decl(r)

decl(r′)

r

curr(r)

r′

curr(r′)

end(r)

end(r′)

res r:Ev([r/w]t)

res r′:Ev([r′/w]t)

The distinction between whichever particular resource is chosen is of little significance:
the behaviours of the subnets N J[r/w]tK and N J[r′/w]tK are exactly the same apart from
one using r instead of r′. The particular choice made is irrelevant since we ensure that
the resource chosen for w does not occur free in t. In essence, the behaviours of the
subnets that can be chosen will be symmetric. Similarly, the infinite branching arising
from the allocation primitive might be mitigated by regarding (some of) the choices made
as symmetric, though the situation there is somewhat more delicate due to considerations
discussed in Section 5.6.

In this chapter and the next, we study a categorical framework for defining symmetry
in the behaviour of Petri nets. As remarked in the introduction, there are, of course,
many ways of adjoining symmetry to nets (for example, categories of net with symmetric
structure are studied in [Sas98]). The method we use was motivated by the need to
extend the expressive power of event structures and the maps between them [Win07a,
Win07b]. Roughly, a symmetry on a Petri net is described as a relation between its runs
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as causal nets, the relation specifying when one run is similar to another up to symmetry.
Technically and generally, a symmetry is a span of open morphisms that form a pseudo-
equivalence.

There are compelling reasons for applying the framework to place symmetry on Petri
nets other than just to abstract away symmetry in the behaviour of the net semantics for
terms described above.

The key reason for defining symmetry on Petri nets is to resolve the anomalous posi-
tion of the category of general Petri nets, nets whose events have pre- and post-condition
multisets and whose initial markings are multisets. This lies outside the standard frame-
work relating categories of models for concurrency through adjunctions. This means that
constructions such as parallel composition must be defined for the different forms of net
as must forms of bisimulation. As we shall see in this chapter, the reason for this is that
multiplicities break the uniqueness property required to obtain an adjunction between gen-
eral forms of net and occurrence nets, special forms of net that are useful in establishing
relationships with other models for concurrency. By representing the natural symmetry
in the nets arising from multiplicities, we obtain uniqueness up to symmetry and therefore
an adjunction up to symmetry.

Another reason is that we wish to test the general framework for defining symmetry
away from its original setting in defining symmetry on event structures. In fact, this has
led us to drop the constraint that the span of morphisms must be jointly monic, in which
case the symmetry would be an equivalence rather than a pseudo-equivalence.

Finally, symmetry is present and plays a role, at least informally, in a wide range of
areas related to the analysis of concurrent systems in addition to the specific areas in
our semantics described above. It is present in security protocols due to the repetition
of essentially similar sessions [DGT07, FHG98, CW01a], can be exploited to increase
efficiency in model checking [Sis04], and is present whenever abstract names are involved
[GP01].

Specifically, in this chapter we shall study the unfolding operation on general Petri nets.
We shall show how a general Petri net can be unfolded to obtain an occurrence net. The
process of unfolding a general net to form an occurrence net is analogous to the process of
forming a synchronization tree from a transition system. Occurrence nets reveal how their
events causally depend on each other and how they conflict with each other through the
holding of conditions, and whether the occurrence of events is concurrent. They provide
a useful bridge between nets and other models for concurrency.

The unfolding operation for general Petri nets is, in fact, a relatively straightforward
extension of that for safe nets in [NPW81] — see [vG05, MMS96]. However, to apply
the framework for defining symmetry, we are forced to study more general forms of net
that can have more than one initial marking. This necessitates us reviewing the existing
construction in this new setting. Once we have done so, characterizing the unfolding in
Theorem 7.12, we show how, in general, unfolding does not form a basis for a coreflection
between occurrence nets and general nets.

7.1 Varieties of Petri nets

In this section, we shall give an account of the forms of Petri net that we shall use, moving
beyond the basic Petri nets introduced earlier. In doing so, we use some notation on
multisets which is introduced fully in Appendix A, but we summarize the notation here:

Let A be any set. We write X ⊆µ A if X is a multiset over A. The number of
occurrences of a in X, for any a ∈ A, is written X[a]. A multiset can contain only finitely
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many occurrences of any particular element of A; otherwise it is an ∞-multiset, written
X ⊆µ∞ A. A multiset is finite if it contains only finitely many elements. A multirelation
R ⊆µ A × B between sets A and B associates a natural number X[a, b] to every pair
(a, b) ∈ A × B. Likewise, an infinity multirelation R ⊆µ∞ A × B associates either a
natural number or ∞ to every pair in A × B. The result of applying a multirelation
R ⊆µ A × B to a multiset X ⊆µ A is a multiset over B written R ·X. This notation is
also applied to singletons, so we write R · x for R · {x}, the multiset obtained by applying
the multirelation R to the multiset with a single element, x. We write + for the operation
of multiset union and − for the partial operation of multiset subtraction.

General nets

Just like the basic nets introduced in Chapter 2, a general Petri net consists of sets
of conditions and events, though we now sometimes call these places and transitions,
respectively. They are drawn in the same way as safe nets, with places drawn as circles
and transitions drawn as rectangles, but with two important differences.

The first difference is that in a general net, there can be a (possibly infinite) number
of tokens in any given place, so a marking of a general net is an ∞-multiset of places.

The second difference is that arcs from a place into a transition are now labelled with
a natural number indicating the finite number of tokens in the place that are consumed
by the occurrence of the transition. Arcs labelled with a natural number or ∞ may be
drawn from a transition to a place, indicating the number of tokens to be deposited in the
place by the occurrence of a transition. For example, the net

1

1

v

2

1

u

p

r

t

q

∞

has an initial marking with two tokens in place p, and within the net the transition u
consumes two tokens from place p and deposits infinitely many in place r.

More formally:

Definition 7.1.1 (General Petri net). A general Petri net is a 5-tuple,

G = (P, T, Pre, Post,M),

of which

• P is the set of places;

• T is the set of transitions, disjoint from P ;

• Pre is the precondition multirelation, Pre ⊆µ T × P

• Post is the postcondition ∞-multirelation, Post ⊆µ∞ T × P ; and

• M is a set of ∞-multisets of P , forming the set of initial markings of G.

Every transition must consume at least one token:

∀t ∈ T∃p ∈ P. Pre[t, p] > 0.
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This is a mild generalization of the standard definition of Petri net in that we al-
low there to be a set of initial markings rather than just one initial marking, and will
prove important later. We shall call a net singly-marked if it follows the standard defini-
tion, having only one initial marking. We shall sometimes, when necessary to explicitly
disambiguate the the old singly-marked nets from the nets with sets of initial markings
introduced here, call the new nets multiply-marked. Be aware, however, that the set of
markings of a multiply-marked net could be a singleton set or even empty. The reason for
extending the definition to allow multiple initial markings is that, without them, simple
symmetries on nets would be inexpressible. A fuller explanation shall be given on page
168, once the framework for defining symmetry in models has been introduced. A guiding
intuition in forming the definitions of multiply-marked nets, particularly in the coming
extended definition of occurrence net, shall be that each initial marking can be thought
of as being given rise to by some special, hidden event that is in conflict with all the other
events giving rise to the other initial markings.

The marking of the net changes through the occurrence of transitions according to what
is commonly called the collective token game for nets. For any place p, the occurrence of a
transition t in marking M consumes Pre[t, p] tokens from p and deposits Post[t, p] tokens
in p. The transition can only occur if M [p], the number of tokens in p, is greater than or
equal to Pre[t, p]. The token game extends to finite multisets of transitions, giving rise to

a relation between markings labelled by a finite multiset of transitions M
X
−։ M ′ defined1

as

M
X
−։ M ′ iff Pre ·X ≤Mand M ′ = M − Pre ·X + Post ·X.

Note that this is different from the token game for basic nets introduced in Chapter 2
since contact does not inhibit transitions: the presence of a token in a post-place does
not prevent the occurrence of a transition; the token just remains in the place with the
newly-added tokens. We shall use the same−։ notation with the understanding that from
here on it only refers to this token game, not the token game for basic nets.

The transition relation yields a notion of reachable marking, saying that a marking
M ′ is reachable if there is some initial marking M ∈ M from which, following some
finite sequence of transitions, the marking M ′ is obtained. We shall use the old notation

G:M
π
−։ M ′ to mean that the finite sequence of events π can occur from marking M to

yield marking M ′, and shall often drop the G : prefix where G is obvious from the context.
To give an example of the token game, in the net above the transition u can occur in

the initial marking drawn:

{p 7→ 2}
u
−։ {r 7→ ∞}

This yields a marking with infinitely many tokens residing in the place r. For any finite
multiset V only containing occurrences of v, the following step can be obtained:

{r 7→ ∞}
V
−։ {r 7→ ∞}

As such, the transition v can occur concurrently with itself. This is normally called auto-
concurrency.

Before moving on, it is worth noting that we have placed a very slight restriction on
general nets that Pre · t is a non-null multiset, i.e. every transition has at least one pre-
place. Amongst other things, this makes defining the occurrence net unfolding of a general
net much less technically arduous.

1Even though multiset subtraction may be undefined due to subtraction of infinity, M − Pre · X is
always defined if Pre ·X ≤ M since X is finite and Pre is a multirelation rather than an ∞-multirelation.
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Net morphisms

We saw earlier that morphisms between Petri nets, as introduced in [Win84], reveal how
the structure of one net embeds into that of another in a way that preserves the behaviour
of the original net by preserving the token game for nets. The definition was extended to
general Petri nets in [Win87].

Definition 7.1.2 (General net morphisms). Let G = (P, T, Pre, Post,M) and G′ =
(P ′, T ′, P re′, Post′,M′) be general Petri nets. A morphism (η, β):G → G′ is a pair con-
sisting of a partial function η:T →∗ T

′ and an∞-multirelation β ⊆µ∞ P×P ′ which jointly
satisfy:

• for all M ∈M: β ·M ∈M′

• for all t ∈ T : β · (Pre · t) = Pre′ · η(t) and β · (Post · t) = Post′ · η(t)

The multirelation β is required to be countably injective2:

• for all p ∈ P ′ the set {p | β[p, p′] > 0} is countable.

We write η(t) = ∗ if η(t) is undefined and in the above requirement regard ∗ as the
empty multiset, so that if η(t) = ∗ then β · (Pre · t) and β · (Post · t) are both empty. For
any multirelation R, we define R[∗, x] to be zero.

Any morphism (η, β):G → G′ respects the collective token game for nets in the sense
that for any t in G such that η(t) 6= ∗

if M
t
−։ M ′ in G then β ·M

η(t)
−։ β ·M ′ in G′.

In fact, general nets are presented here in slightly more generality than in [Win87]: We
allow the initial marking to be an∞-multiset, whereas in [Win87], the initial marking has
to be a multiset. Similarly, we allow an∞-multiset of postconditions and do not require it
to be a multiset. In this sense, the definition of morphism here is also slightly more general
than that presented in [Win87] in that we allow a morphism to be an ∞-multirelation on
conditions. The extra generality in the definition of general nets here allows, for example,
the following net:

t

p ∞
11

The∞ symbol in place p represents there being infinitely many tokens in p. This example
demonstrates how the added generality can allow finite presentations of infinite processes.
The definition of morphism is generalized so that we can have, for example, a morphism

11

1∞ 1

p ∞
11

t

2 The restriction to countably injective morphisms did not occur in [Win87]. We only require it here to
obtain a coreflection between P/T nets and general nets, not to obtain the coreflection between occurrence
nets and general nets. The restriction can be lifted by working with larger cardinals.
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p′

t

p

Figure 7.1: Example P/T net N

showing how a net with finite behaviour embeds into the general net.
From this definition of morphism, it is easy to see that we obtain a category Gen♯ of

general nets. In particular, for any general net G the identity morphism idG:G→ G is the
identity function on events and the unit multirelation on places. Morphisms of general
nets compose in the obvious way as partial functions on events and ∞-multirelations on
places. We shall write Gen for the full subcategory of Gen♯ of singly-marked general
nets.

We shall say that a net morphism (η, β) is synchronous if η is a total function on
events. We add the subscript s to denote categories with only synchronous morphisms, for
example writing Gen♯s for the category of multiply-marked general nets with synchronous
morphisms between them. A morphism (η, β) is a folding morphism if it is synchronous
and the relation β is also a total function. We add the subscript f to denote categories with
only folding morphisms, for example writing Gen♯f for the category of multiply-marked
general nets with folding morphisms between them.

P/T nets and safe nets

A particular form of general net is what we shall call the P/T net. A P/T net is a
general net of which the pre- and post-condition (∞)-multirelations can be represented as
relations and the initial markings can all be represented as sets. When drawing a P/T net,
we can therefore omit the numbers on the arcs connecting places and transitions, and can
only draw one token in any place of any initial marking. For technical reasons that shall
become apparent later, we also require a P/T net to have no isolated places; we say that
a place is isolated if it occurs in no initial marking and it does not occur in the pre- or
post-conditions of any event. Following this account, P/T nets can be formally specified
as follows.

Definition 7.1.3. A P/T net is a 4-tuple

(P, T, F,M)

where

• P is the set of conditions or places,

• T is the set of events or transitions, disjoint from P ,

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation, and

• M ⊆ Pow(P ) is the set of initial markings, each of which is a set.

The net must contain no isolated places and, for each event t ∈ T , there must exist p ∈ P
such that p F t.
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The token game for P/T nets is exactly the same as that for general nets. For instance,
the token game for the net N in Figure 7.1 allows the transition t to occur in the initial
marking drawn, removing a token from place p and placing tokens in places p and p′ to
yield a marking in which both places contain exactly one token. A marking that can
be obtained through a sequence of transitions from some initial marking is said to be
reachable from that initial marking. Observe that although each initial marking of a P/T
net is a set, it need not in general be the case that every reachable marking is itself a set.
For instance, the net in Figure 7.1 has the following sequence of transition occurrences:

{

p 7→1
p′ 7→0

}

t
−։

{

p 7→1
p′ 7→1

}

t
−։

{

p 7→1
p′ 7→2

}

After two occurrences of the transition t, there are two tokens in the place p′.
For any transition t and place p, we re-adopt the notations from basic nets:

•t = {p | p F t} •p = {t | t F p}
t• = {p | t F p} p• = {t | p F t}

The set •t forms the preconditions of t and elements of the set t• are postconditions of t.
We shall avoid using these notations when referring to general nets that are not P/T nets,
so these shall always be sets.

Apart from now having a set of initial markings, a P/T net has precisely the same
structure as the basic nets introduced earlier. The only difference between the two forms
of net is their token game: The token game for basic nets causes the occurrence of a
transition to be inhibited should contact occur, whereas the token game for P/T nets
allows such a transition to occur, to yield a marking with more than one token in some
place.

We say that a P/T net is safe if all its reachable markings are sets. (In the literature,
this is often referred to as 1-safety.) Note that this definition of safe net corresponds to
the earlier definition of a safe net as a basic net that is contact-free.

Proposition 7.1. All reachable markings of a P/T net N are sets iff the net N regarded
as a basic net is contact-free from all initial markings.

Proof. Let N = (P, T, F,M).
(=⇒): Suppose that there is a reachable marking of N that is not a set but, for

contradiction, that N is contact-free from all initial markings. There exists least n ∈ N
such that n is the length of a path from an initial marking M0 ∈M to a marking M that
is not a set. Since every initial marking is a set, n > 0. Let the path be π · e. It is easy

to see there is contact in the marking M ′ obtained by M0
π
−։ M ′ since M ′ must be a set

due to the minimality of n.
(⇐=): Let M be reachable from some initial marking M0 ∈ M, so there exists a path

π such that M0
π
−։ M . A simple induction on the length of π shows that M is a set.

Morphisms

Morphisms between P/T nets are the net morphisms presented above. We obtain the
category PT♯ of P/T nets and its full subcategory PT of singly-marked P/T nets.

The morphisms described in this section on safe nets might appear to be different
from the morphisms of basic nets introduced in Chapter 2. The difference is, however,
only superficial:
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Proposition 7.2. Let N = (P, T, F,M) and N ′ = (P ′, T ′, F ′,M′) be P/T nets, and con-
sider a partial function η:E →∗ E

′ and an ∞-multirelation β ⊆µ∞ P × P ′. The following
two characterizations for the pair (η, β):N → N ′ being a morphism are equivalent:

1. For all M ∈M and t ∈ T :

β ·M ∈M & β · •t = •η(t) & β · t• = η(t)•

2. β is a relation such that for all M ∈M and t ∈ T :

• there exists M ′ ∈M′ such that βM ⊆M ′ and ∀p′ ∈M ′.∃!p ∈M.β(p, p′),

• β •e ⊆ •η(e) and ∀p′ ∈ •η(e).∃!p ∈ •e.β(p, p′), and

• β e• ⊆ η(e)• and ∀p′ ∈ η(e)•.∃!p ∈ e•.β(p, p′).

Proof. It is obvious that (2) implies (1). Characterization (1) implies (2) as a straightfor-
ward consequence of P/T nets having no isolated conditions.

Occurrence nets

Occurrence nets were introduced in [NPW81] as a class of net suited to giving the semantics
of more general kinds of net in a way that directly represents the causal dependencies of
elements of the net, for example that a particular event must have occurred at some earlier
stage for a particular condition to become marked, and how the occurrence of elements of
the net might conflict with each other. Technically, they can be thought-of as safe nets
with acyclic flow relations such that every condition occurs as a postcondition of at most
one event, for every condition there is a reachable marking containing that condition, and
for every event there is a reachable marking in which the event can occur. We extend their
original definition to account for the generalization to having a set of initial markings.

Definition 7.1.4. An occurrence net O = (B,E,F,M) is a P/T net satisfying the fol-
lowing restrictions:

1. ∀M ∈M : ∀b ∈M : (•b = ∅)

2. ∀b′ ∈ B : ∃M ∈M : ∃b ∈M : (b F∗ b′)

3. ∀b ∈ B : (|•b| ≤ 1)

4. F+ is irreflexive and, for all e ∈ E, the set {e′ | e′ F∗ e} is finite

5. # is irreflexive, where

e#me
′ △
⇐⇒ e ∈ E & e′ ∈ E & e 6= e′ & •e ∩ •e′ 6= ∅

b#mb
′ △
⇐⇒ ∃M,M ′ ∈M : (M 6= M ′ & b ∈M & b′ ∈M ′)

x#x′
△
⇐⇒ ∃y, y′ ∈ E ∪B : y#my

′ & y F∗ x & y′ F∗ x′

It is hopefully clear that any occurrence net is safe. From this definition, we obtain the
category Occ♯ of occurrence nets and its full subcategory Occ of singly-marked occurrence
nets. Morphisms in these categories are the net morphisms introduced above.

The flow relation F of an occurrence net O indicates how occurrences of events and
conditions causally depend on each other and the relation # indicates how they conflict
with each other, with #m representing immediate conflict. Two events are in immediate
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conflict if they share a common precondition, so that the occurrence of one would mean
that the other could not occur in any subsequent marking. Two conditions are in imme-
diate conflict if they occur in different initial markings, so if one occurs in a reachable
marking there is no subsequent reachable marking in which the other occurs. This corre-
sponds to the intuition at the beginning of this section, that the hidden events giving rise
to each initial marking should be in conflict with each other.

The concurrency relation coO ⊆ (B ∪ E) × (B ∪ E) of an occurrence net O may be
defined as follows:

x coO y
△
⇐⇒ ¬(x#y or x F+ y or y F+ x)

It shall shortly be shown that this relation has the intended meaning, relating two events
if they can occur concurrently and relating two conditions if they both hold in some
reachable marking. We often drop the subscript ‘O’ when we write coO if the net O is
obvious from the context. The concurrency relation is extended to sets of conditions A in
the following manner:

co A
△
⇐⇒ (∀b, b′ ∈ A : b co b′) and {e ∈ E | ∃b ∈ A.e F∗ b} is finite

To help understand the conflict relation, notice that the events and conditions of an
occurrence net (B,E,F,M) can only occur from a unique initial marking. For x ∈ B ∪E
and M ∈ M, write M F∗ x if there exists b ∈ M such that b F∗ x. It is easy to see that
M is unique: for any M,M ′ ∈M, if M F∗ x and M ′ F∗ x then M = M ′.

Before we can show that the relations of concurrency, causal dependency and conflict
have the intended meanings, we must observe that the elements of an occurrence net O
occur at a unique depth. For a condition b and an event e of an occurrence net O =
(B,E,F,M), depth is defined as:

depth(b) = 0 if ∃M ∈M : (b ∈M)
depth(b) = depth(e) if e F b

depth(e) = 1 + max{depth(b) | b ∈ B & b F e}

We denote by O⌈n the occurrence net obtained by restricting O to elements at depth less
than or equal to n.

We are now able to prove the required property:

Proposition 7.3. Let O = (B,E,F,M) be an occurrence net. For any b ∈ B and M ∈M,
we have M F∗ b iff there exists M ′ such that b ∈ M ′ and M ′ is reachable from M . For
any e ∈ E and M ∈ M, we have M F∗ e iff there exists M ′ such that e has concession in
M ′ and M ′ is reachable from M .

The relations #m ⊆ B2 ∪ E2 and # ⊆ (B ∪ E)2 are binary, symmetric, irreflexive
relations. The relation of conflict x#x′ holds iff either there exist distinct M,M ′ ∈ M
such that M F∗ x and M ′ F∗ x′ or there exists a reachable marking M and two events
e, e′ that have concession in M such that e#me

′ and e F∗ x and e′ F∗ x′.
The relation co is a binary, symmetric, reflexive relation between conditions and events

of N . On conditions, we have b co b′ iff there is a reachable marking in which both b and
b′ hold. We have e co e′ iff there is a reachable marking at which e and e′ can occur
concurrently.

Any subset A ⊆ B satisfies co A iff there exists a reachable marking M of O such that
A ⊆M .
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Proof. All but the first part is a straightforward adaptation of Proposition 3.3.3 in [Win86].
The first part is shown in two parts. First, for any M ∈ M, we show by induction on

n that if M Fn x then there is a path π of length ≤ n such that the marking M ′ obtained

by M
π
−։ M ′ satisfies M ′ x

−։ M ′′ if x is an event and x ∈M ′ if x is a condition.
Secondly, it can be shown by induction on the length of π that for any initial marking

M ∈ M and path π such that M
π
−։ M ′, that if M ′ e

−։ then M F∗ e and if b ∈ M ′ then
M F∗ b.

Morphisms of occurrence nets

It will be useful later to point out now that any morphism (η, β):O1 → O2 between
occurrence nets preserves initial markings giving rise to elements of the occurrence net, it
reflects conflict and it reflects the F relation in the following sense:

Proposition 7.4. Let O1 = (B1, E1, F1,M1) and O2 = (B2, E2, F2,M2) be occurrence
nets. For events e1, e

′
1 ∈ E1, write e1 ≍1 e′1 iff either e1 = e′1 or e1#e

′
1. Define ≍2

similarly for events in E2. For any morphism (η, β):O1 → O2 in Occ♯:

• for any b1 ∈ B1 and M ∈M1, if M F1
∗ b1 and β(b1, b2) then β ·M F2

∗ b2

• for any e1 ∈ E1, if η(e1) defined and M F1
∗ e1 then β ·M F2

∗ η(e1)

• for any e1, e
′
1 ∈ E1 and e2, e

′
2 ∈ E2:

η(e1) = e2 & η(e′1) = e′2 & e2 ≍2 e
′
2 =⇒ e1 ≍1 e

′
1

• for any b1, b
′
1 ∈ B1 and b2, b

′
2 ∈ B2:

β(b1, b2) & β(b′1, b
′
2) & b2 ≍2 b

′
2 =⇒ b1 ≍1 b

′
1

• for any e2 ∈ E2, b1 ∈ B1 and b2 ∈ B2:

e2 F2 b2 & β(b1, b2) =⇒ ∃!e1 ∈ E1 : e1 F1 b1 & η(e1) = e2

• for any e1 ∈ E1, e2 ∈ E2 and b2 ∈ B2:

η(e1) = e2 & b2 F2 e2 =⇒ ∃!b1 ∈ B1 : b1 F1 e1 & β(b1, b2)

Proof. The first two items follow straightforwardly from Proposition 7.3 and the fact the
the token game is preserved by net morphisms. The remaining four items follow from the
nets O1 and O2 being occurrence nets.

It follows that morphisms in the category Occ♯ also preserve the concurrency relation
on both events and conditions.

7.2 Marking decompositions and coproducts

A multiply-marked occurrence net can be thought-of as a family of singly-marked occur-
rence nets placed side-by-side. A family is just an indexed collection of objects.

Definition 7.2.1 (Family). Let C be any category. A family of C, written (Xi)i∈I is an
indexing set I and a function associating each element of i ∈ I with an element Xi of C.
A morphism between families f :(Xi)i∈I → (Yj)j∈J is a function f̂ :I → J and, for each
i ∈ I, a morphism fi:Xi → Yf̂(i) in C.
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We write Fam(C) for the category of families of C, with the obvious identities and
composition of morphisms. A more complete account of categories of families can be
found in Appendix C.

An occurrence net O gives rise to a family of singly-marked occurrence nets obtained
by splitting the net O at each initial marking.

Definition 7.2.2 (Marking decomposition). Let O = (B,E,F,M) be an occurrence net.
The marking decomposition of O is a family of singly-marked occurrence nets (OM )M∈M

in which the net OM has conditions BM and events EM defined as

BM = {b ∈ B |M F∗ b} EM = {e ∈ E |M F∗ e},

each net OM inherits the flow relation of O and has initial marking M .

We write decomp(O) for the marking decomposition of an occurrence net O.
We shall soon show that the occurrence net O can be recovered, up to isomorphism,

by placing the elements of its marking decomposition side-by-side, each element with its
own initial marking. This will amount to taking the coproduct of the nets in its marking
decomposition.

First, though, we shall show that the operation extends to a functor,

decomp:Occ♯ → Fam(Occ).

Let O = (B,E,F,M) and O′ = (B′, E′, F ′,M′) be occurrence nets with marking decom-
positions (OM )M∈M and (O′

M ′)M ′∈M′ respectively. A morphism (η, β):O → O′ is sent to a
morphism f = decomp(η, β) defined as

f̂(M) = β ·M

for any M ∈M, and fM = (ηM , βM ):OM → O′
β·M is defined to be

ηM (e) = η(e) βM (b, b′) ⇐⇒ β(b, b′)

for any e an event in OM and b and b′ conditions of OM and O′
β·M respectively. It is clear

from the first two items of Proposition 7.4 that fM is a morphism in Occ.
We now consider how to form a multiply-marked occurrence net from a family of

singly-marked occurrence nets. Coproducts in the categories of singly-marked safe nets and
singly-marked occurrence nets were studied in [Win84]. There, the construction of N1+N2

essentially involves ‘gluing’ the nets N1 and N2 together at their initial markings. The
generalization to allow multiple initial markings allows a somewhat simpler construction
in the categories Occ♯ and PT♯, where the nets are forced to operate on disjoint sets of
conditions.

Proposition 7.5. Let (Ni)i∈I be a family of P/T nets where Ni = (Pi, Ti, Fi,Mi) for each
i ∈ I. The net

∑

i∈I Ni = (P, T, F,M) defined as

P = {inip | i ∈ I & p ∈ Pi}

T = {init | i ∈ I & t ∈ Ti}

(inix) F (injy) ⇐⇒ i = j & x Fi y

M = {{inip | p ∈M} | i ∈ I & M ∈Mi}

is a coproduct in the category PT♯ with coproduct injections ini:Ni →
∑

j∈I Nj .

Furthermore, the construction gives coproducts in the categories Occ♯ and Safe♯ and
the categories with synchronous morphisms.

139



Proof. To see that
∑

i∈I Ni is a coproduct in PT♯, suppose that for each i ∈ I there is a
morphism fi = (ηi, βi):Ni → N for some P/T net N . We must show that there is a unique
morphism, which we shall denote

∑

i∈I fi:
∑

i∈I Ni → N , such that fi = (
∑

i∈I fi) ◦ ini for
every i ∈ I. It is easy to see that (η, β):

∑

i∈I Ni → N defined as

η(inie) = ηi(e) β(inib, b
′) ⇐⇒ βi(b, b

′)

is such a morphism, and hence
∑

i∈I Ni is a coproduct in PT♯. This net is safe if the
nets Ni are safe and is an occurrence net if the nets Ni are occurrence nets, and so the
construction also yields a coproduct in the categories of safe nets and occurrence nets.

An important result is that the category Occ♯ is equivalent to Fam(Occ). The functor
decomp:Occ♯ → Fam(Occ) is part of this equivalence. The functor in the opposite
direction, which we shall call join:Fam(Occ)→ Occ♯, is defined on objects as

join(Oi)i∈I =
∑

i∈I

Oi

for the coproduct in Occ♯ described above. On morphisms, the the functor takes a mor-
phism of families f :(Oi)i∈I → (O′

i′)i′∈I′ to

join(f) =
∑

i∈I

fi

for fi defined in Definition 7.2.1 and
∑

i∈I fi as defined in the proof of Proposition 7.5.

Proposition 7.6. There categories Occ♯ and Fam(Occ) are equivalent through the func-
tors decomp and join.

Proof. This is equivalent to saying that there are isomorphisms

ϕO:O ∼= join(decomp(O)) and ψ(Oi)i∈I
:(Oi)i∈I ∼= decomp(join((Oi)i∈I)),

natural in O and the family (Oi)i∈I respectively.
Let O = (B,E,F,M). The isomorphism ϕO takes an element x of O to inMx for the

unique marking M ∈ M such that M F∗ x. The isomorphism ψ(Oi)i∈I
is a consequence

of the universal characterization of the coproduct, acting as the identity on the indexing
sets and sending x in Oi to inix in decomp(join((Oi)i∈I))i.

Naturality of the two isomorphisms is straightforwardly shown.

As an immediate consequence, we see that a multiply-marked occurrence net can be re-
formed by taking the coproduct of the family formed by taking its marking decomposition.

Corollary 7.7. Let O be an occurrence net and (OM )M∈M be its marking decomposition.
Then O ∼=

∑

M∈M
OM through an isomorphism natural in O.

We conclude this section by noting that the categories PT♯ and Fam(PT) are not
equivalent. The construction join lifts to P/T nets in a straightforward manner. However,
for a condition or event x in a P/T net (P, T, F,M), there need not be a uniqueM ∈M such
that M F∗ x. As a consequence, we cannot define a functor decomp:PT♯ → Fam(PT)
that yields an isomorphism N ∼= decomp(join(N)) natural in N .

140



7.3 Inductive definition of nets

The process of forming an occurrence net from a general net is called unfolding. The
construction takes place in stages, first defining the unfolding to form an occurrence net of
depth 0, then an occurrence net of depth 1, and so on. In showing that the net obtained
is indeed an occurrence net, it is useful to have some understanding of the subnet order
on occurrence nets and how the limit of an (ordered) chain of occurrence nets is itself an
occurrence net.

The subnet order on nets was first introduced in [Win84]. We generalize the order to
account for multiple initial markings (though we shall content ourselves with considering
just P/T nets rather than nets with multiplicities on arcs and in the initial markings).

Definition 7.3.1. Let N = (B,E,F,M) and N ′ = (B′, E′, F′,M′) be P/T nets. Then N
is a subnet of N ′, written N ≤ N ′, iff

• B ⊆ B′ E ⊆ E′ M ⊆M′,

• ∀e ∈ E : ∀b ∈ B′ : b F′ e ⇐⇒ b ∈ B & b F e, and

• ∀e ∈ E : ∀b ∈ B′ : e F′ b ⇐⇒ b ∈ B & e F b.

As such, a net N is a subnet of N ′ if, and only if, there is a morphism (η, β):N → N ′

where both η and β are inclusions. The subnet relation is clearly a partial order.
With this subnet order, nets form a domain (ccpo) in the sense that there is a least

net and that there are limits of ω-chains. The limit is defined as follows.

Definition 7.3.2. Let N0, N1, . . . be an N-indexed set of P/T nets with Ni ≤ Ni+1 for all
i ∈ N (that is, an ω-chain). Define the net

⊔

i∈N

Ni = (
⋃

i∈N

Bi,
⋃

i∈N

Ei,
⋃

i∈N

Fi,
⋃

i∈N

Mi).

We now show that this is a limit and that there is a least net according to the subnet
order.

Proposition 7.8. Let the P/T net ⊥ = (∅, ∅, ∅, ∅). For any P/T net N , we have

⊥ ≤ N.

For any ω-chain of P/T nets N0 ≤ N1 ≤ N2 ≤ . . ., the net
⊔

i∈N
Ni is a P/T net and is

the limit of the chain.

Proof. Let
⊔

i∈N
Ni = (B,E,F,M). The only non-trivial part of the proof is to show that,

for any e ∈ Ei:

{b ∈ B | b F e} = {b ∈ Bi | b Fi e} {b ∈ B | e F b} = {b ∈ Bi | e Fi b}

Both follow straightforwardly from the definition.

The limit of a chain of safe nets is a safe net.

Proposition 7.9. Let
⊔

i∈N
Ni be the limit of an ω-chain of safe nets. Then

⊔

i∈N
Ni is

a safe net.
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Proof. As in the preceding proof, for each i, let Ni = (Bi, Ei, Fi,Mi) and let N =
(B,E,F,M) =

⊔

i∈N
Ni. Suppose, for contradiction, that N is not safe; there exists a

path π and a marking M such that N :M ′ π
−։ M for some M ′ ∈ M and there exists an

event e ∈ E such that •e ⊆M but M \•e∩e• 6= ∅ for •e and e• the pre- and postconditions
of e in N . Let E′ be the set of events of the path π along with e. The set E′ is finite. By
induction on the size of E′, we can show that there exists an i such that E′ ⊆ Ei, M

′ ∈Mi

and the following two equalities hold for every e′ ∈ E′:

{b ∈ B | b F e′} = {b ∈ Bi | b Fi e
′} {b ∈ B | e′ F b} = {b ∈ Bi | e

′ Fi b}.

It follows that the marking M is reachable from M ′ in Ni and that the event e causes
contact in this marking in Ni. We therefore arrive at a contradiction, as required, because
the net Ni is not safe.

More importantly for us, the limit of a chain of occurrence nets is an occurrence net.

Proposition 7.10. Let O0 ≤ O1 ≤ O2 ≤ . . . be an ω-chain of occurrence nets. For the
net Oi = (Bi, Ei, Fi,Mi), let its concurrency relation be coi and its conflict relation be #i.
The net

⊔

i∈N
Oi = (B,E,F,M) is an occurrence net satisfying, for any x, y ∈ Bi ∪ Ei,

any n ∈ N and any A ⊆ Bi:

x Fn y ⇐⇒ x Fi
n y

x#y ⇐⇒ x#iy
x co y ⇐⇒ x coi y
co A ⇐⇒ coi A

Proof. We begin the proof by showing that if x F y and y ∈ Bi ∪ Ei then x ∈ Bi ∪ Ei.
There exists j such that x, y ∈ Bj ∪ Ej and x Fj y. If j ≤ i then x ∈ Bi ∪Ei as required.
If i ≤ j and y is an event, so y ∈ Ei, then from requirement (4) on the order ≤ we have
x ∈ Bi. Suppose instead, for contradiction, that i ≤ j and y ∈ Bi and x Fj y but x 6∈ Ei.
The net Ni is an occurrence net, so either y ∈ M for some M ∈ Mi or there exists an
event e ∈ Ei such that e Fi y. In the first case, we would have M ∈Mj and, in the second
case, we would have e Fj y, both contradicting the net Nj being an occurrence net.

Another important property is that for any M ∈ M, if M 6= ∅ and M ⊆ Bi then
M ∈ Mi. This is straightforwardly seen from the net Ni being an occurrence net; there
would otherwise exist a different marking M ′ in Mi containing a condition b for b ∈ M ,
which would give rise to b being in conflict with itself in the net Nj for some j such that
M ∈Mj . As a consequence of this property, recalling that we write M F∗ x iff there exists
b ∈M such that b F∗ x, we see that M F∗ x iff M Fi

∗ x for any M ∈M and x ∈ Bi ∪Ei.
It follows straightforwardly from these properties that the net

⊔

i∈N
Ni is an occurrence

net that satisfies the requirements.

Just as we can define a P/T as the limit of a chain of P/T nets, so a morphism of nets
from the limit can be defined. It will be useful later to have the morphism from the limit
to a general Petri net.

Proposition 7.11. Consider a general net G and an ω-chain of P/T nets N0 ≤ N1 ≤ . . .,
where Ni = (Bi, Ei, Fi,Mi). A set of morphisms (ηi, βi):Ni → G in Gen♯ for each i ∈ N
that are coherent in the sense that

• ηi(e) = ηj(e) for all i, j such that e ∈ Ei ∩ Ej, and

• βi(b, p) = βj(b, p) for all i, j such that b ∈ Bi ∩Bj and all places p in G
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gives rise to a morphism (η, β):
⊔

i∈N
Ni → G defined as

η(e) = ηi(e) if e ∈ Ei

β(b, p) = βi(b, p) if b ∈ Bi.

Proof. Let
⊔

i∈N
Ni = (B,E,F,M). The proof is a straightforward consequence of the

coherence of the morphisms and the earlier observation that

{b ∈ B | b F e′} = {b ∈ Bi | b Fi e
′}

{b ∈ B | e′ F b} = {b ∈ Bi | e
′ Fi b}.

7.4 Causal nets and paths of nets

There are many ways that paths of Petri nets can be described. We have already seen
that the collective token game for nets lends itself to paths that are sequences of events
between markings represented as multisets. More generally, we might take a path to be
a so-called elementary event structure, a partially-ordered set of event occurrences, also
known as a pomset [Pra86].

Here, we shall consider causal nets3. These are a well-understood, net based represen-
tations of paths of Petri nets.

Definition 7.4.1. A causal net is an occurrence net with an empty conflict relation and
at most one initial marking.

We shall use the symbol C to range over causal nets and write Caus for the category
of causal nets with net morphisms between them.

Say that a causal net is finite if its set of events is finite — though note that its set of
conditions might still be infinite.

Any finite causal C net has a unique marking following the occurrence of all its events;
denote this marking mkg(C). This is easily seen to be equal to the set of conditions that
do not occur as a precondition to any event.

A folding morphism ι:C → G from a finite causal net is a direct characterization of a
path of G according to the individual token game for nets.

We shall not go into much detail on the different forms of token game here — see [vG05]
for a comprehensive account. Intuitively, the individual token game is different from the
collective token game in that, in the individual token game, tokens record the occurrence of
the transition that gave rise to them. Consider the general net G in Figure 7.2. According
to the collective token game for nets, following the occurrence of t we obtain the marking

{p′ 7→ 2, q 7→ 1}.

In this marking, the transition t′ can occur. The notion of concurrency arising the collec-
tive token game is subtle, but we would normally say that the two transitions occurred
concurrently since the the transition t′ can occur without the earlier occurrence of t.

The individual token game removes all this ambiguity. The marking following the
occurrence of t has two tokens in place p′, but we are able to distinguish the token that
was initially in p′ from the token that is placed in p′ by t. As such, when the transition t′

occurs and consumes one of these tokens, it is known whether the occurrence of t′ depends

3 We generalize them to account for nets now having sets of initial markings. A causal net according
to this definition might have no initial marking. An alternative would be to require them to have precisely
one initial marking, giving rise to a coarser form of open map bisimulation.
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Figure 7.2: Causal net paths of a general net

on the earlier occurrence of t (since it uses the token that was recorded as such) or whether
t′ does not depend on the earlier occurrence of t (since it uses the token that was initially
in the place p′). This is manifested by there being two causal net paths that embed into G
by folding morphisms, presented in Figure 7.2; recall that a folding morphism comprises
a total function on events and a total function on conditions. We have drawn the nets
with conditions and events labelled with their images under their embeddings into G. The
causal net in the middle represents the run in which t′ depends on t through the transition
t depositing a token in place p′ that t′ consumes. The net on the right represents the run
in which t′ does not not depend on t, so the token in place p′ consumed by t′ is not the
one placed there by t.

Before showing a few elementary facts about causal nets as paths, we introduce a little
convenient notation. These facts will be used in Appendix D, where open maps with
respect to the category of causal nets as paths are characterized.

Definition 7.4.2. Let G be a general net. Write P (G) for its set of conditions, T (G) for
its set of events, Pre(G) for its precondition multirelation, Post(G) for its postcondition
∞-multirelation and M(G) for its set of initial markings. If G is a P/T net, we write
F (G) for its flow relation.

For any morphism, we add the subscript e to represent its component on events and

c to represent its component on conditions. For example, for a morphism f = (η, β) we
have fe = η and fe = β. If f is a folding morphism, we may drop the subscripts.

We begin by showing how finite causal net paths can be extended. Suppose that there
is a finite causal net C and a folding morphism ι:C → G. Notice that ι · mkg(C) is
the marking of G obtained by following the path C (for mkg(C) as introduced following
Definition 7.4.1). If an event t can occur in the marking ι · mkg(C), there must exist a
subset A ⊆ mkg(C) such that ι · A = Pre(G) · t. We now define a causal net C +A t and
folding morphism ι+A t:C → G that represents the extension of C by an event with image
t under the new morphism that has preconditions A.

Formally, the events of the net C +A t are the disjoint union of the events of C and
the event t. The set of conditions of the net C +A t is formed by taking the disjoint union
of the conditions of C and the set

X = {(p, i) | p ∈ P (G) & 0 ≤ i < Post(G)[t, p]}.

In C+A t, the preconditions of t will be A and its post-conditions will be X. Since mkg(C)
is the set of conditions of C that do not occur as a precondition to any event, it is easy to
see that C +A t is a causal net.
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The new folding morphism ι+A t is precisely the same as ι apart from being extended
by sending

t 7→ t (p, i) 7→ p.

It is very easy to see that the following lemma holds:

Lemma 7.4.1. The net C +A t is a causal net and the folding ι +A t:C +A t → G is a
morphism in Gen♯ for which the following diagram commutes:

C
ι //

� _

��

G

C +A t

ι+At

;;wwwwwwwww

It follows that any marking M reachable in a general net according to the collective
token game is reachable according to individual token game.

Lemma 7.4.2. Let π be a finite sequence of events of G such that G:M
π
−։ M ′ for some

initial marking M of G. There exist a finite causal net C and a folding morphism ι:C → G

for which there is a path C:M0
π0
−։ mkg(C) from the (unique) initial marking M0 of C

such that ι(π0) = π and ι ·M0 = M and ι ·mkg(C) = M ′.

Proof. The proof is by induction on the length of π. The base case, where π is the empty
sequence, is easy; just take C to be the causal net with no events and an initial marking
defined as

{(p, i) | p ∈ P (G) & 0 ≤ i < M [p]},

and define the morphism ι as (p, i) 7→ p. The inductive case is shown straightforwardly
using Lemma 7.4.1.

The converse property, that any marking reachable according to the individual token
game with the history of tokens stripped away is reachable in the collective token game,
follows immediately from the observation that mkg(C) is reachable in the net C from its
initial marking and hence ι ·mkg(C) is reachable from the initial marking of the general
net according to the definition of net morphisms.

It is a very basic fact of nets that morphisms preserve paths derived according to the
collective token game. For any morphism (η, β):G→ G′,

if G:M
π
−։ M ′ then G′:β ·M

η(π)
−։ β ·M ′.

The individual token game is also preserved by morphisms in the sense that from a causal
net C, a folding map ι:C → G and a morphism f :G→ G′ in Gen♯, the image of the causal
net C under f ◦ ι represents a path of G′ according to the individual token game. That
is, the image, which we shall denote by f̂C, embeds into G′ through a folding morphism
ι̂:f̂C → G′.

The net f̂C is defined as follows:

P (f̂C) = {(b, i, p) | b ∈ P (C) & p ∈ P (G′) & 0 ≤ i < fc[ι(b), p]}

T (f̂C) = {(e, t) | e ∈ T (C) & t ∈ T (G′) & t = fe(ι(e))

F (f̂C)((b, i, p), (e, t)) ⇐⇒ F (C)(b, e)

F (f̂C)((e, t), (b, i, p)) ⇐⇒ F (C)(e, b)

M(f̂C) = {{(b, i, p) | (b, i, p) ∈ P (f̂C) & b ∈M} |M ∈M(C)}
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The folding morphism ι̂ is defined as

ι̂(b, i, p) = p ι̂(e, t) = t.

Accompanying the causal net is a (relational) morphism f̂ :C → f̂C defined as

f̂c(b, (b
′, i, p)) ⇐⇒ b = b′ f̂e(e) = f(ι(e)).

Lemma 7.4.3. The net f̂C is a causal net, ι is a folding morphism and f̂ is a relational
morphism such that following diagram commutes:

C

f̂
��

ι // G

f

��
f̂C

ι̂
// G′

Furthermore, mkg(f̂C) = f̂ ·mkg(C) and if f is a folding morphism then so is f̂ .

Proof. Every part of the proof is straightforward apart from showing that ι̂ is a morphism.
We shall show only that ι̂·•(e, t) = Pre(G′)·t for any (e, t) ∈ T (f̂C); the other requirements
are similar.

Suppose that (e, t) ∈ T (f̂C). Then e ∈ T (C) and t ∈ T (G′) and t = f(ι(e)). Recalling
that Pre(G′)[t, p] is the number attached to the arc from p to t in G′, we must show that,
for any p ∈ P (G′), there is a bijection

{(b′, i′, p′) ∈ P (f̂C) | (b′, i′, p′) ∈ •(e, t) & ι̂(b′, i′, p′) = p}
∼= {i | 0 ≤ i < Pre(G′)[t, p]}.

Since f is a morphism and t = f(ι(e)), there is a bijection

{(p0, i, j) | p0 ∈ P (G) & 0 ≤ i < Pre(G)[ι(e), p0] & 0 ≤ j < fc[p0, p]}}
∼= {i | 0 ≤ i < Pre(G′)[t, p]}.

This relies on fc being a countably injective multirelation (Appendix A). Since ι is a
folding morphism there is a bijection for any p0 ∈ P (G)

{b ∈ P (C) | b ∈ •e & ι(b) = p0} ∼= {i | 0 ≤ i < Pre(G)[ι(e), p0]}.

This relies on ι being a countably injective multirelation on conditions. The result follows
by combining the two bijections.

7.5 Unfolding

As discussed above, occurrence nets can be used to give the semantics of more general forms
of net. The process of forming the occurrence net semantics of a net is called unfolding,
first defined for safe nets in [NPW81], and is analogous to the process of unfolding a
transition system to obtain a synchronization tree. The result of unfolding a net N is an
occurrence net U(N) accompanied by a morphism εN :U(N) → N relating the unfolding
back to the original net. An example unfolding of a safe net is presented below, with the
conditions and events of the unfolding labelled by their image under εN :
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N :

b1
b2

e1

e3

e2

e1

e1 e1

e1e1

e2e2

e3

e3e3

b1

b2 b2 b2

b2 b2

b1
b1 b1

e2
b1b1

b2

U(N):

e2

e3

e1

We now show how this definition extends to general nets. In fact, the techniques for
unfolding safe nets are almost directly applicable to general nets. The construction is
rather technical, requiring an inductive definition, but is neatly characterized in Theorem
7.12.

Overview

To help motivate the formal definitions to follow, we present a simple example of how a
general Petri net is unfolded. Let G be the following general Petri net.

t

1

2

u

1

1

q

p

The unfolding of G will be formed from conditions and events to represent occurrences
of conditions and events in the reachable markings of G. Since the place p occurs holding
one token in the initial marking of G, it occurs once in the first stage of the unfolding,
U0(G). We draw the net U0(G) with labels to indicate to which element of G its conditions
and events correspond.

U0(G): p

Since the place p can become marked, the events t and u can occur. Either occurrence
will consume the token from p, so the two occurrences conflict with each other. The
occurrence of t will yield two occurrences of tokens in p and the occurrence of u will yield
one occurrence of a token in q. This yields the unfolding U1(G).

q

u

t p

p p
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Note that there are correspondingly two postconditions of the event labelled t. Each of
the two occurrences of the place p in the postconditions of the occurrence of t allow either
the event t or the event u to occur. We add these occurrences to the unfolding U2(G).

q

u

q

u
q

u

t p

p

p

p

p

p p

t

t

The unfolding U2(G) represents that the occurrences of u causally depend on the prior
occurrence of t and that they can occur concurrently in the marking obtained following t.

Notice how the unfolding represents the individual token game discussed in Section
7.4: The two occurrences of p in the postconditions of t in U1(G) each give rise to a distinct
occurrence of the event u in U2(G).

The net U(G) is formed by continuing with this process of adding possible event oc-
currences, so taking the limit described in Proposition 7.10 of the chain of occurrence
nets

U0(G) ≤ U1(G) ≤ U2(G) ≤ · · ·

to yield an infinite occurrence net. We can see that Un(G) is the occurrence net unfolding
of G restricted to elements at depth n.

Inductive characterization

The inductive definition of the unfolding involves constructing the unfolding of a general
net G to a particular depth. This will consist of the unfolding Un(G) and a folding
morphism (ηn, βn):Un(G)→ G. Recall that since this is a folding morphism, βn will be a
function on places.

Definition 7.5.1. Let G = (P, T, Pre, Post,M) be a general Petri net. On a tuple (X, p, i)
define the projection β(X, p, i) , p and on a tuple (A, t) define the projection η(A, t) , t.
The unfolding of the net G to depth n ∈ N is the tuple Un(G) = (Bn, En, Fn,M0) defined
by induction on n as

E0 , ∅

B0 , {(M,p, i) |M ∈M & 0 ≤ i < M [p]}

M0 , {{(M,p, i) | (M,p, i) ∈ B0} |M ∈M}

En+1 , En ∪ {(A, t) | A ⊆ Bn & con A & t ∈ T & β ·A = Pre · t}

Bn+1 , Bn ∪ {({e}, p, i) | e ∈ En+1 & p ∈ P & 0 ≤ i < Post[η(e), p]}
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with flow relation Fn⊆ (Bn × En) ∪ (En ×Bn) defined as

b Fn e
△
⇐⇒ ∃A, t : e = (A, t) and b ∈ A

e Fn b
△
⇐⇒ ∃p, i : b = ({e}, p, i).

The concurrency relation on the net Un(G) is written con and its conflict relation is written
#n.

Define ηn to be the restriction of η to En and βn to be the restriction of β to Bn.

We now begin to consider the structure of the net Un(G), first by looking at its structure
as a P/T net.

Lemma 7.5.1. The net Un(G) is a P/T net such that Um(G) ≤ Un(G) for any m ≤ n.
Furthermore,

1. if x, y ∈ Bm ∪Em then:

x Fn y ⇐⇒ x Fm y x#ny ⇐⇒ x#my x con y ⇐⇒ x com y

2. for any i ∈ N, if x, y ∈ Bm ∪ Em then xFn
iy iff xFm

iy.

Proof. It is relatively straightforward to show by induction on n that Un(G) is a P/T net.
Another easy induction, this time on n −m, shows that Um(G) ≤ Un(G) for any m ≤ n.
By considering the ω-chain Um(G) ≤ Un(G) ≤ Un(G) ≤ · · · , it follows from Proposition
7.10 that the remaining properties hold.

We can now show that (ηn, βn):Un(G) → G is a net morphism and that the chain of
morphisms generated is consistent.

Lemma 7.5.2. The pair (ηn, βn) is a net morphism and the morphisms (ηm, βm) and
(ηn, βn) are consistent for all m and n.

Proof. The morphisms (ηm, βm) and (ηn, βn) are consistent immediately from their defi-
nition.

Let the net G = (P, T, Pre, Post,M). We shall show that (ηn, βn) is a morphism in
Gen♯ by induction on n. The base case is easy, being a simple verification that β0 ·M ∈M
for all M ∈M0. For the inductive case, since Mn = M0, all that we must show is that for
any event e ∈ En:

βn ·
•e = Pre · ηn(e) βn · e

• = Post · ηn(e).

If e ∈ En−1, these both hold as a direct consequence of the induction hypothesis and the
fact that Un−1(G) ≤ Un(G) according to Lemma 7.5.1. Otherwise, if e ∈ En \ En−1, we
have e = (A, t) for some A ⊆ Bn−1 such that β · A = Pre · t. It follows immediately from
the observation that •e = A and the definitions of βn and ηn that βn ·

•e = Pre · ηn(e).
From the definition Fn and Bn, we can see that

e• = {({e}, p, i) | ({e}, p, i) ∈ Bn+1}

= {({e}, p, i) | p ∈ P & 0 ≤ i < Post[t, p])}.

It follows from the definition of βn that β · e• = Post · t.

We shall now show that Un(G) is an occurrence net.
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Lemma 7.5.3. The net Un(G) is an occurrence net.

Proof. We begin by observing two important properties from the inductive definition of
Un(G). For any n > 0, if e ∈ En \ En−1 then:

(a) if b Fn e then b ∈ Bn−1, and

(b) if e Fn b then b ∈ Bn \Bn−1.

We now prove that Un(G) is an occurrence net by induction on n. We must show that:

1. ∀M ∈M0 : ∀b ∈M : ({e | e ∈ En & e Fn b} = ∅)

2. ∀b′ ∈ Bn : ∃M ∈M0 : ∃b ∈M : (bFn
∗b′)

3. ∀b ∈ Bn : (|{e | e ∈ En & e Fn b}| ≤ 1)

4. F+
n is irreflexive, and for all e ∈ En the set {e′ | e′Fn

∗e} is finite

5. #n is irreflexive

It is clear that these properties are satisfied for n = 0. We shall show that they hold at
n+ 1 given that they hold at n.

1. A simple consequence of (b) above with the fact that if b ∈M ∈M0 then b ∈ B0.

2. Suppose that b ∈ Bn+1. If b ∈ Bn, the result follows from Lemma 7.5.1(2) and the
induction hypothesis. If b ∈ Bn+1 \Bn then b = ({e}, p, i) for some p ∈ P and i ∈ N
and e ∈ En+1, and furthermore e Fn+1 b. We have e 6∈ En since otherwise b ∈ Bn.
It follows from the requirement that Pre · t is non-null for any transition t in G that
there exists a condition b′ ∈ Bn+1 such that b′ Fn+1 e. Furthermore, b′ ∈ Bn by (a).
From the induction hypothesis, there exists M ∈M0 and b0 ∈M such that b0Fn

∗b′.
Therefore, from Lemma 7.5.1(2) we obtain b0Fn+1

∗b′, as required.

3. If b ∈ Bn then the result follows from (b) and the induction hypothesis. If b ∈
Bn+1 \ Bn, it must be the case from the definition of Bn+1 that b = ({e}, p, i) for
some e ∈ En+1 \ En, and so there is a unique e′, namely e, such that e′ Fn+1 b.

4. If follows from (a) and (b) that F+
n+1 is irreflexive. We now show that {e′ | e′ F∗

n+1 e}
is finite.

Suppose first that e ∈ En. For any e′ ∈ En+1, if e′ F∗
n+1 e then e′ ∈ En and e′ F∗

n e
according to a simple inductive argument based on (a), (b) and Lemma 7.5.1. Hence,
by induction, {e′ ∈ En+1 | e

′ F∗
n+1 e} is finite. Now suppose that e ∈ En+1 \ En,

in which case e = (A, t) for some t ∈ T and A ⊆ Bn such that con A. From the
definition of con A, the set X = {e′ | e′ ∈ En & ∃b ∈ A : e′ F∗

n b} is finite. A simple
inductive argument using (a) and (b) shows that

∀e0, b0 : b0 ∈ Bn & e0 F
∗
n+1 b0 =⇒ e0 F

∗
n b0,

and as a consequence X = {e′ | e′ ∈ En+1 & ∃b ∈ A : e′ F∗
n+1 b} from which we

obtain the required result since A = {b | b ∈ Bn+1 & b Fn+1 e}.
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5. Suppose for contradiction that #n+1 is not irreflexive, first because there exists
e ∈ En+1 such that e#n+1e. We cannot have e ∈ En since, by Lemma 7.5.1(1), we
would have e#ne which contradicts the induction hypothesis. Hence e ∈ En+1 \En.
From the definition of (#m)n+1 we cannot have e(#m)n+1e, so there must exist
b, b′ ∈ Bn+1 such that b#n+1b

′ and b Fn+1 e and b′ Fn+1 e. However, from the
definition of En+1 \ En, we have b con b

′ and hence ¬(b#n+1b
′) by Lemma 7.5.1(1).

This gives us the required contradiction.

Now suppose that there exists b ∈ Bn+1 such that b#n+1b. A similar argument to
that above shows that b 6∈ Bn since otherwise the induction hypothesis would be
contradicted. The definition of (#m)n+1 informs that ¬(b(#m)n+1b), so there must
exist e, e′ ∈ En+1 such that e Fn+1 b and e′ Fn+1 b and e#n+1e

′. From the above
argument, we have e 6= e′, but this contradicts point (3) above, that each condition
has at most one pre-event.

We have now shown that for any general net G we have an ω-chain of occurrence nets

U0(G) ≤ U1(G) ≤ U2(G) ≤ · · · .

The unfolding U(G) can therefore be defined as the limit of this ω-chain specified in
Definition 7.3.2,

U(G) =
⊔

n∈N

Un(G).

This is an occurrence net by Proposition 7.10.
We are now able to summarize all these technical matters by giving a characterization

of the unfolding.

Theorem 7.12. The occurrence net unfolding U(G) = (B,E,F, M0) of a general net
G = (P, T, Pre, Post,M) is the unique occurrence net to satisfy

B = {(M,p, i) |M ∈M & p ∈ P & 0 ≤ i < M [p]}

∪ {({e}, p, i) | e ∈ E & p ∈ P & 0 ≤ i < Post[η(e), p]}

E = {(A, t) | A ⊆ B & t ∈ T & co A & β · A = Pre · t}

b F (A, t) ⇐⇒ b ∈ A

(A, t) F b ⇐⇒ ∃p, i : (b = ({(A, t)}, p, i))

M0 = {{(M,p, i) | (M,p, i) ∈ B} |M ∈M},

where co and # are the concurrency and conflict relations arising from F on B and E.
Furthermore, η:E → P and β:B → P defined as

η(A, t) = t β(X, p, i) = p

form a morphism εG = (η, β):U(G)→ G in Gen♯.

Proof. It follows from Proposition 7.11 that (η, β):U(G)→ G is a morphism in Gen♯.
To see that the net U(G) satisfies the requirements above, we must show that the

following two equations hold:
⋃

n∈N

Bn = {(M,p, i) |M ∈M & p ∈ P & 0 ≤ i < M [p]}

∪{({e}, p, i) | e ∈
⋃

n∈N

En & p ∈ P & 0 ≤ i < Post[η(e), p]}

⋃

n∈N

En = {(A, t) | A ⊆
⋃

n∈N

Bn & t ∈ T & co A & β ·A = Pre · t}
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The first is reasonably straightforward, so we shall show only the second.

(⊆): Suppose that e ∈
⋃

n∈N
En. Since Um(G) ≤ Um+1(G) for all m ∈ N by Lemma 7.5.1,

there is a least n ∈ N such that e ∈ En. It is easy to see that n > 0. Considering the
definition of the net Un(N), there exist A ⊆ Bn−1 and t ∈ T such that con−1 A and
β · A = Pre · t. By Proposition 7.10, we have co A, and thus the required inclusion
is shown.

(⊇): Suppose that the pair (A, t) comprises A ⊆
⋃

m∈N
Bm and t ∈ T , and satisfies co A

and β · A = Pre · t. Since we have co A, the set {e | ∃b ∈ A : e ∈ E & e F∗ b} is
finite; let this set be called X. By Lemma 7.5.1, we have Um(G) ≤ Um+1(G) for all
m ∈ N, so there is a least n ∈ N such that X ⊆ En. We shall show that A ⊆ Bn. It
will then follow from the definition of En+1 that (A, t) ∈ En+1, completing the case.

Suppose that b ∈ A. Then b ∈ Bk for some least k ∈ N since A ⊆
⋃

m∈N
Bm. If

k = 0, we clearly have b ∈ Bn. Otherwise, b = ({e}, p, i) for some e ∈ Ek and p ∈ P
and i satisfying 0 ≤ i < Post · η(e). However, e Fk b so e ∈ X and hence e ∈ En.
Therefore, by point (b) made at the start of the proof of Lemma 7.5.3, we have
b ∈ Bn.

We now show that U(G) is the unique such occurrence net. Suppose that O′ =
(B′, E′, F′,M′) is any occurrence net satisfying the above constraints. Recall that O′⌈n is
the occurrence net obtained by restricting O′ to elements at depth less than or equal to
n. It is easy to see that O′ =

⊔

n∈N
O′⌈n. To show uniqueness, it is sufficient to show that

O′⌈n = Un(G),

which we shall prove by induction on n.
LetO′⌈n = (B′⌈n,E′⌈n,F′ ⌈n,M′⌈n) and recall that the unfolding Un(G) = (Bn, En, Fn,M0).

The base case of the induction is straightforward. For the inductive case, we shall show
that

E′⌈n = En;

the similar property for conditions follows from this straightforwardly, and the other parts
follow immediately from the fact that O′ satisfies the constraints above.

E′⌈n ⊆ En: Let e ∈ E′ with depth′(e) ≤ n. As O′ satisfies the constraints above, we
have e = (A, t) for some A ⊆ B′ and t ∈ T ′ such that co′ A and β · A = Pre · t.
Furthermore, A = •e so, as O′ is an occurrence net, we must have depth(b) ≤ n − 1
for all b ∈ A. From the induction hypothesis we have b ∈ Bn−1 for all b ∈ A, so we
have A ⊆ Bn−1. From Proposition 7.10, the set of conditions A must be concurrent
in O′⌈n−1 and hence con−1 A . It follows immediately from the definition of En that
e ∈ En.

E′⌈n ⊇ En: Suppose that e ∈ En. It is sufficient to consider the case where e 6∈ En−1

since otherwise the result follows straightforwardly by induction. Since e ∈ En\En−1,
from the definition there exist A and t such that e = (A, t) and A ⊆ Bn−1 and t ∈ T ,
satisfying β · A = •·t and con−1 A. Since Un−1(G) = O′⌈n − 1 by induction, we
have A ⊆ B′⌈n − 1 and hence A ⊆ B′. We also have co′ A from the fact that A is a
concurrent set of conditions in O′⌈n−1 and Proposition 7.10. Since the net O′ satisfies
the constraints above, we have e ∈ E′ and clearly depth(e) ≤ n, as required.
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We can see from the final part of this proof that, as one might expect, each occurrence
net Un(G) represents the unfolding U(G) restricted to elements at depth less than or equal
to n.

Corollary 7.13. Let U(G) = (B,E,F,M0). For any x ∈ B ∪E and n ∈ N:

depth(x) ≤ n ⇐⇒ x ∈ Bn ∪ En.

Openness

Earlier, we saw that the unfolding U(G) represents the behaviour of G according to the
individual token game for nets. Paths according to the individual token game were de-
scribed earlier, in Section 7.4, as causal nets. We would therefore expect the unfolding
U(G) to be related to G through a bisimulation that respects the individual token game.
We shall show that this is indeed the case. In particular, we shall show the morphism
εG:U(G)→ G described in Theorem 7.12 above to be Caus-open4.

In Appendix D, open morphisms from occurrence nets into general nets are character-
ized in the following way:

Proposition 7.14 (Theorem D.1 in Appendix D). Let O be an occurrence net and G be
a general net. A morphism f :O → G is Caus-open in Gen♯ if, and only if, it is a folding
morphism and reflects any initial marking of G to an initial marking of O and satisfies
the following ‘transition lifting’ property:

for any subset A of conditions of O such that co A for which there exists a
transition t of G such that f · A = PreG · t, there exists an event e of O such
that A = •e and f(e) = t.

The morphism εG:U(G)→ G of Theorem 7.12 is readily seen to be a folding morphism
satisfying this property. This will prove important later on in Proposition 8.3, where it
allows us to form a symmetry on the unfolding.

Cofreeness

For a safe net N , we are able to say that the occurrence net U(N) and morphism
εN :U(N) → N are cofree [Mac71]. That is, for any occurrence net O and morphism
(π, γ):O → N , there is a unique morphism (θ, α):O → U(N) such that the following
triangle commutes:

U(N)
εN // N

O

(π,γ)

<<yyyyyyyyy
(θ,α)

OO

The result, first shown in [Win86] (for singly-marked nets), ensures that Occ♯ is a core-
flective subcategory of Safe♯ with the operation of unfolding giving rise to a functor that
is right-adjoint to the inclusion functor Occ♯ →֒ Safe♯. In fact, as we shall see, the result
generalizes straightforwardly to multiply-marked nets and also applies to give a coreflec-
tion between the category of P/T nets PT♯ and the category of occurrence nets Occ♯.
More generally still, it generalizes to give a coreflection between semi-weighted nets (nets

4It would be interesting to establish a connection between openness with respect to causal nets and
the bisimulation in [vG05], perhaps corresponding to openness with respect to extensional causal nets.
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(π, γ)

εG

({b1}, t)

({b2}, t)

b1 = (M, p, 1)

b2 = (M, p, 2)

(θ′, α′)

e2

c1 e1

c2

tp

(π, γ)

εG

({b1}, t)

({b2}, t)

b1 = (M, p, 1)

b2 = (M, p, 2)

e2

c1 e1

c2

tp

(θ, α)

Figure 7.3: Non-uniqueness of mediating morphism (all multiplicities 1)

with single multiplicity in the post-places of each transition and that have at most one
token in each place in the initial marking) and occurrence nets, as shown in [MMS96].

A coreflection is not, however, obtained when we consider the unfoldings of arbitrary
general nets to occurrence nets (either singly- or multiply-marked). As we have seen, the
problem does not lie in defining the unfolding of general nets; the unfolding operation
is extended straightforwardly to general nets. Instead, the reason why we do not obtain
a coreflection between the categories Occ♯ and Gen♯ (or Occ and Gen) is that the
uniqueness property required for cofreeness fails. That is, the morphism (θ, α) need not
be the unique such morphism making the diagram above commute. In Figure 7.3, we
present a general net G, its unfolding U(G) with the morphism εG and an occurrence net
O, which happens to be isomorphic to U(G), with a morphism (π, γ):O → G alongside
two distinct morphisms (θ, α), (θ′, α′):O → U(G) making the diagram commute.

In the net U(G) in Figure 7.3, the two conditions b1 and b2 are symmetric: they arise
from there being two indistinguishable tokens in the initial marking of G in the place p.
The events ({b1}, t) and ({b2}, t) are also symmetric since they are only distinguished by
their symmetric pre-conditions; they have common image under εG. Our goal shall be to
show that there is a unique mediating morphism up to symmetry, i.e. any two morphisms
from O to U(G) making the diagram commute are only distinguished through their choice
of symmetric elements of the unfolding. We first summarize the part of the cofreeness
property that does hold.

Theorem 7.15. Let G be a general Petri net, O be an occurrence net and (π, γ):O → G
be a morphism in Gen♯. There is a morphism (θ, α):O → U(G) in Gen♯ such that the
following diagram commutes:

U(G)
(η,β)=εG // G

O

(π,γ)

77oooooooooooooo

(θ,α)

OO

Furthermore, if the net G is a P/T net then (θ, α) is the unique such morphism.

Proof. Recall that O⌈n is the occurrence net O restricted to its elements at depth n. From
the morphism (π, γ):O → G, we obtain a morphism which we shall write (πn, γn):O⌈n→
G. For n ∈ N, we shall begin by constructing a morphism (θn, αn):O⌈n→ U(G) such that
the following diagram commutes:

Un(G)
(ηn,βn) // G

O⌈n

(πn,γn)

77pppppppppppppp
(θn,αn)

OO
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We shall also show that this is the unique such morphism if G is a P/T net.
We construct the morphism (θn, αn), which will comprise a partial function on events

and a relation on conditions, by induction on n. Let the nets

G = (P, T, Pre, Post,M)

O⌈n = (B,E,F,M0)

U(G) = (BU , EU , FU ,MU ).

The base case has n = 0. Any element of O at depth zero is a condition in an initial
marking, so we define θ0 to be the empty function. For any M ∈M0, we have γ ·M ∈M
since (π, γ) is a morphism. There is therefore a bijection (unique if G is a P/T net since
(γ ·M)[p] ≤ 1 in this case) for every M ∈M0 and p ∈ P

ϕM,p:{(b, i) | b ∈M & 0 ≤ i < γ[b, p]} ∼= {j | 0 ≤ j < (γ ·M)[p]}.

This relies on the definition in Appendix A of application of a multirelation to a multiset.
Any condition b at depth zero in an occurrence net is in a unique initial marking M .
Define, for any b′ ∈ Un(G):

α0(b, b
′) ⇐⇒ ∃p, i : 0 ≤ i < γ[b, p] & b′ = (γ ·M,p, ϕM,p(b, i))

It is easy to see that this is a morphism (θ0, α0):O⌈0 → UG such that the triangle above
commutes and is the unique such morphism if G is a P/T net.

We now consider the case where n > 0. For any event e or condition b at depth less
than n in O⌈n and any condition b′ ∈ BU , define

θn(e) = θn−1(e) αn(b, b
′) ⇐⇒ αn−1(b, b

′).

Now let e be an event at depth precisely n in O⌈n. We extend θn−1 by defining

θn(e) =

{

∗ if π(e) = ∗
(A, t) if t = π(e) & A = θn−1

•e

If G is a P/T net, since (θn−1, αn−1) is the unique morphism up to depth n− 1, it can be
seen that θn has to be defined in this way.

Now let b be any condition at depth precisely n in O⌈n. There exists a unique event e
such that b ∈ e• since O is an occurrence net. Since (π, γ) is a morphism, for every place
p ∈ P and event e ∈ E there is a bijection

ϕe,p:{(b, i) | b ∈ e
• & 0 ≤ i < γ[b, p]} ∼= {j | 0 ≤ j < Post[η(e), p]}.

This bijection is unique if G is a P/T net because Post[η(e), p] ≤ 1 in this case. We define

αn(b, b
′) ⇐⇒ ∃p, i : 0 ≤ i < γ[b, p] & b′ = ({e}, p, ϕe,p(b, i)).

A straightforward analysis shows that this generates a morphism (θn, αn):O → U(G)
such that the triangle above commutes and that this is the unique such morphism if G is
a P/T net.

We now show how the set of morphisms (θn, αn):O⌈n → U(G) generates a morphism
(θ, α):O → U(G) such that (η, β) ◦ (θ, α) = (π, γ), and that this is the unique such
morphism if G is a P/T net.

We begin with the observation that

O⌈0 ≤ O⌈1 ≤ O⌈2 ≤ · · ·
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is an ω-chain and that
⊔

n∈N
O⌈n = O. Furthermore, we have a coherent set of morphisms

{(θn, αn) | n ∈ N}. It follows from Proposition 7.11 that (θ, α) defined as

θ(e) = θn(e) if depth(e) ≤ n
α(b, b′) ⇐⇒ αn(b, b

′) if depth(b) ≤ n

is a morphism (θ, α):O → U(G) in Gen♯. It follows from commutation at depth n,

(πn, γn) = (η, β) ◦ (θn, αn),

and the fact that any element of the occurrence net occurs at finite depth that (η, β) ◦
(θ, α) = (π, γ).

Suppose that G is a P/T net. By induction on n, using the remarks on uniqueness
made above, we can show that (θn, αn):O⌈n → U(G) is the unique morphism in Gen♯

such that (πn, γn) = (η, β) ◦ (θn, αn). It is easy to show from this and the fact that any
element of the occurrence net O occurs at finite depth that (θ, α) is the unique morphism
such that (π, γ) = (η, β) ◦ (θ, α).

It will be of use later to note that if the multirelation γ above is a function then so is
α, so the above result also applies if we substitute the category Gen♯f of general nets with
folding morphisms (morphisms that are total functions on conditions) for Gen♯.

From this result, we obtain an adjunction between the categories of occurrence nets
and P/T nets.

Occ♯ ⊥

*

 ''

PT♯

U

gg

Since Occ♯ is a full subcategory of PT♯, the adjunction is a coreflection. The result
is also seen to yield adjunctions between categories of singly-marked nets and, due to
the observation above, categories of folding morphisms. However, due to the mediating
morphism (θ, α) not necessarily being unique when we consider general Petri nets, we do
not obtain an adjunction between Occ♯ and Gen♯. As discussed earlier, we must describe
symmetry in the unfolding which will allow us to obtain a pseudo-adjunction.

As is the general case for an adjunction [Mac71], the cofreeness result specifies how
the operation of the right adjoint on objects extends to a morphisms, yielding a functor
U :PT♯ → Occ♯. Suppose that we have a morphism between P/T nets (π, γ):N → N ′.
The morphism U(π, γ) is defined (uniquely) to be the mediating morphism (θ, α):U(N)→
U(N ′) arising from the cofreeness property in the following diagram:

U(N ′)
εN′ // N ′

U(N) εN

//

(θ,α)

OO

N

π,γ

??��������

156



Chapter 8

Symmetry and nets

We have seen in the previous chapter the unfolding operation on general Petri nets. In
this chapter, we apply an abstract framework for defining symmetry in the behaviour of
models for concurrency to enrich Petri nets with symmetry. This will be used to give a
coreflection, up to symmetry, relating general Petri nets and occurrence nets. The key
result is Theorem 8.6, where the key cofreeness property is shown to hold up to symmetry
on nets. Following this result, we show that symmetry allows a coreflection between the
category of P/T nets with symmetry and general nets with symmetry.

8.1 Categories with symmetry

It is shown in [Win07a, Win07b] how symmetry can be defined between the paths of event
structures, and more generally on any category of models satisfying certain properties. As
we shall see, we must generalize the framework to obtain an account of symmetry in Petri
nets.

The definition of symmetry makes use of open morphisms [JNW95]. Let C0 be a cate-
gory (typically a category of models such as Petri nets) with a distinguished subcategory
P of path objects (such as causal nets: see Section 7.4) to describe the shape of com-
putation paths, and morphisms specifying how a path extends to another. A morphism
f :X → X ′ in C0 is P-open if whenever there exists a morphism s:P → P ′ in P and mor-
phisms p:P → X and p′:P ′ → X ′ in C0 such that the diagram on the left below commutes,
there exists a morphism h:P ′ → X in C0 such that the two triangles in the diagram on
the right commute:

P
p //

s

��

X

f
��

P ′
p′

// X ′

P
p //

s

��

X

f
��

P ′
p′

//

h
==||||||||
X ′

We now describe the categories required for adding symmetry. Assume categories

P ⊆ C0 ⊆ C

where P is a distinguished subcategory of path objects and path morphisms, C0 has pull-
backs and shares the same objects as the (possibly larger) category C, with the restriction
that the inclusion functor C0 →֒ C preserves weak pullbacks1. Then, we will be able to add

1 A weak pullback of the morphism f1:X1 → Y against f2:X2 → Y is an object W with morphisms
w1:W → X1 and w2:W → X2 such that f1 ◦ w1 = f2 ◦ w2, and whenever the outer square in the diagram
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symmetry to C, and at the same time maintain constructions dependent on pullbacks of
open morphisms, such as Lemma 8.1.1 below, which will be central to constructing sym-
metries on unfoldings.2 (The earlier method for introducing symmetry used in [Win07a]
corresponds to the situation where C0 and C coincide.)

The role of P ⊆ C0 is to determine open morphisms; the role of the subcategory P is
to specify the form of path objects and extension, while the generally larger category C0
fixes the form of paths p:P → X from a path object P in an object X of C0.

Now we show how C can be extended with symmetry to yield a category SC. (We
sometimes write SP⊆C0C when we wish to highlight the particular path category with
respect to which morphisms are open.) The objects of SC are spans

S
l

����
��

��
�� r

  @
@@

@@
@@

X X,

which we sometimes write (X,S, l, r), consisting of an object X of C and two P-open
morphisms l, r:S → X in C0 which make l, r a pseudo-equivalence [CV98] in the category C.
A span is a pseudo-equivalence if it satisfies the following axioms of reflexivity, symmetry
and transitivity.

Reflexivity there is a morphism ρ:X → S in C such that

X
idX

~~}}
}}

}}
}} idX

  A
AA

AA
AA

A

ρ

��
X S

l
oo

r
// X

commutes;

Symmetry there is a morphism σ:S → S in C such that

S
r

��~~
~~

~~
~

l

��@
@@

@@
@@

σ

��
X S

l
oo

r
// X

below commutes, i.e. f1 ◦ z1 = f2 ◦ z2, there is a morphism h:Z → W such that the upper two triangles
commute, i.e. w1 ◦ h = z1 and w2 ◦ h = z2.

Z

z1

��

h

�� z2

��

W

w1

}}||
||

||
|| w2

!!B
BB

BB
BB

B

X1

f1 !!B
BB

BB
BB

B X2

f2}}||
||

||
||

Y

Note that this is the same as the universal characterization of a pullback apart from the mediating morphism
h not necessarily being unique.

2General conditions have been chosen that work for our purposes here. It might become useful to
replace the role of P ⊆ C0 by an axiomatization of a subcategory of open morphisms in C and in this way
broaden the class of situations in which we can adjoin symmetry.
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commutes; and

Transitivity there is a weak pullback Q, f, g of r, l and a morphism τ :Q → S in C such
that

Q
f

����
��

��
�
τ

��

g

��?
??

??
??

S
l

��~~
~~

~~
~

r
@@@

@

��@
@@

S

lo
oooooo

wwooooooo r
OOOOOOO

''OOOOOOO

S

l
~~~

~

��~~~
~

r

��@
@@

@@
@@

X X X

commutes.

The requirements on l and r are slightly weaker than those in [Win07a] in that we do
not require that the morphisms l and r are jointly monic — see Section 8.5 for an example
of a symmetry on a safe net that cannot be expressed with the jointly-monic condition.
They are also slightly weaker in the axiom for transitivity, which involves a weak pullback
rather than a pullback. If the maps l and r are jointly monic and the axiom for transitivity
is satisfied through taking a pullback, then they form an equivalence [Joh02].

It will be useful later to have a little notation to abbreviate the tuples forming an
object with symmetry.

Notation 8.1.1. We use the notation X to range over objects with symmetry. We write
X for the object in which the symmetry is, SX for the object representing the symmetry,
and lX , rX :SX → X for the symmetry morphisms. It follows that

X = (X,SX , lX , rX).

The morphisms of SC are morphisms of C that preserve symmetry. Let f :X → X ′

be a morphism in C and (X,S, l, r) and (X ′, S′, l′, r′) be objects of SC. The morphism
f :X → X ′ preserves symmetry if there is a morphism h:S → S′ such that the following
diagram commutes:

X

f
��

S
loo

h
��

r // X

f
��

X ′ S′
l′

oo
r′

// X ′

With the definition of symmetry on objects, we can define the equivalence relation ∼
expressing when morphisms are equal up to symmetry :
Let f, g:(X,S, l, r) → (X ′, S′, l′, r′) be morphisms in SC. Define f ∼ g iff there is a
morphism h:X ′ → X ′ in C such that following diagram commutes in C:

X
f

~~||
||

||
|| g

  B
BB

BB
BB

B

h
��

X ′ S′l′oo r′ // X ′

Composition of morphisms in SC coincides with composition in C and the two categories
share the same identity morphisms. The category SC is more fully described as a category
enriched in equivalence relations.

Later we make significant use of the following construction, the inverse image of a
symmetry along an open morphism.
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Lemma 8.1.1. Given a symmetry l, r on B and a P-open morphism f : A → B in C0
we obtain a symmetry l′, r′ on A as its inverse image along f , obtained via the following
three pullbacks in C0:

S′

?�
p′~~}}

}}
}}

}

l′

��

o
s

x
~

�
	

�

r′

��

P
L

G
A

;
5

1

q′   A
AA

AA
AA

A

Ql
?�

pl~~~~
~~

~~
~ ql

  A
AA

AA
AA

A Qr
?�pr

~~}}
}}

}}
}}

qr   A
AA

AA
AA

A

f   A
AA

AA
AA

A S
r

!!B
BB

BB
BB

B
l

~~||
||

||
||

A

f~~||
||

||
||

B B

Proof. We must show that the maps l′ and r′ are open, which follows from pullbacks of
open maps being open [JNW95], and that they form a pseudo-equivalence.

Reflexivity Let ρB be the morphism arising from the reflexivity of S on B. From Ql
and Qr being pullbacks in C0 and hence weak pullbacks in C, there are morphisms
hl and hr such that the following diagram commutes:

A

hl

��idA

��

f

  @
@@

@@
@@

@ A

hr

��

f

~~}}
}}

}}
}}

idA

��

Ql
?�

pl~~~~
~~

~~
~

ql   @
@@

@@
@@

@ B

ρB

��

Qr
?�

pr
~~}}

}}
}}

}}

qr   A
AA

AA
AA

A

f   A
AA

AA
AA

A S
r

  B
BB

BB
BB

B
l

~~}}
}}

}}
}}

A

f~~||
||

||
||

B B

It follows from S′ being a weak pullback and, from commutation above, that

ρB ◦ f = ql ◦ hl = pr ◦ hr,

that there is a morphism ρ:A→ S′ such that the following diagram commutes:

A

ρ

��
hl

��

idA

��

hr

��

idA

��

S′

?�p′

~~}}
}}

}}
}

q′

  A
AA

AA
AA

A

A Qlpl

oo

ql

  A
AA

AA
AA

A Qr
pr

~~}}
}}

}}
}}

qr
// A

S

It is easy to see that this is a morphism satisfying the reflexivity axiom for (A,S′, l′, r′).

Symmetry Let σB be the morphism arising from the symmetry of S on B. It follows
from the definitions of σB , Ql and Qr that the following diagram without hl and hr
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commutes. Since Ql and Qr are weak pullbacks in C, there are morphisms hl and hr
such that the whole of the following diagram commutes, and in particular squares
(1)–(4) commute:

Qr

(1)

(2)hl

��

pr //

qr

��

S

σB

��

Ql
qloo

hr

��
(4)

pl

��

(3)

Ql
?�

pl~~}}
}}

}}
}

ql   @
@@

@@
@@

@ Qr
?�

pr
~~~~

~~
~~

~~

qr   A
AA

AA
AA

A

f   B
BB

BB
BB

B S
r

  A
AA

AA
AA

A
l

~~}}
}}

}}
}}

A

f~~||
||

||
||

B B

Recall that S′ is the pullback of ql:Ql → S against pr:Qr → S in C0 and therefore a
weak pullback in C, with pullback morphisms p′:S′ → Ql and q′:S′ → Qr. Consider
the following diagram:

S′

q′

~~}}
}}

}}
}} p′

  A
AA

AA
AA

A

σ

&
$
!
�

�

��
�
�

Qr
pr //

hl

��

S Ql
qloo

hr

��
Ql

ql   A
AA

AA
AA

A S′
p′oo q′ // Qr

pr
~~}}

}}
}}

}}

S

The outer hexagon commutes:

ql ◦ hl ◦ q
′ = σB ◦ pr ◦ q

′ by (2)

= σB ◦ ql ◦ p
′ by def. S′ as pullback

= pr ◦ hr ◦ p
′ by (3)

It follows from S′ being a pullback that there is a morphism σ:S′ → S′ such that
p′◦σ = hl◦q

′ and q′◦σ = hr◦p
′. Using (1) and (4), a straightforward calculation shows

that σ is the morphism required to show that (S′, A′, l′, r′) satisfies the symmetry
requirement.

Transitivity The symmetry S on B is transitive, so there exists a weak pullback Q, p, q
in C of r against l and a morphism τB :Q→ S such that l◦τB = l◦p and r◦τB = r◦q.

Recalling the construction of the symmetry S′ on A above, let Q′, p′′, q′′ be the
pullback of r′ = qr ◦ q

′ against l′ = pl ◦ p
′ in the category C0; this is a weak pullback

in the category C since the inclusion of C0 in C preserves weak pullbacks.

Q′

?�p′′

~~~~
~~

~~
~ q′′

  @
@@

@@
@@

S′

qr◦q′   A
AA

AA
AA

A S′

pl◦p
′

~~}}
}}

}}
}}

A
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We shall construct a morphism τ :Q′ → S′ to show that the symmetry S′, r′, l′ on A
is transitive.

The pullback diagram above can be expanded by adding in the rest of the inverse
image construction (twice) and drawing the morphism τB:

Q′

p′′

wwnnnnnnnnnnnnnnnn
q′′

''PPPPPPPPPPPPPPP

S′

p′

��

q′

  A
AA

AA
AA

A Q

τB

��

p

��

q

��

S′

q′

��

p′

~~}}
}}

}}
}}

Qr
qr
AA

  A
AA

AA

pr

��

Ql
pl

}}

~~}}
}}

}

ql

��

Ql
pl

~~~~
~~

~~
~

ql   B
BB

BB
BB

B A

f

��

Qr

pr
~~||

||
||

|| qr

  A
AA

AA
AA

A

f   A
AA

AA
AA

A S
l

}}{{
{{

{{
{{

r
!!C

CC
CC

CC
C S

lmm
m

vvmmmmmmmmmmmmm r
QQ

((QQQQQQQQQQQQQ S

l}}||
||

||
|| r

!!C
CC

CC
CC

C A

f~~||
||

||
||

B B B

Let y = pr ◦ q
′:S′ → S. We have y = ql ◦ p

′ due to the definition of S′ in the inverse
image as a pullback.

From the commutation of the pullback diagram defining Q′′ drawn above, we have

qr ◦ q
′ ◦ p′′ = pl ◦ p

′ ◦ q′′ (1).

From commutation of the pullback diagrams defining Ql and Qr, respectively, we
have

f ◦ pl = l ◦ ql (2) r ◦ pr = f ◦ qr (3).

Hence
r ◦ y ◦ p′′ = r ◦ pr ◦ q

′ ◦ p′′ by def. y
= f ◦ qr ◦ q

′ ◦ p′′ by (3)
= f ◦ pl ◦ p

′ ◦ q′′ by (1)
= l ◦ ql ◦ p

′ ◦ q′′ by (2)
= l ◦ y ◦ q′′ by def. y.

It follows from Q being a weak pullback that there exists a morphism z:Q → Q′

such that the following diagram commutes:

Q′

y◦p′′

��

z

�� y◦q′′

��

Q

p
��~~

~~
~~

~~

q
��@

@@
@@

@@
@

S

r
  A

AA
AA

AA
A S

l~~}}
}}

}}
}}

B
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In particular,

p ◦ z = y ◦ p′′ (4) q ◦ z = y ◦ q′′ (5).

It follows that

l ◦ y ◦ p′′ = l ◦ p ◦ z = l ◦ τB ◦ z (6);

the first equality follows from (4) and the second from the definition of τB being a
morphism demonstrating transitivity. Similarly, we have

r ◦ y ◦ q′′ = r ◦ q ◦ z = r ◦ τB ◦ z (7).

Now,

f ◦ pl ◦ p
′ ◦ p′′ = l ◦ ql ◦ p

′ ◦ p′′ by (2)
= l ◦ y ◦ p′′ by def. y
= l ◦ τB ◦ z by (6).

Similarly, we can show that f ◦ qr ◦ q
′ ◦ q′′ = r ◦ τB ◦ z. Since Ql and Qr are

(weak) pullbacks, there exist morphisms xl and xr such that the following diagrams
commute:

Q′

pl◦p
′◦p′′

��

xl

�� τB◦z

��

Ql

pl~~~~
~~

~~
~

ql ��@
@@

@@
@@

A

f   A
AA

AA
AA

A S

l~~}}
}}

}}
}}

B

Q′

qr◦q′◦q′′

��

xr

��τB◦z

��

Qr

pr
~~~~

~~
~~

~~

qr
  @

@@
@@

@@
@

S

r
  A

AA
AA

AA
A S

f~~}}
}}

}}
}}

B

In particular, we have

pl ◦ xl = pl ◦ p
′ ◦ p′′ (8) qr ◦ xr = qr ◦ q

′ ◦ q′′ (9).

We also have τB ◦ z = ql ◦ xl = pr ◦ xr, so it follows from the definition of S′ as a
pullback that there is a morphism τ such that the following diagram commutes:

Q′

xr

��

τ

��xl

��

S′

p′~~}}
}}

}}
}}

q′   B
BB

BB
BB

B

Ql

ql   A
AA

AA
AA

A Qr

pr~~||
||

||
||

B

That is,

xl = p′ ◦ τ (10) xr = q′ ◦ τ (11).
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To check that the morphism τ is indeed the morphism demonstrating transitivity of
the symmetry S′ on A, we must show that the following diagram commutes:

Q′

p′′

~~~~
~~

~~
~

τ

��

q′′

  @
@@

@@
@@

S′

l′

��~~
~~

~~
~

r′
AA

A

  A
AA

S′

l′
nnnnnnn

wwnnnnnnn r′
PPPPPPP

''PPPPPPP

S′

l′
}}

}

~~}}
}

r′

  @
@@

@@
@@

A A A

Recalling that r′ = qr ◦ q
′ and l′ = pl ◦ p

′, the inner square commutes according to
the definition of p′′ and q′′ as pullback morphisms.

We have
l′ ◦ p′′ = pl ◦ p

′ ◦ p′′

= pl ◦ xl by (8)
= pl ◦ p

′ ◦ τ by (10)
= l′ ◦ τ,

showing commutation of the left triangle. It can be shown similarly that r′◦q′′ = r′◦τ ,
as required to complete the proof.

Lemma 8.1.1 depends crucially on the existence of pullbacks in C0 and the property
that pullbacks of open morphisms are open (here weak pullbacks do not suffice) — without
this we would not know that l′ and r′ were open.

Symmetry, functors and adjunctions

Let C and D be categories upon which symmetry can be placed, i.e. categories with
subcategories P ⊆ C0 ⊆ C and Q ⊆ D0 ⊆ D such that C0 and D0 have pullbacks that are
preserved as weak pullbacks in C and D, respectively, and P and Q are path categories
from which open maps can be drawn. We obtain the categories with symmetry SP⊆C0C
and SP⊆C0D, which from now on we shall abbreviate to SC and SD.

Say that a functor F :C → D preserves open maps in C0 if, for any morphism f :X → X ′

in C0 that is P-open in C0, the morphism F (f):F (X) → F (X ′) is in D0 and, moreover,
is Q-open in D0. Say that F preserves weak pullbacks of P-open morphisms in C0 if, for
any f :X → Y and f ′:X ′ → Y that are P-open in C0 and have a weak pullback P in C
with pullback morphisms p:P → X and p′:P → X ′, then the object F (P ) with pullback
morphisms F (p) and F (p′) is a weak pullback of F (f) and F (f ′) in D.

Proposition 8.1. A functor F :C → D between categories described above yields a functor
SF :SC → SD defined on objects (X,S, l, r) of SC as

SF (X,S, l, r) = (FX,FS, F l, Fr)

and on morphisms f :(X,S, l, r)→ (X ′, S′, l′, r′) as

SF (f) = F (f)

if F preserves open maps in C0 and preserves weak pullbacks of P-open maps in C0.

Proof. It is easy to see, given that F preserves weak pullbacks of P-open morphisms in C0,
that (FX,FS, F l, Fr) satisfies the requirements to be an element of SD. It is also easy
to show that SF (f) is a map preserving symmetry as a consequence of f being a map
preserving symmetry.
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Any adjunction

C ⊥

F
!!
D

G

aa

in which the functors F and G satisfy the constraints above of preserving open maps and
preserving weak pullbacks of open maps (noting that the functorG automatically preserves
all weak pullbacks as a consequence of it being a right adjoint: this is a specialization of
the well-known property that right adjoints preserve limits) gives rise to an adjunction
between the categories enriched with symmetry.

Proposition 8.2. Let C and D be categories on which symmetry can be placed. Suppose
that the functor F :C → D preserves P-open maps in C0 and preserves weak pullbacks of
P-open morphisms in C0, and suppose that the functor G:C → D preserves Q-open maps
in D0. If F ⊣ G, i.e. F is left adjoint to G, then the functor SF :SC → SD defined in
Proposition 8.1 is left adjoint to the functor SG:SD → SC, i.e.

SC ⊥

SF
$$
SD

SG

dd .

Proof. Immediately from the assumptions, the functor F :C → D extends to a functor
SF :SC → SD according to Proposition 8.1. Since G is a right adjoint, it preserves weak
pullbacks and therefore preserves weak pullbacks of Q-open morphisms in D0. Therefore
the functor G:D → C extends to a functor SG:SD → SC by Proposition 8.1.

From the adjunction F ⊣ G, there is an isomorphism of hom sets

ϕX,Y :C(X,GY ) ∼= D(FX,Y ):ϕ−1
X,Y ,

natural in X and Y . We must show that this yields an isomorphism

ψX,Y:SC(X,SGY) ∼= SD(SFX,Y):ψ−1
X,Y

natural in X = (X,SX , lX , rX) and Y = (Y, SY , lY , rY ). In particular, we shall show that
defining

ψX,Y(f) = ϕX,Y (f) and ψ−1
X,Y(g) = ϕ−1

X,Y (g)

for any morphism f :X → SGY in SC and any morphism g:SFX → Y in SD is such an
isomorphism.

First, suppose that there is a morphism f :X → SGY in SC. We shall show that
ϕX,Y (f):SFX→ Y is a morphism in SD. There is a morphism h:SX → SY such that the
following diagram commutes because f is a map preserving symmetry.

X

f

��

SX
lXoo rX //

h
��

X

f

��
GY GSYGlY

oo
GrY

// GY
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We now apply the functor F and add morphisms to represent the counit ε:FG ⇒ idC of
the adjunction F ⊣ G. The lower squares commute by the naturality of ε.

FX

Ff

��

FSX
FlXoo FrX //

Fh
��

X

Ff

��
FGY

εY

��

FGSYFGlY
oo

FGrY
//

εSY

��

FY

εY

��
Y SYlY

oo
rY

// Y

Due to the relationship between ϕ and ε from the adjunction F ⊣ G, we have

εY ◦ Ff = ϕX,Y (f) and εSY
◦ Fh = ϕSX ,SY

(h).

If follows that if f :X→ SGY is a morphism in SC, then ϕX,Y (f):SFX→ Y is a morphism
in SD, as required.

We can show, dually, that if g:SFX→ G is a morphism in SD then ϕ−1
X,Y (g):X→ SGY

is a morphism in SD. It follows immediately from ϕX,Y being an isomorphism that ψX,Y

is an isomorphism. Naturality of ψX,Y in X and Y is a straightforward consequence of
the naturality of ϕX,Y in X and Y .

8.2 Nets with symmetry

Applying symmetry to nets requires two key ingredients: the ability to take pullbacks as
described above and open maps of nets with respect to some path category. In Appendix
B, we consider pullbacks within categories of nets. We show that the categories Occ♯ and
PT♯ have pullbacks, as do their subcategories Occ♯f and PT♯

f — the categories restricted
to folding morphisms. We show in Theorem B.2 that although the category Gen♯ does
not have pullbacks, its subcategory Gen♯f does. The following key lemma informs that

pullbacks in Gen♯f are weak pullbacks in Gen♯, which led to the adaptation of the abstract
definition of symmetry above from that presented in [Win07a] to accommodate the failure
of Gen♯ to have pullbacks. (The definition of weak pullbacks is repeated in the footnote
on page 157)

Lemma 8.2.1 (Lemma B.2.8 in Appendix B). The solid inclusion functors in the following
diagram preserve pullbacks and the dashed inclusion functor preserves weak pullbacks.

Occ♯f
� � //

� _

��

PT♯
f
� � //

� _

��

Gen♯f� _

���
�
�

Occ♯ PT♯ Gen♯

With the understanding of pullbacks of nets and open maps with respect to causal
nets as objects, we can apply the framework for defining symmetry described in Section
8.1 to obtain categories of nets enriched with symmetry.

Recall that a model equipped with symmetry is represented by three categories,

P ⊆ C0 ⊆ C,

where P is the path category, the category C0 has pullbacks that are preserved as weak
pullbacks in C. As stated above, the category of general nets and all morphisms does not

166



have pullbacks. We therefore use the category of general nets with folding morphisms
between them, Gen♯f , for the category C0. For general nets, a reasonable choice for the
paths P would be Causf , taking path objects to be causal nets and expressing path
extensions by foldings between them. The categories

Causf ⊆ Gen♯f ⊆ Gen♯

meet the requirements needed to construct S
Causf⊆Gen

♯
f
Gen♯, so adjoining symmetry to

general nets. The particular requirements that Gen♯f should have pullbacks and that they
are preserved as weak pullbacks in Gen♯ are met according to Theorem B.2 and Lemma
B.2.8, respectively.

The requirements are also met by

Causf ⊆ Occ♯f ⊆ Occ♯

yielding S
Causf⊆Occ

♯
f
Occ♯. In particular, the category Occ♯f has pullbacks due to Theorem

B.2 and Lemma B.2.6.
However, since the category Occ♯ has pullbacks of all morphisms, an ‘alternative’ cate-

gory of occurrence nets with symmetry can be defined by relaxing the requirement that all
symmetries should be formed from folding maps. This yields the category S

Caus⊆Occ
♯Occ♯

obtained through the inclusions

Caus ⊆ Occ♯ ⊆ Occ♯.

In fact, these turn out to be exactly the same categories.

Lemma 8.2.2.

S
Caus⊆Occ

♯Occ♯ = S
Causf⊆Occ

♯
f
Occ♯

Proof. The only non-trivial parts of the proof are to show that any Caus-open morphism
f :O → O′ in Occ♯ is a folding morphism and that any folding morphism is Caus-open in
Occ♯ iff it is Causf -open in Occ♯f .

Let f :O → O′ be any Caus-open morphism in Occ♯. It is Caus-open in Gen♯

according to Lemma D.0.1. Therefore, according to Lemma D.0.2, the morphism f is a
folding map. We shall now show that the folding morphism f is Caus-open in Occ♯ iff it
is Causf -open in Occ♯f .

(⇒): Assume that f is Caus-open in Occ♯. By Lemma D.0.1 it is Caus-open in Gen♯.

Since it is a folding morphism, by Lemma D.0.3 it is Causf -open in Gen♯f . Just like

in Lemma D.0.1, because Occ♯f is a full subcategory of Gen♯f , a folding morphism

f :O → O′ in Occ♯f is Causf -open iff it is Causf -open in Gen♯f . It follows that f is

Causf -open in Occ♯f , as required.

(⇐): Symmetric.

We therefore just write SOcc♯ for the category of occurrence nets with symmetry.
The same convenient property does not hold for P/T nets: we obtain the distinct

categories with symmetry S
Caus⊆PT

♯PT♯ and S
Causf⊆PT

♯
f
PT♯ arising from the respective

inclusions

Caus ⊆ PT♯ ⊆ PT♯ and Causf ⊆ PT♯
f ⊆ PT♯.
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(b1, b2)(b2, b2) (b2, b1)(b1, b1)

b2 b1b1 b2

rl

Figure 8.1: Symmetry in a net with two places

This is due to there being open maps between P/T nets that are not foldings — though
as we see in Lemma D.0.2, the only way in which a Caus-open morphism in PT♯ can
fail to be a folding morphism is through it being non-functional on a condition that never
becomes marked.

There are other possibilities for defining symmetry on general nets, for example restrict-
ing paths to be the causal nets associated with with finite elementary event structures.
They would, however, lead to less refined equivalences up to symmetry, leading to a weaker
cofreeness-up-to-symmetry characterization of the unfolding.

8.3 Symmetry in unfolding

In Section 7.5, we showed how a general Petri net may be unfolded to form an occurrence
net. This was shown not to yield a coreflection due to the mediating morphism not
necessarily being unique, though it was observed that that uniqueness might be obtained
by regarding the net up to the evident symmetry between paths in the unfolding. This led
us to define a category of general nets with symmetry. To give an example of the forms of
symmetry that can be expressed, consider the simple net with two places, b1 and b2, both
initially marked once. Suppose that we wish to express that the two places are symmetric;
for instance, the net might be thought of as the unfolding of the general net with a single
place initially marked twice. The span to express that symmetry is presented in Figure
8.1. Without the extension of the definition of net to allow multiple initial markings, this
simple symmetry would be inexpressible. This accompanies the fact that the category
of singly-marked general nets (even when restricted to folding morphisms) does not have
pullbacks.

In general, the symmetry in an unfolding is obtained by unfolding the kernel of the
morphism εG:U(G)→ G, which is the pullback of εG against itself in Gen♯f :

U(S)
εS // S

_�
r //

l
��

U(G)

εG

��
U(G) εG

// G

To see that (U(G),U(S), l ◦ εS , r ◦ εS) is a symmetry in SOcc♯, we must show that the
morphisms l ◦ εS and r ◦ εS are Caus-open and form a pseudo equivalence.

Proposition 8.3. The tuple (U(G),U(S), l◦εS , r◦εS) is an occurrence net with symmetry,
i.e. an object in SOcc♯.

Proof. (Here we take SOcc♯ to be S
Causf⊆Occ

♯
f
Occ♯.) For any general net G′, the mor-

phism εG′ :U(G)→ G is readily seen using Theorem D.1 to be a Causf -open morphism in
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Gen♯f . The pullback of open morphisms is open [JNW95], so the morphisms l and r are

both Causf -open in Gen♯f . Open morphisms compose to form open morphisms [JNW95],

so the maps εS ◦ l and εS ◦ r are also both Causf -open in Gen♯f . Hence, since Occ♯f is

a full subcategory of Gen♯f , by an argument similar to that in the proof of Lemma D.0.1

they are Causf -open in Occ♯f .
A standard diagrammatic argument, generalized in Proposition 8.5 shows that that

the morphisms l, r:U(S)→ U(G) form a pseudo-equivalence.

With the symmetry on U(G) at our disposal, we obtain the equivalence relation ∼ on
morphisms from any occurrence net to U(G). This is used to extend Theorem 7.15 to
obtain cofreeness ‘up to symmetry’.

Theorem 8.4. Let G be a general Petri net and O be an occurrence net. For any mor-
phism (π, γ):O → G in Gen♯, there is a morphism (θ, α):O → U(G) in Gen♯ such that

U(G)
εG // G

O

(θ,α)

OO

(π,γ)

<<zzzzzzzzz

commutes, i.e. εG ◦ (θ, α) = (π, γ). Furthermore, any morphism (θ′, α′):O → U(G) in
Gen♯ such that εG ◦ (θ′, α′) = (π, γ) satisfies (θ, α) ∼ (θ′, α′) with respect to the symmetry
(U(S), l ◦ εS , r ◦ εS) on U(G) defined above (and the identity symmetry on O).

Proof. The morphism (θ, α) exists according to Theorem 7.15. Suppose that (θ′, α′) is a
morphism as described. We wish to show that (θ, α) ∼ (θ′, α′) with respect to the given
symmetry. This amounts to showing that there exists a morphism h:O → U(S) such that
the following diagram commutes:

O
(θ,α)

{{vvvvvvvvv
(θ′,α′)

##H
HHHHHHHH

h
��

U(G) U(S)
l◦εS

oo
r◦εS

// U(G)

Recall that S, l, r is a pullback in Gen♯f of εG against itself. It is therefore a weak

pullback in Gen♯ since the inclusion Gen♯f →֒ Gen♯ preserves pullbacks as weak pullbacks.
Since

εG ◦ (θ, α) = (π, γ) = εG ◦ (θ′, α′)

by assumption, there exists a morphism k:O → S in Gen♯ such that the following diagram
commutes:

O

(θ,α)





k
�� (θ′,α′)

��

S
l

||zz
zz

zz
zz

r

""D
DD

DD
DD

D

U(G)

εG
""D

DD
DD

DD
D

U(G)

εG
||zz

zz
zz

zz

G
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By Theorem 7.15, there exists a morphism h:O → U(S) such that the following diagram
commutes, i.e. k = εS ◦ h:

U(S)
εS // S

O

h

OO

k

=={{{{{{{{{

We therefore have

(θ, α) = l ◦ k = l ◦ εS ◦ h
and (θ′, α′) = r ◦ k = r ◦ εS ◦ h,

as required.

8.4 A coreflection up to symmetry

We now show how the results of the last section are part of a more general coreflection
from occurrence nets with symmetry to general nets with symmetry, culminating in the
key result, Theorem 8.6. In the last section, we showed how to unfold a general net to an
occurrence net with symmetry. For the coreflection, we need to extend this construction
to unfold general nets themselves with symmetry.

To show that the ‘inclusion’ I:SOcc♯ → S
Causf⊆Gen

♯
f
Gen♯ taking an occurrence net

with symmetry (O,S, l, r) to a general net with symmetry is a functor, it is necessary
to show that the transitivity property holds of the symmetry in SGen♯. For this it is
important that pullbacks are not disturbed in moving from Occ♯f to the larger category

Gen♯f , as is assured by Lemma B.2.8.

Lemma 8.4.1. The inclusion I:SOcc♯ → S
Causf⊆Gen

♯
f
Gen♯ is a functor.

Proof. Let (O,S, l, r) be an object in SOcc♯. By Lemma 8.2.2, the morphisms l, r:S → O

are Causf -open in Occ♯f . Since Occ♯f is a full subcategory of Gen♯f , it can be shown in

the same way as Lemma D.0.1 that l and r are Causf -open in Gen♯f .
Reflexivity and symmetry of the span (O,S, l, r) in Gen♯ is an immediate consequence

of its reflexivity and symmetry in Occ♯. Transitivity in Gen♯ relies on the fact that the
inclusion Occ♯f →֒ Gen♯f →֒ Gen♯ preserves weak pullbacks as a consequence of Occ♯f →֒

Gen♯f preserving pullbacks and Gen♯f →֒ Gen♯ preserving weak pullbacks.
Any morphism in Occ♯ is clearly a morphism in Gen♯, and it follows immediately from

the definition that any map preserving symmetry in Occ♯ is a map preserving symmetry
in Gen♯.

We now have a functor I:SOcc♯ → SGen♯, respecting ∼, regarding an occurrence net
with symmetry (O,S, l, r) itself directly as a general net with symmetry.

It remains for us to define the unfolding operation on objects of the category of gen-
eral nets with symmetry. Its extension to a pseudo-functor will follow from the biad-
junction. Let (G,SG, l, r) be a general net with symmetry. Let εG:U(G) → G be the
folding morphism given earlier in Theorem 7.12. It is open by Theorem D.1. The gen-
eral net (G,SG, l, r) is ‘unfolded’ to the occurrence net with symmetry U(G,SG, l, r) =
(U(G), S0, l0, r0); its symmetry, S0 , U(S′), l0 , l′ ◦ εS′ and r0 , r′ ◦ εS′ , is given by un-
folding the inverse image of the symmetry in G along the open morphism εG:U(G) → G:
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U(S′)

εS′

��
S′

?�
p′zzvvvvvvvv

=
l′

��

r′

=

��

q′ $$H
HHHHHHH

P1
?�

p1{{www
www

ww

q1 ##H
HH

HH
HH

H P2
?�

p2{{vv
vvv

vv
v

q2 ##G
GGG

GGG
G

U(G)

εG ##H
HH

HH
HHH

SG

r
$$H

HHHHHHH

lzzvvvvvvvv
U(G)

εG{{vvv
vv

vvv

G G

The pullbacks are in Gen♯f . This diagram makes clear that εG is a morphism preserving
symmetry.

Proposition 8.5. Let G be an object in S
Causf⊆Gen

♯
f
Gen♯, i.e. a general net with sym-

metry. Then U(G) as defined above is an object in SOcc♯, i.e. an occurrence net with
symmetry.

Proof. We shall show that l′ ◦ εS and r′ ◦ εS are a pair of Causf -open morphisms in Occ♯f
that form a pseudo-equivalence in Occ♯.

The morphism εG is Causf -open in Gen♯f , as is the morphism εS′ . Pullbacks of open
morphisms are open, so the morphisms l′ and r′ are both Causf -open. Open morphisms
compose to form open morphisms, so l′◦εS and r′◦εS are both Causf -open in Gen♯f . Since

Occ♯f is a full subcategory of Gen♯f , they are also Causf -open in Occ♯f by an analogue of
Lemma D.0.1.

In Lemma 8.1.1, it is shown that there are morphisms

ρ:U(G)→ S′ σ:S′ → S′ τ :Q→ S′

respectively demonstrating the reflexivity, symmetry and transitivity in Gen♯ of the sym-
metry (S′, l′, r′) on U(G), the inverse image of the symmetry on G under the morphism
εG. The first two give rise to morphisms demonstrating reflexivity and symmetry of the
symmetry U(S), εS ◦ l

′, εS ◦r
′ by a straightforward argument using the cofreeness property

of the unfolding U(S) in Theorem 7.15. We now consider transitivity.
The morphism τ :Q→ S′, for some weak pullback Q, p, q in Gen♯ of r′ against l′, makes

the following diagram commute:

Q
p

||yy
yy

yy
yy

y
τ

��

q

""E
EE

EE
EE

EE

S′

l′

||zz
zz

zz
zz

r′
DDD

D

""D
DD

S′

l′
llllllll

vvlllllll r′
RRRRRRRR

((RRRRRRR

S′

l′
zzz

z

||zz
z

r′

""D
DD

DD
DD

D

U(G) U(G) U(G)

Let Q′, p′, q′ be the pullback in Occ♯f of l′◦εS′ :U(S′)→ U(G) against r′◦εS′ :U(S′)→ U(G).

The inclusion Occ♯f →֒ Occ♯ preserves (weak) pullbacks by Lemma B.2.8, so Q′ is a weak
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pullback in Occ♯ of l′ ◦εS′ against r′ ◦εS′ . Using the assumption that Q is a weak pullback
in Gen♯, there is a morphism h:Q′ → Q such that the following diagram commutes:

Q′

p′

{{vvvvvvvvv

h
��

q′

##H
HHHHHHHH

U(S′)

εS′

��

Q
p

zzvvvvvvvvvv
q

$$H
HHHHHHHHH U(S′)

εS′

��
S′

l′ $$H
HHHHHHHH S′

r′zzvvvvvvvvv

U(G)

Applying the cofreeness property as stated in Theorem 7.15 for the unfolding of S′, there
is a morphism τ ′:Q′ → U(S′) in Gen♯ such that the following diagram commutes:

U(S′)
εS′ // S′

Q′

τ◦h

==zzzzzzzzz
τ ′

OO

Since Occ♯ is a full subcategory of Gen♯, the morphism τ ′ is a morphism in Occ♯. It is
now straightforward to show that the following diagram commutes:

Q′

p′

{{vvvvvvvvv

τ ′

��

q′

##H
HHHHHHHH

U(S′)
l′◦εS′

{{www
ww

ww
ww

r′◦εS′

HHH

##H
HH

U(S′)

l′◦εS′
kkkkkkk

uukkkkkkk r′◦εS′

SSSSSSS

))SSSSSSS

U(S′)

l′◦εS′
vvv

{{vvv
r′◦εS′

##G
GG

GG
GG

GG

U(G) U(G) U(G)

Hence we have demonstrated that the symmetry induced on U(G) by the symmetry on G
is transitive.

Now that we have the inclusion I:SGen♯ → SOcc♯ and the operation of unfolding a
general net with symmetry, we are able to improve Theorem 7.15 to give a ‘cofreeness up
to symmetry’ result. This key result shows how regarding the unfolding of general nets
up to their natural symmetry allows a form of coreflection to be obtained.

Theorem 8.6. Let G = (G,SG, lG, rG) be a general net with symmetry and O = (O,SO, lO, rO)
be an occurrence net with symmetry. For any (π, γ):O → G in SGen♯, there is a mor-
phism (θ, α):O→ U(G) in SGen♯ such that the following diagram commutes:

U(G)
εG // G

O

(π,γ)

<<yyyyyyyyy
(θ,α)

OO

Furthermore, (θ, α) is unique up to symmetry: any (θ′, α′):O → U(G) such that εG ◦
(θ′, α′) ∼ (π, γ) satisfies (θ, α) ∼ (θ′, α′).

172



Proof. By Theorem 7.15, there is a morphism (θ, α):O → G such that the following dia-
gram commutes:

U(G)
εG // G

O

(π,γ)

<<zzzzzzzzz
(θ,α)

OO

We begin by showing that the morphism (θ, α) is in SGen♯, i.e. that (θ, α) is a map
preserving symmetry. We know that (π, γ):O → G is a map preserving symmetry, so there
is a morphism h:SO → SG such that the following diagram commutes:

O

(θ,α)
��

SO
lOoo rO //

h

��

O

(θ,α)
��

U(G)

εG

��

U(G)

εG

��
G SGlG

oo
rG

// G

Recall from the definition of the pullbacks in Gen♯f used to define the symmetry on

(U(G),U(S′), l′ ◦ εS′ , r′ ◦ εS′) on page 171 that P1 is a pullback in Gen♯f of εG against
lG. It is a weak pullback in Gen♯. It follows that there exists a morphism h1:SO → P1 in
Gen♯ such that the following diagram commutes:

SO

lO||xx
xx

xx
xx

x
h1

�� h

��

O

(θ,α)
��

P1

p1||yy
yy

yy
yy

q1   B
BB

BB
BB

B

U(G)

εG
""F

FFFFFFF
SG

lG}}||
||

||
||

G

Similarly, there exists a morphism h2:SO → P2 in Gen♯ such that

(θ, α) ◦ rO = q2 ◦ h2 and h = p2 ◦ h2.

Note that
q1 ◦ h1 = h = p2 ◦ h2.

Since S′ is a weak pullback in Gen♯, there exists a morphism h′:SO → S′ such that the
following diagram commutes:

SO

h1

��

h′

�� h2

��

S′

p′}}||
||

||
||

q′ !!B
BB

BB
BB

B

P1

q1   B
BB

BB
BB

B P2

p2~~||
||

||
||

SG
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From the cofreeness property as presented in Theorem 7.15 for S′, there is a morphism
k:S0 → U(S′) such that the following diagram commutes:

U(S′)
εS′ // S′

S0

h′

<<zzzzzzzzz
k

OO

It is now a straightforward calculation to show that k is a map making the two squares in
the following diagram commute, and therefore (θ, α) is a map preserving symmetry.

O

(θ,α)
��

SO
lOoo rO //

k
��

O

(θ,α)
��

U(G) U(S′)
l′◦εS′

oo
r′◦εS′

// U(G)

We now show that any map preserving symmetry (θ′, α′):O→ U(G) such that (π, γ) ∼
εG ◦ (θ′, α′) satisfies (θ, α) ∼ (θ′, α′).

Since we have (π, γ) = εG ◦ (θ, α) we must have (π, γ) ∼ εG ◦ (θ, α) since ∼ is reflexive.
By assumption, we also have (π, γ) ∼ εG ◦ (θ′, α′), so there exist morphisms h, h′:O → SG
such that the following two diagrams commute:

O
εG◦(θ,α)

~~}}
}}

}}
}}

h
��

(π,γ)

  A
AA

AA
AA

A

G SGlG
oo

rG
// G

O
εG◦(θ′,α′)

~~}}
}}

}}
}}

h′

��

(π,γ)

  A
AA

AA
AA

A

G SGrG
oo

lG
// G

The symmetry (G,SG, l, r) is required to be transitive, so there exists a morphism k:O →
Q and morphism τ :Q → SG such that the following diagram commutes, recalling that
Q, p0, q0 is a weak pullback in Gen♯ of r against l:

O

h

��

k
�� h′

��

Q
p0

}}||
||

||
||

τ

��

q0

!!B
BB

BB
BB

B

SG
lG

~~}}
}}

}}
}}

rG
CC

C

!!C
CCC

SG

lG
mmmmmmm

vvmmmmmmm rG
QQQQQQQ

((QQQQQQQ

SG

lG
{{{

}}{{
{

rG

  A
AA

AA
AA

A

G G G

Let P1 and P2 be the pullbacks in Gen♯f drawn in the definition of the symmetry U(S′)
on page 171. They are weak pullbacks in Gen♯, so there exist morphisms x1:O → P1 and
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x2:O → P2 such that the following diagrams commute:

O

(θ,α)





x1

�� τ◦k

��

P1

p1

||yy
yy

yy
yy q1

  A
AA

AA
AA

A

U(G)

εG
""E

EEEEEE
E

SG

l~~||
||

||
||

G

O

(θ′,α′)

��

x2

��τ◦k

��

P2

p2

~~}}
}}

}}
}} q2

""E
EE

EE
EE

E

SG

r
  B

BB
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BB
B U(G)

εG
||yyy

yyyy
y

G

Since S′, p′, q′ is a pullback in Gen♯f of q1 against p2 and therefore a weak pullback in
Gen♯, there is a morphism y:O → S′ such that the following diagram commutes:

O

x1

��

y

�� x2

��

S′

p′

}}||
||

||
|| q′

!!B
BB

BB
BB

B

P1

q1   B
BB

BB
BB

B P2

p2~~||
||

||
||

SG

From the ‘cofreeness’ result, Theorem 7.15, there is a map y′:O → U(S′) such that the
following diagram commutes:

U(S′)
εS′ // S′

O

y′

OO

y

<<yyyyyyyyy

From commutation of the diagrams above, we see that

l′ ◦ εS′ ◦ y′ = l′ ◦ y = p1 ◦ p
′ ◦ y = p1 ◦ x1 = (θ, α)

r′ ◦ εS′ ◦ y′ = r′ ◦ y = q2 ◦ q
′ ◦ y = q2 ◦ x2 = (θ′, α′),

or, diagrammatically, that the following diagram commutes:

O
(θ,α)

||zz
zz

zz
zz (θ′,α′)

""D
DD

DD
DD

D

y′

��
U(G) S

l′◦εS′

oo
r′◦εS′

// U(G)

It follows immediately that (θ, α) ∼ (θ′, α′), as required.

Technically, we have a biadjunction from the category of occurrence nets with symme-
try SOcc♯ to the category of general nets with symmetry SGen♯ with I left biadjoint to U
(which extends to a pseudo-functor). Its counit is ε and its unit is a natural isomorphism
O ∼= U(O). In this sense, we have established a coreflection from SOcc♯ to SGen♯ up to
symmetry [Pow98].
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8.5 Symmetry and P/T nets

Now that we have shown the main result, giving a ‘cofreeness up to symmetry’ result to
characterize the occurrence net unfolding of general nets, we begin to complete the picture
by giving adjunctions between other categories of nets with symmetry. The key result is
Theorem 8.9, in which a coreflection up to symmetry between P/T nets and general nets
is shown.

Earlier, two categories of P/T nets with symmetry were highlighted:

S
Caus⊆PT

♯PT♯ and S
Causf⊆PT

♯
f
PT♯

The category on the left is simpler and allows more symmetries to be expressed, since a
symmetry need not be a span of folding morphisms (that are open and form a pseudo
equivalence) as they must be to give a symmetry in the category on the right. The extent
of this distinction is, however, limited due to the observation in Lemma D.0.2 that all
Caus-open morphisms in PT♯ are foldings apart from on places that can never become
marked or on events that can never occur.

Coreflections with occurrence nets

We first show how the coreflection

Occ♯ ⊥

*

 ''

PT♯

U

gg

between occurrence nets and P/T nets extends to give coreflections between the categories
enriched with symmetry

SOcc♯ ⊥

)
	 ((

SPT♯

SU

hh ,

where SPT♯ is either one of the categories of P/T nets with symmetry.
Recall that

S
Causf⊆Occ

♯
f
Occ♯ = S

Caus⊆Occ
♯Occ♯ = SOcc♯.

To demonstrate the coreflection where SPT♯ = S
Caus⊆PT

♯PT♯, we note that the inclusion

Occ♯ →֒ PT♯ and the functor U :PT♯ → Occ♯ both preserve Caus-openness. This follows
from the earlier coreflection and a general result about open maps being preserved through
coreflections [JNW95, Lemma 6]. We also note that the functor U :PT♯ → Occ♯ preserves
weak pullbacks of all morphisms as a consequence of it being a right adjoint. All that
remains before Proposition 8.2 can be applied to obtain the required coreflection between
the categories with symmetry is to show that the inclusion Occ♯ →֒ PT♯ preserves weak
pullbacks of morphisms that are Caus-open in in Occ♯. This is a consequence of all
Caus-open morphisms in Occ♯ being folding morphisms (Lemmas D.0.1 and D.0.2) and

the preservation of pullbacks through the inclusion Occ♯f →֒ PT♯ shown in Lemma B.2.8.
Note that this is sufficient to show that the inclusion preserves weak pullbacks of all Caus-
open morphisms in Occ♯ according to a general result, noted at the start of the proof of
Lemma B.2.7, that a functor from a category with pullbacks preserves weak pullbacks iff
it preserves pullbacks as weak pullbacks.

Theorem 8.7. The unfolding functor

SU :S
Caus⊆PT

♯PT♯ → S
Caus⊆Occ

♯Occ♯
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(a, a)

(a′, a′)

(a′, a)

(b, b) (c, c)

(c′, c′)

(c, c′)

(c′, c)

(a, a′) (b, b)

l r

b c

c′a′

a ba

a′

c

c′

Figure 8.2: A symmetry (N,S, l, r) with (folding) morphisms l(x, y) = x and r(x, y) = y.

is right adjoint to the inclusion

S
Caus⊆Occ

♯Occ♯ →֒ S
Caus⊆PT

♯PT♯.

Furthermore, the adjunction is a coreflection.

We now consider the coreflection where symmetries are restricted to being spans of
folding maps, i.e. where SPT♯ = S

Causf⊆PT
♯
f
PT♯. As noted following Theorem 7.15, the

functor U restricts to yield a coreflection

Occ♯f ⊥

(
� ))

PT♯
f .

U

ii

As before, it follows that both the inclusion Occ♯ →֒ PT♯ preserves Causf -open maps in
Occ♯f and the functor U :PT♯ → Occ♯ preserves Causf -open maps in PT♯

f according to
Lemma 6 in [JNW95]. Since U is a right adjoint, it preserves pullbacks (and hence weak

pullbacks) of all morphisms in PT♯
f . Any pullback in Occ♯f is a pullback in PT♯

f according

to Lemma B.2.8, so the inclusion Occ♯ →֒ PT♯ preserves weak pullbacks in Occ♯f in the
way required to apply Proposition 8.2. Applying this proposition, we obtain the desired
coreflection:

Theorem 8.8. The unfolding functor

SU :S
Causf⊆PT

♯
f
PT♯ → S

Causf⊆Occ
♯
f
Occ♯

is right adjoint to the inclusion

S
Causf⊆Occ

♯
f
Occ♯ →֒ S

Causf⊆PT
♯
f
PT♯.

Furthermore, the adjunction is a coreflection.

Joint monicity

The definition of symmetry in Section 8.1 used to define the categories with symmetry here
is different from that in [Win07a, Win07b] since it requires a symmetry to be a span that
is a pseudo equivalence rather than an equivalence. As such, the maps l and r of an object
with symmetry need not be jointly monic according to the definition here. In Figure 8.2,
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we give a symmetry that happens to be jointly monic in Occ♯. When the morphisms l and
r are considered in the category PT♯ (or in Safe♯), however, the morphisms are not jointly
monic. With the restriction to jointly monic maps, a symmetry of occurrence nets would
not be a symmetry of P/T nets by virtue of the fact that any occurrence net is a P/T net.
Let the symmetry in Figure 8.2 be denoted (N,S, l, r). In fact, it can be seen that there
is no corresponding jointly monic symmetry in the category PT♯ since the image of the
net S in N × N , taking the product in PT♯, has more behaviour than S. Consequently,
we would fail to obtain the above coreflections if we were to restrict attention to jointly
monic maps.

Unfolding general nets to P/T nets

We now show how the biadjunction between occurrence nets with symmetry and general
nets with symmetry factors through the category of P/T nets with symmetry.

Let G = (PG, TG, P reG, PostG,MG) be a general net. The P/T net unfolding of a
general net W(G) = (P, T, F,M) can be formed that has copies of places in PG to account
for multiplicities. Extending the definition given earlier for P/T nets, we can say that a
place p ∈ PG is isolated if M [p] = 0 for all M ∈ MG and Pre[t, p] = Post[t, p] = 0 for
all transitions t ∈ TG. The P/T net W(G) with a folding morphism (η, β):W(G) → G is
defined as follows:

P = {(p, i) | p ∈ P & p not isolated in G & i ∈ N}
T = {(A, t,B) | A,B ⊆ P & t ∈ T

& β · A = Pre · t & β · B = Post · t}
(p, i) F (A, t,B) ⇐⇒ (p, i) ∈ A
(A, t,B) F (p, i) ⇐⇒ (p, i) ∈ B

M = {M |M ⊆ P & β ·M ∈MG},

where
β(p, i) = p

η(A, t,B) = t

It follows from this definition that W(G) contains no isolated conditions and is therefore
a P/T net.

We shall write ε′G for the morphism (η, β):W(G)→ G to distinguish it from the counit
of the adjunction [Mac71] arising from the occurrence net unfolding εG:U(G)→ G.

Theorem 8.9. Let G and W(G) be as defined above. For any any P/T net N and any
morphism (π, γ):N → G in Gen♯, there is a morphism (θ, α):N → W(G) such that the
following diagram commutes:

W(G)
(η,β)=ε′G // G

N

(π,γ)

77ooooooooooooooo

(θ,α)

OO

Proof. Let N = (PN , TN , FN ,MN ). For any p′ ∈ PG, there exists a set Ap′ ⊆ N and a
bijection

θp′ :Ap′ ∼= {(p, i) | p ∈ PN & 0 ≤ i < γ[p, p′]}.

This relies on γ being countably injective. The morphism (θ, α), which will be a relation
on conditions rather than a multirelation, is defined as follows:

α(p, (p′, j)) ⇐⇒ j ∈ Ap′ & ∃i : θp′(j) = (p, i)

θ(t) =

{

∗ if π(t) = ∗
(α · •t, π(t), α · t•) otherwise
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It is straightforward to check that this is indeed a morphism and that the diagram
commutes.

From Proposition D.2 in Appendix D, we can check that the morphism ε′G is Causf -

open in Gen♯f by checking that the morphism εW(G) ◦ ε
′
G:U(W(G)) → G is Causf -open

using the ‘transition lifting’ property identified in Theorem D.1.

Lemma 8.5.1. The morphism ε′G:W(G)→ G is Causf-open in Gen♯f .

Proof. We check that the morphism εW(G) ◦ ε
′
G:U(W(G)) → G is Causf -open using the

‘transition lifting’ property identified in Theorem D.1.
Let G = (P, T, Pre, Post,M). Let εW(G) = (η, β) and let ε′G = (η′, β′). It is easy to

verify that for any marking M ∈M there is an initial marking M ′ of U(W(G)) such that
β′ · β ·M ′ = M .

Let A be a subset of conditions of U(W(G)) such that co A and β′·β·A = Pre·t for some
transition t. Let B = {(p, i) | p ∈ P & 0 ≤ i < Post[t, p]}. We have β′ ·B = Post·t, so from
the definition ofW(G) it is the case that (β·A, t,B) is a transition ofW(G). From Theorem
7.12, the event (A, (β·A, t,B)) is an event in U(W(G)), and clearly η′(η(A, (β·A, t,B))) = t.
The transition lifting property is therefore satisfied.

As we did for the unfolding to occurrence nets, we can form a symmetry on W(G) by

taking the kernel of the morphism ε′G in the category Gen♯f :

S
_�

r //

l
��

W(G)

ε′G
��

W(G)
ε′G

// G

Note that the net S has to be a P/T net since l (or r) is a folding morphism into a P/T
net, so the construction of the symmetry is slightly simpler than that for occurrence nets
since there is no need to apply the functor W(S) to obtain an P/T net.

With the observation that ε′G is open, in the same manner as in Proposition 8.3 we can
show that (W(G), S, l, r) is a P/T net with symmetry, or more specifically an object in
S

Causf⊆PT
♯
f
PT♯. With this symmetry, we may conclude in an analogous way to Theorem

8.4 that the morphism (θ, α):N →W(G) described in Theorem 8.9 is the unique morphism
up to symmetry to make the diagram there commute. That is, any morphism (θ′, α′):N →
W(G) such that ε′G ◦ (θ′, α′) = (π, γ) also satisfies (θ, α) ∼ (θ′, α′) with respect to the
symmetry S, l, r on the P/T net unfolding W(G) described above.

A coreflection up to symmetry

Just as we did for occurrence nets, we can construct a coreflection between P/T nets with
symmetry and general nets with symmetry.

S
Causf⊆PT

♯
f
PT♯

⊥

#
� I ..

S
Causf⊆Gen

♯
f
Gen♯

SW
mm

,

In a directly analogous way to Lemma 8.4.1, we can show that the ‘inclusion’

I:S
Causf⊆PT

♯
f
PT♯ →֒ S

Causf⊆Gen
♯
f
Gen♯
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is a functor.
It remains for us to define the unfolding operation SW on objects of the category of

general nets with symmetry. Let G = (G,SG, lG, rG) be a general net with symmetry,
with W(G) and ε′G:W(G) → G as defined above. The general net with symmetry G is
unfolded to the P/T net with symmetry W(G) = (W(G), S′, l′, r′). Its symmetry is given
by the inverse image of the symmetry in G along the open morphism ε′G.
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yy
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H
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IIIII

II
SG
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EE
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yy
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ε′Gzzuuuuuu
uu

G G

The pullbacks are in Gen♯f and the diagram makes it clear that ε′G is a map preserving
symmetry. In a directly analogous way to Proposition 8.5, we can show that U(G) is a
P/T net with symmetry. The proof is slightly simpler since we do not need to apply the
operation W to S′ to obtain a P/T net as was the case for occurrence nets.

We can now give a ‘cofreeness up to symmetry’ result on the P/T net unfoldingW(G)
of a general net G.

Theorem 8.10. Let G = (G,SG, lG, rG) be a general net with symmetry and N =
(N,SN , lN , rN ) be a P/T net with symmetry. For any (π, γ):N→ G in S

Causf⊆Gen
♯
f
Gen♯,

there is a morphism (θ, α):N→W(G) in S
Causf⊆Gen

♯
f
PT♯ such that the following diagram

commutes:

W(G)
ε′G // G

N

(π,γ)

<<xxxxxxxxx
(θ,α)

OO

Furthermore, (θ, α) is unique up to symmetry: any (θ′, α′):N → W(G) such that ε′G ◦
(θ′, α′) ∼ (π, γ) satisfies (θ, α) ∼ (θ′, α′).

Proof. Similar to the proof of Theorem 8.6.

Technically, we have a biadjunction from the category of P/T nets with symmetry
S

Causf⊆PT
♯
f
PT♯ to the category of general nets with symmetry S

Causf⊆Gen
♯
f
Gen♯ with I

left biadjoint toW (which extends to a pseudo functor). The counit of the biadjunction is
ε. The inclusion I is easily seen to be full (and faithful). In this sense, we have established
a coreflection from SPT♯ to SGen♯ up to symmetry.

8.6 Multiply-marked nets and event structures

In defining symmetry on Petri nets, we have seen that it is necessary to introduce nets
with multiple initial markings. We begin to place these nets in the context of other models
for concurrency in this section. In particular, we shall establish a coreflection between a
category of multiply-marked occurrence nets and a category of event structures. This shall
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arise from the existing coreflection between event structures and singly-marked occurrence
nets. There are, however, difficulties in showing that this yields a coreflection between
event structures with symmetry and occurrence nets with symmetry, as shall be described
on page 189, due to the functor from event structures to occurrence nets nor preserving
pullbacks of open maps. Though this is disappointing, the results do connect nets with
multiple initial markings to event structures, and hence to other models for concurrency.

Categories of event structures

Event structures [NPW81, Win86] represent a computational process as a set of event
occurrences, recording how these event occurrences causally depend on each other. An
event structure also records how the occurrence of an event indicates that the process has
taken a particular branch. For the variant of event structure that we shall consider, called
prime event structures, this amounts to recording how event occurrences conflict with
each other.

Definition 8.6.1. A (prime) event structure is a 3-tuple

ES = (E,≤ #),

where

• E is the set of events (more precisely, event occurrences),

• ≤⊆ E × E is the partial order of causal dependency, and

• # ⊆ E × E is the irreflexive, symmetric binary relation of conflict.

An event structure must satisfy the following axioms:

1. each event causally depends on only finitely many other events, i.e. {e′ | e′ ≤ e} is
finite for all e ∈ E, and

2. if e1#e2 and e1 ≤ e
′
1 then e′1#e2.

The intuition is that if we have e ≤ e′ for two events e and e′, then the event e must
have occurred prior to any occurrence of e′. If we have e#e′, then the occurrence of e
precludes the occurrence of event e′ at any later stage. An event structure is said to be
elementary if the conflict relation is empty. The first axiom ensures that an event structure
only consists of event occurrences that can eventually take place, not relying on an infinite
number of prior event occurrences. The second axiom asserts that if the occurrence of an
event e2 precludes the occurrence of an event e1 upon which the event e′1 causally depends
then the event e2 precludes the occurrence of the event e′1. We say that two events e1 and
e2 are concurrent, written e1 co e2, if there is no causal dependency between them and
they do not conflict, i.e. e1 co e2 ⇐⇒ ¬(e1#e2 or e1 ≤ e2 or e2 ≤ e1). We write e < e′ if
e ≤ e′ but e 6= e′.

The computational states of an event structure, called its configurations, are repre-
sented by the sets of events that have occurred. Every configuration must be consistent
with the relations of conflict and causal dependency. Formally, x ⊆ E is a configuration
of an event structure (E,≤,#) if it satisfies the following two properties:

• Conflict-freedom: ∀e, e′ ∈ x : ¬(e#e′)

• Downwards-closure: ∀e, e′ ∈ E : e ≤ e′ & e′ ∈ x =⇒ e ∈ x.

181



We write D(ES) for the set of configurations of ES and write D0(ES) for the set of finite
configurations of ES. We write ⌈e⌉ for {e′ | e′ ≤ e}, the least configuration containing the
event e.

We now introduce morphisms of event structures. A morphism η:ES → ES′ is a
function from the events of ES to the events of ES′ that expresses how the behaviour
of ES embeds into ES′ in the sense that the function preserves the configurations of the
event structure and also preserves the atomicity of events.

Definition 8.6.2. Let ES = (E,≤,#) and ES′ = (E′,≤′,#′) be event structures. A
morphism η:ES → ES′ consists of a partial function η:E →∗ E

′ such that for all x ∈
D(ES):

ηx ∈ D(ES)
& ∀e, e′ ∈ x : (η(e), η(e′) defined & η(e) = η(e′)) =⇒ e = e′

A morphism is said to be synchronous if it is a total function on events.

In fact, it is only necessary to consider finite configurations x ∈ D0(ES) in the require-

ment on morphisms above. It is easy to see that if x
e
−։ x′ then ηx

η(e)
−։ ηx′.

We obtain a category ES of (prime) event structures with event structures as objects
and morphisms as described above. The identity morphism on an event structure is the
identity function on its underlying set of events, and composition of morphisms occurs as
composition of functions. We also obtain a category ESs of event structures with syn-
chronous morphisms between then. We write Elem for the category of elementary event
structures (event structures with no conflict) and Elems for the category of elementary
event structures with synchronous morphisms between them. Elementary event structures
can be thought of as paths of event structures and nets, and these categories will later be
used to define open maps of event structures and nets.

Before moving on to consider their relationship with Petri nets, we note that the cate-
gories ES and ESs have coproducts obtained by forming the disjoint union of their events
using injections ini, placing two events in conflict if they occur in different components of
the coproduct.

Proposition 8.11. Let (ES)i∈I be a family of event structures indexed by I, where ESi =
(Ei,≤i,#i). A coproduct of these event structures in the category ES and also in the
category ESs is the event structure

∑

i∈I ESi = (E,≤,#) with events E = {inie | i ∈
I & e ∈ Ei} and relations

inie ≤ inje
′ ⇐⇒ i = j & e ≤i e

′

inie # inje
′ ⇐⇒ i 6= j or (i = j & e#ie

′)

For each j ∈ I, the function inj :ESj →
∑

i∈I ESi defined as ini(e) = inie is the associated
injection into the coproduct.

Proof. The proof of the existence of binary coproducts in Theorem 2.2.9 of [Win86] extends
straightforwardly.

The category of event structures also has pullbacks. Their construction is given in
Appendix C of [Win07a], and is hard, being most easily seen in the category of stable
families, so we shall not present it here.
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Singly-marked occurrence nets: a coreflection

There is a coreflection that embeds the category of event structures into the category of
singly-marked occurrence nets.

ES ⊥

N
$$
Occ

E

dd

The functor N constructs an occurrence net from an event structure, saturating the events
of the event structure with as many conditions as possible that are consistent with the the
relations of causal dependency and conflict in the original event structure. The functor
E strips away the conditions from the occurrence net to reveal the underlying causal
dependency and conflict relations on events. Since we shall use the constructions in forming
a coreflection between event structures and multiply-marked occurrence nets, we now give
the constructions E and N concretely. The operation N was first defined in [NPW81] and
was shown to yield a coreflection in [Win86]. A coreflection can also be obtained via the
category of asynchronous transition systems as in [WN95].

The functor E :Occ→ ES

The functor E takes an occurrence net to an event structure by interpreting causal depen-
dency on the events of the occurrence net as the transitive closure of the flow relation and
obtaining the conflict relation as in Definition 7.1.4.

Definition 8.6.3. Let O = (B,E,F,M) be an occurrence net. The event structure E(O) =
(E,≤,#) has the same events as O, inherits conflict from O as in Definition 7.1.4 and
has e ≤ e′ iff they are related through the transitive closure of the flow relation, e F∗ e′.

It is an immediate consequence of the definitions that E(O) is an event structure for
any occurrence net O. Recalling that a morphism between occurrence nets O and O′ is a
pair (η, β) of which η:E →∗ E

′ is a partial function on their underlying sets of events, we
obtain the operation of the functor on morphisms.

Proposition 8.12. Let (η, β):O → O′ be a morphism in Occ. Then η:E(O) → E(O′) is
a morphism in ES.

Proof. Lemma 3.4.2 in [Win86]

It is straightforward to see that defining E(η, β) = η yields an operation that preserves
identities and composition, so E :Occ→ ES is a functor. This is easily seen to restrict to
categories with synchronous morphisms, so also E :Occs → ESs.

The functor N :ES→ Occ

We now consider how to form an occurrence net from an event structure. As stated
earlier, the essential idea is to form an occurrence net with the same events as the original
event structure, adding as many conditions as possible that are consistent with the causal
dependency and conflict relations of the original event structure. We extend the notation
e ≍ e′ as introduced in Proposition 7.4 to event structures to mean that either e = e′ or
e#e′.
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#
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≤≤

(a) Event
structure ES

(e1, ∅)

(e1, {e3})

(∅, {e1})

(e1, {e2})

(∅, {e2})

(e2, ∅)

(e1, {e2, e3})

(e3, ∅)

(∅, {e3})

(∅, ∅)

e1

e2

e3

(b) Occurrence net N (ES)

Figure 8.3: An event structure with its associated occurrence net

Definition 8.6.4. Let ES = (E,≤,#) be a event structure. The net N (ES) is defined
as (B,E,F, {M}), where

M = {(∅, A) | A ⊆ E & (∀a, a′ ∈ A : a ≍ a′)}
B = M ∪ {(e,A) | e ∈ E & A ⊆ E & (∀a, a′ ∈ A : a ≍ a′)

& (∀a ∈ A : e < a)}
e F (x,A) ⇐⇒ x = e (x,A) F e ⇐⇒ e ∈ A

The net is formed with conditions (e,A) indicating that all the events in A are in
conflict with each other and all causally depend on e. There are conditions (∅, A) to
indicate just that the events in A are in conflict with each other but might not causally
depend on some other event. The net formed is condition-extensional in the sense that
any two conditions with precisely the same beginning- and end-events are identified. The
occurrence net of an example event structure is presented in Figure 8.3.

Proposition 8.13. The net N (ES) is an occurrence net. Furthermore, for any event
structure ES we have E(N (ES)) = ES.

Proof. The first part of Theorem 3.4.11 in [Win86].

Freeness and morphisms

In order to obtain a coreflection, this time it is easier to show a freeness result. This is
sufficient, also, to show how the operation N extends to a functor [Mac71].

Proposition 8.14. For any event structure in ES, the net N (ES) and morphism idES:ES →
E(N (ES)) is free over ES with respect to E. That is, for any occurrence net O and mor-
phism η:ES → E(O) in ES there is a unique morphism (π, γ):N (ES) → O in Occ such
that the triangle in the following diagram commutes:

N (ES)

(π,γ)

��

E(N (ES))

E(π,γ)=π
��

ES
idESoo

η
vvmmmmmmmmmmmmmmm

O E(O)

Proof. The second part of Theorem 3.4.11 in [Win86].
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Hence the functor N :ES→ Occ is left-adjoint to the functor E :Occ→ ES. Since the
unit of the adjunction is a natural isomorphism (in this case, the identity), the adjunction
is a coreflection.

Proposition 8.14 also applies using the categories ESs and Occs in place of ES and
Occ, so a coreflection is obtained for the categories with synchronous morphisms. We shall
to use the same symbols to represent the functors N :ESs → Occs and E :Occs → ESs.

Multiply-marked occurrence nets: a coreflection

To obtain an adjunction when we allow multiple initial markings, it is necessary to re-
strict attention to categories of occurrence nets and event structures with synchronous
morphisms (morphisms that are total on events). We shall briefly mention how partiality
could be recovered at the end of this section.

We first define how a multiply-marked occurrence net forms an event structure, giving
rise to a functor E♯s :Occ♯s → ESs.

Let O be any occurrence net. The events of E♯s (O) are simply the events of O; causal
dependency of events is obtained from the flow relation F; and the conflict relation on
events is obtained from the conflict relation of O. Recall that the conflict relation on the
multiply-marked occurrence net places two events in conflict if they are given rise to by
different initial markings.

Definition 8.6.5. Let O = (B,E,F,M) be an occurrence net. The event structure E♯s (N)
is (E,≤,#) where e ≤ e′ iff e F∗ e′ and # is the conflict relation on the occurrence net O
in Definition 7.1.4.

The operation E♯s extends to a functor E♯s :Occ♯s → ESs by taking a morphism of
occurrence nets (η, β):O → O′ to

E♯s (η, β) = η.

It can be shown straightforwardly that η:E♯s (O)→ E♯s (O′) is a morphism of event structures

and that E♯s satisfies the requirements for being a functor.
The specification of a functor from event structures to occurrence nets with multiple

initial markings is a little trickier. The generalization of occurrence nets as introduced on
page 136 to allow them to possess more than one initial marking gives rise to two distinct
ways in which their events may be in conflict.

‘Early’ conflict Any event in an occurrence net can occur in a marking reachable from
precisely one initial marking. The events may conflict if they arise from distinct
initial markings.

‘Late’ conflict As with singly-marked occurrence nets, two events e1 and e2 might be in
conflict because they either share a precondition or there might exist events e′1 and
e′2 that share a common precondition for which e1 causally depends on e′1 and e2
causally depends on e′2.

Quite clearly, all conflict in singly-marked occurrence nets is late conflict. The old functor
N :ESs → Occs from event structures to singly-marked occurrence nets therefore uses late
conflict to represent conflict in the event structure.

In the category Occ♯s, early conflict embeds into late conflict. Consider, for instance,
the nets in Figure 8.4. There is a morphism preserving events from N to N ′. Late conflict,
however, does not embed into early conflict; there is no morphism preserving events from
N ′ to N .
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e1 e2

(a) Net N with early conflict

e1 e2

(b) Net N ′ with late con-
flict

Figure 8.4: Nets with early conflict and late conflict

The old functor N can be seen, as a result, not to be left adjoint to the new functor E♯s .
If it were, there would have to be a morphism preserving events of the form N (E♯s (N))→

N . It is easy to see that the event structures E♯s (N) and E♯s (N ′) are equal, comprising

two events e1 and e2 that are in conflict. The net N (E♯s (N)) is isomorphic to N ′, so
the required morphism does not exist. The problem is that, in constructing the net
N (E♯s (N)), early conflict is replaced by late conflict. We must therefore define a new

functor N ♯
s :ESs → Occ♯s that ensures that if two events of a net N are in early conflict

then they remain in early conflict in the net N ♯
s (E♯s (N)).

It is best to define the new functor N ♯
s :ESs → Occ♯s by considering families of event

structures. Families were defined in Section 7.2. In particular, we shall establish the
following chain of coreflections:

ESs ⊥

F
))

Fam(ESs)
P

hh ⊥

Fam(Ns)
**
Fam(Occs)

Fam(Es)

jj
≃

join
))
Occ♯s

decomp

ii

Recall that in Section 7.2, it was shown that the category of multiply-marked occurrence
nets is equivalent to the category of families of singly-marked occurrence nets. This ac-
counts for the rightmost adjunction.

The pictorially central adjunction is the lifting of the previous coreflection between
event structures and singly-marked occurrence nets to their categories of families. The
functors Fam(Ns) and Fam(Es) are obtained from Proposition C.1 in Appendix C, where
it is shown how functors lift to families. The coreflection then follows from Proposition
C.2.

We now turn to the leftmost adjunction in the picture, which is where the key result
of this section, Theorem 8.15, is required.

The right adjoint
∑

:Fam(ESs) → ESs takes a family of event structures (ESi)i∈I
to their coproduct

∑

i∈I ESi defined in Proposition 8.11. Let η:(ESi)i∈I → (ES′
j)j∈J in

Fam(ESs) be a morphism in Fam(ESs), where

η = (η̂:I → J, (ηi:ESi → ES′
η̂(i))i∈I).

As a functor,
∑

takes η to the morphism
∑

η, which is the unique morphism, known
to exist since

∑

i∈I ESi is a coproduct, such that the following diagram commutes for all
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i ∈ I:

ESi
ini //

ηi

��

∑

i∈I ESi
P

η
��

ES′
η̂(i)

in′
η̂(i)

//
∑

j∈J ES
′
j

The morphisms ini:ESi →
∑

i∈I ESi and in′η̂(i):ES
′
η̂(i) →

∑

j∈J ES
′
j in the diagram above

are the coproduct injections.
For the reasons discussed above, the left adjoint F will have to ensure that early conflict

is preserved in the sense that if two events are in early conflict in the occurrence net O
then they are in early conflict in the net obtained by successively applying the right and
then left adjoints drawn above. This means that the functor F must ensure that if two
events in

∑

i∈I ESi come from different components of the family (ESi)i∈I then they are
in different components of the family F

(
∑

i∈I ESi
)

. To define such a functor, we must
use the compatibility relation on events. Let ES = (E,≤,#) be an event structure. The
compatibility relation ⌢⌣ ⊆ E × E is defined as:

e⌢⌣ e′
△
⇐⇒ ¬(e#e′)

Two events are compatible if there exists a configuration containing them both. The com-
patibility relation is symmetric and reflexive, so its transitive closure ⌢⌣

+ is an equivalence
relation. The event structure ES can be partitioned into a family (ESc)c∈C of non-empty
⌢⌣

+-equivalence classes. Each ⌢⌣
+-equivalence class ESc is an event structure with con-

flict and causal dependency inherited from ES. Any event of ESc is in conflict with every
event of ESd in the event structure ES if c 6= d.

Lemma 8.6.1. Let ES be an event structure and let the ⌢⌣
+-equivalence classes contained

in ES form the family (ESc)c∈C for some indexing set C. Each equivalence class ESc is
an event structure and ES ∼=

∑

c∈C ESc through an isomorphism natural in ES, taking
the coproduct in the category ESs defined in Proposition 8.11.

Proof. It is easy to see that ESc is an event structure for every c ∈ C. Denote the
isomorphism between ES and

∑

c∈C ESc by

ϕES: ES
∼=
←→

∑

c∈C

ESc :ϕ−1
ES.

For any event e in ES with ⌢⌣
+-equivalence class c, the morphisms ϕES and ϕ−1

ES are
defined as:

ϕES(e) = ince ϕ−1
ES(ince) = e.

It is clear that this forms an isomorphism. Naturality of the isomorphism follows imme-
diately from the definition above of

∑

η for any morphism η:ES → ES′.

Two events of the event structure
∑

c∈C ESc cannot arise from different components
of the family (ESc)c∈C if they are ⌢⌣

+-related.
Given an event structure ES, we are now able to define the action of the functor F on

objects as
F(ES) = (ESc)c∈C ,

where (ESc)c∈C is the family of ⌢⌣
+-equivalence classes of ES.

An important observation when considering how F extends to morphisms is that syn-
chronous morphisms of event structures preserve the relation ⌢⌣

+.
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Lemma 8.6.2. Let ES1 = (E1,≤1,#1) and ES2 = (E2,≤2,#2) be event structures with
compatibility relations ⌢⌣1 and ⌢⌣2 respectively. Let η:ES1 → ES2 be a morphism in ESs.
For any e, e′ ∈ E1, if e⌢⌣

+
1 e

′ then η(e)⌢⌣
+
2 η(e

′).

Proof. We show that if e ⌢⌣1 e
′ then η(e)⌢⌣2 η(e

′). The result then follows by a straight-
forward induction. If e⌢⌣1 e

′, there must exist a configuration x of ES1 such that e, e′ ∈ x.
The configuration ηx is a configuration of ES2 since η is a morphism (Definition 8.6.2).
Hence there exists a configuration ηx of ES2 such that η(e), η(e′) ∈ ηx, so we must have
η(e)⌢⌣2 η(e

′).

The previous lemma relies on the fact that morphisms are synchronous, i.e. total on
events. It need not be the case that if e1 ⌢⌣

+
1 e2 and η(e1) and η(e2) are defined for some

non-synchronous morphism η then η(e1)⌢⌣
+
2 η(e2).

Let the ⌢⌣
+
1 -equivalence classes of ES1 be the family (ESc)c∈C and the ⌢⌣

+
2 -equivalence

classes of ES2 be the family (ESd)d∈D, and suppose that there is a synchronous morphism
η:ES1 → ES2 in ESs. As a consequence of the previous lemma, for all c ∈ C and d ∈ D:

∃e ∈ Ec : Ed = {e2 | η(e)⌢⌣
+
2 e2}

⇐⇒ ∀e ∈ Ec : Ed = {e2 | η(e)⌢⌣
+
2 e2}.

We may therefore define a function η̂:C → D as η̂(c) = d iff ∃e ∈ Ec : Ed = {e2 |
η(e)⌢⌣

+
2 e2}, which informs that the event structure ESc within ES1 is taken by η to ESη̂(c)

in ES2. The morphism η:ES1 → ES2 therefore restricts to a morphism ηc:ESc → ESη̂(c).
We therefore obtain the operation of the functor F on morphisms as

F(η) = (η̂, (ηc)c∈C).

It is straightforward to show that F preserves identities and composition.
Using these definitions, it is possible to demonstrate the coreflection between event

structures and families of event structures, the key coreflection in relating multiply-marked
occurrence nets and event structures.

Theorem 8.15. The functors F and
∑

form a coreflection with F ⊣
∑

. That is, there
is an isomorphism of hom-sets

ϕES,(ES′
j)j∈J

:ESs(ES,
∑

j∈J

ES′
j)
∼= Fam(ESs)(F(ES), (ES′

j)j∈J),

natural in ES and (ES′
j)j∈J and, furthermore, the functor F is full and faithful.

Proof. Suppose that the⌢⌣
+-decomposition of the event structureES is the family (ESc)c∈C .

We have the following chain of isomorphisms, in which
∏

and
∐

represent the indexed
product and coproduct defined in Appendix C.

ESs(ES,
∑

j∈J ES
′
j)
∼= ESs(

∑

c∈C ESc,
∑

j∈J ES
′
j) (1)

∼=
∏

c∈C ESs(ESc,
∑

j∈J ES
′
j) (2)

∼=
∏

c∈C

∐

j∈J ESs(ESc, ESj) (3)
∼= Fam(ESs)((ESc)c∈C , (ES

′
j)j ∈ J) (4)

= Fam(ESs)(F(ES), (ES′
j)j ∈ J) (5)

Isomorphism (1) arises from the fact that ES ∼=
∑

c∈C(ESc) shown in Lemma 8.6.1.
Isomorphism (2) is from the universal characterization of the coproduct of event structures.
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Isomorphism (4) is from Proposition C.3 in Appendix C, and (5) is from the definition of
F(ES). Naturality of all of these is straightforward.

All that remains is to give isomorphism (3) and to show that it is natural. Let the
isomorphism be denoted

ψES,(ESj)j∈J
:
∏

c∈C

ESs(ESc,
∑

j∈J

ES′
j)
∼=

∏

c∈C

∐

j∈J

ESs(ESc, ESj).

Suppose that for every c ∈ C there is a morphism ηc:ESc →
∑

j∈J ES
′
j in ESs. There

exists j ∈ J such that the image of ESc under ηc is in ES′
j since ESc is non-empty due to

(ESc)c∈C being the set of (non-empty) ⌢⌣
+-equivalence classes of ES. Furthermore, by

Lemma 8.6.2, j is unique. Let ĉ denote this j for each c. It is easy to see that sending the
indexed family (ηc)c∈C to (inĉηc)c∈C yields the required isomorphism.

For naturality in ES, suppose that there is a morphism η:ES → ES′ in ESs. Let the
⌢⌣

+-equivalence classes of ES and ES′ be (ESc)c∈C and (ES′
d)d∈D respectively. According

to the discussion immediately preceding this theorem, we obtain a function η̂:C → D and
morphisms ηc:ESc → ES′

η̂(c) for every c ∈ C. It is straightforward to check that the
following diagram commutes, thereby demonstrating naturality in ES:

∏

c∈C ESs(ESc,
∑

j∈J ES
′′
j )

ψES,(ESj)j∈J

∼=
//
∏

c∈C

∐

j∈J ESs(ESc, ES
′′
j )

∏

d∈D ESs(ES
′
d,

∑

j∈J ES
′′
j ) ψES′,(ESj)j∈J

∼= //

Q

c∈C(−◦ηc)

OO

∏

d∈D

∐

j∈J ESs(ES
′
d, ES

′′
j )

Q

c∈C

‘

d∈D(−◦ηc)

OO

For naturality in the family (ES′
j)j∈J , suppose that there is a morphism η:(ES′

j)j∈J →
(ES′′

i )i∈I . The morphism
∑

η:
∑

j∈J ES
′
j →

∑

i∈I ES
′′
i is the result of applying the functor

∑

to η. It is easy to see that the following diagram commutes, thereby demonstrating
naturality in (ES′

j)j∈J .

∏

c∈C ESs(ESc,
∑

j∈J ES
′
j)

ψES,(ESj)j∈J

∼=
//

Q

c∈C(
P

η◦−)

��

∏

c∈C

∐

j∈J ESs(ESc, ES
′
j)

Q

c∈C

‘

j∈J(ηj◦−)

��
∏

c∈C ESs(ESc,
∑

i∈I ES
′′
i ) ψES,(ESi)i∈I

∼= //
∏

c∈C

∐

i∈I ESs(ESc, ES
′′
i )

Finally, the functor F is easily seen to be full and faithful, thus completing the proof
of the coreflection.

The account so far has been restricted to categories of nets and event structures with
synchronous morphisms. To lift this restriction and still obtain an adjunction, event
structures may presumably be extended to record information on early conflict, so that
we obtain a category of ‘event structures with early conflict’ that is equivalent to to the cat-
egory of families of event structures in the same way that the category of multiply-marked
occurrence nets is equivalent to the category of families of singly-marked occurrence nets.
In a sense, this would cut off the left part of the chain of coreflections drawn at the start
of this section, which is where we had to require the morphisms to be synchronous.

Symmetry

We would now wish to show that the coreflection above between event structures and
occurrence nets with synchronous morphisms extends to the categories with symmetry.
Unfortunately, for reasons that we shall now explain, this is problematic.
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To attach symmetry to these categories, we would have to choose a path category
such that open maps are preserved by the adjunctions. The appropriate paths of event
structures in this situation seem to be elementary event structures and the appropriate
paths of occurrence nets are the images under the functor N ♯

s :ESs → Occ♯s of elementary
event structures. Open maps of safe nets, and hence occurrence nets, with elementary
event structures as paths were studied in [NW96].

A general result about open maps presented in [JNW95] shows that the functors E♯s
and N ♯

s preserve open maps as defined here. The adjunction between the categories with
symmetry is, however, stymied by the fact that the functor N ♯

s does not preserve pullbacks
of Elems-open maps. This can be seen by considering the event structure ES, an event
structure with two events e1 and e2 that are in conflict, and the event structure ES′, an
event structure with one event, e. The morphism η:ES → ES′ defined as

η(e1) = η(e2) = e

is Elems-open. It can be shown that the pullback Q of the morphism η taken against
itself is equal to the event structure with events

{(e1, e1), (e1, e2), (e2, e1), (e2, e2)},

all of which are in conflict with each other. This is not preserved as a pullback by the
functor N ♯

s .
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Chapter 9

Conclusion

Unifying this thesis have been three forms of Petri net semantics: techniques for defining
the net semantics of programming languages, a semantics for concurrent separation logic
based on nets, and the semantics of Petri nets themselves and how symmetry plays a vital
role there.

Hopefully the first two of these components demonstrate how Petri nets are well-suited
to the systematic and comprehensive study of programming language semantics. We have
seen how a structural Petri-net semantics can be given to terms, resulting in a companion
to Plotkin’s structural operational semantics [Plo81] which is based on transition systems.
The semantics identifies the particular structure of nets required in general for giving a
net semantics, such as splitting the net into control and data parts and that the nets
must have particular properties such as well-termination in order to have the expected
semantics. It was then demonstrated how to obtain the expected results that the nets
defined have the desired behaviour.

With the net semantics of a simple C-like programming language, we developed a
semantics for concurrent separation logic and showed that this was sound. The basis
of the semantics for the logic was to model ownership, providing an explicit account
of the intuitions in [O’H07]. The process of forming a net to model interference and
then synchronizing with the original semantics seems to be a direct and general way of
interpreting the form of rely-guarantee reasoning employed by the logic.

By defining a net semantics rather than using an interleaving model, we retain infor-
mation on the concurrency of events. We have seen that this allows us to capture directly
within the semantics important properties, for example the race-freedom of programs
proved in concurrent separation logic. Such properties are important when considering
concurrent programs, and we anticipate shall become increasingly so with the move to-
wards programming concurrency on modern processors. For example, Boudol has recently
shown in [BP09] that race-freedom allows a more tractable understanding of the weak
memory model on multi-core processors. We hope to establish a proper connection be-
tween that work and our net semantics for separation logic in the future. The separation
result obtained is, in fact, stronger than just race freedom, for example showing that in-
teraction between parallel processes may occur through allocation and deallocation. This
is significant, as such interaction leads to examples of the incompleteness of concurrent
separation logic.

Turning to defining symmetry on models for concurrency, we have seen how symmetry
plays a central role in defining the semantics of general forms of Petri net. By enriching
with symmetry, we can recover the cofreeness characterization of the unfolding ‘up to
symmetry’. One might wonder whether a tighter characterization of the unfolding might
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be obtained. One possible way is to consider ‘nominal’ nets, nets that allow permutations
of names [GP01]. This would equip markings of the net with a permutation structure
on tokens, and might be used to capture the symmetry in conditions in the unfolding of
general nets directly.

Of course, symmetry is important in its own right in concurrency, and can be used
to reduce state spaces encountered when model checking [Sis04]. In the semantics of
programming languages, it occurs wherever identical threads are spawned, when names
are bound, when locations are allocated, and in many other places. The work here begins
to form an abstract account of how symmetry on nets can be represented, leading us to
study a more general framework than that in [Win07a], for example through dropping
the jointly-monic constraint. In fact, this is also necessary in other work [Win], so this
suggests that not all models fit the simple scheme appropriate for event structures and
stable families described in [Win07a].

Related work

Net semantics and separation logic

The first component of this work provides an inductive definition of the semantics as a
net of programs operating in a (shared) state. This is a relatively novel technique, but
has in the past been applied to give the semantics of a language for investigating security
protocols, SPL [CW01b], though our language involves a richer collection of constructs.
Other independence models for terms include the Box calculus [BDH92] and the event
structure and net semantics of CCS [Stu80, Win82, GM84, WN95], though these model
interaction as synchronized communication rather than occurring through shared state.
We hope that the novel Petri net semantics presented here and in [CW01b] can be the
start of systematic and comprehensive methods to attribute structural Petri net semantics
to a full variety of programming languages, resulting in a Petri net companion to Plotkin’s
structural operational semantics (SOS) based on transition systems [Plo81]. Paralleling
the (inductive) definitions of data and transitions of SOS would be (inductive) definitions
of conditions and events of Petri nets.

The proof of soundness of separation logic here is led by Brookes’ earlier pioneering
proof of soundness based on action traces [Bro07]. There are a few minor differences in
the syntax of processes, including that we allow the dynamic binding of resource variables.
Another minor difference between the programming language and logic considered here
and that introduced by O’Hearn and proved sound by Brookes is that we do not distinguish
stack variables. These may be seen as locations to which other locations may not point and
are the only locations that terms can directly address. In Brookes’ model, as in [O’H07],
interference of parallel processes through stack variables is constrained by the use of a
side condition on the rule rather than using the concept of ownership (the area of current
research on ‘permissions’ [BCOP05, BCY05, Bro06] promises a uniform approach). In
particular, the rule allows the concurrent reading of stack locations. Though we have
chosen not to include stack variables in our model in order to highlight the concept of
ownership, our model and proofs could be easily extended to deal with them. Concurrent
reading of memory would be at the cost of a more sophisticated notion of independence
that allowed independent events to access the same condition providing that neither affects
the marking of that condition.

More notably, at the core of Brookes’ work is a ‘local enabling relation’, which gives
the semantics of programs over a restricted set of ‘owned’ locations. Our notion of validity
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involves maintaining a record of ownership and using this to constrain the occurrence
of events in the interference net augmented to the process. This allows the intuition of
ownership in O’Hearn’s introduction of concurrent separation logic [O’H07] to be seen
directly as constraining interference. Though the intuitive relationship between our model
and Brookes’ is fairly obvious, we believe that our approach leads to a clearer parallel
decomposition lemma, upon which the proof of soundness of the logic critically stands.

The most significant difference between our work and Brookes’ is that the net model
captures, as a primitive property, the independence of parallel processes enforced by the
logic. We have used this property to define a straightforward, yet general, form of refine-
ment suited to changing the atomicity of commands within the semantics of a term. This
is in contrast to [Bro05], which gives a new form of trace semantics to race-free processes
that abstracts entirely away from attaching any form of atomicity to the semantics of heap
actions. It has proven difficult, however, to show that this corresponds to the semantics
in [Bro07].

Another study of the semantics of concurrent separation logic is conducted by Calcagno,
O’Hearn and Yang in [COY07]. There, the goal is to provide a semantics that abstracts
away components of the particular structure on which processes operate. In particular,
their semantics is not dependent on processes interacting on a shared memory formed of
locations holding values: it instead assumes that the processes operate on an arbitrary
structure providing it allows the effect of processes to be specified through their local ef-
fect on the abstract state. Perhaps this form of action semantics might be combined with
that in [BCHK93], where an operational semantics is embellished with extra structure on
location and is used to reveal concurrency of actions.

Symmetry and unfoldings

Occurrence nets were first introduced in [NPW81] together with the operation of unfolding
singly-marked safe nets. The coreflection between occurrence nets and safe nets was first
shown in [Win84]. A number of attempts have been made since then to characterize the
unfoldings of more general forms of net.

Engelfriet defines the unfolding of (singly-marked) P/T nets in [Eng91]. Rather than
giving a coreflection between the categories, the unfolding is characterized as the greatest
element of a complete lattice of occurrence nets embedding into the P/T net.

A coreflection between a subcategory of (singly-marked) general nets and a category
of embellished forms of transition system is given in [Muk92]. There, the restriction
to particular kinds of net morphism is of critical importance; taking the more general
morphisms of general Petri nets presented here would have resulted in the cofreeness
property failing for an analogous reason to the failure of cofreeness of the unfolding of
general nets to occurrence nets without symmetry.

A coreflection between a subcategory of general nets and generalized event structures
is presented in [HKT96]. However, there auto-concurrency of events is ruled out, thereby
side-stepping the issues of symmetry presented here.

An adjunction between a subcategory of singly-marked general nets and the category of
occurrence nets is given in [MMS96]. The restriction imposed on the morphisms of general
nets there, however, precludes in general there being a morphism from U(G) to G in their
category of general nets if U(G), the occurrence net unfolding of G, is regarded directly
as a general net. To obtain an adjunction, the functor from the category of occurrence
nets into the category of general nets is not regarded as the direct inclusion, but instead
occurs through a rather detailed construction and does not yield a coreflection apart from
when restricted to the subcategory of semi-weighted nets as defined in [MMS96].
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Future work

In addition to the future work described above on using nominal techniques to define
symmetry and establishing a connection between our model and the work on weak memory
models in [BP09], there are several topics worthy of further investigation.

One broad area of research might be to consider how we can relate our work on net
semantics to other forms of Petri net. In particular, there has been extensive study of Petri
nets with time and probability [Mar89]. Presumably the techniques for defining the net
semantics described here can also be applied to obtain such nets, which might be suited to
the analysis of the cost of memory access — an issue of concern in multi-core processors,
where there are large differences in the time taken to access different forms of memory
location [Myc07]. Also, independence models are often claimed to be well-suited to the
study of fairness and liveness. It would be interesting to consider how the net semantics
could be used to provide a semantics to recent work on proving various liveness properties
established using an extension of separation logic [GCPV09].

Another area for further research, described at the end of Chapter 6, is to prove that
the refinement operator there can be used to address the issue of granularity. Other more
specific areas, not described so far, are:

Imprecision of invariants

The rules of separation logic presented in [O’H07] rely on the resource invariants to be
precise, as we saw on page 67. An example due to Reynolds shows that if imprecise (not
precise) invariants are allowed, the rules of concurrent separation logic become unsound
with respect to any sensible semantics. However, the example relies on the presence of the
rule representing Hoare’s law of conjunction:

(L-Conjunction) :
Γ ⊢ {ϕ1}t{ψ1} Γ ⊢ {ϕ2}t{ψ2}

Γ ⊢ {ϕ1 ∧ ϕ2}t{ψ1 ∧ ψ2}

It is not hard to see how this rule is inconsistent with allowing imprecision. For
example, consider the imprecise invariant ℓ 7→ 0 ∨ empty. Using the rules for nil process,
logical equivalence and critical regions, we can derive the following two judgements:

r:ℓ 7→ 0 ∨ empty ⊢ {ℓ 7→ 0}with r do ε od{ℓ 7→ 0}
r:ℓ 7→ 0 ∨ empty ⊢ {ℓ 7→ 0}with r do ε od{empty}

Hence, using the law of conjunction, we may derive the following judgement, which with
a normal semantics would imply that the process never terminates:

r:ℓ 7→ 0 ∨ empty ⊢ {ℓ 7→ 0}with r do ε od{⊥}

If we drop the law of conjunction from the logic, it seems as though a sensible semantics
can be given that at ground level would yield the same form of validity, i.e. without
affecting Corollary 5.3. This would allow us to drop the checks for precision when the
conjunction rule is not used. The semantics for open terms is an interesting variant of the
semantics for ownership presented earlier but now based on strategies for games.

More specifically, the semantics for judgements will involve a game played by a refuter
and a verifier. For a judgement Γ ⊢ {ϕ}t{ψ}, the game is played on the ownership
net W JtKΓ from any initial state that satisfies ϕ in Γ. Play starts with the refuter who
continues to choose enabled events, the marking of the net changing accordingly, until it
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chooses an event that releases a resource with an invariant. It then becomes the verifier’s
turn, who must choose which part of the owned heap, satisfying the invariant, the process
is to release ownership of. Play then resumes with the verifier who proceeds as before. The
refuter wins if either a violating marking is encountered, if the verifier cannot find part
of the heap to release ownership of, or if a terminal marking is encountered that does not
satisfy ψ in Γ. The judgement is valid if the refuter does not have a winning strategy (i.e.
cannot force play so that it certainly encounters a winning state within a finite number of
turns).

Abstraction

Another rather more speculative area for further research seeks to use the net semantics
to develop a more abstract account of the logic, where we abstract away the role of the
heap conditions from the semantics. To replace them, we label the control conditions with
a formula of the heap logic. Events will be labelled to characterize their effect as actions
on the state. For example, we might have the following net:

ℓ := 0

k := 0
k 7→

ℓ 7→
k := 1

ℓ := 1

k 7→ 1

ℓ 7→ 1empty

empty

ℓ 7→ 0

k 7→ 0

Ic(t) Tc(t)

There will obviously be rules that the formulae on conditions must obey, such that
whenever an action occurs in a heap initially satisfying the multiplicative conjunction
of the formulae labelling the preconditions of its event, the multiplicative conjunction of
the formulae labelling the postconditions of the event holds of the heap. Conditions to
represent resources will be labelled similarly with the associated resource invariant. One
would then seek to prove that if Γ ⊢ {ϕ}t{ψ} then there exists a way of labelling the
conditions of the net for t in such a way that their multiplicative conjunction is implied
by ϕ, and dually to label the terminal conditions in such a way that their multiplicative
conjunction implies ψ. This would provide an alternative way of proving soundness of
the logic. In addition to providing a graphical way of presenting proofs of programs, this
kind of structure with formulae labelling conditions is of interest since it might provide
a connection with the net semantics of linear logic [EW94] or of bunched implications
[POY04]. It would also be interesting to consider whether some sort of technique like
abstract interpretation could be performed with this structure, and whether any benefits
from locality would ensue.
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Appendix A

Multisets

Let the set of natural numbers {0, 1, 2, . . .} be denoted N. A multiset over a set A is a
vector of elements of N indexed by elements of A, or equivalently a function from A to N.
For instance, let A = {a0, a1} and suppose that the multiset X contains two occurrences
of a0 and one of a1; the corresponding multiset is:

a0

a1

[

2
1

]

Let the set of multisets over a set A be denoted µ(A) and write X ⊆µ A if X is a multiset
over A. Let X[a] denote the value of the vector at a. Write ~0A for the empty multiset with
basis A. Denote multiplication of the multiset X by a scalar n ∈ N by n.X. A multiset
X with basis A is said to be finite if

∑

a∈AX[a] is finite.
Define the set N∞ = N∪{∞}. An ∞-multiset over the set A is a vector of elements of

N∞ indexed by elements of A. The set of all ∞-multisets over A is denoted µ∞(A), and
we write X ⊆µ∞ A if X is an ∞-multiset over A. Addition and multiplication on integers
is extended to the element ∞ by defining

∞+ n = n+∞ = ∞ (∀n ∈ N∞)
∞ · n = n · ∞ = ∞ (∀n ∈ N∞ \ {0})
∞ · 0 = 0 · ∞ = 0

Subtraction m − n of two elements m,n ∈ N∞ is a partial operation, defined iff n ≤ m
and n 6=∞. As such, the value of ∞−∞ is left undefined.

Addition and subtraction of multisets are defined in the usual way as addition and
subtraction of vectors. On ∞-multisets, vector addition and subtraction is defined with
respect to the arithmetic above. Note that subtraction on the natural numbers is a partial
operation, and therefore so is subtraction of (∞)-multisets.

A multirelation R between sets A and B is a matrix of elements of N, and similarly
an ∞-multirelation is a matrix of elements in N∞. The number of times that the element
a is related to b is given by R[a, b], which is the natural number (or ∞) occurring in the
a-indexed row and b-indexed column of R. We write R ⊆µ A× B if R is a multirelation
between A and B and R ⊆µ∞ A×B if R is an ∞-multirelation between A and B, noting
the equivalent formulation of a multirelation as a multiset over the basis A×B.

Application of a multirelation to a multiset is dealt with at greater generality. We
regard∞ as the first infinite cardinal number. A cardinal multiset X over a set A associates
a cardinal number X[a] to any element of A. A cardinal multirelation between sets A and
B is a cardinal multiset over A×B, the set product of X and Y . Application of a cardinal
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multirelation R to a cardinal multiset X is obtained as their inner product R · X. In
particular, R ·X is a cardinal multiset over B and for any b ∈ B

(R ·X)[b] =
∑

a∈A

R[a, b] ·X[a].

Care has to be taken since application of a multirelation R ⊆µ A×B to a multiset X may
fail to yield a multiset if the above sum is greater than or equal to ∞ at any b ∈ B. It
can also fail to be an ∞-multiset. For example, let A = {a} and B = R, the set of real
numbers. Let R be defined as R[x, a] = 1 for any x ∈ R. Let â denote the multiset with
a single element a, so â[a] = 1. We have R · â >∞, so R · â is not an ∞-multiset.

Say that an ∞-multirelation R over A×B is countably injective if for every b ∈ B the
set {a ∈ A | R[a, b] > 0} is countable. Application of a countably injective∞-multirelation
to a ∞-multiset always yields an ∞-multiset.

Sets, relations and (partial) functions

We say that a multiset X ⊆µ A is a set if X[a] ≤ 1 for all a ∈ A. All the usual notation
for sets is adopted in this situation, for example a ∈ X for X[a] = 1.

A relation R on sets A and B, written R ⊆ A × B is identified with a multirelation
R ⊆µ A×B such that R(a, b) ≤ 1 for all a ∈ A and b ∈ B. We now write R(a, b) or aRb
if, as a multirelation, R[a, b] = 1. We write R∗ for the reflexive, transitive closure of a
relation R, and write R+ for the transitive closure of R.

If f is a partial function from set X to set Y , written f :X →∗ Y , that is undefined on
x ∈ X, we write f(x) = ∗. As with relations, we identify partial functions with certain
multirelations. We write f :X → Y if f is a function from X to Y .
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Appendix B

Pullbacks of nets

In this appendix, we study pullbacks in categories of Petri nets. These are used to show
how nets support the abstract framework for their extension with symmetry and for com-
position of open maps.

B.1 Pullbacks of P/T nets

We shall begin by describing pullbacks of P/T nets.
It is shown in [NW96] that the category of labelled safe Petri nets has pullbacks, and

a similar result for unlabelled nets (thereby allowing morphisms to be partial functions on
events) is studied in detail in [Fab06].

We begin this section by generalizing the construction so that it can be applied to give
pullbacks in the category PT♯ of multiply-marked P/T nets, and so that it can later be
used to give pullbacks of particular kinds of morphism in Gen♯.

It is necessary to impose the restriction that no P/T net has any isolated conditions
in order to obtain pullbacks, where a condition is said to be isolated if it is neither a pre-
nor a postcondition to any event nor in some initial marking. Without this additional
constraint (also seen in the constructions in [NW96, Fab06]), simple counterexamples can
be given to show that the category of P/T nets would not have pullbacks, analogous to
those establishing the fact that the category of sets with relations between them does not
have pullbacks.

Let

N0 = (P0, T0, F0,M0)

N1 = (P1, T1, F1,M1)

N ′ = (P ′, T ′, F′,M′)

be P/T nets with morphisms (η0, β0):N0 → N ′ and (η1, β1):N1 → N ′. We shall show how
to construct the pullback of (η0, β0) against (η1, β1).

Q
(π0,γ0)

~~||
||

||
|| (π1,γ1)

  B
BB

BB
BB

B
?�

N0

(η0,β0) !!B
BB

BB
BB

B N1

(η1,β1)}}||
||

||
||

N ′
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As we do so, we shall assume that the sets P0 and P1 are disjoint and that the sets T0 and
T1 are disjoint. This makes no difference to the generality of the construction since we
can always form the pullback of nets isomorphic to N0 and N1 satisfying these properties
which has no effect since pullbacks are only defined up to isomorphism.

Candidate pullback

The construction of the pullback involves equivalence classes of conditions. Define a rela-
tion ∼0 ⊆ P0 × P1 as

p0 ∼0 p1 ⇐⇒ ∃p′ ∈ P ′ : β0(p0, p
′) & β1(p1, p

′).

For sets X0 ⊆ P0 and X1 ⊆ P1, the relation ∼X1
X0

is the equivalence relation generated by

∼0 on X0 and X1. That is, ∼X1
X0

is the least reflexive, transitive and symmetric relation
on X0 ∪X1 satisfying

p0 ∈ X0 & p1 ∈ X1 & p0 ∼0 p1 =⇒ p0 ∼
X1
X0

p1.

For any p ∈ X0 ∪X1, we write [p]X1
X0

for its ∼X1
X0

-equivalence class.
Note that if β0 is locally injective on the set X0, for example if X0 is an initial marking

or the set of pre- or post-conditions of some event, then [p]X0

∅ = {p}.
The conditions of the pullback, forming the set PQ, are formed by taking the equiva-

lence classes c such that

c = [p]X1
X0

for some p ∈ X0∪X1 where X0 ⊆ P0 and X1 ⊆ P1 are sets such that β0 ·X0 = β1 ·X1. We
also require, to ensure that there are no isolated conditions in the pullback, that either:

• X0 ∈M0 and X1 ∈M1,

• either X0 = •e0 and X1 = •e1 or X0 = e0
• and X1 = e1

• for some e0 ∈ E0 and
e1 ∈ E1 such that η0(e0) = η1(e1),

• either X0 = •e0 or X0 = e0
• and X1 = ∅ for some e0 ∈ E0 such that η0(e0) = ∗, or

• X0 = ∅ and either X1 = •e1 or X1 = e1
• for some e1 ∈ E1 such that η1(e1) = ∗.

Note that the first case, where we write η0(e0) = η1(e1), includes the possibility that both
η0(e0) = ∗ and η1(e1) = ∗.

The events of the pullback are defined by taking the pullback of the partial functions
η0 and η1:

TQ =
{ (t0, t1) | t0 ∈ T0 & t1 ∈ T1 & η0(t0) = η1(t1) }

∪ { (t0, ∗) | t0 ∈ T0 & η0(t0) = ∗ }
∪ { (∗, t1) | t1 ∈ T1 & η1(t1) = ∗ }

The pullback morphism (π0, γ0):Q→ N0 is defined as

π0(t0, t1) = t0
π0(t0, ∗ ) = t0
π0( ∗ , t1) = ∗

γ([p]X1
X0
, p′) ⇐⇒ p′ ∈ [p]X1

X0
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with (π1, γ1):Q → N1 defined similarly. Using this definition, the flow relation on the
pullback is defined as:

•e = {[p]
•π1(e)
•π0(e)

| p ∈ •π0(e) ∪
•π1(e)}

e• = {[p]
π1(e)•

π0(e)•
| p ∈ π0(e)

• ∪ π1(e)
•}

The initial markings of the pullback are obtained as:

M = {{[p]M1
M0
| p ∈M0 ∪M1} |M0 ∈M0 & M∈M1 & β0 ·M0 = β1 ·M1}

It is straightforward from these definitions to show that the candidate pullback is a
P/T net (all that must be shown is that there are no isolated conditions and that every
event has at least one precondition) and that (π0, γ0) and (π1, γ1) are morphisms such that

(η0, β0) ◦ (π0, γ0) = (η1, β1) ◦ (π1, γ1).

Universal property

It remains to show that the P/T net Q constructed above satisfies the universal property
of being a pullback in the category PT♯. That is, we must show that for any pair of
morphisms (θ0, α0):R → N0 and (θ1, α1):R → N1 in PT♯ such that the outer square in
the diagram commutes there is a unique morphism (ϕ, δ):R→ Q making the two triangles
beneath R commute.

R

(θ0,α0)

��

(ϕ,δ)
�� (θ1,α1)

��

Q

(π0,γ0)
||

|

~~|||

?�
(π1,γ1)

BB
B

  B
BB

N0

(η0,β0) !!B
BB

BB
BB

B N1

(η1,β1)}}||
||

||
||

N ′

Let the net R = (PR, TR, FR,MR). The morphism (ϕ, δ):R → Q is defined on events
as follows:

ϕ(t) =

{

∗ if θ0(t) = ∗ & θ1(t) = ∗
(θ0(t), θ1(t)) otherwise

The relation δ is defined as being the least relation such that δ(b, c) if either:

• c = [p]α1·M
α0·M

for some M ∈ MR and p ∈ α0 ·M ∪ α1 ·M such that b ∈M and either
α0(b, p) or α1(b, p),

• c = [p]α1·•t
α0·•t

for some t ∈ TR and p ∈ α0 ·
•t∪α1 ·

•t such that b ∈ •t and either α0(b, p)
or α1(b, p), or

• c = [p]α1·t•

α0·t•
for some t ∈ TR and p ∈ α0 · t

•∪α1 · t
• such that b ∈ t• and either α0(b, p)

or α1(b, p).

The key to showing that (ϕ, δ) satisfies the constraints for being a morphism is the
following lemma.
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Lemma B.1.1. Let X,Y ⊆ PR, and let α0, β0, α1 and β1 be relations as in the diagram
above. If

• β0 is locally injective on the sets α0 ·X and α0 · Y ,

• β1 is locally injective on the sets α1 ·X and α1 · Y , and

• p ∈ α0 · (X ∩ Y ) or p ∈ α1 · (X ∩ Y )

then

[p]α1·X
α0·X

= [p]α1·Y
α0·Y

.

Proof. Recall that the relation ∼α1·X
α0·X

is defined inductively using the relation ∼0. We
shall prove that for any p ∈ α0 · (X ∩ Y ), if p ∼0 p

′ and p′ ∈ α1 ·X then p′ ∈ α1 · (X ∩ Y ).
The result then follows (with the symmetric property) by a straightforward induction on
the length of the chain demonstrating ∼α1·X

α0·X
.

Suppose, then, that p ∼0 p′ and p ∈ α0 · (X ∩ Y ) and p′ ∈ α1 · X. There exists
b ∈ X ∩ Y such that α0(b, p). Since p ∼0 p

′, there exists b′ such that β0(p, b
′), and hence

b′ ∈ β0 · α0 · (X ∩ Y ), and also β1(p
′, b′). We have β0 ◦ α0 = β1 ◦ α1 so there must exist

p′′ such that α1(b, p
′′) and β1(p

′′, b′). Hence p′′ ∈ α1 · (X ∩ Y ). The relation β0 is locally
injective on the set α1 ·X, so we must therefore have p′ = p′′, completing the proof.

We now show that (ϕ, δ):R→ Q satisfies the constraints for being a net morphism.

Lemma B.1.2. The pair (ϕ, δ) is a morphism of nets.

Proof. Let Q = (PQ, TQ, FQ,MQ) and R = (PR, TR, FR,MR). We shall show only one
part of the proof that (ϕ, δ) is a morphism, that if t ∈ TR then δ · •t ⊆ •ϕ(t) and
∀c ∈ •ϕ(t) : ∃!b ∈ •t : δ(b, c). The other parts are similar.

δ · •t ⊆ •ϕ(t): Suppose that b ∈ •t and δ(b, c). From the definition of the definition of δ,

we have c = [p]α1·X
α0·X

for some X ⊆ PR and p ∈ α0 ·X ∪α1 ·X such that either α0(b, p)
or α1(b, p). Without loss of generality, assume that p ∈ P0, so we have α0(b, p). Notice
that therefore θ0(t) 6= ∗ so ϕ(t) = (θ0(t), θ1(t)) 6= ∗. It is easy to see from (η0, β0) and
(η1, β1) being morphisms and the forms that X may take according to the definition
of δ that β0 is locally injective on α0 ·X and β1 is locally injective on α1 ·X. We also
have β0 locally injective on •θ0(t) and β1 locally injective on •θ1(t). It follows from
the previous lemma that

[p]α1·X
α0·X

= [p]α1·•t
α0·•t

.

Since α0(b, p), we have p ∈ •θ0(t) and therefore [p]α1·•t
α0·•t ∈

•(θ0(t), θ1(t)), as required.

∀c ∈ •ϕ(t) : ∃!b ∈ •t : δ(b, c): Now suppose that c ∈ •ϕ(t). We have ϕ(t) 6= ∗, so ϕ(t) =
(θ0(t), θ1(t)). From the definition of •ϕ(t), there exists p ∈ •θ0(t) ∪

•θ1(t) such that

c = [p]
•θ1(t)
•θ0(t). Without loss of generality, suppose that p ∈ •θ0(t). Since (θ0, α0) is a

morphism, there exists a (unique) b ∈ •t such that α0(b, p) and hence δ(b, c).

We now consider uniqueness of b. Suppose that there exists b′ ∈ •t such that δ(b′, c).

From the definition of δ, there exists p′ ∈ •θ0(t) ∪
•θ1(t) such that [p]

•θ1(t)
•θ0(t) = [p′]

•θ1(t)
•θ0(t)

and either α0(b
′, p′) or α1(b

′, p′). We shall show that, for any p0 and p1:

b ∈ •t & p0 ∈
•θ0(t) & p1 ∈

•θ1(t) & α0(b, p0) & p0 ∼0 p1 =⇒ α1(b, p1).
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A straightforward induction will then show that the same property holds for ∼
•θ1(t)
•θ0(t)

,

from which it immediately follows that b = b′.

Suppose that there exist p0 ∈
•θ0(t) and p1 ∈

•θ1(t) such that α0(b, p0) for some
b ∈ •t and p0 ∼0 p1. Since p0 ∼0 p1, there exists b′ ∈ B′ such that β0(p0, b

′) and
β1(p1, b

′). We have β0 ◦ α0 = β1 ◦ α1, so there exists p′1 ∈ P1 such that α1(b, p
′
1) and

β1(p
′
1, b

′). Since α1 is a morphism, we have p′1 ∈
•θ1(t). From the local injectivity

of β1 on •θ1(t) arising from (η1, β1) being a morphism, we have p1 = p′1 and hence
α1(b, p1) as required.

To complete the proof that Q as defined above is a pullback in the category PT♯,
it remains to show that the two triangles in the diagram above commute and that the
morphism (ϕ, δ) is the unique such morphism.

Proposition B.1. For the morphisms described above:

(π0, γ0) ◦ (ϕ, δ) = (θ0, α0) (π1, γ1) ◦ (ϕ, δ) = (θ1, α1).

Furthermore, for any morphism (ϕ′, δ′):R→ Q such that

(π0, γ0) ◦ (ϕ′, δ′) = (θ0, α0) (π1, γ1) ◦ (ϕ′, δ′) = (θ1, α1),

it is the case that ϕ = ϕ′ and δ = δ′.

Proof. Commutation is proved by a straightforward calculation and it is easy to see that
ϕ = ϕ′.

We first show that δ ⊆ δ′. Suppose that δ(b, c) for some b ∈ PR and c ∈ PQ. Without
loss of generality, suppose that b ∈ •e for some e ∈ TR; the other cases arising from the
condition b not being isolated are similar. As argued in the previous lemma, we have

c = [p]
•θ1(e)
•θ0(e)

for some p such that either p ∈ •θ0(e) and α0(b, p) or p ∈ •θ1(e) and α1(b, p).

Without loss of generality, suppose that p ∈ •θ0(e) and α0(b, p). We therefore have γ0(c, p).
Since γ0 · δ

′ = α0, there must exist c′ ∈ PQ such that δ′(b, c′) and γ0(c
′, p). Since b ∈ •e

and δ′(b, c′), we must have c′ ∈ •ϕ(e) and similarly c ∈ •ϕ(e). It follows from (π0, γ0)
being a morphism that c = c′, as required.

We now show that δ′ ⊆ δ. Suppose that δ′(b, c). As above, without loss of generality
we shall assume that there exists e ∈ TR such that b ∈ •e. Since ϕ = ϕ′ and (ϕ′, δ′) is a
morphism, we have c ∈ •ϕ(e). Recall that ϕ(e) = (θ0(e), θ1(e)). Again, as shown in the

previous lemma when considering the preconditions of ϕ(e), we have c = [p]
•θ1(e)
•θ0(e) for some

p such that either p ∈ •θ0(e) and α0(b, p) or p ∈ •θ1(e) and α0(b, p). In either case, it

follows immediately from the definition of δ that δ(b, [p]
•θ1(e)
•θ0(e)), as required.

It is easy to see that the pullback of safe nets is also a safe net: If there were a reachable
marking M of Q in which a condition c were marked twice, the markings γ0 ·M and γ1 ·M
would be reachable in N0 and N1 respectively. Since there exists p such that either γ0(c, p)
or γ1(c, p), it would follow that the condition p occurred twice in either γ0 ·M or γ1 ·M ,
contradicting either N0 or N1 being a safe net.

The same cannot be said for occurrence nets. Taking the pullback in PT♯ of morphisms
(η0, β0):O0 → O′ and (η1, β1):O1 → O′ for occurrence nets O0, O1 and O′ does not
necessarily yield an occurrence net. As a particular example, denote by {∅} the net with
no conditions, no events and one initial marking that is empty. For any occurrence net
O, denote by (∗, ∅):O → {∅} the morphism that is undefined on events and the empty
relation on conditions The pullback drawn in the following diagram is not an occurrence
net.
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1
a b

(∗, 2)

{a} {b}

{a′} {b′}

(1, ∗)

(1, 2)

a′

2
b′

{∅}

(∗, ∅)(∗, ∅)

This is not to say that the category Occ♯ of occurrence nets does not have pullbacks.
They arise from the coreflection between the categories Occ♯ and PT♯ shown in Theorem
7.15. Let Q, (π0, γ0), (π1, γ1) be the pullback in PT♯ of the morphisms (η0, β0):O → O′

and (η1, β1):O1 → O′. Since right adjoints preserve all limits, and in particular pullbacks,
the net U(Q) is a pullback in Occ♯ of (η0, β0) against (η1, β1) with pullback morphisms
(π0, γ0) ◦ εQ and (π1, γ1) ◦ εQ.

U(Q)
(π0,γ0)◦εQ

||yy
yy

yy
yy ?� (π1,γ1)◦εQ

""E
EE

EE
EE

E

O0

(η0,β0) ""F
FFFFFFF O1

(η1,β1)||xxxxxxxx

O′

B.2 Pullbacks of general nets and folding morphisms

The construction of pullbacks in the previous section does not extend to giving pullbacks in
the category Gen♯. The reason for this is that morphisms of general nets, even when they
are relations rather than multirelations, need not be locally injective on initial markings
or on the pre- or post-condition sets of events.

To see this, consider candidate pullbacks of the following morphisms:

p1 p2 p′1 p′2

Let the morphism on the left be denoted f0:G0 → G′ and the morphism on the right be
denoted f1:G1 → G′. Näıvely applying the construction for P/T nets would give a ‘pull-
back’ with just one condition which would be initially marked. This is straightforwardly
seen not to be a pullback in the category Gen♯.
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Let the net Q be

(p1, p
′
1)

(p2, p
′
2)

(p1, p
′
2)

(p2, p
′
1)

Notice that the net has two initial markings, namely {(p1, p
′
1), (p2, p

′
2)} and {(p1, p

′
2), (p2, p

′
1)}

. Define morphisms q0:Q→ G0 and q1:Q→ G1 as the obvious projections, so for example
q0 relates the condition (p1, p

′
1) only to p1 and q1 relates (p1, p

′
1) only to p′1.

It can be argued straightforwardly that Q with q0 and q1 is a weak pullback of f0

against f1. That is, the square in the diagram below commutes, so f0 ◦ q0 = f1 ◦ q1, and
for any general net R and morphisms r0:R→ G0 and r1:R→ G1 such that f0◦r0 = f1◦r1,
there must exist a morphism h:R→ Q such that r0 = q0 ◦ h and r1 = q0 ◦ h.

R

r0

��

h
�� r1

��

Q

q0
}}}

}

~~}}
}

?�
q1
AAA

A

  A
AA

G0

f0   B
BB

BB
BB

B G1

f1~~||
||

||
||

G′

The morphism h is not required to be unique; if it were, we would have shown that Q was
a pullback. In fact, it is easy to see that Q is not a pullback of f0 against f1 since the
morphism h need not be unique. This is easily seen in the following example:

We now show that there is no pullback of the two morphisms f0 and f1. For contradic-
tion, suppose that there is such a pullback; call it Q′ with pullback morphisms q′0 and q′1.
Since Q′ is a pullback, there must exist a unique morphism h:Q→ Q′ such that q0 = q′0 ◦h
and q1 = q′1 ◦ h. Considering Q, it must be the case that h is a function on conditions
and injective; it is therefore monic in the category Gen♯. Taken with Q being a weak
pullback, we may conclude that Q is also a pullback of f0 against f1. This contradicts the
point made earlier, so there is no pullback of f0 against f1.
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Folding morphisms

The absence of pullbacks in the category Gen♯ is problematic. Indeed, this led to the
generalization of the framework for applying symmetry described earlier in this chapter.
The situation may be resolved by observing that pullbacks may be obtained if we restrict
attention to folding morphisms of Petri nets. Recall that a morphism (η, β):G → G′ is a
folding morphism if η and β are both total functions. As such, we shall sometimes denote
folding morphisms using just one symbol rather than as pairs. The category of general
nets with folding morphisms between them is written Gen♯f .

We now show that the category Gen♯f has pullbacks. Let the following be general nets

G0 = (P0, T0, P re0, Post0,M0)

G1 = (P1, T1, P re1, Post1,M1)

G′ = (P ′, T ′, P re′, Post′,M′)

and suppose that there are folding morphisms (η0, β0):G0 → G′ and (η1, β1):G1 → G.

Candidate pullback

We now proceed to define the pullback object Q and morphisms (π0, γ0):Q → G0 and
(π1, γ1):Q→ G1. They will be obtained by stripping away all the isolated conditions from
the net Q0 = (PQ, TQ, P reQ, PostQ,MQ), defined in the following way:

Conditions The set of conditions PQ is defined as:

PQ , {(p0, p1) | p0 ∈ P0 & p1 ∈ P1 & β0(p0) = β1(p1)}

The pullback morphisms act on places in the following way:

γ0(p0, p1) = p0 γ1(p0, p1) = p1

Events The set of events of Q is defined to be:

TQ , {(C, t0, t1,D) | C ⊆µ PQ & D ⊆µ∞ PQ & η0(t0) = η1(t1)
& γ0 · C = Pre0 · t0 & γ1 · C = Pre1 · t1
& γ0 ·D = Post0 · t0 & γ1 ·D = Post1 · t1 }

The folding morphisms act on transitions in the following way:

π0(C, t0, t1,D) = t0 π1(C, t0, t1,D) = t1

Preconditions

PreQ · (C, t0, t1,D) = C

Postconditions

PostQ · (C, t0, t1,D) = D

Initial markings

MQ = {M |M ⊆µ∞ PQ & γ0 ·M ∈M0 & γ1 ·M ∈M1}
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Universal property

The first part of showing that Q, (π0, γ0) and (π1, γ1) form a pullback in Gen♯f is to show

that they lie within the Gen♯f and that the morphisms commute with (η0, β0) and (η1, β1).

Lemma B.2.1. The net Q is a general Petri net and, for both i ∈ {0, 1}, the morphism
(πi, γi):Q→ Gi is a folding morphism. Furthermore, the following diagram commutes:

Q
(π0,γ0)//

(π1,γ1)

��

G0

(η0,β0)

��
G1

(η1,β1)
// G′

Proof. Easily checked to be immediate consequences of the definitions.

We now progress to show the universality of the pullback in the category Gen♯f . Sup-

pose that there are morphisms (θ0, α0):G→ G0 and (θ1, α1):G→ G1 in Gen♯f making the
following diagram commute:

G (θ0,α0)

��

(θ1,α1)

""

G0

(η0,β0)

��
G1

(η1,β1)
// G′

We shall show that (ϕ, δ) as defined below is the unique morphism in Gen♯f that makes
the two triangles in the following diagram commute:

G (θ0,α0)

��

(θ1,α1)

!!

(ϕ,δ)
AAA

  A
AA

Q
(π0,γ0)//

(π1,γ1)

��

G0

(η0,β0)

��
G1

(η1,β1)
// G′

Let the net G = (P, T, F,M). For a condition p ∈ P , define

δ(p) = (θ0(p), θ1(p)).

It is easy to see that this is a condition of Q from the commutation of the diagram above.
In particular, the condition (θ0(p), θ1(q)) is non-isolated because the condition p is.

For an event t ∈ T , define

ϕ(t) = (C, θ0(t), θ1(t),D)

for multisets C ⊆µ PQ and D ⊆µ∞ PQ defined as

C[(p0, p1)] =
∑

{p∈P |α0(p)=p0 & α1(p)=p1}

Pre · t[p]

D[(p0, p1)] =
∑

{p∈P |α0(p)=p0 & α1(p)=p1}

Post · t[p]
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Lemma B.2.2. The functions ϕ:T → TQ and δ:P → PQ are well-defined.

Proof. As mentioned, it is clear that δ is a function and that δ(p) ∈ PQ for any p ∈ P .
Let t be a transition of G, so t ∈ T . Let ϕ(t) = (C, t0, t1,D). To see that ϕ(t) ∈ TQ,

we shall show the following:

1. C is a multiset rather than an ∞-multiset

2. η0(t0) = η1(t1)

3. γ0 · C = Pre0 · t0

The remaining requirements, that for example γ1 ·D = Post1 · t1, are all similar to (3).
To see that C is a multiset, for contradiction suppose that there exists (p0, p1) ∈ PQ

such that C[(p0, p1)] = ∞. Since G is a general net, Pre · t[p] is finite for all p ∈ P , so
there must be infinitely many p ∈ P such that α0(p) = p0 and Pre · t[p] > 0. However,
then, since (θ0, α0) is a morphism, we would have Pre0 · t0[p0] = ∞, contradicting the
requirements for G0 to be a general net.

It is clear from the definition that η0(t0) = η1(t1) since t0 = θ0(t) and t1 = θ1(t), and,
from commutation, η0 ◦ θ0 = η1 ◦ θ1.

To show that γ0 · C = Pre0 · t0, we shall show that γ0 · C[p0] = Pre0 · t0[p0] for all
p0 ∈ P0. We have the following:

(γ0 · C)[p0]
=

∑

{p1∈P1|β0(p0)=β1(p1)}
C[(p0, p1)] (1)

=
∑

{p1∈P1|β0(p0)=β1(p1)}

(

∑

{p∈P |α0(p)=p0 & α1(p)=p1}
(Pre · t)[p]

)

(2)

=
∑

{p∈P |∃p1∈P1(β0(p0)=β1(p1) & α0(p)=p0 & α1(p)=p1)}
(Pre · t)[p] (3)

=
∑

{p∈P |α0(p)=p0}
(Pre · t)[p] (4)

= (α0 · Pre · t)[p0] (5)
= (Pre0 · t0)[p0] (6)

Every equation apart from (4) is straightforward from the definitions. Equation (4) is an
immediate consequence of the fact that β0 ◦ α0 = β1 ◦ α1.

We now give the key lemma in showing that Q as defined above satisfies the universal
property of being a pullback.

Lemma B.2.3. The pair (ϕ, δ) is a folding morphism of general nets and, furthermore,

is the unique morphism in Gen♯f such that (θ0, α0) = (π0, γ0) ◦ (ϕ, δ) and (θ1, α1) =
(π1, γ1) ◦ (ϕ, δ).

Proof. It is clear from the definitions that (θ0, α0) = (π0, γ0)◦(ϕ, δ) and (θ1, α1) = (π1, γ1)◦

(ϕ, δ). Using this, it is easy to show that (ϕ, δ) is a morphism in the category Gen♯f .

Let (ϕ′, δ′):G→ Q be a morphism in the category Gen♯f such that

(θ0, α0) = (π0, γ0) ◦ (ϕ′, δ′) (1)
(θ1, α1) = (π1, γ1) ◦ (ϕ′, δ′) (2).

We shall show that (ϕ, δ) = (ϕ′, δ′).
It is easy to see that we must have δ = δ′. Let t be a transition in T and suppose that

ϕ(t) = (C, t0, t1,D). From the definition of ϕ(t), we must have θ0(t) = t0 and θ1(t) = t1.
From (1) and (2) above, we must have ϕ′(t) = (C ′, t0, t1,D

′) for some C ′ and D′. We shall
show that C = C ′; the proof that D = D′ will be similar.
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We already know that (ϕ, δ) is a morphism, so

δ · Pre · t = Pre · ϕ(t) = C.

The latter equality is from the definition of the preconditions of ϕ(t). Since (ϕ′, δ′) is also
a morphism, we have

δ′ · Pre · t = Pre · ϕ′(t) = C ′.

We saw earlier that δ = δ′, so it immediately follows that C = C ′, thus completing the
proof.

It follows immediately that Q is the pullback.

Theorem B.2. The net Q with morphisms (θ0, α0):Q → G0 and (θ1, α1):Q → G1 is

a pullback in the category Gen♯f of the morphisms (η0, β0):G0 → G′ and (η1, β1):G1 →
G′.

Pullbacks in other categories

To help understand the pullback of morphisms between P/T nets in the category Gen♯f , we
have the following lemma. This shows that the multisets C and D in an event (C, e0, e1,D)
in the pullback of P/T nets are, in fact, sets, and are uniquely determined by the events.

Lemma B.2.4. Let the pullback of folding morphisms (η0, β0):G0 → G′ and (η1, β1):G1 →
G′ be as described above.

Q
(π0,γ0)//

(π1,γ1)

��

_� G0

(η0,β0)

��
G1

(η1,β1)
// G′

For any sets X0 ⊆ P0 and X1 ⊆ P1 such that β0 ·X0 = β1 · X1, if β0 is locally injective
on X0 and β1 is locally injective on X1 then there is a unique set X ⊆ PQ such that
γ0 ·X = X1 and γ1 ·X = X0.

Proof. Let

X = {(x0, x1) | ∃x ∈ β0 ·X : β0(x0) = x & β1(x1) = x}.

It is straightforward to see that this satisfies the above constraints and, by local injectivity,
is the unique such set.

From this, it is easy to see that the net Q defined above is a P/T net if the nets G0

and G1 are P/T nets, so Q is also a pullback in the category PT♯
f . This result will be

useful in showing that pullbacks are preserved through the inclusion PT♯
f →֒ PT♯.

If the nets G0 andG1 are safe nets then the net Q is also a safe net. To see this, suppose
for contradiction that the net Q is not a safe net. We know that it is a P/T net, so there
must exist a reachable marking M that is not a multiset. Since (θ0, α0) and (θ1, α1) are
morphisms, the markings α0 ·M and α1 ·M are reachable in G0 and G1, respectively,
according to Lemma 2.3.1 (which extends straightforwardly to morphisms in the category
Gen♯). The maps are folding morphisms, so α0 and α1 are total on conditions, so neither
α0 ·M nor α1 ·M are sets (they are multisets) and therefore neither G0 nor G1 are safe,
contradicting the assumption. It follows that the construction also yields pullbacks in the
category Gen♯f .
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We shall now show that the pullback Q is an occurrence net if G0, G1 and G′ are
occurrence nets, demonstrating that the construction also yields a pullback in the category
Occ♯f . First, we show how conflict in the pullback gives rise to conflict in the nets G0 and
G1. From this, it will follow immediately that the conflict relation on the pullback is
irreflexive.

Lemma B.2.5. Suppose that G0, G1 and G′ are occurrence nets and that Q, (π0, γ0)
and (π1, γ1) is the pullback of folding morphisms described above. For any b, b′ ∈ PQ
and e, e′ ∈ TQ, if b#Qb

′ then either γ0(b)#0γ0(b
′) or γ1(b)#1γ1(b

′). If e#Qe
′ then either

π0(e)#π0(e
′) or π1(e)#π1(e

′).

Proof. Let x and x be either a pair of conditions or a pair of events in Q such that x#Qx
′.

Let q0 = (π0, γ0):Q → G0 and q1 = (π1, γ1):Q → G1 be the folding morphisms from the
pullback in Gen♯. We shall show, by induction on

depth0(q0(x)) + depth1(q1(x)) + depth0(q0(x
′)) + depth1(q1(x

′)),

that either q0(x)#0q0(x
′) or q1(x)#1q1(x

′).
The base case, where the sum is zero, is relatively simple: It is easy to see from the

fact that G0 and G1 are occurrence nets that any two such elements of the net Q must
be conditions b = (b0, b1) and b′ = (b′0, b

′
1) that are in immediate conflict, i.e. there exist

distinct initial markings M and M ′ of Q such that b ∈M and b′ ∈M ′. From the definition
of the initial markings of Q and Lemma B.2.4, it follows that either γ0 ·M 6= γ0 ·M

′ or
γ1 ·M 6= γ1 ·M

′. In the first case (the second is similar), it follows that b0 ∈ γ0 ·M and
b′0 ∈ γ0 ·M

′, and hence b0 and b′0 are in immediate conflict in G0, as required.
The inductive case begins by considering two events that are in conflict in Q. Let the

events be e = (C, e0, e1,D) and e′ = (C ′, e′0, e
′
1,D

′). There are two ways in which e and
e′ might be in conflict in Q. First, the event e might have a precondition b = (b0, b1)
and e′ might have a precondition b′ = (b′0, b

′
1) such that b is in conflict with b′. From the

induction hypothesis, b0 is in conflict with b′0 (or, symmetrically, b1 is in conflict with b′1).
Since b0 is a precondition of e0 and b′0 is a precondition of e′0, the result follows. The
second way in which e and e′ might be in conflict is for e and e′ to be distinct, and hence
from the definition of the events of Q and Lemma B.2.4 either e0 6= e′0 or e1 6= e′1, and
for them to share a precondition. If e0 6= e′0, it follows straightforwardly that e0 and e0
share a common precondition, and hence they are in conflict, and if e1 6= e′1 the case is
symmetric.

The second part of the inductive case involves considering two conditions, b = (b0, b1)
and b′ = (b′0, b

′
1), that are in conflict. Without loss of generality, suppose that depth0(q0(b)) >

0. There must exist an event e0 such that b0 ∈ e0
•. SinceG0, G1 andG′ are occurrence nets

and β0(b0) = β1(b1), we can see that there exists an event e1 such that η1(e1) = η0(e0) and
b1 ∈ e1

•. From Lemma B.2.4, there exist unique C and D such that (C, e0, e1,D) ∈ TQ.
Additionally, according to the lemma, we have b ∈ D = (C, e0, e1,D)• and since G0 and
G1 are occurrence nets this is the unique event of which b is a postcondition and b is not
in any initial marking. It follows that b and b′ are not in immediate conflict. There must
therefore exist a condition b′′ ∈ •(C, e0, e1,D) such that either b′′#Qb

′ or there exists an
event (C ′, e′0, e

′
1,D

′) ∈ TQ not equal to (C, e0, e1,D) such that b′ ∈ (C ′, e′0, e
′
1,D

′)• and
b′′ ∈ •(C ′, e′0, e

′
1,D

′). Let b′′ = (b′′0, b
′′
1). In the first case, we have b′′0#0b

′
0 by induction

(or, symmetrically, b′′1#1b
′
1) and hence b0#b

′′
0 since b′′0 ∈

•e0 and b0 ∈ e0
•. Turning to

the second case, since (C, e0, e1,D) and (C ′, e′0, e
′
1,D

′) are distinct events in TQ, according
to the definition of the events of Q and Lemma B.2.4, we must have either e0 6= e′0 or
e1 6= e′1. Suppose that e0 6= e′0; the argument is similar if e1 6= e′1. We have b′′0 ∈

•e0 ∩
•e′0,

so e0(#m)0e
′
0. It follows immediately that b0#b

′
0, as required.
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We now proceed to show that the pullback of occurrence nets in Gen♯f is an occurrence
net.

Lemma B.2.6. If the nets G0, G1 and G′ are occurrence nets then the pullback of folding
morphisms Q described above is also an occurrence net.

The net Q is a safe net since the nets G0 and G1 are safe. We must show the following:

Proof. ∀M ∈MQ : ∀b ∈M : (•b = ∅): Suppose, for contradiction, that there exists e ∈

TQ such that b ∈ e•. It follows from (π0, γ0) being a morphism that γ0(b) ∈ γ0 ·M
and γ0(b) ∈ π0(e)

•. Recalling that γ0 ·M ∈M0 since (π0, γ0) is a morphism, we arrive
at the desired contradiction since then G0 would not be an occurrence net.

∀b ∈ PQ : ∃M ∈MQ : ∃p ∈M : (p F∗ b): Let b = (b0, b1), so β0(b0) = β1(b1). We shall
show that b is reachable from a condition in some initial marking by induction on the
depth of b0.

The base case has b0 ∈M0 for some M0 ∈M0. We have b1 ∈M1 for some M1 ∈M1;
otherwise, there would have to exist an event e1 such that b1 ∈ e1

• since G1 is an
occurrence net, but then β1(b1) ∈ η1(e1)

• and β1(b1) ∈ γ0 ·M0, contradicting G′ being
an occurrence net. Let b′ ∈ P ′ be the condition such that β0(b0) = b′. Recall that,
since (b0, b1) ∈ PQ, we have β1(b0) = b′. Since b′ ∈ β0 ·M0 and b′ ∈ β1 ·M1 because
(η0, β0) and (η1, β1) are morphisms and therefore preserve initial markings, we must
have β0 ·M0 = β1 ·M1 since no condition of the occurrence net G′ can occur in more
than one initial marking. It is now straightforward to see, from the fact that the
relations β0 and β1 are locally injective on the initial markings M0 and M1 that there
is a marking of the pullback M such that (b0, b1) ∈M .

We now consider the inductive case. There exists a unique event e0 ∈ T0 such that
b0 ∈ e0

•, and similarly there exists a unique event e1 ∈ T1 such that b1 ∈ e1
•. Since we

have β0(b0) = b′ = β1(b1) and G′ is an occurrence net, we must have η0(e0) = η1(e1).
The net G0 is an occurrence net, so e0 must have a precondition; call this b′0. Since
(η1, β1) is a morphism, there exists a condition b′1 ∈

•e1 such that β0(b
′
0) = β1(b

′
1).

From the local injectivity of the β0 and β1 on the pre- and postconditions of e0 and
e1, it is straightforward to show that there exist (unique) sets C ⊆ PQ and D ⊆ PQ
such that (C, e0, e1,D) ∈ TQ and (b′0, b

′
1) ∈ C and (b0, b1) ∈ D. From the induction

hypothesis, since b′0 is at lower depth in G0 than b0, there exists a condition p ∈ PQ
and initial marking M ∈ MQ such that p FQ

∗ (b′0, b
′
1). Hence p FQ

∗ (b′0, b
′
1), as

required.

∀b ∈ PQ : (|•b| ≤ 1): Suppose, for contradiction, that there exists b ∈ PQ and two dis-

tinct events (C, e0, e1,D), (C ′, e′0, e
′
1,D

′) ∈ TQ with b ∈ D ∩ D′. According to the
definition of TQ and Lemma B.2.4, since the events are distinct we must have either
e0 6= e′0 or e1 6= e′1. Suppose that e0 6= e′0; the other case is similar. Let b = (b0, b1).
It follows from (π0, γ0) being a morphism that b0 ∈ e0

• ∩ e′0
•, thus contradicting the

net G0 being an occurrence net.

F+ is irreflexive and for all e ∈ E, the set {e′ | e′ F∗ e} is finite: Let the morphism (π0, γ0)
be written q0, a function from the conditions and events of Q to G0. A straightforward
induction on n shows that, for any x, y ∈ P0 ∪ T0, if x Fn y then q0(x) F0

n qo(y). It
follows immediately from the net G0 being an occurrence net that the flow relation
in Q is irreflexive.
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Suppose that e′ F+ e, and therefore q0(e
′) F+ q0(e). It follows from the flow relation

F0 in G0 being irreflexive that q0 is injective on the set {e′ | e′ F∗ e}. Consequently,
since q0 is total on events, if the set {e′ | e′ F∗ e} were infinite, the set {e′0 | e

′
0 F0

∗

q0(e)} would be infinite, contradicting G0 being an occurrence net.

# is irreflexive: The result follows immediately from Lemma B.2.5.

Weak pullbacks

We have seen that the category Gen♯ does not have pullbacks. We were forced to restrict
to the category Gen♯f of general nets with folding morphisms to remedy this. The example

above shows that the inclusion Gen♯f →֒ Gen♯ does not preserve pullbacks, and that the
category of general nets does not have pullbacks of folding morphisms.

The inclusion Gen♯f →֒ Gen♯ does, however, embed any pullback in the category

Gen♯f →֒ Gen♯ as a weak pullback in the category Gen♯. Weak pullbacks were described
on Page 157. This is equivalent to stating that the inclusion preserves weak pullbacks.

Lemma B.2.7. The inclusion Gen♯f →֒ Gen♯ preserves weak pullbacks.

Proof. We first recall a general fact from category theory. Let C be a category with
pullbacks that is a subcategory of D. The following two statements are equivalent:

• Any weak pullback in C is a weak pullback in D.

• Any pullback in C is a weak pullback in D.

We shall show that the pullback Q, (π0, γ0):Q → G0 and (π1, γ1):Q → G1 in the

category Gen♯f of the folding morphisms f0 = (η0, β0):G0 → G′ and f1 = (η1, β1):G1 → G′

is a weak pullback in the category Gen♯.
Let G = (B,E,F,M) be a general net and (θ0, α0):G → G0 and (θ1, α1):G → G1

be any morphisms in Gen♯ such that f0 ◦ (θ0, α0) = f1 ◦ (θ1, α1). To show that the
pullback of folding morphisms is a weak pullback in the category Gen♯, we shall define a
net Ḡ = (B̄, E, F̄ , M̄), a (relational) morphism of general nets (idE , δ):G→ Ḡ and folding
morphisms q0:Ḡ → G0 and q1:Ḡ → G1 such that the two triangles and the square in the
following diagram commute:

G

(θ0,α0)

��

(idE ,δ)
�� (θ1,α1)

��

Ḡ
q0

~~||
||

||
|| q1

  B
BB

BB
BB

B

G0

f0   B
BB

BB
BB

B G1

f1~~||
||

||
||

G′

It then follows immediately from Q, (π0, γ0) and (π1, γ1) being a pullback of folding mor-
phisms that it is a weak pullback in the category of general nets.

Recall that G0 = (P0, T0, F0,M0), G1 = (P1, T1, F1,M1) and G = (B,E,F,M). The
net Ḡ has conditions

B̄ = {(b, i0, p0) | b ∈ B & p0 ∈ P0 & 0 ≤ i0 < α0[b, p0]},
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the same events as G, and flow relation

F̄ [e, (b, i0, p0)] = F [e, b] F̄ [(b, i0, p0), e] = F [b, e].

We define M̄ to be the least set containing the marking M̄ for any marking M ∈M, where
M̄ is defined as

M̄ [(b, i0, p0)] = M [b].

We define the morphism (idE, δ):G→ R̄ as

δ(b, (b′, i0, p0)) ⇐⇒ b = b′.

The morphism q0:Ḡ→ G0 is straightforwardly defined as

q0(e) = θ0(e) q0(b, i0, p0) = p0.

It is easy to see that this is a morphism such that the upper-left triangle commutes. Since,
by assumption, the outer square commutes, i.e. f0 ◦ (θ0, α0) = f1 ◦ (θ1, α1), for each b ∈ B
and p ∈ P , where P is the set of conditions of G′, there is a bijection

θb,p : {(p0, i0) | f0(p0) = p & 0 ≤ i0 < α0[b, p0]}
∼= {(p1, i1) | f1(p1) = p & 0 ≤ i1 < α1[b, p1]}

From this bijection, it is easy to see that q1:R̄→ G1 defined as

q1(e) = θ1(e) q1(b, i0, p0) = p1 for (p1, i1) = θb,f0(p0)(p0, i0)

make the upper-right triangle and the square commute, and from this that q1 is a mor-
phism.

We conclude this section by summarizing how the inclusions of the various categories
of net preserve pullbacks.

Lemma B.2.8. The solid inclusion functors in the following diagram preserve pullbacks
and the dashed inclusion functor preserves weak pullbacks.

Occ♯f
� � (1) //

� _

(3)

��

PT♯
f
� � (2) //

� _

(4)

��

Gen♯f� _

(5)

���
�
�

Occ♯ PT♯ Gen♯

Proof. We have just shown that inclusion (5) preserves weak pullbacks. We remarked
following Lemma B.2.4 that (2) preserves pullbacks. It follows immediately from Lemma

B.2.6 that the inclusion Occ♯f →֒ Gen♯f preserves pullbacks, and hence that (1) preserves
pullbacks.

It is now sufficient to show that (4) preserves pullbacks. It follows from (1) and (4)
preserving pullbacks that the pullback in PT♯ of folding morphisms between occurrence
nets is an occurrence net, and therefore that (3) preserves pullbacks.
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To see that (4) preserves pullbacks, we return to considering the pullback Q in the
category PT♯ defined on page 205.

R

(θ0,α0)

��

(ϕ,δ)
�� (θ1,α1)

��

Q

(π0,γ0)
||

|

~~|||

?�
(π1,γ1)

BB
B

  B
BB

N0

(η0,β0) !!B
BB

BB
BB

B N1

(η1,β1)}}||
||

||
||

N ′

Recalling the definition of the conditions of Q on page 206, any condition in Q is a ∼X1
X0

-
equivalence class

c = [p]X1
X0

for a condition p of R and sets X0 and X1 that are either initial markings of N0 and
N1 with the same image under β0 and β1, respectively, or the pre- or post-sets of events
with the same image under η0 and η1, respectively. It is easy to see, using Lemma B.2.4,
that if (η0, β0) and (η1, β1) are folding morphisms then each class contains precisely two
conditions, one from N0 and one from N1. Hence the relations γ0 and γ1 are, in fact,
total functions. Similarly, π0 and π1 are total on events and hence (π0, γ0) and (π1, γ1)
are folding morphisms.

If the net R drawn above is a P/T net and (θ0, α0) and (θ1, α1) drawn above are folding
morphisms, it is easy to see from the definition on page 207 that (ϕ, δ) is also a folding
morphism.

From the morphisms (π0, γ0), (π1, γ1) and (ϕ, δ) being folding morphisms, the pullback

of folding morphisms taken in PT♯ is also a pullback in PT♯
f . Pullbacks in any category

are uniquely defined up to isomorphism, so any pullback in PT♯
f is also a pullback in PT♯,

as required to complete the proof.

Note that the inclusion functor Occ♯ →֒ PT♯ does not preserve pullbacks, as we showed
on page 209
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Appendix C

Categories of families

Definition C.0.1 (Family). Let C be any category. A family of C, written (Xi)i∈I is an
indexing set I and a function associating each element of i ∈ I with an element Xi of C.
A morphism between families f :(Xi)i∈I → (Yj)j∈J is a function f̂ :I → J and, for each
i ∈ I, a morphism fi:Xi → Yf̂(i) in C.

We write Fam(C) for the category of families of C, with the obvious identities and
composition of morphisms.

Proposition C.1. Let F :C → D be a functor. Then Fam(F ), defined as follows, is a
functor, Fam(F ):Fam(C)→ Fam(D).

• For any family (Xi)i∈I in Fam(C)

Fam(F )(Xi)i∈I = (F (Xi))i∈I .

• Let f :(Xi)i∈I → (Yj)j∈J be a morphism in Fam(C). Recall that

f = (f̂ :I → J, (fi:Xi → Yf̂(i))i∈I).

Define
Fam(F )(f) = (f̂ , (F (fi))i∈I).

It is now easy to see that Fam is an endofunctor on the category of categories since it
preserves composition of functors and preserves identities.

Coreflections between categories lift to their categories of families.

Proposition C.2. Let C and D be any categories related through an adjunction F ⊣ G,
so F :C → D is left adjoint to G:D → C. The functor Fam(F ):Fam(C) → Fam(D) is
left adjoint to the functor Fam(G):Fam(D) → Fam(C). Furthermore, if F ⊣ G is a
coreflection then so is Fam(F ) ⊣ Fam(G).

Proof. We are given an isomorphism of hom-sets

ϕX,Y :C(X,GY ) ∼= D(FX,Y ),

natural in X and Y . For any family (Xi)i∈I in Fam(C) and any family (Yj)j∈J , we wish
to construct an isomorphism of hom-sets

ψ(Xi)i∈I ,(Yj)j∈J
:Fam(C)((Xi)i∈I , (GYj)j∈J) ∼= Fam(D)((FXi)i∈I , (Yj)j∈J),
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natural in the families (Xi)i∈I and (Yj)j∈J .

Let f = (f̂ , (fi)i∈I):(Xi)i∈I → (GYj)j∈J be a morphism in Fam(C). Define

ψ(Xi)i∈I ,(Yj)j∈J
(f) = (f̂ , (ϕXi,Yf̂(i)

(fi))i∈I).

Let g = (ĝ, (gj)j∈J):(FXi)i∈I → (Yj)j∈J in Fam(D). Define

ψ−1
(Xi)i∈I ,(Yj)j∈J

(g) = (ĝ, (ϕ−1
Xĝ(j),Yj

(gj))j∈J).

It follows immediately from this that ψ(Xi)i∈I ,(Yj)j∈J
is a bijection. To see that this

bijection is natural in (Xi)i∈I (naturality in (Yj)j∈J will be similar), for any morphism
f :(Xi)i∈I → (X ′

i)i∈I′ in Fam(C) we must show that the following diagram commutes:

Fam(C)((Xi)i∈I , (GYj)j∈J)
ψ(Xi)i∈I ,(Yj )j∈J// Fam(D)((FXi)i∈I , (Yj)j∈J)

Fam(C)((X ′
i)i∈I′ , (GYj)j∈J)ψ(X′

i
)
i∈I′ ,(Yj )j∈J

//

−◦f

OO

Fam(D)((FX ′
i)i∈I′ , (Yj)j∈J)

−◦Fam(F )(f)

OO

Let h:(X ′
i)i∈I′ → (Yj)j∈J be any morphism in Fam(C)((Xi)i∈I , (GYj)j∈J). Since f and h

are morphisms of families,

h = (ĥ:I ′ → J, (hi:X
′
i → Yĥ(i))i∈I′)

f = (f̂ :I → I ′, (fi:Xi → Xf̂(i))i∈I).

From the naturality of ϕ, the following diagram commutes for any i ∈ I:

Xi

fi

��

C(Xi, GYĥf̂(i))
ϕXi,Y

ĥf̂(i)// D(FXi, Yĥf̂(i))

X ′
f̂(i)

C(X ′
f̂(i)

, GYĥf̂(i))ϕX′
f̂(i)

,Y
ĥf̂(i)

//

−◦fi

OO

D(FX ′
f̂(i)

, Yĥf̂(i))

Ffi

OO

We therefore have the following equations, as required to show commutation of the natu-
rality diagram for ψ above:

ψ(X′
i)i∈I′ ,(Yj)j∈J

(h) ◦ Fam(F )(f)

(1)
= (ĥ, (ϕX′

i ,Yĥ(i)
(hi))i∈I′) ◦ Fam(F )(f)

(2)
= (ĥ ◦ f̂ , (ϕX′

f̂(i)
,Y

ĥf̂(i)
(hf̂(i)) ◦ F (fi))i∈I)

(3)
= (ĥ ◦ f̂ , (ϕXi,Yĥf̂(i)

(hf̂(i) ◦ fi))i∈I)

(4)
= ψ(Xi)i∈I ,(Yj)j∈J

(h ◦ f)

Equations (1) and (4) follow from the definition of ψ. Equation (2) follows from the
definition of Fam(F ) and the definition of composition of morphisms of families. Equation
(3) follows from the naturality diagram for ϕ drawn above.

To complete the proof, it can be shown straightforwardly that if F is full and faithful
then Fam(F ) is full and faithful, so Fam preserves coreflections.
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C.1 Indexed products and coproducts of sets

Let (Xi)i∈I be an I-indexed family of sets. We denote by
∏

i∈I Xi the indexed product of
the family (Xi)i∈I , so an element of

∏

i∈I Xi associates to each element i of I an element
of the set Xi. It is therefore a family (xi)i∈I such that xi ∈ Xi for all i ∈ I.

Let (Xi)i∈I and (Yj)j∈J be indexed families of sets. Given a function f̂ :I → J and a
family of functions (fi:Yf̂(i) → Xi)i∈I , we obtain a morphism

∏

i∈I

fi:
∏

i∈I

Xi →
∏

j∈J

Yj .

by taking a J-indexed set (yj)j∈J to the I-indexed set (fi(yf̂(i)))i∈I .

The indexed coproduct of an I-indexed family of sets (Xi)i∈I is denoted
∐

i∈I Xi. It is
a set, and its elements are of the form inix for some i ∈ I and x ∈ Xi. As for the product,
let (Xi)i∈I and (Yj)j∈J be indexed families of sets. Given a function f̂ :I → J and a family
of functions (fi:Xi → Yf̂(i))i∈I , for the coproduct we obtain a morphism

∐

i∈I

fi:
∐

i∈I

Xi →
∐

j∈J

Yj

which takes inix to inf̂(i)fi(x).

Proposition C.3. For any (locally small) category C and families (Xi)i∈I and (Yj)j∈J of
objects in C there is an isomorphism

∏

i∈I

∐

j∈J

C(Xi, Yj) ∼= Fam(C)((Xi)i∈I , (Yj)j∈J)

natural in the families (Xi)i∈I and (Yj)j∈J .

Proof. A standard calculation.
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Appendix D

Open maps of Petri nets

In Section 7.4, we saw how causal nets represent paths of general nets according to the
individual token game. We shall now describe the form of open map bisimulation ensuing
from taking paths of general nets to be causal nets.

We shall begin by showing that restricting attention to folding maps does not affect
openness, and we shall show that all Caus-open maps are foldings apart from on conditions
and events that cannot occur finitely in any reachable marking. We shall then give a
characterization of when a morphism from an occurrence net to a general net is Caus-
open. This key result will allow us to show that the morphism from the unfolding of a
general net back to the original general net is open and therefore forms a basis for defining
symmetry on the unfolding.

As a preliminary result, note that the inclusion of occurrence nets into general nets
preserves Caus-openness.

Lemma D.0.1. Let (η, β):O → O′ be a morphism in Occ♯. The morphism (η, β) is
Caus-open in Gen♯ iff it is Caus-open in Occ♯.

Proof. Follows directly from Occ♯ being a full subcategory of Gen♯ — cf. Proposition 5
of [WN95].

We now show that any Caus-open map in the category Gen♯ is a folding map, apart
from on conditions that either can never be marked or that can only ever be infinitely
marked. In this appendix, we continue to use the notation described in Definition 7.4.2,
writing P (G) for the places of a general net G, and so on.

Lemma D.0.2. Let (η, β):G → G′ be a Caus-open morphism in Gen♯. If e is an event
that can occur in some reachable marking of G then η(e) 6= ∗. For any place p ∈ P (G):

• if there exists a reachable marking M such that M [p] > 0 then there exists a unique
place p′ ∈ P (G′) such that β[p, p′] > 0, and

• if there exists a reachable marking M such that 0 < M [p] < ∞ then there exists
p′ ∈ P (G′) such that β[p, p′] = 1.

Hence any morphism from an occurrence net (η, β):O → G′ in Gen♯ that is Caus-open
is a folding morphism.

Proof. Since Pre · t is a non-empty multiset according to the definition of general net, it
is sufficient just to consider the requirement on places.

Let p be a condition of G for which there is a reachable marking M such that M [p] > 0.
By Lemma 7.4.2, there is a finite causal net C and folding morphism ι:C → G such that
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ι · mkg(C) = M . From Lemma 7.4.3 and openness, there exist morphisms making the
following diagram commute:

C
ι //

(η̂,β̂)
��

G

(η,β)

��
(η̂, β̂)C

ι̂
//

h

;;wwwwwwwww

G′

Furthermore, ι̂ is a folding morphism.
For the first part, suppose for contradiction that β[p, p′] = 0 for all p′ ∈ P (G′). Since

ι ·mkg(C) = M , there exists b ∈ mkg(C) such that ι(b) = p. However, according to the
definition of (η̂, β̂), there is no b′ such that β̂(b, b′), contradicting the commutation of the
upper triangle.

Now suppose that there exist distinct p′1, p
′
2 ∈ P (G′) such that β[p, p′1] > 0 and

β[p, p′2] > 0. Again, since ι · mkg(C) = M , there exists b ∈ mkg(C) such that ι(b) = p.
From commutation of the upper triangle, there exists b′ ∈ P ((η̂, β̂)C) such that β̂(b, b′)
and h(b′, p). Since ι is a folding morphism, there is no p′ 6= p such that h(b′, p′). It is
therefore impossible for the lower triangle to commute since ι̂ is a folding morphism.

For the second part, assume further that M [p] < ∞. For contradiction, suppose that
∑

p′∈P (G′) β[p, p′] > 1. Let X be the set {b ∈ mkg(C) | ι(b) = p}. We have |X| = M [p]

because ι ·mkg(C) = M . It follows from the definition of β̂ that |β̂X| > M [p]. However,
since ι and ι̂ are foldings, it can be seen that we must have hc(b

′, p) for all b′ ∈ β̂X. It
follows that neither the upper nor the lower triangles commute, giving us the required
contradiction.

From this, it follows immediately that any open morphism from an occurrence net must
be a folding since every event can occur in some reachable marking of an occurrence net
and since every condition of an occurrence net occurs in some reachable marking (ensuring
that for any condition p there exists a reachable marking M such that M [p] > 0) and all
occurrence nets are safe (ensuring that the marking M satisfies M [p] < ∞). It can also
be seen that if a place in a P/T net can become marked, there also exists a marking in
which it is finitely marked. Hence any open morphism from a P/T net is a folding apart
from on conditions that never become marked or on events that can never occur.

So far, we have considered Caus-open maps in the categories Occ♯ and Gen♯. The
general framework for defining symmetry on general nets will involve us restricting to
folding maps between general nets. As we have seen, many Caus-open maps between
general nets are foldings, for example all maps from occurrence nets. The framework will,
however, involve us considering Causf -openness in the category Gen♯f . We now show that
this has no effect on the bisimulations obtained: Openness of folding morphisms in the
category Gen♯f , which are the kind of morphism that we use to relate the unfolding of
a net back to the original net, with respect to the path category Causf coincides with
openness of folding morphisms in the category Gen♯ with respect to the path category
Caus. The same property holds for occurrence nets as a consequence of Lemma D.0.1.

Lemma D.0.3. Let G and G′ be general nets and (η, β):G→ G′ be a folding morphism.

The morphism (η, β) is Caus-open in Gen♯ if, and only if, it is Causf-open in Gen♯f .

Proof. It is easy to show that a folding morphism is Causf -open in Gen♯f if it is Caus-open
in Gen♯.

Suppose that the folding morphism f = (η, β):G → G′ is Causf -open in Gen♯f . To
show that it is Caus-open in Gen♯, suppose that there are causal nets C and C ′ and
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morphisms c, c′ and s in Gen♯ such that the following diagram commutes:

C
c //

s

��

G

f
��

C ′
c′

// G′.

We shall show that there are causal nets C̄ and C̄ ′, general net morphisms h and h′ and
folding morphisms s̄, c̄ and c̄′ such that the squares (1) and (4) and triangles (2) and (3)

in the diagram below commute. It will then follow from f being Causf -open in Gen♯f that
f is Caus-open in Gen♯.

C

s

��

c

��h   A
AA

AA
AA

A

(2)

(1)

C̄

s̄
��

c̄
//

(4)

G

f

��
C̄ ′

c̄′ // G′

C ′ c′

AA
h′

>>}}}}}}}}
(3)

The net C̄, defined as follows, will be a causal net and shall be defined with a flow
relation F (C̄):

P (C̄) , {(b, i, p) | b ∈ P (C) & p ∈ P (G) & 0 ≤ i < cc[b, p]}

T (C̄) , {e ∈ T (C) | ce(e) 6= ∗}
(b, i, p) F (C̄) e ⇐⇒ b F (C) e e F (C̄) (b, i, p) ⇐⇒ e F (C) b

M(C̄) , {{(b, i, p) | (b, i, p) ∈ P (C) & b ∈M} |M ∈M(C)}

The net C̄ ′ is defined similarly, using C ′ in place of C, c′ in place of c and G′ in place of
G. The only slightly difficult part of showing that C̄ is a causal net is to show that for all
x ∈ P (C̄) ∪ T (C̄) there exists b ∈M ∈ M(C̄) such that b F (C)∗ x. This follows from the
following claim:

Claim. For any y ∈ P (C) ∪ T (C):

• if y ∈ P (C) and (y, i, p) ∈ P (C̄) then there exists b ∈ M ∈ M(C̄) such that b F
(C)∗ (y, i, p), and

• if y ∈ T (C) and y ∈ T (C̄) then there exists b ∈M ∈M(C̄) such that b F (C)∗ y.

Proof. Induction on the depth of y.

On events, we define c̄e to be the restriction of ce to T (C̄), c̄′e to be the restriction of c′e
to T (C̄ ′), s̄ to be the restriction of s to T (C̄), and he and h′e to be the obvious inclusions.
From these definitions, it is obvious that (1)–(4) above commute on events. On conditions,
we define the functions c̄ and c̄′ as

c̄c(b, i, p) , p

c̄′c(b
′, i, p′) , p′.
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It is easy to show that c̄ and c̄′ are morphisms as a consequence of c and c′ being morphisms.
The morphism h need not be a folding morphism, but it shall be a relational morphism
i.e. a relation on conditions.

hc(b, (b
′, i, p)) ⇐⇒ b = b′.

Again, it is straightforward to prove that h is a morphism. The morphism h′:C ′ → C̄ ′ is
defined similarly. The triangles (2) and (3) are now easily seen to commute, i.e. c̄ ◦ h = c
and c̄′ ◦ h′ = c′.

All that remains is to define the morphism s̄ and show that the squares (1) and (4)
commute on conditions. Observe that the morphism s must be a relational morphism
because it is between causal nets. From the commutation of the earlier square (i.e. f ◦c =
c′ ◦ s), for every b ∈ P (C) and p′ ∈ P (G′), there exists a bijection

θb,p′ : {(p, i) | p ∈ P (G) & fe(p) = p′ & 0 ≤ i < cc(b, p)}
∼= {(b′, i) | b′ ∈ P (C ′) & sc(b, b

′) & 0 ≤ i < c′c(b
′, p′)}.

We define s̄c:P (C̄)→ P (C̄ ′) as

s̄c(b, i, p) = (b′, i′, f(p)) if θb,f(p):(p, i) 7→ (b′, i′).

A straightforward analysis shows that s̄ is a (folding) morphism, and it is easy to see that
the squares (1) and (4) commute.

We conclude this section by characterizing when a morphism from an occurrence net
to a general net is Caus-open.

Theorem D.1. Let O be an occurrence net and G be a general net. A morphism f :O → G
is Caus-open in Gen♯ if, and only if, it is a folding morphism and reflects any initial
marking of G to an initial marking of O and satisfies the following ‘transition lifting’
property:

for any subset A of conditions of O such that co A for which there exists a
transition t of G such that f · A = PreG · t, there exists an event e of O such
that A = •e and f(e) = t.

Proof. ‘Only if’: It follows immediately from Lemma D.0.2 that f is a folding morphism.
We first show that any Caus-open morphism reflects initial markings. Suppose that
M ′ ∈ M(G). It follows from Lemma 7.4.2 that there is a causal net C and folding
ι′:C → G such that ι′ ·mkg(C) = M ′, and furthermore mkg(C) is the initial marking of C.
Let 0 denote the causal net with no conditions, no events and no initial marking, ι:0→ O
be the inclusion of 0 into O, and s be the inclusion of 0 into C. The outer square of the
following diagram commutes, so from openness of f there is a morphism h making the
inner two triangles commute:

0
ι //

s

��

O

f
��

C
ι′

//

h
??~~~~~~~
G

Since h is a morphism, h · mkg(C) ∈ M(O). By commutation of the lower triangle,
f · h ·mkg(C) = M ′, so, as required, f reflects initial markings if it is open.

We now show that for any A ⊆ P (O), if co A and f · A = Pre · t for some t ∈ T (G)
then there exists an event e ∈ T (O) such that A = •e and f(e) = t. Since we have
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co A, according to Proposition 7.3 there exists a reachable marking M of O such that
A ⊆ M . Hence, by Lemma 7.4.2, there is a causal net C and morphism ι:C → O such
that ι · mkg(C) = M . It follows that there is a unique subset A0 ⊆ mkg(C) such that
ι · A0 = A. According to Lemma 7.4.3, the following diagram commutes:

C

f̂
��

ι // G

f

��
f̂C

ι̂
// G′

Recall that the path f̂C with embedding ι̂:f̂C → G is the image under f of the path C
with embedding ι:C → O. Since the square commutes, we have

Pre · t = f · A = f · ι · A0 = ι̂ · f̂ ·A0.

Hence, according to Lemma 7.4.1, the following triangle commutes:

f̂C
ι̂ //

� _

��

G

f̂C +f̂ ·A0
t

ι+
f̂·A0

t

;;wwwwwwwwww

Recall that f̂C+f̂ ·A0
t is the net fC extended with a new event with preconditions f̂ ·A0,

which (to avoid confusion) we shall call t′, and the morphism ι̂ is extended to form ι̂+f̂ ·A0
t

which sends t′ to t.
We can now apply the definition of f being an open map to the composition of these

two diagrams to obtain a morphism h such that the two triangles in the following diagram
commute:

C

f̂
��

ι // O

f

��
f̂C +f̂ ·A0

t
ι̂+

f̂ ·A0
t

//

h

66nnnnnnnnnnnnn

G

We have f(h(t′)) = t by commutation of the lower square and the definition of ι̂ +f̂ ·A0
t.

According to the definition of f̂C +f̂ ·A0
t, we also have •t′ = f̂ · A0. It follows from

commutation of the upper square and h being a morphism that •h(t′) = ι · A0 = A, as
required.

‘If’: It is sufficient according to Lemma D.0.3 to show that if a folding morphism
f :O → G reflects initial markings and transitions in the manner defined above then it is
Causf -open in Gen♯f .

Suppose that the following diagram commutes, for causal nets C and C ′ and folding
morphisms s, c and c′:

C
c //

s
��

O

f

��
C ′

c′
// G

For any n ∈ N, let Cn denote the causal net obtained by restricting C to elements at depth
less than or equal to n, and let C ′

n denote C ′ restricted to elements at depth less than or
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equal to n. It is clear that C0 ≤ C1 ≤ . . . and C ′
0 ≤ C ′

1 ≤ . . . are ω-chains of occurrence
nets according to the subnet order defined in Section 7.3.

We shall give, by induction on n, a morphism hn:C
′
n → O such that the following

diagram commutes:

Cn
c //

s
��

O

f

��
C ′
n c′

//

hn

??~~~~~~~~
G

The morphisms obtained shall be coherent in the sense that hn+1 and hn shall coincide
on elements of C ′

n, and hence we shall obtain a morphism h:C ′ → O such that c = h ◦ s
and f ◦ h = c′ by applying Proposition 7.11.

Base case: We begin by constructing h0. If C ′ has no initial marking, C ′
0 has no events

and no conditions and h0 can be trivially defined to be the empty function.

If C ′ has an initial marking M ′ and C has an initial marking M , we must have
M ′ = s ·M . The net C0 consists precisely of the conditions in M and the net C ′

0

consists precisely of the conditions in M ′. For any condition b′ in M ′, because s
is a morphism, there is a unique condition b in M such that s(b) = b′. We define
h0(b

′) = c(b). It is easy to see that this is a morphism that makes the two triangles
commute.

Now suppose that C ′ has an initial marking M ′ but C has no initial marking. The net
C has no conditions and no events. For any definition of h0, the upper triangle will
therefore trivially commute. Since c′ is a morphism, c′ ·M ′ ∈M(G). By assumption,
the morphism f reflects initial markings, so there exists M ∈M(O) such that f ·M =
c′ ·M ′. Hence, for any place p ∈ P (G), there is a bijection

θp:{b
′ ∈M ′ | c′(b) = p} ∼= {b ∈M | f(b) = p}.

We define h0(b
′) = θc′(b)(b). It is easy to see that this definition makes the lower

triangle commute and that h0:C
′
0 → O is a morphism.

Inductive case: We now construct hn+1 from hn. For any element x of C ′
n at depth less

than or equal to n, define hn+1(x) = h(x). It follows from the induction hypothesis
that hn+1 satisfies the requirements for being a morphism on the initial marking of
C ′
n+1 and any event of C ′

n+1 at depth less than or equal to n.

For any event e′ of C ′ at depth precisely n+1, we now define hn+1(e) and define hn+1

on all postconditions of e. This leads to hn+1 being defined at all elements of C ′
n+1.

If there exists an event e of C such that s(e) = e′, the event e must be the unique
such event since otherwise the event e′ could occur more than once in some run of
the net C ′. Define hn+1(e

′) = c(e). A simple induction shows that, for any folding
morphism f :C → C ′ between causal nets, depth(x) = depth(f(x)) for any x in C.
Hence depth(e) = depth(e′) = n+ 1. For any condition b′ ∈ e′•, there exists a unique
condition b ∈ e• such that s(b) = b′. Define hn+1(b

′) = c(b). It follows immediately
from this definition that

hn+1 · e
′• ⊆ hn+1(e

′)
•

& ∀b ∈ hn+1(e
′)
•

: ∃!b′ ∈ e′
•

: hn+1(b
′) = b.

From the induction hypothesis that the upper triangle commutes at depth n, i.e.
cn = hn ◦ sn, it is easy to show that

hn+1 ·
•e′ ⊆ •hn+1(e

′) & ∀b ∈ •hn+1(e
′) : ∃!b′ ∈ •e′ : hn+1(b

′) = b,
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and hence hn+1 satisfies the requirements for being a morphism on the event e′.

Now suppose that there is no event e of C such that s(e) = e′. From the induction
hypothesis, the lower triangle commutes at depth n, so f ◦hn = c′n. Any precondition
of e′ occurs at depth less than or equal to n, so c′n ·

•e′ = c′ ·•e′ and hence (f ◦hn)·
•e′ =

c′ · •e′ = PreG · c
′(e′). Since we have con

•e because C ′
n is a causal net, we must also

have co (hn ·
•e′). It follows from the ‘event lifting’ property above that there exists

an event e ∈ E(O) such that •e = hn ·
•e′ and f(e) = c′(e′). We define hn+1(e

′) = e.
We now consider postconditions of e′. Since f and c′ are morphisms and f(e) = c′(e′),
for every p ∈ P (G) there is a bijection induced by f and c′

θp:{b
′ ∈ e′

•
| c′(b′) = p} ∼= {b ∈ e• | f(b) = p}.

We define hn+1(b
′) = θc′(b′)(b

′) for any b′ ∈ e′•, all of which will be at depth n+ 1. It
is easy to see from these definitions that hn+1 satisfies the requirements for being a
morphism on the event e′.

It follows that hn+1 is a morphism, clearly satisfying cn+1 = hn+1 ◦ sn+1 and c′n+1 =
f ◦ hn+1.

Using the cofreeness (apart from uniqueness of the mediating morphism) result in
Theorem 7.15, the theorem above can be used to characterize when a morphism from any
general net is open.

Proposition D.2. A morphism f :G → G′ is Caus-open in Gen♯ if, and only if, the
morphism f ◦ εG:U(G)→ G′ is Caus-open.

Proof. The “only if” direction is easy since, using the theorem above, the morphism
εG:U(G) → G is readily seen to be Caus-open, and the composition of open morphisms
is an open morphism.

We now consider the “if” direction. If the diagram on the left commutes, by Theorem
7.15 there must exist a morphism c0:C → U(G) such that the outer square of the diagram
on the right commutes because any causal net is an occurrence net:

C
c //

s
��

G

f
��

C ′
c′

// G′

U(G)

εG

��
C

c0
<<yyyyyyyy c //

s
��

G

f
��

C ′
c′

// G′

The morphism f ◦ εG is assumed to be open, so there exists a morphism h:C ′ → U(G)
such that the following diagram commutes:

C
c0 //

s

��

U(G)

εG◦f

��
C ′

c′
//

h
<<yyyyyyyy
G′

From this, we can see that the following diagram commutes

C
c //

s

��

G

f
��

C ′
c′

//

εG◦h|||

>>|||

G′,
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and hence f :G→ G′ is Caus-open.
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Appendix E

Correspondence

In this appendix, we show that the net semantics corresponds to the operational semantics.
This shall involve equivalence on nets.

E.1 Net equivalence

As discussed in Section 3.11, the equivalences between terms t and t′ that we shall consider
are spans of Pom-open morphisms from a safe net N between C JtK and C Jt′K. For our
purposes, it is useful to require the net N at the apex of the span to have some additional
structure, and it is convenient to restrict attention to spans of synchronous morphisms.

Definition E.1.1 (Spanning net). Let N be a safe net with initial marking written Ic(N).
The net N is a congruence spanning net if it satisfies:

1. there exists a unique non-empty marking Tc(N) of N , reachable from all other reach-
able markings, such that there exists no e with concession in Tc(N),

2. for any event e of N , the sets •e and e• are nonempty, and

3. the net N is well-terminating.

As such, the net N has all the structure assumed of an embedded net representing a
term in, for example, the sequential path lemma (Lemma 3.6.2).

Lemma E.1.1. For any closed term t, the net C JtK is a congruence spanning net.

Proof. Lemmas 3.9.1, 3.5.1 and 3.7.1.

Definition E.1.2 (Congruence span). Two nets, C Jt1K and C Jt2K are related by a congru-
ence span if there exists a congruence spanning net N and a pair of synchronous Pom-open
morphisms f1:N → C Jt1K and f2:N → C Jt2K.

We write C JtK ∼cc C Jt′K, and sometimes just t ∼cc t
′, if the nets C JtK and C Jt′K are

related by a congruence span. We also write (C JtK , C) ∼cc (C JtK , C ′) if the net C JtK in
initial marking C is related to C Jt′K in initial marking C ′ by a congruence span.

An important property is that Pom-open morphisms preserve terminal markings, just
as any morphism preserves the initial marking of a net.

Lemma E.1.2. Let f = (η, β):N → N ′ be a Pom-open morphism between congruence
spanning nets N and N ′. Then Tc(N ′) = βTc(N).
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Proof. Suppose, for contradiction, that βTc(N) 6= Tc(N ′). Since the marking Tc(N) is
reachable from Ic(N), the marking βTc(N) is reachable from Ic(N ′). From the definition
of Tc(N ′) as being the unique reachable marking of N ′ in which no event has concession,

there exists an event e′ such that βTc(N)
e′

−։. From openness of f , there must exist e

such that η(e) = e′ and Tc(N)
e
−։. This contradicts terminality of Tc(N).

It is reasonable to ask whether it is necessary to restrict attention to congruence spans
rather than taking standard open map bisimulation on the control nets. We shall explain
why it is required that the net N must be a congruence spanning net, first by drawing
attention to sequential composition. Suppose that we have a span

N
f1

||yy
yy

yy
yy f ′1

""F
FFFFFFF

C Jt1K C Jt′1K .

We want a span relating C Jt1; t2K and C Jt′1; t2K. The natural way of forming this is to form
the sequential composition of N with C Jt2K, which we shall write N ; C Jt2K, and show that
the morphisms in the span

N ; C Jt2K
f

xxrrrrrrrrrr
f ′

&&LLLLLLLLLL

C Jt1; t2K C Jt′1; t2K

are open. Without restricting the net N to being a congruence spanning net, we lose a
handle on the behaviour of the net N ; C Jt2K which we need in order to show that the
morphisms f and f ′ are open.

Of course, this requires the operation of sequential composition of embedded nets
to be defined; this just follows the earlier definition for sequential composition of nets
representing terms.

Definition E.1.3. Let N1 and N2 be congruence spanning nets where

N1 = (C1, E1,
C(−), (−)C, Ic(N1), | − |1) and

N2 = (C2, E2,
C(−), (−)C, Ic(N2), | − |2).

The net
N1;N2 = (C,E,C(−), (−)C, Ic(N1;N2), | − |)

is defined as:

C = seq 1:(C1 \ Tc(t1)) ∪ seq 2:(C2 \ Ic(t2))

∪(seq 1:Tc(t1)× seq 2:Ic(t2))

Ic(N1;N2) = P ⊳ seq 1:Ic(N1)

E = P ⊳ seq 1:E1 ∪ P ⊲ seq 2:E2

Let e be an event of N1. Recall that it can be considered to be a tuple (Ce, eC, λ), where
λ indicates its effect on the state conditions, according to the discussion preceding Lemma
3.4.1. It gives rise to an event denoted P ⊳ seq 1:e which has preconditions P ⊳ seq 1:Ce,
postconditions P ⊳ seq 1:eC and label λ.

Note that Lemma 3.6.2, which characterizes the runs of the net C Jt1; t2K can be ex-
tended to this setting to characterize the runs of N1;N2.
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Lemma E.1.3. Suppose that the nets N1 and N2 are congruence spanning nets. If

Ic(N1;N2)
π
−։ C in N1;N2 then either:

• there exist C1 and π1 such that C = P ⊳ seq 1:C1 and π = P ⊳ seq 1:π1 and Ic(N1)
π1
−։

C1 in N1, or

• there exist C2, π1 and π2 such that C = P ⊲ seq 2:C2 and π = (P ⊳ seq 1:π1) · (P ⊲

seq 2:π2) and Ic(N1)
π1
−։ Tc(N1) in N1 and Ic(N2)

π2
−։ C2 in N2,

where P = seq 1:Tc(N1)× seq 2:Ic(N2).

Proof. The proof is similar to that of Lemma 3.6.2.

In fact, the net N1;N2 has all the structure needed to be a congruence spanning net.

Lemma E.1.4. The net N1;N2 is a congruence spanning net and Tc(N1;N2) = P ⊲
seq 2:Tc(t2) for P defined as in Definition E.1.3.

Proof. It is easy to see, using the preceding lemma, that P ⊲ seq 2:Tc(t2) is the unique
reachable marking in which no event has concession. The lemma is also needed to show
that the net N1;N2 is well-terminating. All the other requirements follow immediately
from the nets N1 and N2 being congruence spanning nets.

We can now show that the existence of an open map is preserved by the operation of
sequencing.

Lemma E.1.5. Suppose that there exist synchronous Pom-open morphisms f1:N1 → N ′
1

and f2:N2 → N ′
2 between congruence spanning nets N1, N

′
1, N2 and N ′

2. Then there exists
a synchronous Pom-open morphism f :N1;N2 → N ′

1;N
′
2.

Proof. The proof is rather technical and detailed, so the reader may wish to pass over it
on first reading.

Let f1 = (η1, β1) and f2 = (η2, β2). Define P = seq 1:Tc(N1)× seq 2:Ic(N2) and define
P ′ = seq 1:Tc(N ′

1)× seq 2:Ic(N ′
2). The morphism f = (η, β) is defined as follows:

η(P ⊳ seq 1:e1) = P ′ ⊳ seq 1:f1(e1)

η(P ⊲ seq 2:e2) = P ′ ⊲ seq 2:f2(e2)

β(seq 1:b1, seq 1:b′1) ⇐⇒ b′1 6∈ Tc(N ′
1) & β1(b1, b

′
1)

β(seq 1:b1, (seq 1:b′1, seq 2:b′2)) ⇐⇒ b′1 ∈ Tc(N ′
1) & b′2 ∈ Ic(N ′

2)
& β1(b1, b

′
1)

β(seq 2:b2, seq 2:b′2) ⇐⇒ b′2 6∈ Ic(N ′
2) & β2(b2, b

′
2)

β(seq 2:b2, (seq 1:b′1, seq 2:b′2)) ⇐⇒ b′2 ∈ Ic(N ′
2) & b′1 ∈ Tc(N ′

1)
& β2(b1, b

′
1)

β((seq 1:b1, seq 2:b2), (seq 1:b′1, seq 2:b′2))
⇐⇒ b1 ∈ Tc(N1) & b2 ∈ Ic(N2)

& b′1 ∈ Tc(N ′
1) & b′2 ∈ Ic(N ′

2)
& β1(b1, b

′
1) & β2(b2, b

′
2)

We first show that f :N1;N2 → N ′
1;N

′
2 is a morphism. This will follow immediately from

the fact that, for any C1 a subset of conditions of N1 and C2 a subset of conditions of N2

on which β1 and β2 are, respectively, locally injective:

β(P ⊳ seq 1:C1) = P ′ ⊳ seq 1:β1C1

β(P ⊲ seq 2:C2) = P ′ ⊲ seq 2:β2C2
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We shall show only the first equation; the second is similar.

β(P ⊳ seq 1:C1) ⊆ P
′ ⊳ seq 1:β1C1: Suppose that b ∈ P ⊳ seq 1:C1 and β(b, b′). We must

show that b′ ∈ P ′ ⊳ seq 1:β1C1.

First take b = seq 1:b1 for some b1. We have b1 ∈ C1 \ Tc(N1). According to the
definition of β, there are two cases for b′:

• b′ = seq 1:b′1 for some b′1 6∈ Tc(N ′
1) and β1(b1, b

′
1):

We have b′1 ∈ β1C1, so seq 1:b′1 ∈ P
′ ⊳ seq 1:β1C1 as required.

• b′ = (seq 1:b′1, seq 2:b′2) for some b′1 ∈ Tc(N ′
1) and b′2 ∈ Ic(N ′

2) and β1(b1, b
′
1):

We have b′1 ∈ β1C1, so (seq 1:b′1, seq 2:b′′2) ∈ P
′ ⊳ seq 1:C1 for all b′′2 ∈ Ic(N ′

2), as
required.

Now take b = (seq 1:b1, seq 2:b2) for some b1 and b2. We have b1 ∈ C1 ∩ Tc(N1) and
b2 ∈ Ic(N2). From the definition of β, it must be the case that b′ = (seq 1:b′1, seq 2:b′2)
for some b′1 ∈ Tc(N ′

1) and b′2 ∈ Ic(N ′
2) satisfying β1(b1, b

′
1) and β2(b2, b

′
2). Since

b′1 ∈ β1C1, we have b′ ∈ P ′ ⊳ seq 1:β1C1 as required.

∀b′ ∈ P ′ ⊳ seq 1:β1C1 ∃!b ∈ P ⊳ seq 1:C1 : β(b, b′): Suppose that b′ ∈ P ′⊳seq 1:β1C1. There
are two cases for b′.

First take b′ = seq 1:b′1 for b′1 ∈ (β1C1)\Tc(N ′
1). There exists unique b1 ∈ C1 such that

β1(b1, b
′
1). We have b1 6∈ Tc(N1) since otherwise b′1 ∈ Tc(N ′

1) as open maps preserve
terminal markings. Hence β(seq 1:b1, seq 1:b′1) and b1 ∈ P ⊳ seq 1:C1. Uniqueness
follows from uniqueness of b1.

Now take b′ = (seq 1:b′1, seq 2:b′2) for b′1 ∈ (β1C1) ∩ Tc(N ′
1) and b′2 ∈ Ic(N ′

2). There
exists a unique b1 ∈ C1 such that β1(b1, b

′
1).

If b1 6∈ Tc(N1) then seq 1:b1 ∈ P ⊳ seq 1:C1 and β(seq 1:b1, b
′).

If b1 ∈ Tc(N1) then there exists unique b2 ∈ Ic(N2) such that β2(b2, b
′
2) since β2 is a

morphism (here, the proof of the other equation uses the fact that β2Tc(N2) = Tc(N ′
2)

since open maps preserve terminal markings). We have (seq 1:b1, seq 2:b2) ∈ P⊳seq 1:b1
and, from the definition of β, it is the case that β((seq 1:b1, seq 2:b2), b

′).

Uniqueness follows, in both cases, from the uniqueness of b1 such that b1 ∈ C1 and
β1(b1, b

′
1).

We now show that the morphism f = (η, β) is Pom-open, by showing the following
two properties:

• For any marking C reachable from Ic(N1;N2) in N1;N2, if βC
e′

−։ then there exists

e such that C
e
−։ and η(e) = e′:

Let π be the path Ic(N1;N2)
π
−։ C. According to Lemma E.1.3, there are two cases

for the marking C.

C = P ⊳ seq 1:C1: for some C1 and there exists π1 satisfying Ic(N1)
π1
−։ C1 and π =

P ⊳ seq 1:π1.

From the earlier result, we have βC = β(P ⊳ seq 1:C1) = P ′ ⊳ seq 1:β1C1. Ac-
cording to the definition of the events of N ′

1;N
′
2, there are two cases for the

event e′:
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If e′ = P ′ ⊳ seq 1:e′1 for some e′1, we have P ′ ⊳ seq 1:β1C1

P ′⊳seq 1:e′1
−։ . From Lemma

3.3.2, we therefore have β1C1

e′1
−։ in N ′

1. From the openness of (η1, β1), there

therefore exists e1 such that η1(e1) = e′1 and C1
e1
−։. From Lemma 3.3.2, it

is therefore the case that P ⊳ seq 1:C1

P⊳seq 1:e1
−։ . Now, η(P ⊳ seq 1:e1) = P ′ ⊳

seq 1:η1(e1) by definition, so the case is complete.

If e′ = P ′ ⊲ seq 2:e′2 for some e′2, we have

P ′ ⊳ seq 1:β1C1

P ′⊲seq 2:e′2
−։ in N ′

1;N
′
2.

By assumption, every event of N ′
2 has a precondition, so there exists b′2 ∈

•e′2.
Since the event has concession in P ′ ⊳ seq 1:β1C1, it must be the case that
b′2 ∈ Ic(N2). We must therefore have (seq 1:b′1, seq 2:b′2) ∈ P

′ ⊳ seq 1:β1C1 for all
b′1 ∈ Tc(N ′

1). Consequently, since the marking β1C1 is reachable in N ′
1 which is

a well-terminating net, it must be the case that β1C1 = Tc(N ′
1) and therefore

C1 = Tc(N1). (Otherwise, because N1 is a congruence spanning net, there
would exist an event with concession in C1 according to Lemma 3.9.1, so there
would be an event with concession in β1C1 = Tc(N ′

1), contradicting N ′
1 being a

congruence spanning net.) Hence

P ′ ⊳ seq 1:β1C1 = P ′ ⊲ seq 2:Ic(N ′
2)

P ′⊲seq 2:e′2
−։

and therefore, by Lemma 3.3.2, Ic(N ′
2)

e′2
−։. By openness of (η2, β2), there exists

e2 such that η2(e2) = e′2 and Ic(N2)
e2
−։. Again by Lemma 3.3.2, we have

P ⊲ seq 2:Ic(N2) = P ⊳ seq 1:Tc(N1)
P⊲seq 2:e2
−։ in N1;N2,

which completes the case since η(P ⊲ seq 2:e2) = P ′ ⊲ seq 2:η2(e2) = e′.

C = P ⊲ seq 2:C2: for some C2 and there exist π1, π2 such that π = (P ⊳ seq 1:π1) · (P ⊲
seq 2:π2) and

Ic(N1)
π1
−։ Tc(N1) Ic(N2)

π2
−։ C2.

Again, we consider the two cases for the event e′ (it shall turn out that the first
cannot be so).

If e′ = P ′ ⊳ seq 1:e′1 for some e′1, we have P ′ ⊲ seq 2:β2C2

P ′⊳seq 1:e′1
−։ . Following an

argument similar to that in the case above, we must have β2C2 = Ic(N ′
2) and

therefore P ′ ⊲ seq 2:β2C2 = P ′ ⊳ seq 1:Tc(N ′
1). Hence, by Lemma 3.3.2, we have

Tc(N ′
1)

e′1
−։, contradicting terminality of Tc(N ′

1).

If e′ = P ′ ⊲ seq 2:e′2 for some e′2, we have P ′ ⊲ seq 2:β2C2

P ′⊲seq 2:e′2
−։ . From Lemma

3.3.2, we obtain β2C2

e′2
−։. From the openness of (η2, β2), we may deduce that

there exists e2 such that C2
e2
−։ in N2 and η2(e2) = e′2. Hence, again by Lemma

3.3.2, P ⊲ seq 2:C2

P⊲seq 2:e2
−։ in N1;N2, which completes this case since η(P ⊲

seq 2:e2) = P ′ ⊲ seq 2:η2(e2).
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• For any marking C reachable from Ic(N1;N2) in N1;N2 and any e and e′, if there

exists C ′ such that C
e
−։ C ′ e′

−։ in N1;N2 and η(e)I ′η(e′) then eIe′, where I is the
independence relation on N1;N2 and I ′ is the independence relation on N ′

1;N
′
2.

Suppose that there exists C reachable from Ic(N1;N2) by a path π in N1;N2 for

which there exist C ′, e and e′ such that C
e
−։ C ′ e′

−։ and η(e)Iη(e′). According to
the sequential path lemma, Lemma E.1.3, there are three cases:

– there exist e1 and e′1 such that e = P ⊳ seq 1:e1 and e′ = P ⊳ seq 1:e′1:
Informally, the events e and e′ are both in the N1 part of N1;N2. Their consec-
utive occurrence in N1;N2 will yield the consecutive occurrence of the events
in N1, and the independence of η(e) and η(e′) in N ′

1 will yield independence in
N1.

Formally, in this case, according to Lemma E.1.3 there exist C1, C
′
1, π1 such

that

C = P ⊳ seq 1:C1 C ′ = P ⊳ seq 1:C ′
1 π = P ⊳ seq 1:π1

and Ic(N1)
π1
−։ C1 in N1. In addition, we also have C1

e1
−։ C ′

1

e′1
−։ in N ′

1. By
definition, η(e) = P ′ ⊳ seq 1:η1(e1) and η(e′) = P ′ ⊳ seq 1:e′1. We have β1C1

reachable from Ic(N ′
1) and β1C1

η1(e1)
−։ β1C

′
1

η1(e′1)
−։ . Now, it is easy to see that

η(e)I ′η(e′) iff η1(e1)I
′
1η(e

′
1), where I ′1 is the independence relation on events of

N ′
1. Since the map (η1, β1) is open, we have e1I1e

′
1 and hence eIe′.

– there exist e1 and e2 such that e = P ⊳ seq 1:e1 and e′ = P ⊲ seq 2:e2:
Informally, the event e is an event of N1 and the event e′ is an event of N2. We
shall show that η(e) and η(e′) cannot be independent.

Formally, in this case, according to Lemma E.1.3 we have C ′ = P and there
exist C1 and π1 such that

C = P ⊳ seq 1:C1 π = P ⊳ seq 1:π1

and Ic(N1)
π1
−։ C1 in N1. We also have C1

e1
−։ Tc(N1) in N1 and Ic(N2)

e2
−։ in

N2. By assumption, e•1 6= ∅ and •e2 6= ∅; suppose that b1 ∈ e1
• and b2 ∈

•e2.
We must have b1 ∈ Tc(N1) and b2 ∈ Ic(N2). Hence (seq 1:b1, seq 2:b2) ∈ e

•∩•e′.
Since Tc(N ′

1) 6= ∅ and Ic(N ′
2) 6= ∅, from the definition of β there exists b′ such

that β((seq 1:b1, seq 2:b2), b
′). It follows that b′ ∈ η(e)• ∩ •η(e), and therefore

¬(η(e)I ′η(e′)).

– The final case, where e = P ⊲ seq 2:e2 and e′ = P ⊲ seq 2:e′2 is similar to first
case.

We can show similarly that if there are open morphisms f1:N1 → N ′
1 and f2:N2 →

N ′
2 between congruence spanning nets then there is an open morphism from the net

α1.N1 + α2.N2 to the net α1.N
′
1 → α2.N

′
2. We have again extended the notation for

the nondeterministic guarded sum of terms to form the nondeterministic guarded sum of
nets.

Similar results can be obtained for the other constructs. A slight technical complication
is that we deal with nets representing closed terms, so it is not enough to say that if there
is an open map from N to N ′ then there is an open map from resource w do N od to
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resource w do N ′ od. Instead, we must show that if, for every r ∈ Res, there is an open
map fr:Nr → N ′

r for congruence spanning nets Nr and N ′
r then there is an open map

f :resource do (Nr)r∈Res od→ resource do (N ′
r)r∈Res od.

The control net resource do (Nr)r∈Res od is defined in a manner similar to the definition
of the net C Jresource w do t odK, with the net Nr taking the place of the control net for
[r/w]t.

Lemma E.1.6. Suppose that there are synchronous Pom-open morphisms f1:N1 −→◦
N ′

1 and f2:N2 −→◦ N ′
2 between congruence spanning nets. Then there are Pom-open

morphisms
N1 ‖ N2 −→◦ N ′

1 ‖ N
′
2

α1.N1 + α2.N2 −→◦ α1.N
′
1 + α2.N

′
2

while b do N1 od −→◦ while b do N ′
1 od

with r do N1 od −→◦ with r do N ′
1 od

Suppose that there is a synchronous Pom-open morphism fr:Nr −→◦ N ′
r between congru-

ence spanning nets Nr and N ′
r for each r ∈ R for R ⊆ Res. Then there is a Pom-open

morphism
resource do (Nr)r∈R od −→◦ resource do (N ′

r)r∈R od.

The above open maps are demonstrated in the same way as the open map for the
sequential composition described above. In fact, all but the nondeterministic sum are
much less intricate.

Part of showing that open map bisimilarity ∼cc on control nets representing terms
is a congruence is showing that it is an equivalence relation, and in particular that it is
transitive. The usual way of composing a span is to take a pullback. That is, if we have
spans

N
f1

||yy
yy

yy
yy f2

""E
EE

EE
EE

E

C Jt1K C Jt2K

N ′

f ′2

||yy
yy

yy
yy f3

""E
EE

EE
EE

E

C Jt2K C Jt3K
exhibiting t1 ∼cc t2 and t2 ∼cc t3 then t1 ∼cc t3 is exhibited by the span in the following
diagram, where (P, p, p′) is the pullback of f2 against f ′2:

P
p

||xx
xx

xx
xx

x ?� p′

##F
FF

FF
FF

FF

N
f1

||zz
zz

zz
zz f2

""D
DD

DD
DD

D N ′

f ′2

||yy
yy

yy
yy f3

""E
EE

EE
EE

E

C Jt1K C Jt2K C Jt3K

It follows that, if t1 ∼cc t2 and t2 ∼cc t3, there exists a safe net P and Pom-open
morphisms f1 ◦ p:P −→◦ N1 and f3 ◦ p

′:P −→◦ N3. The morphisms are open because
pullbacks of open maps are open ([JNW95, Proposition 3]). From the definition of the
pullback, the pullback morphisms p and p′ are synchronous since f2 and f ′2 are, and
therefore so are f1◦p and f3◦p

′. To show that t1 ∼cc t3, all that remains is to demonstrate
that the net P is a congruence spanning net. This requires two lemmas to help us to
understand the reachable markings of pullbacks, the first of which is a technical lemma
that allows us to prove the second.
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Suppose that we take the following pullback in Safe for synchronous morphisms f1

and f2.

P
_�

p1 //

p2
��

N1

f1
��

N2 f2
// N

Let P = (BP , EP , FP ,MP ). Let Ni = (Bi, Ei, Fi,Mi) and N = (B,E,F,M0). Let the
pullback morphisms pi = (θi, αi) and morphisms being pulled-back be fi = (ηi, βi).

Lemma E.1.7. Let M be reachable from MP in P with •(e1, e2) ⊆M . For any b1 ∈ B1:

(1) b1 ∈
•e1 =⇒ [b1]

•e1
•e2

= [b1]
α1M
α2M

(2) b1 6∈
•e1 =⇒ [b1]

α1M\•e1
α2M\•e2

= [b1]
α1M
α2M

Now let M ′ be reachable from MP in P with (e1, e2)
• ⊆M ′. For any b1 ∈ B1:

(3) b1 ∈ e1
• =⇒ [b1]

e1•

e2•
= [b1]

α1M ′

α2M ′

(4) b1 6∈ e1
• =⇒ [b1]

α1M ′\e1•

α2M ′\e2•
= [b1]

α1M ′

α2M ′

The symmetric statements for b2 ∈ B2 also hold.

Proof.
(1): Suppose first that b1 ∈

•e1. We shall show that b1 ∼
•e1
•e2

b2 iff b1 ∼
α1M
α2M

b2, from which it

follows that [b1]
e1•

e2•
= [b1]

α1M
α2M

by a simple induction following the inductive characterization

of ∼
•e1
•e2

. (Technically, the induction has to be performed simultaneously with the similar
statement for b2).

‘Only if’: We have b2 ∈
•e2 from the definition of b1 ∼

•e1
•e2

b2. The events e1 and e2
have concession in α1M and α2M , respectively, so b1 ∈ α1M and b2 ∈ α2M . From the
definition of ∼α1M

α2M
, we have b1 ∼

α1M
α2M

b2.

‘If’: Now suppose that b1 ∼
α1M
α2M

b2. We wish to show that b1 ∼
•e1
•e2

b2. We have,

by assumption, b1 ∈
•e1. Since b1 ∼

α1M
α2M

b2, there exists b0 ∈ β1α1M = β2α2M such
that β1(b1, b0) and β2(b2, b0). Since (η1, θ1) is a morphism, b0 ∈

•η1(e1) = •η2(e2). Since
(η2, β2) is a morphism, there exists a unique b′2 ∈

•e2 such that β2(b
′
2, b0). The event e2

has concession in α2M , so b′2 ∈ α2M . Since the marking α2M is reachable in N2 and
b2 ∈ α2M from the definition of b1 ∼

α1M
α2M

b2, the condition b2 is the unique condition in

α2M such that β2(b2, b0), and therefore b2 = b′2. Hence b1 ∼
•e1
•e2

b2.

(2): Suppose that b 6∈ •e1. As in the previous case, we shall show that b1 ∼
α1M\•e1
α2M\•e2

b2 iff

b1 ∼
α1M
α2M

b2.

For the ‘only if’ direction, suppose that b1 ∼
α1M\•e1
α2M\•e2

b2. We have b1 ∈ α1M \
•e1 and

b2 ∈ α2M \
•e2, and there exists b0 such that β1(b1, b0) and β2(b2, b0). We immediately

obtain b1 ∼
α1M
α2M

b2 from its definition.

For the ‘if’ direction, suppose that b1 ∼
α1M
α2M

b2. There exists b0 ∈ β1α1M = β2α2M
such that β1(b1, b0) and β2(b2, b0). Suppose, for contradiction, that b0 ∈

•η1(e1) = •η2(e2):
There exists b′1 ∈

•e1 such that β1(b
′
1, b0) since (η1, β1) is a morphism. The event e1 has

concession in α1M , so b′1 ∈ α1M . However, we also have b1 ∈ α1M , so it must be the case
that b1 = b′1 since (η1, β1) is a morphism. This contradicts b1 6∈

•e1, so we can conclude
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that b0 6∈ η1(e1) = η2(e2). Furthermore, since (η2, β2) is a morphism we can also conclude

that b2 6∈
•e2. Hence b1 ∼

α1M\•e1
α2M\•e2

b2, as required.

The proof of (3) is similar to the proof of (1), and the proof of (4) is similar to the
proof of (2).

Lemma E.1.8. For any marking M reachable in P from MP ,

M = {[b1]
α1M
α2M

| b1 ∈ α1M} ∪ {[b2]
α1M
α2M

| b2 ∈ α2M}

Proof. The proof is by induction on the length of path to M . It is clearly the case that
MP satisfies the requirement from its definition. For the inductive case, suppose that M
satisfies

M = {[b1]
α1M
α2M

| b1 ∈ α1M} ∪ {[b2]
α1M
α2M

| b2 ∈ α2M}

and that there exists (e1, e2) such that M
(e1,e2)
−։ M ′. We must show that

M ′ = {[b1]
α1M ′

α2M ′ | b1 ∈ α1M
′} ∪ {[b2]

α1M ′

α2M ′ | b2 ∈ α2M
′},

where M ′ = M \ •(e1, e2) ∪ (e1, e2)
•. The following chain holds:

M ′ = M \ •(e1, e2) ∪ (e1, e2)
•

= {[b]α1M
α2M

| b ∈ α1M ∪ α2M} \ {[b]
•e1
•e2
| b ∈ •e1 ∪

•e2}

∪{[b]e1
•

e2•
| b ∈ e1

• ∪ e2
•} by assumption and def

= {[b]α1M
α2M

| b ∈ α1M ∪ α2M} \ {[b]
α1M
α2M

| b ∈ •e1 ∪
•e2}

∪{[b]e1
•

e2•
| b ∈ e1

• ∪ e2
•} by Lemma E.1.7 (1)

= {[b]α1M
α2M

| b ∈ α1M \
•e1 ∪ α2M \

•e2} ∪ {[b]
e1•

e2•
| b ∈ e1

• ∪ e2
•}

= {[b]
α1M\•e1
α2M\•e2

| b ∈ α1M \
•e1 ∪ α2M \

•e2}

∪{[b]e1
•

e2•
| b ∈ e1

• ∪ e2
•} by Lemma E.1.7 (2)

= {[b]
α1M\•e1
α2M\•e2

| b ∈ α1M \
•e1 ∪ α2M \

•e2}

∪{[b]α1M ′

α2M ′ | b ∈ e1
• ∪ e2

•} by Lemma E.1.7 (3)

= {[b]α1M ′

α2M ′ | b ∈ α1M \
•e1 ∪ α2M \

•e2}

∪{[b]α1M ′

α2M ′ | b ∈ e1
• ∪ e2

•} by safety and Lemma E.1.7 (4)

= {[b]α1M ′

α2M ′ | b ∈ α1M
′ ∪ α2M

′}

The required result follows immediately.

We are now able to show that P is indeed a congruence spanning net.

Lemma E.1.9. Let (P, p, p′) be a pullback of Pom-open synchronous morphisms f1:N1 −→◦
N and f2:N2 −→◦ N . If N1, N2 and N are congruence spanning nets then so is P .

Proof. For i ∈ {1, 2}, let fi = (ηi, βi) and pi = (θi, αi). Only two requirements on P are
not very straightforward.

• there exists a unique non-empty marking Tc(P ) of P reachable from any marking
reachable from Ic(P ) such that there exists no e with concession in Tc(P ):
Let C be any marking of P reachable from Ic(P ). The marking β1α1C is reachable in
N from Ic(N). From the net N being a congruence spanning net, Tc(N) is reachable

from β1α1C and so there is a sequence N :β1α1C
π
−։ Tc(N). Since (η1, β1) is Pom-

open, there is a sequence N1:α1C
π1
−։ C1 for some π1 such that η1(π1) = π and some
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C1 such that β1C1 = Tc(N). We have C1 = Tc(N1) since otherwise, because N1 is
a congruence spanning net, there exists an event e1 with concession in C1 and hence
the event η1(e1) has concession in Tc(N). By the openness of (θ1, α1), there exists

a path P :C
π′
1
−։ C ′ for some C ′ such that α1C

′ = Tc(N1). By the same argument,

there exists no event e of P such that C ′ e
−։. Therefore, for any marking C reachable

from Ic(P ) there is a marking C ′ reachable from C such that no event has concession
in C ′.

To see that there is a unique reachable marking in which no event has concession, let
C ′ be any marking of P reachable from Ic(P ) in which no event has concession. We
must have α1C

′ = Tc(N1) by an argument similar to that in the paragraph above.
Similarly, α2C

′ = Tc(N2). This uniquely determines C ′ according to Lemma E.1.8.

• the net P is well-terminating
Let C be reachable in P from Ic(P ). We must show that if Tc(P ) ⊆ C then
C = Tc(P ).

For contradiction, suppose that there exists b ∈ C \ Tc(P ). Without loss of gener-
ality, recalling the definition of the conditions of P as being equivalence classes of
conditions of N1 and N2, there exists a condition b1 of N1 such that b1 ∈ b and hence
α1(b, b1).

We have b1 6∈ Tc(N1). To see this, suppose that b1 ∈ Tc(N1). There exists b′ ∈
Tc(P ) such that α1(b

′, b1) because α1Tc(P ) = Tc(N1) (as seen in the earlier part).
The marking C is reachable in P , so b is the unique condition in C such that α1(b, b1).
However, Tc(P ) ⊆ C so b = b′. We assumed that b 6∈ Tc(P ) but b′ ∈ Tc(P ), giving
the contradiction required to show that b1 6∈ Tc(N1).

From the definition of application of a relation to a set, we have α1Tc(P ) ⊆ α1C,
and from Lemma 2.3.1 the marking α1C is reachable from Ic(N1). From Lemma
E.1.2, we have Tc(N1) = α1Tc(P ) and hence Tc(N1) ⊆ α1C1. Since b1 6∈ Tc(N1),
the net N1 is not well-terminating — a contradiction. Hence Tc(P ) = C.

Now that we have dealt with these technical matters, we are able to show that ∼cc is
a congruence.

Theorem E.1 (Congruence). The relation ∼cc is an equivalence relation and satisfies,
for any closed terms t, t′, t1 and t2 such that t ∼cc t

′:

t; t2 ∼cc t′; t2

t1; t ∼cc t1; t
′

t ‖ t2 ∼cc t′ ‖ t2

t1 ‖ t ∼cc t1 ‖ t
′

α1.t+ α2.t2 ∼cc α1.t
′ + α2.t2

α1.t1 + α2.t ∼cc α1.t1 + α2.t
′

while b do t od ∼cc while b do t′ od

with r do t od ∼cc with r do t′ od

For any terms t and t′ with res(t) = res(t′) and fv(t) = fv(t′) = {w}, if there exists
r 6∈ res(t) such that [r/w]t ∼cc [r/w]t′ then

resource w do t od ∼cc resource w do t′ od
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Proof. The relation ∼cc is, by definition, symmetric, and is transitive by taking the pull-
back described above. It is clearly the case that t ∼cc t for any closed term t since there
is the span

C JtK
idCJtK

||yy
yy

yy
yy idCJtK

##F
FFFFFFF

C JtK C JtK .
The remainder of the result follows immediately from Lemmas E.1.5 and E.1.6 apart from
the case for resource w do t od.

Suppose that t and t′ are terms with fv(t) = fv(t′) = w and that there exists r 6∈
res(t) ∪ res(t′) for which there is a span

Nr

f

zzuuu
uuu

uuu
u

f ′

$$JJJJJJJJJJ

C J[r/w]tK C J[r/w]t′K

for some Nr, f and f ′.
A simple induction on the size of terms shows the following property:

for any term t with fv(t) = {w} and any pair of resources r, r′ 6∈ res(t), the
netsN Jt[r/w]K andN Jt[r′, w]K are related through an isomorphism swapt(r, r

′)
that swaps r and r′ in the obvious way.

We shall use the same notation for the ensuing isomorphism between the control nets. It
follows that, for any r′ 6∈ res(t) ∪ res(t′) there is a span

Nr

f

zztttttttttt f ′

%%JJJJJJJJJJ

C J[r/w]tK
swapt(r,r

′)
��

C J[r/w]t′K
swapt′(r,r

′)
��

C J[r′/w]tK C J[r′/w]t′K

It is easy to see from the definition that:

C Jresource w do t odK = resource do (C
q
[r′/w]t

y
)r′∈Res\res(t) od

C
q
resource w do t′ od

y
= resource do (C

q
[r′/w]t′

y
)r′∈Res\res(t) od

We may therefore apply Lemma E.1.6 to see that there exists a span exhibiting the bisim-
ulation resource w do t od ∼cc resource w do t′ od.

E.2 Correspondence

Now that we have show that ∼cc is a congruence, we progress to show that the net
semantics for terms corresponds to the operational semantics introduced in Figure 3.3.
The aim is to show the following:

• if 〈t, σ〉
λ
−→ 〈t′, σ′〉 then there exists e such that N JtK :(Ic(t), σ)

e
−։ (C ′, σ′) and

(C JtK , C ′) ∼cc (C Jt′K , Ic(t′)), and
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• if N JtK :(Ic(t), σ)
e
−։ (C ′, σ′) then there exists t′ such that 〈t, σ〉

|e|
−→ 〈t′, σ′〉 and

(C JtK , C ′) ∼cc (C Jt′K , Ic(t′)),

where ∼cc is the congruence studied in the previous section.
There is some subtlety in the choice of the bisimulation to be ∼cc. Why, for instance,

do we give a bisimulation between the control nets rather than a bisimulation between the
embedded nets with their markings of state conditions,

(N JtK , C ′, σ′) ∼ (N
q
t′
y
, Ic(t′), σ′) ?

The answer stems from the separate inductive proofs of the required properties. To see
this, consider the second part of the correspondence theorem (the first has the same issue),
and in particular the case for parallel composition. Part of the proof would involve showing
that the net for t1 ‖ t2 in the state following the occurrence of an event e (of t1, say) is
bisimilar to the net for t′1 ‖ t2 in its initial state. That is, we would need to exhibit a
bisimulation

(N Jt1 ‖ t2K , par 1:C1 ∪ par 2:Ic(t2), σ
′) ∼ (N

q
t′1 ‖ t2

y
, Ic(t′1 ‖ t2), σ

′),

where C1 is the marking of control conditions such that (Ic(t1), σ)
e1−→ (C1, σ

′) in N Jt1K
for e1 the event such that e = par 1:e1. From the induction hypothesis, we would obtain a
bisimulation

(N Jt1K , C1, σ
′) ∼ (N

q
t′1

y
, Ic(t′1), σ

′),

but, since this form of bisimulation is not a congruence, would not be able to use this
to obtain the required bisimulation. It is for this reason that we employ the congruence
∼cc on control nets, since we are able to obtain a bisimulation (C Jt1 ‖ t2K , par 1:C1 ∪
par 2:Ic(t2)) ∼cc (C Jt′1 ‖ t2K , Ic(t′1 ‖ t2)) from (C Jt1K , C1) ∼cc (C Jt′1K , Ic(t′1)) because ∼cc

is a congruence.
Proving the properties above will involve exhibiting bisimulations between nets, and in

particular congruence spans of Pom-open morphisms between control nets. The simplest
forms of span are those comprising only one open morphism, the other being the identity:
to exhibit a bisimulation (C Jt1K , C1) ∼cc (C Jt2K , C2) between the control net for t1 with
marking of control conditions C1 (reachable from Ic(t1)) and the control net for t2 with
marking of control conditions C2 (reachable from Ic(t2)), it is sufficient to give a single
synchronous Pom-open morphism

(C Jt1K , C1) −→◦ (C Jt2K , C2).

The nets (C Jt1K , C1) and (C Jt2K , C2) are easily seen to be congruence spanning nets as a
consequence of (C Jt1K , Ic(t1)) and (C Jt2K , Ic(t2)) being congruence spanning nets (Lemma
E.1.1).

In demonstrating the correspondence of the operational and net semantics, we shall
wish to stay in this simple setting as much as possible. The particular direction of the
morphism to exhibit the bisimulations required in the introduction of this section shall
be from (C Jt′K , Ic(t′)) to (C JtK , C ′). The reason for giving the open morphism in this
direction is that, in the proofs of both of the above properties, when considering the
action α we will need a bisimulation

(C JεK , Ic(ε)) ∼cc (C JαK ,Tc(α)).

There is no morphism of nets from (C JαK ,Tc(α)) to (C JεK , Ic(ε)), but there is an (open)
morphism in the other direction. The most complicated open morphism that we shall
require will be in the cases for the while construct, which we now consider.
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Lemma E.2.1. Let w = while b do t0 od. There is a synchronous Pom-open morphism
in the category Safe

(C Jt0;wK , Ic(t0;w)) −→◦ (C JwK , body:Ic(t0))

Proof. Call the morphism (η, β). Let P = seq 1:Tc(t0) × seq 2:body:Tc(t0). Informally,
(η, β):t0;w → w embeds the net for t0 in t0;w into the body of the loop within w.
On conditions in P , where the net for t0 is joined to w, the morphism only relates
(seq 1:c, seq 2:body:c) back to c for any c ∈ Tc(t).

Formally, the morphism is defined as:

η(P ⊳ seq 1:e0) = body:e0 η(P ⊲ seq 2:e2) = e2

β(c, c′) ⇐⇒ ∃c0 : c = seq 1:c0 & c′ = body:c0

or ∃c0 : c = (seq 1:c0, seq 2:body:c0) & c′ = body:c0

or c = seq 2:c2 & c′ = c2

For any subsets of control conditions C1 and C2, we show the following. It will follow
immediately that (η, β) satisfies the requirements for being a morphism.

1. β(P ⊳ seq 1:C1) ⊆ body:C1

Let c ∈ P ⊳ seq 1:C1. There are two cases. First, if c = seq 1:c1 for some c1 then
c1 ∈ C1 \ Tc(t0). According to the definition of β, if β(c, c′) then c′ = body:c1 and
hence c′ ∈ body:C1. Second, if c = (seq 1:c1, seq 2:body:c2) for some c1 and c2, then
c1 ∈ C1 ∩ Tc(t0) and c2 ∈ Tc(t0). According to the definition of β, if β(c, c′) then
c2 = c1 and c′ = body:c1, so c′ ∈ body:C1 as required.

2. ∀c′ ∈ (body:C1)∃!c ∈ (P ⊳ seq 1:C1) such that β(c, c′)
Let c′ ∈ body:C1. There exists c′1 ∈ C1 such that c′ = body:c′1. If c′1 6∈ Tc(t0), then
seq 1:c′1 ∈ P ⊳ seq 1:C1 and is the unique condition c such that β(c, c′). If c′1 ∈ Tc(t0)
then (seq 1:c′1, seq 2:body:c′1) ∈ P ⊳seq 1:C1, and according to the definition of β must
be the unique condition c such that β(c, c′).

3. β(P ⊲ seq 2:C2) ⊆ C2

Let c ∈ P ⊲ seq 2:C2. There are two cases. First, if c = seq 2:c2 for some c2 then
c2 ∈ C2 \ Ic(w), noting that Ic(w) = body:Tc(t0). According to the definition of β,
if we have β(c, c′) then c′ = c2 and hence c′ ∈ C2. If c = (seq 1:c1, seq 2:c2) for some
c1 and c2 then c2 ∈ C2 ∩ Ic(w) and c1 ∈ Tc(t0). According to the definition of β,
if we have β(c, c′) then c2 = seq 2:body:c1 and c′ = body:c1. Since c′ = c2, we have
c′ ∈ C2 as required.

4. ∀c′ ∈ C2∃!c ∈ (P ⊲ seq 2:C2) such that β(c, c′)
Let c′ ∈ C2. If c′ 6∈ Ic(w) then seq 2:c′ ∈ P ⊲ seq 2:C2 and β(seq 2:c2, c2). Uniqueness
is immediate from the definition of β. If c′ ∈ Ic(w) then c′ = body:c0 for some c0 ∈
Tc(t0). We have (seq 1:c0, seq 2:body:c0) ∈ P and hence (seq 1:c0, seq 2:body:c0) ∈
P ⊲ seq 2:C2. Uniqueness again follows from the definition of β.

We now consider openness of (η, β). Suppose that C is reachable from Ic(t0;w) in

C Jt0;wK and that there exist e′ and C ′′ such that βC
e′

−։ C ′′ in C JwK. We shall first show

that there exist e and C ′ such that C
e
−։ C ′ in C Jt0;wK and η(e) = e′. It will follow from

(η, β) being a morphism that C ′′ = βC ′.
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According to Lemma 3.6.2, there are two distinct cases for the marking C:
For the first case, assume that C = P ⊳ seq 1:C0 for some C0 6= Tc(t0) reachable from

Ic(t0) in C Jt0K. We have βC = body:C0 and body:C0
e′

−։ C ′′ by (1) and (2) above. Since
the net C Jt0K is well-terminating, there exists c0 ∈ Tc(t0)\C0, so, considering the events in
C JwK, we must have e′ = body:e0 for some e0 ∈ Ev(t0); that is, the event e′ is in the body of
the loop, not a loop entry or exit event. It follows that C ′′ = body:C ′

0 for some C ′
0 such that

C0
e0
−։ C ′

0 in C Jt0K. From Lemma 3.3.2, it follows that C = P ⊳seq 1:C0

P⊳seq 1:e0
−։ P ⊳seq 1:C ′

0

in C Jt0;wK. We have, by definition, η(P ⊳ seq 1:e0) = body:e0, as required to complete the
case.

For the second case for C, assume that C = P ⊲ seq 2:C2 for some C2 reachable from

Ic(w) in C JwK. We have βC = C2 by (3) and (4) above, and therefore C2
e′

−։ C ′′ in C JwK.
From Lemma 3.3.2, it follows that C = P ⊲ seq 2:C2

P⊲seq 2:e′

−։ P ⊲ seq 2:C ′′ in C Jt0;wK. We
have η(P ⊲ seq 2:e′) = e′ by definition, as required to complete the case.

Finally, to complete the proof of openness and complete the theorem, we must show
that (η, β) reflects consecutive independence. That is, for any marking C reachable from

Ic(t0;w), if C
e
−։ C ′ e′

−։ and η(e)ICJwKη(e
′) then eICJt0;wKe

′. The proof is straightforward if
either there exist e1 and e′1 such that e = P ⊳ seq 1:e1 and e′ = P ⊳ seq 1:e′1 or if there exist
e2 and e′2 such that e = seq 2:e2 and e′ = seq 2:e′2. The final remaining case, according to
Lemma 3.6.2, is if e = P ⊳ seq 1:e1 and e′ = P ⊲ seq 2:e2. That is, inside t0;w the event
e is an event from t0 and e′ is an event in the loop w. In this case, according to Lemma

3.6.2, C ′ = P and C = P ⊳ seq 1:C1 for some C1 such that C1
e1
−։ Tc(t0) in C Jt0K, and

Ic(w)
e2
−։ in C JwK. From Lemma 3.5.2, there exists c1 ∈ e1

• ∩Tc(t0). From the definition
of the events of w, we have •e2 = body:Tc(t0). It follows that, in C JwK, the events η(e)
and η(e′) are not independent.

We now show that the transition semantics embeds into the net semantics, by showing

that if 〈t, σ〉
λ
−→ 〈t′, σ′〉 then there exists an event e such that N JtK :(Ic(t), σ)

e
−։ (C ′, σ′)

and (C JtK , C ′) ∼cc (C Jt′K , Ic(t′)). As discussed, we wish to exhibit the bisimulation by
giving just one open morphism

(C
q
t′
y
, Ic(t′)) −→◦ (C JtK , C ′).

Unfortunately, structural equivalence proves to be a slight obstacle here since it is not in
general the case that if t1 ≡ t2 then there exist open morphisms in both directions between
(C Jt1K , Ic(t1)) and (C Jt2K , Ic(t2)). To deal with structural equivalence, we shall therefore
be forced to use spans of open maps. For the time being, however, we side-step this issue
and prove the result ‘up to’ structural equivalence of terms.

Lemma E.2.2. If 〈t, σ〉
λ
−→ 〈t′, σ′〉 then there exist t0, t

′
0, C

′ and e such that t ≡ t0

and t′ ≡ t′0 and λ = |e| and N Jt0K :(Ic(t0), σ)
e
−։ (C ′, σ′), and there is a synchronous

Pom-open morphism in the category Safe

(η, β):(C
q
t′0

y
, Ic(t′0)) −→◦ (C Jt0K , C ′).

Proof. The proof is by induction on the rules for 〈t, σ〉
λ
−→ 〈t′, σ′〉.

(Act): We have 〈α, (D,L,R,N)〉
act(D1,D2)
−→ 〈ε, (D′, L,R,N)〉 for some D1 and D2 such

that (D1,D2) ∈ A JαK and D1 ⊆ D and D′ = D \ D1 ∪ D2. Therefore, in the net

246



N JαK we have

(Ic(α), (D,L,R,N))
act(Ic(α),Tc(α))(D1,D2)

−։ (Tc(α), (D′, L,R,N))

The morphism depicted below from (C JεK , Ic(ε)) to (C JαK ,Tc(α)) is clearly open
since no event in Ev(α) has concession in the marking Tc(α).

Ic(α) Tc(α)

i t

Ic(ε) = Tc(ε)

(Alloc),(Dealloc),(Rel),(End): Similar to (Act).

(Seq): Suppose that 〈t1; t2, σ〉
λ
−→ 〈t′1; t2, σ

′〉 because 〈t1, σ〉
λ
−։ 〈t′1, σ

′〉. By induc-
tion, there exist t0, t

′
0, C

′ and e such that t0 ≡ t1 and t′0 ≡ t′1 and |e| = λ and

N Jt0K :(Ic(t0), σ)
e
−։ (C ′, σ′). By Lemma 3.3.2, inN Jt0; t2K we have (Ic(t0; t2), σ)

P⊳seq 1:e
−։

(P ⊳ seq 1:C ′, σ′) where P = seq 1:Tc(t0) × seq 2:Ic(t2). From the induction hypoth-
esis, there also exists an open morphism (η0, β0):(C Jt′0K , Ic(t′0)) −→◦ (C Jt0K , C ′).
From Lemma E.1.5, there exists an open morphism (η, β):(C Jt′0; t2K , Ic(t′0; t2)) −→◦
(C Jt0; t2K , P ⊳ seq 1:C ′). Since we have t1; t2 ≡ t0; t2 and t′1; t2 ≡ t

′
0; t2 from ≡ being a

congruence, the case is complete.

(Par-1): Suppose that 〈t1 ‖ t2, σ〉
λ
−→ 〈t′1 ‖ t2, σ

′〉 because 〈t1, σ〉
λ
−→ 〈t′1, σ

′〉. By
induction, there exist t0, t

′
0, C and e such that t0 ≡ t1 and t′0 ≡ t

′
1 and |e| = λ and

N Jt0K :(Ic(t0), σ)
e
−։ (C, σ′),

and there is a synchronous open morphism

(C
q
t′0

y
, Ic(t′0)) −→◦ (C Jt0K , C).

From Lemma E.1.6, there is a synchronous open morphism

(C
q
t′0 ‖ t2

y
, Ic(t′0 ‖ t2)) −→◦ (C Jt0 ‖ t2K , par 1:C ∪ par 2:Ic(t2)).

Since ≡ is a congruence, we have t1 ‖ t2 ≡ t0 ‖ t2 and t′1 ‖ t2 ≡ t′0 ‖ t2, so the case is
complete.

(Par-2): Similar.

(Sum-1): Let σ = (D,L,R,N) and, for brevity, let t denote the term α1.t1 + α2.t2.

Suppose that 〈t, σ〉
λ
−→ 〈t1, σ

′〉 because 〈α1, σ〉
λ
−→ 〈ε, σ′〉. An induction on the rules

for the transition relation
·
−→ gives the following property:
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For any t0 and σ0 = (D0, L0, R0, N0), if t0 ≡ α and 〈t0, σ0〉
λ0−→ 〈t′0, σ

′
0〉 then

there exist D1 and D2 such that (D1,D2) ∈ A JαK and λ0 = act(D1,D2)
and D1 ⊆ D0 and σ′0 = (D0 \D1 ∪D2, L0, R0, N0).

From the above claim, there exist D1 and D2 such that (D1,D2) ∈ A JαK and λ =
act(D1,D2) and D1 ⊆ D and σ′ = (D \D1 ∪ D2, L,R,N). Let P = sum 1:Tc(t1) ×
sum 2:Tc(t2). In the net N JtK, we have

(Ic(t), σ)
act(Ic(t),P⊳sum 1:Ic(t1))(D1,D2)

−։ (P ⊳ sum 1:Ic(t1), σ
′).

We need an Pom-open morphism

(η, β):(C Jt1K , Ic(t1)) −→◦ (C JtK , P ⊳ sum 1:Ic(t1)).

Define η(e) = P ⊳ sum 1:e and

β(c, c′) ⇐⇒

{

c 6∈ Tc(t1) & c′ = sum 1:c
c ∈ Tc(t1) & ∃c2 ∈ Tc(t2) : c′ = (sum 1:c, sum 2:c2)

.

It is an easy calculation to show that βC = P ⊳ sum 1:C for any subset of control
conditions C, and therefore that (η, β) is a morphism.

For openness of the morphism (η, β), suppose that C is reachable from Ic(t1) in

C Jt1K and βC = P ⊳ sum 1:C
e′

−։ C ′ for some e′ and C ′. It follows from Lemma

3.6.7 that there exist e and C1 such that e′ = P ⊳ seq 1:e and C
e
−։ C1 in C Jt1K

and C ′ = P ⊳ sum 1:C1 = βC1. The morphism (η, β) reflects the independence of
consecutive events since eICJt1Ke

′ iff (P ⊳ sum 1:e)ICJtK(P ⊳ sum 1:e′).

(Sum-2): Symmetric.

(While): Let t abbreviate the term while b do t0 od and let σ = (D,L,R,N). Suppose

that 〈while b do t0 od, σ〉
λ
−→ 〈t0; t, σ

′〉. As in the case for (Sum-1) but recalling
that b ranges over booleans, it must be the case that there exists D0 such that
λ = act(D0,D0) and D0 ⊆ D and σ = σ′. In the net N JtK, we therefore have

(Ic(t), σ)
act(Ic(t),body:Ic(t0))(D0,D0)

−։ (body:Ic(t0), σ).

The required morphism (C Jt0; tK , Ic(t0; t)) −→◦ (C JtK , body:Ic(t0)) is described in
Lemma E.2.1.

(With): Let t = with r do t0 od and suppose that 〈t, σ〉
λ
−→ 〈t0; rel r, σ′〉 for σ =

(D,L,R,N) and σ′ = (D,L,R \ {r}, N) and r ∈ R. We have

N JtK :(Ic(t), σ)
e
−։ (body:Ic(t0), σ

′)

for e = acq(Ic(t),body:Ic(t0))(r). The net C JtK in initial marking body:Ic(t0) with the
event e removed is easily seen to be isomorphic to the net C Jt0; rel rK. It is easy
to see that this gives rise to a synchronous open morphism since, by Lemma 3.6.13,
the event e cannot occur in any marking reachable from body:Ic(t0) in C JtK. The
morphism may be drawn as:
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i body:C Jt0K t

seq 1:C Jt0K seq 2:t

acq(r) rel(r)

rel(r)

(Res): Similar to (With).

(Equiv): Suppose that 〈t, σ〉
λ
−→ 〈t′, σ′〉 because there exist t0 and t′0 such that t ≡ t0

and t′ ≡ t′0 and 〈t0, σ〉
λ
−→ 〈t′0, σ

′〉. By induction, there exist t1 and t′1 such that

t0 ≡ t1 and t0 ≡ t′1 and 〈t1, σ〉
λ
−→ 〈t′1, σ

′〉. Structural equivalence ≡ is transitive, so
we have t ≡ t1 and t′ ≡ t′1, completing the case and the proof.

We now show the reverse property, showing that the net semantics embeds into the
transition semantics. This time, we do not need to work up to structural equivalence of
terms.

Lemma E.2.3. If N JtK :(Ic(t), σ)
e
−։ (C ′, σ′) then there exists t′ such that 〈t, σ〉

|e|
−→

〈t′, σ′〉, and there is a Pom-open morphism in the category Safe

(η, β):(C
q
t′
y
, Ic(t′)) −→◦ (C JtK , C ′).

Proof. Let σ = (D,L,R,N) and σ′ = (D′, L′, R′, N ′). The proof is by induction on the
size of terms, considering each case for the term t separately. All cases but that for
sequential composition are straightforward analyses of the events in the net N JtK, using
the open morphisms defined in Lemma E.2.2. We therefore consider only the sequential
composition.

Recall that Ic(t1; t2) = P ⊳ seq 1:Ic(t1), where P = seq 1:Tc(t1)× seq 2:Ic(t2). Suppose
that t = t1; t2 and that N Jt1; t2K :(Ic(t1; t2), σ)

e
−→ (C ′, σ′). According to the definition of

Ev(t1; t2), there are two cases to consider:
If e = P ⊳ seq 1:e1 for some e1 ∈ Ev(t1) then |e| = |e1| and, according to Lemma

3.6.1 with Lemma 3.7.1, there exists C ′
1 such that N Jt1K :(Ic(t1), σ)

e1
−։ (C ′

1, σ
′) and C ′ =

P ⊳ seq 1:C ′
1. By induction, there exists t′1 such that 〈t1, σ〉

|e1|
−→ 〈t′1, σ

′〉 and there is a

Pom-open map (η1, β1):(C Jt′1K , Ic(t′1)) −→◦ (C Jt1K , C ′
1). By (Seq), we have 〈t1; t2, σ〉

|e1|
−→

〈t′1; t2, σ
′〉, and by Lemma E.1.5 there is an open map (η, β):(C Jt′1; t2K , Ic(t′1; t2)) −→◦

(C Jt1; t2K , P ⊳ seq 1:C ′
1), as required.

If e = P ⊲ seq 2:e2 for some e2 ∈ Ev(t2) then |e| = |e2| and, according to Lemma
3.6.1, we must have Ic(t1) = Tc(t1). It follows that Ic(t1; t2) = P ⊲ seq 2:Ic(t2). It also

follows from Lemma 3.6.1 that there exists C ′
2 such that N Jt2K :(Ic(t2), σ)

e2
−։ (C ′

2, σ
′). By

induction, there exists t′2 such that 〈t2, σ〉
|e2|
−→ 〈t′2, σ

′〉 and there is a Pom-open morphism
(η2, β2):(C Jt′2K , Ic(t′2)) −→◦ (C Jt2K , C ′

2). Since Ic(t1) = Tc(t1), we have t1 ≡ ε by Lemma

3.5.3 and so t1; t2 ≡ t2. Hence, using rule (Equiv), we may derive 〈t1; t2, σ〉
|e2|
−→ 〈t′2, σ

′〉.
To complete the proof, it can be shown that (η, β):(C Jt1; t′2K , Ic(t1; t′2)) −→◦ (C Jt1; t2K , P ⊲
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seq 2:C ′
2) defined as

η(e) = P ⊲ seq 2:e

β(c, c′) iff







either ∃c2 : β2(c, c2) & c′ = seq 2:c2 & c2 6∈ Ic(t2)
or ∃c1, c2 : β2(c, c2) & c′ = (seq 1:c1, seq 2:c2)

& c1 ∈ Tc(t1) & c2 ∈ Ic(t2)

is a Pom-open morphism; the proof is similar to but easier than the proof of Lemma
E.1.5.

The final requirement before concluding this section is to show that structurally equiv-
alent terms are bisimilar. Here, as mentioned earlier, we are forced to show the existence
of a span of open morphisms rather than just show the existence of one open morphism.

Lemma E.2.4. If t ≡ t′ then there is a span of synchronous Pom-open morphisms

N
(η,β)

xxrrrrrrrrrrr
(η′,β′)

&&LLLLLLLLLLL

(C Jt′K , Ic(t′)) (C Jt′K , Ic(t′))

from a congruence spanning net N , i.e. C JtK ∼cc C Jt′K

Proof. In Definition 3.2.1, structural equivalence ≡ is defined inductively. The proof is
performed by induction on the definition.

The only interesting rule for the relation ≡ being an equivalence relation is transitivity,
viz. if t ≡ t′ because there exists t0 such that t ≡ t0 and t0 ≡ t

′. In this case, the span for
t and t0 is composed with the span for t0 and t′ by taking the pullback of the morphisms
into (C Jt0K , Ic(t0)). The pullback obtained is a congruence spanning net with synchronous
morphisms according to Lemma E.1.9.

Symmetry and associativity of the operators is easily dealt with since the nets are
isomorphic (e.g. for associativity of sequential composition, there exists a span relating
C J(t1; t2); t3K and C Jt1; (t2; t3)K since the two nets are isomorphic).

The ‘congruence’ rules for ≡ follow from Lemmas E.1.5 and E.1.6.
The only two remaining cases are ε; t ≡ t and ε ‖ t ≡ t. The first span arises from

the isomorphism C Jε; tK ∼= C JtK. The second span arises from the morphism from the
net C Jε ‖ tK into C JtK being essentially isomorphic apart from the net C Jε ‖ tK having an
initially-marked condition that is a not a pre- or post-condition of any event in C JtK. There
is therefore a Pom-open morphism

(C Jε ‖ tK , Ic(ε ‖ t)) −→◦ (C JtK , Ic(t))

that relates this redundant condition to no condition in C JtK.

We briefly observe the following simple property about open maps of nets, in which
(N,M) means the net with conditions and events as in N but with initial marking M .

Lemma E.2.5. Let (η, β):(N1,M1) → (N2,M2) be a Pom-open synchronous morphism.

If N1:M1
e1
−։ M ′

1 and N2:M2

η(e1)
−։ βM ′

1 then (η, β):(N1,M
′
1) → (N2,M

′
2) is a Pom-open

synchronous morphism.

Proof. Follows straightforwardly from Lemmas 2.3.2 and 2.4.1.
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We now arrive at the key result of this section, that the operational semantics corre-
sponds to the net semantics.

Theorem E.2 (Correspondence). For any closed term t:

• If 〈t, σ〉
λ
−→ 〈t′, σ′〉 then there exist C ′ and e such that |e| = λ and N JtK :(Ic(t), σ)

e
−։

(C ′, σ) and (C Jt′K , Ic(t′)) ∼cc (C JtK , C ′).

• If N JtK :(Ic(t), σ)
e
−։ (C ′, σ′) then there exists a closed term t′ such that 〈t, σ〉

|e|
−։

〈t′, σ′〉 and (C Jt′K , Ic(t′)) ∼cc (C JtK , C ′).

Proof. The second part is a re-statement of Lemma E.2.3.

For the first part, suppose that 〈t, σ〉
λ
−→ 〈t′, σ′〉. According to Lemma E.2.2, there

exist t0 and t′0 such that t ≡ t0 and t′ ≡ t′0 and N Jt0K :Ic(t0)
e0
−։ C ′

0 for some e0 and C ′
0 such

that |e0| = λ and there exists a synchronous Pom-open map (π, γ):(C Jt′0K , Ic(t′0)) −→◦
(C Jt0K , C ′

0). From Lemma E.2.4, there are spans of synchronous morphisms from congru-
ence spanning nets

N(η,β)
wwooo

ooo (η0,β0)
((QQQQQQ

(C JtK , Ic(t)) (C Jt0K , Ic(t0))

N ′
(η′,β′)

vvnnnnnn (η′0,β
′
0)
((QQQQQQ

(C Jt′K , Ic(t′)) (C Jt′0K , Ic(t′0)).

From Lemma E.2.5, since N Jt0K :Ic(t0)
e0
−։ C ′

0, there exists C and an event e such that

N :Ic(N)
e
−։ C and η0(e) = e0 and β0C = C ′

0 and (η0, β0):(N,C) −→◦ (C Jt0K , C ′
0) is

Pom-open. Recall that (N,C) is the net N with initial marking C. It is easy to see from
Definition E.1.1 that (N,C) is a congruence spanning net since N is. We therefore have
a congruence span

(N,C)
(η,β)

wwpppppppp (η0,β0)

''OOOOOOOO

(C JtK , βC) (C Jt0K , C ′
0).

The required span is then obtained by composing (by taking successive pullbacks) the
following spans:

(N,C)

(η,β)

}}{{
{{

{{
{{ (η0,β0)

!!D
DD

DD
DD

D
(C Jt′0K , Ic(t′0))

(π,γ)

yysssssssss
id

&&MMMMMMMMMM N ′

(η′

0,β′

0)

}}||
||

||
|| (η′,β′)

  A
AA

AA
AA

A

(C JtK , βC) (C Jt0K , C′
0) (C Jt′0K , Ic(t′0)) (C Jt′K , Ic(t′))

Pullbacks of congruence spanning nets are congruence spanning nets according to Lemma
E.1.9, so we have (C JtK , βC) ∼cc (C Jt′K , Ic(t′))), as required.

As discussed in Chapter 2, it is shown in [NW96] that Pom-open map bisimilarity
of nets (C Jt1K , C1) and (C Jt2K , C2) is equivalent to them being related through a strong
history-preserving bisimulation. Strong history-preserving bisimulation is a strengthening
of the standard form of bisimulation for transition systems to account for the indepen-
dence of events. It follows immediately that the transition systems arising from the nets
(N Jt1K , C1, σ) and (N Jt2K , C2, σ) are bisimilar in the usual sense.

Let us write 〈t, σ〉 ∼ 〈t′, σ′〉 if the transition system derived according to the transition
semantics from 〈t, σ〉 is bisimilar, in the usual sense, to that obtained from 〈t′, σ′〉. From
the correspondence theorem and the fact that strong history-preserving bisimulation is
stronger than standard bisimulation, we obtain adequacy of our semantics:
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Corollary E.3 (Adequacy). Let t and t′ be closed terms. If (C JtK , Ic(t)) ∼cc (C Jt′K , Ic(t′))
then 〈t, σ〉 ∼ 〈t′, σ′〉 for any consistent state σ.

The converse property with respect to ∼ on the operational semantics fails if we keep
the equivalence ∼cc on nets. For instance, for any σ we have

(α1 ‖ α2, σ) ∼ (α1.α2 + α2.α1, σ).

However, we can see that

(C Jα1 ‖ α2K , Ic(α1 ‖ α2)) 6∼cc (C Jα1.α2 + α2.α1K , Ic(α1.α2 + α2.α1)).

The reason why the property fails, apart from ∼ not being a congruence, is that the
transition system does not capture the independence of actions whereas the equivalence
∼cc does. This would be resolved by defining independence alongside the operational
semantics, thereby defining a transition system with independence [WN95]. The purpose
of this section has, however, been to relate the net semantics to the standard transition
semantics for the language, so we shall refrain from doing this at the present time.
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