
Technical Report
Number 770

Computer Laboratory

UCAM-CL-TR-770
ISSN 1476-2986

Controlling the dissemination and
disclosure of healthcare events

Jatinder Singh

February 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Jatinder Singh

This technical report is based on a dissertation submitted
September 2009 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St. John’s
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Information is central to healthcare: for proper care, information must be shared. Modern

healthcare is highly collaborative, involving interactions between users from a range of

institutions, including primary and secondary care providers, researchers, government

and private organisations. Each has specific data requirements relating to the service

they provide, and must be informed of relevant information as it occurs.

Personal health information is highly sensitive. Those who collect/hold data as part

of the care process are responsible for protecting its confidentiality, in line with patient

consent, codes of practice and legislation. Ideally, one should receive only that information

necessary for the tasks they perform—on a need-to-know basis.

Healthcare requires mechanisms to strictly control information dissemination.Many solu-

tions fail to account for the scale and heterogeneity of the environment. Centrally man-

aged data services impede the local autonomy of health institutions, impacting security

by diminishing accountability and increasing the risks/impacts of incorrect disclosures.

Direct, synchronous (request-response) communication requires an enumeration of every

potential information source/sink. This is impractical when considering health services

at a national level. Healthcare presents a data-driven environment highly amenable to an

event-based infrastructure, which can inform, update and alert relevant parties of incidents

as they occur. Event-based data dissemination paradigms, while efficient and scalable,

generally lack the rigorous access control mechanisms required for health infrastructure.

This dissertation describes how publish/subscribe, an asynchronous, push-based, many-

to-many middleware communication paradigm, is extended to include mechanisms for ac-

tively controlling information disclosure. We present Interaction Control: a data-control

layer above a publish/subscribe service allowing the definition of context-aware policy

rules to authorise information channels, transform information and restrict data propaga-

tion according to the circumstances. As dissemination policy is defined at the broker-level

and enforced by the middleware, client compliance is ensured. Although policy enforce-

ment involves extra processing, we show that in some cases the control mechanisms can

actually improve performance over a general publish/subscribe implementation. We build

Interaction Control mechanisms into integrated database-brokers to provide a rich repre-

sentation of state; while facilitating audit, which is essential for accountability.

Healthcare requires the sharing of sensitive information across federated domains of ad-

ministrative control. Interaction Control provides the means for balancing the competing

concerns of information sharing and protection. It enables those responsible for infor-

mation to meet their data management obligations, through specification of fine-grained

disclosure policy.

To Amar, Charlene, Richelle and Jessica

Acknowledgements

I thank my supervisor, Prof. Jean Bacon for her support, guidance and generally making
this work possible, and also Dr. Ken Moody for his useful criticisms and comments.

I also thank past and present members of the Opera group for their discussions and
friendship, particularly Dave Eyers, who took almost a supervisory role, Luis Vargas,
whose work influenced mine, and Pedro Brandão for his assistance with the sensor aspect.
I’d also like to thank my friends for putting up with me and my bad jokes, especially during
those stressful times.

And most of all, thanks to my family for their love and invaluable support.
This dissertation is dedicated to them.

Contents

1 Introduction 13

1.1 Event-Based Middleware . 14

1.1.1 Publish/Subscribe . 14

1.1.2 Health Communication Infrastructure 14

1.1.3 Research Statement . 15

1.1.4 Dissertation Outline . 17

2 Healthcare Primer 18

2.1 Healthcare Organisation and Directions . 18

2.1.1 Health Information . 19

2.1.2 Healthcare Directions . 20

2.1.3 Technology-Assisted Homecare . 20

2.2 Information Sharing . 21

2.3 Information Sensitivity . 22

2.3.1 Electronic Data Concerns . 23

2.3.2 Responsibility . 23

2.4 Data-Driven Healthcare . 25

2.4.1 Data Relevance . 26

2.4.2 Contextual Control . 26

2.5 National Program for IT (NPfIT) . 26

2.6 Summary . 28

3 Systems Background 29

3.1 Event-Based Systems . 29

3.1.1 Events and Healthcare . 30

3.2 Messaging Middleware . 30

3.2.1 Message Passing . 30

3.2.2 Message Queues . 31

3.2.3 Publish/Subscribe . 31

3.2.4 Distributed Publish/Subscribe . 33

3.2.5 Request-Response Interaction . 35

3.2.6 Healthcare Communication . 35

3.3 Access Control . 36

3.3.1 Role-Based Access Control . 36

3.3.2 RBAC and Beyond . 37

3.3.3 Healthcare Access Control . 38

3.4 Publish/Subscribe Security . 39

3.4.1 Policy-Based Control . 39

3.4.2 Encryption-Based Control . 41

3.4.3 Secure Event Types . 42

3.4.4 Scoping . 42

3.4.5 Applicability to Healthcare . 43

3.5 Summary . 45

4 Publish/Subscribe and Databases 46

4.1 Databases . 46

4.1.1 Active Databases . 46

4.2 Database Publish/Subscribe . 47

4.2.1 Continuous Queries . 48

4.2.2 Database-Publish/Subscribe and Healthcare 48

4.3 PostgreSQL-PS . 49

4.3.1 Event Model . 49

4.3.2 Advertisements . 52

4.3.3 Event Delivery . 52

4.3.4 Access Control . 55

4.4 Summary . 55

5 Interaction Control 56

5.1 Motivation . 56

5.1.1 Middleware Control . 57

5.2 Assumptions . 58

5.2.1 Trust . 58

5.2.2 Other Assumptions . 58

5.3 Broker Context . 59

5.3.1 Permission Attributes . 59

5.4 Interaction Control . 60

5.4.1 Request Authorisations . 60

5.4.2 Imposed Conditions . 61

5.4.3 Transformations . 62

5.5 Policy Enforcement . 63

5.5.1 Request Validation . 63

5.5.2 Publication Enforcement . 65

5.6 IC in Distributed Broker Networks . 66

5.6.1 Link Authorisation Rules . 66

5.6.2 Request Forwarding and Processing 67

5.6.3 Request Forwarding . 67

5.7 Relationships Between Rules . 70

5.7.1 Rule Fragmentation . 70

5.7.2 Application of Multiple Rules . 72

5.8 Related Work . 73

5.9 Summary . 75

6 Context and Conflict 76

6.1 Representing State . 76

6.1.1 Fluents . 77

6.1.2 Fluent Discussion . 79

6.2 Credentials . 80

6.2.1 Credentials in Healthcare . 81

6.3 Context Summary . 81

6.4 Policy Conflict . 82

6.4.1 Static Conflict Detection . 82

6.4.2 Selection Summary . 84

6.4.3 Resolution Strategies . 85

6.4.4 Runtime Application . 87

6.4.5 Detection and Resolution . 88

6.4.6 Resolution Usage . 88

6.5 Summary . 88

7 Integration into PostgreSQL-PS 90

7.1 Data Control Layer . 90

7.2 Client Operations . 91

7.2.1 Client-Specified Properties . 91

7.3 Context . 92

7.3.1 Permission Attributes . 93

7.3.2 Representation: Fluents . 93

7.3.3 Monitored Conditions . 93

7.4 Policy Definitions . 95

7.4.1 Representation . 95

7.4.2 Policy Storage . 95

7.4.3 Conflict Definition . 96

7.5 Layer Interactions: Hook Rules . 96

7.6 Request Processing . 98

7.6.1 Deserialisation . 98

7.6.2 Validation . 98

7.7 Request Propagation . 100

7.7.1 Routing Table Extensions . 100

7.7.2 Link Establishment . 101

7.7.3 Loading Forwarding Restrictions . 101

7.7.4 Request Forwarding . 102

7.7.5 Re-Evaluation . 104

7.8 Event Processing . 105

7.8.1 Transactional Event Processing . 105

7.8.2 Publication Processing . 107

7.8.3 Notification Processing . 108

7.9 Summary . 109

8 Healthcare Integration Summary 110

8.1 Healthcare Collaboration . 110

8.2 Data Sensitivity . 111

8.3 Broker Interactions . 112

8.4 Domains and Responsibility . 113

8.4.1 Trust . 113

8.4.2 Realising Domain Policy . 114

8.5 Federation . 114

8.5.1 Point-to-Point Control . 114

8.5.2 Central Services . 116

8.5.3 Shared Policy . 117

8.6 Summary . 117

9 Case Studies 118

9.1 Prescribing Scenario . 118

9.1.1 Adaptation to Homecare . 119

9.1.2 Data Flows and Policy . 119

9.1.3 Data Control Policies . 120

9.1.4 Single Broker Implementation . 121

9.1.5 Controlled Drug Implementation . 123

9.1.6 Comparison to Vanilla Pub/Sub . 123

9.1.7 Distributed Environment . 126

9.1.8 Scenario Discussion . 128

9.2 Regulation Change . 129

9.3 Sensor-Based Remote Care . 130

9.3.1 Sensor Middleware . 130

9.3.2 Data Control Rules . 130

9.3.3 Experimentation . 132

9.3.4 Scenario Discussion . 134

9.4 Contextual Complexity . 135

9.5 Policy Interface . 136

9.6 Summary . 137

10 Audit and Event Replay 139

10.1 Recording Information . 140

10.1.1 Message Receipt/Delivery . 141

10.1.2 Event Auditing . 141

10.1.3 Exception Queues . 142

10.1.4 Conflict Resolution . 143

10.1.5 Request Auditing . 143

10.1.6 Policies . 145

10.2 Contextual History . 145

10.3 Accessing the Log . 146

10.4 Active Audit . 147

10.5 Event Replay . 148

10.5.1 Replay Requests . 148

10.5.2 Replay Request Validation . 150

10.5.3 Replay Request Processing . 150

10.5.4 Automatic Replay . 151

10.5.5 Application Examples . 152

10.5.6 Further Work . 154

10.6 Summary . 154

11 Conclusions and Further Work 155

11.1 Further Work . 156

11.2 Concluding Remarks . 159

Bibliography 161

Appendices 178

A Transformations and Interaction Points 179

B Fluent Representation 181

C Example XML Rule Definitions 183

C.1 Link Authorisation Rules . 183

C.2 Request Authorisation Rules . 183

C.3 Imposed Conditions . 184

C.4 Transformations . 184

C.5 Conflict Resolution . 185

D Hook Rule Specifics 187

D.1 Event Transformations . 187

D.1.1 Resolving Event Transformations . 188

D.2 Request Validators . 188

D.3 Connection of Links . 188

D.4 Request Transformations . 189

D.5 Advertisement Processor . 189

D.6 Bootstrapping . 189

E Prescribing Policy Rules 191

E.1 Event Authorisation Rules . 191

E.2 Imposed Condition for the Auditor . 192

E.3 The prescribe–prescription Transformation 192

E.4 The prescribe–audit Transformation . 193

1
Introduction

Healthcare is a fundamental form of welfare. Societies are judged by the standard and
accessibility of healthcare services [WHO00], as this directly affects quality of life.

Directions in healthcare are towards a preventative care model, to avoid the occurrence
and/or severity of acute episodes, incidents requiring immediate attention. As the popu-
lation ages, this push is to improve the quality of care and life, while reducing the burden
on health resources. Technological advancement facilitates preventative care. Sensors can
monitor physiological state, providing information for the detection, and perhaps pre-
diction, of situations of concern. Communication technologies allow the transmission of
alerts and observations. This enables the ongoing, remote administration of care services.

Information underpins modern health processes. Proper diagnosis and treatment regimes
depend on carers having access to patient information. Such information concerns ongoing
conditions and diseases, previous observations, test results, prior medications, allergies,
family history, and so forth. Non-clinical processes also require information to support
and manage care services, e.g. for billing/payment, audit, executive planning and research.

Healthcare is a collaborative environment. Many different providers are involved in a
national-level care service, including surgeries, hospitals, specialists, governmental bodies
(e.g. billing services), pharmacies, insurance companies, research institutions and auditors.
Each operate with a degree of autonomy, providing specific services as part of the care
process. Interactions occur through the sharing of information, which is necessary for the
delivery of health services.

Enshrined in the Hippocratic Oath is the notion of confidentiality concerning personal
health information. Those who access health data as part of the care process have not
only a moral, but also a legal responsibility to respect its confidentiality. Modern
healthcare involves a number of organisations that deliver specific care services, provi-
sioned through members of staff. While individuals are responsible for information, so
too are health organisations, as they provide the infrastructure to support the services on
offer. It follows that health organisations require policies to meet their data management
obligations [§2.3.2].

13

14 Chapter 1. Introduction

Thus, there is tension between sharing and protecting health information. This is man-
aged by sharing sensitive information on a need-to-know basis [NHS02]: sharing only that
information required in the circumstances. Such a standard is typically met by obtain-
ing informed patient consent, though there are exceptions [DoH03a]. The infrastructure
supporting health services must enable those responsible for information to control its
transmission and disclosure.

1.1 Event-Based Middleware

Healthcare is a data-driven environment. Health processes react and respond to incidents,
be they observations, diagnoses, results or treatments. A health record essentially forms
a collection of incidents. As incidents reflect information, they must be communicated to
the relevant care (and related) service providers, and thus are persisted in various data
stores.

Such an environment is amenable to an event-based middleware. An event encapsulates
information surrounding an incident. The role of an event-based middleware is to serve as
a layer of indirection between applications and the network, to manage the distribution
of events between clients: from producers, applications that generate information, to
consumers, applications that receive and process such information. In contrast to the
common request-response approach to communication, event-based middleware concerns
the distribution of information as it occurs within the environment.

Event-based dissemination infrastructure is becoming increasingly relevant to healthcare,
to inform of health incidents as they happen, e.g. alerting of a potential emergency situ-
ation, while ensuring that service providers operate with the latest information.

1.1.1 Publish/Subscribe

Publish/Subscribe (pub/sub) [EFGK03] is a scalable, asynchronous, many-to-many com-
munication paradigm useful for event distribution. Pub/sub takes an information-centric
approach to event delivery, where consumers (subscribers) specify their interest in receiv-
ing particular information, and producers (publishers) publish information independently
of consumers. Clients communicate through brokers, which interconnect to provide the
pub/sub service. Brokers co-operate to deliver events to the subscribers with matching
interests.

In healthcare, a particular incident can be relevant to a number of providers at various
locations. Pub/sub has been shown to be an efficient method for data distribution suitable
for such environments [CRW01]. The paradigm provides many-to-many communication,
decoupling producers from consumers, where routing concerns are left to the pub/sub
service. This allows clients to interact without knowledge of every potential information
source/sink. Subscriptions enable a client to specify an interest in receiving particular
information, which may flow from a number of sources.

1.1.2 Health Communication Infrastructure

Healthcare is a heterogeneous environment. Health providers act with a degree of auton-
omy, not only with respect to the services they provide, but also regarding their infor-
mation concerns. Local control is desirable: with control comes responsibility, and with

1.1. Event-Based Middleware 15

responsibility comes accountability. Rather than a complete, centralised definition of dis-
closure policy, it is preferred that providers maintain policy suitable for the requirements
of the local environment. Similarly, decentralised data stores are preferable from a confi-
dentiality perspective, where providers hold information relevant to their service, sharing
it when appropriate. The technical infrastructure should account for the federated nature
of health services.

Middleware provides a suitable place for implementing information disclosure controls,
as it abstracts and isolates data control concerns away from client applications. This is
important in a highly-collaborative environment such as healthcare, as it ensures client
compliance with disclosure policy, and simplifies policy management through fewer def-
inition and enforcement points. While pub/sub is suitable for wide-scale information
distribution, its loosely-coupled nature complicates security [MFP06]. Pub/sub takes an
information-centric approach to routing, raising issues of confidentiality concerning sub-
scribers, and the brokers providing the pub/sub infrastructure. Data must be protected
while in transit and on delivery. Health information remains sensitive, even after the
death of patient [DoH03a]. It is therefore inappropriate to allow all interested parties
access to information, and to liberally distribute information, even if encrypted, as part
of the routing process.

Healthcare information is subject to strict governance procedures [DoH07a]. Given that
information is best disclosed on a need-to-know basis, dissemination controls must be
fine-grained. Privileges will depend on circumstances, e.g. restrictions on accessing pa-
tient data might be relaxed in an emergency. Thus, information disclosure infrastructure
must allow for context-aware data controls. To monitor information flows, dissemination
infrastructure must have the ability to record the details of the data transmitted and
received [HIA06], including the specifics of those accessing patient information [NHS07b].
Audit facilitates accountability. Aside from audit, health incidents typically require per-
sistence, e.g. in patient records, where providers maintain various information stores to
manage relevant health information.

1.1.3 Research Statement

This dissertation considers the use of pub/sub as an infrastructure for supporting health
services. We explore the issues concerning healthcare information and the associated
implications for pub/sub, proposing mechanisms to enable the control of sensitive data in
a distributed dissemination infrastructure.

Health services are information driven. We describe the (increasingly) collaborative nature
of healthcare, arguing that a pub/sub event-based middleware provides an appropriate in-
frastructure for supporting care processes. As health information is perpetually sensitive,
its disclosure must be controlled. This presents a paradox, in that information must be
shared, yet protected. Communication infrastructure supporting healthcare must allow
those responsible for information to meet their data management obligations. The ideal
is to disclose information on a need-to-know basis.

Generally, pub/sub security models impose controls (only) against clients, assume a single
administrative domain for the entire network, and/or distribute encrypted events, man-
aging access through key distribution.1 The core contribution of this work is the design

1In addition to complexity, this hinders accountability.

16 Chapter 1. Introduction

and development of Interaction Control (IC), a data control model built as a layer above
a pub/sub middleware. IC is designed in accordance with the stringent requirements of
healthcare, where all information flows must be strictly controlled by those responsible.
As such, IC differs from other pub/sub security models by featuring:

Unified Control Mechanisms IC provides highly expressive policy rules to enable con-
trol not only over the transfer of data, but also the management of routing specifics.
Authorisation rules control the establishment of (typed) information-channels. The
information propagating through a channel can be filtered by way of imposed con-
dition rules, and altered via transformation rules. The construction of the broker
network is managed by rules that authorise broker interconnections. Routing paths
throughout the distributed broker network are controlled by rules that filter and
transform advertisements and subscriptions as they propagate to other brokers.
Through transformations, IC allows more than binary (permit/deny) access con-
trol, as information can be perturbed, degraded or even enhanced according to the
circumstances. Controls are unified as policy provides the mechanism to govern all
transmissions from a pub/sub broker.

Point-to-Point Enforcement Healthcare is an environment of federated control, where
providers are responsible for the information they manage. In IC, a broker enforces
its policies directly against all connections, including other brokers. That is, rules
concern the point-to-point (next-hop) transmission of information in a pub/sub
network. By enabling local (broker-level) control over the information released,
those responsible for information can meet their obligations2 by tailoring information
flows as appropriate to the (next) recipient in the circumstances.

Context-Awareness Access to health information depends on context. Generally pub/
sub evaluates conditions (filters) referencing only the event instance. IC rules are
context-sensitive, able to reference the credentials of the principal, external services
and other aspects of environmental state, in addition to the content of the event/ad-
vertisement/subscription itself. This brings flexibility, allowing fine-grained defini-
tion of the circumstances for transmission. Further, the model is context-aware, in
the sense that a change in circumstances might alter privilege, such as triggering
the closure of an information channel.

Given that rules are context sensitive, it is possible for rules to conflict. As such,
we describe a process that analyses IC rules to warn policy authors of potential
conflicts, for which they can design around or define a run-time resolution strategy.

IC is built into an integrated database and pub/sub system. This gives rules access to
a rich representation of state. To manage context, we present a method for representing
state that clarifies the relationship between events and context, and that can interoperate
with remote services, such as credential authorities, while preserving local control.

Health data is typically persisted and its transmission/disclosure audited. This is simpli-
fied in IC, as both storage and distribution functionality are managed under a common
interface. Given persistence, there may be situations where historical information, per-
haps previously inaccessible, may become relevant. There is some work that considers

2This assumes that those responsible for information manage their own local (broker) infrastructure.

1.1. Event-Based Middleware 17

issues of historical events in pub/sub; however, these overlook issues of control. As such,
we extend IC to account for access to historical events, giving consideration as to the
effects of a dynamic environment.

In summary, healthcare requires the sharing of sensitive information in a federated admin-
istrative environment. The premise of this work is that a broker should transmit only that
information necessary in the particular circumstances. The goal of IC is to allow those
responsible for information to meet their data management responsibilities, through the
specification of broker-specific policy. Although the model is designed to provide controls
to meet the stringent data management requirements of healthcare, it is generally appli-
cable to environments where those dealing with information require fine-grained control
over its dissemination.

1.1.4 Dissertation Outline

The remainder of this dissertation is organised as follows:

Chapter 2 presents an overview of the issues concerning the distribution of health infor-
mation. This provides background as to the placement of IC within the health domain.

Chapter 3 describes related work from the systems perspective, introducing messaging
paradigms, pub/sub and associated security efforts.

Chapter 4 provides an overview of PostgreSQL-PS, a coupled database-pub/sub frame-
work, on which we build dissemination control mechanisms.

Chapter 5 introduces IC, our model for controlling pub/sub information flows.

Chapter 6 discusses issues of context and policy conflicts.

Chapter 7 details the specifics of integrating IC into PostgreSQL-PS.

Chapter 8 revisits the information concerns of healthcare, with reference to our data
control model.

Chapter 9 applies IC to case studies derived from real-world healthcare requirements.

Chapter 10 describes auditing processes and presents a pub/sub extension that enables
access to historical events.

Chapter 11 concludes this dissertation and describes areas for future research.

2
Healthcare Primer

National health services concern the welfare and well-being of the population. Collabora-
tion is central to providing the most appropriate care. Information drives health processes;
however, health data is inherently sensitive. Those providing care services must respect
the confidentiality of health information. This chapter presents a general overview of
healthcare, its structure in the UK, and issues concerning health communication infras-
tructure.

2.1 Healthcare Organisation and Directions

Healthcare is fundamental to any modern society [WHO00]. In England, the National
Health Service (NHS) [NHSa] is in charge of providing health services for the country. It
is a public health service, overseen by the executive. To give an indication as to the scale
of the service, it is the largest employer in the world, with expenditure exceeding £170
million per day [Bre05].

The structure of the NHS is organised around trusts [NHS09a]. Primary care trusts
(PCTs) manage the health services for a defined region. Hospitals and associated special
care services are managed by acute (hospital) trusts. There also exist care trusts, which
provide health and social services, ambulance trusts, and mental health trusts. The number
of trusts serving England is presented in Fig. 2.1.

Trust Number

Acute Trusts 175
Ambulance Trusts 12

Care Trusts “few”
Foundation Trusts 115

Mental Health Trusts 60
Primary Care Trusts 152

Figure 2.1: A count of the NHS Trusts in England (per [NHS09a]).

18

2.1. Healthcare Organisation and Directions 19

A Strategic Health Authority (SHA) [SHA] provides the link between the Department of
Health (government) and the NHS to oversee the local implementation of health policy.
There are 10 SHAs in the UK, which manage the strategic/commissioning aspects of the
trusts residing within their regional boundary. Fig. 2.2 presents the SHAs and the PCTs
they manage.

The structure of the NHS involves several levels of interaction, where a number of local
institutions, operating with a degree of autonomy, are overseen by other administrative
bodies. In moving forward, an explicit goal of the NHS is to give local providers more free-
dom to manage their services [Dar08]. An example is the recently introduced foundation
trust [DoH05a], which is a hospital with greater freedoms and flexibility of management,
allowing local decision-making without the involvement of central government. All trusts,
however, are still subject to monitoring to ensure compliance with care standards.

13

37

100

73

78

7

110

98

102

80

97

53

79

1

91
105

75

68

103

47

76

65

16

14

118

67

117

55

66

120 121

114

18

72

115

106

82

108

35

87

49

36

85

86

84

46

39

51

81

88

41

70

113

38

44

40

109

107

42

92

43

54

45

89

94

95

33

77

23

50

116

24

63

28

96

27

17

90

20

25

9

32

12

19

34

10

61

21

31

30

57

104

64

26

58

29

52

62

6

22

59

99

4

69

119

93

15

71

56

74

2

48

101

8

3

111

60

11

112

5

83

Figure 2.2: Regional map of NHS services adapted from [DoH03b], where bold lines
denote SHA boundaries and thin lines PCTs.

2.1.1 Health Information

Healthcare processes are information driven.1 As stated by Brennan [Bre05], information
is the challenge for the National Health Service.

1Some distinguish the terms information and data, where information is defined as knowledge derived
from data. We use the terms synonymously, presenting a framework to control the disclosure of data,
where data-control policy addresses issues of inference.

20 Chapter 2. Healthcare Primer

Care processes depend on information. Highly relevant are health records, which contain
details of previous conditions, medications, treatments and operations, in addition to other
information such as allergies and family history. Actions and health workflows (pathways)
generate and rely on information: observations and results are recorded, medications
prescribed, treatments ordered, tests undertaken and services funded.

Those involved in the care process require access to relevant information to perform their
tasks. However, healthcare information flows can be complex. The structure of the NHS,
for instance, highlights the propensity for information to flow between care institutions
at various levels of the organisational structure.

2.1.2 Healthcare Directions

Health processes are in a constant state of change: treatments evolve and technologies
develop. A goal of health services worldwide is to improve the quality of care and increase
the standard of living, in a sustainable manner.

Current healthcare is organised around acute care, where care is reactive [SE05], catering
for the urgent requirements of patients [WHO02]. However, chronic conditions, health
problems that require ongoing management over a period of time, consume a large pro-
portion of healthcare resources. The UK Department of Health states that chronic dis-
eases and related conditions form about 80% of GP consultations, 60% of hospital bed
days and two-thirds of emergency admissions [DoH04b]. The number of people suffer-
ing from chronic diseases is increasing, with such conditions particularly prevalent in the
elderly [DoH04a].

As the population ages, there is a world-wide push to better manage health services. The
way forward is through innovation, improved use of information and patient empower-
ment (self care)—to bring about preventative care [DoH05b]. Acute care is costly, both
financially and in terms of patient well-being. Preventative care involves the provision
of ongoing care, to limit the occurrence and severity of acute incidents. The aim is to
improve people’s quality of life and avoid the exacerbation of conditions (where possible),
while improving the allocation of health resources.

Information management is seen as crucial to healthcare evolution. The goal is to improve
access to information and to increase efficiency and the standard of care, for instance by
reducing the occurrence of adverse events (e.g. accidental mistreatments), while providing
the foundation to support future care services. Many countries, including the UK (§2.5,2

USA [DoHHS], Australia [NEHTA], Canada [CHI] and France [GIP] are in the process of
developing technical infrastructure to modernise their health services.

2.1.3 Technology-Assisted Homecare

Homecare,3 or assisted living, involves providing care services for patients outside of tra-
ditional care institutions (e.g. a surgery or hospital). Technological developments, such
as sensors that monitor patient and/or environmental state, enable the ongoing, remote
provision and automation of care services.4

2The programmes vary for the different home countries.
3The term homecare is used as it is expected that the home environment will be the primary domain

for patient management. However, care might encompass mobile technologies that monitor or provide
feedback while the patient is outside their home.

4For examples see http://www.pervasivehealth.org/.

2.2. Information Sharing 21

Given the push towards preventative care, homecare is an increasing area of interest.
Sensor technologies are seen as integral to future care [EC07b], where sensor data can
provide a detailed representation of the patient’s situation, to alert of particular incidents
(i.e. emergencies) [BSNM07] and reduce the need for human intervention. Detailed pa-
tient and lifestyle information is useful for treatment and early diagnosis, which can reduce
the severity of the condition—improving resource allocation while reducing the burden on
acute care resources [EC07a, HPS07, DoHD05]. The patient enjoys greater independence,
requiring less institutional time (e.g. hospitals, surgeries for ‘check-ups’) [DoHD05], and
has access to more information to assist in self-care (patient empowerment) [DoH05b].

2.2 Information Sharing

Information underpins the health service. Care processes both generate and rely on the
distribution of data. Information sharing is central to healthcare, where consultation and
collaboration is common, and often required for patient care [Cic90]. Collaboration in
healthcare is well established. A modernised Hippocratic Oath [Las] states that carers
must interact with others where required for treatment. The General Medical Council
guidelines for medical practitioners explicitly recognise the need for practitioners to inter-
act with others [GMCU06]. Clearly, parties involved in the care process require relevant
information to perform their duties.

Healthcare services are specialised. Entities, such as a medical professional, organisation,
employee or system, interact with others to provide care services. Care-specific entities
include patients, GPs, nurses, surgeons, pathologists, specialists, hospitals and so forth.
Information is stored in databases, accessible by a range of entities. Health data is also
relevant to entities who do not (directly) provide treatment, but are essential to the
care process, such as billing services, insurance firms and pharmaceutical companies.
Other entities are involved in the secondary use of information, for purposes such as
medical research [AoMS06], for (governmental) administration (e.g. usage statistics) and
to support audit, compliance and clinical governance [Bre05]. Such information is shared
in accordance with legislation and may or may not require consent and/or a degree of
anonymisation [PIAG08a].

As care moves to a preventative model, a greater number of entities become involved in
providing care services. Preventative care regimes often include specialists in addition
to non-clinical services, such as dietitians, social services (counsellors), physiotherapists,
etc. Homecare environments operate outside of a central administrative domain (e.g.
a hospital, or surgery), and thus involve interactions between many entities, often acr-
oss organisational boundaries. Homecare introduces technology into the interaction-mix,
where information flows to/from sensors and monitoring devices, the associated software
systems and maintenance staff.

As illustrated in Fig. 2.3, health information is relevant to a number of entities, grounded
in various administrative domains, each of which provides a particular service as part of
the care process. Healthcare infrastructure must facilitate information sharing between
entities.

22 Chapter 2. Healthcare Primer

Patient Home

Centralised
Record
Services

Surgery

Medical
Accountant

Auditor

Specialists

Pharmacy

Overall c
are

Summarised
Data

Specialist

Services

Financial
Services

Sensors &
Applications

Monito
rin

g

(patie
nt &

envir
onment)

D
ru

g
Su

pp
ly

Monitoring (care process)

Figure 2.3: Home healthcare involves interactions between entities, managed in different
administrative domains, each delivering specific services as part of the care process.

2.3 Information Sensitivity

Healthcare information is sensitive; its confidentiality must be protected. The concerns in
managing health information are well established, reflected in the Hippocratic Oath [Las]
and professional guidance documents [GMCU06], which state that medical professionals
must act in the interests of patients. This includes consulting with other professionals to
assist in care (sharing), and respecting the confidentiality of personal information obtained
as part of the care process (protection).

Healthcare information brings some interesting considerations. Health data remains sen-
sitive over time, where confidentiality must be maintained, even after death [NHS06c].
Further, while health information concerns a patient, it is typically used by healthcare pro-
fessionals. That is, in healthcare users operate on the sensitive data of others [SBM07]. In
many application domains, issues of privacy concern user anonymity. Healthcare is differ-
ent in that although data must remain confidential, (generally) users must be accountable
for their actions—the actions of medical professionals must be visible.5

Notions of confidentiality underpin the carer-patient relationship. Various codes of prac-
tices [BMA07a, GMCU06, DoH03a] and legislation (see [DoH03a] and [PIAG08b] for a
summary) make it clear that those who use and hold personal information are legally and
ethically responsible for maintaining its confidentiality. Generally, personally identifiable
medical information may be shared if there is patient consent. There are exceptions, if it is
in the public interest, or by reason of a court order or statutory provision, e.g. UK Cancer
Registries receive data on cancer patients even without informed consent [UKACR09].

5Clearly access to audit information must be controlled (Ch. 10).

2.3. Information Sensitivity 23

2.3.1 Electronic Data Concerns

The electronic representation of sensitive information raises issues of confidentiality. One
concern is that electronic data is easily aggregated. Data aggregation poses a privacy
risk [Sch04], as it creates a large repository of sensitive information accessible by many
users [And96]. Query and data-mining techniques facilitate rapid and complex search,
summary and analysis [CHY96] to an extent previously not possible with physical (paper)
records. The mining of aggregated data has benefits, an example being for research, but
there are issues concerning consent [PIAG08a, CM96]. At a higher-level, aggregation and
centralisation works to diminish responsibility for data protection: “who is the ‘controller’
of data?” [ABD+09].

Confidentiality issues often arise out of user negligence, such as a misplaced storage device
containing private information.6 Such incidents typically involve volumes of information.
Despite organisational policies dictating the safe usage of information, consequences are
relevant not only for those at fault and those whose data is involved, but also to the
organisation responsible for that information. In California, recent legislation mandating
the disclosure of confidentiality failures has shown that breaches occur more often than
expected [Edi09].

The ease of accessing (volumes of) electronic data, coupled with the difficulty in recovering
from the fallout of a privacy failure [Sch03], highlights the importance of mechanisms for
controlling access to electronic health data. Given the legislative requirements, and the
expectations of the medical profession and the community to maintain data confidentiality,
health systems/infrastructure must suitably protect medical information.

The NHS Care Record Guarantee [NHS07b] is a statement aimed at addressing public
concerns surrounding health information. The guarantee specifies a duty on NHS services
to ensure the security and confidentiality of patient records. This is realised through
contextual (workgroup and role-based) access control regimes and audit trails.

2.3.2 Responsibility

An explicit goal of the NHS is to give local providers a greater degree of freedom to
manage their services [Dar08, DoH09b]. Local control is not only a political ideal, but is
something that health institutions demand [HMF04, eHe08a, eHe07a]. This gives a care
organisation the ability to manage their own practices and procedures. There are strong
arguments for a federated7 healthcare infrastructure. With control comes responsibility.

Federation

National-level healthcare consists of a number of bodies of administrative control, man-
aging their own practices and procedure. There is much support for federated healthcare
environments, where organisations hold local data, sharing it only when necessary, in
line with consent and legislation [HMF04, ABD+09, LKHT09]. Federation restricts the
ability for information to be used for secondary (research, bureaucratic) purposes without
‘proper’ consent [ABD+09]; data usage is an issue of real concern to patients [RHH+04].

6See http://nhsdatabase.info for an archive of reported breaches.
7Some authors distinguish between federation and decentralisation, where the former refers to policy

and the latter to data [HMF04]. As we integrate sharing policy into the storage infrastructure, we use
federation to encompass both meanings.

24 Chapter 2. Healthcare Primer

Policy tailored to the local environment better maps to local practice/procedure, and
thus promotes compliance. Further, an incorrect policy or malicious breach provides
access only to local information, thus limiting the impact of loss [And96]. With local
responsibility comes accountability: health domains are accountable, and thus subjected
to auditing and monitoring procedures [DoH09c].

Medical professionals take their responsibilities seriously, many expressing concerns over
the risk posed to patient confidentiality by centralised record systems [BMA07b, HMF04,
ABD+09]. Current NHS data-storage projects involve much centralisation,8 which are
criticised as they increase risk of disclosure while diminishing local control and thus ac-
countability [HSH+09]. Health providers are more comfortable with controlling the data
for which they are responsible, as shown in a recent survey where 81% of respondents were
against storing their local surgery data on shared NHS databases [eHe08b]. The preferred
approach to centralisation is the use of smaller databases with controlled sharing [Dav07].

Sharing Protocols

An organisation providing care services is responsible for the information it holds [NHS07b].
Given that healthcare is highly collaborative, access to information must be restricted to
the circumstances in which it is appropriate. To meet data management responsibilities,
information is best shared according to the need-to-know9 principle [NHS02, NHS07b],
disclosing information only as required.

Accountability and transparency are vital to an organisation’s handling and sharing of
sensitive information [ABD+09]. A health institution should have clearly defined policies,
termed an information sharing protocol [DoH03a], defining the circumstances in which
information is shared. Such policy is developed as appropriate to the local environment,
and should consider legal and ethical responsibilities (see [DoH07b] for an overview),
business practices, clinical processes, service contracts with other organisations, NHS
directives, etc. Such a protocol covers access by local entities, and those from remote
bodies. The staff of an organisation are integral to the policy design process.

The sharing protocol assists a practitioner in explaining to the patient the information
shared for the particular course of treatment [SRLH05, DoH03a]. In this way, a medical
professional can obtain informed consent [NHS02] before performing actions disclosing
patient information.

Patient privacy concerns focus on the reasons for sharing (the use of the information), the
recipient, and the (perceived) sensitivity of the information. Patients will more readily
share information when it is closely related to their treatment, less so as the relation be-
comes more indirect, such as for research [PIAG08b, WHEH06, CB95, RHH+04, NHS02].
Patients tend to trust their physicians to act as gatekeepers for their information [BRG00],
which means that a prudent information sharing protocol will often meet the confidential-
ity expectations of patients. However, it must be possible to qualify any general protocol
with patient-specific disclosure preferences.

8This may change with the government [Con09].
9We use the term need-to-know to mean as appropriate to satisfy data management obligations, ac-

counting for consent, specific requests, codes of practice, legislation and context (e.g. patient condition).
Our use is politically agnostic—for a description of concerns with the term see [FfIPR05].

2.4. Data-Driven Healthcare 25

Domains

This dissertation considers information sharing with reference to domains. We define a
domain as a unit, governed by independent administrative policy, that provides partic-
ular services [BESP08]. Regarding national-level healthcare, a domain naturally maps
to an organisation (a legal entity), or any body providing care related services that is
responsible for its own business procedures, defines its own policies and manages its own
infrastructure. Domains may be hierarchical (nested), in the sense one domain resides
within another. We assume that a domain defines its local policy in accordance with poli-
cies imposed by higher-level domains, global directives and legislation. Example domains
include a particular hospital, surgery, pathology laboratory or insurance company.

A domain grounds a number of entities, such as doctors, nurses, carers, accountants,
managers, software systems, often through the use of employment contracts (if human).10

2.4 Data-Driven Healthcare

Modern healthcare is highly data-driven. Health information tends to consist of incidents,
including: actions performed, such as a nurse administering a treatment or a patient taking
a drug; observations, such as sensor monitoring reports, e.g. at timed intervals, or upon
various readings; and environmental changes, such as a carer entering the household, or
the detection of an emergency situation. Clinical information revolves around occurrences:
health records contain information of observations, treatments administered, medicines
prescribed and test results.

Given that healthcare is highly collaborative, information surrounding an incident must
be communicated to the relevant parties. Thus, a health incident is often relevant to
multiple entities. Actively notifying the entities of incidents is important to enable an ap-
propriate response. From a communication standpoint, both the acute and preventative
care models are reactive in that actions are taken in response to incidents,11 regardless
the severity. Incidents might trigger workflow procedures, or remedial actions—a partic-
ularly motivating example is an emergency situation. However, more generally, it is also
important that information is transferred to ensure that health processes are undertaken
with the latest representation of state, i.e. by propagating information to a particular
data store. This is because relatively benign data may become significant when combined
with other information.

Sensor and monitoring technologies enable a shift from organisational services; where
care is administered only at specific intervals that directly occupy staff time, e.g. at an
appointment, or as a nurse works the wards; to remote and/or ongoing care, where staff
interact when required. In a homecare environment, aspects of patient state is monitored.
Such information is relevant to staff from various organisations, to alert of anomalous
situations (e.g. emergencies or technical exceptions), to inform of the actions performed
by care staff, to update patient status, to provide information for audit, billing and
secondary uses (e.g. research), and to provide patient feedback (e.g. reminders, positive
reinforcement).

10This separation does not imply that domains and principals are autonomous: employees will help
shape the policy of a domain, just as employees are bound to act in accordance with domain practices.

11This may be a current incident, or a history of incidents.

26 Chapter 2. Healthcare Primer

Technical infrastructure must provide the relevant entities with sufficient information to
perform their duties, so that they may react/respond to events as they occur.

2.4.1 Data Relevance

The relevance of information to an entity depends on a number of factors such as their role
in the care process, credentials, grounding health domain and managing organisation, in
addition to patient particulars (conditions, demographics) and the current environmental
state (current context, well-being). An incident (event) is often relevant to several entities
from a number of domains. However, as shown in the example (Fig. 2.4), given that enti-
ties provide different services, only aspects of an incident are appropriate to each [SVB08].
Information disclosure policy must account for these differences in data requirements.

Home
Nurse

Doctor

PharmacyAuditor

Patient Treatment

D
rug

R
ecord

P
rescription

Figure 2.4: The act of prescribing has a different relevance to each care provider.

2.4.2 Contextual Control

As healthcare is data-driven, incidents affect state. This impacts on information disclo-
sure, in that the appropriate level of data protection is often context dependent. For
instance, access restrictions on patient data may be relaxed in an emergency situation, or
a nurse may only access the information of patients in the ward in which she is working.
The NHS proposals for a number of shared (large centralised) databases will require infor-
mation to flow to the appropriate store [§2.5]. In practice, this is likely to be determined
by the nature and circumstances of the incident itself.

Supporting infrastructure must account for the dynamic nature of healthcare in an en-
vironment of federated control. It must provide the means for managing the sharing
of information to appropriately disclose information in the given context, accounting for
identity, roles, credentials and aspects of environmental state.

2.5 National Program for IT (NPfIT)

England is in the process of implementing a National Program for IT (NPfIT) [NHSb],
which aims to modernise the NHS. The goal is to evolve health processes, to improve care
while providing a degree of visibility to the executive. The project involves a number of
healthcare infrastructure contracts, consisting of the development of several hundred com-
puter systems [Bre05]. Specific aims include the establishment of an electronic prescription

2.5. National Program for IT (NPfIT) 27

service, an online appointment booking service, a care record service, and the upgrade
of communications and storage infrastructure [CU07, Bre05]. The NPfIT (sub)projects
most relevant to this dissertation include:

Care Records Service (CRS) The NHS CRS is perhaps the most highly publicised
aspect of the project, which describes the use of shared databases to store patient in-
formation. The Summary Care Record (SCR), available nationally, stores basic patient
information, such as demographics, allergies, medications.12 The proposed Detailed Care
Record (DCR) is described to share clinical information from/between systems from local
organisations to provide an integrated clinical record. A DCR is envisaged to contain
only a subset of the information held by local systems. A Secondary Uses Service (SUS)
is also defined, which aggregates data from a number of sources to provide visibility to
the executive, and data for medical research and audit.13 The proposal for shared (and
centralised) databases requires that local information is transmitted to the relevant store.

Security mechanisms include the notion of a sealed envelope [NHS06c], in which particu-
larly sensitive information can be placed inside an (electronic) envelope. The existence of
a sealed envelope is visible to users with access to the patient record, though access to its
contents is actively audited. A locked envelope is invisible except to the patient and the
users belonging to the workgroup who created it.

N3 Network This is a secure network on which all NHS organisations must use for
communication [NHS09d]. All network traffic is encrypted, and each user is uniquely
identifiable, authenticated with a smartcard and PIN.

Electronic Staff Record (ESR) The ESR [McK] provides details regarding clients
(system users), including their grounding domain.14

NHS RBAC Service This service provides a role-based privilege allocation system,
where users are mapped to roles, and roles to particular activities [NHS08a, NHS06b].
Roles and privileges are centrally defined and allocated; an organisation may only aug-
ment a role with additional activities for the local environment [NHS08d].

Legitimate Relationship Service (LRS) The LRS [NHS06a] is a central service that
defines associations between patients and staff—individually or via a workgroup. This is
used to ensure that staff may only access information concerning patients they treat.

Criticisms of the NPfIT

The NPfIT has been the target of criticism from a number of fronts (see [CU07] and
[NHS09b] for an overview). Some issues concern the cost and scale of the project [NAO08,
eHe09]. The project is over budget, and has been subject to a number of delays. Re-
quirements documents have been found to be under-specified, or rewritten with significant
changes, and projects are subject to function-creep. The project is highly political; the
Conservative Party, if elected, seek to re-negotiate NPfIT contracts and dismantle cen-
tralised infrastructure [Con09].

The project also raises issues of consent, concerning whether and how a patient can opt in/
out of an electronic care record, and the resulting impact on their care [Bha09, NHS06d].
There are questions as to the lawfulness of the CRS, in particular the SUS [ABD+09].

12The SCR is generally purported to store basic medical information necessary in an emergency situa-
tion. However, there are concerns as to scope-creep [GSB+08, CU07, NHS06d].

13See [CU07] for details and discussion of the issues concerning the NHS patient record proposals.
14Note that the ESR technically sits outside of the NPfIT.

28 Chapter 2. Healthcare Primer

Much controversy surrounds the security aspect [NHS09b]. Closed specification docu-
ments, preventing peer-review, raise questions as to the quality of the security mecha-
nisms. Concern was raised over the launch of the SCR before completion of the sealed-
envelope functionality [eHe05]. Issues stem from the centralised nature of NPfIT ser-
vices [PSC07]. Centralised data stores increase the risks of a confidentiality breach [§2.3.1],
while centralised policy may fail to account for local concerns. This runs against the au-
tonomy of a local provider [HSH+09]—inflexibility makes it harder for a provider to meet
their data management obligations. Centralisation diminishes responsibility for a data
breach, and may lead to (a sometimes necessary) circumvention of the control mech-
anism [eHe07b]. Arguments are for central standards, but local storage, control and
responsibility [HSH+09].

2.6 Summary

There are a number of social and political issues surrounding healthcare information, to
which technical infrastructure must adhere and support.

Health information must be shared, often with a number of domains providing care (and
related) services. These domains operate autonomously, maintaining their own set of
policies and business processes. Healthcare processes are data-driven, where incidents are
relevant to numerous entities providing care services.

Somewhat paradoxically, health data must also be protected. There is responsibility
imposed on those providing services to ensure the confidentiality of health information.
The relevance of information to a domain/entity depends on its role in the care process.
Data should be shared on a need-to-know basis. This is best realised through granular,
context-sensitive controls. Responsibility brings accountability. Control mechanisms must
enable adequate control over information flows, to allow a domain to meet their data
management obligations.

3
Systems Background

This chapter presents background from the systems perspective, with reference to the
requirements of healthcare systems, to frame the data control model presented in this
dissertation. Specifically we introduce event-based computing [MFP06], which typically
involves a decoupled interaction surrounding occurrences of interest. We describe the
specifics of publish/subscribe, a paradigm used for event distribution, and summarise
various approaches in securing the paradigm.

3.1 Event-Based Systems

Event-based systems concern the distribution of events, where an event is defined as “any
happening of interest that can be observed within a computer system” [MFP06]. An
event encapsulates information about an incident as it occurs within an environment,
representing a change in state, such as a patient being discharged from a ward, or an
observation, such as a sensor reading. Events underpin data-driven systems, where an
incident may trigger a response.

Principals (or clients) are the software components, often user driven, operating within
the system. A client may be an event producer and/or consumer. Producers generate
events, while consumers process events of interest. Clients operate independently, in
the sense they produce/consume events according to their own motivations and internal
representation of state. Complex event processing (CEP) refers to the body of work
concerning event consumption and processing [Luc02].

Associated with a particular semantic, an event may be of interest to a number of con-
sumers. It is the responsibility of the event notification service to inform consumers of
relevant events as they occur within the environment. In this way, producers and con-
sumers are decoupled. Notification typically occurs through a messaging middleware,
which encapsulates an event (and routing metadata) in a message for transmission be-
tween clients. We describe paradigms for middleware messaging in §3.2.

29

30 Chapter 3. Systems Background

3.1.1 Events and Healthcare

Healthcare is information-centric: as described, data is the driver for healthcare processes.
Health providers require information to perform their duties. Clinical information revolves
around occurrences. Health records, observation charts, and the like all record details of
incidents, such as symptoms, the administration of a treatment, or observations. Health
information is inherently event-based, where an event may be relevant to a number of
clients, based in various care and related organisations (§2.4.1).

Infrastructure for information sharing is crucial to supporting healthcare services. Moni-
toring technologies (sensors) can measure aspects of state, without requiring the physical
presence of carers. Events representing an emergency situation are perhaps relevant to
emergency (A&E) services, the patient’s GP and family members. An event-dissemination
model serves to notify clients of relevant events if and when they occur, so that they may
respond appropriately. Emergency scenarios particularly motivate the need for event-
based communication, as clients are notified of the incident as it is detected, as opposed
to periodically polling for the current state. However, even in more benign situations,
event dissemination helps ensure that health workflows—clinical or administrative—are
undertaken with the most up-to-date representation of state. That is, events must be com-
municated to the relevant parties to enable the appropriate actions to be taken. These
actions may be based on a current event or historical record.1

3.2 Messaging Middleware

Message Oriented Middleware (middleware) [BCSS99] provides a level of indirection be-
tween clients and the (network) infrastructure to enable communication irrespective of
implementation specifics. In an event-based system, the middleware functions to deliver
event instances (notifications) from producers to interested consumers. In this section,
we provide an overview of paradigms for event dissemination.2 We then (§3.2.5) describe
request-response, an alternative interaction paradigm, the properties of which reinforce
the suitability of an event-based pub/sub middleware to an environment such as health-
care (§3.2.6).

Note that we use the term event to refer to a message encapsulating an event instance.

3.2.1 Message Passing

A basic form of distributed communication is simple message passing [EFGK03], in which
the producer directly sends an event to the consumer. The producer requires knowledge
of the recipient address (and/or vice-versa), transmitting the event to the consumer as it
occurs through a dedicated communication channel. Events can be sent asynchronously,
where the producer resumes processing after transmission. The consumption of events is
typically synchronous, in that the recipient (thread) blocks waiting for events to be sent
by the producer through the active communication channel.

1Benign events in isolation may become significant when combined with other information. This issue
motivates the work of complex event processing.

2This discussion concerns messaging paradigms as opposed to specific protocols, implementations or
applications. Indeed, protocols can be built on top of messaging paradigms, and vice-versa.

3.2. Messaging Middleware 31

3.2.2 Message Queues

Message queues work to mediate between producers and consumers. Producers send
events to event brokers, which store events in queues. A broker enqueues events on re-
ceipt, which are dequeued by consumers. Typically, each event is consumed by only one
recipient. As such, the model generally provides one-to-one or many-to-one communica-
tion: multiple producers to a single consumer.3

This approach differs from the message passing scenario by decoupling producers and
consumers. Clients need only know the address of the broker hosting the queue through
which communication occurs. As the queue provides storage, producers and consumers
need not be simultaneously active.

There are various open-source and commercial implementations of message queues, such
as IBM Websphere MQ [IBM09b], Apache ActiveMQ [Apa08], Microsoft MSMQ [Mic09a]
and Oracle AQ [Ora09a], many of which implement the Java Messaging System standard
(JMS) [SM02].

3.2.3 Publish/Subscribe

Publish/subscribe [EFGK03] (pub/sub) is an asynchronous, many-to-many communica-
tion paradigm suited for large-scale distributed systems. Consumers (subscribers) reg-
ister their interest in receiving an event, or subset of events, through a subscription.
A producer (publisher) produces (publishes) events (publications) independently of sub-
scribers. Communication occurs through a pub/sub service, which might be centralised
as a single event broker, similar to that of §3.2.2,4 or decentralised as a network of event
brokers [BEMP05]. In this model, a broker is concerned with routing event instances
to(wards) interested consumers. The pub/sub service, operating through event brokers,
is responsible for the asynchronous delivery of events (publications) to all subscribers with
matching subscriptions. Fig. 3.1 presents the client-API for a general pub/sub service.

Operation Issuer Description

Advertise() Publisher Advertise the (possible) future publication of an event type/topic
Unadvertise() Publisher Remove an existing advertisement

Publish() Publisher Publish an event instance
Subscribe() Subscriber Create a subscription for a particular event type/topic

Unsubscribe() Subscriber Remove an existing subscription

Figure 3.1: Client API of a typical Publish/Subscribe service (with advertisements).

A key property of pub/sub is its loose-coupling, which brings about scalability [EFGK03,
BV06]. Clients avoid the burden of managing the addresses of sources and sinks: publish-
ers send events to a broker, while subscribers register their interest with and receive events
from a broker. Typically publishers and subscribers are connected to different brokers.
The pub/sub service is responsible for routing an event throughout the broker network,
delivering a publication to the subscribers holding matching subscriptions.

Subscription Flavours

Pub/sub takes an information-centric approach to transmission, using subscriptions to
perform routing operations. As such, pub/sub approaches vary on the expressiveness of

3Note that other communication patterns can be constructed [Var09].
4In contrast with message queues, a pub/sub broker (generally) operates without a queue.

32 Chapter 3. Systems Background

their subscription models, which in turn affects the complexity of the matching operations.
Pub/sub models can be broadly categorised as topic, content or type based.

Topic-Based Publish/Subscribe
In this model, a topic refers to a subject that groups a number of events. A subscriber
subscribes to a topic to receive all events published under that topic. Routing occurs based
on the topic (group) identifier. As this is analogous to group communication mechanisms;
topic-based pub/sub is often implemented using IP Multicast [Dee89]. Some topic-based
pub/sub implementations include TIBCO Rendezvous [TIB09] and Vitiria ESB [Vit09].

Topic-based subscriptions are limited in their degree of expressiveness, in that a subscriber
receives all events published under their subscribed topic. Topics may be partitioned, per-
haps into a hierarchy, to provide more granular subscriptions. In Fig. 3.2, a subscription
to Hospital will match events of all subtopics, while a subscription to Critical Care

will return only events from that category.

A&E

Critical Care

Hospital

General

ENTCardiology

Figure 3.2: An event topic hierarchy.

Content-Based Publish/Subscribe
This approach enables subscribers to express their interest in receiving a set of events
through specification of a subscription filter. A filter is a a set of predicates (conditions)
that are evaluated over event content. An event is delivered to a subscriber if the event
satisfies (matches) the subscription filter.

The degree of expressiveness depends on the particular implementation. Many pub/sub
systems represent events as tuples consisting of a set of named attributes. Most subscrip-
tion languages provide basic comparison operators for attribute values (=, 6=,>,≥,<,≤),
some allowing particularly fine-grained and complex filter languages such as SQL [SBC+98,
Var09, FJLM05]. Other pub/sub systems represent events as XML [W3C08] documents,
using path expressions, such as XPath [W3C99], as the subscription language [CFGR02,
DF03]. Intuitively, there is a tradeoff between the expressiveness of the subscription lan-
guage and its cost of the matching operation [CRW99].

Type-Based Publish/Subscribe
Type-based pub/sub [BBHM95, Eug01, Pie04] means that each event published (event in-
stance) conforms to an event type, consisting of a name and a particular (guaranteed) set
of attributes of specific data types. Type-based pub/sub can be considered a merging of
topic- and content-based approaches, where the event type name represents the topic, and
subscription filters can be defined on the attributes of the event instance.5 In addition to

5There is a distinction between type- and type-and-attribute based pub/sub, which relates to the acces-
sibility of the information contained within an event instance—see [PB02] for details. In this dissertation,
we take a type-and-attribute based approach, as described in this subsection.

3.2. Messaging Middleware 33

providing a structured, yet expressive subscription model, type-based pub/sub allows both
event instances and filters to be type-checked for conformance with the event type defini-
tion [PB02], and facilitates integration with programming languages [BBHM95, Eug01].

A related approach is concept-based pub/sub [CABB04], which uses ontologies to abstract
client interests away from event-constructs (type/topic). This is to ensure correct event
interpretation in heterogeneous environments.

3.2.4 Distributed Publish/Subscribe

It is through brokers that the pub/sub service delivers events from publishers to sub-
scribers. In a single-broker environment, all publishers and subscribers connect to the
same broker, which distributes the events as appropriate to the subscription model.
Clearly, such an approach does not scale. As such, most research focuses on distributed
pub/sub, which involves a network of brokers [EFGK03], independent communicating
servers that co-operate to route events from publishers to subscribers. Each broker man-
ages a subset of the publishers and subscribers within a system, forwarding messages to
other brokers and delivering events to subscribers as appropriate to the routing and sub-
scription model. Scalability is improved, as each broker manages fewer clients. Further,
various routing techniques can be used to optimise dissemination [BV06].

Siena

One of the most cited pub/sub frameworks is Siena [CRW01], a content-based model that
takes a filter-based routing approach to improve the scalability of an event-dissemination
service. Clients communicate with brokers, which interconnect to form the distributed
pub/sub service. Each broker maintains routing tables to transmit events. The goal is
to improve scalability by reducing the number of brokers involved in event propagation.
Siena introduces two classes of routing algorithms:

Subscription Forwarding On receipt of a subscription, a broker records the subscrip-
tion in its routing table before forwarding it to all other directly connected brokers.
The process repeats for each broker, to form a spanning tree covering the entire
network.

Advertisement Forwarding Siena introduces the concept of advertisements, which are
like subscriptions, but are issued by publishers to declare that they (may) publish
particular events. Advertisements are used to set the paths for subscription for-
warding. A broker stores an advertisement in its routing tables before forwarding
it to other connected brokers, in a similar manner to that described above. On
receipt of a subscription, a broker updates its routing table, and forwards the sub-
scription only to connected brokers who have issued advertisements relevant for the
subscription. Thus, the subscription moves towards relevant publishers by following
the reverse path of the advertisements.

In both approaches, each broker forwards a publication (event) to all directly connected
clients and brokers with subscriptions6 that match the event instance. Thus, events travel
the reverse path of the subscriptions.

6That is, brokers who have forwarded a subscription.

34 Chapter 3. Systems Background

A

A

A

A

S

S
S

S

Broker Link
Advertisement
Subscription Request
Publication

S

A

A
A

B1

B2

B4

B6

B5

B3

A

A

Figure 3.3: Illustration of the advertisement-based routing model.

Fig. 3.3 illustrates the process, where a sensor client issues an advertisement (A) to
broker B1. This is propagated throughout the broker network. B2 later receives a similar
advertisement from a different client; however this only propagates to B1, as the brokers
B4–B6 have already received an advertisement covering similar publications. When the
subscriber at B6 issues a subscription, it follows the reverse path of the advertisements,
so that the subscription is stored in brokers B4, B3, B2 and B1. When the (sensor) client
publishes an event, each broker propagates the message along the path of the subscription
until it reaches the subscriber.

By propagating events only down paths with interested subscribers, bandwidth is saved
and broker-processing time is reduced. Siena also exploits coverage (overlap) between
subscription or advertisement filters, so that only the most general is forwarded. This
reduces the size of the routing tables and results in transmission of fewer advertisements/
subscriptions. Note, however, that the practicality of implementing coverage depends on
the complexity of the subscription language [CRW99].

We describe Siena as its routing approach is similar to that underlying the work in this dis-
sertation. There are, however, other flavours of pub/sub, many of which focus on improv-
ing scalability [BV06]. Hermes [PB02], for example, takes a rendezvous-based approach,
in which the dissemination paths are built by forwarding advertisements/subscriptions
towards a particular rendezvous broker. This broker acts as the (globally agreed-upon)
meeting point for the particular event type, thus avoiding advertisement flooding. Unlike
Siena, Hermes focuses on dynamic topologies, considering the addition/removal of brokers
and fault-tolerance.

The use of pub/sub is becoming increasingly wide-spread. Prominent research efforts in-
clude Siena, PADRES [FJLM05], Rebeca [MFGB02], Hermes [Pie04], Jedi [CNF01] and
Elvin [SAB+00]. Commercially Microsoft describes a pub/sub design pattern [Mic09b],
while IBM’s WebSphere [IBM09b] inherits some functionality from Gryphon [SBC+98].
Web Services Notifications [Com06b] and Web Services Eventing [W3C06] are two com-
peting standards describing pub/sub communication for webservices.

For an overview of pub/sub models, see [EFGK03], [BV06] and [MFP06].

3.2. Messaging Middleware 35

It is important to note that most pub/sub implementations concern application-level
(overlay) routing, where the pub/sub service is built as an application, using TCP/IP
or some other network protocol for communication. As illustrated in Fig. 3.4, here bro-
kers form an overlay network, an abstraction above the underlying network, where a
(persistent logical) connection between two event brokers might span several hops and
may be short-lived at lower-levels. That said, there is some research into the use of pub/
sub in the lower levels of the network stack [PSI].

 network

overlay

Figure 3.4: An illustration of an overlay network.

3.2.5 Request-Response Interaction

Although not considered a message-oriented middleware, request-response is a popular
interaction paradigm underpinning the client-server model of communication. Request-
response involves communication between the consumer and an information provider.7 It
is a tightly-coupled form of interaction, where a consumer initiates communication by
issuing a request directly to a provider, located a particular address. Security is simplified
as parties directly communicate, and thus ‘know’ each other. However, this coupling has
limitations. Firstly, it is required that the information providers and their locations are
known, or are able to be determined by consumers. This can become an issue in an
environment with many communicating entities. Second, such architectures bring issues
of scalability, as popular providers may become overloaded in processing a number of
requests, and consumers interested in data must maintain direct connections with each
information provider. Thirdly, changes and system evolution requires the modification of
all dependent application components.

3.2.6 Healthcare Communication

As explained, healthcare providers must share information. As health is a data-driven
environment, clients require notification of incidents (events) as they occur. The services
provided, and hence information requirements, vary depending on the provider’s role in
the care process.

Such an environment benefits from the properties of the pub/sub paradigm. In healthcare
interactions occur between many different entities. Consumers register their interest with
a broker while producers publish events as they occur; the middleware is responsible for
delivering the information appropriately. The decoupling of producers and consumers is
appropriate for large-scale environments, as clients are not burdened with the addressing

7The provider serving the information is not necessarily the information producer.

36 Chapter 3. Systems Background

specifics of every potential information source/sink. In this way, clients focus on the infor-
mation, rather than possible sources. This simplifies the development and maintenance
of client applications. However, the decoupled nature pub/sub also brings security issues.
These are explored in §3.4.

The scalable nature of pub/sub systems is important in a sizable application domain such
as a national care service. Often a particular health incident will be relevant to a number of
clients, grounded in various domains. The model serves to reduce redundant transmissions
(multiplicative event fan-out), by routing a single copy of an event as far as possible.
Domains require the ability to manage their own network/server loads. Rather than
dealing with bottlenecks in each application, a common middleware facilitates network
manageability, e.g. through the addition of brokers or topology reconfiguration.

This dissertation considers an integrated database-pub/sub system using an advertisement-
based forwarding mechanism. This is described in the next chapter.

3.3 Access Control

Given the sensitivity of health information, access to healthcare data must be carefully
controlled. The purpose of access control is to restrict access to resources. Access control
mechanisms define the permissions of principals (users) to access objects.8

With a history of use in military systems, mandatory access control (MAC) concerns the
central allocation of privileges for an entire system. Some prominent access schemes fea-
turing mandatory controls include Bell-La Padula [BP73], Biba [Bib77] and the Chinese-
Wall [BN89] model. MAC is notably inflexible, requiring policy to be defined for all
actions/operations in the system. Such schemes are inappropriate for an environment
such as healthcare where there are multiple domains of control.

Discretionary access control (DAC) differs from MAC in that it allows user (or ad-hoc)
specification of privilege. This brings flexibility, for example, allowing the encapsulation
of exceptions. The Access Control Matrix [Lam71] is a model in which access rights form a
matrix of privileges, where each principal represents a row and each object has a column.
A cell in the matrix defines the access rights for the relevant principal and object. Given
that such a matrix is likely to be sparse in a system of any size, implementations tend to
partition the matrix. Access-Control Lists (ACL) represent the privileges for each object
(a column of the matrix) and are typically used by operating systems for file security.
Capability-based systems [Lev84] represent privileges available for each principal, i.e. a
row of the matrix. Both present issues of manageability, such as when a new principal or
object is added.

3.3.1 Role-Based Access Control

Role-Based Access Control (RBAC) [FK92, SCFY96] introduces a layer of abstraction (a
role) between principals and privilege. As shown in Fig. 3.5, principals are assigned to
roles, and roles are assigned privileges. This works to improve the manageability of access
constraints: a new principal is assigned roles defining their privilege, while the privileges

8We use the term object to refer to a target for the privilege. An object may refer to a resource (file),
action or data (record/column/event).

3.3. Access Control 37

of all role-members are modified through a single operation. The motivation is that users
join, leave and change roles in an organisation, while the policy concerning the objects
is often independent of such changes. RBAC concepts are found in a variety of systems
including databases, operating systems (security models) and webservers.

Principals Roles Privileges

Figure 3.5: An illustration of RBAC assignments.

Extending RBAC

There exists much work in the area of extending RBAC. For example, the Tees Con-
fidentiality Model [LLN03] presents a combined identity and RBAC based model that
introduces specific confidentiality permissions. These permissions are assigned to objects
to encapsulate particular privacy concerns. To assist in privilege management, the model
defines collections: hierarchical groupings of roles, identities and data items enabling
privilege inheritance. Confidentiality permissions are processed in a strict order; though
the model allows permissions to be specifically overridden. P-RBAC [NTBL07] extends
RBAC to enforce both privacy and access control policies, where roles are assigned privacy
permissions stating the purpose and conditions for the permission, and any obligations to
be performed. Context-aware RBAC is also a popular area of research—[HW04] provides
an overview of some efforts in this area.

3.3.2 RBAC and Beyond

Some approaches consider access control in terms of a more extensive control framework,
though often include some concept of a role. PERMIS [CZO+08] is an authorisation
framework consisting of a RBAC implementation aimed at controlling privileges in a dis-
tributed (grid) environment. It allows stateful policy decisions and includes mechanisms
for validation and delegation. XACML [OAS05a] is a well-known model for expressing
and interpreting authorisation policies written in XML [W3C08]. It provides a policy
definition language to define and enforce complex, fine-grained policies while allowing
interchangeable, application independent policy specification. XACML aims to be ex-
pressive through customised definitions, also providing the mechanism for conditional
authorisation, policy combination and conflict. The XACML RBAC profile [OAS05b]
describes the method for realising RBAC in XACML.

Policy models govern actions in distributed environments. Law Governed Interaction
(LGI) [MU00] is an approach in which trusted controllers interpret and enforce policies
on behalf of their clients. KaOS [UBJ+04] takes an ontological approach to policy specifi-
cation, supporting both authorisation and obligation policies in the realm of the Semantic

38 Chapter 3. Systems Background

Web [W3C01]. Ponder2 [TLDS08] is a stand-alone policy environment used to control
system behaviour. The model includes authorisation policies [RDD07] that specify the
actions permitted on objects, and obligation policies, which trigger actions in response
to an event. Focused on environments of autonomous interactions, Ponder2 groups sys-
tem components into self-governing administrative domains (self-managed cells) which use
policies to manage themselves and their interactions. Ponder2 is extensible, in that every
component is a managed object, which interacts with other objects to provide system
functionality. Communication typically occurs through a pub/sub event bus, scoped for
the particular domain.

Access policies tend to be generally defined, residing in centralised or distributed policy
stores. Sticky-policies [KSW02] differ in that they are attached to, or reside with, the data
itself. In a distributed system, such policies propagate with messages containing the data.
Sticky policies raise issues of trust, in that the remote service must be trusted to enforce
the policy, while an enforcing node must trust that the policy in the local environment
is appropriate. Further, in a distributed environment, issues concern the capability of
services to interpret, process and enforce policy, as this requires common state, definitions
(e.g. types) and operations (e.g. functions). Application-independent policy components
enable the enforcement of sticky policy obligations that apply to multiple nodes of a
distributed application [CL08].

Hippocratic databases [AKSX02] build data disclosure controls into the database system.
This reduces an application’s data-management concerns. The approach involves defin-
ing privacy metadata, policy that works to control the collection, query, retention and
disclosure of data. Noting that record/tuple control may be insufficient, methods are
described to restrict information disclosure [LAE+04] at the field, table or query level,
implemented through query rewriting or the construction of data views. Auditing and
data inference techniques are described to detect information leaks [AEKV07]. Also con-
sidered are techniques for privacy-preserving data mining [BA05, EGS03], particularly
useful where health data is used for secondary purposes. IBM is actively promoting such
technology as part of their push towards data-centric security [BOS+06, IBM09a].

3.3.3 Healthcare Access Control

Protecting the confidentiality of health information is clearly an access control issue,
concerning the appropriate circumstances for data access.

This is reflected in the NPfIT (§2.5) which proposes a RBAC service and a number of
supporting services to control access to information. These services are described in §2.5
and §6.2.1. One access control effort of the NPfIT is that of sealed envelopes, in which
particular information from a patient’s record can be hidden from ‘general’ view. As de-
scribed, the sealed envelopes are visible, but access to its contents is strictly audited, while
locked envelopes are only visible to the patient and particular care team involved. Clearly
such an approach causes concern, one would expect that all clinical data is stringently
protected, revealed only when necessary. Hippocratic databases are marketed at organi-
sations to assist in complying with US healthcare information regulations, by controlling
the medical data returned from queries.

Some work in RBAC aims at extending the model with a particular focus on healthcare,
e.g. [WFSM02, HW04]. These approaches integrate (medical) context into the access-
control framework. Becker [Bec07] argues, in presenting Cassandra, that RBAC is, by

3.4. Publish/Subscribe Security 39

itself, unsuitable for handling the complexities of NHS policy. Cassandra [Bec05] is a
formal policy language aimed specifically at specifying NHS authorisation policy. Based
on datalog, NHS procedures governing particular actions are encoded in logic-rules.

In a medical security recommendation paper for the British Medical Association, Ander-
son [And96] describes a method for controlling access to medical records utilising tightly
regulated access control lists. This involves each record having a clinician responsible
for maintaining the access control policy for that record (a patient may have multiple
records), where alterations to the access control list may only occur with explicit patient
consent. Access to the record itself is audited for reasons of accountability.

Healthcare systems typically consider the security aspects for request-response scenarios,
occurring between named endpoints; such as a query executed on a specific database to
access a patient’s medical data, or a directed request to perform a particular action, e.g.
signing-on at the start of a shift. In these scenarios, the request is evaluated by the server,
the action performed (if permissible) and response sent. Indeed, this is the interaction
paradigm for the majority of medical systems. As opposed to accessing a record, here we
consider the integration of access-control mechanisms into a pub/sub middleware. We are
concerned with the notification of incidents, to control the flow of events as they occur in
an environment of distributed interaction.

3.4 Publish/Subscribe Security

Most work in pub/sub focuses on issues of scalability, performance and expressiveness;
there is substantially less literature concerning the security aspect [MFP06]. This is un-
surprising, given the decoupled many-to-many nature of paradigm, and because many
application scenarios consider anonymous communication and/or the distribution of rel-
atively insensitive information, such as stock-quotes or weather readings. As stated by
Wang et al. [WCEW02], security is a challenge in pub/sub given that it involves “infor-
mation dissemination across distinct authoritative domains, heterogeneous platforms and
a large, dynamic population of publishers and subscribers”. That said, given that pub/
sub deals in information distribution, controlling access to information is clearly of impor-
tance. Security considerations must account for the fact that delivery group membership
is dynamic, evaluated on each event instance [OP01]. There have been various approaches
taken to pub/sub security: some require client involvement, others middleware focused;
some involve encryption schemes while others are policy based. In this section, we intro-
duce approaches for pub/sub security, to place Interaction Control with respect to other
work in the field.

3.4.1 Policy-Based Control

One of the earliest efforts in pub/sub security is that of Miklós [Mik02], which involves
using policies to define the validity ranges for pub/sub operations. Built on Siena, a
policy consists of an attribute-based filter, much like a subscription. Restrictions are
assigned to clients who hold a particular credential. Policies are enforced by exploiting
and extending Siena’s existing coverage mechanisms, where an advertisement, subscription
or notification must satisfy the maximum/minimum security restrictions as specified by
the policy filters. Miklós also defines screening, which allows specification of the attributes

40 Chapter 3. Systems Background

visible to a particular subscriber. Note that while content-based, Siena is not type-based,
thus policies are specific to particular sets of attributes.

Symmetric publish/subscribe [TGP06b, TGP06a] also takes a filter-based approach to ac-
cess control. Here, the publisher includes constraints, a subscription-like filter, with their
publications. This constraint is attached to and thus routed with the event instance.
Matching occurs by computing the intersection of the subscription and publication con-
straints. This allows a publisher to define a class of subscribers for which a particular event
is relevant, based on the subscriber’s interest. The broker network is assumed trusted.

Opyrchal et al. [OPA07] define event owners, clients who conditionally licence others with
event privileges. Owners specify client-specific policy rules to both assign and delegate
rights. The examples define publishers as owning the instances they produce. This gives
a publisher control over their publications, where a publisher assigns (licences) particular
clients with privileges to subscribe to and receive their events. Policy is centrally stored
and enforced by a single event broker, though issues of distribution are discussed as future
work. Also suggested is the use of dedicated applications (agents/proxies) to act as privacy
filters to control information visibility.

Wun and Jacobsen [WJ07] present a policy management framework that couples Event-
Condition-Action (ECA) rules to pub/sub operations. Policies consist of conditional ex-
ecutable actions tied to particular operations of the pub/sub service: un/advertise,
un/subscribe and publish. These policies may be specified by a client or set in a broker
by an administrator. The action associated with a policy is executed immediately before
or after performance of the operation. Policies can be attached to pub/sub messages
(sticky policies) for association and subsequent enforcement by other brokers. The au-
thors advocate a post-matching policy approach, where the action is executed after the
matching phase of the operation. This avoids policy overheads, except for the time taken
to execute the policy. The model is generic, able to be used for various purposes such
as system monitoring, event processing/composition, workflow triggers and security. The
authors provide some security examples, considering content-based firewall functionality,
and controlling messages according to security groupings.

Zhao and Sturman [ZS06] present an approach in which a centralised ACL stores the
privileges for all clients operating within the system. A broker queries the ACL to per-
mit/deny the request as appropriate to the privileges of the issuing client. A client may
publish events that match the applicable publication rules, and receives messages that
match both its subscription filters and the applicable subscribing rules. The approach is
dynamic as a change in the ACL (privilege) is pushed to brokers hosting affected clients,
and has mechanisms for dealing with versioning and timing issues for policy updates.

Belokosztolszki et al. [BEP+03] describe the use of RBAC to secure a pub/sub service.
The work integrates Hermes and OASIS to control a client’s interactions with their local
broker. This allows definition of RBAC policies to control client access to the adver-
tisement, subscription, connection and type management functionality of the pub/sub
infrastructure. Policy is specified by event-type owners, typically the creator of the event
type. This renders a policy type specific. A client must satisfy the policy for the broker to
accept/perform the particular operation. Restrictions may be defined to limit a particular
advertisement or subscription, e.g. downgrading a subscription to an event’s subtype, or
imposing an additional filter.

3.4. Publish/Subscribe Security 41

Belokosztolszki et al. primarily focus on client access control, enforced at the boundaries
(edge-brokers) of the pub/sub infrastructure. Broker trustworthiness is considered at the
type (cf. content) level, where a web-of-trust is formed via a certificate chain originating
from the event-type owner. Only an authorised broker receives events, advertisements and
subscriptions for the particular type. This, however, is described in the context of a single
administrative domain. These concepts were extended to address client and broker secu-
rity concerns in multi-domain environments [BEMP05, PEB07b], enabling decentralised
management of roles, message types and policy. The authors employ encryption and
key-management techniques to deal with issues of trust within and between domains.

Pesonen et al. [PEB06] further explore control in multi-domain environments, defining a
capability-based access control model in which clients and brokers are granted privileges by
the access control manager (ACM) of a domain. Taking a decentralised trust management
approach, authority is delegated via a certificate from the resource owner to the ACM of a
particular target domain. The ACM may then perform further intra-domain delegations
to control the access privileges of its clients. Note that although the owner cannot control
the intra-domain privilege allocations, they can always revoke the privilege for the entire
domain. The client requesting an action presents the pub/sub service with its capability
and the chain of delegation certificates linking the domain’s ACM to the owner. This
allows validation of the capability.

3.4.2 Encryption-Based Control

Encryption is used to hide information from untrusted principals.

Opyrchal et al. [OP01] present an efficient key distribution algorithm to protect infor-
mation transmitted from brokers to subscribers. However, as pub/sub models typically
concern application-level routing, often it is assumed that some transport-layer security
(TLS) [DA99] exists between clients and brokers.

Raiciu and Rosenblum [RR06] present a method for routing information where encryp-
tion/decryption operations are performed by mutually trusting publishers and subscribers
who share a common key. Considering all brokers untrustworthy, mechanisms are pre-
sented to allow brokers to perform content-based routing without access to the (plaintext)
content itself. This, however, impacts on the expressiveness of the filter language.

EventGuard [SL05] presents a suite of security guards in an environment of untrustworthy
brokers. Confidentiality is protected through a per-topic key, and topic specific token
that the trusted central authority allocates to approved9 clients on an advertisement or
subscription request. These tokens are required to issue requests to the EventGuard pub/
sub service. A publisher encrypts an event with a random key, and the random key with
the topic key, before publishing the information with the token. As a subscriber shares the
topic key, it can decrypt the random key to access event content. The token obfuscates
a topic name to allow topic-based routing while removing any semantic associated with
the topic’s name.

In PSGuard [SL07], the same authors consider security in content-based pub/sub. Hi-
erarchical key derivation algorithms are used to create keys for subsets of an attribute’s

9The trusted central authority is separate from the pub/sub service. The method for defining policy
authorising a client request is not specified.

42 Chapter 3. Systems Background

value. Publishers encrypt events according to content, so that subscribers can only de-
rive keys to decrypt events matching their subscription filter. An algorithm, based on
encrypted data searching, enables brokers to perform matching operations without access
to event content. The authors propose probabilistic multi-path routing to minimise the
information a broker can infer from observing routing behaviour.

Pesonen et al. [PEB07a] describe the execution of encryption operations within the broker
network. As a client accesses the pub/sub infrastructure through a broker, the model
assumes that a client trusts its local (directly-connected) broker to handle event content
on its behalf.10 This allows encryption tasks to be delegated to brokers, without client
involvement. Access control is enforced over encrypted event content by controlling access
to the keys via key groups. Encryption operations are avoided when routing to brokers
with compatible levels of authorisation.

Pesonen’s approach allows one of two methods of encryption for an event type: whole-
event encryption, which encrypts an entire event instance, and attribute encryption, which
associates keys with particular attributes to give finer-grained control over the access to
event content. Subscription filters are also encrypted, either in their entirety or per
attribute filter, depending on the method of encryption employed. A broker decrypts the
event/filter/attributes for the keys it is allocated and performs content-based routing;
otherwise routing is based on the type-name.

Khurana et al. [Khu05] also considers the encryption of event attributes, but where brokers
are assumed untrustworthy. The approach uses a proxy re-encryption scheme, where the
sensitive attributes of a publication are encrypted with the key of a trusted external
service. On matching a subscription, the broker sends the event to the service, which
decrypts and re-encrypts the event using the key of the particular subscriber. The service
also verifies and signs events. Routing is performed with the unencrypted attributes, as
it is assumed that only some attributes of an event require confidentiality.

3.4.3 Secure Event Types

Secure event types were proposed by Pesonen el al. [PB05] to control the management of
type definitions in a pub/sub service. The components of a secure event-type definition
are presented in Fig. 3.6. The naming components uniquely identify the event type,
which include a descriptive name of the type, and the key of the type issuer (author or
owner) to create a naming scope for the issuer and to facilitate type verification through
signing. Versioning assists type evolution, providing the means to avoid conflicts with
previous definitions still in use by the system. The Body consists of the standard attribute
(name/data type) definitions. Delegation certificates enable scalability, allowing a type
owner to delegate management capabilities to type managers. A digital signature is used
to guarantee the authenticity and integrity of the type definition.

3.4.4 Scoping

A scope [Fie04, FMMB02] bundles a set of components (clients, brokers and other scopes),
to control the visibility of event instances. Assuming its components are trusted, a scope
isolates intra-scope traffic from the rest of the system. This grouping is independent of
application/component concerns, controlling event visibility orthogonally to types, topics

10This dissertation assumes a similar notion of trust (§5.2.1).

3.4. Publish/Subscribe Security 43

Name tuple:

{ 1 Type issuer’s public key
2 User-friendly event type name
3 Version number

Body:

{
4 Attributes

Digital signature:

{
5 Delegation certificates
6 Digital signature

Figure 3.6: Contents of a secure event type definition.

and subscriptions [FZB+04]. In this way, a scope essentially defines and manages infor-
mation boundaries. Note that access control mechanisms are still required to manage
client access to the pub/sub service.

An event is initially visible only to other components belonging to the scope in which it is
published. Multiple scopes can exist for a broker overlay—routing tables are partitioned
to manage each scope [FZB+04]. A scope interface works much like an advertisement/
subscription to allow events to move between scopes. This requires at least one broker
to belong to the scopes involved in the interaction. To deal with issues of heterogeneity,
notification mappings can be defined to translate an event instance when crossing a scope
boundary. Encryption allows events to be tunelled through untrusted brokers where scope
components are disconnected.

Fig. 3.7 presents a scope graph, where a publication from C1 is visible to Scope3 and
Scope2 and all components (subscribers) belonging to those scopes, including C2. It is
also visible in Scope1 if it matches the scope interface specified by Scope3. Scope4 does
not automatically receive the event, despite C2 being a member of both.

c1c2

scope2scope3

scope1

scope4

Scope membership
Scope interface

Figure 3.7: An example scope graph.

3.4.5 Applicability to Healthcare

This dissertation considers the confidential nature of health information, where mecha-
nisms are required to control the circumstances in which information is disclosed.

Healthcare brings some interesting concerns to issues of pub/sub security. Firstly, unlike
many application scenarios, healthcare is not an environment of anonymous interaction.
Clients, brokers and domains must be authenticated and verified. Credential services are
defined to identify principals operating throughout the entire health domain [NHS06b].

44 Chapter 3. Systems Background

Identity is important, as it allows the assignment of (local/shared) privilege: access to
the pub/sub API and access to event instances. Further, identity forms the basis for
establishing trust, in that the entity is registered with the health service. This provides
insight into the purpose of the information flow, e.g. it is known that a user who is
pharmacist deals with medications.

Healthcare is highly collaborative, consisting of a number of interacting entities. Middle-
ware is an appropriate enforcement point for enforcing access control policy, as it abstracts
and isolates policy management away from the clients themselves. That is, policy can
be defined in the middleware, rather than in each application. As clients communicate
through the middleware, all data transmitted is subject to a common control regime. This
removes the need for clients to have knowledge of every possible source application and
the appropriate disclosure protocol for each event instance for every possible recipient.
Despite the fact that the identity of a client is known, it is unreasonable, unmanageable,
if not dangerous for clients, or entire applications, to handle the disclosure policy for
every potential producer/consumer. A policy failure by middleware may have a greater
impact. However, middleware provides application independent policy enforcement, in-
volving fewer policy definition and enforcement points, operating under a common regime
and managed under a common interface. Further, as middleware encodes the general
sharing protocol of a domain, it is likely subject to greater scrutiny.

Trust is an important consideration regarding information disclosure. Some security mod-
els assume a trusted broker network, some assume that a client trusts their local broker,
while others distrust all brokers. In healthcare, a base-line level of trust can be estab-
lished given the legal, social and ethical responsibility for information. That is, users
are responsible for maintaining the confidentiality of the information they receive, and a
domain is responsible for information it holds.

A domain controls its own technical infrastructure. This allows a domain to define its own
policies concerning the information accessible by its staff, and when it may be shared with
other domains. An organisation meets its data management responsibilities by releasing
data on a need-to-know basis; at which point, the recipient becomes responsible for that
information. This means that the infrastructure must allow each entity in the health
service to control the circumstances in which data is shared. Responsibility influences
trust. A client trusts their domain, typically the client’s employer, while a domain trusts
its clients and other domains to appropriately handle the information they produce. Any
failure brings repercussions, though an entity absolves its responsibility by transmitting
only the appropriate information. This requires control within the broker network.

The encryption methods outlined seek to tackle issues of trust. In healthcare, all (per-
sonal) data is perpetually sensitive, in contrast to a military scenario where information
remains sensitive until the time of attack. Key management becomes an important, but
complicated issue. The liberal distribution of encrypted events throughout a pub/sub
network, where key allocations control security, is inappropriate for healthcare. Compro-
mised keys, or a broken encryption scheme at any time in the future potentially provides
inappropriate access to sensitive data. It follows that health events, even if encrypted,
should only flow to parties authorised to receive that information. Information controls
should be enforced at each connection, including those between brokers. This avoids
unauthorised disclosures and aids in accountability as the recipients of the information
are clear—as opposed to the recipient list including every intermediate broker that pro-
cessed the encrypted event instance.

3.5. Summary 45

It follows that a pub/sub implementation for healthcare requires mechanisms for the
fine-grained management of event flows. Policy must control the interactions of clients
and brokers, regulating access to the pub/sub service (connections, advertisements and
subscriptions) and the events transmitted. The control mechanisms must also account
for the dynamism of healthcare, e.g. where restrictions may be relaxed in an emergency
situation.

3.5 Summary

In this chapter we discussed issues concerning healthcare information management with
reference to previous work in the areas of pub/sub and access control.

Healthcare is a highly data-driven environment, amenable to an event-based infrastruc-
ture. Health incidents must be delivered to the relevant entities, to allow for an appropri-
ate response. Events must be transmitted within and between administrative domains.
Pub/sub is an asynchronous, scalable, many-to-many distribution model. Its decoupled
nature is useful for healthcare: an event may be relevant to a number of parties, and
clients need not enumerate all possible information sources/sinks. Consumers specify
their interests in receiving particular information, which may be realised from a number
of sources. However, entities are legally and ethically responsible for protecting health
data. The sensitivity of health information means that its transmission must be carefully
controlled.

This dissertation considers the security aspects of pub/sub as relevant for healthcare.
Middleware is the appropriate point for policy enforcement, as it ensures client compliance
and facilitates policy management. Clearly client access to the pub/sub service and the
delivery of event instances must be controlled. The premise of this work is the notion
of local control, local responsibility. Given the overarching legal/social responsibility for
protecting health information, domains must have the the ability to control information
flows. Regarding pub/sub, healthcare requires the ability to control message flows to
each component of the pub/sub infrastructure—including brokers. This enables those
responsible for information to meet their data management obligations, through precise
control over the events transmitted from the infrastructure they control.

4
Publish/Subscribe and Databases

This chapter outlines the motivation for coupling pub/sub functionality into database
infrastructure, followed by a description of the operational details of PostgreSQL-PS, an
integrated pub/sub-database system on which our data control mechanisms are built.

4.1 Databases

The term database system (or database) refers to software for data management, control-
ling the storage, management and retrieval of related data. A database can be thought
of as “a computerised record-keeping system” [Dat04]. The concept of a database is
well-understood. Databases underlie the information management infrastructure of most
organisations, providing persistence for their business processes. As such, data is consid-
ered one of an organisation’s most valuable assets [Ste97].

A database organises data into a particular structure, according to its data model, which
influences the mechanisms for storage and retrieval. Many database systems implement
the relational model [Cod83], representing data as tuples in a relation (i.e. a table). Re-
lational operators, such as select, project and join, work to derive further relations
from relations. The Structured Query Language (SQL) [ANSI92] is a declarative language
standard that facilitates the insertion, deletion, modification and query of relational data.
It is the query language of the majority of modern database management systems, though
the features (and extensions) implemented vary between systems. Popular database man-
agement systems include DB2 [IBM08], Microsoft SQL Server [Mic08], MySQL [SM09],
Oracle Database [Ora09b], and PostgreSQL [PGDG09a].

4.1.1 Active Databases

An active database [PD99] refers to one in which actions are executed in response to
certain events. Databases are typically passive, serving application requests. Active
database functionality allows the database to become reactive to particular (database)

46

4.2. Database Publish/Subscribe 47

occurrences. Defining responses in the database, as opposed to each application, removes
the need for applications to poll for changes.

Active database functionality is typically implemented through Event-Condition-Action
(ECA) rules [Cha95]. The event1 component of the rule specifies the operations that
trigger the rule, the (optional) condition refines the circumstances in which the action is
taken. In a database environment, ECA rules are also known as active rules, where the
event is a database operation and the action typically a set of SQL statements [EN04].2

Most modern relational database systems include triggers, active rules that define pro-
cedures3 to execute on (particular) insert/update/delete operations for a relation. A
trigger can be defined to fire on the execution of a SQL statement, or for each row (tuple)
affected by a statement [PGDG09b]. Triggers allow the execution of compensatory and/or
complementary actions to encode application logic, and to ensure data consistency, such
as cascading deletes or the maintenance of a materialised view. Triggers are frequently
used to realise audit functionality.

4.2 Database Publish/Subscribe

Databases are used to store related data, often holding information from a number of
client applications. The occurrence of incidents, actions, operations and/or observations
all impact on database state, reflected in the data store through the addition, modification
or deletion of data. Often client applications and other databases require notification of
such changes. An event encapsulates the data of an occurrence, and often event-data
requires persistence; thus, events and databases are tightly coupled. It follows that a
database system is an appropriate point for the integration of sharing mechanisms.

A database-broker can function as an event client, as opposed to passively routing event
instances. Given that databases represent state through stored data, and support stored
procedures, a database can produce and consume event instances, performing various
operations (storage/processing) while routing information to interested parties.

There are a number of advantages to such a system. Management operations are facil-
itated through a common interface for data storage and transmission. Common event
and data type definitions simplify persistence and event processing. The coupled infras-
tructure assists data replication and reliable communication as storage operations can be
tied to message flows. The messaging substrate is able to exploit database functional-
ity, which includes persistent storage with powerful data management, manipulation and
query capabilities, transactions, and active rules. By reducing communication overheads
and leveraging database performance capabilities, such as automatic query optimisation
and performance tuning, performance gains are realised over separate messaging and data
storage systems [VBM08, Var09].

1In this subsection, event refers to some database occurrence as opposed to the definition of §4.3.1.
2Or some functionality defined in some other database-supported language.
3Most relational databases support stored procedures: user-defined functions in a variety of languages

that are executable by the database system. Such functions are used to execute a prescribed set of
SQL commands or to provide additional functionality in other languages not possible with SQL. Stored
procedures enable the encoding of application-level functionality into the database system itself.

48 Chapter 4. Publish/Subscribe and Databases

4.2.1 Continuous Queries

Continuous queries (CQ) [TGNO92, LPT99] provide a mechanism for monitoring change
in a database. In CQ systems, a client issues a query that is repeatedly evaluated by the
database system. Information is delivered to the client when the conditions specified in
the query hold. Example CQ systems include Tapestry [TGNO92], OpenCQ [LPT99],
TelegraphCQ [Ber08], NiagaraCQ [CDTW00], SQL Notification Services [Pat06] and Or-
acle CQ [WBL+07].

CQ and pub/sub systems differ in focus [VBM05]: CQ systems concern consumer-defined
queries to report changes in data, while pub/sub concerns distributed event dissemination.

Clients in CQ systems install queries directly (or through a CQ service [LPT99]) to
specific databases; that is, the addresses of data providers must be known. CQ systems
have issues of scalability, in that each query is stored and evaluated separately, and replies
are sent individually to each client issuing a query. Concerning distribution, a CQ system
is somewhat analogous to a single-broker pub/sub implementation.

CQ systems require the appropriate triggering functionality to be defined in the relevant
database(s), which raises issues of security if clients are left to specify notification specifics
through relational statements. In pub/sub, event types partition and advertise the space
for which notifications are possible. This restricts subscriptions to a specific, pre-defined
scope.

4.2.2 Database-Publish/Subscribe and Healthcare

An integrated database-pub/sub system is useful for healthcare for several reasons. Health-
care is highly data-driven, where health incidents require storage in databases. Given the
collaborative nature of the health environment, information must also be shared. For
example, the Detailed Care Record service stores only a subset of the information held by
the local systems of a particular region [CU07]. As such, it is natural to couple database
and messaging infrastructure, to manage information storage and distribution under a
common interface. Databases are integral to healthcare processes; such an approach adds
a layer above technology already common-place in health infrastructure.

Subscriptions can be used to create information flows (routing paths) between local and
remote datastores. In healthcare, the relevance of information is context-dependent. As
the purpose of a database is to persist data (state), a coupled infrastructure renders
brokers context-aware. This enables the detailed specification of interests, as filters can
(potentially) reference anything accessible by the broker. Further, as a database itself can
act as an event client, replication and other workflow processes, e.g. triggers to update
information or event composition, are facilitated.

Health information is sensitive; thus, the transfer of information must be audited. This
implies that the messaging system requires storage. A coupled database/messaging in-
frastructure assists audit processes (Ch. 10), removes storage redundancy and improves
performance over separate storage and messaging systems [Var09].

4.3. PostgreSQL-PS 49

4.3 PostgreSQL-PS

PostgreSQL-PS is an integrated database-pub/sub system.4 It extends the PostgreSQL
Database Management System [PGDG09a] to provide a database server with event broker
functionality.5 These extensions leverage from, and interact with, various database server
components, such as system catalogues, schemata and active rule functionality. This
allows for tight integration between the pub/sub and database substrates. PostgreSQL-
PS forms the basis upon which we build our data control mechanisms.

4.3.1 Event Model

PostgreSQL-PS uses a type-and-attribute-based event model [PB02, Var09]. Here an
event type ε is a tuple of the form ε = (n,A), where n is a unique, system-wide name
for the event type and A is a non-empty set of attributes. An attribute a is defined as a
name/type pair, such that a = (na, ta) where na is the attribute name and ta is its data
type. Each attribute name is unique per event type definition, where the data type for
each attribute corresponds to a valid type recognised by the database system, including
at least those specified by the SQL92 standard [ANSI92].6

An event7 is the result of a publication, either from a connected client (via a message) or
generated programmatically by the system through active rules. An event is a tuple with
a set of attribute values (name/value pairs) that correspond to an event type definition:
e :: ε = {(na1, va1), ..., (nan, van)}, where an event e is of event type ε and (nax, vax) is the
name and value pair of an attribute.

An event type is represented in the DBMS as an abstract data type. This integrates the
event type and associated schema into PostgreSQL’s object-relational model. As such,
event types are recognised, accessible and validated as relational objects by various server
components (i.e. the parser, the query engine and executor) in the same way as table
definitions and function prototypes. PostgreSQL-PS exploits existing database function-
ality to ensure that event instances, filter definitions and procedural code conform to the
relevant event type schema. This is illustrated in Fig. 4.1.

SENSOR_READING
(event type definition)

Attribute Name Data Type
Patient_ID int8
Heart_Rate integer

Temp real
Location text

Time timestamp

EVENT INSTANCES
(publications)

2323232320 3434343431 NEA55124

66 87 HIV
38.5 39.12 132

TL447588 TQ290803 15.0
30-01-09 22:11:33 10-02-09 06:12:39 11-04-09 16:02:55

Figure 4.1: The relation between event types and instances.
The first two instances are valid as they conform to the type specification.

4See [Var09] for a detailed description of PostgreSQL-PS.
5For the remainder of this dissertation, we use the term broker to refer to an integrated database-pub/

sub broker.
6Database types vary depending on the database system and version: PostgreSQL allows user-defined

(base) types.
7In the literature, this is also referred to as a notification, publication or an event instance.

50 Chapter 4. Publish/Subscribe and Databases

In PostgreSQL-PS, event instances and types bear similarities to records and tables. The
schema of an event type resembles that of a table. A record is a tuple, with a set of
name/attribute values that correspond to the schema of its table. The difference is that a
record relates to data in a table, whereas an event instance is the result of a publication,
the details of which can be represented in records across a number of tables (Fig. 4.2).

X=3 or

X=4

SENSOR_READING
(event type definition)

Attribute Name Data Type
Patient_ID char(10)
Heart_Rate integer

Temp real
Location text

Time timestamp

Event Type
EVENT INSTANCES (Publications)

‘NEA5512491’ 66 38.5 ‘Horizontal’ 30-01-09 22:11:33
‘NLO1412491’ 87 40.1 ‘Upright’ 10-02-09 06:12:39
‘NEA55124’ ‘HIV’ 39.0 15 11-04-09 16:92:55

EVENT INSTANCES
(publications)

NEA5512491 NLO1412491 NEA55124

66 87 HIV
38.5 39.12 132

TL447588 TQ290803 15.0
30-01-09 22:11:33 10-02-09 06:12:39 11-04-09 16:02:55

EVENT INSTANCE

DATA TABLES B1

B2

B3 B4

B6

B5A1

A1

A1

A1

A2

S

S
S

S

S

Broker Link
Advertisement
Subscription Request
Publication

B1

B2

B3

B5

B6

B4
X<2

X<2

X<1

X=4

X>1

 X = 4

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Location

Observation_Time

Grid_Reference

Patient_ID

Location

Observation_Time

Grid_Reference

timestamptxididuser TimeLocationTempHeart_RatePatient_ID

SENSOR_READING_IN

timestamptxididuser TimeLocationTempHeart_RatePatient_ID

SENSOR_READING_IN

timestampidsubnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_OUT

timestampidsubnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_OUT

timestamperrdescidprocnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_EXCEPTION

timestamperrdescidprocnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_EXCEPTION

Figure 4.2: Aspects of an event may persist in multiple tables.

The implementation of PostgreSQL-PS introduces some (client-specified) Boolean prop-
erties to an event instance:
Guaranteed Determines whether the event is delivered reliably—exactly once, in or-
der8—or whether a best-effort approach to delivery is taken.
Scope [Local/Global] Determines the scope of the event. A local event will only be
delivered to subscribers directly connected to the broker that receives the publication. A
global event propagates to subscribers connected throughout the broker network.

Subscriptions

A subscription specifies the interest of a client in receiving particular information. A sub-
scription establishes an event channel, which is a unidirectional, typed channel between a
broker and a connected client/broker.9 Multiple channels can exist for a single connection.

Generally a subscription is a tuple of the form sub = (nε, F), where nε is the name of the
event type for the subscription, and F the subscription filter that refines the subscriber’s
interest. In PostgreSQL-PS, a filter consists of a set of SQL predicates combined by
Boolean operators. In this way, a filter resembles a SQL where clause. Subscription filters
are associated with an event channel to control the propagation of event instances. A filter
is evaluated by the PostgreSQL-PS query engine in the context of an event instance (e),
i.e. F (e) → {true, false}. If a filter holds (evaluates to true), the event will be delivered
to the subscriber through the event channel.10

8Reliable delivery involves persisting the event and periodic retransmission until (positive) acknowl-
edgement from the recipient. Although there is visibility of successful/failed deliveries, there is no guar-
antee that the client actually receives the event; e.g. where delivery fails due to disconnection and the
client never reconnects.

9Note there are other definitions of an event channel, for example, referring to a bidirectional connec-
tion (conduit) through which events of all types propagate [EPTS08].

10The literature typically refers to filter evaluation as matching an event instance. In PostgreSQL-PS,
although filters are evaluated in the context of an event instance, filter predicates need not necessarily
reference event content.

4.3. PostgreSQL-PS 51

Using SQL as the filter language enables highly expressive definitions of interest, as pred-
icates can access event attributes, internally defined database functions and stored data.
PostgreSQL maintains a catalogue of operator types and associated operands, which in
conjunction with relational schemata are used to validate a filter. Example filters are
presented in Fig. 4.3.

sensor_reading.patient_id = ‘2323232320’

a) A filter for events pertaining to a particular patient. The patient id is derived from the
sensor reading event instance.

sensor_reading.heart_rate > 150 AND sensor_reading.temp > 41

b) This filter returns events on any patient whose vital signs are of concern. This is evaluated
against values from the event instance.

emergency(sensor_reading.patient_id) OR
(sensor_reading.heart_rate > 150 AND sensor_reading.temp > 41)

c) This filter is similar to b), except that it also uses emergency(id), an internal Boolean
function, that determines whether the patient’s status is critical. The function is passed the
patient identifier from the event instance.

count(*) = 1 from patient_details
where patient_id = sensor_reading.patient_id and

not home_reference = sensor_reading.location

d) This filter delivers events when the patient is not home, in that their current (sensed) location
is different to that of their (registered) home. This compares the map reference of the event
instance against that of the patient’s home, as stored in the patient details table.

Figure 4.3: Example subscription filters.

In PostgreSQL-PS, a broker can act as an event client. As such, a subscription may be
internal or external. External subscriptions are issued by clients connected to the broker.
An internal subscription means that the subscriber is the local database instance, which
consumes events through a locally defined function. In this way, an internal subscription is
essentially an active rule defined to apply on the occurrence of particular event instances.
This mechanism enables the management of incoming data, e.g. to process and persist
event data in various tables.

PostgreSQL-PS introduces two additional properties to a subscription:

Scope [Local/Global] Defines the scope of the subscription. A local subscription only
applies to events published at (this) the local broker. Global subscriptions can be
satisfied by events published by clients connected to other brokers.

Function The function to consume matching events (internal subscriptions only).

A broker records additional metadata with a subscription to assist in routing; storing the
user identifier for external subscribers, or the function identifier for internal subscriptions.

52 Chapter 4. Publish/Subscribe and Databases

4.3.2 Advertisements

Advertisements are issued to inform the middleware of the potential flow of events. An
advertisement establishes an event channel between the producer and the broker. In
PostgreSQL-PS, an advertisement is a singleton consisting of the type name: adv = (nε).

4.3.3 Event Delivery

The basic function of an event broker is to route messages. Clients connect and commu-
nicate through a broker, which provides the middleware functionality.

In a distributed broker network, brokers co-operate to route information from publishers
to relevant subscribers. PostgreSQL-PS uses an advertisement-based content routing ap-
proach, similar to that of Siena [CRW01] as described in §3.2.4. Like Siena, PostgreSQL-
PS assumes a pre-defined network topology. This is appropriate for database-pub/sub,
given that each broker is a database system with specific information responsibilities. Da-
tabase infrastructure is carefully managed by an organisation; this is different to pub/sub
infrastructure aimed at supporting unconstrained peer-to-peer applications. Here, brokers
do not anonymously join the network and begin routing; instead, broker connections are
defined for a reason, i.e. to store and route particular information. In PostgreSQL-PS the
topology of a distributed broker network is described through links that specify a broker’s
(direct) interconnections. The inherent store-and-forward capabilities of database brokers
assist in managing failures.

An advertisement is created by a publisher, consisting of a message defining the event
type name. Advertisement propagation occurs by the method described in §3.2.4, where
an advertisement is sent to a local broker, which forwards it to its neighbour (linked)
brokers if they have not yet received an advertisement for this type.

We have previously described the routing process, as illustrated in Fig. 3.3. When a global
subscription request is received by a broker, it is propagated by following the reverse path
of the advertisement messages. Each connected broker records the subscriptions received
from and sent to its neighbouring brokers, noting that the subscription request origi-
nated from a remote broker. This forms a dissemination tree from the broker hosting
the subscriber to all those advertising the event type. PostgreSQL-PS uses reverse path
forwarding [Com06a] to ensure that the topology is acyclic, thus avoiding duplicate no-
tifications. This technique uses a distance metric, so that a broker only processes those
messages received along the shortest path.

On receipt of a globally-scoped publication, a broker evaluates the subscription filters in
the context of the current event. For local clients, if the subscription filter holds, the event
is delivered to the client or internal subscription (executing a function). If an event’s scope
is global, the filters from subscriptions received from external brokers are evaluated. If an
external subscription matches, the event is forwarded to the neighbouring broker. Only a
single copy of a message is routed to a broker, regardless of the number of subscriptions
satisfied by the request.

Unlike Siena, PostgreSQL-PS does not consider routing optimisations based on coverage
as it is generally undecidable to detect overlaps in SQL [RI80, Jar84]. This is to provide
maximum flexibility: coverage comes at the cost of expressiveness [Var09]. For this reason
advertisements are type-based—they do not include filter predicates.

4.3. PostgreSQL-PS 53

Event Representation & Serialisation

PostgreSQL-PS extends PostgreSQL’s data model to include event type definitions. Thus
an event is represented as a tuple consisting of name/value pairs. In this way, event
schemata closely maps to that of a table, where an event instance is similar to a (table)
row. However, an event is not automatically assigned a designated table for long-term
event persistence.11 Events are encapsulated in XML for transmission as it is a platfor-
m/language independent standard popular for information exchange. Indeed, XML is the
messaging format of the NHS and the UK Public Sector [Cab05].

<sensor_reading id="741" guaranteed="true" scope="global">
<patient_id>2323232320</patient_id>
<heart_rate>66</heart_rate>
<temp>38.5</temp>
<location>TL447588</location>
<time>30-01-09 22:11:33</time>

</sensor_reading>

Figure 4.4: The XML representation of a sensor reading event instance.

All communication between clients and brokers occurs through XML messages. Clients
publish events by sending XML messages to a broker. The broker deserialises these
messages into a tuple: the internal representation of an event. This is subject to the
message being well-formed, conforming to the relevant event type specification. After
processing, a broker serialises the tuple into an XML message for transmission.

Reliability

Reliability is particularly important in environments such as healthcare. PostgreSQL-PS
considers two aspects of reliability:

Event Processing Reliability Database queues (FIFO data structures, akin to an or-
dered table) and transactions are used to assist in reliable event processing. Three types
queues are associated with an event type—in, out and exception. Each queue encodes
the schema of the event type, for temporarily storing the content of an event instance,
along with other attributes for storing metadata to assist in event processing. Example
queue schemata are presented in Fig. 4.5. The purpose of the in queue is to store incom-
ing publications, including the event content and publisher details. The out queue deals
with reliable event delivery, recording matched events and the details of the recipient.12

The exception queue stores events where the execution of the function for an internal
subscription fails.

There are two queues created for the in and out queues: a memory-only, non-persistent
queue and a persistent queue using a table to store data. The queue is selected according
to the reliability property of the publication; non-guaranteed publications use the
non-persistent queues, while guaranteed publications use the persistent queue. A single
exception queue exists to persist all events that fail function execution.

11This functionality is added for auditing purposes—see Ch. 10.
12Given that health data requires audit, in this dissertation we consider only reliable event delivery

(§7.2.1, Ch. 10).

54 Chapter 4. Publish/Subscribe and Databases

X=3 or

X=4

SENSOR_READING
(event type definition)

Attribute Name Data Type
Patient_ID char(10)
Heart_Rate integer

Temp real
Location text

Time timestamp

Event Type
EVENT INSTANCES (Publications)

‘NEA5512491’ 66 38.5 ‘Horizontal’ 30-01-09 22:11:33
‘NLO1412491’ 87 40.1 ‘Upright’ 10-02-09 06:12:39
‘NEA55124’ ‘HIV’ 39.0 15 11-04-09 16:92:55

EVENT INSTANCES
(publications)

NEA5512491 NLO1412491 NEA55124

66 87 HIV
38.5 39.12 132

TL447588 TQ290803 15.0
30-01-09 22:11:33 10-02-09 06:12:39 11-04-09 16:02:55

EVENT INSTANCE

DATA TABLES B1

B2

B3 B4

B6

B5A1

A1

A1

A1

A2

S

S
S

S

S

Broker Link
Advertisement
Subscription Request
Publication

B1

B2

B3

B5

B6

B4
X<2

X<2

X<1

X=4

X>1

 X = 4

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Location

Observation_Time

Grid_Reference

Patient_ID

Location

Observation_Time

Grid_Reference

timestamptxididuser TimeLocationTempHeart_RatePatient_ID

SENSOR_READING_IN

timestamptxididuser TimeLocationTempHeart_RatePatient_ID

SENSOR_READING_IN

timestampidsubnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_OUT

timestampidsubnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_OUT

timestamperrdescidprocnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_EXCEPTION

timestamperrdescidprocnameTimeLocationTempHeart_RatePatient_ID

SENSOR_READING_EXCEPTION

Figure 4.5: An event type’s queueing structures.
The system-assigned attributes are underlined.

Queues are integral to reliability as they allow reprocessing/resumption in the case of
failure. On receipt of an event instance, a broker adds an event to the in queue. The
matching process is presented in Fig. 4.6(a). On successful delivery, an event is removed
from the out queue. For atomicity, queueing operations are performed within a single
transaction. If the transaction fails and is rolled back, the event returns to the queue for
subsequent reprocessing. Errors in queueing operations are unlikely, given they merely
involve en/dequeueing a system-validated event.

For each active subscription:
Match event against filter

Begin Transaction:
For each matching subscription:

Copy event to out queue
Remove event from in queue

Commit Transaction

(a) Event matching procedure.

For each internal subscription event on the out queue:
Begin Transaction:

Execute subscription function
Remove event from out queue

End Transaction

On Transaction End:
If Error:

Rollback transaction
Copy event to exception queue
Remove event from out queue

(b) Internal subscription delivery process.

Figure 4.6: Transactional and queue operations in PostgreSQL-PS.

Internal subscriptions have greater scope for failure, as they entail executing a user-
defined function on the event instance. As shown in Fig. 4.6(b), the subscription function
is executed within a transaction. If the transaction fails, after the rollback the event is
moved from the out queue to the exception queue to allow for investigation into the
failure.

Reliable Delivery PostgreSQL-PS uses an acknowledgement-based protocol with un-
bounded sequence numbers to guarantee delivery. This attempts exactly once, ordered

4.4. Summary 55

delivery of events between a sender and receiver. The sequence number is encapsulated
in the id attribute of the event type as per Fig. 4.4. Queues play an important role in
this process, allowing the unacknowledged events on the out queue to be retransmitted.
For further details, see [Var09].

4.3.4 Access Control

The access control mechanisms of PostgreSQL-PS are inherited from PostgreSQL.

PostgreSQL supports transport layer security for its clients through SSL. This can be
applied in a similar manner to the connections of the pub/sub service.

Each client is uniquely identifiable by a database-defined username. The username is
associated with a connection, meaning that each publisher, subscriber and broker has an
account registered in the database. Authentication occurs through an MD5, Kerberos or
a custom authentication module.

PostgreSQL provides an RBAC security model to manage the privileges for various data-
base operations.13 These privileges are automatically enforced by the system. Extension
of the model allows the granting or revocation of privileges to [ADVERTISE | PUBLISH

| SUBSCRIBE] to an event of a particular type. Default privileges are defined to protect
the integrity of queues. Client-specified subscription filters are validated to ensure that
the client has sufficient privileges to evaluate all predicates.

4.4 Summary

Databases form an integral part of an organisation’s infrastructure. Pub/sub has been
shown to be an efficient, scalable paradigm for wide-scale data distribution. In collabora-
tive environments where data must be stored, audited and shared, a database system is
the natural place for the integration of pub/sub functionality. This integration provides
a common interface for the management of data definition, storage and transmission con-
cerns. The pub/sub substrate benefits from the advanced data handling capabilities of
databases, making brokers context-aware and facilitating data storage and audit, while
the database system benefits from a powerful data distribution framework, capable of
handling events.

To our knowledge, PostgreSQL-PS is the only fully-integrated, distributed pub/sub-
database system available. As such, we introduce PostgreSQL-PS as the framework on
which we build mechanisms for controlling data disclosure. The following two chapters
generally describe our control model. In Ch. 7 we detail the necessary modifications
to PostgreSQL-PS to realise our mechanisms for controlling information flow in a pub/
sub-database infrastructure.

13Prior to version 8.1, PostgreSQL security was managed through an access control list.

5
Interaction Control

Publish/subscribe is an effective model for wide-area information dissemination. However,
there is tension between the convenience of open information delivery, and the need to
protect data from unauthorised access. This chapter introduces Interaction Control (IC)
as a layer above that of a general pub/sub service, to allow fine-grained control over the
circumstances for data transmission. IC integrates context-aware policy rules into event
brokers to restrict and transform information flows in accordance with circumstance. This
allows those responsible to meet their data management obligations, while the enforcement
of access control policy in middleware ensures client/application adherence.

In this chapter we describe IC mechanisms and their position within a pub/sub architec-
ture. In subsequent chapters we detail the specifics of context, policy specification, policy
conflict and the integration of IC into PostgreSQL-PS.

5.1 Motivation

Healthcare involves interactions between many clients, whose information requirements
vary depending on the tasks they provide as part of the care process. Clients are grounded
in administrative domains: groupings under common administrative policy that are as-
sociated with providing particular health services (§2.3.2). Each domain manages (and
trusts) their own infrastructure to handle the specific information requirements of their
operations. It follows that each domain collects and holds information relevant to the
service they provide.

The provision of care services requires information sharing between clients and systems,
often across administrative boundaries. As health information is sensitive, sharing must
occur as appropriate: in line with consent, the interests of the patient, and legislation.
Given the legal requirement to maintain confidentiality, information is best shared on a
need-to-know basis. For this reason, communication in healthcare is not anonymous; there
is some knowledge about a client and the reasons for which they require information. For

56

5.1. Motivation 57

instance, a subscriber from a pharmacy is known to deal with dispensing details; their
data requirements differ from those of a doctor in a surgery, or from a research institution.
At an individual level, certain information may be relevant to particular doctor but not
others. This allows the formation of general policy, subject to consent, concerning the
circumstances for data transmission.

The aim of this work is to enable those managing an administrative domain to define the
circumstances in which the information it holds/receives is shared, both with local clients
and those in external domains. IC gives those responsible for data the ability to meet
their data management obligations.

5.1.1 Middleware Control

To recap, pub/sub is appropriate for highly-collaborative environments, such as health-
care, where an event might be relevant to a number of clients grounded in various domains.
This is particularly so where notification is required as an event occurs, e.g. in homecare
situations, and to ensure that the disparate data stores in a federated environment remain
consistent. Middleware provides the obvious point for enforcing data disclosure policy—
as all communication occurs through middleware (Fig. 5.1), client compliance is ensured.
The decoupled nature of pub/sub not only simplifies addressing concerns, but removes
the burden on clients of maintaining and enforcing policy. In environments where infor-
mation is sensitive, data flows must be controlled. IC provides fine-grained mechanisms
for controlling the information released by a pub/sub broker, through policies that define
what data should be disclosed, and when this is appropriate.

Figure 5.1: All communication occurs through the publish/subscribe middleware.

We define IC mechanisms as a layer above a coupled storage/messaging infrastructure,
where data persistence and distribution are managed under a common interface. Such an
integration, in addition to performance advantages (§4.2), gives the messaging substrate
access to an extremely rich representation of state, through stored data and associated
database functionality. This provides the contextual information upon which to base
disclosure decisions. The data control layer can exploit the powerful data management
and manipulation capabilities of database systems. Event persistence is simplified by local
storage infrastructure and common type definitions. Audit capabilities are improved,
recording not only the events sent/received, but also the details of the policy and context
authorising transmission [Ch. 10].

In this chapter we describe our data control model. Contextual considerations and imple-
mentation specifics are detailed in Ch.s 6 and 7. We revisit IC its application to healthcare
in Ch. 8.

58 Chapter 5. Interaction Control

5.2 Assumptions

Before introducing IC, we first outline the assumptions underlying the approach.

5.2.1 Trust

Issues of trust exist at various levels in healthcare. Here we consider trust from the systems
perspective (see also §3.4.5 and §8.4.1). Firstly, we assume that a domain manages and
controls its infrastructure. Clients access the messaging infrastructure through the brokers
of the domains in which they operate. Therefore we also assume that a client trusts its
local (directly connected) broker to appropriately handle information processed on its
behalf.

In our model, a broker is also a database system. As such, the broker implicitly has access
to data, and stores information produced by the client. The client trusts that the domain
will share information only as appropriate, in accordance with the domain’s sharing pro-
tocol.1 Such a characterisation is natural, given that the domain’s managing organisation
typically employs the user of the client application, and manages local applications.

To meet its information sharing responsibilities, a domain defines the appropriate access
privileges for its local intra-domain brokers, external brokers and other connected clients.
This policy reflects a domain’s level of trust with others, operating to precisely control the
information released. Brokers simply enforce local access policies: communication occurs
only when authorised by its internal policy store.

5.2.2 Other Assumptions

Most pub/sub implementations, including IC, consider application-level routing. As such,
we assume transport-layer security [DA99] protects connections at lower-levels of the net-
work stack. It is also assumed that every principal in the system is uniquely identifiable,
e.g. through the smartcard/PIN services of N3. We do not consider key/certificate man-
agement concerns, although such issues will be relevant in an actual deployment.

A number of brokers may be associated with a domain, in line with its information storage
and transmission requirements. Here we assume that brokers hold a particular position
in the network topology—links exist for a reason, to share particular information with
specific brokers. This does not entail that brokers are continually connected, instead
the possible connections (links) between brokers are pre-authorised (§5.6.1). In IC the
connections themselves are dynamic, in the sense a broker may connect/disconnect from
another.

To enable sharing, common definitions are required. SNOWMED [IHTS, NHS07a] is a
clinical terminology used to facilitate unambiguous NHS communications, allowing in-
teroperability between health applications. Similarly, we assume that event type defini-
tions are centrally registered.2 While this dissertation does not explore type-management
specifics, we expect that types are handled in a similar manner as described in §3.4.3. For
simplicity, in this dissertation we consider only the user-friendly type name.

1Which must also account for patient consent.
2So too are fluent definitions, described in Ch. 6.

5.3. Broker Context 59

5.3 Broker Context

Each data control rule is defined for a particular event type (ε), to control information of
a particular semantic.

Information disclosure policy is expressed through context-sensitive policy rules. In a
coupled database-messaging infrastructure, context encapsulates anything accessible from
the broker, which in our model includes:

1. Messaging information: e.g. event types/content, timestamps, current stage in the
pub/sub process;

2. System information: e.g. schemata, transactional information, audit logs, system
time;

3. Data: serving to represent state;

4. Credentials: e.g. unique ID (i.e. domain/staff/broker ID), qualification, employer,
job-role, grounding domain.

Credentials
Definitions

and

Schemata

Messaging
State

(client, event)

Data
(stored and

external)

Figure 5.2: Components of context accessible by a broker.

IC policy definitions, in the same manner as subscription filters, reference context through
sets of general predicates combined by Boolean operators. Thus policy rules are highly
expressive as these predicate sets allow a rule to reference any broker-accessible state.

In this model, we distinguish between credential predicates and environmental predicates.
Credential predicates assert some characteristic about a principal, including their unique
identifier, group memberships, qualifications, roles or delegation certificates that they
hold. Such predicates define the class of users to which a rule applies. Environmental
predicates refer to other aspects of context, such as the current step in a workflow process,
system time or patient status. This separation is significant for the monitoring of context.

5.3.1 Permission Attributes

There will be situations where information from outside the broker is required. Permission
attributes force a client to include some extra information with a request (advertisement/
subscription) for use in policy evaluation. This external data provides some insight as to
a client’s intentions, giving background to the request.

60 Chapter 5. Interaction Control

A permission attribute3 (α) takes a similar definition to an event attribute, defined as
α = (nα, tα) where nα is the attribute name (unique within the evaluation context) and
tα is its data type. A client supplies named-values and the associated data types with
their request to populate the permission attributes for a rule.

Permission attributes relate to the contextual predicates of a rule, supplementing broker-
accessible context to allow computations with external data. That is, rule predicates
can reference the values of the permission attributes specified in a client’s request. For
example, a permission attribute might require a subscriber to sensor reading events
to include the patient id of the patient in which they are interested. This forces the
subscriber to direct the subscription towards a specific patient, which the system can
use to validate a (treating) relationship between the subscriber and the patient. This
improves safety, and avoids evaluating the condition on every event instance.

We have introduced context in terms of general predicates to describe our data control
policy rules. In Ch. 6 we describe contextual specifics.

5.4 Interaction Control

We now describe Interaction Control (IC), a context-aware policy layer that controls the
information released from a broker.

As discussed in Ch. 4, database security can be extended to control basic pub/sub op-
erations. Here we describe context-sensitive restrictions to provide flexible and dynamic
data security.

Request authorisation rules define the circumstances in which an event channel is es-
tablished. This channel is qualified by imposed conditions, filters that restrict certain
information from propagating, and transformation rules, which customise event content
to the particular circumstances. Together these mechanisms work to control the release
of data.

5.4.1 Request Authorisations

Clients must issue requests to a broker to publish (through an advertisement) or subscribe
to particular information. If a request is authorised, a directional event channel is estab-
lished to enable the transmission of the particular type of event (§4.3.1). At the time
of request, a decision must be made as to whether this client should generally deal in
information of this kind. Request authorisation rules encapsulate the policy surrounding
the establishment of an event channel. That is, whether this client is allowed to publish,
or subscribe to particular information in the current context.

A request authorisation rule A is a tuple of the form:

A = (rt , nε,C ,E),

defined for requests pertaining to a particular event type name nε. The request type (rt)
defines whether the rule applies to advertisements (requests to publish) or to subscrip-
tion requests. The target of a request authorisation rule is defined by its set of credential

3These were termed mandatory attributes in our previous publications.

5.4. Interaction Control 61

predicates C , which are matched against the credentials held by the requesting client: pu-
blisher or subscriber, depending on the request type. The set of environmental predicates
E , further refine the circumstances in which the rule applies. An empty predicate set is
considered to apply to all circumstances (i.e. a catch-all wildcard). To enable evaluation,
a client must supply the permission attributes required by the rule’s predicates.

Monitored Conditions

An authorised request establishes an event channel. These channels are durative, per-
sisting until the channel is closed. As rules are context-sensitive, a change in state can
affect the applicability of a rule. To account for this, the environmental predicates of
a request authorisation rule can be defined as monitored, to trigger re-evaluation of the
request should the value of the predicate change. All credential predicates are implicitly
monitored as they define the target of the rule. If a client’s credentials change, the request
must be re-evaluated as the rule(s) establishing the event channel may no longer apply.

Request authorisation rules ensure that only valid event channels are established, for
particular clients in particular circumstances. Once established, information flow (event
transmission) is controlled through imposed conditions and transformation functions.

5.4.2 Imposed Conditions

Imposed conditions restrict the propagation of event instances through an event chan-
nel. They are similar to the subscription filters described in Ch. 4, except that they are
specified by administrative policy, as opposed to subscription filters which are defined
by the subscriber. Fig. 5.3 represents a condition imposed on accident and emergency
(A&E) services ensuring that the information (sensor readings) transmitted only concerns
emergency patients.

Patient X

Patient Y

Sub: ALL(*)

Patient X

Patient Y

Imposed Condition:
emergency(sr.patient_id)

Figure 5.3: A&E only receives sensor readings regarding Patient Y,
who is in an emergency situation.

An imposed condition rule I consists of the tuple:

I = (ip, nε,C ,R, h).

The components nε and C of an imposed condition share the same definitions as described
for request authorisation rules (A). The interaction point ip determines whether the
filter applies to an event being published or delivered. That is, it determines the filter’s
enforcement point. Together, these components specify the target event channel(s) for
the rule.

The set of restriction predicates (R) serve to filter the event instances in the channel. They
are evaluated in the context of an event instance as it arrives at the interaction point,

62 Chapter 5. Interaction Control

to determine whether the event may propagate. These are evaluated just as general
predicates, which may reference event content, the permission attributes of the request,
and other aspects of state.

If an imposed condition rule is defined for a publication channel, the publication is ac-
cepted subject to the evaluation of the predicates in R. However, event delivery must
also account for the subscriber-specified filter. As such, an event instance is delivered to
a subscriber if all restriction predicates in R ∪ F hold, where F is the set of predicates
defined by the subscriber.4

The Boolean component h defines whether the imposed restrictions are hidden from the
client. If hidden, the filters are imposed silently: publications appear to be accepted
though are ignored by the system, while subscribers have events filtered without their
knowledge of the restriction. Hidden restrictions avoid disclosing any sensitive information
that may be encoded in the restriction itself. For example, the restriction not Treatment

= HIV can prevent information regarding a patient’s HIV treatment from flowing to a
particular doctor. Revealing this restriction suggests that the patient is HIV positive.
There may, however, be situations where a client requires knowledge of the restriction,
perhaps to avoid publication errors, e.g. to specify a valid range; or to inform a subscriber
that they may only receive data in a particular situation, e.g. sensor data in emergency
situations. The lack of feedback regarding a restriction can in some situations have flow-
on effects: a client may continue to publish incorrectly, or draw incorrect conclusions
by assuming that they are receiving the complete set of information. If an imposed
condition is visible, clients are informed of the restrictions imposed as the event channel is
established—at the time of the request. Further, publishers are also notified on publication
by (negative) acknowledgement if an event fails to satisfy a visible advertisement filter.

From a privacy perspective, it is generally expected that conditions will be imposed on
subscription channels. These filters act as a barrier to delivery, being applied at the final
stage of the messaging process. Rejecting a publication stops the event from entering the
system.5 This prevents data processing, which may be useful, e.g. for taking remedial
actions.

5.4.3 Transformations

Transformation rules alter the content of an event. They enrich, degrade or produce new
events that are related to the original event in some application-specific manner. Trans-
formations can assist in interoperability, altering an event to suit the data models of other
systems. From a data security perspective, they allow more than binary (permit/deny)
access control as an event can be tailored to the particular situation. This allows fine-
grained control over the data disclosed. Further, transformations avoid clients publishing
multiple instances of the same event with differing levels of visibility (Ch. 9).

A transformation rule T , is a tuple of the form:

(ip, nε,C ,G , f, n
′
ε, c).

The components nε and C are as defined for imposed condition rules. The interaction
point ip determines the point in which the transformation applies: on publication or

4Multiple rules might impose conditions on an event channel, these are applied in conjunction (§5.7.2).
5Regardless, this information is audited (Ch. 10).

5.5. Policy Enforcement 63

!"

!"

!"

!"

#

#

#

$%&'()*+,$-+./

-"$/!0."1$-+./

(a) Publication

!"

!"

!"

!"#

(b) Notification

Figure 5.4: Transformation interaction points.

notification (Fig. 5.4).6 These components relate the transformation rule to the relevant
event channels.

In a transformation rule, G represents the set of predicates that define the circumstances
in which the transformation is performed. G is evaluated in the context of the current
event instance—if G holds, the transformation function is executed.7

The transformation is effected through a function f , which takes an event instance of
type name nε and returns an event that is an altered version of the original or an event
of another type. The name of the output event type of the function is specified by n′

ε.
A transformation function is locally defined, thus may reference event content, current
context, stored data, other database functions and external services.

Transformation rules can be defined as consumable, through the Boolean component c.
Consumable functions prevent the original event instance from propagating further—only
the event resulting from the function proceeds to the next stage of the messaging process.
Non-consumable transformations allow both instances to proceed.

5.5 Policy Enforcement

IC policies are defined to apply at a particular point of the pub/sub process. This section
details the procedure of a broker enforcing policy in response to a client-issued publi-
cation or request. Fig. 5.5 presents the interactions between logical components of the
architecture inside a broker.

5.5.1 Request Validation

The procedure of authorising a request and establishing an event channel is similar for both
advertisement and subscription requests. This is represented in Fig. 5.6 which presents
the sequence diagram showing the interactions between the (logical) components of a
broker.

The first stage of the process involves request validation. A request is denied if, in
the circumstances, it fails to satisfy the definition of any authorisation rule. Otherwise,

6In practice, the selection of the appropriate interaction point depends on the scenario. See Appx. A
for details.

7Subject to conflict resolution definitions (§6.4.3).

64 Chapter 5. Interaction Control

Publication
Transformations

Notification
Transformations

 Publication
Filters

Subscription
Filters

Subscription
Type Match

Active Transformations
 Active Subscriptions & FiltersActive Advertisements & Filters

Publication

Policy
Store

Request
Validator

Relevant Policies

Activate Publication Transformations

 Validated Request &
Imposed Conditions

Request
Validator

Relevant Policies

Validated Request &
Imposed Conditions

Activate Subscription Transformations
Advertisement

Request
Subscription

Request

 Delivery

Context
Monitor

Monitored Conditions Monitored Conditions

Figure 5.5: The interactions of the components involved in policy enforcement.

Broker

Figure 5.6: Sequence diagram for the request validation process.

5.5. Policy Enforcement 65

the request is authorised. The restrictions relevant to the request are determined by
evaluating the ip, nε and C components of the imposed condition and transformation
rule definitions. The event channel is then established, and the monitored conditions
relevant to the request are loaded for monitoring. This is achieved through the use of
active rules, which trigger the re-evaluation of a request on a particular occurrence. The
set of imposed restrictions,8 along with any client specified filters (subscription filters)
are activated to filter messages as they pass through the channel. The transformation
functions applicable to the channel are loaded through the creation of active rules, where
a function executes on an event instance when the predicates of its guard (G) hold. At
this point, the request processing is complete.

The re-evaluation of a request, as triggered by a monitored condition, follows the same
procedure. If, due to the change in circumstance, no authorisation rules satisfy the request
in the current context, the event channel is closed. Otherwise, the channel remains and
the set of applicable transformation functions and imposed filters are again determined
and loaded. This is because the change in context may cause different restrictions to
apply.

5.5.2 Publication Enforcement

The restrictions activated for a request are enforced as an event instance arrives at par-
ticular points of the messaging process. Fig. 5.7 illustrates the process of enforcing IC
policy on an event publication.

Publication
Transformations

Notification
Transformations

 Publication
Filters

Subscription
Filters

Subscription
Type Match

 Active Transformations
 Active Subscriptions & FiltersActive Advertisements & Filters

m sm

s

m’

 publish

sub 2 (m)

sub 1 (s)

Figure 5.7: Enforcement process for the publication of the event m.

The first stage of processing a publication involves validating the event instance against
any filters imposed on the publication channel. If the instance satisfies the filters, it
is subjected to the relevant publication transformations. In this example, there is one
applicable publication transformation function, which takes event m and produces the
event s, which is of a different type. As the transformation does not consume the original
event, both events move to the delivery phase of the pub/sub process.

Event delivery involves moving a copy of an instance through each active notification
channel for its type. In this example, there exists one subscription for each type. The
events are subjected to any active notification transformations applicable to the subscriber

8This includes the filters imposed by the specification of permission attributes (§5.7.1).

66 Chapter 5. Interaction Control

in the circumstances. Here, a transformation function exists for sub 2 that consumes
event m returning a modified instance m’ of the same type. As there is no notification
transformation defined for s, it passes through the transformation stage unperturbed.
The final step of the delivery process involves evaluating the event instance against the
subscription (and imposed) filters. Only event m’ is delivered, as event s fails to satisfy
the filter of sub 1. Note that internal subscriptions do not involve transmission, instead
the function is executed on the event instance. In this way, an internal subscription acts
as an active rule responsive to events.

Subscription filters act as a barrier to prevent certain information from propagating.
IC involves a two-phase subscription matching process. First, the events are matched
against active subscriptions considering only the event type—filter predicates are applied
after the notification transformations. This prevents notification transformations from
circumventing any restrictions.

5.6 IC in Distributed Broker Networks

Brokers interconnect to form a distributed event-dissemination network. As described
in Ch. 4, brokers forward advertisement and subscription requests to other brokers to
facilitate the propagation of event instances throughout the network. Requests and events
are forwarded through links, the connections between brokers, which may be associated
with a number of event channels.

A broker maintains a set of IC policies to control the flow of information to directly con-
nected principals. IC does not distinguish between events/requests received from clients
and those received from brokers, who may be forwarding requests issued by others.9 In-
stead, an event received through a link is treated as a publication from the remote broker,
while an advertisement or subscription received through a link is characterised as a re-
quest issued by the remote broker.10 It follows that IC rules are defined for, and enforced
against, brokers just as they are for clients—both are subject to the same policies and
enforcement processes as previously described.11 In this way, the policy of a broker only
concerns interactions with the next hop. This is in line with notions of local/federated
control (see Ch. 8).

5.6.1 Link Authorisation Rules

In PostgreSQL-PS brokers interconnect via a link, a connection through which events
and requests are forwarded. A link does not guarantee a flow of information, as the
establishment of event channels and the transmission of events and requests is governed
by other IC rules.

9Typically a pub/sub broker only forwards requests; however, an integrated database-pub/sub broker
can act as a client, itself issuing requests.

10However, this affects routing tables (Ch. 7).
11The credentials of the original requestor and the local context are not propagated throughout the

network. It is impractical for the broker hosting the publisher to define the privileges for every possible
principal in the entire distributed broker network. Further, doing so requires the maintenance of separate
delivery channels for ‘versions’ of the same event instance, diminishing the scalability of the infrastructure.
The propagation of credentials also raises security issues, as the information could be misused (Ch. 8).

5.6. IC in Distributed Broker Networks 67

In PostgreSQL-PS, a link is defined to connect two specific brokers, requiring an enumer-
ation of every broker combination. This is unmanageable given the dynamism and scale
of the application environment. For instance, a surgery may wish to allow connections
from all other surgeries, to deal with situations where a patient requires treatment in a
different region. This would require definition of a separate rule for every surgery in the
country. As such, we provide link authorisation rules to govern broker interconnections.
Such rules reference only the credential predicates (C) of the remote broker, and thus take
the form L = (C). These rules are simple as they concern only the establishment of a
connection—other IC rules work to control channel establishment and event propagation.

5.6.2 Request Forwarding and Processing

IC brings control to the process of establishing an event channel, by characterising an
advertisement or subscription as a request requiring authorisation. If a request is autho-
rised by the system, it may be forwarded to other brokers to establish the dissemination
network.

The control mechanisms for request forwarding are similar to those of event notification,
where requests can be transformed and filtered before being transmitted to the remote
broker.12 Request restrictions are defined by administrators, who have specific knowledge
and concerns regarding network topology. The rules relevant to a broker depend on its
position in the network infrastructure. As such, we expect request restrictions to set the
general boundaries for interaction—specific disclosure issues will typically concern the
propagation of data (event instances).

5.6.3 Request Forwarding

Conditions can be imposed on links to filter the requests forwarded to a remote broker.
This can ensure, for example, that advertisements are only forwarded to brokers authorised
to subscribe to the event type, or that subscriptions are only forwarded to remote brokers
with some relationship with the patient to which the request pertains. Such rules (Ir)
take the following form:

Ir = (rt , nε,C ,Rr),

defined for a particular request (rt) and event type (nε). The set of credential predicates
(C) refer to that of the remote broker.

Rules are defined to control the forwarding of the particular type of request (rt): adver-
tisement or subscription. The restrictions (Rr) are evaluated in the context of a request
pertaining to an event type, not in the context of an event instance. Thus the filter
predicates reference request content, along with other aspects of environmental state.

Request Transformations

The purpose of a request transformation rule is to tailor a request specifically to a remote
broker. Request transformations facilitate interoperability, e.g. to translate a patient
identifier from a local system to a shared NHS ID, in addition to protecting disclosure,
e.g. removing any sensitive information contained within the request.

12Given that requests construct the network, they are only transmitted to brokers.

68 Chapter 5. Interaction Control

The difference between request and event transformations concerns the input. Event
instances represent data, where transformations produce event instances, perhaps of dif-
ferent types, encapsulating different semantics. Event transformations are specified for a
number of reasons including consent preferences, interoperability, event composition and
data fusion. That is, event transformations concern information delivery. Requests serve
a different purpose. A request only propagates to brokers for the purposes of routing.

Request transformation rules alter a request before propagation to another broker. A
request transformation rule (Tr) takes the form:

Tr = (rt , nε, ς,Gr , f).

This definition differs slightly from that of event transformation rules (§5.4.3). Firstly,
instead of an interaction point, the request type rt defines the type of request to which the
rule applies. The rule’s guard (Gr) is evaluated in the context of the request. The trans-
formation function f takes a request and returns a modified one. Request transformations
implicitly consume (i.e. replace) the incoming request tuple. This is because unlike event
transformations, a request transformation is focused at controlling the routing tables—the
output is always a request tuple.

Request transformation rules are defined specifically for a link. This is defined by ς, which
uniquely identifies the link authorisation rule (L) allowing the connection to the remote
broker. Events convey information, therefore it may be appropriate to propagate multiple
events. A request, however, serves to establish a channel for the particular type, and thus
only a single transformation function may be defined for an event type for each link.

Enforcement Process of Forwarded Requests

The sequence diagram for enforcing restrictions on forwarded requests is shown in Fig. 5.8.
The figure illustrates a scenario of three brokers, where Broker 2 acts as the intermediary,
constructing the event channels to forward events from Broker 1, which hosts a publisher,
to Broker 3, which hosts a subscriber.13

On the connection of a remote broker via a link, the relevant advertisement restrictions
for that broker are loaded. This is done on connection, as unlike a subscription, adver-
tisements are not transmitted in response to a request.

When a broker receives an advertisement request, it is validated and the appropriate re-
strictions are applied (§5.5.1). If the (authorised) advertisement is received through a link,
the subscription forwarding rules relevant to the remote broker and the advertised event
type are loaded, before the advertisement request is acknowledged. The advertisement is
then forwarded to each remote broker after the execution of the request transformation,
subject to validation against any request filters defined for the broker and the event type.
Forwarding only occurs to brokers who have not yet received an advertisement for this
type, as determined by the broker’s routing tables (§7.7.4).14

The process is similar for subscription requests. After the establishment of the subscrip-
tion channel, the subscription request is forwarded to remote brokers advertising that

13In this scenario, the brokers authorise the establishment of the event channel; thus, there are no
NACKs. We begin the illustration after Broker 2 and Broker 3 are connected.

14In our implementation, we further restrict advertisements to being forwarded only to brokers with
the possibility of subscribing, through some authorisation policy, to the particular event type (see §7.7.3).

5.6. IC in Distributed Broker Networks 69













































Figure 5.8: Sequence diagram for channel establishment across brokers.

event type, subject to any subscription transformation functions or filters defined for the
advertising brokers.

Re-Forwarding Requests

The purpose of a request is to establish an event channel, which if authorised, persists until
it is closed. As policy rules are context-sensitive, monitored conditions are used to cause a
re-evaluation of the request associated with an event channel should conditions change. By
default, a change in an event channel, such as its closure, must be forwarded throughout
the network, updating and revoking advertisements and subscriptions as appropriate.

Request forwarding also concerns denial: a change in context might now authorise the
forwarding of a request that was previously disallowed. This is of significance where the
event channel pertaining to the request is still active. Consider the situation where a
subscription concerning a patient is only forwarded to domains involved in their care.
Initially, the request was not forwarded to a broker of a remote domain, as the domain
had no treating relationship with the patient. If some time later the domain begins
treating the patient, the subscription request should be forwarded to this broker, assum-
ing the subscription channel is still active. The issue is similar to the maintenance of
pub/sub routing tables, where, for example, the receipt of a new advertisement triggers
the forwarding of existing subscriptions. However, here the concern is at a higher-level,
influenced by application-level context.

Monitored conditions are used to (re-)forward the requests pertaining to the active event
channels for a particular broker and event type (when appropriate). This involves propa-
gating the original request through the request transformation function and request filters
before delivery to the remote broker.

70 Chapter 5. Interaction Control

Fig. 5.9 outlines the process of forwarding (transmitting) a request to a particular broker.
The existence of an event channel pertaining to the request means that the request was
previously forwarded—implying a re-evaluation. Clearly, if a request is unauthorised, it
is not forwarded; however, if a channel exists, the original request is revoked to close the
channel with the remote broker. An authorised request is forwarded if no channel exists.
However, if a channel exists, the current request is compared to the original request that
established the channel. To avoid redundancy, an identical request is not transmitted;
alternatively, if there is some difference (e.g. changes in permission attributes) between
the requests, the original request is revoked and the current request forwarded. This
re-establishes the event channel in line with the updated restrictions.

Authorised?

Channel
exists?

Channel
exists?

 Request
Differs?

Revoke
Request

Forward
Request

Revoke
Request

No

No

Yes

Yes

Yes

Yes

No

Processed
Request

Finish

No

Figure 5.9: The process of (re-)forwarding a request to a broker.

A record of the requests pertaining to active event channels are maintained in the routing
tables of the brokers (§7.7.1, §7.7.5).

5.7 Relationships Between Rules

IC mechanisms operate at various stages of the messaging process. Here we describe the
relationships between rules. As rules are context sensitive, it is possible that several may
apply at a particular enforcement point. Indeed, it is often appropriate, if not required,
that multiple rules apply. Here we consider the general case, where it is assumed that rules
do not conflict. Conflict is discussed in Ch. 6, where resolution operations can resolve
policy conflicts at an enforcement point.

5.7.1 Rule Fragmentation

Each authorised request causes the creation of an event channel. This triggers the load-
ing of the relevant transformation and imposed condition policies, which are enforced
as events move through the channel. Request authorisation rules do not encapsulate
transformation or restriction rules; instead, rules are defined independently. This allows
a many-to-many relationship between rules, where different sets of rules can apply in
different circumstances (Fig. 5.10). Policy separation avoids re-authoring rules to deal
with specific requests, e.g. to avoid rewriting all authorisation rules concerning an event

5.7. Relationships Between Rules 71

type when a patient has a consent requirement that involves a restriction (imposed con-
dition). Further, this separation avoids complexities where rules apply to different sets of
credentials, e.g. if an authorisation rule applies to a Doctor or Nurse, but the transfor-
mation applies only to Nurses, the definition must be careful to ensure that a Doctor’s
event stream remains unperturbed. Rule separation directs policy to particular messaging
operations targeted at particular classes of client.

R8

R6
R7

R3

R9

R4

R2
R1

Authorisation
Rules

R8

R6
R7

R3

R9

R4

R2
R1

Authorisation
Rules

T3
T4

T2
T1

Transformation
Rules

T3
T4

T2
T1

Transformation
Rules

I3
I2
I1

Imposed
Conditions

I3
I2
I1

Imposed
Conditions

Figure 5.10: Rules of different types apply together, depending on the circumstances.

Context Revisited

If the permission attribute of a request authorisation rule corresponds to the definition
(name/type) of an attribute of the event type, the attribute value operates as an equality
filter for the request. This works to constrain an event channel, e.g. as per the example of
§5.3.1, to ensure that sensor events pertain only to a particular patient. To illustrate, an
authorisation rule might require the inclusion of patient id to ensure that the subscriber
has a treating relationship with the patient. This identifier is also used as a filter, to
ensure that the events delivered correspond to the supplied ID. In this way, permission
attributes serve to direct a request, which limits potential ‘data-leaks’ from (relatively)
unconstrained subscription filters.

A change in the state of a monitored condition causes a request to be re-evaluated. The
credential predicates (C) of a rule definition are implicitly monitored. It is important that
a change in credential allocation triggers re-evaluation of the request, as credentials specify
the targets of an authorisation rule. Environmental predicates (E) can be defined as
monitored; they are not implicitly monitored as this may be inappropriate. For example,
if paramedics can only subscribe to a sensor stream in an emergency, they may still require
access to the sensor stream for some time after the (perceived) emergency to ensure the
patient is stable. Monitoring does not apply to the predicates forming the execution
conditions for transformations (G) and the filters of imposed conditions (R), as these are
evaluated on the arrival of each event instance.

Permission attributes and monitored conditions facilitate the management of event chan-
nels (requests). Without them, tasks such as enforcing a relationship between the client
and a patient—through an imposed condition—becomes cumbersome, requiring evalu-
ation of the relationship on each event instance. Instead, conditions can be evaluated
once, on construction of the event channel, here by specifying the patient of interest and
monitoring for any change in the relationship. This reduces the number of potentially
expensive filter evaluations. Safety is improved, as policy/contextual errors denying or

72 Chapter 5. Interaction Control

cancelling the request become immediately evident to the client, e.g. a denied subscription
request for a particular patient ID indicates a problem in the patient-carer relationship
registry.

5.7.2 Application of Multiple Rules

As rules are context sensitive, it is possible for multiple rules of the same type to apply
at an enforcement point.

A request must satisfy an authorisation rule to establish the event channel, otherwise
the request is rejected. If a client satisfies the credential predicates of the rule without
providing values for the permission attributes, a decision cannot be made. As such, the
request is also rejected (if no other rules apply) as evaluation cannot proceed. A client
can be prompted to retry the request with values for the appropriate attributes.

There may be a number of rules that authorise a request; however, one is sufficient to au-
thorise the event channel. On channel establishment, the monitored conditions, including
credential allocations, defined for the authorising rule are loaded for system monitoring.
The channel persists until a change in value of any of these monitored conditions, at
which point the request is re-evaluated.15 Again, re-evaluation does not necessarily entail
channel closure, as another rule may authorise, and thus maintain, the channel—though
the restrictions imposed on the channel may change.

There may be a number of imposed condition and transformation rules that are applicable
to an event channel. The filter predicates of an imposed condition are loaded, to be
evaluated in the context of an event instance in conjunction with the subscription filter
(if applicable) and other imposed conditions. Included in this evaluation are any filters
derived from the permission attributes (per §5.7.1).

An event instance, in the appropriate context, might cause a number of transformation
rules to apply. In this situation, the transformation functions are executed in parallel, in
the sense that each function takes as input (a copy of) the original event instance, the
output of which moves to the next stage of processing. This is illustrated in Fig. 5.11.
A transformation function is executed only once per event instance at an enforcement
point, regardless of the number of policies causing the function to execute. This is to
avoid duplicate messages resulting from multiple executions of the same function.

ev ev’’

ev’

ev’’’

Figure 5.11: The parallel application of (event) transformation policies.

15This from a system perspective; of course, a channel can be closed on request.

5.8. Related Work 73

An output event is not subject to further transformation functions at the same enforce-
ment point. This is to avoid complex transformation loops that can be difficult to rea-
son about, particularly when the output is of the same type.16 The assumption is that
transformations are defined for a purpose, so a transformation function can (and should)
encompass all relevant operations for the event. The following chapter describes conflict
resolution mechanisms, allowing the specification of ordering and overriding constraints
for rule enforcement.

Transformation functions do not directly interact with each other, except in situations
of conflict resolution.17 However, the original event will not propagate if any applicable
transformation function is marked as consuming (c) the input event.

5.8 Related Work

In Ch. 3 we described other work in the area of pub/sub security. Here we compare IC
to the literature.

Several approaches, such as [Mik02, BEP+03, ZS06], control access by restricting (down-
grading) and/or validating request filters. As IC is built in a database environment,
filters are far more expressive, having access to a rich representation of state (data and
functions) in addition to event content. Further, permission attributes allow external in-
formation to be considered as part of an access control decision. This enables fine-grained,
context-sensitive event dissemination control.

Some work in pub/sub considers the use of event transformations [SBS08, Fie04, BHM+01,
CABB04]. These, however, focus on interoperability and/or event composition. The work
of Miklós [Mik02] describes a highly-prescriptive approach to attribute hiding, where a
fixed policy applies to all publications. Opyrchal et al. [OPA07] suggest that specific ser-
vices can act as privacy filters, operating to filter/alter the content of events sent/received
by clients. These privacy services appear18 to be implemented as external applications (i.e.
as separate clients/agents), rather than integrated into the dissemination infrastructure.
IC defines transformation rules for confidentiality purposes, to restrict the information
transmitted. Such rules enable more than mere binary (permit/deny) access decisions.
Transformations avoid clients publishing multiple copies of an event with differing levels
of visibility (see §9.1.6). Further, we provide details of enforcement, defining the specific
points in the pub/sub dissemination process where the transformation applies.

Belokostolozski et al. [BEP+03] used RBAC to control client access to the pub/sub API,
along with a method for type owners (and delegates) to authorise particular brokers to
handle particular event types. This work concerned a single administrative domain. Zhao
and Sturman [ZS06] also describe a method to control client access to the API, considering

16Note our original implementation applied transformations in sequence, where the output of one
function was taken as input for the next. We consider this method inappropriate, particularly where the
function changes the event type, or nullifies events or attribute values. The semantics of compound trans-
formations are complex to manage. Therefore, we apply transformations in parallel, which in combination
with conflict resolution mechanisms (Ch. 6), provides a more intuitive approach to event management.

17As functions are database procedures, rules might indirectly interact by altering stored data.
18This suggestion appears in the “Conclusion and Future Challenges” section of the article, and thus

lacks a detailed description.

74 Chapter 5. Interaction Control

issues of latency and network failure. However, a single ACL is insufficient for a large-
scale deployment. Clearly pub/sub operations must be controlled. In IC, context-aware
polices are enforced not only against connected clients, but also brokers. IC policy enables
control over all connections and transmissions, including the construction of routing paths.
Further, IC considers control in multi-domain environments.

A scope [Fie04, FZB+04] operates as a grouping structure to constrain the visibility of
events to its members, and to control the propagation of events to other scopes. Scoping
aligns well to the concept of domains. However, it is necessary to control intra-scope com-
munication. The authors note, in citing Belokostolozski et al. [BEP+03], the requirement
for client access controls to protect the pub/sub API. An IC broker controls commu-
nication to all connected principals, regardless of domain structure, in a context-aware
manner. Clearly, the notion of a scope is compatible with IC, where scope membership
can represent a predicate in a rule definition.

Wun and Jacobsen [WJ07]19 describe a general policy framework for the execution of
(ECA) actions in a pub/sub framework. Similar functionality underpins IC in the sense
that rules are enforced at particular parts of the pub/sub process. While our IC imple-
mentation uses extended ECA rules for policy enforcement (§7.5), we do not attempt to
describe a generic ECA framework. Instead, IC specifically concerns information con-
trol, defining particular security operations and their appropriate point of enforcement.
For instance, notification transformations should apply before the matching operation,
to prevent a transformation from circumventing subscription filters/restrictions. Here,
this security constraint removes the possibility for, and thus the benefit of, post-matching
policy application. Further, the generic model does not describe methods for dealing with
policy conflict, a necessary consideration in a security implementation (see Ch. 6).

IC takes a data-centric approach to security. Hippocratic databases [IBM09a] are similar
in that the database enforces disclosure policy. The focus, however, is different. Hippo-
cratic databases concern query control, while IC considers the context-aware distribution
of sensitive information.

Sticky policies involve attaching policy to a message (event or request) for enforcement by
other nodes. Some pub/sub security examples include symmetric pub/sub and the work
of Wun and Jacobsen. IC takes the position that each broker is responsible for enforcing
policy in accordance with its own (local) policy store. In this sense, broker-specific policy
reflects higher-level notions of trust. In this dissertation, we do not consider the use of
sticky policies due to issues of trust: the policy author must trust others to enforce a
policy correctly, and the policy enforcer (recipient) must trust that the policy they are
executing is apt. Such an approach can muddle accountability. We do, however, consider
this an area worthy of exploration (§11.1).

We have previously described how pub/sub encryption schemes are inappropriate for
healthcare, due to the perpetual sensitivity of healthcare information. The issue concerns
the distribution of an encrypted event instance. Assuming secure connections (TLS)
between clients/brokers, higher-level encryption operations become redundant if IC policy
releases only that data the recipient is authorised to receive.

19Incidentally, this was developed independently at a similar time to our work.

5.9. Summary 75

5.9 Summary

IC enables control over information flows in a distributed pub/sub infrastructure. Control
is effected through context-sensitive policy rules that are enforced by brokers at partic-
ular stages of the messaging process. These rules provide the ability to control: 1) the
establishment of event channels, 2) the flow of data, by filtering and modifying events in
transit, and 3) the routing infrastructure, by controlling the distribution of advertisement
and subscription requests. Policy rule definitions are fine-grained: rules are evaluated
within the database infrastructure, and thus have access to a rich representation of state.
The middleware enforcement of policy ensures client compliance, while having fewer def-
inition/enforcement points simplifies policy management.

IC was designed specifically to support an environment of federated administrative con-
trol. Those managing database infrastructure have a responsibility to protect stored in-
formation. IC provides the means for meeting data management obligations, by allowing
broker-specific control over the content of, and circumstances for, information disclosure.
In Ch. 8 we discuss IC with respect to healthcare.

It is important to note that IC describes only the mechanism for controlling dissemination
in a pub/sub infrastructure. In this dissertation we do not attempt to prescribe policies
with certain characteristics, as clearly requirements will differ depending on the domain.
Instead, the goal of this work is to enable those responsible for information to define
policies appropriate for the local environment.

6
Context and Conflict

Predicates define the situations in which IC rules apply. This chapter explores context
in more detail. We describe how fluents provide a representation of state suitable for a
data control model. We also outline how credentials are assigned to a user, and show that
aspects of state can be managed by external systems (remote to a broker).

As context forms the basis for rule application, there will be situations where several rules
apply at an enforcement point. This means that policy can conflict. We take the position
that conflicts are best resolved by policy authors, as automated detection and resolution
mechanisms can be dangerous—their effects can be unforeseen. This is especially so in an
environment such as healthcare, where information is critical for a patient’s well-being.
Instead, we provide support for policy authors, through mechanisms to detect potential
conflicts. This allows a conflict to be ‘authored-out’ of the policy set, or resolved through
a run-time resolution strategy.

6.1 Representing State

The predicates of an IC rule define the circumstances—the context—in which the rule
applies. Clearly, the richer the representation of state, the finer the granularity of control.
Rule predicates take the form of SQL conditional clauses, which are evaluated in the
database-broker space. As described, predicates have access to messaging information
(events/requests), stored data, internal functions, external services and schemata.

Predicates are constrained by the database environment, in that they must be valid SQL
conforming with database and messaging schemata. In an environment where clients
and brokers interact, accessing state through detailed queries (select statements) can,
in the face of complex policy, be cumbersome and prone to error. It is advantageous,
particularly in a distributed environment, to provide clients and policy authors with simple
representations of state. As described in §5.2.2, global event type definitions enable the

76

6.1. Representing State 77

routing of events throughout the broker network.1 For routing to occur, each broker must
be able to evaluate the subscription filters pertaining to an event type. This implies that
each broker requires similar schemata, at least regarding the state accessible by filter
predicates. Clauses are statically checked for conformance as part of the subscription
propagation process.

In essence, information sharing requires shared schemata. As with event types, there are
advantages to having shared definitions of state. Standardising methods for accessing
context allows each broker to maintain their own internal data representation (e.g. table
structures), which are used to derive a globally recognised and accessible representation of
state.2 Fig. 6.1 shows that standardised representations can provide a more intuitive in-
terface for referencing context, without (from the client perspective) a detailed knowledge
of underlying data structures. This simplifies both subscription filters and policy rule
definitions. Further, the conditions activating rules become more visible, which facilitates
rule comparison.

1(a) count(patient_id) > 0 FROM current_emergency
WHERE patient_id = 2323232320

1(b) emergency(2323232320)

2(a) count(participant_id) > 0 FROM research_project_code_RP412
WHERE participant_id = 2323232320

2(b) researchConsent(2323232320, ’RP412’)

Figure 6.1: Two methods for evaluating state: (a) a query that directly references tables,
and (b) a Boolean function providing an abstracted representation.

The next section describes how fluents, as defined by Kowalski and Sergot’s Event Cal-
culus [RM86], provide a useful mechanism for representing context in our control model.
Fluents provide representations of state, which change in response to events. We use
fluents to encapsulate parts of context (a predicate) under a named definition, perhaps
representing a single aspect of state, a derived semantic or composite events. In a similar
manner to event type definitions, fluents can range in scope from local to global.

6.1.1 Fluents

Event Calculus provides a mechanism for reasoning about state changes. It concerns the
relationship between events (actions) and their effects on state [Sha99] with reference to
time. A fluent in Event Calculus is defined as a reified, half-open interval in a given time
domain [RM86]. Fluents are named, representing a particular state of affairs. A fluent is
said to hold if the state of affairs it represents is true at a given timepoint.

Fig. 6.2 informally describes a subset of the basic predicates of the Simplified Event
Calculus. These operate on the value of a fluent F, and an action (event) a at a particular

1Event type definitions can be locally defined, though the associated interactions will only be relevant
to directly connected clients.

2Note the semantics associated with context may have different connotations depending on the en-
vironment: an emergency in a home is probably less severe than an emergency in an intensive care
ward. However, similar issues exist with event type definitions. The meaning is clarified through other
aspects, such as the event type, the publisher, the publisher’s domain, and other events and contextual
information. Alternatively, separate event types can be defined to deal with specific situations.

78 Chapter 6. Context and Conflict

Function Description
Initiates(F,a,t) Fluent F holds after the action a at time t

Terminates(F,a,t) Fluent F ceases to hold after the action a at time t

HoldsAt(F,t) Whether the fluent F holds at time t

Figure 6.2: An informal description of Event Calculus Predicates.

time t. We borrow from Event Calculus to show how fluents provide a neat representation
of state. Full details of the Calculus are described in [RM86] and [Sha99].

The HoldsAt(F,t) predicate determines whether a fluent holds at the given time. Infor-
mally, this is derived by determining whether the fluent was initiated at some point, and
not subsequently terminated until t. This illustrates the declarative nature of fluents,
where the status of a fluent is determined on demand, by inspecting previous occurrences.
Fluents can be parameterised, which simplifies the management of named definitions.

Emergency Example

Fig. 6.3 illustrates the actions affecting the state of an emergency fluent concerning a
particular patient. The value of the fluent emergency is initiated by three sensor reading

events with a heart rate of concern, or by the patient raising a panic event by pressing
an emergency button. The fluent is terminated by an emergency clear event. This
scenario illustrates the use of composite events, where a number of event instances act
cumulatively to alter fluent state. Further, this example shows how fluents can represent
state transitions. Given that rules and subscription filters will reference fluent state,
a change in the value of the emergency fluent may be of greater significance than the
individual event instances.

Not Emergency

sensing(Sensor_Reading)[heart_rate>90]
sensing(Panic)

start

Emergency

sensing(Emergency_Clear)

Sensor_Reading

initiate[3 x Sensor_Reading OR Panic]

terminate[Emergency_Clear]

emergency

sensing(emergency_clear)initiate[panic]

recordwarning[sensor_reading]

not emergency
(two warnings)

sensing(sensor_reading)[heart_rate>90]
sensing(panic)

terminate[emergency_clear]

initiate[panic]

initiate[panic OR sensor_reading]

recordwarning[sensor_reading]

not emergency
(one warning)

sensing(sensor_reading)[heart_rate>90]
sensing(panic)

not emergency
sensing(sensor_reading)[heart_rate>90]

sensing(panic)
start

Figure 6.3: The events impacting on the state of an emergency fluent.

Fluents, Databases and IC

A fluent represents whether a particular aspect of state holds at a particular time, where
actions (events) influence the value of a fluent. It follows that there is a simple mapping
between IC and fluents: a predicate of an IC rule references a fluent. IC rules are context

6.1. Representing State 79

sensitive. Rule definitions tend to concern a state of affairs rather than the occurrence of
an event. Fluent definitions are useful as they describe how events impact on state.

Just as a view forms a query over data in tables in the relational database model, fluents
can be thought of as queries over sequences of recorded events. Both provide a derived
representation of some underlying state, and both can be materialised [CW91], which
involves constructing a table (cache) to store the derived values. In IC, rules are evaluated
in the current circumstances, determining whether a particular condition holds at the
time of evaluation. Materialised views can be used to maintain the current value of
the fluent, reducing search complexity by avoiding the query of event histories. Active
rules (internal subscriptions) maintain the view by initiating or terminating fluents as
appropriate to particular event(s). As historical events are persisted (Ch.10), the view
can be reconstructed should initiating/terminating conditions change.

We use a function to provide an intuitive interface for accessing the state of a parame-
terised fluent, e.g. the function emergency(patient-id) returns whether the emergency

fluent currently holds for the particular patient. Such functions obtain fluent state by
querying the relevant materialised view or event histories, depending on the implementa-
tion.

6.1.2 Fluent Discussion

Fluents3 provide a useful mechanism for managing context in a dynamic environment. A
fluent represents a particular state of affairs, capturing contextual information, includ-
ing state transitions and composite events, where a sequence of events impact on state.
Fluents clarify the relationship between events and context.

Fluent operations are facilitated by the search and storage capabilities of database sys-
tems. As fluents are named, their definition highlights a particular aspect of context.
Fluents can replace a complex query to allow for more natural predicate definitions. This
simplifies the definition of rules and subscription filters, and clarifies the circumstances
in which policy rules apply— the meaning of an appropriately named fluent is far more
obvious to a user than a general SQL query (Fig. 6.1). In addition to abstraction and
encapsulation, the events affecting state are made explicit by a fluent’s initiation and
termination definitions.

In a distributed environment, fluents bring about local control; each broker implements
local functions to update and evaluate a fluent in a manner consistent with local procedure
and its internal data structures. IC rules reference fluents, which are used to ascertain the
current state of affairs (rule definitions/enforcement), and also to monitor conditions to
trigger privilege re-evaluation should conditions change. The models naturally integrate:
fluents are defined with reference to events, and thus require an event infrastructure.
The integration of fluents into IC infrastructure acts as a precursor for future work into
formalisation, enabling examination into the relationship between events, fluents and rules
(§11.1). We describe the implementation specifics of fluents in Ch. 7.

3We borrow concepts from Event Calculus to illustrate a method for standardising the representation
predicate definitions. The use of fluents provides a foundation for future work using formal logic to deal
with issues of policy verification and obligation monitoring—see §11.1.

80 Chapter 6. Context and Conflict

6.2 Credentials

In environments of sensitive information, access must be controlled. Credentials are a
primary consideration in determining rights and information privileges, as they define the
targets of the control mechanisms. They serve to assert a characteristic about an entity
in a system, such as a role or qualification held. Some credentials might be persistent
and exist for a period of time, such as an ID, or those representing a job-role or an
employment contract; others are temporary, perhaps related to a session or a particular
task (Fig. 6.4). We assume that each entity, including brokers, holds a credential asserting
a unique identity.

Staff ID Persistent Credentials Temporary Credentials
NHS 412 NHS 412, Doctor, Lead Surgeon Surgery3,

Paediatrician, Drug Auditor, Drug Investigator 9132
Employed NHS Provider 9132

NHS 1162 NHS 1162, Nurse, Ward Manager 1152,
Head Nurse, A&E Provider, Ward Roster Administrator

Employed NHS Provider 9132
NHS 61112 NHS 61112, Tech Support, IT Admin Provider 9132,

NHS Contractor Organisation 3935 IT Admin Provider 5122

Figure 6.4: Example credential allocations.

While credentials represent context concerning a principal, they differ from general envi-
ronmental state. In large-scale environments, some credentials tend towards being cen-
trally managed, or at least shared across domains [PEB07b]. Credential allocations might
include the employer or NHS qualifications (e.g. registered doctor/nurse). Changes in
user credentials are usually less dynamic than other aspects of state: job roles change
infrequently, workgroup allocations more frequently, but these are relatively static when
compared to local environments that must represent and react to many dimensions of
state. For instance, a patient might be in a ward for several days, while the nurse manag-
ing that ward is employed for years. As credentials assert something about a principal, the
separation of credentials (who) from other system-related contextual conditions (when)
allows directed policy, with visible targets.

Credentials are an important aspect of IC policy, as they define the targets of the rules.
Credentials allow IC rules to apply to individuals, or particular classes of clients/brokers.
As described, credential predicates combined with environmental predicates define the
circumstances in which a rule governs privilege. Both types of predicates can be repre-
sented by fluents, which are defined locally but may involve calling external systems. IC
is agnostic to the credential system that manages the mapping of users to privilege. All
that is required is a mechanism for determining the credentials held by a user, and for
notifying (raising events) in situations of credential change. Therefore, IC is compatible
with a variety of access control methodologies. That said, robust and reactive access
control mechanisms are required in large-scale, dynamic environments. This is especially
so for healthcare, where access control is a priority.

6.3. Context Summary 81

6.2.1 Credentials in Healthcare

The importance of credentials is reflected in NHS infrastructure, where persistent creden-
tials are used to define privilege. As introduced in §2.5, the NHS is proposing and has
developed some services to assist in the privilege management. These are currently at
various stages of design and implementation.
Electronic Staff Register (ESR) and N3 Network. The ESR is the definitive source
for NHS staffing information. It is a centrally administered staff register, managing infor-
mation including NHS (staff) IDs, domains of employment (providers), job allocations,
contact details, and contract/leave dates. At present, ESR updates are sent as regular
batches to local providers [McK]—evidence that staff-related privilege changes less often
than aspects of environmental state. The N3 network uniquely identifies each user, assign-
ing their NHS ID. Authentication occurs through a smartcard and PIN. These services
provide the base for the assignment of privileges and credentials to the connected client.
NHS RBAC definitions. The NHS are advocating the use of RBAC to control access
to information. Those holding a particular job role, perhaps qualified by an area of work,
will be authorised to undertake a defined list of activities. Roles are mapped to users
through a role profile, which are associated with identified clients (via N3). Role allo-
cations are centrally defined by the NHS, with a bureaucratic process for any change in
definition. Given that events encapsulate a particular semantic, activities can be readily
associated with particular events.
Legitimate Relationships Service (LRS). The LRS records associations between car-
ers and patients, and thus asserts some (medical) relationship between a client and patient
data. Relationships are defined through workgroups, which function like patient-specific
roles, existing for the duration of the treating relationship.

Such mechanisms on their own give a domain only limited control over privilege. For ex-
ample, privilege allocations are pre-defined by central authorities; service providers may
only add additional tasks to a (pre-allocated) role in their local environment [NHS08a].
This runs against the goal of greater freedom for health providers to manage their ser-
vices [Dar08]. In large-scale healthcare infrastructure it is natural that (some) credential
allocations are shared and/or globally defined. IC brings expressiveness, allowing service
providers to address local concerns by defining policy that considers information from both
centralised services and local representations of state. That is, with IC a domain can ac-
count for information from numerous sources, including central services such as those
of the NPfIT, in a manner appropriate for local practice.4 This gives domains flexible,
responsive control over the dissemination of information for which they are responsible.5

6.3 Context Summary

IC rules are defined to apply in particular circumstances. The sensitivity of IC mechanisms
depends on the representation of context, and the expressiveness and accessibility of state.
In large-scale environments, such as a national healthcare service, it is natural that some
aspects of context are centrally defined. However, care providers have their own local

4§7.3.3 describes the technical process of evaluating local and remote representations of state.
5Clearly domain policy must be in accordance with NHS directives; however, globally assigned privi-

leges can diminish local control, by failing to account for the subtleties of the local environment.

82 Chapter 6. Context and Conflict

processes, workflows and administrative policy. They require sufficient information, and
the flexibility, to manage their local service.

Fluents succinctly represent state. They are useful for data dissemination control, pro-
viding an abstraction over queries and database tables, thus facilitating the sharing of
contextual definitions. Further, they provide visibility of the interactions between events
and context. Credentials assert characteristics about the users in the system; typically
privileges are allocated with reference to credentials. These may be derived from external
systems, perhaps through a dedicated credential management framework.

IC mechanisms are relatively unconstrained in their definitions of context. The use of
fluents is an attempt to structure context, enabling access to local and remote represen-
tations state (see also §7.3.3). This is to assist policy definition and management without
overly-constraining expressiveness.

6.4 Policy Conflict

As policy rules are context sensitive, a number may be applicable at a particular policy
enforcement point. This means there will be situations in which conflict arises, in the sense
that policies are incompatible. A common example of conflict concerns specialisation or
specificity, e.g. where a rule authorising a request from a specific doctor should override
the rule authorising doctors generally.

It is argued that application-level conflict resolution is often better addressed by careful
policy (re)authoring, instead of complex automated resolution [Cha06]. Indeed, recent
work concerning access policy involves warning authors of possible conflicts, through the
static analysis of policy rules [SVBM08, SYA09]. Our approach is to warn policy authors of
potential conflicts, which they can ignore or design around. This might involve redefining
the policy-set, or specifying a conflict-resolution strategy for the conflicting rules. We
do not attempt to resolve conflicts automatically, as doing so in a complex environment
such as healthcare can be dangerous and complex. Instead we provide the tools for policy
authors to detect and define policy conflicts and associated run-time resolutions.

6.4.1 Static Conflict Detection

Mechanisms are required to determine rules with the potential to conflict. A rule can
be statically compared with others to detect situations where multiple rules apply. From
this, a policy author can determine whether there exists a conflict between the rules.

Here we provide a detailed description of our conflict detection process, originally intro-
duced in [SVBM08]. The recent work of Shu et al. [SYA09] describes formally a method
for statically detecting conflicts in access policy based on rule reduction and binary search.
The approaches bear similarities; however, we take a pragmatic approach dealing specifi-
cally with IC rules, which concern not only authorisation, but also impose conditions and
transform.

Our process of conflict detection involves two steps. The first is to determine whether it
is possible for rules to conflict. Following which, it is necessary to provide feedback as to
the degree of the conflict: whether the conflict is due to an overlap in definition, or due to
circumstance. Extra information can be used to further grade the degree of conflict, e.g.

6.4. Policy Conflict 83

whether two overlapping transformation rules produce the same event type. To detect
conflict, a rule is compared with others of the same kind (request/link authorisation,
transformation or imposed condition), defined for the same event type and enforcement
point.

To ease explanation, while discussing conflict detection we state that policy rules overlap
if they can be simultaneously activated by a particular set of conditions. This does not
entail a conflict, as it might be wholly appropriate that several rules apply.

Possibility of Conflict

First is it necessary to determine whether it is possible for two rules to apply at a particular
enforcement point. This is a Boolean Satisfiability problem (SAT) [Coo71], which involves
determining whether there exists an allocation of state that activates both rules. The
process of comparison involves converting the predicates of both rules into a conjunctive
normal form (CNF) function. A CNF function consists of a conjunction of clauses, where
each clause is a disjunction of literals [HR00]. A literal is a Boolean-valued variable,
possibly negated. Here, a literal represents a predicate of a rule: an aspect of context.
The idea is to determine whether the CNF function is satisfiable: that there is some
allocation of the values (true/false) to the set of literals referenced by both rules which
satisfies (makes true) the function. If the function is satisfiable, it means that there
exists (at least one) contextual situation in which both rules can apply. Conversely, if the
function is unsatisfiable, the rules cannot conflict. A solution may also be undecidable, if
no definitive answer is found.

The search for satisfiability is a proven NP-Complete problem [Coo71]. Intuitively, show-
ing a CNF function to be unsatisfiable may involve 2n evaluations, where n represents
the number of literals of the formula, or in this case, the number of different predicates
(representations of state) referenced by the rules. There has been much work on reducing
the search space; many approaches are based on the classic DPLL algorithm [DLL62]
which uses backtracking and function simplification. There are implementations capable
of finding solutions for formulas consisting of thousands of constrained variables,6 and of-
ten practical (real-world) problems are solvable. In terms of IC rules, comparisons occur
between pairs of rules, and are likely to consist only of a few predicates per definition,
making the satisfiability search space comparatively small.

Fig. 6.5 presents some rule definitions and their CNF equivalents. We use shortened
predicates for reasons of space. The credential predicates dr(s) and nrs(s) refer to whether
the member of staff (s) holds a doctor or nurse role, respectively. The duty(s, w) predicate
determines whether a staff member is on duty in a particular ward, the home(p) predicate
describes whether a patient is at home, and the em(p) predicate determines whether a
patient is in an emergency.

Degree of Conflict

As the purpose of conflict detection is to assist policy authors, it is useful to grade the
extent of the overlap. If it is possible for two rules to apply, as determined by the
satisfiability search, it helps to consider whether the overlap is static, due to shared
predicates, or whether the overlap is the result of dynamic circumstances.

6See http://www.satcompetition.org/ for some examples.

84 Chapter 6. Context and Conflict

Rule 1 Rule 2 CNF SAT
dr(s) OR nrs(s) dr(s) dr(s) ∨ nrs(s) Y

dr(s) AND em(p) not em(p) dr(s) ∧ em(p) ∧ ¬em(p) N
dr(s) AND em(p) nrs(s) AND duty(s,w) dr(s) ∧ em(p) ∧ nrs(p) ∧ duty(s, w) Y

em(p) NOT (home(p) OR em(p)) em(p) ∧ ¬home(p) ∧ ¬em(p) N
(nrs(s) AND home(p)) NOT home(p) OR em(p) (nrs(s) ∨ dr(s)) ∧ (home(p) ∨ dr(s))

OR dr(s) ∧(¬home(p) ∨ em(p)) Y

Figure 6.5: Rule definitions and their associated CNF representation.

The importance of this distinction is that statically overlapping policies are directed at
similar targets; as opposed to some coincidental set of circumstances that cause both rules
to apply. This may be indicative of a policy error. Determining a static overlap involves
detecting like predicates in the definitions of the rules. This involves converting the
activating predicates of a rule into disjunctive normal form (DNF), where each disjunct is
a series of clauses consisting of literals (and negations) and conjuncts [HR00]. If rules share
a common disjunction, they overlap in definition; otherwise, they overlap due to context.
Fig. 6.6, shows some rules that statically overlap, sharing common disjuncts. When the
common disjunct holds, both rules necessarily apply. Thus, dynamically overlapping rules
have the potential to conflict.

Rule 1 Rule 2 Overlap Common
DNF equivalent DNF equivalent Disjunct

dr(s) dr(s) OR nrs(s) Static dr(s)
dr(s) dr(s) ∨ nrs(s)

home(p) em(p) Dynamic
home(p) em(p)

NOT (dr(s) AND nrs(s)) NOT nrs(s) Static ¬nrs(s)
¬dr(s) ∨ ¬nrs(s) ¬nrs(s)

dr(s) dr(s) AND home(p) Dynamic
dr(s) dr(s) ∧ home(p)

NOT (nrs(s) AND (home(p) OR NOT (home(p) OR nrs(s)) Static ¬nrs(s) ∧ ¬home(p)
em(p))) ¬home(p) ∧ ¬nrs(s)

(¬home(p) ∧ ¬em(p))
∨(¬home(p) ∧ ¬nrs(s))

∨(¬nrs(s) ∧ ¬em(p)) ∨ ¬nrs(s)

Figure 6.6: A comparison of rule definition predicates.

Apart from overlapping definitions, other considerations might suggest a policy issue. In
comparing transformation rules, it is useful to consider the output types of the transfor-
mation functions. If both functions produce events of the same type, two (semantically)
similar events will be produced. This may indicate a policy error, especially for notifica-
tion transformations, where the subscriber may be misled by receiving two instances of
the same type. There may also be some other domain/implementation-specific consider-
ations that can be incorporated into the detection process to rank a possible conflict, e.g.
policies authored by inexperienced members of staff.

6.4.2 Selection Summary

The procedure for detecting conflicts for a rule is as follows:

6.4. Policy Conflict 85

• For each pair of rules of a similar kind, defined for the same event type and inter-
action point:

– Determine whether it is possible for both rules to apply together:

∗ Convert the predicates of both rules into a CNF function.

∗ Check whether the function is satisfiable.

– If satisfiable: Determine the degree of overlap:

∗ Convert the predicates of each rule into DNF.

∗ Search for any common disjuncts between the two rules.

∗ Consider any other possible overlaps, e.g. function outputs.

• Present results to user, categorised by the type of overlap (static or dynamic), along
with any other policy conflict ranking metrics.

The above procedure describes a basic method to assist policy authors and administra-
tors in determining potential errors in the policy set. We present a general approach; as
mentioned, extra constraints or other indicators of potential conflicts can be included as
relevant to the local implementation/application environment. In practice, policy author-
ing processes should be strictly controlled, audited, sandboxed and reviewed to prevent
polices from being added without considering potential interactions.

6.4.3 Resolution Strategies

The purpose of detecting potential conflicts is to provide policy administrators with suffi-
cient information for maintaining a consistent policy set. We previously considered over-
laps, where policies are simultaneously activated by a particular set of conditions. We
now consider conflict, where policies are incompatible in some respect. The most obvious
method of conflict resolution is to examine and redefine the policy set. There are strong ar-
guments that this is preferable to a system-automated conflict approach [Cha06, SYA09].
As such, potential conflicts are detected and presented to the policy author to deal with
any necessary resolution. It might be the case that certain classes of conflicts do not
warrant re-definition, for example if the conflicts occur infrequently, or only in particular
situations. Therefore, we allow the definition of constraints between rules, which instruct
the system how to apply the policies at runtime. The runtime resolution of rules allows for
exceptions, in cases where one policy should apply before or instead of another. IC reso-
lutions (constraints) are described separately, specifically for the particular rules involved
in the conflict.7 This provides certainty and visibility as to how the rules are combined.

Our model provides the following mechanisms to define and resolve conflicts at an inter-
action point:

Ordering

This allows definition of the order in which the rules are applied/evaluated. This is
particularly relevant for transformation functions, which can perform operations that
affect state, such as altering data or raising an event. There may be circumstances in
which one policy must apply before another.

7Recall that a broker locally stores and enforces rules and resolutions, cf. distributed policy sets.

86 Chapter 6. Context and Conflict

graph : initial directed graph
roots : set of all the root nodes for the graph
ordered : list of ordered policies (initially empty)

while roots.not_empty():
node = roots.pop()
ordered.append(node)
for each child in node.children():

child.remove_incoming_edge(node)
if child.is_root_node():

roots.append(child)

if graph.has_edges():
ERROR: cyclic graph

else:
return ordered

Figure 6.7: Pseudocode for a Topological Sort.

To account for this, a rule pol1 can be defined as preceding another pol2. This means
that in the situation where both policies apply, the function for pol1 will be enforced
before pol2. Ordering constraints (oc) are defined outside of the rules themselves, such
that oc = (pol1, pol2). At an enforcement point, there may be some ordering constraints
relevant to the applicable set of policies. This presents a partially ordered set, where poli-
cies and their ordering constraints are represented as a directed graph (pol1 → pol2), ‘→’
representing an edge. Ordering is resolved through a topological sort [CLRS01], presented
in Fig. 6.7. The algorithm guarantees correct ordering among those with ordering con-
straints; unconstrained policies may be enforced between those with constraints. The time
complexity of the sort is linear to the number of policies plus the number of constraints.
Ordering is not possible where the graph representing the constraints is cyclic. In this
situation an event is raised (and logged) detailing the policies, context and conditions
giving rise to the issue (Ch. 10). Fig. 6.8 illustrates an ordering example.

SENSOR_READING
(event type definition)

Attribute Name Data Type
Patient_ID char(10)
Heart_Rate integer

Temp real
Location text

Time timestamp

EVENT INSTANCES (Publications)

‘NEA5512491’ 66 38.5 ‘Horizontal’ 30-01-09 22:11:33
‘NLO1412491’ 87 40.1 ‘Upright’ 10-02-09 06:12:39
‘NEA55124’ ‘HIV’ 39.0 15 11-04-09 16:92:55

EVENT INSTANCES
(publications)

NEA5512491 NLO1412491 NEA55124

66 87 HIV
38.5 39.12 132

TL447588 TQ290803 15.0
30-01-09 22:11:33 10-02-09 06:12:39 11-04-09 16:02:55

EVENT INSTANCE

DATA TABLES
A1

A1

A1

A1

S

S
S

S

Broker Link
Advertisement
Subscription Request
Publication

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Location

Observation_Time

Grid_Reference

Patient_ID

Location

Observation_Time

Grid_Reference

S

A2

A1
A2

B1

B2

B4

B6

B5

B3

sensor_reading

panic

emergency_clear

emergency_set

emergency_cease
EMERGENCY

heart_rate > 90

on emergency_clear

On panic or 3 x sensor_reading

Dynamic: user holds both rolesnurse(user)doctor(user)

Dynamic: patient is home
and in an emergency

emergency(pat_id)atHome(pat_id)
Static: doctor(user)doctor(user) or nurse(user)doctor(user)

ConflictRule 2Rule 1

Dynamic: user holds both rolesnurse(user)doctor(user)

Dynamic: patient is home
and in an emergency

emergency(pat_id)atHome(pat_id)
Static: doctor(user)doctor(user) or nurse(user)doctor(user)

ConflictRule 2Rule 1

Topological
Sort

Topological
Sort

Enforce
Overrides

Local PolicyPolicy
Enforcer

(4) Policy Checks

(5) Mandatory Attributes

Context
Monitor

(8) Monitor Condition

(7) Local State Check

(1) Subscription Request

(10) Subscription Acknowledgement

(2
) R

ol
e

A
ct

iv
at

io
n

(6
) F

ur
th

er
 R

ol
e

A
ct

iv
at

io
n

(3) Check NHS Credentials

(6) Check Relationship

(9) Activate Transformation

Figure 6.8: An illustration of policy ordering constraints, resolved by a topological sort.

Overrides

When policies conflict, a policy can be defined as overriding another. This prevents
enforcement of the overridden policy, by removing it from the applicable set.

As with ordering constraints, an overriding constraint (or) is defined as or = (pol1, pol2)
where rule pol1 overrides pol2. Overrides apply directly to the policies for which they are

6.4. Policy Conflict 87

defined, i.e. overrides are not transitive. This is for flexibility, as there may be situations,
such as annulment [AE07], where one policy constrains some policies, but is unconcerned
with others. Additional override constraints can effect transitivity, useful for situations
such as rule specialisation.

Override constraints are enforced through a similar mechanism to ordering policy. Over-
riding constraints can be represented as a directed graph, where pol1 → pol2 means that
pol1 overrides pol2. A topological sort on the graph returns the set of policies where an
overridden policy appears after the overriding policy. Each policy in the set in examined
in order; if the policy overrides another, then the overridden policy is removed from the
applicable set. This process is shown in Fig. 6.9.

Topological
Sort

Enforce
Overrides

Figure 6.9: An illustration of the overriding process.

Incompatibility

A set of policies can be marked as incompatible. That is, there should never be a situation
where they all apply. This is intended to act as a safety-net guarding against particular
situations. This strategy prevents application of the rules, instead raising an event to
inform of the incompatibility. This strategy is used implicitly to deliver warnings in cases
where cycles are detected in the graphs of overriding and ordering constraints.

6.4.4 Runtime Application

The process of applying conflict resolutions is shown in Fig. 6.10. The first step involves
determining the set of policies applicable at the enforcement point. Any overriding con-
straints are applied and the overridden policies are removed from the set. If the policy
set is compatible, the policies are ordered in accordance with any ordering constraints.
Policies are then applied/executed, in order, from the resulting set. The conflict resolu-
tion process is subject to audit, where the applicable, resolved and applied policies are
recorded (§10.1.4).

SENSOR_READING
(event type definition)

Attribute Name Data Type
Patient_ID char(10)
Heart_Rate integer

Temp real
Location text

Time timestamp

EVENT INSTANCES (Publications)

‘NEA5512491’ 66 38.5 ‘Horizontal’ 30-01-09 22:11:33
‘NLO1412491’ 87 40.1 ‘Upright’ 10-02-09 06:12:39
‘NEA55124’ ‘HIV’ 39.0 15 11-04-09 16:92:55

EVENT INSTANCES
(publications)

NEA5512491 NLO1412491 NEA55124

66 87 HIV
38.5 39.12 132

TL447588 TQ290803 15.0
30-01-09 22:11:33 10-02-09 06:12:39 11-04-09 16:02:55

EVENT INSTANCE

DATA TABLES
A1

A1

A1

A1

S

S
S

S

Broker Link
Advertisement
Subscription Request
Publication

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

SENSOR_READING

Time

Location

Temp

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Vital_Signs

Reading_Time

Temperature

Heart_Rate

Patient_ID

Location

Observation_Time

Grid_Reference

Patient_ID

Location

Observation_Time

Grid_Reference

S

A2

A1
A2

B1

B2

B4

B6

B5

B3

sensor_reading

panic

emergency_clear

emergency_set

emergency_cease
EMERGENCY

heart_rate > 90

on emergency_clear

On panic or 3 x sensor_reading

Dynamic: user holds both rolesnurse(user)doctor(user)

Dynamic: patient is home
and in an emergency

emergency(pat_id)atHome(pat_id)
Static: doctor(user)doctor(user) or nurse(user)doctor(user)

ConflictRule 2Rule 1

Dynamic: user holds both rolesnurse(user)doctor(user)

Dynamic: patient is home
and in an emergency

emergency(pat_id)atHome(pat_id)
Static: doctor(user)doctor(user) or nurse(user)doctor(user)

ConflictRule 2Rule 1

Topological
Sort

Topological
Sort

Enforce
Overrides

Local PolicyPolicy
Enforcer

(4) Policy Checks

(5) Mandatory Attributes

Context
Monitor

(8) Monitor Condition

(7) Local State Check

(1) Subscription Request

(9) Subscription Acknowledgement

(2
) R

ol
e

A
ct

iv
at

io
n

(6
) F

ur
th

er
 R

ol
e

A
ct

iv
at

io
n

(3) Check NHS Credentials

(6) Check Relationship

(8) Activate Transformation

Figure 6.10: The process of policy application.

88 Chapter 6. Context and Conflict

6.4.5 Detection and Resolution

Conflict resolution mechanisms impose runtime constraints on the application of policy
rules. In this way, they not only dictate the appropriate action, but define the conflict
itself. As such, it is important that these constraints are considered in the conflict detec-
tion process. The insertion of a particular rule might require an overriding or ordering
constraint. The author should be able to discover what impact this may have—to impose
a constraint, it is necessary to know whether the rule imposes constraints on other rules.

Conflict definitions can be statically analysed to determine cycles. The process involves
selecting policies that might cause a cycle, where they are both parent and leaf node of
a constraint; e.g. p1 → X and Y → p1 where p1 is a policy and X and Y are some
policies in a constraint definition. Such policies are considered root nodes, where cycles
are detected by performing a depth first search over the tree of constraint definitions.
If a cycle is detected, and all policy rules in the cycle can be activated (are satisfiable),
this may be of concern. A statically-detected cycle is not necessarily an issue if the
predicates cause the rules to be mutually exclusive: e.g. a patient cannot be in a ward
(inWard(ward id,patient id)) and at home (isHome(patient id)) at the same time.

6.4.6 Resolution Usage

Although runtime policy resolutions are an important aspect of IC, they are best used by
administrators to handle exceptional situations. For example, a transformation rule t3 can
be defined to apply instead of transformations t1 and t2 when all are activated. However,
the need for a resolution strategy might indicate an issue in the original policy set; perhaps
t1 and t2 can be replaced, avoiding the need for t3 and the resolution definitions.

Studies show that the majority of patients trust their practitioner to share information
appropriately when required, without special requests [BRG00]. Assuming consent, or-
ganisations will have standard guidelines in which information is shared with particular
entities. Runtime conflict resolution mechanisms enable the qualification of general rules
with particular patient-issued restrictions. As described in Ch. 9, the definition of a
consent preference does not necessarily imply the definition of an IC rule. Instead, some
constraints can be encapsulated by context. For example, there may be a fluent represent-
ing consent to provide data for research purposes, where a change in a patient’s consent
preference involves updating the fluent rather than creating an IC rule. This shows that
the use of resolution strategies can be minimised through system design.

6.5 Summary

This chapter describes constructs aimed at improving system manageability. As policy is
defined and enforced within a database system, rules have access to a rich representation
of state: a predicate may reference essentially anything accessible through the query
engine. This is a key motivation for database-broker integration—it enables fine-grained
control. However, such expressiveness comes at the cost of manageability, in that it can
be difficult to define the queries to access the relevant aspects of state. Constraints on the
representation of context help direct/clarify rule definitions and assist in rule comparisons.

Fluents provide a mechanism for balancing expressiveness and contextual control. Just
as an event type represents a particular semantic regarding an occurrence, a fluent encap-

6.5. Summary 89

sulates a semantic regarding an aspect of state. Fluent definitions describe how events
interact to alter their values. This makes visible the events that impact on state. Fluents
preserve expressiveness, using the database infrastructure to derive state from queries
(and functions) over data/event sequences, and providing the means for managing state
transitions and composite events. We use fluents as an abstraction, moving queries from
rules and filters into the middleware infrastructure, so that reference to a fluent replaces
a (potentially) complex query predicate. However, this also impacts expressiveness and
manageability, in the sense that policy authors (and subscribers) may only reference the
conditional predicates defined for the particular broker. Another consideration is the
performance impact of fluents, in that fluents require additional storage and introduce
processing overheads in the evaluation and maintenance of state.

Given the dynamic nature of policy definitions, it is natural that policy conflicts occur.
Conflict can be authored out of a policy set, through redefining policy rules. We provide
for the run-time resolution of conflicting policy. Rules can be marked as incompatible,
and ordering constraints can be defined. Rules may also be overridden, which is useful for
qualification, e.g. where a specific (consent) policy overrides a general (domain) policy.

To detect conflicts, we employ a simple form of static analysis to identify the overlapping
predicates in rule definitions. Using fluents to represent state facilitates this comparison,
as fluents work to standardise the aspects of context referenced by rule predicates. Given
that it is generally intractable or undecidable to detect overlaps in SQL queries [RI80], such
constraints assist conflict detection processes. Here we consider overlap in terms of offline
analysis to provide policy authors with feedback. This process may also indicate errors in
the policy set, or in the sharing protocol itself. However, this process does not guarantee
the detection of possible overlaps, instead it acts merely to support policy authors. As
such, this approach is inappropriate to incorporate into the routing model itself (e.g. to
implement coverage), as this requires real-time determinism. As this dissertation focuses
on messaging infrastructure, we are concerned with the appropriate application of rules
at an IC enforcement point. An area for future work is in system validation, where static
and runtime analysis techniques can be used to reason about policy in relation to the
semantics of a real healthcare system.

7
Integration into PostgreSQL-PS

This chapter describes the integration of IC mechanisms into PostgreSQL-PS brokers,
through the addition of a data control layer. We detail the extensions necessary to in-
tegrate policy rule enforcement into database-messaging infrastructure, and how an IC
implementation exploits existing database functionality, such as active rules and the query
engine, to control information flows.

Given the focus of this thesis is on control, we discuss only those aspects of the PostgreSQL-
PS implementation relevant to realising IC. See [Var09] for more information on database-
broker integration and the PostgreSQL-PS implementation.

7.1 Data Control Layer

We implement IC as a data-control layer above a general pub/sub service to enable def-
inition of policy rules for controlling information dissemination in a distributed pub/sub
infrastructure. This layer is responsible for the storage, validation and enforcement of
policy rules. Such operations are effected through interactions with the pub/sub layer.

Fig. 7.1 depicts the integration of pub/sub functionality into a database broker. The
user space of a database concerns data, such as table specifications, rows and user-defined
functions. The pub/sub layer resides between the system and user space of a broker.
This is because some pub/sub functionality occurs in the system space, as communication
specifics including serialisation and the (server-level) integration of event types are imple-
mented in system code; while other aspects of the layer reside as data in the user-space,
e.g. event type definitions and subscription filters are stored in catalogues (system tables).

The data control layer resides in user space, as policy rules are represented as data (rows)
stored in tables, and enforced through (extended) active rules and user-defined functions.
This facilitates the management of IC policy, as we can leverage from database function-
ality, including the query engine, executor, transactions, supported database languages
and active rules.

90

7.2. Client Operations 91

User Space

 System/Server Space

Network Layer
Publish/Subscribe Layer

Data Control Layer

Network Layer
Publish/Subscribe Layer

Data Control Layer

Figure 7.1: Layers of the messaging substrate.

7.2 Client Operations

Before describing the interactions between layers, we first introduce the actions of clients.
Clients must be registered and authenticate with the database server in order to connect to
the pub/sub service.1 Clients can advertise (request to publish) and subscribe to (request
to receive) event types, and publish event instances.

Clients represent requests and events in XML, which are parsed and converted into a
tuple: a broker’s internal data representation. Fig. 7.2 shows the schema of the request
tuple. Advertisements and subscriptions are maintained in different catalogues. Apart
from the fact that advertisement tuples do not have a filter attribute, the structure is
the same for both.

impcond useridfeedbackauthorisedfilterpermatt_values[]permatt_types[]permatt_names[]eventtypereq_id

REQUEST TUPLE

impcond useridfeedbackauthorisedfilterpermatt_values[]permatt_types[]permatt_names[]eventtypereq_id

REQUEST TUPLE

Figure 7.2: The schema of a request tuple.

Some attribute values are derived from the client’s request, others, as underlined, are
assigned by the system. The authorised and feedback attributes are used in request
validation, where the former specifies whether the request is authorised, the latter allows
for a message to be included with the acknowledgement sent to a client, e.g. to prompt the
inclusion of a permission attribute, or to inform of a (non-hidden) imposed condition. The
impcond attribute stores the filters imposed on this request. The values are determined
as part of the request validation process (§7.6.2).

An event instance consists of a tuple specifying values for the attributes of the event
type (see Fig. 4.1). Unlike a request, an event tuple is not populated with system-
level information. Instead, metadata pertaining to the event instance, such as an event’s
(internal) identifier, is encapsulated in a wrapper surrounding the event instance.

7.2.1 Client-Specified Properties

PostgreSQL-PS requires that a client specify the scope of their subscription, advertise-
ment or publication, which determines whether it is forwarded throughout the broker

1PostgreSQL allows specification of customised authentication modules (§4.3.4).

92 Chapter 7. Integration into PostgreSQL-PS

network (§4.3.1). IC shifts information flow controls into the middleware, thus rendering
client-specified scoping redundant.

In PostgreSQL-PS, a publisher uses the guaranteed property of an event to specify
whether the event instance is delivered reliably, exactly once in order, or whether a best
effort approach is taken (§4.3.1). Again, as IC governs information flows, such a property
is best defined by middleware policy. Given the importance of health information, and the
requirement for audit, in this dissertation we consider only reliable delivery. While there
may be healthcare situations where best-effort delivery suffices, e.g. in the transmission
of video streams,2 arguably this should be defined by policy pertaining to relevant event
channel(s), rather than at the discretion of the publisher.

7.3 Context

In our implementation, predicates are evaluated through queries on local data or (in-
ternally defined) functions.3 Evaluation occurs through the database query engine, in a
manner similar to that of executing a SQL query returning a Boolean value: (SELECT
<filter predicates>). This gives predicates access to a rich-representation of state,
essentially anything accessible from the database system, subject to privilege (§4.3.4).

Evaluation takes place in the context of an event instance or request. Both event types
and requests are defined as relational objects. Predicates are able to reference event
content through <eventtypename>.<attributename> and request information through
req.<attributename>.

The identifier of the connected user is also inserted into evaluation context. This is
accessible through the use of the keywords publisher, which refers to the connected
user sending the event/request, and subscriber, the recipient in the notification stage.
During publication processing, usernm4 represents the publisher, while at the delivery
stage it represents the subscriber. The attribute derived records whether the event is
the result of a transformation function.

PostgreSQL’s planner is used to validate the conformance of predicates to database
schemata, i.e. the validity of types and operators. This is done in the context of the
connected client, to ensure that the issuer maintains sufficient privilege to access the
predicates as defined by PostgreSQL’s security model (§4.3.4).

SELECT NHSCred(usernm,’drug_auditor’) AND underInvestigation(prescribe.prescriber_id);

SELECT NHSCred(’NHS_777325’,’drug_auditor’) AND underInvestigation(’NHS_91253’);

Figure 7.3: The query for evaluating a rule definition (a) and its associated evaluation
context (b). The function evaluates the predicates, returning (true/false) if the

statement holds.

2This dissertation considers more encapsulated events, rather than high-volume data streams.
3Functions can perform processing, and are able to access state from external systems and services.
4This is because user is a reserved word in PostgreSQL.

7.3. Context 93

7.3.1 Permission Attributes

Permission attributes supplement the evaluation context with values specified by the
client. The included permission attribute values vary per request, represented in the
arrays of the request tuple. For reasons of convenience, attribute values are added
to the evaluation context through placeholders: att.<attributename>. For example,
the fluent treats(usernm, att.patient id) will be evaluated as treats(’NHS 4234’,

’2323232320’::int8). Attributes values are cast to the appropriate type. Except for
request de/serialisation, the pub/sub layer is unconcerned with permission attributes.

7.3.2 Representation: Fluents

The expressiveness of IC policy is governed by the representation of context. Fluents pro-
vide a neat abstraction of state useful for IC (§6.1.1). A fluent’s value is accessed through
a Boolean database function defined for the name of the fluent: fluentname({params}).
That is, an emergency fluent, emergency(2323232320), will return true if the patient
is in an emergency situation, false otherwise. This accessor function is parameterised,
giving an intuitive interface to accessing fluent state.

A materialised view is a table that acts like a cache, whose values are derived from (source)
tables. Materialised views are generally used for performance reasons, as maintaining and
querying a cache is in many circumstances faster than repeatedly querying the underlying
sources (see §9.4). The value of a fluent is determined by a search that queries whether
a fluent was initiated and not subsequently terminated. As IC rules consider state at
the time of evaluation, materialised views can simplify the search process by maintaining
the current value of a fluent. This avoids the need to search the entire event history
for every request. Active rules (including internal subscriptions) are used to initiate and
terminate the state of the fluent, through the respective functions fluentname init and
fluentname term that maintain the fluent value in the materialised view.

Appx. B presents example source code for implementing the emergency fluent scenario
of §6.1.1 as a materialised view. This shows how a fairly complex representation of state
can be defined and maintained in a few database commands.

7.3.3 Monitored Conditions

Monitored conditions are used to trigger the re-evaluation of a request when its value
changes. Our implementation requires that monitored conditions are defined as fluents.
Monitoring occurs through the creation of active rules, which execute a function causing
re-evaluation of the relevant request on a change in fluent state.

To ease the enforcement process, each fluent must define monitor and demonitor functions,
which take the request ID as one of the parameters. These functions respectively setup and
remove the mechanisms triggering re-evaluation of the request in a manner appropriate
for the particular fluent. This standardises the interface to the monitoring functions
by abstracting the specifics away from policy authors, and facilitates other associated
(housekeeping) operations. The simplest monitoring functions might create an active
rule, as shown in Fig. 7.4, to trigger re-evaluation on a change in a relevant fluent value.
Demonitor functions exist to remove monitoring rules, e.g. after the closure of an event
channel.

94 Chapter 7. Integration into PostgreSQL-PS

CREATE RULE "tie-request-to-fluent" AS
ON UPDATE TO <fluent_allocation_table>

WHERE OLD.param_1 = some_param_val
DO select re_evaluate_request(<reqid>);

Figure 7.4: A generic rule to trigger request re-evaluation on a change in fluent value.

Credentials

Credentials assert a characteristic about a particular principal. They are used to define
the targets of a rule. We represent all predicates, including credential allocations, as
parameterised fluents. All credential fluents are monitored, to trigger request re-evaluation
should credential allocations change. The event infrastructure can be used to update fluent
values.

Fig. 7.5 illustrates the process of monitoring the credential allocations for local and remote
representations of state for a particular request. The first step involves determining the
values for the credential fluents for the requestor (NHS 1234). This entails querying a
remote service (NHS Creds) for the centralised credential (doctor) (1), and local state
for the domain credential (WardManager) (2). The request authorisation rule is satisfied as
both fluents hold, thus the monitor function for each fluent is executed with the request
ID (975) passed as a parameter (3). The monitor functions then set the active rules
for monitoring state. The local credential is monitored through an active rule watching
the fluent WardManager table to detect a change in the credential allocation (4). The
external credential is monitored through a subscription to the remote credential service
(5). At this stage, all monitor functions are in place; the request is re-evaluated should
conditions change (6).

Local State

Rule
Evaluator

WardManager(NHS_1234)

 TR
UE:

su
b_id

=49
19

Context
Monitor

NHSCred(doctor,NHS_1234,975)
WardManager(NHS_1234,975)

NHSC
re

d(d
octo

r,N
HS_

12
34

)

NHS Creds

 Monitor Rule

Result: True

2

3

5

Request
id = 975

Subscribe

Cred_Chg(doctor,NHS_1234)

4

Re-evaluate(975)6

Figure 7.5: The process of monitoring conditions for a particular request.

7.4. Policy Definitions 95

7.4 Policy Definitions

This section concerns the definition of IC policy, describing its representation and the
data structures by which it is stored.

7.4.1 Representation

We stated that data control policy resides in user space (§7.1). As policy is represented
as data, policy could be defined directly through the database console (client interface).
However, we force XML policy definitions, which are converted into the relevant data tu-
ples. This is because representing policy in the same format as event instances allows rules
to be shared using the event infrastructure, i.e. policy definitions can be defined as events.
Further, the conversion process acts as a safety-net; rather than allowing direct manipu-
lation of policy catalogues, policy is more easily validated (and manipulated) before being
instantiated. The XML representation of policy follows the definitions described in Ch. 5.
See Appx. C for examples.

7.4.2 Policy Storage

Data control policy exists in user space. Each type of policy has its own table(s), the
schema of which corresponds to the rule’s structure. Each rule is represented as data
row(s). We define a policy conversion function that analyses policy, integrating policy
definitions through SQL. Fig. 7.6 shows the relationships between the structures storing
policy rules.

policy_id
credential

Credentials

policy_id
credential

Credentials

policy_id
condition

Mon_Conditions

policy_id
condition

Mon_ConditionsPolicy_Rule

policy_id
…

Policy_Rule

policy_id
…

policy_id
name
type

Permission_Atts

policy_id
name
type

Permission_Atts

Figure 7.6: The relations for storing IC policy rules.

Each policy has a unique name that acts as a key for identifying the rule in the re-
lations. Naming constraints are enforced by relational integrity. Policy tables are au-
dited by triggers, providing information as to the policy author, time and details of the
change (§10.1.6).

Predicates must be uniquely identifiable in order to be monitored. For this reason we
restrict monitored conditions and credentials to be fluents. The monitored conditions
and each credential predicate for a rule are stored in associative tables, as shown in
Fig. 7.6. This allows the evaluation engine to easily identify the predicates that require
monitoring.

The policy conversion function ensures that rule predicates conform to database schemata.
Validation occurs through use of PostgreSQL’s query planner. This level of validation con-

96 Chapter 7. Integration into PostgreSQL-PS

cerns the last step in the authoring process, working as a protective mechanism. In prac-
tice, authoring applications should provide more stringent validation before transmission
to brokers.

Policy authoring processes must be tightly controlled: certain clients are restricted to
specifying certain types of policies. Basic control can be allocated through the database’s
ACL pertaining to the tables defined for the policy types. However, if policy definitions are
encapsulated in events, IC mechanisms can be used to control policy authoring processes.
Rules authorising advertisements can define those who may produce policy definition
events. Imposed conditions can filter such events, preventing certain policy definitions
from being processed, e.g. restricting the event types for which a user can define policy.
Transformations can also be useful, to ensure that policy is properly defined, e.g. to ensure
that patient defined restrictions apply only to events pertaining to them. Policy arriving
through links (remote brokers) might be subjected to more rigorous controls. Issues of
policy sharing are discussed in Ch. 8.

7.4.3 Conflict Definition

In Ch. 6 we described how policy conflicts can be resolved at runtime, through the def-
inition of conflicts and the appropriate resolutions. The entity-relationship diagram for
the storage of conflict resolution definitions is presented in Fig. 7.7. Conflicts are defined
with reference to policy names. Overriding and ordering constraints are stored in a table
consisting of two policy identifiers and a note attribute that describes the conflict. For
reasons of visibility, they are defined in separate tables. Incompatible policy definitions
are stored in a table with the count of policies involved in the incompatibility, which are
connected to policies by an associative table. A join considering the count determines
whether an incompatibility rule applies.

incompat_id
policy_id

incompat_assign

incompat_id
policy_id

incompat_assign

incompat_id
count
note

Incompatible

incompat_id
count
note

Incompatible

order_id
apply_before
apply_after

note

Ordering

order_id
apply_before
apply_after

note

Ordering
Policy_Rule

policy_id
…

Policy_Rule

policy_id
…

override_id
overrider
overridden

note

Override

override_id
overrider
overridden

note

Override

Figure 7.7: The relations for conflict definitions.

7.5 Layer Interactions: Hook Rules

The pub/sub and data control layers co-operate to provide IC functionality. The two
layers interact through hook rules: active rules defined to apply at particular stages of
the pub/sub process. The data control layer uses a hook rule as a callback mechanism,
defining rules so that the pub/sub layer executes a function (in the data control layer) to
effect some data control operation. Relevant data and state is passed to a hook function,

7.5. Layer Interactions: Hook Rules 97

which the function (possibly) alters in some respect. Hook rules can be defined with
conditions to refine the circumstances in which they apply. Fig. 7.8 provides an overview
of hook rule functionality.

Hook rules are implemented in a similar manner to PostgreSQL triggers, in which values
are ‘injected’ into the execution space of the function. This enables hook functions to
access and alter the content of an event or request. All hook rules can be considered
transformation functions:5 a tuple is passed to a function in the data control layer, the
result (output) of which is returned to the pub/sub layer on which processing continues.

Rule Type Input/Output Purpose

LINK VALIDATOR Connection Details Validates and authorises a link and establishes
advertisement forwarding restrictions.

REQUEST VALIDATOR Request Instance Validates and processes the incoming request.
LINK ADVERTISEMENT PROCESSOR Advertisement Details Executed when an advertisement is received

through a link. Establishes subscription for-
warding restrictions.

REQUEST TRANSFORMATION Request Instance Modifies the request for delivery to a specific
broker.

RESOLVE TRANSFORMATIONS Applicable Rules Resolves any conflicts between applicable
transformations.

EVENT TRANSFORMATION Event Instance Executes the transformation function on the
event instance.

Figure 7.8: Hook rule types and their associated description.

Hook rules are used to enable the data control layer to exercise control over certain points
of the pub/sub process. As such, the enforcement points of the hook rules, as illustrated
in Fig. 7.9, map to the policy enforcement points described in Ch. 5. Transformation hook
rules are defined per client, applying to all relevant event channels (of the given type) for
their connection.6 See Appx. D for hook rule syntax and operational details.

Resolve
(publication)

 Event Transformation
(publication)

Subscription
Type Match

Resolve
(notification)

 Event Transformation
(notification)

Request
Validator

 Request
Transformation

Event Event

RequestRequest

 Link Validator

AckBroker
Connect

Link Advertisement
Processor

Figure 7.9: Hook rule enforcement points.

5For consistency, we continue to use the term transformation to refer to the policy mechanisms that
alter event and request tuples, as described in Ch. 5.

6Remember that a client maintains a single connection with a broker, whereas an event channel is
a logical channel defined within a connection concerning the unidirectional flow of a particular event
type (§4.3.1).

98 Chapter 7. Integration into PostgreSQL-PS

7.6 Request Processing

A broker processing a request undertakes the following operations:

1. Deserialisation

2. Request validation and channel establishment

3. Propagation to other brokers

The following sections describe the processes of each in detail.

7.6.1 Deserialisation

Requests are issued in the form of an XML message. A broker that receives a request
deserialises this message into the relevant request tuple: advertisement or subscription,
the structure of which is presented in §7.2. Each successfully deserialised request is added
to a processing queue and assigned a unique request ID.

7.6.2 Validation

Requests are validated at two levels: at the pub/sub level to ensure that a request conforms
with the relevant schemata, and at the data control layer, which checks the request against
IC rules.

The procedure of validating a request is previously described (§5.5.1). Fig. 7.10 presents
a similar sequence diagram that details interactions between system components.

Publish/Subscribe Layer Validation

The initial validation phase is inherited from PostgreSQL-PS. A transaction is started
and a request is removed from the request queue. If the request is a subscription, a filter
plan is created. This ensures that the filter predicates are of the correct syntax, and that
the user has sufficient privileges to evaluate the predicates.

Upon successful validation by the pub/sub layer, the request validator hook fires, executing
the function to validate the request with respect to IC policy.

Data-control Layer Validation

The process is initiated by the execution of the validation function through the request
validator hook rule. The function is passed the request tuple in order to validate, anal-
yse and manipulate the request, and effect the appropriate restrictions. This validation
function has the following responsibilities:

Authorise Channel Establishment Evaluates the predicates of request authorisation
policy rules to determine, after conflict resolution, whether the request is authorised
in the circumstances. If no rules are found to authorise the request, the request is
denied; though the (negative) acknowledgement message can suggest the inclusion of
particular permission attribute values. The decision is recorded in the authorised

attribute of the request tuple.

7.6. Request Processing 99



































































 




































Figure 7.10: Sequence diagram for the request validation process.

Determine Imposed Conditions Evaluates the predicates of imposed policy rules to
determine, after conflict resolution, the filters applicable to the event channel. If
multiple rules apply, the restrictions are conjoined (ANDed) with each other, along
with any permission attribute filters. This filter is stored in the impconds attribute
of the request tuple.

Effect Transformation Policy Evaluates the predicates of event transformation rules
to determine whether any transformations apply for the requested event type. An
event transformation hook rule is created for each applicable rule. Conflict resolution
does not occur at this stage, as transformation conflicts are resolved and applied in
response to an event instance.

Implement Monitoring Calls the relevant monitor functions, passing the request ID,
to trigger request re-evaluation when appropriate.

100 Chapter 7. Integration into PostgreSQL-PS

Provide Feedback Produces feedback relevant for the acknowledgement, e.g. to suggest
retrying the request with particular permission attributes, or to inform that there
are restrictions imposed on the request channel.

The validator function returns the request tuple, which the pub/sub layer uses to deny
the event channel, or establish the event channel with the relevant filters, before sending
the appropriate acknowledgement. As this process occurs within a single transaction, the
channel and associated restrictions are constructed atomically.

7.7 Request Propagation

Validated requests are propagated to other brokers, through links, in accordance with
request forwarding restrictions. This section describes the specifics of routing operations.

7.7.1 Routing Table Extensions

IC introduces rules to control request propagation. To effect this routing functionality, it
is necessary to modify the routing catalogues of PostgreSQL-PS. The updated catalogues
are presented in Fig. 7.11.

The main modifications concern the advertisement catalogue, which is split into two:
Advertisements In and Advertisements Out. The Advertisements In catalogue records in-
formation of advertisements received. The principal issuing the request is stored in the
from attribute and the ID assigned to the request is recorded in reqid. The islink

attribute records whether the advertisement was received through a link. This is used to
ensure that subscriptions are only forwarded to other brokers. The pubfilter attribute
records the filters imposed on published (incoming) event instances through the adver-
tisement channel. Any filter on forwarding subscription requests (to brokers) is recorded
in subfilter.

The Advertisements Out catalogue records the advertisement requests propagated to each
remote broker, whose ID is stored in the to field. The issuedby array is used to record
the (locally) active channels that caused the request to be forwarded. An array is used
to manage the propagation of an advertisement request, i.e. to avoid the transmission of
duplicates. The ackid attribute records the ID assigned by the remote broker to the event
(publication) channel. This is returned with the acknowledgement message to facilitate
channel closure. The Subscriptions catalogue is also modified to record the request ID
assigned to the event channel by the remote broker.

pubfilter reqidsubfilterislinkfromeventtype

Advertisements_In

pubfilter reqidsubfilterislinkfromeventtype

Advertisements_In

ackidissuedby[reqid]toeventtype

Advertisements_Out

ackidissuedby[reqid]toeventtype

Advertisements_Out

to[(broker, ackid)]fromfiltereventtypereqid

Subscriptions

to[(broker, ackid)]fromfiltereventtypereqid

Subscriptions

advfilterauthorisingpolbrokernameconnid

Links

advfilterauthorisingpolbrokernameconnid

Links

Figure 7.11: Structure of the IC routing catalogues.

The Links catalogue was extended to account for contextual link definitions. The attribute
authorisingpol records the identifier of the authorisation policy allowing the connection.
The inclusion of the advfilter allows filters to be defined on advertisement requests.

7.7. Request Propagation 101

This filter is stored with link information because advertisements are not transmitted in
response to a request.

7.7.2 Link Establishment

A broker attempts to create a link by connecting to the remote broker.7 At this point,
both brokers execute the link validator hook to authorise the establishment of the link.8

The process of validation involves determining the credentials of the remote broker, then
searching the policy store for any applicable link authorisation rules. Any (defined) con-
flicts between the rules are resolved, where the first authorisation rule in the applicable
set authorises the link. For safety, monitor functions watch the broker’s credential alloca-
tions, though as brokers form part of a domain’s infrastructure, we expect these to change
infrequently. If no authorisation rules apply, the link is denied.

If the link is authorised, the relevant advertisement restrictions are established—as de-
scribed in §7.7.3—and the function returns the ID of the link authorisation rule permitting
the link. The pub/sub layer then sends an acknowledgement to the remote broker. Both
brokers must authorise the link for it to be established. If authorised, brokers update
their routing tables by forwarding, subject to any restrictions, the advertisement and
subscription requests relating to the active event channels.

Conflict resolution is important to link establishment, as there are likely to exist general
policies, e.g. those covering all registered surgeries, as well as broker-specific policies, e.g.
those applying to specific surgeries. Resolution definitions enable the most relevant policy
to apply.

7.7.3 Loading Forwarding Restrictions

In order to describe the process of enforcing forwarding restrictions, we first describe the
mechanisms for loading/activating restriction policy.

Advertisement Restrictions

Advertisement restrictions are loaded by the link validation hook function, which fires
when brokers interconnect. Advertisement restrictions for the remote broker are estab-
lished on connection, as unlike subscriptions, advertisements are sent without a prior
request. The policy store is queried to determine any relevant (after resolution) condi-
tions imposed on forwarding advertisements to the remote broker. These are stored in the
advfilter attribute of the Links catalogue. The CanSubscribe(brokername,eventtype)
fluent is initialised and its status monitored, operating as an additional filter to ensure
that advertisements are only forwarded to brokers with the propensity to subscribe to
the event type. The relevant advertisement request transformation hook rules are then
created for the link and particular event types.

Subscription Restrictions

A valid advertisement request establishes a publication channel, which is reflected in
the Advertisements In catalogue. If the advertisement is received through a link, i.e. is

7Connections for clients and links occur on different ports.
8Both brokers execute their respective versions of this hook as a) links create a bi-directional con-

duit for the establishment of event channels, and b) the hook function facilitates the establishment of
advertisement forwarding restrictions.

102 Chapter 7. Integration into PostgreSQL-PS

forwarded through a broker, the link advertisement processor hook executes a function
to establish any subscription forwarding restrictions relevant to the advertisement. The
function creates a subscription request transformation hook for the link, if one is defined for
the link and event type. It also generates a filter from any imposed conditions applicable
to subscription requests for the broker and the event type. This filter is recorded in
the subfilter property of the Advertisements In catalogue, before the advertisement is
forwarded.

7.7.4 Request Forwarding

Only authorised requests, which result in the establishment of an event channel, are
forwarded to remote brokers. We now describe the forwarding of the requests by type:

Advertisements

The process of forwarding a validated advertisement to a connected broker is as follows.
First, the advertisement request transformation hook rule, if defined for the remote broker
and event type, is executed. The resulting (or original) request is then validated against
the advertisement filter for that link. If the filter is satisfied, the Advertisement Out cat-
alogue is examined to determine whether the advertisement should be propagated. If the
remote broker has already received an advertisement for the request type, the request ID
is appended to the issuedby array. This assists in request revocation. Otherwise, the
advertisement request is transmitted to the remote broker. If the remote broker accepts
the request (by establishing an event channel—§7.6), a row is added to the Advertise-
ment Out table, recording the local request ID in the issuedby array and the request ID
assigned by the remote broker, via acknowledgement, in ackid. At this stage, advertise-
ment processing is complete.

Fig. 7.12 provides an example illustrating the advertisement forwarding process, where
the advertisement request issued by C1, after transformation, satisfies the forwarding fil-
ters specified for each broker. The advertisement is not forwarded to B2, as it has already
received an advertisement for the event type sr; instead, the request ID is recorded in the
issuedby attribute. As B1 has not previously received an advertisement for sr, due to
an advertisement filter preventing B1 from receiving requests issued by C99, the adver-
tisement request is forwarded B1. B1 accepts the advertisement, whose acknowledgement
is recorded in the ackid field.

B1

Valid Advertisement

reqid-77891

advertise
ment

Ack-reqid-9162

B2
Advertisement

Validation
Process

advertisement (sr)

c1

B1

B2

pubfilter

33211nc99sr

reqidsubfilterislinkfromeventtype

77891nc1sr

Advertisements_In

pubfilter

33211nc99sr

reqidsubfilterislinkfromeventtype

77891nc1sr

Advertisements_In

ackidissuedby[reqid]toeventtype

4551[33211, 77891]B2sr

9162[77891]B1sr

Advertisements_Out

ackidissuedby[reqid]toeventtype

4551[33211, 77891]B2sr

9162[77891]B1sr

Advertisements_Out

Figure 7.12: An illustration of advertisement forwarding.

7.7. Request Propagation 103

Subscriptions

Once a subscription is validated its details are recorded in the Subscription catalogue.
It must then be forwarded to brokers advertising the particular type, subject to any
forwarding restrictions established as part of advertisement processing.9

The forwarding process begins by querying the Advertisements In catalogue for remote
brokers serving the event type. For each link, (a copy of) the subscription is subjected to
the relevant subscription request transformation hook (if one is defined) before validation
against the subscription filter (subfilter) imposed on the link. If the request satisfies
the filter, it is forwarded to the remote broker. The remote broker may accept or deny a
request (§7.6). If accepted, the request ID returned as part of the acknowledgement along
with the remote broker ID is persisted in the to array of the Subscription catalogue. If a
request is denied by the broker, the catalogue does not change.

Fig. 7.13 illustrates the process of subscription forwarding. Here the client C2 and the
brokers B1 and B3 are advertising the event type sr. The subscription request, after
being established in the local broker, is then considered for forwarding. The request, after
the application of B1’s subscription request transformation hook, matches the subscrip-
tion filter (subfilter) defined for the link and thus is delivered to B1. However, the
subscription, after the transformation, is not transmitted to B3. This is because B3 is
not involved in the care of the patient, and thus request fails to satisfy the subfilter

associated with B3’s advertisement.

B1

Valid Subscription

Reqid=871

B1

subscription(sr)’

Ack-reqid-9981

Subscription
Validation

Process

subscription (sr)

c1

 Check
Adv_In

B3

B3

to[(broker, ackid)]fromfilterevent_typereqid

[(B1, 9006) , (B3,422)]C42ev.patient_id = NHS_1234
AND sr.rate>65

sr860

[(B1, 9981)]C1ev.patient_id = NHS_44912sr871

Subscriptions

to[(broker, ackid)]fromfilterevent_typereqid

[(B1, 9006) , (B3,422)]C42ev.patient_id = NHS_1234
AND sr.rate>65

sr860

[(B1, 9981)]C1ev.patient_id = NHS_44912sr871

Subscriptions

901sr.rate>5c2sr

88123treats(att.patient_id,B3)B3sr

71treats(att.patient_id,B1)B1sr

reqidsubfilterpubfilterfromevent_type

Advertisements_In

901sr.rate>5c2sr

88123treats(att.patient_id,B3)B3sr

71treats(att.patient_id,B1)B1sr

reqidsubfilterpubfilterfromevent_type

Advertisements_In

c2

Figure 7.13: An illustration of the subscription forwarding process.

Forwarding: Imposed Conditions

As part of the authorisation process, conditions may be imposed on an event channel to
filter the flow of events. Although imposed filters are applied in conjunction with the filter
specified in the request, the imposed conditions are not forwarded to remote brokers: they
do not flow with the request. This is because imposed conditions are defined to control the
flow of events between the requestor and the broker, with reference to local conditions.10

9Note that on receipt of a new advertisement, the requests pertaining to the active subscription
channels must be forwarded to initialise the routing tables. The forwarding process is the same.

10The predicates of a request can be modified through a request transformation rule.

104 Chapter 7. Integration into PostgreSQL-PS

Revocation

On the closure of an event channel, either at the request of a client/broker or due to
re-evaluation, the routing tables of local and remote brokers must be updated. If a sub-
scription channel is closed, the relevant row in the Subscription catalogue is determined.
Each remote broker is issued a revocation message for the request ID, as determined by
the to array. The subscription is then removed from the catalogue.

The revocation of an advertisement involves removing its entry from the Advertisement In
catalogue. The Advertisement Out catalogue is updated, where the request ID is removed
from all issuedby rows in which it appears. If this renders the array empty for a particular
row, the broker is sent a revocation for the appropriate request ID. The row is then
removed from the Advertisement Out catalogue.

7.7.5 Re-Evaluation

Request re-evaluation is triggered by some change in context. Active rules monitor the
values of particular fluents, calling the appropriate re-evaluation function when certain
conditions occur.

Link Re-Evaluation

Active rules are created by the link validation function to monitor the credentials of a
remote broker. Should the credentials change, the link validator hook is re-executed,
where any changes in restrictions are effected. If the link is no longer authorised, the
requests for all active channels are revoked and the link closed.

Request Re-Evaluation

As part of establishing the event channel, monitor functions are used to associate a request
with the value of a fluent. These functions trigger the request re-evaluation function when
a value changes. The request ID is passed as a parameter to reconstruct and re-evaluate
the original request tuple through the same validation function described in §7.6.2. This
validates a request against authorisation rules, establishing any restrictions relevant to
the request in the current context. Rules effecting restrictions and monitored conditions
are removed where no longer relevant.

Re-Forwarding Requests

If a request tuple changes as part of re-evaluation, it may be necessary to update routing
tables and inform remote brokers (§5.6.3). This process involves querying the catalogue
for an existing entry representing the request for that link; if one exists, a revocation
is issued. The updated request is then forwarded (if appropriate), and catalogues are
updated according to the procedures previously described.

It is also necessary to forward requests pertaining to active event channels. For instance,
all appropriate requests (per event type) for active subscriptions must be forwarded when a
new advertisement is received or a new subscription authorisation policy is defined, and all
appropriate advertisements must be forwarded to a newly connected broker. Forwarding
involves transmitting the serialised request tuples for the active event channels in the
manner previously described.

7.8. Event Processing 105

7.8 Event Processing

We have just described the details of request processing and the establishment of event
channels. This section describes how policies are enforced for particular event instances,
as they flow through event channels. Previously in Fig. 5.5 we presented the stages of
policy enforcement as an event moves through a broker; here we detail this process. Again,
enforcement is the same regardless of whether the publisher or recipient is a broker or
general client.

The procedure for processing an event instance is as follows:

• Ensure the event complies with any publication filters

• Apply publication transformations

• Match resulting events against active subscriptions (by type)

• Apply notification transformations

• Deliver events if they match the subscription and restriction filters

7.8.1 Transactional Event Processing

We begin by describing the use of transactions and queues as part of the messaging
process. An event on a queue signifies the completion of a particular stage of processing.
Transactions are used to ensure integrity; the failure of a transaction allows recovery
operations to take place. Queues and transactions are interrelated: events are added to
queues within a transaction to ensure persistence; the addition of an event to a queue
triggers processing, which involves the creation of new transactions; and, failure/recovery
operations involve moving events between queues.

Section 4.3.3 describes how PostgreSQL-PS uses queues to manage event delivery. Pro-
cessing begins when an event is received and added to the in queue. Events are matched
against all active subscriptions, after which the event is placed on the out queue for deliv-
ery to each matched subscription. Once processing is complete, the event is removed from
the in queue. Any failure in executing a function on an event instance for an internal
subscription involves moving the event to the exception queue.

In PostgreSQL-PS, the input events are the same as the ones delivered. IC, however,
introduces transformation rules, which raises additional considerations. Transformation
functions produce new/modified events. This means that there is not necessarily a one-
to-one mapping between the input event instance and the one delivered. In terms of
reliability, merely adding an event that has already been internally validated to a queue
has a relatively small scope for error, compared to IC, which involves executing user-
defined functions for transformation and conflict resolution operations at various stages
of the messaging process. As such, the queue management operations are changed to that
described in Fig. 7.14.

To deal with this, we introduce a match queue, which operates as an intermediate queue
before the application of notification hooks and filters. This queue stores a copy of the

106 Chapter 7. Integration into PostgreSQL-PS

For each event on queue1
Begin Transaction:

Remove event from queue1
Determine applicable transformation rules
Resolve conflicts between rules
For each (resolved) transformation:

Execute transformation function
Place result on queue2

End Transaction

On Transaction End:
If Error:

Rollback transaction
Copy event to exception_queue1
Remove event from queue1

Figure 7.14: Pseudocode for queue management. queue1 and queue2 are the in and
match queues for the publication stage, and the match and out queues for the delivery

stage. The transformation rules are those relevant to the stage in the messaging process.

event instance, the output of a transformation hook,11 for each active subscription to the
event’s type.

The match queue stores events for propagation to each connection, which as shown by
Fig. 7.15, are added to the queue after the execution of each publication transformation.
This queue acts as a marker denoting that publication processing is complete—that the
event is ready for delivery to the particular subscriber. Once all applicable publication
transformations are executed, the event is removed from the in queue and the transaction
is committed.

e

in

e
b

match

(b, C1)

(b, C3)

(e, C14)

(e, C2)
 e

b b’

out (b)

(b’, C1)

b

e (e, C14)

e e’

out (e)

(e’, C2)

subscription filtertransformation transaction

Figure 7.15: The transactions involved in processing a publication.

Each entry (event and connection-id) in the match queue is processed in its own transac-
tion. This ensures that any failure in the execution of notification transformations and
application of filters for a subscriber does not affect delivery to others. Events are moved

11This can be the original event instance, if no transformation function is defined or if the transforma-
tions do not consume the original (input) event.

7.8. Event Processing 107

to the out queue for delivery. After successful delivery, an event is removed from the
queue. Note that PostgreSQL-PS simply ignores subscriptions where the filter fails. In
IC, we force matching operations to occur within transactions, in case a filter fails or its
evaluation impacts on state.12 Further, each processing queue (for each type) is defined
with a dedicated exception queue, to enable analysis and reprocessing of an event from
the particular point of failure (see §10.1.3).

Our approach allows recovery operations to be focused on the particular event and phase
of the messaging process. A failed publication can be retried by replaying the event from
the stage in which processing failed without affecting delivery to other connections. Storing
events on the out queue in separate transactions, without a match queue, complicates the
recovery process if some subscribers receive the event before the failure occurs.

A transformation function changes the semantic of an event instance. It follows that in
a channel, multiple transformations applicable to an event instance may, in some way, be
related. This is evident from the need for conflict resolution mechanisms. In Ch. 9 we
present a case study concerning prescriptions involving publication transformations, where
a drug audit event should not be created if the transformation creating the prescription
event fails. Notification processes are subscriber-specific, concerning the delivery of an
event instance to a particular subscriber. Our approach binds together related operations
for a particular event instance into the same transaction, where failures are recorded in
dedicated exception queues. The goal is to ensure that semantically related operations—
those that affect an event instance in the same channel at the same enforcement point—
apply and fail together. This renders failures visible, and aids recovery processes.

7.8.2 Publication Processing

The publication aspects of the messaging process concern the input (receipt) of an event
by a broker, and its removal from the in queue. The process is summarised as follows:

• Receive and deserialise the message

• Validate it against the advertisement/filters

• Perform publication transformations

• Place events on the relevant match queue for notification processing

After the receipt and deserialisation of an event message into a tuple, the event instance
is compared with the Advertisement In catalogue. An event instance is only accepted for
processing if it arrives on a channel for which there is a defined advertisement, and if
the event satisfies any filter (pubfilter) imposed on that channel. If the event instance
does not conform, it is denied;13 otherwise the event is placed on the in queue. This
functionality occurs within a single transaction.

12Transactions protect only local (database) state. Operations outside of the database, e.g. calls to
external services, must be manually rolled-back (if required) in the case of exception. See [Var09] for
details of distributed pub/sub transactions.

13A failure at this stage occurs before the event enters the in queue. Such failures are recorded by
auditing processes (Ch. 10).

108 Chapter 7. Integration into PostgreSQL-PS

Event processing begins by starting a transaction and dequeueing an event from the in

queue. The applicable transformation functions, loaded as active hook rules for the con-
nection, are determined in the context of the current event instance. Conflicts are resolved
through the resolver hook function, which returns the applicable set of transformations.
Each function in the set is executed, in order, on a copy of the original event instance.
A copy of the resulting event instance is placed on the match queue: a single entry for
each connection maintaining one-or-more subscription channel(s) for the event type. The
incoming (original) event is also added to the queue, if it is not consumed by any ap-
plied transformation rule. At this point the transaction is committed, completing the
publication processing stage.

If there is some failure in the process, most likely due to an issue with a function or an un-
resolvable (cyclic/incompatible) policy set, the transaction fails. The transaction is rolled-
back and the incoming event instance is moved from the in queue to the exception in

queue, along with a description of the error.

7.8.3 Notification Processing

The notification stage concerns the movement of an event from the match queue for
delivery to the subscriber. The process is summarised as follows.

• Take an event from the match queue

• Perform the notification transformations

• Validate the results against the relevant subscription and restriction filters

• Serialise the events and deliver them to the subscriber

The process of event delivery is similar to that of the publication stage, but occurs in
reverse. A transaction is started as the next event in the match queue is removed for
processing and delivery. Each item in the queue is relevant for a specific connection.
In the same manner as for publications, the relevant notification transformations are
determined and applied. Transformation hooks are defined per recipient, so they are
executed once regardless of the number of subscription channels for the connection. Each
resulting instance is validated against the subscription filters and the imposed conditions
on each event channel (of the relevant type) for the connection. These are applied in
conjunction. If an instance satisfies the filter, it is moved from the match queue to the
event type’s out queue; there is at most one out queue entry for each event instance
per connection. After comparison of all event instances, the transaction commits. The
process repeats for subsequent items in the match queue.

Again if processing fails, the transaction is rolled-back and the event is removed from the
match queue and placed in the exception match queue for the type, along with details
of the failure.

Events on the out queue are serialised and delivered to the subscribers. If the subscription
is internal, the subscribing function is executed inside a transaction. An event is removed
from the out queue when a receiver acknowledges receipt of the event, or the internal
subscription function is successfully executed.

7.9. Summary 109

Type Transformations on Notification

If a notification transformation produces an event of a different type, it should be deliv-
ered subject to any relevant restrictions pertaining to the recipient and type. If delivery
channels exist for the subscriber and the output type, the event is validated against those
filters and placed on the corresponding out queue. If not, the transaction fails and the
event is moved into the exception match queue. This situation highlights the issues
concerning type transformations on notification. If no delivery channel exists, it may
be possible to establish one on demand through analysing the authorisation rules. This
would involve determining whether any request authorisation rule for the new type can
be satisfied given the information of the current request. If so, the channel could be tem-
porarily established, subject to any imposed conditions relevant to the channel. However,
as we do not advocate the use of type transformations at the notification stage (Appx. A),
this was not explored in our implementation.

7.9 Summary

IC is integrated as a layer of control above an integrated database-pub/sub broker. This
layer exploits and extends database functionality to implement broker-level control of
information flows. Database languages, functions and active rules all facilitate the rep-
resentation and monitoring of context. Hook rules are active rules that are sensitive to
message processing operations, enabling the installation of controls at specific parts of a
pub/sub service. These are used by the data control layer to effect IC functionality. This
chapter demonstrates the feasibility and design decisions of realising an IC implementa-
tion.

8
Healthcare Integration Summary

The previous chapters describe the details of Interaction Control, a method for context-
sensitive data disclosure control within pub/sub networks. This chapter revisits the in-
formation requirements of healthcare presented in Chapter 2 with reference to IC. We
summarise its key features and reiterate the justifications previously presented for the
model in supporting health processes, describing its place in an environment of federated
control.

8.1 Healthcare Collaboration

Modern healthcare is becoming increasingly collaborative. As care moves to a preventative
model, which involves the provision of remote and/or ongoing care, a greater number of
care providers are becoming involved in primary and secondary health services. Each
has specific information requirements relating to the service they provide, which can
vary depending on the circumstances. Health infrastructure must support controlled
information sharing to enable entities to perform their tasks as part of the care process.

Modern healthcare is highly data-driven. From a communication standpoint, both acute
and preventative care models are reactive in that actions are taken in response to incidents.
Patient monitoring is considered to be an integral part of future healthcare [EC08], where
information must flow to various parties to alert of anomalous situations, inform of actions,
update workflow processes, provide patient feedback, and for secondary uses such as
auditing, billing and research. The technical infrastructure must enable entities to access
the information required to perform their duties, so that they may react and respond to
events as they occur, regardless of the severity of the health incident.

A push-based dissemination model is important for healthcare as it ensures that those
providing care services are kept aware of the current situation. Patient monitoring in an
assisted living situation highlights the need for an event-based infrastructure: to inform
and alert of particular incidents as they occur, enabling an appropriate response.

110

8.2. Data Sensitivity 111

IC is a model for controlling the dissemination of information. It is built on pub/sub,
which is shown to be an efficient, scalable mechanism for event delivery [BV06, CRW01,
EFGK03]. Consumers are able to specify their interests in receiving particular informa-
tion. Clients are not burdened with addressing specifics, as delivery details are left to
the middleware. This decoupling of information producers and consumers is suitable for
healthcare, where many clients, applications and systems interact.

Database technology is already commonplace in the NHS; IC integrates into database
systems. The coupling of messaging and storage substrates facilitates data replication.
Information stores can subscribe to events as they occur in other environments. This
enables information stores to maintain an up-to-date representation of state, which can
be directly forwarded to local subscribers, and/or accessed through subsequent queries.
An event might pertain to a patient, or represent some other aspect of context that may
affect data control decisions, such as a staff member ending their shift. Such functionality
is required to support an environment of federated data and policy.

Interoperability

This dissertation describes IC in the context of data protection. However, transformation
rules also assist replication [SBS08, Fie04, CABB04], enabling interoperability between
the databases of health service domains—including those proposed by the NPfIT. Trans-
formations may involve the conversion of attribute values to different scales/measures,
the addition or removal of data, and/or the production of another event in a format ap-
plicable for the remote system. Without transformation capabilities, the burden lies with
producers to publish information in a manner appropriate for each possible recipient.

8.2 Data Sensitivity

Healthcare information is sensitive. Those who use and hold personal information are
legally and ethically responsible for maintaining its confidentiality. Legislative acts and
codes of practice acknowledge the need for sharing health information (§2.3), providing
guidelines to assist in formulating sound sharing policy. The primary driver is patient
consent, which may be explicit, implied, or in exceptional circumstances, irrelevant.

We have described the paradox between sharing personal health information and pro-
tecting its confidentiality. To balance this, information is best shared according to the
need-to-know principle [NHS02]: concerning what information must be shared in the par-
ticular set of circumstances. Communication infrastructure supporting healthcare must
allow those responsible for information to meet their data management obligations. IC
targets this by allowing fine-grained control over the circumstances for data disclosure.

Typically, pub/sub concerns open communication in an anonymous environment. How-
ever, disclosure must be controlled when information is sensitive. The encryption and
liberal distribution of information (at the broker-level e.g. [PEB07a]) for healthcare is
inappropriate as data is perpetually sensitive.1 Aside from issues of key-management, a
compromised key, or a failure in an encryption algorithm at any time in the future can
reveal sensitive information [BESP08, BES+09].

1We have mentioned that encryption plays a role at a lower-level: we assume transport layer security.
Here, we are concerned with pub/sub security with regards to application(broker)-level routing.

112 Chapter 8. Healthcare Integration Summary

IC addresses these concerns by building control mechanisms into a broker. The premise
is that a broker should only release information as necessary in the particular circum-
stances. The goal is to enable those responsible to meet their data management obliga-
tions, through specification of broker-specific policy. IC brings four levels of control to a
pub/sub service:

1. Request authorisation rules govern the establishment of typed event channels. These
permit principals to deal with information of a particular semantic.

2. Imposed conditions act as a restriction, guarding certain event instances from being
transmitted or processed.

3. Transformation rules control event content, perhaps enriching or degrading an event
instance, or producing one of a different type. This enables precise control over the
information contained in an event instance.

4. Link establishment and request forwarding restrictions allow control over distributed
routing.

The NPfIT controls access to health information through RBAC, considering the relation-
ship between an entity and a patient record. However, such an approach is rigid; there
exists little scope for providers to customise access policy to suit the concerns of the local
environment. This runs against the broader NHS goal of local control [DoH09b]. IC is
context-aware, and thus provides greater flexibility by allowing granular control over the
content of an event and its circumstances for transmission. Rule definitions can account
for a number of concerns including consent preferences, patient state (e.g. emergency),
location of staff and patients, client credentials, and so forth.

The middleware enforcement of IC rules ensures client adherence to policy. This reduces
the potential for data loss due to error or negligence, as there are fewer policy definition
and enforcement points. Clients are not burdened with the policy specifics concerning
each patient, domain and recipient. Without IC, subscriptions must be partitioned along
the lines of different access control rights. This requires the producer to publish multiple
events pertaining to an incident, with varying levels of visibility. Apart from issues of
practicality, information producers must be trusted to be aware of, maintain, and keep
confidential the disclosure policy of domains and the consent preferences of patients.
IC rules are context sensitive. If disclosure policy is enforced by clients, each producer
requires knowledge of all interactions between context and event visibility, and must
have the ability to access all relevant contextual information. Clearly events cannot be
controlled with data outside the publisher’s view.

8.3 Broker Interactions

Brokers interconnect to form a distributed broker network, forwarding advertisement/
subscription requests to brokers, and event instances to brokers and other clients. IC
introduces data disclosure policy into a pub/sub broker. Decisions by a broker to dis-
close information are based on local policy and accessible state. In this way, each bro-
ker maintains local control over its information, enforcing policy as data moves to/from
directly-connected principals.

8.4. Domains and Responsibility 113

The difference between brokers and general clients is that brokers not only consume, but
also forward requests and events. From a policy enforcement perspective, a broker is
characterised as itself producing the forwarded request or publication. Policy is enforced
on requests or events received through a link, subject to the rules applicable to the re-
mote broker in the circumstances. In this way, clients and brokers are subject to similar
enforcement processes.

8.4 Domains and Responsibility

We have defined a domain as a unit, governed by independent administrative policy,
that provides particular services. In line with NHS notions of local control [DoH09b],
each domain operates with a degree of autonomy. As part of the care process, a domain
collects, stores and forwards information relevant to the service it provides. Each domain
must appropriately share information with principals in the local environment, and with
(principals from) other domains. It follows that a domain is responsible for protecting
personal information. With local responsibility comes accountability: health domains are
accountable, as they are subjected to auditing and monitoring procedures [DoH09c].

To meet this responsibility, health domains should specify an information sharing pro-
tocol defining the circumstances in which information is shared (§2.3.2).2 This policy
should be appropriate to the local environment, and should consider legal/ethical re-
sponsibilities, business practices, clinical processes, service contracts with other domains,
NHS directives, and of course, consent. Any general protocol must be qualified by any
patient-specific requests (consent).

8.4.1 Trust

Entities in the health service trust others to act appropriately with the information they
receive. However, this trust is not implicit nor absolute. Taking a pass-the-buck approach,
a domain meets its data responsibilities by passing information to a connected client
in accordance with (sound) local policy. Given the overarching legal requirements for
confidentiality, at this point the recipient becomes responsible for the information. That
is, the responsibility for data passes with its transmission.

Generally pub/sub security models consider trust with respect to the broker network. IC
assumes no broker-level trust, even between intra-domain brokers; instead, brokers enforce
local policy against all connections. Here, trust exists at a higher level. We assume that
a domain has control over, and therefore trusts, its (own) technical infrastructure. As
such, a domain implements policy to ensure that information leaves its trusted broker
network,3 transferred to principals in local or remote domains only when appropriate—in
line with the domain’s data management obligations. In this way, the policy of a domain
reflects its level of trust with other entities in the system.

2We do not imply that a domain and its clients (employees) are completely autonomous: employees
are involved in the administration of a domain, just as employees are bound to act in accordance with
domain practices.

3Trusted in the sense that infrastructure is under their direct control.

114 Chapter 8. Healthcare Integration Summary

8.4.2 Realising Domain Policy

A domain implements IC policy in its broker network to realise its information sharing
protocol. Policy need not, and often should not, be uniformly distributed amongst brokers
within a domain. Instead, policy is defined to control the flow of information as appro-
priate to the topology of the network, controlling disclosure within and between domains.
In addition, domain policy can also direct information flows to deal with system-level
concerns, such as data replication and load balancing.

8.5 Federation

A federated healthcare environment consists of numerous domains of local control, who
manage their own practices and procedure. That is, service providers define policy as
relevant to their local operation. There is much support for federated healthcare envi-
ronments, where domains hold local data, sharing it only when necessary, accounting
for consent and legislation [HMF04, ABD+09, LKHT09]. This is in line with the ex-
plicit NHS goal of affording health providers a greater degree of freedom to manage their
services [Dar08, DoH09b]. The arguments for federation pertain to the degree of data
aggregation and issues of responsibility and accountability, i.e. who controls the data and
associated policy, and the independence of the care provider. From a technical perspec-
tive, federated domains with cross-domain interaction form the natural architecture of
the health space [Moo01], bringing scalability and manageability through limiting policy
scope to that of the local environment.

Domains interconnect through links between local and external brokers. Domains formu-
late policies to enable sharing with others, taking account of particular information as
previously described. A domain’s policy is enforced by the brokers under its control.

As IC mechanisms are enforced at the broker-level, information flows can be controlled
regardless of the size of the domain. That is, IC is agnostic to a domain’s granularity, and
thus can regulate information flows in both highly federated or centralised environments.
Even in an extreme case where all information is stored in, and communicated through,
a centrally managed Information Service, an internal broker-network is necessary for
reasons of scalability. Fine-grained control mechanisms are still required to 1) control the
propagation of information throughout the internal network, and 2) manage disclosure to
entities with varying levels of privilege.

8.5.1 Point-to-Point Control

A key motivation for the use of a pub/sub middleware is that clients need-not have knowl-
edge of disclosure policy, nor that of every information source/sink. This is important
in healthcare—a large-scale environment of federated policy in which many thousands of
systems operate [Bre05].

IC essentially overlays a point-to-point security model over a distributed pub/sub service.
This supports information dissemination, in line with the overarching responsibility for
protecting information, as disclosure controls are granular, enforced at each connection.

There is no metadata, such as the credentials of the originating requestor and their ground-
ing domain, passed between brokers with forwarded requests/events. This is because a

8.5. Federation 115

broker is not qualified to make decisions regarding information flows pertaining to other
brokers, especially if the broker is grounded in another domain. For a broker to make
an informed decision concerning a request, it requires not only information of the re-
questor and the local processes, context and policies of its hosting broker, but also that
of each broker along the dissemination path. Clearly, such decisions cannot be made
at the broker-level without centralised policy definitions and a complete sharing of state.
This would bring issues of policy management and scalability, especially when considering
national-level services. It is more practicable for a domain to manage disclosure policy
concerning only its direct connections.

Enforcing policy only at the publisher hosting broker in the worst case causes a separate
version of an event to be routed for each subscription. This muddles notions of responsi-
bility and accountability: should an intermediate broker merely forward events, thereby
diminishing local control, or should it apply its own disclosure policy on top of that al-
ready applied by the publishing broker? Such an approach may not account for privacy
aspects concerning brokers along the routing path.4 Further, this runs against the general
pub/sub notion of routing a single event instance as far as possible.

The local enforcement of policy can in some circumstances lead to a Chinese-Whispers
type effect, where the content of an event or request changes as it moves through the
network. This is a natural side effect of local control, existing at both the broker and
domain level.

Each broker has policy controlling the information disclosed to connected principals, just
as a domain maintains an information sharing protocol to manage its data responsibilities
both within and across domains. A broker deals with particular information to support
specific operations of a domain. Similarly, at a higher level, a domain holds information for
a particular purpose, related to the care services it provides. As such, connections should
be formed with (or close to) the relevant broker/domain for the particular information
source,5 which may not necessarily be the same location as the original publisher.

Such an infrastructure occurs naturally, given there is some reason for authorising each
broker interconnection (link). That is, a connection exists between particular domains
and brokers to share specific information. A local domain operates autonomously, and
will maintain (relatively) persistent connections to the services most relevant to their
local environment, forming ad-hoc connections when required. Such a structure allows
scalability to the national level. Consider the example represented in Fig. 8.1. If a doctor
requires information from the hospital, this information should come from the hospital
itself. The Pathology Register requires information from firms that process biopsies—this
is obtained directly from the laboratory.

Point-to-point security is a product of (higher-level) trust between care domains. The
IC middleware is responsible for receiving a publication, transforming event content and
delivering information to subscribers in accordance with information disclosure policy of
each broker.

4These issues are similar to those raised in the vanilla-pub/sub implementation of the distributed
prescription scenario as described in Ch. 9, except that rather than the publisher, here the broker hosting
the publisher produces the multiple related event instances with varying levels of visibility.

5Note that this discussion concerns middleware, regarding broker interconnections. General clients
communicate through the broker(s) of the domain(s) in which they operate. Of course, clients should not
directly communicate, as to do so would circumvent the middleware and its protection mechanisms.

116 Chapter 8. Healthcare Integration Summary

Ward Records

Samples Register

Hospital

Surgery

Pathology
Register

Pathology Lab

Figure 8.1: Illustration of point-to-point policy enforcement.

8.5.2 Central Services

Although federated healthcare entails local control over data and procedures, those advo-
cating federated architectures acknowledge the need for centralised standards [HSH+09].
Some central services are also required to support national-level health processes. How-
ever, such services need not involve the complete centralisation of clinical data nor RBAC
privilege allocations (as per §2.5). Instead, we introduce such services to assist with
interoperability in a federated environment.

A health domain will frequently interact with other services. The number of domains
will be far fewer than the number of clients operating within the system. As described,
often the connections will be implicit, for example, existing through service contracts
with a particular provider in a particular geographic locale. Directory services can assist
in less-frequent interactions by directing connections to the appropriate domain(s). For
instance, each SHA might define a lookup service to point providers from other regions
towards the local provider(s) treating a patient. A domain can use this information to
establish a link with a provider in another SHA, before forwarding subscription requests.
This enables care for patients across the country.

Healthcare is not an environment of anonymous interaction. Identity plays an impor-
tant role in defining the targets of an IC rule. As such, we assume that domains will
register with some service to allow identification of a domain and its role in the health
process. Similar processes already exist in the NHS, where organisations involved in care
must register with the Care Quality Commission [DoH09b]. Clients must be registered
to communicate through the N3 Network, enabling the unique identification of principals
throughout the entire network. The Electronic Staff Record provides extra information
on employees, such as their grounding domain. A similar approach can be used to identify
brokers and their associated domains. Identity management need not be solely managed
through centralised services, it is possible that a (verified and trusted) domain can assert
some characteristics about a client for which they are responsible; for example, through
certificate chains (§3.4.1). IC provides only the enforcement mechanism, and thus is
agnostic to the method of credential management employed. By providing flexible mech-
anisms for representing context, we allow domains responsive dissemination control over
the information for which they are responsible.

8.6. Summary 117

Our work also assumes globally defined event types and fluents, to allow communication
between administrative domains. The NHS is already engaged in standardising definitions
and terminology [NHS09c]. Also required is a mechanism to identify patients across
domains. For this, the NHS is advocating the use of a global NHS Number [NHS08c].

8.5.3 Shared Policy

Although each domain maintains an information sharing protocol that is enforced by
its brokers, some policies will be relevant to multiple domains. This might be due to a
particular consent request, or perhaps some global NHS directive. Each domain, and thus
each (appropriate) broker, needs to internalise such policy for local enforcement. The
event infrastructure can be used to inform a domain of a particular restriction, where
policy is encapsulated in an event, consumed and implemented by brokers.

Patient requests are typically restrictive, confined to particular sets of circumstances. A
domain’s information sharing protocol, implemented in local brokers, provides general
protection that is qualified by any patient-specific restrictions. Such restrictions can be
addressed through filters (imposed conditions) that prevent certain events from propa-
gating. For example, a patient concerned about a particular staff member accessing their
information can impose conditions in the domains in which the staff member operates.
However, a data control restriction does not necessarily entail the definition of a new rule.
The sharing protocol itself will often directly consider patient consent. Consent pref-
erences can be generalised (e.g. opt-in/out), and thus can be encoded in (local/global)
fluent state (see §9.5). For instance, the Legitimate Relationship Service could preclude
the formation of an association between an employee and a patient, thereby encoding a
‘negative’ relationship.6 Another example concerns the Summary Care Record, which is
a central register of patient information updated by care providers, subject to patient
consent. This consent can be represented in a fluent, which policy rules reference to allow
or prevent data flow to the service.

Clearly, the best method of implementing a restriction is a question of design in the
particular circumstances.

8.6 Summary

Healthcare information is sensitive, but must be shared to afford proper care. Those
responsible for health information have a duty to protect it, sharing data on a need-to-
know basis. IC brings to the pub/sub paradigm context-sensitive control over the type
and content of the events transmitted. The approach is agnostic to the political concerns
of health infrastructure: rules effect data control regardless of the size of a domain. IC
seeks to provide the infrastructure to support federated healthcare, by facilitating data
replication and the active delivery of information in a controlled manner. This allows each
domain to meet their data management responsibilities, by giving fine-grained, context-
aware, local control over data dissemination. Local responsibility brings accountability,
mitigating the impacts of failure.

6The method for accessing such information must be carefully considered.

9
Case Studies

This chapter describes the application of IC mechanisms to healthcare scenarios. To
emphasise the benefits of middleware enforcement, we present the IC rules necessary for
restricting the data-flows of scenarios based on real-world requirements. We show that
while the enforcement of IC mechanisms entails extra processing, in addition to ensuring
compliance it can actually improve the overall performance of the messaging process.
Results are presented to acknowledge implementation concerns, highlighting the need for
careful consideration as to the manner in which data control policies are effected. We also
describe how the middleware enforcement of policy facilitates policy evolution.

9.1 Prescribing Scenario

To test the expressiveness of our model in managing health information, we consulted
nursing manuals, medical codes of practice and legislation, adapting the requirements to
a home healthcare environment. In this scenario, we focus on data management aspects
regarding the administration of prescriptions.

A key aspect of homecare is pain management. Care in the home tends to concern pal-
liative care, which involves support of an ongoing, perhaps terminal condition; or that of
post-operative care, which often involves pain and wound/infection management [McN00].
In these scenarios, typical medications include painkillers, or antibiotics. Generally, nurses
are authorised to prescribe a licenced medicine for any condition within their compe-
tence [DoH07c]. In specific cases, including those of acute post-operative pain and pal-
liative care, a nurse may prescribe certain controlled drugs, such as morphine derivatives.
Controlled drugs have strict requirements, both in form and handling [RPS07], where
designated entities are responsible for monitoring their supply [UK 06]. This monitoring
focuses on the suppliers/prescribers—the audit process should, where possible, maintain
patient confidentiality [UK 06].

118

9.1. Prescribing Scenario 119

9.1.1 Adaptation to Homecare

Home
Nurse

Doctor

 Electronic
Prescription
Service (EPS)

Auditor

Patient Treatment

D
ru

g
R

eco
rd

Prescrip
tio

n

Figure 9.1: The providers interested in prescription information

A nurse caring for a patient at home might prescribe a drug. This involves recording
information such as symptoms, patient complaints and observations, in addition to infor-
mation regarding the drug and dosage. The act of prescription bears a significance that
depends on the role of the provider. Firstly, the doctor responsible for a patient requires
all information regarding the treatment process, including notes, observations and the rea-
sons for the medication. This is relevant for the ongoing care of the patient. A pharmacist
requires a valid prescription in order to legally dispense drugs. This includes information
of the patient’s personal details, the prescriber and drug information, but does not include
information from the medical record, such as symptoms or observations [JBP05].1 The
auditor requires general information regarding the supply of controlled drugs; however,
greater detail may be required for investigations, particularly when such matters pertain
to public health and safety [UK 06].

9.1.2 Data Flows and Policy

Here we identify three domains that interact as part of the prescribing scenario:2 1) the
surgery directly responsible for the care of the patient, 2) the Electronic Prescription Ser-
vice (EPS) that is involved in the dispensing of medication, and 3) the auditor, responsible
for monitoring the supply of controlled drugs for the particular surgery. The high level
information flows between these entities are represented in Fig. 9.2.

There are two clients in this scenario: the homecare nurse and the patient’s physician
(doctor), both grounded (holding credentials) in the surgery domain. We model this
scenario so that the surgery releases data to other principals, because it is the domain
directly responsible for the care of the patient. The nurse, whilst caring for the patient
at home, may decide to prescribe medication—perhaps a controlled drug if the situation
warrants. This involves the nurse publishing (e.g. through a smartphone) a prescribe

event, which includes information about the drug, dosage, symptoms, notes and observa-
tions. The doctor responsible for a patient may request to be notified, via a subscription,
when drugs are prescribed for their patients, as this might indicate a condition of concern.

The body auditing the surgery must be informed of all controlled drugs issued as part
of the care process. Rather than providing the auditor with complete details of the cir-

1There is pressure to allow pharmacists access to patient clinical data—see §9.2.
2In this example, we do not explicitly consider the home as we are concerned only with the actions of

the nurse that are transmitted to the surgery.

120 Chapter 9. Case Studies

 Surgery
Prescribe

Patient Details
Drug Information
Patient Observations
Prescriber Specifics

Prescription
Patient Details
Drug Information
Prescriber Specifics

Nurse

EPS

Drug_Audit
Drug Information
Prescriber Specifics

Auditor

Prescribe
Patient Details
Drug Information
Patient Observations
Prescriber Specifics

Doctor

Figure 9.2: Data flows for prescribe events.

cumstances surrounding the prescription of a controlled drug, the auditor is notified by
a drug_audit event that a controlled drug was issued. To protect patient confidential-
ity, the event does not include patient information. In exceptional cases, such as where
the prescriber is under suspicion, the auditor may receive prescribe events, where extra
information assists in the investigation. The surgery has a duty to protect the confi-
dentiality of patient information, and thus must control disclosure, despite the fact the
auditor is also bound to respect the confidentiality of any information received. The Con-
trolled Drug regulations [UK 06] refer to the circumstances in which the auditor shares
prescribing information with others. Our implementation goes further than the minimum
requirements, by not releasing patient information to the auditor except where warranted,
such as during the investigation of suspicious behaviour, and even then, in line with pa-
tient consent.3 The EPS receives information concerning the allocation of a drug through
a prescription event, which includes all information necessary to constitute a legal
prescription.

9.1.3 Data Control Policies

There are two transformation rules defined for this scenario. The first concerns the con-
version of a prescribe event into a prescription, where the prescription event con-
tains general patient details, but does not include health specifics. The conversion pro-
cess involves a transformation function which copies across the relevant details from the
prescribe event, augmenting it with extra patient information, such as the patient’s ad-
dress and DOB, and the surgery details.4 This transformation applies to all prescribe
events, where the EPS subscribes directly to the prescription (output) event.

The other transformation function concerns the removal of sensitive information from
controlled drug allocations. The drug_audit event is derived from the prescribe event,
by filtering various fields. Fig. 9.3 shows the audit transformation rule, and the associated

3The appropriate procedures will vary depending on the processes of the auditor and local practice.
Here we illustrate one such scenario of how they may be implemented. The approach presented is more
protective than current practice, given that the legislation implies that the auditor has access to all
sensitive information.

4Rather than presenting all attributes, Fig. 9.2 represents the event flows at a conceptual-level.

9.1. Prescribing Scenario 121

functions for both transformations are presented in Appx. E.5 This transformation applies
only when the drug prescribed is classified as controlled.

<transformation>

<rule_name>createdrugaudit</rule_name>

<event_type>prescribe</event_type>

<output_event>drug_audit</output_event>

<interaction_point>p</interaction_point>

<consumable>f</consumable>

<function>prescribe_to_audit</function>

<conditions>controlledDrug(prescribe.drug_id)</conditions>

<notes>Converts prescribe to drug_audit events</notes>

</transformation>

Figure 9.3: The prescribe/audit transformation rule.

Authorisation Rules & Restrictions

The authorisation rule of Fig. 9.4 allows a doctor to subscribe to prescribe events,
but only for patients that they treat. The EPS may only subscribe to prescription

events, while the auditor may subscribe to drug audit events—these authorisation rule
definitions are found in Appx. E.1.

<request_authorisation>

<rule_name>drprescribe</rule_name>

<event_type>prescribe</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm, ’doctor’)</credentials>

<permission_attributes>patient_id:int8</permission_attributes>

<mon_conditions>treatsPatient(usernm, att.patient_id)</mon_conditions>

<notes>Allows a doctor to subscribe to prescribe events for patients that they treat.</notes>

</request_authorisation>

Figure 9.4: The authorisation rule for the doctor.

For reasons of public safety, we allow auditors to receive to prescribe events, only when
the particular prescriber is under investigation. This is because an investigation is a
serious matter, and as such it is in the interests of public safety to ensure that the
particular prescriber is supplying all types of drugs correctly. This is, however, only done
in line with patient consent, which might be obtained when providing care, or perhaps
in reference to the individual investigation. We account for this condition through an
imposed condition, as shown in Fig. 9.5.

9.1.4 Single Broker Implementation

Given this set of data control rules, we performed some trials concerning a single bro-
ker representing the surgery domain. The surgery domain is connected, via links, to
the EPS and its local drug auditor. All tests described in this chapter, including the
single and multi-broker scenarios, involved executing the brokers on hardware consist-
ing of a Intel Core 2 Duo 2.4Ghz CPU with 2GiB of RAM. The clients were written in
Python, distributed amongst a number of machines running on a different subnet from
the brokers. Brokers were slightly modified for instrumentation purposes: system calls
(gettimeofday()) and counters were added to respectively measure the time taken to

5The complete set of data control policies driving this scenario is presented in Appx. E.

122 Chapter 9. Case Studies

<imposed_condition>

<rule_name>auditorprescribeinvestigation</rule_name>

<event_type>prescribe</event_type>

<interaction_point>n</interaction_point>

<credentials>NHSCred(usernm,’drug_auditor’)</credentials>

<restrictions>underInvestigation(prescribe.prescriber_id)

AND givenAuditorConsent(prescribe.patient_id)</restrictions>

<notes>Prescribe events can be delivered to the auditor when the prescriber

is under investigation and consent has been given.</notes>

<hidden>f</hidden>

</imposed_condition>

Figure 9.5: Auditor-specific subscription rules for the prescribe event.

perform various operations, and to record the bytes transmitted. We present the mean
values over 10 trials.6

Our experiments consist of a surgery with 1,000 active patient records. Four doctors work
at the surgery, who manage 250 patients each. Five nurses visit patients at home, raising
prescribe events for the drugs they prescribe. Each doctor subscribes to prescribe

events pertaining to the top 25 (10%) most critical patients they treat.7

We characterise the workload as each nurse publishing 1,000 messages, 200 of which
concern patients to which doctors are subscribed.8 Each prescribe event is transformed
into a prescription for transfer to the EPS, and each controlled drug into a drug_audit

event for the auditor. The auditor receives all prescribe events published by the single
nurse that is under investigation.9 Fig. 9.6 illustrates the environment.

Auditor

EPS

pr
es
cr
ib
e

pre
scri

be

prescribe

prescription

pr
es
cr
ib
e

drug_audit

prescribe

Figure 9.6: The single-broker prescription scenario.

6Unless otherwise specified, the error-bars represent the 95% confidence intervals for the mean.
7Clearly the doctors will generally be interested in prescriptions pertaining to other, less-critical,

patients. However, all information is stored in the database-broker of the surgery.
8In practice prescriptions occur relatively infrequently, i.e. several per day. However, a large number

of publications were used in this scenario to provide a general indication of performance, accounting for
database optimisations such as write buffers and caching, and to ensure that nurses publish simultaneously
to interleave processing.

9To reduce the number of variables, in this experiment we assume that patient consent has been
obtained, where GivenAuditorConsent(pid) holds for all patient IDs. As this condition is imposed and
thus evaluated on every instance, the imposed evaluation overhead is fixed.

9.1. Prescribing Scenario 123

9.1.5 Controlled Drug Implementation

Naturally, we expect transformations to introduce processing overheads. Fig. 9.7 presents
the average time for complete processing of a prescribe event publication. The percent-
age of prescriptions for controlled drugs was varied, as each controlled drug requires more
processing, to create and deliver drug audit events. A 20% increase in the number of
controlled drugs results in 1,000 more audit events produced and delivered.

0 20 40 60 80 100
Controlled Drug Publications (%)

2

3

4

5

6
Pr

oc
es

sin
g

Ti
m

e
(m

s)

Figure 9.7: Processing time per prescribe publication.

The figure shows that although there are variations in the processing time at the various
percentage points, overall the differences in processing times were relatively insignificant
when compared with the total processing time per event.

In §7.8.1 we described the transactional processing of events, involving the movements of
events between processing queues. Transactions are necessary for the reliable processing
of events; however, transactions also impose an overhead. The breakdown of message
processing operations and the associated transaction times is presented in Fig. 9.8, for
the two extreme cases—where no and all drugs are controlled. Figs. (a) and (b) show
the stages in which the transactional (particularly commit) operations apply, where the
operations as a proportion of processing time are relatively similar. As the creation of a
drug_audit event entails more processing, Fig. 9.8(b) presents a greater processing time
for each operation. Fig. 9.8(c) shows that transaction operations, in total, take close to
two-thirds of event processing time.

In this example, the transactional overheads of message processing outweigh those imposed
by the transformations. A workload in which all drugs are controlled results in a ∼14%
increase in message processing time over the case where no drugs are controlled, but the
number of messages delivered increases by ∼71%.10

9.1.6 Comparison to Vanilla Pub/Sub

To better gauge the message-processing overheads of IC, it is necessary to compare that
to an implementation of a vanilla pub/sub model; that is, one without event processing
(transformation) capabilities. Without IC rules, the publishers become the sole source
of information, who must deal with confidentiality concerns by publishing a separate
event for each level of visibility. This involves publishing two or three events for each

1012,000 events are delivered in the workload with controlled drugs, 7,000 in the workload without.

124 Chapter 9. Case Studies

!"##$%

&'(#)*

+,)&-./#001,(
23*4
56+,)7-',0'/$1.,

238*
**6

+,9:'$/")&-./#001,(
*
*;6

+,9:'$/")7-',0'/$1.,
23%5
46

:'$/"9<=$)&-./#001,(
23>?
*56

:'$/"9<=$)7-',0'/$1.,
@3?*
?56

A#B1C#-D)
23*@
@6

(a) 0% Controlled Drugs—5.7ms total

!"##$%

&'(#)*

+,)&-./#001,(
23*4
56

+,)7-',0'/$1.,
23%8
46

+,9:'$/")&-./#001,(
*3**
*;6

+,9:'$/")7-',0'/$1.,
23<=
;6

:'$/"9>?$)&-./#001,(
234
*<6

:'$/"9>?$)7-',0'/$1.,
@34=
<86

A#B1C#-D)
23@;
<6

(b) 100% Controlled Drugs—6.49ms Total
!"##$%

&'(#)*

+ *++

+

*

,

-

.

%

/

0

-1%%)/-2
.1+,)/,2

,1+%)-02

,1.0)-32

&456#7789(

:4'97'6$859

;59$45<<#=)>4?()@2A

:
8B
#
)@
B
7
A

(c) Transaction Aggregation

Figure 9.8: Transactional overheads on event processing.

prescription: a prescribe event, relevant for the doctors/surgery, a prescription event
as relevant for the EPS, and if the drug is controlled, a drug_audit event.

We implement the vanilla pub/sub scenario using the same database-broker infrastruc-
ture, to ensure that the information is reliably recorded, audited, processed and delivered.
The difference is that the vanilla implementation lacks any IC rules. To enable a like com-
parison we assume that subscribers are honest, issuing filters in line with the restrictions
otherwise imposed by the IC implementation.

Fig. 9.9 shows that the total processing time for the vanilla implementation involves a
significantly greater overall processing time than the IC model for each workload. This is
because the vanilla approach involves a broker receiving 2–3 times the number of publi-
cations in order to account for varying levels of data visibility, where each publication is
subject to all message processing operations.

To give a clearer indication of the overheads, Fig. 9.10 presents a breakdown of processing
time per event type. This shows that the drug audit and prescription events for the
IC approach involve a significantly lower processing time than their vanilla counterparts,
due to the fact that the transformed events are subject to fewer messaging processing
operations.

In the Figure, the match category refers to the time the query engine spends in evaluating
subscription filters. This is negligible where a subscription is filterless, as is the case for

9.1. Prescribing Scenario 125

0 20 40 60 80 100

Controlled Drugs Publications (%)

30

35

40

45

50

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

 (
s
e

c
s
)

IC

Van

Figure 9.9: Workload processing comparisons.
!"##$%

&'(#)*

+,-.$)/0'12 +,-.$)/342 &5#675.8$.91)/0'12 &5#675.8$.91)/342 &5#675.:#)/0'12 &5#675.:#)/342

;

*

<

=

>

%

?

*@%%)?=A

;@>*)?>A

*@B)?CA

;@>*)?;A

=@<<)?CA =@<*)?<A

;@D*)=BA

;@<<)=?A

;@C*)=<A

;@<?)>;A

;@DC)<*A

;@DB)*DA

;@%<)**A ;@=D)CA

;@?*)*<A

&597#66.1(

E5'16F95G

H'$7")

E5'16'7$.91

IJ#1$)EK8#

&
59
7
#
66
.1
(
)E
.G
#
)/
G
6
2

Figure 9.10: Processing time per event type.

the prescription and drug audit subscriptions. Matching operations occur within a
transaction, the overheads (begin/commit) recorded in the transaction category.

Prescribe events take greater processing effort as they are subject to more subscriptions,
and thus involve more processing and transactions. Although the vanilla implementation
processes a prescribe event faster due to the extra operations (transformations) of the IC
approach, the difference is relatively small with respect to the overall processing time.11

When considering the total processing time for a prescription incident, i.e. accounting for
all information flows for the action of prescribing, the IC implementation is shown to be
more efficient, taking 6.48ms compared to 9.82ms for the vanilla approach.12

Intuitively, one expects event processing to impose overheads. This example based on
real-world requirements demonstrates that there are situations where transformations can
actually result in an improved workload performance, where middleware data processing
serves to reduce redundant publications and the amount of message processing required.

11Interestingly, we consistently observed faster matching in the IC implementation, despite both ap-
proaches using the same subscription filters. This appears due to PostgreSQL caching functionality,
where a transformation function executed on an event instance reduces the time for subsequent queries
on the event. Thus, the IC implementation incurs such overhead with the publication transformations.

12The total time for the vanilla approach is calculated by summing the mean time per event type.

126 Chapter 9. Case Studies

9.1.7 Distributed Environment

The previous discussion considered the overheads of IC from the perspective of a single
broker. In this section we consider the impacts on a distributed broker network.

As in the previous example, information concerning prescriptions must flow to the EPS,
regional auditor and doctors who are concerned with a particular patient. Here we modify
the example to apply in a hospital.

Fig. 9.11 depicts the topology of the network, where a number of nurses are assigned to
work in various wards. Each ward maintains its own broker, which is connected to the
central (ward) broker. The central broker manages all ward information, and thus requires
information of (subscribes to) all events raised within the wards. The hospital dispenser
acts much like a pharmacy, in that they receive all prescription information, but without
clinical details. The dispenser is responsible for distributing information to the EPS (for
billing purposes), and forwarding audit events for controlled drugs. The local trust is a
broker that (exclusively) manages the information flowing to health bodies in the locale.
In this example, there are two surgeries who have doctors subscribing to information on
their patients, as well as the regional auditor who receives all drug audit and prescribe

events for nurses under investigation.

Surgery 1

 Hospital

ward2 ward3ward1

central
dispenser

local trust

prescription

Auditor EPS

 drug_audit

prescr
ibe

drug_audit

prescribe

prescription

Surgery 2

pre
scr

ib
e

Figure 9.11: The prescribing scenario in a distributed broker environment.

Again, we compare a vanilla implementation against an IC implementation, to show the
effect of IC on event delivery within the network infrastructure. There is a slight variation
in the routing paths between the approaches.13 As the dispenser is responsible for all
drug related information, we use transformations to cause the central ward to pass the
prescription events to the dispenser, who forwards them to the EPS service. The dispenser,
being the hospital’s authority on medicines, is also responsible for producing the audit
events. In the vanilla approach, routing paths are determined solely by (unrestricted)
subscription propagation. As drug audit events are produced by the nurses (publishers),
they do not come from the dispenser, but instead pass directly from the central broker
to the local trust broker for distribution to the auditor. In the vanilla approach, the
dispenser only receives prescriptions.

We use the same workload as previously described, where each nurse publishes 1,000
messages, except the number of controlled drugs is fixed to 40% of total publications

13This is indicated in Fig. 9.11 by the dashed line for the drug audit event.

9.1. Prescribing Scenario 127

(400/1,000 per nurse). The nurse in Ward3 is under investigation. As in the previous
scenario, the timing results are averaged over ten trials.

Fig. 9.12 presents results concerning the overall processing of the scenario. We see that
the IC approach results in a ∼36% reduction in bytes transmitted14 and a one-third
reduction in overall processing time. To show the effects of distribution, Fig. 9.13 presents
a breakdown of processing for each broker in the topology. Each IC broker incurs equal,
or significantly less overhead than its vanilla counterpart, except for the dispenser whose
auditing responsibilities require additional operations in the IC implementation.

Measurement IC Total Van. Total Difference % Reduction

Bytes Transmitted 13,370,183 20,800,872 7,430,689 36%
Events Transmitted 47,600 74,200 26,600 36%
Processing Time (ms) 79,072 118,511 39,438 33%

Figure 9.12: Overall total resource values for the workload.

!"##$%

&'(#)*

+

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>
@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=
$#
6
);
-'
2
6
D
5$
$#
.

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>
@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)

>

>O?

/

/O?

0

0O?

%

%O?

E

EO?

?
&-#6:-5P#)I@1J

&-#6:-5P#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)IB'2J

Q
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(a) Traffic distribution.

!"##$%

&'(#)*

+

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>
@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=
$#
6
);
-'
2
6
D
5$
$#
.

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>
@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)

>

>O?

/

/O?

0

0O?

%

%O?

E

EO?

?
&-#6:-5P#)I@1J

&-#6:-5P#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)IB'2J

Q
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(b) Event counts.

!"##$%

&'(#)*

+

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>
@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=
$#
6
);
-'
2
6
D
5$
$#
.

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>
@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)

>

>O?

/

/O?

0

0O?

%

%O?

E

EO?

?
&-#6:-5P#)I@1J

&-#6:-5P#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)IB'2J

Q
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(c) Total processing time.

!"##$%

&'(#)*

+

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>
@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=
$#
6
);
-'
2
6
D
5$
$#
.

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>
@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)

>

>O?

/

/O?

0

0O?

%

%O?

E

EO?

?
&-#6:-5P#)I@1J

&-#6:-5P#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)IB'2J

Q
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLR

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(d) Hop counts.

Figure 9.13: Performance comparisons between the IC and Vanilla implementations
for the distributed prescription scenario.

Generally, pub/sub models aim to reduce multiplicative event fan-out by pushing sub-
scriptions as close to the publisher as possible. Similarly, transformations can improve
event distribution by routing a single copy of an event as far as possible, before trans-

14Note that in this experiment the size of an event instance for each type is similar. This is because
many attributes are of fixed length, such as identifiers like the NHS Number.

128 Chapter 9. Case Studies

forming it as relevant to the subscriber. This is reflected in Fig. 9.13(d),15 where the
prescription and audit events resulting from a transformation travel only one hop, as
opposed to the vanilla implementation where events travel the whole path from the pu-
blisher to the subscriber. The other subfigures show that this reduces the event count,
byte count and processing time. Where transformations do not impact on propagation,
such as in the delivery of prescribe events, the IC approach presents similar statistics
to the vanilla implementation.

9.1.8 Scenario Discussion

As IC entails event processing, it is useful to consider its overheads. Although this disser-
tation focuses on confidentiality rather than on performance, the purpose of this section
is to quantify the overheads through a scenario based on real-world data requirements.

Our pub/sub implementation uses transactions as part of the delivery process, which is
particularly important for healthcare, as all information must be reliably stored, audited,
processed and delivered. As such, the use of transactions imposes a base overhead. In
this scenario, transformation functions, despite including queries on stored data, did not
greatly impact overall performance.

This example shows that transformation functions can, in some situations, result in an
overall performance gain. In this scenario, the use of transformations is more efficient than
separate event publications that vary in levels of visibility. The effects are pronounced in
the distributed example, where IC reduces network traffic and processing time by approx-
imately one-third. Such reductions tie in with data control, as the event is transformed
as appropriate for the recipient. This reduces message fan-out: transformations more
naturally occur closer to the subscribers.

These results are presented for a number of workloads concerning a particular scenario.
Clearly the results will vary depending on the complexity of the operations (e.g. trans-
formation functions), and the representation of context. These are all application-level
concerns, where performance characteristics depend on the specific requirements of the
scenario and the implementation environment. That said, this scenario shows that en-
forcing data control policy in the middleware does not necessarily degrade performance,
particularly when considering the overall workload (total events delivered).

Finally, although a vanilla implementation is useful for performance comparisons, it is
important to consider the security aspect. In a generic pub/sub system, clients must be
trusted to publish events with the appropriate level(s) of visibility for the potential recip-
ients, and to (only) subscribe to information for which they are authorised. Information
is routed through brokers in an uncontrolled manner—brokers are also trusted to behave
appropriately. This is unsuitable for environments where data is highly sensitive. The
enforcement of policy in the middleware abstracts policies away from clients, leaving the
middleware to perform event processing and delivery. This ensures client compliance and
facilitates audit, while removing the burden on clients of managing disclosure policy. The
next-hop enforcement of policy is in line with overarching notions of responsibility. This
section demonstrates that IC policies, in addition to controlling data dissemination, can
in some circumstances also improve efficiency and scalability by reducing system load.

15The bars represent the average number of hops, where the error-bars represent the maximum and
minimum number of hops travelled.

9.2. Regulation Change 129

9.2 Regulation Change

There will often be situations where regulations change. Such changes need to be reflected
in the policies controlling information flow. The advantage of defining and enforcing
policy in middleware is in terms of abstraction and isolation: clients are not burdened
with maintaining current policy sets, nor need they be trusted to comply; while a change
in policy is effected at specific enforcement points, rather than at each client. In this
section we give some examples of proposed alterations to health policy, describing how
the changes can be implemented through IC rules.

Following from the previous example, pharmaceutical interest groups are lobbying for
pharmacists to have access to health record information [McC07]. Currently, there is
a government investigation and some trials attempting to discern the benefits/trade-
offs [DoH08]. In the prescribing scenario (§9.1.2), this would require information of ob-
servations to be included with the prescription. Such functionality can be realised by
altering the prescription event type and the transformation function to include notes
and observations. Alternatively, an authorisation rule can be defined allowing the EPS
(or a particular pharmacy) to subscribe directly to prescribe events. This allows such
a regulation change to be implemented through the addition/replacement of a single rule
and/or function.

Another prescription-related concern regards the use of generic drugs. A National Audit
Office report into the prescribing costs of the NHS states that over £200 million a year
could be saved by systematically prescribing lower cost, or generic alternatives [NAO07].
A domain could define a transformation rule to transform prescriptions, as per Fig. 9.14,
replacing a drug by an (exact) cheaper alternative if one exists.

<transformation>

<rule_name>cheaperdrug</rule_name>

<event_type>prescription</event_type>

<output_event>prescription</output_event>

<interaction_point>n</interaction_point>

<consumable>t</consumable>

<function>substitutecheaper</function>

<conditions>exactGenericAlternative(prescription.drug_id)</conditions>

<notes>Substitutes drugs for cheaper alternatives</notes>

</transformation>

Figure 9.14: Transformation function to automatically prescribe cheaper alternatives.

The NHS is currently piloting position-based access control (PBAC) [NHS08b] where priv-
ileges are assigned to positions (organisational-roles) within a health institution. PBAC
is an attempt to simplify RBAC privilege allocations, by providing local organisations
with the ability to define local roles to exploit commonalities between staff members, e.g.
that all nurses operating in the Mulberry Ward have the same information privileges. IC
easily integrates extra considerations, where rule predicates can account for local roles,
job functions and other contextual concerns.

It has been suggested that confidentiality can be improved through anonymous billing.
This involves removing patient details from information flows to health authorities (gov-
ernment) for the purposes of payment [FfIPR05]. Such functionality can be implemented
through a transformation function that removes all patient identifiers from event flows to

130 Chapter 9. Case Studies

the billing domain, so only the service provider information and billing codes are trans-
mitted.16

These real-world examples highlight the advantage of middleware policy enforcement,
where a change in policy occurs only at the brokers, as opposed to every application
managing policy specifics. This simplifies policy updates and ensures a consistent en-
forcement regime within the administrative domain. Context-aware rules provide the
flexibility necessary for controlling dynamic environments.

9.3 Sensor-Based Remote Care

Future healthcare scenarios envisage remote care services, where sensor technologies mea-
sure environmental and physiological state. This information is forwarded to care staff,
who may not be physically present, to make care decisions. Such measurements provide
insight as to the patient’s well-being [McN00], where health incidents trigger appropriate
responses.

We implement a scenario where patients are connected to a range of sensors measuring
aspects of physiological state, as well as their present location. This information is pub-
lished to a broker, which records the data for subsequent query/analysis. Carers may
subscribe to the event streams of their patients, to obtain information of the patient’s
current state of health.

This scenario involves the propagation of patient information, measured through sensors,
to subscribers as appropriate to the circumstances. In the general case, summary infor-
mation is provided, transmitted at regular intervals. In an emergency situation, access
restrictions are less stringent to allow subscriptions to raw sensor streams. This provides
more detailed information to assist in emergency treatment. We use this scenario to show
how changes in context affect information flows, both in terms of the data received by
subscribers and in terms of server-load.

9.3.1 Sensor Middleware

Our implementation uses the Hidalgo Equivital sensor module [Hid09]: a wearable device
with a number of sensors measuring various aspects of physiological state, including heart
and respiration rates, movement and orientation, as well as providing technical feedback,
such as sensor failure or disconnection. The module propagates sensor readings via Blue-
tooth [BSIG09] to a sensor-middleware, which manages the sensor module, receives the
sensor data and serialises it for publication to the relevant broker.

In this example we consider location data, with regards to global positioning as well as
room sensors, if the patient is at home. Although such technologies are readily avail-
able [PCB00, HHS+02], location data was simulated due to lack of hardware.

9.3.2 Data Control Rules

The data streams are propagated to the broker managing the particular patient, which
stores the data to give a detailed picture of the patient’s recovery process. Carers can

16This operates in a similar manner to the drug audit transformation previously described.

9.3. Sensor-Based Remote Care 131

Event Type Producer Publication Rate Description

sensor snapshot Sensor MW 2 secs A periodic event providing a snapshot of the patient’s current
physiological state.

movement Sensor MW 1–5secs Informs of the detection of a change in patient state concerning
movement, orientation or location. Events are delivered on
a change in state, or every 5secs if no change is detected.
Publication rate is approx. 1 event per second in situations of
constant change.

status Sensor MW On Event Records patient status. Indicates the start/cessation of per-
ceived emergencies, where readings exceed a safe threshold.
This event is used to initiate/terminate emergency fluents

ecg reading Sensor MW 16/sec (62.5ms) This encapsulates the live ECG stream. An event containing
a buffer of 16 ECG readings. The reading timestamp is used
to account for messaging delays.

vitalsigns Broker On Sensor Snapshot A combination (mashup) of sensor data, aggregating the last
received snapshot, movement and status data for the patient,
executed through a transformation function.

Figure 9.15: Event type descriptions.

roommapreforientationmovingtemperaturerespiration_rateheart_ratestatus_detailsstatus_levelpatient_id

vitalsigns

roommapreforientationmovingtemperaturerespiration_rateheart_ratestatus_detailsstatus_levelpatient_id

vitalsigns

msg_typestatus_detailsstatus_levelpatient_id

status

msg_typestatus_detailsstatus_levelpatient_id

status

roommapreforientationmovingpatient_id

movement

roommapreforientationmovingpatient_id

movement

temprespiration_rateheart_ratepatient_id

sensor_snapshot

temprespiration_rateheart_ratepatient_id

sensor_snapshot

readingsmeasurement_timepatient_id

ecg_reading

readingsmeasurement_timepatient_id

ecg_reading

Figure 9.16: Event type schemata for the sensor scenario.

subscribe to event streams, subject to policy constraints. Figs. 9.16 and 9.15 present the
event types used in this scenario.

There are several restrictions imposed on the data flows of this model, the definitions for
which are shown in Fig. 9.17. Firstly, subscriptions are only authorised if the subscriber
has a treating relationship with the patient. This requires both a permission attribute,
and a monitored condition. As in Fig. 9.17(b) clients can generally subscribe to the
vitalsigns event, which provides a summary as to the patient’s current state, and the
status event type, which informs of perceived emergency situations. Clients (doctors)
can subscribe to the other event streams to obtain more detailed information, but only
when the patient is an emergency.

The vitalsigns event is used to control the level of information disclosure. Firstly, the
summary itself serves to remove some less pertinent information, such as the patient’s
orientation. Location is useful for interpreting readings; if a patient is at home, they are
less likely to be subject to external stimuli, and thus should be more relaxed/stable. For
reasons of privacy, their exact location is perturbed, except for emergency situations in
which the location is relevant for emergency care. This perturbation is implemented as a
notification transformation (Fig. 9.17(c)) applying only to doctors.

In situations where readings fall outside particular ranges or exceed thresholds, the event
infrastructure is used to alert the relevant parties of emergencies, through status events.
A perceived emergency represents a significant change in context, thus affecting the ac-
cess control rules: the access restrictions are relaxed (Fig. 9.17(a)) and the perturbation
transformation does not apply in an emergency (Fig. 9.17(c)). Note that emergency is not
a monitored condition because it may be useful to continue monitoring the ECG stream
for some period after an emergency is considered resolved, e.g. in case of a relapse.

132 Chapter 9. Case Studies

<request_authorisation>

<rule_name>ecgsub</rule_name>

<event_type>ecg_reading</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’doctor’)</credentials>

<permission_attributes>patient_id:int8</permission_attributes>

<mon_conditions>treatsPatient(usernm, att.patient_id)</mon_conditions>

<conditions>emergency(att.patient_id)</condition>

<notes>A doctor can subscribe to their patient’s ECG stream in an emergency</notes>

</request_authorisation>

a) ecg reading Authorisation Rule. The rule is similar for the movement event type.

<request_authorisation>

<rule_name>vitalsignssub</rule_name>

<event_type>vitalsigns</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’doctor’)</credentials>

<permission_attributes>patient_id:int8</permission_attributes>

<mon_conditions>treatsPatient(usernm, att.patient_id)</mon_conditions>

<notes>A doctor must treat the patient to subscribe</notes>

</request_authorisation>

b) vitalsigns Authorisation Rule. The rule is similar for the status event type.

<transformation>

<rule_name>perturbvitalsigns</rule_name>

<event_type>vitalsigns</event_type>

<output_event>vitalsigns</output_event>

<stage>n</stage>

<consumable>t</consumable>

<function>removesensitivedata</function>

<credentials>NHSCred(usernm,’doctor’)</credentials>

<conditions>not emergency(vitalsigns.patient_id)</conditions>

<notes>Perturb location for Doctors</notes>

</transformation>

c) vitalsigns Transformation Rule.

Figure 9.17: IC rules for the sensor scenario.

Overall, this helps to bring a context-aware level of privacy for patients. In a perceived
emergency it is important that information is made available. However, in the general
case, events are perturbed to provide less detail.

9.3.3 Experimentation

The sensor middleware publishes a number of events per second for each patient, which
must be stored and in some cases transformed and forwarded. In practice, we expect that
a surgery provides the infrastructure to handle numerous patients at a time. Here, the
focus is on the impact of contextual change, rather than on the numbers themselves. As
such, our experiment consists of a single broker monitoring the streams for 10 patients, as
this balances the storage and processing requirements of the scenario. As we have access
to only one sensor module, we simulated multiple patients by publishing a number of
pre-recorded event streams.17 We use this scenario to show the effect of context on data
flows, where an emergency situation alters event visibility and impacts system load.

Screenshots from our client application are shown in Fig. 9.18. The application subscribes
to a patient’s streams, presenting a dashboard of patient statistics. The application
automatically subscribes to the ecg reading stream when a status event indicates an

17The timing intervals between events are preserved.

9.3. Sensor-Based Remote Care 133

(a) Non-Emergency Patient Stream (b) Emergency Patient Stream

Figure 9.18: Screenshots from the monitoring application.

emergency. Fig. 9.18(a) shows the general dashboard, where some information is restricted
and perturbed. Fig. 9.18(b) shows the application when a patient is in an emergency,
presenting complete location information as well as a plot of the ECG.

To experiment with the effects of context on the broker, we altered the number of patients
in a perceived emergency situation. As clients automatically subscribe to ecg reading

events on detection of an emergency, the number of events delivered increases with the
number of patients in an emergency. This is depicted in Fig. 9.19(a).

!"##$%

&'(#)*

+ * % , - . / 0 1 2 *+

+

%+

-+

/+

1+

*++

*%+

*-+

*/+

*1+
34#5$6)78

34#5$6)9:;

8<=>#?)@A)&'$B#5$6)B5)3=#?(#5CD

;
"
?@
<
(
"
E
<
$)
F#
4
#
5
$6
G6
#
C
H

(a) Scenario throughput

!"##$%

&'(#)*

* % + , - . / 0 1 *2

**-

*%2

*%-

*+2

*+-

*,2

*,-

*-2

*--

3456#7)89)!46:;7<6#7)=8>>#;$<8>:

?
"
78
4
(
"
@
4
$)
A#
B
#
>
$:
)<
>
C:
#
;
D

(b) Throughput per connection, 10 patients in an
emergency

Figure 9.19: Results for the sensor scenario.

We notice that the rate of incoming events stays relatively constant until about 7 patients
are in emergency. The degradation in performance is due to the subscription matching
operations, where Fig. 9.19(a) assumes that each subscriber maintains a separate con-
nection when subscribing to the ecg reading. That is, 10 separate subscribers to each

134 Chapter 9. Case Studies

ecg reading results in approx. 1,600 (160 events ∗ 10 subscriptions) subscription match-
ing operations executed per-second of processing. Subscription filters on an event type are
evaluated in aggregation (conjunction) for a subscriber: there is a single evaluation per
event-type, for all subscriptions of a client’s connection. Fewer evaluations involve fewer
transactions and calls to the query engine, thus reducing the effects on throughput. This
is reflected in Fig. 9.19(b), which divides the 10 subscriptions to the ecg reading amongst
a varying number of connections. In this Figure, all 10 patients are in an emergency. This
is significant for topological design, given that brokers that interconnect through links can
maintain several subscriptions for an event type (through subscription forwarding). In
this scenario, Fig. 9.19(b) shows us that if the clients were to subscribe through up to
four brokers, that there is no performance degradation even in the unlikely case where all
patients are simultaneously in an emergency.

There are various design considerations that can improve performance in this scenario.
The most obvious is to have the sensor middleware produce fewer messages, by buffering a
greater number of ECG readings, or to have a broker manage fewer streams. We observed
that the CPU load in our experiments did not exceed 54%. Given that our proof-of-
concept implementation involved a single message-processing thread, we would expect
performance to improve with multiple worker-threads.

Our implementation performed reasonably in the general case, degrading in the unlikely
situation wherein most patients are in a critical state and all subscribers are separately
connected to the broker. Despite the performance impact, we did not observe a difference
from the client perspective even when all patients were in an emergency situation.18 The
ecg reading events include the time of the reading to enable clients to account for variable
delivery rates. In line with this, our client application buffers ecg reading for 2 seconds
before displaying the plot. In our experiments, the results appear reasonable given that
this scenario requires ‘human-speed’ rather than ‘machine-speed’ response times.

9.3.4 Scenario Discussion

The purpose of this scenario is to present an example implementation in which sensor data
is reliably stored, processed and delivered with respect to context-sensitive data control
rules. This involved using our middleware to feed real sensor data to several instances of
a monitoring application. We show the effects of a change in context on the system, both
in terms of the data the client receives, with regard to perturbed results and visualisation
of the ECG stream, and in overall system load.

A broker’s performance requirements depends on the particular situation. In practice,
we expect that contextually significant events require storage and propagation, such as a
change in patient status (emergency). However, it can be argued that general monitoring
data, such as the ECG data stream, or other high-volume data streams such as video,
need not be stored in a relational database nor processed transactionally; or if so, stored
in batches/summaries. That said, we found that in our implementation a single broker
could, in general, appropriately store, propagate and control data streams for 10 patients;
with performance degrading in the extreme case where all patients are in a perceived
emergency situation and all subscribers are directly (separately) connected to the broker
hosting the sensor stream.

18Over time the effects may become noticeable, depending on broker load.

9.4. Contextual Complexity 135

9.4 Contextual Complexity

IC is context-sensitive. Contextual predicates (fluents) are evaluated throughout the mes-
saging process: credential predicates, the filters on events, the guards for transformation
rules, and the monitoring of conditions all require evaluation. It follows that the method
of contextual representation impacts system performance.

To illustrate this point, we take the sensor scenario where movement events define the
patient’s current location. These events occur sporadically; though the rate is in the
order of one event every 1–5 seconds. A patient’s location can be maintained in a fluent:
atHome(patient-id). The manner in which this fluent state is derived/maintained can
greatly affect performance.

We take four approaches to implementing the fluent, the query for each is presented in Fig.
9.20. The first approach makes use of a materialised view, which uses a table dedicated
to storing the current state of the fluent—whether the patient is currently at home. The
second approach determines the fluent state by performing the query on demand, through
use of a join between the last known location of the patient and their registered home-
location. The third approach is similar to the join, but instead uses a subquery, which is
typically expensive to evaluate. The fourth executes a call to a remote server (through a
socket) on an external subnet, which maintains an in-memory hash table of the patient-
home status.19

select home from fluent_athome where patient_id = $1;

a) Materialized View

select pg_log_in_movement.location = patient_home.location
from pg_log_in_movement left join patient_home on pg_log_in_movement.patient_id =

patient_home.patient_id where patient_home.patient_id = $1
order by processed_time desc limit 1;

b) Join

select count(patient_id)=1 from
(select patient_id as pid, location as loc from pg_log_in_movement where

patient_id = $1 order by processed_time desc limit 1) as A
inner join patient_home on a.pid = patient_id and location = A.loc;

c) Subquery

Figure 9.20: Queries for the different definitions of the atHome fluent.

To illustrate the performance differences, each fluent representation was used as a guard
for a transformation rule. The average fluent evaluation times for 2,500 queries over 10
trials are presented in Fig. 9.21.

Our results show that in this scenario, the materialised view is clearly the most efficient
fluent implementation. However, when considering materialised views, it is important
to account for the overhead in maintaining its state. To quantify this, we measured the
time taken to update the fluent on receipt of a movement event. Our trials under similar
conditions found the update to take on average ∼0.21ms.

19We omit the code which calls the remote server, as it involves a procedure using sockets.

136 Chapter 9. Case Studies

Fluent Type Average Processing Time

Materialised View 0.25ms
Left Join 1.98ms
Subquery 3.79ms

Remote Server 3.31ms

Figure 9.21: Processing times per fluent type.

Although the numbers are in the order of milliseconds, the effects show up in aggregation,
where a broker may perform thousands of evaluations per second. In the sensor scenario,
the materialised view is the favoured approach, as movement events occur relatively in-
frequently (in the order of seconds, cf. the ECG stream every 62.5ms) and the cost of
maintaining the view is comparatively low. However, if the scenario is one such that
the state is expected to change more frequently than queries on the condition itself, it
may be beneficial to query the relevant tables on demand to avoid the performance and
storage overheads of maintaining the view. The appropriate method for accessing context
is clearly a question of circumstance.

The representation of context is an important consideration for IC policy designers, to
ensure that the implementation meets the requirements of the scenario.

9.5 Policy Interface

Much of this dissertation focuses on policy defined by a system administrator. However,
patient specific requests and aspects of consent will also be specified by non-expert users.
Clearly the definition process must be simple. To ease authoring, restriction templates can
be defined by domain administrators for use by policy authoring applications. Given that
IC policy is stored as data, rules can be defined through similar interfaces to other data
manipulation applications. Further, restrictions do not necessarily entail the creation of
a rule; often a restriction can be implemented through manipulating fluent state, which
is referenced by a rule of the domain’s sharing protocol. As an example, we use a simple
interface to illustrate a mechanism to effect the consent preferences of patients.

Fig. 9.22(a) presents an interface that controls the perturbation of a patient’s sensor data
stream. The process involves selecting the particular patient, followed by the type of
information and the operation. This generates a consent event that encapsulates the
details of the preference, which is routed through the local domain, consumed by the
broker(s) maintaining the perturbOutput(patient-id) fluent. This fluent is referenced
by the rules effecting the perturbation—the value of the fluent determines whether the
transformation degrading the event applies.

Fig. 9.22(b) presents an interface for controlling data flows to an external service. The
relevant secondary services are populated in a list, in which the user, in this case a doctor
acting on behalf of a patient, sets the appropriate levels of consent. This, again, gener-
ates an event which is consumed by the relevant broker(s) to allow/prevent information
transmission to the particular service.

These examples, although simple, illustrate that policy authoring can be facilitated through
a database frontend—much like many enterprise applications. As such, similar techniques
can be used to develop convenient interfaces for specifying complex policy preferences,
including the definition of IC rules.

9.6. Summary 137

(a) Setting perturbed preferences (b) Screenshot for setting SUS preferences

Figure 9.22: Consent authoring screenshots.

9.6 Summary

This chapter describes the application of IC to particular healthcare scenarios. We do not
attempt to provide a performance analysis of IC, as our implementation forms merely a
proof-of-concept. Instead, we take specific scenarios based on real healthcare requirements
to justify the properties of IC and to highlight various policy formation and implementa-
tion considerations.

IC introduces extra functionality to the pub/sub messaging process. The prescription sce-
nario is an attempt to quantify this overhead. We observe that a significant proportion of
processing time relates to transactions. We advocate the use of transactions to enable reli-
able event processing. Given that health information must be audited, some transactional
and storage overhead is likely to be incurred regardless of the implementation.

Our comparison of an IC implementation to a vanilla pub/sub approach illustrates that
IC does not necessarily degrade overall performance, but in some circumstances actually
improves scalability. Intuitively, processing overheads can be reduced given that restric-
tions and transformations can limit information flows, thereby reducing event fan-out.
This, of course, depends on the nature of the scenario, there will be situations where
IC policy imposes an overhead. Our experiments indicate the scalability of IC, while
providing useful information for policy authors.

The two approaches, however, differ significantly in terms of information protection: IC
controls disclosure by enforcing policy on all connections, as opposed to the uncontrolled
vanilla approach, which must trust clients and brokers to act appropriately. Even without
malice, there are still issues of negligence and curiosity. Policy management concerns aside,
the vanilla approach is insufficient even in an environment of overarching responsibility,
as accountability is diminished. This chapter highlights the advantages of middleware
enforcement, where changes in disclosure policy are abstracted away from clients, easing
management and ensuring client adherence.

IC is context-sensitive. We use the sensor application to show how policy rules interact
with contextual changes to impact on information flows. This in turn affects system load,
thus it is important to consider data flow requirements when structuring the topology. We
also demonstrate that the method for implementing contextual state affects performance.
Such issues must be considered when realising an IC implementation.

138 Chapter 9. Case Studies

IC provides a framework for controlling information flow. We have applied IC to health
scenarios derived from health policy and procedure documents. As policy is user-defined,
system evaluation depends on the particular requirements of the situation. Given that
data protection is a fundamental healthcare concern, the performance characteristics of
the control mechanisms must be considered in the context of complete, real-world scenar-
ios. Indeed an area for further work is to analyse IC with respect to real(istic) healthcare
workloads, accounting for the number of clients, data load and required processing/re-
sponse rates, information types, and policy constraints of an actual healthcare deployment.

10
Audit and Event Replay

Lessig [Les99] describes four categories of constraints that influence and regulate be-
haviour: legal, social, economic and architectural. In healthcare, constraints operate to
control the use and influence the protection of sensitive information. There are legal ram-
ifications for negligence or malice in healthcare, be it the failure to protect information
or to adhere to standards. Medical professionals take an oath, and are bound by codes of
conduct. Reputation is important. Knowledge of possible audit and peer-review instills
social pressure on staff to behave in a certain way. Economic factors are involved, con-
sidering the costs and benefits of taking particular actions and precautions: a failure to
respect confidentiality might entail fines or termination of employment, while for organi-
sations, negative publicity deters business. The architecture refers to what is (physically)
possible; for instance, data must be stored in order to be accessed. IC is an information
disclosure architecture, where policy defines the circumstances for data release. Audit
provides information (evidence) important for regulating the use of health information.

The purpose of audit is to ensure that medical professionals and organisations adhere
to the appropriate standards of care and conduct. In other words, audit brings about
accountability. While confidentiality underpins the health service, healthcare is not an
environment of anonymous interaction. Instead, the actions of (non-patient) users must
be audited. From an information standpoint, patients must feel confident that their
information is handled correctly; patients may withhold sensitive information from prac-
titioners for fear of inappropriate disclosure [Gol98, WHEH06], which may impact on
their well-being. The NHS Constitution [DoH09b] states that health organisations are
responsible for meeting safety and quality standards. Organisational policies set the
goals served by the technical infrastructure. This involves defining appropriate access
privileges, and creating mechanisms for preventing and detecting violations, backed by
sanctions [MY04, HSH+09]. The NHS defines arms-length-bodies: independent organisa-
tions that review and hold to account health providers at all levels of the health service,
from the executive to that of local practice [DoH09c, DoH09a].

Most large scale systems are designed to include audit capabilities. Audit logs provide
visibility, reflecting past state and processes. At a system level, audit is used for safety

139

140 Chapter 10. Audit and Event Replay

and recovery, and to monitor the effectiveness of system processes. Audit involves more
than merely recording data: audit brings about accountability. It provides the means for
influencing behaviour, producing the evidence on which to investigate system, higher-level
(organisational) issues and individual conduct. Further, audit mechanisms can alert of
situations as they arise, and assist in the discovery of policy errors.

This chapter begins by considering the system-level aspects of auditing, which involves
recording system state at various stages of the messaging process. We then consider active
audit, where the event infrastructure can be used to alert of particular situations as they
occur. In an environment of dynamic control, historical information brings interesting
considerations, where a change in context can alter privilege in some way, or make relevant
a previously insignificant or unauthorised event. As such, we extend IC to deal with
historical event dissemination (event replay), before concluding with a discussion of the
approach and areas for future work.

10.1 Recording Information

Information is the “lifeblood of NHS organisations” [DoH07a]. It follows that information
governance is a fundamental healthcare concern. To enable proper inspection, moni-
toring and investigation, information surrounding health data and user actions must be
recorded. This is reflected, for example, in the NHS Care Records Guarantee [NHS07b]
which describes the need for audit trails that record access and modifications to patient
information. As the middleware enables communication, it has the capability to monitor
and record actions and occurrences. The Security Audit Requirements document by the
US Department of Veteran Affairs [HIA06]1 summaries the requirements for healthcare
auditing as specified by various political, legal and industrial instruments. Requirements
relevant for a healthcare middleware include that:

• The audit trail provides sufficient information: events, time of occurrence and the
cause (who did what, when);

• Content is recorded both before and after the performance of actions (queries, views,
insertions, deletions, conversions);

• Access requests and privilege assignments are recorded;

• Capabilities exist to alert of data changes, e.g. anomalies, security breaches, etc.;

• Audit requirements can be customised for specific applications and environments;

• Audit traces can be distributed and transferred.

These requirements make it clear that it is insufficient to merely log the events sent and
received; it is also necessary to record the policies authorising (or denying) the request, as
well as the context for the decision [Bak07, Bak04]. This is particularly important for IC
as policies are context-sensitive. Alerting is facilitated by an event infrastructure (§10.4).
As IC operates within the database space, database infrastructure is used to implement
the audit. This section outlines how audit mechanisms are integrated into a IC broker.2

1Who incidentally collaborates with the NHS on information sharing and governance issues [NHS06d].
2The volume of audit information will likely exceed that of the live, currently used data. This issue,

however, is common to many enterprise applications. To deal with this, data might be archived at regular

10.1. Recording Information 141

10.1.1 Message Receipt/Delivery

It is necessary to record the information that enters and leaves a broker. The structure
for storing this information, as presented in Fig. 10.1, consists of separate tables to store
the requests and the events sent and received for each event type.3

logtimeerrorcodeackmsgeventtypeusernamerequest_idmsg_id

log_[request-type]_received

logtimeerrorcodeackmsgeventtypeusernamerequest_idmsg_id

log_[request-type]_received

logtimeerrorcodeackmsgusernamein_queue_idmsg_id

log_[event-type]_received

logtimeerrorcodeackmsgusernamein_queue_idmsg_id

log_[event-type]_received

logtimeerrorcodeackusernameout_queue_iddelivery_id

log_[event-type]_sent

logtimeerrorcodeackusernameout_queue_iddelivery_id

log_[event-type]_sent

request_id logtimeerrorcodeackmsgeventtypeusernamedelivery_id

log_[request-type]_sent

request_id logtimeerrorcodeackmsgeventtypeusernamedelivery_id

log_[request-type]_sent

Figure 10.1: Tables recording the the inputs/outputs of a broker.

The username references the unique ID of the relevant connected principal. The msg_id

and delivery_id refer to the ID of the serialised (XML) message. Internally, a tuple is
assigned a request/event ID, to identify it throughout the messaging process. These tables
do not directly store the information contained within the event/request tuple; such infor-
mation is accessed through joins between the ID and the the appropriate event/request
history store—as described in the next section.

10.1.2 Event Auditing

As described in Ch. 7, message processing involves moving events between queues. For
the purposes of audit, we define a separate history table (or log) for each queue. These
tables record a history of queue entries supplemented with additional information, such
as timestamps and applied policies. Fig. 10.2 presents the structure of the queues and
the associated logs for the event type ev, consisting of two integer attributes A and B.

Transformations work to alter an event instance, or create a new one. This information
must be recorded, as the event is no longer the same as that originally published. As
shown in the Figure, transformation outputs are stored along with the function and hook
rule identifiers, and references to the event instance before transformation.

The result of evaluating a subscription/restriction filter is not explicitly recorded. This
information can be derived through a query, where an event on the match log has no cor-
responding entry on either the out or exception log. Publications that fail to satisfy the
applicable advertisement filters are stored in a separate log because such events are pre-
vented from reaching the in queue. This log takes the same form as pg_log_in_<type>.

intervals, perhaps distributed through the event infrastructure. We do not consider these issues as part
of this dissertation, as these are a question of design, related to the particular organisation, its technical
infrastructure, the volume of data processed, the information stored and available resources.

3Forwarded requests are audited through triggers on changes to the Advertisement Out and Subscrip-
tion routing catalogues. PostgreSQL requires modification to allow triggers to be defined on catalogues.

142 Chapter 10. Audit and Event Replay

94nhs_223401

BAsubscribereventid

pg_queue_match_ev

94nhs_223401

BAsubscribereventid

pg_queue_match_ev
BAlogtimeinevtypeinevidhkfunctionhknamehkoutputpublishersubscribereventid

942009-01-03
11:21:41.003

nnhs_321nhs_223401

442009-01-03
11:21:37.671

ev39999313perturb
halfdbl

ynhs_7162nhs_223400

pg_log_match_ev

BAlogtimeinevtypeinevidhkfunctionhknamehkoutputpublishersubscribereventid

942009-01-03
11:21:41.003

nnhs_321nhs_223401

442009-01-03
11:21:37.671

ev39999313perturb
halfdbl

ynhs_7162nhs_223400

pg_log_match_ev

BAsubscribereventid

98nhs_223402

pg_queue_out_ev

BAsubscribereventid

98nhs_223402

pg_queue_out_ev
BAlogtimeinevtypeinevidhkfunctionhknamehkoutputsubscribereventid

982009-01-03
11:21:41.006

ev40181002perturbdblynhs_223402

442009-01-03
11:21:37.672

nnhs_223400

pg_log_out_ev

BAlogtimeinevtypeinevidhkfunctionhknamehkoutputsubscribereventid

982009-01-03
11:21:41.006

ev40181002perturbdblynhs_223402

442009-01-03
11:21:37.672

nnhs_223400

pg_log_out_ev

BApublishereventid

94nhs_321401

pg_queue_in_ev

BApublishereventid

94nhs_321401

pg_queue_in_ev
BAlogtimepublishereventid

942009-01-03 11:21:41.002nhs_321401

82nhs_7162 2009-01-03 11:21:37.668399

pg_log_in_ev

BAlogtimepublishereventid

942009-01-03 11:21:41.002nhs_321401

82nhs_7162 2009-01-03 11:21:37.668399

pg_log_in_ev

Figure 10.2: Queue schemata and their associated audit tables.

10.1.3 Exception Queues

Exception queues are used for recording system errors, where a failure in processing occurs
due to some unforeseen circumstance or coding/function error. Such information is aimed
at system administrators to resolve system defects. We define the following exception
queues for different points of failure.

Incoming Exception Stores information regarding the messages received that could not
be deserialised. This might be due to malformed XML, or some type mismatch in
constructing a tuple.

Request Processing Exception Records the request tuples for which validation pro-
cessing failed.

Request Forwarding Exception Records the request tuples that failed as part of the
forwarding process.

Exception In* Records a failure in processing an event from the in queue. This is likely
due to a failure in publication transformation rule resolution or function execution.

Exception Match* Records a failure in processing an event from the match queue.
This is likely due to a failure in notification transformation rule resolution, function
execution, or delivery filter evaluation.

Exception Out* Records a failure in processing an event from the out queue. This
might be due to some error in serialisation or a network anomaly.

The * denotes that the queue is defined for each event type. The schema of an exception
queue is the same for that as its associated log, except that it includes the transaction ID
and a field to store additional information about the failure.

Triggers defined for the queues can alert of the exception.

10.1. Recording Information 143

10.1.4 Conflict Resolution

In addition to auditing the data sent and received, the rules authorising privilege are
recorded [Bak07]. This is important not only for reconstructing prior circumstances, but
also for policy evolution.

Conflict resolution information is particularly important as it details the rules applicable
and applied at an enforcement point. This, in turn, indicates the state of affairs at the time
of evaluation. The conflict resolution function, which is called by all functions requiring
policy resolution, is extended to persist conflict resolution information in a table of the
following structure:

id The identifier of the connection/request/event in which the resolution occurs.4

user The principal ID in the context of evaluation (publisher/subscriber/broker).

input policies[] The active set of policies to resolve.

output policies[] The resolved set of policies, or null if incompatible.

resolution policies[] The set of applied conflict resolution policies.

description Any additional notes, derived from the policy definitions.

polov consumes original[consume-polov][polov][polov,original]NHS_4412845

nullnull[polov2,diffov,
original]

[polov2,diffov,
original]

NHS_4412906

polov and diffov are
incompatible

[fail-polov-diffov]null[polov,diffov
original]

NHS_4412907

descriptionresolution_policies[]output_policies[]input_policies[]subscriberevent_id

Log_Transformation_Resolution_[event-type]_Notify

polov consumes original[consume-polov][polov][polov,original]NHS_4412845

nullnull[polov2,diffov,
original]

[polov2,diffov,
original]

NHS_4412906

polov and diffov are
incompatible

[fail-polov-diffov]null[polov,diffov
original]

NHS_4412907

descriptionresolution_policies[]output_policies[]input_policies[]subscriberevent_id

Log_Transformation_Resolution_[event-type]_Notify

Local surgery NHS_6614
takes priority

[6614priority][NHS_6614_auth][authorise-surgery,
NHS_6614_auth]

NHS_661422

Authorise any surgerynull[authorise-surgery][authorise-surgery]NHS_10423

descriptionresolution_policies[]output_policies[]input_policies[]broker-idconn-id

Log_Link_Authorisation_Resolution

Local surgery NHS_6614
takes priority

[6614priority][NHS_6614_auth][authorise-surgery,
NHS_6614_auth]

NHS_661422

Authorise any surgerynull[authorise-surgery][authorise-surgery]NHS_10423

descriptionresolution_policies[]output_policies[]input_policies[]broker-idconn-id

Log_Link_Authorisation_Resolution

Figure 10.3: Conflict resolution audit tables.

A table exists to store the resolution information for each type of rule: link authorisation,
request authorisation, imposed conditions or transformation. The id and user attributes
are passed to the resolution function as a parameter. Fig. 10.3 presents example resolution
histories for transformation and link authorisation rules.

10.1.5 Request Auditing

Request auditing functionality is implemented within the request validation function, as
previously described in §7.6.2. Active requests, i.e. requests pertaining to an active event
channel, are maintained in a catalogue reflecting the structure of the request tuple. An
insertion to this table represents the creation of a channel, and deletion a closure of
the channel. Modifications to an event channel are recorded in a history table, along

4When resolving request authorisation rules, the two identifiers are passed: the request ID and the
evaluation ID (see §10.1.5).

144 Chapter 10. Audit and Event Replay

with the operation and associated timestamp. This occurs through a trigger (Fig. 10.4).
Unauthorised requests that never become active are manually written to the history table
as part of the validation process. The Links catalogue uses similar mechanisms to record
the history of broker interconnections.

CREATE OR REPLACE FUNCTION logreq_sub() RETURNS TRIGGER AS $$
BEGIN
IF (TG_OP = ’DELETE’) THEN

INSERT INTO requesthist_sub SELECT ’CLOSED’, now(), OLD.*;
RETURN OLD;

ELSIF (TG_OP = ’UPDATE’) THEN
INSERT INTO requesthist_sub SELECT ’RE-EVALUATED’, now(), NEW.*;
RETURN NEW;

ELSIF (TG_OP = ’INSERT’) THEN
INSERT INTO requesthist_sub SELECT ’CREATED’, now(), NEW.*;
RETURN NEW;

END IF;
RETURN NULL;
END;
$$ language plpgsql;

CREATE TRIGGER aug
AFTER INSERT OR UPDATE OR DELETE ON activesubcriptions
FOR EACH ROW EXECUTE PROCEDURE logreq_sub();

Figure 10.4: A trigger to record the history of the active request table.

The request validation process generates auditable information, which is persisted in a
number of dedicated log tables. Given that requests can be re-evaluated, the request tuple
is extended to include an extra attribute (eval id) to distinguish each evaluation. This
attribute is assigned a unique value each time a request is evaluated, enabling identification
of the audit information generated from each validation process.

Fig. 10.5 presents the relationships between the request history and the logs. The con-
flict resolution process (§10.1.4) records the applicable/applied request authorisation and
imposed condition rules. The transformation hooks applicable to a channel are manually
inserted into a separate table recording the request ID, evaluation ID, transformation pol-
icy ID and the name of the hook rule. The operation field describes whether a hook was
created or removed from an event channel: a transformation may no longer be relevant
after re-evaluation.

Request reprocessing involves executing the request validation function on an active re-
quest. A record of the re-evaluation is maintained in a separate table storing the request
and evaluation IDs and time of reprocessing, along with the description parameter,
which describes the monitor function triggering the re-evaluation. The auditing process
for request re-evaluation is essentially the same as that for the initial validation, except
that a request is removed from the active requests catalogue if it is no longer authorised.

Request Forwarding

Forwarded requests must be recorded as they pass information to another broker. Such
information is useful; for example, describing why a certain domain did not receive a par-
ticular advertisement. Auditing is relatively straightforward. The table maintaining the

10.2. Contextual History 145

Request_History

operation
logtime

request_id
eval_id

eventtype
…

Request_History

operation
logtime

request_id
eval_id

eventtype
…

request_id
eval_id
user

input_policies[]
…

Log_Auth_
Resolution

request_id
eval_id
user

input_policies[]
…

Log_Auth_
Resolution

request_id
eval_id

transform_id
hook_name
operation

Log_Loaded_
Transforms

request_id
eval_id

transform_id
hook_name
operation

Log_Loaded_
Transforms request_id

eval_id
logtime

description

Log_ReEvaluation

request_id
eval_id
logtime

description

Log_ReEvaluation

request_id
eval_id
user

input_policies[]
…

Log_ImpConds_
Resolution

request_id
eval_id
user

input_policies[]
…

Log_ImpConds_
Resolution

Figure 10.5: Relationships between request log tables.

history of broker connections is associated with logs maintaining the history of forwarded
requests. These record the details of the request tuples, the transformations and filters
applied, and broker acknowledgements.

10.1.6 Policies

The policy definitions for each rule type are stored in separate catalogue tables (§7.4.2).
Each policy catalogue has associated with it a history table, as shown in Fig. 10.6 where all
modifications to policy definitions are recorded. This log stores the author, modification
time, update type and a description regarding the change (if provided), along with the
values of the rule definition (represented by the ellipses). The history is maintained
through triggers, similar to that of Fig. 10.4.

Policy Rule

policy_id
…

Policy Rule

policy_id
…

policy_id
author

changetype
changetime
description

…

Policy_History

policy_id
author

changetype
changetime
description

…

Policy_History

Figure 10.6: Relationship between a policy definition and its history table.

10.2 Contextual History

As described, IC audit tables record the rules previously activated and applied. This
implicitly provides information of historical state, as rule predicates must have held for
it to apply. However, given that IC is context-sensitive, it is generally useful to maintain
a historical record of contextual changes to provide a view of the system at a particular
point in the past [Bak07, Bak04]. This provides extra information for accountability
purposes, and assists in investigating errors—an incorrect disclosure might not be due

146 Chapter 10. Audit and Event Replay

to defective policy, but perhaps due to a flawed contextual definition. Further, having a
historical representation of context is particularly relevant for event replay (see §10.5).

Fluents are inherently time-based [Sha99]. The state of a fluent can be derived through
the HoldsAt(f,t) predicate, which searches through the event log to determine the fluent
value at a particular point in time. As IC implicitly maintains event histories, contextual
state is visible at a time in the past. However, when querying prior states of affairs, one
must account for any subsequent changes in fluent initiation/termination definitions.

The enforcement of IC policy concerns the current state of a fluent. Earlier, we described
how the current value of a fluent can be maintained through a materialised view to avoid
searching the event history on each evaluation. In this case, the active rules/functions
maintaining the view can be extended to record the time and even the reason for the
change in the fluent value. This creates a historical log of state changes, explicitly record-
ing the times in which a particular fluent held.

10.3 Accessing the Log

Audit logs provide much information useful for investigative purposes and for policy/
process refinement. There exists work in determining possible data leaks based on analysis
of the audit log [AEKV07]. It is said that the sensitivity of a log is equal to that of the
most sensitive information it holds [HIA06]. In fact, it is arguable that audit information
is more sensitive, given that a log often consolidates information. It follows that access
to audit information must be carefully controlled.

Given that audit information is recorded within a database system, we can exploit da-
tabase functionality to control and monitor access to audit information. Audit tables
must be read-only. Access to audit-related tables, views and functions can be controlled
using the standard database access control mechanisms. Privileges should be restricted
to specific roles. Activation of these privileges and execution of audit functionality should
also be monitored—to audit the auditor. Audit information can be shared through the
event infrastructure, controlled through IC rules (§10.4, §10.5).

Rather than assigning privileges directly to the audit logs, views can be constructed to
limit disclosure. For instance, types rather than values may be sufficient [Bak07]: it may
be enough to know that a user received a particular event-type, without revealing the
information contained in the instance itself. Stored procedures can provide information
regarding common auditing operations, such as the recipients of information pertaining to
a particular patient. Again, this can be implemented without revealing specific details. In
addition to limiting data exposure, these procedures help to consolidate audit information
into a more useful form. Fig. 10.7 presents some example queries within a specified time
range, where stored procedures provide a view over historical information. The first ex-
ample shows the recipients of information concerning a patient at the type-level, without
revealing any content; the second presents the information flows for a particular publi-
sher with respect to event types; and the third displays the prescriptions for controlled
medications issued by a specific prescriber without revealing patient specifics.

Here we consider only the technical aspect; stringent (organisational) protocols must
be defined and implemented to control access to audit information. Ultimately, it is a
political question as to who has access to audit information. This is likely to depend on

10.4. Active Audit 147

transmitted_patient_information(2323232320, ‘2009-01-01’, ‘2009-02-30’)

11TreatmentNHS_4126

CountEvent TypeRecipient

5PrescribeNHS_4126

5PrescriptionNHS_499

Patient_Specific_Events

11TreatmentNHS_4126

CountEvent TypeRecipient

5PrescribeNHS_4126

5PrescriptionNHS_499

Patient_Specific_Events

 event_flow(‘NHS_993’, ‘2009-01-03 00:00:00’, ‘2009-01-03 23:59:59’)

2009-01-03 14:44:07[NHS_4991]TreatmentNHS_993

2009-01-03 14:40:01[Prescription, Drug_Audit][NHS_4126, NHS_8813]PrescribeNHS_993

TimeTransform TypesRecipients[]Event TypePublisher

Event_Flow_View

2009-01-03 14:44:07[NHS_4991]TreatmentNHS_993

2009-01-03 14:40:01[Prescription, Drug_Audit][NHS_4126, NHS_8813]PrescribeNHS_993

TimeTransform TypesRecipients[]Event TypePublisher

Event_Flow_View

 controlled_prescriptions(‘NHS_716’, ‘2009-04-01’, ‘2009-04-10’)

2009-04-031 x 10mgMorphineNHS_7162009-04-03 11:16:24NHS_441244412

2009-04-032 x 2mgDiazepamNHS_7162009-04-03 12:00:04NHS_441244455

2009-04-03

Date

1 x 25mgMorphineNHS_7162009-04-03 13:45:41NHS_441244472

DosageDrugPrescriberTime sentManaging
Domain

Event_ID

Drug_Audit_Events

2009-04-031 x 10mgMorphineNHS_7162009-04-03 11:16:24NHS_441244412

2009-04-032 x 2mgDiazepamNHS_7162009-04-03 12:00:04NHS_441244455

2009-04-03

Date

1 x 25mgMorphineNHS_7162009-04-03 13:45:41NHS_441244472

DosageDrugPrescriberTime sentManaging
Domain

Event_ID

Drug_Audit_Events

Figure 10.7: Views over the audit logs.

circumstance. One expects a patient to have access to their own information [UK 98],
and the details of others accessing their information [NHS07b]. The Figure indicates
that queries over audit logs could allow patients to visualise the data flows concerning
their information. At a system level, some access to the exception logs is likely required
by system administrators to resolve technical issues, e.g. to investigate the failure of a
transformation function; though access should be restricted to resolving the particular
issue, and consent should be obtained if appropriate.

10.4 Active Audit

The previous sections describe traditional auditing, where local data and processes are
recorded within a local broker for subsequent query and analysis. Active audit is proactive,
in the sense that it involves raising alerts when certain situations arise to allow for an
appropriate response. Alerts are useful at the system level, e.g. to inform of a failed
transaction (an entry to the exception log), or to warn of policy incompatibilities. At the
application-level, alerts can warn when a patient’s sensor is disconnected, when a carer
omits a task, or when a patient’s information is accessed, as well as notify of suspicious
circumstances, e.g. when a surgeon requests data while officially on vacation. In addition
to triggering workflows or automated responses, active audit can also bring humans into
the system, enabling direct intervention in exceptional circumstances.

IC infrastructure inherently provides distributed audit capabilities. PostgreSQL-PS bro-
kers have the ability to publish events, meaning that internal subscriptions, active rules
and triggers can be used to raise events when certain situations occur. These events can
propagate throughout the broker network, subject to data flow controls.

148 Chapter 10. Audit and Event Replay

10.5 Event Replay

The pub/sub paradigm involves delivering information to those interested as it occurs.
However, there are situations, often triggered by some incident, where clients require
historical information. This might be due to a break in information flow, perhaps due to
a period of disconnection; or more generally, where an incident triggers some application-
level need for historical data, rendering previously ‘uninteresting’ events relevant.

In a distributed broker network, events from a number of sources can satisfy a subscription.
The decoupled nature of the environment, along with notions of local control, makes it
impractical for a client to uncover each source of historical information [LCH+07]; even
then, a client may not hold sufficient privilege to directly access the datastore. By handling
historical requests in the middleware, the requesting principal is not burdened with the
task of discovering and directly querying every potential information source.

There is some work concerning historical events in pub/sub systems. This tends to focus
on the use of history buffers and event retransmission to deal with issues of bootstrapping
and disconnection in mobile systems [CFH+03, FGKZ03, BZA03]. Mühl et al. [MUHW04]
also consider mobility, mentioning that event histories can be managed either by producers
or brokers. Li et al. [LCH+07] take a general approach, in which databases are connected
to various brokers, each associated with a filter to store particular information. The broker
connected to the database holding the relevant information republishes historical events
on receipt of a subscription query with a historic time-based parameter.

Previous work demonstrates the value of event replay in pub/sub, but overlooks issues of
access control. Clearly, event replay mechanisms require control, where policy defines the
circumstances in which historical information is released. In multi-domain environments
it will often be infeasible, if not inappropriate, for a client to directly query a remote
broker for historical information. Instead, historical requests and events should traverse
the broker network to enable the proper enforcement of dissemination policy. Further,
because access control policy is context sensitive, the content of and/or the restrictions
on a historical event may differ due to a change in circumstance. For instance, an event
originally subjected to a restriction filter, may now, instead, be subject to a transformation
function. Replay mechanisms need not only restrict, but can also enrich information
flows, e.g. where a particular event (such as an emergency) triggers the release of a set
of unperturbed historical sensor readings. As all events use the same infrastructure, it
is possible that the replayed events may impact on system state, e.g. when auditing the
auditor. When dealing with historical events, it is necessary to consider the circumstances
in which replay is appropriate, and how a change in state alters information flow.

Here, we extend IC to support event replay, exploiting the fact that brokers are database
systems that maintain a log of historical events and contextual information. Our approach
unifies the management of current and historical events, focusing on context and access
control specifics.

10.5.1 Replay Requests

Historical information is delivered in response to a replay request: a query over historical
information. Such a request is defined in a message, the schema for which consists of the
following attributes:

10.5. Event Replay 149

Event Type The event type to be replayed.

[From/To] (timestamp) Timestamps that bound the time line of the historical query
on one or both sides.

During Conditions that held at the time of the original event publication.

Filter A conditional clause acting as a filter on the event instances delivered—akin to a
subscription filter.

Permission Attributes Additional information to assist in the replay authorisation de-
cision.

Scope [global/local] Defines the scope of the replay request: local applies only to the
remote broker, global is propagated throughout the broker network.

The during attribute acts as a filter applicable at the time of the original publication. It
functions to replay historical events that were published while particular fluents held. To
implement this functionality, it is necessary to have access to the values of the contextual
predicates at the time of the original publication—see §10.2.

Recall that the scoping attributes were removed from PostgreSQL-PS, so that subscription
propagation is controlled by the forwarding policy of the domain (§7.2.1). However, client-
specified scoping is relevant for event replay as the semantics of a replay request differs—a
replay request is one-off, where the client might be interested only in a particular broker’s
event history, as opposed to that of the whole network. Here the specification of scope is
used to avoid duplicate historical notifications (§10.5.3).

A replay request must, at the very least, specify the event type to be replayed and the scope
of the request; however, we expect that replay messages will typically bound the historical
search through specification of time-range and/or a filter. Like subscription requests,
replay requests are validated subject to authorisation policy. Permission attributes assist
in this respect.

Unification of Replay Requests and Subscriptions

A replay request involves a one-off query for historical events. Thus, a replay request is
essentially a subscription to past information, while a general subscription forms a query
over future events. As such, subscriptions and replay requests can be unified.

It follows that replay requests take two forms. The first is an explicit replay-only request,
in which the event channel persists until all matching historical events are delivered. An
example replay-only scenario concerning prescriptions is discussed in §10.5.5. The second
is where a replay request forms part of a general subscription request, signified through
the addition of (some) replay specific attributes: to, from, during and scope. In this
situation the event channel remains after historical delivery, functioning as a (general)
subscription to deliver events as they occur. An example scenario concerns A&E services:
in emergency situations, paramedics might be authorised to connect to the event stream.
To provide some background to the situation, a paramedic might request the patient’s
sensor readings for the last two hours as part of their subscription request. After receiving
this historical information, the subscription persists to deliver further readings as they
are taken.

150 Chapter 10. Audit and Event Replay

10.5.2 Replay Request Validation

The dissemination of historical information requires control. As a replay request is essen-
tially an instance of a subscription, they undergo similar validation processes.

Replay authorisation rules, such as the one in Fig. 10.10(a), are defined to permit re-
play of a particular event type. They take a similar form to request authorisation
rules (Appx. C.2), except that they do not include monitored conditions. Instead, replay
authorisation rules include an attribute (select filter), which allows policy adminis-
trators to place a filter on the query determining the (original) event instances selected
for republication.

Conditions may be imposed on a client’s replay request, adding extra predicates to the
filter or during clause, or limiting the date range of the request. These constraints are
set by imposed condition rules defined specifically for replay requests. Transformation
rules do not require any special definition for replay scenarios. The restrictions apply to
replay channels in a similar manner to subscription channels as described in Ch. 7.

10.5.3 Replay Request Processing

Brokers process a replay request in a similar manner to a subscription request, where a
subscription (delivery) channel is created with the appropriate filters and transformation
hooks. In this way, historical event instances are subject to the same restrictions as a
freshly published event instance.

Global replay-only requests are forwarded to brokers who have, at some stage, advertised
the particular event type. This information is maintained in the logs of the routing
catalogues. If the remote broker is no longer connected, reconnection is attempted. If
the remote broker currently does not advertise that type, a temporary advertisement is
(locally) created and processed to forward the replay request. The creation of this request-
specific channel enables the application of the relevant forwarding restrictions, through
the same procedures described in Ch. 7.

The forwarding process where a replay request is issued as part of a subscription is more
involved. If the replay scope is local, the subscription is forwarded to relevant remote
brokers with the replay aspects removed. Otherwise, the complete request is forwarded to
brokers advertising the event type, in the manner described in Chs. 5 and 7. Brokers that
do not currently advertise the event type, but have at some point in the past (within the
time-range specified by the request), are forwarded only the replay aspects of the request.
This is to obtain historical information without attempting to establish a subscription.
Of course, forwarding is subject to any request transformations and filters imposed on
the channel. Fig. 10.8 illustrates how an example global subscription request (s), which
includes replay aspects (r), is forwarded throughout the network. Brokers marked with an
a currently advertise the event type, and thus receive the complete subscription request.

On the successful validation of a request, a broker selects the appropriate historical events
it stores by querying its local event type’s audit table (pg log in <type>). This query is
qualified by any filters included/imposed as part of the request, in accordance with the
scope of the request. If the replay scope is global, events are replayed only if published
by a directly connected client, not if forwarded through a link.5 Locally-scoped replay

5Such information is determined through a join between the event log and connection histories.

10.5. Event Replay 151

 s+r

c1 r

r

 s+r s+r

r

a

a

a

Figure 10.8: Forwarding of a global subscription request including replay.

requests, however, apply to all publications regardless. This distinction is important, as
duplicates can occur if both local and remote brokers were to replay all events. The
event instances are subject to the applicable transformations and filters as per the usual
IC process. Event properties are used to tag an event as historical, allowing clients and
brokers to distinguish between historical and current events. This includes the ID of the
delivery channel to ensure that the events are only added to the match queue for the client
that issued the historical request. Historical events also include a property containing the
timestamp of the original publication.

A broker executes a replay request as a one-off query to select the relevant historical
events to replay from its local store. After transmission of the events, a broker delivers a
system-message to signal the completion of the replay process. A broker closes the request
channel when a) all relevant local historical events have been transmitted; and b) in the
case of a global request, when all the event channels created for the replay request have
closed (i.e. recursive closure). If a request is issued as part of a subscription, the channel
remains to operate as a general subscription.

10.5.4 Automatic Replay

We have considered the replay of events in response to a client’s request. There may,
however, be situations where a broker should automatically republish historical events.
This might be for quality of service, e.g. to minimise loss in cases of disconnection, or
in situations where a change in context interacts with the access control mechanisms to
alter the flow of information. For instance, a change in context might cause a certain
imposed condition rule or transformation to no longer apply, and thus prior events should
be republished and delivered without restriction.

The definition of an automatic replay rule is essentially a combination of a request au-
thorisation rule and a (policy-specified) replay request. An example rule is shown in Fig.
10.10(b). The triggering event and triggering condition attributes are used to cre-
ate the active rules (internal subscriptions) that trigger the replay. The definitions for the
other attributes are as previously described. Automatic replay rules are implicitly local
in scope.

Automatic replay rules are loaded as part of the subscription validation process, and are
evaluated in the same manner as request authorisation rules. Automatic replay rules
operate much like monitor functions. On receipt of a triggering event, if the triggering
conditions hold, the replay process begins: historical events are selected, according to

152 Chapter 10. Audit and Event Replay

the replay definition, and delivered to the subscriber subject to any transformations and
filters.

10.5.5 Application Examples

We illustrate the usage of event replay functionality in the following two scenarios.

Historical Event Replay: Prescribing

We have used a prescribing scenario to demonstrate how IC works to restrict information
flow. The scenario involves the auditor receiving prescription information for controlled
drugs with patient specifics removed. If the prescriber is under investigation, the restric-
tions do not apply: the auditor receives a prescribe event that includes patient details.

Consider a nurse whose employer contracts with many health institutions to provide care
services. Each institution holds the information pertaining to their patients. It comes
to light that a number of her patients have been falling ill, and that this nurse has been
prescribing controlled drugs far more frequently than other nurses. As such, she is officially
placed under investigation; though as she is only under suspicion she continues to practice.
It is in the interests of the public and patient safety that the auditor investigate the matter.
To undertake the investigation the auditor requires detailed information regarding all the
nurse’s prescriptions, including patient specifics and the reasons for prescribing, from all
institutions for which she has worked. This data is required not only from her future
prescriptions, but also those previously issued.

 Nursing
Home

Contract
Carers

Surgery

Auditor
auditor

ReplayRequest

Surgery

Hospital

Figure 10.9: The propagation of a replay request for prior prescriptions issued by
the regional auditor.

As described, an imposed condition prevents prescribe events from propagating to the
auditor unless the prescriber is under investigation.6 Now that the nurse is under investi-
gation, the auditor requires information of her previous prescriptions—information that
was previously restricted. To obtain this information, the auditor issues a replay request
for all prescriptions issued by the nurse.

As shown in Fig. 10.9, the replay request propagates through the broker network to
those brokers currently and/or previously advertising prescribe events. This causes
each broker receiving the request to republish the prescribe events issued by the nurse.7

6Again, we assume a fluent that represents consent for information to flow to the auditor.
7Although policy is broker specific, we assume that domains will enact similar policies given the nature

of the scenario.

10.5. Event Replay 153

The authorisation rule in Fig. 10.10(a) allows the replay of prescribe events, if the
requestor is an auditor and the request targets a specific prescriber. As the nurse is under
investigation, the replayed events satisfy the filter and thus pass through the event channel.
This provides the auditor with detailed information concerning the nurse’s prescribing
history.

<replay_authorisation>

<rule_name>auditorreplay</rule_name>

<event_type>prescribe</event_type>

<credentials>NHSCred(usernm, ’drug_auditor’)</credentials>

<permission_attributes>prescriber_id:varchar(10)</permission_attributes>

<condition />

<select_filter>prescribe.prescriber_id=att.prescriber_id</select_filter>

<notes>Allows an auditor to request historical prescribe events,

but they must target a specific prescriber</notes>

</replay_authorisation>

(a) The replay authorisation and restriction rules concerning prescribe events.

<automatic_replay>

<rule_name>replaysensoremergency</rule_name>

<event_type>sensor_reading</event_type>

<credentials />

<condition />

<permission_attributes>patient_id:int8</permission_attributes>

<from>now() - interval ‘2 hours’ </from>

<to>now()</now>

<during />

<select_filter>sensor_reading.patient_id=att.patient_id</select_filter>

<triggering_event>emergency</trigger_event>

<triggering_condition>emergency.patient_id = att.patient_id</trigger_condition>

<notes>Any subscription to the sensor stream will receive 2hrs of previous

readings when the patient enters a perceived emergency situation</notes>

</automatic_replay>

(b) The automatic replay rule for emergency situations.

Figure 10.10: Policy fragments driving the replay scenario.

Sensor Obfuscation

In the previous chapter, we described a homecare scenario where sensor data is perturbed
for reasons of privacy. In sensor environments, transformations might involve altering at-
tribute values, perhaps transforming location co-ordinates into regions, as opposed to pro-
viding the precise GPS or room co-ordinates; or summarising physiological information,
e.g. bucketing respiratory readings into a ‘dashboard’ representation: [Stable, Concern
or Emergency]. In emergency situations, however, it is important that care staff receive
unperturbed events.

Given the importance of an emergency situation, a domain might decide to automatically
replay sensor events from several hours before the detection of the incident, to provide
background information. Such functionality is effected through the automatic replay rule
of Fig. 10.10(b), which attaches to sensor reading subscriptions to trigger an unper-
turbed (the transformation no longer applies) stream of historical events on detection
of an emergency. This provides care staff with more details of the situation, to assist
emergency response.

154 Chapter 10. Audit and Event Replay

10.5.6 Further Work

Our work in event replay provides a base for further exploration into historical event
republication. Clearly, republication rates and the effects on system load are important
concerns [MUHW04], as replaying historical information involves the propagation of a
number of events at once. While an area for future work, it may be possible to use fluents
and IC rules for performance considerations, e.g. to control the rate of data transmission.

Overheads aside, the dynamic nature of the network brings complications, e.g. it is not
possible to guarantee that all potential sources were queried if a prior routing path is no
longer accessible. Investigation is required into the consequences of dynamically estab-
lishing links and event channels to provide replay functionality. Further, there are issues
concerning the storage of historical data—it is unrealistic to assume that a broker perpet-
ually stores all historical information. The effect on request semantics must be considered
where historical events are no longer accessible by a broker. One approach might entail
brokers producing meta-events to inform clients of any limitations in realising the request,
such as a reduced date range due to archiving, or that a broker is no longer accessible.

Events are replayed for particular time ranges, optionally refined by the values of fluents.
Both the requestor and policy author can filter the event stream. While flexible, scenarios
are required to determine whether request semantics are sufficiently/overly expressive.

Given that brokers are databases, our investigation into event replay is a natural conse-
quence of IC’s auditing capabilities. As shown by the examples, replay functionality is
intuitively useful for healthcare. However, further investigation is required into the use of
event replay mechanisms in a real-world healthcare deployment. Consideration must be
given to the types of information requested, the volume of data returned by the historical
queries, the frequency of replay requests, a domain’s storage requirements, and the asso-
ciated impacts on overall system performance. Analysis is required into the dynamism of
the environment (i.e. broker/policy/state churn), accounting for the frequency of change,
to determine the impact on, and effectiveness of, event replay mechanisms.

10.6 Summary

Audit is a fundamental requirement for health information. An integrated database-pub/
sub architecture simplifies auditing procedures. Message processing involves the use of
queues, which audit mechanisms extend to persist data long-term. Given that IC rules are
context-sensitive, both the data transmitted and any changes in context must be recorded.
The active rules managing state can also maintain contextual history. Alternatively, such
information can be obtained by directly querying the event logs. This provides visibility
of system state at a particular time in the past. Audit information is useful not only for
purposes of accountability, e.g. providing evidence for investigations, but can also assist
in the detection of policy errors.

Active audit is facilitated by an event-based infrastructure, where events alert in situa-
tions of concern. We describe event replay mechanisms to unify the delivery and control of
both past and current events. Event replay appears a useful feature of a pub/sub infras-
tructure, particularly in situations where there are multiple information sources and/or
where changes in context affect data visibility. The infrastructure presented demonstrates
mechanisms to control event republication, describing how context can be exploited by
policy administrators to manage data disclosure.

11
Conclusions and Further Work

Health providers are responsible for protecting the confidentiality of personal health in-
formation. At the same time, healthcare information must be shared, where (aspects of)
an incident may be relevant to a number of interested clients in various administrative do-
mains. As such, there is a responsibility to ensure that information is shared appropriately.
Healthcare is highly data-driven, involving interactions between patients, professionals,
organisations, government, sensors, etc. Wide-scale event distribution paradigms, while
effective for data dissemination, generally lack the rigorous disclosure controls required by
health infrastructure. IC provides the means for dealing with these competing concerns,
by introducing point-to-point, context-sensitive policy rules that are enforced by brokers
to control information flows throughout a distributed pub/sub infrastructure.

The IC database-pub/sub integration results in an efficient connection between the sub-
strates; facilitates persistence, replay and audit; and allows policy rule definitions access
to a rich representation of state. Our implementation leverages much from the database
system, in terms of languages and transactions, and through the extension of active rules.
Given that health systems depend on the use of database systems, IC introduces a layer
above technology already commonplace in NHS infrastructure.

Recent debate concerns the use of centralised storage and security infrastructure in health-
care. Our focus is on supporting the heterogeneous nature of the health service—where
information flows across administrative domains.1 The NHS aims to give a greater degree
of freedom and control to service providers. It is argued that only standards and basic
services (e.g. identity management) should be centrally managed, allowing local control
over data and privilege. Given that providers hold and require information relevant to
their service, it is natural that they manage the associated sharing concerns. With con-
trol comes responsibility. Our approach allows autonomous management to extend to the
protection of health information, giving those responsible for data fine-grained control
over the circumstances for its release. Brokers enforce local policy consistently across

1Although this work is presented in the context of supporting environments of multiple, autonomous
administrative domains, it also applies to more centralised architectures (§8.5).

155

156 Chapter 11. Conclusions and Further Work

all connections. This gives a domain the ability to control information flows within and
to/from the infrastructure it manages. By sharing information appropriately, providers
meet their data management obligations: the recipient becomes responsible for the in-
formation. Federated environments are not only scalable, but mitigate against risks to
confidentiality. Accountability is improved, by providing visibility as to those responsible
for information misuse/mismanagement.

This dissertation presents IC: a layer of control over a pub/sub service to manage the
distribution of sensitive information. Its goal is to provide an infrastructure appropriate
for an environment of federated administrative control, to allow those responsible for
information to meet their data management obligations. IC enables precise control over
the content of, and circumstances for, event and request transmission, while facilitating
data management and storage.

11.1 Further Work

This work raises a number of research issues:

Workflow Integration Many health procedures are workflow (pathway) oriented. Work-
flows are suited to an event-based infrastructure, as they are responsive to incidents.
One area for investigation concerns the interplay of care pathways, such as those of
[MoM], and information disclosure. While IC provides context-aware access controls,
there is scope to tightly couple workflow procedures with privilege allocation. There
exists some general work in area of workflow based access controls [RDD08, AC06],
though these do not directly consider information dissemination. IC rules are eval-
uated given current contextual state. Health environments are complex, frequently
involving task fragmentation and variance from standard procedures [SGI04]. Work-
flows involve enumerating and prescribing a particular sequence of states, and thus
tend not to handle (unexpected) exceptions. As such, it remains an open question
as to whether workflows are suitable for an access control regime, given the dynamic
and complex nature of health processes.

Sticky Policies In IC, brokers enforce locally defined policy against directly connected
clients/brokers. An interesting area for research concerns the attachment of policy to
events and requests for enforcement in other parts of the network. Sticky policies,
however, raise enforcement issues: concerning the capability of brokers to locally
enforce remotely specified policies; concerning trust, whether remote brokers can be
trusted to enforce the policy of another; and verification, whether it is possible to
verify policy adherence outside of the domain of control. It is arguable that these
concerns are mitigated in healthcare, given the overarching responsibility for health
information. However, sticky policies raise questions of accountability. For example,
who is liable for an ill-specified, under-specified, ambiguous or misinterpreted policy,
the policy author and/or the enforcer(s)? If an attached (remote) policy conflicts
with local policy, which takes preference? Can the policies be combined? If so, is
this appropriate? It is important that such concerns can be reconciled with the
notion of local responsibility. The SmartFlow project [CIC09] is exploring event
tagging to control visibility within distributed infrastructure [PBE+09].

11.1. Further Work 157

Event Replay As discussed in §10.5.6, there is scope for further work in the area of
event replay. A real healthcare deployment is needed to evolve the approach, to
investigate the use and requirements of such functionality, and to consider issues
concerning storage, context and connectivity.

Event Composition Composite events not only react to, but also impact on system
state, and thus can affect information flows. In this dissertation we have used fluents
to encapsulate meaningful context, providing some examples of where fluents are
sensitive to patterns of events. However, we did not explicitly consider the details
of composite events, such as distributed detection or the integration of composition
languages to provide a particular level of expressiveness. IC provides an attractive
model for the integration of composite event functionality, as hook rules allow events
to be consumed, processed and created by the brokers themselves. Research into
composite event functionality has origins in the database world [CM94]. As brokers
are also databases, event composition mechanisms have access to rich state and
can exploit the inherent data management/processing capabilities of the underlying
database system, which in turn feeds back into the messaging infrastructure.

Database Query Control This dissertation focuses on controlling event flows in a dis-
tributed infrastructure, through integrated database-pub/sub brokers. We do not,
however, consider the control of SQL queries issued by local clients directly against
the database system.2 General database security is increasing in flexibility; for in-
stance, PostgreSQL 8.4 [PGDG09a] allows privileges to be defined with field-level
granularity. Hippocratic databases [IBM09a] enable control over the data disclosed
by local queries, through query re-writing and by using statistical measures to re-
strict results. An area for research concerns the unification of distribution and
query control mechanisms, subjecting SQL queries and results to similar filtering
and transformation mechanisms as described for IC (and/or vice-versa). That said,
given the stringent management requirements for health information, it may be
preferable that clients issue queries through a middleware, rather than executing
SQL queries directly against a database.

Formalisation The purpose of formalisation is to verify correctness, thus facilitating the
detection of errors. However, the ability to reason about behaviour may come at the
cost of the model’s expressiveness. From a systems perspective, both PostgreSQL-
PS and IC would benefit from rigorous formalisation. The validation of system
behaviour for global healthcare infrastructure is challenging, considering its size
and complexity. However, given that healthcare is an environment of federated
control, it seems reasonable to analyse policy per administrative domain.

In this dissertation we describe the use of fluents to represent context. This was
motivated by the fact that fluents provide a means by which to reason about policy.
There is some work in using Deontic Logic and an Extended Event Calculus to mon-
itor data obligations [EE08, RPG05] and for policy validation [BLR03]. Recording
changes in fluent state and the events causing change serves as an evidence base for
detecting failures in policy, and situations of non-compliance.

2Our work on audit and event replay touches on the query aspect.

158 Chapter 11. Conclusions and Further Work

Real-world Deployment The focus of this work is on data protection. The aim is to
provide an alternative to centralised data stores and policy definitions, through a
methodology for controlling information dissemination in an environment of fed-
erated administrative control. IC was developed with regard to requirements de-
rived from legislation, codes of practice, research papers, executive statements, NHS
(NPfIT) specifications, nursing manuals and other medical documents. Thus, IC is
grounded on health policy instruments—which itself is a moving target.

A key area for future work is to consider the operational concerns of IC. That is,
evaluating the run-time usage of the system in a live health deployment, considering
real clinical data3 and workloads. There are two main areas for further examination:

Scalability Pub/sub is generally well-regarded for its scalability. The results pre-
sented in this dissertation indicate that IC transformations can in some circum-
stances improve routing efficiency. However, it is important to measure load
and performance based on real workloads. Data is required regarding an actual
deployment: considering the number of clients, event types and policy rules,
event load and sizes (e.g. text or X-Ray images), rule complexity, connection
churn, required response times, and other system/environmental variables and
constraints. Such information will allow for quantified statements of scalability,
which in turn feeds back into the research and development process.

Policy Management IC rules are deliberately expressive, enabling authors to ad-
dress a wide-range of healthcare issues. However, expressiveness increases com-
plexity. The deployment of IC will provide visibility as to the number and type
of rule definitions, enabling evaluation of the policy model. It may be that in
practice policies are relatively simple, in which case the model can be con-
strained. This eases issues of policy definition, coverage and analysis, and aids
formalisation.

System usability must also be investigated to consider the ease in which end-
users (e.g. doctors, patients) can effect data control policy. This will often
concern the definition of consent preferences. General restrictions can be en-
capsulated in fluent state, e.g. disclosure preferences concerning data flows
to a research organisation or a centralised record service; however, specific
concerns entailing granular or patient-specific restrictions might require rule
definition. Familiar wizard-like interfaces, similar to those presented in Ch. 9,
can guide users through policy authoring processes, manipulating policy defi-
nitions (data) as appropriate. Although this is a design issue, the ease of policy
authoring/management will certainly impact on user-acceptance.

These issues are best explored with real-world experimentation. Clearly, an actual
national-level deployment requires significant resources—health infrastructure con-
tracts are in the order of hundreds of millions pounds, requiring consultation with
patients, clinicians, service providers and the government [Bre05]. At the time of
writing, we are improving the efficiency and robustness of our proof-of-concept IC
implementation for use in a project entitled Personal and Social Communication
Services for Health and Lifestyle Monitoring [CEBE].

3At least in terms of type, size and volume.

11.2. Concluding Remarks 159

11.2 Concluding Remarks

The protection of health information is not just a technical issue. There are legal and social
pressures regarding the use and management of health data. Infrastructure supporting
health services must facilitate (real-time) information sharing, storage and protection,
in line with higher-level concerns. IC builds on the inherent responsibility for health
information, introducing a layer of control over a distributed pub/sub network to manage
wide-scale event distribution. Unlike most (proposed) health infrastructure, IC is designed
to account for the federated nature of healthcare policy. It is not a panacea, but instead
is intended as a control mechanism, giving those managing data the ability to meet their
responsibilities. Information protection is improved—responsibility brings accountability.
We feel that the concepts described in this dissertation provide a realistic foundation for
managing the heterogeneous nature of current and future health services.

Bibliography

[ABD+09] Ross Anderson, Ian Brown, Terri Dowti, Philip Inglesant, William Heath,
and Angela Sasse. Database State. The Joseph Rowntree Reform Trust
Limited, UK, 2009.

[AC06] Raman Adaikkalavan and Sharma Chakravarthy. How to use events and
rules for supporting role-based security? (invited paper). In DEXA ’06:
Proceedings of the 17th International Conference on Database and Expert
Systems Applications, pages 698–702, Washington, DC, USA, 2006. IEEE
Computer Society.

[AE07] Alan S. Abrahams and David M. Eyers. Using annotated policy documents
as a user interface for process management. In Proceedings of the First Inter-
national Workshop on Knowledge-based User Interfaces (KUI07), page 64,
Athens, Greece, June 2007. IEEE Computer Society.

[AEKV07] Rakesh Agrawal, Alexandre Evfimievski, Jerry Kiernan, and Raja Velu. Au-
diting disclosure by relevance ranking. In SIGMOD ’07: Proceedings of
the 2007 ACM SIGMOD International Conference on Management of Data,
pages 79–90, New York, NY, USA, 2007. ACM.

[AKSX02] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Hippocratic databases. In VLDB ’02: Proceedings of the 28th International
Conference on Very Large Data Bases, pages 143–154, 2002.

[And96] Ross J. Anderson. A security policy model for clinical information systems.
In IEEE Symposium on Security and Privacy, pages 30–43, 1996.

[ANSI92] American National Standards Institute. Standard x3.135-1992, 1992.

[AoMS06] Academy of Medical Sciences. Personal data for public good: using health
information in medical research. http://www.acmedsci.ac.uk/download.
php?file=/images/project/Personal.pdf, 2006.

[Apa08] Apache Software Foundation. ActiveMQ. http://activemq.apache.org/,
2008.

[BA05] Roberto J. Bayardo and Rakesh Agrawal. Data privacy through optimal
k-anonymization. In ICDE ’05: Proceedings of the 21st International Con-
ference on Data Engineering, pages 217–228, Washington, DC, USA, 2005.
IEEE Computer Society.

[Bak04] A. Bakker. Access to EHR and access control at a moment in the past: a
discussion of the need and an exploration of the consequences. International
Journal of Medical Informatics, 73(3):267–270, 2004.

[Bak07] A. Bakker. The need to know the history of the use of digital patient data,
in particular the EHR. International Journal of Medical Informatics, 76(5–
6):438–441, 2007.

161

162 Bibliography

[BBHM95] Jean Bacon, John Bates, Richard Hayton, and Ken Moody. Using Events
to Build Distributed Applications. In Proceedings of the 2nd International
Workshop on Services in Distributed and Networked Environments (SDNE
’95), page 148. IEEE Computer Society, 1995.

[BCSS99] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and
Daniel C. Sturman. A case for message oriented middleware. In Proceedings
of the 13th International Symposium on Distributed Computing, pages 1–18,
London, UK, 1999. Springer-Verlag.

[Bec05] Moritz Y. Becker. Cassandra: Flexible trust management and its application
to electronic health records. PhD thesis, University of Cambridge, 2005.

[Bec07] Moritz Y. Becker. Information Governance in NHS’s NPfIT: A Case for
Policy Specification. International Journal of Medical Informatics, 76:432–
437, 2007.

[BEMP05] Jean Bacon, David Eyers, Ken Moody, and Lauri Pesonen. Securing pub-
lish/subscribe for multi-domain systems. In Middleware ’05: Proceedings
of the ACM/IFIP/USENIX 2005 International Conference on Middleware,
pages 1–20, 2005.

[BEP+03] András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon,
and Ken Moody. Role-based access control for publish/subscribe middleware
architectures. In DEBS ’03: Proceedings of the 2nd International Workshop
on Distributed Event-Based Systems, pages 1–8, New York, NY, USA, 2003.
ACM.

[Ber08] Berkeley Database Research. TelegraphCQ. http://telegraph.cs.
berkeley.edu/telegraphcq/v0.2/, 2008.

[BES+09] Jean Bacon, David M. Eyers, Jatinder Singh, Brian Shand, Matteo Migli-
avacca, and Peter Pietzuch. Securing event-based systems. Information
Technology. Special issue on Complex Event Processing, 2009.

[BESP08] Jean Bacon, David M. Eyers, Jatinder Singh, and Peter R. Pietzuch. Ac-
cess control in publish/subscribe systems. In DEBS ’08: Proceedings of the
Second International Conference on Distributed Event-Based Systems, pages
23–34, New York, NY, USA, 2008. ACM.

[Bha09] Neil Bhatia. Summary care records—No one has asked me. British Medical
Journal, 338, June 2009. b2519.

[BHM+01] Jean Bacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao.
Event storage and federation using ODMG. In POS-9: Revised Papers from
the 9th International Workshop on Persistent Object Systems, pages 265–
281, London, UK, 2001. Springer-Verlag.

[Bib77] K. J. Biba. Integrity considerations for secure computer systems. Technical
Report ESD-TR-76-372, MITRE Corporation, Apr 1977.

[BLR03] Arosha K. Bandara, Emil Lupu, and Alessandra Russo. Using event cal-
culus to formalise policy specification and analysis. In 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY
2003), pages 26–40, 2003.

[BMA07a] British Medical Association. Confidentiality and disclosure of information
to PCTs in primary care settings — Guidance for GPs. http://www.bma.
org.uk/ethics/confidentiality/confiddiscloseinfopcts.jsp, 2007.

Bibliography 163

[BMA07b] British Medical Association. Electronic health records will fail unless public
and professional confidence is restored, says BMA, 13 Sep 2007.

[BN89] D. F. C. Brewer and M. J. Nash. The Chinese wall security policy. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages
206–214, 1989.

[BOS+06] Mike Bilger, Luke O’Connor, Matthias Schunter, Morton Swimmer, and Nev
Zunic. Data-centric security. Technical report, IBM, NY, 2006.

[BP73] David E. Bell and Leonard J. La Padula. Secure computer systems: Math-
ematical foundations and model. Technical Report M74-244, MITRE Cor-
poration, May 1973.

[Bre05] Sean Brennan. The NHS IT Project: The Biggest Computer Programme in
the World... Ever! Radcliffe Publishing Ltd, 2005.

[BRG00] Bolton Research Group. Patients’ knowledge and expectations of confiden-
tiality in primary health care: a quantitative study. British Journal of Gen-
eral Practice, 50:901–902, 2000.

[BSIG09] Bluetooth Special Interest Group. Bluetooth specification docu-
ments. http://www.bluetooth.com/Bluetooth/Technology/Building/
Specifications/, 2009.

[BSNM07] Gaetano Borriello, Vince Stanford, Chandra Narayanaswami, and Walter
Menning. Guest editors’ introduction: Pervasive computing in healthcare.
IEEE Pervasive Computing, 6(1):17–19, 2007.

[BV06] R. Baldoni and A. Virgillito. Distributed Event Routing in Publish/Sub-
scribe Communication Systems: a Survey (revised version). Technical report,
MIDLAB 1/2006 - Dipartimento di Informatica e Sistemistica A.Ruberti,
Universita di Roma la Sapienza, 2006.

[BZA03] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably supporting
durable subscriptions in a publish/subscribe system. DSN ’03: International
Conference on Dependable Systems and Networks, pages 57–66, 2003.

[Cab05] Cabinet Office (UK) - eGovernment Unit. e-Government Interoperability
Framework Version 6.1. http://www.govtalk.gov.uk/schemasstandards/
egif_document.asp?docnum=949, 2005.

[CABB04] Mariano Cilia, Mario Antollini, Christof Bornhö)vd, and Alejandro Buch-
mann. Dealing with heterogeneous data in pub/sub systems: The Concept-
Based approach. In DEBS ’04: Proceedings of the 3rd International Work-
shop on Distributed Event-Based Systems, Edinburgh, Scotland, May 2004.

[CB95] D Carman and N Britten. Confidentiality of medical records: the patient’s
perspective. British Journal of General Practice, 45(398):485–488, 1995.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD’00), pages 379–390. ACM, 2000.

[CEBE] University of Cambridge, University of Essex, BT, and Ericsson.
PAL:Personal and Social Communication Services for Health and Lifestyle
Monitoring. http://pal.dalore.net.

164 Bibliography

[CFGR02] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of
XML Documents with XPath Expressions. The VLDB Journal, 11(4):354–
379, 2002.

[CFH+03] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann. Looking into
the past: enhancing mobile publish/subscribe middleware. In DEBS ’03:
Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems, pages 1–8, 2003.

[Cha95] Sharma Chakravarthy. Early active database efforts: A capsule summary.
IEEE Transactions on Knowledge and Data Engineering, 7(6):1008–1010,
1995.

[Cha06] Ritu Chadha. A cautionary note about policy conflict resolution. In Military
Communications Conference (MILCOM)), pages 1–8, October 2006.

[CHI] Canada Health Infoway. http://www.infoway-inforoute.ca.

[CHY96] Ming-Syan Chen, Jiawei Hun, and Philip S. Yu. Data mining: An overview
from database perspective. IEEE Transactions on Knowledge and Data En-
gineering, 8:866–883, 1996.

[Cic90] Aaron V Cicourel. The integration of distributed knowledge in collaborative
medical diagnosis. Intellectual teamwork: social and technological founda-
tions of cooperative work book contents, pages 221–242, 1990.

[CIC09] University of Cambridge, Imperial College, and Clinical and Biomedical
Computing Unit, National Health Service. Smartflow: Extendable event-
based middleware. http://www.smartflow.org/, 2009.

[CL08] David W. Chadwick and Stijn F. Lievens. Enforcing “sticky” security policies
throughout a distributed application. In MidSec ’08: Proceedings of the 2008
Workshop on Middleware Security, pages 1–6, New York, NY, USA, 2008.
ACM.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[CM94] S. Chakravarthy and D. Mishra. Snoop: an expressive event specification
language for active databases. IEEE Transactions on Knowledge and Data
Engineering, 14(1):1–26, 1994.

[CM96] Chris Clifton and Don Marks. Security and privacy implications of data
mining. In In ACM SIGMOD Workshop on Research Issues on Data Mining
and Knowledge Discovery, pages 15–19, 1996.

[CNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI
event-based infrastructure and its application to the development of the
OPSS WFMS. IEEE Transactions on Software Engineering, 27(9):827–850,
2001.

[Cod83] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 26(1):64–69, 1983.

[Com06a] Douglas E. Comer. Internetworking with TCP/IP Vol I. Principles, Proto-
cols, and Architecture, 5th edition. Prentice Hall, 2006.

Bibliography 165

[Com06b] OASIS Web Services Notification (WSN) Technical Committee. Web Ser-
vices Notification (WSN) Standards v1.3. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsn, 2006.

[Con09] Conservatives (UK). Conservative Party Response to the Independent
Review of NHS IT. http://www.conservatives.com/~/media/Files/
Downloadable%20Files/Conservative%20Response%20NHS%20IT.ashx?
dl=true, Aug 2009.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC
’71: Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, pages 151–158, New York, NY, USA, 1971. ACM.

[CRW99] Antonio Carzaniga, David R. Rosenblum, and Alexander L. Wolf. Chal-
lenges for Distributed Event Services: Scalability vs. Expressiveness. In
Engineering Distributed Objects ’99, Los Angeles, California, May 1999.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM Transactions
on Computer Systems, 19(3):332–383, 2001.

[CU07] House of Commons UK. The Electronic Patient Record: HC 422-I, Sixth
Report of Session 2006-07, September 2007.

[CW91] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremen-
tal View Maintenance. In VLDB ’91: Proceedings of the 17th International
Conference on Very Large Data Bases, pages 577–589, 1991.

[CZO+08] David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Linying Su,
and Tuan Anh Nguyen. PERMIS: a modular authorization infrastructure.
Concurrency and Computation: Practice and Experience, 20(11):1341–1357,
2008.

[DA99] T. Dierks and C. Allen. The TLS Protocol (RFC 2246). Internet Engineering
Task Force (IETF), 1999.

[Dar08] Lord Darzi. High quality care for all: NHS Next Stage Review. Department
of Health, 2008.

[Dat04] C. J. Date. Introduction to Database Systems, 8th edition. Addison Wesley,
2004.

[Dav07] Linda Davidson. After the security storm. http://www.e-health-insider.
com/Features/item.cfm?docID=228, 12 Dec 2007. eHealth Insider.

[Dee89] Steve Deering. Host Extensions for IP Multicasting (RFC 1112). Internet
Engineering Task Force (IETF), 1989.

[DF03] Yanlei Diao and Michael Franklin. Query Processing for High-Volume XML
Message Brokering. In VLDB ’03: Proceedings of the 29th International
Conference on Very Large Data Bases, pages 261–272, 2003.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[DoH03a] Department of Health. Confidentiality: NHS Code of Prac-
tice. http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_4069253, Nov
2003.

166 Bibliography

[DoH03b] Department of Health. Primary care trust configurations. http://www.
glospct.nhs.uk/pdf/professionals/procurement/map.pdf, Nov 2003.

[DoH04a] Department of Health. Chronic disease management: a compendium
of information. http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_062820, May 2004.

[DoH04b] Department of Health. Improving Chronic Disease Management.
http://www.dh.gov.uk/dr_consum_dh/idcplg?IdcService=GET_
FILE&dID=9015&Rendition=Web, 2004.

[DoH05a] Department of Health. A short guide to foundation trusts. http:
//www.dh.gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_4126013, Nov 2005.

[DoH05b] Department of Health. Supporting People with Long Term Con-
ditions. A NHS and Social Care Model to support local in-
novation and integration. http://www.bjhc.co.uk/telecare/docs/
SupportingPeopleWithLongTermConditions.pdf, 2005.

[DoH07a] Department of Health. Information Security Management: NHS Code
of Practice. http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_074142, Apr 2007.

[DoH07b] Department of Health. NHS information governance guid-
ance on legal and professional obligations. http://www.
dh.gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_079616, Oct 2007.

[DoH07c] Department of Health. Safer management of Controlled Drugs. http:
//www.dh.gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_074513, 2007.

[DoH08] Department of Health. Pharmacy in England: build-
ing on strengths - delivering the future. http://www.
dh.gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_083815, April 2008.

[DoH09a] Department of Health. Categorisation of arm’s length bodies.
http://www.dh.gov.uk/en/Aboutus/OrganisationsthatworkwithDH/
Armslengthbodies/Categorisationofarmslengthbodies/DH_063474,
April 2009.

[DoH09b] Department of Health. The NHS Constitution for England (interac-
tive version). http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_093419, Jan 2009.

[DoH09c] Department of Health. The statement of NHS accountability
for England. http://www.dh.gov.uk/en/Publicationsandstatistics/
Publications/PublicationsPolicyAndGuidance/DH_093422, Jan 2009.

[DoHD05] Older People Department of Health and Disability Di-
vision. Building Telecare in England. http://www.
dh.gov.uk/en/Publicationsandstatistics/Publications/
PublicationsPolicyAndGuidance/DH_4115303, 2005.

[DoHHS] U.S. Department of Health & Human Services. The Office of the National
Coordinator for Health Information Technology. http://healthit.hhs.
gov.

Bibliography 167

[EC07a] European Commission. Accelerating the development of the eHealth market
in Europe, Dec 2007.

[EC07b] European Commission. Personal health systems (conference report).
http://ec.europa.eu/information_society/newsroom/cf/document.
cfm?action=display&doc_id=323, 2007.

[EC08] Commission of the European Communities. Communication on telemedicine
for the benefit of patients, healthcare systems and society (com(2008)
689). http://ec.europa.eu/information_society/activities/health/
policy/telemedicine/index_en.htm, November 2008.

[Edi09] Editors. Healthcare data breaches burgeon in wake of new laws. Computer
Fraud & Security, 7:2–3, 2009.

[EE08] David Evans and David M. Eyers. Deontic logic for modelling data flow
and use compliance. In MPAC ’08: Proceedings of the 6th International
Workshop on Middleware for Pervasive and Ad-hoc Computing, pages 19–
24, New York, NY, USA, 2008. ACM.

[EFGK03] Patrick Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Lim-
iting privacy breaches in privacy preserving data mining. In PODS ’03:
Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pages 211–222, New York, NY,
USA, 2003. ACM.

[eHe05] eHealth Insider. No sealed envelopes for first summary records. http://
www.e-health-insider.com/news/item.cfm?ID=1562, Nov 2005.

[eHe07a] eHealth Insider. Foundation trusts tender outside NPfIT. http:
//www.e-health-insider.com/News/3091/south_edges_towards_
’best_of_breed’_approach, Oct 2007.

[eHe07b] eHealth Insider. South Warwickshire authorises shared smartcard use. http:
//www.e-health-insider.com/news/item.cfm?ID=2449, Jan 2007.

[eHe08a] eHealth Insider. Foundation trusts tender outside NPfIT. http:
//www.e-health-insider.com/News/4077/foundation_trusts_tender_
outside_npfit, Aug 2008.

[eHe08b] eHealth Insider. Medics sceptical about government data security, 01 Feb
2008.

[eHe09] eHealth Insider. CfH jigsaw still ‘missing pieces’. http://www.
e-health-insider.com/News/4930/cfhjigsawstillmissingpieces, Jun
2009.

[EN04] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Sys-
tems, 4th Edition. Addison Wesley, 2004.

[EPTS08] Event Processing Technical Society. Event processing glossary - ver-
sion 1.1. http://complexevents.com/wp-content/uploads/2008/08/
epts-glossary-v11.pdf, 2008.

168 Bibliography

[Eug01] Patrick Th. Eugster. Type-Based Publish/Subscribe. PhD thesis, EPFL,
2001.

[FfIPR05] Foundation for Information Policy Research. NHS Confidentiality Consulta-
tion - FIPR Response. http://www.cl.cam.ac.uk/~rja14/fiprmedconf.
html, 2005. Press Release.

[FGKZ03] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zeidler. Sup-
porting mobility in content-based publish/subscribe middleware. In Middle-
ware ’03: Proceedings of the ACM/IFIP/USENIX 2003 International Con-
ference on Middleware, pages 103–122, New York, NY, USA, 2003. Springer-
Verlag New York, Inc.

[Fie04] Ludger Fiege. Visibility in Event-Based Systems. PhD thesis, Technical
University of Darmstadt, 2004.

[FJLM05] E. Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. The padres
distributed publish/subscribe system. In Feature Interactions in Telecom-
munications and Software Systems VIII, pages 12–30, 2005.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access control. In In 15th
NIST-NCSC National Computer Security Conference, pages 554–563, 1992.

[FMMB02] Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann. Engi-
neering event-based systems with scopes. In ECOOP, pages 309–333, 2002.

[FZB+04] Ludger Fiege, Andreas Zeidler, Alejandro Buchmann, Roger Kilian-Kehr,
and Gero Mhl. Security aspects in publish/subscribe systems. In DEBS ’04:
Third International Workshop on Distributed Event-Based Systems, pages
44–49. IEEE, 2004.

[GIP] GIP-DMP (Dossier Medical Personal). http://www.d-m-p.org/.

[GMCU06] General Medical Council UK. Good Medical Practice, 2006.

[Gol98] J Goldman. Protecting privacy to improve health care. Health Affairs,
17(6):47–60, 1998.

[GSB+08] Trisha Greenhalgh, Katja Stramer, Tanja Bratan, Emma Byrne, Jill Russell,
Yara Mohammad, Gary Wood, and Susan Hinder. Summary Care Record
Early Adopter Programme: An independent evaluation by University Col-
lege London. http://www.haps.bham.ac.uk/publichealth/cfhep/002.
shtml, Apr 2008.

[HHS+02] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster.
The anatomy of a context-aware application. Wireless Networks, 8(2-3):187–
197, 2002.

[HIA06] Office of the CIO: Health Information Architecture Office. Security audit
requirements: Functional allocation. http://hssp-security.wikispaces.
com/PASS_Audit, Feb 2006.

[Hid09] Hidalgo Ltd. Equivital. http://www.equivital.co.uk/contact.html,
2009.

[HMF04] Connecting for Health (Markle Foundation). Achieving Electronic Connec-
tivity in Healthcare: A Preliminary Roadmap from the Nations Public and
Private-Sector Healthcare Leaders. Markle Foundation, New York, NY, USA,
2004.

Bibliography 169

[HPS07] Jennifer Hursteld, Urvashi Parashar, and Kerry Schoeld. The costs and
benets of independent living, 2007.

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
reasoning about computer systems (first edition). Cambridge University
Press, 2000.

[HSH+09] Glyn Hayes, Ian Shepherd, Richard Humphries, Gail Beer, Jonathan As-
bridge, and John Williams. Independent Review of NHS and Social Care IT.
Conservatives (UK), Aug 2009.

[HW04] Junzhe Hu and Alfred C Weaver. Dynamic, context-aware access control
for distributed healthcare applications. In Workshop on Pervasive Security,
Privacy, and Trust (PSPT04), 2004.

[IBM08] IBM. DB2. http://www-01.ibm.com/software/data/db2/, 2008.

[IBM09a] IBM. Hippocratic databases. http://www.almaden.ibm.com/cs/
projects/iis/hdb/hdb_projects.shtml, 2009.

[IBM09b] IBM. IBM Websphere MQ. http://www.ibm.com/software/integration/
wmq/, 2009.

[IHTS] International Health Terminology Standards Development Organisation.
SNOWMED CT. http://www.ihtsdo.org/snomed-ct/.

[Jar84] Matthias Jarke. Common Subexpression Isolation in Multiple Query Op-
timization. In Query Processing in Database Systems, pages 191–205.
Springer, 1984.

[JBP05] Joint Formulary Committee (Great Britain), British Medical Association,
and Pharmaceutical Society of Great Britain. British National Formulary
49th Edition, 2005.

[Khu05] Himanshu Khurana. Scalable security and accounting services for content-
based publish/subscribe systems. In SAC ’05: Proceedings of the 2005 ACM
symposium on Applied Computing, pages 801–807, New York, NY, USA,
2005. ACM.

[KSW02] Günter Karjoth, Matthias Schunter, and Michael Waidner. Platform for
enterprise privacy practices: Privacy-enabled management of customer data.
In Privacy Enhancing Technologies, pages 69–84, 2002.

[LAE+04] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David DeWitt. Limiting disclosure in hippocratic databases.
In VLDB ’04: Proceedings of the Thirtieth International Conference on Very
Large Data Bases, pages 108–119, 2004.

[Lam71] Butler Lampson. Protection. In Proceedings of the Fifth Annual Princeton
Conference on Information Sciences and Systems,, pages 437–443, Princeton
University, 1971.

[Las] Louis Lasagna. Hippocratic Oath — modern version. http://www.pbs.
org/wgbh/nova/doctors/oath_modern.html.

[LCH+07] G. Li, A. Cheung, Sh. Hou, S. Hu, V. Muthusamy, R. Sherafat, A. Wun,
H.-A. Jacobsen, and S. Manovski. Historic data access in publish/subscribe.
In Distributed Event Based Systems, pages 80–84, 2007.

170 Bibliography

[Les99] Lawrence Lessig. Code and Other Laws of Cyberspace. Basic Books, Inc.,
New York, NY, USA, 1999.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[LKHT09] Helma van der Linden, Dipak Kalra, Arie Hasman, and Jan Talmon. Inter-
organizational future proof ehr systems: A review of the security and privacy
related issues. International Journal of Medical Informatics, 78:141–160,
2009.

[LLN03] Jim Longstaff, Mike Lockyer, and John Nicholas. The Tees confidentiality
model: an authorisation model for identities and roles. In SACMAT ’03:
Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies, pages 125–133, New York, NY, USA, 2003. ACM.

[LPT99] Ling Liu, Calton Pu, and Wei Tang. Continual Queries for Internet Scale
Event-Driven Information Delivery. IEEE Transactions on Knowledge and
Data Engineering, 11(4):610–628, 1999.

[Luc02] David Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Professional,
2002.

[McC07] Lindsay McClure. Evidence submitted by the Association of Indepen-
dent Multiple Pharmacies, the Company Chemists Association, the Na-
tional Pharmacy Association and the Pharmaceutical Services Negotiat-
ing Committee (EPR 22). http://www.publications.parliament.uk/pa/
cm200607/cmselect/cmhealth/422/422we08.htm, March 2007.

[McK] McKesson Information Solutions — NHS Staff Record Project. Electronic
Staff Record. http://www.esrsolution.co.uk/.

[McN00] Gloria J. McNeal. AACN Guide to Acute Care Procedures in the Home.
Lippincott Williams & Wilkins, Philadelphia, PA, 19106, 2000.

[MFGB02] Gero Mühl, L. Fiege, F. C. Gartner, and A. Buchmann. Evaluating Ad-
vanced Routing Algorithms for Content-Based Publish/Subscribe Systems.
In Proceedings of the 10th International Symposium on Modelling, Analy-
sis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS’02), pages 167–176. IEEE Computer Society, 2002.

[MFP06] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based
Systems. Springer, 2006.

[Mic08] Microsoft. SQL Server. http://www.microsoft.com/sqlserver/2008/en/
us/default.aspx, 2008.

[Mic09a] Microsoft. Microsoft Message Queuing (MSMQ). http://www.microsoft.
com/windowsserver2003/technologies/msmq/, 2009.

[Mic09b] Microsoft. Patterns and Practices: Publish/Subscribe. http://msdn.
microsoft.com/en-us/library/ms978603.aspx, 2009.

[Mik02] Zoltán Miklós. Towards an access control mechanism for wide-area publish/-
subscribe systems. In ICDCSW ’02: Proceedings of the 22nd International
Conference on Distributed Computing Systems, pages 516–524, Washington,
DC, USA, 2002. IEEE Computer Society.

Bibliography 171

[MoM] Map of Medicine. http://www.mapofmedicine.com.

[Moo01] Ken Moody. Coordinating policy for federated applications. In Proceedings of
the IFIP TC11/ WG11.3 Fourteenth Annual Working Conference on Data-
base Security, pages 127–134, Deventer, The Netherlands, The Netherlands,
2001. Kluwer, B.V.

[MU00] Naftaly H. Minsky and Victoria Ungureanu. Law-governed interaction: a
coordination and control mechanism for heterogeneous distributed systems.
ACM Transactions on Software Engineering Methodologies, 9(3):273–305,
2000.

[MUHW04] Gero Mühl, Andreas Ulbrich, Klaus Herrmann, and Torben Weis. Dissemi-
nating information to mobile clients using publish/subscribe. IEEE Internet
Computing, 8(3):46–53, 2004.

[MY04] Jai Mohan and Raja Razali Raja Yaacob. The malaysian telehealth flag-
ship application: a national approach to health data protection and utili-
sation and consumer rights. International Journal of Medical Informatics,
73(3):217–227, 2004.

[NAO07] National Audit Office. Prescribing costs in primary care. The Stationery
Office, 2007.

[NAO08] National Audit Office. The National Programme for IT in the NHS: Progress
since 2006. The Stationery Office, 2008.

[NEHTA] National E-Health Transition Authority. http://www.nehta.gov.au/.

[NHSa] National Health Service. http://www.nhs.uk/.

[NHSb] NHS Connecting For Health. http://www.connectingforhealth.nhs.uk/.

[NHS02] NHS Information Authority in conjunction with the Consumers Association
and Health Which? Share with Care! people’s views on consent confiden-
tiality of patient information, 2002.

[NHS06a] NHS Connecting For Health. An introduction to Legitimate Relationships
and Workgroups, July 2006. NPfIT Information Governance.

[NHS06b] NHS Connecting For Health. RBAC Statement of Principles, July 2006.
NPfIT Access Control (Registration) Programme.

[NHS06c] NHS Connecting For Health. Sealed Envelopes Briefing Paper: ‘Se-
lective Alerting’ Approach. http://www.connectingforhealth.nhs.
uk/systemsandservices/infogov/confidentiality/sealedpaper.pdf,
2006.

[NHS06d] NHS: Ministerial Taskforce on the Summary Care Record. Report of
the Ministerial Taskforce on the Summary Care Record. http://www.
library.nhs.uk/HEALTHMANAGEMENT/ViewResource.aspx?resID=224460,
Dec 2006.

[NHS07a] NHS. SNOMED CT — the language of the NHS Care Records Service, 2007.

[NHS07b] NHS Care Record Development Board. The care record guarantee—our
guarantee for NHS Care Records in England. http://www.nigb.nhs.uk/
guarantee, 2007.

172 Bibliography

[NHS07c] NHS Connecting For Health. RBAC Rationalisation Document v1.0, Feb
2007. NPfIT Access Control (Registration) Programme.

[NHS08a] NHS Connecting For Health. National RBAC Database v24, Feb 2008.
NPfIT Access Control (Registration) Programme.

[NHS08b] NHS Connecting For Health. An introduction to Position Based Ac-
cess Control (PBAC). http://www.esrsolution.co.uk/upload/file/
IntroductiontoPositionBasedAccessControl(PBAC).pdf, 2008.

[NHS08c] NHS Connecting For Health. NHS number standard for general prac-
tice. http://www.connectingforhealth.nhs.uk/systemsandservices/
nhsnumber/staff/documents/opinfogp.pdf, 2008.

[NHS08d] NHS Connecting For Health. The National RBAC Database User Guide
v3.0, Feb 2008. NPfIT—Information Governance.

[NHS09a] NHS. Authorities and Trusts. http://www.nhs.uk/NHSEngland/aboutnhs/
Pages/Authoritiesandtrusts.aspx, 2009.

[NHS09b] NHS 23. A dossier of concerns. http://www.nhs-it.info, 2009.

[NHS09c] NHS Connecting For Health. Data services. http://www.
connectingforhealth.nhs.uk/systemsandservices/data, 2009.

[NHS09d] NHS Connecting For Health. N3 Factsheet. http://www.
connectingforhealth.nhs.uk/systemsandservices/n3, 2009.

[NTBL07] Qun Ni, Alberto Trombetta, Elisa Bertino, and Jorge Lobo. Privacy-aware
role based access control. In SACMAT ’07: Proceedings of the 12th ACM
Symposium on Access Control Models and Technologies, pages 41–50, New
York, NY, USA, 2007. ACM Press.

[OAS05a] OASIS eXtensible Access Control Markup Language (XACML) Tech-
nical Committee. eXtensible Access Control Markup Language
(XACML) v2.0. http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=xacml, 2005.

[OAS05b] OASIS eXtensible Access Control Markup Language (XACML) Technical
Committee. XACML RBAC Profile v2.0. http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf,
2005.

[OP01] Lukasz Opyrchal and Atul Prakash. Secure distribution of events in content-
based publish subscribe systems. In SSYM’01: Proceedings of the 10th con-
ference on USENIX Security Symposium, pages 21–21, Berkeley, CA, USA,
2001. USENIX Association.

[OPA07] Lukasz Opyrchal, Atul Prakash, and Amit Agrawal. Supporting privacy
policies in a publish-subscribe substrate for pervasive environments. Journal
of Networks, 2(1):17–26, 2007.

[Ora09a] Oracle. Oracle Advanced Queueing. http://www.oracle.com/technology/
products/aq/htdocs/aq9i_overview.html, 2009.

[Ora09b] Oracle. Oracle Database. http://www.oracle.com/database/index.html,
2009.

Bibliography 173

[Pat06] Shyam Pather. Microsoft SQL Server 2005 Notification Services. Sams,
2006.

[PB02] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based
Middleware Architecture. In DEBS ’02: Proceedings of the 1st International
Workshop on Distributed Event-Based Systems, pages 611–618, Vienna, Aus-
tria, July 2002.

[PB05] Lauri I. W. Pesonen and Jean Bacon. Secure event types in content-based,
multi-domain publish/subscribe systems. In SEM ’05: Proceedings of the
5th International Workshop on Software Engineering and Middleware, pages
98–105, New York, NY, USA, September 2005. ACM Press.

[PBE+09] Ioannis Papagiannis, Jean Bacon, David Eyers, Matteo Migliavacca, Peter
Pietzuch, and Brian Shand. Privateflow: Decentralised information flow
control in event based middleware (demo). In 3rd ACM International Con-
ference on Distributed Event-Based Systems (DEBS), Nashville, TN, USA,
07/2009 2009.

[PCB00] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
cricket location-support system. In MobiCom ’00: Proceedings of the 6th An-
nual International Conference on Mobile Computing and Networking, pages
32–43, New York, NY, USA, 2000. ACM.

[PD99] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Com-
puting Surveys, 31(1):63–103, 1999.

[PEB06] Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. A capabilities-based
access control architecture for multi-domain publish/subscribe systems. In
SAINT ’06: Proceedings of the Symposium on Applications and the Internet,
pages 222–228, Phoenix, AZ, January 2006. IEEE.

[PEB07a] Lauri I. W. Pesonen, David M. Eyers, and Jean Bacon. Encryption-enforced
access control in dynamic multi-domain publish/subscribe networks. In
DEBS ’07: Proceedings of the 2007 Inaugural International Conference on
Distributed Event-Based Systems, pages 104–115, New York, NY, USA, 2007.
ACM.

[PEB07b] Lauri I.W. Pesonen, David M. Eyers, , and Jean Bacon. Access control in
decentralised publish/subscribe systems. Journal of Networks, 2(2):57–67,
April 2007.

[PGDG09a] PostgreSQL Global Development Group. http://www.postgresql.org,
2009.

[PGDG09b] PostgreSQL Global Development Group. Triggers. http://www.
postgresql.org/docs/8.0/interactive/triggers.html, 2009.

[PIAG08a] Patient Information Advisory Group. PIAG Response to NHS CFH Con-
sultation on Public, Patients and other interested parties views on Addi-
tional Uses of Patient Data . http://www.dh.gov.uk/ab/PIAG/index.htm?
IdcService=GET_FILE&dID=185043&Rendition=Web, 2008.

[PIAG08b] Patient Information Advisory Group. PIAG Response to the Consultation
on the NHS Constitution . http://www.dh.gov.uk/ab/PIAG/index.htm?
IdcService=GET_FILE&dID=185094&Rendition=Web, 2008.

174 Bibliography

[Pie04] Peter R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis,
University of Cambridge, 2004.

[PSC07] UK Parliament: Select Committee on Health Written Evidence. Evi-
dence submitted by the Foundation for Information Policy Resarch (EPR
61). http://www.publications.parliament.uk/pa/cm200607/cmselect/
cmhealth/422/422we22.htm, March 2007.

[PSI] PSIRP. Publish/Subscribe Internet Routing Paradigm. http://www.psirp.
org/.

[RDD07] Giovanni Russello, Changyu Dong, and Naranker Dulay. Authorisation and
conflict resolution for hierarchical domains. In POLICY ’07: Proceedings of
the Eighth IEEE International Workshop on Policies for Distributed Systems
and Networks, pages 201–210, Washington, DC, USA, 2007. IEEE Computer
Society.

[RDD08] Giovanni Russello, Changyu Dong, and Naranker Dulay. A workflow-based
access control framework for e-Health applications. In AINAW ’08: Proceed-
ings of the 22nd International Conference on Advanced Information Net-
working and Applications - Workshops, pages 111–120, Washington, DC,
USA, 2008. IEEE Computer Society.

[RHH+04] M Robling, K Hood, H Houston, R Pill, J Fay, and H Evans. Public attitudes
towards the use of primary care patient record data in medical research
without consent: a qualitative study. Journal of Medical Ethics, 30(1):104–
109, February 2004.

[RI80] Daniel J. Rosenkrantz and Harry B. Hunt III. Processing Conjunctive Pred-
icates and Queries. In VLDB ’80: Proceedings of the Sixth International
Conference on Very Large Data Bases, pages 64–72. VLDB Endowment,
1980.

[RM86] R.Kowalski and M.Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

[RPG05] Mohsen Rouached, Olivier Perrin, and Claude Godart. A contract-based
approach for monitoring collaborative web services using commitments in
the event calculus. In WISE ’05: Web Information Systems Engineering,
pages 426–434, 2005.

[RPS07] Royal Pharmaceutical Society of Great Britain. Medicines, Ethics and Prac-
tice: A guide for pharmacists and pharmacy technicians. http://www.
rpsgb.org.uk/pdfs/MEP31s1-2b.pdf, July 2007.

[RR06] Costin Raiciu and David S. Rosenblum. Enabling confidentiality in content-
based publish/subscribe infrastructures. In Securecomm ’06: Proceedings of
the Second IEEE/CreatNet International Conference on Security and Pri-
vacy in Communication Networks, 2006.

[SAB+00] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps.
Content based routing with Elvin4. In Proceedings AUUG2k, 2000.

[SBC+98] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan
Miller, Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon:
An Information Flow Based Approach to Message Brokering. In Proceed-
ings of the 9th International Symposium on Software Reliability Engineering
(ISSRE’98). IEEE Computer Society, 1998.

Bibliography 175

[SBM07] Jatinder Singh, Jean Bacon, and Ken Moody. Dynamic trust domains for se-
cure, private, technology-assisted living. In Proceedings of the the Second In-
ternational Conference on Availability, Reliability and Security (ARES’07),
pages 27–34, Vienna, April 2007. IEEE Computer Society.

[SBS08] Daniel Sturman, Guruduth Banavar, and Robert Strom. Reflection in the
gryphon message brokering system. In Reflection Workshop of the 13th
ACM Conference on Object Oriented Programming Systems, Languages and
Applications, 2008.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, 1996.

[Sch03] Bruce Schneier. Beyond Fear: Thinking Sensibly about Security in an Un-
certain World. Springer-Verlag, 2003.

[Sch04] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World.
John Wiley & Sons, 2004.

[SE05] Scottish Executive. Building a Health Service Fit for the Future (The
Kerr Report). http://www.scotland.gov.uk/Publications/2005/05/
23141307/13348, May 2005.

[SGI04] Scotland Government. Information services division. Effective interventions
unit: Integrated care pathways guide 4: Analysis and review. http://www.
scotland.gov.uk/Resource/Doc/47237/0013492.pdf, 2004.

[SHA] Office of the Strategic Health Authorities. http://www.osha.nhs.uk.

[Sha99] Murray Shanahan. The event calculus explained. Artificial Intelligence To-
day, pages 409–430, 1999.

[SL05] Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe overlay services
with EventGuard. In CCS ’05: Proceedings of the 12th ACM Conference on
Computer and Communications Security, pages 289–298, New York, NY,
USA, 2005. ACM.

[SL07] Mudhakar Srivatsa and Ling Liu. Secure event dissemination in publish-
subscribe networks. In ICDCS ’07: Proceedings of the 27th International
Conference on Distributed Computing Systems, page 22, Washington, DC,
USA, 2007. IEEE Computer Society.

[SM02] Sun Microsystems. Java Message Service Specification 1.2. http://java.
sun.com/products/jms/, 2002.

[SM09] Sun Microsystems. MySQL. http://www.mysql.com/, 2009.

[SRLH05] Margaret A. Stone, Sarah A. Redsell, Jennifer T. Ling, and Alastair D. Hay.
Sharing patient data: competing demands of privacy, trust and research in
primary care. British Journal of General Practice, 55:783–789, 2005.

[Ste97] Thomas A. Stewart. Intellectual capital: the new wealth of organizations.
Doubleday, New York, NY, USA, 1997.

[SVB08] Jatinder Singh, Luis Vargas, and Jean Bacon. A model for controlling data
flow in distributed healthcare environments. In PervasiveHealth ’08: Pro-
ceedings of the 2nd International Conference on Pervasive Computing Tech-
nologies for Healthcare, pages pages 188–191, 2008.

176 Bibliography

[SVBM08] Jatinder Singh, Luis Vargas, Jean Bacon, and Ken Moody. Policy-Based In-
formation Sharing in Publish/Subscribe Middleware. In Proceedings of the
9th International Workshop on Policies for Distributed Systems and Net-
works (Policy’08), pages 137–144. IEEE Computer Society, 2008.

[SYA09] Cheng-Chun Shu, Erica Y. Yang, and Alvaro E. Arenas. Detecting con-
flicts in ABAC policies with rule-reduction and binary-search techniques. In
Proceedings of the 10th International Workshop on Policies for Distributed
Systems and Networks (Policy’09), pages 182–185. IEEE Computer Society,
2009.

[TGNO92] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous
Queries over Append-Only Databases. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data (SIGMOD’92),
pages 321–330. ACM, 1992.

[TGP06a] Anthony Tomasic, Charles Garrod, and Kris Popendorf. On the evaluation
of symmetric publish/subscribe. In ExpDB: First International Workshop
on Performance and Evaluation of Data Management Systems, 2006.

[TGP06b] Anthony Tomasic, Charles Garrod, and Kris Popendorf. Symmetric pub-
lish/subscribe via constraint publication. Technical Report CMU-CS-06-
129R, Carnegie Mellon University, Pittsburgh, PA, 2006.

[TIB09] TIBCO. TIBCO Rendezvous. http://www.tibco.com/software/
messaging/rendezvous/, 2009.

[TLDS08] Kevin Twidle, Emil Lupu, Naranker Dulay, and Morris Sloman. Ponder2 -
a policy environment for autonomous pervasive systems. In POLICY ’08:
Proceedings of the 2008 IEEE Workshop on Policies for Distributed Systems
and Networks, pages 245–246, Washington, DC, USA, 2008. IEEE Computer
Society.

[UBJ+04] Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, Renia Jeffers,
Austin Tate, Jeff Dalton, and Stuart Aitken. Kaos policy management for
semantic web services. IEEE Intelligent Systems, 19(4):32–41, 2004.

[UK 98] UK Crown. Data Protection Act, 1998.

[UK 06] UK Crown. The Controlled Drugs (Supervision of Management and Use)
Regulations, 2006.

[UKACR09] United Kingdom Association of Cancer Registries. Legal background. http:
//www.ukacr.org/confidentiality/background.asp, 2009.

[Var09] Luis Vargas. Integrating Databases and Publish/Subscribe. PhD thesis, Uni-
versity of Cambridge, 2009.

[VBM05] Luis Vargas, Jean Bacon, and Ken Moody. Integrating Databases with Pub-
lish/Subscribe. In DEBS ’05: Proceedings of the Fourth International Work-
shop on Distributed Event-Based Systems, pages 392–397. IEEE Computer
Society, 2005.

[VBM08] Luis Vargas, Jean Bacon, and Ken Moody. Event-Driven Database Infor-
mation Sharing. In Proceedings of the 25th British National Conference on
Databases (BNCOD’08), volume 5071 of Lecture Notes in Computer Science
(LNCS), pages 113–125. Springer, 2008.

Bibliography 177

[Vit09] Vitria. Vitria Enterprise Service Bus (ESB). http://www.vitria.com/M3O/
Enterprise-Service-Bus.php, 2009.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/
xpath, 1999.

[W3C01] W3C. W3C Semantic Web Activity. http://www.w3.org/2001/sw/, 2001.

[W3C06] W3C. Web Services Eventing (WS-Eventing). http://www.w3.org/
Submission/WS-Eventing/, 2006.

[W3C08] W3C. Extensible Markup Language (XML) Fifth Edition. http://www.w3.
org/TR/REC-xml/, 2008.

[WBL+07] Andrew Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei
Sheng, Wayne Smith, Sankar Subramanian, James Terry, and Tsae-Feng
Yu. Continuous queries in oracle. In VLDB ’07: Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases, pages 1173–1184. VLDB
Endowment, 2007.

[WCEW02] C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security issues and require-
ments for internet-scale publish-subscribe systems. In HICSS ’02: Proceed-
ings of the 35th Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 9, page 303, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[WFSM02] Marc Wilikens, Simone Feriti, Alberto Sanna, and Marcelo Masera. A
context-related authorization and access control method based on rbac:. In
SACMAT ’02: Proceedings of the Seventh ACM Symposium on Access Con-
trol Models and Technologies, pages 117–124, New York, NY, USA, 2002.
ACM.

[WHEH06] Richard Whiddett, Inga Hunter, Judith Engelbrecht, and Jocelyn Handy.
Patients attitudes towards sharing their health information. International
Journal of Medical Informatics, 75(7):530–541, 2006.

[WHO00] World Health Organisation. The world health report 2000 - Health sys-
tems: improving performances. http://www.who.int/entity/whr/2000/
en/whr00_en.pdf, 2000.

[WHO02] World Health Organisation. Innovative Care for Chronic Con-
ditions. http://www.who.int/entity/diabetesactiononline/about/
icccglobalreport.pdf, 2002.

[WJ07] Alex Wun and Hans-Arno Jacobsen. A policy management framework for
content-based publish/subscribe. In Middleware ’07, Lecture Notes in Com-
puter Science 4834, pages 368–388, Newport Beach, CA, 2007. Springer.

[ZS06] Yuanyuan Zhao and Daniel C. Sturman. Dynamic access control in a content-
based publish/subscribe system with delivery guarantees. In ICDCS ’06:
Proceedings of the 26th IEEE International Conference on Distributed Com-
puting Systems, page 60, Washington, DC, USA, 2006. IEEE Computer
Society.

Appendices

A
Transformations and Interaction Points

Here we describe the suitability of transformation rules to particular interaction points.

Publication transformations are applied when a broker receives an input event that sat-
isfies all applicable imposed conditions. Such transformations are useful for purposes of
interoperability, as they can convert events into a form more suitable for local processing.
From a data control perspective, they are best used when the transform applies to gen-
eral classes of subscribers, as a single transform is executed regardless of the number of
subscribers.

An event type embodies a particular semantic. Subscriptions are made to a specific type
that represents (some of) the information the subscriber is interested in receiving. As
publication transformations are applied before the subscription matching phase, they are
well-suited to type transformations (Fig. A.2). Notification transformations are more ap-
propriate for transformations altering content for specific subscribers (Fig. A.1); especially
for events with infrequent subscriptions.

The appropriate interaction point for a transformation, or for that matter any policy, is a
question of design. Consider the example presented in Fig. A.1 where Patient Y requests
that a certain attribute of a sensor reading event is hidden only from Dr. Smith. As shown
in Fig. A.1(b), this is easily effected through a notification transformation targeted at Dr.
Smith that nullifies the appropriate value on delivery of events concerning Patient Y. To
achieve this restriction through a publication transformation, a specific event type (sr-y)
is required for which only Dr. Smith can subscribe (Fig. A.1(a)). The transform would
produce this event, with the nullified value, when events concern Patient Y for delivery
to Dr. Smith—while the unperturbed events (of the other type) are delivered to other
subscribers. Awkwardness aside, Dr. Smith is aware that some policy pertains to him, as
he is required to issue a different subscription for Patient Y than for his other patients.

The process of prescribing a drug in a hospital involves recording symptoms and obser-
vations. Neither the hospital dispenser, nor the prescribing service funding medications,
should receive such information (§9.1). As shown in Fig. A.2(a), it is sensible to convert
the prescribe event into a prescription on receipt by a broker, which is forwarded to

179

180 Appendix A. Transformations and Interaction Points

!"

!"

!"#$

!"

!" %"&'()*++!

%"&',-.-/01

%"&'23-.4
!"#$

!"
!"

%"&'23-.4

!"

!"

!"5

%"&'()*++!

%"&',-.-/01

(a) Publication transform for Dr. Smith

!"

!"

!"#$

!"

!" %"&'()*++!

%"&',-.-/01

%"&'23-.4
!"#$

!"
!"

%"&'23-.4

!"

!"

!"5

%"&'()*++!

%"&',-.-/01

(b) Notification transform for Dr. Smith

Figure A.1: A situation where a notification transformation is appropriate.

those directly subscribed to the respective types. Fig. A.2(b) shows that modelling this
scenario through notification transformations is cumbersome, resembling more topic-based
pub/sub, where all those interested subscribe to the general prescribe event but may
receive events of other types. Further, here notification transformations result in mul-
tiple executions of the same transformation function, while the subscription channel is
type-overloaded.1 We advocate type transformations only on publication, as overloading
a type channel is unintuitive for clients, and can confuse the application of policy (§7.8.3).

a) Publication transformations
for prescribe events

prescribe

prescription

prescribe

Dispenser

 Electronic
Prescription Service

Managing Dr.

prescribe

prescription

prescription

prescr
ibe

subscription

delivery

(a) Publication transformations
b) Notification transformations

for prescribe events

prescribe

Managing Dr.

prescription

prescription

prescribe

Dispenser

 Electronic
Prescription Service

prescribe

prescribe

prescri
be

(b) Notification transformations

Figure A.2: A situation favouring publication transformations for prescribe events.

1Types appear overloaded from the perspective of the subscriber, in that they receive an event of a
type different from that of their subscription. From a middleware perspective, if an event channel does
not exist for the output type, one could be temporarily created for that subscriber for the delivery of the
event. See §7.8.3 for discussion.

B
Fluent Representation

Fig. B.1 illustrates how the emergency fluent, as described in §6.1.1, is updated for a
particular patient. The fluent is initiated by three sensor reading events with a heart
rate of concern, or through the patient raising a panic event by pressing an emergency
button. The fluent is terminated when an emergency clear event is received.

heart_rate > 90

on emergency_clear

on panic or 3 x sensor_reading
emergency

emergency_term

emergency_init

sensor_reading

panic

emergency_clear

Events State Functions Fluent

Figure B.1: The events and functions maintaining the the state of the emergency fluent
for a particular patient.

In this example, the emergency status of a patient is maintained in the table (materialised
view) fluent emergency [int patient id, bool holds], where the current state of
the fluent is accessed by the function emergency(patient id). The function queries the
table, returning the state as represented by the value of holds.

The initiation and termination of a fluent are performed through its init(a) and term(a)

functions respectively. These functions may initiate or terminate a fluent—an execution
does not necessarily entail a change in fluent state because the function may have code
defining the situations in which fluent state should be updated. That is, the function might
involve queries or calculations that, for example, are useful for integrating composite event
functionality. In this example, the countWarning(pat id) and clearWarnings(pat id)

functions record the number of sensor reading events of concern received for the par-
ticular patient.1

1The countWarning(pat id) function counts the number of sensor reading warnings received for

181

182 Appendix B. Fluent Representation

Here, the init(a) and term(a) functions are tied to events through active rules (internal
subscriptions). The event triggering the rule is injected into the function, to help decide
whether to initiate/terminate the fluent. The code depicted in Fig. B.2 uses the event
instance to determine the relevant patient ID for the fluent.

--Create the table to cache the fluent result

create table fluent_emergency(int patient_id, bool holds);

--The function representing the HoldsAt predicate

create function emergency(int pat_id) returns bool as $$
select count(patient_id) > 0 from fluent_emergency where patient_id = pat_id and holds;

$$ language sql;

--The function representing the Initiates predicate

create function emergency_init() returns void as $$
begin

if ctx_event_type = ’panic’ OR

(ctx_event_type = ’sensor_reading’

AND countWarning(ctx_event.patient_id)) then

begin

execute ’update fluent_emergency set holds=true

where patient_id = ’ || ctx_event.patient_id;

end;

end;

$$ language plpgsql;

--The active rules (subscriptions) tying the Initiates operation to the events

create internal subscription em_set_p on panic execute procedure emergency_init();

create internal subscription em_set_sr on sensor_reading where sensor_reading.heart_rate > 90

execute emergency_init();

--The function to Terminate the fluent and reset the warning counter

create function emergency_term() returns void as $$
begin

execute ’update fluent_emergency set holds=false

where patient_id = ’ || ctx_event.patient_id;

clearWarnings(ctx_event.patient_id);

end;

$$ language plpgsql;

--Subscription to Terminate the fluent

create internal subscription em_cease on emergency_clear execute procedure emergency_term();

Figure B.2: Code to maintain state of an emergency fluent.

a particular patient. The function increments the counter and returns true if the warning limit (3) has
been reached. The function clearWarnings(pat id) resets this counter.

C
Example XML Rule Definitions

Here we present an example XML rule definition for each type of IC rule.1

C.1 Link Authorisation Rules

Link authorisation rules permit the establishment of a link for a remote broker. As shown
in Fig. C.1, such rules reference the credentials of a broker.

<link_authorisation>

<rule_name>allowsurgery</rule_name>

<credentials>NHSCred(usernm,’surgery’)</credentials>

<notes>Permit connections from other surgeries</notes>

</link_authorisation>

Figure C.1: A rule authorising links with brokers of registered surgeries.

C.2 Request Authorisation Rules

Fig. C.2 presents a request authorisation rule that authorises a doctor to subscribe to
event types for patients that he treats. This includes monitored conditions and a per-
mission attribute to ensure an entity has a working relationship with the patient. The
atPatientHome(...) fluent is monitored, triggering re-evaluation on a value change.

Note that monitored conditions may also be included in the <conditions> element to de-
scribe how they are combined with other predicates for initial evaluation. If the monitored
conditions are not specified in this element, they are automatically applied in conjunction.

1Note that we avoid XML escaping to ease illustration.

183

184 Appendix C. Example XML Rule Definitions

<request_authorisation>

<rule_name>doctorathome</rule_name>

<event_type>sensor_reading</event_type>

<request_type>a</request_type>

<credentials>NHSCred(usernm,’doctor’)</credentials>

<permission_attributes>patient_id:int8</permission_attributes>

<conditions>onCall(usernm) AND atPatientHome(usernm, att.patient_id)</conditions>

<mon_conditions>atPatientHome(usernm, att.patient_id)</mon_conditions>

<notes>Allows a locum doctor to subscribe to a patients sensor stream when visiting

the patient’s home. The subscription is cancelled once the doctor leaves.</notes>

</request_authorisation>

Figure C.2: A request authorisation rule concerning patient sensor streams.

C.3 Imposed Conditions

Imposed conditions apply a restriction filter to an event channel. An imposed condition
rule definition for controlling information flows for research is depicted in Fig. C.3.

<imposed_condition>

<rule_name>researchuse</rule_name>

<event_type>treatment</event_type>

<interaction_point>n</interaction_point>

<credentials>NHSCred(usernm,’researchDomainX’)</credentials>

<permission_attributes />

<restrictions>givenConsent(treatment.patient_id,’projX’)</restrictions>

<notes>A research service must only receive events concerning patients who have given consent</notes>

<hidden>f</hidden>

</imposed_condition>

Figure C.3: An imposed condition rule filtering data for research.

As shown in Fig. C.4, request forwarding filters are similar, except that they are evaluated
in the context of a request.

<request_imposed_condition>

<rule_name>surgerieswithtreatingrelations</rule_name>

<event_type>treatment</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’surgery’)</credentials>

<restrictions>domainTreatsPatient(usernm,req.patient_id)</restrictions>

<notes>Subscriptions for treatment events are only forwarded to surgeries

treating the particular patient</notes>

</request_imposed_condition>

Figure C.4: Request forwarding rule controlling subscription propagation
based on treating relationships.

C.4 Transformations

Transformations consist of a transformation function defining the database function to
convert an event instance into another (see Fig. E.3),2 and a transformation rule defining
the situation in which the function is executed.

2Our implementation includes mapping functions, allowing XML specification of simple transformation
functions. These are converted into stored procedures—see [SVBM08] for an overview.

Appendix C. Example XML Rule Definitions 185

Fig. C.5 presents an example transformation rule. The policy conversion function ensures
that the defined function exists in the database, referenced by its unique database object
ID (Oid), and that the function returns the appropriate type.

<transformation>

<rule_name>familyplanningpseudonym</rule_name>

<event_type>treatment</event_type>

<output_event>treatment</output_event>

<interaction_point>p</interaction_point>

<consumable>t</consumable>

<function>perturbPatID</function>

<!--- applicability conditions --->

<permission_attributes />

<credentials />

<conditions>treatment.specialisation=familyplanning</conditions>

<notes>Use a pseudonym for family planning data</notes>

</transformation>

Figure C.5: A transformation rule definition to hide patient information

Fig. C.6 shows a sample request transformation rule. These rules differ to event transfor-
mation rules in that a) the output type is fixed, returning a request (or null); and b) such
rules are connected to a link authorisation policy, and thus do not reference credentials.

<request_transformation>

<rule_name>surgerytransform-X123F</rule_name>

<event_type>prescribe</event_type>

<request_type>a</request_type>

<authorising_link>X123FauthSurgery</authorising_link>

<function>convertPrescribeForSurgeryX123F()</function>

<notes>Transformation an advertisement request for a particular surgery</notes>

</request_transformation>

Figure C.6: A request transformation rule definition for a particular surgery.

C.5 Conflict Resolution

Example conflict resolution rule definitions are presented in Figs. C.7 and C.8.

<override>

<rule_name>overriderule</rule_name>

<overrider>rule2</overidder>

<overridden>rule1</overridden>

<notes>Rule2 overrides rule1 in particular circumstances as it is a specialisation.</notes>

</override>

a) Overrides constraint definition

<ordering>

<rule_name>orderrule</rule_name>

<applied_before>rule1</applied_before>

<applied_after>rule2</applied_after>

<notes>Transformation rule1 must occur before rule2 as it alters a table from which rule2 reads.</notes>

</ordering>

b) Ordering constraint definition

Figure C.7: Conflict resolution definitions.

186 Appendix C. Example XML Rule Definitions

<incompatible>

<rule_name>inc_id</rule_name>

<policy>rule1</policy>

<policy>rule2</policy>

<policy>rule3</policy>

<notes>Rules 1,2,3 are incompatible because...

If all are active, something erroneous has occured.</note>

</incompatible>

Figure C.8: Definition of incompatible rules.

.

D
Hook Rule Specifics

This Appendix describes the operational specifics of PostgreSQL-PS hook rules.

D.1 Event Transformations

An event transformation hook executes a transformation function, which returns an (al-
tered) event instance, or null. The output event of the transformation function moves
to the next stage of the messaging process. The syntax for a transformation hook rule is
shown in Fig. D.1.

CREATE TRANSFORMATION rulename

ON
{ PUBLICATION OF eventtypename FROM username

| NOTIFICATION OF eventtypename TO username }
[WHERE filter]
EXECUTE FUNCTION funcname

Figure D.1: The syntax for event transformation hook rules.

A transformation hook can be defined to apply on publication or on notification (delivery)
of a particular event type. The username specifies the principal whose connection is
subject to the transformation rule. This means that the rule applies to all relevant event
channels (of the given type) for the connection. The transformation function executes
subject to any conditions set by the optional filter; absence of a filter means the function
is always executed. The transformation function, funcname, is a locally defined database
function that performs the relevant transformation operations, returning an event which
moves to the next stage of the messaging process.

The callback mechanisms inject the event instance (CTX EVENT) into the execution space
of an event transformation function, and other metadata such as user details.

187

188 Appendix D. Hook Rule Specifics

D.1.1 Resolving Event Transformations

Resolver hook rules deal with conflicts between transformation hook rules. A resolution
function (funcname) takes as input an array of the names of the applicable rules, trans-
formation rules whose conditions (guard) for execution hold in the context of a particular
event instance. The purpose of the function is to resolve any conflicts in this set by
returning an ordered list of policies—the functions of which are executed in order. The
syntax for defining a resolution hook rule is presented in Fig. D.2.

CREATE RESOLVER resolvername

ON { PUBLICATION | NOTIFICATION }
EXECUTE FUNCTION funcname

Figure D.2: The syntax for resolver hook rules.

D.2 Request Validators

The request validator hook (Fig. D.3) enables the data control layer to govern the estab-
lishment of an event channel. These hooks call functions that query the policy store to
either deny a request, or authorise a request and impose the relevant restrictions. The
pub/sub layer uses the resulting request instance to establish the event channel.

CREATE REQUEST VALIDATOR rulename

ON { SUBSCRIPTION | ADVERTISEMENT }
EXECUTE FUNCTION funcname

Figure D.3: The syntax for a request validator rule.

Request processing, unlike event transformations, involves more than a one-off manipu-
lation of attribute values. Requests concern the construction of event channels, which
involves authorising the event channel, imposing restrictions (transformations, imposed
conditions) and creating active rules to handle monitored conditions. As such, request
validators are not subject to a (hook-level) resolution strategy, and are defined without
conditional filters to ensure a standardised validation process; i.e. only one validator hook
can be defined for each request type.

D.3 Connection of Links

Link authorisation rules control the permissibility of connections between brokers. These
are evaluated through the link validator hook (Fig. D.4), which fires on broker interconnec-
tion. This hook also enables the establishment of advertisement forwarding restrictions.
As links are reciprocal, in that requests and events flow in both directions, both the re-
ceiving and initiating broker1 execute (their respective version of) the hook function. The
function is passed a structure with the identifier of the remote broker, which also contains
an empty filter for recording the advertisement filters relevant for the link, an attribute

1The initiating broker initiates the connection to the receiving broker.

Appendix D. Hook Rule Specifics 189

for a (feedback) message, and an attribute recording the policy ID of the link authorisa-
tion rule allowing the connection, which is set to null if unauthorised. The value of any
advertisement filter returned by the function is persisted in the Links catalogue, along
with authorising policy ID.

CREATE LINK VALIDATOR rulename

EXECUTE FUNCTION funcname

Figure D.4: The syntax for the link validator hook rule.

D.4 Request Transformations

Request transformation hook rules, as shown in Fig. D.5, are executed on the forwarding
of a request through a link to another broker. The function takes a request, consumes
it, and returns a request, which is then evaluated against applicable forwarding filters.
For consistency, only a single transformation rule can be defined per link for a particular
event and request type (§5.6.3).

CREATE { ADVERTISEMENT | SUBSCRIPTION } TRANSFORMATION rulename

TO brokername ON eventtypename

[WHERE filter]
EXECUTE FUNCTION funcname

Figure D.5: The syntax for a request forwarding validation rule.

D.5 Advertisement Processor

The link advertisement processor hook rule fires on the receipt of an advertisement request
through a link. This hook is defined to enable the establishment of subscription filters on
receipt of an advertisement. The syntax of the rule is presented in Fig. D.6

CREATE LINK ADVERTISEMENT PROCESSOR rulename

EXECUTE FUNCTION funcname

Figure D.6: The syntax for the link advertisement processor hook rule.

D.6 Bootstrapping

PostgreSQL-PS uses PostgreSQL’s initialisation process to configure the broker, creating
the default structures (catalogues) to store information of advertisements, subscriptions,
connected clients, links, routing tables and event type definitions. We extend this process
to introduce the extra catalogues required to implement hook rules, and, as shown in

190 Appendix D. Hook Rule Specifics

Hook Rule Type Function Purpose

REQUEST VALIDATOR ON ADV ValidateAdvRequest() Validates and processes the incoming re-
quest, establishing the relevant restrictions.

REQUEST VALIDATOR ON SUB ValidateSubRequest() Validates and processes the incoming re-
quest, establishing the relevant restrictions.

RESOLVER ResolveConflicts() Resolves conflicts within the active set of
policies.

LINK VALIDATOR ValidateLink() Authorises the connection to the remote
broker and loads advertisement forwarding
restrictions.

LINK ADVERTISEMENT PROCESSOR LoadSubReqRestrictions() Loads the subscription forwarding restric-
tions relevant to the advertisement.

Figure D.7: Hook rules and associated functions loaded on initialisation.

Fig. D.7, to define the general functions and associated hooks to provide essential IC
functionality. The audit mechanisms detailed in Ch. 10 are also created at this stage.

Also defined is a generic function for conflict resolution, which takes a set of active policies
and uses the resolution strategies described in §6.4.3 to return an ordered set of policies
conforming to any defined constraints. If the resolver returns null it means the policy
set is incompatible, either by an incompatibility definition, or due to cyclical overrid-
ing/ordering constraints. The resolver function audits and publishes an event to inform
of the incompatibility, which includes the values of the notes defined in the resolution
strategy. This same function is used throughout the enforcement process: a common
resolution strategy gives clarity and predictability of rule enforcement.

To implement the consumable property of transformation rules, we define a placeholder
transformation hook rule representing the original event instance. Consumable transfor-
mation rules override the placeholder, which prevents the original event from propagating.
This is illustrated by the original policy in Fig. 10.3.

In our implementation, we only forward advertisements to brokers that have the possi-
bility to subscribe to the particular type. This privilege is encapsulated in the fluent
CanSubscribe(brokername, eventtype), which is created on initialisation. Its values
are derived from the local subscription authorisation policy store: if an authorisation rule
exists for the broker and the event type, the fluent holds. The non-credential predicates
of the rules are not considered, as the existence of an authorisation policy means there
is some set of circumstances in which a subscription is authorised. Fluent values are up-
dated through rules that monitor the policy store for changes in subscription authorisation
policies. This is monitored, as a change in state can affect routing tables.

E
Prescribing Policy Rules

This Appendix presents the policy rules governing the prescribing scenario of §9.1

E.1 Event Authorisation Rules

<request_authorisation>

<rule_name>drprescribe</rule_name>

<event_type>prescribe</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm, ’doctor’)</credentials>

<permission_attributes>patient_id:int8</permission_attributes>

<mon_conditions>treatsPatient(usernm, att.patient_id)</mon_conditions>

<notes>Allows a doctor to subscribe to prescribe events for patients that they treat.</notes>

</request_authorisation>

<request_authorisation>

<rule_name>epsprescription</rule_name>

<event_type>prescription</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’eps’)</credentials>

<notes>The Electronic Prescribing Service is authorised to subscribe to all prescription events</notes>

</request_authorisation>

<request_authorisation>

<rule_name>drugauditauditor</rule_name>

<event_type>drug_audit</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’drug_auditor’)</credentials>

<notes>The auditor can subscribe to all drug_audit events</notes>

</request_authorisation>

191

192 Appendix E. Prescribing Policy Rules

<request_authorisation>

<rule_name>drugauditprescribe</rule_name>

<event_type>prescribe</event_type>

<request_type>s</request_type>

<credentials>NHSCred(usernm,’drug_auditor’)</credentials>

<notes>The auditor can subscribe to all prescribe events</notes>

</request_authorisation>

E.2 Imposed Condition for the Auditor

<imposed_condition>

<rule_name>auditorprescribeinvestigation</rule_name>

<event_type>prescribe</event_type>

<interaction_point>n</interaction_point>

<credentials>NHSCred(usernm,’drug_auditor’)</credentials>

<restrictions>underInvestigation(prescribe.prescriber_id)

AND givenAuditorConsent(prescribe.patient_id)</restrictions>

<notes>Prescribe events can be delivered to the auditor when the prescriber

is under investigation and consent has been given.</notes>

<hidden>f</hidden>

</imposed_condition>

E.3 The prescribe–prescription Transformation

<transformation>

<rule_name>createprescription</rule_name>

<event_type>prescribe</event_type>

<output_event>prescription</output_event>

<interaction_point>p</interaction_point>

<consumable>f</consumable>

<function>prescribe_to_prescription</function>

<notes>Create the prescription from the prescribe event.</notes>

</transformation>

create or replace function prescribe_to_prescription() returns callback as $BODY$
declare

inp prescribe;

out prescription;

pat patient%ROWTYPE;

begin

--copy across the fields

inp := CTX_EVENT::prescribe;

out.prescription_id := inp.prescription_id;

out.drug_id = inp.drug_id;

out.dosage := inp.dosage;

out.prescriber_id := inp.prescriber_id;

out.issuedate := inp.issuedate;

--surgery details

out.domain_stamp := SELECT domainstamp FROM domain_defaults;

--lookup patient details...

select into pat * from patient where patient_id = inp.patient_id LIMIT 1;

out.patient_name := pat.full_name;

out.patient_address := pat.address;

out.patient_dob := pat.dob;

return out;

end;

$BODY$ language plpgsql;

Appendix E. Prescribing Policy Rules 193

E.4 The prescribe–audit Transformation

<transformation>

<rule_name>createdrugaudit</rule_name>

<event_type>prescribe</event_type>

<output_event>drug_audit</output_event>

<interaction_point>p</interaction_point>

<consumable>f</consumable>

<function>prescribe_to_audit</function>

<conditions>controlledDrug(prescribe.drug_id)</conditions>

<notes>Converts prescribe to drug_audit events</notes>

</transformation>

CREATE FUNCTION prescribe_to_audit RETURNS drug_audit AS $$
DECLARE

inp prescribe;

out drug_audit;

BEGIN

-- Generated assignments

inp := CTX_EVENT::prescribe;

out.prescriber_id := inp.prescriber_id;

out.drug_id := inp.drug_id;

out.dosage := inp.dosage;

out.repeat := inp.repeat;

out.timestamp := inp.timestamp;

-- Policy specified operations

return out;

END;

$$ LANGUAGE plpgsql;

