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Statistical anaphora resolution in biomedical texts
Caroline Varaschin Gasperin

Summary

This thesis presents a study of anaphora in biomedical scientific literature and focuses on tack-
ling the problem of anaphora resolution in this domain. Biomedical literature has been the
focus of many information extraction projects; there are, however, very few works on anaphora
resolution in biomedical scientific full-text articles. Resolving anaphora is an important step in
the identification of mentions of biomedical entities about which information could be extracted.

We have identified coreferent and associative anaphoric relations in biomedical texts. Among
associative relations we were able to distinguish 3 main types: biotype, homolog and set-member
relations. We have created a corpus of biomedical articles that are annotated with anaphoric
links between noun phrases referring to biomedical entities of interest. Such noun phrases
are typed according to a scheme that we have developed based on the Sequence Ontology; it
distinguishes 7 types of entities: gene, part of gene, product of gene, part of product, subtype
of gene, supertype of gene and gene variant.

We propose a probabilistic model for the resolution of anaphora in biomedical texts. The
model seeks to find the antecedents of anaphoric expressions, both coreferent and associative,
and also to identify discourse-new expressions. The model secures good performance despite
being trained on a small corpus: it achieves 55-73% precision and 57-63% recall on coreferent
cases, and reasonable performance on different classes of associative cases. We compare the
performance of the model with a rule-based baseline system that we have also developed, a
naive Bayes system and a decision trees system, showing that the ours outperforms the others.
We have experimented with active learning in order to select training samples to improve the
performance of our probabilistic model. It was not, however, more successful than random
sampling.
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Chapter 1

Introduction

This thesis presents a study of anaphora on biomedical scientific literature and tackles the
problem of anaphora resolution in this domain.

Anaphora is the relation between two linguistic expressions in the discourse where the reader
is referred back to the first when reading the second later in the text. The referring expression
is usually called anaphor, and the previous expression it is associated with is called antecedent.
This reference process can be supported by several relations between the entities represented by
the expressions. When both linguistic expressions refer to the same entity, the relation between
them is called coreference.

The concepts of anaphora and coreference have been used in different ways in the literature,
causing some confusion in the field. van Deemter & Kibble [2000] have sought to distinguish
them. They define coreference simply as reference to the same entity, while anaphora implies a
dependency between two expressions, when the one which occurs later in the discourse depends
on the previous one to be correctly interpreted. Coreference and anaphora can occur together
or separately. Anaphora can happen between expressions referring to distinct (but associated)
entities; in such cases it is called associative anaphora.

In this work we deal with the union of the two concepts: expressions that are simply corefer-
ent, expressions that are only anaphoric, and expressions that hold both relations. Throughout
this thesis I shall refer to all these possible relations as anaphora, expect in cases where distin-
guishing both concepts is necessary.

Anaphora resolution can be understood as the process of identifying an anaphoric relation be-
tween two expressions in a text and consequently linking the two, one being the anaphor and the
other the antecedent. Resolving anaphora is a very important step in the text processing pipeline
for executing tasks that require a full picture of the elements involved in the discourse and their
relevance. Examples of such tasks are information extraction [Gaizauskas and Humphreys, 2000],
text summarisation [Boguraev and Kennedy, 1999], and question answering [Watson et al., 2003].

Different kinds of noun phrases (NPs) present anaphoric behaviour: pronouns, definite de-
scriptions (NPs introduced by the definite article ‘the’), demonstrative NPs (NPs that start
with a demonstrative pronoun such as ‘this’, ‘these’), proper names, among others. Much
of the work done on anaphora resolution deal only with pronouns [Lappin and Leass, 1994,
Kennedy and Boguraev, 1996, Mitkov, 1998]. Strategies for resolution of pronouns differ from
approaches for resolution of non-pronominal NPs because the scope in which to look for the
antecedent of a pronoun is known to be considerably smaller than that of non-pronominal NPs,
and consequently different types of clues need to be used to identify the correct antecedent.

Non-pronominal NPs vary considerably in the distance at which they can be found from
the antecedent, and also in the frequency in which they are anaphoric or not. For example,
demonstrative NPs are known to be anaphoric most of the time and have a small scope of
search for their antecedents (but greater than for pronouns), while definite descriptions are
frequently found not to be anaphoric, and when they are, they are usually used to recall an

15



16 Introduction

entity that has been mentioned a few or several sentences earlier.
The methods for resolution of non-pronominal NPs have to be capable of distinguishing

which of them are anaphoric and also selecting the correct antecedent from a broad scope of
candidates. The information available for resolution of non-pronominal NPs is also different
from that available for resolution of pronouns. For example, while pronoun resolution may
rely on syntactic binding constraints given anaphor and antecedent proximity, these do not
hold for resolution of other types of NPs. On the other hand, resolution of non-pronominal
NPs can benefit from lexical information present in the NP, that is, the words that form the
NP, which does not happen for pronouns. Different systems have been proposed for resolu-
tion of non-pronominal NPs: Vieira and Poesio [2000]’s system for resolution of definite de-
scriptions only, and systems for treating coreference of all types of NPs, including pronouns,
such as [Soon et al., 2001, Ng and Cardie, 2002b, Strube et al., 2002] and the systems partici-
pating in the Coreference Task of the Message Understanding Conferences (MUC-6 and MUC-7)
[MUC, 1995, MUC, 1998].

Anaphora resolution systems have been developed and tested in different genres of text, e.g.
news articles, technical manuals, literary texts and scientific papers. Each genre of text presents
a different distribution of the types of anaphoric NPs. For example, technical manuals contain
many more pronouns than scientific texts, which contain very few of them, while biomedical
scientific texts have a larger proportion of proper names than do newspaper texts.

We decided to investigate anaphora in biomedical scientific articles. In the biomedical field,
the constant growth in the number of scientific publications makes it difficult for researchers to
keep track of information, even in very small subfields of biology, and there is a real need for
automatic information extraction, in which anaphora resolution is an essential step. Currently,
progress in the field often relies on the work of professional curators, typically postdoctoral
scientists who are trained to identify important information in a scientific article and place it
in a template in a database that will be accessed by the research community later on. This is
obviously a very time-consuming task.

Our decision to focus on the biomedical domain is not only related to the growing demand
for up-to-date biomedical information. We also consider that the availability of manually-built
knowledge sources (e.g. databases, ontologies) for the biomedical domain can provide valuable
semantic information about the entities mentioned in the text. Such information can be really
valuable for anaphora resolution since it can provide semantic classification for the entities
mentioned in the text. This allows us to explore resolution techniques that require semantic
information. Besides, the great majority of the entities in biomedical texts are referred to
using non-pronominal NPs; this suited our goal of exploring anaphora resolution methods for
anaphoric NPs other than pronouns, which have proven more challenging and have been less
researched into. Hence we focus on these NPs and do not investigate pronominal reference.

Our objective in this thesis is to reach a better understanding of the anaphoric relations
present in full-text biomedical articles, to develop the resources that would enable us to propose
a corpus-based anaphora resolution system for this domain, and finally to implement a system
that is able to resolve anaphora in these texts.

To develop a system for anaphora resolution in biomedical texts, it was necessary first to
accomplish named-entity recognition and semantic tagging, besides developing a corpus for
training and/or evaluation of the system, since there was no corpus of full-text biomedical
articles annotated with anaphoric links that could be used for training an anaphora resolution
system.

These efforts were part of the FlySlip project1, whose ultimate goal was to develop a tool
for facilitating the curation of scientific articles, and for which it was necessary to develop the

1http://www.wiki.cl.cam.ac.uk/rowiki/NaturalLanguage/FlySlip
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infrastructure to process the articles. The FlySlip project was linked to the FlyBase project2

in the Department of Genetics of the University of Cambridge, whose focus is the molecular
biology literature related to fruit fly genomics.

To benefit from the resources available through the FlySlip project (archive of articles, expert
curators, tools developed in the scope of the project, such as gene-name recognizer), we have
opted for restricting our study to this subset of biomedical literature, the molecular biology
articles related to the fruit fly. We regard all mentions of biomedical entities as the anaphoric
expressions of interest to our study. More precisely, we focus on genes and other entities related
to genes such as proteins and parts of genes.

The very few works on anaphora resolution in the biomedical domain developed so far have
used abstracts of scientific papers instead of full text. We consider, however, that abstracts
represent a very restricted use of anaphora, since anaphora is a phenomenon that develops
through the text.

We have developed a probabilistic system for anaphora resolution in full-text biomedical
articles. Our probabilistic model collects statistics from the training corpus that we have built.
The model is an adaptation of the work of Ge et al. [1998] for pronoun resolution for the
resolution of non-pronominal NPs. It is based on the decomposition of a probability conditional
to several features into the product of few probabilities conditional to fewer features.

Our model aims to discover both coreferent and associative anaphoric relations between
biomedical entities, as well as identify which of them are not anaphoric, that is, should not be
assigned an antecedent. This is the first work on anaphora resolution in the biomedical domain
that also deals with associative anaphora.

In the following section, we outline the main contributions of this work.

1.1 Contributions of this thesis

We have developed as part of the work presented in this thesis:

• a strategy for identifying and classifying noun phrases referring to biomedical entities in
the text: Given our focus on the molecular biology subdomain, we adopted the Sequence
Ontology for use as part of a dictionary-based system for the recognition and typing of
the NPs of interest in the text. We describe this strategy in Chapter 4.

• an evaluation and training corpus: We have developed guidelines for the annotation of
anaphora relations in full-text biomedical scientific articles, and used these to create an
annotated corpus for training and evaluation of an anaphora resolution system. The
guidelines include the annotation of coreferent and associative anaphoric cases, including
domain-related kinds of associative anaphora. The corpus annotation process and the
corpus developed are described in Chapter 5. This is the first corpus of anaphoric relations
in full-text biomedical articles that has been developed.

• an anaphora resolution system: We have initially developed a baseline rule-based system
for resolving anaphora in biomedical texts, which is described in Chapter 6. As the main
contribution of this thesis, we have developed a probabilistic anaphora resolution system,
which aims to resolve coreferent and associative anaphora cases. This system is trained
on the annotated corpus and, despite the small amount of training data, reaches better
performance than the baseline system. It is described in Chapter 7.

• active learning for anaphora resolution: Aiming to enhance the performance of the proba-
bilistic system, we developed a complementary active learning strategy. This strategy has

2http://www.gen.cam.ac.uk/Research/flybase.htm
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not been successful but our experiments can contribute to future attempts to use active
learning for anaphora resolution. These experiments are detailed in Chapter 8.

1.2 Thesis overview

In the next chapter we describe the research area of biomedical text mining, within which our
work fits. In Chapter 3 we present an overview of the research on anaphora resolution. In
Chapter 4 we describe the process of identifying and typing the NPs that refer to biomedical
entities. In Chapter 5 we discuss the anaphoric relations that we identified in biomedical texts
and describe the process of manually annotating a corpus with such relations. In Chapter 6 we
present a rule-based baseline system for the resolution of the anaphoric relations present in our
corpus. In Chapter 7 we describe our probabilistic model for anaphora resolution in biomedical
texts. In Chapter 8 we present experiments on an active learning strategy in order to improve
the performance of the probabilistic model. In Chapter 9 we present our conclusions of this
work and suggest directions for future work.



Chapter 2

Biomedical information extraction

New findings in Biology research are built upon already discovered characteristics of biomedical
entities and relations among them, and easy access to this information in specific databases is
vital for researchers. However, according to Hirschman et al. [2002], new information relevant to
Biology research is still recorded as free text in journal articles and in free-text fields of databases.
The number of articles published in biomedical journals per year is increasing exponentially,
making it difficult for researchers to keep track of information [Morgan et al., 2003]; more than
600 000 biomedical journal articles were published in the year 2007 according to PubMed1, and
more than 2 800 in relation to the Drosophila fruit fly according to FlyBase23.

Projects like FlyBase employ full-time curators to read the relevant recently published papers
and record the useful information in a template form that can then be updated into the database.
The curators are typically postdoctoral scientists, trained to identify important information in a
scientific article. This is a very time-consuming task which requires identification of gene, allele
and protein names and their synonyms, as well as several interactions and relations between
them. The information extracted from each article is used to fill in a template per gene or allele
mentioned in the article.

This demand for information from the biomedical field has encouraged many researchers
to efforts in developing natural language processing (NLP) tools to extract information from
biomedical scientific articles. Different levels of information have been targeted by NLP projects,
for example, recognising the names of biomedical entities (e.g. genes and proteins), identifying
relations between these entities (e.g. interaction between proteins), linking various expressions
in the text that refer to the same or related entities, among others.

Biomedical texts impose additional challenges to the realisation of these tasks in comparison
with newspaper texts, which have been more widely used for developing and testing NLP tools.
On the other hand, NLP can benefit from the several sources of refined semantic knowledge that
are not commonly available for other domains; these are biomedical resources such as databases,
ontologies, and terminologies.

In the next section, we shall discuss the special features of biomedical texts. Section 2.2
describes some of the resources available. Section 2.3 discusses the tasks that have been dealt
with so far in exploring biomedical texts using NLP.

2.1 Specificities of biomedical text

Biomedical texts differ significantly from other text genres such as newspapers and fiction writ-
ing.

In biomedical texts, much background knowledge is required for the reader to understand
the relation between the entities mentioned in the text. This is a common aspect of scientific

1PubMed is a database of biomedical literature: http://www.ncbi.nlm.nih.gov/sites/entrez
2FlyBase is a database of genomic research on the fruit fly Drosophila melanogaster : http://www.flybase.org
3These numbers were collected by searching PubMed and Flybase, respectively, for journal articles published

in 2007
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papers in general. For example, if an expression in the text refers to gene x and later on an
unnamed protein is mentioned, it is likely that the writer refers to the protein encoded by gene
x, and the reader can only understand that if he/she knows that genes encode proteins. To
“understand” the relation between the entities in the text automatically, a system would need
a domain ontology that encodes the known relations. For example, the Gene Ontology relates
genes with the cellular components (e.g. cytoplasm, X chromosome) within which they are
located; the Sequence Ontology relates the gene to parts of its sequence (e.g. exon, intron) and
to its products (e.g. protein). We shall describe these and other ontologies in more detail in
Section 2.2.

Usually a gene and the protein it encodes share the same name, causing some ambiguity
in the text when the context does not provide enough information to determine whether the
writer is talking about the gene or the protein. To avoid this ambiguity, writing conventions
have been proposed, such as writing gene names in lowercase italicised letters and protein names
in non-italicised uppercase letters4. It is common, however, that authors do not follow these
conventions strictly, and distinct entities end up being referred to by the same string. Besides,
gene/protein names may coincide with common English words, e.g. for (symbol for foraging), a
fruit fly gene; with parts of the body of the organism on which it has an effect, e.g. giant fibre,
a fruit fly gene that influences the behaviour of the giant fibre in the brain of the fly; and with
the name of the disease associated with the gene disorder, e.g. Huntington Disease, a human
gene. These sources of ambiguity impose extra challenges to a system that aims to recognise
gene and protein names automatically.

Biomedical texts also have a large quantity of acronyms and abbreviations, which may be
gene symbols or refer to other biomedical concepts. Such concepts can be introduced in full form
by the author, preceded or followed by its abbreviated form, e.g. CT0 (circadian time 0)
and DCC (dosage compensation complex), or common knowledge is assumed and the
acronyms are used from the first reference, e.g. PCR (polymerase chain reaction), UAS (upstream
activation sequence), RNAi (RNA interference). These acronyms make the task of identifying
gene names even more challenging: a gene-name recogniser that relies on the morphological form
of the words (for example, characterising gene/protein names as tokens that contain letters and
numbers, upper and lowercase letters, other special characters) may mistag acronyms as gene
names.

The distribution of different types of noun phrases in biomedical articles also differs from the
distribution in other genres of text. For example, pronouns are very rare, accounting for about
3% of noun phrases5; on the other hand, proper names are very frequent, given the frequent
mention of gene, allele and protein names and the names of other biomedical entities. This
aspect of biomedical text is directly relevant when developing a system to link noun phrases
related to a specific entity, because different types of noun phrases have distinctive ways of
referring back to a previously-mentioned entity in the text. Such a system should focus on the
features of the most common types of noun phrases, that is, non-pronominal ones. Section 2.3.3
introduces the role of such a system in exploring biomedical texts.

Unlike other scientific articles, biomedical articles include a considerable amount of informa-
tion written as captions of figures rather than in the body of the paper, since figures play an
important role in describing biological experiments. Some of this information can not be found
anywhere else in the text. For this reason, captions should not be ignored when processing the

4FlyBase conventions: http://www.flybase.org/static pages/docs/nomenclature/nomenclature3.html#10 ;
WormBase conventions: http://www.wormbase.org/wiki/index.php/UserGuide:Nomenclature

5According to the corpus created as part of this thesis, presented in Chapter 5. Newspaper texts have a slightly
higher percentage of pronouns – for example, in the Wall Street Journal corpus 4.5% of noun phrases are pronouns
–; fictional texts have a much higher rate – in the portion of fiction writing of the Brown corpus, 22% of NPs are
pronouns.
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text in order to extract information about the biomedical entities.
Another particular characteristic of biomedical articles is their logical organisation, which is

often the same. Most articles reporting experimental work have an introduction, followed by a
results section, discussion and a material and methods section. This aspect of biomedical texts
can guide information extraction efforts to look for specific portions of text where the required
information is more likely to be found.

2.2 Available resources

NLP research benefits from work on the biomedical domain, given the availability of specialised
knowledge sources such as terminologies, ontologies and databases, which are scarce or nonex-
istent in other domains. Such resources allow researchers to go a step further in their work,
enabled to make use of techniques that require this kind of knowledge. These resources, despite
not having been developed primarily for text processing, can provide knowledge for NLP tasks,
from lexical (e.g. gene names, domain-specific terms) to semantic (e.g. domain-specific relations
between entities). Below we shall describe some of the most popular resources that can be used
for the processing of biomedical texts.

2.2.1 Databases

For most model organisms6, there is a dedicated genomic database where information about its
genes is recorded, such as MGI7 for the mouse, FlyBase for the fruit fly, WormBase8 for the
worm, and SGD9 for yeast, among others. Each gene entry contains information including the
gene name and symbol, synonyms for the gene name that are found in the literature, a brief
summary describing its role, location, alleles, expression patterns, links to the Gene Ontology
and to citations where the gene has been mentioned (there is a slight variation of these fields
across databases).

The gene names, symbol and synonyms can be used in different ways to facilitate automatic
recognition of gene mentions in the texts (see Section 2.3.1). The allele names can also be used
for the same purpose.

Links to references in the literature allow the systems to place the genes back in their context
in the text, and so use the context as a feature for recognising gene names and relations between
genes/proteins.

The links to the Gene Ontology provide information about the cellular location, molecular
function and biological processes of the gene products. This information can serve as training
and evaluation resources for the automatic extraction of similar information from the text (for
instance, evaluating a system for automatic prediction of the cellular location of a gene product).

FlyBase also includes links to the Sequence Ontology, with the intention of specifying the
class of the gene.

2.2.2 Terminologies and ontologies

A biomedical terminology is a collection of names of entities (terms) employed in the biomed-
ical domain, while a biomedical ontology is a collection of concepts representing the entities
and focusing on the domain-related relations between the concepts. But in practice the two
definitions get mixed up [Bodenreider, 2006]: terminologies usually disclose hierarchical (is-a)
relations between terms, and ontologies include the various terms associated with the concepts.

6Model organisms are species that are extensively studied to understand particular biological phenomena,
in the expectation that discoveries made in the organism model will provide insight into the workings of other
organisms.

7http://www.informatics.jax.org/
8http://www.wormbase.org/
9http://www.yeastgenome.org/
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2.2.2.1 Gene Ontology

The Gene Ontology (GO)10 is in fact a set of three independent ontologies: one of cellular
components containing 2 018 terms, a second of molecular functions containing 7 879 terms, and
a third of biological processes containing 13 923 terms11. Each entry in these ontologies contains
a definition of the term, synonyms if any, and is-a and/or part-of relations to other entries.
Figure 2.1 shows simplified examples of portions of the three GOs.

%molecular_function ; GO:0003674, GO:0005554
%antioxidant activity ; GO:0016209
...

%auxiliary transport protein activity ; GO:0015457
...

%binding ; GO:0005488
...
%amine binding ; GO:0043176

%2-aminoethylphosphonate binding ; GO:0033226
%acetylcholine binding ; GO:0042166

%acetylcholine receptor activity ; GO:0015464
...

%amino acid binding ; GO:0016597
...

(a) Molecular functions

%biological_process ; GO:0008150, GO:0000004, GO:0007582
...
%cellular process ; GO:0009987, GO:0008151, GO:0050875
%absorption of light ; GO:0016037
...
%cell communication ; GO:0007154

...
%cell-cell signaling ; GO:0007267

...
%transmission of nerve impulse ; GO:0019226
%synaptic transmission ; GO:0007268

(b) Biological processes

%cellular_component ; GO:0005575, GO:0008372
%cell ; GO:0005623
<cell part ; GO:0044464

%membrane ; GO:0016020
...
%plasma membrane ; GO:0005886
%postsynaptic membrane ; GO:0045211
%presynaptic membrane ; GO:0042734
...

(c) Cellular components

Figure 2.1: Portions of the hierarchical view of Gene Ontology. ‘%’ indicates an is-a relation;
‘<’ indicates a part-of relation.

10http://www.geneontology.org/
11Term statistics dated from 7th October, 2007
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The concepts expressed in these ontologies relate to the behaviour of gene products (instead
of genes, as the ontology name might suggest). Gene products may be linked to one or more
entries in these ontologies, and these links are called annotations, also available in the GO
website. Most gene entries in the model organism databases have links to entries in each of the
three GOs.

GO terms can serve to identify and classify expressions in the text, although the terms in
the ontology usually do not map directly to terms in the text (e.g. GO entry: “activation of
MAPK”; expression found in text: “MAP kinase activation” [Bodenreider, 2006]), so variations
of these have to be considered to increase the number of mappings. The relations between the
terms can be used to validate automatically extracted information against information contained
in the GO annotations or model organism databases.

GO is less helpful, though, when handling molecular biology texts, since the information it
carries starts at the gene product level.

2.2.2.2 Sequence Ontology

The Sequence Ontology (SO)12 [Eilbeck and Lewis, 2004] is also part of the GO project but
it is a completely independent ontology. While GO is a collection of terms used to describe
gene products, SO is specialised in the molecular biology domain, describing the features and
properties of biological sequences. The three basic kinds of relations between the terms in SO
are is-a, part-of, and derived-from. For example, “transcript” is part-of “gene”, a “processed
transcript” is-a “transcript”, and it derives-from a “primary transcript” that is also a transcript.
Other kinds of relations are also present but are less frequent.

SO was created to provide a standardised set of terms and relationships with which to
describe genomic annotations, but it can also be particularly useful for annotating scientific text
in molecular biology, given SO’s fine grainedness in relation to this subdomain and its precise
relations, which can be mapped to relations between the entities in the text. A portion of SO
can be seen in Figure 2.2 (SO is no longer provided in this format, but we have kept it here
as an example because it shows the hierarchy of the concepts, while the current OBO – Open
Biomedical Ontologies – format is flat).

2.2.2.3 MeSH

The Medical Subject Headings (MeSH) form a set of 16 hierarchies (trees) of terms, developed
by the National Library of Medicine13 to index, catalog and search for documents related to
biomedicine and health in general. The scope of the terms is quite broad; hierarchies include root
terms such as “Anatomy”, “Diseases”, “Chemicals and Drugs”. The relation between the terms
in any of the hierarchies can be understood as broader/narrower [Nelson et al., 2001], in some
cases corresponding to an is-a relation (e.g. “genes” - “pseudogenes”), in others it corresponds
to a part-of relation (e.g. “genes” - “gene components”). A term can be found in more than
one place in a hierarchy: for example, the term “glycomics” appears under “Biochemistry” and
“Genetics” in the Natural Sciences hierarchy. Figure 2.3 shows a portion of MeSH’s Biological
Sciences hierarchy.

The only cross references between terms of independent branches of a hierarchy or between
terms in distinct hierarchies are “see also” links to another term, but there is no specification
of why or how the terms are related. MeSH’s relations do not include any causal relation
(e.g. “caused-by”, “derived-from” or “product-of” ) between terms across the hierarchies. For
example, the concepts of “gene” and “protein” are not related in MeSH (it is known that
proteins are gene products); “gene” comes under “Genetic Structures” in the Biological Sciences
hierarchy, while “protein” comes under “Amino Acids, Peptides, and Proteins” in the Chemicals

12http://www.sequenceontology.org/
13http://www.nlm.nih.gov/
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...
@is_a@gene ; SO:0000704
@part_of@non_transcribed_region ; SO:0000183
@part_of@regulatory_region ; SO:0005836

@is_a@attenuator ; SO:0000140
@is_a@enhancer ; SO:0000165
@is_a@insulator ; SO:0000627 ; synonym:insulator_element
@is_a@locus_control_region ; SO:0000037
@is_a@operator ; SO:0000057
@is_a@polyA_signal_sequence ; SO:0000551
@is_a@promoter ; SO:0000167

...
@is_a@silencer ; SO:0000625

...
@is_a@terminator ; SO:0000141

...
@part_of@transcript ; SO:0000673

...
@part_of@exon ; SO:0000147

...
@is_a@processed_transcript ; SO:0000233

...
@is_a@mRNA ; SO:0000234 ; synonym:messenger_RNA
@part_of@CDS ; SO:0000316 ; synonym:coding_sequence
@part_of@coding_end ; SO:0000327 ; synonym:translation_end
@part_of@coding_start ; SO:0000323 ; synonym:translation_start
@derived_from@polypeptide ; SO:0000104 @part_of@ protein ; SO:0000358
...

Figure 2.2: Portion of the hierarchical view of Sequence Ontology

and Drugs hierarchy. Another example is the term “Acanthamoeba Keratitis”, found under “Eye
diseases” in the Diseases hierarchy, which has no link to the term “Acanthamoeba”, part of the
Animals hierarchy and known cause of the disease.

2.2.2.4 UMLS

The Unified Medical Language System (UMLS)14 is a set of three resources: a specialist lexicon,
a metathesaurus and a semantic network.

The specialist lexicon is intended to be a general English lexicon that includes many biomed-
ical terms. Each entry records the base form of a word (or multi-word term), its inflectional
and possible spelling variants, its part of speech (words that function as more than one part of
speech have one entry for each) and, for verbs, their subcategorisation patterns.

The metathesaurus is a collection of many existing terminologies/ontologies/thesauri that
include biomedical information, such as those described in this section (e.g. MeSH, GO) and
many more. Searching for a term in the metathesaurus results in a list of the definitions and
synonyms for that term in each of the resources included in the metathesaurus, and the possibility
of looking at other terms that are hierarchically related to that given in the several sources. The
metathesaurus also provides a link to the concept in the semantic network to which the term is
assigned.

The semantic network is divided into two independent hierarchies: one containing biomedical
entities, and another biomedical events. There are several relations that link the concepts in a
hierarchy and across both hierarchies. Such relations are, for example, “adjacent-to”, “affects”,
“consists-of”, “interacts-with”, among others including the more common “is-a” and “part-of”

14http://www.nlm.nih.gov/research/umls/
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Biological Sciences [G]
Biological Sciences [G01] +
Health Occupations [G02] +
Environment and Public Health [G03] +
Biological Phenomena, Cell Phenomena, and Immunity [G04] +
Genetic Processes [G05] +
...
Genetic Structures [G14]
Genome [G14.340]

Genome Components [G14.340.024]
Attachment Sites, Microbiological [G14.340.024.079]
CpG Islands [G14.340.024.159]
DNA Sequence, Unstable [G14.340.024.189] +
DNA, Intergenic [G14.340.024.220] +
Genes [G14.340.024.340]
Alleles [G14.340.024.340.077]
Gene Components [G14.340.024.340.137] +
Genes, Archaeal [G14.340.024.340.198]
Genes, Bacterial [G14.340.024.340.201]
Genes, cdc [G14.340.024.340.250]
...

Insulator Elements [G14.340.024.420]
Interspersed Repetitive Sequences [G14.340.024.425] +
Isochores [G14.340.024.430]
Locus Control Region [G14.340.024.470]
...

Figure 2.3: Portion of MeSH hierarchy

relations. Figure 2.4 shows a portion of the entity hierarchy.
The relations represented in the hierarchy are “is-a” relations. If, for instance, we consider

the concept “Gene or Genome”, some examples of its relations across the Entity hierarchy
are: “Gene or Genome” part-of “Cell”, contains “Body Substance”, produces “Amino Acid,
Peptide, or Protein”. Relations between concepts from the Entity hierarchy and those from the
Events hierarchy are, for example, “Gene or Genome” affects “Physiologic Function”, carries-out
“Genetic Function”, location-of “Molecular Function”.

2.2.2.5 GENIA ontology

The GENIA ontology15 is a small coarse ontology that contains concepts related to the biomedi-
cal domain in general. It was developed as the semantic classification used in the GENIA corpus.
Figure 2.5 shows an example branch of the ontology.

In the GENIA corpus, a mention of a gene, for instance, is tagged as “domain or region of
DNA”, in the same way that sequences smaller or bigger than a gene would be tagged, making
the distinction of gene parts impossible.

2.2.3 Corpora

The most popular source of biomedical text for natural language processing experiments are the
abstracts provided by Medline16. Medline is a database of biomedical bibliographic information,
and for each of its entries it provides the original abstract. Medline is indexed by MeSH terms and
contain citations from 1950 to the present; currently it includes citations from 5 000 worldwide
journals; in 2006 alone, 623 000 entries were added to Medline. Medline abstracts can be searched
through PubMed.

15http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/genia-ontology.html
16http://www.nlm.nih.gov/pubs/factsheets/medline.html
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Entity
Physical Object
Organism

...
Anatomical Structure

Embryonic Structure
Fully Formed Anatomical Structure

Body Part, Organ, or Organ Component
Tissue
Cell
Cell Component
Gene or Genome

...
Substance

Body Substance
Chemical

Chemical Viewed Structurally
Organic Chemical

Nucleic Acid, Nucleoside, or Nucleotide
Organophosphorus Compound
Amino Acid, Peptide, or Protein
Carbohydrate
Lipid

...
Chemical Viewed Functionally
...

Figure 2.4: Portion of UMLS Semantic Network

Substance
Compound
Organic

Amino acid
Protein
Protein family or group
Protein complex
Individual protein molecule
Subunit of protein complex
Substructure of protein
Domain or region of protein

Peptide
Amino acid monomer

Nucleic acid
DNA
DNA family or group
Individual DNA molecule
Domain or region of DNA

RNA
RNA family or group
Individual RNA molecule
Domain or region of RNA

Polynucleotide
Nucleotide

Figure 2.5: Portion of GENIA Ontology

Unfortunately, most full-text articles are not freely available online due to copyright restric-
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tions. However, in 2000 the Public Library of Science (PLoS)17 was founded and it currently
publishes eight open-access journals (such as PLoS Biology, PLoS Medicine, PLoS Genetics).
The journal issues are available in XML format, which facilitates the use of the articles for NLP.
PLoS articles can be searched through PubMed Central (PMC)18. PubMed Central is a recent
initiative which digitally archives full-text articles from several journals that grant open access to
the whole or part of its content (some journals impose a time limit after publication for articles
to be freely available). PubMed Central is also supported by a new NIH (National Institutes
of Health) policy from 200519, which aims to enhance public access to archived publications
resulting from NIH-funded research.

Several projects have committed effort in annotating Medline abstracts with biomedical
and/or linguistic information. Cohen et al. [2005] compare six corpora of biomedical abstracts
that contain some kind of annotation; the authors compared them in terms of their design
features, and related these features to the use rate of the corpora by researchers other than
those who developed them. The corpora considered are: GENIA corpus [Collier et al., 1999],
Medstract corpus [Pustejovsky et al., 2002], GENETAG corpus [Tanabe et al., 2005], a corpus
developed by Craven & Kumlein [1999] (referred by Cohen et al. as Wisconsin corpus), a corpus
developed by Blaschke et al. [1999] (referred by Cohen et al. as PDG corpus), and a corpus
developed by Franzen et al. [2002] (referred as Yapex corpus).

GENIA, Medstract, GENETAG and Yapex corpora have all biomedical entities (named and
unnamed) annotated: GENIA classifies entities according to the GENIA Ontology, Medstract
according to UMLS Semantic Network, while GENETAG and Yapex have only a single class that
includes both genes and proteins. Wisconsin and PDG corpora, on the other hand, have only
annotated the entities that take part in specific relations, and are the only corpora where domain
relations are annotated: Wisconsin has protein-protein interactions, gene-disease associations
and protein-cellular location associations annotated, where the entities taking part in the relation
are classified as appropriate (protein, gene, disease or location); PDG has only protein-protein
interactions annotated.

GENIA is the only corpus among these that has structural annotation, such as sentence
boundary, tokenization and PoS tags. The Wisconsin corpus also contains the same information,
but it has been automatically generated and not manually checked.

Medstract is the only corpus among these that contains annotation of anaphoric relations
between entities (see Section 2.3.3).

GENIA, Yapex and Medstract are composed of abstracts, each having respectively 2 000,
200, and 46 abstracts. GENETAG, Wisconsin and PDG are composed of sentences instead of
abstracts; GENETAG is composed by 20 000 sentences; Wisconsin has in total 67 201 sentences,
a part consisting of positive samples of relations (5 457 for protein-protein interaction, 829 for
gene-disease associations, and 769 for subcellular localisation) and the rest consisting of negative
samples (42 015, 11 771, 6 360, respectively); and PDG is the smallest of all, having 283 “blocks”
with one or a few more sentences that give evidence of a protein interaction.

GENIA, Yapex, Medstract and GENETAG are encoded in relatively standard formats: GE-
NIA, Yapex and Medstract are distributed in XML, and GENETAG is distributed in the known
token/TAG (e.g. smg/NEWGENE) format. On the other hand, Wisconsin and PDG are dis-
tributed in unique formats, where annotation is detached from the text and not easily mapped
back. PDG has been refactored by Johnson et al. [2007] and encoded in XML; the new version
is named PICorpus.

Cohen et al. show that the usage rate for these corpora varies considerably; GENIA is by

17http://www.plos.org/journals/index.html
18http://www.ncbi.nlm.nih.gov/sites/entrez?db=PMC
19http://grants.nih.gov/grants/guide/notice-files/NOT-OD-05-022.html
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far the most widely used corpus, followed by GENETAG, Yapex, Medstract, Wisconsin and
PDG. They conclude that what mostly favours the use of an annotated corpus by the research
community is the format in which it is distributed—standard formats are preferred—and the
presence of structural annotation, such as sentence boundaries, tokenization and PoS tags.

So far there exists no annotated corpus of full-text articles (rather than abstracts) with the
kind of information annotated in the corpora mentioned above. That limits the scope of the
research that can be undertaken since the text in abstracts represents different features from
text in the articles’ main body or even in figure or table captions.

2.3 Tasks

A number of subtasks can incrementally build up the structure of the texts in order to make
information extraction more feasible and more precise. For instance, the PASTA system for ex-
traction of information about the role of amino acid residues in proteins [Gaizauskas et al., 2003]
includes a module for terminology processing (identifying and classifying the NPs referring to
entities of interest), a module for syntactic and semantic processing (where sentences are con-
verted into semantic representations), a module for discourse processing (which identifies the
instances from the semantic representation that refer to the same entity) and finally templates
are created to organise the information gathered about the entities.

The following sections describe some of these subtasks that have been tackled so far by
researchers.

2.3.1 Named-entity recognition (NER)

Named entities are those referred to in the text by a proper name rather than a common noun.
Proper names can not be found in an ordinary lexicon and so need to be recognised as such
in the text so that their grammatical and semantic role can be recovered. In biomedical texts
the named entities of interest may be genes, proteins, drugs, chemical compounds, diseases, etc.
Unlike in newswire text, where proper names usually refer to individual/unique entities (e.g.
USA, Gordon Brown), in biomedical texts they refer to classes of entities, for example, a gene
name refers to all instances of such gene in all DNA sequences of all organisms that contain
that gene. Despite this conceptual difference, these names are usually treated in the same
way as proper names; gene-name recognizers work on the same principles as general named-
entity recognizers (which usually look for person, organisation and location names). The output
of a named-entity recognition system usually consists of tags assigned to the words that are
recognised as named entities, in the same way as PoS tagging.

Most of the work in biomedical NER has focused on recognising gene and protein names;
recently two editions of the BioCreative evaluation workshops have paid attention to this task
[Blaschke et al., 2004, Krallinger and Hirschman, 2007]. These names, as described in Section
2.1, are usually ambiguous, which poses a challenge to classifying them as protein or gene names.
The following approaches have been adopted to tackle biomedical NER: dictionary-based, rule-
based, and machine learning/statistical approaches.

Dictionary-based approaches rely on a compiled list of gene/protein names that is used to
find perfect or similar matches in the text. This list is derived from databases that record these
names, as did for example Hanisch et al. [2003] and Krauthammer et al. [2000]. The main
problem of dictionary-based approaches is their low precision, caused by the overlap between
some gene names and common English words. They also become outdated quite quickly given
that new gene names are constantly being created; this affects the recall of such systems.

Rule-based approaches rely on manually or automatically generated rules that indicate
whether a word is or is not a gene/protein name. These approaches can consider beyond
the morphological level and take into account the context of the word as well. One of the
most successful rule-based systems [Cohen and Hersh, 2005] for gene and protein name recog-
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nition is AbGene [Tanabe and Wilbur, 2002]. It has two phases: firstly an extended version of
the Brill PoS tagger, where new tags for gene and protein names are added and hand-tagged
sentences from biomedical text are used for training, was used to tag gene/protein names; and
secondly post-processing rules were manually generated to help eliminate false positives and false
negatives. The main disadvantage of rule-based approaches is the cost of hand-crafting rules
and the difficulty of adapting them to other sub-domains, with different naming conventions
[Park and Kim, 2006].

Several machine learning approaches make use of Hidden Markov Models (HMMs) as their
base statistical framework, and differ on the set of features used. The main problem of machine
learning approaches is building a big enough and representative training corpus. To overcome
this problem, Morgan et al. [2003] proposed a strategy to generate a large amount of noisy train-
ing data automatically. Their strategy consists of using a dictionary-based system that makes
use of gene names and bibliographic references from the FlyBase database: for each publication
about the fruit fly, FlyBase records the genes that are mentioned in it; the authors collected the
Medline abstracts for a set of these publications and tagged the gene names associated to them
in the abstracts. With the generated corpus of abstracts, they have trained a HMM. Vlachos
et al. [2006] have improved the Morgan et al. strategy by using an enlarged dataset and different
software.

2.3.2 Semantic tagging

Besides identifying the names of biomedical entities in the text, it is also important to identify
common nouns (rather than proper names) that refer to biomedical entities. It is also desirable
to classify them according to their role in the domain of the text.

Having the semantic information about the words is relevant to further tasks that try to find
relations between expressions in the text; for example, to find the relation between a gene and
a disease, it is first necessary to know that a NP refers to a gene and another to a disease.

As the vocabulary used to refer to biomedical entities in general (common nouns such as
“gene”, “RNA” and “enzyme”, instead of proper names) remains practically unchanged (in con-
trast with proper names), using a dictionary-based approach is usually a good enough strategy.
However, the ambiguity problem is still present, with some words referring to more than one
type of entity.

For instance, Castaño et al. [2002] make use of the UMLS Semantic Network concepts to
type the entities found in the text (e.g. “protein”, “cell”, “organism”). Bodenreider [2006] shows
examples of how GO can be used for the same purpose. In the GENIA corpus, all NPs referring
to biomedical entities are tagged according to the GENIA ontology (e.g. “protein”, “protein
complex”, “domain or region of DNA”). The PASTA system uses its own set of semantic classes
(e.g. “protein”, “non-protein compound”, “species”) to classify the terms in the text (the terms
are identified by morphological analysis or by consulting a lexicon they have built from online
resources).

2.3.3 Anaphora resolution

After identifying all NPs referring to biomedical entities in the text, it is important to know
which NPs refer or are related to the same entity. Anaphora resolution is the process of linking
these NPs. Anaphora is the linguistic phenomenon where an expression further in the text
refers back to a previously-mentioned expression. For example, in the following passage, there
are anaphoric relations between the highlighted mentions: the anaphoric relations between (a)
and (c) and between (b) and (d) are coreferential, because both mentions refer to the same
entity; the relation between (b) and (c) and between (c) and (d) are associative, because they
are related but do not refer to the same entity.
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(1) ‘‘... is composed of five proteins(a) encoded by the male-specific lethal
genes(b) ... The MSL proteins(c) colocalize to hundreds of sites ... male
animals die when they are mutant for any one of the five msl genes(d).’’

Resolving anaphora is essential for information extraction, that is, in order to recover all the
information about an entity in the text, it is necessary to take into account even the sentences
where the entity is not explicitly mentioned by its name. For the extraction of domain relations
between biomedical entities, e.g. interaction between proteins, anaphora resolution can be cru-
cial, as in the following example, where linking (b) to (a) is necessary to recover the relation
between CED-3 and CED-4:

(2) ‘‘The CED-3 protein(a) is one of a continuously growing family of caspases ...
this protein(b) is activated by CED-4 ...’’

It is important to have semantic information about the entities in order to verify whether
two expressions are anaphorically related; for example, if two NPs are tagged as genes, it is more
likely that they are anaphorically related than if they had different tags. That means it is very
important to have as input to an anaphora resolver the output of NER and semantic tagging
systems. The lack of appropriate sources of semantic information in other domains limits the
anaphora resolution techniques that can be adopted.

The large majority of entities in biomedical texts are referred to using non-pronominal noun
phrases, like proper nouns, acronyms or definite descriptions. Hence focusing on these noun
phrases should contribute more to the resolution process.

Very few systems for anaphora resolution have been developed for the biomedical domain.
Castaño et al. [2002] developed a salience-based system for anaphora resolution that uses seman-
tic information derived from the UMLS Semantic Network. They have developed the Medstract
corpus (mentioned in Section 2.2.3) to evaluate their system. Gaizauskas et al. [2003] developed
the PASTA system, which is an information extraction system that aims to extract relations
between proteins. With that in mind, they implement an inference-based coreference resolution
module which reasons on semantic representations of sentences: entities that have semantic
predicates is common are considered coreferent. The authors also use the same mechanism to
link representations of hypothetical entities that are part of an information extraction template
to entities seen in the text. Yang et al. [2004] developed a supervised machine-learning approach
for anaphora resolution and evaluated it on a portion of the GENIA corpus, which is tagged
with semantic information based on the GENIA Ontology. They focus only on coreferent cases
and do not attempt to resolve associative links.

Section 3.3 in the next chapter describes these systems in more detail. They have been
developed based on abstracts of biomedical articles, which represent a very restricted use of
anaphora. We believe full-text articles present a more realistic view of anaphora in biomedical
texts, mainly when information extraction is considered the target application.

2.3.4 Relation extraction

It is important for Biology research to identify the relations between entities involved in biological
processes. Such relations could, for instance, include the interaction between proteins, the
association between a gene and a disease, or between a disease and drugs. The automatic
extraction of relationships from text focuses usually on a prespecified kind of relationship. The
most explored relation between biomedical entities has been protein-protein interaction, which
had a task dedicated to it in the last BioCreative evaluation workshop20.

There have so far been several approaches adopted for relation extraction. The simplest

20http://biocreative.sourceforge.net/biocreative 2 ppi.html
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technique consists of looking for entities that occur together in a specific scope of text (e.g.
sentence, paragraph, the whole abstract) with considerable frequency. Stapley and Benoit [2000]
predicted the relation between two genes by checking how often they co-occur in the same
Medline abstract. Ding et al. [2002] later tested the same approach considering sentence and
paragraph as scope of co-occurrence, and compared it to considering the whole abstract.

Another approach consists of using template-like patterns (usually in the form of regular
expressions) that should match the relationships in the text. An example of such a system is
that presented in [Blaschke et al., 1999], in which they use manually built patterns based on a
set of verbs that denote the relations of interest (e.g. protein <P1> <verb> protein <P2>)
in order to extract the relations. This type of patterns can also be learned automatically from
a dataset where relations are annotated by considering the context of the entities taking part in
the relations. Huang et al. [2004] have adopted a dynamic programming algorithm to compute
patterns by aligning relevant sentences and key verbs that describe protein interactions.

In order to have a more flexible framework than pattern-matching, some works adopted
syntactic parsers to recover relations between whole noun phrases. Park et al. [2001] used
a parser based on a combinatory categorial grammar in order to extract relations between
proteins; their system looks for the syntactic arguments of a set of verbs of interest, being able
to recover even NPs that take part in coordination and apposition clauses. Fundel et al. [2007]
have developed RelEx, a system for relation extraction that relies on dependency parse trees.
RelEx creates candidate relations by extracting paths connecting pairs of mentions of proteins
from dependency parse trees; these should also contain any of a list of relevant terms describing
the relation. The relations are filtered using a small set of rules, and also the occurrence of
negation, coordination and passive voice in the trees is treated accordingly.

Elaborate machine-learning techniques have also been adopted for relation extraction tasks.
Bunescu and Mooney [2005] have applied kernel methods to the extraction of relations between
proteins. They have used as training data the AIMed corpus, which contains 225 Medline ab-
stracts where around 1000 protein-protein interactions have been annotated. They have used the
words surrounding the protein mentions as features for the kernel model. Bundschus et al. [2008]
have developed a probabilistic system for extracting relations between genes and diseases and
between diseases and treatments using Conditional Random Fields, which treat the task as one
of sequence labelling. For the extraction of disease-treatment relations they have used as training
data 2001 Medline abstracts where these relations were annotated and classified as cure, only
disease, only treatment, prevents, side effect, vague, does not cure. For extracting gene-disease
relations, they have used as training data GeneRIF phrases associated with gene entries in a
database in fields describing diseases caused by abnormal behavior of the gene.

The coverage of relation extraction systems is affected by the presence of anaphoric expres-
sions in the text. Fundel et al. have perfomed an analysis of errors made by their RelEx system;
they report that 12% of false negative errors are due to anaphora, that is, where one of the
entities involved in the relation is referred to by an anaphoric expression (e.g. “this protein”),
which was not inicially tagged as a valid mention of a protein.

2.4 Summary

In this chapter we have described what differentiates biomedical scientific articles from other
genres of text and have presented the lexical and semantic resources available for the biomedical
domain, which can be exploited by natural language processing tools. We have also described
the tasks that are necessary to be performed on biomedical texts in order to be able to extract
information from them. Each of these tasks incrementally builds up a layer of understanding
of the information present in the text. The task of anaphora resolution takes advantage of the
information accumulated from named-entity recognition and semantic tagging, and can con-
tribute, for example, to the extraction of relations between entities. The next chapter describes
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what anaphora resolution consists of and presents the approaches taken so far to accomplish it.



Chapter 3

Anaphora and anaphora resolution

3.1 Anaphora

Anaphora is the relation between two linguistic expressions in the discourse where the reader
is referred back to the first when reading the second later in the text. According to Hirst
[1981], anaphora is the linguistic device of making an abbreviated reference to some entity in
the discourse in the expectation that the reader will be able to disabbreviate the reference
and determine the identity of the entity. By abbreviate, Hirst means containing fewer bits of
disambiguation information rather than lexically shorter. The following example of anaphora
was extracted from a biomedical text:

(3) ‘‘... is the use of non-coding RNAs transcribed from genes located on the X
chromosome itself. These RNAs ...’’

In this example, “these RNAs” is an abbreviated reference to “non-coding RNAs”.
The referring expression is usually called the anaphor, while the expression it refers to is

called its antecedent.
The reference process can be caused by several distinct relations between the entities repre-

sented by the textual expressions involved. When both expressions represent the same entity,
the relation between them is called coreference.

The concepts of anaphora and coreference have been used in different ways in the literature,
causing some confusion in the field. van Deemter and Kibble [2000] have sought to distinguish the
two concepts. They define coreference as the relation holding between linguistic expressions that
refer to the same extralinguistic entity. On the other hand, they define anaphora as a relation
where interpretation of a referring expression is dependent on a previous expression (antecedent)
within the same discourse. Thus an anaphoric relation may or may not be coreferent: an
expression may be anaphoric in the strict sense that its interpretation relies on the preceding
expression, although the expressions involved may refer to distinct entities. If an anaphoric
relation is not coreferent, it is usually called bridging or associative. On the other hand, a
relation might be just coreferent, in the sense that the entity has been mentioned earlier. Figure
3.1 represents the intersection between the concepts.

Figure 3.1: Coreference vs. anaphora
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The confusion between coreference and anaphora arises mainly in cases that do not present
the abbreviation mentioned by Hirst, where the referring expression is a repetition of a previous
expression. In Example 4, the relation between the highlighted expressions is controversial: it
can be seen as merely coreferent, since both expressions carry the same information, but on the
other hand one can argue that the second mention would seem out of place if it were not for the
presence of the previous one, revealing a dependency between the expressions.

(4) ‘‘Initiator caspases are thought to be at the beginning of a proteolytic
cascade that amplifies the cell death signal and results in the activation
of the effector caspases. Initiator caspases usually have long pro-domains,
while effector caspases have short pro-domains.’’

It is clear when an anaphoric relation is not coreferent, since these are the cases where the
expressions have different referents, as in Example 5.

(5) ‘‘The expression of reaper has been shown to be regulated by distinct stimuli
(...). Recently, a Drosophila p53 ortholog was identified by searching the
genome database, and it was shown to bind a specific region of the reaper
promoter’’

Example 5 presents an associative anaphora case, where the referents of the expressions
hold a semantic relation to each other. Associative anaphora is the phenomenon in which a
referring expression is used to refer to an entity not previously mentioned in the text, but the
existence of which can be inferred by virtue of some previously mentioned entity [Hawkins, 1978,
Meyer and Dale, 2002].

Coreference is a symmetrical and transitive relation, while anaphora is not. Anaphora is
dependent of context, coreference is not.

Coreference resolution can be understood as the process of linking all textual references to
the same entity, forming coreference chains. Anaphora resolution, on the other hand, consists in
linking an anaphoric expression to its antecedent, the previous textual entity that the anaphor
is anchored to, forming anaphor-antecedent pairs.

Anaphors typically refer back to other constituents in the same sentence, or to constituents
in earlier utterances in the discourse. Syntactic information plays a central role in establishing
appropriate referents for the former case, intrasentential anaphora, while semantic and pragmatic
information are crucial in the latter case, intersentential anaphora [Carbonell and Brown, 1988].

Different kinds of noun phrases can present anaphoric behaviour: pronouns, definite descrip-
tions, proper names, demonstrative NPs, among others. Pronouns are the most reduced form
of anaphoric expressions1; they are almost always anaphoric and coreferent. The scope within
which the antecedent of a pronoun may be found is known to be smaller than for non-pronominal
(lexical) NPs. Usually it can be found in the same sentence as the pronoun or one or two sen-
tences earlier. Hobbs [1978] reports statistics from a corpus of three texts (from different genres)
containing a thousand pronouns, where 90% of the antecedents are found in the same sentence
of the pronoun or in the previous sentence when the pronoun occurs before the verb (and 98%
of the antecedents are found in the current sentence or the previous sentence). This limits the
number of antecedent candidates when trying to resolve the pronoun’s anaphoric relation.

Demonstrative NPs (NPs that start with a demonstrative pronoun such as “this”, “these”)
are also known to be anaphoric most of the time and have a small scope of search for their
antecedents, but larger than for pronouns.

On the other hand, definite descriptions (understood as all NPs introduced by the definite
article “the”) behave differently. Many of them are not anaphoric (50% for newspaper texts

1In fact, zero anaphors are the most reduced form of anaphora, but they do not form a NP; they are gaps in
a phrase or clause that have anaphoric function.
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according to [Vieira, 1998]), and when they are, they are often used to recall an entity that
has been mentioned some sentences earlier. This means the methods for definite description
resolution have to be able to identify which are anaphoric, and for the ones that are, choose the
candidate from a broader scope.

Proper names are the NPs which allow for the longest distances between the anaphor and
antecedent, since there is no ambiguity when an entity is referred to by its name, even when
such entity was mentioned paragraphs earlier.

Indefinite NPs (NPs beginning with the indefinite article “a”) usually introduce new entities
in the discourse and are rarely anaphoric.

There are several theoretical linguistic studies that aim to establish a theory of the use
of one anaphoric expression rather than others in specific cases; Huang [2000] describes three
models, the topic continuity, the discourse hierarchy, and the cognitive model, and proposes a
pragmatic model to describe anaphoric distribution in discourse, that is, the choice of a particular
referential/anaphoric form at a particular point in discourse.

The main premise of the topic continuity model (Givón in [Huang, 2000]), also called distance-
interference model, is that anaphoric encoding in discourse is essentially determined by topic con-
tinuity, measured primarily by factors such as linear distance (the number of clauses/sentences
between the two mentions of a referent), referential interference (the number of interfering ref-
erents), and thematic information (maintenance or change of the protagonist). Roughly, what
the model predicts is this: the shorter the linear distance, the fewer the competing referents,
and the more stable the thematic status of the protagonist, the more continuous a topic; the
more continuous a topic, the more likely that it will be encoded in terms of a reduced anaphoric
expression.

In the hierarchy model (Fox in [Huang, 2000]), it is assumed that the most important factor
that influences anaphoric selection is the hierarchical structure of discourse; mentions at the
beginning or peak of a new discourse structural unit (e.g. paragraph, turn, episode) tend to be
made by a full NP, whereas subsequent mentions within the same discourse structural unit tend
to be achieved by a reduced anaphoric expression.

The basic idea underlying the cognitive model (Tomlin, Gundel in [Huang, 2000]) is that
anaphoric encoding in discourse is largely determined by cognitive processes such as activation
and attention—activation of a referent in one’s current short-term memory at moment tn is a
result of focusing one’s attention on that referent at a previous moment tn−1. With that in mind,
the central empirical claim of the cognitive model is that full NPs are predicted to be used when
the targeted referent is currently not activated, whereas reduced anaphoric expressions such as
pronouns are predicted to be selected when such a referent is currently activated.

The basic idea of the pragmatic model is that anaphoric distribution can be predicted in
terms of the systematic interaction of some general pragmatic strategies such as Levinson’s Q-, I-
, and M-principles, which are: Q-principle: do not say less than is required (bearing I in mind);
the I-principle: do not say more than is required (bearing Q in mind); and the M-principle:
do not use a marked (lexical) expression without reason. Huang suggests that such principles
underlie anaphoric distribution in the following ways: (1) establishment of reference tends to be
achieved through the use of an elaborated form, notably a lexical NP; (2) shift of reference tends
to be achieved through the use of an elaborated form, notably a lexical NP; and (3) maintenance
of reference tends to be achieved through the use of an attenuated form, notably a pronoun.

Computational models for anaphora resolution are inspired by theoretical linguistic models
such as those mentioned above. However, natural language processing tools still perform poorly
in automatic recovery of cognitive and pragmatic clues from the discourse, making models as
the cognitive and pragmatic more difficult to account for in computational grounds than the
topic continuity and discourse hierarchy models.
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In the following section we discuss several issues related to the automatic resolution of
anaphora and describe the systems that have been proposed so far.

3.2 Anaphora resolution

Anaphora resolution has been considered one of the most challenging problems in NLP. There has
been prevailing consensus that the difficulty of the problem lies in its dependence on sophisticated
semantic and world knowledge.

Anaphora resolution systems usually aim to resolve only anaphors which have noun phrases
as their antecedents because resolving anaphors which have verb phrases, clauses, sentences or
even paragraphs/discourse segments as antecedents, is a more complicated task [Mitkov, 1999].

Most anaphora resolution systems deal only with coreferencial cases, only a few systems
aim also to resolve associative anaphora cases, which are considered more challenging and more
dependent on semantic information.

Many sources of information play a role in determining the antecedent of an anaphoric
expression. For instance, the distance between an anaphoric expression and the antecedent
candidate, lexical information such as head-noun matches can be an indicator of coreference.
Lexical constraints such as gender and number agreement can help eliminate some antecedent
candidates; syntactic patterns can help determine whether an expression is indeed anaphoric;
syntactic roles can indicate preference for particular antecedent candidates and semantic rela-
tions can describe the nature of the anaphoric relation, and so on. However, no single source of
knowledge is a completely reliable factor. For example, matching head nouns can be modified
by different modifiers that make the coreferent relation unlikely (as in e.g. “ced-2 gene” and
“egl-1 gene”), while expressions that disagree in number can still be coreferent if one has a
collective meaning, e.g. “MSL family ... the MSLs”. Furthermore, the knowledge sources
are combined differently depending on the type of NP to be resolved. For example, pronoun
resolution can never count on head-noun matching but can limit the search for antecedents to
a distance of few previous sentences, while definite descriptions resolution can rely on string
matching but have to consider other factors to be able to select an antecedent among the NPs
from a broader set of sentences.

Below we present the description of a generic anaphora resolution system, similar to that
proposed by Ng [2003]:

Step 1: Identification and selection of noun phrases to be resolved: the NP selection can be
based on linguistic information, for example the type of NPs, or based on domain infor-
mation, when a system aims to resolve only NPs that are related to a specific domain.

Step 2: Extraction of features that describe the selected noun phrases: features may be lexical,
syntactic, semantic, among others. Developers can opt for sophisticated features that
require complex NLP tools to be extracted (which might not always be available or robust
enough), or more superficial features, acquired through shallow processing.

Step 3: (optional) Determining if the noun phrase is new in the discourse, that is, has no
antecedent: a system can include a module for determining whether a NP is anaphoric,
before trying to find an antecedent for it. Such modules can be useful when the anaphora
resolution model adopted by the system returns an antecedent in all cases.

Step 4: Creation of the set of antecedent candidates: systems consider as possible antecedents
only the NPs that occur before the anaphor in the text. Some systems consider them all,
while others impose a maximum number of previous sentences to be considered.
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Step 5: (optional) Filtering of unreasonable candidates: some systems exclude candidates that
do not conform to some basic constraints, for example number agreement (when aiming
to resolve coreference).

Step 6: Scoring/ranking or searching candidates: this is the core part of an anaphora resolution
system. It is the module that interprets the features extracted in Step 2 and determines
whether two NPs are anaphorically related based on them. This module can be built,
for example, by a set of hand-made heuristics, or a machine-learning algorithm. Most
resolution models rank all antecedents according to a computed score or a set of rules
(and return the first candidate as antecedent), while other systems search in a particular
order for a candidate that conforms to a set of constraints (returning the first to succeed
as antecedent).

Steps 2 to 6 are performed once for each NP selected in Step 1.
Keeping in mind the steps above, anaphora resolution systems can be compared accord-

ing to their approaches to each step. Concerning Step 1, the selection of noun phrases to
be resolved, some systems focus on one particular type of anaphoric expression, while others
aim to cover several types. Most of the work done on anaphora resolution deals only with
pronouns; well-known works for pronoun resolution in English are [Lappin and Leass, 1994,
Kennedy and Boguraev, 1996, Mitkov, 1998, Ge et al., 1998]. Definite descriptions were ap-
proached, for instance, in [Bean and Riloff, 1999, Vieira and Poesio, 2000]. [Strube et al., 2002,
Ng and Cardie, 2002c] address a broader range of NPs: pronouns, definite and demonstrative
NPs and proper names. Given that pronoun resolution and non-pronominal anaphora resolution
present different challenges, most systems focus on one or the other. The set of features used
by a pronoun resolution system usually differs from the set of features used to resolve non-
pronominal anaphora. Strube et al., for instance, shows how a measure of string matching can
improve the performance of a system on non-pronominal anaphora resolution, while it makes
no difference for pronoun resolution. A system can also select the NPs to be resolved based
on semantic information, instead of by type of NP. For instance, McCarthy and Lehnert [1995]
select only NPs that refer to people, companies, governments and other entities involved in joint
capital ventures, since this was the domain of the texts they were processing.

Concerning Step 2, related to the features used to describe NPs to be resolved, we can dis-
tinguish between systems which make use of discourse, semantic and deep syntactic knowledge,
called knowledge-rich approaches, and systems which avoid the use of sophisticated knowledge
and instead rely only on lexical and possibly shallow syntactic information, called knowledge-
lean approaches. NLP tools for acquiring sophisticated linguistic knowledge, including semantic,
have not been able to reach as high accuracy as tools for performing well-defined tasks, such as
part-of-speech tagging. Accordingly, systems which rely on less sophisticated tools to derive their
features from are considered to have broader coverage, but less precision, than systems which rely
on complex (sometimes manually coded/corrected) features. For instance, the Lappin and Leass
system for pronoun resolution [Lappin and Leass, 1994] is acclaimed for not relying on semantic
or pragmatic constraints but, on the other hand, is criticised for relying on full parsing, which
is also considered an expensive resource; Kennedy and Boguraev [Kennedy and Boguraev, 1996]
modify the Lappin and Leass system by approximating the output of full parsing through a set
of cheaper heuristics.

Step 3 is an optional part of an anaphora resolution system. Some systems opt for a module
to decide whether a NP is anaphoric or not, before looking for antecedents for it; while other
systems opt for going straight to looking for antecedents, and consider not anaphoric those NPs
for which no antecedent was found. For NPs like definite descriptions, which according to Vieira
and Poesio [2000] are not anaphoric 50% of the times they appear in newspaper texts, adopting
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this step can considerably affect the system’s overall performance. Lappin and Leass have
implemented a module to detect pleonastic pronouns, more precisely the non-anaphoric “it”,
based on lexical and syntactic information. Vieira and Poesio [2000], Bean and Riloff [1999], and
Uryupina [2003] have proposed strategies to detect discourse-new definite descriptions. Vieira
and Poesio’s discourse-new heuristics were concerned with appositive constructions, copular
constructions and postmodification, among other clues. Bean and Riloff used basically the same
heuristics as Vieira and Poesio, but additionally they verified whether the definite description
was in the first sentence of the text and also whether it was a “definite only”, i.e. its head always
happens with the definite article in the text. Uryupina distinguishes discourse new and unique
(e.g. “the USA”) definite NPs; she trains two rule-learning classifiers, one with discourse-new vs.
discourse-old instances, and another with unique vs. non-unique instances. Both classifiers are
trained with the same syntactic features used by Vieira and Poesio, plus a measure of “definite
probability” derived from internet counts (how many times the NP appears with the definite
article, with the indefinite article (“a”), and independent of determiner); the author combines
the output of both classifiers and finds that uniqueness information is relevant to determining
anaphoricity. Ng and Cardie [Ng and Cardie, 2002b] distinguish anaphoric and non-anaphoric
cases among all kinds of NPs by using a set of 37 features (lexical, grammatical, semantic and
positional) for training a decision-tree and a rule-learning classifier.

Concerning Step 4, selection of antecedent candidates in most systems simply involves the
construction of a set of noun phrases preceding the anaphor under consideration in the associated
document, although some systems impose a maximum distance (usually in number of sentences)
from the anaphoric expression within which to look for the antecedent, in order to reduce the
computational overload and to avoid noise. Distance from the anaphor is a feature that plays
a role in all anaphora resolution systems—it is understood that the further away a candidate
is, the less likely that it is the correct antecedent, unless the distance is compensated by other
factors. For instance, Mitkov’s algorithm limits the search for pronoun antecedents to the two
sentences preceding the pronoun; Vieira [1998] experiments with a maximum distance of 1, 4
and 8 sentences, verifying that precision drops and recall increases with distance. Her algorithm,
however, allows some “special NPs” to ignore the distance limit; for example, NPs with same
head noun as the anaphor. Lappin and Leass, instead of imposing a distance limit, impose a
penalty weight according to distance, which in summary causes candidates at more than two
sentences away to have their weight already below a threshold and consequently to be ignored.
Ge [2000] considers distance through the Hobbs’ algorithm [Hobbs, 1978], selecting at most 25
candidates which are ordered according to Hobbs’ syntactic constraints.

Step 5, filtering “unreasonable” candidates, is another optional part of an anaphora resolution
system. Some systems, in order to reduce the set of candidates, eliminate some based on simple
heuristics that should point out unacceptable cases. For example, Strube et al. coreference
resolution system discards candidates when: they are embedded in the same clause as the
anaphor; they are not of the same semantic class as the anaphor; they do not agree in gender
and number with the anaphor (only in case this is a pronoun). The system also ignores all
antecedent candidates for anaphors that are indefinite NPs.

Step 6 is the core part of an anaphora resolution system, that is, the resolution model,
which integrates the information built up in the previous steps, processes them, and returns the
antecedents for the anaphors. We distinguish two basic types of resolution models, knowledge-
based and corpus-based. In knowledge-based approaches [Lappin and Leass, 1994, Mitkov, 1998,
Vieira et al., 2002] the resolution procedure is based on a set of hand-crafted rules that specify
whether two discourse entities are anaphorically related; some knowledge-based systems try to
approximate theoretical discourse models to account for anaphora behaviour. In corpus-based
approaches [Ge et al., 1998, Strube et al., 2002, Ng and Cardie, 2002c], on the other hand, the
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knowledge is automatically obtained from corpora annotated with anaphora information, which
have become available more recently. The main advantage of corpus-based approaches is that
complex and unpredicted situations that indicate anaphora can still be captured, while knowledge-
based approaches are more conservative, the developer being responsible for creating rules to
account for predicted cases. An important aspect to be considered at this step is the types of
anaphora to be resolved—coreferent and/or associative. Most systems developed so far focus
on resolving only coreferent cases ([Strube et al., 2002, Ng and Cardie, 2002c], and all pronoun
resolution systems). Among the few systems that try to solve associative anaphora are those of
Vieira and Poesio [2000], Meyer and Dale [2002], Poesio et al. [2002], Bunescu [2003]. Resolving
associative anaphora is considered a more difficult task than resolving coreference, since the NPs
involved in the associative relation do not refer to the same entity and require the system to be
able to infer a semantic relation between them as a clue to supporting the anaphoric relation.

In the next subsections we describe extant systems for anaphora resolution in more detail,
distinguishing between knowledge-based and corpus-based systems.

3.2.1 Knowledge-based systems

Knowledge-based approaches to anaphora resolution may be divided in four groups [Ng, 2003,
Hoste, 2005]: discourse-oriented approaches, in which discourse structure is taken into account,
as in that proposed by Grosz et al. [1995]; factor-based approaches, such as that of Lappin and
Leass [1994]; syntax-based approaches such as Hobbs’ [1978]; and heuristic-based approaches,
such as that adopted by Vieira and Poesio [2000].

3.2.1.1 Discourse-oriented approaches

Discourse models, especially centering [Grosz et al., 1995] and focusing theory [Grosz, 1978,
Sidner, 1979] have been successfully used for anaphora resolution. Both theories assume that
certain entities in the discourse are more central or in focus than others and this imposes certain
constraints on the referential relations that occur in the text.

Centering is a theory for interpreting pronouns in a discourse. It models the local coherence
of a discourse and is composed of a set of constraints governing center movement (the conditions
under which the center of a discourse should move from one discourse entity to another) and
center realisation (the conditions under which a discourse entity can be referred to by a pro-
noun). Such constraints consider morphosyntactic, binding and semantic criteria. The works
by Tetreault [2001] and Strube and Hahn [1999] are examples of systems using the centering
framework. Tetreault presents variations of a centering-based pronoun resolution algorithm; the
best performing one reaches 80.4% accurary on newspaper texts and 81.1% accuracy on fictional
texts.

Sidner’s focusing framework keeps a set of data structures, including the current focus, a list
of alternative candidate foci, and a focus stack to represent the current state of a discourse. For
each sentence, the focusing algorithm uses a set of rules to determine whether there is a shift in
focus and updates the data structures accordingly. For each anaphor encountered, another set
of rules is used to rank candidate antecedents based on the focus-tracking data structures. The
work of Rich and LuperFoy [1988] combines the principles of Discourse Representation Theory,
centering, and focusing in different modules. Each module proposes candidate antecedents and
evaluates other modules’ proposals.

The main limitation associated with focus-based approaches is their complex and restricted
nature. A discourse model is dependent on the genre of text (discourse) it represents, and
modelling unrestricted text is a highly complex task. Grosz, for example, validated her focus
work only on restricted task-oriented dialogs, where the structure of the sentences was very
limited. Besides, when considering long discourses (such as full scientific articles) the antecedent
for an anaphoric expression might be a long way back in the text, which would compromise the
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structures available to track the focus of the discourse.
Gaizauskas and Humphreys [2000] propose a coreference resolution module as part of the

LaSIE information extraction system. This module builds a discourse model based on predicate-
argument representations of the elements in the sentences. For every sentence in the text, a
parser produces predicate-argument representations and these are added as instances to a small
generic ontology which represents the world model; the world model plus the instances is con-
sidered to be the discourse model. Once the discourse model is built, the system searches for
instances that could be merged into one—coreferent instances—by comparing their attributes.
The authors adopt specific comparison rules for proper names, common nouns and pronouns.
Their system has reached 71.93% precision and 50.71% recall using the MUC scoring system.
Azzam et al. [1998] extends the coreference resolution algorithm implemented in LaSIE with an
improved version of Sidner’s focusing approach, which is able to handle more complex sentences
and intrasentential reference. Azzam et al. conclude, however, that there is no observable differ-
ence between the performance of the coreference algorithms with and without focusing. They
report that the main limitation of the focus-based approach is its reliance on robust syntactic
and semantic analysis in order to find the focus.

3.2.1.2 Factor-based approaches

Factor-based approaches combine various knowledge sources, including morphological, lexical,
syntactic, semantic, and in some cases pragmatic information, in the form of constraints and
preferences (factors). Constraints are applied in order to remove bad antecedents, and prefer-
ences are used to rank candidates that satisfy all constraints. In contrast to discourse-based,
factor-based approaches do not rely on an elaborate discourse theory, although some discourse
information can be formulated as preferences (rather than constraints).

Carbonell and Brown’s [1988] work is an example of a factor-based algorithm for pronoun
resolution. Various constraints are proposed: gender and number agreement, semantic (e.g.
selectional constraints) and pragmatic constraints (e.g. considering whether some action that
occurs between the antecedent candidate and the anaphor implies that they cannot take part in
an anaphoric relation). As preferences, they have considered recency, topicalisation, syntactic
parallelism and semantic parallelism (having the same thematic role as the anaphor) in order to
select an antecedent. They tested their algorithm on a small test suite containing 27 pronouns,
from which 23 (85%) were resolved correctly.

Lappin and Leass’ [1994] pronoun resolution algorithm relies on a set of syntax-based con-
straints and salience-based preferences. In contrast to Carbonell and Brown, who make use
of semantic and pragmatic constraints that are generally hard to encode with reasonable ac-
curacy, Lappin and Leass instead employ only morphological constraints such as gender and
number agreement, and syntactic constraints such as the requirement that the antecedent and
the pronoun do not be arguments of the same head constituent. They assume, however, perfect
output from a morphological analyser and a full syntactic parser. The salience factors are, for
example, sentence recency, grammatical role, syntactic parallelism, among others; each salience
factor is associated with an initial weight that indicates the contribution of the factor to overall
salience. These weights are lowered once the distance between the anaphor and the antecedent
candidate increases. An anaphoric NP is resolved to the most salient preceding entity. Once an
anaphoric NP is resolved it is added to the antecedent’s equivalence class. The salience of an
entity is given by the salience of the equivalence class to which the candidate NP belongs, while
the salience of the class is calculated on the factors applied to each of its members. Lappin and
Leass’ algorithm was able to correctly resolve 86% of the pronouns in their test set.

Due to the high error rate in case of full syntactic parsing, several alternatives to full parsing
have been proposed ranging from partial parsing (e.g. [Kennedy and Boguraev, 1996]) to part-
of-speech tagging (e.g. [Mitkov, 1998]). Kennedy and Boguraev modify the Lappin and Leass



Anaphora and anaphora resolution 41

algorithm in a way that it works on a flat syntactic analysis, provided by a part-of-speech tagger
and a noun phrase grammar. Their system reaches 75% accuracy. Mitkov follows the same
approach as both previous works, but instead uses only part-of-speech information to identify
the noun phrases in a context of two sentences. Mitkov included additional factors to select the
antecedent, for example giving preference to definite noun phases, counting the number of times
the candidate NP is mentioned in the same paragraph, checking whether the candidate NP is
in the heading of the section, etc. Mitkov’s algorithm correctly resolves 86% of the pronouns in
their evaluation data.

Meyer and Dale [2002] have created a factor-based algorithm, inspired by Lappin and Leass,
but to handle definite descriptions. They have developed special factors to work as indica-
tors of associative anaphora cases. They first extract “associative axioms” from the corpus.
These are patterns that are evidence of association between two words (e.g. of-phrases, like
“the leg of the giraffe”, indicating a relation between leg and giraffe and forming the axiom
have(giraffe,leg)). Secondly, they seek to generalise the axioms by searching for hyponym
words in WordNet, so that ideally they can infer a more general pattern like have(living
thing, body part). The generalised axioms are used as a constraint in the resolution algo-
rithm, so that candidates that do not fit any axiom can be eliminated. They have evaluated the
performance of their system on resolving associative cases using different levels of generalization
over WordNet: on the lowest level they reach 31-45% precision and 39-64% recall, and on the
highest level they reach 8-11% precision and 79-91% recall.

A disadvantage of factor-based approaches is that the weights assigned to each factor have to
be manually set by the developer. The works mentioned above have not presented an evaluation
of the influence of variation in weight values.

3.2.1.3 Syntax-based approaches

Syntax-based approaches rely solely on syntactic and morphological information. For each po-
tential anaphor, the search for an antecedent is performed via the traversal of parse trees.

One of the early approaches to coreference resolution which is still popular is Hobbs’s syntax-
based approach [Hobbs, 1978] for pronoun resolution. The algorithm considers the sentences in
the text in reverse order, starting from the sentence in which the pronoun appears and searching
for potential antecedents in the corresponding parse trees in a left-to-right, depth order that
obey binding and agreement constraints. The algorithm’s preferences for recency as well as for
NPs in the subject position are generally believed to be the reason for its good performance on
pronouns with intra-sentential antecedents [Lappin and Leass, 1994]. A match is found when
the antecedent NP in question and the anaphoric pronoun agree in gender, number and person.
Hobbs also uses selectional restrictions to rule out bad candidate antecedents. Hobbs did a
hand-based evaluation of his algorithm on 100 pronouns from each of three different texts: a
history chapter, a novel, and a news article. The algorithm performed successfully on 88.3% of
the cases; accuracy increased to 91.7% with the inclusion of selectional constraints.

Syntax-based approaches are limited to pronoun resolution, since the resolution of other
types of NPs is not as closely tied to syntactic structures.

3.2.1.4 Heuristic-based approaches

Heuristic-based approaches are composed by a set of hand-crafted heuristics for selecting an
antecedent.

Vieira and Poesio [2000] have developed an heuristic-based approach to resolve definite de-
scriptions. They have created three sets of heuristics: one for identifying direct anaphora (cases
where the antecedent and the anaphor have the same head noun), another set for bridging
anaphora (cases where the antecedent and anaphor have different head nouns; it includes asso-
ciative anaphora), and a third set to identify discourse-new definite descriptions. They integrate
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the three sets of heuristics by applying them in a particular order. They first apply the direct
anaphora heuristics (basically, seeing if there is a previous NP with the same head noun as the
anaphor, considering some restriction on pre- and post-modification). If these are unable to
determine and antecedent, then the discourse-new heuristics are applied (e.g. considering the
presence of special predicates such as “the first”, “the best”, restrictive postmodification, ap-
positive or copular constructions). If the anaphor does not fit the discourse-new heuristics, then
the bridging heuristics are applied (e.g. checking whether the anaphor’s head noun match any
of the antecedent’s pre-modifiers, or whether anaphor and antecedent head nouns are part of
the same WordNet synset, or whether they hold hyponymy/hypernymy, co-hyponymy or direct
meronymy/holonymy relations in WordNet). Because the performance of their heuristics for
bridging cases was considered poor, they evaluated their system with and without them. Using
only the heuristics for direct anaphora and discourse-new cases, their overall performance on
test data was 62% F-measure, 76% precision and 53% recall. With the inclusion of the bridging
heuristics (bridging cases comprise 8% of the cases in their corpus), the overall performance
became 62% F-measure, 70% precision and 57% recall. The use of WordNet for dealing with
bridging anaphora was not very successful since (1) WordNet is a generic knowledge base, where
all meanings of a word are included, resulting in false positive antecedents, and (2) WordNet is
not complete enough and its organisation is not always clear (only 46% percent of the semantic
relations present in their bridging cases could be found in WordNet).

Hand-crafting the heuristics is the main problem of this type of approach. It is a very
complex task to create heuristics that cover all cases of anaphora and to prioritise the rules
when their outcomes diverge.

Poesio et al. [2002] replaced the use of WordNet in Vieira’s system with automatically
acquired lexical knowledge in order to solve specifically the cases that involved meronymy.
They have adopted a similar technique to that used by Hearst [1992] to extract hyponyms.
They achieved 72.7% precision and 66.7% recall on resolving the bridging cases that involved
meronymy, while WordNet could recover only 25% of the cases.

Bunescu [2003] also developed an heuristic-based system for resolution of definite descrip-
tions, both coreferent and associative anaphora. For each anaphor-candidate pair, the author
searches the Internet for the pattern “<candidate’s head noun>. The <anaphor’s head

noun> <verb>” and from its frequency computes the mutual information between the anaphor
and the antecedent candidate (a minimun frequency threshold is considered). The candidate
that ranks highest is selected as antecedent. The author has experimented with several fre-
quency threshold values: with a high threshold value, the system reached around 70% precision
and 10% recall; with the lowest threshold the system reached its highest recall, around 42%,
with 23% precision.

The main disadvantage of knowledge-based approaches in general is that they are conserva-
tive, usually only covering cases that are predicted by the developers. These approaches restrict
the range of cases that can be resolved, since the framework at hand does not handle unpredicted
types of cases. Besides, manually building and tuning rules and/or weights can be an expensive
task, demanding great effort from the coder.

3.2.2 Corpus-based systems

Corpus-based approaches rely on manually annotated corpora as source of knowledge of a
given task. Given the successful application of corpus-based approaches to several NLP tasks
and the availability of corpora annotated with coreference information since the MUC efforts
[Hirshman and Chinchor, 1997], researchers have attempted to apply corpus-based methods to
anaphora and coreference resolution. Corpus-based algorithms are trained on real-world texts
and hence are, in principle, more robust than knowledge-based systems. While a knowledge-
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based system encodes its beliefs in the form of hard constraints, corpus-based systems learn
soft constraints from annotated corpora and can therefore weight the available information and
take into account exceptional cases [Ng, 2003]. The importance of each factor involved in the
resolution process can be inferred by the distribution of cases in the corpus, provided that the
corpus is representative.

Besides the resolution process, corpus-based approaches include a training process to extract
from the corpus the information to be used by the resolution model. Corpus-based approaches
interpret the anaphora resolution problem as a classification task: an anaphor-candidate pair is
classified as coreferent/anaphoric or not; the probability of this relation is determined by the
model according to what it has seen in the training corpus.

Each training instance (i.e. the anaphoric relation, or the absence of it, between two NPs)
is described by a set of features which usually includes relational features (which test whether
some property holds for the NP pair under consideration, e.g. head-noun matching) and non-
relational features (which test some property of one of the NPs under consideration, e.g. the type
of NP: pronoun, definite description, etc.). An instance is labelled as positive if the two NPs
possess an anaphoric relation, and labelled as negative otherwise. Corpus-based approaches
differ from each other in terms of how the model is learned and can further be divided into
two classes: machine-learning and statistical approaches. In machine-learning approaches, the
resolution model is induced from the training data according to a learning algorithm, while in
statistical approaches, a probabilistic resolution model is built independently of the training data
(although its development may be guided by a corpus) and the data is used solely to compute
the statistics required by the model. While there are algorithms that can induce probabilistic
models automatically from the training data, these would be classified here as machine-learning
approaches.

3.2.2.1 Machine-learning approaches

Machine learning techniques have gained popularity in the research on coreference resolution.
Some particular learners have been widely used, for example, the C4.5 decision tree learner
[Quinlan, 1993] was used by Aone and Bennett [1995], McCarthy and Lehnert [1995], Soon
et al. [2001], Strube et al. [2002], and the Ripper rule learner [Cohen, 1995] was used by Ng and
Cardie [2002b, 2002c] and Uryupina [2003].

Aone and Bennett describe a system for resolving anaphora occurring in Japanese texts
about joint ventures. They treat proper names, definite descriptions, zero pronouns and quasi-
zero pronouns. The representation of each instance consists of 66 features, including lexical
(e.g. part-of-speech), syntactic (e.g. grammatical role), semantic (e.g. semantic class), and
positional features (e.g. distance between the potential antecedent and the anaphor). Two
different methods are used to create positive training instances: transitive, where an instance
is formed between a NP and each of its preceding NPs in the same anaphoric chain, and non-
transitive, where an instance is formed between a NP and its closest preceding NP in the same
anaphoric chain. Negative instances are generated by pairing a NP with each preceding NP
that does not have an anaphoric relation with it. The system then uses the C4.5 decision tree
induction system to train an anaphora classifier that determines whether two NPs possess an
anaphoric relationship. Their best results using the transitive training strategy was 77.30% F-
measure (86.73% precision and 69.73% recall). Using the non-transitive strategy, their precision
increased but recall dropped: they reached 67.03% F-measure (89.74% precision and 53.49%
recall).

McCarthy and Lehnert describe a coreference resolution system called RESOLVE, which also
handles texts from the domain of joint ventures. 3 of the 8 features used are domain-specific;
for example, there are features that test whether each of the NPs in the pair refers to a joint
venture company. The domain-independent features can be characterised as lexical (e.g. check
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whether the two NPs share a common phrase), semantic (e.g. check whether one NP is an alias
of the other), and positional (e.g. check whether the two NPs are in the same sentence). No
syntactic feature is used. To generate positive training instances from coreference chains, only
the transitive method is used. Negative training instances are generated by pairing a NP with
each of its preceding non-coreferent NPs. They also adopt the C4.5 decision tree algorithm as
their classifier. Their best results were achieved using an unprunned tree: 86.5% F-measure,
87.6% precision and 85.4% recall.

Soon et al. adopt a knowledge-lean approach to a general-purpose coreference resolution
system. They handle all NP types. They used the C5 decision tree learner (updated version of
the C4.5), and it uses 12 surface-level features, which are all designed to be domain-independent:
one lexical feature (string matching), eight grammatical features (gender and number agreement,
apposition, and NP types), two semantic features (semantic class agreement and aliasing), and
one positional feature (number of sentences between the two NPs). The non-transitive method
is used to generate positive training instances from coreference chains. To reduce the ratio of
negative to positive instances, only the negative instances where the anaphor is paired with
NPs that are closer than the closest correct antecedent are considered. They have trained and
tested their system on the MUC-6 and MUC-7 coreference data. They report 62.6% F-measure,
67.3% precision and 58.6% recall on the MUC-6 test data, and 60.4% F-measure, 65.5% precision
and 56.1% recall on the MUC-7 test data. They also present the results of a feature selection
experiment, where they trained the classifier with one feature at a time. This experiment
indicated that string matching, aliasing and apposition are strong indicators of coreference.

Ng and Cardie have extended the work from Soon et al. They have largely expanded the
feature set, using a total of 53 features, adding lexical (e.g. new features to account for more flex-
ible string matching, such as head pre-modifier matching), semantic (e.g. measuring WordNet
distance between head nouns), positional (including a distance measure in number of para-
graphs), knowledge-based (adding the result of a knowledge-based algorithm for the NP pair as
a feature) and mainly grammatical features (e.g. determining NP type, checking NP embed-
ding, grammatical role, binding constraints) that include a variety of linguistic constraints and
preferences. They have experimented with the C4.5 decision tree algorithm and Ripper rule in-
duction algorithm. When using all the proposed features, they achieved 63.8%/61.6% F-measure
(on MUC-6/MUC-7 test data, respectively), 58.3%/58.2% precision and 70.3%/65.5% recall us-
ing the C4.5 algorithm, and 64.5%/61.2% F-measure, 62.2%/60.6% precision and 67.0%/61.9%
recall using the Ripper algorithm. These performance scores are lower than those achieved
by their reimplementation of Soon et al.’s algorithm. They report that the poor performance
on resolving common nouns was responsible for lowering the overall scores; for instance, they
achieved 40.1%/45.2% precision on common nouns using C4.5. To overcome this, they have
manually selected a high-precision subset of their features, which returned the expected im-
provement in precision (with smaller drops in recall). They reached 69.1%/63.4% F-measure,
74.9%/70.8% precision and 64.1%/57.4% recall using the C4.5 algorithm, and 70.4%/63.1%
F-measure, 78.0%/72.8% precision and 64.2%/55.7% recall using the Ripper algorithm.

Machine learning techniques vary in terms of complexity and number of parameters that are
required to be set by the developer. The more complex the learning algorithm used, the more
training data are required for the system to induce a stable and reliable model.

3.2.2.2 Statistical approaches

Statistical approaches consist of a probabilistic model which uses the training corpus as source
of the statistics required to estimate its probability terms. Statistical approaches for anaphora
resolution aim to determine the probability that a NP is the antecedent of a given anaphor. The
probabilistic model combines different sources of information as parameters (features) within
probability equations.
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Ge, Hale and Charniak [1998] proposed a probabilistic model for resolving third-person pro-
nouns. The model consists of a probability equation, which is initially conditioned on a number
of features and is then simplified to handle the sparseness of the training data. This approach
consists of decomposing the probability equation for the model by discarding dependencies be-
tween features. The decomposition is done by making use of Bayes’ rule, the chain rule and
certain independence assumptions. The features used by their model encode positional informa-
tion (the distance between the pronoun and the candidate antecedent), grammatical information
(gender and animacity of the candidate antecedent), semantic information (selectional prefer-
ences based on the governing constituent of the pronoun), and a crude measure of salience (a
mention count of the candidate antecedent). The authors show how the equation for the model
is decomposed in factors that preserve only few dependencies among the features and each factor
represents a source of information relevant for anaphora resolution. Statistics for each of the
factors are collected from the training corpus. For a given anaphoric pronoun, the candidate
antecedent that is assigned the highest probability by the model is selected as the antecedent.
They have trained their system on a small corpus, and have reached 82.9% accuracy performing
10-fold cross validation. They also measure the importance of each information source in an
incremental way, and conclude that gender and animacity information contributes the biggest
improvement in performance.

The main advantage of statistical approaches like Ge et al.’s is their simplicity, and conse-
quently the possibility of learning from a small amount of data. Since this type of model is
non-parametric, all weights come from the distribution present in the training data.

Statistical approaches (as we define them here) are not induced from the training corpus:
the corpus is used solely to provide the necessary statistics, so while the corpus still needs to
be representative, it can, in principle, be smaller than the corpus needed to induce a machine-
learning system.

The possibility of training an anaphora resolution system on a small corpus is particularly
attractive to the biomedical domain, given that a corpus of biomedical scientific articles anno-
tated with anaphora information is not available and one would need to start building a corpus
from scratch.

3.3 Anaphora resolution in biomedical text

Biomedical text differs from that of other genres (e.g. newswire, fiction) in the aspects described
in Section 2.1 from Chapter 2. Among these aspects, those which most influence anaphora are
the NP-type distribution, the background knowledge assumed by the writer about the reader,
and the writing conventions adopted in the domain to refer to biomedical entities.

Different types of NPs have a particular distribution in biomedical articles. For example,
pronouns are very rare, accounting for a very small percentage of the noun phrases, while proper
names occur very often, given the frequent mention of the names of biomedical entities. A system
for anaphora resolution in the biomedical domain can benefit from focusing on the most common
types of noun phrases, that is, non-pronominal.

Concerning background knowledge, the reader is required, in order to understand the text,
to understand the underlying relation between the entities therein mentioned. For example, in
the sentence below,

(6) ‘‘The expression of reaper has been shown ... the gene encodes ...’’

the reader has to be able to understand that reaper is a gene (given the context), so that he/she
can capture the anaphoric relation and understand the content of the sentence. This aspect
emphasises the need for semantic information as a feature in the anaphora resolution process.
The biomedical domain is fortunately rich in resources that can provide semantic information,



46 Anaphora and anaphora resolution

like those described in Chapter 2 (e.g. databases, UMLS, GO, SO, etc.).
Another aspect affecting the anaphoric relations are the writing conventions adopted in the

biomedical domain to distinguish between a gene name and a protein name. The most usual
convention is writing gene names with lowercase italicised letters and protein names with non-
italicised uppercase letters. The existence of such conventions allows for associative anaphora
between proper names, which is not seen in other domains, as in the example:

(7) ‘‘Drosophila has recently been shown also to have a CED-4/Apaf-1 homolog, named
Dark/HAC-1/Dapaf-1. ... Like Apaf-1 and CED-4, loss of function mutations
in dark/hac-1/dapaf-1 result in a reduction in developmental programmed cell
death.’’

Very few systems for anaphora resolution have been developed for the biomedical domain.
Castaño et al. [2002] developed a salience-based system for anaphora resolution (similar to the
Lappin and Leass system for pronoun resolution). It seeks to resolve pronouns and nominal
(which they call sortal) anaphora. The resolution process relies on lexical information (they
compute a score of string similarity), grammatical features (e.g. number agreement), and se-
mantic information (matching between semantic types derived from UMLS), which are used to
compute a salience score for each antecedent candidate, and the most salient is selected. They
have developed the Medstract corpus in order to evaluate their system. It is composed of a set of
Medline abstracts where mentions of biomedical entities have been classified according to UMLS
and anaphoric relations tagged. The system’s best performance on pronouns was 80% precision
and 71% recall and on sortals, 74% precision and 75% recall. The authors argue that UMLS is
too coarse-grained, and assume that a finer-grained typing strategy would help to increase the
precision of the anaphora resolution system.

Gaizauskas et al. [Gaizauskas et al., 2003] developed the PASTA system, which is an adap-
tation of the general LaSIE information extraction system to the biomedical domain, more pre-
cisely to the extraction of the roles of specific amino acid residues in protein molecules. Their
coreference resolution module, which works on top of an ontology-like representation of the dis-
course, populated by instances collected from the text, was presented in Section 3.2.1.1 above.
For treating biomedical texts (rather than news articles used by LaSIE), they have changed the
classes of named-entities considered, and the world model (which is instanciated with entities
from the text to become the discourse model) had to be adapted to represent a domain model,
containing as concepts “proteins”, “residues” and “species” (instead of “persons”, “organisa-
tions”, “locations”, etc.). They evaluated their information extraction system on a corpus of
1513 Medline abstracts, but have not reported on the performance of the coreference resolution
module alone on the new domain.

Yang et al. [2004] evaluate a supervised machine-learning approach for anaphora resolution
on a portion of the GENIA corpus, which is tagged with semantic information based on the
GENIA Ontology. They focus only on coreferent cases and do not attempt to resolve associative
links. Their system is similar to that of [Soon et al., 2001]. It uses 18 features to describe
the relationship between an anaphoric expression and its possible antecedent, and also adopts
a decision tree algorithm. They achieved recall of 80.2% and precision of 77.4%. They also
experiment with exploring the relationships between NPs and coreferential clusters (chains),
which are formed during the resolution process: the first two NPs that are found to be coreferent
start a cluster, and following NPs are checked against the cluster to verify whether they are
coreferent. Thus selecting an antecedent is not based just on a single candidate but also on the
cluster that the candidate is part of. For this they add 6 cluster-related features (e.g. string
matching to any NP in the cluster, number of elements in the cluster) to the machine-learning
process, and are able to improve their system performance, achieving 84.4% recall and 78.2%
precision.
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Kim and Park [2004] developed the BioAR system to resolve anaphoric mentions of proteins
in order to link them to the protein record at the Swiss-Prot database. The anaphoric protein
mentions to be resolved were extracted by an information extraction system, BioIE, which
finds protein-protein interactions. They consider pronouns and all NPs with determiners as
anaphoric expressions. For resolving pronouns they use a centering-like algorithm, and for
resolving the other NPs, they use a similar system to Castaño et al. To filter out mentions that
usually contain the article “the” (definite NPs) but are not anaphoric (e.g. “the nucleous”,
“the yeast Saccharomyces cerevisiae”), they have created a list of cellular component names,
a list of species names, and a list of patterns which represent the internal structures of some
non-anaphoric definite NPs (e.g. apposition). They achieve 75% precision and 56% recall on
pronoun resolution and 75% precision and 52% recall on nominal anaphora resolution.

All these systems for anaphora resolution in the biomedical domain have been developed and
tested on abstracts of biomedical articles, which represent a restricted use of anaphora. There is
clearly a need to develop a system for tackling anaphora in full-text articles, since these contain
the main source of data to be automatically extracted by any information extraction effort.

3.4 Evaluation of anaphora resolution systems

Anaphora resolution systems are usually evaluated against a gold-standard corpus where anaphoric
relations have been manually annotated. The performance of anaphora resolution systems has
been measured using Precision and Recall scores. There has been considerable discussion on
how to calculate precision and recall when the output of the resolution system consists of coref-
erence chains. The key issue when evaluating coreference chains is how to score chains that are
partially correct (missing or exceeding some elements).

MUC-6 has proposed a scoring system that compares the coreference chains returned by a
system with the coreference chains from a gold-standard corpus. The MUC-6 scoring scheme
[Vilain et al., 1995] compares equivalence classes defined by the coreference links, instead of
comparing the links themselves. The recall score is obtained by determining the minimal num-
ber of links missing in the system response that are required to transform its corresponding
equivalence classes into those formed by the gold-standard links. Assuming S as an equivalence
class from the gold-standard, recall is computed as follows, for all i equivalence classes:

R =
P

i(c(Si)−m(Si))P
ic(Si)

where c(S) is the minimal number of links necessary to generate the equivalence class S—
c(S) = (|S| − 1). m(S) is the number of missing links in the system response relative to
S—m(S) = (|p(S)|−1); p(S) is the number of subsets into which the system response partitions
the gold-standard equivalence class. To compute precision, the roles for the gold-standard and
the system response are reversed: S is assumed to be an equivalence class from the system
response, and the missing links to turn the gold-standard equivalence classes into the system
response are calculated.

The MUC-6 scoring algorithm, however, has two major shortcomings according to Bagga and
Baldwin [1998]. The algorithm does not give any credit for separating out singletons (entities
occurring in chains only consisting of one element). Nor does it distinguish between different
types of errors. The authors argue that some errors do more damage than others; for example,
they argue that a mistaken link between elements of two long coreference chains is more damaging
than a mistaken link that merges shorter chains. Despite this, the MUC scoring system has
continued to be used to evaluate coreference resolution systems.

In order to evaluate associative anaphora resolution rather than coreference relations, no
specific scoring scheme has been proposed. Previous work have computed precision and recall
in the usual away, comparing the associative links themselves in the system response and in the
gold standard [Vieira and Poesio, 2000, Bunescu, 2003].
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3.5 Summary

In this chapter we have discussed the concepts of anaphora and coreference, and have described
systems for anaphora resolution. We have discussed the general steps of an anaphora resolution
system and have classified the systems according to their resolution approach: knowledge or
corpus-based. Knowledge-based approaches rely on theoretical models or manually built rules
and do not require any training data; these aspects characterise them as conservative models
that have difficulty handling unusual/unforeseen cases.

Corpus-based approaches, on the other hand, learn from training data and are consequently
more flexible. These approaches can combine different sources of information (features) in a soft
way: the relevance of each feature is balanced by its prominence and frequency in the training
instances. Among the corpus-based approaches that we presented, statistical approaches appear
to be an interesting option when the training corpus available is small, since the corpus is used to
collect statistics that will fit into a previously defined probabilistic model, instead of being used
to induce a resolution model, as in machine-learning approaches. Although statistical approaches
also require that the corpus be representative, it could, in principle, be smaller than the corpus
required to induce a reliable model using a learning algorithm. Thus the statistical approach
appeals to efforts in the biomedical domain where no corpus of scientific articles annotated with
anaphora information is available.



Chapter 4

Biomedical entity recognition and classification

An essential step in information extraction is the identification of the NPs that refer to the
entities about which one wants to extract information. In molecular biology texts, the central
entity of interest is the gene, then entities related to the gene, like its products (e.g. proteins),
its parts (e.g. codons), its variants (e.g. mutants), among others.

Among those there are named and unnamed entities. Genes and proteins have names;
sometimes gene parts also take the gene’s name, and gene variants receive variants of the gene’s
name. To identify these names in the text, we require a named-entity recogniser. Recognising
gene/protein names is considered more challenging than recognising other named entities (e.g.
city names, person names, company names), given the issues discussed in Chapter 2, which
mainly concern the overlap with common English words and similarity to general acronyms.

To recognise unnamed biomedical entities, a simple approach is to have a list of the entities
of interest and to mark them up in the text. The main challenge in this case is to compile a
complete and coherent list and allow for inflectional and typographical variants.

Besides identifying the entities, it is also important to classify them according to a given set
of classes of interest. The class information is useful for tasks that aim to find relations between
the entities, which could be linguistic relations such as anaphora, or biological relations such as
protein-protein interaction.

In this chapter we shall describe our strategy for recognising and classifying named and
unnamed entities in molecular biology texts, more specifically in the fruit fly literature. For
named-entity recognition (NER) we have adopted the system developed by Vlachos et al. [2006]
(Section 4.1), whose goal is to identify and mark up gene names in the text. For the recognition
of unnamed entities we have developed a dictionary-based approach based on the Sequence
Ontology (SO) [Eilbeck and Lewis, 2004] (Section 4.2), which is responsible for identifying in the
text noun phrases whose head nouns refer to biomedical entities and classifying them according
to the relations present at SO. As a prerequisite, we require a syntactic parser that is able to
indicate the noun phrase boundaries and its subconstituents (e.g. head noun, head modifiers) –
for that we have adopted the RASP parser [Briscoe and Carroll, 2002]. Only after these steps,
once we have identified all mentions to biomedical entities in the text, we can consider looking
for relations among them, such as anaphora. Figure 4.1 summarises how the information from
different levels of processing is combined. It shows (using XML mark up to illustrate) that
each level adds up linguistic information to the text. This additional information is essential to
accomplishing anaphora resolution.

4.1 Gene/protein name recognition

The NER system we use was developed by Vlachos et al., and it is a replication and extension
of the system developed by Morgan et al. [2004]: a different training set and software were used.
The main characteristic of both systems is the generation of training data by automatically
annotating Medline abstracts with the names, symbols and synonyms of the genes with which
they were associated in FlyBase. As seen in Chapter 2, each fruit fly gene has an entry in
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Figure 4.1: Pipeline for anaphora resolution

FlyBase, and each entry contains links to the publications where that gene is discussed. These
links lead to the PubMed identifier for the abstract of each publication, so the abstracts can be
recovered, the terms used to refer to the associated gene can be tagged, and the abstract can
already be part of a training set. This strategy for generating training data automatically makes
it possible to create a large training set, although it is not always accurate: as Morgan et al. note,
the occurrence of gene synonyms that match common English words, such as “to” and “by”,
leads to the incorrect annotation of common words as gene names, resulting in precision errors
in the training data; on the other hand, some genes that are mentioned in the abstracts might
not be associated with the article in FlyBase, as FlyBase curators only consider some relevant
sections of the article when curating, resulting in recall errors.

Vlachos et al. used a total of 16609 abstracts. These abstracts were split in sentences
and tokenised using the RASP toolkit [Briscoe and Carroll, 2002], and were then automatically
annotated as described. They were used to train a gene-name recogniser; the recogniser used
was the open source toolkit LingPipe1, implementing a 1st-order HMM model using Witten-
Bell smoothing. To deal with gene names that had not been seen in the training data, a
morphologically-based classifier was used. LingPipe achieves high precision by only generalising
to unseen names in lexical contexts that are clearly indicative of gene names in the training
data.

The recogniser was tested on a dataset developed and used by Morgan et al.; it consists of 86
abstracts containing about 7800 distinct gene names (referring to 5243 distinct genes) annotated
by a biologist curator and a computational linguist. Its average performance was 82.54% recall
and 79.84% precision.

4.2 Selecting and classifying biomedical entities

The first step towards identifying the NPs that refer to biomedical entities is to recognise all NPs
(and their subconstituents) in a sentence. For that, we have parsed the sentences using RASP,
which recognises the NP boundaries, its head and modifiers. After that, we tag all NPs that
refer to biomedical entities according to our approach, which uses information from the NER

1http://www.alias-i.com/lingpipe/
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module and the Sequence Ontology. Finally, we filter out all NPs that are not considered to
refer to biomedical entities, and take those remaining to be considered for anaphora resolution.

4.2.1 Parsing and NP extraction

In the named-entity recognition step, RASP is used to detect sentence boundaries and to tokenise
sentences. So, in this step, we continue using RASP to tag the tokens with their part-of-speech
(PoS) and finally to parse PoS tag sequences. Before parsing though, we change the PoS tag
of all tokens that had been recognised as gene names to the appropriate proper name tag—
since RASP considers gene names to be unknown words, this improves parser performance as
the accuracy of PoS tagging decreases for unknown words. RASP’s tagger uses an unknown-
word handling module which relies heavily on the similarity between unknown words and extant
entries in its lexicon; this strategy works less well on gene names and other technical vocabulary
from the biomedical domain, as almost no such material was included in the training data for
the tagger.

The RASP parser outputs grammatical relations (GRs) for each sentence that is parsed
[Briscoe et al., 2006]. GRs are factored into binary lexical relations between a head and a
dependent of the form (GR-type head dependent). To find the NP head nouns, we consider
the RASP GR types presented in Table 4.1, in which dependent slots are nominal; column
2 describes how the parser compiles these GRs. We also consider the same GRs when the
noun slot is filled by a conjunction (e.g. (ncsubj verb conj), in which case we look for
complementary (conj conj noun) GRs, which encode relations between a coordinator and
the heads of a conjunct. There will be as many such binary relations as there are conjuncts of
a given coordinator; e.g. for “CED-9 and EGL-1 belong to a large family ...” we get (ncsubj
belong and), (conj and CED-9) and (conj and EGL-1). To complete the NP, we look
for GRs that contain determiners and pre-modifiers of the head nouns found, as shown in Table
4.2; we have adopted the concept of “base NPs”, where we don’t consider post-modifying clauses,
so there are no overlapping base NPs [Lewin, 2007].

GR Description

(ncsubj verb noun) relation between non-clausal subjects and their verbal heads

(dobj verb noun) relation between a verbal head and the NP to its immediate right

(dobj prep noun) relation between a prepositional head and the NP to its immediate right

(obj2 verb noun) relation between verbal heads and the head of the second NP in a
double object construction

(ta * noun) relation between the head of an NP or clause and the head of a
text adjunct delimited by punctuation (quotes, brackets, dashes, com-
mas, etc.), e.g. for “BIR-containing proteins (BIRPs)” we get (ta
proteins BIRPs).

Table 4.1: GRs used for NP extraction

Having done that, we extracted all NPs, with information about which elements are its
head, modifiers and determiner, so we can start classifying the NPs according to the biomedical
entities to which they refer.

The GR-based NP extraction strategy has recently been extended to take advantage of NER
information for the ranking of n-best lists of GRs, derived from parsing alternatives for a sentence
[Lewin, 2007].
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GR Description

(det noun determiner) relation between articles, quantifiers, partitives and other single word
forms which can begin NPs, and the NP head.

(ncmod noun modifier) relations between non-clausal modifiers and the NP head, e.g (ncmod
genes msl).

Table 4.2: GRs used for finding head noun complements.

4.2.2 Typing biomedical NPs

After finding all NPs in the text, we would like to type them in order to be able to select
those that refer to biomedical entities. For that to be possible, we have associated what we call
“biotypes” to terms referring to biomedical entities. We have adopted the Sequence Ontology
(SO) as our source of relevant terms and also as our source of relationships between the terms.

As described in Chapter 2, SO focuses on the molecular biology subdomain. It includes most
vocabulary necessary to describe biological sequencing, from genes to proteins, and classifies the
terms in a subsumption and relational network. However, as an ontology, SO can have several
levels of relations linking two concepts; for example to find the relation between the concepts of
gene and protein, there are several intermediate relations and concepts that constitute the path
between the concepts.

In order to fit SO for the task of typing biomedical entities in the text, we have reorganised
and simplified it in order to eliminate the intermediate levels between concepts of our interest.
We have restructured SO’s relations in order to give the gene a central role, so that we could
divide the terms in classes according to their relation to the concept of a “gene”; these classes are
our “biotypes”. A gene may be defined as a sequence of DNA that encodes some biological func-
tion; specified sequences within genes are considered parts of the gene; and the units of function
encoded by the gene are considered its products (intermediate products such as polypeptides
or the final product, proteins). Different versions of a gene sequence are considered variants
of a gene, and specific kinds of genes are seen as subtypes of genes (e.g. oncogenes). Portions
of sequence that are broader than the gene are called “supertypes” of genes. Reorganising SO
concepts in a limited set of classes helps us to consider indirect relations that would otherwise
span several levels in the ontology.

The first step in the process of restructuring SO was to look for the path between a gene
and its final product, a protein, through the is-a, part-of, and derived-from relations available.
We got to the path shown in Figure 4.2.

Figure 4.2: Sequence Ontology path from gene to protein

From this path, considering the gene as central, we made the following assumptions, that
were reviewed and accepted by a biologist:

• whatever is-a transcript is also part-of a gene;

• whatever is-a processed transcript is also part-of a gene (consequently, mRNA is part-of a
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gene);

• whatever is-a mRNA is also part-of a gene;

• whatever is part-of a mRNA is also part-of a gene (consequently, CDS is part-of a gene);

• whatever is derived-from a part-of a gene is a product of a gene (consequently, polypeptide
is a product of a gene);

• whatever is-a polypeptide is also a product of a gene;

• whatever is part-of a polypeptide is also a product of a gene;

• whatever is composed by polypeptides is also a product of a gene (consequently, protein
is a product of a gene).

On these assumptions, we decided to extract from SO all the entries related to the con-
cepts in the path above, that is, all items related to “gene”, “transcript”, “mRNA”, “CDS”,
“polypeptide”, and “protein” by part-of, is-a, or derived-from relations, and organise them into
three groups of terms: genes, parts of genes and gene products. For example, a “riboswitch”
is an mRNA, so it is grouped together with mRNA as part of a gene; an “UTR” is a part of
an mRNA, so it is also part of the same group (parts of genes). The group of gene products
has been divided in two, proteins (final products) and parts of products (intermediate gene
products), because we were interested in keeping the distinction between the two to be able to
represent relations between mentions from these two groups. We also extracted entries referring
to types of genes, which were included in the ontology under an entry called ‘gene class’ (rather
than an extra relation type), and entries referring to variants of genes, which were indicated by
the variant-of relation in the ontology; this led to the creation of two more groups: subtypes
of genes and gene variants. Finally, we created a group to represent DNA sequences that are
greater than a gene, what we call supertypes. In summary, we have seven groups of entities,
and consequently of terms referring to these entities, and each group represents a biotype. We
have then the following biotypes: “gene”, “product”, “subtype”, “part-of”, “part-of-product”,
“supertype”, and “variant”. Figure 4.3 presents all the information extracted from SO. Each
block correspond to one group of entities; inside the blocks we show the terms extracted from
SO for each group – indented entries hold an is-a relation with the upper entry, and entries
preceded by ’*’, a part-of relation. The arrows represent the relations between the blocks, from
which the biotypes are derived.

During the corpus annotation phase (described in the next chapter) in which we used the
above biotypes to type the entities, we encountered mentions of biomedical entities that could
not be found among the terms that we extracted from SO. These mentions referred to entities
that fit at least one of our biotypes, but which were referred to by alternative (more specific)
terms. Because we aimed at typing all mentions of biomedical entities in the text, we felt the
need to expand our groups of terms in order to include those that were not contemplated by
SO. We observed that the missing terms referred essentially to: types of proteins (e.g. kinase,
enzyme), types of parts of product (e.g. bipeptide, motif), terms related to homology between
genes2 (e.g. homolog, paralog, ortholog), the word “family” to account for families of genes, and
other terms to refer to variants of genes (e.g. constructs, mutants).

To account for the types of proteins and parts of proteins, we have compiled a list of these
based on the UMLS Metathesaurus. We have first selected all entries from the metathesaurus

2Two genes are homologs when they share a common ancestor, occurring within one species or in different
organisms.
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Figure 4.3: Structure derived from Sequence Ontology



Biomedical entity recognition and classification 55

(a) Extended product class

(b) Extended part-of-product class

(c) Extended variant class (d) Extended gene class.

Figure 4.4: Additions to our ontology

whose semantic type is “Amino Acid, Peptide, or Protein”, and have filtered these in order to
eliminate named entities, that is, names of proteins or protein families, which are also present
in the Metathesaurus. To be added to the group of terms referring to gene products, we have
selected all words ending in “ase”, “enzyme” and “hormone”, and have manually selected terms
that refer to proteins according to their function, e.g. “inhibitor”, “receptor”. To be added
to the group of terms referring to parts of gene products, we have selected all words ending in
“peptyde”, “motif” and “domain”. This process resulted in 2348 new terms.

To the variant class in our ontology, we added the terms “construct”, “mutant” and “variant”
as variations of genes; we have also moved the term “transgene” from subtype to variant. These
changes have been suggested by a biologist curator from FlyBase, who participated in the corpus
annotation task. Figure 4.4 shows the changes to our ontology.
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Finally, to type the mentions to biomedical entities in the text according to their biotypes, we
match the NP head noun against the terms associated to each of our biotypes. For multi-word
terms we consider only the term’s head noun, which we have indicated manually. For instance,
we would tag “the third exon” with “part-of” biotype.

To classify the NPs whose head noun is a gene name tagged in the NER phase as opposed
to a term from the ontology, we explored what is known about naming conventions in order
to disambiguate between gene and protein names: if the name is uppercase or capitalised, it is
tagged as “product”; if not, it is tagged as “gene”.

Other NPs that still remain without biotype information are tagged as “other-bio” if any
of its head pre-modifiers was recognised by NER as a gene name. These NPs refer mainly to
events, e.g. “reaper transcription” or “Ser signaling”.

This biotyping process achieves an overall accuracy of 65.35% when evaluated against the
manually annotated corpus described in Chapter 5. Table 4.3 shows the number of occurences
in our corpus and the performance of the typing strategy for each biotype.

Biotype Occurrences Precision (%) Recall (%)

gene 249 71.9 68.1

subtype 156 94.3 64.7

variant 186 97.6 22.0

product 1189 84.9 76.5

part-of 194 57.5 33.5

part-of-product 241 73.7 62.3

supertype 36 100 22.2

other-bio 444 64.6 68.3

Total 2695 79.0 64.8

Table 4.3: Performance of biotyping strategy

The main cause of low recall for supertype and part-of tagging and low precision for part-of-
product tagging is the word “sequence”: it can be tagged as any of the three classes (referring to
DNA sequences or protein sequences), so we opted for the class most frequently associated with
the word in our annotated corpus, which is part-of-product. The recall of part-of tagging and
precision of part-of-product tagging are also affected by the word “terminus” (which can also
refer to a terminal part of a gene sequence or to an amino terminus, terminal part of a protein
sequence), so we also adopted the part-of-product as the only class due to its higher frequency.
The main source of mistakes concerning the variant and other-bio classes is the term “mutant”:
we have assumed it always to refer to an other-bio entity, the organism that carries a mutant
gene, given the term’s higher frequency with this meaning in our corpus.

The biotyped NPs are finally selected and considered for anaphora resolution. The biotype
information is combined with other features to decide on an anaphora relation between two
NPs, but basically it can be interpreted as follows: NPs with the same biotype may be coref-
erent; however, the anaphoric relation between NPs with different biotypes may be associative
rather than coreferential. These assumptions are explored in our baseline system for anaphora
resolution presented in Chapter 6, and in our probabilistic system presented in Chapter 7.



Biomedical entity recognition and classification 57

4.3 Limitations

The main limitation of our biotyping strategy is the lack of a disambiguation mechanism to be
used when a word can be tagged with more that one biotype. To solve this problem, the context
of the words would have to be analysed and used for disambiguation. For example, considering
the NP “DNA sequence”, the word “DNA” could be used to identify sequences that fit the
part-of or supertype biotypes, while in “protein sequence” the word “protein” could be used to
indicate part-of-product biotype. Further study would be necessary to identify words that are
able to distinguish the senses of ambiguous words, and determine whether such words should be
part of the NP or in the adjacent context.

Another limitation is the vocabulary coverage: the extensions we have made to the Sequence
Ontology seem adequate and sufficient for our corpus, but future work with different scientific
articles may reveal a need for further extension of the ontology.

The other-bio biotype could be refined if there is interest in identifying and classifying events
related to the biomedical entities present in the text. The Gene Ontology, for example, could be
used to identify which of the NPs classified as other-bio refer to molecular function or biological
processes.

4.4 Related work

Castaño et al. [2002] makes use of the UMLS Semantic Network concepts to type the entities
found in the text. Their corpus is composed of abstracts of no specific biomedical subdomain,
so the types used are much more coarse-grained (in terms of biological entities) than those we
used in our ontology, which is focused on the molecular biology subdomain. The types used by
Castaño et al. are: “Amino acid, peptide or protein”, “Embryonic structure”, “Cell”, “Bio-active
substance”, “Organism”, “Functional chemical”, “Bacterium”, “Molecular Sequence”, “Chem-
ical”, “Nucleotide”, “Cell component”, “Enzyme”, “Gene or Genome”, “Structural chemical”,
“Nucleotide sequence”, “Substance”, “Organic Chemical”, “Pharmacologic substance”, “Organ-
ism attribute”, “Nucleic acid”, and “Nucleotide”. They consider the type matching as part of
their anaphora resolution algorithm: they use a salience-based approach, where entity pairs with
matching types are rewarded by 2 points; and no-matching pairs are punished by 1 point—this
setting discourages the discovery of associative anaphoric relations between entities of different
type.

Gaizauskas et al. [2000] have created their own set of semantic classes used to classify the
terms in the text. They identify the terms by morphological clues (e.g. words ending in ‘ase’
refer to proteins) and by consulting a lexicon that they have built based on publicly available
databases and corpora. They classify the terms according to the subdomain from which they
want to extract information. For their PASTA system, which aims to extract information
about the role of amino acid residues in proteins, they classify the terms as “atom”, “base”,
“chain”, “interaction”, “protein”, “non-protein compound”, “region”, “residue”, “quarternary
structure”, “secondary structure”, “supersecondary structure”, “site” and “species”. On the
other hand, for their EMPathIE system, which aims to extract information about enzyme and
metabolic pathways, the classes are “compound”, “element”, “enzyme”, “location”, “measure”,
“organization”, “pathway”, “person” and “organism”.

4.5 Summary

In this chapter we have described our strategy for identifying and classifying the mentions of
biomedical entities in a text. To identify gene/protein names we have adopted the Vlachos
et al. named-entity recognition system. To identify NPs referring to biomedical entities of in-
terest we have adopted the Sequence Ontology as our main source of terminology, and have
enriched it by using parts of UMLS Metathesaurus. We have used the RASP parser to identify
the NP boundaries and its subconstituents. We have used the relations present in the Se-
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quence Ontology to classify the mentions according to 7 classes (biotypes): “gene”, “product”,
“subtype”, “part-of-gene”, “part-of-product”, “supertype”, and “variant”. Once the biomedical
entities were identified and classified we could then annotate the anaphoric relations between
them. The annotation process is described in the next chapter.



Chapter 5

Anaphora annotation in biomedical texts1

In order to be able to train, test and evaluate our anaphora resolution system for the biomedical
domain, it was necessary to have a gold-standard corpus, which should contain anaphora rela-
tions between biomedical entities. However, there was no corpus of full-text biomedical articles
annotated with anaphoric links [Cohen et al., 2005]. The lack of such data significantly impedes
scientific progress in this area. For instance, although anaphora resolution was identified as one
of the “new frontiers” in biomedical text mining in the call for papers of a recent conference,
there were no papers on this topic published in the proceedings; the organisers attribute this to
the lack of publicly available data [Zweigenbaum et al., 2007]. We aimed at filling this gap by
developing annotations that made our research possible and would facilitate future research on
anaphora resolution in the biomedical domain.

Work has been done on annotating abstracts of research papers from Medline instead of
full papers [Kulick et al., 2004, Yang et al., 2004, Castaño et al., 2002]. However, as anaphora
is a phenomenon that develops through the text, we believe that short abstracts are not the
best source to study it and decided to concentrate on full papers instead. Sanchez et al. [2006]
annotated full papers but were only interested in pronoun coreference and their data contain 18
pronouns only.

Annotating anaphora is a difficult task, given that the relation between two expressions can
sometimes be subjective and subtle, and different annotators may disagree about it. It is not
easy to explain precisely to an annotator the complex relation between expressions that he/she
should be looking for, or to establish an exact procedure to be followed, so annotation guidelines
usually employ several examples to describe the relations and impose a set of restrictions to make
the task more consistent [Hirshman and Chinchor, 1997, Poesio, 2000, ACE, 2004]. Restrictions
can include, for example, instructions to (do not) link expressions that take part in a particular
syntactic relation (e.g. apposition), and to mark the closest antecedent. Guidelines vary in
how they approach specific cases; van Deemter and Kibble [2000] discuss some aspects of the
MUC guidelines [Hirshman and Chinchor, 1997] which according to them damage the quality
and consistency of the annotation. Section 5.1.1 describes the main differences between some
existing guidelines for anaphora annotation.

We have annotated both coreferent and associative anaphoric relations. As mentioned in
Chapter 3, distinguishing coreference from anaphora, in particular coreferent anaphora (anaphora
cases where the NPs involved are coreferent), can in some cases be difficult. While coreference
simply describes expressions that refer to the same entity, coreferent anaphora consists in the
linguistic dependency between two coreferent expressions, where the one which comes later in
the text, the anaphor, depends on the earlier one, the antecedent, for it to be understood. Given
that in some cases the distinguishing dependency is very subtle, we decided to consider both
coreference and coreferent anaphora as one single class of relations.

Concerning associative anaphora, the association between the anaphor and the antecedent

1Part of the work presented in this chapter has been published in [Gasperin et al., 2007].
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may be due to diverse relations between the entities they refer to. These relations may, for
example, be part-of or set-member relations, but also less well-defined relations, such as the
relation between “the horses” and “the race” in the sentence I watched the race, the horses

were impressive. In biomedical texts, the domain relations between the entities usually support
the associative anaphoric relations between the expressions which refer to them. We took that
into account and defined three types of associative relations that should be considered for the
annotation. Limiting the types of relations to be considered makes the annotation more con-
sistent, since unspecified relations can turn out to be too subjective and controversial. Section
5.1.2 details both coreferent and associative relations that we focused on.

In summary, we have developed (1) an anaphora annotation scheme tuned to the biomedical
domain, which integrates linguistic and domain-specific knowledge, and (2) a corpus of full-text
biomedical articles that has been annotated conforming to the proposed scheme. The resulting
corpus is described in Section 5.3.

5.1 Anaphora annotation scheme

We consider as possible anaphoric expressions of interest all types of non-pronominal NPs re-
ferring to biomedical entities (which have a biotype assigned to them). We classify the NPs as:
proper names (pn), definite NPs (defnp; e.g. “the gene”), demonstrative NPs (demnp; e.g. “this
gene”), indefinite NPs (indefnp; “a protein”), quantified NPs (quantnp; e.g. “all genes”, “four
proteins”), and other NPs (np). We only annotate anaphoric relations where the antecedents are
NPs; that is, we do not consider cases where the anaphor may refer back to a clause, sentence
or even paragraph.

We have developed guidelines to describe the anaphoric relations that should be annotated
and how to identify them. In the next subsection we present some aspects of existing guidelines
for anaphora annotation and subsequently we describe our annotation scheme for the biomedical
domain.

5.1.1 Existing schemes for anaphora annotation

Other schemes have been developed for the annotation of anaphora. The MUC-7 guidelines
[Hirshman and Chinchor, 1997] instruct annotators to mark only the coreference (identity) re-
lation between entities and do not deal with associative links. The GNOME project guidelines
[Poesio, 2004] propose the annotation of coreference and the following kinds of associative links:
‘element’ (when the anaphor is an element of a set of objects), ‘subset’ , ‘poss’ (when the anaphor
is owned by or is part of an entity), and the inverse version of these relations. The ACE guide-
lines2 also focus on the coreference relation, just adding what they call “attributive relations”
that essentially link appositive and predicative phrases to the anaphor.

All such guidelines provide a brief description of the relations of interest, and define some
restrictions that should be applied to the annotation. The guidelines diverge in how to deal
with some particular linguistic constructions, such as apposition, predicates and relative clauses.
MUC-7 guidelines recommend appositive clauses to be annotated as coreferent, while GNOME
and ACE guidelines recommend the opposite. MUC-7 also recommends that predicates be
annotated as coreferent, unless they are introduced by a negative or modal clause, while GNOME
recommends no relation should be annotated in these cases, and ACE recommends the use of
attributive relations.

The guidelines also instruct the annotator to look for the closest antecedent. GNOME
guidelines recommend the annotators mark at most one identity and one associative relation
per anaphor.

In the biomedical domain, Castaño et al. [2002] present the Medstract corpus, where they
annotated coreferent and set-member relations between biomedical entities in a set of Medline

2http://projects.ldc.upenn.edu/ace/annotation/2005Tasks.html
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abstracts. They annotate pronominal and nominal (which they call “sortal”) coreference cases.
Sortal cases are phrases which refer to more than one entity, for example, “both enzymes”, for
which multiple antecedents are annotated, and the relation between them and the anaphor can
be seen as ‘set-member’.

The MedCo project [Yang et al., 2004] used the MUC-7 scheme to annotate their data (a
portion of the GENIA corpus), but have distinguished some special cases of the identity relation
based on linguistic features: ‘appos’ (appositive relation), ‘pron’ (pronominal anaphora) and
‘relat’ (relative clause)3.

We have opted not to distinguish the appositive relation from a usual coreference relation, and
annotate main NP and apposition as coreferent. Since we are using base NPs as our annotation
units, which do not include the apposition as part of the NP, we decided that was the most
appropriate practice. For example, in the expression "the remaining protein, MSL3,...", the
annotator should link the apposition “MSL3” to the main NP “the remaining protein”. The same
was adopted for predicative mentions such as "ced-4 is a pro-apoptotic gene". Concerning
relative clauses, as we have decided not to treat pronoun anaphora (nor, consequently, relative
pronouns), we do not link them.

None of the existing annotation schemes takes into account the domain of the text when
classifying their anaphoric links, and we believe that the record of which domain relation backed
the anaphoric relation is an important piece of information for anaphora resolution, mainly when
aiming to help automatic information extraction. We have considered this in our classification
of associative relations between biomedical entities, as described in the next section.

5.1.2 A domain-relevant annotation scheme

Since we are interested in anaphoric relations between biomedical entities, we have focused on
the domain relations between these, besides linguistics relations between their mentions, in order
to classify the anaphoric relations.

We annotate the following anaphoric relations between two noun phrases:

• coreferent: when both mentions refer to the same entity, having the same biotype (e.g.
two mentions of a same gene or protein, etc.)

• associative: when the mentions are related but do not refer to the same entity. We are
interested in three types of associative relation:

– biotype relation: when related mentions have different biotypes (e.g. a gene and one
of its products)

– homolog relation: when the related mentions are homologs4, having the same biotype
(e.g. a gene and its homolog from another organism)

– set-member relation: when one of the related mentions refers to a set that contains
the referent of the other mention (e.g. plural or coordinated mentions)

These anaphoric relations are detailed in the following subsections.
Since biomedical texts have a considerable amount of text placed in captions of tables and

figures, we assume that biomedical NPs in such captions may have an anaphoric relation to an
NP in the body of the text; however, the converse is not allowed, that is, an anaphor in the
main body of the text cannot be linked to an NP in a caption.

3The MedCo guidelines are not publicly available, but some samples of their data can be found on their website.
4Two genes or gene products are homologs when they share a common ancestor, occurring within one species

or in different organisms.
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5.1.3 Coreferent mentions

We consider as coreferent the relation between two mentions that refer to the same biomedical
entity. The annotator looks for the closest mention that is coreferent to the current mention
and, if one is found, links them. In our annotation, we do not distinguish between coreferent
relations that are anaphoric or not; for example, we annotate as coreferent both the expressions
of Example 8 (not clearly anaphoric) and Example 9 (anaphoric).

(8) <np id="10" biotype="product">

Initiator caspases

</np>

are thought to be at the beginning of a proteolytic cascade...

<np id="15" biotype="product" ante="10" rel="coref">

Initiator caspases

</np>

usually have long pro-domains ...

(9) The expression of

<np id="20" biotype="gene">

reaper

</np>

has been shown...

<np id="25" biotype="gene" ante="20" rel="coref">

the gene

</np>

encodes ...

5.1.4 Associative mentions

Associative anaphoric relations rely on ontological i.e. “world” relations between the entities
referred to in the text. These relations are assumed by the writer to be known by the reader.
We annotate as associative cases those instances in which these relations imply a dependency
between the anaphor and its antecedent, that is, the meaning of the anaphor could not be
fully understood if it were not for its relation with the antecedent. In the biomedical domain,
these world relations are the actual relations between the biomedical entities, independent of
the text, for example, the fact that a gene encodes a protein, or that a gene is composed by
DNA sequences.

Given that associative relations are more subtle than the identity relations present in coref-
erent cases, the span of associative anaphoric links is usually shorter, that is, associative an-
tecedents are usually close to the anaphor, while coreferent antecedents may be further away.
According to Hawkins’ [Hawkins, 1978] definition of associative anaphora, the anaphor in such a
relation should be an entity not previously mentioned in the discourse, which is introduced based
on its relation with a previously mentioned entity. However, we noticed that in long discourses
like scientific papers, entities are introduced more than once, usually in different sections of the
paper. With this in view, the annotator is encouraged to look for associative antecedents mainly
within the same section of the paper as the anaphor.

Here we describe the main types of associative relations that we found in our corpus of
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biomedical articles.

5.1.4.1 Biotype relation

The associative relation between two entities with different biotypes, as in examples 33 and 34,
is marked as ‘biotype’ associative relation. The biotype relation may represent, for example, the
link between a gene and its product, or between a gene and a DNA sequence that is part of it.

(10) There was considerable excitement in the field when potential mammalian and
Drosophila homologs for

<np id="20" biotype="gene">

ced-3

</np>

were discovered.

<np id="25" biotype="product" ante="20" rel="biotype">

The CED-3 protein

</np>

is one of ...

(11) ...the role of

<np id="30" biotype="gene">

the roX genes

</np>

in this process...interact with

<np id="35" biotype="partof" ante="30" rel="biotype">

the roX RNAs

</np>

If we take into account the specific biotype of the entities that are involved in the ‘biotype’
relation, it is possible to determine a WordNet-like semantic relation behind the anaphora rela-
tion. For example, a biotype relation between a ‘gene’ and a ‘subtype’ of gene may be considered
an hyponymy relation, the relation between a ‘gene’ and a transcript (biotype ‘part-of’) can be
seen as a meronymy relation.

5.1.4.2 Homolog relation

Another type of associative relation is the homolog. In this case, the related entities have the
same biotype but refer to entities in different organisms; see Example 38, where the gene named
Bok is referred to as its instance in mammals and its instance in Drosophila flies.



64 Anaphora annotation in biomedical texts

(12) ...is most closely related to

<np id="40" biotype="gene">

mammalian Bok

</np>

.

<np id="45" biotype="gene" ante="40" rel="homolog">

The Drosophila Bok homolog

</np>

...

The homolog relation is quite interesting, with no obvious counterpart in other domains.
Normally, any property that is assigned to a gene is also assigned to its homolog, so in the
same paper the author can alternately talk about one or the other, since these are “equivalent”,
yet not identical, entities in different organisms. Homolog mentions are usually surrounded by
species names, such as “mammalian” and “Drosophila”.

However, homolog relations are often less obvious than in Example 38, and very much
resemble a coreference relation, as shown in Example 39.

(13) ‘‘...searches of the sea urchin sequences against all GenBank proteins
detected only the ring finger domain of the sea urchin sequences. Based on
the same approach, our study found that the starlet sea anemone and hydra
genomes also encode several families of the N-terminal RAG1 domain. The only
exception was the already mentioned sea anemone RAG1 core-like sequence. The
approximately 90-aa N-terminus of the latter sequence is the ring finger.’’

The ring finger domain is a specific piece of protein sequence. In this example, its first
mention refers to the domain of a protein found in sea urchins, while the second mention refers
to an homolog instance in sea anemones and hydras.

5.1.4.3 Set-member relation

The third type of associative relation, common to other domains as well, we call the set-member
relation, which occurs when an entity is related to a set of which it is a part of, or vice-versa.
The single entity and the entities in the set have the same biotype. It occurs mostly in the
presence of noun phrases referring to coordinated NPs, plural NPs, and families of bio-entities.
Below we describe situations in which set-member relations occur.

Coordination

It is common to find in a text mentions such as the genes reaper, hid, and grim. These
mentions, which contain coordination, can have multiple antecedents. When this is the case,
the relation between the mentions is marked as associative of the type ‘set-member’.
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(14) ...

<np id="50" biotype="gene">

reaper

</np>,

<np id="51" biotype="gene">

hid

</np>, and

<np id="52" biotype="gene">

grim

</np>

are regulators of apoptosis...

<np id="55" biotype="gene" ante="50,51,52" rel="set-member">

the genes reaper, hid, and grim

</np>

The same is true for the opposite case, when a simple mention refers to a coordinated one.

List

When a set of entities is mentioned and its mention is followed by a list of its members, as in
an apposition construction, the members should be linked to the set by a ‘set-member’ relation.
Members can be listed between commas, as in Example 41 or in brackets, as in Example 42.

(15) ...

<np id="40" biotype="product">

two proteins

</np>

encoded by the recombination-activating genes,

<np id="41" biotype="product" ante="40" rel="set-member">

approximately 1040-aa RAG1

</np>

and

<np id="42" biotype="product" ante="40" rel="set-member">

approximately 530-aa RAG2

</np>

,...
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(16) ...

<np id="50" biotype="product">

surface receptors

</np>

of vertebrate B and T immune cells (

<np id="51" biotype="product" ante="50" rel="set-member">

BCRs

</np> and

<np id="52" biotype="product" ante="50" rel="set-member">

TCRs

</np>

).

Plural

Plural mentions are treated in the same way as coordinated mentions, as they may also have
multiple antecedents and be the antecedent of multiple mentions, as shown in Example 43.

(17) ...

<np id="60" biotype="gene">

ced-4

</np>

and

<np id="61" biotype="gene">

ced-9

</np> ...

<np id="65" biotype="gene" ante="60,61" rel="set-member">

the genes

</np> ...

Family

In the biomedical domain, an entity mention may be related to a mention of its family, and we
consider this a case of set-member associative relation.

(18) ...

<np id="70" biotype="product">

the mammalian anti-apoptotic protein Bcl-2

</np> ...

<np id="75" biotype="product" ante="70" rel="set-member">

Bcl-2 family

</np> ...
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(19) ...

<np id="80" biotype="product">

the MSLs

</np> ...

<np id="85" biotype="product" ante="80" rel="set-member">

MSL-1

</np> ...

Subset

We also consider ‘set-member’ relation that between a set and a subset of it, as in the example
below.

(20) <np id="90" biotype="otherbio">

D-mib mutant discs

</np>

have no wing pouch ... The complete loss of D-mib activity in

<np id="92" biotype="otherbio" ante="90" rel="set-member">

D-mib1 mutant discs

</np>

...

Other

This is a special case of set-member relations, which includes mentions that contain the word
‘other’ (or similar words, like ‘remaining’), as in Example 47.

(21) ... distribution in females ectopically expressing

<np id="5" biotype="product">

MSL2

</np>

but lacking

<np id="6" biotype="product" ante="5" rel="set-member">

other MSL proteins

</np>

.

In these cases, the ‘other’ mentions should be linked to their complements, that it, their
antecedents are the mentions referring to the item excluded from the set.

5.1.4.4 Mixed relations

There are cases where the type of relation between two mentions is mixed, that is, it could
be interpreted as a combination of the above types of associative relation. In Example 50,
the relation between mentions 12 and 10 can be seen as biotype (gene-otherbio relation) and
set-member.
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(22) While

<np id="10" biotype="gene">

the neur and mib genes

</np>

are evolutionarily conserved, ... events requiring

<np id="12" biotype="otherbio">

neur activity

</np>

.

In such cases, the annotator should select the type of relation that he/she finds to be more
prominent.

5.1.5 Other relations

GNOME guidelines include possessive relations as a class of anaphoric relations, for example,
in the expression "ingredients of the cream", “the cream” is linked to “ingredients” by a
possessive relation, or in the expression "your cream", “cream” is linked to “your”.

We do not consider these relations anaphoric, because the relevant semantic relations are
determined syntactically. However, we decided to annotate of-phrases like the one in the first
example and mark them as possessive relations. We did not annotate cases like the second
example, since our minimal annotation unit is an NP (we do not link separated constituents of
an NP). Examples 23 and 24 present cases of possessive relations in our corpus.

(23) ...

<np id="50" biotype="partof-product">

the approximately 600-amino acid core region

</np>

of

<np id="51" biotype="product" ante="50" rel="poss">

RAG1

</np>

...

(24) ...

<np id="60" biotype="subtype">

11 additional new families

</np>

of

<np id="61" biotype="subtype" ante="50" rel="poss">

Transib transposons

</np>

...
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5.2 Corpus annotation

We selected five biomedical papers5 to be hand-annotated with anaphoric and coreferent links.
The selected papers were chosen according to the following criteria: they were part of relevant
journals in the biomedical field, were freely available on the internet, and focused on fruit fly
genomics. We assumed that 5 papers would be the minimum corpus size for it to be useful for
training a corpus-based anaphora resolution system. Given the difficulty of the task and time
constraints, we have not annotated more papers.

Before starting the manual annotation process, we preprocessed the corpus automatically,
following the steps presented in the previous chapter. First we applied the gene name recogniser
described in [Vlachos et al., 2006] to recognise gene names; secondly we identified the noun
phrase boundaries and sub-constituents using the RASP parser [Briscoe and Carroll, 2002], and
lastly we tagged all noun phrases with their biotypes according to the Sequence Ontology. We
filtered out all noun phrases for which we could not define a biotype, keeping only those that
referred to biomedical entities.

We then asked two annotators (a domain expert and a linguist) to review and correct the
automatically defined biotypes, gene names and noun phrase boundaries. Finally the same
two annotators were asked to insert the coreferent links, and I, a third annotator (computer
scientist), and the domain expert annotator inserted the associative links6. We used the MMAX
annotation tool [Müller and Strube, 2001]. The annotation task was divided into four phases to
minimise the number of decisions that the annotator had to make at a time; these phases were:

1. Annotating noun phrases that contain a gene name: in this phase, the annotators were
asked, for each sentence: (1) to look at the noun phrases that had been automatically
tagged in the preprocessing phase, check if they were correct—if they did indeed contain a
gene name, if the NP boundaries were precise, and if the assigned biotype was correct—and
correct it (which might mean deleting it in the case it contains a mistakenly recognised
gene name); and (2) to check if any noun phrase containing a gene name was missed by
the preprocessing, and annotate it, assigning the appropriate biotype.

2. Annotating noun phrases that refer to an entity of interest but do not contain a gene name:
in the same way as in the previous phase, in this phase the annotators are asked to correct
the automatically tagged and include missed noun phrases that do not contain a gene name
but which refer to an entity of interest (e.g. “the X-linked genes”, “this protein”). We
decided to separate phases 1 and 2 because phase 2 requires more attention than phase
1, where the gene names are quite obvious and facilitate the task. When this phase is
finished, all entities of interest should have been tagged and have a biotype assigned to
them.

3. Coreference linking: in this phase the annotators should create the links between the noun
phrases (tagged in the previous phases) that are coreferent. The MMAX tool provides a
mechanism for grouping the noun phrases in sets, which can be seen as coreference chains.
No new noun phrases should be added in this phase.

4. Associative linking: in this phase the annotators should create the associative links between
noun phrases. The annotators should look for the closest antecedent and the type of the
relation should be indicated. MMAX has a pointing mechanism which links the anaphor
to the annotated antecedent. No new noun phrases should be added in this phase.

5The FlyBase identifiers for these papers are: FBrf0132215, FBrf0134664, FBrf0184230, FBrf0188209,
FBrf0188423.

6Due to time constraints, the domain expert annotated associative links in only two of the selected papers,
FBrf0132215 and FBrf0188423.
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Our annotation guidelines for phases 3 and 4 can be seen in Appendix A.
The annotation provided by the two annotators for phases 1 and 2 was automatically com-

pared, and their discrepancies were discussed and harmonised. The annotation was compared
at all decision levels taken by the annotator: mention selection and its boundaries (looking at
mentions that one annotator had selected but not the other, or cases in which the mention
boundaries differ), and biotype (checking if a difference on biotyping was conscious).

Besides helping us to find false disagreements and mistakes made by the annotators, these
comparisons generated very fruitful discussions that enabled us to refine our guidelines. For
example, we could observe the need to expand the Sequence Ontology: we decided to add
some new entries to it, in order to be able to optimise our automated detection of relevant noun
phrases. We were able to identify classes of words that were missing from the Sequence Ontology,
for instance, different types of proteins, like caspase, kinase, enzyme. We obtained a set
of these words from the UMLS Metathesaurus to complement SO, as described in the previous
chapter.

After correction of the mistakes found through the comparison of both annotations for phase
1 and 2, we compared the annotation of coreferent links. We calculated the Kappa agreement
coefficient for the annotation of the coreferent links; the first column of Table 5.1 presents
the results. Kappa scores above 0.8 are considered a good level of agreement [Carletta, 1996].
Most true disagreements were due to the non-expert annotator’s lack of domain knowledge and
understanding of what is biologically relevant. In order to harmonise disagreement cases, we
have also compared and discussed the annotation of the coreferent links. This process was
able to identify some inconsistencies in the annotation (e.g. one annotator might have chosen
a coreferent mention as antecedent but not the closest one, as indicated in the annotation
guidelines). After this comparison and consequent revision of the annotation, we reached the
Kappa scores presented in the second column of Table 5.1. A gold standard annotation was
developed based on the domain expert results, and the annotation of the associative links was
performed on top of it.

Annotating associative anaphora is known to have higher disagreement rates than annotat-
ing coreference [Vieira, 1998]. Only two of the papers were annotated with associative links
by two annotators (computer scientist and domain expert), so these were used to compute the
inter-annotator agreement for associative cases. Table 5.1 presents the Kappa scores for biotype,
homolog and set-member cases for the two papers that were annotated by more than one anno-
tator. We have revised this annotation correcting cases in which one annotator or the other had
not chosen the closest antecedent (but instead a more distant mention to an equivalent entity).
The Kappa scores for the revised annotation are also shown in Table 5.1.

Coreferent Biotype Homolog Set-Member

O R O R O R O R

Paper 1 0.82 0.84 0.62 0.81 0.51 0.67 0.56 0.56

Paper 2 0.81 0.84 - - - - - -

Paper 3 0.94 0.98 - - - - - -

Paper 4 0.87 0.97 - - - - - -

Paper 5 0.80 0.93 0.49 0.52 0.60 0.60 0.61 0.62

Table 5.1: Kappa scores for each paper per anaphoric class. (O) corresponds to the original, (R)
to the revised annotations.

The low rates of agreement on associative cases reflect the difficulty of the task. Most cases
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of disagreement on associative cases are related to one of the following issues:

• Mixed relations: cases where the antecedent does not fit a single associative relation, but
more than one at the same time. In the example below, mention (d) appears to have both
a biotype and a set-member relation with (b) and (c).

‘‘The antigens can be identified after they are specifically bound by surface
receptors(a) of vertebrate B and T immune cells (BCRs and TCRs, respectively).
Because the vast repertoire of BCRs(b) and TCRs(c) cannot be encoded genetical-
ly, ancestors of jawed vertebrates adopted an elegant combinatorial solution.
The variable portions of the BCR and TCR genes(d) are composed of ...’’

In such cases, annotators were instructed to choose the most prominent relation and anno-
tate it. In this example, one of the annotators chose to create a biotype relation between
(d) and one of the previous mentions (c, the closest). The other annotator felt compelled
to find an antecedent that fit perfectly one relation or the other, and has chosen the men-
tion of “surface receptors”(a) in the first sentence of the example as biotype antecedent of
(d).

• Syntactic relations: the annotator may be misled by syntactic relations into annotating
anaphoric relations between syntactically related NPs. For instance, one of the annotators
chose to annotate a biotype relation between mentions (a) and (b) in the examples below:

‘‘...families are represented by transposons(a)flanked by TIRs(b)...’’

‘‘...a part of a motif(a) that is conserved in the Transib TPases(b)...’’

• Recent coreferent relations: the annotation guidelines explain that it is unlikely that an
associative relation between two mentions exists when the current mention refers to an
entity that has recently been mentioned in the text. This is because an entity that is
salient in the readers mind does not need an indirect (associative) relation to introduce it.
However, there were cases in which one of the annotators found that there was room for an
associative relation while the other did not. That was the case in the following example,
where one of the annotators linked (c) and (b) in a biotype relation, and the other did not
(given the presence of (a) as a coreferent mention).

‘‘The approximately 600-amino acid core region of RAG1 is significantly similar
to the transposase(a) encoded by DNA transposons that belong to the Transib
superfamily. (...)Transib transposons(b) also are present in the genomes of
sea urchin, yellow fever mosquito, silkworm, dog hookworm, hydra, and soybean
rust.(...)Furthermore, the critical DDE catalytic triad of RAG1 is shared with
the Transib transposase(c) as part of conserved motifs.’’

These sources of disagreement could be reduced by refining our guidelines and specifying
more objectively which procedure to be adopted in each situation. Although this can greatly
contribute to consistency in the annotation, it can also undermine the annotators natural rea-
soning when resolving anaphora. Due to time constraints we could not rerun the annotation
with improved guidelines, and have opted to run our experiments on the current data. We have
used the annotation provided by the computer scientist annotator for our anaphora resolution
experiments since it contains annotations for all five papers.

5.3 The resulting corpus

Following the annotation process described above, we created our corpus. For the five papers
that we have annotated, we obtained a total of 2720 noun phrases of interest. Table 5.2 shows
the distribution of the NPs according to the biotypes.
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gene subtype variant supertype partof partof-product product otherbio

Paper 1 59 0 0 11 4 17 216 8

Paper 2 30 0 1 0 2 17 138 10

Paper 3 99 8 54 0 9 21 345 244

Paper 4 41 1 131 2 25 3 135 146

Paper 5 20 147 0 23 154 183 355 36

Total 249 156 186 36 194 241 1189 444

Table 5.2: Biotype distribution

We can see some variation in the distribution of each biotype across the papers, based on
the subject of each paper. For example, Paper 5 discusses the similarity between proteins based
on the comparison of parts of the protein sequence, and so the higher number of partof-product
NPs in comparison to other papers. Paper 4 discusses several mutants of a particular gene, so
the high number of variant NPs.

Table 5.3 shows the distribution of the different types of NPs among the different anaphoric
classes.

Class/NPs pn defnp demnp indefnp quantnp other np Total

coreferent 681 416 59 36 52 380 1624

biotype 46 105 3 8 4 119 285

homolog 7 8 0 3 0 6 24

set-member 152 125 26 14 68 158 543

poss 29 12 3 6 5 38 93

discourse new 67 115 0 76 41 169 468

Total* 878 689 74 135 149 771 2696 NPs \ 3037 relations

Table 5.3: Anaphoric class distribution according to NP form. *Last row ‘Total’ does not
correspond to the sum of the values of the previous rows: it shows the total number of NPs of a
type, which can have more that one anaphoric relation annotated.

We can see that around 80% of the definite NPs are anaphoric in our corpus, compared to
the 50% presented in [Poesio and Vieira, 1998] for newspaper texts. Concerning demonstrative
NPs, all of them are anaphoric. We can also observe that more than 75% of the proper names
take part in coreference relations, as it is in their nature to refer to a specific named entity,
but still 6% of them take part in biotype or homolog relations, due to the fact that a gene,
its homologs, and the protein it synthesizes usually share the same name. 44% of quantified
NPs take part in set-member relations, as they usually refer to more than one entity. 56% of
indefinite NPs are discourse new.

Table 5.4 shows the distribution of anaphoric relations according to the distance between
anaphor and antecedent in our corpus. The majority of coreferent relations occur between NPs
in different sections of the paper, while the majority of associative relations occur between NPs
in adjacent sentences. We can see that very few biotype relations cross section boundaries, and
that the majority of set-member relations occur within the same sentence (most likely due to
the List cases described in Section ).
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Class/Distance Same
sentence

Previous
sentence

Same
paragraph

Previous
paragraph

Same
section

Other
sections

coreferent 195 323 295 220 181 410

biotype 49 100 59 36 35 6

homolog 6 10 2 3 1 2

set-member 162 130 103 64 48 36

Table 5.4: Distance between anaphor and antecedent according to anaphoric relation

We can form coreference chains by following the coreferent links between noun phrases in
the corpus, so that all noun phrases in the text that refer to the same entity are part of the
same coreference chain. The more noun phrases in a chain, the longer it is; Figure 5.1 shows
the number of chains of different size in our corpus. We have in total 357 chains with at least
two elements (and 715 single noun phrases that are not part of any chain). Our longest chain is
composed by 68 noun phrases, and the average chain size is 5.5.
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Figure 5.1: Number of coreference chains by chain size

The corpus and the annotation guidelines are available to the scientific community via the
FlySlip project website http://www.wiki.cl.cam.ac.uk/rowiki/NaturalLanguage/FlySlip .

5.4 Summary

This chapter presents a scheme for annotating coreferent and associative anaphoric relations
in biomedical papers. Our scheme takes into account the domain of the text, classifying the
anaphoric relations according to the domain relation that supported the linguistic relation. Upon
our annotation scheme, we have built a corpus of five scientific full-text articles that, according
to our best knowledge, is the first corpus of biomedical articles with anaphora information not
to be built from paper abstracts.
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We use this corpus as evaluation data for the baseline anaphora resolution system presented
in Chapter 6 and as training and evaluation data for the probabilistic anaphora resolution system
presented in Chapter 7.



Chapter 6

Rule-based baseline system1

We have developed a knowledge-based baseline anaphora resolution system for the biomedical
domain. The system identifies coreferential relations between biotyped entities as well as asso-
ciative links. We have created a small set of rules to identify the antecedents of NPs of interest
in the text. The rules aim to encode the well-defined characteristics of the coreferent and as-
sociative relations. We have created rules only for biotype and set-member types of associative
relations, since there is no clear pattern for homolog relations.

The system does not require training. It makes use of lexical, syntactic, semantic and posi-
tional information to link anaphoric expressions. The lexical information consists of the words
themselves, as well as the number, singular or plural, of each noun phrase. The syntactic infor-
mation consists of noun phrase boundaries and the distinction between head and pre-modifiers
extracted using RASP (as described in Chapter 4). The semantic information comes from the
gene-name recognition and biotype tagging processes (also described in Chapter 4). The dis-
tance between the anaphoric expression and its possible antecedent is taken into account as
positional information. The system assumes as discourse new NPs for which it could not find
any antecedent.

The next section describes how we use the available information to resolve anaphora.

6.1 Resolving anaphora cases

We take all biotyped NPs as potential anaphors to be resolved. As potential antecedents for an
anaphor we take all biotyped NPs that occur before it in the text. For each anaphor we look
for its closest antecedent. For linking anaphors to their antecedents we consider the features
presented in Table 6.1.

The algorithm to find the antecedent for each anaphor is given in Figure 6.1. Our matching
among heads and modifiers is case-insensitive, allowing, for example, “msl gene” to be related
to “MSL protein” given their common modifiers. Head nouns and modifiers are lemmatized, so
the words “protein” and “proteins” would match (however they disagree in number).

Corefi, if found, is considered coreferent to Ai, and Associ, associative. For example, in the
passage:

(25) ‘‘Dosage compensation, which ensures that the expression of X-linked genes:Cj

is equal in males and females ... the hypertranscription of the X-chromosomal
genes:Ai in males ...’’

Cj is taken to be coreferential with the anaphor indexed as Aj . Additionally, in:

(26) ‘‘... the role of the roX genes:Cn in this process ... which MSL proteins
interact with the roX RNAs:Am ...’’

1Part of the work presented in this chapter has been published in [Gasperin, 2006].
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Feature Description

headan anaphor head noun

heada antecedent head noun

modan set of anaphor pre-modifiers2

moda set of antecedent pre-modifiers

numan anaphor number

numa antecedent number

biotypean anaphor biotype

biotypea antecedent biotype

d distance from the anaphor

Table 6.1: Features used by the baseline system

• Input: a set A with all anaphors; a set C with all antecedent candidates.

• Consider Corefi as coreferent antecedent of Ai; Associ as associative antecedent of
Ai; Assoc-Biotypei as biotype antecedent of Ai; Assoc-Set-Memberi as set-member
antecedent of Ai;

• For each anaphor Ai:

– Let Corefi be the closest preceding NP Cj such that
head(Cj)=head(Ai) and
num(Cj)=num(Ai) and
biotype(Cj)=biotype(Ai)

– Let Assoc-Biotypei be the closest preceding NP Cj such that
head(Cj)=head(Ai) or
head(Cj)=mod(Ai) or
mod(Cj)=head(Ai) or
mod(Cj)=mod(Ai) but
biotype(Cj) 6= biotype(Ai)

– Let Assoc-Set-Memberi be the closest preceding NP Cj such that
head(Cj)=head(Ai) and
biotype(Cj)=biotype(Ai) but
num(Cj)6=num(Ai)

– Let Associ be the closest between Assoc-Biotypei and Assoc-Set-Memberi

– If Corefi is closer to Ai than Associ, Associ is ignored.

– If Corefi nor Associ are found, Ai is assumed to be discourse new.

• Output: a set of (Corefi,Associ-Ai) relations.

Figure 6.1: Rule-based algorithm for anaphora resolution
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perfect relaxed
Class

P R F P R F

coreferent 47.5 56.8 51.8 61.7 61.0 61.3

assoc-biotype 22.4 18.0 20.0 23.3 18.7 20.8

assoc-set-member 36.8 2.5 4.7 36.8 2.5 4.7

discourse new 37.4 30.2 33.4 37.4 30.2 33.4

Table 6.2: Performance of the baseline system

Cn meets the conditions to form an associative link to Am. The same is true in the following
example in which there is an associative relation between Cy and Ax:

(27) ‘‘The genes ced-4 and ced-9:Cy have been shown to ... the ced-9 gene:Ax is
...’’

However, the system is not able to find the correct antecedent when there is no string (head
or modifier) matching, such as in the coreferent relation between ‘‘Dark/HAC-1/Dapaf-1’’

and ‘‘The Drosophila homolog’’.

6.2 Results

We evaluated our system against the five hand-annotated full-text articles described in Chapter
5. We have achieved the precision and recall scores presented in the first column (‘perfect’)
of Table 6.2. The ‘perfect’ scores consider exact match between the anaphor-antecedent pairs
returned by the system and those manually annotated in the corpus. These performance scores
are reached when considering hand-corrected input, that is, perfect gene name recognition, NP
extraction and biotype tagging.

The performance for coreferent cases is clearly higher than for associative cases. This in-
dicates that our rules are more accurate in identifying the former than the latter. Associative
relations are known to be less straightforward than coreferent, and so more difficult to encode
as rules. The recall for set-member cases is extremely low, since the system relies on head-noun
matching for resolving those but the majority of set-member cases in our corpus (66%) does not
have matching heads (41% do not have any string matching).

The performance scores of the system increase if we consider as correct the cases for which
it is able to find an antecedent other than the closest, but which is from the same coreference
chain as the closest antecedent. These are cases like the following:

(28) ‘‘The function of Drosophila mib (D-mib) is not known ... we have studied the
function of the Drosophila D-mib gene. We report here that D-mib appears to
...’’

where the system returns the first “D-mib” as the coreferent antecedent for the last “D-mib”,
instead of returning “the Drosophila D-mib gene” as the closest antecedent. In order to take such
cases into account, we have used the MUC scoring strategy, as presented in Section 3.4 in Chapter
3, to evaluate the resolution of the coreferent cases. Using this evaluation strategy, the baseline
reaches the scores presented in the second column (‘relaxed’) of Table 6.2 for coreferent cases.
This evaluation is possible since coreference chains can be derived from our corpus annotation.
When the restriction to find the closest antecedent is relaxed, the system manages to achieve
almost 10% gain in F-measure for coreferent cases.

The MUC scoring, however, does not deal with associative cases. To evaluate these in a
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coreferent associative discourse new
Class

P R F P R F P R F

pn 82.4 75.6 78.8 25.0 8.4 12.5 22.1 70.3 33.7

defnp 35.3 46.8 40.2 22.3 7.1 10.8 51.0 22.2 30.9

demnp 62.7 47.0 53.7 25.0 3.4 6.0 - - -

indefnp 16.9 31.5 22.0 13.3 16.0 14.5 78.7 35.6 49.0

quantnp 18.0 37.0 24.2 41.1 9.5 15.5 40.0 5.2 9.3

other np 28.4 42.4 34.0 30.1 11.4 16.5 52.0 23.4 32.3

Table 6.3: Performance of the baseline system per NP form

less strict way than perfect matching to the annotation, we also considered as correct the cases
for which the antecedent selected by the system is coreferent with the associative antecedent
assigned to the anaphor in the manual annotation. That is, since the two NPs involved in an
associative relation may each be part of a different coreference chain, the relaxed scoring for
the associative relation assumes that if the anaphor has been linked by the system to another
member of the correct antecedent’s coreference chain, the link is correct.

Treating these cases as positive we reach the scores presented in the ‘relaxed’ column of
Table 6.2. We can observe a slight increase in the performance scores for biotypes cases, but
none for set-member.

Table 6.3 reports the ‘perfect’ performance of the baseline system according to each type of
NP. The best performance for coreferent cases is achieved for proper names. This is because in
our corpus 78% of coreferent relations where the anaphor is a proper name involve head-noun
matching3, so the system was able to resolve 96% of these. As proper names do not usually
have head modifiers, head-noun matching and biotype matching cover the majority of cases.
However, in our corpus 74% of definite NPs also involve head-noun matching, but in their cases
this is not an indicator of coreference as precise as for proper names, since definite NPs with
mismatching modifiers (e.g. “the faf gene” and “the roX gene”) can refer to different entities;
this is the main source of error in the resolution of coreferent same-head definite NPs, since we
select the closest NP with same head-noun. The same problem arrises with demonstrative NPs,
which in our corpus account for 80% of coreferent cases with head-noun matching, but only 68%
of these were correctly resolved.

The performance for associative cases is very low for all types of NPs. The low recall is due
to both rules for associative cases (which aim to cover “ideal” cases of biotype and set-member
types of associative relations) being very restrictive, covering only 34.8% of the associative cases
in our corpus, thus 34.8% would be the maximum recall that the baseline system is able to
resolve. The low precision is caused by the lack of a distance measure to be used instead of
selecting the closest candidate that conforms to the rules.

6.3 Limitations

The system relies heavily on string matching and will not link cases where there is no string
overlapping. In our corpus in 21% of the coreference relations and in 37% of the associative
relations there is no string matching (neither head noun nor modifier) between the anaphor and

3Those that do not are usually coreferent relations that involve apposition, such as “Only one mammalian
CED-4 homolog, Apaf-1, has been ...”, but also regular cases can occur, e.g “Reports of a potential func-
tional mammalian analog of Reaper, Hid, and Grim have been published. Although Diablo/Smac shares no
sequence homology with Reaper, Hid, or Grim, it too can bind IAPs.”.
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the antecedent, so these cases have no chance of being resolved by the baseline system. Elimi-
nating the string-matching requirement would lead to very low precision, and using additional
less-intuitive features to compensate that becomes complicated in a rule-based system, since the
way to integrate the features is less clear than when combining basic intuitive features such as
string matching, and number and semantic class (dis)agreement. For example, it is known that
different NP types exhibit different anaphoric behaviour, but encoding NP types as part of rules
is not straightforward.

Relaxing string matching in the rules would require adding other types of constraints to the
rules in order to avoid the expected loss of precision. It is relatively clear how the current addi-
tional factors, biotype and number matching, contribute to the anaphoric relations being treated
(as specified in our rules), but it is not as straightforward to model the expected behaviour of
other factors available to us, such as NP type, distance, and syntactic clues.

Our baseline system selects as antecedent the closest candidate that fits the string, number
and biotype matching criteria. However, instead of choosing the closest candidate, the system
should be able to use a distance measure to rank the candidates according to distance and the
other features. The closest candidate is not always the right one, and different NP types have
different ranges of distance from their antecedents.

6.4 Integration with curation tool

The baseline anaphora resolution system presented here has been integrated to the tool created
as part of the FlySlip project for facilitating the curation of biomedical literature. The curation
process requires the identification of biomedical entities of interest present in the text and the
extraction of particular information written about them in order to filling a template. FlyBase
curators focus on extracting information related to genes and alleles mentioned in the text by
reading the text using a PDF viewer or a print-out of the paper, and fill a template for each of
them.

The templates should contain all the information written about a specific gene or allele in
the given paper. That includes any information given also about the gene products, parts of the
gene, its mutated versions, gene family, homologs, etc.

The curation tool developed, called PaperBrowser [Karamanis et al., 2007] aims to make
the curation process more efficient; it provides two distinct ways to browse a biomedical paper
being curated: a Paper view and an Entities view. The Paper view lists the gene names (which
have been recognised by the Vlachos et al. NER system) in the order in which they appear
in each section of the paper. The Entities view (Figure 6.2) is built upon the output of the
anaphora resolution system: it lists groups of noun phrases recognised as referring to the same
gene (coreferent relations, marked ‘C’; the coreferent anaphor-antecedent pairs are merged into
coreference chains) or to a biologically related entity (associative relations, marked ‘a’).

Clicking on a node in Entities view highlights in the same colour in the text all noun phrases
listed together with the clicked node. In this way the selected node and all anaphorically related
noun phrases become more visible in the text, making the curation process easier and faster; it
helps the curator to focus on the information available in the paper related to a single gene at
a time.

In order to assess the effect of PaperBrowser on the curation process, Karamanis et al. [2008]
have observed and recorded how the curators navigate the article in order to find curatable in-
formation. In their experiment, for half of the articles the curators used PaperBrowser and for
the other half they used a generic file viewer, which provided only a “Find” function to look for
strings in the text. The curators’ task was to highlight portions of text that contained infor-
mation that was required for filling the templates. To estimate the efficiency of each navigation
mechanism (PaperBrowser or Find), they counted the number of navigation actions (clicks on
Paper view or Entities view, or searches using Find) that preceded each highlighting event. The
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Figure 6.2: Entities view from PaperBrowser

fewer the actions, the more efficiently the curator accesses information. The authors report that
PaperBrowser in its entirety makes curation 58% more efficient than using the simple “Find”
function, although they have not measured the effect of the use of Entities view (the module
based on anaphora resolution) alone in the curation process.

Since PaperBrower is used by humans (curators), and given that Entities view offers guidance
to the curators instead of automatically extracting information, it is in principle easier for them
to get around precision and recall errors made by our baseline anaphora resolution system than
it would be for an automated system to do so.

6.5 Summary

In this chapter we have described our baseline system for anaphora resolution, which is rule-
based and relies on string, number and biotype matching between the anaphor and antecedent
candidates. It does not need training data, which is a considerable advantage but, on the
other hand, it is not flexible enough to allow less obvious relations that do not conform to
the restrictions encoded by the rules. In order to be able to relax the current rules, mainly the
requirement for string matching, we would need to include other factors (features) into the rules;
however, it is not straightforward how these could be combined to encode the characteristics of
anaphoric relations.

The resulting links between the anaphoric entities are integrated into an interactive tool
which aims to facilitate the curation process by highlighting and connecting related bio-entities:
curators are able to navigate among different mentions of the same and related entities in order
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to find the information they need to curate easily. The tool has made the curation process 58%
more efficient.

In the next chapter, we present a probabilistic anaphora resolution system that aims to
overcome the limitations of the baseline system. By computing the probability of the relation
between the anaphor and a candidate, it aims 1) to balance the values of the features in order
to be able to solve even cases where there is no string matching (relying on the other features),
2) to take into account the different types of NPs so that their specific behaviour is considered,
and 3) to consider a distance measure to quantify the distance between anaphor and candidate.
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Chapter 7

Probabilistic model1

Probabilistic classifiers and, in particular, the naive Bayes classifier, are popular in the machine
learning community and in many applications [Garg and Roth, 2001]. These classifiers are de-
rived from generative probability models which provide a way to study statistical classification
in complex domains such as natural language processing. The study of probabilistic classifica-
tion is that of approximating a joint distribution with a product distribution. Bayes’ theorem
is used to estimate the conditional probability of a class label, and then assumptions are made
in the model, to decompose this probability into a product of conditional probabilities.

While the use of Bayes rule is harmless, the final decomposition step introduces independence
assumptions which may not hold in the data. The most common model used in classification,
however, is the naive Bayes model in which independence assumptions are extreme, that is,
independence is assumed among all features. Although the naive Bayes algorithm makes un-
realistic probabilistic assumptions, it has been found to work surprisingly well in practice for
several applications such as text classification and spam filtering.

The good performance of naive Bayes motivates experiments to verify whether we can im-
prove the performance of Bayesian classifiers by avoiding unrealistic assumptions about inde-
pendence, that is, by making more conscious choices of independence assumptions. Friedman
and Goldszmidt [1996], for example, have proposed an augmented version of the naive Bayes
classifier, where a restricted Bayesian networks inducer learns at most one dependency to be
maintained for each feature, while independence is assumed for all other features.

We have opted for empirically determining which dependencies to keep and consequently,
which independence assumptions to make. That is the approach taken by Ge et al. [1998] to
develop a probabilistic model for anaphora resolution of pronouns. Inspired by their approach,
we have developed our model for resolution of non-pronominal anaphora in biomedical texts.

One of the advantages of probabilistic models is that they return a confidence measure
(probability) for each decision they make, while decision trees, for example, do not. Another
advantage of this type of model is that they consider the prior probability of each class, while
other machine-learning techniques such as SVMs and neural networks do not. The use of the
prior probability is especially important when training data is scarce or expensive.

Our probabilistic model results from a simple decomposition process applied to a joint prob-
ability equation that involves several features. The decomposition aims to decrease the effect of
data sparseness on the model, so that even small training corpora can be viable. The decom-
posed model can be understood as a more sophisticated Bayesian classifier, since we consider
the dependence among some of the features instead of full independence as in naive Bayes.

Our model seeks to classify the relation between an anaphoric expression and an antecedent
candidate as coreferent, associative or none at all. It computes the probability of each pair
anaphor-candidate for each class. To compute the probability of one pair the model does not take
into account information about other pairs. The candidate with the highest overall probability

1Part of the work presented in this chapter has been published in [Gasperin and Briscoe, 2008].
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Feature Possible values

fA Form of noun phrase of the anaphor A: ‘pn’, ‘defnp’, ‘demnp’, ‘indefnp’, ‘quantnp’, or
‘np’.

fa Form of noun phrase of the antecedent candidate a: same values as for fA.

hma,A Head-noun matching: ‘yes’ if the anaphor’s and the candidate’s head nouns match, ‘no’
otherwise.

hmma,A Head-modifier matching: ‘yes’ if the anaphor’s head noun matches any of the candidate’s
pre-modifiers, or vice-versa, ‘no’ otherwise.

mma,A Modifier matching: ‘yes-yes’ if anaphor and candidate have at least one head pre-modifier
in common but also have other mismatching modifiers, ‘yes-no’ if anaphor and candidate
have at least one modifier in common and no mismatching modifiers, ‘no-yes’ and ’no-no.

numa,A Number agreement: ‘yes’ if anaphor and candidate agree in number, ‘no’ otherwise.

sra,A Syntactic relation between anaphor and candidate: ‘none’, ‘apposition’, ‘subj-obj’, ‘pp’,
and few others.

bma,A Biotype matching: ‘yes’ if anaphor’s and candidate’s biotype (semantic class) match, ‘no’
otherwise.

gpa,A is biotype gene or product? ‘yes’ if the anaphor biotype or candidate biotype is gene
or product, ‘no’ otherwise. This feature is mainly to distinguish which pairs can hold
biotype relations.

da,A Distance in sentences between the anaphor and the candidate.

dma,A Distance in number of entities (markables) between the anaphor and the candidate.

Table 7.1: Features used by the probabilistic model

for each class is selected as the antecedent for that class, or no antecedent is selected if the
probability of no relation is higher than the positive probabilities; in this case, the expression is
considered to be new in the discourse.

Among the associative cases, we focused on biotype and set-member relations. We were
not successful in dealing with the associative homolog cases, and we discuss our tentative ideas
concerning the resolution of these cases in Section 7.5.

7.1 Features

We have chosen 11 features to describe the anaphoric relations between an antecedent candidate
a and an anaphor A. The features are presented in Table 7.1. Most features are relational,
that is, they combine information from both the anaphor and the antecedent candidate (such
as hma,A and bma,A), while the others refer to one or the other. All features but gpa,A are
domain-independent; gpa,A is specific for the biomedical domain. Our feature set covers the
basic aspects that influence anaphoric relations: the form of the anaphor’s NP, string matching,
semantic class matching, number agreement, and distance. We have designed our feature set
based on previous work. Soon et al. [2001] and Ng and Cardie [2002c] have used several binary
features to identify the type of the NP to be resolved, while we have the multi-valued feature
fA (and fa for the candidate antecedent) with the same purpose.

All anaphora resolution systems have some kind of string matching features: for example,
Soon et al. discard determiners and then compare strings; Strube et al. [2002] use a minimum-
edit-distance measure to compare strings; Castano et al. [2002] favour the candidate with the
longest substring match; Vieira and Poesio distinguish head-noun matching and modifier match-
ing. We also distinguish head and modifier matching; we believe each type of matching plays a
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role in distinct anaphoric relations (e.g. in biotype relations, modifier-modifier or head-modifier
matching are more common than head-head matching).

Number agreement is commonly used to identify coreferent NPs, but we also rely on number
disagreement to identify set-member relations. We have derived the number (singular or plural)
of the NP head nouns from part-of-speech tags; however, we also classified as plural the NPs
whose head noun was ‘family’ or which had coordinated head nouns.

Syntactic relations between the anaphor and antecedent candidate, in particular apposition,
have been used by Soon et al. to identify coreference. Besides apposition, which we also use to
indicate coreference, our sra,A feature also encodes other syntactic relations between NPs, such
as subject-object of a verb and prepositional attachment, in order to indicate the non-existence
of associative relations between the syntactically related NPs (on the other hand, prepositional
attachment indicates the presence of possessive relations, which we discuss separately in Section
7.6).

Semantic matching, in our case biotype matching, is also a common feature; Soon et al. and
Ng and Cardie use WordNet semantic relations to indicate coreference, while Vieira and Poesio
use WordNet in order to find semantic relations that support associative relations. Castaño
et al. use UMLS types also to support coreference. We consider positive matching to be indicative
of coreference and set-member relations, and negative matching as an indication of biotype
relations.

Distance is considered in different ways in previous work. Vieira and Poesio, for example,
look for an antecedent from right to left and select the closest candidate which conforms to
their rules. This could be seen as distance in terms of number of relevant NPs between anaphor
and candidate. Soon et al. measure distance in number of sentences, while Ng and Cardie have
included in their system distance in number of paragraphs. We have experimented with distance
in terms of paragraph and sections of the paper, but these did not contribute to performance
improvement, and we kept only the distance in number of NPs (in our case only those referring
to biomedical entities), dma,A, and in number of sentences, da,A.

As we do not try to resolve pronouns, we have not adopted features that are usually related
to them, such as binding constraints.

Our only domain-dependent feature is gpa,A. It indicates which anaphor-candidate pairs can
take part in biotype relations, since some combinations of biotypes do not take part in biotype
relations, e.g. an NP biotyped as ‘part-of’ a gene should not be linked to an NP biotyped as
‘part-of-product’.

7.2 The resolution model

Given the above features, for each antecedent candidate a of an anaphor A, we compute the
probability P of a specific class of anaphoric relation C between a and A. P is formalised as
follows:

P (C = ‘class’|fA, fa, hma,A, hmma,A, mma,A, numa,A, sra,A, bma,A, gpa,A, da,A, dma,A)

For each pair of a given anaphor and an antecedent candidate we compute P for C=‘coref-
erent’, C=‘biotype’, and C=‘set-member’. We also compute P(C=‘none’ ), which corresponds to
the probability of no relation between the NPs.

We decompose the probability P and assume independence of some of the features in order
to handle the sparseness of the training data. In the following equations, we omit the subscripted
indices of the relational features for clarity.
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P (C|fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm)

=
P (C|fA)P (fa, hm, hmm, mm, num, sr, bm, gp, d, dm|C, fA)

P (fa, hm, hmm, mm, num, sr, bm, gp, d, dm|fA)
(7.1)

Equation 7.1 is obtained by applying Bayes’ theorem to the initial conditional probability.
P (C|fA) is the prior probability of each class for each type of NP, it will encode the distribution
of the classes in the training data. We kept fA on the right side of P in order to emphasize the
role of the anaphor’s NP type in the model, although it could be decomposed in the same way
as the other features (as described below) with no effect on the resulting model.

Since the denominator contains relational features, whose value change according to the
candidate under consideration, we cannot eliminate it in the usual fashion. We keep the denom-
inator in order to normalise P across all candidates, so that the resulting probability for the
various candidates is comparable. We also want to keep the result as a probability value – if we
cut the denominator it becomes an unrestricted score.

From 7.1, we then apply the chain rule to both numerator and denominator, as follows:

= P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (hm, hmm,mm, num, sr, bm, gp, d, dm|C, fA, fa)
P (hm, hmm,mm, num, sr, bm, gp, d, dm|fA, fa)

(7.2)

= P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (d, dm|C, fA, fa)
P (d, dm|fA, fa)

P (hm, hmm,mm, num, sr, bm, gp|C, fA, fa, d, dm)
P (hm, hmm,mm, num, sr, bm, gp|fA, fa, d, dm)

(7.3)

= P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (d, dm|C, fA, fa)
P (d, dm|fA, fa)

P (sr|C, fA, fa, d, dm)
P (sr|fA, fa, d, dm)

P (hm, hmm,mm, num, bm, gp|C, fA, fa, d, dm, sr)
P (hm, hmm,mm, num, bm, gp|fA, fa, d, dm, sr)

(7.4)

= P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (d, dm|C, fA, fa)
P (d, dm|fA, fa)

P (sr|C, fA, fa, d, dm)
P (sr|fA, fa, d, dm)

P (bm, gp|C, fA, fa, d, dm, sr)
P (bm, gp|fA, fa, d, dm, sr)

P (hm, hmm,mm, num|C, fA, fa, d, dm, sr, bm, gp)
P (hm, hmm,mm, num|fA, fa, d, dm, sr, bm, gp)

(7.5)

= P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (d, dm|C, fA, fa)
P (d, dm|fA, fa)

P (sr|C, fA, fa, d, dm)
P (sr|fA, fa, d, dm)

P (bm, gp|C, fA, fa, d, dm, sr)
P (bm, gp|fA, fa, d, dm, sr)

P (num|C, fA, fa, d, dm, sr, bm, gp)
P (num|fA, fa, d, dm, sr, bm, gp)

P (hm, hmm,mm|C, fA, fa, d, dm, sr, bm, gp, num)
P (hm, hmm,mm|fA, fa, d, dm, sr, bm, gp, num)

(7.6)

Following the decomposition, we begin to eliminate the dependencies among the features that
we consider unnecessary. We based our independence assumptions on linguistic intuitions. First,
we consider that the lexical (string matching) features hm, hmm, and mm are only dependent
on the NP types (fA, fa) and on biotype matching bm. That is, depending on the NP type of the
anaphor and the antecedent, it may be more likely for their words to match. For example, if the
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anaphor is a proper name, it is very likely that mm (modifier matching) will have value “no”,
since proper names rarely carry modifiers. Also, once anaphor and antecedent have the same
biotype, the chance that their words will match is higher than otherwise. We consider then that
hm, hmm, and mm are not dependent on distance d or dm (the distance between two noun
phrases does not influence their chance of matching), nor on syntactic relations sr, number
agreement num (since we compare the lemmatised versions of the words, number does not
influence string matching) or biotype gp. With that in mind, we can simplify the corresponding
factor of our probability model as follows:

P (hm, hmm,mm|C, fA, fa, d, dm, sr, bm, gp, num) ≈ P (hm, hmm,mm|C, fA, fa, bm)
and

P (hm, hmm,mm|fA, fa, d, dm, sr, bm, gp, num) ≈ P (hm, hmm,mm|fA, fa, bm)

We consider that number agreement num depends only on the type of anaphor and an-
tecedent NPs. For example, proper names are usually singular, so if both anaphor and an-
tecedent NPs are proper names, the probability that num will have value “yes” is very high. We
model num as independent of the distance between anaphor and antecedent (d, dm), syntactic
relations sr between them, and semantic information (bm, gp): the chance of both NPs agreeing
in number is virtually the same no matter how far from each other they are, or whether they
have equal biotypes, or if they share a syntactic relation. So we assume:

P (num|C, fA, fa, d, dm, sr, bm, gp) ≈ P (num|C, fA, fa)
and

P (num|fA, fa, d, dm, sr, bm, gp) ≈ P (num|fA, fa)

We also consider that the semantic features biotype-matching bm, and gene-or-product gp
are independent from all features but class C. We understand that for anaphor and antecedent
candidate to have the same biotype it is not necessary that the remaining features have any
specific value: there is no requirement for an entity of an specific biotype to be refered to using
an specific type of NP, nor distance neither syntactic relations restrict the biotypes of the entities
mentioned. We then model:

P (bm, gp|C, fA, fa, d, dm, sr) ≈ P (bm, gp|C)
and

P (bm, gp|fA, fa, d, dm, sr) ≈ P (bm, gp)

We also model syntactic relation sr to be independent of the anaphor’s and antecedent’s
NP types fA and fa, since all types of NPs can take part in the syntactic relations under
consideration. For example, in a subject-object relation (one NP is the subject and the other
the object of the same verb), any NP type can assume subject and object positions. In some
types of syntactic relations, however, one type of NP may be more frequent than others. For
example, in appositive constructions it is common for the apposition to be a proper name,
given the frequent occurrence of “<extented name> ( <abbreviation> )” constructions. We
have decided though to ignore this aspect because our syntactic relation feature is very sparse:
in our corpus only 15% of the intrasentential anaphoric relations (mostly coreferent) involve any
syntactic relation, and we wanted to avoid further fragmentation of the statistics derived from
these cases. sr is dependent on distance, because all syntactic relations are intrasentencial, so
in the presence of a positive value for sr (all but “none”), the value for d will always be 0 (zero).

P (sr|C, fA, fa, d, dm) ≈ P (sr|C, d, dm)
and

P (sr|fA, fa, d, dm) ≈ P (sr|d, dm)
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And finally we take d and dm to be independent of fa, since it is the anaphor’s NP type fA

that determines the distance it can be from the antecedent. As we have seen earlier, each NP
type allows for a smaller or larger scope in which to find the antecedent.

P (d, dm|C, fA, fa) ≈ P (d, dm|C, fA)
and

P (d, dm|fA, fa) ≈ P (d, dm|fA)

The final equation then becomes:

P (C|fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm) ≈

P (C|fA)
P (fa|C, fA)
P (fa|fA)

P (d, dm|C, fA)
P (d, dm|fA)

P (sr|C, d, dm)
P (sr|d, dm)

P (bm, gp|C)
P (bm, gp)

P (num|C, fA, fa)
P (num|fA, fa)

P (hm, hmm,mm|C, fA, fa, bm)
P (hm, hmm,mm|fA, fa, bm)

(7.7)

7.2.1 Comparison to Ge et al. model

There are a few basic differences between our model and Ge et al.’s model for pronoun resolution.
Besides the different feature set, we have adapted other aspects of their framework to the needs
of non-pronominal anaphora resolution.

The authors do not mention any special treatment of negative instances, which correspond
to the anaphor-candidate pairs in which the candidate is not the annotated antecedent. Ge
[Ge, 2000] describes how for each anaphor they pre-select (using the Hobbs algorithm) a max-
imum of 25 antecedent candidates. This limits considerably the number of negative instances
generated from the training data. In our case, antecedents of nominal expressions can be found
much further away than antecedents of pronouns, which impedes us from limiting the number
of antecedents to be considered (although we limit distance in sentences). This results in an
overwhelming number of negative instances, which has to be reduced. We discuss our strategy
for reducing the number of negative instances in the next section.

In the decomposition process the authors cut out terms of the equation that they do not
consider to influence the resolution process, that is, that do not change from one candidate
to another. However, ignoring these terms means the outcome value of the equation is not a
probability value anymore (between 0 and 1) but a score within a broader range. Since we
wanted to keep the result values as probabilities (in order for them to be used in the active
learning experiments described in Chapter 8), we opted to keep all terms of the equation.

In order to treat pleonastic pronouns (the pronoun “it” when not used anaphorically, e.g.
“It is important to ...”, which has no antecedent), Ge adds another parameter to the probability
equation. She considers an additional feature that represents the occurrence of particular lexical
patterns with the pronoun, which indicate their pleonastic role. This feature is considered to
be independent of the other features, and it is very precise in pointing pleonastic pronouns.
Unfortunately, non-anaphoric nominal expressions do no exhibit as clear patterns as pleonastic
pronouns. For that reason, we decided to group features that indicate non-anaphoric NPs in a
separate model, described in Section 7.7.1.

7.2.2 Training

As described in Chapter 5, for each mention of a biomedical entity, we annotated its closest
coreferent antecedent (if found) and its closest associative antecedent (if found), from one of
the associative classes. From our annotation we can infer coreference chains by merging the
coreferent links between mentions of a same entity.
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The annotated relations and the features derived from them are used as training data for
the probabilistic model above. We have also considered negative training instances, which result
from the absence of an anaphoric relation between a NP that precedes an anaphoric expression
and was not marked as its antecedent (neither marked as part of the same coreference chain of its
antecedent). The negative instances outnumber considerably the number of positive instances
(annotated cases): while we have 2,452 positive instances (distributed across all NP types and
anaphoric classes), we have 873,731 negative instances.

To balance the ratio between positive and negative training instances, we have clustered the
negative instances and kept only a portion of each cluster, proportional to its size. All negative
instances that have the same values for all features are grouped together (consequently, a cluster
is formed by a set of identical instances) and only a fraction of each cluster members is kept as
negative training data. We have experimented keeping 1

2 , 1
3 , 1

5 and 1
10 of each cluster. The higher

the number of negative instances, the higher the precision of the resolution, but the lower the
recall. Our best results were achieved using 1

10 of each cluster, which add up to 85,314 negative
instances. In this way, small clusters (with fewer than 10 members), which are likely to repre-
sent noisy instances (similar to positive ones), are eliminated, and bigger clusters are shrunk;
however the shape of the distribution of the negative instances is preserved. For instance, our
biggest cluster (feature values are: fA=‘pn’, fa=‘pn’, hm=‘no’, hmm=‘no‘, mm=‘no’, bm=‘yes’,
gp=‘yes’, num=‘yes’, sr=‘none’, d=‘16<’, dm=‘50<’) with 33,998 instances is reduced to 3,399
– still considerably more numerous than any positive sample.

Our strategy for reducing the number of negative instances approximates the frequency
values of positive and negative instances, but still maintains a considerable gap between them,
without altering the shape of the distribution of negative instances. However, it alters the overall
distribution of anaphoric relations, affecting the prior probabilities of each class.

Other works have used a different strategy to reduce the imbalance between positive and
negative instances [Soon et al., 2001, Ng and Cardie, 2002c, Strube et al., 2002], where only in-
stances with a negative antecedent that is closer than that annotated are considered. We discuss
and compare the performance of both strategies in Section 7.8.

7.3 Results

Given the small size of our corpus, we did not hold out a test set. Instead, we have measured
the average performance achieved by the model on a 10-fold cross-validation setting, using the
whole of the annotated corpus.

We consider as antecedent candidates all noun phrases that precede the anaphor. For a
given anaphor, we first select as antecedent according to each anaphora class the candidate with
the highest value for P for that class. We also compute P (C = ‘none’) for all candidates. If
P (C = ‘coreferent’) > P (C = ‘none’) for the selected coreferent antecedent, it is kept as the
resulting antecedent. The same procedure is used for the selected associative antecedent with
the highest probability, independent of the type of associative class. For set-member cases,
where an anaphor can have multiple antecedents, if more than one candidate has the same
highest probability, all these candidates are kept: this happens when the anaphor refers to the
set (instead of to a member) and in such cases it is common for the antecedents to carry similar
features. For instance, in the following example, “...Reaper, Hid and Grim ...these
genes...”, the three correct antecedent candidates will be at the same distance from the
anaphor (since they are in the same sentence), have the same biotypes, and none will have
string matching.

When no coreferent or associative antecedent is found (or when P (C = ‘none’) is higher on
both cases) the anaphor is classified as discourse new.

Table 7.2 presents the performance scores we achieved for each anaphora class. The first
column, ‘perfect’, shows the result of a strict evaluation, where we consider correct all pairs that
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Perfect Relaxed
Class

P R F P R F

coreferent 55.7 57.2 56.5 73.8 63.8 68.4

assoc-biotype 29.7 35.0 32.2 31.9 37.1 34.3

assoc-set-member 35.5 39.0 37.1 38.7 42.5 40.5

discourse new 44.2 52.3 47.9 44.2 52.3 47.9

Table 7.2: Performance of the probabilistic model

exactly match an antecedent-anaphor pair in the annotated data. On the other hand, column
‘relaxed’ considers correct also the pairs where the assigned antecedent is not the exact match in
the annotated data but is coreferent to it. For coreferent cases, the ‘relaxed’ scores corresponds
to the MUC-style scoring (described in Section 3.4, Chapter 3). For associative cases, we also
considered as correct the cases for which the antecedent selected by the system is coreferent
with the associative antecedent assigned to the anaphor in the manual annotation.

It is clear that the results for coreferent cases are much better than for associative cases, but
the latter are known to be more challenging. Moreover, the ‘relaxed’ column shows considerable
improvements in comparison to ‘perfect’. This means that several anaphors are being linked
to the correct coreference chain, despite not being linked to the closest antecedent. This hap-
pens mainly in cases where there is no string matching between the closest antecedent and the
anaphor, causing an earlier mention of the same entity with matching head and/or modifiers
to get higher probability. We believe we can approximate ‘perfect’ to ‘relaxed’ results if we
extend the string matching features to represent the whole coreference chain, that is, consider a
positive matching when the anaphor match any of the elements in a chain, similarly to the idea
presented in [Yang et al., 2004].

We believe that the lower overall performance for associative cases is due to the difficulty of
selecting features that capture all aspects involved in associative relations. Our set of features
is clearly failing to cover some of these aspects, and a deeper feature study should be the best
way to boost the scores. However, despite being lower, these performance scores are higher
than those from previous approaches for newspaper texts, which used for instance the WordNet
[Poesio et al., 1997] or the Internet [Bunescu, 2003] as the source of semantic knowledge.

Table 7.3 shows the ‘perfect’ performance scores according to each type of NP. The reso-
lution of proper names achieves the highest scores among all types of NPs for most classes.
This is due to their limited structure, since proper names usually do not have elaborated pre-
modification or modification at all, so our string matching features carried simpler patterns for
these NPs. Also, 5% of the correctly-resolved coreferent cases and 88% of the correctly-resolved
set-member cases where the anaphor is a proper name did not contain positive values for the
string matching features; they were resolved mainly due to sr and d features, respectively.
Based on these same two features, 1.5% of correctly-resolved coreferent definite NPs, 18% of
correctly-resolved coreferent demonstrative NPs, 61% of correctly-resolved coreferent indefinite
NPs, 5.5% of correctly-resolved coreferent other NPs, and 40% of correctly-resolved set-member
demonstrative NPs where no string matching occurred could be resolved. No biotype relation
was correctly resolved when there was no positive value for at least one of the string matching
features. Indefinite and quantified NPs achieved the lowest scores for coreferent cases, since the
highest percentage of training instances for these NPs are not coreferent (as seen in Table 5.3).
Indefinite NPs, as expected, have the best scores for discourse new cases.
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coreferent biotype set-member discourse new
Class

P R F P R F P R F P R F

pn 77.5 71.9 74.6 26.8 25.5 26.1 53.7 65.7 59.1 35.1 59.3 44.1

defnp 48.0 47.3 47.6 26.3 28.1 27.2 29.2 26.1 27.6 38.8 51.8 44.4

demnp 57.8 48.5 52.8 - - - 71.4 57.6 63.8 - - -

indefnp 27.0 34.2 30.2 14.2 12.5 13.3 21.0 28.5 24.2 63.4 54.7 58.8

quantnp 11.2 12.9 12.0 - - - 28.5 37.6 32.5 37.1 34.2 35.6

other np 41.3 41.4 41.4 30.9 48.2 37.7 19.3 19.4 19.4 49.7 56.0 52.6

Table 7.3: Performance of the probabilistic model (‘perfect’) per NP form

hm, hmm,mm,
num, bm, dm

col.1 + fA, fa col.1 + gp col.1 + sr

Class
P R F P R F P R F P R F

coreferent 55.9 57.4 56.7 59.5 55.9 57.7 56.5 57.6 57.1 57.0 59.7 58.3

assoc-biotype 24.0 28.8 26.2 28.7 33.9 31.1 24.1 29.9 26.7 24.4 28.5 26.3

assoc-set-member 31.1 19.9 24.3 28.4 30.2 29.3 30.9 19.0 23.5 30.4 20.5 24.5

discourse new 36.8 56.5 44.6 41.1 56.5 47.6 36.5 56.5 44.4 39.2 56.3 46.2

Table 7.4: Incremental performance of the probabilistic model

7.4 Feature analysis

Focusing on the features we have used, Table 7.4 shows how different features contribute to the
final scores. The first column uses a basic set of features that rely only on string matching,
number agreement, biotype matching and distance (the same information that has been used
by our baseline system presented in Chapter 6). The remaining columns present the scores for
adding the corresponding features to the set in the first column.

We can observe that the string matching features hm, hmm, and mm, the number agreement
feature num, biotype matching bm, and distance in markables dm are the core features and
achieve reasonable performance (the performance of the probabilistic model using only these
features is already higher that the performance of our baseline system; we discuss this in Section
7.9). However, fA and fa play an important role; they increase the precision of coreferent cases
and boost considerably the performance of the associative ones. This is due to the different
distribution of NP types across the relations as shown is Table 5.3. The remaining features
focused on specific cases: gp improved biotype recall, by boosting the probability of a biotype
relation when anaphor or candidate have specific biotypes; and sr improved precision and recall
of coreferent cases.

7.5 Homolog relations

In Chapter 5, we described associative homolog relations between NPs, besides associative bio-
type and set-member relations. Homolog relations correspond to only 2.8% of associative rela-
tions and 0.95% of anaphoric relations in general. Given this, the prior probability of homolog
relations is very low and not even prominent features specifically designed to identify these
relations were able to make a difference. We have experimented adding to our probabilistic
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resolution model two extra features aimed at distinguishing homolog relations:

• hom: ‘yes’ if the anaphor’s or antecedent candidate’s head noun or pre-modifiers matches
the word ‘homolog’ or ‘homologous’; ‘no’ otherwise.

• spe np: ‘yes’ if the anaphor or candidate NP contains a word that is tagged as a species
name (e.g. Drosophila, mammalian); ‘no’ otherwise.

• spe sent: ‘yes’ if the sentence of the anaphor or candidate contains a word that is tagged
as a species name; ‘no’ otherwise.

We have manually annotated all words in the text that refer to organisms and different
species of these, so that features spe np and spe sent could be collected.

The above features were not able to distinguish homolog from coreferent relations, since NPs
that have positive values for these features also take part in coreferent relations. We could not
design any feature that would make this distinction, which in the case of biotype relations is
mainly due to the biotype (mis)matching feature and in the case of set-member relations, the
number (dis)agreement feature.

7.6 Possessive relations

As described in Chapter 5, we also tried to resolve possessive relations, which we do not consider
anaphoric but which previous work has often regarded as associative anaphora. We consider
possessive relations to be simply syntactic relations between NPs, and tested our resolution
model on finding these relations. sra,A feature is responsible for encoding the syntactic relation
between the NPs.

Table 7.5 presents the results on the resolution of possessive relations. Most of the recall
errors are due to cases where the parser failed to recover the syntactic relation between the NPs.

Class P R F

Possessive 53.5 70.5 60.9

Table 7.5: Performance of the resolution of possessive relations

7.7 Anaphoricity determination

As described above, our model aims to find the correct antecedent(s) for each mention of a
biomedical entity, and when it is not able to find an antecedent, the mention is classified
as discourse new. However, some researchers [Ng and Cardie, 2002b, Bean and Riloff, 1999,
Uryupina, 2003] have investigated the advantage of identifying which mentions are anaphoric or
not beforehand, so that the resolution system would only look for the antecedents of mentions
that were found to be anaphoric.

Ng and Cardie [Ng and Cardie, 2002b] trained a decision-tree and a rule-learning classifier
to distinguish between anaphoric and non-anaphoric NPs using a set of 37 features (lexical,
grammatical, semantic and positional). They have reached around 65% F-measure for the
MUC-6 and MUC-7 corpora. Vieira and Poesio [2000] developed a set of heuristics to identify
discourse-new definite NPs, mostly based on particular syntactic constructions, reaching 75%
recall and 86% precision for these cases. Bean & Riloff [Bean and Riloff, 1999] used basically
the same heuristics as Vieira & Poesio, but additionally they verified whether the definite NPs
were in the first sentence and also whether the NP is a ‘definite only’, i.e. its head always
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occurs with the definite article. They have reached 78% recall and 87% precision in recognizing
discourse-new definite NPs.

Uryupina trains a rule-learning classifier with discourse-new vs. discourse-old instances, using
the same syntactic features used by Vieira and Poesio, plus a measure of “definite probability”
derived from internet counts (how many times the NP appears with the definite article, with
the indefinite article, and independent of determiner). Her system reached 88.5% precision and
84.3% recall in distinguishing anaphoric and non-anaphoric NPs.

However, these systems ultimately showed little influence on the performance of the res-
olution system [Poesio et al., 2004]; Poesio et al. give an overview of the strategies that have
been developed in previous work and reinforces the need for anaphoricity determination: they
present results for Vieira and Poesio’s anaphora resolution system and for a system similar to
Ng and Cardie’s without a discourse-new detector and with perfect (hand-coded) discourse-new
detection, where the last brings about a 25-30% gain in precision.

In [Ng, 2004], the author argues that the usual way in which an anaphoricity determination
system and a coreference resolution system are integrated, i.e. where the first system is developed
independently of the second, and the second uses the output of the first as a constraint to bypass
cases that were not considered anaphoric, might not be the most effective. He discusses and
tests different ways of combining the systems: 1) the anaphoricity system could so be developed
to optimise the results of the resolution system, instead of being developed independently; and
2) the anaphoricity information could be used as a additional feature to the resolution system,
instead of being used as a by-pass hard constraint. The author tests all combinations of strategies
1 and 2 and reports best results by tuning the anaphoricity system according to the effect on the
resolution system, and by considering the anaphoricity information a hard constraint. He regards
as baseline the results obtained by the coreference resolution system alone (with no anaphoricity
determination); he uses as coreference resolution system that described in [Soon et al., 2001],
and as anaphoricity determination system, that described in [Ng and Cardie, 2002b].

In the corpora used by the systems above, the majority of NPs were not anaphoric; for
example, Ng and Cardie got 63.8% and 73.2% accuracy by classifying as discourse-new all
NPs in the MUC-6 and MUC-7 corpora respectively. On the other hand, in our corpus, the
majority of cases are anaphoric, so classifying all NPs as anaphoric can be considered the baseline
performance for an anaphoricity determination system. This baseline reaches 83.3% accuracy.
So, from the start, our incentive for integrating an anaphoricity determination system to our
resolution system is smaller.

Aiming to beat the baseline performance, which is already quite high, we have developed a
probabilistic model for anaphoricity determination in the same way that we did for our anaphora
resolution model but based in a different set of features. We wanted to investigate the best way
to combine it with our resolution model in the same way as proposed by Ng [2004]. However,
our system was only slightly better than the baseline, having low recall for discourse-new NPs.
For this reason, we have decided not to integrate it with our resolution system.

Below we describe the features we used and the model for distinguishing discourse-new and
anaphoric NPs.

7.7.1 Discourse new vs. anaphoric model

Like the resolution model, this model is implemented as a decomposed probability function.
We have selected 7 features to represent the anaphoric and non-anaphoric expressions in our

data, which are presented in Table 7.6. The features are related to the anaphoric expression
itself, not considering any specific potential antecedent at this stage.

Ng and Cardie and Vieira and Poesio have used more elaborate syntactic patterns to identify
discourse-new definite NPs, such as the presence of a proper name as head-noun modifier, or
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Feature Possible values

fA Form of noun phrase of the anaphor A: ‘defnp’ (definite NP), ‘demnp’ (demon-
strative NP), ‘pn’ (proper name), or ‘np’ (all other NPs).

ahm Head-noun matching: ‘yes’ if there is any NP preceding the anaphor that has
the same head noun, ‘no’ otherwise.

ahmm Head & modifier matching: ‘yes’ if there is any NP preceding the anaphor that
has the same head noun AND at least one head pre-modifier in common, ‘no’
otherwise.

amm Pre-modifier matching: ‘yes’ if there is any NP preceding the anaphor that has
at least one head pre-modifier in common, ‘no’ otherwise.

synA Syntactic pattern of the NP: ‘cmod’ indicating clausal modifiers, or ‘none’.

numA Number of the NP: ‘singular’ or ‘plural’.

posA Position of the NP: ‘title’ (title of the paper), ‘sent’ (first sentence of the paper),
or ‘other’.

Table 7.6: Features used by the discourse-new vs. anaphoric model

the occurrence of specific constructions such as apposition, post-modification by relative clause,
among others. As proper names are very frequent in biomedical texts, they very often occur as
pre-modifiers and are not an indication of non-anaphoricity. We have only considered relative
clause post-modification as a relevant syntactic pattern, after testing with apposition, verbal-
phrase modifiers and non-clausal modifiers, which did not contribute to the performance of the
model.

From these features we define

P (C = ‘class′|fA, ahm, ahmm, amm, synA, numA, posA)

We want to compute P for C = ‘discourse new′ and C = ‘anaphoric′ for each NP of interest
in the text, and choose the class according to the higher value for P .

To reduce the influence of data sparseness on training this model, we decomposed the above
probability and assumed independence among some of the features, as follows.
P (C|fA, ahm, ahmm, amm, synA, numA, posA)

=
P (C|fA) P (ahm, amm, ahmm, synA, numA, posA|C, fA)

P (ahm, amm, ahmm, numA, synA, posA|fA)
(7.8)

∝ P (C|fA) P (ahm, amm, ahmm, numA, synA, posA|C, fA) (7.9)

Equation 7.8 is obtained by applying Bayes’ theorem to the initial equation, and Equation
7.9 is obtained by eliminating the denominator from the previous equation, which is invariant in
this case. We continue the decomposition process by applying the chain rule, as in our resolution
model, and get to the following equation.

= P (C|fA) P (posA|C, fA) P (synA|C, fA, posA)
P (numA|C, fA, synA, posA) P (ahm, amm, ahmm|C, fA, synA, numA, posA) (7.10)
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Class P R F

anaphoric 86.4 96.4 91.1

discourse new 58.2 24.4 34.4

Table 7.7: Performance of the anaphoricity determination model

anaphoric discourse new
Class

P R F P R F

pn 93.7 98.8 96.2 52.6 15.6 24.0

defnp 87.4 95.0 91.0 50.0 26.8 34.9

demnp 100 100 100 - - -

indefnp 64.1 70.4 67.1 73.1 67.1 70.0

quantnp 75.5 97.2 85.0 50.0 7.8 13.6

other np 79.9 96.6 87.5 48.7 11.4 18.5

Table 7.8: Performance of the anaphoricity determination model per NP form

After assuming independence between some features, we get to the final equation:

P (C|fA, ahm, ahmm, amm, synA, posA) =
P (C|fA) P (posA|C) P (synA|C, fA) P (numA|C, fA) P (ahm, amm, ahmm|C, fA) (7.11)

P (C|fA) represents the prior probability of each class (discourse new or anaphoric) according
to each type of NP; it encodes the distribution of the classes.

7.7.1.1 Performance

The above model is able to reach an overall accuracy of 84.4%, which is very close to the
performance of the baseline for anaphoricity determination (83.3% accuracy when considering
all NPs to be anaphoric). The performance scores per class are presented in Table 7.7, and
according to NP type in Table 7.8. Recall of discourse-new cases is low, indicating that the
positive effect of the anaphoricity determination step over the resolution system would be minor,
in addition to the negative impact of decreased precision of anaphoric cases.

7.8 Variations of the selection of instances

In [Ng and Cardie, 2002a, Uryupina, 2004] the authors discuss positive and negative sample
selection. They reinforce that the number of negative instances is many times higher than the
number of positive instances and that it is necessary to treat that, and also claim that positive
instances that are too “hard” to learn should be filtered out.

For positive sample selection, Uryupina relies on empirical criteria for each type of NP to
define which instances could be excluded, while Ng and Cardie iteratively train a rule inducer
only with positive instances in order to identify which rules can be induced from the data and
keeping only the instances which fit such rules. Both Ng and Cardie and Uryupina consider a
positive instance the link between the anaphor and any member of its coreferent chain (while we
only regard as positive instances the anaphor-antecedent links that were explicitly annotated in
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Perfect Relaxed Perfect for pn
Class

P R F P R F P R F

coreferent 56.1 60.5 58.2 74.2 67.2 70.5 81.0 81.4 81.2

assoc-biotype 28.0 33.6 30.6 30.1 35.7 32.7 25.5 23.9 24.7

assoc-set-member 34.4 39.5 36.8 37.5 43.0 40.1 51.2 65.7 57.6

discourse new 49.8 51.2 50.5 49.8 51.2 50.5 44.3 52.2 47.9

Table 7.9: Performance of the probabilistic model with filtering of positive instances

our corpus). This is an important aspect of Uryupina’s positive-sample selection strategy, since
for definite NPs, for instance, she keeps only pairs where head nouns match (if there is none as
part of the chain, then a different strategy is adopted).

In our case we cannot adopt the same positive sampling strategy because we do not deal
only with coreference relations (as in Ng and Cardie and Uryupina), but also with associative
relations. Associative relations are local and it is not realistic to replicate the associative link
with a member of a chain to all other members of it. For this reason, we keep coreference
relations local and only sample the anaphor-closest antecedent pairs, so that the probability
distribution of the relations being considered is maintained.

However, we decided to run one experiment where we filter the set of positive instances. In
order to try to improve the resolution of cases where there was no string matching, we decided to
eliminate from the original training data the positive instances in which anaphor and antecedent
were identical strings and had the same biotype. These cases could be resolved as coreferent
independently of our model, since such NPs are very likely to corefer. On the other hand,
the absence of these cases from the training data would increase the probability of partial/no-
string matching as a feature of anaphoric cases (as compared with the probability of having no
relation). We trained the model on the filtered instances and, for each anaphor, we (1) select the
closest candidate with full string matching and same biotype, if found, (2) select the candidate
with the highest probability according to the model trained on the filtered instances, and finally
(3) chose the closest one between the two as the antecedent. Table 7.9 presents the results for
this experiment. These results were obtained through 10-fold cross-validation over the same
data used on the initial experiment presented in Section 7.3 (expect for the filtering of positive
instances as described here).

Comparing with the original results from Table 7.2, as expected we observe that the recall
of the model on coreference cases has improved. This strategy mainly improves the resolution of
proper names (last column of Table 7.9, which can be compared with the first row of Table 7.3).
We observed that most of the performance gain on coreferent cases is due to the high-precision
matching of identical proper names, and a few cases of proper names with no proper-name
antecedents, where there is no string matching, could be resolved given the new probability
distribution of these cases. However, the impact of the new distribution of no/partial-string-
matching cases was not as positive as expected. Overall, the performance scores of the resolution
of NPs other than proper names decreased. The precision and recall of biotype cases for all
NPs has also clearly decreased, while the scores for set-member cases have changed slightly.
This is mainly because the probability of an anaphor being coreferent to a candidate with
no/partial string matching became more competitive (but not necessarily more precise) than the
probability of the associative cases in the same situation.We concluded that this new distribution
of coreferent cases is not adequate because it disturbs the resolution of the associative cases and
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Prob+Closer ‘perfect’ Prob+Closer ‘relaxed’
Class

P R F P R F

coreferent 66.2 50.0 56.9 80.9 50.7 62.4

assoc-biotype 31.1 10.1 15.2 34.4 11.1 16.8

assoc-set-member 46.3 17.5 25.4 51.4 19.4 28.1

discourse new 31.3 88.1 46.2 31.3 88.1 46.2

Table 7.10: Performance of the probabilistic model with ‘closer’ negative sampling

also the resolution of coreferent cases where anaphors are not proper names. However, the
high-precision matching of identical NPs can be adopted on top of our original probabilistic
model.

For negative sample selection Soon et al. [2001], Ng and Cardie [2002c] and Strube et al. [2002]
select as negative instances all links between the anaphor and NPs that are not its antecedent
and which are closer than its antecedent. In [Ng and Cardie, 2002a] the strategy is slightly dif-
ferent: since the positive sampling considers the whole coreference chain, the negative sampling
also does and all links between the anaphor and NPs that are not part of its coreference chain
and which are closer to it than the farthest member of its chain are taken into account.

In [Ng and Cardie, 2002a] the authors argue that the candidates further away than the (far-
thest) coreferent antecedent are not needed for the classification, since it occurs from right to
left from the anaphor until the classifier finds the antecedent. This does not hold in our case,
because we rank all candidates, and instances derived from one particular anaphoric relation
influence the probabilities for resolution of other relations.

We have tried training our probabilistic model using Soon et al. ’s strategy for selecting
negative instances instead of ours, described in Section 7.2.2; Table 7.10 presents the ‘perfect’
and ‘relaxed’ performance scores achieved by Soon’s strategy. In our dataset, this strategy was
able to reduce the number of negative instances to about 1

3 , while our strategy reduces it to 1
10 .

The larger number of negative instances increases the precision scores and reduces the recall
scores for all positive classes, while the opposite happens for the negative class, which defines
the discourse-new scores. We reckon that the considerable drop on recall for the associative
cases would make the system less viable, while the low precision for discourse-new cases shows
that many anaphoric cases are left unresolved.

We regard our strategy, based on the clustering of negative instances and consecutive cluster
size reduction, as more effective at proportionally eliminating negative instances that are less
frequent and that are more likely to be noisy. Our approach does not alter the shape of the
distribution of the negative instances; it simply approximates the frequency values of positive
and negative instances to decrease the data skewness, and by doing so, increases the recall of
the model.

7.9 Comparison with other approaches

We have comapred our model with three others: our rule-based baseline system (presented in
the previous chapter), a naive-Bayes model, and a decision-tree-based model.

7.9.1 Rule-based baseline

When we compare our probabilistic model with our rule-based baseline system (performance
scores in Table 6.2), we can observe a gain in performance for coreferent cases and an even
larger improvement for associative cases. Our probabilistic model overcomes the baseline even
if we use the same features for both systems, as presented in the first column of Table 7.4. The
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Naive Bayes Naive Bayes relaxed
Class

P R F P R F

coreferent 34.7 48.6 40.5 57.3 65.6 61.2

assoc-biotype 13.0 33.3 18.7 13.7 34.7 19.6

assoc-set-member 18.1 23.3 20.4 21.8 27.9 24.5

discourse new 43.6 6.6 11.5 43.6 6.6 11.5

Table 7.11: Performance of naive bayes model

baseline system relies on some sort of string matching between anaphor and antecedent, and is
not able to infer a relation between expressions when the matching does not occur. That is one
of the main aspects that the probabilistic system aims to overcome by balancing all features
together. The baseline also considers distance in a different way: it selects the closest antecedent
that matches the rules, while the probabilistic system balances distance and the other features
and is able to select antecedents that are not the closest.

7.9.2 Naive-Bayes baseline

As described in the introduction of this chapter, our probabilistic model can be seen as a more
elaborated version of the naive Bayes classifier. While naive Bayes assumes independence among
all features, in our model we carefully selected which dependences should be preserved for each
feature and assumed independence in relation to those remaining. We have implemented a naive
Bayes classifier using the same features we have used for our probabilistic model. The results
for our anaphora resolution task using a naive Bayes model are presented in Table 7.11.

We can observe that the performance scores for all classes are considerably lower than for
our probabilistic model. The discourse-new recall scores are the lowest, showing that the naive
Bayes model almost always chooses an antecedent for the anaphor. The independence of the
features has made it difficult for the model to identify the “none” cases, and this has contributed
to its low precision for positive cases.

The considerably lower performance of naive Bayes in relation to our probabilistic model
shows that preserving genuine dependencies among the features can have a big impact on the
precision and recall of the resolution process.

7.9.3 Decision trees

We also compared our model with a system based on decision trees, since this approach has
been taken by several other corpus-based anaphora resolution systems [Ng and Cardie, 2002c,
Soon et al., 2001, Strube et al., 2002]. We have induced a decision tree using the C4.5 algorithm
[Quinlan, 1993] implemented in the Weka tool [Witten and Frank, 2005] (in fact we induced 10
trees considering different folds for the cross-validation evaluation); we have used the same
features used by our probabilistic model. We selected as the antecedent the candidate which is
the closest to the anaphor for which a class other than ‘none’ is assigned to it in the decision
tree. The ‘perfect’ and ‘relaxed’ scores for C4.5 are presented in Table 7.12. The difference
between ‘perfect’ and ‘relaxed’ scores is not as large as on our probabilistic model; this shows
that decision trees are more often getting even the coreference chain wrong, not only the closest
antecedent. We assume that this is due to the lack of ranking among the candidates, since we
opt for the obvious strategy of selecting the closest candidate that gets a positive class according
to the tree (in the same way that Soon et al. and Strube et al. do).

The main disadvantage of both the baseline and decision tree systems compared with the
probabilistic model is, besides the lower performance, that they do not provide a probability
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C4.5 C4.5 relaxed
Class

P R F P R F

coreferent 49.6 58.1 53.5 57.9 55.5 56.6

assoc-biotype 21.7 28.5 24.6 22.9 29.9 26.0

assoc-set-member 28.5 31.3 29.8 30.4 33.3 31.8

discourse new 48.5 32.5 38.9 48.5 32.5 38.9

Table 7.12: Performance of decision-tree system

assigned to each decision they make, which makes it impossible to learn how confident the model
is in different cases and to take advantage of that information to improve the system. This aspect
also makes it difficult to develop a consistent strategy for returning multiple antecedents for set-
member cases, since there is no obvious way to do it.

7.10 Summary

In this chapter we have presented our probabilistic model for resolving coreferent and associative
anaphora in biomedical texts. The model is simple, based on the decomposition of a joint
probability into the product of several conditional probabilities. The model performs better
than our baseline system and also better that a decision-tree model trained using the same
feature set.

We have compared our strategy for negative sample selection with the more popular strategy
proposed by Soon et al. and shown that ours is more appropriate for a probabilistic system, which
ranks all candidates instead of searching them from right to left from the anaphor.

Our model, despite being simple and trained on a very small corpus, has coped well with
its task of finding antecedents for coreferent and associative cases of anaphora. We have out-
performed a naive Bayes classifier and a decision-tree-based classifier trained on the same data
using the same features.

Our model returns a probability for each classification it makes, and this can be used as a
confidence measure that can be exploited to improve the system itself or in external applications.
In the next chapter, we exploit this to simulate the selection of additional instances by adopting
an active learning technique.
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Chapter 8

Active learning

To improve the performance of our probabilistic model for anaphora resolution, we decided to
increase the amount of training data incrementally and selectively. Instead of simply selecting
more articles to be fully annotated, we have adopted an active learning strategy to select par-
ticular instances that are considered more “significant” according to a given criterion, aiming to
reduce considerably the amount of data to be annotated.

There are two main approaches to active learning: the uncertainty-based approach and the
committee-based approach [Thompson et al., 1999]. The uncertainty-based approach consists
in: 1) training a classifier on a set of labelled instances; 2) applying the classifier on a set
of unlabelled instances; 3) computing a measure of how confident the classifier is about the
class assigned to each of the instances; and 3) selecting those about which the classifier is least
confident.

The committee-based approach is different in the sense that it uses more than one classifier:
1) trains a set of classifiers on the same set of labelled instances; 2) applies the classifiers to a
set of unlabelled instances; 2) computes a measure of disagreement between the classifiers for
each sample; and 3) selects the instances about which the classifiers most disagree.

The efficiency of active learning can be measured in two ways: the reduction of the amount of
training data necessary to achieve a given performance (usually the performance of a supervised
system), or the increase in performance for a fixed amount of training data.

Here we focus on the uncertainty-based approach, using our probabilistic model as the classi-
fier. The uncertainty-based approach has been applied, for instance, to named-entity recognition
by Shen et al. [2004] who report at least 80% reduction in annotation costs, parsing by Tang
et al. [2002] who reports a 2

3 saving, and parse selection by Baldridge and Osborne [2003] who
report a 60% saving. We are not aware of any work that has applied active learning to anaphora
resolution.

Most of the works which have experimented with active learning usually simulate the acqui-
sition and annotation of unlabelled data, that is, the data are in fact labelled and the selected
instances are extracted from it automatically, simulating the manual annotation of those in-
stances.

We have done the same: we have divided our training data in two parts, one for the initial
training and the other for active learning (simulating unlabelled data), and have compared the
classifier performance when trained on instances selected by active learning with its performance
when trained on the same number of randomly selected instances.

In the next section we describe the strategy we have adopted to select the instances to take
part in the active learning, and in Section 8.2 we describe our experiments.

8.1 Uncertainty measure

In order to measure how confident our model is about the class it assigns to each candidate,
and consequently the one it chooses as the antecedent of an anaphor, we experiment with the
following entropy-based measures.
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We first compute what we call the “local entropy” among the probabilities for each class—
P(C=“coreferent”), P(C=“biotype”), P(C=“set-member”) and P(C=“none”)—for a given pair
anaphor(A)-candidate(a), which is defined as

LE(A, a) = −
∑
C

P (C)log2P (C) (8.1)

where P (C) represents Equation 7.7 in the previous chapter, that is, the probability assigned
to the anaphor-candidate relation by our probabilistic model for a particular class. The more
similar the probabilities, the more uncertain the model is about the relation, so the higher the
local entropy. This measure is similar to other entropy-based measures used in previous work
for different problems.

We also compute the “global entropy” of the distribution of candidates across classes for each
anaphor. The global entropy aims to combine the uncertainty information from all antecedent
candidates for a given anaphor (instead of considering only a single candidate-anaphor pair as
for LE). The higher the global entropy, the greater the uncertainty of the model about the
antecedent for an anaphor. The global entropy combines the local entropies for all antecedent
candidates of a given anaphor. We propose two versions of the global entropy measure. The
first is simply a sum of the local entropies of all candidates available for a given anaphor and is
defined as

GE1(A) =
∑

a

LE(A, a) (8.2)

The second version averages the local entropies across all candidates and is defined as

GE2(A) =
∑

a LE(A, a)
|a|

(8.3)

where |a| corresponds to the number of candidates available for a given anaphor.
We consider that in general the further away a candidate is from the anaphor, the lower the

local entropy of the pair is (given that when distance increases, the probability of the candidate
not being the antecedent, P(C=“none”), also increases), and consequently the less it contributes
to the global entropy. This is the intuition behind GE1(A).

However, in some cases, mainly when the anaphor is a proper name, there may be several
candidates at a long distance from the anaphor that still get a reasonable probability assigned
to them due to positive string matching. Therefore we decided to experiment with averaging
the sum of the local probabilities by the number of candidates, so GE2(A).

8.2 Experiments

Initially our training data were divided in 10-folds for cross-validation evaluation of our prob-
abilistic model for anaphora resolution. For the active learning experiments we kept the same
folds, using one for the initial training, eight for the active learning phase, and the remaining one
for testing. We have experimented with all initial-training/active-learning/testing splits derived
from different combinations of the 10 folds, and the results in this section correspond to the
average of the results from the different data splits. A fold contains the positive and negative
samples derived from about 270 anaphors; it contains about 7000 candidate-anaphor pairs (an
average of about 26 antecedent candidates per anaphor). The anaphors that are part of each
fold were randomly selected.

The purpose of our experiments is to check if the instances selected by using the entropy-
based measures described above, when added to our training data, can improve the performance
of the model more than in the case of adding the same amount of randomly selected instances.



Active learning 103

1 fold 2 folds 1 fold+LE(A, a) 1 fold+GE1(A) 1 fold+GE2(A)
Class

P R F P R F P R F P R F P R F

coreferent 48.5 51.3 49.9 50.5 54.8 52.6 51.4 24.8 33.5 54.5 50.3 52.3 49.3 55.7 52.3

biotype 22.9 23.3 23.1 26.6 26.1 26.3 22.2 7.7 11.5 30.9 24.4 27.2 23.7 27.7 25.6

set-member 24.4 28.8 26.4 27.8 34.5 30.8 25.4 12.1 16.4 29.6 30.7 30.2 28.0 33.9 30.6

discourse new 39.8 48.1 43.6 43.6 47.1 45.3 23.4 82.5 36.5 37.7 55.6 44.9 43.4 45.2 44.3

Table 8.1: Performance of active learning

For this, we checked the performance of our model using:

1. One fold of training data.

2. Two folds of training data: we view the second fold as containing randomly selected
instances, since the instances were initially randomly distributed along the 10 folds.

3. One fold of data plus 7000 instances selected using LE(A, a) from the eight folds reserved
for active learning: we select the same number of instances that form a fold, so that we
can compare the performance with that from 2. For LE, each instance corresponds to a
candidate-antecedent pair, and a fold contains on average 7000 of these. These instances
are selected from the 8 folds reserved for active learning.

4. One fold of data plus all instances derived from 270 anaphors selected using GE1(A)
from the eight folds reserved for active learning: for GE1 we select anaphors instead of
candidate-anaphor pairs, and a fold contains about 270 of them. For each anaphor selected
we generate all positive and negative instances associated with it.

5. The same as 4 but using GE2(A).

We expected (3), (4) and/or (5) to achieve better performance than (2), however this has not
happened. Table 8.1 shows the ‘perfect’ performance scores for (1), (2), (3), (4) and (5) (these
scores can be compared with those achieved using all available folds, 9, for training presented
in the previous chapter).

We observe that none of the uncertainty measures that we tested has performed consistently
better than random sampling, which goes against our expectations. We expected the entropy-
based measures to be able to select training instances that could improve the performance of
the model more than randomly selected instances (like those contained in a arbitrary data fold).
LE(A, a) presents the most dramatic results: it worsens the general performance of the model
for all classes. However, we can observe some differences between the impact of using GE1(A)
and GE2(A) to select instances. The precision and recall scores for ‘1 fold+GE1(A)’ go in
the opposite direction of the scores of the other settings: while ‘2 fold’ and ‘1 fold+GE2(A)’
training achieves better recall than precision, ‘1 fold+GE1(A)’ training reaches better precision
than recall. Figure 8.1 presents the graphs for precision, recall, and F-measure values for each
anaphora class for ‘1 fold+LE(A, a)’, ‘1 fold+GE1(A)’ and ‘1 fold+GE2(A)’.

Looking at the instances selected by each active learning strategy, we observe the following.
LE(A, a), which considers anaphor-candidate pairs, selects mostly negative instances, given that
these are highly frequent. This can explain the increase in precision and drop in recall for the
positive cases (observed for coreferent and set-member, the most frequent positive classes), and
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Figure 8.1: Graphs of the performance of active learning using LE(A, a), GE1(A) and GE2(A)
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the considerable increase in recall for the discourse-new cases, since that is expected with the
increase of negative instances.

GE1(A) and GE2(A) select a proportional number of positive and negative instances, since
these measures consider an anaphor and all possible antecedent candidates, generating all in-
stances that derive from each selected anaphor (usually one or two positive instances and several
negative). However, we can observe some differences between the effect of using GE1(A) and
GE2(A) to select instances. We observe that 70% of the instances selected by GE1(A) were
proper names, while the distribution of NP types among the instances selected by GE2(A)
is similar to the original distribution in the data. This confirms the problem we expected to
have with GE1(A), since exact matches of proper names that occur at a considerable distance
from the anaphor still get a higher probability assigned to them, which does not happen as
often with other types of NPs. On the other hand, the correct antecedent of 30% of GE2(A)-
selected instances were in the same sentence as the anaphor, while the same happens to only
8% of GE1(A)-selected instances. GE2(A) behaviour in this case is counter-intuitive, since
antecedents in the same sentence should be found by the model with lower uncertainty than
antecedents further away from the anaphor. Another counter-intuitive behaviour of GE2(A)
is that only 3% of the selected anaphors have no string matching with their antecedents (33%
have no head-noun matching), while these cases correspond to 30% of instances selected by
GE1(A) (62% of instances have no head-noun matching). We expected instances involving no
string matching to be selected because they are usually the ones about which the model is most
uncertain.

8.3 Discussion

Despite the different behaviour presented by each of the measures, none was successful in im-
proving the performance of the model in relation to that of random sampling. While GE1(A)
seems to follow the expected approach when selecting instances for active learning, it is biased
in favour of selecting more proper-name anaphors.

While entropy-based measures for sample selection seem the obvious option given that we
use a probabilistic model, they did not give positive results in our case. A future study of
different ways of combining the local entropies is necessary, as well as the study of other non-
entropy-based measures for sample selection.

The main difference between our application of active learning to anaphora resolution and
previous successful applications of active learning to other tasks is the number of probabilities
involved in the calculation of the uncertainty of the model. We believe this is the reason why our
active learning experiments were not successful. While, for example, named-entity recognition
involves a binary decision, and parse selection involves a few parsing options, in our case there
are several antecedent candidates to be considered. For anaphora resolution, when using a
pairwise resolution model, it is necessary to combine the predictions for one candidate-anaphor
pair with the others in order to predict the global uncertainty of the model.

Given the unexpected and negative results of our simulation of active learning, we have
abandoned the intention of running a genuine active learning experiment, where the manual
annotation of additional unlabelled data was going to be necessary.

8.4 Summary

In this chapter we have presented our experiments with active learning to improve the perfor-
mance of our probabilistic anaphora resolution system. We have adopted entropy-based mea-
sures to select new instances to be added to our training data. However, the actively selected
instances were not more successful in improving the performance of the system than the same
number of randomly selected instances. The three variants of the entropy-based measure we
used behaved differently when selecting new instances, but none of them achieved remarkable
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performance. Further studies on active sample selection for anaphora resolution are necessary.



Chapter 9

Conclusions and future directions

In this thesis we have presented our study on anaphora and anaphora resolution in biomedical
scientific articles. In order for this work to take place we first investigated the nature of biomed-
ical texts and the resources available in this domain, as well as the state of the art in the field
of anaphora resolution.

In Chapter 2, we discussed different properties of biomedical texts, such as the particular
NP-form distribution in comparison with other genres of text, the presence of gene and protein
names and ambiguity between them, and the background knowledge necessary for understanding
the relations between the entities in the text. We have studied the resources (ontologies, termi-
nologies, databases) available in the biomedical domain, which we used to explore as source of
semantic knowledge for the anaphora resolution process. We have also investigated which tasks
have usually been performed on biomedical texts, such as named-entity recognition, so we could
identify the procedures available for identifying the biomedical entities in the text.

We have also studied the works that have been developed for resolution of anaphoric non-
pronominal NPs, both within and outside the biomedical domain. We have discussed the differ-
ence between anaphora and coreference and have opted for treating the combination of both. We
have studied systems that have been developed aiming to resolve only coreference and corefer-
ent anaphora (such as [Ng and Cardie, 2002b]) and also systems aiming to solve both coreferent
and associative anaphora (such as [Vieira and Poesio, 2000]). We have reviewed knowledge-
based and corpus-based systems; the former require hand-crafting or hand-tuning of rules and
are consequently more conservative; while the latter rely on training data to infer the appropriate
behaviour. We have also researched works on anaphora resolution in the biomedical domain and
have seen that the very few existing systems are developed and tested on abstracts of scientific
papers, instead of full-text articles.

Given the need of biology researchers for information extraction, we have decided to focus on
anaphora resolution in the biomedical domain, which would be able to resolve both coreferent
and associative anaphora in full-text scientific articles. Anaphora resolution is an important
step towards increasing the recall of information extraction systems.

We have opted for a corpus-based approach since it has been increasingly popular in anaphora
resolution [Soon et al., 2001, Ng and Cardie, 2002b, Strube et al., 2002] and showed promising
results. Besides, corpus-based approaches are more flexible than knowledge-based approaches
and this allowed us to explore the problem more openly.

We have built a framework in which to fit our anaphora resolution system. We have set a
pipeline for identifying and classifying NPs referring to biomedical entities. We have employed
a named-entity recogniser to identify gene and protein names [Vlachos et al., 2006], the RASP
parser [Briscoe et al., 2006] to identify NP boundaries and NP subconstituents (e.g. head noun,
pre-modifiers), and have developed a strategy for identifying and classifying the NPs referring
to biomedical entities based on the Sequence Ontology [Eilbeck and Lewis, 2004]. Using the
terminology present in the Sequence Ontology we were able to recognise mentions of entities
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of interest in the text; to increase the coverage of the Sequence Ontology we have enriched it
with specific sets of terms derived from the UMLS Metathesaurus. We have used the ontolog-
ical relations from the Sequence Ontology (mainly is-a, part-of and derived-from relations) to
determine a set of seven biotypes that were used to classify the mentions: “gene”, “product”,
“subtype”, “part-of”, “part-of-product”, “supertype”, and “variant”. The main limitation of
this classification approach was the lack of a mechanism for resolving ambiguous terms, that is,
terms that could have multiple biotypes assigned to them (e.g. “sequence”).

We identified the four most prominent anaphoric relations present in biomedical articles:
coreference and coreferent anaphora, associative biotype relations, associative homolog relations
and associative set-member relations. Coreferent relations are practically the same as in other
domains, they are relations between two distinct mentions of the same entity. Associative
relations are anaphoric relations between mentions of related entities. The associative biotype
relation is the relation between two mentions of different biotype, such as a gene and its parts
or products. The associative homolog relation occurs between mentions of entities of the same
biotype but which are homologs of each other (corresponding entities in different organisms).
The associative set-member relation is common in other domains as well: it is the relation
between a mention of a single (or subset) entity and that of a group of entities that contains
the single one; in this relation anaphors may have multiple antecedents or multiple anaphors
that point to the same antecedent. Coreferent relations are considerably more frequent than
associative relations. Set-member relations are the most frequent among associative relations,
followed by biotype relations. Homolog relations are rare.

We have developed guidelines for annotating these relations in a set of biomedical articles
and have built the first corpus of full-text biomedical articles with anaphora information. For
each anaphor, a coreferent and an associative antecedent were annotated if found. The corpus
is composed of 5 papers, which contain 2696 NPs referring to biomedical entities (most of them
gene products) and 3037 anaphoric relations between them. With this corpus we were able to
conduct experiments on a corpus-based anaphora resolution system.

We wanted to adopt a corpus-based approach which is reliable despite being trained on such
a small corpus and in which all aspects of the data could be explored. We wanted this approach
to be able to resolve the types of anaphoric relations that we had defined: coreferent, associa-
tive biotype, homolog and set-member. We decided to implement a non-parametric statistical
approach based on the decomposition of a probability conditional on several features. The de-
composition of the model reduces the impact of the sparseness of the data on the performance
of the model. This model collects statistics from the training corpus and it considers the prior
distribution of each class of anaphoric relation. We have selected a set of 11 features to represent
a relation between an anaphor-antecedent pair; these features involve string matching features
which distinguish between head-noun matching and pre-modifier matching, a number agreement
feature, a semantic matching feature which relies on the biotypes assigned to each class, dis-
tance features that represent the distance between the anaphor and the antecedent candidate,
the types of the anaphor NP and the candidate NP, and any syntactic relation between anaphor
and antecedent. From the training corpus we can also infer negative samples, which represent
the absence of an anaphoric relation between pairs of NPs that were not linked in the anno-
tation process. Such samples correspond to the overwhelming majority of samples extracted
from the corpus and skew the distribution of the relations. We have developed a strategy for
proportionally reducing the number of negative samples in order to leave more room for the
positive samples to influence the resolution model; our strategy proved to be more effective than
the most popular one for our probabilistic system. We trained our system on 90% of our corpus
and tested it on 10% of it in a cross-validation setting. Our system reached a good level of per-
formance, 56-68% F-measure, on coreferent relations and reasonable performance of associative
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biotype and set-member relations. We were not able to resolve homolog relations since we could
not find features which would distinguish these from coreferent relations. Our model is the first
corpus-based technique that aims to solve associative anaphora.

We compared the performance of our model with that of a simple rule-based baseline system,
a naive-Bayes-based system, and a decision-tree-based system. Our model outperformed all
three. The baseline system is composed of a set of rules whose aim was to to identify the
most intuitive cases of coreferent and associative cases of anaphora; the system relies on string
matching, biotype matching, number agreement and distance. The baseline system proved to be
too conservative and achieved very low recall for associative cases, it could not solve cases that
did not contain some sort of string matching. The naive-Bayes and the decision-tree systems
were trained on the same corpus and used the same features that we have used to train our
probabilistic model. The performance of the naive-Bayes system was considerably lower than
for our probabilistic model for all classes of anaphoric relations. We concluded that the complete
independence among the features as modeled by naive Bayes has made it difficult for the model
to identify the cases where there is no relation between the anaphor and a candidate, and
this has contributed to its low precision for positive cases. The decision-tree system achieved
performance similar to that of our probabilistic system on coreference cases but lower recall and
precision on associative cases. We could, moreover, observe that a considerable number of cases
which were incorrectly resolved by the decision-tree system were not only incorrect in terms of
not choosing the correct closest antecedent but it selected antecedents that were unrelated (not
part of the same coreferent chain) to the correct antecedent. Our probabilistic system, on the
other hand, could identify several antecedents that, despite not being the closest to the anaphor,
were coreferent to it. This happens mainly because our probabilistic system is able to rank all
candidates and choose the one with the highest probability, while when using a decision-tree
approach we select the first antecedent accepted by the tree.

Since our model offers a confidence measure of its decisions, that is, the resulting probability
assigned to each relation, we decided to experiment with active learning in order to investigate
whether it could help us improve the performance of the system by selecting a reduced number
of significant samples to be added to the training data. We have adopted three variations of an
entropy-based measure to identify anaphors about which the model was uncertain, in order for
these to be selected for manual annotation and added to the training data. Unfortunately our
measures were not able to capture the uncertainty of the model and did not select samples that
caused an improvement in the performance of the model higher than that caused by the addition
of randomly selected samples. We believe this is related to the number of cases involved in the
calculation of the entropy measure, since we take into account the probabilities assigned to each
antecedent candidate available to the anaphor.

We believe that our work has made a significant contribution to the field of anaphora resolu-
tion in biomedical texts. The anaphora relations that we identified (and the corpus we created
with them) can be used by the community as a basis for investigation of relations of interest.
Our strategy for semantic typing of the NPs of interest can be reused to type other corpora
in this domain. Our probabilistic model has proved able to cope with the task of coreferent
and associative anaphora resolution despite the small amount of training data. And finally, we
have opened the question of active learning for anaphora resolution and the problems one may
encounter in its attempt.

The next section suggests some directions of future work that could follow from the work
done in this thesis.

9.1 Future work

Here we outline a few extensions of the work we have done in this thesis, which could be pursued
in the future.
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Our biotype tagging strategy can be refined to include biomedical events besides entities.
The other-bio biotype could be refined by using, for example, the Gene Ontology to distinguish
NPs that refer to molecular function or biological processes. This would make possible anaphora
resolution between events and also between entities and events.

Since the inter-annotator agreement for associative relations in our corpus was not ideal,
it would be necessary to refine our guidelines so that better agreement can be reached. We
could clarify a few issues and enforce a particular attitude towards them (e.g. not to annotate
associative relations when anaphor and antecedent are explicitly related by a syntactic relation).
For the sake of consistency in the annotation, it would be important to define a single way to
proceed in face of unusual cases, for example, pointing to a specific action to be taken when
“mixed” relations are found (when the anaphor could have different associative relations with
more than one antecedent).

We believe the types of anaphoric relations we identified could also be refined. For example,
set-member relations could be split among different types of relations, since they cover variations
of the set-membership behaviour. For example, the relation between a set and a single member
could be distinguished from the opposite, member to set, relation. It would be interesting to
investigate if such distinctions can reveal specific problems of the resolution of set-member cases.

We think the homolog relations are both biologically and linguistically interesting and deserve
further attention. We believe the information contained in this relation is relevant to information
extraction efforts, since the properties of an entity are usually shared by homolog entities.
Linguistically, as shown by Example 39 in Chapter 5, homolog relations can be very subtle
and it is possible that deeper discourse-related features are necessary to distinguish them from
coreferent relations.

Our feature set should be expanded in order to try to better represent the characteristics of
associative relations. A feature study would be required to identify which features to include. We
believe features related to the coreference chain of the anaphor can contribute to the resolution
of the associative cases. Yang et al. [2004], for example, consider the words present in the entire
coreference chain of a candidate when matching it against an anaphor; the authors use this to
resolve coreferent cases but we believe it can have an influence in the resolution of associative
cases as well once coreference is known. However, the inclusion of additional features would
require more training data to be annotated to compensate for the increase in the sparseness of
the data.

We would like to validate the anaphoric relations we have found in our corpus and our whole
resolution framework on articles in other subdomains of biology, besides the fruit fly genomics.

Uses of active learning in anaphora resolution definitely deserve further attention. Since
annotating anaphora is a costly task, reducing the amount of annotated data needed to train a
model is particularly important. It is necessary to investigate how to represent the uncertainty
of a model when it faces several decisions in order to make a final one, as in the case of anaphora
resolution, since the process has to choose from several candidates which will be the antecedent.

It would be interesting to make a comprehensive study of the dimension of the contribution
of anaphora resolution to information extraction applications in the biomedical domain. In
Chapter 6 we have shown how our baseline system contributes to a tool for facilitating the
curation of biomedical articles. It is important to investigate how much anaphora resolution can
affect other applications, for example, the extraction of relations between entities (and events)
in the text.



Appendix A

Coreference and anaphora annotation guidelines

The annotation process consist of establishing links between mentions of biomedical entities
(which have been previously marked). We divided this task in two phases. In the first phase,
the annotator will link mentions that refer to a same entity (coreferent), while in the second
phase, the annotator will link mentions who are related to each other, but which do not refer to
the same entity (associative). The next sections explain both phases.

A.1 First phase: Linking coreferent mentions

Different mentions that refer to a same entity are called coreferent mentions. For each mention
in the text, the annotator will have to check if there is another mention previously in the text
(called antecedent) that refer to the same entity as the current mention. Always look for the
closest previous mention. Coreferent mentions should have the same biotype.

When a coreferent antecedent for the current mention is found, both mention and antecedent
should be added together to a set in order to keep track of the whole coreference chain. In the
following examples of coreferent relations each mention is represented with an ‘id’ attribute that
is used to identify the mention. The ‘set’ attribute refers to a set of coreferent mentions.

(29) ‘‘...the expression of <m id="1" biotype="gene" set="set 1">X-linked genes</m> is
equal in males and females...the hypertranscription of <m id="2" biotype="gene"

set="set 1">the X-chromosomal genes</m> in males...’’

(30) ‘‘...is composed of <m id="10" biotype="product" set="set 2">five proteins</m> encoded
by the male-specific lethal genes... <m id="15" biotype="product" set="set 2">The MSL
proteins</m> colocalize to hundreds of sites...’’

A.1.1 Special cases

A.1.1.1 Apposition

When you find appositive mentions like:
‘‘the remaining protein, MSL3,’’

the annotator should link the appositive mention to the main one as coreferent, as in example
31:

(31) ‘‘<m id="30" biotype="product" set="set 10">the remaining protein</m>, <m id="31" biotype="product"

set="set 10">MSL3</m>’’

A.1.1.2 Predicates

Predicative mentions, as in example 32, should also be annotated as coreferent.
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(32) ‘‘<m id="40" biotype="gene" set="set 11">ced-4</m> is <m id="41" biotype="gene" set="set 11">an
pro-apoptotic gene</m>’’

A.2 Second phase: Linking associative anaphoric mentions

Associative anaphoric relations between mentions rely on factual relations between the biomed-
ical entities referred to by them. These factual relations are assumed by the writer of the paper
to be known by the reader, they represent the actual relations between the biomedical entities,
independent of the text, for example, the fact that a gene encodes a protein, or that a gene is
composed by DNA sequences. The annotator should consider as associative cases the instances
where these factual relations imply a dependency between the mention and its antecedent, that
is, the meaning of the mention would not be fully understood (or the mention would seem to be
out of place) if it was not for its relation with the antecedent.

Given that the associative relations are more subtle than the coreference relation (annotated
in the previous phase), the span of associative anaphoric links is usually shorter, that is, asso-
ciative antecedents are usually close to the anaphor, while coreferent antecedents can be further
away. The annotator should look for associative antecedents mainly within the same section of
the paper as the anaphoric mention, it is unlikely that they will be far from the current mention.

Also, once the entity referred to by the current mention has already been mentioned recently
in the text (in which case a coreferent relation should have been marked in the previous phase),
it is very unlikely that this mention would have an associative relation with a previous mention.
This means that an entity that is salient in the readers mind (because of its recent mention)
does not need indirect (associative) relations to be referred to.

In summary, the annotator should make his decision about the existence of an associative link
to a previous mention by weighting his/her perception of the dependency between the mentions,
their distance from each other and the salience of the entity the mention refers to in the text.

We are interested in three types of associative relations:

• biotype associative: when the related mentions have different biotypes (e.g. a gene and its
protein)

• homolog associative: when the related mentions are homolog and have the same biotype
(e.g. a gene and its homolog from another organism)

• set-member associative: when one of the related mentions refers to a set that contains the
referent of the other mention (e.g. a gene and its family)

For each mention in the text, the annotator will have to check if there is another mention
previously in the text which holds an associative relations with the current mention and, if so,
the relation should be classified according to the above classes. Always look for the closest
previous mention.

Below we show examples of all types of associative relations. In the examples, a mention that
holds an associative relation with its antecedent gets a pointer link to the related mention; the
‘ante’ attribute represents this pointer, it refers to the identifier of the closest associative-related
mention. The ‘rel’ attribute identifies the type of associative relation.

If the annotator feels that there is an associative relation between the current mention and
an antecedent but such relation does not fit any of the above classes, the relation should not be
marked.
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A.2.1 Biotype relation

We call biotype relation an associative anaphoric relation between two mentions that refer to
different entities with different biotypes, as in examples 33 and 34. In such cases, the associative
relation should be marked as ’biotype’.

(33) ‘‘There was considerable excitement in the field when potential
mammalian and Drosophila homologs for <m id="20" biotype="gene">ced-3</m> were
discovered.<m id="25" biotype="product" ante="20" rel="biotype">The CED-3 protein</m> is one
of...’’

(34) ‘‘...the role of <m id="30" biotype="gene">the roX genes</m> in this process...
interact with <m id="35" biotype="partof" ante="30" rel="biotype">the roX RNAs</m>’’

In example 33, the gene “ced-3” is introduced in the text, and in the next sentence the
writer starts talking about the “CED-3” protein, assuming that the reader knows the relation
between the gene and the protein. In example 34, a similar situation occurs; a mention to the
“roX RNAS” would seem out of place in this context if the “roX genes” had not been mentioned
before.

Antecedents for a biotype relation are usually close to the current mention, in the same
paragraph or same section of the paper. Biotype relations can occur between mentions of the
following biotypes:

Gene Subtype Variant Supertype Part-of Part-of-product Product Otherbio

Gene X X X X X X X

Subtype X X X X X X X

Variant X X X X X X X

Supertype X X X

Part-of X X X

Part-of-product X X X X1

Product X X X X1 X1

Otherbio X X X X1

This table basically shows that one element in a biotype relation is always a gene mention
(gene, subtype and variant biotypes), with the exception of the cases where the relation is
between a product mention and a part-or-product or otherbio mention.

However, there are some misleading cases which we do not consider as a biotype relation;
these are cases where mentions to related entities are close to each other in the text but there is
no implicit dependency between them and the latest mention can be understood independently.
For instance, in example 35, the relation between “pro-domains” and “caspases” is explicit in
the text, so we do not consider the relation between these mentions as associative anaphora and
it should not be marked. Example 37 also presents a case where mentions should not be linked,
the preposition ‘of’ makes the relation explicit; associative anaphora in general does not happen
between mentions in the same clause.

(35) ‘‘<m id="40" biotype="product">Initiator caspases</m> usually have <m id="41"

biotype="partof product">long pro-domains</m>’’

1These are the only biotype relations that do not involve gene mentions; they involve gene products as a central
role instead.
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(36) ‘‘<m id="50" biotype="partof"> The 38-bp consensus TIR</m> of <m id="51"

biotype="subtype">Transib transposons</m> consists of...’’

The passage below (example 37) also shows a case which should not be considered as a
biotype relation.

(37) ‘‘The expression of <m id="60" biotype="gene" set="set 5">reaper</m> has been shown
to be regulated by distinct stimuli, including X-irradiation,
steroid hormone signaling and a block in cell differentiation.
Recently, a Drosophila p53 ortholog was identified by searching the
genome database, and it was shown to bind to <m id="61" biotype="partof" ante="60"

rel="biotype">the reaper promoter</m>...The observation that transcription of
<m id="62" biotype="gene" set="set 5">reaper</m> can be induced by...’’

In this example, the relation between mentions 61 and 60 is a genuine biotype relation; but
on the other hand there is no biotype relation between mentions 62 and 61. That is because
“reaper” (mention 62) has recently been mentioned in the text (there is a coreference relation
between mentions 60 and 62) so there is no need for the reader to imply the existence of “reaper”
(62) (or to recall its role in the text) from its relation with “reaper promoter” (61), since it is
already being talked about directly in adjacent text.

A.2.2 Homolog relation

Another type of associative relation that we are interested in is the homolog relation (e.g.
between homolog genes or homolog proteins). In this case, the related entities have the same
biotype but are homologs. Two genes or gene products are homologs when they share a common
ancestor, occurring within one species or in different organisms. However, entities of all biotypes
(except ‘otherbio’) can take part in homolog relations, since authors can refer to, for instance,
homolog sequences (that can be part of a gene, or part of a protein sequence). See example 38,
where the associative relation is marked as ’homolog’.

(38) ‘‘... <m id="70" biotype="gene">mammalian Bok</m>... <m id="75" biotype="gene" ante="40"

rel="homolog">the Drosophila Bok homolog</m>...’’

In this example, the Drosophila homolog is only introduced as such (i.e. as homolog instead
of simply as a gene) because the text had been talking about the mammalian gene. That is,
referring to “the Drosophila Bok homolog” would seem out of place if there was no previous men-
tion to the gene it is homologous to. Homologous mentions should only be linked as ‘homolog’
associative anaphora when it is the homology relation that make both mentions related.

Usually at least one of the mentions which take part in homolog relation contain the word
“homolog” or some species name (e.g. Drosophila, mammalian, mouse, insect).

As for the biotype relations, homolog relations usually occur between mentions that are close
to each other, within the same paragraph or same section of the paper.

The annotator should not consider as ‘homolog’ associative relations the cases where two
entities, even if known to be homologous, are referred to independently of their homology. For
instance, see the example below:

(39) ‘‘<m id="80" biotype="product" set="set 4">CED-4</m> translocates to the nuclear membrane
where it activates CED-3, resulting in programmed cell death. Only <m

id="81" biotype="product" set="set 5" ante="80" rel="homolog">one mammalian CED-4 homolog</m>, <m

id="82" biotype="product" set="set 5">Apaf-1</m>, has been extensively characterized
to date. Like <m id="83" biotype="product" set="set 4">CED-4</m>, <m id="84" biotype="product"

set="set 5">Apaf-1</m> requires dATP for caspase activation.’’
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The relation between mentions 81 and 80 is a genuine homolog relation, and mention 82 is
coreferent to 80. But, despite we knowing that “CED-4” and “Apaf-1” are homologs, there is
no homolog relation between mentions 84 and 83.

A.2.3 Set-member relation

The third type of associative relation is the set-member relation, which happens when an entity
is related to a set of entities that it is part of or vice-versa. The single entity and the entities in
the set have the same biotype. It happens mostly in the presence of coordinated NPs (Subsection
A.2.3), plural NPs (Subsection A.2.3), and NPs referring to families of bio-entities (Subsection
A.2.3). Set-member relations also have a short range, with the majority of antecedents happening
within the same section of the paper, but in some cases the links can cross sections boundaries.

Coordination

It is common to find in the text some mentions like:
“the genes reaper, hid, and grim”

Mentions like the one above, which contains coordination, can have multiple antecedents.
When this is the case, the relation between the mentions should be marked as ‘set-member’.
The same is valid for the case when a simple mention refers to one like the one above. For
example, for the following portion of text:

(40) ‘‘... <m id="30" biotype="gene">reaper</m>, <m id="31" biotype="gene">hid</m>, and
<m id="32" biotype="gene">grim</m> are regulators of apoptosis...
<m id="35" biotype="gene" ante="30,31,32" rel="set-member">the genes reaper, hid, and
grim</m>...’’

List

When a set of entities is mentioned and its mention is followed by a list of its members, as in
an apposition construction, the members should be linked to the set by a ‘set-member’ relation.
Members can be listed between commas, as in Example 41 or in brackets, as in Example 42.

(41) ‘‘... <m id="40" biotype="product">two proteins</m> encoded by the
recombination-activating genes, <m id="41" biotype="product" ante="40"

rel="set-member">approximately 1040-aa RAG1</m> and <m id="42" biotype="product" ante="40"

rel="set-member">approximately 530-aa RAG2</m>,...’’

(42) ‘‘... <m id="50" biotype="product">surface receptors</m> of vertebrate B and T immune
cells ( <m id="51" biotype="product" ante="50" rel="set-member">BCRs</m> and <m id="52" biotype="product"

ante="50" rel="set-member">TCRs</m>).’’

Plural

Plural mentions will be treated the same way as coordinated mentions, as they can also have
multiple antecedents or be the antecedent of multiple mentions. The relation is associative and
should be marked as ‘set-member’. See example 43.

(43) ‘‘... <m id="60" biotype="gene">ced-4</m> and <m id="61" biotype="gene">ced-9</m>...
<m id="65" biotype="gene" ante="60,61" rel="set-member">the genes</m>...’’

Family

An entity mention can be related to a mention of its family, and this is also a case of set-member
associative relation. See example 44 and 45.
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(44) ‘‘... <m id="70" biotype="product">the mammalian anti-apoptotic protein
Bcl-2</m>... <m id="75" biotype="product" ante="70" rel="set-member">Bcl-2 family</m>...’’

(45) ‘‘... <m id="80" biotype="product">the MSLs</m>...
<m id="85" biotype="product" ante="80" rel="set-member">MSL-1</m>...’’

Subset

We also consider as ‘set-member’ relation the relation between a set and a subset of it, as in the
example below.

(46) ‘‘<m id="90" biotype="otherbio">D-mib mutant discs</m> have no wing pouch...The
complete loss of D-mib activity in <m id="92" biotype="otherbio" ante="90"

rel="set-member">D-mib1 mutant discs</m>...’’

Other

This is a special case of set-member relations, which include mentions that contain the word
‘other’ (or similar words, like ‘remaining’), as in Example 47.

(47) ‘‘...distribution in females ectopically expressing <m id="5"

biotype="product">MSL2</m> but lacking <m id="6" biotype="product" ante="5" rel="set-member">other
MSL proteins</m>.’’

In these cases, the ‘other’ mentions should be linked to its complement, that it, its antecedent
is the mention referring to the item excluded from the set.

However, as said before, if there is no implicit dependency between the mentions for the
understanding of the later one, there is no anaphoric relation and the mentions should not be
linked. See example 48:

(48) ‘‘<m id="90" biotype="product">CED-9</m> and <m id="91" biotype="product">EGL-1</m> belong to
<m id="92" biotype="product">a large family</m> of <m id="93" biotype="product">proteins</m>

related to...’’

In this example, “a large family” should not me linked to mentions 90 and 91, because the
set-membership is being explicit in the text (by the verb ‘belong’). “proteins” should also not be
linked to “a large family” for the same reason (the preposition ‘of’ makes the relation explicit).

As for biotype relations, set-member relations should not be marked when the given mention
is already coreferent to an antecedent in the same section, as below, where mention 69 should
not be linked to mention 65, because mention 69 is coreferent to mention 60, which is close by.

(49) ‘‘... <m id="60" biotype="gene" set="set 10">ced-4</m> and <m id="61" biotype="gene">ced-9</m>...
<m id="65" biotype="gene" ante="60,61" rel="set-member">the genes</m>... <m id="69" biotype="gene"

set="set 10">ced-4</m>...’’

A.2.4 Mixed relations

There are cases where the type of relation between two mentions is mixed, that is, it could be
seen as more that one of the above types of associative relation. In Example 50, the relation
between mentions 12 and 10 can be seen as biotype (gene-otherbio relation) and set-member.
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(50) ‘‘While <m id="10" biotype="gene">the neur and mib genes</m> are evolutionarily
conserved,...events requiring <m id="12" biotype="otherbio">neur activity</m>.’’

In such cases, the annotator should select the type of relation that he/she feels to be more
prominent.

A.2.5 General remarks

The text to be annotated may contain table or figure captions. Mentions that are part of
captions can have associative links to mentions in the body of the text, but NO mention in the
body of the text should be assigned a link to a mention in a caption.
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