
Technical Report
Number 763

Computer Laboratory

UCAM-CL-TR-763
ISSN 1476-2986

Security for volatile FPGAs

Saar Drimer

November 2009

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Saar Drimer

This technical report is based on a dissertation submitted
August 2009 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Darwin College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Security for volatile FPGAs

Saar Drimer

Summary

With reconfigurable devices fast becoming complete systems in their own right,

interest in their security properties has increased. While research on “FPGA sec-

urity” has been active since the early 2000s, few have treated the field as a whole,

or framed its challenges in the context of the unique FPGA usage model and ap-

plication space. This dissertation sets out to examine the role of FPGAs within a

security system and how solutions to security challenges can be provided. I offer the

following contributions.

I motivate authenticating configurations as an additional capability to FPGA

configuration logic, and then describe a flexible security protocol for remote recon-

figuration of FPGA-based systems over insecure networks. Non-volatile memory

devices are used for persistent storage when required, and complement the lack of

features in some FPGAs with tamper proofing in order to maintain specified secur-

ity properties. A unique advantage of the protocol is that it can be implemented

on some existing FPGAs (i.e., it does not require FPGA vendors to add function-

ality to their devices). Also proposed is a solution to the “IP distribution problem”

where designs from multiple sources are integrated into a single bitstream, yet must

maintain their confidentiality.

I discuss the difficulty of reproducing and comparing FPGA implementation re-

sults reported in the academic literature. Concentrating on cryptographic implemen-

tations, problems are demonstrated through designing three architecture-optimized

variants of the AES block cipher and analyzing the results to show that single fig-

ures of merit, namely “throughput” or “throughput per slice”, are often meaningless

without the context of an application. To set a precedent for reproducibility in our

field, the HDL source code, simulation testbenches and compilation instructions are

made publicly available for scrutiny and reuse.

Finally, I examine payment systems as ubiquitous embedded devices, and evalu-

ate their security vulnerabilities as they interact in a multi-chip environment. Using

FPGAs as an adversarial tool, a man-in-the-middle attack against these devices is

demonstrated. An FPGA-based defense is also demonstrated: the first secure wired

“distance bounding” protocol implementation. This is then put in the context of

securing reconfigurable systems.

Acknowledgments

I dedicate this dissertation to my parents, Mika and Gideon, for their unconditional

love and support throughout my life, and to my kind siblings Hadar and Oz, and

their families. They have all seen less of me than they deserved in the past twelve

years as I was pursuing my goals.

Markus Kuhn, my supervisor, has been an influential part of my academic de-

velopment, and I thank him for his guidance, especially on how to produce solid

research. I thank Ross Anderson for valuable lessons on security in the real world

through our collaborations and conversations. I enjoyed collaborating with Steven

Murdoch on our banking security projects, and I also thank current and past mem-

bers of the Security Group – in particular, Mike Bond, Richard Clayton, Robert

Watson, Gerhard Hancke, Shishir Nagaraja, Frank Stajano, Dan Cvrcek, and Tyler

Moore – for listening, teaching, and reading my drafts, but also for our stimulating

conversations about security, life, and everything else. I’m also grateful for com-

ments from my examiners, Ingrid Verbauwhede and Simon Moore.

I’m fortunate to have been the recipient of a generous research grant from Xilinx.

On that interview day as a new college grad I was privileged to have met my mentor

and friend Austin Lesea; I thank him for being exactly the person he is. At Xilinx,

Steve Trimberger, Jason Moore, Jesse Jenkins and Neil Jacobson were always there

to provide technical assistance, but much more importantly, they shared their life ex-

periences with me. Christof Paar and Tim Güneysu hosted me at Ruhr-Universität

Bochum for three months. I thank them and the rest of the CoSY group for a

productive time and for their hospitality. Additional financial support was kindly

provided by the Computer Laboratory and Darwin College.

Sabine, my first Cambridge friend, kept me sane at the onset by our frequent

bike excursions around Cambridge. My friendship with Shlomy meant a lot to me,

as I could always rely on him for help and good company. Other friends gave me

“a life” outside the “lab”: Dan T, Alban, Margaret, Matt, Davide, Philip, Bogdan,

Niki, Andreas, and Satnam. To my friends from the rest of the world – Amir, Ron,

Udi, Assaf, Nir D, Nir S, Phil, Kristin, Max – you are not forgotten, even though

I’ve been distant. In particular, Sina and Dirk always believed in me more than I

believed in myself; I thank them for their consistent encouragement. A fortuitous

conference seating arrangement introduced me to Owen, who simply wants a lot of

“freedom”; I thank him for keeping the dream alive during the dark times.

Lastly, the love and encouragement from Caroline got me through all of this;

thank you, my dear.

Saar Drimer, Cambridge, UK, August 2009

Contents

1 Introduction 11
1.1 Motivation and contribution . 12
1.2 Reading this dissertation . 14

2 FPGA security foundations 17
2.1 FPGA usage model . 18

2.1.1 Principals . 18
2.1.2 Design and manufacturing flow 22
2.1.3 Defense categories . 24
2.1.4 Trust and trustworthiness . 25
2.1.5 Distribution security . 26

2.2 Usage model attacks . 27
2.2.1 Bitstream reverse engineering 29
2.2.2 Counterfeits . 31
2.2.3 Readback . 33
2.2.4 Side-channels . 34
2.2.5 Invasive and semi-invasive attacks 40
2.2.6 Others . 42

2.3 Defenses . 44
2.3.1 Configuration confidentiality 44
2.3.2 Configuration authenticity . 46
2.3.3 Design theft deterrents . 49
2.3.4 Watermarking and fingerprinting 51
2.3.5 Physical unclonable functions 53
2.3.6 Evolvable hardware . 56
2.3.7 Isolation . 57

2.4 Conclusion . 58

3 Secure remote reconfiguration 59
3.1 Update logic . 60

3.1.1 Assumptions . 61
3.1.2 Protocol . 62
3.1.3 Recovery from errors . 66

3.2 Update server routines . 66
3.2.1 Offline operation . 69

3.3 Authenticity and confidentiality . 70
3.4 Multiple NVM slots . 71

3.5 Analysis . 74
3.6 Implementation considerations . 76

3.6.1 Parameter sizes . 76
3.7 Related work . 77
3.8 Conclusions . 78

4 AES in spare logic 81
4.1 Introduction . 81
4.2 Prior work . 82
4.3 Implementation . 84

4.3.1 AES32 module . 84
4.3.2 AES128 and AES128U modules 88
4.3.3 Decryption . 90
4.3.4 Key expansion . 91

4.4 Results . 91
4.5 Extensions . 94

4.5.1 Message authentication: CMAC 94
4.5.2 CTR and CCM modes . 96
4.5.3 Replacing DSPs with CLBs 97

4.6 Conclusions . 98

5 The meaning and reproducibility of FPGA results 99
5.1 Demonstration experiments . 100

5.1.1 Application context . 100
5.2 Discussion . 105

5.2.1 Source code . 105
5.2.2 Optimization goals . 108
5.2.3 Throughput per slice/area . 109
5.2.4 Other hazards . 110

5.3 Possible objections . 111
5.4 Related work . 112
5.5 Conclusions . 112

6 Distance bounding for wired applications 115
6.1 Background . 115
6.2 Relay attack . 116

6.2.1 Implementation . 117
6.2.2 Procedure and timing . 119
6.2.3 Results . 120
6.2.4 Further applications and feasibility 121

6.3 Defenses . 122
6.3.1 Non-solutions . 122
6.3.2 Procedural improvements . 124
6.3.3 Hardware alterations . 125

6.4 Distance bounding . 125
6.4.1 Protocol . 126
6.4.2 Implementation . 128
6.4.3 Circuit elements and signals 128

6.4.4 Possible attacks on distance bounding 132
6.4.5 Results . 133
6.4.6 Costs . 135

6.5 Distance bounding in FPGA applications 136

7 Review and outlook 137

Bibliography 140

A Protecting multiple designs in a single configuration 157
A.1 Single core protection . 157
A.2 Protecting multiple cores . 158

A.2.1 Outline . 158
A.3 Detailed Discussion . 160

A.3.1 General assumptions . 160
A.3.2 Software support . 161
A.3.3 Loss of optimization and flexibility 161
A.3.4 Key management . 162
A.3.5 Communication bandwidth . 162
A.3.6 Trust . 163
A.3.7 Advantages . 164

B AES implementation background 165
B.1 Decryption . 167
B.2 Key expansion . 168

C Glossary 169

Published work

Of note are papers I have published in two of the top information security con-

ferences: “Keep your enemies close: distance bounding against smartcard relay

attacks” was published at USENIX Security Symposium 2007 and was the recipi-

ent of the “Best Student Paper” award; and, “Thinking inside the box: system-level

failures of tamper proofing” was published at IEEE Symposium on Security and Pri-

vacy (“Oakland”) 2008 and received the “Outstanding Paper Award” from IEEE

Security and Privacy Magazine. A poster based on the former has been chosen for

third place in a departmental competition, and participated in a regional poster

competition.

Listed below are my academic contributions while a research student:

Journal articles

S. Drimer, T. Güneysu, and C. Paar. DSPs, BRAMs and a pinch of logic: extended

recipes for AES on FPGAs (to appear). ACM Transactions on Reconfigurable Tech-

nology and Systems (TRETS), 3(1), March 2010.

S. Drimer, S. J. Murdoch, and R. Anderson. Failures of tamper proofing in PIN entry

devices. IEEE Security & Privacy Magazine, November/December Issue, 2009.

Book chapter

G. P. Hancke and S. Drimer. Secure proximity identification for RFID, chapter 9,

pages 171–194. Security in RFID and Sensor Networks. Auerbach Publications,

Boca Raton, Florida, USA, 2009.

Conference papers

S. Drimer and M. G. Kuhn. A protocol for secure remote updates of FPGA con-

figurations. In Reconfigurable Computing: Architectures, Tools, and Applications

(ARC), volume 5453 of LNCS, pages 50–61. Springer, March 2009.

S. Drimer, S. J. Murdoch, and R. Anderson. Optimised to fail: card readers for

online banking. In Financial Cryptography and Data Security, February 2009.

S. Drimer, S. J. Murdoch, and R. Anderson. Thinking inside the box: system-

level failures of tamper proofing. IEEE Symposium on Security and Privacy, pages

281–295, IEEE, May 2008.

S. Drimer, T. Güneysu, and C. Paar. DSPs, BRAMs and a pinch of logic: new

recipes for AES on FPGAs. In IEEE Symposium on Field-Programmable Custom

Computing Machines. IEEE, April 2008.

8

S. Drimer and S. J. Murdoch. Keep your enemies close: distance bounding against

smartcard relay attacks. In USENIX Security Symposium, pages 87–102, USENIX

August 2007.

S. Drimer. Authentication of FPGA bitstreams: why and how. In Reconfigurable

Computing: Architectures, Tools, and Applications (ARC), volume 4419 of LNCS,

pages 73–84. Springer, March 2007.

Online and technical reports

S. Drimer, T. Güneysu, M. G. Kuhn, and C. Paar. Protecting multiple cores in a

single FPGA design, May 2008.

http://www.cl.cam.ac.uk/~sd410/papers/protect_many_cores.pdf.

S. Drimer. Volatile FPGA design security – a survey (v0.96), April 2008.

http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf.

S. Drimer, S. J. Murdoch, and R. Anderson. Thinking inside the box: system-level

failures of tamper proofing. Technical Report UCAM-CL-TR-711, University of

Cambridge, Computer Laboratory, February 2008.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-711.pdf.

9

http://www.cl.cam.ac.uk/~sd410/papers/protect_many_cores.pdf
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-711.pdf

Work done in collaboration

Chapter 3 on secure remote updates is based on a paper co-authored with Markus

Kuhn who significantly contributed to the presentation and robustness of the pro-

tocols, especially in the support of multiple update policies.

In Chapter 4 on AES implementations, Tim Güneysu proposed the structure for

fitting AES into specific embedded functions of the Virtex-5 architecture and was

instrumental in discussing the design choices. Tim generated the T-table content

of the BRAMs and implemented the key schedule and counter mode of operation,

described in Sections 4.3.4 and 4.5.2, respectively. Otherwise, the implementations

are entirely my own.

Discussions with Markus Kuhn on reproducible research motivated the related

ideas presented in Chapter 5.

Chapter 6 on relay attacks and distance bounding is based on a paper co-authored

with Steven J. Murdoch, who developed the PC software tools that interface with my

custom hardware. Both Steven and Markus Kuhn have contributed to the design

choices required for adapting the Hancke-Kuhn distance bounding protocol to a

wired implementation, though the implementation is entirely my own.

10

Chapter 1

Introduction

A “gate array” is an integrated circuit (IC) consisting of a transistor grid fabri-

cated on a silicon wafer. Different arrangement of interconnect metal layers can be

added in order to define the function of the circuit, allowing the same mass produced

wafers to be used for performing different logic functions. Thus, gate arrays are one-

time programmable with limited integration, but are cheaper to manufacture than

custom-made application specific integrated circuits (ASIC). “Field programmabil-

ity” is the property that allows the functionality of a device to be modified in the

field, outside of the factory. Adding this property to gate arrays gives us field pro-

grammable gate arrays (FPGA), generic semiconductor devices that are made of

an interconnected array of functional blocks that can be programmed, and repro-

grammed, to perform virtually any user-described logic functions within the limits

of the resources it contains.

Gate array programmable logic devices (PLD) from the late 1970s (e.g., PLAs,

PALs, GALs) preceded what we know today as FPGAs, although when FPGAs

became available in the mid 1980s they were the first SRAM-based PLDs, highly

integrated, and volatile. Until the late 1990s, they were used mainly as interface

“glue logic”, while the largest FPGAs were, and still are, used for ASIC prototyping

and verification. Additionally, FPGAs could not have competed with ASICs on

price for the performance they provided, so their application space was limited and

they usually were not the main processor of a product.

In the past decade this has changed. Since the late 1990s, with the introduction of

what FPGA manufacturers call “platform FPGAs” and “systems on a programmable

chip”, FPGAs have increasingly included functions that previously required other

discrete ICs. 2009’s FPGAs have embedded processors, gigabit serial transceivers,

analog-to-digital converters, digital signal processing blocks, Ethernet controllers,

substantial memory capacity, and other functional blocks, such as clock managers

and multipliers, for performing a range of commonly required functions. In recent

FPGA generations we also see application-specific subfamilies that offer different

11

arrangements and concentration of functional blocks for particular sets of applica-

tions, such as DSP, military, automotive, or communication. This means that the

application space of FPGAs has widened as they became more capable, and that

designing with FPGAs now requires specialization, as they are no longer just an

array of simple logic blocks.

In terms of performance and power consumption, FPGAs are usually inferior

to ASICs1, but compete by being readily available, reprogrammable, and manufac-

tured using the latest technologies. They provide an appealing alternative where

the resources (cost, know how, time) required for ASIC development are not avail-

able. Against application-specific standard products (ASSP) – devices that perform

a fixed set of functions – FPGAs compete by being reprogrammable and by being

able to perform a variety of digital functions, not only those that are preset. The

ability to parallelize operations and execute customizable functions also makes their

performance competitive compared to sequential microprocessors.

In terms of security, the growth of FPGA capability and application space has

two main implications. Firstly, FPGA designs represent a significant investment that

requires protection; and secondly, FPGAs are increasingly being used in applications

that require FPGA security properties that are either unavailable today, or that

have yet to be adequately investigated. Thus, we may see increased attention to the

security attributes of FPGAs as more of them are used in the military, automotive

and consumer industries, each having their own security requirements.

In the academic community, “FPGA security” research has been steadily increas-

ing since the late 1990s, though the intersection of two significantly different fields

– engineering and security – has been problematic. This may be because security is

not a traditional engineering “problem” in that it does not have specifications that

can be shown to have been met. That is, a system is not proven to be more “secure”

simply because it has been implemented and shown to “work”. What we sometimes

see are published security schemes that appear to work, but exhibit subtle security

flaws, and ones that have sound security proposals but are impractical to implement

or incomplete (see for example Sections 2.3.1 and 2.3.5.2).

1.1 Motivation and contribution

This dissertation sets out to examine the role of FPGAs within a security system and

consider how solutions to security challenges, unique to the FPGA usage model, can

be provided. The term “FPGA security” includes the secure operation of designs

1In 2006, Kuon and Rose [116] estimated that on average FPGAs are roughly forty times larger,
three times slower, and consume twelve times more dynamic power compared to ASICs, though
FPGA vendors have recently been focusing on designing low power-consuming FPGAs, so the
margins may have narrowed.

12

running within the FPGA; the secure delivery of configuration content to FPGAs;

the use of FPGAs for enhancing the security of systems; and, the use of FPGAs

as an adversarial tool. The contributions in this dissertation fall within these cate-

gories. Additionally, security analysis without context of where and how the target

of evaluation is used can lead to insecure systems. Thus, another important theme

of this dissertation is to provide context for the security analysis of reconfigurable

systems.

Chapter 2 is based on “Volatile FPGA design security – a survey” [51], which I

have written over the course of my time as a research student2. It seems to have be-

come a reference for those entering the field and has also motivated new research by

others (Badrignans et al. [20], for example). Also in Chapter 2, I include a summary

of “Authentication of FPGA bitstreams: why and how” [50], which evaluates the

merits of bitstream authentication – an essential building block for secure systems.

Chapter 3 is based on “A protocol for secure remote updates of FPGA configura-

tions” [54], which describes the first practical and secure remote-update protocol of

FPGA configurations that can work with existing FPGAs. Chapter 4 is based on

“DSPs, BRAMs and a pinch of logic: new recipes for AES on FPGAs” [56, 60], and

describes new ways to implement the AES block cipher on Virtex-5 FPGAs. These

can be used for encryption, decryption and message authentication code generation,

integral parts of security systems.

One of the AES variants presented in Chapter 4 is the fastest FPGA AES imple-

mentation reported in the academic literature. In that context, I argue in Chapter 5

that the performance of FPGA designs can vary significantly under different imple-

mentation conditions, and discuss the importance of having the ability to reproduce

implementation results, so that better comparisons to prior work can be made. This

discussion is especially pertinent in the context of competitions for cryptographic

primitives such as for the AES and the SHA-3, where comparison issues can have

an impact on the choice of candidates.

Chapter 6 is based on “Keep your enemies close: distance bounding against

smartcard relay attacks” [55], and describes the first secure distance bounding im-

plementation. The flexibility of FPGAs was crucial here, as programmable delays

and hand placement of circuit elements enabled the use of routing with specific de-

lays. Chapter 6 also demonstrates how FPGAs can be used as an adversarial tool

in a successful man-in-the-middle attack on a smartcard-based payment system. It

also discusses how man-in-the-middle attacks can violate assumptions made in the

design of reconfigurable systems.

I also include in Appendix A a discussion of how to protect multiple cores –

2The survey has been available online since October 2007, and was updated several times since. As
a companion to the survey, I also provide a comprehensive “FPGA design security bibliography”
as a resource for the community [52].

13

from mutually distrusting contributors – that are integrated into a single FPGA

design so to enable a “pay-per-use” cores distribution model. The idea is described

qualitatively, exploring its feasibility in the context of trust between principals,

additional configuration logic circuitry, and communication bandwidth.

1.2 Reading this dissertation

For material that can be easily found on an organization’s website using a document

identifier, I reference the organization and indicate the identifier in the citation. A

reference to the NIST AES specification, for example, appears as [139, FIPS197]. A

shorthand notation for document types is also used: UG (user guide), WP (white

paper), DS (data sheet), TN (technical note), AN (application note), and SP (special

publication); for pointers within a document, p (page), ch (chapter), and t (table)

are used. A reference to page 7 of Altera Application Note 357, for example, appears

as [7, AN357, p7].

Some references to online news articles and webpages are given as a URL together

with the title, and there is a chance that some will eventually become invalid. Thus,

the URL references are chosen to not detract from the point that is being made

if missing; if a dead link is found, there is always the possibility of finding the

information by searching the Internet or looking for it on the WayBackMachine

(http://www.archive.org/).

Finally, I sometimes include extra information in text boxes (such as the one the

next page). These are written informally and usually contain insights, unfinished

thoughts, or interesting anecdotes that are related to the material I discuss. The

content of these boxes is not crucial for the understanding or flow of the text, so

they can be safely ignored.

14

http://www.archive.org/

Personal motivation. I became intrigued by the security aspects of FPGAs
during lunch with a few senior engineers as a “new college graduate” working for
Xilinx. One of them asked my boss if we had a true random number generator
for FPGAs; my boss said “no” and I intervened with “possibly”, remembering
some seemingly random behavior of a circuit I was working on. I was able to
create a true random number generator out of this circuit [53], and started to
explore what else is available under the general topic of “FPGA security”. Back
then, 2003-2004, I found Wollinger et al. [185] to be a good survey, but thought
that it did not exactly satisfy what I was looking for: a comprehensive study of
the unique problems of distributing content to FPGAs and how to ensure secure
operation. I was also looking for a readable reference for industry engineers. I
started working on security related projects within Xilinx for the next couple of
years, learning as I went along, eventually embarking on the PhD adventure at
Cambridge in October 2005.
I began writing “Non volatile FPGA design security – a survey” shortly after
I had started the program, and had found that much of the material I was
reading did not fit well with the world view I had of where and how FPGAs
are used; essentially, my industry view clashed with the academic one. I have
since observed that the reason was that many of the contributions were either
made by “security people” working with FPGAs, or “FPGA people” exploring
design security. With my background I wanted to position myself as someone
that can do both reasonably well. One of the goals of my survey was to provide
a framework and common terminology for others to use as the basis of their
research, so that there is background material already set. The goal of this
dissertation is similar, with my own contributions in the areas where I thought
solutions, or other perspectives, are needed.

15

16

Chapter 2

FPGA security foundations

“FPGA security” is an intersection of two rather different fields, and I anticipate

a variety of audiences: experienced security or FPGA professionals, and computer

scientists or engineers with little background in either. Authoring a document that

would keep all of them constantly intrigued is impossible, so I try to balance the

discussion. Where I use cryptographic primitives I will not discuss their finer details

– except for Chapter 4 on AES implementations – and refer the interested reader to

Anderson [10], Menezes et al. [134], and Schneier [150].

For those who are not expert FPGA users, I think that the content of this chapter

is sufficiently detailed in order to appreciate the work described in later ones; for

a recent and comprehensive FPGA architecture survey, I refer the reader to Kuon

et al. [117]. I take this opportunity, however, to both introduce the basic mode of

operation of volatile FPGAs, and the terminology I use throughout the dissertation

to describe FPGA functionality, as shown in Figure 2.1.

Volatile FPGAs lose their functional definition on power loss. In order to re-

define their functionality, a bitstream1 configuration file, usually stored in a local

non-volatile memory (NVM) device, is sent to the FPGA. The bitstream is processed

by the configuration logic – a part of the FPGA that is not programmable – in order

to establish routing to and from instantiated elements by setting the state of memory

cells, pass gates, and routing switches. The user logic is the FPGA’s reconfigurable

part and where the user-defined application operates.

A typical bitstream is made of four parts, in order: command header, config-

uration payload, command footer, and start-up sequence, with optional no-op comm-

ands used for creating delays. While the size of the header and footer is in the order

of hundreds of kilobytes, the configuration payload can range between 1 and 10

megabytes (taking the Xilinx Virtex-5 as an example [186, UG191, t6-1]). Comm-

1The term “bitstream” is common in industry and academic literature, but is unfortunate because
it is also used in many other contexts. Not having a better alternative, I use it here as well,
interchangeably with “configuration”.

17

configuration
payload

headerfooter

start-up sequence
FPGA

user logic

processing

NVM

configuration logic

bit-
stream

application

Figure 2.1: A volatile FPGA requires a configuration file to define its functionality. The
configuration logic processes this file so to set the user logic to perform user defined
functions. A complete bitstream includes a header with configuration instructions followed
by a payload and footer, which includes the start-up sequence to activate the FPGA.

ands are 32 bits wide and control various aspects of the FPGA configuration options.

Header commands, for example, tell the configuration logic which configuration

mode to use (serial, parallel, etc.), whether the payload is encrypted, whether to

disable readback, or when to assert the global signals that prevent contention during

configuration. The footer contains commands to check the integrity of the bitstream

(by comparing the bitstream CRC checksum with a precalculated value), and a series

of instructions for starting up the FPGA with the new configuration.

2.1 FPGA usage model

2.1.1 Principals

“A principal is an entity that participates in a security system. This entity can be

a subject, a person, a role, or a piece of equipment, such as a PC, smartcard, or

card-reader terminal” [10, p12]. FPGAs, FPGA vendors, engineers, configuration

programming controllers, etc. are principals interacting within a security system;

understanding their limitations and interests is important for any security analysis.

The principals that comprise the design and distribution of FPGA-based systems

are introduced below.

FPGA vendor. Three FPGA vendors dominate the volatile FPGA market: Al-

tera, Lattice and Xilinx – each introducing a new family of FPGAs roughly every 12

to 18 months. FPGA vendors have two primary security concerns. Firstly, protect

their own proprietary designs and technology from being reverse engineered, copied,

or modified. And secondly, provide their customers ways to protect their designs

throughout the development flow and in the field. FPGA vendors also have an incen-

tive to facilitate secure integration and distribution of design modules from multiple

sources in order to to stimulate that market, which leads to increased FPGA sales.

The recent availability of volatile FPGAs that target security applications (such as

18

Cyclone III LS and Spartan 3AN) reflects demand, and may indicate that security

has become a competitive factor.

Understanding the mindset of FPGA vendors is important when we suggest

architectural and logistical changes to how FPGAs are used. My own experiences

working for an FPGA vendor suggest that the following considerations play an

important role when new features are evaluated.

• “Transistor count” as a sole criterion for cost evaluation can be misleading be-

cause it does not take into account verification (pre-fab simulation), character-

ization (post-fab testing), and production testing costs. Characterization and

verification require significant amount of engineering hours, even for simple cir-

cuits, while production testing requires “IC testers” that may cost millions of

dollars and are expensive to operate. Each engineer-hour and tester-milli-second

is factored into the cost of adding a circuit to the FPGA (more in box on this

page). The contribution of this circuit must be justified by future returns. Thus,

transistors can be expensive (i.e., not “free”).

• “Unreliable” circuits are unlikely to be added as hard functions. For example, it

is sometimes useful for some security applications to have the ability to perma-

nently disable a device (i.e., “kill switch”), or to have an embedded true random

number generator. However, the former increases support costs, opens the FPGA

to denial of service attacks, and can have an effect on reputation if reliability is

questioned. Similarly, it is notoriously difficult to guarantee reliable operation

of true random number generators under all environmental conditions. So even

if a function is efficient, compact, and useful, it may still not be adopted.

• The price of a single FPGA chip is not a function of the amount of resources that

are being used. Every FPGA type has several family members, each having a

fixed number of resources. System developers can only purchase FPGAs in fixed

sizes, so any unused resource is a loss for them. Therefore, FPGA vendors design

each embedded function such that it provides utility to the largest amount of

users. The view of FPGA vendors, it seems, is that if developers want to use an

FPGA in an “out of the ordinary” way, they will need to pay for it (by using

larger FPGAs or additional peripheral devices).

Testing is expensive. If the tester-time argument still seems unconvincing,
consider what Xilinx does with EasyPatha; they seem to sell FPGAs at a sig-
nificant discount if they only fully test the parts of the FPGA that the designer
uses, and at the application’s maximum frequency, not of the FPGA’s.

ahttp://www.xilinx.com/products/easypath/

19

http://www.xilinx.com/products/easypath/

Foundry. All current FPGA vendors are fabless – they design the FPGAs but

other companies, “foundries”, manufacture them. Foundries are principals on their

own right since they play a crucial role in the security of FPGAs, as it is possible

that designs are modified or stolen while in their possession. If cryptographic keys

or serial numbers embedded in the FPGA by the foundry are compromised, then

that may undermine the application’s security. Until the late 1990s it was still

economically viable to maintain “trusted foundries” in the country where the devices

were designed (mainly the United States). Today, most advanced foundries are in

Asia, where oversight by foreign governments is not likely to be possible. In a

2005 report [177], the U.S. Department of Defense discusses the “alarming” rate at

which “critical” microelectronics facilities are migrating to foreign countries. More

recently, the U.S. DoD has allocated many resources for researching detection of

malicious circuits, or any deviation from the original design [2]. Researchers for the

Australian Department of Defence also indicate that the “curious arrangement” of

sourcing low-level components for critical infrastructure from potential adversary

countries, makes “silicon Trojans” an attractive proposition [9, p3]. More on this in

Section 2.1.4.

System developer. FPGA vendors sell FPGAs, often through distributors, to

system developers who use them in their product. System developers fall into two

groups based on their security needs and views.

• Cost-conscious. The goal of commercial designers is to meet product specifica-

tions at the lowest cost. Most often, there is a performance/cost trade-off and

a tendency to avoid any additional components, delays, maintenance, support

and so on, all of which lead to increased costs. The life-cycle of a commercial

product can be quite short, from months to a few years, so designs may only

need to be protected for that long. An “old” product is not a worth-while target

for attackers, and even if it was, the resulting losses may no longer be significant.

Commercial product designers are often concerned about cheap counterfeits com-

peting with the original product. Therefore, it is sometimes sufficient to make

the process of stealing the design at least as costly as re-inventing it (or slightly

harder to copy than a competing product).

• Security-conscious. Government contractors and security-industry system devel-

opers are concerned with protecting designs, methods of operation, and commu-

nications for long periods – from years to decades – while cost considerations

may be secondary if those imply security compromises. The security-conscious

designer is often interested in robust “approved” security mechanisms, based

on established protocols and algorithms. Some security-conscious designers use

20

older and mature integrated circuits, which are seen as more reliable. Others

take advantage of more recent technologies that are seen as more resistant to

probing (“invasive”) attacks, and with a higher entry threshold for adversaries

because of high equipment costs and required expertise.

FPGA vendors, therefore, have a challenge: in a resource-limited device, they

would (ideally) like to satisfy both cost- and security-conscious designers, who have

significantly different views on security, and what they are willing to spend on it.

EDA software vendor. Electronic design automation (EDA) tools are used for

the development of printed circuit boards, integrated circuits, FPGA designs, and

they are extensively used for simulation, among many other applications. The var-

ious EDA vendors provide the tools that are used by all the principals mentioned

above with FPGA vendors also being EDA tool suppliers themselves. Therefore,

EDA software vendors play a pivotal role in the FPGA design flow and their con-

tribution is critical to the security of both the FPGA and FPGA-based products.

Cores designer. Cores2 are ready-made functional descriptions that allow system

developers to save on design cost and time by purchasing and integrating them into

their own design. A single “external” core can also occupy the entire FPGA to

create a virtual application-specific standard product (VASSP; a term first used for

this purpose by Kean [103]). Cores are sold as hardware description language (HDL)

modules or as compiled netlists. Some are also available freely from FPGA vendors

(who profit from selling the FPGAs) and from Internet sites such as OpenCores3.

Today, there exist free or commercial cores for many commonly required logic and

cryptographic function.

System owner. The system owner (or current holder) possesses the FPGA-based

system, and may be a user who purchased the system at a shop, or a government that

obtained it from a fallen reconnaissance aircraft; both may be considered malicious

(“the enemy”), trying to pry secrets out or circumvent security. While in the hands

of the owner, the system developer has restricted or no control over the system.

The developer may try to restrict the owner from using certain functions aiming to

prevent theft of services, execution of “unauthorized” code, or to price-discriminate.

2I use the following definitions for types of cores. “Hard cores” refer to embedded functions
in the non-reconfigurable part of the FPGA. “Soft cores” are HDL modules, with a distinction
between generic and architecture-specific cores. The former is portable and synthesizable to any
architecture, so not optimized, while the latter uses specific properties of the target architecture
for better performance. Here, “cores” will mean architecture-specific ones; otherwise, I will use
“generic cores”. Finally, “firm cores” refers to cores with properties between “hard” and “soft” and
can mean an encrypted core or one with limited portability; to avoid confusion I will be specific.
3http://www.opencores.org/

21

http://www.opencores.org/

packagingFPGA vendor foundry

software
flow

mask
files

design
files

mask
files

fabrication
process

wafer FPGA

die

pack-
age

FPGA

FPGA vendor

distribution

final testing

Figure 2.2: Simplified FPGA design, manufacturing, packaging, and testing processes.

For example, some set-top box developers profit from providing programming ser-

vices, not from supplying the hardware itself, so have the incentive to invest in

mechanisms that prevent theft of these services. Some mobile phone manufacturers

have mechanisms to prevent users from using a network other than the one they are

“supposed” to be locked into. The security-conscious designer may also want to have

a way to completely erase or destroy portions of the system when it falls into the

“wrong” hands and perhaps employ the ability to “call home” when tampered-with

as a sign of distress (a radio carried by a soldier in the field, for example).

System manufacturer. The system developer does not usually have the ability to

mass produce a product, so designs are sent to a system manufacturer for production

and often also for testing. This principal includes all parties involved in the process

of making the system ready for delivery: printed circuit fabrication, assembly (where

components are soldered onto the board), testing, and packaging.

Trusted party. Some security protocols require a principal that is trusted by all

other principals in order to maintain particular security properties (storing, gener-

ating, processing and transferring of data and keys, for example). It is quite easy to

add a trusted party to a protocol, though establishing a mutually trusted principal

in practice can be challenging. The centralized nature of a trusted party makes it

vulnerable to denial of service attacks, and a lucrative target for attackers. Addition-

ally, practical issues such as location, trusted personnel, physical security, liability,

insurance, governance, auditability, and so on can be problematic and expensive.

2.1.2 Design and manufacturing flow

Figure 2.2 shows a simplified manufacturing process of an FPGA. HDL design files

are processed by software tools that produce a netlist that is laid-out, providing

22

fielded
system

field
reconfiguration

external IP

cores designer

system
development

system developer

system
manufacturing

manufacturing
facility

FPGA

software
flow

bit-
stream

HDL
code

bit-
stream

NVM

FPGA

system owner

network

bit-
stream

NVM

FPGA

HDL or
netlist

Figure 2.3: The development, manufacturing, and distribution of an FPGA-based system.
The system developer must be assisted by several other principals such as manufacturers,
and cores and EDA vendors. At the end of the development cycle the product is in the
system owner’s hands.

synthesis

HDL netlist placelist bitstream
map/fit,

place & route encoding

functional simulation static timing analysis

Figure 2.4: Expanded view of the software flow used to process a functional description in
a high-level language into a bitstream file that is programmed into the FPGA to have it
perform this functionality.

the design’s physical representation as transistors and metal interconnects. From

the layout, “mask sets” are sent to a foundry where they are turned into physical

“wafers”. (This is a simplification; several other principals other than the foundry

may be involved in the process.) The wafers are then tested for good dice and then

sent for assembly where those are cut and embedded in a carrying package. Finally,

these packaged dice are sent back to the FPGA vendor for final testing before they

are shipped to distributors and developers.

Figure 2.3 shows the design and manufacturing processes of an FPGA-based

system. It is not a complete description, but is meant to indicate where the prin-

cipals interact. In the development phase, the system in which the FPGA operates

is developed, and the developer combines internally- and externally-designed cores

23

that describe the FPGA logical function. The software flow, as shown in Figure 2.4,

begins with HDL synthesis that optimizes and translates the functional description

according to the resources available in the target FPGA architecture (e.g., Stratix

look-up table, Spartan multiplier, etc.) into a netlist. Netlists describe instanti-

ated primitives and the connections between them, often in the electronic design

interchange format (EDIF). Several EDA vendors offer synthesis tools, including

the FPGA vendors themselves, though the post-synthesis flow is nearly always per-

formed by proprietary FPGA vendor tools. Netlists are then mapped/fitted to

primitives in the target architecture and then those are placed and routed (PAR) to

a particular target device to produce a placelist4, where the specific placement and

routing of every interconnect and physical placement of all primitives is described.

Placelists are encoded into bitstreams that configure the FPGA to perform the log-

ical function initially described in HDL. As SRAM FPGAs are volatile, they must

receive the bitstream on every power-up from an external source, usually a non-

volatile memory device, EEPROM or Flash, placed nearby on the circuit board.

Designs are simulated at the HDL, netlist, and post-PAR stages, and can also

be verified for correct operation when “executed” on the FPGA itself in its intended

hardware setting5. Static timing analysis takes into account the architecture and

actual delays after the place and route process in order to verify that timing vio-

lations, such as of setup and hold tolerances, do not occur. When the prototyping

process is done, the system is manufactured and tested before being shipped. In the

field, the product is in the hands of the system owner and thus, no longer under the

developer’s control, though he can still perform field reconfiguration if the system is

capable. For example, a firmware upgrade to a digital camera may be done remotely

by the owner by plugging it into an Internet-connected PC, or an upgrade to a car

processor may be done by a service technician at a garage.

2.1.3 Defense categories

The effectiveness of a defense mechanism is evaluated by the cost of circumventing

it and how well it copes with the incentives of attackers. The cost of acquiring skill,

tools, and time required for “breaking” the defense give analysts a metric for the

system’s estimated level of security. I define the following defense categories.

• Social deterrents are laws, peoples’ good social conduct and aversion from being

prosecuted and punished. Designs can be protected by non-disclosure agree-

ments, trademarks, copyrights, trade secrets, patents, contracts, and licensing

agreements, often summed up by the term “intellectual property” (IP)6. How-

4I coin this new term here in order to make sure that the difference between traditional netlists
and placelists is clear.
5With tools such as “SignalTap” by Altera [7, AN323] and “ChipScope” by Xilinx [186, UG029].
6I try to avoid this overloaded catch-all term in favor of other, more descriptive, terms.

24

ever, social deterrents are only effective where appropriate laws exist and are en-

forced. Attitudes towards design-ownership rights vary significantly worldwide,

making this type of deterrent not wholly effective in places where it matters the

most: countries that source counterfeit goods tend to be places where design

ownership rights laws and enforcement are weak or ambiguous.

• Active deterrents are physical and cryptographic mechanisms that prevent theft

and abuse of designs. Active protection is highly effective if implemented correct-

ly, and is also locale-independent (if we ignore export restrictions). Further,

combined with social deterrents, active deterrents can help convince a court that

the designer has taken appropriate measures to protect a design and that the

perpetrator showed significant malicious intent by circumventing them.

• Reactive deterrents provide detection or evidence of breaches, which may help

in applying available social tools. Digital forensics relies on video surveillance,

fingerprinting, and steganography, etc., for initiating investigation or improving

the security of a system after a breach. Audit trails are reactive, but are also

an important facet of security in the absence of, or in addition to, active ones.

Reactive measures do not actively prevent fraud or theft, but their presence may

deter would-be attackers, and it can be beneficial to advertise them.

2.1.4 Trust and trustworthiness

How can users of software and hardware be confident that the tools they use are

“honest”, and not covertly inserting malicious code or circuits into their products?

Software and chip verification is an option, but usually prohibitively costly. The

sheer enormity of EDA tools make this impractical even if we assume that EDA

vendors made their source code available for scrutiny. Further, how can one be

sure that the source code compiler or simulator are trustworthy? In Reflections on

trusting trust, Thompson [170] elegantly discusses these issues and concludes that

“you can’t trust code that you did not totally create yourself. . . No amount of source-

level verification or scrutiny will protect you from using untrusted code”. Verifying

integrated circuits is even harder than software verification, especially so without

access to the design files and a complete audit along the manufacturing process.

Some may rely on knowing that companies want to build and maintain a positive

reputation: being honest, technologically advanced, quality-driven, etc., which is an

asset that is slowly gained, but easily lost. By striving to maintain such reputation,

companies are aligning themselves with the interests of their customers (assuming

a competitive market). Many millions of dollars are invested in designing and man-

ufacturing an FPGA family, and it is in the interest of both FPGA vendors and

foundries that these do not go to waste. This requires many self-enforced check-

points to ensure that no flaws or deviations from the intended design are made.

25

For example, the foundry must deliver high-yielding wafers that perform (only) the

original design, and in turn, FPGA vendors need to provide their customers reliable

FPGAs that correspond to data-sheets7.

“Silicon Trojans” are increasingly gaining attention in the defense [2, 9, 177] and

research [109] communities8. Developers may rely on the “scatter gun” [9] nature

of FPGA; that is, attackers do not know where the “Trojan inside” devices end up

and must create a discovery mechanism, increasing the likelihood of detection. If

the Trojan relies in any way on certain user logic functions being used, the likeli-

hood of discovery is further reduced. Concerned developers can purchase devices

manufactured at different foundries, or of different batches in order to decrease the

likelihood of a targeted attack. That said, Thompson showed us that we can always

step back: what if an IC FPGA designer consistently inserts malicious circuits into

the circuit designs? What if the EDA tools used for IC design insert these circuits?

The silicon Trojan problem is an interesting and timely one, but outside the scope

of this dissertation.

2.1.5 Distribution security

“FPGA security” can be divided into two categories: “operational” and “distribu-

tion”. Operational security is where we want to secure systems already running

inside of the FPGA. Distribution security is how to get these designs to the FPGA

while maintaining certain security properties.

We may consider distribution security as the following three categories. The first

is securing configurations from local storage (a PROM, for example) in a hostile

environment, as will be discussed in Section 2.3.1. The second is securing remote

configuration updates, as will be discussed in Chapter 3. The third is maintaining

the confidentiality and authenticity of individual cores from multiple sources, which

are integrated into a single design.

Consider a multimedia device startup company that developed a clever way for

implementing an H.264/MPEG-4 AVC encoder/decoder. They would like to add

USB and encryption support to their devices so they license AES and USB 2.0 cores

developed externally. In the absence of an industry standard, FPGA vendors created

their own solutions for allowing potential users to evaluate these external cores.

Altera, for example, allows non-Altera cores hosted on its website to be compiled and

evaluated for resource use, but its software does not allow bitstream generation from

these [7, AN343]. For its own cores, Altera software creates time-limited bitstreams

7ASIC design and manufacturing has similar problems, but FPGAs have the advantage of being
generic such that tampering may be detected with higher probability simply because of the larger
user-base.
8The “Hardware-Oriented Security and Trust” (HOST) IEEE workshop is dedicated to the topic,
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4559030.

26

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4559030

(“untethered”), or ones that require continuous connection between the FPGA and

the development software through a programming cable (“tethered”), so designs can

be tested on-chip [7, AN320]. Xilinx allows evaluating of some cores for embedded

processors that expire after “6–8 hours when running at the nominal clock frequency

specified for the core” [187], while other HDL cores are available through various

licenses that allow a time-limited evaluation. Both Altera and Xilinx schemes require

that users agree to restricted use of the cores, and likely rely on the bitstream’s

encoding, not cryptography, for enforcing the timing restrictions while the cores are

operating inside the FPGA.

Our startup may have been able to evaluate the cores, but is faced with only one

choice for purchasing them: pay a “blanket license” for unrestricted use of the cores.

Such licenses can be prohibitive for the startup, especially since they do not know

how successful their product will be. Even if they can afford such a license, they

may not actually be sold one. The “design-reuse” industry has dealt with secure

distribution of cores by mostly relying on social constructs such as “trusted partners”

and reputation as we discussed in Section 2.1.4. An industry-wide panel discussion

in early 2007 [183, 184] provides some insight into the industry’s perception of using

a software encryption flow for cores protection. They concluded that the current

trust-based system is working well for large corporations – less so for startups – and

a better solution is desirable for the long-run, but is not necessarily urgent (note

that the focus is on ASIC cores, so the unique FPGA usage model is not considered

carefully). What this may mean is that cores vendors have a risk perception, and

may choose not to sell to non-established companies who have no reputation to lose,

or ones that are based in particular countries.

For small companies, we probably need to create a distribution system that does

not rely on social deterrents, and that allows developers to integrate cores from

multiple sources into their design, but still only pay on a per-use basis. Encrypted

netlists are one solution, already supported by some EDA vendors, though it may be

too cumbersome or even insecure (see the box on the next page). Therefore, I argue

that if we rely on hardware-based protection mechanisms that operate at the design

flow’s final stages, we are likely to better resist attacks. Appendix A discusses the

merits of one possible solution I propose.

2.2 Usage model attacks

Security is an arms race; in a typical cycle, incremental defenses are put in place

as older defenses are overcome and new attacks emerge. Smartcards and micro-

controllers have been in the midst of such a race for the past two decades, start-

ing with naive, if present at all, security mechanisms and incrementally improv-

27

ing as exploits are discovered; examples are the work by Anderson, Kömmerling,

Kuhn, and Skorobogatov [12, 13, 112, 157]; Anderson et al. [14] provide a survey

of cryptographic processors designed for security applications. But, compared to

typical FPGA applications, smartcards can have short life-cycles and are consider-

ably cheaper. Pay-TV smartcard hacking emerged in the 1990s when IC cards were

issued by service providers to combat subscription fraud. The usage model allowed

issuing new smartcards on a monthly basis, or the adding of a security feature in a

short development cycle, which is not possible for FPGAs. We may now be seeing

the beginning of such an arms-race for FPGAs, as they are used in applications

that require security (military, automotive), but also because designs are becoming

more valuable. Incentives are mounting for attackers to concentrate their efforts on

FPGA exploits.

Can a software-encrypted netlist flow withstand determined attack-
ers? In June 2006, Synplicity proposed the “Open IP Encryption Initiative” for
secure core exchange [44] and offered it to the Virtual Socket Interface Alliance
(VSIA) to become an industry standard. In June 2007 VSIA shut downa, and in
April 2008 Synplicity launched its initiative under the “ReadyIP” brand nameb.
But Synplicity’s original Open IP proposal had made some poor security choices,
such as the distribution of vendors’ private keys with each instance of the soft-
ware. Barrickc argues against using encrypted netlists on practical grounds, but
also claims that sometimes they can be worth it in terms of savings.
While these measures may keep “honest people honest”, how long will it take
before the software is cracked on a “break once, run anywhere” basis? If there
is anything to be learned from the rich history of software protection failures, it
is that very few copy protection schemes have withstood (determined) attack-
ers [10, p681–688]. Perhaps there is a silver lining in encrypted flow: incentives
are aligned for better security. Varian [181] argued that security suffers if the
principal in the position to improve it does not bear the loss due to breaches.
Thus, if an FPGA vendor implements a design protection scheme for its own
cores, or even for others’, and it fails, the vendor is the one who bears the loss
(directly, or indirectly due to loss of reputation), so has an incentive to make it
the best it can be.

a“Legacy Documents of the VSI Alliance”, http://www.vsi.org/
b“Synplicity Launches ReadyIP Program: The Industry’s First Universal, Secure IP Flow For
FPGA Implementation”,
http://www.synplicity.com/corporate/pressreleases/2008/SYB-0026.html
c“Designing Around an Encrypted Netlist: Is The Pain Worth the Gain?”,
http://www.design-reuse.com/articles/18205/encrypted-netlist.html

28

http://www.vsi.org/
http://www.synplicity.com/corporate/pressreleases/2008/SYB-0026.html
http://www.design-reuse.com/articles/18205/encrypted-netlist.html

2.2.1 Bitstream reverse engineering

I define bitstream reversal as the transformation of an encoded bitstream into a

(human readable and editable) functionally-equivalent description of the original

design that produced it. It is the reversal of the flow shown in Figure 2.4, from

bitstream back to HDL or netlist. Partial bitstream reversal is the extraction of

limited information from bitstreams – such as keys, BRAM/LUT content, or memory

cell states – without reproducing complete functionality. Full bitstream reversal

would allow replicating functionality (with a different looking bitstream); extracting

secret cryptographic keys; and proof of infringement (interestingly making both

criminals and developers interested in reverse engineering). Partial reversal helps

recovering hidden data, but may also reveal the types of cryptographic primitives

used and how they are implemented, which can enhance power analysis attacks.

The Virtex-5 Configuration User Guide [186, UG191] is quite revealing about

the structure of its bitstreams, compared with previous disclosures of the propri-

etary bitstream format, which is outlined in Figure 2.5. I will use this conceptual

simplification of the Virtex bitstream format when I discuss bitstream manipulation.

“Frames” are the fundamental configuration unit: a single-bit column of 1312

bits (41×32-bit words) that cover the entire FPGA. Each frame contains the config-

uration for one hardware primitive (configurable logic blocks, DSP, I/O blocks, block

RAM, etc.) and is addressable such that it can be written and read individually.

This allows, for example, partial reconfiguration, and detection/correction of upsets

due to ambient radiation using an internal configuration access port9.

Extracting RAM and LUT content from bitstreams is not difficult (see Ziener

9Primitive-specific frames were introduced for Virtex-4; earlier Xilinx FPGAs’ frames consisted of
configuration bits for several primitives which complicated these operations.

Bitstream reverse engineering background. In the early 1990s, the startup
company NeoCAD created a complete FPGA development tool chain for a few
FPGA families. According to Xilinx [123, 172], NeoCAD managed to reverse en-
gineer the bitstream generation executable in order to generate compatible bit-
streams, rather than reverse engineer the bitstream format itself. In 1995 Neo-
CAD was acquired by Xilinx to become its software division. In the late 1990s,
the startup Clear Logic was able to use Altera’s software-generated bitstreams
to produce pin-compatible, smaller, cheaper, laser-programmable ASICs, which
were also more secure since they did not require an external bitstream source.
Altera sued and requested that Clear Logic cease operations. In 2001, a court
prohibited Clear Logic from asking its customers to use Altera’s software tools
since that violated its end-user license agreement (EULA). In 2003 Clear Logic
closed down, and in late 2005, Altera won the case [8, 178].

29

FPGA row

column
frame

0

1311

bottom

top

Figure 2.5: The Virtex-5 configuration memory is divided into addressable rows, columns,
and frames. Each frame is 1312 bits “high” and contains data for only a single block type.

et al. [191], devices’ datasheets [186, UG191], and vendors’ own tools). The hard

part is to automate the process, and convert the placelist into a netlist from which

the original functional design can be extracted. An Internet search yields quite a

few hits for projects and services that supposedly do this, though most of them seem

to be half-baked or stale, with companies providing such a service making claims

that are hard to verify.

A notable exception is “ULogic”, a “free software project aimed at netlist re-

covery from FPGA closed bitstream formats” [176]. A report by Ulogic developers

Note and Rannaud [140] describes a tool that can convert Xilinx bitstreams into

placelists using the Xilinx Design Language (XDL). XDL is a largely undocumented

plain text representation of placelists (which are otherwise in unintelligible form)

supported by Xilinx development tools since ISE 4.1i. Using XDL, developers can

directly manipulate placed and routed designs, and even bypass the entire software

flow by creating XDL representations from scratch. From XDL, the files can be

converted back to a placelist and encoded into a bitstream. This allows the itera-

tive process of producing an XDL design, converting it to a placelist and then to

a bitstream; by changing single bits, routing and settings at a time, one can cre-

ate a database that correlates placelist data to bitstream bits. Note and Rannaud

seem to have automated this process to create a “de-bit” tool. They also created

“xdl2bit”, a bitstream generation tool that aims to be equivalent to Xilinx “bitgen”

for some device families, but is much faster. The authors do not think that their

work poses security risks to deployed systems from their tools and state that the

step of “making sense” of the data is still missing, namely, the full reversal to what

they call a “true netlist”. A related project by Kepa et al. [104] provides an “FPGA

analysis tool. . . an open-source tool framework for low level FPGA design analysis”.

Part of this framework is a “bitstream API” which decodes bitstreams and provides

a graphical representation of them.

Most bitstream encodings are largely undocumented and obscure, but not con-

fidential in a cryptographic sense. As discussed in Section 2.3.3, several design

30

protection schemes rely on the continued secrecy of these encodings, and vendors

seem to intend to keep it this way. The obscurity, complexity, and size of bitstreams

makes the reverse engineering process difficult and time consuming, though theo-

retically possible. The Ulogic project stated goal is the re-production of netlists,

and there are likely to be similar efforts that are not public. The possibility of le-

gal action can be an effective deterrent in academic and commercial environments,

although for some organizations or countries, these are less of a concern. The in-

creased value embodied in bitstreams may inevitably drive increasingly more people

and organizations to invest time in accomplishing automated full reversal. Such a

tool only needs to be created once before it can be used by others with little effort.

If reverse engineering is a concern, or thought to be within the capabilities of

potential adversaries, it seems prudent to no longer rely on bitstream encoding for

protection, even while the actual cost of full reversal remains unclear. Merely hiding

keys in look-up tables and RAM is not a good strategy: recovering those requires

only partial reversal and basic knowledge of the bitstream format. Future solutions

may best relay on cryptographic protection of designs rather than on bitstream

format obscurity; this view is reflected in the schemes I propose in Chapter 3 and

Appendix A.

2.2.2 Counterfeits

Where all FPGAs of the same family and size are identical, a bitstream made for

one device can be used in another. Because of that, attackers can, and do, clone

bitstreams by recording them in transmission to the FPGA and use them in simi-

lar systems or products, usually cheaper clones that are sold instead of, or as, the

originals. Since cloning requires no more than a logic analyzer and a competent

technician, it is very simple to perform. The attacker, who does not need to under-

stand the details of the design, regards it as a black-box, and only needs to invest

in copying the circuit board the FPGA is mounted on, saving development costs.

The original system developers have two main concerns with regards to cloning.

Firstly, cloned systems reduce profits after a significant development investment,

and secondly, if the clone is marked as the original, the system developer suffers a

reputation and support loss if the fake is of poor quality. Deterrents such as those

discussed in Section 2.3.3 aim to increase the cost of cloning, and may make cloning

unprofitable for low level attackers.

The electronic industry is losing out to large amounts of counterfeit hardware

that is either cloned or the result of overbuilding (“run-on fraud”) [6, 179]. When

a product is manufactured at a contracted facility that manufactures and tests the

hardware before it is shipped to the customer, such a facility may build more than

the ordered quantities and sell the excess on its own, without the development costs.

31

They may even sell the designs themselves (PCB layout, bitstreams) to competitors.

To avoid this, some companies qualify facilities as “trusted” and supervise/audit

them, but this may be probably too expensive for most companies.

Mislabeling of FPGAs is also a problem for both FPGA manufacturers and sys-

tem developers. Modifying or erasing markings on an IC package is trivial, and

Open source bitstreams and tools? The dominant argument for open ar-
chitectures is that they may enable vendor-independent tools for applications
and languages that are unsupported by FPGA vendors. Megacz [133] demon-
strated this by creating a complete open-source application programming in-
terface (API) for manipulating Atmel FPSLIC FPGA bitstreams after their
format was posted on the comp.arch.fpga Usenet newsgroup in late 2005a.
One of Ulogic’s goals is to prove to FPGA vendors that tools developed inde-
pendently can do better than theirs, as demonstrated by their nimble bitstream
encoder. There are a few instances that show that FPGA vendors may be
(or were) warming up to being more “open”. The first was the 1997 Xilinx
XC6200 FPGA (and its predecessor, the Algotronix CAL1024), which had an
open configuration format. The second is the Xilinx JBits API [76] (released
in 1998) that allowed direct bitstream manipulation. It supported only a few
device families and was not very convenient to use, but marked a step in the
direction of openness that would enable the creation of independent tools. JBits
was quite extensively used by researchers but was updated only to the Virtex-II
family; it seems to have been abandoned by Xilinx since.
It appears that, as a whole, FPGA vendors are not convinced that “open-
ness” is currently a worthwhile strategy, otherwise it would be more common.
Firstly, they may want to avoid support costs associated with people who create
their own bitstreams and use home-grown tools. This argument is rather weak,
though perhaps discrimination for hardware support based on which software
tools were used is logistically difficult and bad for public-relations. Secondly,
they may fear competition with their own software tools and the loss of control
over how their devices are used, or losing the revenue from selling software.
Lastly, and most importantly, the “openness” will also require revealing pro-
prietary information, including portions of the architecture, which is the edge
vendors have over one another and which they have little interest in losing. That
said, it may simply be that there is no business opportunity there, as the most
relevant consumers of FPGAs are large companies who prefer to get the entire
package, including support, accountability, and regular updates. Business mo-
tives may dictate that appeasing open-source advocates is not currently worth
losing control and profit, no matter how compelling are the counter-arguments.
In 2000, Seaman compiled the arguments for both sides, and I recommend
reading them for further insights; the page is now only available through the
WayBackMachine [151].

a“Atmel AT40k/94k Configuration Format Documentation”,
http://groups.google.com/group/comp.arch.fpga/msg/a90fca82aafe8e2b/

32

http://groups.google.com/group/comp.arch.fpga/msg/a90fca82aafe8e2b/

system designers have been doing so for years to make the reverse engineering of a

system slightly more difficult. But when FPGAs are not purchased through dist-

ributors endorsed by FPGA vendors, how can the buyer be sure that the package

markings match what is inside? If it is a completely different device, or even a

smaller FPGA family member, that would be quite simple to verify through the

programming interface, albeit only after purchase. Slow speed-grade die can be sold

as faster speed-grade for a premium, and there is no easy way for the buyer to

discover this type of fraud.

It is hard to estimate the losses due to these types of fraud because companies

do not report such figures. An industry consortium of large hardware development

companies, the Alliance for Gray Market and Counterfeit Abatement has estimated

that in 2006 one in ten purchased products were fake either by over-building or

cloning [6]. These types of fraud are hard to prevent, especially when they occur in

places where ownership rights are not enforced. We will discuss a few countermea-

sures in section 2.3.

2.2.3 Readback

“Readback” is the process of retrieving a snapshot of configuration, look-up ta-

bles, and memory state while the FPGA is in operation [186, ch7]. Readback data

appears either at the external configuration interface (JTAG, for example) or in-

ternally through the internal configuration access port (ICAP). It is also possible

to read back portions of the FPGA state, not necessarily all of it. The read back

Chisco. In February 2008, the FBI reported on a multi-year operation seizing
over $75 million worth of China-manufactured counterfeit Cisco products [179] –
now sometimes known as “Chisco”. Counterfeit network products ended up
being used by the FBI, U.S. military and other sensitive U.S. Government
branches. This was possible because of sloppy supply chain controls, allow-
ing contractors to buy routers on eBay. (Some picturesa clearly show FPGAs
on several of the cards.) The obvious fear was that this is a coordinated attack
by the Chinese Government to infiltrate the U.S. Government network infras-
tructure, which is a very legitimate concern. Later, the FBI denied that this was
the allegation, and Cisco reported that they have analyzed the cards and found
no “re-engineering” or backdoorsb, though one wonders exactly how they did
that. Fortunately, the issue is rather easy to avoid by simply buying equipment
directly from the vendor or its authorized distributors (rather than from what
is effectively someone’s car boot).

a“Counterfeit / Fake Cisco WIC-1DSU-T1 V2: Guide to tell Genuine from Counterfeit”,
http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1-v2.shtml
b“F.B.I. Says the Military Had Bogus Computer Gear”,
http://www.nytimes.com/2008/05/09/technology/09cisco.html

33

http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1-v2.shtml
http://www.nytimes.com/2008/05/09/technology/09cisco.html

image differs from the original bitstream by missing the header, footer, initialization

commands, and no-ops; the dynamic data in LUTs and BRAMs is also different

from their initialized state. Readback is a powerful verification tool used by FPGA

vendors, and also allows system developers to debug their designs.

When readback is enabled, an attacker can read back the design, add missing

static data and use it in another device, re-program the FPGA with a modified

version, or reverse engineer it. It may also enable what I call an active “readback

difference attack” where an attacker is able to observe internal state changes on a

clock-cycle basis to bypass defense mechanisms. Consider the case where a func-

tional core is waiting for an enable signal from an authentication process (such as

the ones we will discuss in Section 2.3.3). If the attacker has control of the input

clock, he can take a snapshot before the signal is set, clock the design, and then take

another snapshot. Iteratively comparing the snapshots, the attacker can determine

which bits are required to be changed in order to modify the state of control signals.

Then, the original bitstream can be modified to have these signals set to the appro-

priate state permanently. Readback can be used as a defense for detecting ionizing

radiation attacks (see Section 2.2.6).

When bitstream encryption is used, multiple, majority-voted, disabling registers

are activated within the FPGA to prevent readback [124] [186, UG071]. Lattice

devices also disable readback when bitstream encryption is used [120, TN1109]. In

theory, these disabling bits can be located using (semi-) invasive attacks, but there is

no evidence that this has been accomplished. Current Altera FPGAs do not support

readback [7, WP01111-1.0, p3] so are not vulnerable to these types of attacks.

2.2.4 Side-channels

Side-channel attacks exploit the external manifestation of operations executed within

a device in order to extract secret data. The challenge for designers interested in

preventing this analysis is isolating the operations of integrated circuits from their

environment, or randomize/mask processing patterns, as they interact with other

devices, and consume and emanate energy. Described below are three types of side-

channel attacks and their relevance to FPGAs.

2.2.4.1 Power analysis attacks

Integrated circuits consume power in two ways. Dynamic power consumption is due

to CMOS gates changing state while parasitic and load capacitance are charged or

discharged according to the logic transition, 0→ 1 or 1→ 0, respectively. A simple

dynamic power consumption model for a CMOS gate is

P = Cload · V 2
supply · f · A

34

where Cload is the gate load capacitance, which includes wire, parasitic and output

capacitance, that need to be charged or discharged with every transition; Vsupply is

the supply voltage to the gate; f is the operating frequency; and A is the proba-

bility of an output transition. (Standaert et al. [162] describe a simple experiment

that confirms this model on an FPGA.) To obtain power trace samples, standard

practice is to measure the voltage across a low-value resistor placed between either

the circuit’s power or ground, and the respective external power supply terminals.

Bucci et al. [27] alternatively suggest an active sampling circuit for better signal to

noise ratio. Shang et al. [154] provide a thorough analysis of the dynamic power

consumption of a 150 nm Xilinx Virtex-II FPGA by looking at the power contribu-

tion of resources along a signal path. They show that about 60% of dynamic power

dissipation is due to interconnect routing (the effective capacitance of driven wires),

16% to logic, 14% to clocking resources, and 10% to I/Os.

Static power is consumed through “gate leakage” – current flowing between the

source and drain terminals and through gate oxide. As transistor dimensions shrink

and threshold voltages decrease, leakage becomes a more dominant portion of total

power consumption. Shang et al. [154] estimated that for a 150 nm FPGA, 5–20%

of the total consumption is static, though this has increased for 90 nm, 65 nm and

45 nm transistors that are designed for performance. Leakage is also very sensitive

to temperature variations, and therefore, not uniform across the die, or in time, and

may also correspond to the circuit’s switching activity. Kim et al. [108] provide an

excellent introduction to the issues associated with static power consumption. The

smaller dimensions have an effect on dynamic consumption as well because of lower

Vsupply, smaller capacitances, and shorter interconnects, resulting in less consump-

tion; on the other hand there are usually more transistors per die as integration

becomes denser. It would be interesting to analyze how static power effects power

analysis results.

Analysis of an IC electrical current patterns may reveal information about the

specific data it is processing, with attackers usually trying to obtain cryptographic

keys. In 1999, Kocher et al. [111] introduced two types of power analysis on mi-

croprocessors, simple (SPA) and differential (DPA). With SPA the attacker di-

rectly searches power traces for patterns such as algorithmic sequences, conditional

branches, multiplication, exponentiation, and other signatures that allow the infer-

ence of key material. DPA compares many acquired traces with a statistical power

consumption model that is tailored to the target device and specific implementation.

By knowing the details of the cipher, an attacker can guess internal states and care-

fully choose plaintexts such that they can be observed and changed on an individual

basis. This technique is powerful even if the implementation details are unknown

because the attacker can infer key bits by controlling single bit changes during an

35

encryption using selected input plaintexts. While attacking a device, the model

enables the attacker to iteratively guess candidate key bits and obtain statistical

correlation between model and measurement. The statistical analysis is required to

increase the signal-to-noise ratio such that a candidate guess becomes distinct from

the rest of the samples; if noise is present, more samples are required to reach that

distinction, but most noise sources and patterns can be modeled such that they can

be sufficiently removed. In some cases, even a small number of known bits can make

brute forcing the remainder possible.

Much of power analysis research has concentrated on microcontrollers such as

smartcards, for which a model is relatively easy to construct and power traces are

simple to record because operation is slow, sequential and there are only a few power

pins. Mangard et al. [130] provide a comprehensive introduction to power analysis

techniques for smartcards. Power analysis of FPGAs has started receiving increased

interest since 2003 with Örs et al. [141] and Standaert et al. [161] examining the

possibility of successful attacks. Örs et al. described a power analysis platform for

examining a 220 nm Xilinx Virtex device, with a successful SPA attack on an el-

liptic curve implementation operating in isolation. The research of Standaert et al.

on the same FPGA has shown that SPA is not practical for most parallel crypto-

graphic implementations when many concurrent operations are running on a single

device. DPA, however, was deemed possible, and within a year Standaert and co-

authors [162, 163] demonstrated a potentially successful attack based on statistical

correlation techniques against implementations of AES and DES. The investigation

showed that the pipelining of the cipher does not protect against DPA since opera-

tions are separated into registered states and are thus better observed in the power

traces. However, an unrolled implementation where each round is implemented on

its own for faster throughput, was shown to measurably increase the efforts of a

would-be attacker. This is because all encryption/decryption rounds are run con-

currently and, with the key unknown, the contribution to the power trace is effec-

tively random noise that cannot be predicted and easily modeled and removed. In

practical scenarios the cryptographic operation is but one of many concurrent oper-

ations running on the FPGA, each contributing its own “noise”. In 2006, Standaert

et al. [164] analyzed the power signature of isolated pipelined structures on a 180 nm

Spartan-II FPGA, improved their previous results from [162], and confirmed some

of the results of Shang et al. [154]. They also concluded that pre-charging buses

with random values to mask transitions makes analysis harder, at the expense of

resources and throughput, but should not be relied on as a single countermeasure.

Obviously, if operations that depend on secret data have the same power signa-

ture as ones that do not, power analysis becomes harder. Achieving this, however,

is incredibly challenging and the subject of extensive research. Standaert et al. [165]

36

provide a survey of current defenses against power analysis attacks; namely, time

randomization, noise addition, masking, and dynamic and differential logic, with

the conclusion that no single solution can eliminate the susceptibility of implemen-

tations to power analysis attacks. Messerges [136] also surveys the weaknesses of

power analysis countermeasures. Tiri and Verbauwhede [171] proposed an FPGA-

specific countermeasure called wave dynamic differential logic (WDDL) synthesis.

Using differential logic and pre-charging of the gates, this method increases the resis-

tance to DPA by making power dissipation independent of logic transitions with the

disadvantage of increasing circuit size and lowering the operating frequency. This

would make a power analysis attack harder, though in practice, uncontrolled manu-

facturing variations prevent the interconnects from perfectly matching each other so

there will always exist some measurable variability (we will see how these variations

can be put to good use in Section 2.3.5).

It is important to evaluate the effective threat from power analysis and how it

may be incorporated into a threat model. Below are a few obstacles to consider

regarding the practicality of power analysis in real-world applications.

• Isolation of target function. As already mentioned, for obtaining a correlation

with a model, an attacker must remove the noise contributed by concurrent

processes from the sample. Using higher-order analysis this would possible, but

could be beyond what some attackers are willing to invest in. As a defense,

a somewhat costly defense would be to implement an identical cryptographic

function operating in parallel with a different key to inject what will effectively

be random noise. Depending on the circuit size, WDDL may be a cheaper

alternative.

• Obtaining high signal-to-noise-ratio samples. With today’s FPGAs operating

at over 500 MHz, acquiring samples may not be as easy as with smartcards,

so more advanced techniques than the traditional small value resistor may be

required. Reducing the operating frequency may not be possible due to detection

circuits. One example is an embedded clock manager set to a particular range

of frequencies10. The attacker must also be able to isolate the signal from the

noise contributed by surrounding devices through the shared ground and power

supply. Countermeasures may be a detection circuit for clock and temperature

tampering.

• Probe BGA packages on dense multilayer circuit boards. All high-end FPGAs

– with low-end ones quickly following – have a flip-chip ball grid array (BGA)

10For example, digital clock managers (DCM) in Xilinx FPGAs have two operating modes for
high and low input/output frequencies, so the lower threshold can be in the few hundred MHz
(120–550 MHz, depending on multiplier setting [186, DS202, t50]).

37

package, the largest having nearly 2 000 balls. These physically prevent easy

access to pins and signal paths while the device is still soldered onto the board.

Relatively cheap mechanical and electrical mechanisms can be added to printed

circuit boards to make an attack more expensive; for example, sensitive signals

between devices can be routed in internal printed circuit layers, perhaps sand-

wiched between sensor mesh layers, or encased in a tamper proof enclosure (read

more on this in Chapter 3).

Additionally, for newer FPGAs, the attacker will need to deal with devices man-

ufactured at sub-90 nm technologies, and unlike smartcards that have a simple and

standardized interface for power and data, each system is different in the way it

interfaces with the FPGA. Recently, researchers have started using the SASEBO

FPGA side-channel analysis platform [138], which is available with recent FPGAs.

SASEBO eliminates high engineering costs and, more importantly, provides a com-

mon platform on which results can be reproduced.

2.2.4.2 Electromagnetic emanation analysis

Electromagnetic analysis (EMA) relies on detecting data-dependent electromagnetic

fields caused by current changes during execution of a function. These fields can

be measured outside of the device using carefully tuned antennas, even without

removing its packaging. Compromising emanations were known to military organi-

zations since at least the 1960s, and have been used in electronic espionage since;

Kuhn [114] provides the history and evolution of such attacks and describes practical

experiments for eavesdropping on computer displays.

Using electromagnetic analysis (EMA) to attack integrated circuits has only

started to receive attention from academia since the late 1990s. In the rump session

of Eurocrypt 2000 Quisquater and Samyde introduced the terms simple and differ-

ential electromagnetic attacks, SEMA and DEMA, as the EM analysis equivalents

to power consumption analysis. In a later paper they described their techniques and

Easy access. While FPGA power analysis research is vital, we should always
put it in the context of an application. With a cheap commercial product, de-
signers may only be concerned if extracting keys is trivial; the chances that they
will invest in adding additional circuitry required for a DPA countermeasure are
low. On the other hand, a high-security application should have many layers
of protection (some logical and some physical) so these designers may also not
be keen on spending transistors on such defenses, when there are much better
understood ways for preventing access to systems. The intersection of these
considerations is embodied in smartcards, which aim to be both high-security
devices and cheap.

38

initial results from analyzing microcontrollers [147]. At about the same time, Gan-

dolfi et al. [68] demonstrated EM analysis on three cryptographic implementations

in microcontrollers. Their results show that if set-up correctly, EMA attacks can

be more efficient and produce better signal-to-noise ratios than power analysis. In

a comprehensive analysis Agrawal et al. [3, 4] analyze smartcards and observe that

there are two kinds of emanations, “direct”, which are caused by current flowing

along interconnects, and “unintended”, caused by electrical and magnetic coupling

between wires and components. The authors used these emanations to obtain better

results than their application of power analysis techniques. Electromagnetic attacks

can have two advantages over power analysis: firstly, the attack can be localized

to a particular portion of the chip, and secondly, it can be executed in the device’s

original setting.

Carlier et al. [31] have reported the first EM analysis of an AES implementation

on a 130 nm Altera Cyclone FPGA. Their “square electromagnetic attack” is based

on the square attack [41], which is more efficient than brute force for six rounds or

less of AES. This chosen plaintext attack fixes all but one byte of the input and

observes the propagation of this byte’s bits throughout the round functions. The

authors were successful in obtaining key bits by placing an antenna close to the

FPGA and using DEMA techniques; they were also able to distinguish relevant

signals from the noise produced by parallel processes.

De Mulder et al. [45, 46] have reported a successful attack against a special im-

plementation of an elliptic curve algorithm on a 220 nm Xilinx Virtex 800 FPGA.

They used SEMA to observe key-dependent conditional branching, and DEMA sta-

tistical techniques against an improved algorithmic implementation. It is interesting

to note that localization considerations were taken into account and that the FPGA

was operating at a very low frequency of 300 kHz. As with the power analysis re-

ports, these implementations ran in isolation, making the attack environment ideal

for the attackers.

Pin distribution. An interesting aspect that may affect both power and elec-
tromagnetic analysis attacks, and is yet to be explored, is the distribution of
ground and power pins in new BGA packages. The arrangement of power and
ground pins in flip-chip packages (more on this in Section 2.2.5) has also changed
over time for better signal integrity and electromagnetic compliance. Tradition-
ally, ground pins were concentrated at the center of the package with power pins
in batches around this center cluster. Today, packages have power pins spread
across the grid array closer to signal pins so return paths are short and less
inductive. It would be interesting to see if this improves or worsens EM attacks.

39

2.2.4.3 Timing analysis

Conditional branching, memory accesses, and algorithmic operations often depend

on key state in cryptographic implementations; if an attacker can observe these dif-

ferences through measuring execution time, he will be able to discover key bits. The

standard example is comparing for a correct password one character at a time. Not-

ing the different processing time between a match and a mismatch an attacker can

determine the password in just a few attempts. Kocher [110] and Dhem et al. [48]

have shown how practical these attacks can be against microcontroller implementa-

tions of cryptographic algorithms.

Observing timing variations through power traces might not be as effective with

FPGAs because, unlike microcontrollers, processes can run concurrently. However,

timing can be observed through memory accesses and other interfaces with external

devices. The designer can prevent information leaking through timing variations

by making sure that sensitive operations require the same number of clock cycles

to complete; by adding timing randomization to operations; or, by using internal

memory.

2.2.5 Invasive and semi-invasive attacks

Invasive attacks physically probe and alter the target device in order to extract

secret information. The process involves de-packaging the device and removing the

passivation layer that protects the metal interconnects from oxidation. This can

be done using chemicals or, for greater precision, with a laser cutter that creates a

hole for inserting probes. This requires a microprobing station that lets the attacker

accurately control the probes, position the die, and observe it with a microscope.

A more expensive and precise tool is the focused ion beam (FIB), which is required

for small feature size ICs. Using accelerated particle beams that interact with gases

close to the die, the FIB is able to create incisions at the nanometer scale, deposit

metal connections and take high resolution images of the target. This lets an attacker

either read data from buses or alter functionality. Kömmerling and Kuhn [112] and

Skorobogatov [157] detail the process of invasive attacks on microcontrollers and

Soden et al. [159] provide an excellent survey of failure analysis techniques used by

device manufactures, the same ones that may be used by attackers.

Shrinking feature sizes, integrated circuit complexity, and the destructive nature

make invasive attacks expensive. Further, flip-chip packaging used for many of

today’s FPGAs prevents easy access to interconnect (see Figure 2.6). Flip-chip

packages mount the die face down, close to the package’s pins in order to reduce

inductance and allow finer “pitch” for greater densities of pins/balls. Older wire-

bond packages had the die facing up, with wires connecting the die to pins, which

were easier to probe. Currently, there are no published reports on a successful

40

fl ip-chipwire bond

Figure 2.6: A wire-bond package is shown on the left where the die faces up with wires
bonded connecting it to the solder balls through a substrate; in the flip-chip package on
the right the down-facing die has “bumps” used to connect it to the circuit board substrate
using solder balls.

invasive attack against a volatile FPGA.

Semi-invasive attacks require the removal of the device’s packaging, leaving the

passivation layer intact, while the rest of the analysis is done using techniques such

as imaging and thermal analysis. This class of attacks were introduced by Skorobo-

gatov [157] and covers the gap between the non-invasive and invasive types. Semi-

invasive attacks are cheaper than invasive ones since they typically do not require

expensive equipment or extensive knowledge of the chip; Skorobogatov has applied

these attacks on devices fabricated with 250 nm and larger manufacturing technolo-

gies. As with invasive attacks, I am not aware of successful applications of these

techniques on recent FPGAs.

2.2.5.1 Data remanence

Exploiting data remanence can be considered a semi-invasive technique, where the

attacker relies on the retention (or evidence) of previously stored state in storage

media or RAM cells after power loss, and even after data has been overwritten. Ionic

contamination, hot-carrier effects, and electromigration, for example, can “impress”

the stored state over time. Gutmann [79, 80] covers remanence of magnetic media

and RAM at length. High voltages or low temperatures can cause RAM to retain the

previous state from microseconds to minutes after power is removed depending on

the extremities of the conditions. In 2002, Skorobogatov [156] tested eight SRAM

devices (manufactured at 250 nm technology and larger feature-size), all showing

remanence of up to a few seconds at sufficiently low temperatures. In 2008, Hal-

derman et al. [82] demonstrated similar remanence in DRAM, where despite the

requirement for refreshing, memory modules retained state for up to an hour when

cooled to −196 ℃ with liquid nitrogen. They were able to extract software disk en-

cryption keys stored in DRAM this way, violating the implicit, and false, assumption

that data is erased instantly with power loss.

The work most relevant to FPGAs is Tuan et al. [174] who measured the re-

manence of 90 nm FPGA memory cells. The authors point out that previous data

taken for SRAM devices do not apply to FPGA SRAM cells. Firstly, because they

stem from older technologies with less leakage current, which affects charge and dis-

41

charge characteristics. And secondly, because FPGA SRAM cells are built, laid out

and arranged differently than commodity SRAM chips; even within the same device

there are several types of SRAM cells that are powered differently. The experiment

was done by continuously reading back the FPGA content and recording the change

in state of every SRAM cell at −40 ℃, 0 ℃ and 25 ℃ for both floating or grounded

power rails. The authors found an asymmetry in remanence rates between cells

that are initially set to 1 (shorter) and those set to 0 (longer) due to the asymmet-

ric arrangement of the five-transistor cell. Cells were classified into two categories,

logic and interconnect; the state of logic cells (i.e., ‘1’ or ‘0’) are evenly distributed,

whereas only about 10–20% of interconnect cells are set to 1 for any design. The two

types of cells are also powered by different internal supplies. The results show that

interconnect cells retain state longer than logic cells: 40 seconds for interconnect

and 1 second for logic at −40 ℃ (worst case) for 20% of data to be lost when power

rails are left floating. However, if power rails are grounded, 20% of data is gone in

under 1 ms. One way to limit the window of remanence is to sense the die’s temper-

ature and shut down if it falls below a given threshold. This can be done internally

(for example, by using the Virtex-5 “system monitor” [186, UG192]) or externally

with an appropriate sensor inside a tamper resistant enclosure. Additionally, as a

response to tampering, on every power down, or on reconfiguration, SRAM power

rails should be actively grounded briefly rather than left floating.

2.2.6 Others

In cryptography, brute force search means attempting all possible key values to

search for a valid output. It can also mean exhaustion of all possible logic inputs to

a device in order, for example, to make a finite state machine reach an undefined state

or discover the combination to enter the device’s “test mode”. Another form of brute

force attack is the gradual variation of the voltage input and other environmental

conditions, rather than variation of logic states. Brute force is sometimes associated

with black-box attacks that attempt to exhaust all input combinations and record

the outputs in order to reverse engineer the device’s complete operation, or create

a new design that mimics it. Considering the stored state, complexity, and size

of current FPGAs, this type of attack is not likely to be practical or economic for

reverse engineering the FPGA’s entire functionality [185]. That said, if a subset of

the functionality is targeted that can be interfaced with directly through the I/O

pins, brute forcing can be fruitful, perhaps in combination with other attacks. For

critical functions, therefore, randomization may be useful. Christiansen [36] suggests

adding “decoy circuits” to the design to increase the effort of an attacker. The cost

is high, though: seven times LUT usage and twice the amount of power, in addition

to requiring more I/Os and design time.

42

Crippling attacks either subvert a system to perform malicious functions or com-

pletely bring it offline, similar to denial-of-service attacks on networked servers and

devices. The absence of robust integrity preserving mechanisms for bitstreams, such

as authentication, enables anyone to program an FPGA if they have access to it.

In the case where bitstream encryption is used (see Section 2.3.1) confidentiality is

provided, but may not be sufficient, as an adversary can still re-program the device

with an invalid bitstream and bring the system off-line. An extreme crippling sce-

nario is described by Hadžić et al. [81] where an FPGA is permanently damaged due

to induced contention by using invalid bitstreams, and we will discuss this further

in Section 2.3.2 on configuration authenticity.

Fault injection or glitch attacks can cause devices to perform operations in unin-

tended order or get them into a compromised state such that secret data is leaked.

This is done by altering the input clock, creating momentary over- or under-shoots

to the supplied voltage, electrical fields applied with probing needles, light flashes

applied to depackaged ICs, etc. As an example, if a conditional branch is skipped

by the CPU due to a clock glitch some commands will not be executed; a voltage

surge or trough can cause registers to keep their state. If a power glitch is applied

at the right time, the number of rounds of an encryption algorithm may be reduced;

Anderson and Kuhn [13] demonstrate how glitches and fault injections were used to

attack microcontrollers.

Ionizing radiation can also cause configuration memory cells to change state, and

thus change circuit behavior. If the affected circuit is part of a security function, then

protection mechanisms can be disabled, provided that radiation can be accurately

(and consistently) focused on particular areas of the IC. FPGAs have been tested

while exposed to ambient radiation and accelerated particle beams for measuring

their susceptibility to single event upsets (SEUs)11, which may affect configuration

behavior [92, 125]. Maingot et al. [128] have also exposed FPGAs to laser shots and

analyzed the fault patterns. Some volatile FPGAs now have an internal function that

detects SEUs in the background as the design operated in user logic [7, AN357] [186,

AN714]. This is done by periodically comparing a calculated CRC or Hamming

syndrome to a pre-computed one, alerting the user logic on discrepancy (so the

developer can decide what action to take). Triple modular redundancy (TMR) is

another solution, where all logic is triplicated and majority voters detect radiation-

induced logic faults; TMR is primarily used in space applications where radiation

faults are more frequent. Many applications that use TMR also periodically “scrub”

FPGA configuration and data to restore it to a known state to recover from SEUs

that may have occurred. These technique could be adopted to protect against

11“Radiation-induced errors in microelectronic circuits caused when charged particles lose energy by
ionizing the medium through which they pass, leaving behind a wake of electron-hole pairs” [137].

43

malicious radiation attacks. Finally, for protecting cryptographic implementations

against fault attacks and side channel analysis, Mentens et al. [135] propose to use

partial dynamic reconfiguration to randomly change the physical location of design

modules.

2.3 Defenses

2.3.1 Configuration confidentiality

The idea of encrypting configuration content for programmable devices was first

suggested in a 1992 patent by Austin [18]. Actel’s 60RS device family was the first

to encrypt configurations, though the implementation is a good example of poor

key distribution. Actel programed the same key into all devices (preventing reverse

engineering, not cloning), and the same key was also stored in every instance of

the software, so attackers only needed to reverse engineer the code, rather than use

invasive techniques [102]. In 2000, Xilinx added a hard-core Triple-DES bitstream

decryptor to their Virtex-II family, which allowed developers to store their own keys

in internally battery-backed RAM. Bitstream encryption is now a standard function

in high-end FPGAs, and works as follows.

After generating the plaintext bitstream, the user defines a key and the software

encrypts the configuration payload of the bitstream. The user then “programs” this

same key into dedicated memory in the FPGA. A command in the bitstream header

instructs the configuration logic to pass all configuration data through the hard-core

decryptor before the configuration memory cells are programmed. Some FPGAs

(such as Altera’s Stratix II/III) can be set to always perform decryption, regardless

of header commands, which prevents the loading of bitstreams not encrypted with

the correct key.

There are two on-chip key-storage techniques for bitstream decryption: volatile

and non-volatile. Using volatile storage, keys are kept in low-power SRAM cells,

powered by an external battery attached to a dedicated pin. The advantages of

volatile key storage are that it allows quick clearing the keys in response to tamper-

ing even when the device is not powered, and also complicating attacks by forcing

attackers to constantly power the device. Security-conscious designers find these

attributes appealing, as it makes conformance to standards, such as the U.S. gov-

ernment’s FIPS 140-2 [139], easier and in general provides higher levels of security

than non-volatile key storage. The battery requirement is generally seen as a disad-

vantage because it takes up PCB space (especially if a battery holder is required),

may have higher failure rate than other components, and may require replacement

in devices with a long shelf or use periods.

With non-volatile memory key storage, keys are permanently embedded in the

44

device using fuses, laser programming, Flash, or EEPROM. This type of key storage

combined with the latest CMOS technology is a recent development, as it introduces

a non-standard manufacturing step that impacts yield and reliability. Embedded

keys have the advantage of not requiring a battery and the cost of bitstream encryp-

tion is included in the FPGA’s price (if key management costs are ignored). For

these reasons, this approach appeals to cost-conscious designers over the battery

option. Embedded keys can also help prevent run-on-fraud as the keys can be pro-

grammed into the device at a trusted facility before being shipped to a third party

for system assembly and testing.

Key management is the process of key generation and distribution (transport)

for and to communicating parties, either prior to or after initiating contact. NIST’s

FIPS 800-57 [139], Recommendation for key management, remarks that “key man-

agement is often an afterthought in the cryptographic development process. As

a result, cryptographic subsystems too often fail to support the key management

functionality and protocols that are necessary to provide adequate security[. . .] key

management planning should begin during the initial conceptual/development stages

of the cryptographic development life cycle”. As the security of the system should

rely on the secrecy of keys, their management infrastructure is as important as the

choice of cryptographic algorithm or protocol. The logistics of keeping keys se-

cret while stored, transported and updated, along with adequate access controls,

amounts to a non-trivial cost that must be incorporated into the overall cost of a

defense strategy; at the least, procedures for key management should be defined. It

is also quite possible that the total cost of a defense strategy could exceed the loss

due to theft. Unfortunately, we see very little discussion of key management in the

FPGA security literature when new security schemes are being proposed.

Up to now we have discussed existing solutions for encrypting configurations,

though other schemes have been proposed. Kean [102] suggested that embedded

keys (programmed by FPGA vendors, foundries, or system developers) be used such

that the FPGA itself can encrypt and decrypt the bitstream without the key ever

leaving the FPGA. As outlined in Figure 2.7, the first stage happens in a trusted

facility where the plaintext bitstream is encrypted by the FPGA using its embedded

key KCL, and then stored in NVM. While the system is deployed in the field, the

bitstream is decrypted with the same embedded key using a hard-core decryptor

that is part of the configuration logic.

Kean [102] also made the observation that it may be sufficient to only slightly

increase the price of cloning and suggested embedding fixed keys in the photo masks

(artwork) that are used in the FPGA manufacturing process: “Suppose there were

five possible keys and FPGA’s were supplied with no markings indicating which key

was in a particular FPGA. The design owner can use any FPGA since the FPGA

45

NVM

FPGA

user logic
configuration logic

performed
at a

trusted
facility DECKCL

plaintext
bit-

stream

encrypted
bit-

stream

ENC

Figure 2.7: Kean’s bitstreams protection scheme: in a trusted facility the plaintext bit-
stream is encrypted using a key embedded in the configuration logic (KCL) and is stored
in a NVM device. In the field, the bitstream is decrypted on power-up and configures the
user logic. The advantage of this scheme is that the key need not leave the device.

will create an encrypted bitstream itself based on whatever internal key it contains.

However, a pirate using a naive approach would have to buy, on average, five FPGA’s

in order to find one which would load a particular pirated design.”

Bossuet et al. [24] propose a scheme where an embedded key is accessible to

the user logic and uses partial reconfiguration to encrypt and decrypt bitstreams,

as follows. A bitstream containing an implementation of a developer-chosen cipher

is loaded onto the FPGA and used to encrypt the primary application bitstream

using an embedded key (in the configuration logic). This encrypted bitstream is

then stored in a NVM device. On the same NVM, a matching decryption bitstream

is stored and used for decrypting the encrypted bitstream in the field (configuration

is done using partial reconfiguration). The critical security flaw of this scheme is

that the key is accessible to the user logic, so anyone can read it out and decrypt

the bitstreams. For this scheme to work, a more complicated key access control

mechanism needs to be implemented in the hard-wired configuration logic.

2.3.2 Configuration authenticity

In cryptography, authenticity provides recipients of data the assurance of knowing

the sender’s identity and that the data has not been manipulated. Authentication

can be achieved using asymmetric cryptography, hash-based MACs [139, FIPS 198],

and symmetric block ciphers in particular modes of operation [139, SP800-38A].

More recent constructs called authenticated encryption (AE) [23] try to efficiently

provide both confidentiality and authenticity with a single key. In this category,

Galois counter mode (GCM) [139, SP800-38D] seems to be a popular choice today.

46

Encrypting configuration files protects against cloning and reverse engineering in

transit independently of the FPGA, while authentication guarantees the correct and

intended operation of the bitstream while it is running on the FPGA. Parelkar [144,

145] suggested the use of authenticated encryption for protecting FPGA bitstreams

and concluded that the dual-pass Counter with CBC-MAC (CCM) mode [186,

SP800-38C] is the best choice. Later, Parelkar and Gaj [146] also described an

implementation of EAX [21], suggesting it be used for bitstream authentication.

But their discussions of bitstream authentication’s benefits were very brief, and the

constraints bounding a solution were not thoroughly investigated.

In early 2007 I provided the following analysis of the problem [50], and motivated

the addition of authentication to the hard-coded configuration logic of the FPGA.

My approach was to provide a convincing case such that FPGA vendors may be

persuaded that such addition is a worth-while investment for them.

I proposed that authentication can allow source code audit under some con-

straints (such as supply chain control). Many manufacturers do not make their

source code publicly available, so consumers have no way of knowing what their

devices’ firmware is actually doing. For some this may not be a problem, though

for some applications source code transparency is critical. Figure 2.8 shows a hypo-

thetical code audit process I proposed that is enabled using authentication (with-

out encryption) for a voting machine application. A municipal “voting authority”

ordered voting machines from “Honest Voting Machines” (HVM). Both sides are

interested in allowing the voting authority to examine the HDL code so that they

can be sure that the audited version is indeed the one operating on the FPGA at

voting time. However, HVM are adamant that only their authorized code is run

on their voting machines. HVM starts by programming a unique authentication

key into a dedicated key store inside of the FPGA. The source HDL is then sent

to the voting authority, and optionally also published online for voters to examine.

“In general, authentication is more important than encryption” con-
clude Ferguson and Schneier [63, p116]. That is, impersonation can be more
devastating than just being able to eavesdrop on communications. This makes
sense for FPGA configurations as well: being able to configure an FPGA with a
malicious bitstream can be more harmful than just being able to reverse engineer
it. Consider an FPGA-based banking hardware security module (HSM) where
bitstreams can be remotely updated. An attacker learning how the module
works by reverse engineering the bitstream may be able to create a competing
product or even find exploitable vulnerabilities. On the other hand, if the at-
tacker can also configure the HSM’s FPGA with a modified bitstream, he could
clandestinely control and observe all traffic (i.e., credit card PINs, personal de-
tails, etc.)

47

system
developer

voting
authority

HDL
source

SW flow

FPGA

user logic

MACKCL

configuration logic

user logic

MACKCL

configuration logic

MAC
KCL

HDL
source

bit-
stream

SW flow

bit-
stream

MAC

FPGA

software settings

audit

Figure 2.8: HDL source code audit scheme [50]. Bitstream authentication can enable code
audit by having the end user compile the HDL code he audited himself. This way, the
HDL can be public but only run if the correct MAC is supplied by the manufacturer.

HVM compiles the HDL into a bitstream, generates its MAC using the FPGA’s

authentication key, and delivers the MAC to the voting authority.

The voting authority then audits the code to see that there are no biases, back-

doors, or other behaviors that may alter election results; it is prevented from modi-

fying the code because it will produce a different bitstream without a corresponding

MAC. Once satisfied, the voting authority compiles the code into a bitstream iden-

tical to the one used by HVM to compute the MAC. In order for the exact bitstream

to be produced at both sides, the same software version and settings (i.e., cost tables,

optimization efforts, etc.) must be used. Since the bitstream was compiled locally,

the voting authority is assured that the audited HDL resulted in the bitstream it

programs into the FPGA before the elections. Finally, the FPGA must only accept

encrypted bitstreams.

Bitstream authentication also solves bit manipulation of encrypted bitstreams,

as is possible with CBC and counter modes of operation, for example. Relying on

linear error correction and detection codes, such as cyclic redundancy (CRC), for

integrity is not satisfactory because they can be forged such that manipulation is not

detected [166]. (Currently, CRC is used to prevent bitstreams that were accidentally

corrupted in transmission from being activated so short circuits do not occur.)

Hadžić et al. [81] examined the implications of malicious tampering of bitstreams.

Currents from circuit shorts may cause the device to exceed its thermal tolerance,

permanently damaging it. A random-content bitstream may potentially create con-

48

AES
(confiden-

tiality)

AES
(authenti-

city)

MAC
result

bitstream's
MAC

compare

key_auth

key_dec

start or restart

configuration
memory cells

FPGA configuration logic

am
bit-

stream

Figure 2.9: Bitstream authentication scheme [50]. The bitstream is decrypted and authen-
ticated in parallel. The bitstream’s appended and computed MACs are compared; if they
match the start-up sequence executes, otherwise, the configuration memory cells are reset.

siderable contention and is relatively simple to construct (if it is made to be accepted

by the FPGA). Hadžić et al. have proposed several system-level solutions to protect

against the issues they raise, but have not considered authentication, which can

solve all of them.

I propose a generic composition scheme for decryption and authentication of bit-

streams, shown in Figure 2.9 [50]. I eliminated asymmetric cryptography for their

relative high cost in circuit size (for the required throughput), and also authenti-

cated encryption because a good solution would enable the encryption and authen-

tication to be separate (so to enable code audit and key distribution versatility, for

example)12. In Chapter 4, I will present an AES implementation architecture for

processing concurrent bitstreams in different modes, as suggested above. Although

it is not an ASIC implementation, as would be required for integration into the

configuration logic of FPGAs, it does demonstrate the novel use of resources for

multi-stream processing. In Chapter 3, bitstream authentication is considered for

enhancing the security properties of remote configuration updates.

2.3.3 Design theft deterrents

FPGA vendors offer a few cloning deterrents that rely on the bitstream encoding

secrecy to obfuscate secrets. Indeed, they are not cryptographically secure but may

increase the cost of cloning to a level sufficient to some cost-conscious designers, and

intended mostly for low-end devices that do not decrypt bitstreams.

12One of my criteria was that a mode is “approved” by some authority in order for it to be adopt-
able by FPGA vendors. Since the paper’s publication, GCM and GMAC [139, SP800-38D] were
published by NIST, and meet this and other criteria.

49

NVM

FPGA

user logic

configuration logic

RNG

plaintext
bit-

stream

KUL

MAC

KUL

MAC
challenge

responsecomp-
are

processor
with NVMfunction

Figure 2.10: A challenge-response cloning deterrent scheme where a shared key KUL is
stored in an external processor, and also obfuscated in the bitstream. When this bitstream
is loaded onto the FPGA, a random challenge is produced internally and is sent to the
processor, which responds with a MAC of this challenge. An enable signal is asserted if
the internal computation and received response match.

In 2000, Kessner [106] proposed an FPGA bitstream theft deterrent using a

“cryptographically secure variation on a Linear Feedback Shift Register (LFSR)”

(i.e., stream cipher): a user logic application computes a bit-string and compares

its output to a string sent by a complex programmable logic device (CPLD) that

performed the same operation. This lets the application inside of the FPGA “know”

that it is mounted on the “right” circuit board. More recently, Altera [7, WP

M2DSGN] and Xilinx [186, AN780] proposed very similar challenge-response cloning

deterrents, shown in Figure 2.10. The user logic application shares a key KUL with

a processor that is placed beside it on the printed circuit board. The FPGA sends a

challenge produced by a true random number generator to the processor and both

MAC it (using cipher-based MAC, HMAC, etc.) The processor sends the result back

to the FPGA for comparison; if the results match, the application is enabled. For

secure implementation, developers need to be careful such that the random number

generator is not easily influenced by temperature and voltage variations, as well

as consider the potential compromise from readback difference, replay and relay

attacks, as we will discuss in Chapter 6.

In the Spartan-3A device family, Xilinx offers “Device DNA”, a non-volatile,

factory-set, user-logic accessible, 55-bit unique number [186, UG332, p241]. Xilinx

suggests using this number as a “key” for deterrents that use an external device in

similar, or less secure, ways than the ones described above. Since the serial number

is no secret – it can be read by anyone who configures the FPGA – Xilinx proposes

that the attacker’s challenge would be to discover the algorithm used for processing

this number [186, WP266], which goes against Kerckhoffs’ principles [105].

These schemes rely on the continued secrecy of bitstream encoding for secur-

ity, which can provide an incremental challenge to would-be attackers when active

50

measures are not available. We discussed the issues of bitstream reversal in Sec-

tion 2.2.1; unfortunately, we cannot quantify how much protection such schemes

actually provide, and how long this type of protection can last.

2.3.4 Watermarking and fingerprinting

A digital watermark, placed into digital content by its owner, is a hard-to-remove

evidence of ownership that is unnoticeable to an observer; it ties the content to its

creator, owner, or the tool that produced it. A fingerprint is a watermark that is

varied for individual copies, and can be used for identifying individual authorized

users of the content. For example, watermarks can be encoded as human-inaudible

frequencies in audio files, or in the least significant bits of images that affect content

below the sensitivity threshold of human vision. The original content, therefore, is

altered but in ways that are unnoticeable to the user. Ideally, watermarks should be

easy to insert using the software development flow; not affect correct functionality;

use as little resources possible; be unforgeable and hard to remove; and be sufficiently

robust so they can be used as evidence of theft. Kahng et al. [100] provide the

fundamentals of watermarking techniques for integrated circuits and FPGA design

marking; Abdel-Hamid et al. [1] provide a good survey and analysis of watermarking

techniques in general.

Watermarks can be inserted at three stages of the FPGA design flow: HDL,

netlist, or bitstream. HDL watermarks can work for system developers marking

their own designs, but not for externally integrated cores because those marks can

be easily removed. Watermarks in encrypted netlists may work for protecting such

external cores, though the software needs to support an encrypted development flow

in a way that cannot be circumvented. In both HDL- or netlist-level watermarks,

the tool chain must allow the watermark to be preserved throughout the process

of generating a bitstream. Bitstream-level insertion can only be performed by the

system developer; otherwise, bitstreams would require post-processing by the cores

vendor who had no control over the design flow. This is logistically cumbersome,

but may also be impossible without the ability to reverse engineer portion of the

bitstream.

Lach et al. [118] address FPGA bitstream watermarking and fingerprinting for

design protection, suggesting embedding content or functions into unused LUTs

(“additive-based” marking). To avoid an “elimination attack” by colluding recipi-

ents of the same design with differing marks, the authors suggest varying placement

for every bitstream instance. A possible attack against this scheme is to remove

LUT content from unencrypted bitstreams while checking that the design still works

correctly, iteratively removing identifying marks; “masking attacks” are also possi-

ble by inserting random content into all LUTs that are not used. Lach et al. [119]

51

later improved the technique by splitting the watermark into smaller pieces such

that masking attacks are harder. Building on the constraint-based ideas of Kahng

et al. [100], Jain et al. [95] propose placing-and-routing a portion of a completed de-

sign to incorporate design-specific timing constraints as watermarks. This produces

a unique bitstream that can be regenerated given the original HDL and constraints

in order to show ownership. This may work for a complete design rather than the

more desirable marking of individual cores, because a core vendor cannot enforce

constraints through a netlist such that they always produce the same bitstream por-

tion when multiple cores are combined together by the system developer. Le and

Desmedt [121] describe possible attacks on the schemes of Kahng et al. [100] and

Lach et al. [118, 119]; however, the ones relating to LUT-based marks will require

reverse engineering the bitstream, at least partially, so are not as straightforward as

it first seems.

Ziener et al. [191] propose using the LUT content extracted from netlists as a

watermark. Then, LUT content is extracted from a suspected copied bitstream to

statistically determine if an unlicensed core is present; since the LUTs are part of

the functional design, removing them may make the design not work, so it resists

elimination and masking attacks. Ziener and Teich [190] propose using LUT-based

signatures that can be measured through power analysis after an external trigger.

Watermarks are a reactive mechanism and as such do not actually prevent theft,

but may serve as initial evidence in court or trigger further investigation. However,

while it would make a hard case for a criminal to claim that he independently

arrived at an identical copy of artwork such as a photographs or song, it is quite

possible that engineers independently produce very similar code, ones that may

falsely trigger the statistical threshold for fraud in watermarking schemes. (This is

especially true since synthesis tools interpret different HDL descriptions to produce

similar netlists.) Thus, watermarking schemes must be robust enough such that the

probability of this happening is very low. On top of that, reactive mechanisms are

only useful where ownership rights are enforced, further reducing their usefulness.

As counterfeit hardware tends to come from countries where this is not the case,

these mechanisms are less appealing compared to active ones.

Lastly, some watermarking techniques rely on the continued secrecy of bitstream

encoding, opening them to various manipulation attacks that may prevent them

from being used as conclusive evidence in court (more in box on the next page). If

the attacker encrypts the original plaintext watermarked bitstream, the detection

and proof is made more difficult, if possible at all. For all the reasons above, water-

marking may only be useful when it can be conveniently applied and verified, but as

part of an overall active defense mechanism. This will serve as a deterrent and help

protect the watermark from tampering, but also provide evidence that the infringer

52

had to actively attack the system in order to remove it.

2.3.5 Physical unclonable functions

Physical unclonable functions (PUFs) extract unique strings from the physical prop-

erties of objects. Pappu [142] and Pappu et al. [143] introduced physical one-way

functions where the scatter pattern from a laser beam passing through, or reflected

from, a block of epoxy is converted into a bit string unique to that block. Buchanan

et al. [28] use the microscopic arrangement of paper fiber as an identifier, which

turns out to be very reliable, even after moderate physical abuse. Since the PUF’s

output is physically coupled to the item, and is supposed to be unique, it may be

suitable for authentication.

Silicon PUFs (SPUF) were introduced by Gassend et al. [69], Lee et al. [122], and

Lim et al. [126], and rely on uncontrollable variability of integrated circuit manufac-

turing. An “arbiter PUF” is shown in Figure 2.11, where identically designed delay

lines are routed through multiplexers that are controlled by a challenge vector. A sig-

nal edge is split to propagate both routes according to the multiplexers’ setting until

it reaches the sampling register. The response is determined by which signal arrives

first. All possible paths are designed and laid out to have the same propagation

delay, but because integrated circuit fabrication introduces minute uncontrollable

path variations, each instance of the entire structure can be different, so giving a

different result. If m of the structures shown in Figure 2.11 are replicated, challenge

Watermarking in the real world. Anderson [10, ch22.4] puts the legal value
of watermarking in the context of the real world. He observes that intellectual
property lawyers “almost never” have a problem proving ownership using stan-
dard documents and contracts, and that they do not need to resort to technical
means, which end up confusing the jury anyway. Another observation is that
key management should be done with care if keys are to be disclosed in court,
so they do not compromise many other marks.
On a related note for the last point, in June 2009 a U.K. judge ruled in favor
of Halifax Bank after one of its customers sued them for money he lost to
“phantom withdrawals”a. The bank could have provided a cryptographic key
to prove that its customer was at fault, but instead claimed that they cannot
derive the key again, and that disclosing it in court may compromise other
systems (both claims seem to be technically incorrect, by the way). The case
was won by the bank providing an undocumented log sheetb pointing to a few
digits that implicate the cardholder without being required to produce more
concrete evidence, such as a cryptographic key.

a“Chip and PIN on Trial”,
http://www.lightbluetouchpaper.org/2009/04/09/chip-and-pin-on-trial/
bhttp://www.cl.cam.ac.uk/~rja14/Papers/halifax-log.pdf

53

http://www.lightbluetouchpaper.org/2009/04/09/chip-and-pin-on-trial/
http://www.cl.cam.ac.uk/~rja14/Papers/halifax-log.pdf

challenge[n:0]

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

D Q

edge

response

sampling
register

Figure 2.11: “Arbiter PUF” [126]. A signal’s rising edge is split to propagate through
multiplexers controlled by a challenge vector. The result depends on which of the two edges
arrives first. The routes are designed to be identical, though uncontrollable manufacturing
variability causes them to have minute variations in length.

vectors of size n controlling the multiplexers, provide 2n challenges-response pairs of

size m. Results from an implementation of a delay-based PUF variation are reported

by Majzoobi et al. [129].

Suh and Devadas [167] also suggested the “ring oscillator PUF” where many

identical free-running ring oscillators are used to produce unique bitstrings based

on slight delay variations between the oscillators’ inverters. Tuyls et al. [175] have

developed a “coating PUF” which is applied to the surface of a die such that the

coating’s unique dielectric distribution can be measured capacitively from within

the device to extract a key and detect invasive tampering. Guajardo et al. [75] and

Holcomb et al. [88] propose using the initial state of SRAM cells as a source of en-

tropy. This works because manufacturing variability and environmental conditions

cause SRAM cells to initialize to one of the two state on power-up if they are not

actively driven to any particular one. Guajardo et al. reported that large SRAM

blocks within some FPGAs13 can be used for establishing unique keys that may be

used for design protection. Holcomb et al. similarly showed that SRAM device be-

havior can be used for RFID token authentication or for random number generation.

(Note that the goals of PUFs and TRNGs are different: the former needs to produce

consistent results, while the latter is required to be a source of high entropy.)

Ideal PUFs – that is, ones that function as pseudorandom number generators

seeded from strings derived from the physical properties of a circuit – can be very

attractive for the following reasons: creating a model for faking them is hard; derived

keys “exist” on demand; invasive tampering may permanently alter PUF output;

cryptographic keys do not need to be programmed into, or ever leave, the device;

13Oddly, the authors do not specify which FPGA they used, and make rather general claims about
their solution’s applicability to all FPGAs. Since current Xilinx FPGAs initialize BRAM state
in the bitstream, it is likely that they have used the large M-RAM blocks inside of some Altera
FPGAs (only available in Stratix or Stratix II), which are not initialized on configuration [7, Stratix
II Handbook, Volume 2, p32].

54

they are scalable; and finally, they may work with existing FPGAs.

2.3.5.1 Secure processor-code distribution

Some FPGA families incorporate hard-coded embedded sequential processors, while

many others support “soft” processors, such as the Altera Nios and Xilinx MicroB-

laze, which are implemented in user logic. The code for these processors can be

written in a high-level language such as C, with the compiled code stored in embed-

ded RAM such that it can be updated without full reconfiguration. Simpson and

Schaumont [155] suggest using PUFs for installing and updating proprietary com-

piled code14 that does not belong to the system developer. Their proposed protocol

authenticates and decrypts code based on keys derived from challenge-response pairs

collected from an embedded PUF, as described in Section 2.3.5. For each FPGA,

the FPGA vendor records a large number of challenge-response pairs from the “PUF

extractor” design running on the FPGA and enrolls those, and the FPGA’s unique

identifier, with a trusted party. Then, cores vendors enroll their compiled code,

together with a unique identifier, with the trusted party. Through several crypto-

graphic exchanges between the principals, the compiled code is encrypted such that

it can only be decrypted and used by FPGAs that can reproduce the correct PUF

response given a particular challenge vector. The scope to which this scheme applies

is limited to the secure distribution of compiled code for embedded processors and

does not apply to cores that use the FPGA’s other user logic resources. Guajardo

et al. [75] suggest enhancements to this protocol (but does not increase its scope)

and also describe an implemented PUF, as discussed in the previous section, which

was originally only simulated by Simpson and Schaumont.

2.3.5.2 PUFs and the FPGA usage model

In order to be practically used as part of a cryptographic application, PUF instan-

tiations must harness sufficient entropy and produce responses consistently across

temperature and voltage variations. In addition, the probability of more than a

single device producing the same response to a given challenge should be demon-

stratively low enough such that a search for matching devices is impractical. Despite

not being able to verify any of the results reported in the literature so far (see more

on reproducibility in Chapter 5), let us now assume that they can be made to work

reliably on FPGAs and consider how they can be used in practice.

The “PUF extractor” circuit needs to be loaded onto the FPGA through the

ordinary configuration interface. If this initial bitstream is not encrypted, security

mechanisms can be circumvented (as we discussed in Section 2.2.1). I call this the

14Simpson and Schaumont [155] and Guajardo et al. [75] use the terms “software” and “IP” inter-
changeably, which can be confusing and misleading; I use “compiled (C) code” for clarity.

55

“initial configuration problem” – if the initial bitstream is not trusted (i.e., can

be reverse engineered, manipulated, downgraded, etc.), then nothing can be truly

trusted beyond that point. As a solution, we may be tempted to suggest that PUF

extractor bitstreams be encrypted and authenticated (as discussed in Sections 2.3.1

and 2.3.2). But if they are, we may realize that if a remote server already knows

the appropriate keys, then PUFs provide little additional value, especially given the

high logistical and resource overhead (i.e., online cryptographic exchanges and logic

resources for the extractor).

An example for a rather contrived FPGA PUF application is Majzoobi et al. [129,

p20]. An FPGA is used as an authentication token, similar to a smartcard, so when

the “owner” sends a correct PIN to a remote server, the server remotely programs

the FPGA with a PUF extractor bitstream, and uses prerecorded challenge-response

pairs to authenticate the FPGA. When the session is done, somehow, the remote

server is able to force the FPGA to erase itself. This simple mechanism is vulnerable

to a range of attacks (some of which are identified by the authors): replay, readback,

man-in-the-middle, reverse engineering, denial-of-service, etc. One solution the au-

thors propose is to encrypt the bitstream. However, if the server already knows the

encryption key embedded in the configuration logic, there are many other ways to

perform an authentication session without a PUF (one is detailed in Chapter 3).

Another example is Guajardo et al. [75] who describe an FPGA “IP protection”

scheme using PUFs, but only dedicate a single sentence to the procedure of how the

FPGA may be configured remotely, and the implications of the FPGA usage model;

this description is too short to be meaningful.

I am aware of two companies that commercially develop PUF-based products,

Verayo and Intrinsic ID15, which spun out of MIT and Philips, respectively. Their

focus seems to be on PUFs for ASICs and RFID devices (as indicated on their web-

sites, April 2009). Both also briefly mention that their technology can be used with

FPGAs (“soft PUF”) for IP protection, but do not provide any further information.

To conclude, I have yet to come across a description of a PUF usage model for design

protection that provides a satisfying security analysis, or make a convincing case to

justify the overheads over other solutions. There may be better ways for achieving

similar design protection goals more practically and reliably.

2.3.6 Evolvable hardware

Modeled after biological evolution, mutated circuits are evaluated based on their

“fitness” scores in an iterative process to achieve desired functionality. Fitness of

a circuit, or portions of it, indicate the degree to which it meets the specifications.

Obviously, reconfigurable devices are a convenient platform for implementing such

15http://www.verayo.com/ and http://www.intrinsic-id.com/

56

http://www.verayo.com/
http://www.intrinsic-id.com/

circuits and they are used in this field quite extensively [73, 152, 153, 168].

The appeal of evolved circuits is that they significantly differ from conventional

ones, and can quickly adapt to new and unexpected conditions. Thompson and

Layzell [169] described “the most bizarre, mysterious” evolved circuit implemented

on a Xilinx XC6216 FPGA. The circuit was meant to distinguish between 1 kHz or

10 kHz input clocks without having a clock of its own. It worked, but remarkably,

the exact way in which the circuit achieved this functionality could not be fully

explained. The research suggests that the correct functionality is specific to the

physical attributes of the individual FPGA it ran on – the same circuit (i.e, bit-

stream) did not function correctly on other FPGAs of the same size and family. If

this can be reliably replicated, it means that we may be able to use evolvable circuits

to derive bitstrings that are unique to individual devices, similarly to PUFs. In a

patent, Donlin and Trimberger [49] suggest doing just that for bitstream protection.

Security based on evolvable circuits may suffer from similar issues discussed

above for PUFs, and be also problematic in the context of reproducible research as

discussed in Chapter 5.

2.3.7 Isolation

Some applications require that functions implemented on the same device be physi-

cally isolated such that sensitive data does not leak between them. This is sometimes

known as “red-black separation” where plaintext (red) is separated from ciphertext

(black) in the same system. Huffmire et al. [90] propose “moats” to isolate cores

and “drawbridges” macros to connect them so individual cores within a multi-core

FPGA design are adequately isolated. The cores are separated by unrouted columns

and rows, and may only communicate through pre-defined connections defined as

a macro. The authors describe a set of tools for bitstream-level verification of the

separation after the moats have been inserted in an ordinary design flow. The moats

are created by prohibiting PAR from placing logic or routes in specified rows and

columns that surround the functional block (the granularity of moats is a CLB).

Each CLB has a routing box that can route to 1, 2, 8 or 16 CLBs away with some

routings that span the whole chip, so depending on the moat’s width, certain route

lengths must also be prohibited from use such that the moats are not “bridged” by

the tools.

Similarly, and likely preceding the research of Huffmire et al., McLean and

Moore [131] reported a collaboration between Xilinx and the U.S. National Sec-

urity Agency (NSA) that yielded a set of tools and macros for isolation in the

Virtex-4 family of FPGAs. The analysis showed that a single CLB column “fence”

is sufficient to provide adequate isolation; connections between isolated functions

was done with pre-defined “bus macros”. Interestingly, the NSA-Xilinx report re-

57

veals that the Virtex-4 FPGA has gone though NSA analysis and was deemed secure

for red-black applications. Additionally, it discusses an internal “security monitor”,

but does not go into implementation details. A Xilinx patent also describes active

(i.e., real-time detection) circuits that monitor separation policy violation between

isolated cores [57].

Brouchier et al. [26] propose a method for bridging the CLB separation by using

a covert channel they call “thermocommunication”. The communication is done

through temperature modulation using ring oscillators, one for transmitting and

another for receiving data. The transmitter needs to be covertly inserted into a

high-security module (“red”) such that a receiver in a low-security module (“black”)

can demodulate, thus violating the multi-level security policy. The authors demon-

strated this to work on a Xilinx Spartan-3 for 1 bit/s throughput. The receiver

requires 200 slices, which is probably big enough to be detected by close inspec-

tion, though given that this is the low-security module, perhaps that is unlikely.

The transmitter’s size is not specified, though it is potentially smaller. The only

problems that remain are operational: how does one insert a Trojan circuit into an

NSA module without being detected, how and when are the circuits activated, and

how is the leaked data transmitted out? (Anderson et al. [9, p8] call these problems

“location, preparation, trigger, and control”.)

2.4 Conclusion

Since the late 1990s we have seen volatile FPGAs advance from simple logic de-

vices to large, complex, “systems on a chip”; designing with these devices requires

specialization and substantial investment. This chapter has aimed to capture the

current state for the “FPGA security” field and provide the foundations for future

discussions and for following chapters. In 2001, Kean [102] summarized: “Lack of

design security has long been the skeleton lurking in the closet of the SRAM FPGA

industry.” As we have seen, there are still many open problems and items to explore

for enhancing the security of FPGAs and designs made for them.

58

Chapter 3

Secure remote reconfiguration

Networked FPGA-based systems gain functional flexibility if remote configuration

updates are possible. Despite FPGAs having had the potential for “field repro-

grammability” since they became available, methods for performing secure field up-

dates over public networks have not been explored. The question of how to secure

updates against malicious interference may seem easily answered at first glance:

many existing cryptographic authentication protocols protect the confidentiality,

integrity and authenticity of transactions, such as overwriting a file in a remote

computer. Those can be easily applied if the FPGA is merely a peripheral device

in a larger system and the remote update of its configuration bitstream is handled

entirely by software running on the system’s main processor. In this work, however,

we consider the cases where a separate main processor is not present or is untrust-

worthy, and where only the FPGA and the applications it is running are responsible

for securing updates.

Two properties of volatile FPGAs are problematic under these conditions: they

lack sufficient memory for storing more than a single configuration at one time, and

they retain no configuration state between power-cycles. These properties, in turn,

have two main implications. Firstly, FPGAs have no notion of the “freshness” of

received configuration data, so they have no mechanism for rejecting revoked config-

uration content. Secondly, unless a trusted path is established with devices around

the FPGA (such as non-volatile memory), they have no temporary memory to store

the bitstream while it is being authenticated or decrypted before being loaded into

configuration memory. In other words, merely initiating a reconfiguration will de-

stroy the current state.

The primary observation we make is that the FPGA user logic can be used to per-

form security operations on the bitstream before it is stored in external non-volatile

memory (NVM) and loaded into the FPGA’s configuration memory cells. We then

rely on system-level properties, such as tamper proofing and remote attestation, to

compensate for the lack of cryptographic capabilities and non-volatile memory in

59

insecure

channel

update
server (US)

NVM
FPGA

user logic (UL) bitstream
storage
'slots'

DATA

ADDRconfiguration
logic (CL)

update logic nonce

security boundary

Fe, Ve, KUL, KCL

KCL

F, V, KUL

Figure 3.1: An update server (US) installs a new bitstream in a system’s NVM over an
insecure channel by passing it through “update logic” in the FPGA’s user logic (UL). After
reset, the hard-wired configuration logic (CL) loads the new bitstream. (Other parameters
in this figure are described in Table 3.1.)

the FPGA configuration logic. Our solution does not require that FPGA vendors

add any hard-wired circuits to their devices’ configuration logic, and therefore can

be implemented with existing devices.

We first list our assumptions (Section 3.1.1) and then present our secure re-

mote update protocol from the FPGA and server point of view (Sections 3.1.2

and 3.2), which meets the following goals as far as possible: no additions to the

configuration logic; use of user logic; maintenance of bitstream confidentiality and

authenticity (Section 3.3); prevention of denial-of-service attacks; no reliance on

bitstream-encoding obscurity; and, finally, prevention of replay of older, revoked

bitstream versions. We then outline a more robust variant of the protocol for sys-

tems where the NVM can hold multiple configuration files (Section 3.4). Finally, we

discuss the security properties of our protocol (Section 3.5), its implementation con-

siderations (Section 3.6), and place it into the context of related work (Section 3.7).

3.1 Update logic

Our secure update protocol defines an interactive exchange between an update server

(US), the entity in charge of distributing new bitstreams to FPGA systems in the

field, and update logic, the receiving end, implemented in the user logic (UL) of

each FPGA (Figure 3.1). Bitstreams are loaded into configuration memory cells

by the configuration logic (CL), which is hard-wired into the device by the FPGA

vendor (this means that the system developer has no influence over the functionality

it provides). A list of notations, parameters, and commands used throughout the

chapter are summarized in Table 3.1.

60

Global variables and constants

KUL user logic key
KCL configuration logic key
B b-bit buffer for a bitstream block
L number of blocks B per configuration bitstream

Mi, M
′
i MAC values

C command code
R reply message buffer

Server FPGA Local parameters

Fe F FPGA (or remote system) identifier
Ve V bitstream version identifier
– VNVM version identifier of bitstream stored in NVM
Vu – version identifier of uploaded bitstream
– NNVM NVM counter value (nonce)

NUS – nonce generated by update server
Nmax – upper bound for NNVM in each protocol run

Server FPGA Commands / variables

GetStatus RespondStatus for initiating updates and remote attestation
Update UpdateConfirm commands used for the update processUpdateFinal UpdateFail
Reset ResetConfirm FPGA confirmation before executing a self reset

Table 3.1: Legend for parameters and commands used in the protocols.

3.1.1 Assumptions

We require a unique, non-secret, FPGA identifier F , which the authentication pro-

cess will use to ensure that messages cannot be forwarded to other FPGAs. If an

embedded device ID is available (such as “Device DNA” [186, WP266] in some Xilinx

FPGAs), then that can be used. Alternatively, at the cost of having to change this

parameter for every instance of the bitstream intended for a different FPGA, it can

also be embedded into the bitstream itself.

We require a message-authentication function MACKUL
and (for some cases) a

block cipher function EKUL
implemented in user logic, both of which we assume to

resist cryptanalytic attacks. (Even if we use both notationally with the same key,

we note that it is prudent practice not to use the same key for different purposes and

would in practice use separate derived keys for each function.) The secret key KUL is

stored in the bitstream. It should be unique to each device, so that its compromise

or successful extraction from one device does not help in attacking others.

Device-specific keys can be managed in several ways. For example, KUL can be

independently generated and stored in a device database by the update server. Or, it

could notionally be calculated as KUL = EKM
(F) from the device identifier F using

a master key KM known only to the update server (consult NIST Special Publication

61

800-108 [139] for secure implementation of key derivation functions using pseudoran-

dom functions). As a third example, F could contain a public-key certificate that

the update server uses to securely exchange the secret key KUL with the update

logic. Where the configuration logic also holds a secret key for bitstream processing,

KCL, it could be stored in battery-backed volatile or in non-volatile memory, as long

as it cannot be discovered, for example, through physical attacks or side channel

analysis.

We assume that each FPGA of a given type and size normally loads only bit-

streams of fixed length L× b bits, where b bits is the capacity of a memory block B.

B is a buffer used by the update logic to store incoming bitstream portions before

writing them to the NVM device. The size b must be large enough to guarantee

that the FPGA configuration logic will not load a bitstream from NVM if a block

of size b bits is missing. This is normally ensured if any checksum that the FPGA

configuration logic verifies is entirely contained in the last b bits of the loaded bit-

stream.

The system needs to be online on demand for both update and/or remote at-

testation. Our protocol handles both malicious and accidental (transmission errors,

packet losses, etc.) corruption of data. However, it merely aborts and restarts the

entire session if it detects a violation of data integrity, rather than trying to re-

transmit individual lost data packets. Therefore, for best performance on unreliable

channels, it should be run over an error-correcting protocol layer (TCP, for example),

which does not have to be implemented inside the security boundary. We assume

that the high-level protocol either supports record boundaries for data packets, or

is augmented with a robust way for identifying them.

3.1.2 Protocol

We first focus our discussion on the FPGA side, as this is the half of the protocol

that runs on the more constrained device. It supports a number of different policies

that an update server might choose to implement, as discussed in Section 3.2. Al-

gorithm 1 shows the implementation of the update-logic side of our protocol, which

forms a part of the application that resides in the FPGA user logic.

In addition to the unique FPGA identifier F , the update logic also contains, as

compiled-in constants, the version identifier V 6= 0 of the application bitstream of

which it is a part, and a secret key KUL that is only known to the update server

and update logic.

Each protocol session starts with an initial “GetStatus” message from the up-

date server and a “RespondStatus” reply from the update logic in the FPGA. This

exchange serves two functions. Firstly, both parties exchange numbers that are only

ever used once (“nonces”, e.g. counters, timestamps, random numbers). Their re-

62

Algorithm 1 Update-logic state machine: FPGA

1: VNVM := V
2: Receive(C, Ve, Fe, Nmax, NUS, M0)
3: if C 6= “GetStatus” then goto 2
4: ReadNVMN(NNVM)
5: S := [M0 = MACKUL

(C, Ve, Fe, Nmax, NUS)] ∧
(Ve = V) ∧ (Fe = F) ∧ (NNVM < Nmax)

6: if S then
7: NNVM := NNVM + 1
8: WriteNVMN(NNVM)
9: end if

10: M1 := MACKUL
(“RespondStatus”, V, F, NNVM, VNVM, M0)

11: Send(“RespondStatus”, V, F, NNVM, VNVM, M1)
12: if ¬S then goto 2
13: Receive(C, M ′

0)
14: if M ′

0 6= MACKUL
(C, M1) then goto 2

15: if C = “Update” then
16: VNVM := 0
17: for i := 1 to L do
18: WriteNVMB[i](0)
19: end for
20: for i := 1 to L do
21: Receive(Bi)
22: M ′

i := MACKUL
(Bi, M

′
i−1)

23: if i < L then
24: WriteNVMB[i](Bi)
25: end if
26: end for
27: Receive(“UpdateFinal”, Vu, M2)
28: if M2 = MACKUL

(“UpdateFinal”, Vu, M
′
L) then

29: WriteNVMB[L](BL)
30: VNVM := Vu

31: R := (“UpdateConfirm”)
32: else
33: R := (“UpdateFail”)
34: end if
35: M3 := MACKUL

(R, M2);
36: Send(R, M3)
37: else if C = “Reset” then
38: M2 := MACKUL

(“ResetConfirm”, M ′
0);

39: Send(“ResetConfirm”, M2)
40: ResetFPGA()
41: end if
42: goto 2

63

ception is cryptographically confirmed by the other party in subsequent messages.

Such challenge-response round trips enable each party to verify the freshness of any

subsequent data packet received, and thus protect against replay attacks. The nonce

NUS, generated by the update server, must be an unpredictable random number that

has a negligible chance of ever repeating. This makes it infeasible for attackers to

create a dictionary of FPGA replies. The nonce NNVM contributed by the update

logic is a monotonic counter maintained in NVM (avoiding the difficulties of im-

plementing a reliable and trusted source of randomness or time within the security

boundary). To protect this counter against attempts to overflow it, and also to pro-

tect against attempts to wear out NVM that only lasts a limited number of write

cycles, the update logic will only increment it when authorized to do so by the up-

date server. For this reason, the update server includes in the “GetStatus” message

an upper bound Nmax (of the same unsigned integer type as NNVM) beyond which

the NVM counter must not be incremented in response to this message. The proto-

col cannot proceed past the “RespondStatus” message unless the NVM counter is

incremented.

The second purpose of the initial exchange is to ensure that both parties agree

on values of F and V . The update server sends its expected values Ve and Fe,

and the update logic will not proceed beyond the “RespondStatus” message un-

less these values match its own V and F . This ensures that an attacker cannot

reuse any “GetStatus” message intended for one particular FPGA chip F and in-

stalled bitstream version V on any other such combination. The update server

might know V and F already from a database that holds the state of all fielded

systems. If this information is not available, the update server can gain it in a prior

“GetStatus”/“RespondStatus” exchange, because both values are reported and au-

thenticated in the “RespondStatus” reply.

All protocol messages are authenticated using a message-authentication code

(MAC) computed with the shared secret key KUL. This is done in order to ensure

that an attacker cannot generate any message that has not been issued by the update

server or update logic. In addition, with the exception of the initial “GetStatus”

message, the calculation of the MAC for each message in a protocol session incor-

porates not only all data bits of the message, but also the MAC of the previously

received message. This way, each MAC ensures at any step of the protocol that

both parties agree not only on the content of the current message, but also on the

content of the entire protocol session so far. This mechanism makes it unnecessary

to repeat in messages any data (nonces, version identifiers, etc.) that has been

previously transmitted, because their values are implicitly carried forward in each

message by the MAC chain. Note that in the presentation of Algorithm 1, M , M ′

and B are registers, not arrays, and their indices merely indicate different values

64

that they store during the execution of one protocol session. The indices of NVM

read and write commands (e.g., WriteNVMB[i] and ReadNVMN) indicate addresses.

Any “GetStatus” request results in a “RespondStatus” reply, even without a

correct MAC M0. This is to allow update servers to query F even before knowing

which KUL to apply. However, an incorrect “GetStatus” MAC will prevent the ses-

sion from proceeding beyond the “RespondStatus” reply. This means that anyone

can easily query the bitstream version identifier V from the device. If this is of con-

cern because, for example, it might allow an attacker to quickly scan for vulnerable

old versions in the field, then the value V used in the protocol can be an individually

encrypted version of the actual version number V̂ , as in V = EKUL
(V̂). Whether

this option is used or not does not affect the update-logic implementation of the

protocol, which treats V just as an opaque identifier bitstring.

The protocol can only proceed beyond the “RespondStatus” message if the

update-logic nonce has been incremented and both sides agree on which FPGA

and bitstream version is being updated. If the update server decides to proceed, it

will continue the session with a command that instructs the update logic either to

begin programming a new bitstream into NVM (“Update”), or to reset the FPGA

and reload the bitstream from NVM (“Reset”). The MAC M ′
0 of this command will

depend on the MAC M1 of the preceding “RespondStatus” message, which in turn

depends on the freshly incremented user-logic nonce NNVM, as well as V and F .

Therefore, the verification of M ′
0 ensures the user-logic of both the authenticity and

the freshness of this command, and the same applies to all MAC verifications in the

rest of the session.

The successful authentication of the “Update” command leads to erasing the

entire bitstream from the NVM. From this point on, until all blocks B1 to BL have

been written, the NVM will not contain a valid bitstream. Therefore, there is no

benefit in authenticating each received bitstream data block Bi individually before

writing it into NVM. Instead, we postpone the writing of the last bitstream block

BL into NVM until the “UpdateFinal” command MAC M ′
L that covers the entire

bitstream has been verified. This step is finally confirmed by the update logic in an

“UpdateConfirm” – or in case of failure, “UpdateFail” – message.

If no messages were lost, the update server will receive an authenticated confirma-

tion. “UpdateConfirm” indicates that the “Update” command has been processed,

and its MAC M3 confirms each received data byte, as well as the old and new version

identifiers, FPGA ID, nonces, and any other data exchanged during the session. The

“ResetConfirm” command can only confirm that the reset of the FPGA is about to

take place; any attestation of the successful completion of the reset must be left to

the new bitstream.

65

3.1.3 Recovery from errors

Since a system that can store only a single bitstream in its NVM must not be reset

before all blocks of the bitstream have been uploaded, our protocol also provides an

authenticated status indicator VNVM intended to help recover from protocol sessions

that were aborted due to loss or corruption of messages. After a successful reset,

the update logic sets VNVM := V to indicate the version identifier of the bitstream

stored in NVM. Before the process of erasing and rewriting the NVM begins, it sets

VNVM to the reserved value 0, to indicate the absence of a valid bitstream in NVM.

With message “UpdateFinal”, after the last block BL has been written, the update

logic receives from the update server the version identifier Vu of the bitstream that

has just been uploaded into NVM, and sets register VNVM accordingly. Should the

update session be aborted for any reason, then the update server can always initiate

a new session with a new “GetStatus”/“RespondStatus” exchange. The update

server will learn from the VNVM value in the “RespondStatus” message the current

status of the NVM: whether the old bitstream is still intact, the new bitstream has

been uploaded completely, or it contains no valid bitstream. The update server can

then decide whether to attempt a new upload or perform a reset.

3.2 Update server routines

Algorithm 2 Server-side update routine UpdateServer

1: Fe := Get(“FPGA/system ID”) or ‘0’ if unknown
2: Ve := Get(“current version”, Fe) or ‘0’ if unknown
3: KUL := Get(“update logic key”, Fe, Ve) or ‘0’ if unknown
4: Nmax := Get(“NNVM”, Fe) or ‘0’ if unknown
5: task := “updateAndReset”
6: Handshake

7: while KUL = 0 do
8: EstablishKey

9: end while
10: loop
11: UpdateOrReset

12: end loop

Algorithm 3 Server: subroutine Handshake

1: Generate(NUS)
2: M0 = MACKUL

(“GetStatus”, Ve, Fe, Nmax, NUS)
3: Send(“GetStatus”, Ve, Fe, Nmax, NUS, M0)
4: Receive(“RespondStatus”, V, F, NNVM, VNVM, M1)

66

Algorithm 4 Server-side: EstablishKey

1: Save(Fe, Ve)
2: if (Fe = 0) then Fe := F
3: if (Ve = 0) then Ve := V
4: KUL := Get(“update logic key”, Fe, Ve) or ‘0’ if unknown
5: MacOK := [M1 = MACKUL

(“RespondStatus”, V, F, NNVM, VNVM, M0)]
6: if (¬MacOK) then
7: KUL := 0
8: Restore(Fe, Ve)
9: Handshake

10: end if

Algorithm 2 describes one possible implementation of the update server routine

for performing a bitstream update followed by an authenticated reset command.

Algorithms 3, 4, 5, 6, and 7 describe the Handshake, EstablishKey, UpdateOrReset,

Update, and ResetFPGA subroutines, respectively.

Before describing these routines, we point out their general properties and the

assumptions we make: all variables are global; there are no concurrent updates

from multiple update servers; “Warn”, “Abort”, and “Done” report all variables

(including MACs); each “Receive” also has a timeout counter to indicate possible

dropped messages in either direction; encryption keys have a non-zero value; the

database is updated with new values on successful updates; and, any loop will abort

after n tries.

Algorithm 2, the main routine, starts by retrieving parameters from its database.

If the “Get” operation returns a null, or there is no database, variables are assigned

the value ‘0’. The task that we follow in the description is “updateAndReset”,

though “resetOnly” and “updateOnly” are also possible with the same routines.

Then, the Handshake routine is called, which simply generates a nonce NUS, sends a

computed MAC M0 and listed parameters to the update logic, and finally, receives

response M1.

In cases where the system or FPGA identifier F was unknown at the start,

the appropriate key needs to be established. Based on the parameters received by

Handshake, the EstablishKey routine either retrieves a key from the database or

generates it from a master key. To confirm that this is indeed the correct key for

system F , an exchange of authenticated messages is performed using the Handshake

routine. Transmission errors would cause the routine to fail and repeated until the

response MAC and parameters are correct.

Once KUL has been established, UpdateOrReset is called within a loop. This

serves to get the FPGA update logic to enter a state for receiving a new bitstream

or a reset command. Lines 1 to 18 of Algorithm 5 attempt to replicate a “true”

state of variable S in line 5 of Algorithm 1, by checking all communicated variables.

67

Algorithm 5 Server-side: UpdateOrReset

1: MacOK := [M1 = MACKUL
(“RespondStatus”, V, F, NNVM, VNVM, M0)]

2: while ¬MacOK ∨ (F 6= Fe) ∨ (V 6= Ve) ∨ (NNVM ≥ Nmax) do
3: if MacOK then
4: if (F 6= Fe) then
5: Abort(“FPGA/system ID and key mismatch”)
6: end if
7: if (V 6= Ve) then
8: Warn(“version mismatch”)
9: Ve := V

10: end if
11: if (NNVM ≥ Nmax) then
12: Nmax := NNVM + 1
13: end if
14: end if
15: Handshake

16: MacOK := [M1 = MACKUL
(“RespondStatus”, V, F, NNVM, VNVM, M0)]

17: end while
18: if task = “resetOnly” then
19: ResetFPGA

20: if MacOK then
21: Done
22: end if
23: else if task = “updateOnly” ∨ task = “updateAndReset” then
24: Vu := Get(“new version”, Fe, Ve) or ‘0’ if unknown
25: if Vu = 0 then Done
26: if VNVM = Vu then
27: if task = “updateOnly” then
28: Done
29: else
30: ResetFPGA

31: Ve := VNVM

32: end if
33: else
34: Update

35: if R := “UpdateConfirm” ∧ task = “updateOnly” then Done
36: end if
37: end if
38: Nmax := Nmax + 1
39: Handshake

68

Algorithm 6 Server: subroutine Update

1: M ′
0 := MACKUL

(“Update”, M1)
2: Send(“Update”, M ′

0)
3: for i := 1 to L do
4: M ′

i := MACKUL
(Bi, M

′
i−1)

5: Send(Bi)
6: end for
7: M2 := (“UpdateFinal”, Vu, M

′
L)

8: Send(Vu, M2)
9: Receive(R, M3)

10: MacOK := [(M3 = MACKUL
(R, M2)) ∧R = “UpdateConfirm”]

Algorithm 7 Server: subroutine ResetFPGA

1: M ′
0 := MACKUL

(“Reset”, M1)
2: Send(“Reset”, M ′

0)
3: Receive(“ResetConfirm”, M2)
4: MacOK := [M2 = MACKUL

(“ResetConfirm”, M ′
0)]

The protocol aborts if there is a mismatch for F , but only a warning is issued if V

is incorrect so to allow bitstream updates even if the database is not synchronized

to the currently operating design. If the value of Nmax is not high enough, it is

incremented.

Lines 19–40 perform an update or reset, according to the value of task. If only a

reset is needed, the ResetFPGA is called and the process ends. Otherwise, the routine

checks if an update is needed by comparing VNVM to Vu. The process either ends

if an update is not required, or Update is called to perform the bitstream update;

the routine corresponds to the messages expected by lines 13 to 35 of Algorithm 1.

Notice that we do not check the MAC M3 in this implementation since the subse-

quent Handshake (line 39 of Algorithm 5) will indicate the success of the update.

MAC M3 should be checked if there is a need to distinguish between an update or

the update we have just performed.

3.2.1 Offline operation

We have described an interactive server–FPGA run of the protocol, though it could

also be operated offline. Devices that are not normally online but still need to be

occasionally attended, such as electricity meters, parking meters, or vending ma-

chines, can have their configuration updated as part of regular maintenance. This

works by having a technician carry a small electronic token capable of communi-

cating with the FPGA (e.g., through USB, RS232, TCP, etc.) and have sufficient

non-volatile storage for at least one bitstream and pre-computed MACs. (This to-

ken can be a USB stick with a programmable micro controller, for example.) If we

69

NVM
FPGA

user logic operating
design

DATA

ADDR

configuration logic

MAC

FPGA

user logic
DATA

ADDR

MAC

DEC

NVM

operating
design

encrypted
with

CL: no decryption or authentication CL: decryption without authentication

NNVM NNVM

KCL KCL

DECbuffer
B

buffer
B

configuration logic

F, V, KUL F, V, KUL

FPGA

user logic
DATA

ADDR

MAC

DEC +
MAC

NVM

CL: decryption and authentication

operating
design

encrypted +
authenticated

with

NNVM

KCL KCL

buffer
B

configuration logic

F, V, KUL

Figure 3.2: Scenarios for different configuration logic (CL) capabilities.

assume that the actual and expected values of NNVM are the same, the update server

can pre-compute a complete protocol run and load it onto the token. Then, when

a technician inserts the token into the FPGA system it behaves just like a server,

but instead of computing MACs it sends and compares to stored ones. When the

update is complete, the token performs a handshake (with Nmax = 0) and stores the

“RespondStatus” message and MAC M1 so the server can verify it and synchronize

itself to the status of the FPGA system. Note that since the token is not required to

compute MACs it can be a simple device, but more importantly, it is not required

to store any secret keys.

In the case where NNVM may not be synchronized, the update server may choose

to pre-compute several protocol runs for values of NNVM between the lowest expected

value of NNVM and Nmax. This simply means that the token is now required to have

additional storage for these MACs1.

3.3 Authenticity and confidentiality

As we discussed in Sections 2.3.1 and 2.3.2, some FPGAs can decrypt bitstreams

in their configuration logic, using embedded (or battery-backed) keys, while others

1With task := “updateAndReset”, Algorithm 2 generates six MACs (M0, M0, M ′
0, M2, M0, M ′

0)
and the update logic five MACs (M1, M1, M3, M1, M2). The update logic MACs can be stored
for debug purposes, as well as two additional MACs (M0, M1) for another call of Handshake.

70

lack this capability; we have also discussed proposals for bitstream authentication in

Section 2.3.2. Our protocol can be used with FPGAs that support any combination

of these functions, as shown in Figure 3.2, provided that the user logic compensates

for those functions that are missing.

For confidentiality, bitstreams should always be transmitted encrypted between

the update server and update logic. Where the configuration logic is able to de-

crypt a bitstream while loading it from NVM, the update server can encrypt the

bitstream under a secret key KCL shared with the configuration logic, leaving the

update logic and NVM merely handling ciphertext. If the configuration logic can-

not decrypt, the update server has to encrypt the bitstream under a key derived

from KUL and the user logic has to decrypt each block Bi before writing it to NVM

(using some standard file encryption method, such as cipher-block chaining). If

the configuration logic also supports authentication, the requirements above do not

change; the authentication performed by the update logic is still necessary to prevent

denial-of-service attacks that attempt unauthorized overwriting of NVM content. As

before, the last buffered block BL must contain the MAC of the bitstream that the

configuration logic will verify, such that the bitstream will not load without the

successful verification of M2.

3.4 Multiple NVM slots

NVM devices that provide only a single memory location (“slot”) for storing a

bitstream can seriously limit the reliability of the system. There will be no valid

bitstream stored in the NVM from when the update logic starts erasing the NVM

until it has completed writing the new bitstream. A malicious or accidental inter-

ruption, such as a power failure or a long delay in the transmission of the remaining

bitstream, can leave the system in an unrecoverable state. Such single-slot systems

are, therefore, only advisable where loss of communications or power is unlikely,

such as with local updates with a secure and reliable power source.

Otherwise, the NVM should provide at least two slots, such that it can hold both

the old and the new bitstream simultaneously. The FPGA configuration logic will

then have to scan through these NVM slots until it encounters a valid bitstream.

It will start loading a bitstream from the first slot. If the bitstream is invalid (i.e.,

has an incorrect checksum or MAC), it will load another bitstream from the next

slot, continuing until all slots have been tried or a valid one has been found. The

additional slot is then used during the update as a temporary store, in order to

preserve the currently operating design in case of an update failure. The role of the

two slots – upload area and operating bitstream store – alternate between updates,

depending on how multiple slots are supported by the configuration logic.

71

The update process may be modified as follows. At manufacturing, slot 1 is

loaded with an initial design whose update logic can only write new bitstreams into

the address space of slot 2. Before the VNVM := Vu changeover is made (line 30 of

Algorithm 1), the update logic erases slot 1, which then allows the configuration

logic to find the new bitstream in slot 2 at the next power-up. The new bitstream,

now in slot 2, will write its next bitstream into slot 1, and erases slot 2 when that

update is complete, and so on. If an update is aborted by reset, one slot may contain

a partially uploaded bitstream. If this is slot 1, the configuration logic will fail to

find a correct checksum there and move on to load the old bitstream from slot 2,

from where the update process can then be restarted2. If the partial content is in

slot 2, then the configuration logic will never get there because the bitstream in

slot 1 will be loaded first.

If the configuration logic tells the update logic which slot it came from (through

status registers), then the user logic can simply pick the respective other slot and

there is no need to compile a unique bitstream for each slot. If not, then the update

server must ensure, through remote attestation, that each newly updated bitstream

is compiled to write the next bitstream to the respective other slot. This might be

aided by encoding in V which slot a bitstream was intended for. A third slot may

store a fallback bitstream that is never overwritten, and only loaded if something

goes wrong during the NVM write process without the update logic noticing (e.g.

data corruption between the FPGA and the NVM). This could leave both slot 1

and 2 without a valid bitstream and cause the fallback bitstream to be loaded

from slot 3. Alternatively, the FPGA may always load, as a first configuration, a

bootloader bitstream that controls which slot the next bitstream is loaded from.

Recent FPGAs, such as Virtex-5 [186, UG191 ch8, “Fallback MultiBoot”] or

LatticeECP2/M [120, TN1148, “SPIm Mode”], implement a multi-slot scan in the

configuration logic. Some, including Stratix IV [7, SIV51010-2.0, “Remote System

Upgrade Mode”] or Virtex-5 [186, UG191 ch8, “IPROG Reconfiguration”], provide

a “(re)load bitstream from address X” command register, or bitstream command,

so that a user-designed bootloader bitstream can implement a multi-slot scan and

checksum verification (but such a bootloader itself cannot necessarily be updated

remotely).

Figure 3.3 shows how this can work with a Virtex-5 FPGA. Starting at address 0,

the configuration logic processes a short header and then encounters an address

2An update can be aborted in various places, so as described, a simple scan may not always
work. We have experimented with a Virtex-5 FPGA to test if it can load a complete bitstream
that is stored after an incomplete one in NVM. It failed. We think that this is because the
internal configuration state machine may not be able to recover from abrupt de-synchronization
of configuration data. It would be helpful if FPGA vendors provided a reliable way to do that,
perhaps by using re-synchronization words that are placed in between bitstream slots, and are
never changed during the update process.

72

VNVM ADDR NNVM

bitstream slot 2

SLOT 2 ADDR

bitstream slot 1

SLOT 1 ADDR

IPROG

WBSTAR ADDR WBSTAR address assignment

bitstream header information

0



“goto”
address
WBSTAR

(fixed
bootloader)

Figure 3.3: Memory map for the NVM with two bitstream slots. When the configuration
logic encounters the IPROG command it jumps to address WBSTAR to search for a new
bitstream. This mechanism allows the update logic to change the content of WBSTAR so
bitstreams from any slot are loaded on power-up. The NNVM nonce is stored at the top
address of the NVM so it does not interfere with the loading of bitstreams.

assignment into the WBSTAR register followed by a “goto” command, IPROG.

This causes the configuration logic to jump to that address and continue searching

for a bitstream there. SLOT 1 ADDR and SLOT 2 ADDR are compiled-in parameters in

the update logic, so when an update starts it can read the content of WBSTAR from

the NVM and know from which slot it was loaded from. It now knows to which

slot the new bitstream should be written to as well, and after a successful update

the content of address WBSTAR ADDR is updated with the start address of the new

bitstream’s slot. During the write of the address to NVM, the system will not be

able to recover if power is lost because the configuration logic will not be able to load

a valid bitstream. A possible solution is to use a bootloader that checks the NVM

for valid bitstreams (using CRC, for example, and knowledge of the bitstream size)

before issuing the WBSTAR command. A more expensive alternative for FPGAs

without such multi-slot support is to include a configuration manager device, such

as SystemAce [186, DS080] or a non-volatile PLD, inside of the security boundary.

73

3.5 Analysis

Algorithm 1 alone cannot prevent the configuration logic from loading old bitstreams

from NVM. In order to maintain our security objective of preventing attackers from

operating older and outdated FPGA configurations, we also need to rely on either

tamper proofing or binding the provision of online services to remote attestation.

With Algorithm 1, if attackers can either feed the FPGA with NNVM values of

previously recorded sessions, or have access to its configuration port, they can replay

older bitstreams. Therefore, these interfaces must be protected: the FPGA, NVM

and the interface between them (configuration and read/write) must be contained

within a tamper-proof enclosure. Manufacturing effective tamper-proof enclosures

can be challenging [58, 158], although there are now a number of strong off-the-shelf

solutions available3, such as tamper-sensing membranes and security supervisor chips

that trigger zeroization of keys stored in battery-backed SRAM when penetrated.

That said, protection against highly capable attackers is not necessary for all

applications. Sometimes, it may suffice to deter attackers by using ball-grid ar-

ray packages and routing security-critical signals entirely in internal printed circuit

board layers (“stripline”) without accessible vias (“buried”); some passive compo-

nents can even be embedded or created between internal printed circuit board lay-

ers [39, ch21]. Some manufacturers may not be concerned if a few of their systems

are maliciously downgraded with great effort in a laboratory environment, as long

as the financial damage of the attack remains limited and it is impractical to scale it

up by creating a commercial low-cost kit that allows everyone to repeat the attack

with ease. For example, in consumer electronics, an attractive attack cannot require

risky precision drilling into a printed circuit board or de-soldering a fine-pitch ball-

grid array, especially for relatively expensive consumer products. New stacked-die

products, where the NVM is attached to the top of the FPGA die inside the same

package (such as the Xilinx Spartan-3AN family [186, UG331]) also make tamper

proofing easier.

In some applications, the device’s only use is to provide a service by interacting

with a central server. For those types of products, the provision of the service can

be made conditional to a periodic successful remote attestation of the currently

operating bitstream, in order to render the device inoperable unless it has an up-to-

date bitstream loaded in the NVM. A remote attestation facility can give the service

provider assurances of configuration authenticity even where no tamper proofing

exists, though the system must be periodically online (set-top boxes are a good

example).

3One example of a circuit board enclosure is the “GORE Tamper Respondent Surface Enclosure”,
though we have not personally evaluated its security claims.
http://www.gore.com/MungoBlobs/612/1006/surface_enclosure.pdf

74

http://www.gore.com/MungoBlobs/612/1006/surface_enclosure.pdf

If the bitstream is kept in NVM encrypted under an FPGA-specific key (KCL),

then neither bitstream reverse engineering nor cloning will be possible, even if the

tamper proofing of the NVM link fails. We already assume that such ciphertext

can be observed in transit between the update server and update logic. If the

plaintext bitstream is kept in NVM, because the configuration logic lacks decryption

capability, we rely on NVM tamper-resistance to protect against cloning and the

risk of bitstream reverse engineering. We have already discussed the risk of merely

relying on the obscurity of the bitstream’s syntax for security in Chapter 2.2.1.

Finally, the protocol itself cannot protect the system from attackers that are

able to drop network packets or sever the link between the update server and FPGA

update logic, though it can rely on watchdog timers for detecting such tampering.

It is also possible for attackers to delay packets for a denial-of-service attack. For

example, the “Reset” command from the server to the FPGA can be delayed so as

to cause systems to become unavailable at a critical time (reconfiguration plus the

time it takes for a system to become available can take seconds or even minutes).

Simultaneous reset of large number of systems can also overwhelm a central server

with network traffic4. In order to protect against these attacks, the update logic

may need to have a timer starting at the completion of a bitstream update. If a

reset command does not arrive after a given time, the reset is self induced.

4In 2007, Skype suffered a two-day outage caused by a large number of clients requesting to login
following a Windows patch that required a reboot. “What happened on August 16”,
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html

Tamper proofing challenges. When I discovered that I could circumvent the
most popular PIN entry devices (PEDs) used in the UK with a paper clip [58],
the manufacturers and banks claimed that the attack cannot be industrialized
and that it was too sophisticated. In a private communication I told them
they were wrong in their assessment. A few months later Anup Patel was
convicted of tampering with a large number of PEDsa, and criminals were caught
pretending to be service engineers in an Irish supermarket in order to tamper
with or replace PEDsb; several petrol station attendants were also prosecuted
for allowing tampered PEDs to be installed during their shiftc. The lesson is
that we have to make sure to correctly evaluate both the security of the system,
but also the environment in which it will be used.

a“‘Catch me if you can,’ said student behind biggest chip and PIN fraud”,
http://www.timesonline.co.uk/tol/news/uk/crime/article5034185.ece
b“9,000 credit cards illegally copied in scam on stores”,
http://www.irishtimes.com/newspaper/ireland/2008/0819/1218868120438.html
c“Petrol station worker admits credit card fraud”, http://www.northamptonchron.co.
uk/news/Petrol-station-worker-admits-credit.5156481.jp and “Petrol station cashier
jailed for ‘village of the scammed’ fraud”,http://www.telegraph.co.uk/news/2508757/
Petrol-station-cashier-jailed-for-village-of-the-scammed-fraud.html

75

http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://www.timesonline.co.uk/tol/news/uk/crime/article5034185.ece
http://www.irishtimes.com/newspaper/ireland/2008/0819/1218868120438.html
http://www.northamptonchron.co.uk/news/Petrol-station-worker-admits-credit.5156481.jp
http://www.northamptonchron.co.uk/news/Petrol-station-worker-admits-credit.5156481.jp
http://www.telegraph.co.uk/news/2508757/Petrol-station-cashier-jailed-for-village-of-the-scammed-fraud.html
http://www.telegraph.co.uk/news/2508757/Petrol-station-cashier-jailed-for-village-of-the-scammed-fraud.html

FPGA

AES
CMAC

NVM
NNVM

FIFO
(BRAM)

Flash
control

AES CBC

main
state

control

ICAP
control

comm
control

Figure 3.4: The main components of the update logic. Arrows show data flow, solid for
configuration data input and dashed for command output; for clarity, control signals are
not shown. The multiplexer in the gray box indicates dual-purpose I/Os that are controlled
by the configuration logic during configuration and later by the user logic. AES in CBC
mode may be used for processing encrypted incoming bitstreams when the configuration
logic is not capable of bitstream decryption.

3.6 Implementation considerations

Figure 3.4 shows one possible implementation of the update protocol in user logic;

this can be implemented in “logic”, or using a soft- or hard-core embedded pro-

cessor. FPGA implementations for receiving bitstreams and writing them to an

external non-volatile memory already exist [186, AN441], so are outside the scope

of this chapter. Instead, we will discuss the aspects that affect the security of an

implementation.

3.6.1 Parameter sizes

As the NVM counter NNVM is well protected against overflow attacks by the Nmax

parameter (controlled by the update server), a size of 32 bits appears to be more than

sufficient for most applications. Since an attacker can keep asking for a response

for any value of NUS, it should be large enough to make the creation of a dictionary

of responses that can be replayed impractical. For instance, using a uniformly

distributed 64 bit word for NUS will ensure that an attacker who performs 103 queries

per second will fill less than 10−7 of the dictionary within a decade. MAC values

(M , M ′) of 64 bit length provide an equally generous safety margin to brute-force

upload attempts. Other fields’ sizes (V , F , CMD) depend on the application.

In Section 3.1.1 we defined B as the minimum size of bitstream portion that when

absent would cause the configuration logic not to load the bitstream. Implicitly, it

also meant that B is the size of the buffer for storing the last block BL, before

authenticating the entire bitstream. In practice, however, the size of the buffer can

76

be larger than B, limited only by the availability of embedded RAM in user logic.

Other considerations may be the smallest block size that can be written efficiently

into NVM, and the block size of the MAC’s compression function (some NVM devices

allow block-writes that are faster than writing into individual addresses separately).

A simple way to implement the buffer is to use a BlockRAM-based FIFO connected

to the communication interface (or decryptor output) on one port, and the NVM

interface on the other.

Assuming CMAC [139, SP800-38B] as the MAC function, we should also consider

the “message span” of the MAC key – the maximum amount of blocks that can be

processed with any one key with negligible chance of collisions. Assuming that

each update is followed by a reset, NNVM allows up to 231 updates when Nmax is

incremented by one. The largest Xilinx Virtex-5 FPGA is the LX330 with 82,696,192

bitstream bits [186, UG191, v3.6 t1-4]; conservatively, allowing for future larger

FPGAs, let us assume a size of 227 bits. Thus, each update may consist of up to 220

128-bit input blocks (plus a negligible number of authenticated commands). The

CMAC specification recommends that no more than 248 blocks be processed with

a single key [139, SP800-38B, p13], which, for our application means 248/220 = 228

bitstream updates. It follows that under the (very conservative) conditions above,

a re-key of KUL should occur before the NNVM is exhausted. Re-keying is easy with

our protocol, as each new updated bitstream can contain a new KUL.

The practical limit for the number of updates, however, is likely to be imposed

by the storage media. Typical NOR Flash, for example, is rated for 100 K or 1 M

write cycles (Intel StrataFlash P30 [91] and Spansion S29CD/L5 are examples). If

this limit is of concern we suggest allocating multiple storage addresses for NNVM,

so its range is split (e.g. every 216 increments). The update logic will need to be

able to determine which address to use according to the value of NNVM when it is

read as part of the protocol execution. System developers may also want to create

additional storage slots for when certain amount of updates is exceeded. This could

be done with a large NVM that can store multiple bitstream, though it should be

done with caution in order to avoid the system being left without a valid bitstream,

as we discussed in Section 3.4.

3.7 Related work

The Xilinx “Internet Reconfigurable Logic” initiative from the late 1990s discussed

the potential of remote updates and how they can be performed, though the program

was short lived [186, AN412]. Remote reconfiguration using embedded processors

has also been proposed [186, AN441]. A patent by Trimberger and Conn [173]

5http://www.spansion.com/datasheets/S29CD-J_CL-J_00_B3_e.pdf

77

http://www.spansion.com/datasheets/S29CD-J_CL-J_00_B3_e.pdf

describes a remote update through a modem, an FPGA controller (in addition to

the main FPGA) and “shadow PROMs” for recovery from failed writes. Altera

describes how field updates can be performed for Stratix and Cyclone devices using

a soft processor in the user logic and a hard logic interface using a non-volatile

memory device, with the ability to revert to a “factory bitstream” stored in the

NVM [7, UG SII52008, SIII51012, SIV51010, CIII51012]. However, the security

aspects of remote update are not considered in any of the above.

Castillo et al. [32] propose a mechanism based on an OpenRISC1200 processor

implemented in the user logic, together with an RSA engine for remote config-

uration on every start-up. However, the cryptographic key on which its security

depends is obfuscated in a non-encrypted bitstream stored in the local NVM. Fong

et al. [66] propose a security controller based on the Blowfish cipher for encryp-

tion and CRC for data correctness. Attached to a “Media Interface”, the FPGA is

able to receive updates that are programmed into the configuration logic through

the internal configuration port. The authors point out the possible vulnerabilities

of their scheme: key obfuscation within the bootstrap bitstream, and more signifi-

cantly, lack of data authentication with freshness, which opens the system to replay

attacks. Both the above schemes require an online connection at start-up to receive

the operating bitstream/design, while ours performs a secure remote update once,

stores the bitstream locally, and programs the FPGA at start-up without online

connectivity.

Replay attacks despite bitstream encryption and authentication were described

in my previous work [51, p21], where I suggested adding a non-volatile counter as

a nonce for bitstream authentication, or remote attestation in user logic as coun-

termeasures. Motivated by this, Badrignans et al. [20] proposed additions to the

hard-coded configuration logic in order to prevent replay of old bitstreams. They

use a nonce in the authentication process, in addition to a mechanism for alerting the

developer of its failure. Our solution of using user-logic resources instead of adding

hard-wired configuration logic functionality is more flexible: our update logic can

also update itself in the field. More importantly, our approach can be used with

existing FPGAs, although it can equally benefit from additional security features in

future ones. We also discuss denial-of-service attacks and failed updates, describe

how the system can recover, and specify the detailed behavior of our update logic

in a way that is ready for implementation.

3.8 Conclusions

We have proposed a secure remote update protocol that maintains the confidential-

ity, integrity and freshness of bitstreams to the extent possible. In contrast to other

78

proposals, our solution requires no additions to the configuration logic of existing

FPGAs and uses the user logic for most security functions. The required crypto-

graphic primitives consume some user-logic resources, but they can be reused by

the main application. Even local attackers can be deterred from restoring old and

outdated bitstreams, which the update server may want to suppress (e.g., due to

known vulnerabilities), by tamper proofing the NVM connection.

The update logic proposed here can be implemented either in software on a

soft processor, or as a logic circuit. The design and presentation of our protocol

was influenced by our experience with an ongoing logic-circuit implementation on

a Virtex-5 evaluation board, using the publicly available AES design described in

Chapter 4.

Possible extensions for the protocol presented here include role- and identity-

based access control (beyond the current single role of “update server”), as well as

receiving online partial configuration content at start-up, to be programmed into

memory cells using an internal configuration port.

79

80

Chapter 4

AES in spare logic

4.1 Introduction

The Advanced Encryption Standard (AES) [139, FIPS-197] is a widely used block

cipher with a rich implementation literature for both software and hardware. Most

AES implementations for reconfigurable devices, however, are based on traditional

configurable logic such as flip-flops and lookup tables (LUTs). Here, we focus on

new embedded functions inside of the Xilinx Virtex-5 FPGA [186, UG190], such as

large dual-ported RAMs and digital signal processing (DSP) blocks [186, UG193]

with the goal of minimizing the use of registers and LUTs so that those may be

used for other functions. Our designs are best suited for applications where most

of the traditional user logic is used by other functions, yet embedded memory and

DSP blocks are still available. Moreover, our design principles may be suitable for

transfer to other course-grain logic devices which consist of multi-core processing

units connected to local memory1. We also focus on the use of embedded functional

blocks that have dedicated routing paths between them. By using these dedicated

paths, we implicitly predefine the relative placement of our AES modules and thus

relax the constraints on the router.

We present three different architectures which are optimized for three application

scenarios. An eight-stage pipeline module (AES32), based on a combination of two

36-Kibit2 BlockRAM (BRAM) and four digital signal processing (DSP) blocks, that

outputs a single 32-bit column of an AES round each cycle. For higher throughput,

AES32 is replicated four times for a full AES round with a 128-bit datapath (AES128).

For a fully unrolled version (AES128U), AES128 is replicated ten times, achieving a

throughput of over 50 Gbit/s. We also describe a separate circuit for pre-computing

1One example is the Tilera TILE64 processor family, http://www.tilera.com/
2The unit kibibit, or Kibit for short, equals 210 bits, and is used to avoid the ambiguity of kbit
and Kbit. (See “Definitions of the SI units: The binary prefixes”,
http://physics.nist.gov/cuu/Units/binary.html)

81

http://www.tilera.com/
http://physics.nist.gov/cuu/Units/binary.html

round keys, which can be combined with all three implementations, and report

results from an implementation of the CMAC and CTR modes of operation.

HDL source code and simulation testbenches for the three AES variants and the

CMAC mode of operation are freely available under the “Simplified BSD License”3

from the following URL. We make it available for reuse, evaluation, and reproduction

of the results reported herein:

http://www.cl.cam.ac.uk/~sd410/aes2/ (version 1.0)

4.2 Prior work

Many hardware implementations of AES have been described for FPGAs, ASICs

and software since the U.S. NIST standardized it in 2001. Some are straightforward

implementations of a single AES round or loop-unrolled, pipelined architectures for

FPGAs that use large amounts of user logic [61, 97, 149, 160]. In particular, the

AES 8× 8 S-boxes were mostly implemented in user logic lookup tables (LUT). For

example, Standaert et al. [160] report using 144 4-input-LUTs (4-LUT) for a single

S-box implementation, so using 2,304 LUTs (144 × 16) for a single AES round.

More advanced approaches [33, 35, 132, 160] use embedded memory in FPGAs, but

since capacities were limited in older FPGAs, the majority of implementations only

mapped the 8×8 S-box into the memory while all other AES operations (ShiftRows,

MixColumns and AddRoundKey) were implemented with flip-flops and LUTs.

Reviewing all published AES implementations for FPGAs and ASICs is outside

the scope of this chapter (we refer the interested reader to Järvinen [96]), so we

will only examine the ones that are closely relevant to the work presented here. We

categorize implementations according to performance, resource consumption, and

datapath widths.

Resource optimized: AES implementations designed for area efficiency are

mostly based on an 8-bit datapath and use shared resources for key expansion and

round computations. An example is Good and Benaissa [72] which requires 124

Xilinx Spartan-II 15(-6) slices and two BRAMs of a for 0.0022 Gbit/s encryption

throughput. Small implementations with 32-bit datapath also exist: the AES im-

plementation of Chodowiec and Gaj [35] on a Xilinx Spartan-II 30(-6) consumes

222 slices and 3 embedded Block RAMs for a 0.166 Gbit/s encryption rate. A sim-

ilar concept was implemented by Rouvroy et al. [148] on a Xilinx Spartan-3 50(-4)

with 163 slices and a throughput of 0.208 Gbit/s. Fischer and Drutarovský [65]

reported an AES implementation on an Altera ACEX 1K100(-1) FPGA using the

3“Open Source Initiative OSI – The BSD License:Licensing”,
http://www.opensource.org/licenses/bsd-license.php

82

http://www.cl.cam.ac.uk/~sd410/aes2/
http://www.opensource.org/licenses/bsd-license.php

32-bit T-table technique, which we use as well. Their encryptor/decryptor provides

a throughput of 0.212 Gbit/s using 12 embedded memory blocks and 2,923 “logical

elements” (a combination of one flip-flop and one lookup table).

Balanced: Balanced designs focus on area-time efficiency. In most cases, hard-

ware for handling a single round of AES with a 32- or 128-bit datapath is iteratively

used to compute the required total number of AES rounds (depending on the key

size). Fischer and Drutarovský [65] reported a fast T-table implementation for a

single round on an Altera APEX 1K400(-1) requiring 86 embedded memory blocks

and 845 logical elements for a throughput of 0.750 Gbit/s. Standaert et al. [160] pre-

sented a faster AES round design implemented with 2,257 slices of a Xilinx Virtex-E

3200(-8) for 2.008 Gbit/s throughput. Bulens et al. [30] showed an AES design that

takes advantage of the slice structure and 6-input LUTs of the Virtex-5 without

using embedded RAM or DSP blocks. Other Virtex-5 designs are currently only

available from commercial companies, such as Algotronix [5] and Heliontech [86,

v2.3.3], though implementation details are limited.

High throughput: Architectures for achieving maximum throughput usually

pipeline and unroll the rounds. McLoone and McCanny [132] discuss an AES-128

implementation on a Xilinx Virtex-E 812(-8) and use 2,457 CLBs and 226 block

memories for an encryption rate of 12 Gbit/s. Hodjat and Verbauwhede [87] report

an AES-128 implementation with 21.54 Gbit/s throughput using 5,177 slices and 84

BRAMs on a Xilinx Virtex-II Pro 20(-7) FPGA. Järvinen et al. [97] discusses a high

throughput AES without BRAM use on a Xilinx Virtex-II 2000(-5), at the cost of

additional CLBs: their design consumes 10,750 slices and provides an encryption

rate of 17.8 Gbit/s. Finally, Chaves et al. [33] implements a 34 Gbit/s T-table based

AES with 3,513 Virtex-II Pro 20(-7) slices and 80 BRAMs.

To our knowledge, only few implementations have transferred the software ar-

chitecture based on the T-table to FPGAs [33, 65, 148]. However, due to the large

tables and the restricted memory capacities on those devices, certain functionality

still needs to be encoded in user logic (e.g., the multiplication elimination required

by the last AES round). We provide three implementations that address each of the

design categories mentioned above – low logic resource usage, area-time efficient,

and high-throughput. Our contribution is the first T-table-based AES implemen-

tation that efficiently uses device-specific features, thus minimizing the need for

generic logic elements. In addition, to our knowledge, our contribution is unique in

that it is the first FPGA implementation of cryptographic function that contains

complete source code at publication time, allowing replication of results and reuse

(comparison and reproducibility of FPGA designs is discussed in Chapter 5).

83

4.3 Implementation

Intended for 32-bit architectures, AES can be implemented as a combination of

lookup (T-tables) and XOR operations; Appendix B provides the mathematical

background for this method, as do Daemen and Rijmen [42, s4.2] and Gladman [71].

Now we show how to adapt this software-oriented approach into modern reconfig-

urable hardware devices in order to achieve high throughput for modest amount

of resources. We use dual-ported 36-Kibit BRAMs, which have independent ad-

dress and data buses for the same stored content, and DSP embedded blocks, which

allow implementation of timing- or resource-critical functions, such as arithmetic

operations on integers or Boolean expressions, that would otherwise be considerably

slower or resource demanding if implemented with traditional logic elements.

DSP blocks were introduced in the Virtex-4 family of FPGAs to perform 18×18

bit integer multiplication along with a 48-bit accumulator, though they were lim-

ited to 24-bit bit-wise logic operations. 48-bit bit-wise logic operations were added

in Virtex-5, and can run at up to 550 MHz, the maximum frequency rating of the

device. The internal datapath of the DSP block is 48 bits wide, except for integer

multiplication. The Virtex-5 DSP blocks come in pairs that span the height of five

configurable logic blocks (CLB); additional pairs can be efficiently cascaded using

dedicated paths to adjacent DSP tiles. A single dual-ported 36-Kibit BRAM also

spans the height of five CLBs and matches the height of the pair of DSP blocks,

with a fast datapath between them. Our initial observation was that the 8- to 32-bit

lookup followed by a 32-bit XOR AES operation perfectly matched this architec-

tural alignment. Based on these primitives, we developed the AES32 module that

outputs one 32-bit AES column every clock cycle (as specified by Equation B.1 in

Appendix B). We have designed it such that it allows efficient placement and routing

of components so it can operate at the maximum device frequency of 550 MHz.

4.3.1 AES32 module

We began with the structure shown in Figure 4.1. Since each column requires

all four T-table lookups, together with their last-round T-table counterparts, that

meant needing to fit eight 8-Kibit T-tables in a single 36-Kibit dual-port RAM. For a

simpler implementation we opted against “reversing” the MixColumns operation for

the last round, and searched for a solution that would enable us to fit all tables into

a single BRAM. We realized that our design can use the fact that all T-tables are

byte-wise transpositions of each other, such that cyclical byte shifting the BRAM

output for T-table T0 produces T1, T2 and T3. Thus, in order to use the entire

BRAM, we can store T0 and T2 together with their last round counterparts T ′0 and

T ′2. Using a single byte circular right rotation (a, b, c, d) → (d, a, b, c), T0 becomes

T1, and T2 becomes T3 and the same for the last round T-tables. In hardware, this

84

DSP DSP DSP DSP

plaintext

ciphertext
key

8K
T0

8K
T0'

8K
T2

8K
T2'

32

3232

32 32 32

8K
T0

8K
T0'

8K
T2

8K
T2'

Col 0 Col 1 Col 2 Col 3

32

dual ported
 ROM

D D D D

8 8 8 8
A A A A

feedback schedule

Figure 4.1: Each dual ported BRAM (functioning as a ROM) contains four T-tables, two
for the first nine rounds, and two for the last one. Each DSP block performs a 32-bit
bit-wise XOR operation. After passing through the four DSP blocks, column results are
fed back as the input to the next round.

requires a 32-bit 2:1 multiplexer at the output of each BRAM with a select signal

from the control logic. For the last round, a control signal is connected to a high

order address bit of the BRAM for switching between regular T-tables and the last

round T-tables: the least significant 8 bits of the address is the input byte ai,j to

the transformation, bit 9 controls the choice between regular and last round T-

table, while address bit 10 chooses between T0 and T2. Thus, two dual-port 36-Kibit

BRAMs with three control bits, and 2:1 32-bit multiplexers allow us to output all

required T-tables for four columns.

Since both BRAM and DSP blocks provide internal input and output registers

for pipelining along the datapath we get these registers for “free” without use of

any user logic registers. At this stage, our design already had six pipeline stages,

but instead of trying to remove them (resulting in fewer resources, but also reduced

throughput), two were added so that two input blocks are processed concurrently

and throughput can be doubled. One of these added stages is the 32-bit register

after the 2:1 multiplexer that shifts the T-tables at the output of the BRAM; these

are the only user logic registers we use for the basic construct, which is shown inside

the dotted line in Figure 4.2.

A full AES operation is implemented by adding feedback scheduling in the data-

path. Combined with BRAM lookups, we assigned a cascade of DSP blocks to

perform the four XOR operations required for computing the AES column output

according to Equation B.1. For feeding in the corresponding ai,j for the lookup

into the BRAM, we added a sequence of three 8-bit loadable shift registers and an

input multiplexer for each column. These 24-bit registers are loaded in sequence,

85

RAM

8

RAM

RAM

RAM

32

32

8

8

8

32

1

2

3

4

plaintext

ciphertext

32

Col 0

32

32

32

Col 1

Col 2

Col 3

key
A:B

A:B

A:B

32
5

6

7

8

<< 8

1

2

3

4

5

6

7

feedback

Figure 4.2: The AES32 iterative round (without control logic). Plaintext is chosen as the
initial input, then output data is fed back through 8-bit shift registers for a complete
AES encryption. Pipeline stage numbers are shown circled. Stage 3 is the output of the
multiplexer choosing between non-shifted data or an 8-bit cyclical right-shift or T0 and
T2, which are turned into T1 and T3, respectively.

the leftmost (C0) on the first cycle, and the one to its right on the next, and so on.

This construct has eight pipeline stages with the following operations (numbers

in parenthesis correspond to circled numbers in Figure 4.2): lookup (1), where the

8-bit to 32-bit T-table lookup is performed within the BRAM; register (2) is the

BRAM output register; transform (3), where T0 and T2 are optionally shifted into

T1 and T3, respectively; DSP input register (4); and ⊕ (5–8), the XOR operation.

Four processing columns (C[0..3]) are staggered as shown in Figure 4.2. As previously

mentioned, the pipeline stages within the shaded areas are part of the BRAM or

DSP blocks, not user logic flip-flops.

Table 4.1 shows the processing of the first plaintext input, and computation of

86

cyc ptext key fback DSP0 DSP1 DSP2 DSP3 out

1 P[0] K[0] ⊕↘
2 P[1] K[1] ⊕↘ ↘

3 P[2] K[2] ⊕↘ ↘ ↘

4 P[3] K[3] ⊕↘ ↘ ↘ ↘

5 P2[0] K2[0] X0 ↘ ↘ ↘ X0

6 P2[1] K2[1] X1 ↘ ↘ X1

7 P2[2] K2[2] X2 ↘ X2

8 P2[3] K2[3] X3 X3

cyc ptext key fback Col0 Col1 Col2 Col3 out

5 P2[0] K2[0] X0 TLU X0

6 P2[1] K2[1] X1 TOR TLU X1

7 P2[2] K2[2] X2 TS TOR TLU X2

8 P2[3] K2[3] X3 DIR TS TOR TLU X3

9 K0[0] X20 ⊕ DIR TS TOR X20

10 K0[1] X21 ⊕ ⊕ DIR TS X21

12 K0[2] X22 ⊕ ⊕ ⊕ DIR X22

13 K0[3] X23 ⊕ ⊕ ⊕ ⊕ X23

14 K20[0] E0 TLU ⊕ ⊕ ⊕ E0

15 K20[0] E1 TOR TLU ⊕ ⊕ E1

16 K20[0] E2 TS TOR TLU ⊕ E2

17 K20[0] E3 DIR TS TS ⊕ E3

18 K1[0] E20 ⊕ DIR TS TOR E20

19 K2[1] E21 ⊕ ⊕ DIR TS E21

20 K3[2] E22 ⊕ ⊕ ⊕ DIR E22

Table 4.1: The top part of the table shows the input of plaintext and the operation of
the DSPs. DSP0 performs a 32-bit XOR on the input P[0..3] and the main key K[0..3]; the
output (X[0..3]) propagates unchanged through the other DSP blocks. The bottom table
shows X[0..3] being processed for an AES round. The stages are: table lookup (TLU); table
output register (TOR); T-table shift (TS); DSP input register (DIR); and, DSP XOR ⊕.
The outputs E[0..3] are used as input to the next round, and so on. The gray inputs and
outputs show the second input block that is possible. (The overlap between the two parts
is shown by dotted lines).

the first round. The input is operated on as four 32-bit words, each XOR’d with

the main key by DSP0. The output of the operation, X[0..3], propagates through

the other DSPs without change (by resetting their A:B inputs to ‘0’). Each of these

32-bit outputs is then used as feedback to the columns: X0 for the feedback registers

of Col0, X1 for Col1, and so on. The Verilog code for the exact feedback network

is shown in Figure 4.3, and Equation B.1 defines the order. E[0..3] are the outputs

of the first round, which are fed back for the second round, and so on. The grayed

inputs and outputs in Table 4.1 show the second independent 128-bit input that

87

module aes32_dsp_8p_fb_con (

input wire CLK,
input wire [31:00] DIN, // feedback input
input wire [01:00] CTRL, // column control
output wire [31:00] DOUT);

reg [23:00] c0,c1,c2,c3;

wire [07:00] c0_out, c0_1, c0_2;
wire [07:00] c1_out, c1_1, c1_2;
wire [07:00] c2_out, c2_1, c2_2;
wire [07:00] c3_out, c3_1, c3_2;

assign DOUT = {c0_out, c1_out, c2_out, c3_out};

assign c0_out = (CTRL[1:0] == 2’b00) ? DIN[31:24] : c0[07:00];
assign c0_1 = (CTRL[1:0] == 2’b00) ? DIN[07:00] : c0[15:08];
assign c0_2 = (CTRL[1:0] == 2’b00) ? DIN[15:08] : c0[23:16];

assign c1_out = (CTRL[1:0] == 2’b01) ? DIN[23:16] : c1[07:00];
assign c1_1 = (CTRL[1:0] == 2’b01) ? DIN[31:24] : c1[15:08];
assign c1_2 = (CTRL[1:0] == 2’b01) ? DIN[07:00] : c1[23:16];

assign c2_out = (CTRL[1:0] == 2’b10) ? DIN[15:08] : c2[07:00];
assign c2_1 = (CTRL[1:0] == 2’b10) ? DIN[23:16] : c2[15:08];
assign c2_2 = (CTRL[1:0] == 2’b10) ? DIN[31:24] : c2[23:16];

assign c3_out = (CTRL[1:0] == 2’b11) ? DIN[07:00] : c3[07:00];
assign c3_1 = (CTRL[1:0] == 2’b11) ? DIN[15:08] : c3[15:08];
assign c3_2 = (CTRL[1:0] == 2’b11) ? DIN[23:16] : c3[23:16];

always @(posedge CLK) begin
c0 <= {DIN[23:16], c0_2, c0_1};
c1 <= {DIN[15:08], c1_2, c1_1};
c2 <= {DIN[07:00], c2_2, c2_1};
c3 <= {DIN[31:24], c3_2, c3_1};

end

endmodule

Figure 4.3: Verilog code for the AES32 feedback network.

can be used with the same circuit; that is, for each column entry there is another

operation performed for the second input.

Finally, we also tried a different datapath using the same basic structure, but

instead of feeding the output of each DSP to the one on its right, the data is fed back

into the same DSP, and then XOR’d with the new T-table input. This, however,

requires the input of a key to each DSP block, extra control logic, dynamic change

of DSP operating modes, and a 32-bit 4:1 mux to choose between the output of each

DSP for the feedback schedule. All those introduced additional delays when routed,

so performance was poorer than the alternative previously described.

4.3.2 AES128 and AES128U modules

AES32 can be replicated four times for a 128-bit datapath: for each instance, the

feedback network is replaced with 8-, 16-, and 24-bit registers for columns 1, 2 and 3,

respectively. The first of four instances is shown in Figure 4.4: one byte is fed back

to the same instance while three bytes are distributed to the other three instances;

Verilog code for the feedback schedule shown in Figure 4.5. The latency of this

88

RAM

8

RAM

RAM

RAM

32

8 8 8

24

plaintext

32

key

32

32

32

32

ciphertext

Col 0

Col 1

Col 2

Col 3

128128

32
128

Col 0

Figure 4.4: Four instances of this structure perform a full AES round (AES128). Except
for the input to C0, each column receives the input from the other three instances. The
T-tables are static so the shifting of the BRAMs’ outputs is fixed. The feedback network
is described in Figure 4.5.

circuit is the same as AES32, but allows us to interleave eight 128-bit inputs at any

given time. This is possible because of the eight pipeline stages, where each of the

four instances receives a 32-bit input every clock cycle. In contrast to AES32, the

T-tables can be static so the 32-bit 2:1 multiplexers are no longer required. This

simplifies the datapath between the BRAMs and DSPs since the shifting can be

fixed in routing. The control logic is simple as well, only requiring a 3-bit counter

and a 1-bit control signal to choose the last round T-tables.

Finally, the natural thing to do was to implement a fully unrolled AES design

to achieve maximum throughput. Ten instances of AES128 are connected for an 80-

stage pipeline using 80 BRAMs and 160 DSP blocks. This design does not require

any dynamic control logic and produces 128 bits of output every clock cycle. The

initial XOR of the input block with the main key is performed in LUTs, though it

can be done by adding one to four DSP blocks (the number will affect the latency).

Note that for AES128U, the main key and sub-keys were statically encoded in the

design, so did not require additional 128 I/O pins.

89

module aes128_dsp_fb_con (

input CLK,
input [127:00] DIN,
output [127:00] DOUT);

reg [07:00] e0_c1, e1_c1, e2_c1, e3_c1;
reg [15:00] e0_c2, e1_c2, e2_c2, e3_c2;
reg [23:00] e0_c3, e1_c3, e2_c3, e3_c3;

assign DOUT[127:96] = {DIN[127:120], e0_c1[07:00], e0_c2[15:08],
e0_c3[23:16];

assign DOUT[095:64] = {DIN[95:88], e1_c1[07:00], e1_c2[15:08],
e1_c3[23:16];

assign DOUT[063:32] = {DIN[63:56], e2_c1[07:00], e2_c2[15:08],
e2_c3[23:16];

assign DOUT[031:00] = {DIN[31:24], e3_c1[07:00], e3_c2[15:08],
e3_c3[23:16];

always @(posedge CLK) begin
e0_c1 <= DIN[87:80];
e1_c1 <= DIN[55:48];
e2_c1 <= DIN[23:16];
e3_c1 <= DIN[119:112];

e0_c2 <= {e0_c2[07:00],DIN[47:40]};
e1_c2 <= {e1_c2[07:00],DIN[15:08]};
e2_c2 <= {e2_c2[07:00],DIN[111:104]};
e3_c2 <= {e3_c2[07:00],DIN[79:72]};

e0_c3 <= {e0_c3[15:00],DIN[07:00]};
e1_c3 <= {e1_c3[15:00],DIN[103:96]};
e2_c3 <= {e2_c3[15:00],DIN[71:64]};
e3_c3 <= {e3_c3[15:00],DIN[39:32]};

end

endmodule

Figure 4.5: Verilog code for the AES128 feedback network.

4.3.3 Decryption

Decryption lookup tables (I-tables) are different from the ones for encryption. Again,

we can use the fact that each T-table can be converted into any other by circular

shifting the appropriate number of bytes. For AES32, this requires replacing the 32-

bit 2:1 mux at the output of the BRAM with a 4:1 mux such that all possible byte

shifting is possible, and loading the BRAMs with Ti, T ′i , Ii and I ′i. Alternatively,

the content of the BRAMs can be dynamically reconfigured with the decryption or

encryption tables; this can be done from an external source, or even from within

the FPGA using the internal configuration access port (ICAP) [186, UG191] with a

storage BRAM to reload content through the BRAM data input port. For AES128 we

can store T0, T ′0′ , I0 and I ′0 and shift by routing, so both decryption and encryption

can be supported in the same circuit.

An implementation of the decryption circuit and a simulation testbench are also

available at the URL above. Two modifications to the inputs are required, however.

Firstly, input columns 3 and 1 are swapped, as defined in Section B.1 (output

columns are swapped as well), and secondly, the key schedule needs to perform the

inverse of MixColumns on the subkeys of subkeys 1 to 9.

90

DIN

ADDR

WE

DOUT

DIN

ADDR

WE

DOUT

control
logic

instructions

key output32

8

8

12

32

10 A

B

Figure 4.6: Block diagram of key expansion implementation. The S-boxes, round constants
and 32-bit subkeys are stored in the dual-port BRAM connected to an 8-bit datapath.
Unused memory in the BRAM is used to encode 32-bit instructions for the state machine.

4.3.4 Key expansion

A dual-ported BRAM stores the expanded 32-bit subkeys (44 words for AES-128),

the round constants (10 32 bit values) and S-box entries with 8 bits each. A block

diagram of the implementation is shown in Figure 4.6: port A of the BRAM is 32

bits wide and feeds the subkeys to the AES module, while port B is configured for 8-

bit data I/O. With an 8-bit multiplexer, register and XOR connected to port B data

output, this circuit can compute the full key expansion (described in Section B.2).

The key expansion circuit requires a complex state machine whose control logic

is likely to become the critical path, so we encode it in the spare storage of a BRAM.

Recall that the BRAM provides 36-Kibits of memory of which 1,408 to 1,920 bits

are required for subkeys (for AES-128 and AES-256, respectively), 2,048 bits for

S-box entries and 80 bits for round constants, so the BRAM is not completely full.

Therefore, to save user logic resources, all memory addresses and control logic signals

are encoded as 32-bit instructions and stored in the unused part of the BRAM. This

method also ensures constant and uniform signal propagation for all control signals

since they do not need to be generated by combinatorial logic.

4.4 Results

Our designs target a Virtex-5 SX50T4 (FF1136 package) FPGA at its fastest speed

grade (-3) using the ISE 10.1i.03 implementation flow with Xilinx Synthesis Tech-

nology (XST). We used Mentor Graphics ModelSim 6.2g for both behavioral and

post place-and-route simulation, under nominal conditions for core voltage (0.95 V)

4We chose the SX50T because it is the smallest that can accommodate all three variants of our
design; this makes our reporting consistent. Note that while the SX35T has enough logic resources,
it has insufficient number of I/Os.

91

design
dec/ datapath/ resources f perf.
key streams slices LUT FF BRAM DSP MHz Gbit/s

AES32 ◦/◦ 32/2 107 320 257 2 4 550 1.67
AES128 ◦/◦ 128/8 259 338 624 8 16 550 6.7
AES128U •/◦ 128/80 321 738 1,031 80 160 413 52.8
Algotronix ◦/◦ 32/2 161 n/a n/a 2 0 250 0.8
Helion ◦/• 128/1 349 n/a n/a 0 0 350 4.07
Bulens et al. ◦/• 128/1 400 n/a n/a 0 0 350 4.1

Table 4.2: Our results, with other related academic and commercial implementations on
Virtex-5 devices. Decryption (Dec.) and Key expansion (Key) are included when denoted
by •, by ◦ otherwise. For AES32 and AES128 implementations, decryption can be achieved
by adding 32-bit muxes in the datapath between BRAM and DSP. Other Virtex-5 AES
implementations are listed for reference, and we do not make a direct comparison to them;
see Chapter 5 for a discussion.

and temperature (85 ℃), using minimum delay data (netgen option -s min). We

did not verify the designs on an actual device, except for the CMAC implementation

described in Section 4.5.1.

XFLOW [188, ch25] was used as an implementation wrapper for the ISE flow5:

we used xst verilog.opt for synthesis and high effort.opt as the basis for the

implementation, and customizing them for best results (i.e., effort levels, optimiza-

tion techniques, etc.) We used “multi-pass place-and-route” options -t 1 (starting

seed number) and -n 100 (the number of seeds to try), and raised the PAR effort to

-o high, such that each design was implemented using a hundred PAR seeds6, and

the best result is reported here7. The only constraint given to the tools was for the

minimum clock period (NET CLK PERIOD = 1.818 ns, for example). (That is, no

other logical function was implemented together with the respective AES module,

and no restriction on I/O and resources placement was made.)

Results are summarized in Table 4.2. AES32, as shown in Figure 4.2, passed

timing (post place-and-route) for a frequency of 550 MHz, the maximum frequency

rating of the device. The design requires the following resources: 257 flip-flops, 96

(8·3·4) for the input shift registers plus 128 (4·32) for the pipeline stages in between

the BRAMs and DSPs, with the rest used for control logic; 320 lookup tables,

mostly functioning as multiplexers; and finally, two 36-Kibit dual-port BRAM (32-

Kibit used in each) and four DSP48E blocks. Throughput is calculated as follows:

given that there are 84 processing cycles (80 for round operations and 4 for input)

5XFLOW is an ISE tool; a typical command is: xflow -p xc5vsx50tff1136-3 -synth xst-
verilog.opt -implement high effort.opt -config bitgen.opt <design>.v where the op-
tion files are pre-defined, but can be edited for custom settings.
6These are called “cost tables” by Xilinx, and they introduce variability to the PAR process so
designs meet their timing goals; we discuss these in Chapter 5.
7Results that exceeded the maximum frequency rating of the FPGA (550 MHz) were capped to
that frequency; in some cases, the best results are outliers, and we will discuss this at length in
Chapter 5.

92

Key
expansion

Resources f Cycles
slices LUT FF BRAM DSPs (MHz)

AES-128
37 55 41 1 0 550

524
AES-192 628
AES-256 732

Table 4.3: Implementation results for the AES key expansion design. Most state machine
control logic has been encoded into a BRAM to save logic resources.

operating at 550 MHz and 256 bits of state in the pipeline stages, 550 ·106 ·256/84 =

1.67 Gbit/s of throughput is achieved. This assumes that the pipeline stages are

always full, meaning that the module is processing two 128-bit inputs at any given

time; if only one input is processed, throughput is halved. As mentioned, the eight

stages allow interleaving of two inputs, though the designer can remove stages in

order to reduce resources (the pipeline registers between the BRAMs and DSPs

consume the most logic resources; others are part of the embedded primitive). This,

of course, may reduce performance, so there is a trade-off that needs to be evaluated

according to target performance.

The maximum operating frequency for AES128 is also 550 MHz, which requires

624 flip-flops, 338 lookup tables, 8 36-Kibit BRAMs (32-Kibit used in each), and

16 DSP48E blocks. The latency of 84 clock cycles is the same as the previous

design, though now we maintain state of 128 · 8 = 1024 bits for a throughput of

550 ·106 ·8 ·128/84 = 6.7 Gbit/s when processing eight input blocks. As with AES32,

pipeline stages can be removed to minimize the use of logic resources if they are

required for other functions at the expense of throughput.

Finally, the AES128U implementation produces 128 bits of output every clock

cycle once the initial latency is complete. We have experimented with eliminating the

pipeline stage between the BRAM and DSP to see if it adversely affects performance;

this will save us 5,120 registers. We found that the performance degradation is low,

with the added benefit of having an initial latency of only 70 clock cycles instead

of 80 (in principle, this could also be done also for AES128, but then only seven

streams can be processed concurrently). The resulting throughput is 413 ·106 ·128 =

52.8 Gbit/s. This design operates at a maximum frequency of over 413 MHz and uses

1,031 flip-flops, 738 lookup tables, 80 36-Kibit BRAMs (only 16-Kibit in each for

either encryption or decryption, or 32-Kibit for both), and 160 DSP48E blocks. The

design only uses 3.2% and 2.3% of flip-flops and LUTs of the SX50T, respectively,

though 60% of BRAMs and 55% of DSP48Es are used.

The reported results are based on the assumption that the set of subkeys are

externally provided through the I/O (AES32 and AES128), or are statically encoded

in the design (AES128U). Where all subkeys are generated internally, these modules

can be augmented with a key expansion stage pre-computing all subkeys and stor-

93

EK EK EK

M1 M2 Mn

K or K

MACC1 C2

1 2

EK

Mn-1

Cn-1

Figure 4.7: CMAC mode of operation. The choice of K1 or K2 is determined by if Mn is
a complete block or not.

ing them in a dedicated BRAM. As discussed in Section 4.3.4, the key expansion

circuit is optimized for a small footprint and allows operation at the maximum de-

vice frequency of 550 MHz. The complexity of the state machine, which is the most

expensive part in terms of logic, is mostly hidden within the encoded 32-bit instruc-

tions stored in the BRAM. Hence, since only a small stub of the state machine is

implemented in logic, the overall resource consumption of the full key expansion is

only 1 BRAM, 55 LUTs and 41 flip-flops. Table 4.3 summarizes these results, with

support for key sizes of 128, 192 and 256 bits.

4.5 Extensions

We have discussed three pipelined architectures for AES that support simultaneous

encryption of 2, 8, and 80 128-bit input blocks in electronic codebook (ECB) mode.

We now consider other block-cipher modes of operation that use AES encryption as

a building block and fit well into our design architecture.

4.5.1 Message authentication: CMAC

Besides encryption, the CBC mode can be used to produce a message authentication

code (CBC-MAC) by simply discarding all ciphertext blocks except the last one.

CBC-MAC is known to be vulnerable to message extension attacks where the length

of the message is not fixed or checked. To deal with these shortcomings, NIST has

defined the CMAC mode [139, 800-38B], where a derivative of the key is applied

before the last AES invocation; the basic CMAC construct is shown in Figure 4.7.

CMAC’s last AES invocation is unique in that it requires an extra XOR of

one of two keys, K1 or K2, with Mn ⊕ Cn−1. If the entire message divides evenly

into n blocks, then K1 is used, otherwise Mn is appended with a predetermined

suffix to create a complete block, and K2 is used. Although we do not consider

94

RAM

8

RAM

RAM

RAM

32

32

8

8

8

32

plaintext

ciphertext

32

Col 0

32

32

32

Col 1

Col 2

Col 3

key A:B

A:B

A:B

32

32

Figure 4.8: Additions made to AES32 for CMAC operation. Three 32-bit registers are
added in order to keep the output in between AES invocations and are XOR’d with the
next plaintext block and initial key of the first round. The input “key” is expected to
receive all AES subkeys and K1/K2 at the appropriate time; their generation and the
message block padding are not part of the design.

it in the implementation, we provide the generation description of K1 and K2 for

completeness:

K1 = MSB(L) ? (L� 1) ⊕ R : (L� 1)

K2 = MSB(K1) ? (K1 � 1) ⊕ R : (K1 � 1),

where L = Ek(0128) (an AES encryption of the zero vector under the main key), and

R = 012010000111; MSB indicates “most significant bit”.

Our implementation is shown in Figure 4.8. The inputs to the design are plain-

text blocks M1...n, keys, and feedback, which is the output of column three. As with

AES32, the feedback is used as input to the four columns between round iterations,

though now it is also fed back as the input for subsequent AES invocations. First,

plaintext M1 is sent through the two multiplexers and XOR’d with the main AES

key; the result is propagated through the rest of the DSP blocks while their A : B

inputs are held at reset. The output is then fed back to the top input registers and

ten AES rounds are performed using the round keys as described in Section 4.3.1.

95

The ciphertext output C1 is then XOR’d with M2 before another invocation of AES

occurs. Prior to the last invocation of AES an extra feedback cycle is performed for

the K1 or K2 XOR operation.

Notice that in Figure 4.8 the delayed feedback is used as an input to two 32-bit

multiplexers. The reason for this is that the feedback needs to be XOR’d with both

the key and the plaintext, as in the last AES invocation, ((Cn−1⊕Mn)⊕K1/2)⊕KAES.

In addition to the input muxes, three 32-bit registers keep the state of the output

feedback as the pipeline stages are being cleared.

As before, two independent streams can be interleaved. If the same input is used

for both streams, a MAC and CBC/ECB output can be generated concurrently. If

decryption is added to the design with the required additional shifts, as discussed in

Section 4.3.3, then decryption and MAC-generation can be performed in the same

run. The only difference is that for encryption and decryption K1 and K2 will need

to be set to zero, and intermediate values of Ci are output, while they are not when

producing a MAC. (Remember that for security, MAC and ciphertext should not be

produced using the same key.)

We have optimized the implementation for maximal use of the pipeline stages.

First, the initial XOR of the key and plaintext message is performed, and the first

output for feedback appears after six cycles (two for input registers and four to

propagate through the DSP48E blocks). Then, 80 additional cycles complete the

first AES invocation. KAES ⊕ (Cn−1 ⊕Mn) requires 16 cycles (eight for each XOR)

with two additional pipeline cycles at the end. Thus, for N input blocks (if the

message is empty then N = 1), a MAC is produced every

(6 + 80) + (N − 2)(16 + 80) + (16 + 8 + 80) + 2 = 96 ·N

cycles. For example, for N = 4 a MAC is computed every 384 cycles.

The design achieves a maximum frequency of 511 MHz (under the the same im-

plementation conditions as the other variants) and requires 357 registers, 457 LUTs

(in 205 slices) that include input registers for data and keys; as before, the design

uses two 36 KB dual-ported BRAMs and four DSP48Es, and was simulated at both

the behavioral and post place-and-route stages. The throughput is dependent on N

and with 511 MHz operation comes to 511·106 ·256/96/N , so for N = 1, 1.362 Gbit/s

for two interleaved streams.

4.5.2 CTR and CCM modes

Our modules can be used with other modes of operation. Counter mode [139, 800-

38A] requires a fast counter of up to 128 bits in width. The carry propagation delay

of such a wide counter implemented in user logic will limit performance, so a cas-

cade of DSP blocks is used instead (shown in Figure 4.9). Virtex-5 devices support

96

AES

increment
carry

carry

324848

128
reset
key

DIN

DOUT

reset

reset

reset

INIT1

INIT2

INIT3

Figure 4.9: CTR mode circuit that is compatible with all three AES modules. Three
adjacent DSP blocks build a 128-bit adder to increment an integer counter.

Design Resources Perf.
slices LUT FF RAM (MHz)

AES32 XOR 212 (1.98) 448 (1.4) 554 (2.15) 2 550
AES128 XOR 624 (2.40) 850 (2.51) 1,776 (2.84) 8 550
AES128U XOR 3,775 (11.76) 5,121 (6.94) 10,652 (10.33) 80 440

Table 4.4: Results when DSPs are replaced with logic (on an SX50T) under the same
conditions as for the results reported in Table 4.2. Numbers in parenthesis indicate increase
multiplier from DSP-based design.

the generation of wide, parallel adders using dedicated carry signals CARRYCAS-

COUT and CARRYCASCIN that can be used to ripple carries through adjacent

DSP blocks. For a 128-bit counter, three adjacent DSP blocks in accumulation

mode are connected – each can add operands of up to 48 bits. Since carry prop-

agation between DSPs occurs on clock edges, alignment using output registers is

required. An implementation of this counter operates at 550 MHz.

In a similar way that CMAC was implemented, the counter with CBC-MAC

(CCM) authenticated encryption mode [139, 800-38C] can be implemented. This

requires two AES operations to be performed in parallel – one for encrypting or

decrypting data and another for creating or verifying a MAC. Thus, with an ad-

ditional encryption counter, it is possible to adapt our modules to provide CCM

authenticated encryption for 1, 4, or 40 individual streams of data.

4.5.3 Replacing DSPs with CLBs

Our design can be modified so that it can be implemented on other architectures. To

do this, the DSP 32-bit bit-wise XOR and internal pipeline registers were replaced

with traditional user logic (AES32 XOR, AES128 XOR, AES128U XOR). The results are

shown in Table 4.4 (simulation and implementation conditions remain the same, and

97

the source code is available at the above URL). Performance is comparable8 to the

DSP versions due to the pipelined nature of the designs and also because the place

and route process is less constrained by not needing to meet the timing imposed by

DSP placement. As expected, flip-flop and LUT usage has increased.

We maintain that under our assumed constraint of scarcity of logic resources,

for which our original designs was meant for, any increase may be a disadvantage.

While the logic-only design is more like the previous implementations discussed in

Section 4.2, it also makes our designs more portable. We also recognize that the

DSPs themselves are underutilized, as they can perform much more than wide bit-

wise operations (we do not use the multiplier, for example). But again, we assumed

that these DSPs were not used in the first place. Any FPGA resource that is not

used is a loss because the system developer paid for it either way; we simply provide

fast AES designs that may fit these unused resources.

4.6 Conclusions

We have presented new ways for performing AES operations at high throughput

using on-chip RAM and DSP blocks with comparatively low use of traditional user

logic such as flip-flops and lookup tables. We have also described and implemented

the CMAC and CTR modes of operation, and a compact key expansion function

for pre-computing keys. The source code for all the three AES variants and CMAC

mode is publicly available so that they can be used in further research, and provide

readers with the ability to reproduce our reported results.

While our results appear to be good, they are admittedly misleading, as the

throughput we – and perhaps other researchers – report will not be achieved in

practice when the modules are used as part of a bigger system. There are several

reasons for this, all discussed in the next chapter.

8As we shall see in Chapter 5, AES128U XOR may perform noticeably better than AES128U DSP if
the clock frequency constraint is set to a higher value. The upper bound for this constraint is
determined by the tools, which warn if it is set to an unachievable value. For consistency, both
versions were executed with the same constraint of 435 MHz.

98

Chapter 5

The meaning and reproducibility

of FPGA results

In this chapter, we discuss the significant performance variability of FPGA designs,

and question the reproducibility of, and comparability with, other published results.

Throughput, a popular measure of performance, is a function of many factors, in-

cluding not only the HDL design itself, but also tool versions, implementation op-

tions, device architecture, and in particular, how connected modules constrain the

design. Throughput alone neither specifies the optimization goal of every design,

nor is such a single figure of merit a fair measure with which to compare, even where

it was the optimization goal.

The peer-review process expects that new contributions be compared with pre-

viously published work. But doing so in a fair, meaningful and reproducible way

is challenging. We first describe a few simple and easy to reproduce experiments

that demonstrate the problem: the substantial variability of commonly reported

and compared figures of merit, such as throughput or maximum clock frequency,

under seemingly trivial changes to the build environment (Section 5.1). We then

discuss what we consider to be good practice in reporting and comparing the perfor-

mance of FPGA implementations and practices that we believe should be avoided,

or at least treated with caution (Section 5.2). We hope that this discussion will

help both authors and reviewers of future FPGA implementations avoid some of the

most common pitfalls when comparing results. As a research community, we have to

recognize the importance of reproducibility as seriously as any other experimental

discipline. See Section 5.4 for some related work.

In spite of our other recommendations on how to report performance results,

we conclude that there ultimately is no substitute for releasing the full source code

and build environment of an implementation, so that other researchers can exactly

reproduce measurements in practice, and rerun them on newer platforms, where

applicable. If we care about reproducible research, we have to treat the source

99

files of the implementation as the primary scholarly contribution, and can count

explanatory papers and measurement results only as a form of advertisement for

the former.

5.1 Demonstration experiments

Since AES implementation has been a particularly active research area in recent

years, we use the AES128 implementation from Chapter 4 as a demonstration ex-

ample. As far as we are aware, of all the many academic publications describing an

FPGA implementation of a cryptographic function to date, Drimer et al. [56] was

the first, and is so far the only, publication to provide a URL in the body of the text

for downloading both the source HDL and instructions for reproducing the reported

results1. Source code and test benches for simulation and reimplementation of all

experiments in this chapter are available at:

http://www.cl.cam.ac.uk/~sd410/aes2/ (version 1.0)

We run each example design with 100 different place-and-route (PAR) seeds2,

thus providing different weights for constraints, placement starting points and other

factors that affect timing (more in text box on the next page). PAR seeds are used

by developers to help them make their designs achieve specific target frequency

performance, but here we use them to illustrate how small perturbations in the

PAR start conditions (also leading to routing changes) affect the performance of

a design, especially when it is “unconstrained”, by which we mean that there are

no other circuit elements competing for available resources. (We do constrain the

design by setting a performance target for the clock frequency; note that different

targets produce varying allocation of logic resources.) We report each run’s “best

case achievable” frequency given by the timing analyzer, and ignore routes from

I/Os for timing.

5.1.1 Application context

Cryptographic primitives, such as AES, are usually part of a bigger design, and are

rarely used in isolation. Most FPGA implementations in the literature, however,

are reported as unconstrained, stand-alone modules. They lack the context of the

application in which they will be used. If a small module occupies a large device,

the tools have more freedom to use the shortest routes available, and so perform

1The closest contender was a 2002 technical report by Weaver and Wawrzynek [182] who provided
AES code, though we found this no longer available.
2Xilinx calls these “cost tables” that can be activated by adding the -t 1 and -n 100 switches
when executing par. Our experiments show that results for each cost table are consistent so that
reproducibility is possible if the same source code is implemented with the same settings.

100

http://www.cl.cam.ac.uk/~sd410/aes2/

better. As more logic needs to be packed into a given resource area, available routing

and resource options become scarce, making it difficult to achieve the same perfor-

mance. The tools are then forced to use less efficient routes, increasing the delay

on the critical path. Therefore, “maximum frequency” results from unconstrained

implementations are useful in a limited way. They indicate the maximum frequency

a module can achieve under the most favorable circumstances, not the one it will

achieve in practice, when embedded into a real application.

Now we demonstrate how implementation conditions affect both the “maximum

frequency” a design can achieve, and the significant variation of results from dif-

ferent seed runs. We have implemented AES128 in two ways. The first is uncon-

strained (same as for the results reported in Chapter 4), and the second is where

four AES128 instances are chained (Figure 5.1). Both designs were implemented for

a Virtex-5 LX110-3 and SX50T-3 FPGAs. The SX50T has 288 DSP blocks and

132 BRAMs [186, DS100, t1] so both designs fit easily. The LX110, however, has

only 64 DSPs and 128 BRAMs, so the DSPs become a scarce resource depriving the

place-and-route algorithm from flexibility otherwise available for a single-instance

Cost tables? The exact ways in which synthesis and PAR algorithms work
in commercial tools are often opaque to the user; “cost tables” are a numeric
abstraction of various placement tweaks the tools make when the engineer tells
them to try harder to achieve better performance. It seems that this technique
in the Xilinx tools originated from NeoCADa (who were later bought by Xilinx),
and while today’s guides are not forthcoming with informationb, older guides
were slightly more revealing. A user guidec for version 3.1i of the Xilinx tools
(circa 1999) elaborates and specifies that

[O]n average, design speed from an arbitrary multiple pass place and
route will vary plus or minus 5% to 10% from the median design speed
across all cost tables. About 1/3 of the cost tables will result in speeds
within 5% of the median, 1/3 in the 5% to 10% range, and 1/3 in the
10% to 15% range. When comparing performance from the absolute
worst cost table to the absolute best, a spread of 25% to 30% is possible.

Kilts [107, s16.9] dedicates a few pages to discuss “placement seeds”, ending
with an interesting observation: if one relies on them to meet timing goals, then
margins are already too tight, as any slight change to the design may cause it
to fail. Thus, this technique should only be used when the design is finalized,
and even then, with caution.

ahttp://www.deepchip.com/posts/0178.html
bSee “note” on page 369, “Development system reference guide 9.2i”,
http://www.xilinx.com/itp/xilinx92/books/docs/dev/dev.pdf
cSee page 3-36 in “Design manager/flow engine guide”,
http://www.xilinx.com/itp/xilinx4/pdf/docs/dmf/dmf.pdf

101

http://www.deepchip.com/posts/0178.html
http://www.xilinx.com/itp/xilinx92/books/docs/dev/dev.pdf
http://www.xilinx.com/itp/xilinx4/pdf/docs/dmf/dmf.pdf

AES
key

plaintext
128 AES AES AES

16x DSP48E 16x DSP48E 16x DSP48E 16x DSP48E

Figure 5.1: Four instances of AES128 are chained to show how results may vary when a
single instance is part of a larger design. (Note that this design was not tested for correct
operation, as it just serves to demonstrate variability.)

implementation. Implementation conditions and settings are identical to the ones

detailed in Section 4.4.

We can make several observations from the results (Figure 5.2). The single

instance implementation on an LX110 (1) varies by over 200 MHz, more than a third

of the entire range (zero to 550 MHz). The SX50T implementation (3), on the other

hand, provides more confidence in a single figure of performance because results

are more concentrated. The reason for this is that DSPs are more abundant and

concentrated in the SX devices than they are in the LX’s. The difference between

the single instance implementation on the two devices (1 and 3) clearly show that the

choice of a family member within a class of FPGAs can significantly affect results.

When designs are constrained (2 and 4), they perform noticeably worse, but results

are more concentrated, providing more confidence in a single figure of performance;

we can see that the most constrained design (2) has the least variance. Given these

results, which is the most accurate single number that best reflects the effective

performance of the design?

The results do not necessarily mean that the design or the development tools

are “bad”, but rather that “results may vary” – that is, the “maximum frequency”

reported for a single PAR run alone is not a good predictor of how the design will

perform under various constraints or conditions. Practically achievable performance

depends on many factors not represented in an unconstrained implementation: tool

versions, I/O placement constraints, etc. In addition to PAR seeds, there are also

“cost tables” for the map process (where resources are allocated for the design ac-

cording to the target performance that is specified).

Even if this particular example design is not representative of all designs, it

serves to show the point. Such dramatic decreases in performance can probably be

avoided if designs are constructed more carefully, but the question remains how to

demonstrate experimentally that predictable performance was achieved. Reporting

the utilization percentage of the device’s resources (or ones available within a par-

tition), and running the design on several device sizes and types of the same family

could provide useful information.

102

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

1 (AES128 LX110-3)

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

2 (AES128 x4 LX110-3)

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

3 (AES128 SX50T-3)

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

4 (AES128 x4 SX50T-3)

300 350 400 450 500 550
maximum clock frequency [MHz]

0
2
4
6
8

10
12
14

co
u
n
t

5 (AES128 SX50T-1)

Figure 5.2: These histograms show the distribution of the maximum achievable frequency
(reported by the timing analysis tool) for place-and-route runs using 100 different PAR
seeds. Histograms 1 and 2 are from a single unconstrained implementation and four
chained instances on an LX110FF1153-3. Histograms 3 and 4 show the same on an
SX50TFF1153-3. And, histogram 5 shows results from a single instance implementation
on SX50TFF1153-1 (slowest speed grade).

There are two more ways to better reflect the practical performance of a mod-

ule. Firstly, careful floorplanning and hand placement of resources into a “relatively

placed macro” (RPM) provides consistent implementation by restricting the PAR

process. Secondly, we can integrate the cryptographic module to be part of an ap-

plication that provides the necessary constraints (required throughput, optimization

criteria, availability of resources, etc.) Here, it is worth pointing out that incompat-

ible throughput between blocks is wasteful. For example, a 100 MHz soft processor

103

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

AES32_DSP

300 350 400 450 500 550
0
2
4
6
8

10
12
14

co
u
n
t

AES128_DSP

300 350 400 450 500 550
maximum clock frequency [MHz]

0
2
4
6
8

10
12
14

co
u
n
t

AES128U_DSP

Figure 5.3: 100 cost table runs for AES32, AES128, and AES128U with DSPs performing the
32-bit XORs.

limiting a high-performance 500 MHz AES module it is attached to usually means

that the AES module is wasting resources, as performance correlates to resource-use

(pipelining, unrolling, etc.), and dynamic power to frequency. In this case, a better

choice would have been to optimize the AES module for 100 MHz operation so it

consumes fewer resources, or have different clock domains for the two modules. In

real-world applications, decreasing resource use is crucial as it could reduce costs

by requiring, for example, a smaller FPGA, which may also decrease circuit board

space and static power consumption.

The “speed grade” of a device indicates the maximum frequency rating of par-

ticular functions inside the FPGA. For example, Virtex-5 currently has three speed

grades: -1 (slowest), -2, and -3 (fastest). Not reporting the target speed grade can

lead to misinterpretation of results. To illustrate the importance of this, we ran

AES128 for a -3 and -1 SX50T; this is shown in histograms 3 and 5 of Figure 5.2.

Figures 5.3 and 5.4 show the results for each of the three implementations re-

ported in Chapter 4, for both the DSP and traditional logic implementations. These

histograms provide context to the single best results that were reported, yet it is still

unclear which one is the most accurate: best, worst, median, or average? For exam-

ple, the performance of AES128U DSP ranges between 290 MHz and 413 MHz with

an average of 357 MHz, so maximum throughput can vary significantly. As others,

104

300 350 400 450 500 550
0

5

10

15

20

co
u
n
t

AES32_XOR

300 350 400 450 500 550
0

5

10

15

20

co
u
n
t

AES128_XOR

300 350 400 450 500 550
maximum clock frequency [MHz]

0

5

10

15

20

co
u
n
t

AES128U_XOR

Figure 5.4: 100 cost table for AES32, AES128, and AES128U with XORs performed by
traditional user logic. The 440 MHz peak may indicates that better results can be had if
the design was not limited by the frequency constraint (435 MHz).

we reported the best results, though we argue that firstly, designs are unlikely to

achieve these results in practice, and secondly, that it is far better to provide results

when there is a target performance dictated by the constraints of a larger applica-

tion. Finally, the results shown in Figure 5.4 show that the significant variability of

results is not a property of the DSPs, but of all types of logic.

5.2 Discussion

5.2.1 Source code

All results should be backed up by source code and instructions on how to reproduce

them. With access to source code many of the issues we discuss could become moot

because anyone can scrutinize the design and extract any information that may be

missing from the paper describing it. We think that reproducible and reusable minor

work (in scope or originality) may well present a greater contribution to the field

than an unverifiable major one. To this end, we propose that conference organizers

and journal editors explicitly encourage in calls-for-papers and reviewer guidelines

the submission and acceptance of papers that include reports of reproduced research

results, which is certainly a worthwhile contribution to the field in its own right. Re-

105

view forms should include information on the reproducibility of the presented work.

The forms should also report the extent to which prior work has been reproduced

for the purpose of comparison. Vandewalle et al. [180] defined “degrees” of repro-

ducibility for the signal processing field3; we propose that the following criteria be

added to manuscript review forms where hardware implementations are reported.

5 Fully reproducible: complete source code, simulation testbenches, and com-

pilation instructions are available with submission for independent reproduction

of results. All implementation conditions are specified.

4 Fully reproducible later: authors commit to having complete source code,

simulation testbenches, and compilation instructions available for independent

reproduction of results at publication time. The commitment should be verified

and act as a condition to final paper publication. All implementation conditions

are specified.

3 Limited reproducibility: (partial) source code is available but requires sig-

nificant effort to reproduce reported results. All implementation conditions are

specified.

2 Reproducible by redesign: description of the design is complete and simple

enough to reproduce without source code, though this may require significant

effort. All implementation conditions are specified.

1 Unreproducible plus: description lacks sufficient information for reproducing

results given any amount of effort, but implementation report files are available.

Or, some implementation conditions are missing.

0 Unreproducible: description lacks sufficient information for reproducing re-

sults given any amount of effort.

Submitting the source code with the manuscript can be problematic, as it can

put the authors at a disadvantage. To avoid this, we propose that authors have

the option to commit to public release of the source code upon acceptance and

publication. Publication can be in the form of a URL to the source code repository

or archive in the body of the publication. The PDF file format, today commonly used

for electronic dissemination of research papers, also permits file attachments, which

can carry additional material such as raw data and source code. Many scientific

3Vandewalle et al. [180] make a distinction between designs that are reproducible using open source
software and those that require proprietary software. Unfortunately, there are currently no open
source tools for FPGA development, so we cannot make the same distinction. That said, we
should acknowledge the difference between freely available proprietary tools (such as the Altera
“Web Edition” and Xilinx “WebPACK”) and those which are not (Synplicity, Design Compiler,
etc.)

106

publishers already accept files with related material that they publish and archive

alongside the paper4.

Published source code should include a copyright statement and a license that

permits at least the royalty-free evaluation, modification and redistribution of the

design for teaching and research purposes. Such a license should be formulated in

a manner which aims to not preclude authors receiving royalties for commercial or

other non-research applications of the design. Published source code should also

include a clear and easy to quote version identifier, to help avoid confusion when

improvements are released after a design has already been evaluated in publications.

Once a particular version has been quoted in a publication, that version should be

preserved even if improved versions are released subsequently.

In cases where releasing code is not possible (commercial implementers, privately

funded researchers, proprietary implementation tools) we propose that verbose im-

plementation reports (synthesis, place-and-route, timing, etc.) be provided instead

(or in addition at submission time). These reports provide information beyond what

may be covered in a paper (complete resources usage, critical paths, implementa-

tion constraints) and give an expert examiner more insight into the design without

compromising its confidentiality. That said, there is no reason why those who make

their work available for scrutiny and reproducibility should not be favored over those

who do not (more on this in Section 5.3).

All this is, of course, applicable and desirable for most experimental computing

research; the illustrated difficulty and variability of comparing FPGA designs across

different build environments make it particularly important in this context.

We think that if the peer-review process rewards submissions that allow results to

be reproduced independently by interested readers, the following positive outcomes

will follow:

• published source code encourages reuse, modification and reimplementation of

the fruits of a research project and thus encourages technology transfer and

impact of research;

• published source code encourages other researchers to independently reproduce

results, providing more thorough comparison of results under a wider number of

platforms and environmental conditions;

4Some journals already encourage reproducible research. For example, IEEE Transactions on
Information Forensics and Security says on its title page: “The Transactions encourages authors to
make their publications reproducible by making all information needed to reproduce the presented
results available online. This typically requires publishing the code and data used to produce the
publication’s figures and tables on a website. It gives other researchers easier access to the work,
and facilitates fair comparisons.” http://www.signalprocessingsociety.org/publications/
periodicals/forensics/

107

http://www.signalprocessingsociety.org/publications/periodicals/forensics/
http://www.signalprocessingsociety.org/publications/periodicals/forensics/

• published source code allows researchers to better deflect criticism of their de-

signs, as critics now have the opportunity, and can be expected, to demonstrate

how to do it better.

• published source code encourages more people to scrutinize the code, as a result

of which more mistakes may be found and fixed;

• knowing that the source code will become public encourages sound coding prac-

tices (e.g., well formatted, tested, parameterized, and commented code), which

may lead to a lower rate of mistakes being made in the first place; and,

• it raises the threshold for publication of FPGA designs.

5.2.2 Optimization goals

When reporting results it is also important to declare what the optimization goals

were. Primary optimization goals are: area, throughput, power or a balance between

them; designs can also be “parameterisable” allowing them to span more than one

category. It is also possible for implementations to have secondary optimization

goals relating to a specific situation. For example, the implementation goals of

Chapter 4 state throughput as a primary goal, and a secondary goal of minimizing

traditional logic resources (LUTs and FFs) at the expense of available Block RAMs

and DSPs. Algorithmic properties such as key agility, decryption, encryption or both

should be clearly stated, and preferably results from various combinations should be

reported. Implementation properties, such as unrolled, pipeline strategy, datapath

width, latency, and logic levels, should be spelled out as parameters, and should be

pointed out in detailed block diagrams describing the architecture.

As we have seen in previous sections, architectural properties such as FPGA

architecture, size, and speed grade, are crucial parameters, and therefore must be

reported. Tools used for synthesis, PAR and simulation, including their versions

should be specified together with their settings (i.e., optimization strategy, effort,

constraints, number of runs).

All results should be taken at the post place-and-route stage; “maximum fre-

quency” from synthesis should never be used because it does not take placement

and routing into account, and thus tends to be overly optimistic (synthesis reported

a maximum frequency of 583 MHz for AES128U vs. the actual 413 MHz, for ex-

ample). At a minimum, designs should be simulated at target speed at the post

place-and-route stage. Post PAR simulation may be better than behavioral simula-

tion, as synthesis may “optimize” logic in a way that is hard to notice without such

simulation. When possible, designs should be verified for correctness on the FPGA

itself; on-chip test tools, such as “SignalTap” by Altera [7, AN323] and “ChipScope”

by Xilinx [186, UG029], can greatly help this process.

108

5.2.3 Throughput per slice/area

The “throughput per slice/area” (TPS/A) metric was introduced by Elbirt et al. [61,

sIIIE] for evaluating four AES candidates on a single FPGA architecture, which is

one of two cases where TPS should be used. The second is where an implementer is

showing better packing of the same design into fewer design elements. Despite Elbirt

et al. correctly qualifying their metric to their specific evaluation methodology, it

has unfortunately become the primary evaluation criterion for FPGA performance,

regardless of architecture.

“Slice”, “logic element”, “adaptive logic module” (ALM) and “configuration logic

blocks” (CLB) are all semi-artificial bundlings of more primitive resources such as

flip-flops and look-up tables. For Xilinx devices, there are a number of slices per

CLB, where each slice represents a collection of FFs and LUTs that can be clocked

or enabled from a single source. The amount of resources within a “slice” changes

with each family: Virtex-II/PRO and Virtex-4 have 2 FFs and 2 4-LUTs, Virtex-5

has 4 FFs and 4 6-LUTs and, Virtex-6 has 4 FFs and 8 6-LUTs. More subtly,

Virtex-5 has two types of LUTs (L and M), which differ in capability. There are

many such differences that affect the performance of a design. Using bundlings

such as “slices” as the basis for a performance metric across architectures leads to

meaningless results.

Chaves et al. [33, t3], as one of many examples, use TPS as the primary evaluation

criterion even though BRAMs are used in the designs. Omitting the meaningless

metric and highlighting the overall lower resource use of their design would have

sufficed to show its advantages. More recently, Bulens et al. [30] also use this

metric, but rightfully mark table entries of implementations with BRAMs as “not

meaningful”, and generally warn the reader about caveats in the comparison and

that it should only be regarded as “general intuition”. Similarly, Drimer et al. [56]

present a comparison table followed by a long discussion why such tables are often

meaningless. These table entries should not have been included in these papers.

We suspect, however, that reviewers’ misunderstanding, and by way of tradition, a

comparison table, is considered mandatory at the end of the paper, despite having

misleading content. The tendency to evaluate designs on a single criterion motivates

this type of poor reporting; other aspects of the design should be taken into account,

and we discussed those in Section 5.2. As an example, if we naively reported the

TPS of AES128U, we would achieve an astonishing 171 Mbit/slice (52 Gbit/s divided

by 321 slices) – clearly, an unusable figure in a fair comparison.

Converting Block RAMs into a number of “equivalent” slices for the purpose

of comparison (as suggested, for example, by Good and Benaissa [72] and Saggese

et al. [149]) is problematic in several ways. Firstly, such a conversion does not

take routing into account, which is a scarce resource, so performance may degrade

109

if the conversion is actually implemented. On the other hand, the re-distribution

of resources may give PAR more freedom, leading to better performance. Only a

re-implementation of the converted design can give meaningful results. Secondly,

BRAMs can be “free” if they are not used, so again, this is an externality that is

hard to account for. Thirdly, the Block RAM is not always used entirely (proportion

of BRAM usage are rarely reported). Finally, conversions into “slices” are hard to

transfer to other embedded functions (DSPs, etc.)

For all these reasons, designs of different architectures should not be compared

without careful consideration. We expect newer FPGA families to be more resource-

efficient and performance to increase; Moore’s Law is still with us. However, new

architectures are not only different in fabrication technology, but have new embedded

elements and other enhancements that improve performance. It is quite natural

that identical (generically specified) designs can be packed into fewer 6-LUTs than

4-LUTs, and a naive comparison between them is meaningless (unless the purpose

is to show how better, or worse, 6-LUTs perform over 4-LUTs). Other embedded

functions, such as large RAMs, fast accumulators and multipliers, also change the

way in which a design is implemented. In summary, improvements on the basis of

architecture alone should be credited to the FPGA vendors’ IC designers, not to the

FPGA design implementers, unless resources were used in a novel way.

If code for results reported on older architectures is available, then for a fairer

comparison it should be compiled under the same conditions and for the same plat-

form as the new design. That said, this can be hazardous as well, because the design

may have been optimized to a particular architecture and will not fare well imple-

mented on another. Some designs that use DSP48E, for example, will not even work

on other architectures, so recompilation should be done with care as well.

5.2.4 Other hazards

Do not convert resources between FPGAs and ASICs. Historically, FPGAs were

primarily used for prototyping ASICs, so comparing the two made sense, even though

there was no “conversion rate” that was not also controversial [116]. The regular

structure of early FPGAs as simple interconnected arrays of logic cells made this type

of comparison plausible. This is no longer the case with today’s FPGAs, which have

complex embedded functions that are distributed unevenly, even across the same

family of devices. Designing for ASICs and FPGAs is also fundamentally different.

With ASICs the designer has complete freedom over design choices, but an FPGA

designer is constrained to specific die sizes and capabilities that were deemed by the

FPGA vendors to be the most useful for the majority of their customers.

Be cautious when comparing with commercial implementations. There are sev-

eral cores vendors who sell FPGA implementations of cryptographic primitives and

110

it is tempting to compare academic implementations to theirs. This can be mislead-

ing. On the one hand, minimal implementation details are presented as marketing

material, and not as a research result, and code is rarely public. On the other hand,

cores vendors must face real-world constraints such as power, and are generally

more liable, in a business sense, for their advertised results. Thus, since any claims

against commercial implementations are unverifiable, we recommend that academic

vs. commercial implementation comparison not be made, or only be presented as a

reference with appropriate qualifications.

5.3 Possible objections

Export control laws may hinder disclosure of cryptographic implementations in

some countries, though it appears that in many cases those do not apply to non-

commercial releases [113]. In the United Kingdom, for example, publishing material

on a web server is not considered export [10, s24.3.11]; other countries have no export

restrictions at all (Brazil, Mexico, for example [113]). While we cannot advocate

breaking laws, we cannot accept “export control” as a blanket argument against

reproducible research. Thus, only when researchers show that they cannot disclose

source code due to restriction by law, then special consideration should apply to

accommodate them.

We realize that full disclosure could reduce the commercial value of published

work, but think that commercial interests should not interfere with scientific repro-

ducibility. If those interests prevail, researchers can choose to publish unreproducible

research at venues with less impact. Our reproducibility evaluation criteria (Sec-

tion 5.2) should encourage this notion. This may also apply equally well to privately

funded research.

Other objections. Some arguea that source code disclosure by researchers will
both cause loss in value of commercial cores, and reduce the job market for grad-
uates. Superficially, the argument that industry may suffer from open hardware
seem to have some merit. On close inspection, however, we find that HDL is
only a part of a complete package that includes customization, support, and ac-
countability; none of which are available from academic researchers (unless they
get hired). The proposition that graduates who implemented a reproducible and
efficient FPGA design are less employable is bizarre; what better way is there
to demonstrate skill than show code? In the open source software community,
good developers greatly benefit from demonstrating their capabilities by being
hired as consultants.

aWe have received these comments through peer review of an unpublished manuscript de-
scribing most of the content of this chapter.

111

5.4 Related work

This chapter is not the first discussion on the difficulties of comparing FPGA designs.

Yan et al. [189] warn that some published results on FPGA architectural questions

(e.g., finding the optimal look-up table size) are highly sensitive to experimental as-

sumptions, tools and techniques and that the variability of the results can affect the

conclusions. Gaj and Chodowiec [67] and Dandalis et al. [43] tackled the comparison

of the AES candidates (arguably, a harder task than comparing the same cipher).

Gittins et al. [70] provided a comprehensive analysis and criticism of published

FPGA implementation results of AES and SHA, as part of the eSTREAM stream

cipher selection process; Gürkaynak and Luethi [78] provided constructive lessons

from their experiences comparing candidates for the same competition. Järvinen

et al. [98] compared AES and hash function implementations with a discussion on

comparability. Järvinen [96, ch5] has been the most recent to comprehensively com-

pare FPGA AES designs, also echoing the concerns over fair comparison previously

discussed in Drimer et al. [56, s6]. Finally, Vandewalle et al. [180] have comprehen-

sively discussed reproducible research in the signal processing field and scored 134

papers for their reproducibility. Among many other interesting observations, they

found that less than 9% have the source code available. It may be interesting to

conduct a similar experiment for FPGA implementations, or perhaps just survey

authors for the state and availability of the code that was used for published results.

5.5 Conclusions

Our primary conclusion, namely that the release of easy-to-rebuild source code must

become the norm, echoes sentiments that have repeatedly been expressed by re-

searchers in other disciplines. One poignant formulation of Claerbout’s insights on

reproducibility is by Buckheit and Donoho [29, s3.1] (emphasis in the original):

An article about computational science in a scientific publication is not the

scholarship itself, it is merely advertising of the scholarship. The actual

scholarship is the complete software environment which generated the figures.

We concentrated on the implementation of cryptographic primitives on FPGAs,

although the discussion may apply to other areas of FPGA implementations and

VLSI research. Reproducible results are surely a concern in any experimental field.

In ours, the topic becomes particularly timely in the context of competitions for

the selection of standard algorithms, such as the upcoming SHA-35, where FPGA

5NIST, “Cryptographic hash algorithm competition”,
http://csrc.nist.gov/groups/ST/hash/sha-3/

112

http://csrc.nist.gov/groups/ST/hash/sha-3/

implementation results start to appear [127] and may significantly influence the

choice of finalists. (Similar issues were encountered during the AES competition

in the early 2000s; for SHA-3 we anticipate that the candidates’ authors to supply

FPGA reference designs in addition to C code [64, s5.2].)

Try as we might, any comparison methodology will eventually be contested as

unfair, and be left unused by some or all, and there is no reasonable way to eliminate

biases due to asymmetric effort, incompatible architectures, and misrepresentation

of results. Our claim is, however, that release of source code is as fair and transparent

as we can get. It conforms to the scientific method, and greatly helps the comparison

process, even if it may not be perfect.

We are aiming at a moving target. Firstly, because our target platforms are

highly flexible, and do not have a standard interface6 – there are many ways to im-

plement a single design. And secondly, technology advances rapidly and evaluation

methodologies tend to remain static7, due to either high development and mainte-

nance costs, or simply because the core people who developed the methodologies

moved on or lost interest. Can we do better?

It may be unavoidable – especially for competitions such as for SHA-3 – to peri-

odically define a number of platforms (i.e, FPGA type, size, speed grade, etc.) and

software tool versions and settings (efforts, seeds, etc.) from the main FPGA vendors

for which results are expected. A long-term committee – with permanent roles, but

temporary members – made of researchers and industry representatives could define

these8. A common HDL interface could be created in which the “module under

test” is inserted and implemented, with reasonable assumptions about I/O band-

width (Chen et al. [34] have proposed and implemented such interface for SHA-3).

Results would then be categorized based on the performance for throughout, area,

or power, with predefined targets rather than acceptance of “best case achievable”

(which can vary significantly, as we have seen). Authors would be required to sup-

ply the source code and report results for the common platform and settings (at the

least). The module’s HDL will be categorized as “generic” or “architecture-specific”

to distinguish between designs that use specific features of the architecture and those

that do not (generic designs tend to be more portable, but do not perform as well

as architecture specific ones).

We leave further discussion to the community, and hope to actively participate

in achieving the goals set in this chapter.

6Standard interfaces and “fixed” hardware allow benchmarking methodologies such as “Super-
COP” [40] to be developed.
7Raphael Njuguna briefly surveys the many FPGA and CAD tool benchmarking methodologies
over the past 20 years, “A survey of FPGA benchmarks”,
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/
8Industry participation is crucial, as they can shed light on the otherwise opaque operation of their
tools. It may also promote a more open approach to EDA tools.

113

http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga/

114

Chapter 6

Distance bounding for wired

applications

Relay attacks were possibly first described by Conway [38, p75], explaining how

someone who does not know the rules of the game chess could defeat a Grandmaster –

by challenging two Grandmasters to a postal chess game and relaying moves between

them. While appearing to match the Grandmasters’ skill, the attacker will either

win against one, or draw against both. As the above scenario demonstrates, relay

attacks can be very simple because they do not require the attacker to understand

the “protocol” or modify the content of messages. The sophistication required to

launch such attacks is not high, though defending against them can be, as discussed

later in this chapter. Successful relay attacks have been demonstrated on deployed

systems such as ISO 14443 [83, ch4] [101], and discussed in the context of wireless

networks as “wormhole attacks” [89]. Here, we demonstrate how one smartcard

payment system is vulnerable, and propose a distance bounding implementation as

a defense to protect against it, and be applied to other applications.

6.1 Background

EMV [62], named after its creators, Europay, Mastercard and Visa, is the primary

protocol for smartcard debit and credit card payments in Europe, and is known by a

variety of different names in the countries where it is deployed (e.g. “Chip and PIN”

in the UK). Here, we provide a brief introduction to EMV, and refer the reader to

the EMV specifications [62], and Drimer and Murdoch [55], Drimer et al. [58] for a

more detailed discussion.

EMV uses ISO 7816 [94] as the basis for the electrical and communication inter-

faces. The EMV interface uses five of the eight contact pads: ground, power, reset,

bi-directional asynchronous serial I/O for data, and a clock of 1 to 5 MHz, sup-

plied by the reader to the card. In their non-volatile memory, smartcards may hold

115

PIN

$2000$20

PIN Dave

Carol
Alice

Bob

$

bank

Figure 6.1: The EMV relay attack. Innocent customer, Alice, pays for lunch by entering
her smartcard and PIN into a modified PIN entry device (PED) operated by Bob. At
approximately the same time, Carol enters her fake card into honest Dave’s PED to
purchase a diamond. The transaction from Dave’s PED is relayed wirelessly to Alice’s
card with the result of Alice unknowingly paying for Carol’s diamond.

account details, cryptographic keys, a personal identification number (PIN) and a

count of how many consecutive times the PIN has been incorrectly entered1. Cards

capable of asymmetric cryptography can cryptographically sign account details un-

der the card’s private key to perform card authentication. The merchant’s terminal

can verify the signature with a public key which is stored on the card along with a

certificate signed by the issuer whose key is, in turn, signed by the operator of the

payment system network. This method is known as dynamic data authentication

(DDA) or the variant, combined data authentication (CDA).

As the merchants are not trusted with the symmetric keys held by the card, which

would enable them to produce forgeries, cards that are only capable of symmetric

cryptography cannot be reliably authenticated offline. However, the card can still

hold a static signature of account details and corresponding certificate chain. The

terminal can authenticate the card by checking this signature, known as static data

authentication (SDA), but the lack of freshness allows replay attacks to occur.

6.2 Relay attack

Desmedt et al. [47] have shown how relay attacks could be applied against a challenge-

response payment protocol, in the so called “mafia fraud”. We use this scenario,

illustrated in Figure 6.1, where an unsuspecting restaurant patron, Alice, inserts her

1Using timing analysis we were able to determine that the card we examined does this correctly.
The counter’s reset value is set to the value of minimum attempts (usually ‘3’). For PIN verification,
the card first decrements the attempt counter, then checks, and finally, it resets the counter if the
PIN verified correctly. If there were any discernible differences between the successful and failed
PIN comparison, and the decrement occurred after verification, we would have been able to stop
the operation after failure (by powering the card off), and have infinite amount of attempts.

116

smartcard into a PIN entry device (PED) in order to pay a $20 charge, which is

presented to her on the display. The PED looks just like any one of the numerous

types of PEDs she has used in the past. This particular PED, however, has had its

original circuitry replaced by the waiter, Bob, and instead of being connected to the

bank, it is connected to a laptop placed behind the counter. As Alice inserts her

card into the counterfeit PED, Bob sends a message to his accomplice, Carol, who

is about to pay $2 000 for a diamond ring at Dave’s jewelery shop. Carol inserts a

counterfeit card into Dave’s PED, which looks legitimate to Dave, but conceals a

wire connected to a laptop in her backpack.

Bob and Carol’s laptops are communicating wirelessly using mobile-phones or

some other network. The data to and from Dave’s PED is relayed to the restaurant’s

counterfeit PED such that the diamond purchasing transaction is placed on Alice’s

card. The PIN entered by Alice is recorded by the counterfeit PED and is sent, via

a laptop and wireless headset, to Carol who enters it into the genuine PED when

asked. When the transaction is over, the criminals have paid for a diamond ring

using Alice’s money, who got her meal for free, but will be surprised to find the

$2 000 charge on her bank statement.

Despite the theoretical risk being documented, EMV is vulnerable to the relay

attack, as suggested by Anderson et al. [15]. Some believed that engineering dif-

ficulties in deployment would make the attack too expensive, or even impossible.

The following section will show that equipment to implement the attack is readily

available, and costs are within the expected returns of fraud.

6.2.1 Implementation

We chose off-the-shelf components that allowed for fast development rather than

miniaturization or cost-effectiveness. The performance requirements were modest,

with the main requirement being that our custom hardware fit within the PED.

6.2.1.1 Counterfeit PED

Second hand Chip and PIN PEDs are readily available for purchase online and their

sale is not restricted. While some are as cheap as $10, our PED was obtained for $50

from eBay and was ideal for our purposes due to its copious internal space. Even

if they were not so readily available, a plausible counterfeit could be made from

scratch as it is only necessary that it appears legitimate to untrained cardholders.

Instead of reverse engineering the existing circuit, we stripped most internal

hardware except for the keypad and LCD screen, and replaced it with a $200 Xilinx

Spartan-3 small factor, USB-controlled, development board2. We also kept the

2Opal Kelly, “XEM3001 – Xilinx Spartan-3 Integration Module”,
http://www.opalkelly.com/products/xem3001/

117

http://www.opalkelly.com/products/xem3001/

(a) With the exterior intact, the PED’s original internal
circuitry was replaced by a small factor FPGA board (left);
FPGA based smartcard emulator (right) connected to coun-
terfeit card (front).

(b) Customer view of the PED.
Here it is playing Tetris to
demonstrate that we have full
control of the display and keypad.

Figure 6.2: Photographs of tampered PED and counterfeit card.

original smartcard reader slot, but wired its connections to a $40 Gemalto USB

GemPC Twin3 reader so we could connect it to the laptop. The result is a PED

with which we can record keypad strokes, display content on the screen and interact

with the inserted smartcard. The PED appears and behaves just like a genuine one

to the customer but cannot communicate with the bank or payment network, as it

could before it was tampered with.

6.2.1.2 Counterfeit card

At the jeweler’s, Carol needs to insert a counterfeit card connected to her laptop

into Dave’s PED. We took a genuine Chip and PIN card and ground down the resin-

covered wire bonds that connect the chip to the back of the card’s pads. With the

pads exposed, using a soldering iron, we ironed into the plastic thin, flat wires to the

edge of the card. The card looks authentic from the top side, but was actually wired

on the back side, as shown in Figure 6.2. The counterfeit card was then connected

through a 1.5 m cable to a $150 Xilinx Spartan-3E FPGA Starter Kit [186, UG230]

board to buffer the communications and translate them between the ISO 7816 and

RS-232 protocols. Since the FPGA is not 5 V tolerant, we use 390 Ω resistors on

the channels that receive data from the card. For the bi-directional I/O channel, we

use the Maxim 1740/1 SIM/smartcard level translator4, which costs less than $2.

3http://www.gemalto.com/products/pc_link_readers/#PC_Twin
4http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2174

118

http://www.gemalto.com/products/pc_link_readers/#PC_Twin
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2174

6.2.1.3 Controlling software

The counterfeit PED and card are controlled by separate laptops via USB and RS-

232 interfaces, respectively, using custom software written in Python. The laptops

communicate via TCP over IEEE 802.11b wireless, although in principle this could

be GSM or another wireless protocol. This introduces significant latency, but far

less than would be a problem as the timing critical operations on the counterfeit

card are performed by the FPGA.

One complication of selecting an off-the-shelf USB smartcard reader for the coun-

terfeit PED is that it operates at the application protocol data unit (APDU) level

and buffers an entire command or response before sending it to the smartcard or

the PC. This increases the time between when the genuine PED sends a command

and when the response can be sent. Were the counterfeit terminal to incorporate a

character-level card reader, the partial command code could be sent to the genuine

card and the result examined to determine the direction, but this is not permissible

for APDU level transactions. Hence, other than the fact that the controlling soft-

ware must be told the direction for each of the 14 command codes, the relay attack

is protocol-agnostic and could be deployed against any ISO 7816 based system.

6.2.2 Procedure and timing

EMV offers a large variety of options, but the generality of the relay attack allows

our implementation to account for them all; for simplicity, we will describe the

procedure for the common case in the UK. That is, SDA card authentication (only

the static cryptographic signature of the card details is checked), online transaction

authorization (the merchant will connect to the issuer to verify that adequate funds

are available) and offline plaintext PIN cardholder verification (the PIN entered

by the cardholder is sent to the card, unencrypted, and the card will check its

correctness).

Transaction authorization is accomplished by the card generating an application

cryptogram (AC), which is authenticated by the card’s symmetric key and incorpo-

rates transaction details from the terminal, a card transaction counter, and whether

the PIN was entered correctly. Thus, the issuing bank can confirm that the genuine

card was available and the correct PIN was used.

The protocol can be described in six steps:

Initialization: The card is powered up and returns the answer to reset (ATR).

Then the PED selects one of the card’s possible payment applications.

Read application data: The PED requests card details (account number, name,

expiration date, etc.) and verifies the static signature.

119

Cardholder verification: The cardholder enters the PIN into the merchant’s PED

for verification by the card. If correct, the card returns a success code, otherwise

the cardholder may try again until the maximum number of PIN attempts have

been exceeded.

Generate AC 1: The PED requests an authorization request cryptogram (ARQC)

from the card, which is sent to the issuing bank for verification, that then re-

sponds with the issuer authentication data.

External authenticate: The PED sends the issuer authentication data to the

card.

Generate AC 2: The PED asks the card for a transaction certificate (TC) which

the card returns to the PED if, based on the issuer authentication data and other

internal state, the transaction is approved. Otherwise, it returns an application

authentication cryptogram (AAC), signifying the transaction was denied. The

TC is recorded by the merchant to demonstrate that it should receive the funds.

This flow imposes some constraints on the relay attack. Firstly, Alice must insert

her card before Carol inserts her counterfeit card in order for initialization and read

application data to be performed. Secondly, Alice must enter her PIN before Carol

is required to enter it into the genuine PED. Thirdly, Alice must not remove her

card until the Generate AC 2 stage has occurred. Thus, the two sides of the radio

link must be synchronized, but there is significant leeway as Carol can stall until

needing to insert her card.

After that point, the counterfeit card can request extra time from the terminal,

before sending the first response, by sending a null procedure byte (0x60). The

counterfeit terminal can also delay Alice by pretending to dial-up the bank and

waiting for authorization until Carol’s transaction is complete. All timing critical

sections, such as sending the ATR in response to de-assertion of reset and the en-

coding/decoding of bytes sent on the I/O, are implemented on the FPGA to ensure

a fast enough response. There are wide timing margins between the command and

response, so this is managed in software.

6.2.3 Results

We tested our relay setup with a number of different smartcard readers in order to

test its robustness. Firstly, we used a Chip Authentication Program (CAP) reader,

which is a one-time-password generator for use in online banking, and implements

a subset of the EMV protocol. Specifically, it performs cardholder verification by

checking the PIN and requests an application cryptogram, which may be validated

120

online5. Our relay setup was able to reliably complete transactions, even when we

introduced an extra three seconds of latency between command and response.

The CAP readers we examined use the lower clock frequency range allowed by

ISO 7816 (1 MHz to 1.5 MHz) to lower power consumption. We also tested our relay

setup with a GemPC Twin reader, which operates at 4 MHz. The card reader was

controlled by our own software, which simulates a Chip and PIN transaction. Here,

the relay device also worked without any problems and results were identical to

when the card was connected directly to the reader.

Finally, we developed a portable version of the equipment, and took this to a

merchant with a live Chip and PIN terminal. With the consent of the merchant

and cardholder, we executed the relay attack. In addition to the commands and

responses being relayed, the counterfeit terminal was connected to a laptop which,

through voice-synthesis software, read out the PIN to our “Carol”. The transaction

was completed successfully. The first live demonstration of our equipment operating

wirelessly between a Cambridge restaurant and book store was shown on the UK

consumer rights program BBC Watchdog on 6th February 2007.

6.2.4 Further applications and feasibility

The relay attack is also applicable where “Alice” is not the legitimate card holder,

but a thief who has stolen the card and observed the PIN. To frustrate legal inves-

tigation and fraud detection measures, criminals commonly use cards in a different

country from where they were stolen. Magnetic stripe cards are convenient to use in

this way, as the data can be read and sent overseas, to be written on to counterfeit

cards. However, chip cards cannot be fully duplicated, so the physical card would

need to be mailed, introducing a time window where the cardholder may report the

card stolen or lost.

The relay attack can allow criminals to avoid this delay by making the card

available online using a card reader and a computer connected to the Internet. The

criminal’s accomplice in another country could connect to the card remotely and

place transactions with a counterfeit one locally. The timing constraints in this

scenario are more relaxed as there is no customer expecting to remove their genuine

card. Finally, in certain types of transactions, primarily with unattended terminals,

the PIN may not be required, making this attack easier still.

APACS6, the UK payment association, said at the time we demonstrated the at-

tack that they are unaware of any cases of relay attacks being used against Chip and

PIN in the UK [16]. The likely reason is that even though the cost and the technical

5We analyze the security properties of these devices, and reversed engineered the protocol they
use in Drimer et al. [59].
6In June 2009, the “Association for Payment Clearing Services” re-branded itself to be called the
“UK Payment Administration”.

121

expertise that are required for implementing the attack are relatively low, there are

easier ways to defeat the system. Methods such as card counterfeiting/theft, mail

interception, and cardholder impersonation are routinely reported and are more

flexible in deployment.

These security holes are gradually being closed, but card fraud remains a lucra-

tive industry – in 2008 £610m of fraud was suffered by UK banks7. Criminals will

adapt to the new environment and, to maintain their income, will likely resort to

more technically demanding methods, so now is the time to consider how to prevent

relay attacks for when that time arrives.

6.3 Defenses

The previous section described how feasible it is to deploy relay attacks against Chip

and PIN and other smartcard based authorization systems in practice. Thus, sys-

tem designers must develop mitigation techniques while, for economic consideration,

staying within the deployed EMV framework as much as possible.

6.3.1 Non-solutions

In this section we describe a number of solutions that are possible, or have been

proposed, against our attack and evaluate their overall effectiveness.

Tamper-resistant terminals. A pre-requisite of our relay attack is that Alice

will insert her card and enter her PIN into a terminal that relays these details to

the remote attacker. The terminal, therefore, must either be tampered with or be

completely counterfeit, but still acceptable to cardholders. This implies a potential

solution – allow the cardholder to detect malicious terminals so they will refuse to

use them.

This is not feasible. Although terminals do implement internal tamper-responsive

measures, when triggered, they only delete keys and other data without leaving

visible evidence to the cardholder. Tamper-resistant seals could be inspected by

customers, but Johnston et al. [99] have shown that many types of seals can be

trivially bypassed. Better seals could be used, but without training to detect tam-

pering, they too will be ineffective. It seems infeasible, and unjust, to require that

all customers be trained to detect tampering, thus also making them responsible for

ant fraud they did not detect. In addition, time-pressure and awkward placement

of terminals can make it extremely difficult for even the most observant customers

to check for tampering, and act on it.

Even if seals were effective, there are, as of July 2009, 289 “Payment Card

Industry PIN Entry Device” (PCI-PED) approved terminal designs from 99 different

7APACS, “2008 fraud figures announced by APACS”, http://www.apacs.org.uk/09_03_19.htm

122

http://www.apacs.org.uk/09_03_19.htm

vendors8, so cardholders cannot be expected to identify them all. Were there only

one terminal design, the use of counterfeit terminals would have to be prevented,

which raises the same problems as tamper-resistant seals. Finally, with the large

sums of money netted by criminals from card fraud, fabricating plastic parts is well

within their budget.

Imposing additional timing constraints. While relay attacks will induce extra

delays between commands being sent by the terminal and responses being received,

existing smartcard systems are tolerant to very high latencies. We have successfully

tested our relay device after introducing a three second delay into transactions, in

addition to the inherent delay of our design. This extra round-trip time could be

exploited by an attacker 450 000 km away, assuming that signals propagate at the

speed of light. Perhaps, then, attacks could be prevented by requiring that cards

reply to commands precisely after a fixed delay. Terminals could then confirm that

a card responds to commands promptly and will otherwise reject a transaction.

Other than the generate AC command, which includes a terminal nonce, the

terminal’s behavior is very predictable. So an attacker could preemptively request

these details from the genuine card then send them to the counterfeit card where

they are buffered for quick response. Thus, the value of latency as a distance measure

can only be exploited at the generate AC stages. Furthermore, Clulow et al. [37]

and Hancke and Kuhn [85] show how wireless distance bounding protocols, based

on channels which were not designed for the purpose, can be circumvented. Their

analysis applies equally well to wired protocols such as ISO 7816.

To hide the latency introduced by mounting the relay attack, the attacker aims

to sample signals early and send signals late, while still maintaining their accuracy.

In ISO 7816, cards and terminals are required to sample the signal between the 20%

and 80% portion of the bit-time and aim to sample at the 50% point. However, an

attacker with sensitive equipment could sample near the beginning, and send their

bit late. The attacker then gains 50% of a bit-width in both directions, which at a

5 MHz clock is 37 µs, or 11 km.

The attacker could also over-clock the genuine card so the responses are returned

more quickly. If a DES calculation takes a 100 ms, a 1% increase would give a 300 km

distance advantage. Even if the calculation time was fixed, and only receiving the

response from the card could be accelerated, the counterfeit card could preemptively

reply with the predictable 11 bytes (2 byte response code, 5 byte read more com-

mand, 2 byte header and 2 byte counter) each taking 12 bit-widths (start, 8 data

bits, stop and 2 bits guard time). At 5 MHz + 1% this gives the attacker 98 µs, or

29 km.

8PCI Security Standard Council, “Approved PIN Entry Devices”,
https://www.pcisecuritystandards.org/security_standards/ped/pedapprovallist.html

123

https://www.pcisecuritystandards.org/security_standards/ped/pedapprovallist.html

One EMV-specific problem is that the contents of the payload in the generate

AC command are specified by the card in the card risk management data object list

(CDOL). Although the terminal nonce should be at the end of the message in order

to achieve maximum resistance to relay attacks, if the CDOL is not signed (as do

some of the cards we examined), the attacker could substitute the CDOL for one

requesting the challenge near the beginning. Upon receiving the challenge from the

terminal, the attacker can then send this to the genuine card. Other than the nonce,

the rest of the generate AC payload is predictable, so the counterfeit terminal can

restore the challenge to the correct place, fill in the other fields and send it to the

genuine card. Thus, the genuine card will send the correct response, even before the

terminal thinks it has finished sending the command. A payload will be roughly 30

bytes, which at 5 MHz gives 27 ms and a 8 035 km distance advantage.

Nevertheless, eliminating needless tolerance to response latency would decrease

the options available to the attacker. If it were possible to roll out this modification

to terminals as a software upgrade, it might be expedient to plan for this alteration

to be quickly deployed in reaction to actual use of the relay attack. While we have

described how this countermeasure could be circumvented, attackers who build and

test their system with high latency would be forced to re-architect it if the acceptable

latency of deployed terminals were decreased without warning.

6.3.2 Procedural improvements

Today, merchants and till operators are accustomed to looking away while customers

enter their PIN and seldom handle the card at all, while customers are often advised

not to allow anyone but themselves to handle the card because of card skimming.

In the case of relay attacks, this assists the criminal, not the honest customer or

merchant. If the merchant examined the card, even superficially, he would detect

the relay attack, as we implemented it, by spotting the wires. That said, it is not

infeasible that an RFID proximity card could be modified to relay data wirelessly

to a local receiver and therefore appear to be a genuine one.

A stronger level of protection can be achieved if, after the transaction is complete,

the merchant checks not only that the card presented is legitimate, but also that

the embossed card number matches the one on the receipt. In the case of the relay

attack, the receipt will show the victim’s card number, whereas the counterfeit card

will show the a different one. For these to match, the criminal must have appropriate

blank cards and an embossing machine, in addition to knowing the victim’s card

number in advance.

124

6.3.3 Hardware alterations

Cardholders may use their own trusted devices as part of the transaction [17].

The electronic attorney “man-in-the-middle defense”, suggested by Anderson and

Bond [11], is inserted into the terminal’s card slot while the customer inserts their

card into the device. The device can display the transaction value as it is parsed from

the data sent from the terminal, allowing the customer to verify that she is charged

the expected amount. If the customer approves the transaction, she presses a button

on the electronic attorney itself, which allows the protocol to proceed. This trusted

user interface is necessary, since if a PIN was used as normal, a criminal could place a

legitimate transaction first, which is accepted by the customer, but with knowledge

of the PIN a subsequent fraudulent one can be placed. Alternatively, one-time-PINs

could be used, but at a cost in usability.

Because the cardholder controls the electronic attorney, and it protects the card-

holder’s interests, the incentives are properly aligned. Market forces in the busi-

ness of producing and selling these devices should encourage security improvements.

However, this extra device will increase costs, increase complexity and may not be

approved of by banking organizations. Additionally, criminals may attempt to dis-

courage their use, either explicitly or by arranging the card slot so the use of a

electronic attorney is difficult. A variant of the trusted user interface is to integrate

a display into the card itself [19].

Another realization of the trusted user interface for payment applications is to

integrate the functionality of a smartcard into the customer’s mobile phone. This can

allow communication with the merchant’s terminal using near field communications

(NFC) [93]. This approach is already under development and has the advantage

of being a customer-controlled device with a large screen and convenient keypad,

allowing the merchant’s name and transaction value to be shown and once authorized

by the user, entry of the PIN. Wireless communications also ease the risk of a

malicious merchant arranging the terminal so that the trusted display device is not

visible. Although mobile phones are affordable and ubiquitous, they may still not

be secure enough for payment applications if they can be targeted by malware.

6.4 Distance bounding

None of the techniques detailed in Section 6.3.1 are adequate to completely defeat

relay attacks. They are either impractical (tamper-resistant terminals), expensive

(adding extra hardware) or circumventable (introducing tighter timing constraints

and requiring merchants to check card numbers). Due to the lack of a customer-

trusted user interface on the card, there is no way to detect a mismatch between

the data displayed on the terminal and the data authorized by the card. However,

125

relay attacks can be foiled if either party can securely establish the position of the

card which is authorizing the transaction, relative to the terminal processing it.

Absolute global positioning is infeasible due to the cost and form factor require-

ments of smartcards being incompatible with GPS, and also because the civilian

version is not resistant to spoofing [115]. However, it is possible for the terminal

to securely establish a maximum distance bound, by measuring the round-trip-time

between it and the smartcard; if this time is too long, an alarm would be triggered

and the transaction refused. Despite the check being performed at the merchant

end, the incentive-compatibility problem is lessened because the distance verifica-

tion is performed by the terminal and does not depend on the sales assistant being

diligent.

The approach of preventing relay attacks by measuring round-trip-time was first

proposed by Beth and Desmedt [22] but Brands and Chaum [25] described the first

concrete protocol. Hancke [83] provides a comprehensive analysis of existing distance

bounding protocols. The cryptographic exchange in our proposal is based on the

Hancke-Kuhn protocol [83, 84], because it requires fewer steps than others, and

it is more efficient if there are transmission bit errors compared to Brands-Chaum.

However, the Hancke-Kuhn protocol was proposed for ultra-wideband radio (UWB),

whereas we require synchronous half-duplex wired transmission.

One characteristic of distance-bounding protocols, unlike most others, is that the

physical transmission layer is security-critical and tightly bound to the other layers,

so care must be taken when changing the transmission medium. Wired transmission

introduces some differences, which must be taken into consideration. Firstly, to avoid

circuitry damage or signal corruption, in a wired half duplex transmission, contention

(both sides driving the I/O at the same time) must be avoided. Secondly, whereas

UWB only permits the transmission of a pulse, a wire allows a signal level to be

maintained for an extended period of time. Hence, we may skip the initial distance-

estimation stage of the Hancke-Kuhn setup and simplify our implementation; no

other modifications to the protocol itself were made.

While in this section we will describe our implementation in terms of EMV,

implemented to be compatible with ISO 7816, it should be applicable to any wired,

half-duplex synchronous serial communication line.

6.4.1 Protocol

In EMV, only the card authenticates itself to the terminal so we follow this prac-

tice. Using the terminology of Hancke-Kuhn, the smartcard is the prover P , and

the terminal is the verifier V . This is also appropriate because the Hancke-Kuhn

protocol puts more complexity in the verifier than the prover, and terminals are sev-

eral orders of magnitude more expensive and capable than the cards. The protocol

126

A 3 8 F 6 D 7 5

Ci : 1010 0011 1000 1111 0110 1101 0111 0101

R0
i : x0x0 11xx x011 xxxx 0xx1 xx1x 1xxx 1x0x

R1
i : 1x0x xx10 1xxx 0001 x10x 01x0 x111 x1x0

RCi
i : 1000 1110 1011 0001 0101 0110 1111 1100

8 E B 1 5 6 F C

Table 6.1: Example of the rapid bit-exchange phase of the distance bounding protocol.
For clarity, x is shown instead of the response bits not sent by the prover. The left most
bit is sent first.

is described as follows:

Initialization :

V → P : NV ∈ {0, 1}a

P → V : NP ∈ {0, 1}a

P : (R0
i ||R1

i) = MACK(NV , NP) ∈ {0, 1}2b

Rapid bit-exchange(i = 1,...,b):

V → P : Ci ∈ {0, 1}
P → V : RCi

i ∈ {0, 1}

At the start of the initialization phase, nonces and parameters are exchanged over

a reliable data channel, with timing not being critical. NV and NP provide freshness

to the transaction in order to prevent replay attacks, with the latter preventing a

middle-man from running the complete protocol twice between the two phases using

the same NV and complementary Ci and thus, obtain both R0
i and R1

i . The prover

produces a MAC under its key K using a keyed pseudo-random function, the result

of which is split into two shift registers, R0
i and R1

i .

In the timing-critical rapid bit-exchange phase, the maximum distance between

the two participants is determined. V sends a cryptographically secure pseudoran-

dom single-bit challenge Ci to P , which in turn immediately responds with RCi
i , the

next single-bit response, from the corresponding shift register. A transaction of a

32 bit exchange is shown in Table 6.1.

If a symmetric key is used, this will require an online transaction to verify the

result because the terminal does not store K. If the card has a private/public

key pair, a session key can be established and the final challenge-response can also

be verified offline. The values a and b, the nonce and shift register bit lengths,

respectively, are security parameters that are set according to the application and

are further discussed in Section 6.4.4.

This exchange succeeds in measuring distance because it necessitates that a

127

Symbol Description

CLKV , fV Verifier’s clock, frequency; determines distance resolution
CLKV→P , fP Prover’s clock, frequency; received from verifier
DRVC While asserted the challenge is transmitted
tn Length of time verifier drives the challenge on to the I/O
SMPLC Prover samples challenge on rising edge
tm Time between assertion of DRVC and assertion of CLKV→P

DRVR Prover transmits response
tp Amount of delay applied to SMPLC

SMPLR Verifier samples response on rising edge
tq Time from assertion of CLKV→P to rising edge of SMPLR;

determines upper bound of prover’s distance
td Propagation delay through distance d

Table 6.2: Signals and their associated timing parameters.

response bit arrive at a certain time after the challenge bit has been sent. When the

protocol execution is complete, V ’s response register, RCi
i , is verified by the terminal

or bank to determine if the prover is within the allowed distance for the transaction.

6.4.2 Implementation

ISO 7816, our target application, dictates that the smartcard (prover) is a low

resource device, and therefore, should have minimal additions in order to keep costs

down; this was our prime constraint. The terminal (verifier), on the other hand, is

a capable, expensive device that can accommodate moderate changes and additions

without adversely affecting its cost. Of course, the scheme must be secure to all

attacks devised by a highly capable adversary that can relay signals at the speed of

light, is able to ensure perfect signal integrity, and can clock the smartcard at higher

frequencies than it was designed for. We assume, however, that this attacker does

not have access to the internal operation of the terminal and that extracting secret

material out of the smartcard, or interfering with its security critical functionality,

is not economical considering the returns from the fraud.

6.4.3 Circuit elements and signals

For this section refer to Table 6.2 for signal names and their function, Figure 6.4 for

the circuit diagram and Figure 6.3 for the signal waveforms.

Clocks and frequencies. As opposed to the prover, the verifier may operate at

high frequencies. We implemented the protocol such that one clock cycle of the

verifier’s operating frequency fV determines the distance resolution. Since signals

cannot travel faster than the speed of light c the upper-bound distance resolution is,

128

SMPLC

tn

tm

tp

delay

Ci

Ci Ri

RiI/OV

I/OP

td

fV

CLKV P

DRVR

tq

DRVC

SMPLR

td verifier
prover

Figure 6.3: Waveforms of a single bit-exchange of the distance bounding protocol. fV is
the verifier’s clock; DRVC drives the challenge on to I/O; SMPLR samples the response;
CLKV→P is the prover’s clock; I/OV and I/OP are versions of the I/O on each side
accounting for the propagation delay td; SMPLC is the received clock that is used to
sample the challenge; and DRVR drives the response on to the I/O.

SMPLC

DRVR

delay

R0

R1

SMPLR

DRVC

divideCLKV

response SR's

challengeCECE

0

1

CLKV P

R

verifier (PED) prover (smartcard)

d,td
responses

challenges

Figure 6.4: Simplified diagram of the distance bounding circuit. DRVC controls when the
challenge is put on the I/O line. CLKV controls the verifier’s circuit; it is divided and
is received as SMPLC at the prover where it is used to sample the challenge. A delay
element produces DRVR, which controls when the response is put the I/O, while at the
verifier SMPLR samples it. The pull-up resistor R is present to pull the I/O line to a
stable state when it is not actively driven by either side.

therefore, c/fV . Thus, fV should be chosen to be as high as possible. We selected

200 MHz, allowing 1.5 m resolution under ideal conditions for the attacker. The

prover’s operating frequency fP is compatible with any signal frequencies having

a high-time greater than tq + fV
−1 + td, where tq defines the time between when

the challenge is being driven onto the I/O and when the response is sampled by

the verifier; td is the delay on the transmission line between V and P . In order to

be compatible with ISO 7816, which specifies that the smartcard/prover needs to

operate at 1–5 MHz, we have chosen that fP = fV /128 ≈ 1.56 MHz.

Shift registers. There are four 64-bit shift registers. The challenge shift register

129

Figure 6.5: The Xilinx XUP board [186, UG069] with a Virtex-II PRO 30 FPGA on
which the distance bounding design was implemented. Both verifier and prover reside on
the same chip connected only by two same-length transmission lines for I/O and clock.
Measurements were taken at exposed I/O vias on the back side of the PCB, as close as
possible to I/O pins.

is clocked by CLKV and is shifted one clock cycle before it is driven on to the I/O

line by DRVC . The verifier’s response shift register is also clocked by CLKV and

is shifted on the rising edge of SMPLR. On the prover side, the two response shift

registers are clocked and shifted by SMPLC .

Bi-directional I/O. The verifier and prover communicate using a bi-directional

I/O with tri-state buffers at each end. These buffers are controlled by the signals

DRVC and DRVR and are implemented such that only one side drives the I/O line

at any given time in order to prevent contention. This is a consequence of adapting

the Hancke-Kuhn protocol to a wired medium, and implies that the duration of

the challenge must be no longer than necessary, so as to obtain the most accurate

distance bound. A pull-up is also present, as with the ISO 7816 specification, to

maintain a high state when the line is not driven by either side.

Timing. A timing diagram of a single challenge-response exchange is shown

in Figure 6.3. The circuit shown in Figure 6.4 was implemented on an FPGA

using Verilog (not all control signals are shown for simplicity). Since we used a

single chip, the I/O and clock lines were “looped-back” using transmission wires of

varying lengths to simulate the distance between the verifier and prover as shown

in Figure 6.5.

The first operation is clocking the challenge shift register (not shown), which

is driven on to the I/O line by DRVC on the following fV clock cycle for a period

tn. tn should be made long enough to ensure that the prover can adequately and

reliably sample the challenge, and as short as possible to allow the response to

be rapidly sent while not causing contention. The clock sent to P , CLKV→P , is

asserted tm after the rising edge of DRVC . Both CLKV→P and the I/O line have the

130

same propagation delay td and when the clock edge arrives (now called SMPLC), it

samples the challenge. The same clock edge also shifts the two response registers, one

of which is chosen by a 2:1 multiplexer that is controlled by the sampled challenge.

DRVR is a delayed replica of SMPLC , which is created using a delay element.

The delay tp allows the response shift register signals to shift and propagate

through the multiplexer, preventing the intermediate state of the multiplexer from

being leaked. Otherwise, the attacker could discover both responses to the previous

challenge in the case where Ci 6= Ci−1. It should be at least as long as the period

from the rising edge of SMPLC to when the response emerges from the multiplexer’s

output. Using placement constraints, we deliberately caused routing delays to adjust

tp, which is equal to 3.5 ns9. When DRVR is asserted, the response is being driven

onto the I/O line until the falling edge.

We note that in hindsight, a register placed between the multiplexer choosing

the responses and the I/O driver would have been prudent in order to better assure

that no leakage occurs if the design is modified (through different placement) or if

an attacker is able to influence delays externally.

At the verifier, the response is sampled by SMPLR after tq from the assertion of

CLKV→P . The value of tq determines the distance bound and should be long enough

to account for the propagation delay that the system was designed for (including on-

chip and package delays), and short enough to not allow an attacker to be further

away than desired, with the minimum value being tp + 2td. As an improvement,

tq can be dynamically adjusted between invocations of the protocol allowing the

verifier to make decisions based on the measured distance, for example, determine

the maximum transaction amount allowed. With a single iteration, the verifier can

discover the prover’s maximum distance away, but with multiple iterations, the exact

distance can be found with a margin of error equal to the signal propagation time

during a single clock cycle of the verifier. SMPLR may be made to sample on both

rising and falling edges of fV , effectively doubling the distance resolution without

increasing the frequency of operation (other signals may operate this way for tighter

timing margins).

If we assume that an attacker can transmit signals at the speed of light and ignore

the real-life implications of sending them over long distances, we can determine the

theoretical maximum distance between the verifier and prover. A more realistic

attacker will need to overcome signal integrity issues that are inherent to any system.

We should not, therefore, make it easy for the attacker by designing with liberal

timing constraints, and thus choose the distance d between the verifier and prover

to be as short as possible. More importantly, we should carefully design the system

to work for that particular distance with very tight margins. For example, the

9This was measured using delay timing given by the “FPGA Editor” utility.

131

various terminals we have tested were able to transmit/drive a signal through a two

meter cable, although the card should at most be a few centimeters away. Weak

I/O drivers could be used to degrade the signal when an extension is applied (our

I/O drivers are set to 8 mA strength). The value of d also determines most of the

timing parameters of the design, and as we shall see next, the smaller these are, the

harder it will be for the attacker to gain an advantage.

6.4.4 Possible attacks on distance bounding

Although, following from our previous assumptions, the attacker cannot get access to

more than about half the response bits, there are ways he may extend the distance

limit before a terminal will detect the relay attack. This section discusses which

options are available, and their effectiveness in evading defenses.

Guessing attack. Following the initialization phase, the attacker can initiate the

bit-exchange phase before the genuine terminal has done so. As the attacker does

not know the challenge at this stage, he will, on average, guess 50% of the challenge

bits correctly and so receive the correct response for those. For the ones where the

challenge was guessed incorrectly, the response is effectively random, so there is still

a 50% chance that the response will be correct. Therefore the expected success rate

of this technique is 75%.

Since our tests show a negligible error rate, the terminal may reject any response

with a single bit that is incorrect. In our prototype, where the response registers

are 64 bits each, the attacker will succeed with probability (3
4
)
64 ≈ 1 in 226. The

size of the registers is a security parameter that can be increased according to the

application, while the nonces assure that the attacker can only guess once.

Replay. If the attacker can force the card to perform two protocol runs, with the

same nonces used for both, then all bits of the response can be extracted by sending

all 1’s on the first iteration and all 0’s on the second. We resist this attack by

selecting the protocol variant mentioned by Hancke and Kuhn [84], where the card

adds its own nonce. This is cheap to do within EMV since a transaction counter is

already required by the rest of the protocol. If this is not desired then provided the

card cannot be clocked at twice its intended frequency, the attacker will not be able

to extract all bits in time. This assumes that the time between starting the distance

bounding protocol, and the earliest time the high-speed stage can start, is greater

than the latter’s duration.

Early bit detection and deferred bit signaling. The card will not sample the

terminal’s challenge until tm+d after the challenge is placed on the I/O line. This is

to allow an inexpensive card to reliably detect the signal but, as Clulow et al. [37]

suggest, an attacker could detect the signal immediately. By manipulating the clock

provided to the genuine card, and using high-quality signal drivers, the challenge

132

could be sent to the card with shorter delay.

Similarly, the terminal will wait tq between sending the challenge and sampling

the response, to allow for the round trip signal propagation time, and wait until the

response signal has stabilized. Again, with reduced reliability the response could be

sent from the card just before the terminal samples. The attacker, however, cannot

do so any earlier than tp after the card has sampled the challenge, and the response

appears on the I/O.

Delay-line manipulation. The card may include the value of tp in its signed data,

so the attacker cannot make the terminal believe that the value is larger than the

card’s specification. However, the attacker might be able to reduce the delay, for

example by cooling the card. If it can be reduced to the point that the multiplexer

or latch has not settled, then both potential responses may be placed on to the I/O

line, violating our assumptions.

However, if the circuit is arranged so that the delay will be reduced only if the

reaction of the challenge latch and multiplexer is improved accordingly, the response

will still be sent out prematurely. This gives the attacker extra time, so should be

prevented. If temperature compensated delay lines are not economic, then they

should be as short as possible to reduce this effect.

In fact, in a custom circuit, tp may be so small (less than 1 ns), that the terminal

could just assume it is zero. This will mean that the terminal will believe all cards

are slightly further away than they really are, but will avoid the value of tp having

to be included in the signed data.

Combined attacks. For an attacker to gain a better than 1 in 226 probability

of succeeding in the challenge response protocol, the relay attack must take less

than tm+q time. In practice, an attacker will not be able to sample or drive the

I/O line instantaneously and the radio-link transceiver or long wires will introduce

latency, so the attacker would need to be much closer than this limit. A production

implementation on an ASIC would be able to give better security guarantees and be

designed to tighter specifications than were available on the FPGA for our prototype.

6.4.5 Results

We have developed a versatile implementation that requires only modest modifi-

cation to currently deployed designs. Our distance bounding scheme was success-

fully implemented and tested on an FPGA for 2.0, 1.0, and 0.3 meter transmission

lengths, although it can be modified to work for any distance and tailored to any

end application. To verify the logical correctness of the design (observing wrong re-

sponses, for example) we used the internal logic analyzer “ChipScope” [186, UG029].

Oscilloscope traces of a single bit challenge-response exchange over a 50 Ω, 30 cm

printed circuit board transmission line are shown in Figure 6.6; Figure 6.5 shows

133

vo
lta

ge
 (

V
)

time since start of exchange (µµs)

0 10 20 30 40 50

0

1

2

3

●

(a) I/OV trace of a 64-bit exchange with position of (b) indicated by • on the x axis.

−10 0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

vo
lta

ge
 (

V
)

time since challenge sent by verifier (ns)

CLKp

●

●

● ● ●Prover samples Verifier samples

t d

t n

tm ++ t d

t p ++ t d

tqfail −− t d

t qpass −− t d

●

I Ov
I Op

Challenge sent Response received

0 5 10
distance at speed of light in vacuum (m)

(b) Single bit exchange, challenge is 1 and response is 0.

Figure 6.6: Oscilloscope trace from the bit-exchange phase of the distance bounding pro-
tocol. Delay is introduced by a 30 cm transmission line between the verifier and prover.
Timing parameters are tn = 10 ns, tm = 5 ns, tp = 8 ns (including internal and I/O delays).
Two values of tq are shown, one where the bit was correctly received tqpass = 20 ns and
one where it was not, tqfail

= 15 ns. td was measured to be 2.16 ns which over a 30 cm wire
corresponds to propagation velocity of 1.4 × 108 m/s. Note that before the challenge is
sent, the trace is slowly rising above ground level; this is the effect of the pull-up resistor
as also seen in (a) after the protocol completes. Also, the shown signals were probed at
the FPGA I/Os and do not precisely represent when they actually appear inside of it,
so in actuality the FPGA will “see” the falling edge shown in (b) slightly after what is
represented in the figure.

134

the FPGA board and experimental setup. In this case, the challenge is 1 and the

response is 0 with indicators where SMPLR has sampled the response. The first,

after tqfail
= 15 ns has sampled too early while the second, tqpass = 20 ns, which is

a single period of fV later, has correctly sampled the 0 as the response. The delay

td = 2.16 ns, can also be seen and is, of course, due to the length of the transmission

line. If the attacker exploited all possible attacks previously discussed and was able

to transmit signals at c, he would need to be within approximately 6 m, although

the actual distance would be shorter for a more realistic attacker.

6.4.6 Costs

The FPGA design of both the verifier and prover as shown in Figure 6.4 consumes

37 flip-flops and 93 look-up tables: 64 for logic, 13 route-throughs, and 16 as shift

registers (4 cascaded 16-bit LUTs for each), which is extremely compact. However,

it is difficult to estimate the cost of an ASIC implementation with these figures

as there is no reliable conversion technique between FPGA resource utilization and

ASIC transistor count, especially since the above numbers are for the core functions,

without the supporting circuitry. It is also hard to estimate the cost in currency

because that changes rapidly with time, production volume, fabrication process, and

many other factors, so we will describe it relative to the resources currently used.

As mentioned, we have made every effort to minimize the circuitry that needs to

be added to the smartcard while being more liberal with the terminal, although for

both the additions can be considered minor. For the smartcard, new commands for

initiating the initialization phase need to be added as well as two shift registers and

a state machine for operating the rapid bit-exchange. Considering that smartcards

already have a few thousand memory cells, this can be considered a minor addition,

especially given that they need to operate at the existing low frequencies of 1–5 MHz.

For the initialization phase, existing circuits can be used such as the DES engine

for producing the content of the response registers. The card’s transaction counter

may be used for the nonce Np.

As for the terminals, their internal operating frequency is unknown to us, but

it is unlikely that it is high enough to achieve good distance resolution. Therefore,

a capable processor and some additional components are required, such as a high

quality oscillator. As an alternative to high frequencies, or when designing for very

short distances, delay lines could be used instead of operating on clock edges, as

originally suggested by Hancke and Kuhn [84]. The distance bounding circuitry

would need to be added to the terminal’s main processor, which consists of two shift

registers and slightly more involved control code than the smartcard’s.

We have described the added cost in terms of hardware but the added time per

transaction and the need to communicate with the bank, refused transactions due to

135

failure, re-issuing cards, and so on, may amount to substantial costs. Only the banks

involved have access to all the necessary information needed to make a reasonable

estimate of these overheads.

6.5 Distance bounding in FPGA applications

Relay attacks can also compromise the security and integrity of FPGA systems.

Here, we link the above discussion with the topic of this thesis and point out po-

tential vulnerabilities, and how they may be resisted using the distance bounding

implementation.

Consider the challenge-response deterrents we discussed in Section 2.3.3, where

the FPGA executes an authentication protocol with a processor that is placed near

it on the PCB. This is meant to prevent the bitstream from being used on any other

system that does not contain that specific authentication device. These schemes,

however, do not prevent the challenges from being relayed to a processor far away.

Cloners may be unlikely to go through the trouble of doing this, though designers

of high security modules need to factor this threat into their analysis. For example,

Graf and Athanas [74] describe an FPGA-based security system where users are

authenticated using tamper-proof tokens, though relay attacks are not considered

and are possible. The FPGA and NVM interface in the secure remote update

scheme presented in Chapter 3 is also potentially vulnerable, though an attack will

violate our assumptions when tamper proofing is required; where it is not, remote

attestation makes the threat insignificant.

The configuration process can be protected from relay attacks by adding a dis-

tance bounding functionality to the FPGA configuration logic and the NVM. The

constraints of ISO 7816 are similar for this scenario: the FPGA (verifier) can ac-

commodate the additional circuitry and the performance that is required, while the

NVM (prover) is cheap and simple, but requires little additional circuitry. The in-

terface is similar as well (when the FPGA behaves as the “master”) as serial NVMs

share at least a clock and data line between them. The implementation needs to

be done carefully, however, so configuration content is tied to the distance bound-

ing process. We leave the exploration of integrating distance bounding into the

configuration process to future research.

136

Chapter 7

Review and outlook

“FPGA security” is still a relatively young field, evolving as new FPGA generations

become more capable and their range of applications grows. This dissertation has

examined the role of volatile FPGAs in security systems. The core aim was to

provide practical security solutions for reconfigurable systems, taking into account

the context in which they are used. In review, these were its main contributions:

Chapter 2: comprehensive review of current research in the field. I discussed and

commented on the current state of research in the field based on my own expe-

riences and insights. Section 2.3.2 also provided an analysis of and motivation

for adding bitstream authentication to FPGA configuration logic.

Chapter 3: flexible protocol for secure remote update of bitstreams over insecure

networks. The protocol is versatile and does not require additional circuitry

to be integrated into the hard-wired configuration logic – thus, it can be used

with existing FPGAs. I anticipate that the protocol will be useful to FPGA

applications where unattended remote update is required.

Chapter 4: source code for three AES implementations and CMAC mode of

operation. I have created an FPGA implementation of the AES block cipher

in an innovative way using embedded blocks (BRAMs and DSPs), minimizing

the use of “traditional” logic elements such as flip-flops and lookup tables. As

far as I am aware, these are the first FPGA implementations of a cryptographic

primitive for which source code was fully released at publication time.

Chapter 5: comparing FPGA implementations should be done with caution. I

used FPGA AES designs to demonstrate the significant variability in perfor-

mance under different implementation conditions, questioning common compar-

ison practices across architectures and implementers. I showed that a single figure

of merit, “throughput”, and the comparative unit of “throughput per slice” are

mostly meaningless without context or qualification – they can be appropriately

137

used only under very specific circumstances. I argued that source code avail-

ability can enable recompilation of compared designs under similar conditions.

I also suggested that common implementation platforms be identified and that

results be evaluated based on meeting target performance, rather than “best

possible performance”.

Chapter 5: reproducible research in light of variability of FPGA designs. I used

experimental evidence to strengthen the argument that an experimental-based

publication is simply an advertisement for the source code or experimental work,

which is the actual contribution. Together with the availability of source code, I

proposed that a reproducibility scale be added to manuscripts’ review process.

Chapter 6: EMV payment system is vulnerable to relay attacks. The demon-

stration exemplified the ease with which relay attacks can violate distance as-

sumptions made by the designers of security systems. The immediate impact of

this demonstration was to allow defrauded cardholders to challenge the banks’

inaccurate assertions regarding the security of the “Chip and PIN” payment

system.

Chapter 6: implementation of a secure distance bounding protocol for wired appli-

cations. I implemented a wired adaptation of the Hancke-Kuhn distance bound-

ing protocol on an FPGA. Using routing delays, I was able to implement the

prover side without a fast clock, thus making the design simple. The design was

able to determine that a prover is at most six meters away. While the imple-

mentation initially targeted ISO 7816-3, it can be extended to many other wired

applications, such as the interface between an FPGA and a configuration storage

device.

Appendix A: a way to securely integrate multiple modules into a single FPGA de-

sign. I proposed a practical way for integrating design modules from distrusting

sources into a single FPGA design, thus enabling the pay-per-use core distribu-

tion model. The main advantage of the scheme is that most of the hardware

and software support already exists, and few additions to configuration logic are

required.

One of the emerging themes from my research is worth pointing out: “context

matters for security”. The literature survey provided a broader context to published

results (power analysis and watermarking, for example). The secure remote update

protocol analysis factored in the way in which it will be used, and what system-

level properties must be maintained for security. Some of these measures are a

compromise between security and cost, although only when set in context can such

measures reassure the engineer that the level of protection is sufficient. The AES

138

implementation results were reported in the perspective of constraints and possible

variability, rather than as a single figure of merit. The relay attack illustrated that

even though smartcard ICs are hard to clone and attack, it is the way in which they

are used that compromised the security of the entire system. Much of the discussion

in Appendix A about secure core integration is dedicated to usability evaluation

of the scheme, rather than to a detailed technical discussion – context provides

a measure for usefulness. During my work on security of and for reconfigurable

systems and of payment systems, I learned that, for the most part, security is all

about context and that it is a mistake to treat a problem in isolation, as it is likely

to lead to broken systems.

I see several interesting directions in which the work presented in this dissertation

can be taken.

Considering that FPGAs are fast becoming “systems on a chip”, better access

control to various parts of the FPGA will become necessary. This will require not

only a simple design separation between modules in the same FPGA, but a dedicated

controller for key management and authentication. One example application is the

ability to have a portion of the FPGA available for end-user programming, while

another portion is only updatable by authorized principals (i.e., system developers).

The combination of the protocol described in Chapter 3 and integration scheme of

Appendix A could be a good starting point.

The secure remote update protocol in Chapter 3 can be extended for partial

reconfiguration at start-up time, but careful security analysis is required. For exam-

ple, what are the properties of the bootloader bitstream, and how are the “missing”

bitstream portions sent, or stored locally. The work can be extended to use a

broadcasting system using public key cryptography, so as to minimize the number

of messages that are specific to individual systems.

The wired distance bounding implementation can be extended for mutual au-

thentication between multiple FPGAs, and the timing margins can be tightened for

better distance resolution using additional connections. Another possibility is to

continue the work in the RF domain.

I do sincerely hope that the discussion in Chapter 5 about reproducibility and

comparability of designs will not go unnoticed. I also hope that the example I set

in Chapter 4 by releasing the source code will be followed by others, and that the

code and methodology will be used for further research.

139

140

Bibliography

[1] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid. IP watermarking tech-
niques: survey and comparison. In IEEE International Workshop on System-
on-Chip for Real-Time Applications, 2003. ISBN 0-7695-1929-6.

[2] S. Adee. The hunt for the kill switch. IEEE Spectrum, May 2008. http:

//www.spectrum.ieee.org/may08/6171

[3] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM
side-channel(s): Attacks and assessment methodologies. Technical Report
2001/037, IBM Watson Research Center, 2001.

[4] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-
channel(s). In Cryptographic Hardware and Embedded Systems Workshop,
volume 2523 of LNCS, pages 29–45, London, UK, August 2002. Springer-
Verlag. ISBN 3-540-00409-2.

[5] Algotronix Ltd. AES G3 data sheet Xilinx edition, October 2007. http:

//www.algotronix-store.com/kb_results.asp?ID=7

[6] Alliance for Gray Market and Counterfeit Abatement. Managing the
risks of counterfeiting in the information technology industry, number,
August 2006. http://www.agmaglobal.org/press_events/press_docs/

Counterfeit_WhitePaper_Final.pdf

[7] Altera Corp. http://www.altera.com

[8] Altera Corp. Court issues preliminary injunction against Clear Logic in Altera
litigation, number, July 2002. http://www.altera.com/corporate/news_

room/releases/releases_archive/2002/corporate/nr-clearlogic.html

[9] M. S. Anderson, C. J. G. North, and K. K. Yiu. Towards countering the
rise of the silicon Trojan. Technical Report DSTO-TR-2220, Command, Con-
trol, Communication and Intelligence Division (C3ID), Department of De-
fence, Australian Government, December 2008. http://www.dsto.defence.

gov.au/publications/scientific_record.php?record=9736

[10] R. J. Anderson. Security engineering: A guide to building dependable dis-
tributed systems. John Wiley & Sons, Inc., New York, NY, USA, second
edition, 2008. ISBN 978-0-470-06852-6.

141

http://www.spectrum.ieee.org/may08/6171
http://www.spectrum.ieee.org/may08/6171
http://www.algotronix-store.com/kb_results.asp?ID=7
http://www.algotronix-store.com/kb_results.asp?ID=7
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.altera.com
http://www.altera.com/corporate/news_room/releases/releases_archive/2002/corporate/nr-clearlogic.html
http://www.altera.com/corporate/news_room/releases/releases_archive/2002/corporate/nr-clearlogic.html
http://www.dsto.defence.gov.au/publications/scientific_record.php?record=9736
http://www.dsto.defence.gov.au/publications/scientific_record.php?record=9736

[11] R. J. Anderson and M. Bond. The man in the middle defence. In Security
Protocols Workshop, Cambridge, England, March 2006. Springer. http://

www.cl.cam.ac.uk/~rja14/Papers/Man-in-the-Middle-Defence.pdf

[12] R. J. Anderson and M. G. Kuhn. Tamper resistance – a cautionary note. In
USENIX Workshop on Electronic Commerce Proceedings, pages 1–11, Oak-
land, CA, November 1996. USENIX.

[13] R. J. Anderson and M. G. Kuhn. Low cost attacks on tamper resistant devices.
In International Workshop on Security Protocols, pages 125–136, London, UK,
1998. Springer-Verlag.

[14] R. J. Anderson, M. Bond, J. Clulow, and S. P. Skorobogatov. Cryptographic
processors – a survey. Technical Report UCAM-CL-TR-641, University of
Cambridge, Computer Laboratory, August 2005.

[15] R. J. Anderson, M. Bond, and S. J. Murdoch. Chip and spin, March 2005.
http://www.chipandspin.co.uk/spin.pdf

[16] APACS. APACS response to BBC Watchdog and chip and PIN. Press re-
lease, February 2007. http://www.chipandpin.co.uk/media/documents/

APACSresponsetoWatchdogandchipandPIN-06.02.07.pdf

[17] N. Asokan, D. Hervé, M. Steiner, and M. Waidner. Authenticating public
terminals. Computer Networks, 31(9):861–870, 1999.

[18] K. Austin. Data security arrangements for semiconductor programmable de-
vices. United States Patent Office, number 5388157, 1995.

[19] Aveso Inc. Display enabled smart cards. http://www.avesodisplays.com/

[20] B. Badrignans, R. Elbaz, and L. Torres. Secure FPGA configuration archi-
tecture preventing system downgrade. In Field Programmable Logic, pages
317–322, September 2008.

[21] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In Fast
Software Encryption, volume 3017 of LNCS, pages 389–407. Springer, 2004.

[22] T. Beth and Y. Desmedt. Identification tokens – or: solving the chess grand-
master problem. In CRYPTO, volume 537 of LNCS, pages 169–177. Springer,
August 1990. ISBN 3-540-54508-5.

[23] J. Black. “Authenticated encryption” in Encyclopedia of Cryptography and
Security, section A, pages 10–21. Authenticated encryption. Springer, 2005.

[24] L. Bossuet, G. Gogniat, and W. Burleson. Dynamically configurable security
for SRAM FPGA bitstreams. In IEEE Reconfigurable Architectures Workshop,
Los Alamitos, CA, USA, April 2004. IEEE Computer Society.

[25] S. Brands and D. Chaum. Distance-bounding protocols. In T. Helleseth,
editor, EUROCRYPT ’93: Workshop on the theory and application of cryp-
tographic techniques on Advances in cryptology, volume 765 of LNCS, pages
344–359. Springer, May 1993.

142

http://www.cl.cam.ac.uk/~rja14/Papers/Man-in-the-Middle-Defence.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/Man-in-the-Middle-Defence.pdf
http://www.chipandspin.co.uk/spin.pdf
http://www.chipandpin.co.uk/media/documents/APACSresponsetoWatchdogandchipandPIN-06.02.07.pdf
http://www.chipandpin.co.uk/media/documents/APACSresponsetoWatchdogandchipandPIN-06.02.07.pdf
http://www.avesodisplays.com/

[26] J. Brouchier, N. Dabbous, T. Kean, C. Marsh, and D. Naccache. Thermo-
communication. Cryptology ePrint Archive, Report 2009/002, 2009. http:

//eprint.iacr.org/2009/002.pdf

[27] M. Bucci, L. Giancane, R. Luzzi, G. Scotti, and A. Trifiletti. Enhancing
power analysis attacks against cryptographic devices. In Circuits and Systems
Symposium, May 2006.

[28] J. D. R. Buchanan, R. P. Cowburn, A.-V. Jausovec, D. Petit, P. Seem,
G. Xiong, D. Atkinson, K. Fenton, D. A. Allwood, and M. T. Bryan. Forgery:
‘fingerprinting’ documents and packaging. Nature, 436(7050):475, July 2005.

[29] J. B. Buckheit and D. D. Donoho. Wavelab and reproducible research.
Technical Report 474, Department of Statistics, Stanford University, 1995.
http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf

[30] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy.
Implementation of the AES-128 on Virtex-5 FPGAs. In Progress in Cryptology
– AfricaCrypt, pages 16–26. Springer, 2008.

[31] V. Carlier, H. Chabanne, E. Dottax, and H. Pelletier. Electromagnetic side
channels of an FPGA implementation of AES. Cryptology ePrint Archive,
(145), 2004. http://eprint.iacr.org/2004/145.pdf

[32] J. Castillo, P. Huerta, and J. I. Mart́ınez. Secure IP downloading for SRAM
FPGAs. Microprocessors and Microsystems, 31(2):77–86, February 2007.

[33] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa. Reconfigurable memory
based AES co-processor. In Parallel and Distributed Processing Symposium,
pages 192–199. IEEE, April 2006.

[34] Z. Chen, S. Morozov, and P. Schaumont. A hardware interface for hashing
algorithms. Cryptology ePrint Archive, Report 2008/529, 2009. http://

eprint.iacr.org/2008/529.pdf

[35] P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES
algorithm. In Cryptographic Hardware and Embedded Systems Workshop, vol-
ume 2779, pages 319–333. Springer, 2003. ISBN 3540408338.

[36] B. D. Christiansen. FPGA security through decoy circuits. Master’s thesis, Air
Force Institute of Technology, Ohio, USA, March 2006. http://stinet.dtic.
mil/cgi-bin/GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf

[37] J. Clulow, G. P. Hancke, M. G. Kuhn, and T. Moore. So near and yet so far:
distance-bounding attacks in wireless networks. In L. Buttyan, V. Gligor, and
D. Westhoff, editors, Security and Privacy in Ad-hoc and Sensor Networks,
volume 4357 of LNCS, Hamburg, Germany, September 2006. Springer.

[38] J. H. Conway. On numbers and games. Academic Press, 1976. ISBN 0-12-
186350-6.

143

http://eprint.iacr.org/2009/002.pdf
http://eprint.iacr.org/2009/002.pdf
http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf
http://eprint.iacr.org/2004/145.pdf
http://eprint.iacr.org/2008/529.pdf
http://eprint.iacr.org/2008/529.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA454021&Location=U2&doc=GetTRDoc.pdf

[39] C. F. Coombs, Jr. Printed Circuit Handbook. McGraw-Hill Professional, 6th
edition, 2007. ISBN 978-0-07-146734-6.

[40] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT benchmarking of
cryptographic systems, accessed 26 July 2009. http://bench.cr.yp.to

[41] J. Daemen and V. Rijmen. AES proposal: Rijndael, number, September 1999.
http://www.daimi.au.dk/~ivan/rijndael.pdf

[42] J. Daemen and V. Rijmen. The design of Rijndael: AES – the Advanced
Encryption Standard. Springer, 2002. ISBN 3-540-42580-2.

[43] A. Dandalis, V. K. Prasanna, and J. D. Rolim. A comparative study of perfor-
mance of AES final candidates using FPGAs. In Cryptographic Hardware and
Embedded Systems Workshop, volume 1965 of LNCS, pages 125–140. Springer,
2000.

[44] A. Dauman. An open IP encryption flow permits industry-wide interoper-
ability. Synplicity, Inc., number, June 2006. http://www.synplicity.com/

literature/whitepapers/pdf/ip_encryption_wp.pdf

[45] E. De Mulder, P. Buysschaert, S. B. Örs, P. Delmotte, B. Preneel, G. Van-
denbosch, and I. Verbauwhede. Electromagnetic analysis attack on an FPGA
implementation of an elliptic curve cryptosystem. In EUROCON: Proceedings
of the International Conference on “Computer as a tool”, pages 1879–1882,
November 2005.

[46] E. De Mulder, S. B. Örs, B. Preneel, and I. Verbauwhede. Differential electro-
magnetic attack on an FPGA implementation of elliptic curve cryptosystems.
In World Automation Congress, July 2006.

[47] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the Fiat-
Shamir passport protocol. In Advances in Cryptology, volume 293 of LNCS,
page 21. Springer, 1987.

[48] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.
Willems. A practical implementation of the timing attack. In CARDIS, pages
167–182, 1998.

[49] A. P. Donlin and S. M. Trimberger. Evolved circuits for bitstream protection.
United States Patent Office, number 6894527, May 2005.

[50] S. Drimer. Authentication of FPGA bitstreams: why and how. In Recon-
figurable Computing: Architectures, Tools, and Applications (ARC), volume
4419 of LNCS, pages 73–84. Springer, March 2007. ISBN 978-3-540-71430-9.

[51] S. Drimer. Volatile FPGA design security – a survey (v0.96), April 2008.
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

[52] S. Drimer. FPGA design security bibliography, June 2009. http://www.cl.

cam.ac.uk/~sd410/fpgasec/

144

http://bench.cr.yp.to
http://www.daimi.au.dk/~ivan/rijndael.pdf
http://www.synplicity.com/literature/whitepapers/pdf/ip_encryption_wp.pdf
http://www.synplicity.com/literature/whitepapers/pdf/ip_encryption_wp.pdf
http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf
http://www.cl.cam.ac.uk/~sd410/fpgasec/
http://www.cl.cam.ac.uk/~sd410/fpgasec/

[53] S. Drimer. True random number generator and method of generating true
random numbers. United States Patent Office, number 7502815, March 2009.

[54] S. Drimer and M. G. Kuhn. A protocol for secure remote updates of FPGA
configurations. In Reconfigurable Computing: Architectures, Tools, and Appli-
cations (ARC), volume 5453 of LNCS, pages 50–61. Springer, March 2009.

[55] S. Drimer and S. J. Murdoch. Keep your enemies close: distance bounding
against smartcard relay attacks. In USENIX Security Symposium, pages 87–
102, August 2007.

[56] S. Drimer, T. Güneysu, and C. Paar. DSPs, BRAMs and a pinch of logic:
new recipes for AES on FPGAs. In IEEE Symposium on Field-Programmable
Custom Computing Machines. IEEE, April 2008.

[57] S. Drimer, J. Moore, and A. Lesea. Circuit for and method of implementing
a plurality of circuits on a programmable logic device. United States Patent
Office, number 7408381, August 2008.

[58] S. Drimer, S. J. Murdoch, and R. J. Anderson. Thinking inside the box:
system-level failures of tamper proofing. In IEEE Symposium on Security and
Privacy, pages 281–295. IEEE, May 2008.

[59] S. Drimer, S. J. Murdoch, and R. Anderson. Optimised to fail: card readers
for online banking. In Financial Cryptography and Data Security, February
2009.

[60] S. Drimer, T. Güneysu, and C. Paar. DSPs, BRAMs and a pinch of logic:
extended recipes for AES on FPGAs (to appear). ACM Transactions on Re-
configurable Technology and Systems (TRETS), 3(1), March 2010.

[61] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-based perfor-
mance evaluation of the AES block cipher candidate algorithm finalists. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 9(4):545–557,
August 2001.

[62] EMV 4.1, June 2004. http://www.emvco.com/

[63] N. Ferguson and B. Schneier. Practical Cryptography. John Wiley & Sons,
Inc., New York, NY, USA, 2003. ISBN 0-471-22357-3.

[64] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker. The Skein hash function family, version 1.1,
number, November 2008. http://www.skein-hash.info/sites/default/

files/skein1.1.pdf

[65] V. Fischer and M. Drutarovský. Two methods of Rijndael implementation in
reconfigurable hardware. In Cryptographic Hardware and Embedded Systems
Workshop, volume 2160 of LNCS, pages 77–92. Springer, 2001. ISBN 3-540-
42521-7.

145

http://www.emvco.com/
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf

[66] R. J. Fong, S. J. Harper, and P. M. Athanas. A versatile framework for FPGA
field updates: an application of partial self-reconfiguration. IEEE Interna-
tional Workshop on Rapid Systems Prototyping, pages 117–123, 2003.

[67] K. Gaj and P. Chodowiec. Fast implementation and fair comparison of the
final candidates for advanced encryption standard using field programmable
gate arrays. In The Cryptographers Track at the RSA Security Conference,
volume 2020 of LNCS, pages 84–99. Springer, 2001.

[68] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete
results. In Cryptographic Hardware and Embedded Systems Workshop, volume
2162 of LNCS, pages 251–261, London, UK, May 2001. Springer-Verlag. ISBN
3-540-42521-7.

[69] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon physical random
functions. In ACM Conference on Computer and Communications Security,
pages 148–160, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-612-9.

[70] B. Gittins, H. Landman, S. O’Neil, and R. Kelson. A presentation on VEST
hardware performance, chip area measurements, power consumption estimates
and benchmarking in relation to the AES, SHA-256 and SHA-512, November
2005.

[71] B. Gladman. A specification for Rijndael, the AES algorithm (version 3.16),
August 2007. http://gladman.plushost.co.uk/oldsite/cryptography_

technology/rijndael/aes.spec.v316.pdf

[72] T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest.
In Cryptographic Hardware and Embedded Systems Workshop, volume 3659 of
LNCS, pages 427–440. Springer, September 2005. ISBN 3-540-28474-5.

[73] T. G. W. Gordon and P. J. Bentley. On evolvable hardware. In Soft Computing
in Industrial Electronics, pages 279–323, London, UK, 2002. Physica-Verlag.

[74] J. Graf and P. Athanas. A key management architecture for securing off-chip
data transfers. In Field Programmable Logic and Application, volume 3203 of
LNCS, pages 33–42. Springer, 2004.

[75] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs
and their use for IP protection. In Cryptographic Hardware and Embedded
Systems Workshop, volume 4727 of LNCS, pages 63–80, September 2007. ISBN
978-3-540-74734-5.

[76] S. A. Guccione, D. Levi, and P. Sundararajan. Jbits: A java-based inter-
face for reconfigurable computing. In Military and Aerospace Applications of
Programmable Devices and Technologies, 1999.

[77] T. Güneysu, B. Möller, and C. Paar. Dynamic intellectual property protection
for reconfigurable devices. In Field-Programmable Technology, pages 169–176,
November 2007.

146

http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/aes.spec.v316.pdf
http://gladman.plushost.co.uk/oldsite/cryptography_technology/rijndael/aes.spec.v316.pdf

[78] F. K. Gürkaynak and P. Luethi. Recommendations for hardware evaluation
of cryptographic algorithms. Technical report, 2006. http://asic.ethz.ch/
estream/SASC_recommendations.pdf

[79] P. Gutmann. Secure deletion of data from magnetic and solid-state mem-
ory. In USENIX Workshop on Smartcard Technology, pages 77–89, San Jose,
California, July 1996.

[80] P. Gutmann. Data remanence in semiconductor devices. USENIX Security
Symposium, pages 39–54, August 2001.

[81] I. Hadžić, S. Udani, and J. M. Smith. FPGA viruses. In Field Programmable
Logic and Applications, volume 1673 of LNCS, pages 291–300, London, UK,
1999. Springer-Verlag. ISBN 3-540-66457-2.

[82] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember:
cold boot attacks on encryption keys. USENIX Security Symposium, 2008.

[83] G. P. Hancke. Security of proximity identification systems. Technical Report
UCAM-CL-TR-752, University of Cambridge, Computer Laboratory, July
2009. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-752.pdf

[84] G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol. In
Security and Privacy for Emerging Areas in Communications Networks, pages
67–73, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2369-2.

[85] G. P. Hancke and M. G. Kuhn. Attacks on time-of-flight distance bounding
channels. In ACM Conference on Wireless Network Security (WiSec). ACM,
March 2008.

[86] Helion Technology. High performance AES (Rijndael) cores for Xilinx FPGAs,
2007. http://www.heliontech.com/downloads/aes_xilinx_helioncore.

pdf

[87] A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s fully pipelined AES processor
on FPGA. pages 308–309. IEEE Computer Society, April 2004. ISBN 0-7695-
2230-0.

[88] D. E. Holcomb, W. P. Burleson, and K. Fu. Initial SRAM state as a fingerprint
and source of true random numbers for RFID tags. In Proceedings of the
Conference on RFID Security, July 2007.

[89] Y.-C. Hu, A. Perrig, and D. Johnson. Wormhole attacks in wireless networks.
IEEE Journal on Selected Areas in Communications (JSAC), 24(2), February
2006.

[90] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin,
T. Nguyen, and C. Irvine. Moats and drawbridges: an isolation primitive for
reconfigurable hardware based systems. In IEEE Symposium on Security and
Privacy, pages 281–295, 2007.

147

http://asic.ethz.ch/estream/SASC_recommendations.pdf
http://asic.ethz.ch/estream/SASC_recommendations.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-752.pdf
http://www.heliontech.com/downloads/aes_xilinx_helioncore.pdf
http://www.heliontech.com/downloads/aes_xilinx_helioncore.pdf

[91] Intel Corp. Intel StrataFlash embedded memory (P30) family (revision 007),
number, May 2006.

[92] iRoC Technologies. Radiation results of the SER test of Actel, Xilinx
and Altera FPGA instances, 2004. http://www.actel.com/documents/

OverviewRadResultsIROC.pdf

[93] ISO/IEC 18092:2004 Information technology – telecommunications and infor-
mation exchange between systems – near field communication – interface and
protocol (NFCIP-1), January 2007.

[94] ISO/IEC 7816-3:2006 Identification cards – integrated circuit cards – part 3:
cards with contacts – electrical interface and transmission protocols, October
2006.

[95] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu. Zero overhead watermarking
technique for FPGA designs. In ACM Great Lakes symposium on VLSI, pages
147–152, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-677-3.

[96] K. Järvinen. Studies on high-speed hardware implementations of cryp-
tographic algorithms. PhD thesis, Helsinki University of Technology,
November 2008. http://lib.tkk.fi/Diss/2008/isbn9789512295906/

isbn9789512295906.pdf

[97] K. Järvinen, M. Tommiska, and J. Skyttä. A fully pipelined memoryless 17.8
Gbps AES-128 encryptor. In Eleventh ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 207–215, New York, NY, USA,
2003. ACM. ISBN 1-58113-651-X.

[98] K. Järvinen, M. Tommiska, and J. Skyttä. Comparative survey of high-
performance cryptographic algorithm implementations on FPGAs. IEE Pro-
ceedings Information Security, 152(1):3–12, 2005.

[99] R. G. Johnston, A. R. Garcia, and A. N. Pacheco. Efficacy of tamper-
indicating devices. Journal of Homeland Security, April 2002. http://www.

homelandsecurity.org/journal/articles/tamper2.htm

[100] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe. Constraint-based water-
marking techniques for design IP protection. IEEE Transactions on CAD of
Integrated Circuits and Systems, 20(10):1236–1252, 2001.

[101] T. Kasper. Embedded security analysis of RFID devices. Master’s the-
sis, Ruhr-University Bochum, July 2006. http://www.crypto.ruhr-

uni-bochum.de/imperia/md/content/dissertations/timo_kasper___

embedded_security_analysis_of_rfid_devices.pdf

[102] T. Kean. Secure configuration of Field Programmable Gate Arrays. In Field
Programmable Logic and Applications, pages 142–151, London, UK, 2001.
Springer-Verlag.

148

http://www.actel.com/documents/OverviewRadResultsIROC.pdf
http://www.actel.com/documents/OverviewRadResultsIROC.pdf
http://lib.tkk.fi/Diss/2008/isbn9789512295906/isbn9789512295906.pdf
http://lib.tkk.fi/Diss/2008/isbn9789512295906/isbn9789512295906.pdf
http://www.homelandsecurity.org/journal/articles/tamper2.htm
http://www.homelandsecurity.org/journal/articles/tamper2.htm
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/dissertations/timo_kasper___embedded_security_analysis_of_rfid_devices.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/dissertations/timo_kasper___embedded_security_analysis_of_rfid_devices.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/dissertations/timo_kasper___embedded_security_analysis_of_rfid_devices.pdf

[103] T. Kean. Cryptographic rights management of FPGA intellectual property
cores. In Field Programmable Gate Arrays Symposium, pages 113–118, New
York, NY, USA, 2002. ACM Press.

[104] K. Kepa, F. Morgan, K. Kościuszkiewicz, L. Braun, M. Hübner, and J. Becker.
FPGA analysis tool: high-level flows for low-level design analysis in reconfig-
urable computing. In Reconfigurable Computing: Architectures, Tools, and
Applications, pages 62–73, March 2009.

[105] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, 9:
5–38, January 1883.

[106] D. Kessner. Copy protection for SRAM based FPGA designs, number,
May 2000. http://web.archive.org/web/20031010002149/http://free-

ip.com/copyprotection.html

[107] S. Kilts. Advanced FPGA design: architecture, implementation, and optimiza-
tion. Wiley-IEEE Press, 2007. ISBN 978-0-470-05437-6.

[108] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, 2003.

[109] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and implementing malicious hardware. In Usenix Workshop on Large-Scale
Exploits and Emergent Threats table of contents. USENIX Association Berke-
ley, CA, USA, 2008.

[110] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Cryptology Conference on Advances in Cryptology,
volume 1109 of LNCS, pages 104–113, London, UK, 1996. Springer-Verlag.
ISBN 3-540-61512-1.

[111] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Cryptology
Conference on Advances in Cryptology, volume 1666 of LNCS, pages 388–397,
London, UK, 1999. Springer-Verlag. ISBN 3-540-66347-9.

[112] O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant smart-
card processors. In USENIX Workshop on Smartcard Technology, pages 9–20,
May 1999.

[113] B.-J. Koops. Crypto law survey (version 25.2), 2008. http://rechten.uvt.

nl/koops/cryptolaw/

[114] M. G. Kuhn. Compromising emanations: eavesdropping risks of computer dis-
plays. Technical Report UCAM-CL-TR-577, University of Cambridge, Comp-
uter Laboratory, December 2003.

[115] M. G. Kuhn. An asymmetric security mechanism for navigation signals. In
J. Fridrich, editor, Information Hiding, number 3200 in LNCS, pages 239–252,
Toronto, Canada, May 2004. Springer.

149

http://web.archive.org/web/20031010002149/http://free-ip.com/copyprotection.html
http://web.archive.org/web/20031010002149/http://free-ip.com/copyprotection.html
http://rechten.uvt.nl/koops/cryptolaw/
http://rechten.uvt.nl/koops/cryptolaw/

[116] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In Field
Programmable Gate Arrays Symposium, pages 21–30, New York, NY, USA,
2006. ACM Press. ISBN 1-59593-292-5.

[117] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: survey and challenges.
Foundations and Trends in Electronic Design Automation, 2(2):135–253, 2008.
doi: http://dx.doi.org/10.1561/1000000005.

[118] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. FPGA fingerprinting
techniques for protecting intellectual property. In Custom Integrated Circuits
Conference, 1998.

[119] J. Lach, W. H. Mangione-Smith, and M. Potkonjak. Robust FPGA intellec-
tual property protection through multiple small watermarks. In ACM/IEEE
Conference on Design Automation, pages 831–836, New York, NY, USA, 1999.
ACM Press. ISBN 1-58133-109-7.

[120] Lattice Semiconductor Corp. http://www.latticesemi.com

[121] T. V. Le and Y. Desmedt. Cryptanalysis of UCLA watermarking schemes for
intellectual property protection. In Workshop on Information Hiding, volume
2578 of LNCS, pages 213–225, London, UK, 2002. Springer-Verlag. ISBN
3-540-00421-1.

[122] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas.
A technique to build a secret key in integrated circuits for identification and
authentication application. In Proceedings of the Symposium on VLSI Circuits,
pages 176–159, 2004.

[123] A. Lesea. jbits & reverse engineering (Usenet comp.arch.fpga),
September 2005. http://groups.google.com/group/comp.arch.fpga/msg/
821968d7dcb50277

[124] A. Lesea. Personal communication, January 2006.

[125] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke. The Rosetta
experiment: atmospheric soft error rate testing in differing technology FP-
GAs. IEEE Transactions on Device and Materials Reliability, 5(3):317–328,
September 2005.

[126] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas.
Extracting secret keys from integrated circuits. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 13(10):1200–1205, October 2005.

[127] M. Long. Implementing Skein hash function on Xilinx Virtex-5 FPGA
platform, February 2009. http://www.skein-hash.info/sites/default/

files/skein_fpga.pdf

[128] V. Maingot, J. Ferron, R. Leveugle, V. Pouget, and A. Douin. Configuration
errors analysis in SRAM-based FPGAs: software tool and practical results.
Microelectronics Reliability, 47(9-11):1836–1840, 2007.

150

http://www.latticesemi.com
http://groups.google.com/group/comp.arch.fpga/msg/821968d7dcb50277
http://groups.google.com/group/comp.arch.fpga/msg/821968d7dcb50277
http://www.skein-hash.info/sites/default/files/skein_fpga.pdf
http://www.skein-hash.info/sites/default/files/skein_fpga.pdf

[129] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Techniques for design and
implementation of secure reconfigurable PUFs. ACM Transactions on Recon-
figurable Technology and Systems (TRETS), 2(1), March 2009.

[130] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing
the secrets of smart cards. Springer-Verlag, Secaucus, NJ, USA, 2007. ISBN
978-0-387-30857-9.

[131] M. McLean and J. Moore. FPGA-based single chip cryptographic solution–
securing FPGAs for red-black systems. Military Embedded Systems, March
2007. http://www.mil-embedded.com/pdfs/NSA.Mar07.pdf

[132] M. McLoone and J. V. McCanny. Rijndael FPGA implementations utilising
look-up tables. The Journal of VLSI Signal Processing, 34(3):261–275, 2003.

[133] A. Megacz. A library and platform for FPGA bitstream manipulation. Field-
Programmable Custom Computing Machines Symposium, pages 45–54, April
2007.

[134] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of applied
cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996. ISBN 0-849-
38523-7.

[135] N. Mentens, B. Gierlichs, and I. Verbauwhede. Power and fault analysis resis-
tance in hardware through dynamic reconfiguration. In E. Oswald and P. Ro-
hatgi, editors, Cryptographic Hardware and Embedded Systems Workshop, vol-
ume 5154 of LNCS, pages 346–362, Washington DC,US, 2008. Springer-Verlag.

[136] T. S. Messerges. Power analysis attack countermeasures and their weak-
nesses. In Communications, Electromagnetics, Propagation and Signal Pro-
cessing Workshop, 2000.

[137] Aerospace science and technology dictionary. National Aeronautics and Space
Administration, number, 2006.

[138] National Institute of Advanced Industrial Science and Technology. Side-
channel Attack Standard Evaluation Board (SASEBO), September 2009.
http://www.rcis.aist.go.jp/special/SASEBO/

[139] National Institute of Standards and Technology, U.S. Department of Com-
merce. http://www.nist.gov

[140] J.-B. Note and É. Rannaud. From the bitstream to the netlist. In
ACM/SIGDA Symposium on Field Programmable Gate Arrays, pages 264–
264. ACM New York, NY, USA, February 2008.

[141] S. B. Örs, E. Oswald, and B. Preneel. Power-analysis attacks on an FPGA –
first experimental results. In Cryptographic Hardware and Embedded Systems
Workshop, volume 2779 of LNCS, pages 35–50, London, UK, September 2003.
Springer-Verlag. ISBN 978-3-540-40833-8.

151

http://www.mil-embedded.com/pdfs/NSA.Mar07.pdf
http://www.rcis.aist.go.jp/special/SASEBO/
http://www.nist.gov

[142] R. S. Pappu. Physical one-way functions. PhD thesis, Massachusetts Institute
of Technology, March 2001.

[143] R. S. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way
functions. Science, 297:2026–2030, 2002.

[144] M. M. Parelkar. Authenticated encryption in hardware. Master’s thesis,
George Mason University, Fairfax, VA, USA, 2005.

[145] M. M. Parelkar. FPGA security – bitstream authentication. Technical report,
George Mason University, 2005. http://ece.gmu.edu/courses/Crypto_

resources/web_resources/theses/GMU_theses/Parelkar/Parelkar_

Fall_2005.pdf

[146] M. M. Parelkar and K. Gaj. Implementation of EAX mode of operation for
FPGA bitstream encryption and authentication. In Field Programmable Tech-
nology, pages 335–336, December 2005.

[147] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures
and counter-measures for smart cards. In E-SMART: Proceedings of the In-
ternational Conference on Research in Smart Cards, pages 200–210, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42610-8.

[148] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact and
efficient encryption/decryption module for FPGA implementation of the AES
Rijndael very well suited for small embedded applications. volume 2, page 583,
Los Alamitos, CA, USA, 2004. IEEE Computer Society. ISBN 0-7695-2108-8.

[149] G. Saggese, A. Mazzeo, N. Mazzocca, and A. Strollo. An FPGA-based perfor-
mance analysis of the unrolling, tiling, and pipelining of the AES algorithm.
In Field-Programmable Logic and Applications, volume 2778 of LNCS, pages
292–302. Springer, 2003.

[150] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source
code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995. ISBN 0-471-
11709-9.

[151] G. Seamann. FPGA bitstreams and open designs, number, April
2000. http://web.archive.org/web/20050831135514/http://www.

opencollector.org/news/Bitstream/

[152] L. Sekanina. Towards evolvable IP cores for FPGAs. In NASA/DoD Confer-
ence on Evolvable Hardware, pages 145–154. IEEE Computer Society Press,
2003. ISBN 0-7695-1977-6.

[153] L. Sekanina and Š. Friedl. An evolvable combinational unit for FPGAs. Com-
puting and Informatics, 23(5):461–486, 2004.

[154] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power consumption in
Virtex-II FPGA family. In Field Programmable Gate Arrays Symposium, pages
157–164, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-452-5.

152

http://ece.gmu.edu/courses/Crypto_resources/web_resources/theses/GMU_theses/Parelkar/Parelkar_Fall_2005.pdf
http://ece.gmu.edu/courses/Crypto_resources/web_resources/theses/GMU_theses/Parelkar/Parelkar_Fall_2005.pdf
http://ece.gmu.edu/courses/Crypto_resources/web_resources/theses/GMU_theses/Parelkar/Parelkar_Fall_2005.pdf
http://web.archive.org/web/20050831135514/http://www.opencollector.org/news/Bitstream/
http://web.archive.org/web/20050831135514/http://www.opencollector.org/news/Bitstream/

[155] E. Simpson and P. Schaumont. Offline hardware/software authentication for
reconfigurable platforms. In Cryptographic Hardware and Embedded Systems
Workshop, volume 4249 of LNCS, pages 311–323. Springer, October 2006.
ISBN 978-3-540-46559-1.

[156] S. P. Skorobogatov. Low temperature data remanence in static RAM. Tech-
nical Report UCAM-CL-TR-536, University of Cambridge, Computer Labo-
ratory, June 2002.

[157] S. P. Skorobogatov. Semi-invasive attacks – a new approach to hardware secur-
ity analysis. Technical Report UCAM-CL-TR-630, University of Cambridge,
Computer Laboratory, April 2005.

[158] S. W. Smith and S. Weingart. Building a high-performance, programmable
secure coprocessor. Computer Networks: The International Journal of Comp-
uter and Telecommunications Networking, 31(9):831–860, 1999.

[159] J. M. Soden, R. E. Anderson, and C. L. Henderson. IC failure analysis: Magic,
mystery, and science. IEEE Design & Test, 14(3):59–69, July 1997.

[160] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient
implementation of Rijndael encryption in reconfigurable hardware: improve-
ments and design tradeoffs. In Cryptographic Hardware and Embedded Systems
Workshop, volume 2779 of LNCS, pages 334–350. Springer, 2003. ISBN 978-
3-540-40833-8.

[161] F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.-J.
Quisquater. Differential power analysis of FPGAs : How practical is the at-
tack? In Field Programmable Logic and Applications, pages 701–709, London,
UK, September 2003. Springer-Verlag.

[162] F.-X. Standaert, S. B. Örs, and B. Preneel. Power analysis of an FPGA
implementation of Rijndael: is pipelining a DPA countermeasure? In Cryp-
tographic Hardware and Embedded Systems Workshop, volume 3156 of LNCS,
pages 30–44, London, UK, August 2004. Springer. ISBN 978-3-540-22666-6.

[163] F.-X. Standaert, S. B. Örs, J.-J. Quisquater, and B. Preneel. Power analysis
attacks against FPGA implementations of the DES. In Field Programmable
Logic and Applications, pages 84–94, London, UK, August 2004. Springer-
Verlag.

[164] F.-X. Standaert, F. Mace, E. Peeters, and J.-J. Quisquater. Updates on the
security of FPGAs against power analysis attacks. In Reconfigurable Comput-
ing: Architectures and Applications, volume 3985 of LNCS, pages 335–346,
2006.

[165] F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater. An overview
of power analysis attacks against field programmable gate arrays. Proceedings
of the IEEE, 94(2):383–394, Febuary 2006.

153

[166] M. Stigge, H. Plötz, W. Müller, and J.-P. Redlich. Reversing CRC – theory
and practice. Technical Report SAR-PR-2006-05, Humboldt University Berlin,
May 2006.

[167] G. E. Suh and S. Devadas. Physical unclonable functions for device authen-
tication and secret key generation. In Design Automation Conference, pages
9–14, New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-627-1.

[168] A. Thompson. Hardware evolution page, February 2006. http://www.cogs.

susx.ac.uk/users/adrianth/ade.html

[169] A. Thompson and P. Layzell. Analysis of unconventional evolved electronics.
Communications of the ACM, 42(4):71–79, 1999.

[170] K. Thompson. Reflections on trusting trust. Communications of ACM, 27(8):
761–763, 1984.

[171] K. Tiri and I. Verbauwhede. Synthesis of secure FPGA implementations. In
International Workshop on Logic and Synthesis, pages 224–231, 2004.

[172] S. Trimberger. Trusted design in FPGAs. In Design Automation Conference,
pages 5–8. ACM, June 2007.

[173] S. M. Trimberger and R. O. Conn. Remote field upgrading of programmable
logic device configuration data via adapter connected to target memory socket.
United States Patent Office, number 7269724, September 2007.

[174] T. Tuan, T. Strader, and S. Trimberger. Analysis of data remanence in a 90nm
FPGA. IEEE Custom Integrated Circuits Conference, pages 93–96, September
2007.

[175] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, and
R. Wolters. Read-proof hardware from protective coatings. In Cryptographic
Hardware and Embedded Systems Workshop, volume 4249 of LNCS, pages
369–383. Springer, October 2006. ISBN 978-3-540-46559-1.

[176] Ulogic FPGA netlist recovery, October 2007. http://www.ulogic.org

[177] High performance microchip supply. United Stated Department of Defense,
number, February 2005. http://www.acq.osd.mil/dsb/reports/2005-02-

HPMS_Report_Final.pdf

[178] Altera Corporation vs. Clear Logic Incorporated (D.C. No. CV-99-21134).
United States Court of Appeals for the Ninth Circuit, number, April 2005.
http://www.svmedialaw.com/altera%20v%20clear%20logic.pdf

[179] U.S. Department of Justice. Departments of Justice and Homeland Secur-
ity announce international initiative against traffickers in counterfeit network
hardware, February 2008. http://www.usdoj.gov/opa/pr/2008/February/

08_crm_150.html

154

http://www.cogs.susx.ac.uk/users/adrianth/ade.html
http://www.cogs.susx.ac.uk/users/adrianth/ade.html
http://www.ulogic.org
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.svmedialaw.com/altera%20v%20clear%20logic.pdf
http://www.usdoj.gov/opa/pr/2008/February/08_crm_150.html
http://www.usdoj.gov/opa/pr/2008/February/08_crm_150.html

[180] P. Vandewalle, J. Kovačević, and M. Vetterli. Reproducible research in signal
processing - what, why, and how. IEEE Signal Processing Magazine, 26(3):
37–47, May 2009. http://rr.epfl.ch/17/

[181] H. R. Varian. Managing online security risks. New York Times. 1 June, 2000.
http://www.ischool.berkeley.edu/~hal/people/hal/NYTimes/2000-06-

01.html

[182] N. Weaver and J. Wawrzynek. High performance, compact AES imple-
mentations in Xilinx FPGAs. Technical report, U.C. Berkeley BRASS
group, September 2002. http://www.icsi.berkeley.edu/~nweaver/cv_

pubs/rijndael.pdf

[183] R. Wilson. Panel unscrambles intellectual property encryption issues, number,
January 2007. http://www.edn.com/article/CA6412249.html

[184] R. Wilson. Silicon intellectual property panel puzzles selection process, number,
February 2007. http://www.edn.com/article/CA6412358.html

[185] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: state-of-the-art
implementations and attacks. Transactions on Embedded Computing Systems,
3(3):534–574, March 2004.

[186] Xilinx Inc. http://www.xilinx.com

[187] Xilinx Inc. Processor peripheral IP evaluation, October 2007. http://www.

xilinx.com/ipcenter/ipevaluation/proc_ip_evaluation.htm

[188] Xilinx Inc. Development system reference guide 10.1, number, February 2009.
http://www.xilinx.com/itp/xilinx10/books/docs/dev/dev.pdf

[189] A. Yan, R. Cheng, and S. J. Wilton. On the sensitivity of FPGA archi-
tectural conclusions to experimental assumptions, tools, and techniques. In
International Symposium on Field-Programmable Gate Arrays, pages 147–156,
Monterey, California, USA, February 2002. ACM. ISBN 1-58113-452-5.

[190] D. Ziener and J. Teich. FPGA core watermarking based on power signature
analysis. In IEEE International Conference on Field-Programmable Technol-
ogy, pages 205–212, December 2006.

[191] D. Ziener, A. Stefan, and T. Jürgen. Identifying FPGA IP-Cores based on
lookup table content analysis. In Field Programmable Logic and Applications,
pages 481–486, August 2006.

155

http://rr.epfl.ch/17/
http://www.ischool.berkeley.edu/~hal/people/hal/NYTimes/2000-06-01.html
http://www.ischool.berkeley.edu/~hal/people/hal/NYTimes/2000-06-01.html
http://www.icsi.berkeley.edu/~nweaver/cv_pubs/rijndael.pdf
http://www.icsi.berkeley.edu/~nweaver/cv_pubs/rijndael.pdf
http://www.edn.com/article/CA6412249.html
http://www.edn.com/article/CA6412358.html
http://www.xilinx.com
http://www.xilinx.com/ipcenter/ipevaluation/proc_ip_evaluation.htm
http://www.xilinx.com/ipcenter/ipevaluation/proc_ip_evaluation.htm
http://www.xilinx.com/itp/xilinx10/books/docs/dev/dev.pdf

156

Appendix A

Protecting multiple designs in a

single configuration

We have discussed the “design distribution problem” in Section 2.1.5 and noted that

one of the hardest problems facing the “design reuse” industry is the integration

of many cores from multiple distrusting sources into a single FPGA design, and

thus enabling a complete “pay-per-use” model. Others have proposed solutions to

the “virtual ASSP” problem, limited to protecting designs that occupy an entire

FPGA, or solutions that only protect compiled code for a soft or hard embedded

processor (Section 2.3.5.1). That is, they do not allow system developers to integrate

purchased cores into their own designs while still maintaining their confidentiality.

I also made the observation that the further up we go in the development flow

(bitstreams being the lowest level), the harder it is to maintain security attributes

since more EDA tools and principals become involved in the design process.

Here, I propose a solution that allows integration of cores from multiple sources

while maintaining their confidentiality as they are integrated into a single config-

uration file. The integration is done at the bitstream level such that only the FPGA

(that is, the hardware, not the software) decrypts configuration payloads. The pro-

posed scheme requires modest additions and modifications to the configuration logic,

and I argue that for cost-conscious developers it may be both practically and econom-

ically viable, and that existing EDA tools already support most of the functionality

that is required to enable it.

A.1 Single core protection

I base my proposed scheme on the VASSP protection protocol of Güneysu et al. [77],

who had the idea of establishing a symmetric encryption key between the FPGA

configuration logic (CL) and cores vendor (CV) using an elliptic curve Diffie-Hellman

(ECDH) exchange and a key derivation function (KDF) [139, 800-56A]. A system

157

developer (SD) licenses a number of complete FPGA configuration copies, to be

used with a set of FPGAs purchased from the FPGA vendor (FV). This allows the

cores vendor to “lock” every instance of her core to a particular FPGA and be paid

for it individually. The protocol consists of the following operations.

Setup. For each FPGA, the FPGA vendor generates a public key pair (PK F ,

SK F) and a “personalization bitstream” (PB) that can perform an ECDH KDF

in the user logic. The secret key SK F is contained inside of the personalization

bitstream, so the FPGA vendor encrypts it with a random symmetric key KF ,

programmed into a non-volatile bitstream decryption keystore. The FPGA ven-

dor keeps KF and the plaintext personalization bitstream secret, and sends the

encrypted version and corresponding public key PK F to the system developer (with

the FPGA itself).

Licensing. The system developer sends the FPGA identifier F to the cores

vendor together with its public key PK F . The cores vendor generates a public key

pair for the FPGA (PK CV, SK CV) and computes a symmetric key using ECDH

KDF with its secret key and the FPGA’s public key,

KCV = KDF(SK CV, PK FV, F)

The licensed VASSP is then encrypted using KCV, and sent to the system developer

together with PK CV.

Personalization. The FPGA’s configuration logic processes the encrypted per-

sonalization bitstream using the embedded KF , and then feeds the cores vendor’s

public key PK CV to the user logic so it internally compute KCV

KCV = KDF(SKFV, PKCV, F)

KCV is then stored in a dedicated non-volatile write-only keystore in the config-

uration logic. Now, the configuration logic can decrypt the encrypted VASSP bit-

stream in the same way it is done with existing FPGAs (Section 2.3.1).

A.2 Protecting multiple cores

A.2.1 Outline

My proposed scheme is shown in Figure A.1, and consists of five stages.

Partitioning. Each module of the design (e.g., USB, AES, TCP, etc.) is as-

signed a partition – a confined region of FPGA resources. For communication be-

tween modules, standardized interface macros are placed between them, and also

assigned a fixed FPGA location. An EDA tool processes this information and pro-

158

partition fi le

h
e
a
d
e
r

f
o
o
t
e
r

to
FPGA

frame address jump ("goto frame address X")

system developercores vendor 1 cores vendor 2

software
flow

+ HDL
software

flow

+ HDL
software

flow

+ HDL

encrypted
under K

assembly tool

change key domain

partition fi le

CV1

encrypted
under KSD

encrypted
under KCV2

Figure A.1: A “partition file” created by the system developer is distributed to cores
vendors. This file is used by all contributors for producing a bitstream portion that
corresponds to the part of the FPGA they were assigned to design with. Each bitstreams
portion contain “goto frame address X” commands for non-contiguous frames, and then
each is encrypted under the key established using the ECDH KDF scheme. An assembly
tool creates a complete bitstream and inserts commands that instruct the configuration
logic which key to use to decrypt the data that follows.

duces a “partition file” such that when used as an input to an FPGA development

flow, HDL assigned to a particular partition can be confined to its constrained

resources and connect input and output ports to their respective interface macro

connections.

Development. The system developer, and cores vendors who are assigned to

develop “external” cores, use the partition file as input to their development flow.

For each, the output is a bitstream portion that corresponds to their allocated

partition.

Key establishment. Once development is done, a protocol session similar to

the one described in Section A.1 is executed between each FPGA (via the system

developer) and external cores vendors. This time, however, several KCV, designated

KCVi
, are established instead of only one as with Güneysu et al. Each cores vendor

sends the system developer a bitstream portion encrypted under its respective KCV

(instead of a complete bitstream as with the original protocol).

Assembly. The system developer uses a software tool to “assemble” together the

bitstream portions into a complete configuration file. In between bitstream portions

159

"personalization
bitstream"

encrypted under

user logic

ECDH KDF

DEC

SKF

config logic

KSD

KCV1

KCV2

F ID

public keys for
key derivation

KF

Figure A.2: For establishing the keys under which the multiple cores are encrypted, the
personalization bitstream is decrypted using KF , and the KDF is loaded onto the user
logic (dashed lines). Then, public keys from the system developer and cores vendors are
loaded to the KDF and the output keys are written to the dedicated configuration logic
storage (solid lines). Finally, the composite bitstream from Figure A.1 is decrypted using
the derived keys. Although I show storage for three keys, more can be added.

encrypted under different keys, “use key X” commands instruct the configuration

logic which KCVi
key to use for decrypting the configuration data that follows.

Configuration. The complete bitstream, containing configuration data under

different key domains, is processed by the configuration logic to load the application

into the user logic.

A.3 Detailed Discussion

A.3.1 General assumptions

The communication between principals should be over secure and authenticated

channels for non-repudiation and prevention of man-in-the-middle attacks. Public-

key infrastructure (PKI) may be used, and the public key pair issued by the FPGA

vendor must be certified under the PKI scheme; this prevents an attacker from

easily replacing the original personalization bitstream with a forged one (using the

attacker’s own FPGA public key pair) so he can extract KCV before it is written to

the keystore. Certified FPGA vendor key pair assures the cores vendor that cores

will only operate on FPGAs associated with a particular personalization bitstream

and public key pair.

Ideally, bitstreams should be authenticated as discussed in Section 2.3.2, but that

depends on if the configuration logic supports it. I also assume that key storage is

designed such that physical or side-channel attacks are impractical. Finally, I assume

that the implemented cryptographic primitives are computationally secure, resistant

to physical and logical attacks, and that mechanisms that protect designs cannot be

circumvented. One example for the latter is readback; unless encrypted readback is

160

supported, it must be disabled so the attacker cannot get the plaintext configuration

read out of the FPGA.

A.3.2 Software support

“Partitioning”1 is required for large designs where several teams work on different

blocks, each required to fit their sub-designs into a fixed set of resource boundaries

(additionally, HDL hierarchy provides a natural conceptual partitioning of designs).

The design flow for combining these modules is called “modular design”, which

allows independent development of partitions until “final assembly” where all the

modules’ netlists are combined to create a single configuration file. For the scheme

described here, the software is required to be able to assign particular FPGA re-

sources to designs made entirely of “black boxes”2. The tool should also be able

to place standardized “bus macros” for connecting the black boxes’ I/O ports, and

assign them to specific FPGA resources. Finally, the tool needs to produce a parti-

tion file that can be used as an input to other instances of the tool, each used for

the development of a different partition.

For each partition, the development of the cores is performed as usual except

that the tools must adhere to the partition’s constraints and connection to bus

macros, as specified by the partition file. The output of this flow is a bitstream

portion corresponding to each partition, very similar to the one used for partial

reconfiguration.

The encryption of partial bitstreams must be done in such a way that allows a

tool to combine them into a complete bitstream. Assuming a block cipher is used

for encryption/decryption, the process also has to deal with partial input blocks, so

a provision for padding with no-ops is required. Before the assembly, commands are

inserted so to instruct the configuration logic which key to use in order to decrypt

the following partition’s configuration data. Using “goto frame X” commands, which

are already part of the encrypted bitstream, the configuration logic knows where to

configure each frame.

A.3.3 Loss of optimization and flexibility

Modular design can be straightforward within groups of the same company, though

the way I propose using it, there are logistical overheads and some resource allocation

inefficiencies. Firstly, I require strict commitment to partitions at an early stage of

the design process, with little flexibility thereafter. This means that the system

developer must commit to a particular FPGA size early, and that cores vendors

must supply accurate resource-use data. The latter is important to get right because

1Xilinx calls a similar process “initial budgeting”.
2These are instantiations that have defined I/O ports, but are either missing the actual logical
definition or the tool cannot read them, because they are encrypted, for example.

161

inaccuracies will either leave unused resources in the final design, or worse, the core

will not fit the allocated resources. And secondly, partition resolution is limited to

the fundamental configuration unit, the “frame” (see Section 2.2.1), which may also

result in minor resource inefficiency and impose some constraints on the size and

“shape” of partitions.

In a typical design flow, HDL hierarchy is flattened for resources and timing

optimization. Cross-module optimization will not be possible with my scheme, of

course, so resources that would have otherwise been saved will be “lost”. That said,

if we assume that modules (from cores vendors) are already as optimized as they

can be, further optimization by EDA tools will not result in significantly better

performance (in either resource utilization or operating frequency).

A.3.4 Key management

For key establishment, each FPGA is required to have an embedded unique user-

logic-readable identifier F to be used as an input the KDF, and storage for multiple

KCVi
keys. Preferably, KCVi

are stored in non-volatile keystores that can be written

(only) from the user logic and read (only) by the configuration logic. Writing to

keystores should be atomic, so all key bits are replaced at once. Allowing partial

writes, such as individual bytes, could be used to exhaustively search for the write

operation that does not change the behavior of the key and thereby reveal individual

key bits. It is also possible to store KCVi
in volatile keystores, but then they need

to be established on every power-up. This will increase the amount of configuration

storage memory, and configuration time, though it may appeal more to security-

conscious designers because then keys are not permanently stored in the device, and

can be “zeroized”.

A.3.5 Communication bandwidth

Network bandwidth is important to consider as bitstream portions can be megabytes

in size; multiplying that by a large number of FPGAs can amount to the transfer of

gigabytes of encrypted data. The protocol exchanges can be made in one lump for

Existing software support. Both Xilinx and Altera software tools already
support modular design. In tools such as Xilinx PlanAhead [186, UG632], the
developer can graphically partition designs, though the facility for generation
and acceptance of a “partition definition file” is not quite there yet. Insertion of
bus macros and bitstream-level partitioning is already supported by the Xilinx
tools for partial reconfiguration. Thus, in terms of software support, it seems
that existing tools can already perform many of the functions that are required
to enable the proposed scheme.

162

a batch of FPGAs and data delivered on magnetic or optical media by a courier –

as opposed to requiring an online response exchange for each FPGA. The ability to

execute the protocol offline also defends against a denial of service attack targeting

the cores vendors’ servers.

We can minimize the bandwidth by issuing encrypted tokens to each FPGA

instead of the encrypted core. The protocol is used to produce KCVi
as before, but

instead of the cores vendor sending the system developer the encrypted core, it sends

a token encrypted using the respective KCV, which contains the key KCV′ needed to

decrypt the bitstream portion. The advantage of this extension is that only tokens

are unique to a system, whereas the cores themselves are the same for all systems,

encrypted using KCV′ . Of course, KCV′ is limited to a particular core from a core

vendor and system developer’s FPGA FIDs. This extension reduces bandwidth, but

either complicates processing, since the configuration logic is required to decrypt the

token before processing each bitstream portion, or twice the amount of key storage

is required.

A.3.6 Trust

KF protects the asymmetric key that is the pivot of the scheme’s security; since it

and the personalization bitstream is generated by the FPGA vendor, it is considered

a trusted party. Though undesirable, this requirement is not entirely unreasonable,

as most system developers already trust the FPGA vendor to provide them with

a trustworthy FPGA and EDA tools. An independent trusted party can be es-

tablished, but would require that FPGAs go through it before being given to the

developer.

A crippled version of the core (as a bitstream matching the partition) can be

delivered to system developers for integration and testing, though there will be no

way for them to check that the core does not contain malicious functions or Trojan

horses. Since the core is a black box to the system developer he can only test

it using input and output vectors, which will quite possibly not detect any extra

functionality. Even if our scheme allows the vendor to test the core as a black

box once it is loaded onto the FPGA, the fact that each core is encrypted using a

different key requires testing each one, which may be costly.

To what extent is this a problem? We assumed a cost-conscious developer, one

that is interested in low cost solutions and is generally trusting (unless the developer

is well funded, this is a pre-requisite as there is no way to verify that all EDA and

hardware used are trust-worthy). The developer relies on social means such as

contracts, agreements and the reputation of the vendor he purchases hardware and

software from. One can say that trust has a price; if the developer wanted to verify

the core, he would need to pay to see it.

163

A.3.7 Advantages

With the proposed scheme, the current usage model of FPGAs is unchanged; devel-

opers opt-in to it, or otherwise ignore it. FPGA vendors can gradually increase the

keystore size with each generation according to adoption of the scheme, and since

the key establishment is done in user logic, they do not need to commit to any par-

ticular KDF in silicon. The scheme relies on established cryptographic primitives

such as Diffie-Hellman key establishment and hash functions. Configuration times

are not adversely affected by the addition of key domain switches and addressing if

keys are kept in non-volatile keystore; authentication may add to configuration time

depending on how it is implemented.

Finally, the scheme makes sure that incentives are in the right place for good

security practices. System developers and cores vendors can only compromise their

own keys, so they have an interest in keeping them safe. Even though both rely on

the keys generated by the FPGA vendor, it has reputation – a valuable asset – to

lose, though this may not be enough to make sure keys are kept safe. Therefore,

FPGA vendors (or other trusted party) may need to guarantee compensation to

those enrolled in the scheme and lost money due to a compromise.

164

Appendix B

AES implementation background

AES was designed as a substitution-permutation network and uses between 10, 12,

or 14 encryption rounds for key length of 128, 196, or 256 bits, respectively, for

encrypting or decrypting 128-bit blocks. In a single round, AES operates on all 128

input bits, which are represented as a 4×4 matrix of bytes. Fundamental operations

of the AES are performed based on byte-level field arithmetic over the Galois Field

GF (28) so operands can be represented as 8-bit vectors. AES has been designed to

be efficient in both hardware and software, and is versatile in that it can be made

either area-optimized, iterative, and slow, or “unrolled” and fast by parallelizing

and pipelining operations.

‘A’ denotes the input block of bytes ai,j in columns Cj and rows Ri, where j and

i are the respective indices ranging between 0 and 3.

A =


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3


An AES round has four basic operations on A:

SubBytes : A’s bytes are substituted with non-linear 8× 8 bit S-box values.

ShiftRows : bytes of rows Ri are cyclically left shifted by 0, 1, 2 or 3 positions.

MixColumns : columns Cj = (a0,j, a1,j, a2,j, a3,j) are matrix-vector-multiplied by

a matrix of constants in GF (28).

AddRoundKey : a round key Ki is added to the input using GF (28) arithmetic.

The sequence of these four operations define an AES round, and they are iteratively

applied for a full encryption or decryption of a single 128-bit input block. The

GF (28) arithmetic above can be combined into a single complex operation. Daemen

and Rijmen [42] define such an approach for software implementations on 32-bit

processors with the use of large lookup tables. This approach requires four 8- to

165

32-bit lookup tables for the four round transformations, each the size of 8-Kibit. We

can compute these transformation tables, Tk[0..3], in the following way:

T0[x] =


S[x]× 02

S[x]

S[x]

S[x]× 03

 T1[x] =


S[x]× 03

S[x]× 02

S[x]

S[x]



T2[x] =


S[x]

S[x]× 03

S[x]× 02

S[x]

 T3[x] =


S[x]

S[x]

S[x]× 03

S[x]× 02


where S[x] denotes a table lookup in the original 8 × 8 bit AES S-box (for a more

detailed description of this AES optimization see NIST’s FIPS-197 [139]). The last

round, however, is unique in that it omits the MixColumns operation, so requires

special consideration. There are two ways for computing the last round, either by

“reversing” the MixColumns operation from the output of a regular round by an-

other multiplication in GF (28), or creating dedicated “last round” T-tables, one per

regular T-table. Some implementers, such as Fischer and Drutarovský [65], opted

for MixColumn elimination, which is done on-the-fly within the round function.

Besides requiring additional logic resources for the decryption, this approach may

decrease performance since the “reversing” logic may extend the the critical data-

path. For this reason, we decided to add dedicated tables for the last round allows

us to maintain the same datapath for all rounds and keep as many “computations”

within embedded elements of the FPGA; we denote these T-tables as T ′j . We can

now redefine all transformation steps of a single AES round as

Ej = Kr[j] ⊕ T0[a0,j]⊕ T1[a1,(j+1 mod 4)]⊕ T2[a2,(j+2 mod 4)]⊕ T3[a3,(j+3 mod 4)] (B.1)

where Kr[j] is a corresponding 32-bit “sub-key” and Ej denotes one of four encrypted

output columns of a full round. We now see that based on only four T-table lookups

and four XOR operations, a 32-bit column Ej can be computed. To obtain the result

of a full round, Equation (B.1) must be performed four times with all 16 bytes.

Input data to an AES encryption can be defined as four 32-bit column vectors

Cj = (a0,j, a1,j, a2,j, a3,j) with the output similarly formatted in column vectors.

According to Equation B.1, these input column vectors need to be split into indi-

vidual bytes since all bytes are required for the computation steps for different Ej.

For example, for column C0 = (a0,0, a1,0, a2,0, a3,0), the first byte a0,0 is part of the

computation of E0, the second byte a1,0 is used in E3, etc. Since fixed data paths

are preferable in hardware implementations, we have rearranged the operands of

166

the equation to align the bytes according to the input columns Cj when feeding

them to the T-table lookup. In this way, we can implement a unified data path for

computing all four Ej for a full AES round. Thus, Equation (B.1) becomes

E0 = Kr[0] ⊕ T0(a0,0)⊕ T1(a1,1)⊕ T2(a2,2)⊕ T3(a3,3) = (a
′
0,0, a

′
1,0, a

′
2,0, a

′
3,0)

E1 = Kr[1] ⊕ T3(a3,0)⊕ T0(a0,1)⊕ T1(a1,2)⊕ T2(a2,3) = (a
′
0,1, a

′
1,1, a

′
2,1, a

′
3,1)

E2 = Kr[2] ⊕ T2(a2,0)⊕ T3(a3,1)⊕ T0(a0,2)⊕ T1(a1,3) = (a
′
0,2, a

′
1,2, a

′
2,2, a

′
3,2)

E3 = Kr[3] ⊕ T1(a1,0)⊕ T2(a2,1)⊕ T3(a3,2)⊕ T0(a0,3) = (a
′
0,3, a

′
1,3, a

′
2,3, a

′
3,3)

where ai,j denotes an input byte, and a′i,j the corresponding output byte after the

round transformation. The datapath requires a look-up to all of the four T-tables

for the second operand of each XOR operation. For example, the XOR component

at the first position of the sequential operations E0 to E3 and thus requires the

lookups T0(a0,0), T3(a3,0), T2(a2,0) and T1(a1,0) (in this order) and the corresponding

round key Kr[j]. Though operations are aligned for the same input column now, it

becomes apparent that the bytes of the input column are not processed in canonical

order, i.e., bytes need to be swapped for each column Cj = (a0,j, a1,j, a2,j, a3,j) first

before being fed as input to the next AES round. The required byte transposition

is reflected in the following equations (note that the given transpositions are static

so that they can be efficiently hardwired):

C0 = (a
′
0,0, a

′
3,0, a

′
2,0, a

′
1,0)

C1 = (a
′
1,1, a

′
0,1, a

′
3,1, a

′
2,1)

C2 = (a
′
2,2, a

′
1,2, a

′
0,2, a

′
3,2)

C3 = (a
′
3,3, a

′
2,3, a

′
1,3, a

′
0,3)

(B.2)

B.1 Decryption

Encryptor and decryption can be supported with the same circuit by only swapping

the values of the transformation tables and re-arranging the input. As with Equa-

tion (B.1), decryption of columns Dj is governed by the following set of equations:

D0 = Kr[0] ⊕ I0(a0,0)⊕ I1(a1,3)⊕ I2(a2,2)⊕ I3(a3,1) = (a
′
0,0, a

′
1,0, a

′
2,0, a

′
3,0)

D3 = Kr[3] ⊕ I3(a3,0)⊕ I0(a0,3)⊕ I1(a1,2)⊕ I2(a2,1) = (a
′
0,3, a

′
1,3, a

′
2,3, a

′
3,3)

D2 = Kr[2] ⊕ I2(a2,0)⊕ I3(a3,3)⊕ I0(a0,2)⊕ I1(a1,1) = (a
′
0,2, a

′
1,2, a

′
2,2, a

′
3,2)

D1 = Kr[1] ⊕ I1(a1,0)⊕ I2(a2,3)⊕ I3(a3,2)⊕ I0(a0,1) = (a
′
0,1, a

′
1,1, a

′
2,1, a

′
3,1)

This requires the following inversion tables (I-Tables), where S−1 denotes the

inverse 8× 8 S-box for the AES decryption:

167

S-box
S-box
S-box
S-box

0

31

63

95

127

S-box
S-box
S-box
S-box

main AES
key

round
key 1

round
key 9

round
key 10

round
constant 0

round
constant 10

32

32

32

Figure B.1: Key expansion block diagram for AES-128; from the main key, ten “round
keys” are computed.

I0[x] =


S−1[x]× 0E

S−1[x]× 09

S−1[x]× 0D

S−1[x]× 0B

 I1[x] =


S−1[x]× 0B

S−1[x]× 0E

S−1[x]× 09

S−1[x]× 0D



I2[x] =


S−1[x]× 0D

S−1[x]× 0B

S−1[x]× 0E

S−1[x]× 09

 I3[x] =


S−1[x]× 09

S−1[x]× 0D

S−1[x]× 0B

S−1[x]× 0E


We can see that compared to encryption, the input to the decryption equations is

different at two positions for each decrypted column Dj. But instead of changing

the datapath from the encryption function, we can change the order in which the

columns Dj are computed so that instead of computing E0, E1, E2, E3 for encryption,

we determine the decryption output in the column sequence D0, D3, D2, D1.

B.2 Key expansion

The AES key expansion derives “sub-keys” Kr (10, 12 and 14 for AES-128, 192, and

256, respectively) from the main key, where r denotes the round number.

The AES-128 key expansion function is outlined in Figure B.1. The first opera-

tion of AES is a 128-bit XOR of the main key K0 with the 128-bit initial plaintext

block. During expansion, each subkey is treated as four individual 32-bit words

Kr[j] for j = 0 . . . 3. The first word Kr[0] of each round subkey is transformed us-

ing byte-wise rotations and mappings using the same non-linear AES S-boxes. The

words corresponding to the indices j = 1 . . . 3, are XOR’d with the previous subkey

words Kr[j − 1]⊕K(r−1)[j].

168

Appendix C

Glossary

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Product

ATR Answer To Reset (smartcard response to deassertion of reset)

bitstream FPGA configuration file

BRAM Block Random Access Memory (embedded FPGA primitive)

CLB Configurable Logic Block (collection of FPGA primitives)

CMAC Cipher-based MAC (block cipher mode of operation)

DSP Digital Signal Processor (embedded FPGA primitive)

EDA Electronic Design Automation

EMV Europay Mastercard Visa (smartcard payment framework)

FF Flip-Flop (embedded primitive)

FPGA Field Programmable Gate Array

HDL Hardware Description Language

ICAP Internal Configuration Access Port (FPGA primitive)

IP Intellectual Property

Kibit kilo binary digit, equals 210 bits

LUT Lookup Table (embedded FPGA primitive)

MAC Message Authentication Code

NVM Non-Volatile Memory

PAR Place And Route (EDA process)

PED PIN Entry Device

PIN Personal Identification Number

PUF Physical Unclonable Function

slice collection of primitives in Xilinx FPGAs

SRAM Static Random Access Memory

TPS Throughput Per Slice

XOR exclusive or

169

	763.pdf
	Introduction
	Motivation and contribution
	Reading this dissertation

	FPGA security foundations
	FPGA usage model
	Principals
	Design and manufacturing flow
	Defense categories
	Trust and trustworthiness
	Distribution security

	Usage model attacks
	Bitstream reverse engineering
	Counterfeits
	Readback
	Side-channels
	Invasive and semi-invasive attacks
	Others

	Defenses
	Configuration confidentiality
	Configuration authenticity
	Design theft deterrents
	Watermarking and fingerprinting
	Physical unclonable functions
	Evolvable hardware
	Isolation

	Conclusion

	Secure remote reconfiguration
	Update logic
	Assumptions
	Protocol
	Recovery from errors

	Update server routines
	Offline operation

	Authenticity and confidentiality
	Multiple NVM slots
	Analysis
	Implementation considerations
	Parameter sizes

	Related work
	Conclusions

	AES in spare logic
	Introduction
	Prior work
	Implementation
	AES32 module
	AES128 and AES128U modules
	Decryption
	Key expansion

	Results
	Extensions
	Message authentication: CMAC
	CTR and CCM modes
	Replacing DSPs with CLBs

	Conclusions

	The meaning and reproducibility of FPGA results
	Demonstration experiments
	Application context

	Discussion
	Source code
	Optimization goals
	Throughput per slice/area
	Other hazards

	Possible objections
	Related work
	Conclusions

	Distance bounding for wired applications
	Background
	Relay attack
	Implementation
	Procedure and timing
	Results
	Further applications and feasibility

	Defenses
	Non-solutions
	Procedural improvements
	Hardware alterations

	Distance bounding
	Protocol
	Implementation
	Circuit elements and signals
	Possible attacks on distance bounding
	Results
	Costs

	Distance bounding in FPGA applications

	Review and outlook
	Bibliography
	Protecting multiple designs in a single configuration
	Single core protection
	Protecting multiple cores
	Outline

	Detailed Discussion
	General assumptions
	Software support
	Loss of optimization and flexibility
	Key management
	Communication bandwidth
	Trust
	Advantages

	AES implementation background
	Decryption
	Key expansion

	Glossary

